WorldWideScience

Sample records for falling film evaporator

  1. Interfacial Evaporation of Falling Liquid Films with Wall Heating

    Institute of Scientific and Technical Information of China (English)

    张金涛; 王补宣; 彭晓峰

    2001-01-01

    The interfacial evaporation of falling water films with wall heating was experimentally studied andanalyzed. The results presented in this paper showed that the capillary-induced interfacial evaporation playedan important role in heat transfer of a falling liquid film. It would be independent of the wall heat flux andsomewhat lower than that without wall heating for impure fluids such as water-air system. The thermodynamicanalysis conducted gave a theoretical basis for the experimental observations. The effective capillary radiuswas correlated with the mass flow rate. The experimental results and analysis showed that the interfacialevaporation should be taken into account in the study of falling liquid film heat transfer.``

  2. Evaporation of pure liquids with increased viscosity in a falling film evaporator

    Science.gov (United States)

    Weise, Felix; Scholl, Stephan

    2009-05-01

    The present study investigated fluid dynamics and heat transfer of viscous pure liquids in a falling film evaporator. This is of special benefit as it avoids mass transfer effects on the evaporation behaviour. Experiments at a single-tube glass falling film evaporator were conducted. It allowed a full-length optical film observation with a high-speed camera. Additionally the evaporator was equipped with a slotted weir distribution device. Test fluids provided viscosities ranging from μ = 0.3 to 41 mPa s. The Reynolds number was between 0.7 and 1,930. Surface evaporation and the transition to nucleate boiling were studied to gain information about the film stability at maximum wall superheat. A reliable database for laminar and laminar-wavy viscous single component films was created. The experimental results show a significant enhancement in the wave development due to the film distribution. A wavy flow with different wave velocities was superposed to the film in each liquid load configuration without causing a film breakdown or dry spots on the evaporator tube. It was found that nucleate boiling can be allowed without causing film instabilities over a significant range of wall superheat.

  3. Evaporation of pure liquids with increased viscosity in a falling film evaporator

    Energy Technology Data Exchange (ETDEWEB)

    Weise, Felix; Scholl, Stephan [Technical University of Braunschweig (DE). Institute for Chemical and Thermal Process Engineering (ICTV)

    2009-05-15

    The present study investigated fluid dynamics and heat transfer of viscous pure liquids in a falling film evaporator. This is of special benefit as it avoids mass transfer effects on the evaporation behaviour. Experiments at a single-tube glass falling film evaporator were conducted. It allowed a full-length optical film observation with a high-speed camera. Additionally the evaporator was equipped with a slotted weir distribution device. Test fluids provided viscosities ranging from {mu}=0.3 to 41 mPa s. The Reynolds number was between 0.7 and 1,930. Surface evaporation and the transition to nucleate boiling were studied to gain information about the film stability at maximum wall superheat. A reliable database for laminar and laminar-wavy viscous single component films was created. The experimental results show a significant enhancement in the wave development due to the film distribution. A wavy flow with different wave velocities was superposed to the film in each liquid load configuration without causing a film breakdown or dry spots on the evaporator tube. It was found that nucleate boiling can be allowed without causing film instabilities over a significant range of wall superheat. (orig.)

  4. Experimental and numerical analysis for optimal design parameters of a falling film evaporator

    Indian Academy of Sciences (India)

    RAJNEESH KAUSHAL; RAJ KUMAR; GAURAV VATS

    2016-06-01

    Present study exhibits an experimental examination of mass transfer coefficient and evaporative effectiveness of a falling film evaporator. Further, a statistical replica is extended in order to have optimal controlling parameters viz. non-dimensional enthalpy potential, film Reynolds number of cooling water, Reynolds number of air and relative humidity of up-streaming air. The models not only give an optimal solution but also help in establishing a correlation among controlling parameters. In this context, response surface methodology is employed by aid of design of experiment approach. Later, the response surface curves are studied using ANOVA. Finally, the relations established are confirmed experimentally to validate the models. The relations thus established are beneficent in furtherance of designing evaporators. Additionally, the presentstudy is among the first attempts to reveal the effect of humidity on the performance of falling film evaporator.

  5. Heat and Mass Transfer in a Falling Film Evaporator with Aqueous Lithium Bromide Solution

    Science.gov (United States)

    Olbricht, M.; Addy, J.; Luke, A.

    2016-09-01

    Horizontal tube bundles are often used as falling film evaporators in absorption chillers, especially for systems working at low pressure as H2O/LiBr. Experimental investigations are carried out in a falling film evaporator consisting of a horizontal tube bundle with eighty horizontal tubes installed in an absorption chiller because of a lack of consistent data for heat and mass transfer in the literature. The heat and mass transfer mechanisms and the flow pattern in the falling film are analysed and compared with correlations from literature. The deviations of the experimental data from those of the correlations are within a tolerance of 30%. These deviations may be explained by a change of the flow pattern at a lower Reynolds number than compared to the literature.

  6. The effect of interfacial evaporation on heat and mass transfer of falling liquid film

    Institute of Scientific and Technical Information of China (English)

    WANG; Buxuan; (

    2001-01-01

    [1]Wasden, F.K., Dukler, A.E., Insight into the hydrodynamics of free falling wavy films, AIChE J., 1989, 35(2): 187.[2]Jayanti, S., Hewitt, G.F., Hydrodynamics and heat transfer of wavy thin film flow, Int. J. Heat Mass Transfer, 1997, 40(10): 179.[3]Seban, R.A., Faghri, A., Evaporation and heating with turbulent falling liquid films, ASME J. Heat Transfer, 1976, 98C: 315.[4]Yang, W.M., Evaporation cooling of liquid film in turbulent mixed convection channel flows, Int. J. Heat Mass Transfer, 1998, 41(23): 3719.[5]Wang, B.X., Zhang, J.T., Peng, X.F., Experimental study on the dryout heat flux of falling liquid film, accepted by Int. J. Heat Mass Transfer as HMT# 2507.[6]Udell, K.S., Heat transfer in porous media heated from above with evaporation, condensation, and capillary effects, ASME J. Heat Transfer, 1983, 105: 485.[7]Carey, V.P., Liquid-Vapor Phase-Change Phenomena——An Introduction to the Thermophysics of Vaporization and Conduction Processes in Heat Transfer Equipment, Washington: Hemisphere Publishing Corporation, 1992, 112.[8]Eames, I.W., Marr, N.J., Sabir, H., The evaporation coefficient of water: a review, Int. J. Heat Mass Transfer, 1997, 40(12): 2963.[9]Israelachvili, J.N., Intermolecular and Surface Forces, San Diego: Academic Press, 1990, 16-30.[10]Holman, J.P., Heat Transfer, 5th ed., Tokyo: McGraw-Hill, Inc, 1981.[11]Zhang, J.T., Wang, B.X., Peng, X.F., Falling liquid film thickness measurement by optical-electronic method, Rev. Scientific Instruments, 2000, 71(4): [12]Zhang, J.T., Wang, B.X., Peng, X.F., Investigation on the interfacial evaporation of falling liquid film with wall heating, accepted by J. Tsinghua University.[13]Fujita, T., Ueda, T., Heat transfer to falling liquid films and film breakdown, Int. J. Heat Mass Transfer, 1978, 21: 97.[14]Bohn, M.S., Davis, S.H., Thermocapillary breakdown of falling liquid films at high Reynolds numbers, Int. J. Heat Masss Transfer, 1993, 36

  7. Study on heat transfer for falling liquid film flow with consideration of interfacial evaporation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The interfacial evaporative heat transfer was included in the semi-empirical study of the heat transfer for the falling liquid film flow. The investigations showed that, the inclusion of the interfacial evaporative heat transfer in the turbulent model would lower the predicted convective heat transfer coefficient. Predictions of the new model resulted in a prominent deviation from that predictions of the normal model in the case of large mass flow rate and low wall heat flux. This deviation will be decreased with increasing wall heat flux, such that it will be asymptotic zero at very high wall heat flux. Predictions of the new model agreed well with the current experimental measurements. This study has verified that the Reynolds number is not the sole crucial parameter for heat transfer of falling liquid film flow, and wall heat flux will be another important independent parameter. This result is consistent with our previous studies.

  8. The effect of interfacial evaporation on heat and mass transfer of falling liquid film

    Institute of Scientific and Technical Information of China (English)

    王补宣; 张金涛; 彭晓峰

    2001-01-01

    Analysis of experimental data and estimation of the order of magnitude for interfacial mass diffusion have demonstrated that considerable excess evaporation exists on the free interface of falling liquid film, and that the capillary pressure caused by surface tension is the driving force of this excess interfacial evaporation, which we called the “capillarity-induced interfacial evaporation”. By correlating the experimental data, an empirical expression of the effective capillary radius, r\\-e, is obtained with which the evaporative rate formula we derived and reported previously has been modified to improve the prediction of the critical heat flux for film breakdown. Comparisons with the available predicting models show that our modified equation can predict the experimental results with much lower relative deviation.

  9. Mathematical simulation of lithium bromide solution laminar falling film evaporation in vertical tube

    Science.gov (United States)

    Shi, Chengming; Wang, Yang; Hu, Huili; Yang, Ying

    2010-06-01

    For utilization of the residual heat of flue gas to drive the absorption chillers, a lithium-bromide falling film in vertical tube type generator is presented. A mathematical model was developed to simulate the heat and mass coupled problem of laminar falling film evaporation in vertical tube. In the model, the factor of mass transfer was taken into account in heat transfer performance calculation. The temperature and concentration fields were calculated. Some tests were conducted for the factors such as Re number, heating flux, the inlet concentration and operating pressure which can affect the heat and mass transfer performance in laminar falling film evaporation. The heat transfer performance is enhanced with the increasing of heat flux. An increasing inlet concentration can weaken the heat transfer performance. The operating pressure hardly affects on heat and mass transfer. The bigger inlet Re number means weaker heat transfer effects and stronger mass transfer. The mass transfer obviously restrains the heat transfer in the falling film solution. The relation between dimensionless heat transfer coefficient and the inlet Re number is obtained.

  10. Heat transfer for falling film evaporation of industrially relevant fluids up to very high Prandtl numbers

    Science.gov (United States)

    Gourdon, Mathias; Karlsson, Erik; Innings, Fredrik; Jongsma, Alfred; Vamling, Lennart

    2016-02-01

    In many industrial applications, falling film evaporation is an attractive technique for solvent removal due to high heat transfer and low residence times. Examples are the powder production in the dairy industry and in kraft pulp production process to remove water from so called black liquor. Common for both applications is that the fluids exhibit high viscosities in industrial practice. In this paper, results from experimental studies on both black liquor and a dairy product are reported for Prandtl numbers up to 800. The results are compared with several existing correlation in literature, and the need for a modified correlation is recognized especially to cover higher Prandtl-numbers. The following correlation for the turbulent flow region with 3 literature data from one additional study on two other fluids (propylene glycol and cyclohexanol) with fairly high Prandtl-numbers, from 40 to 58 and from 45 to 155 respectively and the agreement was within ±40 %.

  11. 降膜蒸发器的研究进展%Research Progress of Falling-film Evaporator

    Institute of Scientific and Technical Information of China (English)

    张猛; 周帼彦; 朱冬生

    2012-01-01

    A review of the prior research on falling film evaporator is presented, which is widely used in all field of modem industry. Optimal design and efficient application energy are of significance for saving and environment protection. This paper looks back on fundamental principles of falling film evaporators including flow characteristics, heat transfer performance, and the effects of parameters which provide some help for design and manufacture of falling film evaporators, and introduces Enhance Technology of Twisted Tube into the application of falling film evaporator. Finally, some suggestions for further research is described.%降膜蒸发器广泛应用在现代工业的各个领域,其优化设计和高效应用对于节能和环保具有重要意义.本文分析了降膜蒸发器基本原理及特点,综述了国内外降膜蒸发器流动与传热特性、布膜及强化传热的研究情况,在此基础上,将扭曲扁管强化传热技术引入降膜蒸发器,并对降膜蒸发器的进一步研究指出方向.

  12. Prediction of Heat Transfer Characteristics of Binary Refrigerant Mixtures in a Falling Film Type Plate-fin Evaporator

    Science.gov (United States)

    Yara, Tomoyasu; Koyama, Shigeru

    This paper deals with the characteristics of heat transfer and pressure drop of R 22, R 134a pure refrigerant and R 134a/R123 refrigerant mixtures in a falling film type plate-fin evaporator. The refrigerants have been tested in the ranges of heat flux from 3 to 20 kW/m2 and mass velocity from 50 to 100 kg/m2s. It is clarified that heat transfer characteristics of evaporation in the present experimental range are not affected by shear stress. Taking the fin efficiency into consideration, a correlation equation of heat transfer coefficient is proposed. The characteristic of pressure drop is also proposed by modifying friction factor of Soliman's equation. Furthermore, a prediction model for evaporation of mixtures in a plate fin heat exchanger is developed based on the assumption that the phase equilibrium in a cross-section of the refrigerant path is established. The prediction results are in good agreement with the experimental data.

  13. 氨水溶液降膜蒸发实验%Experiment of ammonia water falling film evaporation

    Institute of Scientific and Technical Information of China (English)

    骆超; 龚宇烈; 马伟斌

    2011-01-01

    An experimental investigation of vertical out-tube falling film heat transfer with different inlet spray densities of ammonia water mixture and inlet hot water temperatures was conducted.The falling film evaporator had a total height of 6000mm and the cycling working fluids were high concentration 60% and 50% ammonia water.We mainly studied the influence of spray density and inlet temperature of hot water on heat transfer coefficient,ammonia vapor amount and evaporation pressure.The experiment showed that heat transfer coefficient and ammonia vapor amount increased first and then decreased with increasing inlet spray density.The higher the hot water temperature,the higher the evaporation pressure.Heat transfer coefficient increased lineany with increasing hot water temperature.The experimental heat transfer coefficient of ammonia water solution was significantly higher than that of water reported in literature.For 50% water,optimum spray density was between 0.2200 and 0.2500 kg/(m·s);for 60% ammonia water,optimum spray density was between 0.2600 and 0.2900 kg/(m·s).In this experiment,heat transfer performance of 60% ammonia water was better than 50% ammonia water.%发生器和吸收器的传热性能是影响制冷机组和双工质发电机组做功效率的关键因素,为了提高中低温地热(余热)在热泵机组和地热双工质发电系统中的利用效率,本文选用50%和60%的氨水溶液作为循环工质,对约6 m长的竖管降膜蒸发器的传热特性进行实验研究,分别讨论喷淋密度和热水温度对垂直降膜蒸发器的传热系数、氨蒸气量和蒸发压力的影响。结果表明,降膜蒸发器的传热系数和氨蒸气量随喷淋密度的增加先增大后减小,传热系数和蒸发压力随着热源温度的增大而增加;50%和60%的氨水溶液喷淋密度最佳值分别在0.2200~0.2500 k

  14. LD苹果酸降膜蒸发器内流体的传热性能模拟%Simulation of heat transfer performance for falling-film evaporator of LD malic acid

    Institute of Scientific and Technical Information of China (English)

    朱永峰; 李庆生; 柳杰; 马勇

    2013-01-01

    采用降膜蒸发器对LD苹果酸溶液蒸发浓缩时,蒸发器的性能对产品质量有着重要的影响.采用湍流模型对蒸发器内流体的二维两相流场进行数值模拟,探讨物料初始温度和进料量对蒸发器传热性能的影响,结果表明:进料量对蒸发器的传热性能影响较大,而物料初始温度对蒸发器的传热性能影响较小,研究结果可为降膜蒸发器优化设计提供依据.%The performance of falling-film evaporator has important influence on the products,when it's used to evaporate and concentrate the solution of LD malic acid.The turbulence model was applied to simulate the 2-D two-phase flow in the evaporator,the influence of material initial temperature and feed rate on the evaporation heat transfer performance was also discussed,the result showed that feed rate had a great influence on the evaporation heat transfer performance,while material initial temperature had less influence on the evaporation heat transfer performance,which provided the basis for optimization design of falling-film evaporator.

  15. Characteristic Research on Evaporated Explosive Film

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The evaporation source of evaporated explosive was designed and improved based on the inherent specialties of explosive. The compatibility of explosives and addition agent with evaporation vessels was analyzed. The influence of substrate temperature on explosive was analyzed, the control method of substrate temperature was suggested. The influences of evaporation rate on formation of explosive film and mixed explosive film were confirmed. Optimum evaporation rate for evaporation explosive and the better method for evaporating mixed explosive were presented. The necessary characteristics of the evaporated explosive film were obtained by the research of the differences between the evaporated explosive and other materials.

  16. Falling Liquid Films

    CERN Document Server

    Kalliadasis, S; Scheid, B

    2012-01-01

    This research monograph gives a detailed review of the state-of-the-art theoretical methodologies for the analysis of dissipative wave dynamics and pattern formation on the surface of a film falling down a planar, inclined substrate. This prototype is an open-flow hydrodynamic instability representing an excellent paradigm for the study of complexity in active nonlinear media with energy supply, dissipation and dispersion. Whenever possible, the link between theory and experiments is illustrated and the development of order-of-magnitude estimates and scaling arguments is used to facilitate the

  17. Thermogravimetric analysis of fuel film evaporation

    Institute of Scientific and Technical Information of China (English)

    HU Zongjie; LI Liguang; YU Shui

    2006-01-01

    Thermogravimetric analysis (TGA) was compared with the petrochemical distillation measurement method to better understand the characteristics of fuel film evaporation at different wall tem- peratures. The film evaporation characteristics of 90# gasoline, 93# gasoline and 0# diesel with different initial thicknesses were investigated at different environmental fluxes and heating rates. The influences of heating rate, film thickness and environmental flux on fuel film evaporation for these fuels were found. The results showed that the environmental conditions in TGA were similar to those for fuel films in the internal combustion engines, so data from TGA were suitable for the analysis of fuel film evaporation. TGA could simulate the key influencing factors for fuel film evaporation and could investigate the basic quantificational effect of heating rate and film thickness. To get a rapid and sufficient fuel film evaporation, sufficiently high wall temperature is necessary. Evaporation time decreases at a high heating rate and thin film thickness, and intense gas flow is important to promoting fuel film evaporation. Data from TGA at a heating rate of 100℃/min are fit to analyze the diesel film evaporation during cold-start and warming-up. Due to the tense molecular interactions, the evaporation sequence could not be strictly divided according to the boiling points of each component for multicomponent dissolved mixture during the quick evaporation process, and the heavier components could vaporize before reaching their boiling points. The 0# diesel film would fully evaporate when the wall temperature is beyond 250℃.

  18. 倾斜降膜蒸发特性实验研究%Experimental Study on Evaporation Characteristics of Inclined Falling Film

    Institute of Scientific and Technical Information of China (English)

    倪明江; 王菲; 肖刚; 朱伟军; 王锡辉; 岑可法

    2013-01-01

    以电加热作为供热热源来模拟太阳能,研究了不同工况下倾斜降膜蒸发特性,通过对蒸馏器吸热面和冷凝面划分等间距小区段,根据液膜和冷凝面的温度分布,利用Dunkle模型预测了蒸馏器的产水速率.结果表明:热流密度、单位长度给水质量流量、倾斜角度和单位长度冷却水质量流量是影响蒸馏器产水速率的主要因素;产水速率随着热流密度的增大呈线性增加;在单位长度给水质量流量为5.5~10.0 kg/(h·m)时,产水速率随着单位长度给水质量流量的减小呈线性增大,单位长度给水质量流量为0.7~5.5 kg/(h·m)时,产水速率波动较小;在倾斜角度为15°~60°时,产水速率随着倾斜角度的增大而增大;冷却水均匀地流过冷凝面上表面有助于增大蒸馏器的产水速率;蒸馏器吸热面和冷凝面划分的区段越多,模型预测值与实验值吻合越好.%Evaporation characteristics of inclined falling film were studied under various working conditions by adopting electric heat instead of solar energy,while the still's distillate production rate predicted using Dunkle model based on temperature distribution of the liquid film and condensing surface by dividing both the heat-absorbing and the condensing surface into evenly-spaced segments.Results show that the heat flux density,feed water flow,inclination angle,and cooling water flow are the main factors affecting the distillate production rate,which increases linearly with the rise of heat flux density; when the feed water flow is within 5.5-10.0 kg/(h · m),the distillate production rate increases linearly with the decrease of feed water flow,whereas when the feed water flow is within 0.7-5.5 kg/(h · m),the distillate production rate basically remains unchanged; In the range of inclination angle varying from 15° to 60°,the distillate production rate increases as the inclination angle increases; The still's distillate production rate

  19. 基于分布参数模型的水平管式降膜蒸发器模拟%Prediction of the Performance of Falling Film Evaporator with Horizontal Tube Bundle Based on a Distributed Parameter Model

    Institute of Scientific and Technical Information of China (English)

    翟玉燕; 黄兴华

    2009-01-01

    A distributed parameter model is developed for predicting the performance of a horizontal-tube falling-film evaporator. In this model, the variation of heat transfer performance along the tube length and array, as well as the effect of the dry patch on the performance are considered. The model is applied to predicting the performance of a commercial falling film evaporator, and the influences of bundle layout, pass layout, refrigerant mass flow rate and the flooded level of refrigerant on the evaporator performances are studied. The results show that the simulation result agrees well with the experimental data, and it is possible to decrease or avoid the dry patch area on the tube bundle and therefore improve the evaporator performance by rationallly designing the layout of the tube bundle and the flooded level of the refrigerant.%建立水平管式降膜蒸发器蒸发换热的分布参数模型,考虑换热性能沿管子轴向、管排方向的变化,以及传热管发生干斑现象时对降膜蒸发的影响.对一降膜蒸发器的性能进行模拟分析,并考察管束布置、制冷剂液膜质量流量、管程布置以及满液位置对降膜蒸发器性能的影响.结果表明,计算结果和试验结果吻合良好,通过合理的设计管排方式和满液位置,可以减少或避免干斑现象的发生,提高降膜蒸发器性能.

  20. Evaporative instabilities in climbing films

    Science.gov (United States)

    Hosoi, A. E.; Bush, John W. M.

    2001-09-01

    We consider flow in a thin film generated by partially submerging an inclined rigid plate in a reservoir of ethanol or methanol water solution and wetting its surface. Evaporation leads to concentration and surface tension gradients that drive flow up the plate. An experimental study indicates that the climbing film is subject to two distinct instabilities. The first is a convective instability characterized by flattened convection rolls aligned in the direction of flow and accompanied by free-surface deformations; in the meniscus region, this instability gives rise to pronounced ridge structures aligned with the mean flow. The second instability, evident when the plate is nearly vertical, takes the form of transverse surface waves propagating up the plate.

  1. Determination of the velocity profile of mixture flow in a falling film evaporator with rating blades; Determinacao do perfil de velocidade no escoamento de uma mistura em um evaporador de pelicula cadente com pas rotativas

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Ricardo Reis; Silva, Maria Eugenia Vieira da; Carioca, Jose Oswaldo Beserra; Hiluy Filho, Joao Jose [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil)

    2004-07-01

    The Falling Film Evaporator (FFE) is an industrial equipment that processes high viscosity, high heating sensitive and polymerizing capacity compounds. This equipment can be used in processing Cashew Nut Shell Liquid (CNSL), in the distillation of Cardanol, which is a component used to produce additives. The FFE has a cylindrical form with rotating internal blades. In the gap between the blades and the internal cylinder surface, liquid CNSL flows by gravity after being injected on the top of the cylinder. The blades rotate touching the film, transferring turbulence at the interface and increasing the convective heat and mass transfer process. This paper presents the conservation equations of momentum in the CNSL falling film and the necessary boundary conditions to solve the problem. A numerical procedure was used to numerically solve these equations using a finite difference scheme. The results show the axial and radial velocity profiles, which are needed in the solutions of the temperature and the concentration problems. These results are useful in the optimization of the separation processes that uses a FFE, such as in the CNSL process. (author)

  2. 制冷用水平管降膜蒸发器管束换热特性数值模拟%Numerical Simulation of the Heat Transfer Performance of Horizontal Falling Film Evaporator in the Large Refrigeration Systems

    Institute of Scientific and Technical Information of China (English)

    杨培志; 张营; 李晓

    2015-01-01

    A theoretical thermodynamic model with distributed parameters was developed for simulating the falling film heat transfer performance,and in this model the effect of film breakdown (or dry patch)is considered.In this simulation ,the distribu-tion of dry patch,average falling film factor is obtained,and the effect of the tube bundle layout,refrigerant mass flow rate,tube pitch,the flooded tube row amount is also analyzed.This study is a contribution for the design of horizontal falling film evaporators and promote their application in the field of refrigeration and air conditioning.%采用分布参数法建立水平管降膜蒸发器管束换热模型,模拟计算了水平管降膜蒸发器不同管程布置下换热管干斑分布和平均降膜因子,并进行比较分析;并在下进上出的管程布置形式下研究了制冷剂流量、管间距、满液区排管数对蒸发器换热性能的影响。本文的研究为水平管降膜蒸发器的设计提供理论指导,促进其在制冷空调领域的推广应用。

  3. Dynamics of turbulent falling films

    Science.gov (United States)

    O'Naraigh, Lennon; Matar, Omar

    2012-11-01

    The dynamics of laminar falling films have received considerable attention over the past several decades. In contrast, turbulent falling films have been the subject of far fewer studies. We seek to redress this balance by studying the stability of falling films which have already undergone a transition from a laminar to a turbulent flow regime. We derive a uniform-film base-state for this flow by assuming the averaged turbulent velocity field to be steady and fully-developed, and by employing a modified version of mixing-length theory. The latter features an interpolation function for the eddy viscosity, and van Driest-type functions for turbulence-damping near the wall and interface regions. The predicted base-state streamwise velocity component is in good agreement with experimental data. A linear stability analysis of this base-state is then carried out by solving a modified version of the Orr-Sommerfeld equation. Our results suggest that the unstable mode is a long-wave one. This provides motivation for the derivation of long-wave equations for the nonlinear evolution of the film.

  4. 螺旋槽管降膜蒸发强化传热与结垢特性研究%Enhanced Heat Transfer and Fouling Performance of the Spirally Fluted Tube in Falling Film Evaporation

    Institute of Scientific and Technical Information of China (English)

    邢玉雷; 齐春华; 韩旭; 冯厚军; 吕庆春; 冯建民

    2013-01-01

    降膜蒸发是海水淡化的一项主要技术.传热管是降膜蒸发器的核心部件.螺旋槽管是一种应用广泛的高效强化传热管,但在海水淡化中应用较少,缺乏相关的实验数据.为论证螺旋槽管用于海水淡化的可行性,首先在水平管降膜蒸发传热实验平台上,以自来水为工质,研究了螺旋槽管的强化传热特性,分析了喷淋密度、热通量、传热温差和蒸发温度对其传热的影响;然后借助低温多效蒸馏(LT-MED)海水淡化中试装置,在海水淡化实际工况下,运行测试180 d,研究了螺旋槽管的结垢特性.在本实验中,螺旋槽管传热系数较光管平均提高35%左右;其结垢厚度小于光管,结垢疏松多孔,易于清除.%Falling film evaporation is one main technique of seawater desalination.Heat transfer tube is core component of falling film evaporator.Spirally fluted tube is one of the widely used enhanced heat transfer tubes with high efficiency.However,there are few practical applications of the spirally fluted tube to seawater desalination.In order to evaluate the feasibility of its application to desalination,the enhanced heat transfer performance of the aluminum brass spirally fluted tube was investigated firstly,relying on the horizontal tube falling film evaporation heat transfer platform with the tap water as medium.The effect of sprinkling density,heat flux,temperature difference and evaporating temperature on heat transfer of the tube was analyzed.Then,the fouling performance of the spirally fluted tube was researched by means of a pilot plant of low temperature multiple effect distillation (LT-MED) desalination which was running 180 days in the actual working conditions of desalination projects.The results show that heat transfer efficiency of spirally fluted tube is 35% higher than that of smooth tube,and the fouling on the spirally fluted tube is thinner,more porous and easier to remove than that on the smooth tube.

  5. Boiling heat transfer characteristics of fatty acid methyl ester(FAME)in falling film evaporator%脂肪酸甲酯降膜蒸发器沸腾传热性能

    Institute of Scientific and Technical Information of China (English)

    徐委托; 马晓建; 马力; 陈俊英; 杨闪; 张芬芬

    2016-01-01

    利用传统的多管排列式蒸发器对高黏度、易结垢的混合物进行蒸发,容易造成布液器堵塞,且结垢后的传热管难以清理。因此根据物料特性,本文设计了一种新型的降膜蒸发器,采用大降液孔加倾斜环板进行布膜,利用内径较大的锥筒作为传热壁面,并以粗甲酯作为试验工质对蒸发器的降膜蒸发传热系数随蒸发器筒体半锥度角、液膜流动雷诺数以及输入热通量之间的关系进行了试验研究。结果表明:该型蒸发器对于上述工质具有较好的适用性,蒸发系统能够在保持较高的传热系数的条件下,连续运行而不发生堵塞;蒸发器筒体锥度角有效地强化了降膜蒸发传热过程,而较大的热通量及进料流量在一定程度上却不利于蒸发传热。最后建立了降膜蒸发传热系数随蒸发器筒体半锥角和流动准数之间的经验关联式。%Using conventional line-tube heat exchanger for evaporation of high viscosity and easy-to-scaling mixture can easily block liquid distributor and make the cleaning of foul tube impossible. Therefore,a new type of falling film evaporator was designed,which used large liquid orifice plus tilt ring plate for liquid distribution and took larger diameter of conical shell as heat transfer wall. The variation of boiling heat transfer coefficients with shell’s taper angle,Reynolds number and heat fluxes were determined by a pilot scale falling film evaporation system,using the FAME mixture as liquid model. Result showed that this type of evaporator worked well for FAME,the system could work smoothly with high heat transfer efficiency for a long time and without the occurrence of clogging. The evaporator shell’s taper angle can intensify heat transfer process. The increase of heat flux and feed flow had a negative influence on heat transfer coefficient. Experimental correlation for boiling heat transfer coefficients with consideration of

  6. 润滑油对水平强化管降膜蒸发传热特性的影响%Effect of Lubricating Oil on Heat Transfer Performance of Falling Film Evaporation on Horizontal Enhanced Tube

    Institute of Scientific and Technical Information of China (English)

    李敏霞; 蔡文生; 孙晗; 党超镔; 吕佳桐

    2015-01-01

    实际制冷系统中的制冷剂含有压缩机的润滑油.本文研究了制冷剂中润滑油不同含油率时水平管降膜式蒸发传热特性.工质为R134a,含油率分别为0.5%、1.2%、5.1%,蒸发温度为6,℃,热流密度范围为30~65,kW/m2,工质喷淋密度分别为0.13,kg/(s·m),0.17,kg/(s·m)、0.21 kg/(s·m),测试段采用表面强化的铜管.实验结果表明:含油率从0.5%增大到5.1%,管外传热性能逐渐提高,当喷淋密度增加,管外换热系数也会提高,但随着含油率的增加,换热系数的增加幅度不大;一定含量的润滑油能增大R134a水平管降膜蒸发的换热系数.%In engineering practice,refrigerant contains lubricating oil form compressor in the refrigerating system. In this study,the impact of different oil contents on evaporation of falling film on horizontal enhanced tube was dis-cussed. Experiments were conducted for R134a at the saturation temperature of 6,℃ on enhanced copper tube,with oil contents being 0.5%,1.2% and 5.1%,respectively,and heat fluxes ranging from 30,kW/m2 to 65,kW/m2, sprinkle densities being 0.13,0.17,and 0.21,kg/(s·m). The experimental results show that heat transfer coefficient of the outside horizontal enhanced tube increases with both oil contents growing from 0.5% to 5.1% and increasing sprinkle densities. However,with the augments of oil contents,the increases of heat transfer coefficient are nearly insensitive to the increasing sprinkle densities. In certain range of content,lubricating oil can improve heat transfer coefficient of R134a falling film evaporation.

  7. 多效降膜式蒸发器换热面积分配原则%Heat Transfer Area Allocation Principles of Multi-Effect Falling Film Evaporator

    Institute of Scientific and Technical Information of China (English)

    刘殿宇

    2014-01-01

    The heat exchange area of different effect of multi-effect falling film evaporator the effect is determined according to the material and heat balance, and the allocation of effective temperature difference in different effect via heat balance calculation determines the size of the heat exchange area. Effect of increased material concentration and boiling point during the process of evaporation often lead to the increases of effect area. Material at the end of effect is also facing the problem of insufficient wetting around the tube. To cut down effect hear exchange area will no doubt solve the above problem and reduce scaling and coking. This paper illustrates how to allocate effective heat difference to different effect.%多效降膜式蒸发器各效换热面积是依据物料及热量衡算确定的,而热量衡算中的有效温差在各效的分配决定了换热面积的大小。随着蒸发的进行物料浓度的提高和沸点升高的影响,对有些物料影响明显,往往导致末效面积增大,物料到了末效还面临降膜管周边润湿量不足的问题,对并流加料末效出料的多效来说,减小末效换热面积无疑可以起到增大降膜管周边润湿量减缓结垢结焦的的发生,就此进行阐述如何分配各效有效温差。

  8. 中高温水平管降膜蒸发海水淡化研究%Research on Horizontal Tube Falling Film Evaporation for Seawater Desalination under Medium/High Temperature Conditions

    Institute of Scientific and Technical Information of China (English)

    于开录; 吕庆春; 谢峰; 阮国岭; 朱春来; 李海平

    2011-01-01

    Aimed at the disadvantages of low heat transfer coefficient and high water production cost in low temperature multi-effect distillation seawater desalination, the horizontal tube falling film evaporation for seawater desalination under medium/high temperature conditions was studied.The influence of seawater evaporation temperature, seawater spray load and heat transfer temperature difference on heat transfer performance and scale formation was investigated.It is found that the increasing of seawater evaporation temperature and the decreasing of heat transfer temperature difference can increase the heat transfer coefficient of seawater desalination.The insufficiency and inhomogeneity of seawater spray amount are the main reasons causing scale formation on horizontal heat exchange tubes.The scale products are mainly calcium carbonate which can be chemically removed, as well as a little calcium sulfate which can only be produced at 90 ℃.%针对低温多效蒸馏海水淡化技术存在传热系数低、制水成本相对较高等缺点,开展了中高温条件下水平管降膜蒸发海水淡化的研究,考察了海水蒸发温度、海水喷淋负荷和传热温差等因素对海水淡化过程中传热性能和结垢情况的影响.结果表明,提高海水蒸发温度、降低传热温差可以增大海水淡化传热系数;海水喷淋量不足和不均是导致换热管结垢的主要原因,结垢产物主要为可化学清洗的碳酸钙,在蒸发温度为90℃时还产生了少量的硫酸钙.

  9. Investigation of the falling water flow with evaporation for the passive containment cooling system and its scaling-down criteria

    Science.gov (United States)

    Li, Cheng; Li, Junming; Li, Le

    2017-09-01

    Falling water evaporation cooling could efficiently suppress the containment operation pressure during the nuclear accident, by continually removing the core decay heat to the atmospheric environment. In order to identify the process of large-scale falling water evaporation cooling, the water flow characteristics of falling film, film rupture and falling rivulet were deduced, on the basis of previous correlation studies. The influences of the contact angle, water temperature and water flow rates on water converge along the flow direction were then numerically obtained and results were compared with the data for AP1000 and CAP1400 nuclear power plants. By comparisons, it is concluded that the water coverage fraction of falling water could be enhanced by either reducing the surface contact angle or increasing the water temperature. The falling water flow with evaporation for AP1000 containment was then calculated and the feature of its water coverage fraction was analyzed. Finally, based on the phenomena identification of falling water flow for AP1000 containment evaporation cooling, the scaling-down is performed and the dimensionless criteria were obtained.

  10. Modeling Tear Film Evaporation and Breakup with Duplex Films

    Science.gov (United States)

    Stapf, Michael; Braun, Richard; Begley, Carolyn; Driscoll, Tobin; King-Smith, Peter Ewen

    2015-11-01

    Tear film thinning, hyperosmolarity, and breakup can irritate and damage the ocular surface. Recent research hypothesizes deficiencies in the lipid layer may cause locally increased evaporation, inducing conditions for breakup. We consider a model for team film evolution incorporating two mobile fluid layers, the aqueous and lipid layers. In addition, we include the effects of salt concentration, osmosis, evaporation as modified by the lipid layer, and the polar portion of the lipid layer. Numerically solving the resulting model, we explore the conditions for tear film breakup and analyze the response of the system to changes in our parameters. Our studies indicate sufficiently fast peak values or sufficiently wide areas of evaporation promote TBU, as does diffusion of solutes. In addition, the Marangoni effect representing polar lipids dominates viscous dissipation from the non-polar lipid layer in the model. This work was supported in part by NSF grant 1412085 and NIH grant 1R01EY021794.

  11. Experimental Study of the Cooling of Electrical Components Using Water Film Evaporation

    Directory of Open Access Journals (Sweden)

    S. Harmand

    2012-01-01

    Full Text Available Heat and mass transfer, which occur in the evaporation of a falling film of water, are studied experimentally. This evaporation allows the dissipation of the heat flux produced by twelve resistors, which simulate electrical components on the back side of an aluminium plate. On the front side of the plate, a falling film of water flows by the action of gravity. An inverse heat conduction model, associated with a spatial regularisation, was developed and produces the local heat fluxes on the plate using the measured temperatures. The efficiency of this evaporative process has been studied with respect to several parameters: imposed heat flux, inlet mass flow rate, and geometry. A comparison of the latent and sensible fluxes used to dissipate the imposed heat flux was studied in the case of a plexiglass sheet in front of the falling film at different distances from the aluminium plate.

  12. Evaporation of Sunscreen Films: How the UV Protection Properties Change.

    Science.gov (United States)

    Binks, Bernard P; Brown, Jonathan; Fletcher, Paul D I; Johnson, Andrew J; Marinopoulos, Ioannis; Crowther, Jonathan M; Thompson, Michael A

    2016-06-01

    We have investigated the evaporation of thin sunscreen films and how the light absorption and the derived sun protection factor (SPF) change. For films consisting of solutions of common UV filters in propylene glycol (PG) as solvent, we show how evaporation generally causes three effects. First, the film area can decrease by dewetting leading to a transient increase in the average film thickness. Second, the film thins by evaporative loss of the solvent. Third, precipitation of the UV filter occurs when solvent loss causes the solubility limit to be reached. These evaporation-induced changes cause the UV absorbance of the film to decrease with resultant loss of SPF over the time scale of the evaporation. We derive an approximate model which accounts semiquantitatively for the variation of SPF with evaporation. Experimental results for solutions of different UV filters on quartz, different skin mimicking substrates, films with added nanoparticles, films with an added polymer and films with fast-evaporating decane as solvent (instead of slow evaporating PG) are discussed and compared with model calculations. Addition of either nanoparticles or polymer suppress film dewetting. Overall, it is hoped that the understanding gained about the mechanisms whereby film evaporation affects the SPF will provide useful guidance for the formulation of more effective sunscreens.

  13. 降膜蒸发器旋液流态化在线自动清洗能力研究%Research on online fouling removal of spiral-flow fluidization in falling film evaporator

    Institute of Scientific and Technical Information of China (English)

    魏彪; 俞天兰; 彭德其; 张梅

    2011-01-01

    针对降膜蒸发器管内结垢问题,提出旋液流态化技术实现自动清洗。由结晶速率等效原理,将饱和溶液在加热面结晶问题等效为在冷却面结晶问题。以0.4m/s平均流速饱和硫酸钠溶液为例进行试验研究。结果表明:近壁面溶液在忽略管壁及污垢热阻的绝对过饱和度Δcsur为4.20%时,与空管连续运行0.5h总传热系数下降80%相比,管内加钢丝螺旋的总传热系数保持不变。Δcsur=5.60%时,钢丝螺旋达到最大清洗速率,超过此值总传热系数下降。Δcsur=6.46%时,加入体积分数1%的粒子,总传热系数未降反升,同未结垢时相比提高6%。降膜蒸发器旋液流态化既能在线自动清洗又可起到对流强化传热效果。其结构简单,便于工业推广。%To solve the fouling problem of falling film evaporator,a new online fouling removal technology of spiral-flow fluidization is developed.According to the equivalence principle of crystallization rate,the crystallization of supersaturated solution on heating tubes in evaporators is equivalent to that on cooling tubes of heat exchanger in experiments.Saturated sodium sulfate solution flows through the cooling tubes at the average speed of 0.4 m/s.The results show that as the absolute supersaturation near the tube surface(Δcsur) is 4.20%,the total heat transfer coefficient is not reduced under the condition of tubes with steel spiral-insert after continuous operation of 0.5h while it decreases by 80% under the condition of hollow tubes.When Δcsur is more than 5.60%,the total heat transfer coefficient will decrease.However,the total heat transfer coefficient does increase by 6% not decrease under the conditions of spiral-insert and fluidization of 1% volume fraction of particles,when Δcsur is 6.46%.The technology of spiral-flow fluidization can not only remove fouling online and automaticly,but also enhance the convection heat transfer in tube side.With its simple structure,it can

  14. Separation Efficiency of Thin-film Evaporators

    Institute of Scientific and Technical Information of China (English)

    R.Billet

    2004-01-01

    The recovery of contaminants and useful substances from liquid wastes, the purification of production effluents and the separation of thermally instable mixtures are some of the multivarious applications of thin-film distillors in many processes of the chemical and allied industries and of the food industries. In a study carried out in pilot plants with distillation test systems there was found a good agreement between the experimental separation results and those obtained by computing with a theorectical model; the latter is based on the assumption of phase equilibrium between the vapour formed on an infinitely small element of area in a liquid film of any given concentric periphery of the vertically arranged evaporator. These tests were perfomed under various phase loads.

  15. Bubble-assisted film evaporation correlation for saline water at sub-atmospheric pressures in horizontal-tube evaporator

    KAUST Repository

    Shahzad, Muhammad Wakil

    2013-01-01

    In falling film evaporators, the overall heat transfer coefficient is controlled by film thickness, velocity, liquid properties and the temperature differential across the film layer. This article presents the heat transfer behavior for evaporative film boiling on horizontal tubes, but working at low pressures of 0.93-3.60 kPa (corresponding solution saturation temperatures of 279-300 K) as well as seawater salinity of 15,000 to 90,000 mg/l or ppm. Owing to a dearth of literature on film-boiling at these conditions, the article is motivated by the importance of evaporative film boiling in the desalination processes such as the multi-effect distillation (MED) or multi-stage flashing (MSF): It is observed that in addition to the above-mentioned parameters, evaporative heat transfer of seawater is affected by the emergence of micro-bubbles within the thin film layer, particularly when the liquid saturation temperatures drop below 298 K (3.1 kPa). Such micro bubbles are generated near to the tube wall surfaces and they enhanced the heat transfer by two or more folds when compared with the predictions of conventional evaporative film boiling. The appearance of micro-bubbles is attributed to the rapid increase in the specific volume of vapor, i.e., dv/dT, at low saturation temperature conditions. A new correlation is thus proposed in this article and it shows good agreement to the measured data with an experimental uncertainty of 8% and regression RMSE of 3.5%. © 2012 Elsevier Ltd. All rights reserved.

  16. Evaporation-driven instability of the precorneal tear film.

    Science.gov (United States)

    Peng, Cheng-Chun; Cerretani, Colin; Braun, Richard J; Radke, C J

    2014-04-01

    Tear-film instability is widely believed to be a signature of eye health. When an interblink is prolonged, randomly distributed ruptures occur in the tear film. "Black spots" and/or "black streaks" appear in 15 to 40 s for normal individuals. For people who suffer from dry eye, tear-film breakup time (BUT) is typically less than a few seconds. To date, however, there is no satisfactory quantitative explanation for the origin of tear rupture. Recently, it was proposed that tear-film breakup is related to locally high evaporative thinning. A spatial variation in the thickness of the tear-film lipid layer (TFLL) may lead to locally elevated evaporation and subsequent tear-film breakup. We examine the local-evaporation-driven tear-film-rupture hypothesis in a one-dimensional (1-D) model for the evolution of a thin aqueous tear film overriding the cornea subject to locally elevated evaporation at its anterior surface and osmotic water influx at its posterior surface. Evaporation rate depends on mass transfer both through the coating lipid layer and through ambient air. We establish that evaporation-driven tear-film breakup can occur under normal conditions but only for higher aqueous evaporation rates. Predicted roles of environmental conditions, such as wind speed and relative humidity, on tear-film stability agree with clinical observations. More importantly, locally elevated evaporation leads to hyperosmolar spots in the tear film and, hence, vulnerability to epithelial irritation. In addition to evaporation rate, tear-film instability depends on the strength of healing flow from the neighboring region outside the breakup region, which is determined by the surface tension at the tear-film surface and by the repulsive thin-film disjoining pressure. This study provides a physically consistent and quantitative explanation for the formation of black streaks and spots in the human tear film during an interblink.

  17. Evaporation of Particle-Stabilized Emulsion Sunscreen Films.

    Science.gov (United States)

    Binks, Bernard P; Fletcher, Paul D I; Johnson, Andrew J; Marinopoulos, Ioannis; Crowther, Jonathan M; Thompson, Michael A

    2016-08-24

    We recently showed (Binks et al., ACS Appl. Mater. Interfaces, 2016, DOI: 10.1021/acsami.6b02696) how evaporation of sunscreen films consisting of solutions of molecular UV filters leads to loss of UV light absorption and derived sun protection factor (SPF). In the present work, we investigate evaporation-induced effects for sunscreen films consisting of particle-stabilized emulsions containing a dissolved UV filter. The emulsions contained either droplets of propylene glycol (PG) in squalane (SQ), droplets of SQ in PG or droplets of decane in PG. In these different emulsion types, the SQ is involatile and shows no evaporation, the PG is volatile and evaporates relatively slowly, whereas the decane is relatively very volatile and evaporates quickly. We have measured the film mass and area, optical micrographs of the film structure, and the UV absorbance spectra during evaporation. For emulsion films containing the involatile SQ, evaporation of the PG causes collapse of the emulsion structure with some loss of specular UV absorbance due to light scattering. However, for these emulsions with droplets much larger than the wavelength of light, the light is scattered only at small forward angles so does not contribute to the diffuse absorbance and the film SPF. The UV filter remains soluble throughout the evaporation and thus the UV absorption by the filter and the SPF remain approximately constant. Both PG-in-SQ and SQ-in-PG films behave similarly and do not show area shrinkage by dewetting. In contrast, the decane-in-PG film shows rapid evaporative loss of the decane, followed by slower loss of the PG resulting in precipitation of the UV filter and film area shrinkage by dewetting which cause the UV absorbance and derived SPF to decrease. Measured UV spectra during evaporation are in reasonable agreement with spectra calculated using models discussed here.

  18. An improved film evaporation correlation for saline water at sub-atmospheric pressures

    KAUST Repository

    Shahzada, Muhammad Wakil

    2011-10-03

    This paper presents an investigation of heat transfer correlation in a falling-film evaporator working with saline water at sub-atmospheric pressures. The experiments are conducted at different salinity levels ranging from 15000 to 90000 ppm, and the pressures were maintained between 0.92 to 2.81 kPa (corresponds to saturation temperatures of 5.9 – 23 0C). The effect of salinity, saturation pressures and chilled water temperatures on the heat transfer coefficient are accounted in the modified film evaporation correlations. The results are fitted to the Han & Fletcher\\'s and Chun & Seban\\'s falling-film correlations which are used in desalination industry. We modify the said correlations by adding salinity and saturation temperature corrections with respective indices to give a better agreement to our measured data.

  19. Water-evaporation reduction by duplex films: application to the human tear film.

    Science.gov (United States)

    Cerretani, Colin F; Ho, Nghia H; Radke, C J

    2013-09-01

    Water-evaporation reduction by duplex-oil films is especially important to understand the physiology of the human tear film. Secreted lipids, called meibum, form a duplex film that coats the aqueous tear film and purportedly reduces tear evaporation. Lipid-layer deficiency is correlated with the occurrence of dry-eye disease; however, in-vitro experiments fail to show water-evaporation reduction by tear-lipid duplex films. We review the available literature on water-evaporation reduction by duplex-oil films and outline the theoretical underpinnings of spreading and evaporation kinetics that govern behavior of these systems. A dissolution-diffusion model unifies the data reported in the literature and identifies dewetting of duplex films into lenses as a key challenge to obtaining significant evaporation reduction. We develop an improved apparatus for measuring evaporation reduction by duplex-oil films including simultaneous assessment of film coverage, stability, and temperature, all under controlled external mass transfer. New data reported in this study fit into the larger body of work conducted on water-evaporation reduction by duplex-oil films. Duplex-oil films of oxidized mineral oil/mucin (MOx/BSM), human meibum (HM), and bovine meibum (BM) reduce water evaporation by a dissolution-diffusion mechanism, as confirmed by agreement between measurement and theory. The water permeability of oxidized-mineral-oil duplex films agrees with those reported in the literature, after correction for the presence of mucin. We find that duplex-oil films of bovine and human meibum at physiologic temperature reduce water evaporation only 6-8% for a 100-nm film thickness pertinent to the human tear film. Comparison to in-vivo human tear-evaporation measurements is inconclusive because evaporation from a clean-water surface is not measured and because the mass-transfer resistance is not characterized.

  20. Structuring of Thin-Film Polymer Mixtures upon Solvent Evaporation

    NARCIS (Netherlands)

    Schaefer, C.; Michels, J. J.; van der Schoot, P.

    2016-01-01

    We theoretically study the impact of solvent evaporation on the dynamics of isothermal phase separation of ternary polymer solutions in thin films. In the early stages we obtain a spinodal length scale that decreases with time under the influence of ongoing evaporation. After that rapid demixing

  1. Experimental research conception of thin liquid film boiling and evaporation

    Directory of Open Access Journals (Sweden)

    Feoktistov Dmitry V.

    2015-01-01

    Full Text Available The concept of conducting the experiments for studying thin liquid film boiling and evaporation was developed. Implementing this conception on developed experimental setup, we will obtain the data on the change of liquid film thickness in thermosiphon and temperature distribution in the liquid film, also the evaporation rate of liquid film and heat transfer coefficient change will be calculated using the measured values in the experiment. Three series of preliminary experiment were conducted. As a result, the main influencing factors and their values were defined.

  2. Falling Film Evaporator Throttle Orifice Calculation and its Adjustment to the Influence of Heating Temperature%降膜式蒸发器节流孔板的计算及其调整对加热温度的影响

    Institute of Scientific and Technical Information of China (English)

    刘殿宇

    2014-01-01

    决定降膜式蒸发器温度高低的参数主要有两个:一个是一效蒸汽的压力。一个是冷凝器的使用效果。但在正常使用情况下,各效温度可在一定范围内进行微调,这种调整即为通过调换各效壳程中上下不凝性气体出口的节流孔板的孔径来实现,从而达到某效蒸发温度的需要。上下不凝性气体接口主要是为真空泵抽取不凝性气体而设置。节流孔板孔径小加热温度高,反之则低。仅以CNJM03-3200型三效降膜式蒸发器在茶粉生产中的应用为例进行阐述。%There are two factors determining the temperature of falling film evaporator: one is pressure of one-effect stream;the other is using effect of condenser. Under the ordinary circumstance,temperature of every effect can be slightly adjusted via adjusting throttle orifice aperture of up-and-down un-condensed gas outlet hole in shell sides to lower the temperature. Up-and-down un-condensed gas outlet hole is designed for vacuum extraction of the gas. The heating temperature is high when throttle orifice aperture is small,or vice versa. This paper uses Mode CNJM03-3200 three-effect falling film evaporator applied in the production of tea powder as an example to discuss the topics.

  3. Mathematical modeling of wiped-film evaporators. [MAIN codes

    Energy Technology Data Exchange (ETDEWEB)

    Sommerfeld, J.T.

    1976-05-01

    A mathematical model and associated computer program were developed to simulate the steady-state operation of wiped-film evaporators for the concentration of typical waste solutions produced at the Savannah River Plant. In this model, which treats either a horizontal or a vertical wiped-film evaporator as a plug-flow device with no backmixing, three fundamental phenomena are described: sensible heating of the waste solution, vaporization of water, and crystallization of solids from solution. Physical property data were coded into the computer program, which performs the calculations of this model. Physical properties of typical waste solutions and of the heating steam, generally as analytical functions of temperature, were obtained from published data or derived by regression analysis of tabulated or graphical data. Preliminary results from tests of the Savannah River Laboratory semiworks wiped-film evaporators were used to select a correlation for the inside film heat transfer coefficient. This model should be a useful aid in the specification, operation, and control of the full-scale wiped-film evaporators proposed for application under plant conditions. In particular, it should be of value in the development and analysis of feed-forward control schemes for the plant units. Also, this model can be readily adapted, with only minor changes, to simulate the operation of wiped-film evaporators for other conceivable applications, such as the concentration of acid wastes.

  4. Structural characterization of vacuum evaporated ZnSe thin films

    Indian Academy of Sciences (India)

    Pradip Kr Kalita; B K Sarma; H L Das

    2000-08-01

    Thermally evaporated ZnSe thin films deposited on glass substrates within substrate temperatures (s) at 303 K–623 K are of polycrystalline nature having f.c.c. zincblende structure. The most preferential orientation is along [111] direction for all deposited films together with other abundant planes [220] and [311]. The lattice parameter, grain size, average internal stress, microstrain, dislocation density and degree of preferred orientation in the film are calculated and correlated with s.

  5. Thin-liquid-film evaporation at contact line

    Institute of Scientific and Technical Information of China (English)

    Hao WANG; Zhenai PAN; Zhao CHEN

    2009-01-01

    When a liquid wets a solid wall, the extended meniscus near the contact line may be divided into three regions: a nonevaporating region, where the liquid is adsorbed on the wall; a transition region or thin-film region, where effects of long-range molecular forces (disjoining pressure) are felt; and an intrinsic meniscus region, where capillary forces dominate. The thin liquid film, with thickness from nanometers up to micrometers, covering the transition region and part of intrinsic meniscus, is gaining interest due to its high heat transfer rates. In this paper, a review was made of the researches on thin-liquid-film evaporation. The major characteristics of thin film, thin-film modeling based on continuum theory, simulations based on molecular dynamics, and thin-film profile and temperature measurements were summarized.

  6. Preparation and properties of evaporated CdTe films

    Science.gov (United States)

    Bube, R. H.; Fahrenbruch, A. L.; Chien, K. F.

    1987-07-01

    Previous work on evaporated CdTe films for photovoltaics showed no clear path to successful p-type doping of CdTe during deposition. Post-deposition annealing of the films in various ambients thus was examined as a means of doping. Anneals were done in Te, Cd, P, and As vapors and in vacuum, air and Ar, all of which showed large effects on series resistance and diode parameters. With As, series resistance values of In/p-CdTe/graphite structures decreased markedly. This decrease was due to a decrease in grain boundary and/or back contact barrier height, and thus was due to large increases in mobility; the carrier density was not altered substantially. Although the series-resistance decreases were substantial, the diode characteristics became worse. The decreases were not observed when CdS/CdTe cells were fabricated on Te vapor-annealed films. Preparation of ZnO films by reactive evaporation yielded promising results. Deposition of p-ZnTe films by hot-wall vapor evaporation, using conventional techniques, yielded acceptable specimens.

  7. Microstructure Evolution during Solvent Evaporation from Thin Film Polymer Mixtures

    Science.gov (United States)

    Clarke, Nigel; Souche, Mireille; Buxton, Gavin

    2009-03-01

    We present simulations of the phase separation dynamics in a thin film polymer blend solution subject to solvent evaporation [1]. If the upper and lower surfaces are neutral with respect to the different components, we find that as the solvent diffuses through the film, and evaporates from the surface, phase separation becomes energetically favourable progressively throughout the film. This produces an ordering front which propagates through the film and leaves an ordered lateral morphology in its wake. In order to understand microstructure evolution if the surface interactions are strong enough that the film initially separates into a two layers, we have perfomed a linear analysis of the Marangoni instability of a deformable interface between two fluid layers of finite depths, submitted to a gradient of solvent concentration induced by the evaporation [2]. Qualitative comparison with experimental observations of spin-coating processes of solution of two immiscible polymers are then performed, yielding satisfactory agreement.[0pt] [1] G. A. Buxton and N.Clarke, Europhysics Letters, 78, 56006, 2007.[0pt] [2] M. Souche and N. Clarke, European Physical Journal E, in press.

  8. Anisotropic Magnetoresistance of Cobalt Films Prepared by Thermal Evaporation

    Directory of Open Access Journals (Sweden)

    Yuttanun PANSONG

    2005-01-01

    Full Text Available Cobalt films on silicon substrates were prepared by thermal evaporation. By evaporating 0.05 g of cobalt for 80-240 s, a thickness from 21.1 to 67.7 nm was obtained with a deposition rate about 0.26-0.32 nm per second. The 29 nm-thick cobalt film exhibited magnetoresistance (MR ranging from -0.0793% (field perpendicular to the current to +0.0134% (field parallel to the current with saturation in a 220 mT magnetic field. This MR was attributed to anisotropic magnetoresistance (AMR since changing the angle between the field and the current (θ gave rise to a change in the electrical resistance (Rθ. The results agreed with the theory since the plot between Rθ and cos2θ could be linearly fitted. AMR was not observed in non-ferromagnetic gold films whose resistance was insensitive to the angle between the current and magnetic field.

  9. Evaporation-driven dewetting of a liquid film

    Science.gov (United States)

    Fourgeaud, L.; Ercolani, E.; Duplat, J.; Gully, P.; Nikolayev, V. S.

    2016-08-01

    We study the dynamics of evaporating ethanol films deposited by a receding liquid meniscus. The films are surrounded by pure vapor in a capillary heated above the saturation temperature. We observe the substrate dewetting with the dewetting ridge in spite of the complete wetting at equilibrium. The dewetting is caused by a high contact angle (˜30∘ ) induced by evaporation. The obtained values agree with a theory proposed earlier. The film shape is measured with both grid deflection technique and interferometry. The phenomenon is convenient to observe inside a capillary with an axial thermal gradient. When the capillary is closed at one end and open at another to a constant pressure reservoir, the meniscus oscillations are known to appear spontaneously. Such a system is the simplest version of an industrial device called a pulsating heat pipe. The effect is general and can be used in any system to control the wetting properties.

  10. Influence of evaporation on a thin binary liquid film flowing down a heated inclined plate

    Science.gov (United States)

    Kamrak, Juthamas; Scheid, Benoit; Colinet, Pierre

    2012-11-01

    We investigate the evolution of a two-component liquid film (here consisting of glycerine in water) falling down a heated plate, while water evaporates (glycerine is assumed to be non-volatile). The liquid phase is separated from pure water vapour by a deformable interface. We study the influence of both heat and mass transfer on the evolution of the liquid film. The temperature and concentration variations due to the evaporation of the solvent induce thermal and solutal Marangoni stresses on the free surface, thus affecting the evolution of the film. The mathematical model is developed by combining the lubrication theory with a weighted residuals approach. We obtain a set of coupled equations for the evolution of the film thickness, the velocity, the temperature and the concentration fields, at first-order. Stationary solutions are then calculated for different control parameters and show an intricate dependence of the different variables in the transition region where the evaporation flux reaches its maximum. Supported by FRIA, by the Marie Curie MULTIFLOW Network, and by FRS-FNRS.

  11. Optical properties of rubrene thin film prepared by thermal evaporation

    Institute of Scientific and Technical Information of China (English)

    陈亮; 邓金祥; 孔乐; 崔敏; 陈仁刚; 张紫佳

    2015-01-01

    Rubrene thin films are deposited on quartz substrates and silver nanoparticles (Ag NPs) films by the thermal evapo-ration technique. The optical properties of rubrene thin film are investigated in a spectral range of 190 nm–1600 nm. The analysis of the absorption coefficient (α) reveals direct allowed transition with a corresponding energy of 2.24 eV. The photoluminescence (PL) peak of the rubrene thin film is observed to be at 563 nm (2.21 eV). With the use of Ag NPs which are fabricated by radio-frequency (RF) magnetron sputtering on the quartz, the PL intensity is 8.5 times that of as-deposited rubrene thin film. It is attributed to the fact that the surface plasmon enhances the photoluminescence.

  12. Evaporation of a binary liquid film by forced convection

    Directory of Open Access Journals (Sweden)

    Nasr Abdelaziz

    2011-01-01

    Full Text Available This paper deals with a numerical analysis of the evaporation of a thin binary liquid film by forced convection inside a channel constituted by two parallel plates. The first plate is externally insulated and wetted by a thin water ethylene glycol film while the second is dry and isothermal. The liquid mixture consists of water (the more volatile component and ethylene glycol while the gas mixture has three components: dry air, water vapour and ethylene-glycol vapour. The set of non linear and coupled equations expressing the conservation of mass, momentum, energy and species in the liquid and gas mixtures is solved numerically using a finite difference method. Results concerns with the effects of inlet ambience conditions and the inlet liquid concentration of ethylene glycol on the distribution of the temperature, concentrations profiles and the axial variation of the evaporation rate of species i.

  13. Superconducting YBCO thin film on multicrystalline Ag film evaporated on MgO substrate

    Science.gov (United States)

    Azoulay, Jacob; Verdyan, Armen; Lapsker, Igor

    Superconducting YBa 2Cu 3O 7-δ films were grown by resistive evaporation on multicrystalline silver film which was evaporated on MgO substrate. A simple inexpensive vacuum system equipped with resistively heated boat was used for the whole process. Silver film was first evaporated on MgO substrate kept at 400°C during the evaporation after which with no further annealing a precursor mixture of yttrium small grains and Cu and BaF2 in powder form weighed in the atomic proportion to yield stoichiometric YBa 2Cu 3O 7 was evaporated. The films thus obtained were annealed at 740°C under low oxygen partial pressure of about 1Pa for 30 minutes to form the superconducting phase. X-ray diffraction and scanning electron microscopy techniques were used for texture and surface analysis. Electrical properties were determined using a standard dc four-probe for electrical measurements. The physical and electrical properties of the YBCO films are discussed in light of the fact that X-ray diffraction measurements done on the silver film have revealed a multicrystalline structure

  14. PREPARATION AND PROPERTIES OF Ni-Cr AND Fe-Cr-Al FILMS BY VACUUM EVAPORATION

    Institute of Scientific and Technical Information of China (English)

    X. W. Shi; Z.Y. Liu; D.C. Zeng; C.M. Li

    2003-01-01

    Ni-Cr and Fe-Cr-Al films deposited on the Al2O3 substrate are studied by a method of vacuum evaporation in this paper. Influence of resistance value on density and evaporation parameters of the films reveals that the resistance of films and the adhesion of films to substrates are determined by the evaporation time and the substrate temperate under the condition of the maximum vacuity of 6.2×10-4 pa, respectively.

  15. Ion-assisted evaporation of vanadium dioxide thin films

    Science.gov (United States)

    Zou, Mengyang; Ni, Chuan; Sarangan, Andrew

    2016-09-01

    Vanadium dioxide (VO2) is a polycrystalline thin film that reversibly changes from a semiconductor to a metallic state at 68°C, and has important applications in thermal detection and actuation as well as in reconfigurable photonic circuitry. In this work, we have produced VO2 thin films by oxygen ion-assisted electron-beam evaporation. Compared to prior work, the phase change temperature is as low as 54°C, which we believe arise due to the oxygen implantation from the ion-assisted process. The films were deposited on c-cut sapphire substrates, and their properties were measured using a four-point probe electrical sheet resistance measurement.

  16. PROGRAM DROP: A computer program for prediction of evaporation from freely falling multicomponent drops

    Energy Technology Data Exchange (ETDEWEB)

    Gavin, P.M. [Gavin Consulting, Newark, OH (United States)

    1996-12-01

    PROGRAM DROP consists of a series of FORTRAN routine which together are used to model the evaporation of a freely falling, multicomponent drop composed of an arbitrary number of volatile species and a single nonvolatile, inert component. The physics underlying the model are clearly identified, and the model`s relationship to previous work in the literature is described. Test cases are used to illustrate the viability of the model and to highlight its potential usefulness in the accurate prediction of multicomponent droplet vaporization in a variety of applications.

  17. Cuinse2 Thin Film For Solar Cell By Flash Evaporation

    Directory of Open Access Journals (Sweden)

    A.H. Soepardjo

    2009-11-01

    Full Text Available Deposition of thin films for material solar cell CuInSe2 are relatively simple. In this research mainly focused on the use of flash evaporation method, and the material created can then be characterized by optical and electrical properties. The optical characterization is done by X-ray Diffraction (XRD, Energy Dispersive Spectroscopy (EDS, and transmission and reflection by UV-VIS spectrophotometry. Electrical characterization is done by utilizing the Hall effect equipment. From these characterization, the atomic structure, absorption coefficient, energy gap, material type, composition of each elements and the mobility of CuInSe2 can be measured and determined. During process evaporation were carried out at substrate temperatures the range between 20ºC-415ºC.

  18. Matrix-Assisted Pulsed Laser Evaporation of polythiophene films

    Energy Technology Data Exchange (ETDEWEB)

    Bloisi, F. [CNR-INFM Coherentia, Napoli, Dip. Scienze Fisiche, Univ. Napoli ' Federico II' , P.le V.Tecchio, 80, 80125 Naples (Italy)], E-mail: bloisi@na.infn.it; Cassinese, A.; Papa, R.; Vicari, L. [CNR-INFM Coherentia, Napoli, Dip. Scienze Fisiche, Univ. Napoli ' Federico II' , P.le V.Tecchio, 80, 80125 Naples (Italy); Califano, V. [Dip. Scienze Fisiche, Univ. Napoli ' Federico II' , P.le V.Tecchio, 80, 80125 Naples (Italy)

    2008-02-15

    Organic poly-conjugated systems have recently attracted great interest as semi-conducting materials and, among poly-conjugated systems, substituted polythiophenes have given relevant results in PVs applications. The high conductivity required is affected by both the polymer conjugation length and the chain packing. Thus, highly region-regular polymers must be used and deposited as thin films with some technique which favours orientation and crystallization of the polymer chains. A deposition technique often used for its flexibility and high control over film characteristics is Pulsed Laser Deposition (PLD). In PLD, largely applied for inorganic thin film deposition, the material is ablated from a solid target by a focused pulsed laser beam and is deposited on the substrate placed at a small distance. Although some addition polymers have been successfully deposited the deposition seems to proceed via a 'depolymerization-monomer ablation-repolymerization' mechanism, this is clearly not possible in general for organic molecules and condensation polymers. On the contrary MAPLE (Matrix-Assisted Pulsed Laser Evaporation) is a recently developed PLD based thin film deposition technique, particularly well suited for organic/polymer thin film deposition. Up to now MAPLE depositions have been carried out mainly by means of modified PLD systems, using excimer lasers operating in UV, but use of less energetic radiations can minimize the photochemical decomposition of the polymer molecules. We have used a deposition system explicitly designed for MAPLE technique connected to a Q-switched Ng:YAG pulsed laser which can be operated at different wavelength ranging from IR to UV in order to evaluate the effect of the choice of laser radiation on the deposition of POOPT thin films. From DRIFT-IR spectroscopy, all deposited films showed structural order; it was determined that the better wavelength for POOPT deposition is 532 nm. With this value of the laser wavelength the

  19. Evaporators

    DEFF Research Database (Denmark)

    Knudsen, Hans Jørgen Høgaard

    1996-01-01

    Type of evaporators. Regulation. Thermal dimensioning. Determination of pressure loss and heat transfer coefficients.......Type of evaporators. Regulation. Thermal dimensioning. Determination of pressure loss and heat transfer coefficients....

  20. Evaporators

    DEFF Research Database (Denmark)

    Knudsen, Hans Jørgen Høgaard

    1996-01-01

    Type of evaporators. Regulation. Thermal dimensioning. Determination of pressure loss and heat transfer coefficients.......Type of evaporators. Regulation. Thermal dimensioning. Determination of pressure loss and heat transfer coefficients....

  1. Falling liquid films with blowing and suction

    CERN Document Server

    Thompson, Alice B; Papageorgiou, Demetrios T

    2015-01-01

    Flow of a thin viscous film down a flat inclined plane becomes unstable to long wave interfacial fluctuations when the Reynolds number based on the mean film thickness becomes larger than a critical value (this value decreases as the angle of inclination with the horizontal increases, and in particular becomes zero when the plate is vertical). Control of these interfacial instabilities is relevant to a wide range of industrial applications including coating processes and heat or mass transfer systems. This study considers the effect of blowing and suction through the substrate in order to construct from first principles physically realistic models that can be used for detailed passive and active control studies of direct relevance to possible experiments. Two different long-wave, thin-film equations are derived to describe this system; these include the imposed blowing/suction as well as inertia, surface tension, gravity and viscosity. The case of spatially periodic blowing and suction is considered in detail...

  2. Secondary instabilities of linearly heated falling films

    Institute of Scientific and Technical Information of China (English)

    HU Jun; SUN Dejun; HU Guohui; YIN Xieyuan

    2005-01-01

    Secondary instabilities of linearly heated failing films are studied through three steps. Firstly, the analysis of the primary linear instability on Miladinova's long wave equation of the linearly heated film is performed. Secondly, the similar Landau equation is derived through weak nonlinear theory, and a two-dimensional nonlinear saturation solution of primary instability is obtained within the weak nonlinear domain. Thirdly, the secondary (three-dimensional) instability of the two-dimensional wave is studied by the Floquet theorem.Our secondary instability analysis shows that the Marangoni number has destabilization effect on the secondary instability.

  3. Electromodulation of photoluminescence in vacuum-evaporated films of bathocuproine

    Energy Technology Data Exchange (ETDEWEB)

    Misnik, Maciej; Falkowski, Karol [Department of Electronic Phenomena, Gdansk University of Technology, Narutowicza 11/12, 80-952 Gdansk (Poland); Mroz, Wojciech [Department of Electronic Phenomena, Gdansk University of Technology, Narutowicza 11/12, 80-952 Gdansk (Poland); Istituto per lo Studio delle Macromolecole (ISMAC), Consiglio Nazionale delle Ricerche (CNR), Via Bassini 15, 20133 Milano (Italy); OPTOTEC S.p.A., Via G. Zenale 44, 20024 Garbagnate Milanese (Italy); Stampor, Waldemar, E-mail: waldek@mif.pg.gda.pl [Department of Electronic Phenomena, Gdansk University of Technology, Narutowicza 11/12, 80-952 Gdansk (Poland)

    2013-01-02

    Highlights: Black-Right-Pointing-Pointer We report on optical properties of thin films of bathocuproine (BCP). Black-Right-Pointing-Pointer We apply electromodulation of photoluminescence (EML) spectroscopy. Black-Right-Pointing-Pointer The green photoluminescence band is attributed to the formation of dimers. Black-Right-Pointing-Pointer The EML quenching effect for dimers is due to exciton dissociation. Black-Right-Pointing-Pointer The EML results are explained in terms of the Onsager theory. -- Abstract: Electric field-modulated photoluminescence (EML) was measured in vacuum-evaporated films of bathocuproine (BCP), electron-transporting material commonly used in organic light-emitting diodes (OLEDs). The external electric field of 10{sup 6} V/cm strength decreases long-wavelength photoluminescence (PL) up to 10% but the same effect on short-wavelength PL is above one order of magnitude smaller. The distinctive difference between the EML characteristics for the short-wavelength (mono-molecular) and long-wavelength (associative species) emission of BCP films is a result of the different nature of relevant emissive states. Absorption, PL, EML and atomic force microscopy (AFM) measurements can be consistently explained assuming existence of dimer species in solid BCP with their population increasing during aging process of the films. Besides ground state absorption dimer states are assumed to be populated indirectly from molecular (Frenkel type) excitons diffusing to defected domains of the films where dissociate through an intermediate stage of geminate (e-h) pairs. The EML data are analyzed applying various models of (e-h) pair dissociation based on Poole-Frenkel, Braun, Onsager and Sano-Tachiya-Noolandi-Hong (STNH) theories. The Onsager theory explains satisfactorily the observed EML quenching effect for dimer-type PL. The Stark effect on fluorescence quantum yield should be possibly invoked to explain the EML characteristics of monomolecular emission of BCP.

  4. High latitude gas in the Beta Pictoris system. A possible origin related to Falling Evaporating Bodies

    CERN Document Server

    Beust, Hervé

    2015-01-01

    The presence of off-plane Ca II ions in the Beta Pictoris disk, and the non-detection of off-plane Na I atoms, can be explained as a consequence of the evaporation process of Falling Evaporating Bodies (FEBs). In the star-grazing regime, the FEBs are subject to inclination oscillations up to 30 - 40 degrees that causes most metallic species released by sublimation to move off plane The ions are be stopped at about 100 AU from the star. We show that collisions with a neutral medium can stop the ions. The required H I column density is reduced to 10^17 cm^-2, one order of magnitude below present detection limits. We also investigate the possibility that the ions are slowed down magnetically. While the sole action of a magnetic field of the order of 1 microGauss is not effective, the combined effect of magnetic and collisional deceleration processes lead to an additional lowering of the required H I column density.

  5. YBCO thin film evaporation on as-deposited silver film on MgO

    Science.gov (United States)

    Azoulay, J.

    1999-11-01

    YBa 2Cu 3O 7- δ (YBCO) thin film was evaporated on as-deposited Ag buffer layer on MgO substrate. A simple, inexpensive vacuum system equipped with one resistively heated source was used. The subsequent heat treatment was carried out under low oxygen partial pressure at a relatively low temperature and short dwelling time. The films thus obtained were characterized for electrical properties using DC four-probe electrical measurements and inspected for structural properties and chemical composition by scanning electron microscopy (SEM). It is shown that YBCO thin film can grow on as-deposited thin silver layer on MgO substrate.

  6. Experimental Investigation of Heat Transfer Coefficient in Vertical Tube Rising Film Evaporator

    OpenAIRE

    Syed Naveed Ul Hasan; Sultan Ali

    2011-01-01

    This paper reports the experimental evaluation of the heat transfer coefficient (U) in a VRF (Vertical Tube Rising Film Evaporator). The aim is to describe the variation of U against different process parameters. Experiments were carried out for laminar flow conditions. The experimental unit is a floor standing tubular framework for a rising film evaporation system. There are many parameters affecting heat transfer coefficient in evaporators, but it was not possible to consider all of them, s...

  7. EVALUATION OF HADWACO MVR EVAPORATOR, ETV REPORT& STATEMENT

    Science.gov (United States)

    Hadwaco US, Inc., manufactures a commercial ready mechanical vapor recompression (MVR) evaporator for use in the metal finishing industry. The evaporator utilizes proven MVR and falling film principles, with the key innovation being the construction material of the heat transfer ...

  8. Natural Convection Heat and Mass Transfer from Falling Films in Vertical Channels

    Science.gov (United States)

    Buck, Gregory Allen

    1990-01-01

    In the design of solar collector/regenerators for use in open cycle absorption refrigeration (OCAR) units, the problem of predicting evaporation rates and solution temperatures is of paramount importance in determining overall cycle performance. This transport of heat and mass is dominated by natural convection with buoyant forces primarily generated as a result of film heating by the solar flux, but aided by the evaporation of water (the lighter species) into the rising moist air stream. In order to better understand the mechanism of these combined buoyant interactions, the governing equations for natural convection flow in a vertical channel bounded by a heated falling film (simulating a glazed collector/regenerator) were solved using several different finite difference techniques. The numerical results were validated against existing experimental and numerical results for simplified boundary conditions. The appropriate nondimensionalization for the falling film boundary condition was established, ostensibly for the first time, and a parametric study for an air-water vapor mixture has been presented. Curve fits to the numerical results were determined for engineering design applications. To further confirm the validity of the numerical solutions, an experimental apparatus was constructed using electric resistance heat to simulate the constant heat flux of the solar source. Water was introduced at the top of this heated vertical surface at various flow rates and under various supplied heat fluxes, and a natural convection channel flow generated between the heated falling film and a parallel, plexiglass surface. Film temperatures and moist air velocity profiles were measured at various streamwise (vertical) locations for comparison with the numerical results. In general, measured film temperatures were 15 to 20 percent lower than the predicted values, but came to within 3 percent of the predictions when experimental uncertainty was incorporated into the numerical

  9. Optical studies on electron beam evaporated Lithium Triborate films

    Science.gov (United States)

    Mohandoss, R.; Dhanuskodi, S.; Sanjeeviraja, C.

    2012-10-01

    Lithium triborate (LB3) has numerous applications in scintillator for neutron detection, laser weapon and communication. LB3 films have been prepared by electron beam evaporation technique under a pressure of 1 × 10-5 mbar on glass substrate at 323 K for 4 min. The crystallographic orientations and the lattice parameters (a = 8.55 (2); b = 5.09 (2); c = 7.39 (2) Å) were determined by powder XRD indicating the (1 1 1) preferential orientation of the film. The lower cut off wavelength at 325 nm with 75% transparency was measured from the UV-vis spectrum. The optical constants extinction coefficient (K), reflectance (R), the linear refractive index (1.34) and the optical energy band gap (˜4.0 eV) were estimated. The photoluminescence spectrum shows the emission peak in the visible region with low concentration of oxygen defects. LB3 is found to be second harmonic generation (SHG) active using a Q-switched Nd:YAG laser (1064 nm, 9 ns, 10 Hz). The nonlinear refractive index (n2 ˜ 10-16 cm2/W) and nonlinear absorption coefficient (β ˜ 10-2 cm/W) reveal (Z-scan technique) that the material has negative nonlinearity and self-focusing nature.

  10. Flow Visualization and Pattern Formation in Vertically Falling Liquid Films

    Science.gov (United States)

    Balakotaiah, Vemuri; Malamataris, Nikolaos

    2008-11-01

    Analytical results of a low-dimensional two equation h-q model and results of a direct numerical simulation of the transient two-dimensional Navier Stokes equations are presented for vertically falling liquid films along a solid wall. The numerical study aims at the elucidation of the hydrodynamics of the falling film. The analytical study aims at the calculation of the parameter space where pattern formation occurs for this flow. It has been found that when the wave amplitude exceeds a certain magnitude, flow reversal occurs in the film underneath the minimum of the waves [1]. The instantaneous vortical structures possess two hyperbolic points on the vertical wall and an elliptic point in the film. As the wave amplitude increases further, the elliptic point reaches the free surface of the film and two more hyperbolic points are formed in the free surface that replace the elliptic point. Between the two hyperbolic points on the free surface, the streamwise component of velocity is negative and the film is divided into asymmetric patterns of up and down flows. Depending on the value of the Kapitza number, these patterns are either stationary or oscillatory. Physical reasons for the influence of the Kapitza number on pattern formation are given. Movies are shown where the pattern formation is demonstrated. [1] N.A.Malamataris and V.Balakotaiah (2008), AIChE J., 54(7), p. 1725-1740

  11. Experimental method and preliminary studies of the passive containment water film evaporation mass transfer

    Energy Technology Data Exchange (ETDEWEB)

    Li, Cheng [State Nuclear Power Technology Research, Beijing (China). Development Center; State Nuclear Power Research Institute, Beijing (China); Yang, Lin; Zhao, Wei; Zhou, Shan; Du, Wangfang; Gao, Zhan; Li, Honegsen [State Nuclear Power Technology Research, Beijing (China). Development Center

    2017-05-15

    For larger containments and higher operation parameters, characteristics of the outside cooling of the PCCS are very important for the analysis on the containment integrity. A preliminary analysis was made and a four-step experimental method was used to numerically analyze the falling water film evaporation for the advanced passive containment. Then, the water flow stability along the outside wall of the containment was studied. The results fit well with those correlations without airflow when the air velocity is less than 5.0 m/s. However, when the air velocity is larger than 5.0 m/s, the influence of the air velocity on the water film will appear and the mean water film thickness will be thicker. Based on the prototype operation parameters, experimental studies were carried and the results were compared with the Dittus-Boelter correlation within the operation ranges. A modification factor was proposed for the conservative application of this correlation for nuclear safety analysis.

  12. Thin-film-formation study of high-Tc superconductors by resistive evaporation

    Science.gov (United States)

    Azoulay, Jacob

    1991-10-01

    Y-Ba-Cu-O and Bi-Sr-Ca-Cu-O thin films were prepared with use of a conventional vacuum system for the evaporation of the constituents. This method produces stoichiometric films upon complete evaporation of the constituents. No thickness monitor or any other control system is required. In this study, substrates were kept at room temperature during the evaporation process. The bismuth-based thin films are shown to lose bismuth during heat treatment unless the Cu constituent is evaporated last and fully oxidized at 400 °C subsequently. Y-Ba-Cu-O films prepared by using a pulverized mixture of Y, BaF2, and Cu constituents show an improved quality over films obtained from YF3, BaF2, and Cu starting materials. This improvement is attributed to fluorine reduction in the starting-material mixture.

  13. Thin-film-formation study of high- T sub c superconductors by resistive evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Azoulay, J. (Center for Technological Education Holon, P.O. Box 305, Holon 58102 (Israel) Raymond and Beverly Sackler Faculty of Exact Sciences, School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978 (Israel))

    1991-10-01

    Y-Ba-Cu-O and Bi-Sr-Ca-Cu-O thin films were prepared with use of a conventional vacuum system for the evaporation of the constituents. This method produces stoichiometric films upon complete evaporation of the constituents. No thickness monitor or any other control system is required. In this study, substrates were kept at room temperature during the evaporation process. The bismuth-based thin films are shown to lose bismuth during heat treatment unless the Cu constituent is evaporated last and fully oxidized at 400 {degree}C subsequently. Y-Ba-Cu-O films prepared by using a pulverized mixture of Y, BaF{sub 2}, and Cu constituents show an improved quality over films obtained from YF{sub 3}, BaF{sub 2}, and Cu starting materials. This improvement is attributed to fluorine reduction in the starting-material mixture.

  14. Thermoelectric properties of n-type nanocrystalline bismuth-telluride-based thin films deposited by flash evaporation

    Science.gov (United States)

    Takashiri, M.; Takiishi, M.; Tanaka, S.; Miyazaki, K.; Tsukamoto, H.

    2007-04-01

    The thermal conductivity of n-type nanocrystalline bismuth-telluride-based thin films (Bi2.0Te2.7Se0.3) is investigated by a differential 3ω method at room temperature. The nanocrystalline thin films are grown on a glass substrate by a flash evaporation method, followed by hydrogen annealing at 250 °C. The structure of the thin films is studied by means of atomic force microscopy, x-ray diffraction, and energy-dispersive x-ray spectroscopy. The thin films exhibit an average grain size of 60 nm and a cross-plane thermal conductivity of 0.8 W/m K. The in-plane electrical conductivity and in-plane Seebeck coefficient are also investigated. Assuming that the in-plane thermal conductivity of the thin films is identical to that of the cross-plane direction, the in-plane figure of merit of the thin films is estimated to be ZT =0.7. As compared with a sintered bulk sample with average grain size of 30 μm and nearly the same composition as the thin films, the nanocrystalline thin films show approximately a 50% reduction in the thermal conductivity, but the electrical conductivity also falls 40%. The reduced thermal and electrical conductivities are attributed to increased carrier trapping and scattering in the nanocrystalline film.

  15. STM-induced light emission from vacuum-evaporated gold film

    Indian Academy of Sciences (India)

    J U Ahamed; S Katano; Y Uehara

    2015-09-01

    A vacuum evaporation system has been used to evaporate gold film on glass substrate in order to probe the scanning tunneling microscope-light emission (STM-LE) from the evaporated film. The surface morphology of the evaporated Au film has been checked by atomic force microscope (AFM). In order to estimate the appropriate thickness of the Au film, which is essential for the enhancement of STM-LE in the prism-coupled geometry, a theoretical calculation has been performed. Our theoretical simulation revealed that the light emission from the prism-coupled STM junction is strongly enhanced when the Au film has a thickness of 40 nm. AFM observation also showed that the morphology of the gold films strongly depends on the cleanliness of glass substrates and the deposition temperature. Relatively smooth surface was observed when a 40-nm-thick Au film was evaporated at room temperature on the preannealed glass substrate. Finally, the evaporated films were deposited on the flat bottom of a hemispherical glass prism, and STM-LE from the tip–sample gap into the vacuum (tip-side emission) and into the prism (prism-side emission) were measured. It was found from the experimental results that the prism-side emission is much stronger than the tip-side emission by virtue of the enhancement of the prism-coupled geometry.

  16. AGU Cinema: Festival of short science films at Fall Meeting

    Science.gov (United States)

    Harned, Douglas A.

    2012-11-01

    New technologies have revolutionized the use of video as a means of science communication and have made it easier to create, distribute, and view. With video having become omnipresent in our culture, it sometime supplements or even replaces writing in many science and education applications. An inaugural science film festival sponsored by AGU at the 2012 Fall Meeting in San Francisco, Calif., in December will showcase short videos—30 minutes or less in length—developed to disseminate scientific results to various audiences and to enhance learning in the classroom. AGU Cinema will feature professionally produced, big budget films alongside low-budget videos aimed at niche audiences and made by amateurs. The latter category includes videos made by governmental agency scientists, educators, communications specialists within scientific organizations, and Fall Meeting oral and poster presenters.

  17. Thin Film Evaporation Model with Retarded Van Der Waals Interaction (Postprint)

    Science.gov (United States)

    2013-11-01

    large heat transfer rates within evaporators and condensers. At the contact line present between a wetting liquid and a solid, there exists a thin...silicon. In contrast, a non- wetting thin film becomes thinner until it ruptures to produce discrete droplets on the substrate. The net attractive...Interline Heat-Transfer Coefficient of an Evaporating Wetting Film, Int. J. Heat Mass Transfer, 19 (1976) 487-492 [5] Hallinan K.P. & Chebaro H.C

  18. Effect of substrate temperature on the optical properties of thermally evaporated ZnS thin films

    OpenAIRE

    2010-01-01

    Zinc Sulfide (ZnS) thin films were formed onto cleaned glass substrates using the thermal evaporation method in vacuum. The substrate temperature was varied between as- deposited and 150 °C, keeping the film thickness and the rate of evaporation fixed at 200~nm and 0.3~nm \\cdot s-1, respectively. The film thickness was measured in situ by a quartz crystal thickness monitor. The structure of the films was ascertained by x-ray diffraction (XRD) method. The XRD spectra show that the f...

  19. Influence of organic films on the evaporation and condensation of water in aerosol.

    Science.gov (United States)

    Davies, James F; Miles, Rachael E H; Haddrell, Allen E; Reid, Jonathan P

    2013-05-28

    Uncertainties in quantifying the kinetics of evaporation and condensation of water from atmospheric aerosol are a significant contributor to the uncertainty in predicting cloud droplet number and the indirect effect of aerosols on climate. The influence of aerosol particle surface composition, particularly the impact of surface active organic films, on the condensation and evaporation coefficients remains ambiguous. Here, we report measurements of the influence of organic films on the evaporation and condensation of water from aerosol particles. Significant reductions in the evaporation coefficient are shown to result when condensed films are formed by monolayers of long-chain alcohols [C(n)H(2n+1)OH], with the value decreasing from 2.4 × 10(-3) to 1.7 × 10(-5) as n increases from 12 to 17. Temperature-dependent measurements confirm that a condensed film of long-range order must be formed to suppress the evaporation coefficient below 0.05. The condensation of water on a droplet coated in a condensed film is shown to be fast, with strong coherence of the long-chain alcohol molecules leading to islanding as the water droplet grows, opening up broad areas of uncoated surface on which water can condense rapidly. We conclude that multicomponent composition of organic films on the surface of atmospheric aerosol particles is likely to preclude the formation of condensed films and that the kinetics of water condensation during the activation of aerosol to form cloud droplets is likely to remain rapid.

  20. Studies on tin oxide films prepared by electron beam evaporation and spray pyrolysis methods

    Indian Academy of Sciences (India)

    K S Shamala; L C S Murthy; K Narasimha Rao

    2004-06-01

    Transparent conducting tin oxide thin films have been prepared by electron beam evaporation and spray pyrolysis methods. Structural, optical and electrical properties were studied under different preparation conditions like substrate temperature, solution flow rate and rate of deposition. Resistivity of undoped evaporated films varied from 2.65 × 10-2 -cm to 3.57 × 10-3 -cm in the temperature range 150–200°C. For undoped spray pyrolyzed films, the resistivity was observed to be in the range 1.2 × 10-1 to 1.69 × 10-2 -cm in the temperature range 250–370°C. Hall effect measurements indicated that the mobility as well as carrier concentration of evaporated films were greater than that of spray deposited films. The lowest resistivity for antimony doped tin oxide film was found to be 7.74 × 10-4 -cm, which was deposited at 350°C with 0.26 g of SbCl3 and 4 g of SnCl4 (SbCl3/SnCl4 = 0.065). Evaporated films were found to be amorphous in the temperature range up to 200°C, whereas spray pyrolyzed films prepared at substrate temperature of 300–370°C were polycrystalline. The morphology of tin oxide films was studied using SEM.

  1. Viscous falling film instability around a vertical moving cylinder

    Institute of Scientific and Technical Information of China (English)

    Kadry Zakaria; Yasser Gamiel

    2012-01-01

    The present work discusses both the linear and nonlinear stability conditions of a viscous falling film down the outer surface of a solid vertical cylinder which moves in the direction of its axis with a constant velocity.After studying the linear conditions,a generalized nonlinear kinematic model is then derived to present the physical system.Applying the boundary conditions,analytical solutions are obtained using the long-wave perturbation method.In the first step,the normal mode method is used to characterize the linear behaviors.In the second step,the nonlinear film flow model is solved by using the method of multiple scales,to obtain Ginzburg-Landau equation.The influence of some physical parameters is discussed in both linear and nonlinear steps of the problem,and the results are displayed in many plots showing the stability criteria in various parameter planes.

  2. Production of active lysozyme films by matrix assisted pulsed laser evaporation at 355 nm

    DEFF Research Database (Denmark)

    Purice, Andreea; Schou, Jørgen; Kingshott, P.;

    2007-01-01

    Thin lysozyme films have been produced in a dry environment by MAPLE (matrix assisted pulsed laser evaporation) from a water ice matrix irradiated by laser light at 355 nm above the absorption threshold of the protein. A significant part of the lysozyme molecules are transferred to the film without...

  3. Characterization of lysozyme films produced by matrix assisted pulsed laser evaporation (MAPLE)

    DEFF Research Database (Denmark)

    Purice, Andreea; Schou, Jørgen; Kingshott, Peter

    2007-01-01

    Thin lysozyme films of thickness up to more than 100 nm have been produced in a dry environment by MAPLE (matrix assisted pulsed laser evaporation) from a water ice matrix. Analysis of the films demonstrates that a significant part of the lysozyme molecules is transferred to the substrate without...

  4. Three-dimensional wave evolution on electrified falling films

    CERN Document Server

    Tomlin, R J; Pavliotis, G A

    2016-01-01

    We consider the full 3D dynamics of a thin falling liquid film on a flat plate inclined at some non-zero angle to the horizontal. In addition to gravitational effects, the flow is driven by an electric field, which is normal to the substrate far from the flow. We study both the cases of overlying and hanging films, where the liquid rests above and below the substrate respectively. Starting with the Navier-Stokes equations coupled with electrostatics, a fully nonlinear 2D Benney equation for the interfacial dynamics is derived valid for waves that are long compared to the film thickness. The weakly nonlinear evolution is governed by a Kuramoto-Sivashinsky equation with a non-local term due to the electric field effect. The electric field term is linearly destabilising and produces growth rates proportional to the cube of the size of the wavenumber vector of the perturbations. It is found that transverse gravitational instabilities are always present for hanging films and lead to unboundedness of solutions even...

  5. The influence of the surface composition of mixed monolayer films on the evaporation coefficient of water.

    Science.gov (United States)

    Miles, Rachael E H; Davies, James F; Reid, Jonathan P

    2016-07-20

    We explore the dependence of the evaporation coefficient of water from aqueous droplets on the composition of a surface film, considering in particular the influence of monolayer mixed component films on the evaporative mass flux. Measurements with binary component films formed from long chain alcohols, specifically tridecanol (C13H27OH) and pentadecanol (C15H31OH), and tetradecanol (C14H29OH) and hexadecanol (C16H33OH), show that the evaporation coefficient is dependent on the mole fractions of the two components forming the monolayer film. Immediately at the point of film formation and commensurate reduction in droplet evaporation rate, the evaporation coefficient is equal to a mole fraction weighted average of the evaporation coefficients through the equivalent single component films. As a droplet continues to diminish in surface area with continued loss of water, the more-soluble, shorter alkyl chain component preferentially partitions into the droplet bulk with the evaporation coefficient tending towards that through a single component film formed simply from the less-soluble, longer chain alcohol. We also show that the addition of a long chain alcohol to an aqueous-sucrose droplet can facilitate control over the degree of dehydration achieved during evaporation. After undergoing rapid gas-phase diffusion limited water evaporation, binary aqueous-sucrose droplets show a continued slow evaporative flux that is limited by slow diffusional mass transport within the particle bulk due to the rapidly increasing particle viscosity and strong concentration gradients that are established. The addition of a long chain alcohol to the droplet is shown to slow the initial rate of water loss, leading to a droplet composition that remains more homogeneous for a longer period of time. When the sucrose concentration has achieved a sufficiently high value, and the diffusion constant of water has decreased accordingly so that bulk phase diffusion arrest occurs in the monolayer

  6. Photoresponse properties of BaSi2 film grown on Si (100) by vacuum evaporation

    Science.gov (United States)

    Thi Trinh, Cham; Nakagawa, Yoshihiko; Hara, Kosuke O.; Takabe, Ryota; Suemasu, Takashi; Usami, Noritaka

    2016-07-01

    We have succeeded in the observation of high photoresponsivity of orthorhombic BaSi2 film grown on crystalline Si by a vacuum evaporation method, raising the prospect of its promising application in high-efficiency thin-film solar cells. Photocurrent was observed at photon energies larger than 1.28 eV, which corresponds to the band gap of evaporated BaSi2 film, indicating that the photoresponsivity originates from the BaSi2 film. The effect of the substrate temperature on the film’s properties was also investigated. The films grown at a substrate temperature larger than 500 °C are single-phase polycrystalline BaSi2 films, while those grown at a substrate temperature of 400 °C is a mixture of phases. We confirmed that undoped evaporated BaSi2 films are an n-type material with high carrier concentration. High carrier lifetime of 4.8 and 2.7 μs can be found for the films grown at 500 °C and 400 °C, respectively. BaSi2 film grown at a substrate temperature of 500 °C, which is crack-free and single-phase, shows the best photoresponsivity. The maximum value of photocurrent was obtained at photon energy of 1.9 eV, corresponding to an external quantum efficiency of 22% under reverse applied voltage of 2 V.

  7. Obliquely co-evaporated thin films for magnetic recording

    NARCIS (Netherlands)

    Kranenburg, van Herma

    1992-01-01

    A systematic research is carried out on obliquely ( co- ) evaporated media for magnetic recording applications. The investigated materials concern Co-alloys, being Co-Cr, Co-Ag and Co- Ta. The re1ations between deposition parameters, morphology , texture and rnagnetic behaviour were swdied. The acce

  8. Ge-doped SiO{sub 2} thin films produced by helicon activated reactive evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Li, W.T.; Bulla, D.A.P.; Charles, C.; Boswell, R.; Love, J.; Luther-Davies, B

    2002-11-01

    Ge-doped SiO{sub 2} thin films for optical waveguide application were produced at low temperature by using an improved helicon plasma assisted reactive evaporation technique. Pure Si and Ge materials were simultaneously evaporated from two separated crucibles by using e-beams into high-density oxygen plasma to form the oxide films on a substrate. The film density was enhanced by supplying an r.f. bias to the substrate. Nearly H-free Ge-doped SiO{sub 2} thin films with very high atomic density ({approx}0.66x10{sup 23} cm{sup -3}), good adhesion and very low surface roughness were produced. The influence of deposition conditions, mainly the helicon r.f. power and substrate bias, on the properties of the films was studied by using surface profilometer, ellipsometer, atomic force microscope, Rutherford backscattering spectrometry, Fourier transform infrared spectrometry, and field emission scanning electron microscope.

  9. Finite-time Thin Film Rupture Driven by Generalized Evaporative Loss

    CERN Document Server

    Ji, Hangjie

    2016-01-01

    Rupture is a nonlinear instability resulting in a finite-time singularity as a fluid layer approaches zero thickness at a point. We study the dynamics of rupture in a generalized mathematical model of thin films of viscous fluids with evaporative effects. The governing lubrication model is a fourth-order nonlinear parabolic partial differential equation with a non-conservative loss term due to evaporation. Several different types of finite-time singularities are observed due to balances between evaporation and surface tension or intermolecular forces. Non-self-similar behavior and two classes of self-similar rupture solutions are analyzed and validated against high resolution PDE simulations.

  10. Foam-film-stabilized liquid bridge networks in evaporative lithography and wet granular matter.

    Science.gov (United States)

    Vakarelski, Ivan U; Marston, Jeremy O; Thoroddsen, Sigurdur T

    2013-04-23

    Evaporative lithography using latex particle templates is a novel approach for the self-assembly of suspension-dispersed nanoparticles into ordered microwire networks. The phenomenon that drives the self-assembly process is the propagation of a network of interconnected liquid bridges between the template particles and the underlying substrate. With the aid of video microscopy, we demonstrate that these liquid bridges are in fact the border zone between the underlying substrate and foam films vertical to the substrate, which are formed during the evaporation of the liquid from the suspension. The stability of the foam films and thus the liquid bridge network stability are due to the presence of a small amount of surfactant in the evaporating solution. We show that the same type of foam-film-stabilized liquid bridge network can also propagate in 3D clusters of spherical particles, which has important implications for the understanding of wet granular matter.

  11. Foam-film-stabilized liquid bridge networks in evaporative lithography and wet granular matter

    KAUST Repository

    Vakarelski, Ivan Uriev

    2013-04-23

    Evaporative lithography using latex particle templates is a novel approach for the self-assembly of suspension-dispersed nanoparticles into ordered microwire networks. The phenomenon that drives the self-assembly process is the propagation of a network of interconnected liquid bridges between the template particles and the underlying substrate. With the aid of video microscopy, we demonstrate that these liquid bridges are in fact the border zone between the underlying substrate and foam films vertical to the substrate, which are formed during the evaporation of the liquid from the suspension. The stability of the foam films and thus the liquid bridge network stability are due to the presence of a small amount of surfactant in the evaporating solution. We show that the same type of foam-film-stabilized liquid bridge network can also propagate in 3D clusters of spherical particles, which has important implications for the understanding of wet granular matter. © 2013 American Chemical Society.

  12. Heat-transfer characteristics of climbing film evaporation in a vertical tube

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Luopeng; Chen, Xue; Shen, Shengqiang [Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024 (China)

    2010-09-15

    Heat-transfer characteristics of climbing film evaporation were experimentally investigated on a vertical climbing film evaporator heated by tube-outside hot water. The experimental setup was designed for determining the effect of the height of feed water inside a vertical tube and the range of temperature difference on local heat transfer coefficient inside a vertical tube (h{sub i}). In this setup, the height of feed water was successfully controlled and the polypropylene shell effectively impedes the heat loss to the ground. The results indicated that a reduction in the height of feed water contributed to a significant increase in h{sub i} if no dry patches around the wall of the heated tube appeared inside the tube. The height ratio of feed water R{sub h} = 0.3 was proposed as the optimal one as dry patches destroyed the continuous climbing film when R{sub h} is under 0.3. It was found that the minimum temperature difference driving climbing film evaporation is suggested as 5 C due to a sharp reduction in h{sub i} for temperature difference below 5 C. The experiment also showed that h{sub i} increased with an increase in temperature difference, which proved the superiority of climbing film evaporation in utilizing low-grade surplus heating source due to its wide range of driving temperature difference. The experimental results were compared with the previous literature and demonstrated a satisfactory agreement. (author)

  13. Influence of solvent evaporation rate on crystallization of poly(vinylidene fluoride) thin films

    Indian Academy of Sciences (India)

    K Pramod; R B Gangineni

    2015-08-01

    The processes for obtaining crystalline and smooth poly(vinylidene fluoride) (PVDF) thin films using 2-butanone solvent are explored. The in-situ substrate temperature has been systematically controlled to observe the crystallization process. The in-situ substrate temperature is manipulated to control the rate of evaporation of 2-butanone solvent and is found to have played a vital role in the crystallization of PVDF thin films. Further, X-ray diffraction and Raman microscope were utilized to understand the crystalline phase of PDVF thin films, while atomic force microscopy and scanning electron microscopy have been utilized to investigate the surface morphology and surface roughness of the films.

  14. Characterization of ZnO:Si nanocomposite films grown by thermal evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqui, Shabnam; Kant, Chhaya Ravi [Department of Applied Sciences, Indira Gandhi Institute of Technology, Guru Gobind Singh Indraprastha University, Delhi 110 006 (India); Arun, P. [Department of Physics and Electronics, S.G.T.B. Khalsa College, University of Delhi, Delhi-110 007 (India)], E-mail: arunp92@physics.du.ac.in; Mehra, N.C. [University Science Instrumentation Centre, University of Delhi, Delhi 110 007 (India)

    2008-11-24

    Composite films were fabricated by co-evaporating Zinc Oxide with Silicon at room temperatures. The resulting films had polycrystalline grains of Zinc Oxide whose grain size were few hundred nanometers, embedded in the silicon matrix. These nanocrystalline grains of ZnO showed good photoluminescence emission at 520 nm along with a photoluminescence emission at 620 nm being contributed by the silicon background. Thus, the nanocomposite films gave a board emission, making it a potentially useful candidate for optoelectronic devices. The photo-luminescent property of the films was found to be stable since the homgenously dispersed ZnO nanocrystals were not allowed to agglomerate by the silicon background.

  15. Morphological Evolution of Gyroid-Forming Block Copolymer Thin Films with Varying Solvent Evaporation Rate.

    Science.gov (United States)

    Wu, Yi-Hsiu; Lo, Ting-Ya; She, Ming-Shiuan; Ho, Rong-Ming

    2015-08-05

    In this study, we aim to examine the morphological evolution of block copolymer (BCP) nanostructured thin films through solvent evaporation at different rates for solvent swollen polystyrene-block-poly(l-lactide) (PS-PLLA). Interesting phase transitions from disorder to perpendicular cylinder and then gyroid can be found while using a partially selective solvent for PS to swell PS-PLLA thin film followed by solvent evaporation. During the transitions, gyroid-forming BCP thin film with characteristic crystallographic planes of (111)G, (110)G, and (211)G parallel to air surface can be observed, and will gradually transform into coexisting (110)G and (211)G planes, and finally transforms to (211)G plane due to the preferential segregation of constituted block to the surface (i.e., the thermodynamic origin for self-assembly) that affects the relative amount of each component at the air surface. With the decrease on the evaporation rate, the disorder phase will transform to parallel cylinder and then directly to (211)G without transition to perpendicular cylinder phase. Most importantly, the morphological evolution of PS-PLLA thin films is strongly dependent upon the solvent removal rate only in the initial stage of the evaporation process due to the anisotropy of cylinder structure. Once the morphology is transformed back to the isotropic gyroid structure after long evaporation, the morphological evolution will only relate to the variation of the surface composition. Similar phase transitions at the substrate can also be obtained by controlling the ratio of PLLA-OH to PS-OH homopolymers to functionalize the substrate. As a result, the fabrication of well-defined nanostructured thin films with controlled orientation can be achieved by simple swelling and deswelling with controlled evaporation rate.

  16. Matrix-assisted pulsed laser evaporation of polyimide thin films and the XPS study

    Institute of Scientific and Technical Information of China (English)

    WANG Wei; LI ChengXiang; ZHANG GuoBin; SHENG LiuSi

    2008-01-01

    Compared with the traditional thin film techniques, the matrix-assisted pulsed laser evaporation (MAPLE) technique has many advantages in the deposition of polymer and organic thin films. It has a wide range of applications in many fields, such as non-linear optics, luminescent devices, electronics, various sensors. We have successfully deposited polyimide thin films by using the MAPLE technique. These films were characterized with XPS. The XPS spectra showed that the single-photon effect is obvious at low laser fluence and the chemical bonds will be broken, resulting in decomposition of the films. Contrarily, the single-photon effect will decrease and the multi-photon effect and the photothermal effect will increase at high laser fluence, resulting in the protection of the structure of the polyimide thin films and the obvious decrease in decomposition. High laser fluence is more suitable for the deposition of polymer and organic thin films than low laser fluence.

  17. Structural and Optoelectrical Properties of ZnTe Thin Films Prepared by E-Beam Evaporation

    Science.gov (United States)

    Zia, Rehana; Saleemi, Farhat; Riaz, Madeeha; Nassem, Shahzad

    2016-10-01

    ZnTe thin films have been prepared by an electron-beam evaporation technique on glass substrates, changing the accelerating voltage and the substrate temperature at accelerating voltage of 2 kV. Structural analysis showed that all the films had cubic structure with preferential orientation along (111) direction, though (220) and (311) orientations were also present. The (111) peak intensity increased with increasing film thickness. The crystallite size increased with increasing film thickness. Conductivity measurements showed that the films were p-type. Films prepared at accelerating voltage of 2 kV exhibited minimum resistivity. Optical characterization indicated that both absorbing and transparent thin films can be achieved by using different deposition conditions. The optical bandgap value was found to vary with substrate temperature.

  18. Matrix-assisted pulsed laser evaporation of polyimide thin films and the XPS study

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Compared with the traditional thin film techniques, the matrix-assisted pulsed laser evaporation (MAPLE) technique has many advantages in the deposition of polymer and organic thin films. It has a wide range of applications in many fields, such as non-linear optics, luminescent devices, electronics, various sensors. We have successfully deposited polyimide thin films by using the MAPLE technique. These films were characterized with XPS. The XPS spectra showed that the single-photon effect is ob-vious at low laser fluence and the chemical bonds will be broken, resulting in decomposition of the films. Contrarily, the single-photon effect will decrease and the multi-photon effect and the photothermal effect will increase at high laser fluence, resulting in the protection of the structure of the polyimide thin films and the obvious decrease in decomposition. High laser fluence is more suitable for the deposition of polymer and organic thin films than low laser fluence.

  19. Preparation and Characterization of Thermally Evaporated Octa Substituted Zinc Phthalocyanine Thin Films

    Directory of Open Access Journals (Sweden)

    Vinu T. Vadakel

    2012-12-01

    Full Text Available Thin films of Zinc Octakis Octyloxy Phthalocyanine (ZnPcOC8 are prepared at a base pressure of 10 – 5 Torr using Hind Hi-Vac-12A4 thermal evaporation plant. The films are deposited onto precleaned glass substrates kept at room temperature. Absorption spectra of the films are recorded using the Shimadzu 160A UV-Visible spectrophotometer. The effect of post deposition annealing on the optical constants are studied. The nature of optical transition is found to be direct type. The optical band gap energy of the annealed samples remains almost the same. The invariance of the optical band gap shows the thermal stability of the material for optical applications. The X-ray diffraction analysis of vacuum evaporated films reveals that the crystallinity increases with increase in annealing temperature. The variation of the surface morphology with annealing is also studied using Scanning Electron Micrograph (SEM.

  20. Matrix Assisted Pulsed Laser Evaporation for growth of fullerene thin films

    DEFF Research Database (Denmark)

    Canulescu, Stela; Schou, Jørgen; Fæster Nielsen, Søren

    C60 fullerene thin films of average thickness of more than 100 nm can be produced in vacuum by matrix-assisted pulsed laser evaporation (MAPLE). A 355 nm Nd:YAG laser was directed onto a frozen target of anisole with a concentration of 0.67 wt% C60. At laser fluences below 1.5 J/cm2, a dominant...... fraction of the film molecules are C60 transferred to the substrate without any fragmentation. Highresolution SEM images of MAPLE deposited films reveal large circular droplets on the surface with high amount of material concentrated at edges (Fig. 1A). These features, observed over a wide range of laser...... fluences, are caused by ejection of large matrix-fullerene liquid droplets into the gas-phase and subsequent deposition. At similar laser energies, but using an unfocused laser beam, MAPLE favours evaporation of matrix and organic molecules, resulting in production of films with smooth surfaces and minimal...

  1. Growth of thin fullerene films by matrix assisted pulsed laser evaporation

    DEFF Research Database (Denmark)

    Canulescu, Stela; Schou, Jørgen; Fæster, Søren

    C60 fullerene thin films of average thickness of more than 100 nm on silicon substrates can be produced in vacuum by matrix-assisted pulsed laser evaporation (MAPLE). A 355 nm Nd:YAG laser was directed onto a frozen target of anisole with a concentration of 0.67 wt% C60. At laser fluences below 1.......5 J/cm2 the dominant fraction of the film molecules are C60 transferred to the substrate without any fragmentation. For high fluences high-resolution SEM images of MAPLE deposited films reveal large circular features on the surface with high amount of material concentrated at edges. These features......, observed over a wide range of laser fluences, are caused by ejection of large matrix-fullerene liquid droplets into the gas-phase and subsequent deposition. At similar laser energies, but using an unfocused laser beam, MAPLE favours evaporation of matrix and organic molecules, resulting in films...

  2. Mathematical Modelling of the Evaporating Liquid Films on the Basis of the Generalized Interface Conditions

    Directory of Open Access Journals (Sweden)

    Goncharova Olga

    2016-01-01

    Full Text Available The two-dimensional films, flowing down an inclined, non-uniformly heated substrate are studied. The results contain the new mathematical models developed with the help of the long-wave approximation of the Navier-Stokes and heat transfer equations or Oberbeck-Boussinesq equations in the case, when the generalized conditions are formulated at thermocapillary interface. The evolution equations for the film thickness include the effects of gravity, viscosity, capillarity, thermocapillarity, additional stress effects and evaporation.

  3. Numerical study of heat and mass transfer during evaporation of a thin liquid film

    Directory of Open Access Journals (Sweden)

    Oubella M’hand

    2015-01-01

    Full Text Available A numerical study of mixed convection heat and mass transfer with film evaporation in a vertical channel is developed. The emphasis is focused on the effects of vaporization of three different liquid films having widely different properties, along the isothermal and wetted walls on the heat and mass transfer rates in the channel. The induced laminar downward flow is a mixture of blowing dry air and vapour of water, methanol or acetone, assumed as ideal gases. A two-dimensional steady state and elliptical flow model, connected with variable thermo-physical properties, is used and the phase change problem is based on thin liquid film assumptions. The governing equations of the model are solved by a finite volume method and the velocity-pressure fields are linked by SIMPLE algorithm. The numerical results, including the velocity, temperature and concentration profiles, as well as axial variations of Nusselt numbers, Sherwood number and dimensionless film evaporation rate are presented for two values of inlet temperature and Reynolds number. It was found that lower the inlet temperature and Re, the higher the induced flows cooling with respect of most volatile film. The better mass transfer rates related with film evaporation are found for a system with low mass diffusion coefficient.

  4. Electronic and optical properties of CdS films deposited by evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, L.; Wei, Z.L.; Zhang, F.M.; Wu, X.S., E-mail: xswu@nju.edu.cn

    2015-11-05

    CdS films grown by thermal evaporation on glass substrate under ultra-high vacuum are prepared with varying the growth temperature and atmosphere environment. The minimum resistivity of the films is as low as 2.0 Ω·cm, and the carrier density even reaches 1.6 × 10{sup 18} cm{sup −3}, which is much less than that prepared by the chemical bath deposition (CBD) method. The transmittance and band gap increase with the set the argon atmosphere and the growth temperature in the optimum value. Our results indicate the CdS films grown by evaporation at high vacuum may be more suitable for the application in optoelectronic devices, such as the solar cell materials. - Highlights: • CdS films are grown by the ultra-high vacuum evaporation. • CdS film here with the high carrier density reaches to 10{sup 18} cm{sup −3} is obtained. • The film has low resistivity, which is as low as 2 Ω∙ cm. • The optical band gap become wider from 2.42 eV to 2.54 eV.

  5. Polycrystalline GaSb thin films grown by co-evaporation

    Institute of Scientific and Technical Information of China (English)

    Qiao Zaixiang; Sun Yun; He Weiyu; He Qing; Li Changjian

    2009-01-01

    We report optical and electrical properties of polycrystalline GaSb thin films which were successfully grown by co-evaporation on soda-lime glass substrates. The thin films have preferential orientation of the (111)direction. SEM results indicate that the average grain size of GaSb thin film is 500 nm with the substrate temperature of 560 ℃. The average reflectance of GaSb thin film is about 30% and the absorption coefficient is of the order of 104 cm-1. The optical bandgap of GaSb thin film is 0.726 eV. The hole concentration shows a clear increasing trend as the Ga-evaporation-temperature/Sb-evaporation-temperature (TGa/TSb) ratio increases. When the Ga crucible temperature is 810 ℃ and the antinomy crucible temperature is 415 ℃, the hole concentration of polycrystalline GaSb is 2 x 1017 cm-3 and the hole mobility is 130 cm2/(V-s). These results suggest that polycrystalline GaSb thin film is a good candidate for the use as a cheap material in TPV cells.

  6. Growth of thin films of low molecular weight proteins by matrix assisted pulsed laser evaporation (MAPLE)

    DEFF Research Database (Denmark)

    Matei, Andreea; Schou, Jørgen; Constantinescu, C.;

    2011-01-01

    Thin films of lysozyme and myoglobin grown by matrix assisted pulsed laser evaporation (MAPLE) from a water ice matrix have been investigated. The deposition rate of these two low molecular weight proteins (lysozyme: 14307 amu and myoglobin: 17083 amu) exhibits a maximum of about 1–2 ng/cm2 per...

  7. Processing of C60 thin films by Matrix-Assisted Pulsed Laser Evaporation (MAPLE)

    DEFF Research Database (Denmark)

    Canulescu, Stela; Schou, Jørgen; Fæster, Søren

    2011-01-01

    Thin films of fullerenes (C60) were deposited onto silicon using matrix-assisted pulsed laser evaporation (MAPLE). The deposition was carried out from a frozen homogeneous dilute solution of C60 in anisole (0.67 wt%), and over a broad range of laser fluences, from 0.15 J/cm2 up to 3.9 J/cm2. MAPLE...

  8. Surface morphology of thin lysozyme films produced by matrix-assisted pulsed laser evaporation (MAPLE)

    DEFF Research Database (Denmark)

    Purice, Andreea; Schou, Jørgen; Pryds, Nini;

    2007-01-01

    Thin films of the protein, lysozyme, have been deposited by the matrix-assisted pulsed laser evaporation (MAPLE) technique. Frozen targets of 0.3-1.0 wt.% lysozyme dissolved in ultrapure water were irradiated by laser light at 355 mn with a fluence of 2 J/cm(2). The surface quality of the thin ly...

  9. Effects of Sulfurization Temperature on Properties of CZTS Films by Vacuum Evaporation and Sulfurization Method

    Directory of Open Access Journals (Sweden)

    Jie Zhang

    2013-01-01

    Full Text Available Copper zinc tin sulfur (CZTS thin films have been extensively studied in recent years for their advantages of low cost, high absorption coefficient (≥104 cm−1, appropriate band gap (~1.5 eV, and nontoxicity. CZTS thin films are promising materials of solar cells like copper indium gallium selenide (CIGS. In this work, CZTS thin films were prepared on glass substrates by vacuum evaporation and sulfurization method. Sn/Cu/ZnS (CZT precursors were deposited by thermal evaporation and then sulfurized in N2 + H2S atmosphere at temperatures of 360–560°C to produce polycrystalline CZTS thin films. It is found that there are some impurity phases in the thin films with the sulfurization temperature less than 500°C, and the crystallite size of CZTS is quite small. With the further increase of the sulfurization temperature, the obtained thin films exhibit preferred (112 orientation with larger crystallite size and higher density. When the sulfurization temperature is 500°C, the band gap energy, resistivity, carrier concentration, and mobility of the CZTS thin films are 1.49 eV, 9.37 Ω · cm, 1.714×1017 cm−3, and 3.89 cm2/(V · s, respectively. Therefore, the prepared CZTS thin films are suitable for absorbers of solar cells.

  10. Thermally evaporated mechanically hard tin oxide thin films for opto-electronic apllications

    Science.gov (United States)

    Tripathy, Sumanta K.; Rajeswari, V. P.

    2014-01-01

    Tungsten doped tin oxide (WTO) and Molybdenum doped tin oxide (MoTO) thin film were deposited on corn glass by thermal evaporation method. The films were annealed at 350°C for one hour. Structural analysis using Xray diffraction data shows both the films are polycrystalline in nature with monoclinic structure of tin oxide, Sn3O4, corresponding to JCPDS card number 01-078-6064. SEM photograph showed that both the films have spherical grains with size in the range of 20-30 nm. Compositional analysis was carried out using EDS which reveals the presence of Sn, O and the dopant Mo/W only thereby indicating the absence of any secondary phase in the films. The films are found to contain nearly 6 wt% of Mo, 8 wt% of W as dopants respectively. The transmission pattern for both the films in the spectral range 200 - 2000 nm shows that W doping gives a transparency of nearly 80% from 380 nm onwards while Mo doping has less transparency of 39% at 380nm. Film hardness measurement using Triboscope shows a film hardness of about 9-10 GPa for both the films. It indicates that W or M doping in tin oxide provides the films the added advantage of withstanding the mechanical wear and tear due to environmental fluctuations By optimizing the optical and electrical properties, W/Mo doped tin oxide films may be explored as window layers in opto-electronic applications such as solar cells.

  11. Investigation of nanocrystalline thin cobalt films thermally evaporated on Si(100) substrates

    Science.gov (United States)

    Kozłowski, W.; Balcerski, J.; Szmaja, W.; Piwoński, I.; Batory, D.; Miękoś, E.; Cichomski, M.

    2017-03-01

    We have made a quantitative study of the morphological and magnetic domain structures of 100 nm thick nanocrystalline cobalt films thermally evaporated on naturally oxidized Si(100) substrates. The morphological structure is composed of densely packed grains with the average grain size (35.6±0.8) nm. The grains exhibit no geometric alignment and no preferred elongation on the film surface. In the direction perpendicular to the film surface, the grains are aligned in columns. The films crystallize mainly in the hexagonal close-packed phase of cobalt and possess a crystallographic texture with the hexagonal axis perpendicular to the film surface. The magnetic domain structure consists of domains forming a maze stripe pattern with the average domain size (102±6) nm. The domains have their magnetizations oriented almost perpendicularly to the film surface. The domain wall energy, the domain wall thickness and the critical diameter for single-domain particle were determined.

  12. Electrochromic behavior of NiO film prepared by e-beam evaporation

    Directory of Open Access Journals (Sweden)

    D.R. Sahu

    2017-06-01

    Full Text Available The NiO thin films were prepared by the electron beam evaporation method using synthesized sintered targets. As-prepared films were characterized using X-ray diffraction, scanning electron microscopy, UV–VIS spectroscopy and cyclic voltammetry. The thicker films were found to exhibit a well-defined structure and a well-developed crystallite size with greater transmittance modulation and durability. The as-deposited thinner films of 170 nm showed a faster response time during electrochromic cycles with a coloration efficiency of 53.1 C/cm2 than the thicker ones. However, the thicker films showed no enhanced electrochromic properties such as a larger intercalated charge than the thinner ones. The electrochromic properties of the thinner films became deteriorated after 800 cycling tests.

  13. Fabrication and characterization of vacuum evaporated Al:CuSe2 thin films

    Science.gov (United States)

    Muthukannan, Abirami; Henry, J.; Sivakumar, G.; Mohanraj, K.

    2016-01-01

    We present first report on Al doped CuSe2 thin films deposited on to the glass substrate using elemental precursors Cu, Al and Se by thermal evaporation method. The structural, morphological and optoelectronic properties of the grown films were analysed by using XRD, SEM, AFM, UV-Visible and I-V analysis respectively. The XRD study of the annealed film showed polycrystalline nature. The predominant orientation along (1 0 1) direction corresponding to orthorhombic structure of CuSe2 with an additional phase of Al2Se3 along (-3 1 4) and (3 3 1) direction. The SEM and AFM images of the annealed film bears densely packed grains and the surface roughness is found to be about 21.16 nm respectively. The direct band gap and resistivity is decreased in annealed film when compared to the as-deposited film. It could be attributed to the influence of annealing process.

  14. Optical constants of thermally evaporated As10Te10S80 thin films

    Science.gov (United States)

    Moharram, A. H.

    The transmission spectra of thermally evaporated As10Te10S80 thin films were measured over the wavelength range 300 to 900 nm. A simple method, suggested by Swanepoel, was used for the determination of the optical constants and thickness of the film. The absorption edge is described using the non-direct transition model proposed by Tauc. The effect of one hour's thermal annealing in the temperatures range 300-475 K on the optical properties of the As10Te10S80 film is reported and explained.

  15. XPS analysis of the activation process in non-evaporable getter thin films

    CERN Document Server

    Lozano, M

    2000-01-01

    The surface activation process of sputter-coated non-evaporable getter (NEG) thin films based on Ti-Zr and Ti-Zr-V alloys has been studied in situ by means of X-ray photoelectron spectroscopy. After exposure of the NEG thin films to ambient air they become reactivated after a thermal treatment in an ultrahigh vacuum. In our case the films are heated up to ~250 degrees C for 2 h in a base pressure of ~10/sup -9/ Torr. (18 refs).

  16. A novel electron beam evaporation technique for the deposition of superconducting thin films

    Science.gov (United States)

    Krishna, M. G.; Muralidhar, G. K.; Rao, K. N.; Rao, G. M.; Mohan, S.

    1991-05-01

    Superconducting thin films of BiSrCaCuO have been deposited using a novel electron beam evaporation technique. In this technique the crucible has a groove around its circumference and rotates continuously during deposition. The source material is loaded in the form of pellets of the composite. Both oxides as well as flourides have been used in the starting material and a comparison of the film properties has been made. The best film was obtained on a MgO(100) substrate with a Tc onset at 85 K and Tc zero at 77 K using calcium flouride in the source material.

  17. Order twins in (111)-evaporated thin films of CuAu I. [Cu-Au

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, R.; Broitman, E. (Dept. de Fisica, Univ. de Buenos Aires (Argentina)); Harriague, S.; Terlisky, S. (Comision Nacional de Energia Atomica, Buenos Aires (Argentina))

    1990-10-15

    The structure of evaporated CuAu I films in (111) orientation was studied by electron transmission and diffraction microscopy. The single-crystal films of Cu-Au alloy were prepared by vacuum evaporation and CuAu I ordered alloy was obtained by heating the disordered f.c.c. alloy to a temperature of 350deg C for 1 h. The electron micrograph revealed the presence of an intricate pattern of antiphase domain boundaries and the presence of twin lamellae. No microtwinning was observed. The CuAu I films exhibit a complex diffraction pattern. The geometry of the expected (111) reciprocal lattice plane has been calculated and described in detail. Extra reflections were identified as {l brace}101{r brace} twin spots and double-diffraction spots which originated from the twins. (orig.).

  18. Global existence of solutions to a tear film model with locally elevated evaporation rates

    Science.gov (United States)

    Gao, Yuan; Ji, Hangjie; Liu, Jian-Guo; Witelski, Thomas P.

    2017-07-01

    Motivated by a model proposed by Peng et al. (2014) for break-up of tear films on human eyes, we study the dynamics of a generalized thin film model. The governing equations form a fourth-order coupled system of nonlinear parabolic PDEs for the film thickness and salt concentration subject to non-conservative effects representing evaporation. We analytically prove the global existence of solutions to this model with mobility exponents in several different ranges and present numerical simulations that are in agreement with the analytic results. We also numerically capture other interesting dynamics of the model, including finite-time rupture-shock phenomenon due to the instabilities caused by locally elevated evaporation rates, convergence to equilibrium and infinite-time thinning.

  19. Thin-Film Evaporative Cooling for Side-Pumped Laser

    Science.gov (United States)

    Stewart, Brian K. (Inventor)

    2010-01-01

    A system and method are provided for cooling a crystal rod of a side-pumped laser. A transparent housing receives the crystal rod therethrough so that an annular gap is defined between the housing and the radial surface of the crystal rod. A fluid coolant is injected into the annular gap such the annular gap is partially filled with the fluid coolant while the radial surface of the crystal rod is wetted as a thin film all along the axial length thereof.

  20. Physical properties of vacuum evaporated CdTe thin films with post-deposition thermal annealing

    Science.gov (United States)

    Chander, Subhash; Dhaka, M. S.

    2015-09-01

    This paper presents the physical properties of vacuum evaporated CdTe thin films with post-deposition thermal annealing. The thin films of thickness 500 nm were grown on glass and indium tin oxide (ITO) coated glass substrates employing thermal vacuum evaporation technique followed by post-deposition thermal annealing at temperature 450 °C. These films were subjected to the X-ray diffraction (XRD),UV-Vis spectrophotometer, source meter and atomic force microscopy (AFM) for structural, optical, electrical and surface morphological analysis respectively. The X-ray diffraction patterns reveal that the films have zinc-blende structure of single cubic phase with preferred orientation (111) and polycrystalline in nature. The crystallographic and optical parameters are calculated and discussed in brief. The optical band gap is found to be 1.62 eV and 1.52 eV for as-grown and annealed films respectively. The I-V characteristics show that the conductivity is decreased for annealed thin films. The AFM studies reveal that the surface roughness is observed to be increased for thermally annealed films.

  1. The development of evaporative liquid film model for analysis of passive containment cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hong June; Hwang, Young Dong; Kim, Hee Cheol; Kim, Young In; Chang, Moon Hee

    2000-07-01

    An analytical model was developed to simulate behavior of the liquid film formed on the outside surface of the steel containment vessel of PCCS including the ellipsoidal dome and the vertical wall. The model was coupled with CFX code using the user subroutines provided by the code, and a series of numerical calculations were performed to evaluate the evaporative heat transfer coefficient at the interface. Numerical results for Sherwood number and evaporative heat transfer coefficient were compared with the experimental data. The results were in good agreement with the experimental data. The calculated liquid film thickness showed good agreement with that of Sun except an upper portion of the channel. The model was applied to the full scale of PCCS to investigate the effects of dome and chimney on the evaporation rate. The results showed that the heat transfer coefficient in the dome region, where the flow cross-sectional area decreases and the swirling occurs, was lower than that of the vertical annulus region. The calculated evaporative heat transfer coefficient was about 20 times larger than that of the dry cooling. Sensitivity studies on the gap size and the wall temperature were also performed to figure out their effects on the heat transfer coefficient and inlet air average velocity. Through the analysis of the dryout point, the minimum liquid film flow rate to cover the entire surface of the vessel was estimated.

  2. Production and characterization of thin film group IIIB, IVB and rare earth hydrides by reactive evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Provo, James L., E-mail: jlprovo@verizon.net [Consultant, J.L. Provo Consulting, Trinity, Florida 34655-7179 (United States)

    2015-07-15

    A recent short history of reactive evaporation by D. M. Mattox [History Corner—A Short History of Reactive Evaporation, SVC Bulletin (Society of Vacuum Coaters, Spring 2014), p. 50–51] describes various methods for producing oxides, nitrides, carbides, and some compounds, but hydrides were not mentioned. A study was performed in the mid-1970s at the General Electric Company Neutron Devices Department in Largo, FL, by the author to study preparation of thin film hydrides using reactive evaporation and to determine their unique characteristics and properties. Films were produced of scandium (Sc), yttrium (Y), titanium (Ti), zirconium (Zr), and the rare earth praseodymium (Pr), neodymium (Nd), gadolinium (Gd), dysprosium (Dy), and erbium (Er) hydrides by hot crucible filament and electron beam evaporation in atmospheres of deuterium and tritium gases. All-metal vacuum systems were used and those used with tritium were dedicated for this processing. Thin film test samples 1000 nm thick were prepared on 1.27 cm diameter molybdenum disk substrates for each occluder (i.e., an element that can react with hydrogen to form a hydride) material. Loading characteristics as determined by gas-to-metal atomic ratios, oxidation characteristics as determined by argon–sputter Auger analysis, film structure as determined by scanning electron microscope analysis, and film stress properties as determined by a double resonator technique were used to define properties of interest. Results showed hydrogen-to-metal atomic ratios varied from 1.5 to 2.0 with near maximum loading for all but Pr and Nd occluders which correlated with the oxidation levels observed, with all occluder oxidation levels being variable due to vacuum system internal processing conditions and the materials used. Surface oxide levels varied from ∼80 Å to over 1000 Å. For most films studied, results showed that a maximum loading ratio of near 2.0 and a minimum surface oxide level of ∼80 Å could be

  3. Modelling the evaporation of a tear film over a contact lens.

    Science.gov (United States)

    Talbott, Kevin; Xu, Amber; Anderson, Daniel M; Seshaiyer, Padmanabhan

    2015-06-01

    A contact lens (CL) separates the tear film into a pre-lens tear film (PrLTF), the fluid layer between the CL and the outside environment, and a post-lens tear film (PoLTF), the fluid layer between the CL and the cornea. We examine a model for evaporation of a PrLTF on a modern permeable CL allowing fluid transfer between the PrLTF and the PoLTF. Evaporation depletes the PrLTF, and continued evaporation causes depletion of the PoLTF via fluid loss through the CL. Governing equations include Navier-Stokes, heat and Darcy's equations for the fluid flow and heat transfer in the PrLTF and porous layer. The PoLTF is modelled by a fixed pressure condition on the posterior surface of the CL. The original model is simplified using lubrication theory for the PrLTF and CL applied to a sagittal plane through the eye. We obtain a partial differential equation (PDE) for the PrLTF thickness that is first-order in time and fourth-order in space. This model incorporates evaporation, conjoining pressure effects in the PrLTF, capillarity and heat transfer. For a planar film, we find that this PDE can be reduced to an ordinary differential equation (ODE) that can be solved analytically or numerically. This reduced model allows for interpretation of the various system parameters and captures most of the basic physics contained in the model. Comparisons of ODE and PDE models, including estimates for the loss of fluid through the lens due to evaporation, are given. © The Authors 2014. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

  4. Non-Evaporable Getter Thin Film Coatings for Vacuum Applications

    CERN Document Server

    Prodromides, A E

    2002-01-01

    Getters are solid materials capable of chemisorbing gas molecules on their surface: getters are chemical pumps. They are widely used for a variety of applications such as in particle accelerators, vacuum tubes, field-emission display (FED), inert gas purification systems, H2 plasma purification, hydrogen species recycling as in the Tokamak Fusion Test Reactor. Among the different Non-Evaporable Getter (NEG) materials tested, the TiZrV alloys have the lowest activation temperature. For this reason, the TiZrV coatings were the object of this work. In particular, the aim of this investigation was to understand how to optimise three important properties of TiZrV coatings: to achieve the lowest possible activation temperature (Ta), and to obtain the highest pumping speed and surface pumping capacity. This objective is important in the context of the Large Hadron Collider (LHC) accelerator, since, before this work, the understanding and the knowledge of the TiZrV coatings properties were insufficient to adopt it fo...

  5. Characterization of nanostructured ZnO thin films deposited through vacuum evaporation

    Directory of Open Access Journals (Sweden)

    Jose Alberto Alvarado

    2015-04-01

    Full Text Available This work presents a novel technique to deposit ZnO thin films through a metal vacuum evaporation technique using colloidal nanoparticles (average size of 30 nm, which were synthesized by our research group, as source. These thin films had a thickness between 45 and 123 nm as measured by profilometry. XRD patterns of the deposited thin films were obtained. According to the HRSEM micrographs worm-shaped nanostructures are observed in samples annealed at 600 °C and this characteristic disappears as the annealing temperature increases. The films obtained were annealed from 25 to 1000 °C, showing a gradual increase in transmittance spectra up to 85%. The optical band gaps obtained for these films are about 3.22 eV. The PL measurement shows an emission in the red and in the violet region and there is a correlation with the annealing process.

  6. p-Type Transparent NiO Thin Films By e-Beam Evaporation Techniques

    Directory of Open Access Journals (Sweden)

    K.J. Patel1,

    2011-01-01

    Full Text Available Nickel oxide (NiO semiconductors thin films were prepared by e-beam evaporation technique at different substrate temperatures ranging from room temperature to 400 °C on glass substrate. Glancing incident X-ray diffraction depict that with the increases in substrate temperature the preferred orientation changes from (111 to (200 direction. Atomic force microscopy was used to investigate the surface morphology of the NiO thin films. The transmittance of NiO thin film increases with substrate temperature. NiO thin film was also deposited on n-type indium tin oxide (ITO thin films to investigate the diode characteristic of p-NiO/n-ITO junction.

  7. Characterization of nanostructured ZnO thin films deposited through vacuum evaporation.

    Science.gov (United States)

    Alvarado, Jose Alberto; Maldonado, Arturo; Juarez, Héctor; Pacio, Mauricio; Perez, Rene

    2015-01-01

    This work presents a novel technique to deposit ZnO thin films through a metal vacuum evaporation technique using colloidal nanoparticles (average size of 30 nm), which were synthesized by our research group, as source. These thin films had a thickness between 45 and 123 nm as measured by profilometry. XRD patterns of the deposited thin films were obtained. According to the HRSEM micrographs worm-shaped nanostructures are observed in samples annealed at 600 °C and this characteristic disappears as the annealing temperature increases. The films obtained were annealed from 25 to 1000 °C, showing a gradual increase in transmittance spectra up to 85%. The optical band gaps obtained for these films are about 3.22 eV. The PL measurement shows an emission in the red and in the violet region and there is a correlation with the annealing process.

  8. On the properties and stability of thermally evaporated Ge-As-Se thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bulla, D.A.P.; Wang, R.P.; Prasad, A.; Rode, A.V.; Madden, S.J.; Luther-Davies, B. [The Australian National University, Centre for Ultrahigh Bandwidth Devices for Optical System, Laser Physics Centre, Research School of Physics and Engineering, Canberra, ACT (Australia)

    2009-08-15

    Thin films of Ge-As-Se chalcogenide glasses have been deposited by thermal evaporation from bulk material and submitted to thermal treatments. The linear refractive index and optical band-gap for as-deposited and annealed films have been analyzed as function of the deposition parameters, chemical composition and mean coordination number (MCN). The chemical composition of the films was found to be directly affected by deposition rate, with low rates producing films with elevated Ge and reduced As content, whilst at high rates the Ge content was generally reduced and As levels increased compared with the bulk starting material. As a result films with close to the same stoichiometry as the bulk glass could be obtained by choosing appropriate deposition conditions. As-deposited films with MCN in between 2.44 and 2.55 showed refractive indices and optical band-gaps very close to those of the bulk glass whereas outside this range the film indices were higher and the optical gaps lower than those of the bulk glass. Upon annealing at close to their glass transition temperature, high MCN films evolved such that their indices and band-gaps approached the bulk glass values whereas at low MCN films resulted in no changes to the film properties. (orig.)

  9. On the properties and stability of thermally evaporated Ge-As-Se thin films

    Science.gov (United States)

    Bulla, D. A. P.; Wang, R. P.; Prasad, A.; Rode, A. V.; Madden, S. J.; Luther-Davies, B.

    2009-08-01

    Thin films of Ge-As-Se chalcogenide glasses have been deposited by thermal evaporation from bulk material and submitted to thermal treatments. The linear refractive index and optical band-gap for as-deposited and annealed films have been analyzed as function of the deposition parameters, chemical composition and mean coordination number (MCN). The chemical composition of the films was found to be directly affected by deposition rate, with low rates producing films with elevated Ge and reduced As content, whilst at high rates the Ge content was generally reduced and As levels increased compared with the bulk starting material. As a result films with close to the same stoichiometry as the bulk glass could be obtained by choosing appropriate deposition conditions. As-deposited films with MCN in between 2.44 and 2.55 showed refractive indices and optical band-gaps very close to those of the bulk glass whereas outside this range the film indices were higher and the optical gaps lower than those of the bulk glass. Upon annealing at close to their glass transition temperature, high MCN films evolved such that their indices and band-gaps approached the bulk glass values whereas at low MCN films resulted in no changes to the film properties.

  10. Investigation on thermal evaporated CH3NH3PbI3 thin films

    Directory of Open Access Journals (Sweden)

    Youzhen Li

    2015-09-01

    Full Text Available CH3NH3I, PbI2 and CH3NH3PbI3 films were fabricated by evaporation and characterized with X-ray Photoelectron Spectroscopy (XPS and X-ray diffraction (XRD. The XPS results indicate that the PbI2 and CH3NH3PbI3 films are more uniform and stable than the CH3NH3I film. The atomic ratio of the CH3NH3I, PbI2 and CH3NH3PbI3 films are C:N:I=1.00:1.01:0.70, Pb:I= 1.00:1.91 and C: N: Pb: I = 1.29:1.07:1.00:2.94, respectively. The atomic ratio of CH3NH3PbI3 is very close to that of the ideal perovskite. Small angle x-ray diffraction results demonstrate that the as evaporated CH3NH3PbI3 film is crystalline. The valence band maximum (VBM and work function (WF of the CH3NH3PbI3 film are about 0.85eV and 4.86eV, respectively.

  11. Study of nanocrystalline thin cobalt films with perpendicular magnetic anisotropy obtained by thermal evaporation

    Science.gov (United States)

    Kozłowski, Witold; Balcerski, Józef; Szmaja, Witold

    2017-02-01

    We have performed a detailed investigation of the morphological and magnetic domain structures of nanocrystalline thin cobalt films with perpendicular magnetic anisotropy. The films were thermally evaporated at an incidence angle of 0° in a vacuum of about 10-5 mbar and possessed thicknesses in the range from 60 nm to 100 nm. The films were studied by X-ray photoelectron spectroscopy (XPS), electron diffraction of transmission electron microscopy (TEM), atomic force microscopy (AFM), magnetic force microscopy (MFM) and the Fresnel mode of TEM. The films are polycrystalline and consist of very densely packed grains with sizes at the nanometer range. The grains are roundish in shape and generally exhibit no geometric alignment. The films are mainly composed of the hexagonal close-packed (HCP) phase of cobalt and possess preferential orientation of the cobalt grains with the hexagonal axis perpendicular to the film surface. 70 nm thick films and thicker have fully perpendicular magnetization, while 60 nm thick films possess clearly dominating perpendicular magnetization component. The magnetic domain structure is in the form of stripe domains forming a maze pattern. When the film thickness increases from 60 nm to 100 nm, the average grain size increases from 28.9 nm to 31.5 nm and the average domain width increases from 79.4 nm to 98.7 nm.

  12. Numerical simulation and modeling of liquid film evaporation inside axisymmetric reentrant cavities

    Directory of Open Access Journals (Sweden)

    Dietl Jochen

    2014-01-01

    Full Text Available Evaporation of thin liquid films inside reentrant cavities occurs in several boiling processes where enhanced surfaces are utilized. In this work, evaporation from a single reentrant cavity with an additional thin channel is studied. The channel allows the backflow of liquid from the pool into the cavity during bubble growth. Direct numerical simulations were performed, showing a strong relation between flow to the film inside the cavity and bubble growth at the pore. Additionally, a model was created with a novel modeling approach which is based on solving the Young-Laplace equation. From the model characteristic nondimensional parameters can be obtained and the influence of geometry variations on hydrodynamics can be studied.

  13. Spin-pump-induced spin transport in a thermally evaporated pentacene film

    Energy Technology Data Exchange (ETDEWEB)

    Tani, Yasuo; Shikoh, Eiji, E-mail: shikoh@elec.eng.osaka-cu.ac.jp [Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); Teki, Yoshio [Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan)

    2015-12-14

    We report the spin-pump-induced spin transport properties of a pentacene film prepared by thermal evaporation. In a palladium(Pd)/pentacene/Ni{sub 80}Fe{sub 20} tri-layer sample, a pure spin-current is generated in the pentacene layer by the spin-pumping of Ni{sub 80}Fe{sub 20}, which is independent of the conductance mismatch problem in spin injection. The spin current is absorbed into the Pd layer, converted into a charge current with the inverse spin-Hall effect in Pd, and detected as an electromotive force. This is clear evidence for the pure spin current at room temperature in pentacene films prepared by thermal evaporation.

  14. Resistive evaporation of superconducting Y-Ba-Cu-O thin films from a single source

    Energy Technology Data Exchange (ETDEWEB)

    Azoulay, J.; Goldschmidt, D.

    1989-06-12

    A new evaporation method of high-temperature superconducting films, the /ital resistive vaporation/ /ital from/ /ital single/ /ital source/, isreported here for the first time. The source material, inserted into a tungstenboat in a conventional vacuum system, consisted of a pulverized mixture of Cu,YF/sub 3/, and BaF/sub 2/. The handling of the source material required only grindingand mixing of the raw materials. Its deposition onto SrTiO/sub 3/ substratesyielding superconducting films with properties very similar to those obtained ina layer-by-layer resistive evaporation of these materials. In particular, aresistive transition onset at 75 K and zero resistance at /similar to/40 K, and criticalcurrents of 2000 A/cm/sup 2/ at approx.10 K have been measured. The broad transition maybe attributed to a copper concentration gradient, as measured by Auger depthprofiling, or to a residual fluorine-rich phase.

  15. Water ice as a matrix for film production by matrix assisted pulsed laser evaporation (MAPLE)

    DEFF Research Database (Denmark)

    Rodrigo, Katarzyna Agnieszka; Schou, Jørgen; Christensen, Bo Toftmann

    2007-01-01

    We have studied water ice as a matrix for the production of PEG (polyethylene glycol) films by MAPLE at 355 nm. The deposition rate is small compared with other matrices typically used in MAPLE, but the deposition of photofragments from the matrix can be avoided. At temperatures above -50 degrees...... of the target holder the deposition rate increases strongly, but the evaporation pressure in the MAPLE chamber also increases drastically....

  16. Water ice as a matrix for film production by matrix assisted pulsed laser evaporation (MAPLE)

    DEFF Research Database (Denmark)

    Rodrigo, Katarzyna Agnieszka; Schou, Jørgen; Christensen, Bo Toftmann;

    2007-01-01

    We have studied water ice as a matrix for the production of PEG (polyethylene glycol) films by MAPLE at 355 nm. The deposition rate is small compared with other matrices typically used in MAPLE, but the deposition of photofragments from the matrix can be avoided. At temperatures above -50 degrees...... of the target holder the deposition rate increases strongly, but the evaporation pressure in the MAPLE chamber also increases drastically....

  17. Functional porphyrin thin films deposited by matrix assisted pulsed laser evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Cristescu, R., E-mail: rodica.cristescu@inflpr.ro [National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, P.O. Box MG-36, Atomistilor 409, Bucharest-Magurele (Romania); Popescu, C.; Popescu, A.C.; Mihailescu, I.N. [National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, P.O. Box MG-36, Atomistilor 409, Bucharest-Magurele (Romania); Ciucu, A.A. [Univeristy of Bucharest, Chemistry Department, Bucharest (Romania); Andronie, A.; Iordache, S.; Stamatin, I. [University of Bucharest, 3 Nano-SAE Research Center, P.O. Box MG-38, Bucharest-Magurele (Romania); Fagadar-Cosma, E. [Institute of Chemistry Timisoara of Romanian Academy, Department of Organic Chemistry, 300223 Timisoara (Romania); Chrisey, D.B. [Rensselaer Polytechnic Institute, School of Engineering, Department of Materials Science and Engineering, Troy 12180-3590, NY (United States)

    2010-05-25

    We report the first successful deposition of functionalized and nanostructured Zn(II)- and Co(II)-metalloporphyrin thin films by matrix assisted pulsed laser evaporation onto silicon wafers, quartz plates and screen-printed electrodes. The deposited nanostructures have been characterized by Raman spectrometry and cyclic voltammetry. The novelty of our contribution consists of the evaluation of the sensitivity of the MAPLE-deposited Zn(II)- and Co(II)-metalloporphyrin thin films on screen-printed carbon nanotube electrodes when challenged with dopamine.

  18. Electronic structure, structural and optical properties of thermally evaporated CdTe thin films

    OpenAIRE

    S Lalitha; Karazhanov, S. Zh.; Ravindran, P.; Senthilarasu, S.; Sathyamoorthy, R.; Janabergenov, J.

    2006-01-01

    Thin films of CdTe were deposited on glass substrates by thermal evaporation. From the XRD measurements itis found that the films are of zinc-blende-type structure. Transmittance, absorption, extinction, and refractive coefficients are measured. Electronic structure, band parameters and optical spectra of CdTe were calculated from ab initio studies within the LDA and LDA+U approximations. It is shown that LDA underestimates the band gap, energy levels of the Cd-4d states, s-d coupling and ban...

  19. Optical and Electrochromic Properties of E-Beam Evaporated Nickel Oxide Thin Film

    Directory of Open Access Journals (Sweden)

    K.J. Patel

    2011-01-01

    Full Text Available Nickel oxide (NiO thin films were deposited by e-beam evaporation on glass and ITO coated glass substrates initially held at room temperature without post-heat treatments. The structural and optical properties were investigated using glancing incident X-ray diffractometer (GIXRD and spectrophotometer. The electrochromic (EC behavior of NiO thin film was investigated using electrochemical technique viz. cyclic voltammetry, constant current measurement, and chronoamperometry in 1 M KOH electrolyte. The transmittance modulation and switching time with different operating voltage were also studied.

  20. Finite-time thin film rupture driven by modified evaporative loss

    Science.gov (United States)

    Ji, Hangjie; Witelski, Thomas P.

    2017-03-01

    Rupture is a nonlinear instability resulting in a finite-time singularity as a film layer approaches zero thickness at a point. We study the dynamics of rupture in a generalized mathematical model of thin films of viscous fluids with modified evaporative effects. The governing lubrication model is a fourth-order nonlinear parabolic partial differential equation with a non-conservative loss term. Several different types of finite-time singularities are observed due to balances between conservative and non-conservative terms. Non-self-similar behavior and two classes of self-similar rupture solutions are analyzed and validated against high resolution PDE simulations.

  1. Thermally evaporated conformal thin films on non-traditional/non-planar substrates

    Science.gov (United States)

    Pulsifer, Drew Patrick

    Conformal thin films have a wide variety of uses in the microelectronics, optics, and coatings industries. The ever-increasing capabilities of these conformal thin films have enabled tremendous technological advancement in the last half century. During this period, new thin-film deposition techniques have been developed and refined. While these techniques have remarkable performance for traditional applications which utilize planar substrates such as silicon wafers, they are not suitable for the conformal coating of non-traditional substrates such as biological material. The process of thermally evaporating a material under vacuum conditions is one of the oldest thin-film deposition techniques which is able to produce functional film morphologies. A drawback of thermally evaporated thin films is that they are not intrinsically conformal. To overcome this, while maintaining the advantages of thermal evaporation, a procedure for varying the substrates orientation with respect to the incident vapor flux during deposition was developed immediately prior to the research undertaken for this doctoral dissertation. This process was shown to greatly improve the conformality of thermally evaporated thin films. This development allows for several applications of thermally evaporated conformal thin films on non-planar/non-traditional substrates. Three settings in which to evaluate the improved conformal deposition of thermally evaporated thin films were investigated for this dissertation. In these settings the thin-film morphologies are of different types. In the first setting, a bioreplication approach was used to fabricate artificial visual decoys for the invasive species Agrilus planipennis, commonly known as the emerald ash borer (EAB). The mating behavior of this species involves an overflying EAB male pouncing on an EAB female at rest on an ash leaflet before copulation. The male spots the female on the leaflet by visually detecting the iridescent green color of the

  2. Electrical properties of silver selenide thin films prepared by reactive evaporation

    Indian Academy of Sciences (India)

    M C Santhosh Kumar; B Pradeep

    2002-10-01

    The electrical properties of silver selenide thin films prepared by reactive evaporation have been studied. Samples show a polymorphic phase transition at a temperature of 403 ± 2 K. Hall effect study shows that it has a mobility of 2000 cm2V–1s–1 and carrier concentration of 1018 cm–3 at room temperature. The carriers are of -type. X-ray diffraction study indicates that the as-prepared films are polycrystalline in nature. The lattice parameters were found to be = 4.353 Å, = 6.929 Å and = 7.805 Å.

  3. Studies of thin films of Ti- Zr -V as non-evaporable getter films prepared by RF sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Nidhi; Jagannath,; Sharma, R. K.; Gadkari, S. C.; Muthe, K. P.; Mukundhan, R.; Gupta, S. K. [Technical Physics Division, BARC Mumbai-400085 (India)

    2013-02-05

    Non-Evaporable Getter (NEG) films of the Ti-Zr-V prepared on stainless steel substrates by Radio Frequency sputtering. To observe its getter behavior at the lowest activation temperature, the sample is heated continuously at different temperatures (100 Degree-Sign C, 150 Degree-Sign C, 200 Degree-Sign C and 250 Degree-Sign C) for 2 hours. The changes of the surface chemical composition at different temperaturesare analyzed by using XPS and SEM (Scanning Electron Microscopy) techniques. The volume elemental composition of the film has been measured by energy dispersive X-ray spectroscopy (EDX). The in-situ XPS measurements of the activated getter films show the disappearance of the superficial oxide layer through the variation in the oxygen stoichiometry during thermal activation. Results of these studies show that the deposited films of Ti-Zr-V could be used as NEG to produce extreme high vacuum.

  4. Superconducting YBa 2Cu 3O 7- δ thin film grown on metallic film evaporated on MgO

    Science.gov (United States)

    Verdyan, A.; Azoulay, J.; Lapsker, I.

    2001-03-01

    At present it is commonly accepted that thin film formation of YBa 2Cu 3O 7- δ (YBCO) on conducting substrate is one of the keys to further development of advanced devices in the microelectronic and other applications. We have grown YBCO thin films by resistive evaporation technique on MgO coated with metallic layers (Ni or Ag). A simple inexpensive vacuum system equipped with resistively heated boats for metal and precursor mixture of yttrium, copper and barium fluoride powders was used. X-ray diffraction (XRD) and scanning electron microscopy techniques were used for texture, morphology and surface analyses respectively. Electrical and magnetical properties were determined by a standard dc four-probe method. The way of heating process is shown to be critical parameter in the film quality. The physical and electrical properties of the YBCO films are discussed in light of the fact that XRD measurements done on the metallic buffer layers have revealed a multicrystalline structure.

  5. Micro and macro scale electrohydrodynamic enhancement of thin-film evaporation

    Science.gov (United States)

    Darabi, Jafar

    2000-11-01

    Evaporation of thin liquid films has long been recognized as one of the most effective methods of heat removal. As a result, techniques that employ this mechanism have potential for use in many practical applications such as electronic cooling, heat pipes, and process heat exchangers. Demand for high-power density electronics, along with the associated requirements including temperature uniformity and the limitation on maximum temperature, will require the development of new methods of heat removal for these devices. The electrohydrodynamic (EHD) technique offers a promising alternative for the uniform distribution of temperature and the removal of heat at high power levels. These factors directly affect the performance, cost, and reliability of such devices. An experimental investigation was undertaken to study the feasibility of applying the EHD technique for heat transfer enhancement of thin-film evaporation. Macro-scale experiments were conducted on several heat transfer surfaces in both horizontal and vertical orientations and the mechanisms involved in heat transfer enhancement were clarified. For the various heat transfer surface/electrode geometries tested, enhancement factors ranging from 25% to 390% were obtained. The novel concept of EHD-enhanced source level cooling utilizing MEMS and thin-film evaporation was then introduced. The device was designed and fabricated using VLSI fabrication technology. This technology allowed the integration of an active cooling device, a micropump, and temperature sensors into a single chip, greatly facilitating the manufacturing process, increasing the cooling capacity, and improving the thermal management of future high-power density electronics. The results indicate a maximum cooling capacity of 65 W/cm2 and a corresponding pumping head of 250 Pa. This unique microcooling device has high commercialization potential and can pave the way for practical utilization of thin-film evaporation in microelectronics cooling and

  6. Electrical bistable characteristics of poly (phenylene sulfide) thin film deposited by thermal evaporation

    Institute of Scientific and Technical Information of China (English)

    GUO XiaoChun; DONG GuiFang; QIU Yong

    2007-01-01

    Poly(phenylene sulfide) (PPS) is a well-known organic insulator. However, the PPS thin film, deposited by thermal evaporation in vacuum, showed electrical bistable characteristics. The structure of the PPS thin-film device was glass/ITO/PPS (300 nm)/Au. The thin film can be converted to a high conductance state by applying a pulse of 80 V (5 s), and brought back to a low conductance state by applying a pulse of 100 V (5 s). This kind of thin film is potential for active layer of a memory device. The critical voltage of the device is about 40 V, while the read-out voltage is 5 V. We tentatively ascribe the bistable phenomenon to the charge transfer from S to C atoms in the PPS molecule chains.

  7. Investigation of effect of annealing on thermally evaporated ZnSe thin films through spectroscopic techniques

    Science.gov (United States)

    Mahesha, M. G.; Rashmitha; Meghana, N.; Padiyar, Meghavarsha

    2017-09-01

    ZnSe thin films have been grown on clean glass substrates by thermal evaporation technique and deposited films have been annealed at 473 K. William-Hall method has been adopted to extract information on crystallite size and internal strain in the film from X-ray diffractogram. Effect of annealing on ZnSe films has been analyzed by spectroscopic techniques which include optical absorption, Raman, and photoluminescence spectroscopy. From optical absorption, band gap has been estimated along with other optical parameters like refractive index and extinction coefficient. Also, Urbach tail, which originates near bad edge due to structural disorders, has been characterized. Raman spectra have been analyzed to get the information on the influence of crystallite size and strain effect on peak position, intensity and width. Photoluminescence spectra have been recorded and analyzed to get an insight on defect levels induced due to vacancies, interstadials, and impurity complexes.

  8. Improved Adhesion of Gold Thin Films Evaporated on Polymer Resin: Applications for Sensing Surfaces and MEMS

    Directory of Open Access Journals (Sweden)

    Behrang Moazzez

    2013-05-01

    Full Text Available We present and analyze a method to improve the morphology and mechanical properties of gold thin films for use in optical sensors or other settings where good adhesion of gold to a substrate is of importance and where controlled topography/roughness is key. To improve the adhesion of thermally evaporated gold thin films, we introduce a gold deposition step on SU-8 photoresist prior to UV exposure but after the pre-bake step of SU-8 processing. Shrinkage and distribution of residual stresses, which occur during cross-linking of the SU-8 polymer layer in the post-exposure baking step, are responsible for the higher adhesion of the top gold film to the post-deposition cured SU-8 sublayer. The SU-8 underlayer can also be used to tune the resulting gold film morphology. Our promoter-free protocol is easily integrated with existing sensor microfabrication processes.

  9. Infrared waveguide fabrications with an E-beam evaporated chalcogenide glass film

    KAUST Repository

    Yang, Xiaoming

    2014-12-12

    Chalcogenide glasses have a variety of unique optical properties due to the intrinsic structural flexibility and bonds metastability. They are desirable materials for many applications, such as infrared communication sensors, holographic grating, optical imaging, and ultrafast nonlinear optic devices. Here, we introduce a novel electron-beam evaporation process to deposit the good quality arsenic trisulfide (As2S3) films and then the As2S3 films were used to fabricate the As2S3 waveguides with three approaches. The first method is photoresist lift-off. Because of the restriction of thermal budget of photoresist, the As2S3 film must be deposited at the room temperature. The second one is the silicon dioxide lift-off process on sapphire substrates, in which the As2S3 film could be evaporated at a high temperature (>180 °C) for better film quality. The third one is the plasma etching process with a metal protective thin layer in the pattern development process.

  10. Infrared waveguide fabrications with an E-beam evaporated chalcogenide glass film

    Science.gov (United States)

    Yang, X. M.; Zhang, Yaping; Syed, Ahad

    2015-04-01

    Chalcogenide glasses have a variety of unique optical properties due to the intrinsic structural flexibility and bonds metastability. They are desirable materials for many applications, such as infrared communication sensors, holographic grating, optical imaging, and ultrafast nonlinear optic devices. Here, we introduce a novel electron-beam evaporation process to deposit the good quality arsenic trisulfide (As2S3) films and then the As2S3 films were used to fabricate the As2S3 waveguides with three approaches. The first method is photoresist lift-off. Because of the restriction of thermal budget of photoresist, the As2S3 film must be deposited at the room temperature. The second one is the silicon dioxide lift-off process on sapphire substrates, in which the As2S3 film could be evaporated at a high temperature (>180 °C) for better film quality. The third one is the plasma etching process with a metal protective thin layer in the pattern development process.

  11. Fabrication of thermally evaporated Al thin film on cylindrical PET monofilament for wearable computing devices

    Science.gov (United States)

    Liu, Yang; Kim, Eunju; Han, Jeong In

    2016-01-01

    During the initial development of wearable computing devices, the conductive fibers of Al thin film on cylindrical PET monofilament were fabricated by thermal evaporation. Their electrical current-voltage characteristics curves were excellent for incorporation into wearable devices such as fiber-based cylindrical capacitors or thin film transistors. Their surfaces were modified by UV exposure and dip coating of acryl or PVP to investigate the surface effect. The conductive fiber with PVP coating showed the best conductivities because the rough surface of the PET substrate transformed into a smooth surface. The conductivities of PET fiber with and without PVP were 6.81 × 103 Ω-1cm-1 and 5.62 × 103 Ω-1cm-1, respectively. In order to understand the deposition process of Al thin film on cylindrical PET, Al thin film on PET fiber was studied using SEM (Scanning Electron Microscope), conductivities and thickness measurements. Hillocks on the surface of conductive PET fibers were observed and investigated by AFM on the surface. Hillocks were formed and grown during Al thermal evaporation because of severe compressive strain and plastic deformation induced by large differences in thermal expansion between PET substrate and Al thin film. From the analysis of hillock size distribution, it turns out that hillocks grew not transversely but longitudinally. [Figure not available: see fulltext.

  12. Thermally evaporated methylammonium tin triiodide thin films for lead-free perovskite solar cell fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yue; Zhao, Dewei; Grice, Corey R.; Meng, Weiwei; Wang, Changlei; Liao, Weiqiang; Cimaroli, Alexander J.; Zhang, Hongmei; Zhu, Kai; Yan, Yanfa

    2016-01-01

    We report on the synthesis of methylammonium tin triiodide (MASnI3) thin films at room temperature by a hybrid thermal evaporation method and their application in fabricating lead (Pb)-free perovskite solar cells. The as-deposited MASnI3 thin films exhibit smooth surfaces, uniform coverage across the entire substrate, and strong crystallographic preferred orientation along the <100> direction. By incorporating this film with an inverted planar device architecture, our Pb-free perovskite solar cells are able to achieve an open-circuit voltage (Voc) up to 494 mV. The relatively high Voc is mainly ascribed to the excellent surface coverage, the compact morphology, the good stoichiometry control of the MASnI3 thin films, and the effective passivation of the electron-blocking and hole-blocking layers. Our results demonstrate the potential capability of the hybrid evaporation method to prepare high-quality Pb-free MASnI3 perovskite thin films which can be used to fabricate efficient Pb-free perovskite solar cells.

  13. Thermally evaporated mechanically hard tin oxide thin films for opto-electronic apllications

    Energy Technology Data Exchange (ETDEWEB)

    Tripathy, Sumanta K.; Rajeswari, V. P. [Centre for Nano Science and Technology, GVP College of Engineering (Autonomous), Visakhapatnam- 530048 (India)

    2014-01-28

    Tungsten doped tin oxide (WTO) and Molybdenum doped tin oxide (MoTO) thin film were deposited on corn glass by thermal evaporation method. The films were annealed at 350°C for one hour. Structural analysis using Xray diffraction data shows both the films are polycrystalline in nature with monoclinic structure of tin oxide, Sn{sub 3}O{sub 4}, corresponding to JCPDS card number 01-078-6064. SEM photograph showed that both the films have spherical grains with size in the range of 20–30 nm. Compositional analysis was carried out using EDS which reveals the presence of Sn, O and the dopant Mo/W only thereby indicating the absence of any secondary phase in the films. The films are found to contain nearly 6 wt% of Mo, 8 wt% of W as dopants respectively. The transmission pattern for both the films in the spectral range 200 – 2000 nm shows that W doping gives a transparency of nearly 80% from 380 nm onwards while Mo doping has less transparency of 39% at 380nm. Film hardness measurement using Triboscope shows a film hardness of about 9–10 GPa for both the films. It indicates that W or M doping in tin oxide provides the films the added advantage of withstanding the mechanical wear and tear due to environmental fluctuations By optimizing the optical and electrical properties, W/Mo doped tin oxide films may be explored as window layers in opto-electronic applications such as solar cells.

  14. Study on AlSb Polycrystalline Thin Films Prepared by Vacuum Co-Evaporation

    Science.gov (United States)

    Song, Huijin; Wu, Lili; Zheng, Jiagui; Feng, Lianghuan; Lei, Zhi; Zhang, Jingquan

    In this paper, the AlSb polycrystalline thin films were prepared by vacuum co-evaporation technology and their structural, optical and electrical properties have been studied. XRD results showed that the as-deposited AlSb amorphous thin films transformed to polycrystalline state after annealed in vacuum at temperatures higher than 540°C. The process of phase change was observed to depend on the annealing temperature and the film composition. Some irreversible changes took place in the annealed films during the measurement of the temperature dependence of the film conductance. The conductance activation energy of the film was 0.132 and 0.32 eV during the heating and cooling process, respectively, which suggests the decrease of Sb vacancies in the AlSb film after the heating. Hall effect and optical absorption measurement showed that the AlSb polycrystalline thin films were p-type, indirect bandgap semiconductors with absorption coefficient higher than 8 × 104 cm-1. TCO/CdS/AlSb photovoltaic devices with the local open circuit voltage of over 200 mV have been fabricated.

  15. Deposition of matrix-free fullerene films with improved morphology by matrix-assisted pulsed laser evaporation (MAPLE)

    DEFF Research Database (Denmark)

    Canulescu, Stela; Schou, Jørgen; Fæster, Søren;

    2013-01-01

    Thin films of C60 were deposited by matrix-assisted pulsed laser evaporation (MAPLE) from a frozen target of anisole with 0.67 wt% C60. Above a fluence of 1.5 J/cm2 the C60 films are strongly non-uniform and are resulting from transfer of matrix-droplets containing fullerenes. At low fluence...... the fullerene molecules in the films are intact, the surface morphology is substantially improved and there are no measurable traces of the matrix molecules in the film. This may indicate a regime of dominant evaporation at low fluence which merges into the MAPLE regime of liquid ejection of the host matrix...

  16. Heat capacity of quantum adsorbates: Hydrogen and helium on evaporated gold films

    Energy Technology Data Exchange (ETDEWEB)

    Birmingham, J.T. [Univ. of California, Berkeley, CA (United States). Dept. of Physics]|[Lawrence Berkeley National Lab., CA (United States). Materials Sciences Div.

    1996-06-01

    The author has constructed an apparatus to make specific heat measurements of quantum gases adsorbed on metallic films at temperatures between 0.3 and 4 K. He has used this apparatus to study quench-condensed hydrogen films between 4 and 923 layers thick with J = 1 concentrations between 0.28 and 0.75 deposited on an evaporated gold surface. He has observed that the orientational ordering of the J = 1 molecules depends on the substrate temperature during deposition of the hydrogen film. He has inferred that the density of the films condensed at the lowest temperatures is 25% higher than in bulk H{sub 2} crystals and have observed that the structure of those films is affected by annealing at 3.4 K. The author has measured the J = 1 to J = 0 conversion rate to be comparable to that of the bulk for thick films; however, he found evidence that the gold surface catalyzes conversion in the first two to four layers. He has also used this apparatus to study films of {sup 4}He less than one layer thick adsorbed on an evaporated gold surface. He shows that the phase diagram of the system is similar to that for {sup 4}He/graphite although not as rich in structure, and the phase boundaries occur at different coverages and temperatures. At coverages below about half a layer and at sufficiently high temperatures, the {sup 4}He behaves like a two-dimensional noninteracting Bose gas. At lower temperatures and higher coverages, liquidlike and solidlike behavior is observed. The Appendix shows measurements of the far-infrared absorptivity of the high-{Tc} superconductor La{sub 1.87}Sr{sub 0.13}CuO{sub 4}.

  17. Hydrodynamic effects on phase separation morphologies in evaporating thin films of polymer solutions

    Science.gov (United States)

    Zoumpouli, Garyfalia A.; Yiantsios, Stergios G.

    2016-08-01

    We examine effects of hydrodynamics on phase separation morphologies developed during drying of thin films containing a volatile solvent and two dissolved polymers. Cahn-Hilliard and Flory-Huggins theories are used to describe the free energy of the phase separating systems. The thin films, considered as Newtonian fluids, flow in response to Korteweg stresses arising due to concentration non-uniformities that develop during solvent evaporation. Numerical simulations are employed to investigate the effects of a Peclet number, defined in terms of system physical properties, as well as the effects of parameters characterizing the speed of evaporation and preferential wetting of the solutes at the gas interface. For systems exhibiting preferential wetting, diffusion alone is known to favor lamellar configurations for the separated phases in the dried film. However, a mechanism of hydrodynamic instability of a short length scale is revealed, which beyond a threshold Peclet number may deform and break the lamellae. The critical Peclet number tends to decrease as the evaporation rate increases and to increase with the tendency of the polymers to selectively wet the gas interface. As the Peclet number increases, the instability moves closer to the gas interface and induces the formation of a lateral segregation template that guides the subsequent evolution of the phase separation process. On the other hand, for systems with no preferential wetting or any other property asymmetries between the two polymers, diffusion alone favors the formation of laterally separated configurations. In this case, concentration perturbation modes that lead to enhanced Korteweg stresses may be favored for sufficiently large Peclet numbers. For such modes, a second mechanism is revealed, which is similar to the solutocapillary Marangoni instability observed in evaporating solutions when interfacial tension increases with the concentration of the non-volatile component. This mechanism may lead

  18. Structural, optical, photoluminescence, dielectric and electrical studies of vacuum-evaporated CdTe thin films

    Indian Academy of Sciences (India)

    Ziaul Raza Khan; M Zulfequar; Mohd Shahid Khan

    2012-04-01

    Highly-oriented CdTe thin films were fabricated on quartz and glass substrates by thermal evaporation technique in the vacuum of about 2 × 10-5 torr. The CdTe thin films were characterized by X-ray diffraction (XRD), UV–VIS–NIR, photoluminescence spectroscopy and scanning electron microscopy (SEM). X-ray diffraction results showed that the films were polycrystalline with cubic structure and had preferred growth of grains along the (111) crystallographic direction. Scanning electron micrographs showed that the growth of crystallites of comparable size on both the substrates. At the room temperature, photoluminescence spectra of the films on both the substrates showed sharp peaks with a maximum at 805 nm. This band showed significant narrowing suggesting that it originates from the transitions involving grain boundary defects. The refractive index of CdTe thin films was calculated using interference pattern of transmission spectra. The optical band gap of thin films was found to allow direct transition with energy gap of 1.47–1.50 eV. a.c. conductivity of CdTe thin films was found to increase with the increase in frequency whereas dielectric constant was observed to decrease with the increase in frequency.

  19. Photoluminescence of electron beam evaporated CaS:Bi thin films

    CERN Document Server

    Smet, P F; Poelman, D R; Meirhaeghe, R L V

    2003-01-01

    For the first time, the photoluminescence (PL) of electron beam evaporated CaS:Bi thin films is reported. Luminescent CaS:Bi powder prepared out of aqueous solutions was used as source material. The influence of substrate temperature on the PL and the morphology of thin films is discussed, and an optimum is determined. Substrate temperatures between 200 deg. C and 300 deg. C lead to good quality thin films with sufficient PL intensity. As-deposited thin films show two emission bands, peaking at 450 and 530 nm. Upon annealing the emission intensity increases, and annealing at 800 deg. C is sufficient to obtain a homogeneously blue emitting thin film (CIE colour coordinates (0.17; 0.12)), thanks to a single remaining emission band at 450 nm. The influence of ambient temperature on the PL of CaS:Bi powder and thin films was also investigated and it was found that CaS:Bi thin films show a favourable thermal quenching behaviour near room temperature.

  20. Structural and electrical properties of large area epitaxial VO2 films grown by electron beam evaporation

    Science.gov (United States)

    Théry, V.; Boulle, A.; Crunteanu, A.; Orlianges, J. C.; Beaumont, A.; Mayet, R.; Mennai, A.; Cosset, F.; Bessaudou, A.; Fabert, M.

    2017-02-01

    Large area (up to 4 squared inches) epitaxial VO2 films, with a uniform thickness and exhibiting an abrupt metal-insulator transition with a resistivity ratio as high as 2.85 × 10 4 , have been grown on (001)-oriented sapphire substrates by electron beam evaporation. The lattice distortions (mosaicity) and the level of strain in the films have been assessed by X-ray diffraction. It is demonstrated that the films grow in a domain-matching mode where the distortions are confined close to the interface which allows growth of high-quality materials despite the high film-substrate lattice mismatch. It is further shown that a post-deposition high-temperature oxygen annealing step is crucial to ensure the correct film stoichiometry and provide the best structural and electrical properties. Alternatively, it is possible to obtain high quality films with a RF discharge during deposition, which hence do not require the additional annealing step. Such films exhibit similar electrical properties and only slightly degraded structural properties.

  1. Structural and magnetic properties of evaporated Co/Si(100) and Co/glass thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kharmouche, A [Departement de Physique, Universite Ferhat Abbas, Setif 19000, (Algeria); Cherif, S-M [Laboratoire PMTM, Institut Galilee, Universite Paris 13, Villetaneuse, 93340 (France); Bourzami, A [Departement de Physique, Universite Ferhat Abbas, Setif 19000 (Algeria); Layadi, A [Departement de Physique, Universite Ferhat Abbas, Setif 19000 (Algeria); Schmerber, G [IPCMS-GEMME, UMR-CNRS, Universite Louis Pasteur, 23 rue du Loess, B.P. 43, 67034, Strasbourg, Cedex 2 (France)

    2004-09-21

    A series of Co thin films have been evaporated onto Si(100) and glass substrates. The Co thickness, t{sub Co}, ranges from 50 to 195 nm. The structural and magnetic properties have been investigated by x-ray diffraction, hysteresis curves, Brillouin light scattering and magnetic force microscopy (MFM) techniques. The Co thin films are found to be polycrystalline with (0001) texture. There is an increase of the grain size with increasing film thickness. The coercive fields range from values as low as 2 Oe in thinner films to the highest values, 2500 Oe, in 195 nm thick Co/Si films. The magnetocrystalline anisotropy field H{sub a} decreases as the thickness increases; surface and stress induced anisotropies seem to contribute to the value of H{sub a}. MFM images reveal a well-defined stripe pattern for thicker Co/Si samples. Such domains are not observed in the case of the thinner films. These so-called weak-stripe domains appear in magnetic films with a low or intermediate perpendicular anisotropy. Similar behaviour was observed in Co/glass samples, in addition, cross-tie walls were seen in thinner ones.

  2. Electrical and Optical Properties of GeSi−:H Thin Films Prepared by Thermal Evaporation Method

    Directory of Open Access Journals (Sweden)

    A. A. J. Al-Douri

    2010-01-01

    Full Text Available Thin a-GeSi1−:H films were grown successfully by fabrication of designated ingot followed by evaporation onto glass slides. A range of growth conditions, Ge contents, dopant concentration (Al and As, and substrate temperature, were employed. Stoichiometry of the thin films composition was confirmed using standard surface techniques. The structure of all films was amorphous. Film composition and deposition parameters were investigated for their bearing on film electrical and optical properties. More than one transport mechanism is indicated. It was observed that increasing substrate temperature, Ge contents, and dopant concentration lead to a decrease in the optical energy gap of those films. The role of the deposition conditions on values of the optical constants was determined. Accordingly, models of the density of states for the Ge0.5Si0.5:H thin films as pure, doped with 3.5% of Al (p-type and that doped with 3.5% As (n-type, were proposed.

  3. Effect of substrate temperature on ZnS films prepared by thermal evaporation technique

    Science.gov (United States)

    Vishwakarma, Rahul

    2015-06-01

    The nanocrystalline ZnS semiconducting thin films of 500 nm thickness have been deposited on glass substrate at different substrate temperatures ( T s) by thermal evaporation technique. The structural property of deposited thin films has been measured by X-ray diffraction, scanning electron microscopy, and Energy dispersive analysis of X-ray. The electrical and optical properties of thin films have been determined by D.C. two point probe and ultra-violet visible spectroscopy measurements. The X-ray diffraction patterns show that thin films have cubic structure. The electrical resistivity of thin films has decreased from 0.36 × 106 to 0.15 × 106 Ω cm as substrate temperature increases from 300 to 400 K. It shows that films have semiconducting in nature. The grain size and electrical conductivity of the thin films have increased as the deposition temperature increased while dislocation density, activation energy, and band gap decreased. The minimum band gap 3.43 eV has been found.

  4. Properties of ZrB2 Thin Films Grown by E-Beam Evaporation

    Science.gov (United States)

    Lad, Robert; Stewart, David; Sell, Julia; Bernhardt, George; Frankel, David; University of Maine Team

    2014-03-01

    Zirconium diboride (ZrB2) is a candidate material for many high temperature applications because it has a high melting point, high hardness, thermal shock resistance, and metallic conductivity. However, very little work has been reported concerning growth of ZrB2 thin films and high temperature oxidation behavior. In this study, ZrB2 films with nominal thickness of 200 nm have been deposited using electron-beam evaporation of either ZrB2 pellets or elemental B and Zr sources. The ZrB2 source yields a film that has a 1:1 Zr:B average composition as measured by X-ray photoelectron spectroscopy, consisting of ZrB2 precipitates within an amorphous Zr matrix as determined by X-ray diffraction. Use of elemental B and Zr sources allows precise control of film growth over a range of stoichiometries and yields ZrB2 films with much lower oxygen contamination. After annealing ZrB2 films to 1200°C in air, oxidation leads to a loss of B and formation of a textured monoclinic ZrO2 phase. Several strategies, including deposition of a thin Al2O3 capping layer over the ZrB2 film are being pursued in an attempt to stabilize the electrically conductive ZrB2 phase at high temperature, where it can be used for high temperature electronic devices in harsh environments. Supported by NSF grant # 1309983.

  5. CdS thin films growth by fast evaporation with substrate rotation

    Energy Technology Data Exchange (ETDEWEB)

    Castro-Rodriguez, R., E-mail: romano@mda.cinvestav.mx [Applied Physics Department, CINVESTAV-IPN Merida, C.P. 97310, Merida, Yucatan (Mexico); Mendez-Gamboa, J.; Perez-Quintana, I.; Medina-Ezquivel, R. [Yucatan Autonomous University, Faculty of Engineering. AP 150 Cordemex, 97310, Merida, Yucatan (Mexico)

    2011-09-01

    CdS thin films were grown by fast evaporation technique combined with substrate rotation. The source evaporation temperature was maintained at 600 deg. C and the substrate temperature at 350 deg. C with background pressure of 1.0 m Torr. The substrates were corning glass 2947 with dimension of 1 in. x 1 in. rotate at 500 rpm during the growth. In order to verify the quality of the CdS films, the samples were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and optical measurements. The films shown a flat uniformity thickness with growth rate of {approx}3.5 nm/s, the orientation was in the cubic-(1 1 1) and hexagonal-(0 0 2) plane in dependence of the growth time, grain size {approx}5 nm, roughness uniformity {approx}2.7 nm, transmittance in the visible region spectrum {approx}80%, energy band gap between 2.39 and 2.42 eV and short circuit photocurrent density (J{sub SC}) losses in the CdS films of 4.7 mA/cm{sup 2}.

  6. Tungsten oxide thin films grown by thermal evaporation with high resistance to leaching

    Energy Technology Data Exchange (ETDEWEB)

    Correa, Diogo S. [Universidade Federal de Pelotas (UFPel), RS (Brazil). Centro de Ciencias Quimicas, Farmaceuticas e de Alimentos; Pazinato, Julia C.O.; Freitas, Mauricio A. de; Radtke, Claudio; Garcia, Irene T.S., E-mail: irene@iq.ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Instituto de Quimica; Dorneles, Lucio S. [Universidade Federal de Santa Maria (UFSM), RS (Brazil). Centro de Ciencias Naturais e Exatas

    2014-05-15

    Tungsten oxides show different stoichiometries, crystal lattices and morphologies. These characteristics are important mainly when they are used as photocatalysts. In this work tungsten oxide thin films were obtained by thermal evaporation on (100) silicon substrates covered with gold and heated at 350 and 600 °C, with different deposition times. The stoichiometry of the films, morphology, crystal structure and resistance to leaching were characterized through X-ray photoelectron spectroscopy, micro-Raman spectroscopy, scanning and transmission electron microscopy, X-ray diffractometry, Rutherford backscattering spectrometry and O{sup 16} (α,α')O{sup 16} resonant nuclear reaction. Films obtained at higher temperatures show well-defined spherical nanometric structure; they are composed of WO{sub 3.1} and the presence of hydrated tungsten oxide was also observed. The major crystal structure observed is the hexagonal. Thin films obtained through thermal evaporation present resistance to leaching in aqueous media and excellent performance as photocatalysts, evaluated through the degradation of the methyl orange dye. (author)

  7. Numerical study of heat and mass transfer during evaporation of a turbulent binary liquid film

    Directory of Open Access Journals (Sweden)

    Khalal Larbi

    2015-01-01

    Full Text Available This paper deals with a computational study for analysing heat and mass exchanges in the evaporation of a turbulent binary liquid film (water-ethanol and water-methanol along a vertical tube. The film is in co-current with the dry air and the tube wall is subjected to a uniform heat flux. The effect of gas-liquid phase coupling, variable thermophysical properties and film vaporization are considered in the analysis. The numerical method applied solves the coupled governing equations together with the boundary and interfacial conditions. The algebraic systems of equations obtained are solved using the Thomas algorithm. The results concern the effects of the inlet liquid Reynolds number and inlet film composition on the intensity of heat and mass transfer. In this study, results obtained show that heat transferred through the latent mode is more pronounced when the concentration of volatile components is higher in the liquid mixture .The comparisons of wall temperature and accumulated mass evaporation rate with the literature results are in good agreement.

  8. Development of novel control system to grow ZnO thin films by reactive evaporation

    Directory of Open Access Journals (Sweden)

    Gerardo Gordillo

    2016-07-01

    Full Text Available This work describes a novel system implemented to grow ZnO thin films by plasma assisted reactive evaporation with adequate properties to be used in the fabrication of photovoltaic devices with different architectures. The innovative aspect includes both an improved design of the reactor used to activate the chemical reaction that leads to the formation of the ZnO compound as an electronic system developed using the virtual instrumentation concept. ZnO thin films with excellent opto-electrical properties were prepared in a reproducible way, controlling the deposition system through a virtual instrument (VI with facilities to control the amount of evaporated zinc involved in the process that gives rise to the formation of ZnO, by means of the incorporation of PID (proportional integral differential and PWM (pulse width modulation control algorithms. The effectiveness and reliability of the developed system was verified by obtaining with good reproducibility thin films of n+-ZnO and i-ZnO grown sequentially in situ with thicknesses and resistivities suitable for use as window layers in chalcopyrite based thin film solar cells.

  9. Substrate dependent physical properties of evaporated CdO thin films for optoelectronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Purohit, Anuradha; Chander, S.; Patel, S.L. [Department of Physics, Mohanlal Sukhadia University, Udaipur-313001 (India); Rangra, K.J. [Sensors and Transducers Group, CSIR-CEERI, Pilani-333031 (India); Dhaka, M.S., E-mail: msdhaka75@yahoo.co.in [Department of Physics, Mohanlal Sukhadia University, Udaipur-313001 (India)

    2017-06-15

    Highlights: • Substrate dependent physical properties of CdO thin films are carried out. • XRD patterns reveal that the films have cubic structure of space group Fm3m. • Optical direct band gap is found to vary with the substrates. • SEM images show that the films are compact and homogeneous. • I–V characteristics show ohmic behavior of the deposited CdO films. - Abstract: In this study, CdO thin films were grown by e-beam evaporation technique on glass, indium tin oxide (ITO), fluorine-doped tin oxide (FTO) and silicon (Si) wafer. The deposited films were analyzed by X-ray diffraction (XRD), UV–Vis spectrophotometer, scanning electron microscopy, energy dispersive spectroscopy (EDS) and source meter (current–voltage) for structural, optical, surface morphological, elemental and electrical analysis, respectively. The films have single phase of cubic structure (space group Fm3m) with (200) preferred orientation. The structural parameters viz. inter-planar spacing, grain size, lattice constant, internal strain and dislocation density are calculated and found to vary with the nature of the substrates. The optical band gap was found in the range 2.24–3.95 eV and strongly dependents on the substrates. The SEM analysis shows that the films are compact, homogeneous and have granular structure without any defects like pin holes and cracks. The EDS spectra confirmed the presence of cadmium (Cd) and oxygen (O) in the films deposited on different substrates. The current–voltage characteristics of the films show ohmic behavior.

  10. Temperature stabilized effusion cell evaporation source for thin film deposition and molecular-beam epitaxy

    Science.gov (United States)

    Tiedje, H. F.; Brodie, D. E.

    2000-05-01

    A simple effusion cell evaporation source for thin film deposition and molecular-beam epitaxy is described. The source consists of a crucible with a thermocouple temperature sensor heated by a resistive crucible heater. Radiation heat transfer from the crucible to the thermocouple produces a consistent and reproducible thermocouple temperature for a given crucible temperature, without direct contact between the thermocouple and the crucible. The thermocouple temperature is somewhat less than the actual crucible temperature because of heat flow from the thermocouple junction along the thermocouple lead wires. In a typical case, the thermocouple temperature is 1007 °C while the crucible is at 1083 °C. The crucible temperature stability is estimated from the measured sensitivity of the evaporation rate of indium to temperature, and the observed variations in the evaporation rate for a fixed thermocouple temperature. The crucible temperature peak-to-peak variation over a one hour period is 1.2 °C. Machined molybdenum crucibles were used in the indium and copper sources for depositing CuInSe2 thin films for solar cells.

  11. Experimental Investigation of Heat Transfer Coefficient in Vertical Tube Rising Film Evaporator

    Directory of Open Access Journals (Sweden)

    Syed Naveed Ul Hasan

    2011-10-01

    Full Text Available This paper reports the experimental evaluation of the heat transfer coefficient (U in a VRF (Vertical Tube Rising Film Evaporator. The aim is to describe the variation of U against different process parameters. Experiments were carried out for laminar flow conditions. The experimental unit is a floor standing tubular framework for a rising film evaporation system. There are many parameters affecting heat transfer coefficient in evaporators, but it was not possible to consider all of them, so parameters including, Reynolds Number (NRe, Temperature Difference (DT, Feed Temperature (Tf and Re-circulation Ratio (R were investigated while other factors were kept constant. The experimental results obtained showed that heat transfer coefficient increased with the increase in Reynolds number, feed temperature and temperature difference. The increase in re-circulation ratio also increased the heat transfer coefficient but up to the value of 0.85 and after this the heat transfer coefficient started decreasing slowly and then remained almost constant. An experimental correlation has been developed to relate the Nusselt number and the parameters investigated during the research work.

  12. Characterization of ethylcellulose and hydroxypropyl methylcellulose thin films deposited by matrix-assisted pulsed laser evaporation

    Science.gov (United States)

    Palla-Papavlu, A.; Rusen, L.; Dinca, V.; Filipescu, M.; Lippert, T.; Dinescu, M.

    2014-05-01

    In this study is reported the deposition of hydroxypropyl methylcellulose (HPMC) and ethylcellulose (EC) by matrix-assisted pulsed laser evaporation (MAPLE). Both HPMC and EC were deposited on silicon substrates using a Nd:YAG laser (266 nm, 5 ns laser pulse and 10 Hz repetition rate) and then characterized by atomic force microscopy and Fourier transform infrared spectroscopy. It was found that for laser fluences up to 450 mJ/cm2 the structure of the deposited HPMC and EC polymer in the thin film resembles to the bulk. Morphological investigations reveal island features on the surface of the EC thin films, and pores onto the HPMC polymer films. The obtained results indicate that MAPLE may be an alternative technique for the fabrication of new systems with desired drug release profile.

  13. Morphology, surface topography and optical studies on electron beam evaporated MgO thin films

    Indian Academy of Sciences (India)

    A Chowdhury; J Kumar

    2006-10-01

    Electron beam evaporated thin films of MgO powder synthesized by burning of magnesium ribbon in air and sol–gel technique are studied for their microstructure (SEM), surface topography (AFM), and optical transmission behaviour (UV-visible spectroscopy). MgO thin films are shown to be either continuous or have mesh like morphology. The bar regions are believed to be of magnesium hydroxide formed due to absorption of moisture. Their AFM images exhibit columnar/pyramidal/truncated cone structure, providing support to the 3D Stranski–Krastanov model for film growth. Further, they are shown to have high transmittance (∼90%) in the wavelength range 400–600 nm, but absorb radiation below 350 nm substantially giving signature of a band transition.

  14. Characterization of ethylcellulose and hydroxypropyl methylcellulose thin films deposited by matrix-assisted pulsed laser evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Palla-Papavlu, A., E-mail: apalla@nipne.ro [National Institute for Lasers, Plasma and Radiation Physics, PO Box MG-36, Magurele, RO-077125 Bucharest (Romania); Rusen, L.; Dinca, V.; Filipescu, M. [National Institute for Lasers, Plasma and Radiation Physics, PO Box MG-36, Magurele, RO-077125 Bucharest (Romania); Lippert, T. [Paul Scherrer Institut, General Energy Research Department, 5232 Villigen PSI (Switzerland); Dinescu, M. [National Institute for Lasers, Plasma and Radiation Physics, PO Box MG-36, Magurele, RO-077125 Bucharest (Romania)

    2014-05-01

    In this study is reported the deposition of hydroxypropyl methylcellulose (HPMC) and ethylcellulose (EC) by matrix-assisted pulsed laser evaporation (MAPLE). Both HPMC and EC were deposited on silicon substrates using a Nd:YAG laser (266 nm, 5 ns laser pulse and 10 Hz repetition rate) and then characterized by atomic force microscopy and Fourier transform infrared spectroscopy. It was found that for laser fluences up to 450 mJ/cm{sup 2} the structure of the deposited HPMC and EC polymer in the thin film resembles to the bulk. Morphological investigations reveal island features on the surface of the EC thin films, and pores onto the HPMC polymer films. The obtained results indicate that MAPLE may be an alternative technique for the fabrication of new systems with desired drug release profile.

  15. Optical investigation of the hydrogenation and dehydrogenation mechanisms of evaporated MgNi films

    Energy Technology Data Exchange (ETDEWEB)

    Ell, Juergen [Freiburg Material Research Center, Stefan-Meier-Str. 21, D-79104 Freiburg (Germany); Georg, Andreas; Gombert, Andreas; Graf, Wolfgang; Wittwer, Volker [Fraunhofer Institute for Solar Energy Systems, Heidenhofstrasse 2, 79110 Freiburg (Germany); Arntzen, Markus [PSE GmbH - Forschung, Entwicklung, Marketing, Emmy-Noether-Strasse 2, 79072 Freiburg (Germany)

    2007-03-23

    We prepared thin films of magnesium nickel with a wide compositional range from pure magnesium to the intermetallic compound Mg{sub 2}Ni by e-beam evaporation. Capped with a thin Pd film such layers act as switchable mirrors upon exposure to gases containing hydrogen and oxygen. We investigated the reaction kinetics by measurement of the transmittance, and the reflectances both from the film side and the substrate side. We found that the hydrogenation kinetics and the optical performance are strongly dependent on the layer composition. The best results were obtained for Mg{sub 4}Ni to Mg{sub 8}Ni. It is shown that this is due to the different nucleation and growth behavior of the layers. (author)

  16. Electrical transport properties of MoO{sub 3} thin films prepared by laser assisted evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Carreno, L.D.; Pardo, A.; Zuluaga, M.; Torres, J.; Alfonso, J.E. [Group of Materials with Technological Applications, GMAT, Physics Department, Universidad Nacional de Colombia, Bogota (Colombia); Cortes-Bracho, O.L. [Group of Materials with Technological Applications, GMAT, Physics Department, Universidad Nacional de Colombia, Bogota (Colombia); Electronic Engineering Department, Universidad Nacional de Colombia, Bogota (Colombia)

    2007-07-01

    In the present paper the growth of MoO{sub 3} thin films on common glass substrates are described. The films were prepared by evaporation of a MoO{sub 3} target with a CO{sub 2} laser (10.6 {mu}m), operating in the continuous wave mode. The effect of substrate temperature on the crystallographic structure and electrical properties of MoO{sub 3} thin films was studied. The chemical composition of the different species formed on the films surface was obtained by X-ray photoelectron spectroscopy (XPS) and the crystalline structure was studied with X-ray diffraction (XRD). The electrical conductivity of the films was determined using the standard four-points method. Conductivity of the films varied from de 10{sup -9} to 10{sup -5} ({omega}cm){sup -1} in the 300-600 K temperature range. Arrhenius-type plots for the electrical conductivity indicate the presence of at least two different conduction mechanisms. The I-V characteristic curve shows an ohmic behavior only in the 4.5-60 V range. Outside this interval the I-V curve has a behavior described by a power law. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Characterization of ITO/CdO/glass thin films evaporated by electron beam technique

    Directory of Open Access Journals (Sweden)

    Hussein Abdel-Hafez Mohamed and Hazem Mahmoud Ali

    2008-01-01

    Full Text Available A thin buffer layer of cadmium oxide (CdO was used to enhance the optical and electrical properties of indium tin oxide (ITO films prepared by an electron-beam evaporation technique. The effects of the thickness and heat treatment of the CdO layer on the structural, optical and electrical properties of ITO films were carried out. It was found that the CdO layer with a thickness of 25 nm results in an optimum transmittance of 70% in the visible region and an optimum resistivity of 5.1×10−3 Ω cm at room temperature. The effect of heat treatment on the CdO buffer layer with a thickness of 25 nm was considered to improve the optoelectronic properties of the formed ITO films. With increasing annealing temperature, the crystallinity of ITO films seemed to improve, enhancing some physical properties, such as film transmittance and conductivity. ITO films deposited onto a CdO buffer layer heated at 450 °C showed a maximum transmittance of 91% in the visible and near-infrared regions of the spectrum associated with the highest optical energy gap of 3.61 eV and electrical resistivity of 4.45×10−4 Ω cm at room temperature. Other optical parameters, such as refractive index, extinction coefficient, dielectric constant, dispersion energy, single effective oscillator energy, packing density and free carrier concentration, were also studied.

  18. Characterization of thermally evaporated CZTSe thin films used by compositionally controlled alloys

    Science.gov (United States)

    Sripan, Chinnaiyah; Ganesan, R.; Naik, Ramakanta; Viswanath, A. Kasi

    2016-12-01

    Stoichiometric adjusted Cu2Zn1.5Sn1.2Se4+x (CZTSe) alloys were successfully prepared by a thermal molten method. The pure phase was formed at x = 0.8 as confirmed by XRD and Raman spectroscopy. The bulk alloy was used for thin film coating by thermal evaporation method. The prepared films were characterized by X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FE-SEM), and FT-IR spectroscopy. The XRD and Raman spectroscopy analysis revealed the formation of polycrystalline CZTSe thin films with tetragonal crystal structure after annealing of 450 °C. Diode characteristics were studied on the Mo/CZTSe/CdS sandwich geometry. The oxidation state of the selenized film was studied by XPS. The optical band gap of the CZTSe film was about 1.42 eV, which was varying with annealing and selenization condition. The carrier concentration, resistance and mobility of the selenized films were found to be 5.2 × 1015 cm-3, 2.2 KΩ/square and 5.5 cm2 V-1s-1 respectively and the conduction type was p-type. This study sheds light on the effect of annealing and selenization on various phases modifications and the light-harvesting capability of CZTSe solar cells.

  19. Heat capacity measurements of atoms and molecules adsorbed on evaporated metal films

    Energy Technology Data Exchange (ETDEWEB)

    Kenny, T.W.

    1989-05-01

    Investigations of the properties of absorbed monolayers have received great experimental and theoretical attention recently, both because of the importance of surface processes in practical applications such as catalysis, and the importance of such systems to the understanding of the fundamentals of thermodynamics in two dimensions. We have adapted the composite bolometer technology to the construction of microcalorimeters. For these calorimeters, the adsorption substrate is an evaporated film deposited on one surface of an optically polished sapphire wafer. This approach has allowed us to make the first measurements of the heat capacity of submonolayer films of /sup 4/He adsorbed on metallic films. In contrast to measurements of /sup 4/He adsorbed on all other insulating substrates, we have shown that /sup 4/He on silver films occupies a two-dimensional gas phase over a broad range of coverages and temperatures. Our apparatus has been used to study the heat capacity of Indium flakes. CO multilayers, /sup 4/He adsorbed on sapphire and on Ag films and H/sub 2/ adsorbed on Ag films. The results are compared with appropriate theories. 68 refs., 19 figs.

  20. Surface morphology of polyethylene glycol films produced by matrix-assisted pulsed laser evaporation (MAPLE): Dependence on substrate temperature

    DEFF Research Database (Denmark)

    Rodrigo, K.; Czuba, P.; Toftmann, B.;

    2006-01-01

    The dependence of the surface morphology on the substrate temperature during film deposition was investigated for polyethylene glycol (PEG) films by matrix-assisted pulsed laser evaporation (MAPLE). The surface structure was studied with a combined technique of optical imaging and AFM measurements...

  1. Physics of microstructures enhancement of thin film evaporation heat transfer in microchannels flow boiling

    Science.gov (United States)

    Bigham, Sajjad; Fazeli, Abdolreza; Moghaddam, Saeed

    2017-03-01

    Performance enhancement of the two-phase flow boiling heat transfer process in microchannels through implementation of surface micro- and nanostructures has gained substantial interest in recent years. However, the reported results range widely from a decline to improvements in performance depending on the test conditions and fluid properties, without a consensus on the physical mechanisms responsible for the observed behavior. This gap in knowledge stems from a lack of understanding of the physics of surface structures interactions with microscale heat and mass transfer events involved in the microchannel flow boiling process. Here, using a novel measurement technique, the heat and mass transfer process is analyzed within surface structures with unprecedented detail. The local heat flux and dryout time scale are measured as the liquid wicks through surface structures and evaporates. The physics governing heat transfer enhancement on textured surfaces is explained by a deterministic model that involves three key parameters: the drying time scale of the liquid film wicking into the surface structures (τd), the heating length scale of the liquid film (δH) and the area fraction of the evaporating liquid film (Ar). It is shown that the model accurately predicts the optimum spacing between surface structures (i.e. pillars fabricated on the microchannel wall) in boiling of two fluids FC-72 and water with fundamentally different wicking characteristics.

  2. Physics of microstructures enhancement of thin film evaporation heat transfer in microchannels flow boiling.

    Science.gov (United States)

    Bigham, Sajjad; Fazeli, Abdolreza; Moghaddam, Saeed

    2017-03-17

    Performance enhancement of the two-phase flow boiling heat transfer process in microchannels through implementation of surface micro- and nanostructures has gained substantial interest in recent years. However, the reported results range widely from a decline to improvements in performance depending on the test conditions and fluid properties, without a consensus on the physical mechanisms responsible for the observed behavior. This gap in knowledge stems from a lack of understanding of the physics of surface structures interactions with microscale heat and mass transfer events involved in the microchannel flow boiling process. Here, using a novel measurement technique, the heat and mass transfer process is analyzed within surface structures with unprecedented detail. The local heat flux and dryout time scale are measured as the liquid wicks through surface structures and evaporates. The physics governing heat transfer enhancement on textured surfaces is explained by a deterministic model that involves three key parameters: the drying time scale of the liquid film wicking into the surface structures (τd), the heating length scale of the liquid film (δH) and the area fraction of the evaporating liquid film (Ar). It is shown that the model accurately predicts the optimum spacing between surface structures (i.e. pillars fabricated on the microchannel wall) in boiling of two fluids FC-72 and water with fundamentally different wicking characteristics.

  3. Physics of microstructures enhancement of thin film evaporation heat transfer in microchannels flow boiling

    Science.gov (United States)

    Bigham, Sajjad; Fazeli, Abdolreza; Moghaddam, Saeed

    2017-01-01

    Performance enhancement of the two-phase flow boiling heat transfer process in microchannels through implementation of surface micro- and nanostructures has gained substantial interest in recent years. However, the reported results range widely from a decline to improvements in performance depending on the test conditions and fluid properties, without a consensus on the physical mechanisms responsible for the observed behavior. This gap in knowledge stems from a lack of understanding of the physics of surface structures interactions with microscale heat and mass transfer events involved in the microchannel flow boiling process. Here, using a novel measurement technique, the heat and mass transfer process is analyzed within surface structures with unprecedented detail. The local heat flux and dryout time scale are measured as the liquid wicks through surface structures and evaporates. The physics governing heat transfer enhancement on textured surfaces is explained by a deterministic model that involves three key parameters: the drying time scale of the liquid film wicking into the surface structures (τd), the heating length scale of the liquid film (δH) and the area fraction of the evaporating liquid film (Ar). It is shown that the model accurately predicts the optimum spacing between surface structures (i.e. pillars fabricated on the microchannel wall) in boiling of two fluids FC-72 and water with fundamentally different wicking characteristics. PMID:28303952

  4. Characterization of thermally evaporated lead iodide films aimed for the detection of X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Caldeira Filho, A.M. [Departamento de Fisica, Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo - USP, Avenida Bandeirantes 3900, 14040-901, Ribeirao Preto-SP (Brazil); Mulato, M., E-mail: mmulato@ffclrp.usp.b [Departamento de Fisica, Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo - USP, Avenida Bandeirantes 3900, 14040-901, Ribeirao Preto-SP (Brazil)

    2011-04-21

    Some semiconductor materials such as lead iodide (PbI{sub 2}) have applications in the detection of ionizing radiation at room temperature using the direct detection method. In this work we investigate lead iodide films deposited by thermal evaporation. The morphology, structure, and electric properties were investigated as a function of deposition height, i.e. the distance between evaporation-boat and substrates. The results show a morphology of vertical leaves and X-ray diffraction shows just one preferential orientation along the direction 110. Energy dispersive spectroscopy reveals that the films are not stoichiometric, with excess iodine atoms. Electrical resistivity of about 10{sup 8} {Omega} cm was measured. This is smaller than for the bulk due to structural defects. The values of activation energy for electric transport increase from 0.52 up to 1.1 eV with decreasing deposition height, what indicates that the best film is the one deposited at the shortest distance. Exposure under X-ray mammographic energy shows a linear behavior up to 500 mR. No variation in sensibility was observed between 22 and 30 kVp.

  5. Physical properties of electron beam evaporated CdTe and CdTe:Cu thin films

    Energy Technology Data Exchange (ETDEWEB)

    Punitha, K. [Department of Physics, Alagappa University, Karaikudi 630004 (India); Sivakumar, R., E-mail: krsivakumar1979@yahoo.com [Directorate of Distance Education, Alagappa University, Karaikudi 630004 (India); Sanjeeviraja, C. [Department of Physics, Alagappa Chettiar College of Engineering and Technology, Karaikudi 630004 (India); Sathe, Vasant; Ganesan, V. [UGC-DAE Consortium for Scientific Research, Indore 452001 (India)

    2014-12-07

    In this paper, we report on physical properties of pure and Cu doped cadmium telluride (CdTe) films deposited onto corning 7059 microscopic glass substrates by electron beam evaporation technique. X-ray diffraction study showed that all the deposited films belong to amorphous nature. The average transmittance of the films is varied between 77% and 90%. The optical energy band gap of pure CdTe film is 1.57 eV and it decreased to 1.47 eV upon 4 wt. % of Cu addition, which may be due to the extension of localized states in the band structure. The refractive index of the films was calculated using Swanepoel method. It was observed that the dispersion data obeyed the single oscillator of the Wemple-Didomenico model, from which the dispersion energy (E{sub d}) parameters, dielectric constants, plasma frequency, and oscillator energy (E{sub o}) of CdTe and CdTe:Cu films were calculated and discussed in detail with the light of possible mechanisms underlying the phenomena. The variation in intensity of photoluminescence band edge emission peak observed at 820 nm with Cu dopant is due to the change in surface state density. The observed trigonal lattice of Te peaks in the micro-Raman spectra confirms the p-type conductive nature of films, which was further corroborated by the Hall effect measurement. The lowest resistivity of 6.61 × 10{sup 4} Ω cm was obtained for the CdTe:Cu (3 wt. %) film.

  6. Preparation of AgInSe2 thin films grown by vacuum evaporation method

    Science.gov (United States)

    Matsuo, H.; Yoshino, K.; Ikari, T.

    2006-09-01

    Polycrystalline AgInSe2 thin films were successfully grown on glass substrates by an evaporation method. The starting materials were stoichiometrically mixed Ag2Se and In2Se3 powders. X-ray diffraction revealed that the sample annealed at 600 °C consisted of AgInSe2 single phase, with (112) orientation and a large grain size. The lattice constant (a axis) was close to JCPDS values. From optical transmittance and reflectance measurements, the bandgap energy was estimated to be 1.17 eV.

  7. Chloroform micro-evaporation induced ordered structures of poly(L-lactide) thin films

    DEFF Research Database (Denmark)

    Huang, Shaoyong; Li, Hongfei; Shang, Yingrui

    2013-01-01

    and dendritic morphologies with radial periodic variation of thicknesses were formed in dilute solution driven by micro-evaporation of the solvent. Bunched morphologies stacked with a flat-on lozenge-shaped lamellae were created in thinner films. The formation of the concentric ring banded structures...... was attributed to the periodic rhythmic growth associated with radial periodic changes in the concentration gradient of PLLA. A diffusion-induced rhythmic growth mechanism was proposed to explain the formation of the ring banded morphologies with periodic variation of thicknesses....

  8. Film-Evaporation MEMS Tunable Array for Picosat Propulsion and Thermal Control

    Science.gov (United States)

    Alexeenko, Alina; Cardiff, Eric; Martinez, Andres; Petro, Andrew

    2015-01-01

    The Film-Evaporation MEMS Tunable Array (FEMTA) concept for propulsion and thermal control of picosats exploits microscale surface tension effect in conjunction with temperature- dependent vapor pressure to realize compact, tunable and low-power thermal valving system. The FEMTA is intended to be a self-contained propulsion unit requiring only a low-voltage DC power source to operate. The microfabricated thermal valving and very-high-integration level enables fast high-capacity cooling and high-resolution, low-power micropropulsion for picosats that is superior to existing smallsat micropropulsion and thermal management alternatives.

  9. Biomimetization of butterfly wings by the conformal-evaporated-film-by-rotation technique for photonics

    Science.gov (United States)

    Martín-Palma, R. J.; Pantano, C. G.; Lakhtakia, A.

    2008-08-01

    Mimetization of biological structures aims to take advantage of their spatial features for the development of devices of tailored functionality. In this work, we replicated the wing of a butterfly at the micro- and nanoscales by implementing the conformal-evaporated-film-by-rotation (CEFR) technique. Chalcogenide glasses were used due to their good optical and mechanical properties. Morphological characterization and optical measurements indicate high-fidelity replication of the original biotemplate; furthermore, the optical properties of the butterfly wings have a structural origin. The CEFR technique might be useful for the fabrication of highly efficient, biomimetic optical devices.

  10. Superconducting thin films of BiSrCaCuO made by sequential electron beam evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Steinbeck, J.; Anderson, A.C.; Tsauer, B.Y.; Strauss, A.J.

    1989-03-01

    Superconducting thin films of Bi/sub 2/Sr/sub 2/Ca/sub 1/Cu/sub 2/O/sub x/ have been made by sequential electron-beam evaporation of multiple layers of Bi and Cu metals and (Sr,Ca)F/sub 2/ on MgO substrates. The films were annealed at high temperature, first in wet O/sub 2/ and then in dry O/sub 2/, and cooled to room temperature in dry O/sub 2/. The resulting films which are -- 1 ..mu..m thick, have transition temperatures of -- 85 K. X-ray diffraction shows that the films are preferentially oriented with their c-axis perpendicular to the MgO substrate. The authors' best film has a zero-resistance temperature of 90 K and critical current densities of 8 x 10/sup 4/ A/cm/sup 2/ at 77 K and 2.5 x 10/sup 5/ A/cm/sup 2/ at 4.2 K.

  11. Study on Physical Properties of Inx Se1-x Thin Films Synthesized by Vacuum Evaporation Method

    Directory of Open Access Journals (Sweden)

    Mahdi Hasan SUHAIL

    2014-06-01

    Full Text Available Indium Selenide (InxSe1-x thin films were synthesized in a sealed ampoule in a vacuum of 10-2 Torr using high purity elemental indium and selenium with different x concentration (0, 10, 15 % at.wt. using vacuum evaporation technique. The structural properties of InxSe1-x alloys for (x = 10 and 15 % at. wt. were examined by x-ray diffraction and exhibited a polycrystalline structure with hexagonal unit cell. The effects of the indium concentration and post deposition heat treatment on the structural and optical properties of the films were studied. The direct band gap of InxSe1-x thin films were estimated in the range (2.35 - 3.95 eV and the energy gap (Egopt increases with increasing annealing temperatures. Optical constants (included refractive index (n, extinction coefficient (k, and real (er and imaginary parts (ei of dielectric constant for the above films were calculated. The results were discussed in detail in relation with film recrystallization during the heating process.doi:10.14456/WJST.2014.82

  12. Structural and optical properties of electron beam evaporated CdSe thin films

    Indian Academy of Sciences (India)

    N J Suthan Kissinger; M Jayachandran; K Perumal; C Sanjeevi Raja

    2007-12-01

    Thin films of cadmium selenide (CdSe) as a semiconductor is well suited for opto-electronic applications such as photo detection or solar energy conversion, due to its optical and electrical properties, as well as its good chemical and mechanical stability. In order to explore the possibility of using this in optoelectronics, a preliminary and thorough study of optical and structural properties of the host material is an important step. Based on the above view, the structural and optical properties of CdSe films have been studied thoroughly in the present work. The host material, CdSe film, has been prepared by the physical vapour deposition method of electron beam evaporation (PVD: EBE) technique under a pressure of 5 × 10-5 mbar. The structural properties have been studied by XRD technique. The hexagonal structure with a preferred orientation along the (0 0 2) direction of films has been confirmed by the X-ray diffraction analysis. The films have been analysed for optical band gap and absorbed a direct intrinsic band gap of 1.92 eV.

  13. Photoelectric properties of Cu2ZnSnS4 thin films deposited by thermal evaporation

    Science.gov (United States)

    Xinkun, Wu; Wei, Liu; Shuying, Cheng; Yunfeng, Lai; Hongjie, Jia

    2012-02-01

    Sn/Cu/ZnS precursor were deposited by evaporation on soda lime glass at room temperature, and then polycrystalline thin films of Cu2ZnSnS4 (CZTS) were produced by sulfurizing the precursors in a sulfur atmosphere at a temperature of 550 °C for 3 h Fabricated CZTS thin films were characterized by X-ray diffraction, energy dispersive X-ray spectroscopy, ultraviolet-visible-near infrared spectrophotometry, the Hall effect system, and 3D optical microscopy. The experimental results show that, when the ratios of [Cu]/([Zn] + [Sn]) and [Zn]/[Sn] in the CZTS are 0.83 and 1.15, the CZTS thin films possess an absorption coefficient of larger than 4.0 × 104 cm-1 in the energy range 1.5-3.5 eV, and a direct band gap of about 1.47 eV. The carrier concentration, resistivity and mobility of the CZTS film are 6.98 × 1016 cm-3, 6.96 Ω·cm, and 12.9 cm2/(V·s), respectively and the conduction type is p-type. Therefore, the CZTS thin films are suitable for absorption layers of solar cells.

  14. Resonant infrared matrix-assisted pulsed laser evaporation of TiO2 nanoparticle films

    Science.gov (United States)

    Mayo, Daniel C.; Paul, Omari; Airuoyo, Idemudia J.; Pan, Zhengda; Schriver, Kenneth E.; Avanesyan, Sergey M.; Park, Hee K.; Mu, Richard R.; Haglund, Richard F.

    2013-03-01

    The successful development of flexible, high performance thin films that are competitive with silicon-based technology will likely require fabricating films of hybrid materials that incorporate nanomaterials, glasses, ceramics, polymers, and thin films. Resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) is an ideal method for depositing organic materials and nanoparticles with minimal photochemical or photothermal damage to the deposited material. Furthermore, there are many nonhazardous solvents containing chemical functional groups with infrared absorption bands that are accessible using IR lasers. We report here results of recent work in which RIR-MAPLE has been employed successfully to deposit thin films of TiO2 nanoparticles on Si substrates. Using an Er:YAG laser ( λ=2.94 μm), we investigated a variety of MAPLE matrices containing -OH moieties, including water and all four isomers of butyl alcohol. The alcohol isomers are shown to provide effective and relatively nontoxic solvents for use in the RIR-MAPLE process. In addition, we examine the effects of varying concentration and laser fluence on film roughness and surface coverage.

  15. Photoelectric properties of Cu2ZnSnS4 thin films deposited by thermal evaporation

    Institute of Scientific and Technical Information of China (English)

    吴新坤; 柳伟; 程树英; 赖云锋; 贾宏杰

    2012-01-01

    Sn/Cu/ZnS precursor were deposited by evaporation on soda lime glass at room temperature,and then polycrystalline thin films of Cu2ZnSnS4 (CZTS) were produced by sulfurizing the precursors in a sulfur atmosphere at a temperature of 550 ℃ for 3 h.Fabricated CZTS thin films were characterized by X-ray diffraction,energy dispersive X-ray spectroscopy,ultraviolet-visible-near infrared spectrophotometry,the Hall effect system,and 3D optical microscopy.The experimental results show that,when the ratios of [Cu]/([Zn] + [Sn]) and [Zn]/[Sn] in the CZTS are 0.83 and 1.15,the CZTS thin films possess an absorption coefficient of larger than 4.0 × 104 cm-1 in the energy range 1.5-3.5 eV,and a direct band gap of about 1.47 eV.The carrier concentration,resistivity and mobility of the CZTS film are 6.98 × 1016 cm-3,6.96 Ω.cm,and 12.9 cm2/(V.s),respectively and the conduction type is p-type.Therefore,the CZTS thin films are suitable for absorption layers of solar cells.

  16. Influence of selenium evaporation temperature on the structure of Cu2ZnSnSe4 thin film deposited by a co-evaporation process

    Science.gov (United States)

    Ding, Sun; Shengzhi, Xu; Li, Zhang; Ze, Chen; Yang, Ge; Ning, Wang; Xuejiao, Liang; Changchun, Wei; Ying, Zhao; Xiaodan, Zhang

    2015-04-01

    Cu2ZnSnSe4 (CZTSe) thin film solar cells have been fabricated using a one-step co-evaporation technique. The structural properties of polycrystalline CZTSe films deposited at different selenium evaporation temperatures (TSe) have been investigated using X-ray diffraction spectra, scanning electron microscopy, and atomic force microscopy. A relationship between TSe and the secondary phases deposited in the initial stage is established to explain the experimental observations. The Se flux is not necessarily increased too much to reduce Sn loss and the consumption of Se during fabrication could also be reduced. The best solar cell, with an efficiency of 2.32%, was obtained at a medium TSe of 230 °C (active area 0.34 cm2). Project supported by the Specialized Research Fund for the PhD Program of Higher Education (No. 20120031110039).

  17. Sol–Gel and Thermally Evaporated Nanostructured Thin ZnO Films for Photocatalytic Degradation of Trichlorophenol

    Directory of Open Access Journals (Sweden)

    Mahmoud Sawsan

    2009-01-01

    Full Text Available Abstract In the present work, thermal evaporation and sol–gel coating techniques were applied to fabricate nanostructured thin ZnO films. The phase structure and surface morphology of the obtained films were investigated by X-ray diffractometer (XRD and scanning electron microscope (SEM, respectively. The topography and 2D profile of the thin ZnO films prepared by both techniques were studied by optical profiler. The results revealed that the thermally evaporated thin film has a comparatively smoother surface of hexagonal wurtzite structure with grain size 12 nm and 51 m2/g. On the other hand, sol–gel films exhibited rough surface with a strong preferred orientation of 25 nm grain size and 27 m2/g surface area. Following deposition process, the obtained films were applied for the photodegradation of 2,4,6-trichlorophenol (TCP in water in presence of UV irradiation. The concentrations of TCP and its intermediates produced in the solution during the photodegradation were determined by high performance liquid chromatography (HPLC at defined irradiation times. Complete decay of TCP and its intermediates was observed after 60 min when the thermal evaporated photocatalyst was applied. However, by operating sol–gel catalyst, the concentration of intermediates initially increased and then remained constant with irradiation time. Although the degradation of TCP followed first-order kinetic for both catalysts, higher photocatalytic activity was exhibited by the thermally evaporated ZnO thin film in comparison with sol–gel one.

  18. Preparation of Indium Tin Oxide films deposited by reactive evaporation at different substrate-temperature and the properties

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The Indium Tin Oxide films have been prepared at different substrate-temperature on glass substrates by reactive evaporation of In-Sn alloy with an oxygen pressure of 1.3 × 10-1 Pa and a deposition rate of 10-2 nm/s. The best ITO films obtained cm2v-1s-1. The influence of the substrate-temperature on the structural, optical and electrical properties of the obtained films has been investigated.

  19. Highly reflective and adhesive surface of aluminized polyvinyl chloride film by vacuum evaporation

    Science.gov (United States)

    Li, Denian; Tai, Qile; Feng, Qiang; Li, Qi; Xu, Xizhe; Li, Hairong; Huang, Jing; Dong, Lijie; Xie, Haian; Xiong, Chuanxi

    2014-08-01

    Aluminized poly(vinyl chloride) (PVC) film with high reflectivity and strong adhesion was facilely fabricated by vacuum evaporation. The technical study revealed that both alkali-pretreatment of the PVC matrix and thermal annealing after aluminization could greatly promote the peeling adhesion force of this metal/polymer composite by producing interfacial active chemical groups and removing the inner stress, respectively. Reflectivity test and AFM study indicated that the reflecting capacitance of the aluminum coating was closely related to the surface roughness, which can be easily controlled by modulating deposition of aluminum. Moreover, the formation of aluminum layer follows an island model process, and a continuous and smooth coating with highest reflectivity and lowest surface resistance was achieved at deposition time of 60 s. We anticipate that the cost-effective metallized PVC film by this strategy may find extensive applications in light harvesting, solar energy, and flexible mirrors, among others.

  20. Structural, compositional and morphological studies of thermally evaporated MoO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Senthilkumar, R., E-mail: raviganesa@rediffmail.com, E-mail: gravicrc@gmail.com; Ravi, G., E-mail: raviganesa@rediffmail.com, E-mail: gravicrc@gmail.com [Department of Physics, Alagappa University, Karaikudi - 630003 (India)

    2014-04-24

    Molybdenum oxide (MoO{sub 3}) nanostructures were grown on different substrates such as glass, indium tin oxide coated glass and fluorine doped glass by thermal evaporation of MoO{sub 3} powder at elevated temperature (750°C) using tube furnace without any catalyst and then by subsequent O{sub 2}/Ar flow rate. The morphology, composition and crystal structure were examined by using SEM, EDAX, Laser Raman and XRD. The films are polycrystalline with well-defined diffraction peaks and it consist of MoO{sub 3} with α-orthorhombic structure. The synthesized MoO{sub 3} belongs to different morphologies, generally nanobelt and nanohunk structures. The EDAX spectra confirm the films are composed only of Mo and O atoms. The O/Mo ratio is nearly equal to 3 that shows the stoichiometry of MoO{sub 3}.

  1. Vapor-crystal phase transition in synthesis of paracetamol films by vacuum evaporation and condensation

    Science.gov (United States)

    Belyaev, A. P.; Rubets, V. P.; Antipov, V. V.; Bordei, N. S.; Zarembo, V. I.

    2014-03-01

    We report on the structural and technological investigations of the vapor-crystal phase transition during synthesis of paracetamol films of the monoclinic system by vacuum evaporation and condensation in the temperature range 220-320 K. The complex nature of the transformation accompanied by the formation of a gel-like phase is revealed. The results are interpreted using a model according to which the vapor-crystal phase transition is not a simple first-order phase transition, but is a nonlinear superposition of two phase transitions: a first-order transition with a change in density and a second-order phase transition with a change in ordering. Micrographs of the surface of the films are obtained at different phases of formation.

  2. Optical properties of amorphous and polycrystalline Sb2Se3 thin films prepared by thermal evaporation

    Science.gov (United States)

    Chen, Chao; Li, Weiqi; Zhou, Ying; Chen, Cheng; Luo, Miao; Liu, Xinsheng; Zeng, Kai; Yang, Bo; Zhang, Chuanwei; Han, Junbo; Tang, Jiang

    2015-07-01

    Sb2Se3 is a very promising photovoltaic material because of its attractive material, optical and electrical properties. Very recently, we reported a superstrate CdS/Sb2Se3 solar cell with 5.6% certified efficiency. In this letter, we focused on the optical properties of amorphous and polycrystalline Sb2Se3 thin films prepared by thermal evaporation. Using temperature dependent transmission spectrum and temperature dependent photoluminescence, the indirect optical transition nature and bandgap values as functions of temperature were acquired. Using ellipsometry measurements and Swanepoel's envelope method, the refractive indices as well as the dielectric constant in a wide wavelength range of 193-2615 nm were obtained. These works would lay the foundation for the further development of Sb2Se3 thin film solar cells.

  3. Annealing effect on physical properties of evaporated molybdenum oxide thin films for ethanol sensing

    Science.gov (United States)

    Touihri, S.; Arfaoui, A.; Tarchouna, Y.; Labidi, A.; Amlouk, M.; Bernede, J. C.

    2017-02-01

    This paper deals with some physical investigations on molybdenum oxide thin films growing on glass substrates by the thermal evaporation method. These films have been subjected to an annealing process under vacuum, air and oxygen at various temperatures 673, 723 and 773 K. First, the physical properties of these layers were analyzed by means of X-ray diffraction, Raman spectroscopy, scanning electron microscopy (SEM) and optical measurements. These techniques have been used to investigate the oxygen index in MoOx properties during the heat treatment. Second, from the reflectance and transmittance optical measurements, it was found that the direct band gap energy value increased from 3.16 to 3.90 eV. Finally, the heat treatments reveal that the oxygen index varies in such molybdenum oxides showing noticeably sensitivity toward ethanol gas.

  4. Influence of deposition rate on the properties of ZrO2 thin films prepared in electron beam evaporation method

    Institute of Scientific and Technical Information of China (English)

    Dongping Zhang(张东平); Meiqiong Zhan(占美琼); Ming Fang(方明); Hongbo He(贺洪波); Jianda Shao(邵建达); Zhengxiu Fan(范正修)

    2004-01-01

    ZrO2 thin films were prepared in electron beam thermal evaporation method. And the deposition rate changed from 1.3 to 6.3 nm/s in our study. X-ray diffractometer and spectrophotometer were employed to characterize the films. X-ray diffraction (XRD) spectra pattern shows that films structure changed from amorphous to polycrystalline with deposition rate increasing. The results indicate that internal stresses of the films are compressive in most case. Thin films deposited in our study are inhomogeneous, and the inhomogeneity is enhanced with the deposition rate increasing.

  5. Evaporation characteristics of thin film liquid argon in nano-scale confinement: A molecular dynamics study

    Science.gov (United States)

    Hasan, Mohammad Nasim; Shavik, Sheikh Mohammad; Rabbi, Kazi Fazle; Haque, Mominul

    2016-07-01

    Molecular dynamics simulation has been carried out to explore the evaporation characteristics of thin liquid argon film in nano-scale confinement. The present study has been conducted to realize the nano-scale physics of simultaneous evaporation and condensation inside a confined space for a three phase system with particular emphasis on the effect of surface wetting conditions. The simulation domain consisted of two parallel platinum plates; one at the top and another at the bottom. The fluid comprised of liquid argon film at the bottom plate and vapor argon in between liquid argon and upper plate of the domain. Considering hydrophilic and hydrophobic nature of top and bottom surfaces, two different cases have been investigated: (i) Case A: Both top and bottom surfaces are hydrophilic, (ii) Case B: both top and bottom surfaces are hydrophobic. For all cases, equilibrium molecular dynamics (EMD) was performed to reach equilibrium state at 90 K. Then the lower wall was set to four different temperatures such as 110 K, 120 K, 130 K and 140 K to perform non-equilibrium molecular dynamics (NEMD). The variation of temperature and density as well as the variation of system pressure with respect to time were closely monitored for each case. The heat fluxes normal to top and bottom walls were estimated and discussed to illuminate the effectiveness of heat transfer in both hydrophilic and hydrophobic confinement at various boundary temperatures of the bottom plate.

  6. Finite element modeling of evaporation and condensation during sol-gel film and fiber formation

    Energy Technology Data Exchange (ETDEWEB)

    Schunk, P.R.; Hurd, A.J.; Brinker, C.J.; Rao, R.R.

    1993-07-01

    Free surfaces, multicomponent phase change, volume expansion and compression, and surface tension gradients make for challenging application of the finite element method to sol-gel (ceramic) film and fiber formation. The microstructure of the final product is largely controlled by the competition between the drying, curing, and underlying fluid mechanics of formation. Sol-gel materials are peculiar because they often contain more than one solvent, each solvent differing in volatility and surface tension. Hence, nonuniform evaporation can produce surface tension gradients that dramatically change the meniscus shape. These processes are complicated further by a volume change that accompanies evaporation and condensation, making for shock-like discontinuities in concentration and velocity at the free surface. Computer-aided predictions of film formation by dip coating and of fiber spinning (see Figure 1) are made for alcohol-water mixtures with one non-volatile species. The Navier-Stokes system is augmented with two convective-diffusion equations to track the concentration of alcohol and water, and an energy equation to monitor temperature changes. The equations are solved in both phases by discretizing them first with the Galerkin/finite element method. The resulting non-linear algebraic equation set is solved with Newton`s method. The subdomaining technique is based on elliptic grid generation and is designed to parameterize the moving meniscus. Special treatment of the functional representations of velocity and concentration within the elements lining the free surface are made to accommodate the volume change that accompanies mass exchange between phases.

  7. Quantitative evaluation of evaporation rate during spin-coating of polymer blend films: Control of film structure through defined-atmosphere solvent-casting.

    Science.gov (United States)

    Mokarian-Tabari, P; Geoghegan, M; Howse, J R; Heriot, S Y; Thompson, R L; Jones, R A L

    2010-12-01

    Thin films of polymer mixtures made by spin-coating can phase separate in two ways: by forming lateral domains, or by separating into distinct layers. The latter situation (self-stratification or vertical phase separation) could be advantageous in a number of practical applications, such as polymer optoelectronics. We demonstrate that, by controlling the evaporation rate during the spin-coating process, we can obtain either self-stratification or lateral phase separation in the same system, and we relate this to a previously hypothesised mechanism for phase separation during spin-coating in thin films, according to which a transient wetting layer breaks up due to a Marangoni-type instability driven by a concentration gradient of solvent within the drying film. Our results show that rapid evaporation leads to a laterally phase-separated structure, while reducing the evaporation rate suppresses the interfacial instability and leads to a self-stratified final film.

  8. Heat transfer characteristics of water film flash evaporation in vacuum ice making%水膜闪蒸真空制冰的换热特性

    Institute of Scientific and Technical Information of China (English)

    纪珺; 章学来; 刘小微; 吴云云; 韩中; 杨阳

    2013-01-01

    A water film flash evaporation vacuum ice-making system is developed. The experiment was carried out to investigate the influence of flash evaporation pressure, thickness and initial temperature of water film on the flash evaporation process. The thickness of the water film was 15, 35, 55 and 75 mm. Initial temperature of water film ranged from 2℃ to 10℃ , and flash evaporation pressure varied from 100 Pa to 600 Pa. The characteristics of the flash evaporation process were recorded using a CCD camera of the visualization system. The experimental results show that under the operating conditions, lower flash evaporation pressure leads to faster change of water film temperature at constant initial temperature of water film. Higher initial temperature of water film makes the water film temperature varies more quickly at constant pressure. As water film thickness increases, the decrease rate of water film temperature reduces. Based on the experimental results, a correlation for water film temperature with flash evaporation pressure, thickness and initial temperature of water film is presented with the maximum error of 24. 19%.

  9. New experimental technique for the measurement of the velocity field in thin films falling over obstacles

    Science.gov (United States)

    Landel, Julien R.; Daglis, Ana; McEvoy, Harry; Dalziel, Stuart B.

    2014-11-01

    We present a new experimental technique to measure the surface velocity of a thin falling film. Thin falling films are important in various processes such as cooling in heat exchangers or cleaning processes. For instance, in a household dishwasher cleaning depends on the ability of a thin draining film to remove material from a substrate. We are interested in the impact of obstacles attached to a substrate on the velocity field of a thin film flowing over them. Measuring the velocity field of thin falling films is a challenging experimental problem due to the small depth of the flow and the large velocity gradient across its depth. We propose a new technique based on PIV to measure the plane components of the velocity at the surface of the film over an arbitrarily large area and an arbitrarily large resolution, depending mostly on the image acquisition technique. We perform experiments with thin films of water flowing on a flat inclined surface, made of glass or stainless steel. The typical Reynolds number of the film is of the order of 100 to 1000, computed using the surface velocity, the film thickness and the kinematic viscosity of the film. We measure the modification to the flow field, from a viscous-gravity regime, caused by small solid obstacles, such as three-dimensional hemispherical obstacles and two-dimensional steps. We compare our results with past theoretical and numerical studies. This material is based upon work supported by the Defense Threat Reduction Agency under Contract No. HDTRA1-12-D-0003-0001.

  10. Investigation in morphology and optical properties of electron beam gun evaporated nanostructured Bromoindium phthalocyanine thin films

    Science.gov (United States)

    Azim-Araghi, M. E.; Sahebi, R.

    2014-01-01

    Bromoindium phthalocyanine in thin film form was prepared by electron beam gun evaporation technique, using pre-cleaned polyborosilicate glass as substrate. 2D AFM image confirms that the surface of BrInPc thin film is granular with a grain size of 40-60 nm. 3D AFM image confirms that surface is homogeneous and its RMS roughness is 4.9 nm. The UV-VIS absorption spectrum showed two well-known absorption bands of the phthalocyanines, B and Q bands and characteristics Davydov splitting were observed. The optical transition determined to be direct allowed and the value of optical band gap was obtained. The value of Urbach energy was calculated. To investigation in the effect of thermal annealing on optical properties of BrInPc thin films, we annealed some thin films at 473 and 603 K for 1 h. As the result of thermal annealing we observed another absorption peak, named N-band, in absorption spectrum. A red shift observed in the position of B-band and Q-band peaks. There was not changing in optical transition mechanism. The value of optical band gap decreased and the Urbach energy increased as the result of thermal annealing.

  11. Growth of thin fullerene films by Matrix Assisted Pulsed Laser Evaporation

    DEFF Research Database (Denmark)

    Canulescu, Stela; Schou, Jørgen; Fæster, Søren

    . However, organic materials are usually not well suited for direct laser irradiation, since the organic molecules may suffer from fragmentation by the laser light. We have, therefore, explored the possible fragmentation of organic molecules by attempting to produce thin films of C60 which is a strongly...... bound carbon molecule with a well-defined mass (M = 720 amu) and therefore a good, organic test molecule. C60 fullerene thin films of average thickness of more than 100 nm was produced in vacuum by matrix-assisted pulsed laser evaporation (MAPLE). A 355 nm Nd:YAG laser was di-rected onto a frozen target...... of the matrix material, anisole, with a concentration of 0.67 wt% C60. At laser fluences below 1.5 J/cm2, a dominant fraction of the film molecules are C60 transferred to the substrate without any fragmentation. High-resolution SEM images of MAPLE deposited films reveal large circular features on the surface...

  12. Thickness effect on properties of titanium film deposited by d.c. magnetron sputtering and electron beam evaporation techniques

    Indian Academy of Sciences (India)

    Nishat Arshi; Junqing Lu; Chan Gyu Lee; Jae Hong Yoon; Bon Heun Koo; Faheem Ahmed

    2013-10-01

    This paper reports effect of thickness on the properties of titanium (Ti) film deposited on Si/SiO2 (100) substrate using two different methods: d.c. magnetron sputtering and electron beam (e-beam) evaporation technique. The structural and morphological characterization of Ti film were performed using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). XRD pattern revealed that the films deposited using d.c. magnetron sputtering have HCP symmetry with preferred orientation along (002) plane, while those deposited with e-beam evaporation possessed fcc symmetry with preferred orientation along (200) plane. The presence of metallic Ti was also confirmed by XPS analysis. FESEM images depicted that the finite sized grains were uniformly distributed on the surface and AFM micrographs revealed roughness of the film. The electrical resistivity measured using four-point probe showed that the film deposited using d.c. magnetron sputtering has lower resistivity of ∼13 cm than the film deposited using e-beam evaporation technique, i.e. ∼60 cm. The hardness of Ti films deposited using d.c. magnetron sputtering has lower value (∼7.9 GPa) than the film deposited using e-beam technique (∼9.4 GPa).

  13. Aspects of sorption processes in thermosiphon and in falling film arrangements

    Energy Technology Data Exchange (ETDEWEB)

    Kockum, Henrik

    1998-09-01

    A study concerning closure relations pertinent to the design of sorption equipment of absorption heat pumps has been undertaken. Specifically, thermosiphon and vertical falling film arrangements were studied. For the thermosiphon, experimental data on the void fraction, the friction and orifice pressure drops, and the heat transfer coefficient at sub-atmospheric pressures were obtained for vaporizing water and vaporizing water-sugar mixtures. Empirical correlations were produced for all quantities. Furthermore, a semi-theoretical model for the void fraction was derived; this model compared favourably to existing correlations. Sample thermosiphon correlations using a two-field two-phase flow model, including a heating condensate film, were performed. For the falling film, a penetration-type of turbulence model was developed. Experimental data found in the open literature were used in the derivation. Absorption calculations then indicated that the model is appropriate for wavy-laminar flows, but not for turbulent flows. Falling film calculation results compared favourably to existing film thickness and heat transfer correlations 121 refs, 28 figs, 14 tabs

  14. Effect of annealing temperature on the optical properties of thermally evaporated tin phthalocyanine thin films

    Science.gov (United States)

    El-Nahass, M. M.; Yaghmour, S.

    2008-12-01

    Thin films of tin phthalocyanine were prepared on quartz substrates by thermal evaporation technique. The optical properties were investigated using a spectrophotometric measurement of transmittance and reflectance at normal incidence of light in the wavelength range 200-2500 nm for the as-deposited and the annealed films. Absorption spectra of the films show intense B, N and C bands in the UV region followed by Q-band in the visible region. The values of the oscillator strength and the electric dipole strength were estimated. The optical constants were accurately determined using Murmann's equations, which allow obtaining the real and the imaginary parts of the complex refractive index. The absorption analysis has been also performed to determine the type of electronic transition and the optical energy band gap. The dispersion of the refractive index, n, is discussed in terms of the single oscillator model. The dispersion parameters and the ratio of free carrier concentration to the free carrier effective mass were also estimated.

  15. Effect of annealing temperature on the optical properties of thermally evaporated tin phthalocyanine thin films

    Energy Technology Data Exchange (ETDEWEB)

    El-Nahass, M.M. [Physics Department, Faculty of Education, Ain Shams University, Rorxy, Cairo 11757 (Egypt)], E-mail: prof_nahhas@yahoo.com; Yaghmour, S. [Physics Department Faculty of Science, King Abdul Aziz University, Jeddah (Saudi Arabia)

    2008-12-30

    Thin films of tin phthalocyanine were prepared on quartz substrates by thermal evaporation technique. The optical properties were investigated using a spectrophotometric measurement of transmittance and reflectance at normal incidence of light in the wavelength range 200-2500 nm for the as-deposited and the annealed films. Absorption spectra of the films show intense B, N and C bands in the UV region followed by Q-band in the visible region. The values of the oscillator strength and the electric dipole strength were estimated. The optical constants were accurately determined using Murmann's equations, which allow obtaining the real and the imaginary parts of the complex refractive index. The absorption analysis has been also performed to determine the type of electronic transition and the optical energy band gap. The dispersion of the refractive index, n, is discussed in terms of the single oscillator model. The dispersion parameters and the ratio of free carrier concentration to the free carrier effective mass were also estimated.

  16. Formation of Tough Films by Evaporation of Water from Dispersions of Elastomer Microspheres Crosslinked with Rotaxane Supramolecules.

    Science.gov (United States)

    Hiroshige, Seina; Kureha, Takuma; Aoki, Daichi; Sawada, Jun; Aoki, Daisuke; Takata, Toshikazu; Suzuki, Daisuke

    2017-06-22

    Compared to rigid microspheres that consist, for example, of polystyrene or silica, soft and deformable elastomer microspheres can be used to generate colorless transparent films upon evaporating the solvent from microsphere-containing dispersions. To obtain tough films, a post-polymerization reaction to crosslink the microspheres is usually necessary, which requires extra additives during the drying process. This restriction renders this film-formation technology complex and rather unsuitable for applications in which impurities are undesirable. In the present study, it is demonstrated that tough elastomer microspheres that are crosslinked with rotaxanes can form tough bulk films upon evaporation of water from microsphere dispersions, so that post-polymerization reactions are not required. The results of this study should thus lead to new applications including coatings for biomaterials that need complete removal of all impurities from the materials prior to use. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Experimental investigation of nucleate boiling and thin-film evaporation on enhanced silicon surfaces

    Science.gov (United States)

    Malla, Shailesh

    The present work consists of two major studies. The first study investigates the effects of surface energy or wettability on nucleate pool boiling and the second study investigates the thin-film evaporative cooling for near junction thermal management. For the first study, effects of surface energy or wettability on critical heat flux (CHF) and boiling heat transfer (BHT) of smooth heated surfaces was studied in saturated pool boiling of water at 1 atm. For this purpose hydrophilic and hydrophobic surfaces were created on one side of 1cm x 1cm double-side polished silicon substrates. A resistive heating layer was applied on the opposite side of each substrate. The surface energies of the created surfaces were characterized by measuring the static contact angles of water sessile drops. To provide a wide range of surface energies, surfaces were made of Teflon (hydrophobic), bare silicon (hydrophilic) and aluminum oxide (most hydrophilic). The measured contact angles on these surfaces were ˜108, ˜57 and ˜13 degrees respectively. The results of pool boiling tests on these surfaces clearly illustrate the connection between surface energy and CHF. CHF was shown to linearly decrease with contact angle increase, from ˜125 W/cm2 on aluminum oxide (most hydrophilic) to nearly one tenth of this value on Teflon (hydrophobic). The most hydrophilic surface also produced increasingly better BHT than plain silicon and Teflon as heat flux increased. However, below ˜5 W/cm2 the hydrophobic surface demonstrated better heat transfer due to earlier onset of nucleate boiling, reducing surface superheats by up to ˜5 degrees relative to the other two surfaces. Above ˜5 W/cm2 the BHT of the hydrophobic surface rapidly deteriorated as superheat increased towards the value at CHF. To further understand the effect of surface energy on pool boiling performance, the growth and departure of bubbles from single nucleating sites on each surface were analyzed from high-speed video recordings

  18. Influence of Deposition Rate on the Thermoelectric Properties of Sb2Te3 Thin Films by Thermal Evaporation Method

    Directory of Open Access Journals (Sweden)

    Jyun-Min Lin

    2015-01-01

    Full Text Available Thermoelectric (TE materials are crucial because they can be used in power generation and cooling devices. Sb2Te3-based compounds are the most favorable TE materials because of their excellent figure of merit at room temperature. In this study, Sb2Te3 thin films were prepared on SiO2/Si substrates through thermal evaporation. The influence of the evaporation current on the microstructures and TE properties of Sb2Te3 thin films were investigated. The crystalline structures and morphologies of the thin films were analyzed using X-ray diffraction and field emission scanning electron microscopy. The Seebeck coefficient, electrical conductivity, and power factor (PF were measured at room temperature. The experimental results showed that the Seebeck coefficient increased and conductivity decreased with increasing evaporation current. The Seebeck coefficient reached a maximum of 387.58 μV/K at an evaporation current of 80 A. Conversely, a PF of 3.57 µW/cmK2 was obtained at room temperature with evaporation current of 60 A.

  19. Fabrication and Characterization of High-Crystalline Nanoporous ZnO Thin Films by Modified Thermal Evaporation System

    Science.gov (United States)

    Islam, M. S.; Hossain, M. F.; Razzak, S. M. A.; Haque, M. M.; Saha, D. K.

    2016-05-01

    The aim of this work is to fabricate high-crystalline nanoporous zinc oxide (ZnO) thin films by a modified thermal evaporation system. First, zinc thin films have been deposited on bare glass substrate by the modified thermal evaporation system with pressure of 0.05mbar, source-substrate distance of 3cm and source temperature 700∘C. Then, high-crystalline ZnO thin film is obtained by annealing at 500∘C for 2h in atmosphere. The prepared ZnO films are characterized with various deposition times of 10min and 20min. The structural property was investigated by X-ray diffractometer (XRD). The optical bandgap and absorbance/transmittance of these films are examined by ultraviolet/visible spectrophotometer. The surface morphological property has been observed by scanning electron microscope (SEM). ZnO films have showed uniform nanoporous surface with high-crystalline hexagonal wurtzite structure. The ZnO films prepared with 20min has excitation absorption-edge at 369nm, which is blueshifted with respect to the bulk absorption-edge appearing at 380nm. The gap energy of ZnO film is decreased from 3.14eV to 3.09eV with increase of the deposition time, which can enhance the excitation of ZnO films by the near visible light, and is suitable for the application of photocatalyst of waste water cleaning and polluted air purification.

  20. Matrix assisted pulsed laser evaporation processing of triacetate-pullulan polysaccharide thin films for drug delivery systems

    Energy Technology Data Exchange (ETDEWEB)

    Cristescu, R. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor, P.O. Box MG-36, RO-077125, Bucharest-Magurele (Romania) and Institute of Physics, Academy of Sciences of Czech Republic, Na Slovance 2, 182 21 Prague 8 (Czech Republic)]. E-mail: rodica.cristescu@inflpr.ro; Dorcioman, G. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor, P.O. Box MG-36, RO-077125, Bucharest-Magurele (Romania); Ristoscu, C. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor, P.O. Box MG-36, RO-077125, Bucharest-Magurele (Romania); Axente, E. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor, P.O. Box MG-36, RO-077125, Bucharest-Magurele (Romania); Grigorescu, S. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor, P.O. Box MG-36, RO-077125, Bucharest-Magurele (Romania); Moldovan, A. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor, P.O. Box MG-36, RO-077125, Bucharest-Magurele (Romania); Mihailescu, I.N. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor, P.O. Box MG-36, RO-077125, Bucharest-Magurele (Romania); Kocourek, T. [Institute of Physics, Academy of Sciences of Czech Republic, Na Slovance 2, 182 21 Prague 8 (Czech Republic); Jelinek, M. [Institute of Physics, Academy of Sciences of Czech Republic, Na Slovance 2, 182 21 Prague 8 (Czech Republic); Albulescu, M. [National Institute for Chemical-Pharmaceutical R and D, 112 Vitan, 74373 Bucharest 3 (Romania); Buruiana, T. [Petru Poni Institute of Macromolecular Chemistry, Iasi 6600 (Romania); Mihaiescu, D. [University of Agriculture Sciences and Veterinary Medicine, 59 Marasti, Bucharest (Romania); Stamatin, I. [University of Bucharest, Faculty of Physics, P.O. Box MG-38, 3 Nano-SAE Research Center, Bucharest-Magurele (Romania); Chrisey, D.B. [US Naval Research Laboratory, Washington, DC 20375-5345 (United States)

    2006-04-30

    We report the first successful deposition of triacetate-pullulan polysaccharide thin films by matrix assisted pulsed laser evaporation. We used a KrF* excimer laser source ({lambda} = 248 nm, {tau} {approx} 20 ns) operated at a repetition rate of 10 Hz. We demonstrated by FTIR that our thin films are composed of triacetate-pullulan maintaining its chemical structure and functionality. The dependence on incident laser fluence of the induced surface morphology is analysed.

  1. Comparison of two turbulent models in simulating evaporating liquid film in a wiped molecular distillator

    Institute of Scientific and Technical Information of China (English)

    XIANG Aishuang; XU Songlin

    2005-01-01

    Velocity field of evaporating liquid film in a wiped molecular distillator was simulated with a computational fluid dynamics (CFD) software, and two turbulent models treating near-wall flow were compared. Differences between wiped and other molecular distillations were introduced to explain why turbulent model should be used in this simulation. Three assumptions were made in order to simplify simulating processes. In rotating coordinate system, fixed other settings, the above two turbulent models were used, and the volume of fluid (VOF) multiphase model was also applied to tracking the liquid-gas surface. Both of the simulating results are basically identical with real situation and were compared in several aspects. It was concluded that both of the turbulent models are suitable in this simulation.

  2. Low-Loss Silica-Based Optical Film Waveguides Deposited by Helicon-Activated Reactive Evaporation

    Science.gov (United States)

    Bulla, Douglas A. P.; Li, Wei-Tang; Charles, Christine; Boswell, Rod; Ankiewicz, Adrian; Love, John D.

    2005-03-01

    Planar silica-based optical waveguides have been deposited by a plasma helicon-activated reactive evaporation system, at a low temperature and with reduced hydrogen contamination, on thermally oxidized silicon wafers. The transmission loss of the rib waveguides, formed on the deposited films by etching with hydrofluoric acid, is determined to be lower than 0.1 and 0.7 dB/cm at wavelengths of 1310 and 1510 nm, respectively, for TE polarization. The influence of substrate leakage on propagation loss is determined numerically and compared with experimental results for TE and TM polarizations. The presence of the OH vibrational overtone band in the fabricated waveguides, at a wavelength of around 1385 nm, is discussed in terms of the waveguide structure.

  3. AC microcalorimetry of adsorbates on evaporated metal films: Orientational ordering of H sub 2 multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Phelps, R.B.

    1991-11-01

    We have improved and extended a novel ac calorimetric technique for measuring the heat capacity of adsorbates on evaporated metal films. Metallic substrates are of particular interest in current studies of the thermodynamics of adsorbed molecules. The method described in the present work is only calorimetric technique which allows measurements of molecules on simple metallic surfaces. Among other improvements, we have achieved significant progress in the preparation and characterization of the evaporated metal film. We have applied this novel technique to a study of hydrogen multilayers on gold and sapphire substrates. We have shown that samples of normal-hydrogen with a nominal coverage n of approximately 25 monolayers (ML) undergo a bulk-like orientational ordering transition. The transition is suppressed as the coverage is decreased, and no sign of the transition remains above 1.6 K for n {approx} 1 ML. For n {approx lt} 8 ML, the peak in the heat capacity exhibits signs of finite-size effects. At higher coverages, finite-size effects are not observed, and the shape of the peak depends strongly on the substrate. We conclude that the peak is inhomogeneously broadened for n {approx lt} 8 ML. This work represents the first measurements of the heat capacity due to orientational ordering in adsorbed hydrogen. The results of an earlier experiment involving vibrational spectroscopy of adsorbed molecules are included in the Appendix. In this work, we have used infrared emission spectroscopy to study the spectral region in the vicinity of the C=O stretch vibration of bridge-bonded CO on Pt(111).

  4. AC microcalorimetry of adsorbates on evaporated metal films: Orientational ordering of H{sub 2} multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Phelps, R.B.

    1991-11-01

    We have improved and extended a novel ac calorimetric technique for measuring the heat capacity of adsorbates on evaporated metal films. Metallic substrates are of particular interest in current studies of the thermodynamics of adsorbed molecules. The method described in the present work is only calorimetric technique which allows measurements of molecules on simple metallic surfaces. Among other improvements, we have achieved significant progress in the preparation and characterization of the evaporated metal film. We have applied this novel technique to a study of hydrogen multilayers on gold and sapphire substrates. We have shown that samples of normal-hydrogen with a nominal coverage n of approximately 25 monolayers (ML) undergo a bulk-like orientational ordering transition. The transition is suppressed as the coverage is decreased, and no sign of the transition remains above 1.6 K for n {approx} 1 ML. For n {approx_lt} 8 ML, the peak in the heat capacity exhibits signs of finite-size effects. At higher coverages, finite-size effects are not observed, and the shape of the peak depends strongly on the substrate. We conclude that the peak is inhomogeneously broadened for n {approx_lt} 8 ML. This work represents the first measurements of the heat capacity due to orientational ordering in adsorbed hydrogen. The results of an earlier experiment involving vibrational spectroscopy of adsorbed molecules are included in the Appendix. In this work, we have used infrared emission spectroscopy to study the spectral region in the vicinity of the C=O stretch vibration of bridge-bonded CO on Pt(111).

  5. Development of a hybrid sputtering/evaporation process for Cu(In,Ga)Se{sub 2} thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Acciarri, M.; Binetti, S.; Le Donne, A.; Lorenzi, B.; Caccamo, L.; Miglio, L. [Dipartimento di Scienza dei Materiali e Solar Energy Research Center MIB-SOLAR, Universita di Milano Bicocca, Milan (Italy); Moneta, R.; Marchionna, S.; Meschia, M. [Voltasolar s.r.l, Turate (Italy)

    2011-08-15

    In this paper we report a new method for Cu(In,Ga)Se{sub 2} deposition for solar cell application. Differently from the common co-evaporation process, an alterative approach for thin film Cu(In,Ga)Se{sub 2} has been tested: the sputtering deposition of metal elements combined with the selenium evaporation. We have studied the relationships between the growth parameters of our hybrid sputtering/evaporation method and the chemical-physical properties of the CIGS films. The cells are completed with a CdS buffer layer deposited by chemical bath deposition and ZnO + ITO deposited by RF sputtering. Test solar cells of 0.5 cm{sup 2} have shown an efficiency of 10% and 2.5% on glass and stainless steel substrate respectively. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. A Simulation Study on Effect of SurfaceFilm-Forming{1mmMaterial on Water Evaporation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A greenhouse experiment was conducted to investigate the effect ofsurface film-forming material (SFFM), a mixture of1618-octadecanols by emulsification, on water evaporation.Air-dried soil with distilled water was incubated firstly for 7 days toreestablish soil biological activity and then for another 7 days aftertreated with SFFM at rates of 0, 1, 2, 4, 6 and 8 g m{-2,respectively. Everyday during the 7-day incubation after addition ofSFFM, water losses due to evaporation were measured by an electronicbalance. The rate of water evaporation with the addition of SFFM wasreduced significantly compared with the control treatment and theeffectiveness of SFFM on water evaporation reduced with time. Accordingto the equation expressions of the effect of SFFM on water evaporation,the half-life of effectiveness of SFFM on water evaporation wasintroduced and calculated to analyze quantitative relationship betweenthe effectiveness of SFFM on water evaporation and the addition rate ofSFFM. The calculated half-life increased with the addition rate of SFFMand the confidence of the calculated values of the half-life was high,suggesting that the half-life of effectiveness of SFFM on waterevaporation could be described quantitatively and may be helpful forameliorating application method of SFFM and screening surface-filmforming materials in order to improve nitrogen fertilizer useefficiency in flooded rice fields.

  7. Substrate bias effect on crystallinity of polycrystalline silicon thin films prepared by pulsed ion-beam evaporation method

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Fazlat; Gunji, Michiharu; Yang, Sung-Chae; Suzuki, Tsuneo; Suematsu, Hisayuki; Jiang, Weihua; Yatsui, Kiyoshi [Nagaoka Univ. of Technology, Extreme Energy-Density Research Inst., Nagaoka, Niigata (Japan)

    2002-06-01

    The deposition of polycrystalline silicon thin films has been tried by a pulsed ion-beam evaporation method, where high crystallinity and deposition rate have been achieved without heating the substrate. The crystallinity and the deposition rate were improved by applying bias voltage to the substrate, where instantaneous substrate heating might have occurred by ion-bombardment. (author)

  8. Effect of Deposition Rate on Structure and Surface Morphology of Thin Evaporated Al Films on Dielectrics and Semiconductors

    DEFF Research Database (Denmark)

    Bordo, K.; Rubahn, H. G.

    2012-01-01

    Aluminum (Al) films with thickness of 100 nm were grown on unheated glass, silicon and mica substrates by electron beam evaporation. The deposition rates were adjusted in the range between 0.1 nm/s and 2 nm/s, the pressure in the vacuum chamber during deposition was lower than 1.10(-3) Pa...

  9. High fluence deposition of polyethylene glycol films at 1064 nm by matrix assisted pulsed laser evaporation (MAPLE)

    DEFF Research Database (Denmark)

    Purice, Andreea; Schou, Jørgen; Kingshott, P.;

    2007-01-01

    Matrix assisted pulsed laser evaporation (MAPLE) has been applied for deposition of thin polyethylene glycol (PEG) films with infrared laser light at 1064 nm. We have irradiated frozen targets (of 1 wt.% PEG dissolved in water) and measured the deposition rate in situ with a quartz crystal 2...

  10. Chemical reaction of atomic oxygen with evaporated films of copper, part 4

    Science.gov (United States)

    Fromhold, A. T.; Williams, J. R.

    1990-01-01

    Evaporated copper films were exposed to an atomic oxygen flux of 1.4 x 10(exp 17) atoms/sq cm per sec at temperatures in the range 285 to 375 F (140 to 191 C) for time intervals between 2 and 50 minutes. Rutherford backscattering spectroscopy (RBS) was used to determine the thickness of the oxide layers formed and the ratio of the number of copper to oxygen atoms in the layers. Oxide film thicknesses ranged from 50 to 3000 A (0.005 to 0.3 microns, or equivalently, 5 x 10(exp -9) to 3 x 10(exp -7); it was determined that the primary oxide phase was Cu2O. The growth law was found to be parabolic (L(t) varies as t(exp 1/2)), in which the oxide thickness L(t) increases as the square root of the exposure time t. The analysis of the data is consistent with either of the two parabolic growth laws. (The thin-film parabolic growth law is based on the assumption that the process is diffusion controlled, with the space charge within the growing oxide layer being negligible. The thick-film parabolic growth law is also based on a diffusion controlled process, but space-charge neutrality prevails locally within very thick oxides.) In the absence of a voltage measurement across the growing oxide, a distinction between the two mechanisms cannot be made, nor can growth by the diffusion of neutral atomic oxygen be entirely ruled out. The activation energy for the reaction is on the order of 1.1 eV (1.76 x 10(exp -19) joule, or equivalently, 25.3 kcal/mole).

  11. Comparison of the properties of Pb thin films deposited on Nb substrate using thermal evaporation and pulsed laser deposition techniques

    Energy Technology Data Exchange (ETDEWEB)

    Perrone, A., E-mail: alessio.perrone@unisalento.it [Università del Salento, Dipartimento di Matematica e Fisica “E. De Giorgi”, 73100 Lecce (Italy); INFN-Istituto Nazionale di Fisica Nucleare e Università del Salento, 73100 Lecce (Italy); Gontad, F. [INFN-Istituto Nazionale di Fisica Nucleare e Università del Salento, 73100 Lecce (Italy); Lorusso, A.; Di Giulio, M. [Università del Salento, Dipartimento di Matematica e Fisica “E. De Giorgi”, 73100 Lecce (Italy); Broitman, E. [Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden); Ferrario, M. [Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, 00044 Frascati (Italy)

    2013-11-21

    Pb thin films were prepared at room temperature and in high vacuum by thermal evaporation and pulsed laser deposition techniques. Films deposited by both the techniques were investigated by scanning electron microscopy to determine their surface topology. The structure of the films was studied by X-ray diffraction in θ–2θ geometry. The photoelectron performances in terms of quantum efficiency were deduced by a high vacuum photodiode cell before and after laser cleaning procedures. Relatively high quantum efficiency (>10{sup −5}) was obtained for all the deposited films, comparable to that of corresponding bulk. Finally, film to substrate adhesion was also evaluated using the Daimler–Benz Rockwell-C adhesion test method. Weak and strong points of these two competitive techniques are illustrated and discussed. -- Highlights: •Comparison of Pb thin films deposited on Nb substrate by thermal evaporation and pulsed laser deposition (PLD). •Photoelectron performances of Pb thin films. •Good quality of adhesion strength of Pb films deposited by PLD.

  12. Structural, optical and electrical characterization of vacuum-evaporated nanocrystalline CdSe thin films for photosensor applications

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vipin; Sharma, D.K.; Sharma, Kapil [Krishna Institute of Engineering and Technology, Department of Physics, Ghaziabad (India); Dwivedi, D.K. [M.M.M University of Technology, Department of Physics, Gorakhpur (India)

    2016-11-15

    II-VI nanocrystalline semiconductors offer a wide range of applications in electronics, optoelectronics and photonics. Thin films of CdSe were deposited onto ultra-clean glass substrates by vacuum evaporation method. The as-deposited films were annealed in vacuum at 350 K. The structural, elemental, morphological, optical and electrical investigations of annealed films were carried out. The X-ray diffraction pattern of the films shows that films were polycrystalline in nature having hexagonal structure with preferential orientation of grains along (002) plane. SEM image indicates that the films were uniform and well covered to the glass substrate. EDAX analysis confirms the stoichiometric composition of the film. Raman spectra were used to observe the characteristic vibrational modes of CdSe. The energy band gap of these films was obtained by absorption spectra. The films were found to have a direct type of transition of band gap occurring at 1.75 eV. The dark electrical conductivity and photoconductivity reveals that the films were semiconducting in nature indicating the suitability of these films for photosensor applications. The Hall effect measurement reveals that the films have n-type electrical conductivity. (orig.)

  13. Structural, optical and electrical characterization of vacuum-evaporated nanocrystalline CdSe thin films for photosensor applications

    Science.gov (United States)

    Kumar, Vipin; Sharma, D. K.; Sharma, Kapil; Dwivedi, D. K.

    2016-11-01

    II-VI nanocrystalline semiconductors offer a wide range of applications in electronics, optoelectronics and photonics. Thin films of CdSe were deposited onto ultra-clean glass substrates by vacuum evaporation method. The as-deposited films were annealed in vacuum at 350 K. The structural, elemental, morphological, optical and electrical investigations of annealed films were carried out. The X-ray diffraction pattern of the films shows that films were polycrystalline in nature having hexagonal structure with preferential orientation of grains along (002) plane. SEM image indicates that the films were uniform and well covered to the glass substrate. EDAX analysis confirms the stoichiometric composition of the film. Raman spectra were used to observe the characteristic vibrational modes of CdSe. The energy band gap of these films was obtained by absorption spectra. The films were found to have a direct type of transition of band gap occurring at 1.75 eV. The dark electrical conductivity and photoconductivity reveals that the films were semiconducting in nature indicating the suitability of these films for photosensor applications. The Hall effect measurement reveals that the films have n-type electrical conductivity.

  14. Nanoparticle Thin Films for Gas Sensors Prepared by Matrix Assisted Pulsed Laser Evaporation

    Directory of Open Access Journals (Sweden)

    Roberto Rella

    2009-04-01

    Full Text Available The matrix assisted pulsed laser evaporation (MAPLE technique has been used for the deposition of metal dioxide (TiO2, SnO2 nanoparticle thin films for gas sensor applications. For this purpose, colloidal metal dioxide nanoparticles were diluted in volatile solvents, the solution was frozen at the liquid nitrogen temperature and irradiated with a pulsed excimer laser. The dioxide nanoparticles were deposited on Si and Al2O3 substrates. A rather uniform distribution of TiO2 nanoparticles with an average size of about 10 nm and of SnO2 nanoparticles with an average size of about 3 nm was obtained, as demonstrated by high resolution scanning electron microscopy (SEM-FEG inspections. Gas-sensing devices based on the resistive transduction mechanism were fabricated by depositing the nanoparticle thin films onto suitable rough alumina substrates equipped with interdigitated electrical contacts and heating elements. Electrical characterization measurements were carried out in controlled environment. The results of the gas-sensing tests towards low concentrations of ethanol and acetone vapors are reported. Typical gas sensor parameters (gas responses, response/recovery time, sensitivity, and low detection limit towards ethanol and acetone are presented.

  15. Effect of He{sup +} irradiation on the optical properties of vacuum evaporated silver indium selenide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Santhosh Kumar, M.C., E-mail: santhoshmc@yahoo.co [Advanced Materials Laboratory, Department of Physics, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620 015 (India); Pradeep, B. [Solid State Physics Laboratory, Department of Physics, Cochin University of Science and Technology, Cochin, Kerala 682 022 (India)

    2010-04-09

    We prepared polycrystalline silver indium selenide thin films by vacuum evaporation on glass substrate at a high temperature using the stoichiometric powder. The samples were subjected to the irradiation of 1.26 M eV He{sup +} ion. The effect of irradiation on the optical properties has been investigated for different fluencies of He{sup +}. The thin films were characterized by X-ray diffraction and UV-vis-NIR spectroscopy. It is observed that the band gap of silver indium selenide thin films decreases gradually from 1.17 to 0.82 eV with ion fluency.

  16. Nanocrystalline biphasic resorbable calcium phosphate (HAp/β-TCP) thin film prepared by electron beam evaporation technique

    Energy Technology Data Exchange (ETDEWEB)

    Elayaraja, K.; Chandra, V. Sarath; Joshy, M.I. Ahymah; Suganthi, R.V. [Crystal Growth Centre, Anna University, Chennai 600025, Tamil Nadu (India); Asokan, K. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Kalkura, S. Narayana, E-mail: kalkura@yahoo.com [Crystal Growth Centre, Anna University, Chennai 600025, Tamil Nadu (India)

    2013-06-01

    Biphasic calcium phosphate (BCP) thin film having resorbable β-tricalcium phosphate (β-TCP) and non-resorbable hydroxyapatite (HAp) phases having enhanced bioactivity was synthesized by electron beam evaporation technique. Nanosized BCP was deposited as a layer (500 nm) on (0 0 1) silicon substrate by electron beam evaporation and crystalline phase of samples were found to improve on annealing at 700 °C. Uniform deposition of calcium phosphate on silicon substrate was verified from elemental mapping using scanning electron microscope (SEM-EDX). Annealing of the samples led to a decrease in surface roughness, hydrophobicity and dissolution of the coating layer. Amoxicillin loaded thin films exhibited significant bacterial resistance. In addition, BCP thin films did not exhibit any cytotoxicity. Antibiotics incorporated BCP coated implants might prevent the post-surgical infections and could promote bone-bonding of orthopedic devices.

  17. Growth of manganese sulfide (α-MnS) thin films by thermal vacuum evaporation: Structural, morphological and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Hannachi, Amira, E-mail: amira.hannachi88@gmail.com [MALTA-Consolider Team, Institut de Ciència dels Materials – Departamento de Fisica Aplicada, University of Valencia, E-46100 Burjassot, Valencia (Spain); Université de Tunis El-Manar, Faculté des Sciences de Tunis, Laboratoire de Chimie Analytique et Electrochimie, LR99ES15, 2092 Tunis (Tunisia); Segura, Alfredo [MALTA-Consolider Team, Institut de Ciència dels Materials – Departamento de Fisica Aplicada, University of Valencia, E-46100 Burjassot, Valencia (Spain); Maghraoui-Meherzi, Hager [Université de Tunis El-Manar, Faculté des Sciences de Tunis, Laboratoire de Chimie Analytique et Electrochimie, LR99ES15, 2092 Tunis (Tunisia)

    2016-09-15

    MnS thin films have been successfully prepared by thermal evaporation method at different substrate temperatures using different masses of MnS powder. The prepared films were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and UV–visible spectrophotometry. The XRD measurements show that the films crystallized in the pure α-MnS for substrate temperatures above 100 °C. The optical bandgap of thin films is found to be in the range of 3.2–3.3 eV. A factorial experimental design was used for determining the influence of the two experimental parameters on the films growth. - Highlights: • α-MnS films were deposited on glass and quartz substrates using the thermal evaporation technique. • The effect of substrate temperature on the properties of the MnS films has been studied. • The factorial design was used to determine the most influence parameters.

  18. Effect of annealing on the electrical and optical properties of electron beam evaporated ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Al Asmar, R. [Centre d' Electronique et de Micro-optoelectronique de Montpellier, CEM2-UNIVERSITE MONTPELLIER II-UMR CNRS 5507, Place E. Bataillon, 34095 Montpellier (France); Ferblantier, G. [Centre d' Electronique et de Micro-optoelectronique de Montpellier, CEM2-UNIVERSITE MONTPELLIER II-UMR CNRS 5507, Place E. Bataillon, 34095 Montpellier (France); Mailly, F. [Centre d' Electronique et de Micro-optoelectronique de Montpellier, CEM2-UNIVERSITE MONTPELLIER II-UMR CNRS 5507, Place E. Bataillon, 34095 Montpellier (France); Gall-Borrut, P. [Centre d' Electronique et de Micro-optoelectronique de Montpellier, CEM2-UNIVERSITE MONTPELLIER II-UMR CNRS 5507, Place E. Bataillon, 34095 Montpellier (France); Foucaran, A. [Centre d' Electronique et de Micro-optoelectronique de Montpellier, CEM2-UNIVERSITE MONTPELLIER II-UMR CNRS 5507, Place E. Bataillon, 34095 Montpellier (France)]. E-mail: foucaran@cem2.univ-montp2.fr

    2005-02-01

    Zinc oxide thin films have been grown on (100)-oriented silicon substrate at a temperature of 100 deg. C by reactive e-beam evaporation. Structural, electrical and optical characteristics have been compared before and after annealing in air by measurements of X-ray diffraction, real and imaginary parts of the dielectric coefficient, refractive index and electrical resistivity. X-ray diffraction measurements have shown that ZnO films are highly c-axis-oriented with a full width at half maximum (FWMH) lower than 0.5 deg . The electrical resistivity increases from 10{sup -2} {omega} cm to reach a value about 10{sup 9} {omega} cm after annealing at 750 deg. C. The FWHM decreases after annealing treatment, which proves the crystal quality improvement. Ellipsometer measurements show the improvement of the refractive index and the real dielectric coefficient after annealing treatment at 750 deg. C of the ZnO films evaporated by electron beam. Atomic force microscopy shows that the surfaces of the electron beam evaporated ZnO are relatively smooth. Finally, a comparative study on structural and optical properties of the electron beam evaporated ZnO and the rf magnetron deposited one is discussed.

  19. Development of New Electrode System for High Field Dielectric Properties Measurement Using Evaporated Polypropylene Thin Guard Film

    Science.gov (United States)

    Fujii, Masayuki; Tohyama, Kazuyuki; Tokoro, Tetsuro; Mizuno, Yukio; Nagao, Masayuki; Kosaki, Masamitsu

    Non-polar polymers such as polyethylene (PE) and polypropylene (PP) are widely used as very important electrical insulating and dielectric materials. They are used in the increasingly high AC electric field strength region approaching to the limit of electrical breakdown strength of the materials. Therefore the study of high-field dielectric property is very important in terms of understanding the AC breakdown mechanism of materials. A three-terminals electrode system with a guard film (new type electrode system) was developed in our laboratory for the precise measurement of high-field tanδ, where the guard film was used to reduce the disturbance of electric field around the edge of a main electrode. However, minute air sometimes steals between a sample film and the guard film. The air sometimes generates partial discharge in the high electric field region. Therefore, when the sample had minute air, the new type electrode system was limited under 100kVrms/mm application that didn't reach to an intrinsic breakdown strength of the 30μm-thick sample. We tried to improve the new electrode system without minute air between a sample film and the guard film. We also tried to make very thin guard film to reduce the field disturbance at the edge of main electrode. In this paper a PP-guard film on a biaxially oriented polypropylene (BOPP) film was made by evaporation. This improvement of the electrode system using the evaporated PP-guard film was in success so that high-field dielectric properties of BOPP film could be measured up to near the intrinsic breakdown field of the sample.

  20. CFD and Experimental Analysis of a Falling Film outside Smooth and Helically Grooved Tubes

    Directory of Open Access Journals (Sweden)

    Cenk Onan

    2014-08-01

    Full Text Available Simultaneous heat and mass transfer are investigated in a falling film outside grooved and smooth tubes. A numerical analysis of the helically trapezoidal-grooved and reference smooth tube was performed in the computational fluid dynamics program “Ansys Fluent 14.” The three-dimensional model drawings in the x, y, and z coordinates are used, and the effects of the falling film outside the helically grooved tube on the surface temperature and surface heat transfer coefficient are determined. The average surface temperature, heat transfer coefficient, and Nu values are determined experimentally for a constant heat flux. An uncertainty analysis and Nu correlation for the grooved tube are also provided in this study. The Reynolds number varied between 50 and 350 for the falling film and between 1500 and 3500 for air. Using a computational fluid dynamics (CFD analysis for the reference smooth tube, the experimental results are validated within 2–12% difference. The experimental results are also within 6–13% of the grooved tubes.

  1. Optical and Morphological Studies of Thermally Evaporated PTCDI-C8 Thin Films for Organic Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Ronak Rahimi

    2013-01-01

    Full Text Available PTCDI-C8 due to its relatively high photosensitivity and high electron mobility has attracted much attention in organic semiconductor devices. In this work, thin films of PTCDI-C8 with different thicknesses were deposited on silicon substrates with native silicon dioxide using a vacuum thermal evaporator. Several material characterization techniques have been utilized to evaluate the structure, morphology, and optical properties of these films. Their optical constants (refractive index and extinction coefficient have been extracted from the spectroscopic ellipsometry (SE. X-ray reflectivity (XRR and atomic force microscopy (AFM were employed to determine the morphology and structure as well as the thickness and roughness of the PTCDI-C8 thin films. These films revealed a high degree of structural ordering within the layers. All the experimental measurements were performed under ambient conditions. PTCDI-C8 films have shown to endure ambient condition which allows pots-deposition characterization.

  2. High-Quality ZrO2 Thin Films Deposited on Silicon by High Vacuum Electron Beam Evaporation

    Institute of Scientific and Technical Information of China (English)

    章宁琳; 万青; 宋志棠; 沈勤我; 祝向荣; 林成鲁

    2002-01-01

    Zirconium oxide films were deposited on p-type Si(l00) substrates using high vacuum electron beam evaporation (HVEBE) at room temperature. X-ray photoelectric spectroscopy shows that the dominant chemical state of zirconia thin films is in the fully oxidized state of Zr4+, no matter whether annealed in oxygen. The structural information from x-ray diffraction shows that zirconia thin films deposited at room temperature by HVEBEwere completely amorphous before and after the annealing. The spreading resistance profile indicates that ZrO2 thin films have excellent insulation property (with a resistance of more than 10s Ω) and the thickness is 800A.After thermal treatment at 600°C in O2 ambient, the root-mean-square roughness changed from 8.09 A of the as-deposited film to 13.8A across an area of i × 1μm2.

  3. Impact of thermal annealing on optical properties of vacuum evaporated CdTe thin films for solar cells

    Science.gov (United States)

    Chander, Subhash; Purohit, A.; Lal, C.; Nehra, S. P.; Dhaka, M. S.

    2016-05-01

    In this paper, the impact of thermal annealing on optical properties of cadmium telluride (CdTe) thin films is investigated. The films of thickness 650 nm were deposited on thoroughly cleaned glass substrate employing vacuum evaporation followed by thermal annealing in the temperature range 250-450 °C. The as-deposited and annealed films were characterized using UV-Vis spectrophotometer. The optical band gap is found to be decreased from 1.88 eV to 1.48 eV with thermal annealing. The refractive index is found to be in the range 2.73-2.92 and observed to increase with annealing treatment. The experimental results reveal that the thermal annealing plays an important role to enhance the optical properties of CdTe thin films and annealed films may be used as absorber layer in CdTe/CdS solar cells.

  4. The effect of oxygen flow rate on refractive index of aluminum oxide film deposited by electron beam evaporation technique

    Directory of Open Access Journals (Sweden)

    R Shakouri

    2016-02-01

    Full Text Available The effects of oxygen flow rate on refractive index of aluminum oxide film have been investigated. The Al2O3 films are deposited by electron beam on glass substrate at different oxygen flow rates. The substrate was heated to reach  and the temperature was constant during the thin film growth. The transmittance spectrum of samples was recorded in the wavelength 400-800 nm.  Then, using the maxima and minima of transmittance the refractive index and the extinction coefficient of samples were determined. It has been found that if we reduce the oxygen flow, while the evaporation rate is kept constant, the refractive index of Al2O3 films increases. On the other hand, reduced oxygen pressure causes the Al2O3 films to have some absorption.

  5. Comparison of the properties of Pb thin films deposited on Nb substrate using thermal evaporation and pulsed laser deposition techniques

    Science.gov (United States)

    Perrone, A.; Gontad, F.; Lorusso, A.; Di Giulio, M.; Broitman, E.; Ferrario, M.

    2013-11-01

    Pb thin films were prepared at room temperature and in high vacuum by thermal evaporation and pulsed laser deposition techniques. Films deposited by both the techniques were investigated by scanning electron microscopy to determine their surface topology. The structure of the films was studied by X-ray diffraction in θ-2θ geometry. The photoelectron performances in terms of quantum efficiency were deduced by a high vacuum photodiode cell before and after laser cleaning procedures. Relatively high quantum efficiency (>10-5) was obtained for all the deposited films, comparable to that of corresponding bulk. Finally, film to substrate adhesion was also evaluated using the Daimler-Benz Rockwell-C adhesion test method. Weak and strong points of these two competitive techniques are illustrated and discussed.

  6. Microstructural, nanomechanical, and microtribological properties of Pb thin films prepared by pulsed laser deposition and thermal evaporation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Broitman, Esteban, E-mail: esbro@ifm.liu.se [Thin Film Physics Division, IFM, Linköping University, SE-581 83 Linköping (Sweden); Flores-Ruiz, Francisco J. [Thin Film Physics Division, IFM, Linköping University, SE-581 83 Linköping, Sweden and Centro de Investigación y de Estudios Avanzados del I.P.N., Unidad Querétaro, Querétaro 76230 (Mexico); Di Giulio, Massimo [Università del Salento, Dipartimento di Matematica e Fisica “E. De Giorgi”, 73100 Lecce (Italy); Gontad, Francisco; Lorusso, Antonella; Perrone, Alessio [Università del Salento, Dipartimento di Matematica e Fisica “E. De Giorgi”, 73100 Lecce, Italy and INFN-Istituto Nazionale di Fisica Nucleare, 73100 Lecce (Italy)

    2016-03-15

    In this work, the authors compare the morphological, structural, nanomechanical, and microtribological properties of Pb films deposited by thermal evaporation (TE) and pulsed laser deposition (PLD) techniques onto Si (111) substrates. Films were investigated by scanning electron microscopy, surface probe microscopy, and x-ray diffraction in θ-2θ geometry to determine their morphology, root-mean-square (RMS) roughness, and microstructure, respectively. TE films showed a percolated morphology with densely packed fibrous grains while PLD films had a granular morphology with a columnar and tightly packed structure in accordance with the zone growth model of Thornton. Moreover, PLD films presented a more polycrystalline structure with respect to TE films, with RMS roughness of 14 and 10 nm, respectively. Hardness and elastic modulus vary from 2.1 to 0.8 GPa and from 14 to 10 GPa for PLD and TE films, respectively. A reciprocal friction test has shown that PLD films have lower friction coefficient and wear rate than TE films. Our study has demonstrated for first time that, at the microscale, Pb films do not show the same simple lubricious properties measured at the macroscale.

  7. Processing and characterization of high temperature superconductor thin films deposited by electron beam co-evaporation

    Science.gov (United States)

    Huh, Jeong-Uk

    Ever since the high temperature superconductors (HTS) were discovered in the late 1980s, there have been enormous efforts to make this into applications such as power transmission cables, transformers, motors and generators. However, many obstacles in performance and high manufacturing cost made this difficult. The first generation HTS wires had low critical current density and were expensive to fabricate. The motivation of this research was to make high performance and low cost second generation HTS coated conductor. Electron beam co-evaporation technique was used to deposit YBCO(YBa2Cu3O7-x ) film at a high rate (10nm/s and higher) on single crystals and metal tapes. The oxygen pressure at the stage of depositing Y, Ba, Cu was 5x10 -5 Torr and the process temperature was 810-840°C. In-situ Fourier Transform Infrared spectroscopy (FTIR) was used to monitor the optical properties of the YBCO during and after deposition. The deposit transformed to a glassy amorphous mixture of Y, Ba and Cu at 3 mTorr of oxygen. YBCO crystallization occurred after extra oxygen was applied to several Torr. FTIR showed almost the same signature during the formation of YBCO and liquid Ba-Cu-O during deposition, which indicates the liquid played an important role in determining the properties of YBCO in terms of providing epitaxy and fast transport of atoms to nucleate on the film-metal interface. The transformation was very rapid---seconds to minutes, compared to minutes to hours for other post-reaction processes. The oxygen partial pressure and the rate of oxidation (supersaturation) in the liquid region defined in the YBCO phase stability diagram determined the electrical and microstructural properties. In-situ X-ray diffraction heating stage with ambient control was utilized to study this supersaturation effect and explore the temperature-pressure space during YBCO growth. With all the information gathered from FTIR and XRD in-situ experiments and also with nano-engineering during

  8. Characterizations of the TiO{sub 2-x} films synthesized by e-beam evaporation for endovascular applications

    Energy Technology Data Exchange (ETDEWEB)

    Lin Zeng [Vacuum and Fluid Engineering Research Center, Northeastern University, Shenyang 110004 (China); Lee, In-Seop [Institute of Physics and Applied Physics, and Atomic-scale Surface Science Research Center, Yonsei University, Seoul 120-752 (Korea, Republic of); Choi, Yoon-Jeong; Noh, In-Sup [Department of Chemical Engineering, Seoul National University of Technology, Seoul 139-743 (Korea, Republic of); Chung, Sung-Min, E-mail: inseop@yonsei.ac.k [Implantium Implant Institute, Seoul 135-879 (Korea, Republic of)

    2009-02-15

    Different chemical states of titanium oxide films were deposited on commercially pure Ti (CP Ti) by electron-beam evaporation at different oxygen flow rates to examine a possibility of their applications to endovascular stents. The surface morphology, chemical composition and crystal structure of the obtained titanium oxide films were analyzed by FE-SEM, XPS and XRD, respectively. As a function of the deposition parameters employed, the obtained titanium oxide films demonstrated different mixtures of anatase phase, Ti{sub 2}O{sub 3} and TiO. By the formation of titanium oxide film on the CP Ti plate, the contact angle was decreased and the cellular activity of porcine aortic smooth muscle cells was increased. Post-deposition annealing was also found to be an important factor to achieve advantageous biocompatibility. When haemocompatibility was investigated by observing adhesion of blood platelets from platelet-rich plasma, less platelet adhesion was observed on titanium oxide films. These results indicated that titanium oxide film synthesized by e-beam evaporation could be applicable to coronary stents.

  9. Characterizations of the TiO2-x films synthesized by e-beam evaporation for endovascular applications

    Science.gov (United States)

    Lin, Zeng; Lee, In-Seop; Choi, Yoon-Jeong; Noh, In-Sup; Chung, Sung-Min

    2009-02-01

    Different chemical states of titanium oxide films were deposited on commercially pure Ti (CP Ti) by electron-beam evaporation at different oxygen flow rates to examine a possibility of their applications to endovascular stents. The surface morphology, chemical composition and crystal structure of the obtained titanium oxide films were analyzed by FE-SEM, XPS and XRD, respectively. As a function of the deposition parameters employed, the obtained titanium oxide films demonstrated different mixtures of anatase phase, Ti2O3 and TiO. By the formation of titanium oxide film on the CP Ti plate, the contact angle was decreased and the cellular activity of porcine aortic smooth muscle cells was increased. Post-deposition annealing was also found to be an important factor to achieve advantageous biocompatibility. When haemocompatibility was investigated by observing adhesion of blood platelets from platelet-rich plasma, less platelet adhesion was observed on titanium oxide films. These results indicated that titanium oxide film synthesized by e-beam evaporation could be applicable to coronary stents.

  10. Gas Absorption by Wavy Falling Liquid Film Formed on Inner Surface of Vertical Tubes

    Institute of Scientific and Technical Information of China (English)

    Akio Miyara; Tomoki Yamamoto; Toru Iemura; Takashi Shimada

    2003-01-01

    An experimental study on gas absorption into falling liquid film formed on inner surface of vertical tubes has been carried out in order to clarify fundamental characteristics of the gas absorption and enhancement by surface waves. The water supplied into the test tubes is periodically disturbed by fluctuating a silicon tube before the test section with a speaker and the wavy films absorb the oxygen filled in the tubes. Imposing the periodic disturbance enhances the gas absorption and the enhancement has a maximum at around 20~30 Hz, where the gas absorption is 20~30% higher. Mass transfer coefficients obtained with five tubes agree well with those obtained with single tube. Two-dimensional numerical simulations have also been conducted for gas absorption by wavy film and the enhancement mechanism of the gas absorption is discussed.

  11. Hydrodynamics of dip-coated thin films in the presence of evaporation, and, Surfactant structures controlling spontaneous dewetting

    Science.gov (United States)

    Qu, Dan

    In this dissertation, we discuss the investigation of two problems in dynamic wetting: the hydrodynamics of dip-coated, finite-length films of evaporative fluids and the surfactant structures controlling the spontaneous dewetting of a surfactant solution. While films pulled from non-volatile fluids on a vertical substrate are essentially infinite in length, films pulled from volatile fluids have a finite length. We examine such finite films using three well-controlled oligomer liquids as well as surfactant solutions. We find that the finite length of the film is controlled by a global balance between mass lost by evaporation and mass input by viscous forces. While the attendant thermally driven Marangoni flows have small impact on the mass balance, they do alter the velocity field in the film in the direction parallel to the substrate. Using measured film profiles, wit have developed a novel method to determine the combined effects of evaporation and Marangoni flow on velocity and pressure fields in the film. This method is independent of any specific model of the evaporation process. In preliminary studies with surfactant solutions, we observed strong effects of solutal Marangoni flows on dip-coated films. For the second problem, we examine the structures of self-assemblies left on a solid as a contact line spontaneously retreats across a surface during an autophobing event. We find that surfactants of a continuous structural gradient are deposited: from molecules lying down on the surface with low packing densities in a region never touched by the solution, to molecules standing up with higher packing densities in a region where the contact line has moved slowly. Despite significant free volumes within the self-assemblies, we see no evidence of clustering of molecules. We see a clear correlation between contact line speed and the surfactant structures. We show that the dynamics during at least a later period of the autophobing event is dominated by the time

  12. Analytical Solutions of Heat Transfer and Film Thickness with Slip Condition Effect in Thin-Film Evaporation for Two-Phase Flow in Microchannel

    Directory of Open Access Journals (Sweden)

    Ahmed Jassim Shkarah

    2015-01-01

    Full Text Available Physical and mathematical model has been developed to predict the two-phase flow and heat transfer in a microchannel with evaporative heat transfer. Sample solutions to the model were obtained for both analytical analysis and numerical analysis. It is assumed that the capillary pressure is neglected (Morris, 2003. Results are provided for liquid film thickness, total heat flux, and evaporating heat flux distribution. In addition to the sample calculations that were used to illustrate the transport characteristics, computations based on the current model were performed to generate results for comparisons with the analytical results of Wang et al. (2008 and Wayner Jr. et al. (1976. The calculated results from the current model match closely with those of analytical results of Wang et al. (2008 and Wayner Jr. et al. (1976. This work will lead to a better understanding of heat transfer and fluid flow occurring in the evaporating film region and develop an analytical equation for evaporating liquid film thickness.

  13. Multilayer systems of alternating chalcogenide As Se and polymer thin films prepared using thermal evaporation and spin-coating techniques

    Science.gov (United States)

    Kohoutek, T.; Wagner, T.; Orava, J.; Krbal, M.; Ilavsky, J.; Vesely, D.; Frumar, M.

    2007-05-01

    We describe preparation and characterization of multilayer planar systems based on alternating chalcogenide As Se and polymer polyamide-imide (PAI) or polyvinyl-butyral (PVB) thin films. We deposited films of thermally evaporated As33Se67 chalcogenide glass periodically alternating with PAI or PVB films. Fifteen layers of As Se+PAI system and 17 layers of As Se+PVB system were deposited. The film thicknesses were approximately 100 nm for all of the film types. Polymer film thicknesses were calculated from profilometric measurements performed by an atomic force microscopy. Optical properties of prepared multilayers and also As Se, PAI and PVB single layers were established using UV vis NIR and ellipsometric spectroscopies. Both, As Se+PAI and As Se+PVB multilayer systems, exhibited the reflection (stop) bands centered near 830 nm. The bandwidth of reflection band of As Se+PAI multilayer was 90 nm while bandwidth of As Se+PVB system increased to 150 nm because PVB films had about 0.2 lower refractive index. A new possibility for the application of chalcogenide thin films appeared as high refractive index materials suitable for fabrication of optical elements (reflectors) for near-infrared region. Changing the films composition and thickness, multilayer systems with tailored position of stop band could be designed and prepared.

  14. Impact of thermal annealing on physical properties of vacuum evaporated polycrystalline CdTe thin films for solar cell applications

    Science.gov (United States)

    Chander, Subhash; Dhaka, M. S.

    2016-06-01

    A study on impact of post-deposition thermal annealing on the physical properties of CdTe thin films is undertaken in this paper. The thin films of thickness 500 nm were grown on ITO and glass substrates employing thermal vacuum evaporation followed by post-deposition thermal annealing in air atmosphere within low temperature range 150-350 °C. These films were subjected to the XRD, UV-Vis NIR spectrophotometer, source meter, SEM coupled with EDS and AFM for structural, optical, electrical and surface topographical analysis respectively. The diffraction patterns reveal that the films are having zinc-blende cubic structure with preferred orientation along (111) and polycrystalline in nature. The crystallographic parameters are calculated and discussed in detail. The optical band gap is found in the range 1.48-1.64 eV and observed to decrease with thermal annealing. The current-voltage characteristics show that the CdTe films exhibit linear ohmic behavior. The SEM studies show that the as-grown films are homogeneous, uniform and free from defects. The AFM studies reveal that the surface roughness of films is observed to increase with annealing. The experimental results reveal that the thermal annealing has significant impact on the physical properties of CdTe thin films and may be used as absorber layer to the CdTe/CdS thin films solar cells.

  15. Surface functionalization of cyclic olefin copolymer (COC) with evaporated TiO{sub 2} thin film

    Energy Technology Data Exchange (ETDEWEB)

    El Fissi, Lamia, E-mail: lamia.elfissi@uclouvain.be [ICTEAM Institute, Université catholique du Louvain, place de Levant 3, 1348 Louvain-la-Neuve (Belgium); Vandormael, Denis [SIRRIS Liege Science Park, 4102 Seraing (Belgium); Houssiau, Laurent [Research Centre in Physics of Matter and Radiation (PMR), University of Namur, Rue de Bruxelles 61, B-5000 Namur (Belgium); Francis, Laurent A. [ICTEAM Institute, Université catholique du Louvain, place de Levant 3, 1348 Louvain-la-Neuve (Belgium)

    2016-02-15

    Highlights: • TiO{sub 2}/COC (cyclic olefin copolymer) hybrid material for BioMEMS applications. • Thin layer of TiO{sub 2} was deposed on cyclic olefin copolymer using physical vapor deposition (PVD) technique. • The coating possess the highest level of adhesion with an excellent morphology of the hybrid material (TiO{sub 2}/COC). - Abstract: Cyclic olefin copolymer (COC) is a new class of thermoplastic polymers used for a variety of applications ranging from bio-sensing to optics. However, the hydrophobicity of native COC hampers the further development and application of this material [1]. In this work, we report the structural, morphological, and optical properties of the TiO{sub 2}/COC hybrid material, which provides a desirable substrate for optical devices and subsequent surface modifications. The TiO{sub 2} film on COC substrate was deposited by the evaporation method, and it was characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), profilometry and atomic force microscope (AFM). Using an UV-vis spectrophotometer, we found that the transmittance of the TiO{sub 2}/COC hybrid material in the visible domain reached 80%. The TiO{sub 2}/COC hybrid appeared to be stable in most of the assessed polar solvents and acid/basic solutions. The new TiO{sub 2}/COC hybrid material and the robust fabrication method are expected to enable a variety of BioMEMS applications.

  16. Modeling and simulation of vacuum evaporation from surface of a continuous falling liquid column%连续液柱流表面真空蒸发模型

    Institute of Scientific and Technical Information of China (English)

    张峰榛; 魏文韫; 余徽; 夏素兰; 朱家骅

    2011-01-01

    真空条件下连续液柱流表面蒸发现象及模型表达是低能耗汽-液分离过程设计的重要基础.研究了重力作用下通过孔口的连续液柱流条件,获得了液柱断裂的判据.研究了该体系表面蒸发的机理并建立了数学模型.数值模拟与实验数据较为吻合,结果表明:绝热闪蒸条件下,汽液相界面附近液相侧温度梯度显著,过程阻力主要在液相;增加孔口流速、增加液体过热度、减小孔径均可提高蒸发速率,但必须满足液柱断裂判据的限制.%Modeling and simulation of vacuum evaporation from the surface of a continuous falling liquid column were carried out to obtain a mechanism-based prediction for application in energy-efficient vapor-liquid separation process. The parameters governing the continuous flow of falling liquid column out-of an orifice were investigated to determine the critical conditions for breakup of the liquid column. The mechanism of evaporation from the free surface of liquid column was analyzed and a mathematical model of the system was set up. The simulation results were in good agreement with the experimental data. In an adiabatic flash vaporization, the temperature gradient near the interface on the liquid side was a sensitive indicator of evaporation rate. This means that the resistance of heat transfer mainly lies in the liquid phase, so that the evaporation rate can be enhanced by increasing the liquid velocity out-of the orifice and narrowing the orifice diameter but without the breakup of liquid column, or increasing the degree of superheat.

  17. Numerical experiments on evaporation and explosive boiling of ultra-thin liquid argon film on aluminum nanostructure substrate

    Science.gov (United States)

    Wang, Weidong; Zhang, Haiyan; Tian, Conghui; Meng, Xiaojie

    2015-04-01

    Evaporation and explosive boiling of ultra-thin liquid film are of great significant fundamental importance for both science and engineering applications. The evaporation and explosive boiling of ultra-thin liquid film absorbed on an aluminum nanostructure solid wall are investigated by means of molecular dynamics simulations. The simulated system consists of three regions: liquid argon, vapor argon, and an aluminum substrate decorated with nanostructures of different heights. Those simulations begin with an initial configuration for the complex liquid-vapor-solid system, followed by an equilibrating system at 90 K, and conclude with two different jump temperatures, including 150 and 310 K which are far beyond the critical temperature. The space and time dependences of temperature, pressure, density number, and net evaporation rate are monitored to investigate the phase transition process on a flat surface with and without nanostructures. The simulation results reveal that the nanostructures are of great help to raise the heat transfer efficiency and that evaporation rate increases with the nanostructures' height in a certain range.

  18. Numerical experiments on evaporation and explosive boiling of ultra-thin liquid argon film on aluminum nanostructure substrate.

    Science.gov (United States)

    Wang, Weidong; Zhang, Haiyan; Tian, Conghui; Meng, Xiaojie

    2015-01-01

    Evaporation and explosive boiling of ultra-thin liquid film are of great significant fundamental importance for both science and engineering applications. The evaporation and explosive boiling of ultra-thin liquid film absorbed on an aluminum nanostructure solid wall are investigated by means of molecular dynamics simulations. The simulated system consists of three regions: liquid argon, vapor argon, and an aluminum substrate decorated with nanostructures of different heights. Those simulations begin with an initial configuration for the complex liquid-vapor-solid system, followed by an equilibrating system at 90 K, and conclude with two different jump temperatures, including 150 and 310 K which are far beyond the critical temperature. The space and time dependences of temperature, pressure, density number, and net evaporation rate are monitored to investigate the phase transition process on a flat surface with and without nanostructures. The simulation results reveal that the nanostructures are of great help to raise the heat transfer efficiency and that evaporation rate increases with the nanostructures' height in a certain range.

  19. Electrical properties and surface morphology of electron beam evaporated p-type silicon thin films on polyethylene terephthalate for solar cells applications

    Energy Technology Data Exchange (ETDEWEB)

    Ang, P. C.; Ibrahim, K.; Pakhuruddin, M. Z. [Nano-Optoelectronics Research and Technology Laboratory, School of Physics, Universiti Sains Malaysia, Minden 11800 Penang (Malaysia)

    2015-04-24

    One way to realize low-cost thin film silicon (Si) solar cells fabrication is by depositing the films with high-deposition rate and manufacturing-compatible electron beam (e-beam) evaporation onto inexpensive foreign substrates such as glass or plastic. Most of the ongoing research is reported on e-beam evaporation of Si films on glass substrates to make polycrystalline solar cells but works combining both e-beam evaporation and plastic substrates are still scarce in the literature. This paper studies electrical properties and surface morphology of 1 µm electron beam evaporated Al-doped p-type silicon thin films on textured polyethylene terephthalate (PET) substrate for application as an absorber layer in solar cells. In this work, Si thin films with different doping concentrations (including an undoped reference) are prepared by e-beam evaporation. Energy dispersion X-ray (EDX) showed that the Si films are uniformly doped by Al dopant atoms. With increased Al/Si ratio, doping concentration increased while both resistivity and carrier mobility of the films showed opposite relationships. Root mean square (RMS) surface roughness increased. Overall, the Al-doped Si film with Al/Si ratio of 2% (doping concentration = 1.57×10{sup 16} atoms/cm{sup 3}) has been found to provide the optimum properties of a p-type absorber layer for fabrication of thin film Si solar cells on PET substrate.

  20. Yb-doped SnTe semimetal thin films deposited by thermal evaporation: Structural, electrical, and thermoelectric properties

    Science.gov (United States)

    Hmood, A.; Kadhim, A.; Hassam, H. A.

    2014-12-01

    Sn monochalcogenide and Yb-doped Sn1-xYbxTe (0.0 ⩾ x ⩽ 0.1) semimetals, which are known for their usefulness as efficient thermoelectric (TE) materials, were prepared by solid-state microwave technique. Polycrystalline thin films of Sn1-xYbxTe were deposited onto clean glass substrates by using vacuum evaporation technique at 10-6 bar. The structures of the polycrystalline thin films were examined by X-ray diffraction patterns. A rock salt structure was observed. Grain size increased with increasing Yb content but not according to a sequence. The morphology of the nanosheet structures for these thin films was determined by field emission scanning electron microscopy. TE properties were measured at a temperature range of 298-523 K. The carrier concentrations of the films were determined by Hall effect measurements at 300 K.

  1. Growth Structural and Optical Properties of the Thermally Evaporated Tin Diselenide (SnSe2 Thin Films

    Directory of Open Access Journals (Sweden)

    R. Sachdeva1,

    2011-01-01

    Full Text Available Tin diselenide (SnSe2 compound was prepared by melt-quenching technique from its constituent elements. The phase structure and composition of the chemical constituents present in the bulk has been determined using X-ray diffraction (XRD and energy dispersion X-ray analysis (EDAX respectively. SnSe2 thin films were grown using direct thermal evaporation of SnSe2 compound material on chemically cleaned glass substrate, which were held at different substrate temperatures. X-ray diffraction and Scanning Electron Microscopy (SEM were used to examine structure and surface morphology of the films. The investigations show that the films grown above 150 °C are single phase and polycrystalline in nature. VIS-IR Spectra of the films were recorded in the wavelength range 380 nm to 1300 nm. The data has been analyzed to find optical parameters like absorption coefficient and energy bandgap.

  2. Thermoelectric properties of V{sub 2}O{sub 5} thin films deposited by thermal evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Santos, R.; Loureiro, J., E-mail: joa.loureiro@gmail.com; Nogueira, A.; Elangovan, E.; Pinto, J.V.; Veiga, J.P.; Busani, T.; Fortunato, E.; Martins, R.; Ferreira, I., E-mail: imf@fct.unl.pt

    2013-10-01

    This work reports the structural, optical, electrical and thermoelectric properties of vanadium pentoxide (V{sub 2}O{sub 5}) thin films deposited at room temperature by thermal evaporation on Corning glass substrates. A post-deposition thermal treatment up to 973 K under atmospheric conditions induces the crystallization of the as-deposited amorphous films with an orthorhombic V{sub 2}O{sub 5} phase with grain sizes around 26 nm. As the annealing temperature rises up to 773 K the electrical conductivity increases. The films exhibit thermoelectric properties with a maximum Seebeck coefficient of −218 μV/K and electrical conductivity of 5.5 (Ω m){sup −1}. All the films show NIR-Vis optical transmittance above 60% and optical band gap of 2.8 eV.

  3. The structural, optical, and electrical properties of vacuum evaporated Cu-doped ZnTe polycrystalline thin films

    Science.gov (United States)

    Feng, L.; Mao, D.; Tang, J.; Collins, R. T.; Trefny, J. U.

    1996-09-01

    We have studied the structural, optical, and electrical properties of thermally evaporated, Cu-doped, ZnTe thin films as a function of Cu concentration and post-deposition annealing temperature. X-ray diffraction measurements showed that the ZnTe films evaporated on room temperature substrates were characterized by an average grain size of 300Å with a (111) preferred orientation. Optical absorption measurements yielded a bandgap of 2.21 eV for undoped ZnTe. A bandgap shrinkage was observed for the Cu-doped films. The dark resistivity of the as-deposited ZnTe decreased by more than three orders of magnitude as the Cu concentration was increased from 4 to 8 at.% and decreased to less than 1 ohm-cm after annealing at 260°C. For films doped with 6 7 at.% Cu, an increase of resistivity was also observed during annealing at 150 200°C. The activation energy of the dark conductivity was measured as a function of Cu concentration and annealing temperature. Hall measurements yielded hole mobility values in the range between 0.1 and 1 cm2/V·s for both as-deposited and annealed films. Solar cells with a CdS/CdTe/ZnTe/metal structure were fabricated using Cudoped ZnTe as a back contact layer on electrodeposited CdTe. Fill factors approaching 0.75 and energy conversion efficiencies as high as 12.1% were obtained.

  4. Thermoelectric study of Y-Ba-Cu-O thin film on MgO substrate prepared by resistive evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Pekala, M. (Dept. of Chemistry, Univ. of Warsaw (Poland)); Pekala, K. (Inst. of Physics, Warsaw Technical Univ. (Poland)); Lapsker, I. (Center for Theoretical Education Holon (Israel)); Verdyan, A. (Center for Theoretical Education Holon (Israel)); Azoulay, J. (Center for Theoretical Education Holon (Israel))

    1993-04-20

    Thermoelectric measurements were carried out on Y-Ba-Cu-O thin film deposited on MgO substrate by resistive evaporation technique. A pulverized mixture of Y, BaF[sub 2] and Cu weighed in the atomic proportion was evaporated from resistively heated source onto a MgO substrate kept at 400 C using a simple vacuum system. The substrate temperature was then raised to 700 C for insitu heat treatment. Oxygen was injected through a nozzle placed close to substrate surface, thus raising the pressure to about 7 Pa during the heat treatment, which lasted for about 15 minutes. The film was then gradually cooled down to room temperature and the pressure raised to atmospheric pressure. The films thus obtained were measured and the values of thermoelectric power measurements in the plane of the of the film were found to be close to the typical thermoelectric power values of crystalline Y-Ba-Cu-O superconductors. As expected, vanishing values of the thermoelectric power have been observed below 80K. If the relation observed for sintered Y-Ba-Cu-O is applied for thin films, it suggests an extremely low oxygen deficiency. (orig.)

  5. Thermoelectric study of Y-Ba-Cu-O thin film on MgO substrate prepared by resistive evaporation

    Science.gov (United States)

    Pekala, M.; Pekala, K.; Lapsker, I.; Verdyan, A.; Azoulay, J.

    1993-04-01

    Thermoelectric measurements were carried out on Y-Ba-Cu-O thin film deposited on MgO substrate by resistive evaporation technique. A pulverized mixture of Y, BaF 2 and Cu weighed in the atomic proportion was evaporated from resistively heated source onto a MgO substrate kept at 400°C using a simple vacuum system. The substrate temperature was then raised to 700°C for insitu heat treatment. Oxygen was injected through a nozzle placed close to subtrate surface, thus raising the pressure to about 7 Pa during the heat treatment, which lasted for about 15 minutes. The film was then gradually cooled down to room temperature and the pressure raised to atmospheric pressure. The films thus obtained were measured and the values of thermoelectric power measurements in the plane of the film were found to be close to the typical thermoelectric power values of crystalline Y-Ba-Cu-O superconductors. As expected, vanishing values of the thermoelectric power have been observed below 80 K. If the relation observed for sintered Y-Ba-Cu-O is applied for thin films, it suggests an extremely low oxygen deficiency.

  6. CZTSe thin film growth via a co-evaporation process using a ZnSe effusion source

    Science.gov (United States)

    Gwak, Jihye; Jung, Sunghun; Park, Sang Hyun; Ahn, SeJin; Cho, Ara; Shin, Keeshik; Yoon, Kyung Hoon; Yun, Jae Ho

    2012-04-01

    The compositional distribution of elements is known to be significant for the high conversion efficiency of CZTSe solar cells. As detailed understanding of the Cu/(Zn+Sn) ratio in the light absorption layer is important, Cu2ZnSnSe4 (CZTSe) films grown via the co-evaporation process under different copper fluxes were characterized. It is difficult to evaluate the Cu content effect on the properties of CZTSe films grown using a co-evaporation process with Cu, Zn, Sn, and Se elemental effusion sources because the Cu flux variation during the process also induces other element ratio changes. Furthermore, the Zn/Sn ratio shows significant correlation to the Cu/(Zn+Sn) ratio variation in CZTSe thin films. Replacing the zinc metal effusion source with the ZnSe compound source resulted in less fluctuation in the Zn/Sn variation according to Cu flux change during the CZTSe co-evaporation. This can be useful in evaluating the effect of the different Cu ratios on the CZTSe solar cell characteristics.

  7. Evaporation of water and uptake of HCl and HBr through hexanol films at the surface of supercooled sulfuric acid.

    Science.gov (United States)

    Glass, Samuel V; Park, Seong-Chan; Nathanson, Gilbert M

    2006-06-22

    Vacuum evaporation and molecular beam scattering experiments have been used to monitor the loss of water and dissolution of HCl and HBr in deuterated sulfuric acid at 213 K containing 0 to 100 mM hexanol. The addition of 1-hexanol to the acid creates a surface film of hexyl species. This film becomes more compact with decreasing acidity, ranging from approximately 62% to approximately 68% of maximum packing on 68 to 56 wt % D(2)SO(4), respectively. D(2)O evaporation from 68 wt % acid remains unaltered by the hexyl film, where it is most porous, but is impeded by approximately 20% from 56 and 60 wt % acid. H --> D exchange experiments further indicate that the hexyl film on 68 wt % acid enhances conversion of HCl and HBr into DCl and DBr, which is interpreted as an increase in HCl and HBr entry into the bulk acid. For this permeable hexyl film, the hydroxyl groups of surface hexanol molecules may assist uptake by providing extra sites for HCl and HBr hydrogen bonding and dissociation. In contrast, HCl --> DCl exchange in 60 wt % D(2)SO(4) at first rises with hexyl surface coverage but then drops back to the bare acid value as the hexyl species pack more tightly. HCl entry is actually diminished by the hexyl film on 56 wt % acid, where the film is most compact. These experiments reveal a transition from a porous hexanol film on 68 wt % sulfuric acid that enhances HCl and HBr uptake to one on 56 wt % acid that slightly impedes HCl and D(2)O transport.

  8. Influence of thickness on physical properties of vacuum evaporated polycrystalline CdTe thin films for solar cell applications

    Science.gov (United States)

    Chander, Subhash; Dhaka, M. S.

    2016-02-01

    This paper presents the influence of thickness on physical properties of polycrystalline CdTe thin films. The thin films of thickness 450 nm, 650 nm and 850 nm were deposited employing thermal vacuum evaporation technique on glass and indium tin oxide (ITO) coated glass substrates. The physical properties of these as-grown thin films were investigated employing the X-ray diffraction (XRD), source meter, UV-Vis spectrophotometer, scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS). The structural analysis reveals that the films have zinc-blende cubic structure and polycrystalline in nature with preferred orientation (111). The structural parameters like lattice constant, interplanar spacing, grain size, strain, dislocation density and number of crystallites per unit area are calculated. The average grain size and optical band gap are found in the range 15.16-21.22 nm and 1.44-1.63 eV respectively and observed to decrease with thickness. The current-voltage characteristics show that the electrical conductivity is observed to decrease with thickness. The surface morphology shows that films are free from crystal defects like pin holes and voids as well as homogeneous and uniform. The EDS patterns show the presence of cadmium and tellurium elements in the as grown films. The experimental results reveal that the film thickness plays significant role on the physical properties of as-grown CdTe thin films and higher thickness may be used as absorber layer to solar cells applications.

  9. Evaporate prediction and compensation of intake port wall-wetting fuel film for spark ignition engines fueled with ethanol-gasoline blends

    Institute of Scientific and Technical Information of China (English)

    Dong-wei YAO; Xin-chen LING; Feng WU

    2012-01-01

    The fuel dynamic transfer process,including fuel injection,fuel film deposition and evaporation in the intake port,was analyzed for spark ignition (SI) engines with port fuel injection (PFI).The influence of wall-wetting fuel film,especially its evaporation rate,upon the air-fuel ratio of in-cylinder mixtures was also discussed.According to the similarity principle,Fick's law,the ideal gas equation and the Gilliland correlation,an evaporate prediction model of wall-wetting fuel film was set up and an evaporate prediction based dynamic fuel film compensator was designed.Through engine cold start tests,the wall-wetting temperature,which is the key input of the fuel film evaporate prediction model,was also modeled and predicted.Combined with the experimental data of the evaporation characteristics of ethanol-gasoline blends and engine calibration tests,all the parameters of the wall-wetting fuel film evaporate prediction model used in the fuel film compensator were identified.Square-wave disturbance tests of fuel injection showed that with the help of the fuel film compensator the response of the in-cylinder air-fuel ratio was significantly improved and the real air-fuel ratio always closely matched the expected ratio.The fuel film compensator was then integrated into the final air-fuel ratio controller,and the engine tests showed that the air-fuel ratio control error was less than 2% in steady-state conditions,and less than 4%in transient conditions.The fuel film compensator also showed good adaptability to different ethanol-gasoline blends.

  10. Coupling effect between film boiling heat transfer and evaporation drag around a hot-particle in cold liquid

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-Yan; YANG Yan-Hua; XU Ji-Jun

    2003-01-01

    Extremely rapid evaporation could occur when high-temperature particles contact withlow-temperature liquid. This kind of phenomenon is associated with the engineering safety and the problems inhigh-transient multi-phase fluid and heat transfer. The aim of our study was to design and build an observable ex-periment facility. The first series of experiments were performed by pouring one or six high-temperature particles intoa low saturated temperature liquid pool. The particle's falling-down speed was recorded by a high-speed camera, thuswe can find the special resistant feature of the moving high-temperature particles, which is induced by the high-speedevaporation surrounding the particles. The study has experimentally verified the theory of evaporation drag model.

  11. Cu{sub 2}ZnSnS{sub 4} thin films grown by flash evaporation and subsequent annealing in Ar atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Caballero, R., E-mail: raquel.caballero@uam.es [Universidad Autónoma de Madrid, Departamento de Física Aplicada, M12, C/Francisco Tomás y Valiente 7, E-28049 Madrid (Spain); Izquierdo-Roca, V. [IREC, Catalonia Institute for Energy Research, C. Jardins de les Dones de Negre 1, Sant Adriá del Besòs, E-08930 Barcelona (Spain); Merino, J.M.; Friedrich, E.J. [Universidad Autónoma de Madrid, Departamento de Física Aplicada, M12, C/Francisco Tomás y Valiente 7, E-28049 Madrid (Spain); Climent-Font, A. [Universidad Autónoma de Madrid, Departamento de Física Aplicada, M12, C/Francisco Tomás y Valiente 7, E-28049 Madrid (Spain); CMAM, Universidad Autónoma de Madrid, C/Faraday 3, E-28049, Madrid (Spain); Saucedo, E. [IREC, Catalonia Institute for Energy Research, C. Jardins de les Dones de Negre 1, Sant Adriá del Besòs, E-08930 Barcelona (Spain); Pérez-Rodríguez, A. [IREC, Catalonia Institute for Energy Research, C. Jardins de les Dones de Negre 1, Sant Adriá del Besòs, E-08930 Barcelona (Spain); IN" 2UB, Departament d' Electrònica, Universitat de Barcelona, C. Martí i Franquès 1, E-08028 Barcelona (Spain); León, M. [Universidad Autónoma de Madrid, Departamento de Física Aplicada, M12, C/Francisco Tomás y Valiente 7, E-28049 Madrid (Spain)

    2013-05-01

    A study of Cu{sub 2}ZnSnS{sub 4} thin films grown by flash evaporation and subsequently annealed in Ar atmosphere has been carried out. Prior to thin film deposition, Cu{sub 2}ZnSnS{sub 4} bulk compounds with stoichiometric and Zn-rich compositions were synthesized as evaporation sources. The characteristics of the bulk compounds and thin films were investigated by X-ray diffraction, Raman spectroscopy, scanning electron microscopy and elastic back scattering. Cu{sub 2}ZnSnS{sub 4} deposited films contain lower concentrations of Zn than the bulk compounds used as evaporation sources, which is related to a preferential Zn re-evaporation during the deposition process. The desired kesterite composition for solar cell applications was achieved by using a Zn-rich compound as the evaporation source plus a thermal treatment at 620 °C in Ar atmosphere. - Highlights: ► Cu{sub 2}ZnSnS{sub 4} (CZTS) thin films by flash evaporation + annealing in Ar atmosphere ► Difficulty of growing a single phase kesterite material ► X-ray diffraction and Raman spectroscopy to identify the different phases ► Importance of the starting film composition to get the desired CZTS material ► Annealing treatment to obtain the optimum material to be used for CZTS solar cells.

  12. Effectiveness of non-volatile falling film absorbers with solution and coolant in counter-flow

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D.S. [Austrian Institute of Technology, Dept. Energy, Giefinggasse 2, 1210 Vienna (Austria); Infante Ferreira, C.A. [Delft University of Technology, Engineering Thermodynamics, Leeghwaterstraat 44, 2628 CA Delft (Netherlands)

    2010-01-15

    Effectiveness equations are developed for non-volatile falling film absorbers with solution and coolant in counter-flow. It is shown how mixture thermodynamics and film theory can be used to simplify the problem to give eigenvalue solutions for temperature and concentration profiles and how heat and mass transfer effectiveness equations can be derived from such solutions. The results indicate that the transfer process in an absorber is driven by two driving forces, i.e. the difference between bulk solution and cooling water temperatures and the initial deviation of bulk solution from its equilibrium state. Asymptotic effectiveness equations are derived for a few limiting cases to show that they approach their counterparts in single-phase heat transfer and isothermal absorption processes. (author)

  13. Thin-film encapsulation of organic electronic devices based on vacuum evaporated lithium fluoride as protective buffer layer

    Science.gov (United States)

    Peng, Yingquan; Ding, Sihan; Wen, Zhanwei; Xu, Sunan; Lv, Wenli; Xu, Ziqiang; Yang, Yuhuan; Wang, Ying; Wei, Yi; Tang, Ying

    2017-03-01

    Encapsulation is indispensable for organic thin-film electronic devices to ensure reliable operation and long-term stability. For thin-film encapsulating organic electronic devices, insulating polymers and inorganic metal oxides thin films are widely used. However, spin-coating of insulating polymers directly on organic electronic devices may destroy or introduce unwanted impurities in the underlying organic active layers. And also, sputtering of inorganic metal oxides may damage the underlying organic semiconductors. Here, we demonstrated that by utilizing vacuum evaporated lithium fluoride (LiF) as protective buffer layer, spin-coated insulating polymer polyvinyl alcohol (PVA), and sputtered inorganic material Er2O3, can be successfully applied for thin film encapsulation of copper phthalocyanine (CuPc)-based organic diodes. By encapsulating with LiF/PVA/LiF trilayer and LiF/Er2O3 bilayer films, the device lifetime improvements of 10 and 15 times can be achieved. These methods should be applicable for thin-film encapsulation of all kinds of organic electronic devices. Moisture-induced hole trapping, and Al top electrode oxidation are suggest to be the origins of current decay for the LiF/PVA/LiF trilayer and LiF/Er2O3 bilayer films encapsulated devices, respectively.

  14. Effects of Surface Roughness of Capillary Wall on the Profile of Thin Liquid Film and Evaporation Heat Transfer

    Institute of Scientific and Technical Information of China (English)

    Qu Wei; Ma Tongze

    2001-01-01

    The surface of capillary wall can be treated to have a periodic microrelief mathematically. The roughness is micro enough compared with the thickness of the liquid film. So, the surface roughness only exerts influence on the adsorptive potential. Macroscopically, the flow field of the liquid film can be considered as that when the rough surface has an equivalent smooth surface, whose position is at the crests of the microrelief. The mechanism of heat transfer is in connection with two resistances: the thermal resistance of the liquid film conduction and the thermal resistance of the interfacial evaporation. The capillary pressure between the two sides of the vapor-liquid interface due to the interfacial curvature and the disjoining pressure owing to the thin liquid film are considered simultaneously. Several micro tubes with different micro rough surfaces are studied. The length of the evaporating interfacial region decreases with the increase of roughness angle and/or the increase of the roughness height. The heat transfer coefficient and the temperature of the vapor-liquid interface will change to fit the constant mass flow rate.

  15. Thickness dependence of dispersion parameters of the MoO{sub x} thin films prepared using the vacuum evaporation technique

    Energy Technology Data Exchange (ETDEWEB)

    Akın, Ümmühan, E-mail: uakin@selcuk.edu.tr; Şafak, Haluk

    2015-10-25

    The optical behaviors of molybdenum oxide thin films are highly important due to their widespread applications. In the present paper, the effect of thickness on the structure, morphology and optical properties of molybdenum oxide (MoO{sub x}) thin films prepared on Corning glass substrates using thermal evaporation technique was studied. The structure and morphology of films were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively, while their optical properties were investigated by UV-VIS-NIR spectrophotometry in the spectral range from 300 to 2500 nm. It was observed that whole films have amorphous structure and also they showed rather high transmittance values reached nearly up to 90%. Absorption analysis showed two types of electronic transitions; both direct and indirect interband transition energy values of films decrease from 4.47 to 3.45 eV and from 3.00 to 2.75 eV, respectively, with increasing the film thickness, while the width of the localized states tail increases with thickness. This decrease in the band gap value can be attributed to the rising oxygen-ion vacancy densities with the thickness. The refractive indices of films were calculated from Sellmeier coefficients determined by nonlinear curve fitting method based on the measured transmittance spectral data. The dispersion of the refractive index was discussed in terms of the Wemple-DiDomenico single-oscillator model. The dispersion parameters such as average oscillator energy, E{sub o}, the dispersion energy, E{sub d}, and static refractive index n{sub o} were evaluated and they found to vary significantly with the film thickness. - Highlights: • MoO{sub x} thin films with different thickness were prepared using the vacuum evaporation technique. • The variation of fundamental absorption edge with the film thickness was determined. • A detailed dispersion analysis based on the Wemple-DiDomenico model was performed. • The dependence of all

  16. Flux pinning properties of MgB{sub 2} thin films on Al tape substrates deposited by electron beam evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Yonekura, K., E-mail: kenji@st.cs.kumamoto-u.ac.jp [Department of Computer Science and Electrical Engineering, Kumamoto University, 2-39-1, Kurokami, Kumamoto 860-8555 (Japan); Fujiyoshi, T.; Sueyoshi, T. [Department of Computer Science and Electrical Engineering, Kumamoto University, 2-39-1, Kurokami, Kumamoto 860-8555 (Japan); Doi, T.; Nishikawa, T. [Department of Electrical and Electronics Engineering, Kagoshima University, 1-21-40, Koorimoto, Kagoshima 890-0065 (Japan)

    2011-11-15

    MgB{sub 2} thin films were deposited on Al tape substrates by EBE. The MgB{sub 2} thin films on Al tapes show much higher J{sub c} values compared to those of MgB{sub 2} wires fabricated by PIT method. The MgB{sub 2} thin films on Al tapes have c-axis correlated pinning centers. The scaling analysis of macroscopic pinning force indicates that a main pinning center is grain boundary. Flux pinning properties have been investigated in two kinds of MgB{sub 2} thin films deposited on Al tapes by electron beam evaporation: One is a stoichiometric composition and the other is a slightly B-rich composition. The values of critical current density J{sub c} in both MgB{sub 2} thin films on Al tape substrates at 10 K in the magnetic field parallel to the c-axis are higher than those in MgB{sub 2} thin films on Si and Al{sub 2}O{sub 3} substrates prepared by the same method. Both the MgB{sub 2} thin films on Al tapes show the large peaks for a magnetic field, B//c in the field-angular dependence of J{sub c}. This result indicates that the MgB{sub 2} thin films have the c-axis correlated pinning centers. Scaling analysis in the reduced macroscopic pinning force density versus the reduced magnetic field at 20 K implies that a main pinning center in both the MgB{sub 2} thin films is grain boundaries. In addition, it was suggested that a nonstoichiometric MgB{sub 2} thin film has additional pinning centers which act effectively in a high magnetic field.

  17. Detailed hydrodynamic characterization of harmonically excited falling-film flows: A combined experimental and computational study

    Science.gov (United States)

    Charogiannis, Alexandros; Denner, Fabian; van Wachem, Berend G. M.; Kalliadasis, Serafim; Markides, Christos N.

    2017-01-01

    We present results from the simultaneous application of planar laser-induced fluorescence (PLIF), particle image velocimetry (PIV) and particle tracking velocimetry (PTV), complemented by direct numerical simulations, aimed at the detailed hydrodynamic characterization of harmonically excited liquid-film flows falling under the action of gravity. The experimental campaign comprises four different aqueous-glycerol solutions corresponding to four Kapitza numbers (Ka=14 , 85, 350, 1800), spanning the Reynolds number range Re=2.3 -320 , and with forcing frequencies fw=7 and 10 Hz . PLIF was employed to generate spatiotemporally resolved film-height measurements, and PIV and PTV to generate two-dimensional velocity-vector maps of the flow field underneath the wavy film interface. The latter allows for instantaneous, highly localized velocity-profile, bulk-velocity, and flow-rate data to be retrieved, based on which the effect of local film topology on the flow field underneath the waves is studied in detail. Temporal sequences of instantaneous and local film height and bulk velocity are generated and combined into bulk flow-rate time series. The time-mean flow rates are then decomposed into steady and unsteady components, the former represented by the product of the mean film height and mean bulk velocity and the latter by the covariance of the film-height and bulk-velocity fluctuations. The steady terms are found to vary linearly with the flow Re, with the best-fit gradients approximated closely by the kinematic viscosities of the three examined liquids. The unsteady terms, typically amounting to 5 %-10 % of the mean and peaking at approximately 20 % , are found to scale linearly with the film-height variance. And, interestingly, the instantaneous flow rate is found to vary linearly with the instantaneous film height. Both experimental and numerical flow-rate data are closely approximated by a simple analytical relationship with only minor deviations. This relationship

  18. FULL SCALE TESTING TECHNOLOGY MATURATION OF A THIN FILM EVAPORATOR FOR HIGH-LEVEL LIQUID WASTE MANAGEMENT AT HANFORD - 12125

    Energy Technology Data Exchange (ETDEWEB)

    TEDESCHI AR; CORBETT JE; WILSON RA; LARKIN J

    2012-01-26

    Simulant testing of a full-scale thin-film evaporator system was conducted in 2011 for technology development at the Hanford tank farms. Test results met objectives of water removal rate, effluent quality, and operational evaluation. Dilute tank waste simulant, representing a typical double-shell tank supernatant liquid layer, was concentrated from a 1.1 specific gravity to approximately 1.5 using a 4.6 m{sup 2} (50 ft{sup 2}) heated transfer area Rototherm{reg_sign} evaporator from Artisan Industries. The condensed evaporator vapor stream was collected and sampled validating efficient separation of the water. An overall decontamination factor of 1.2E+06 was achieved demonstrating excellent retention of key radioactive species within the concentrated liquid stream. The evaporator system was supported by a modular steam supply, chiller, and control computer systems which would be typically implemented at the tank farms. Operation of these support systems demonstrated successful integration while identifying areas for efficiency improvement. Overall testing effort increased the maturation of this technology to support final deployment design and continued project implementation.

  19. Structural evolution during evaporation of a 3-glycidoxypropyltrimethoxysilane film studied in situ by time resolved infrared spectroscopy.

    Science.gov (United States)

    Innocenzi, Plinio; Figus, Cristiana; Takahashi, Masahide; Piccinini, Massimo; Malfatti, Luca

    2011-09-29

    Time resolved infrared spectroscopy has been applied to study in situ the evaporation process of a 3-glycidoxypropyltrimethoxysilane hybrid sol by casting a droplet on a ZnSe substrate; the analysis has been performed in the middle-infrared range and in the near-infrared range. The experiment has allowed following the structural changes induced by water evaporation and the formation of ordered structures within the cast film; the CH(2) scissoring bands have been used as a fingerprint for the disorder to order transition of the hybrid. The experiment has been done using both a fresh sol and an aged sol which produce respectively an amorphous material and a crystalline hybrid material. The analysis has shown that the epoxy groups do not react during the evaporation while the silica structure shows only a slight condensation and an increase in open cage-like species. At the end of evaporation the hybrid has a "soft-like" state which allows structural rearrangements to self-order.

  20. AES depth profile and photoconductive studies of AgInS2 thin films prepared by co-evaporation

    Directory of Open Access Journals (Sweden)

    C. A Arredondo

    2014-06-01

    Full Text Available In this study, thin films of AgInS2 with chalcopyrite-type tetragonal structure were grown by means of a procedure based on the sequential evaporation of metallic precursors in presence of elemental sulfur in a two-stage process. The effect of the growth temperature and the proportion of the evaporated Ag mass in relation to the evaporated In mass (mAg/mIn on the phase and homogeneity in the chemical composition were researched through X-ray diffraction measurements and Auger electrons spectroscopy. These measurements evidenced that the conditions for preparing thin films containing only the AgInS2 phase, grown with tetragonal chalcopyrite-type structure and good homogeneity of the chemical composition in the entire volume, are a temperature of 500 °C and a 0.89 mAg/mIn proportion. The transient photocurrent measurements indicated that the electricity transmission is affected by recombination processes via band-to-band transitions and trap-assisted transitions.

  1. Optical characteristics of ZnS {sub x}Se{sub 1-x} thin films prepared by electron beam evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Abo-Hassan, Khedr M.M. [Department of Physics and Mathematics, School of Engineering, UCSI, Lot 18113, Off Jalan Cerdas, Taman Connaught, 56000 Cheras, Kuala Lumpur (Malaysia)]. E-mail: khedr@ucsi.edu.my; Muhamad, M.R. [Department of Physics, University of Malaya, K.L. Malaysia (Malaysia); Radhakrishna, S

    2005-11-22

    The optical transmission measurements are used to determine various optical constants and properties of ZnS {sub x}Se{sub 1-x} thin films prepared by electron beam evaporation onto glass substrates at 60 deg. C. The dispersion of the complex refractive index, the complex dielectric function and the absorption coefficient is studied in the transparent region of the spectrum and compared with the theoretical results calculated based on the model dielectric function. The fundamental optical energy gap is estimated by fitting the absorption coefficient data in the high absorption region to the direct transition expression. The variation of the energy gap with the composition in the film is investigated and compared with the results reported previously by other workers. The shift in the energy gap caused by the uniaxial stress inside the film and the grain size effect is estimated.

  2. Climbing film evaporator and the falling film evaporator%升膜式蒸发器与降膜式蒸发器的比较

    Institute of Scientific and Technical Information of China (English)

    刘殿宇

    2014-01-01

    料液在升膜与降膜式蒸发器中均以膜的形式沿着管壁边流动边与管外加热介质进行热与质的交换并蒸发.两者都不适合浓度较高的易洁垢结焦或在蒸发过程中有结晶析出的料液的蒸发;不同点前者料液是在高速的二次蒸汽流及真空的作用下在管壁成膜并向上运动,蒸发后料液与二次蒸汽从蒸发器顶部进入分离器,实现蒸发后料液与二次蒸汽的分离,而降膜式蒸发器则是在料液分布器的作用下将来料均匀的分配给每根降膜管并以膜的状态沿着管壁在自身重力及二次蒸汽流的作用下自上而下流动,蒸发后的料液与二次蒸汽在蒸发器底部进入分离器中实现蒸发后料液与二次蒸汽的彻底分离.升膜式蒸发器要求加热温差较大,操作不易控制,易造成跑料等现象的发生.因此,近些年来很少应用.就此进行阐述.

  3. 升膜式蒸发器与降膜式蒸发器的比较%Comparison of Climbing Film Evaporator and Falling Film Evaporator

    Institute of Scientific and Technical Information of China (English)

    刘殿宇

    2013-01-01

    料液在升膜与降膜式蒸发器中均以膜的形式沿着管壁边流动边与管外加热介质进行热的交换并蒸发.两者都不适合浓度较高的易结垢结焦或在蒸发过程中有结晶析出的料液的蒸发;不同点前者料液是在高速的二次蒸汽流及真空的作用下在管壁成膜并向上运动,蒸发后料液与二次蒸汽从蒸发器项部进入分离器,实现蒸发后料液与二次蒸汽的分离,而降膜式蒸发器则是在料液分布器的作用下将来料均匀的分配给每根降膜管并以膜的状态沿着管壁在自身重力及二次蒸汽流的作用下自上而下流动,蒸发后的料液与二次蒸汽在蒸发器底部进入分离器中实现蒸发后料液与二次蒸汽的彻底分离.升膜式蒸发器要求加热温差较大,操作不易控制,易造成跑料等现象的发生.因此,近些年来很少应用.

  4. Structural, morphological, optical and electrical properties of Cu0.87Se thin films coated by electron beam evaporation method

    Science.gov (United States)

    Bhuvaneswari, P. V.; Ramamurthi, K.; Ramesh Babu, R.; Moorthy Babu, S.

    2015-09-01

    Copper selenide powder was synthesized adopting a two-step chemical route. X-ray diffraction analysis showed that the synthesized material consists of mixed phases of Cu3Se2, Cu7Se4 and Cu0.87Se. Synthesized material was used to deposit thin films at the substrate temperature of 200, 300, 400 and 500 °C by electron beam evaporation method. The substrate temperature of 200 °C yielded amorphous film, whereas the substrate temperature of 300, 400 and 500 °C produced Cu0.87Se single-phase thin film. Atomic force microscopic studies showed that the film coated at 400 °C possesses relatively lower average roughness. The direct band gap of Cu0.87Se varies from 1.67 to 1.81 eV. Thin film coated at 400 °C shows the minimum resistivity of 5.2 × 10-4 Ω cm, whereas the film coated at 300 °C possesses the maximum mobility of 8.2 cm2/Vs.

  5. Photo- and Electrochromic Properties of Activated Reactive Evaporated MoO3 Thin Films Grown on Flexible Substrates

    Directory of Open Access Journals (Sweden)

    K. Hari Krishna

    2008-01-01

    Full Text Available The molybdenum trioxide (MoO3 thin films were grown onto ITO-coated flexible Kapton substrates using plasma assisted activated reactive evaporation technique. The film depositions were carried out at constant glow power and oxygen partial pressures of 8 W and 1×10−3 Torr, respectively. The influence of substrate temperature on the microstructural and optical properties was investigated. The MoO3 thin films prepared at a substrate temperature of 523 K were found to be composed of uniformly distributed nanosized grains with an orthorhombic structure of α-MoO3. These nanocrystalline MoO3 thin films exhibited higher optical transmittance of about 80% in the visible region with an evaluated optical band gap of 3.29 eV. With the insertion of 12.5 mC/cm2, the films exhibited an optical modulation of 40% in the visible region with coloration efficiency of 22 cm2/C at the wavelength of 550 nm. The MoO3 films deposited at 523 K demonstrated better photochromic properties and showed highest color center concentration for the irradiation time of 30 minutes at 100 mW/cm2.

  6. The annealing temperature dependence of anatase TiO2 thin films prepared by the electron-beam evaporation method

    Science.gov (United States)

    Taherniya, Atefeh; Raoufi, Davood

    2016-12-01

    In this paper, we report on titanium dioxide (TiO2) thin films deposited by an electron beam evaporation method on quartz glass substrates (15 × 15 × 2 mm3 in size), followed by post-annealing at 300 °C to 600 °C for an annealing time of up to 2 h. The substrate temperature during the film deposition was kept at 150 °C. The effect of post-growth thermal annealing on the structural and optical properties of TiO2 thin films were systematically studied as a function of annealing temperature. We found that the as-deposited TiO2 films are amorphous in structure, while the films started to crystallize into the anatase phase when annealed at temperatures ≥450 °C. An increase in annealing temperature results in a decrease of transmittance percentage and also in optical band gap energy. The refractive indices of the films were evaluated from the measured transmittance spectra using the envelope method. An increase in the refractive index with an increase of annealing temperature was observed.

  7. Temperature responsive functional polymeric thin films obtained by matrix assisted pulsed laser evaporation for cells attachment–detachment study

    Energy Technology Data Exchange (ETDEWEB)

    Rusen, L. [NILPRP, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, PO Box MG-16, RO-077125 Magurele, Bucharest (Romania); Dinca, V., E-mail: dinali@nipne.ro [NILPRP, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, PO Box MG-16, RO-077125 Magurele, Bucharest (Romania); Mitu, B. [NILPRP, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, PO Box MG-16, RO-077125 Magurele, Bucharest (Romania); Mustaciosu, C. [Horia Hulubei National Institute of Physics and Nuclear Engineering, IFIN HH, Magurele, Bucharest (Romania); Dinescu, M. [NILPRP, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, PO Box MG-16, RO-077125 Magurele, Bucharest (Romania)

    2014-05-01

    Multifunctional thin films used as thermoresponsive substrate for engineering cell sheets represent an important area in tissue engineering. As the morphology and the chemical characteristics of the thin films directly control their interaction with cells, it is important to correlate these characteristics with the biological answer. In this study, thermally sensitive poly(N-isopropylacrylamide), (pNIPAAm) thin films were prepared by matrix assisted pulsed laser evaporation and utilized in L929 cell adhesion and detachment studies. Fourier transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM) were used to determine the pNIPAAm thin films chemical and morphological characteristics. The FTIR data demonstrated that the functional groups in the MAPLE-deposited films remained intact for fluences in the range of 200–600 mJ cm{sup −2}. Within this fluence range, the AFM topographical studies showed that the roughness of the coatings was dependent on laser fluence and the obtained surfaces were characterized by a granular aspect. L929 cell viability studies onto the pNIPAAm coatings showed little or no toxic effect for fluences below 600 mJ cm{sup −2}, while for higher fluences, viability was decreased with more than 50%. The adhesion and detachment of the cell was found to be mainly dependent on the film surface morphology.

  8. Temperature responsive functional polymeric thin films obtained by matrix assisted pulsed laser evaporation for cells attachment-detachment study

    Science.gov (United States)

    Rusen, L.; Dinca, V.; Mitu, B.; Mustaciosu, C.; Dinescu, M.

    2014-05-01

    Multifunctional thin films used as thermoresponsive substrate for engineering cell sheets represent an important area in tissue engineering. As the morphology and the chemical characteristics of the thin films directly control their interaction with cells, it is important to correlate these characteristics with the biological answer. In this study, thermally sensitive poly(N-isopropylacrylamide), (pNIPAAm) thin films were prepared by matrix assisted pulsed laser evaporation and utilized in L929 cell adhesion and detachment studies. Fourier transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM) were used to determine the pNIPAAm thin films chemical and morphological characteristics. The FTIR data demonstrated that the functional groups in the MAPLE-deposited films remained intact for fluences in the range of 200-600 mJ cm-2. Within this fluence range, the AFM topographical studies showed that the roughness of the coatings was dependent on laser fluence and the obtained surfaces were characterized by a granular aspect. L929 cell viability studies onto the pNIPAAm coatings showed little or no toxic effect for fluences below 600 mJ cm-2, while for higher fluences, viability was decreased with more than 50%. The adhesion and detachment of the cell was found to be mainly dependent on the film surface morphology.

  9. Effect of deposition temperature on electron-beam evaporated polycrystalline silicon thin-film and crystallized by diode laser

    Energy Technology Data Exchange (ETDEWEB)

    Yun, J., E-mail: j.yun@unsw.edu.au; Varalmov, S.; Huang, J.; Green, M. A. [School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, New South Wales 2052 (Australia); Kim, K. [School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, New South Wales 2052 (Australia); Suntech R and D Australia, Botany, New South Wales 2019 (Australia)

    2014-06-16

    The effects of the deposition temperature on the microstructure, crystallographic orientation, and electrical properties of a 10-μm thick evaporated Si thin-film deposited on glass and crystallized using a diode laser, are investigated. The crystallization of the Si thin-film is initiated at a deposition temperature between 450 and 550 °C, and the predominant (110) orientation in the normal direction is found. Pole figure maps confirm that all films have a fiber texture and that it becomes stronger with increasing deposition temperature. Diode laser crystallization is performed, resulting in the formation of lateral grains along the laser scan direction. The laser power required to form lateral grains is higher in case of films deposited below 450 °C for all scan speeds. Pole figure maps show 75% occupancies of the (110) orientation in the normal direction when the laser crystallized film is deposited above 550 °C. A higher density of grain boundaries is obtained when the laser crystallized film is deposited below 450 °C, which limits the solar cell performance by n = 2 recombination, and a performance degradation is expected due to severe shunting.

  10. Impact of annealing on physical properties of e-beam evaporated polycrystalline CdO thin films for optoelectronic applications

    Science.gov (United States)

    Purohit, Anuradha; Chander, S.; Dhaka, M. S.

    2017-04-01

    An impact of annealing on the physical properties of polycrystalline CdO thin films is carried out in this study. CdO thin films of thickness 650 nm were fabricated on glass and indium tin oxide (ITO) substrates employing e-beam evaporation technique. The pristine thin films were annealed in air atmosphere at 250 °C, 400 °C and 550 °C for one hour followed by investigation of structural, optical, electrical and morphological properties along with elemental composition using X-ray diffraction (XRD), UV-Vis spectrophotometer, Fourier transform infrared (FTIR) spectrometer, source meter, scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS), respectively. XRD patterns confirmed the polycrystalline nature and cubic structure (with space group Fm 3 bar m) of the films. The crystallographic parameters are calculated and found to be influenced by the post-air annealing treatment. The optical study shows that direct band gap is ranging from 1.98 eV to 2.18 eV and found to be decreased with post-annealing. The refractive index and optical conductivity are also increased with annealing temperature. The current-voltage characteristics show ohmic behaviour of the annealed films. The surface morphology is observed to be improved with annealing and grain-size is increased as well as EDS spectrum confirmed the presence of cadmium (Cd) and oxygen (O) in the deposited films.

  11. Preparation of very thin superconducting films of Y-Ba-Cu-O by a layer-by-layer resistive evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Azoulay, J.; Goldschmidt, D. (Raymond and Beverly Sackler Faculty of Exact Sciences, School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel, and Center for Technological Education, Holon, P.O. Box 305, Holon 58680, Israel (IL)); Brener, R. (Solid State Institute, Technion, Israel Institute of Technology, Haifa 3200, Israel)

    1989-10-15

    We report here on 1/4 -{mu}m-thick superconducting Y-Ba-Cu-O films, produced by a sequential layer-by-layer deposition of Cu, BaF{sub 2}, and YF{sub 3}, utilizing solely resistive evaporation from tungsten boats onto SrTiO{sub 3} substrates. The films are composed primarily of quasioriented elongated grains and have, on the average, the correct stoichiometry. A transition onset at 75 K and width of {similar to}25 K have been observed in these films. The shape of the current-voltage curve indicates that Josephson-coupled weak links limit the transport in these films. However, the magnitude of critical current (3000 A/cm{sup 2} at {similar to}10 K) is larger than that found in bulk ceramic superconductors. The origin of weak links in these films is probably in the regions of contact between the elongated grains. The relatively large critical current density, as compared to regular bulk ceramic superconductors, is presumably related to the quasioriented nature of the film.

  12. Atomistic modelling of evaporation and explosive boiling of thin film liquid argon over internally recessed nanostructured surface

    Science.gov (United States)

    Hasan, Mohammad Nasim; Shavik, Sheikh Mohammad; Rabbi, Kazi Fazle; Haque, Mominul

    2016-07-01

    Molecular dynamics (MD) simulations have been carried out to investigate evaporation and explosive boiling phenomena of thin film liquid argon on nanostructured solid surface with emphasis on the effect of solid-liquid interfacial wettability. The nanostructured surface considered herein consists of trapezoidal internal recesses of the solid platinum wall. The wetting conditions of the solid surface were assumed such that it covers both the hydrophilic and hydrophobic conditions and hence effect of interfacial wettability on resulting evaporation and boiling phenomena was the main focus of this study. The initial configuration of the simulation domain comprised of a three phase system (solid platinum, liquid argon and vapor argon) on which equilibrium molecular dynamics (EMD) was performed to reach equilibrium state at 90 K. After equilibrium of the three-phase system was established, the wall was set to different temperatures (130 K and 250 K for the case of evaporation and explosive boiling respectively) to perform non-equilibrium molecular dynamics (NEMD). The variation of temperature and density as well as the variation of system pressure with respect to time were closely monitored for each case. The heat flux normal to the solid surface was also calculated to illustrate the effectiveness of heat transfer for hydrophilic and hydrophobic surfaces in cases of both nanostructured surface and flat surface. The results obtained show that both the wetting condition of the surface and the presence of internal recesses have significant effect on normal evaporation and explosive boiling of the thin liquid film. The heat transfer from solid to liquid in cases of surface with recesses are higher compared to flat surface without recesses. Also the surface with higher wettability (hydrophilic) provides more favorable conditions for boiling than the low-wetting surface (hydrophobic) and therefore, liquid argon responds quickly and shifts from liquid to vapor phase faster in

  13. Optical, structural, and electrical properties of Mg2NiH4 thin films in situ grown by activated reactive evaporation

    NARCIS (Netherlands)

    Westerwaal, R. J.; Slaman, M.; Broedersz, C. P.; Borsa, D. M.; Dam, B.; Griessen, R.; Borgschulte, A.; Lohstroh, W.; Kooi, B.; ten Brink, Gert; Tschersich, K. G.; Fleischhauer, H. P.

    2006-01-01

    Mg2NiH4 thin films have been prepared by activated reactive evaporation in a molecular beam epitaxy system equipped with an atomic hydrogen source. The optical reflection spectra and the resistivity of the films are measured in situ during deposition. In situ grown Mg2NiH4 appears to be stable in

  14. 板式升膜蒸发器蒸发换热特性的实验研究%Experiment study of evaporation heat transfer characteristics in plate climbing film evaporator

    Institute of Scientific and Technical Information of China (English)

    高立博; 郑志皋; 陶乐仁; 薛维超; 黄理浩; 刘荣; 成简

    2011-01-01

    升膜蒸发利用被蒸发溶液在受热沸腾汽化产生的蒸气带动料液上升,形成一个稳定的液膜,从而加快蒸发,提高了传热系数.针对蒸发器液位、换热温差、加热蒸气的流量等因素对板式升膜蒸发传热系数的影响进行了实验研究,实验结果表明随着蒸发器内液位的降低升膜蒸发传热系数明显提高,此外,换热温差、加热蒸气的流量等因素对升膜蒸发换热性能也有明显的影响.%The influence of evaporation heat transfer coefficient for climbing film evaporator was studied by experiment at the different evaporator liquid level, temperature difference and the heating steam flow rate. The results show that the heat transfer coefficient of climbing film evaporator increases with the decreasing of liquid level. The climbing film evaporator heat transfer performance is also significantly affected by temperature difference and the heating steam flow rate.

  15. Comparison of TiO2 and ZrO2 Films Deposited by Electron-Beam Evaporation and by Sol-Gel Process

    Institute of Scientific and Technical Information of China (English)

    YAO Jian-Ke; LI Hai-Yuan; FAN Zheng-Xiu; TANG Yong-Xing; JIN Yun-Xia; ZHAO Yuan-An; HE Hong-Bo; SHAO Jian-Da

    2007-01-01

    TiO2 and ZrO2 films are deposited by electron-beam (EB) evaporation and by sol-gel process. The film properties are characterized by visible and Fourier-transform infrared spectrometry, x-ray diffraction analysis, surface roughness measure, absorption and laser-induced damage threshold (LIDT) test. It is found that the sol-gel films have lower refractive index, packing density and roughness than EB deposited films due to their amorphous structure and high OH group concentration in the film. The high LIDT of sol-gel films is mainly due to their amorphous and porous structure, and low absorption. LIDT of EB deposited film is considerably affected by defects in the film, and LIDT of sol-gel deposited film is mainly effected by residual organic impurities and solvent trapped in the film.

  16. Ti-Zr-V non-evaporable getter films from development to large scale production for the Large Hadron Collider

    CERN Document Server

    Chiggiato, P

    2005-01-01

    Non-evaporable getter (NEG) alloys after dissolution of their native oxide layer into the bulk are able to pump most of the gases present in ultra-high vacuum systems. The dissolution process, commonly called activation, is obtained by heating in vacuum. NEG materials can be sputter-deposited as a thin film on the inner wall of a vacuum chamber, transforming it from a source of gas into an effective pump. The most significant advance in the development of NEG films was the discovery of a very low activation temperature (180°C for 24 h heating) in a large range of compositions of the Ti-Zr-V system. This favourable property was correlated with nanometric grain size of the film (about 3 to 5 nm). In addition to pumping, NEG films lead to reduced induced gas desorption and secondary electron yields. As a consequence, Ti-Zr-V films provide the optimum solution to most of the problems encountered in vacuum systems of modern particle accelerators for high energy physics and for synchrotron radiation facilities. ...

  17. Structural and optical properties of CuInxGa1-xSe2 thin films prepared by flash evaporation

    Science.gov (United States)

    Benslim, N.; Cowache, P.; Hannech, E. B.; Benabdeslem, M.; Béchiri, L.; Mahdjoubi, L.

    2002-11-01

    CuInxGa1-xSe2 (CIGSe) thin films with x = 0.5 and 0.75 were deposited by a single source vacuum thermal evaporated method 'Flash' on molybdenum coated glass. Some of these films were annealed in selenium atmosphere. X-ray diffraction and energy dispersive x-ray measurements have indicated that these films contain exclusively a phase with a chalcopyrite structure. The morphology, grain distributions and composition of the CIGSe films were studied and compared for x = 0.5 and x = 0.75. The optical studies have shown that the films are highly absorbing (7 × 104 cm-1). The absorption edge is shifted to high photon energies when the gallium concentration is increased. After selenization, the bandgaps increase from 1.00 eV to 1.18 eV for x = 0.75 and from 1.16 eV to 1.28 eV for x = 0.5.

  18. Optical parameters of ternary Te15(Se100-xBix)85 thin films deposited by thermal evaporation

    Science.gov (United States)

    Kumar, Kameshwar; Sharma, Pankaj; Katyal, S. C.; Thakur, Nagesh

    2011-10-01

    Thin films of Te15(Se100-xBix)85 (x=0, 1, 2, 3, 4 and 5 at.%) glassy alloys were deposited by thermal evaporation (at 10-4 Pa) from bulk samples. Optical characterization of the films was done by analysing their transmission spectra taken in the spectral range 400-2300 nm. Swanepoel's method was used to calculate the refractive index (n) and extinction coefficient (k). It was found that the refractive index increases with an increase in Bi content. The Wemple-DiDomenico single-oscillator approach was used to calculate the average band gap energy (Eo), dispersion energy (Ed) and static refractive index (no). The absorption coefficient (α) and film thickness were calculated from the transmission spectra of the films. The optical band gap (Eg) was estimated using Tauc's extrapolation and was found to decrease from 1.37 to 1.21 eV with Bi addition from 0 to 5 at.% in glassy alloys. The decrease in optical band gap is explained on the basis of the decrease in cohesive energy of the samples and the difference of electronegativity of the atoms involved. The real (ɛr) and imaginary parts (ɛi) of the dielectric constant for the films were also calculated and reported.

  19. Effect of substrate temperature on the optical parameters of thermally evaporated Ge-Se-Te thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Pankaj, E-mail: pks_phy@yahoo.co.i [Department of Physics, Jaypee University of Information Technology, Waknaghat, Solan, H.P. 173215 India (India); Katyal, S.C. [Department of Physics, Jaypee University of Information Technology, Waknaghat, Solan, H.P. 173215 India (India)

    2009-05-01

    Thin films of Ge{sub 10}Se{sub 90-x}Te{sub x} (x = 0, 10, 20, 30, 40, 50) glassy alloys were deposited at three substrate temperatures (303 K, 363 K and 423 K) using conventional thermal evaporation technique at base pressure of {approx} 10{sup -4} Pa. X-ray diffraction results show that films deposited at 303 K are of amorphous nature while films deposited at 363 K and 423 K are of polycrystalline nature. The optical parameters, refractive index and optical gap have been derived from the transmission spectra (using UV-Vis-NIR spectrophotometer) of the thin films in the spectral region 400-1500 nm. This has been observed that refractive index values remain almost constant while the optical gap is found to decrease considerably with the increase of substrate temperature. The decrease in optical gap is explained on the basis of change in nature of films, from amorphous to polycrystalline state, with the increase of substrate temperature. The optical gap has also been observed to decrease with the increase of Te content.

  20. Effect of γ- irradiation on structural, optical and electrical properties of thermally evaporated iron (III) chloride tetraphenylporphyrin thin films

    Science.gov (United States)

    El-Nahass, M. M.; Zayed, H. A.; Elgarhy, E. E.; Hassanien, A. M.

    2017-10-01

    Influence of γ-irradiation on structural, optical and electrical properties of thermally evaporated iron (III) chloride tetraphenylporphyrin (FeTPPCl) thin films have been reported. The structural features are investigated by scanning electron microscope (SEM) and transmission electron microscope (TEM) techniques. The optical constants of as-deposited and γ-irradiated FeTPPCl thin films have been determined in the wavelength range 200-2500 nm using spectrophotometric measurements at nearly normal incidence of light. The calculated values of the absorption coefficient,α, are used to estimate the type of transitions for as-deposited and γ-irradiated FeTPPCl thin films. The real part of the refractive index in the transparent region is discussed by using a single-oscillator and Drude models. According to Miller's rule, the single oscillator model is used to deduce the third-order nonlinear susceptibility, χ(3). The temperature dependence of DC electrical conductivity, σDC, confirms the semiconducting behaviour of FeTPPCl thin films. A free band type in the higher temperature region and hopping type in the low-temperature region have been used to explain the DC conduction mechanisms of FeTPPCl thin films.

  1. Evaporation temperature-tuned physical vapor deposition growth engineering of one-dimensional non-Fermi liquid tetrathiofulvalene tetracyanoquinodimethane thin films

    DEFF Research Database (Denmark)

    Sarkar, I.; Laux, M.; Demokritova, J.

    2010-01-01

    We describe the growth of high quality tetrathiofulvalene tetracyanoquinodimethane (TTF-TCNQ) organic charge-transfer thin films which show a clear non-Fermi liquid behavior. Temperature dependent angle resolved photoemission spectroscopy and electronic structure calculations show that the growth...... of TTF-TCNQ films is accompanied by the unfavorable presence of neutral TTF and TCNQ molecules. The quality of the films can be controlled by tuning the evaporation temperature of the precursor in physical vapor deposition method....

  2. Separation and PurificationHomologous Compounds byof Dodecanedioic Acid from Its Falling Film Crystallization

    Institute of Scientific and Technical Information of China (English)

    李裕; 刘有智; 齐雪琴

    2004-01-01

    Separation and purification of dodecanedioic acid (DDDA) from its homologous compounds were studied experimentally by falling film crystallization (FFC). The influences of various operation parameters, including crystallizing time, flow rate of melt and temperature of glycerine bath, on purity of DDDA and crystallizing rate were investigated. Over 99% (by mole) DDDA was obtained for a feed composition of 96% (by mole). The main factors affecting the separation efficiency are flow rate of melt and temperature of glycerine bath. The crystallizing layer of DDDA was further purified by sweating and blasting. A set of optimized operation data are provided for better understanding the mechanism of heat and mass transfer in FFC, and for further industrial application of DDDA purification process.

  3. Parallelised direct numerical simulation of three-dimensional wavy falling films

    Science.gov (United States)

    Juric, Damir; Chergui, Jalel; Kahouadji, Lyes; Matar, Omar; Shin, Seungwon

    2015-11-01

    We present a computational study of falling liquid films in a three-dimensional inclined rectangular domain using the new massively parallel code, BLUE. Calculations are carried out in order to obtain several wave patterns such as occasional solitary waves, which travel downstream at a constant velocity, or less coherent structures. BLUE uses parallelization algorithms based on MPI and algebraic domain decomposition. The velocity field is solved by a parallel GMRES method for the viscous terms and the pressure by a parallel multigrid method. The method for the treatment of the fluid interfaces and capillary forces uses a parallelized Front Tracking/Level Set technique which defines the interface both by a discontinuous density field as well as by a local triangular Lagrangian mesh. This structure allows the interface to undergo large deformations including the rupture and/or coalescence of fluid interfaces. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  4. 薄膜蒸发器的分离效率%Separation Efficiency of Thin-film Evaporators

    Institute of Scientific and Technical Information of China (English)

    R. Billet

    2004-01-01

    The recovery of contaminants and useful substances from liquid wastes, the purification of production effluents and the separation of thermally instable mixtures are some of the multivarious applications of thin-film distillors in many processes of the chemical and allied industries and of the food industries. In a study carried out in pilot plants with distillation test systems there was found a good agreement between the experimental separation results and those obtained by computing with a theorectical model; the latter is based on the assumption of phase equilibrium between the vapour formed on an infinitely small element of area in a liquid film of any given concentric periphery of the vertically arranged evaporator. These tests were perfomed under various phase loads.

  5. Optical and Electrical Properties of Ag-Doped In2S3 Thin Films Prepared by Thermal Evaporation

    Directory of Open Access Journals (Sweden)

    Peijie Lin

    2014-01-01

    Full Text Available Ag-doped In2S3 (In2S3:Ag thin films have been deposited onto glass substrates by a thermal evaporation method. Ag concentration is varied from 0 at.% to 4.78 at.%. The structural, optical, and electrical properties are characterized using X-ray diffraction (XRD, spectrophotometer, and Hall measurement system, respectively. The XRD analysis confirms the existence of In2S3 and AgIn5S8 phases. With the increase of the Ag concentration, the band gap of the films is decreased gradually from 2.82 eV to 2.69 eV and the resistivity drastically is decreased from ~103 to 5.478×10-2 Ω·cm.

  6. Structural, optical, and photoluminescence characterization of electron beam evaporated ZnS/CdSe nanoparticles thin films

    Science.gov (United States)

    Mohamed, S. H.; Ali, H. M.

    2011-01-01

    Structural, optical, and photoluminescence investigations of ZnS capped with CdSe films prepared by electron beam evaporation are presented. X-ray diffraction analysis revealed that the ZnS/CdSe nanoparticles films contain cubic cadmium selenide and hexagonal zinc sulfide crystals and the ZnS grain sizes increased with increasing ZnS thickness. The refractive index was evaluated in terms of envelope method, which has been suggested by Swanepoel in the transparent region. The refractive index values were found to increase with increasing ZnS thickness. However, the optical band gap and the extinction coefficient were decreased with increasing ZnS thickness. Photoluminescence (PL) investigations revealed the presence of two broad emission bands. The ZnS thickness significantly influenced the PL intensities.

  7. Effect of Substrate Temperature on Structural and Optical Properties of Nanocrystalline CdTe Thin Films Deposited by Electron Beam Evaporation

    OpenAIRE

    M. Rigana Begam; N. Madhusudhana Rao; S. Kaleemulla; M. Shobana; N. Sai Krishna; M. Kuppan

    2013-01-01

    Nanocrystalline Cadmium Telluride (CdTe) thin films were deposited onto glass substrates using electron beam evaporation technique. The effect of substrate temperature on the structural, morphological and optical properties of CdTe thin films has been investigated. All the CdTe films exhibited zinc blende structure with (111) preferential orientation. The crystallite size of the films increased from 35 nm to 116 nm with the increase of substrate temperature and the band gap of the films decre...

  8. Effect of Substrate Temperature on Structural and Optical Properties of Nanocrystalline CdTe Thin Films Deposited by Electron Beam Evaporation

    Directory of Open Access Journals (Sweden)

    M. Rigana Begam

    2013-07-01

    Full Text Available Nanocrystalline Cadmium Telluride (CdTe thin films were deposited onto glass substrates using electron beam evaporation technique. The effect of substrate temperature on the structural, morphological and optical properties of CdTe thin films has been investigated. All the CdTe films exhibited zinc blende structure with (111 preferential orientation. The crystallite size of the films increased from 35 nm to 116 nm with the increase of substrate temperature and the band gap of the films decreased from 2.87 eV to 2.05 eV with the increase of the crystallite size.

  9. SnS absorber thin films by co-evaporation: Optimization of the growth rate and influence of the annealing

    Energy Technology Data Exchange (ETDEWEB)

    Robles, Víctor, E-mail: victor.robles@ciemat.es; Trigo, Juan Francisco; Guillén, Cecilia; Herrero, José

    2015-05-01

    Tin sulfide thin films were prepared by co-evaporation on soda-lime glass substrates, for use as absorber layers. The synthesis was carried out at 350 °C substrate temperature and varying the growth rate in the 2-6 Å/s range, adjusting the deposition time in order to obtain thicknesses in the 700-1500 nm range. After evaporation, the samples were heated at 400 °C and 500 °C under various atmospheres. The evolution of the morphological, structural and optical properties has been analyzed as a function of the thickness and deposition rate, before and after annealing. For the samples grown at the lowest rate, SnS and Sn{sub 2}S{sub 3} phase mixing has been observed by X-ray diffraction. Samples with reduced thickness preferably crystallize in the SnS phase, whereas thicker layers become richer in the Sn{sub 2}S{sub 3} phase. The sulfur treatment of samples prepared at the lowest rate results in the formation of SnS{sub 2} phase. Otherwise, the samples obtained at the highest rates show single-phase SnS after heating at 400 °C in sulfur atmosphere, with gap energy values around 1.24 eV. - Highlights: • Tin sulfide thin films were deposited by co-evaporation at different growth rates. • The influence of the growth rate and post-annealing at different conditions was studied. • The SnS phase was obtained by optimizing the growth rate and the annealing process. • The SnS phase presented properties for use as absorber layer.

  10. Epitaxial Fe3Si films on GaAs(100) substrates by means of electron beam evaporation

    Science.gov (United States)

    Thomas, J.; Schumann, J.; Vinzelberg, H.; Arushanov, E.; Engelhard, R.; Schmidt, O. G.; Gemming, T.

    2009-06-01

    This paper presents results on the preparation, structural, electrical and magnetic properties of Fe3Si films as a representative for a Heusler alloy-like compound which are known as half-metallic materials with ferromagnetic behaviour. The films have been prepared by means of ultra-high vacuum (UHV) electron beam evaporation with the aim of achieving epitaxial growth on GaAs(100) substrates. The main focus of this work is the structural characterization of the Fe3Si films grown on GaAs by means of high resolution transmission electron microscopy (TEM) to confirm the epitaxial growth. For Fe3Si with a composition in the vicinity of stoichiometry an almost lattice-matched growth on GaAs(001) has been observed characterized by a high crystalline quality and a good interface perfection. Besides the studies on cross-sectional samples by TEM data from reflection high energy electron diffraction (RHEED) and x-ray diffraction (XRD) were also included into the discussion. The electrical and magnetic parameters of the films studied are found to be in good agreement with data reported for the best Fe3Si molecular beam epitaxy (MBE) layers. As evidenced by x-ray diffraction, transmission electron microscopy, resistivity and magnetic measurements, we find an optimum growth temperature of 280-350 °C to obtain ferromagnetic layers with high crystal and interface perfection as well as a high degree of atomic ordering.

  11. Effect of Deposition Rate on Structure and Surface Morphology of Thin Evaporated Al Films on Dielectrics and Semiconductors

    Directory of Open Access Journals (Sweden)

    Kirill BORDO

    2012-12-01

    Full Text Available Aluminum (Al films with thickness of 100 nm were grown on unheated glass, silicon and mica substrates by electron beam evaporation. The deposition rates were adjusted in the range between 0.1 nm/s and 2 nm/s, the pressure in the vac­uum chamber during deposition was lower than 1·10–3 Pa. The structure and surface morphology of the as-deposited Al films were studied using scanning electron microscopy (SEM and atomic force microscopy (AFM. SEM imaging of the films showed that the mean grain size of thin Al films on all of the substrates increased from 20 nm – 30 nm to 50 nm – 70 nm with increase of the deposition rate. Quantitative AFM characterization showed that for all substrates the root mean square surface roughness increases monotonically with increasing the deposition rate from 0.1 nm/s to 2 nm/s. The observed effects of the deposition rate on the grain size and surface roughness are explained by the fundamental characteristics of the island growth mode, the influence of the background gases and the surface morphology of the bare substrates.DOI: http://dx.doi.org/10.5755/j01.ms.18.4.3088

  12. Structural and optical properties of Zn1−xNixTe thin films prepared by electron beam evaporation technique

    Directory of Open Access Journals (Sweden)

    Arshad Mahmood

    2015-02-01

    Full Text Available Zn1−xNixTe thin films with different composition (x=0.0, 0.05, 0.10, 0.15 and 0.20 were deposited on glass substrate by electron beam evaporation technique followed by its characterization using advanced structural and optical analysis techniques. Structural properties of the prepared thin films were studied by X-ray diffraction (XRD. The XRD patterns revealed that the binary compounds transformed into a ternary compound with cubic structure having preferred orientation along the c-direction with (111 planes. Composition analysis of the films was determined by energy dispersive analysis of X-rays (EDAX and found to be in agreement with the precursor composition. Optical properties such as extinction coefficient (k and band gap energy of these films were examined by using a spectroscopic ellipsometer. It was found that the extinction coefficient (k increased with the addition of Ni content in the alloy. In comparison, the band gap energy was also determined by using transmission spectra and found to be agreed with that of the ellipsometric results. These analyses confirm that the band gap energy decreases with the increase of Ni content in the alloy.

  13. Experimental study of evaporation of distilled water and 10% NaCl and СaCl2 aqueous salt solutions droplets under their free falling on a heated surface

    Directory of Open Access Journals (Sweden)

    Feoktistov D.V.

    2017-01-01

    Full Text Available The paper presents the experimental results of evaporation of distilled water and 10% aqueous salt solutions of NaCl and СaCl2 droplets under their free falling on a heated surface. It is proved that it is more expedient to conduct the experimental research in this field according to classical multifactorial experiment. Laser treatment of surfaces is found to increase the evaporation rate and to biases the point of boiling crisis in the region of lower surface temperatures. In this case, in the conditions of boiling crisis the frequency of contact of a droplet with a heated surface will decrease.

  14. THE PHOTOCATALYTIC OXIDATION OF LOW CONCENTRATION MTBE ON TITANIUM DIOXIDE FROM GROUNDWATER IN A FALLING FILM REACTOR

    Science.gov (United States)

    This study focuses on three objectives: 1) to determine the feasibility of using a falling-film slurry photocatalytic reactor for the degradation of MTBE in water, 2) to assess the feasibility of MTBE photo-oxidation on TiO2 at low initial MTBE concentrations (<10 mg/L), and 3) t...

  15. Spectroscopic ellipsometry studies on vacuum-evaporated zinc selenide thin film

    Science.gov (United States)

    Gao, Weidong

    2009-05-01

    Optical constants of vacuum-deposited Zinc selenide (ZnSe) film from far infrared to near ultraviolet spectral region (270nm-30μm) have been determined by variable angle spectroscopic ellipsometry. The surface roughness layer and interface layer between ZnSe film and crystalline silicon have been modeled with Bruggeman effective medium approximation (BEMA). To evaluate the microstructure of ZnSe film, X-ray diffraction (XRD) measurements are also performed.

  16. Polycrystalline GeSn thin films on Si formed by alloy evaporation

    Science.gov (United States)

    Kim, Munho; Fan, Wenjuan; Seo, Jung-Hun; Cho, Namki; Liu, Shih-Chia; Geng, Dalong; Liu, Yonghao; Gong, Shaoqin; Wang, Xudong; Zhou, Weidong; Ma, Zhenqiang

    2015-06-01

    Polycrystalline GeSn thin films on Si substrates with a Sn composition up to 4.5% have been fabricated and characterized. The crystalline structure, surface morphology, and infrared (IR) absorption coefficient of the annealed GeSn thin films were carefully investigated. It was found that the GeSn thin films with a Sn composition of 4.5% annealed at 450 °C possessed a desirable polycrystalline structure according to X-ray diffraction (XRD) analyses and Raman spectroscopy analyses. In addition, the absorption coefficient of the polycrystalline GeSn thin films in the IR region was significantly better than that of the single crystalline bulk Ge.

  17. Raman scattering of polycrystalline GaSb thin films grown by the co-evaporation process

    Institute of Scientific and Technical Information of China (English)

    Qiao Zai-Xiang; Sun Yun; He Wei-Yu; Liu Wei; He Qing; Li Chang-Jian

    2009-01-01

    This paper reports that GaSb thin films have been co-deposited on soda-lime glass substrates. The GaSb thin film structural properties are characterized by Raman spectroscopy. The Sb-A1g/GaSb-TO ratio decreases rapidly with the increase of substrate temperature, which suggests a small amount of crystalline Sb in the GaSb thin film and suggests that Sb atoms in the thin film decrease. In Raman spectra, the transverse optical (TO) mode intensity is stronger than that of the longitudinal optical (LO) mode, which indicates that all the samples arc disordered. The LO/TO intensity ratio increases with increasing substrate temperature which suggests the improved polycrystalline quality of the GaSb thin film. A downshift of the TO and LO frequencies of the polycrystalline GaSb thin film to single crystalline bulk GaSb Raman spectra is also observed. The uniaxial stress in GaSb thin film is calculated and the value is around 1.0 Gpa. The uniaxial stress decreases with increasing substrate temperature. These results suggest that a higher substrate temperature is beneficial in relaxing the stress in GaSb thin film.

  18. Structural and chemical characterisation of titanium deuteride films covered by nanoscale evaporated palladium layers

    NARCIS (Netherlands)

    Lisowski, W.; Keim, E.G.; Berg, van den A.H.J.; Smithers, M.A.

    2006-01-01

    Thin titanium deuteride (TiDy) films, covered by an ultra-thin palladium layer, have been compared with the corresponding titanium and palladium films using a combination of scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The TiD

  19. Tailoring the mass distribution and functional group density of dimethylsiloxane-based films by thermal evaporation

    Directory of Open Access Journals (Sweden)

    Tino Töpper

    2016-05-01

    Full Text Available The tailoring of molecular weight distribution and the functional group density of vinyl-terminated polydimethylsiloxane (PDMS by molecular beam deposition is demonstrated herein. Thermally evaporated PDMS and its residue are characterized using gel permeation chromatography and nuclear magnetic resonance. Thermal fragmentation of vinyl groups occurs for evaporation temperatures above 487 K (214 °C. At a background pressure of 10−6 mbar, the maximum molecular weight distribution is adjusted from (700 ± 100 g/mol to (6100 ± 100 g/mol with a polydispersity index of 1.06 ± 0.02. The content of vinyl-termination per repeating unit of PDMS is tailored from (2.8 ± 0.2% to (5.6 ± 0.1%. Molecular weights of vinyl-terminated PDMS evaporated at temperatures above 388 K (115 °C correspond to those attributed to trimethyl-terminated PDMS. Side groups of linear PDMS dominate intermolecular interactions and vapor pressure.

  20. Asymptotic Law of the Falling Liquid Film Form in Partial Wetting

    Directory of Open Access Journals (Sweden)

    A. R. Pоlyanskii

    2015-01-01

    Full Text Available The paper considers a problem of falling the partially wetting liquid across solid surface taking into account the disjoining pressure for liquid particles in its thin layers close to the three phase contact line. Within the frame of dropping liquid hydrodynamics it is easy to take into consideration the surface tension. On the other hand, with available surface tension, the attempts to fulfill Yung condition for a contact angle encounter truly insurmountable difficulties. Generally speaking, this problem has no solution within the limits of standard hydrodynamic theory of viscous liquid if the surface tension occurs and, at the same time, it is necessary to fulfill Yung condition for partial wetting. These problems can be solved if, instead of Yung condition, which is specified on the three phase contact line, the task is reformulated taking into account an additional chemical potential (or, in other words, the disjoining pressure of the liquid particles in thin liquid layers close to the three-phase contact line. This approach allows us to formulate the appropriate problem of mathematical physics in the consistent closed-form. The unique dependence of the disjoining pressure on the liquid film thickness and the decline angle of the free surface leads to degeneration of hydrodynamics equations on the three phase contact line, on the one hand, and to fulfilling the Yung condition, on the other one. The paper demonstrates application of the developed theory in the context of calculating liquid surface form at different movement velocities. The asymptotic relationships obtained from the results of numerical experiments allow us to describe the variation law of the apparent 'dynamic' contact angle versus rate of the falling liquid from the wetted surface in the way suitable for calculations.

  1. Optical meta-films of alumina nanowire arrays for solar evaporation and optoelectronic devices (Conference Presentation)

    Science.gov (United States)

    Kim, Kyoungsik; Bae, Kyuyoung; Kang, Gumin; Baek, Seunghwa

    2017-05-01

    Nanowires with metallic or dielectric materials have received considerable interest in many research fields for optical and optoelectronic devices. Metal nanowires have been extensively studied due to the high optical and electrical properties and dielectric nanowires are also investigated owing to the multiple scattering of light. In this research, we report optical meta-films of alumina nanowire arrays with nanometer scale diameters by fabrication method of self-aggregate process. The aluminum oxide nanowires are transparent from ultraviolet to near infrared wavelength regions and array structures have strong diffusive light scattering. We integrate those optical properties from the material and structure, and produce efficient an optical haze meta-film which has high transparency and transmission haze at the same time. The film enhances efficiencies of optical devices by applying on complete products, such as organic solar cells and LEDs, because of an expanded optical path length and light trapping in active layers maintaining high transparency. On the other hands, the meta-film also produces solar steam by sputtering metal on the aluminum oxide nanowire arrays. The nanowire array film with metal coating exhibits ultrabroadband light absorption from ultraviolet to mid-infrared range which is caused by nanofocusing of plasmons. The meta-film efficiently produces water steam under the solar light by metal-coated alumina arrays which have high light-to-heat conversion efficiency. The design, fabrication, and evaluation of our light management platforms and their applications of the meta-films will be introduced.

  2. Structural and optical properties of electron beam evaporated yttria stabilized zirconia thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kirubaharan, A. Kamalan; Kuppusami, P., E-mail: pkigcar@gmail.com; Dharini, T.; Ramachandran, D. [Centre for Nanoscience and Nanotechnology, Sathyabama University, Chennai-600119 (India); Singh, Akash; Mohandas, E. [Physical Metallurgy Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)

    2015-06-24

    Yttria stabilized zirconia (10 mole % Y{sub 2}O{sub 3}) thin films were deposited on quartz substrates using electron beam physical vapor deposition at the substrate temperatures in the range 300 – 973 K. XRD analysis showed cubic crystalline phase of YSZ films with preferred orientation along (111). The surface roughness was found to increase with the increase of deposition temperatures. The optical band gap of ∼5.7 eV was calculated from transmittance curves. The variation in the optical properties is correlated with the changes in the microstructural features of the films prepared as a function of substrate temperature.

  3. Lowering the activation temperature of TiZrV non-evaporable getter films

    CERN Document Server

    Taborelli, M; Scheuerlein, C

    1999-01-01

    In order to reduce the activation temperature of the TiZrV alloy, thin films of various compositions were produced by three-cathode magnetron sputtering on stainless steel substrates. For the characterisation of the activation behaviour the surface chemical composition has been monitored by Auger Electron Spectroscopy (AES) during specific in situ thermal cycles. The volume elemental composition of the film has been measured by Energy Dispersive X-ray spectroscopy (EDX) and the morphology (crystal structure and size of the crystallites) has been investigated by X-ray diffraction (XRD). The criteria indicating the sample quality and its dependence on film structure and chemical composition are presented and discussed.

  4. Lowering the activation temperature of TiZrV non-evaporable getter films [for LHC

    CERN Document Server

    Prodromides, A E; Taborelli, M

    2001-01-01

    In order to reduce the activation temperature of the TiZrV alloy, thin films of various compositions were produced by three-cathode magnetron sputtering on stainless-steel substrates. For the characterisation of the activation behaviour the surface chemical composition has been monitored by Auger electron spectroscopy during specific in situ thermal cycles. The volume elemental composition of the film has been measured by energy dispersive X-ray spectroscopy and the morphology (crystal structure and size of the crystallites) has been investigated by X-ray diffraction. The criteria indicating the sample quality and its dependence on film structure and chemical composition are presented and discussed. (13 refs).

  5. Annealing Effect on the Thermoelectric Properties of Bi2Te3 Thin Films Prepared by Thermal Evaporation Method

    Directory of Open Access Journals (Sweden)

    Jyun-Min Lin

    2013-01-01

    Full Text Available Bismuth telluride-based compounds are known to be the best thermoelectric materials within room temperature region, which exhibit potential applications in cooler or power generation. In this paper, thermal evaporation processes were adopted to fabricate the n-type Bi2Te3 thin films on SiO2/Si substrates. The influence of thermal annealing on the microstructures and thermoelectric properties of Bi2Te3 thin films was investigated in temperature range 100–250°C. The crystalline structures and morphologies were characterized by X-ray diffraction and field emission scanning electron microscope analyses. The Seebeck coefficients, electrical conductivity, and power factor were measured at room temperature. The experimental results showed that both the Seebeck coefficient and power factor were enhanced as the annealing temperature increased. When the annealing temperature increased to 250°C for 30 min, the Seebeck coefficient and power factor of n-type Bi2Te3-based thin films were found to be about −132.02 μV/K and 6.05 μW/cm·K2, respectively.

  6. Preparation of superconducting Bi-Sr-Ca-Cu-O thin films by sequential electron beam evaporation and oxygen annealing

    Energy Technology Data Exchange (ETDEWEB)

    Steinbeck, J.; Tsaur, B.; Anderson, A.C.; Strauss, A.J.

    1989-01-30

    Superconducting films with nominal composition Bi/sub 2/Sr/sub 2/Ca/sub 1/Cu/sub 2/O/sub x/ have been prepared on <100> MgO substrates by sequential electron beam evaporation of Cu, Bi, and Sr/sub 2/3/ Ca/sub 1/3/ F/sub 2/, followed by annealing in flowing wet, then dry, O/sub 2/. X-ray diffraction data show that the films contain the two Bi-Sr-Ca-Cu-O phases that have been identified in the literature as a superconducting phase with capprox.31 A and a semiconducting phase with capprox.24 A. Both phases are strongly textured with the c axis perpendicular to the substrate. For the best film, which was annealed at 870 /sup 0/C for 30 min, zero resistance was observed at 90 K, and the critical current density increased from 0.8 x 10/sup 5/ A/cm/sup 2/ at 77 K to 2.3 x 10/sup 5/ A/cm/sup 2/ at 4.2 K.

  7. Polycrystalline lead iodide films produced by solution evaporation and tested in the mammography X-ray energy range

    Science.gov (United States)

    Condeles, J. F.; Mulato, M.

    2016-02-01

    Lead iodide polycrystalline films have been deposited on corning glass substrates using solution evaporation in oven. Films 6 μm-thick were obtained with full coverage of the substrates as verified by scanning electron microscopy. Some pin-holes were observable. X-ray diffraction revealed a crystalline structure corresponding to the 4 H-PbI2 polytype formation. Polarized Raman scattering experiments indicated a lamellar structure. Anisotropy was also investigated using depolarization ratio calculations. The optical and electrical properties of the samples were investigated using photoluminescence and dark conductivity as a function of temperature, respectively. Activation energies of 0.10 up to 0.89 eV were related to two main electrical transport mechanisms. Films were also exposed to X-ray irradiation in the mammography X-ray energy range. The detector produced was also exposed to X-ray from 5 mR up to 1450 mR. A linear response was observed as a function of dose with a slope of 0.52 nA/mm2 per mR.

  8. An optical study of vacuum evaporated Se 85-xTe 15Bi x chalcogenide thin films

    Science.gov (United States)

    Ambika; Barman, P. B.

    2010-02-01

    Thin films of Se 85-xTe 15Bi x ( x=0, 1, 2, 3, 4, 5) glassy alloys prepared by melt quenching technique, are deposited on glass substrate using thermal evaporation technique under vacuum. The analysis of transmission spectra, measured at normal incidence, in the spectral range 400-1500 nm helphelps us in the optical characterization of thin films under study. Well -known Swanepoel's method is employed to determine the refractive index ( n) and film thickness ( d). The increase in n with increasing Bi content over the entire spectral range is related to the increased polarizability of the larger Bi atom (atomic radius 1.46 Å) compared with the Se atom (atomic radius 1.16 Å). Dispersion energy ( E d), average energy gap ( E0) and static refractive index ( n0) isare calculated using Wemple-DiDomenico model (WDD). The value of absorption coefficient ( α) and hence extinction coefficient ( k) hashave been determined from transmission spectra. Optical band gap ( E g) is estimated using Tauc's extrapolation and is found to decrease from 1.46 to 1.24 eV with the Bi addition. This behavior of optical band gap is interpreted in terms of electronegativity difference of the atoms involved and cohesive energy of the system.

  9. Optical characterization of thermally evaporated thin films of As40S40Se20 chalcogenide glass by reflectance measurements

    Science.gov (United States)

    Márquez, E.; González-Leal, J. M.; Prieto-Alcón, R.; Vlcek, M.; Stronski, A.; Wagner, T.; Minkov, D.

    Optical reflection spectra, at normal incidence, of ternary chalcogenide thin films of chemical composition As40S40Se20, deposited by thermal evaporation, were obtained in the 400 nm to 2200 nm spectral region. The optical constants of this amorphous material were computed using an optical characterization method based mainly on the ideas of Minkov and Swanepoel of utilising the upper and lower envelopes of the spectrum, which allows us to obtain both the real and imaginary parts of the complex refractive index, and the film thickness. Thickness measurements made by a surface-profiling stylus have been carried out to cross-check the results obtained by the optical method. The dispersion of the refractive index is discussed in terms of the single-oscillator Wemple-DiDomenico model. The optical band gap has been determined from absorption coefficient data by Tauc's procedure. Finally, the photo-induced and thermally induced changes in the optical properties of a-As40S40Se20 thin films were also studied, using both transmission and reflection spectra.

  10. Optical investigation of vacuum evaporated Se80-xTe20Sbx (x = 0, 6, 12) amorphous thin films

    Science.gov (United States)

    Deepika; Singh, Hukum

    2017-09-01

    Amorphous thin films of Se80-xTe20Sbx (x = 0, 6, 12) chalcogenide glasses has been deposited onto pre-cleaned glass substrate using thermal evaporation technique under a vacuum of 10-5 Torr. The absorption and transmission spectra of these thin films have been recorded using UV spectrophotometer in the spectral range 400-2500 nm at room temperature. Swanepoel envelope method has been employed to obtain film thickness and optical constants such as refractive index, extinction coefficient and dielectric constant. The optical band gap of the samples has been calculated using Tauc relation. The study reveals that optical band gap decreases on increase in Sb content. This is due to decrease in average single bond energy calculated using chemical bond approach. The values of urbach energy has also been computed to support the above observation. Variation of refractive index has also been studies in terms of wavelength and energy using WDD model and values of single oscillator energy and dispersion energy has been obtained.

  11. Preparation of Cu(In,Ga)(S,Se){sub 2} thin films by sequential evaporation and annealing in sulfur atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Toshiyuki; Asai, Yasutaka; Oku, Naoyuki [Wakayama National College of Technology, 77 Noshima, Nada-cho, Gobo-shi, Wakayama 6440023 (Japan); Niiyama, Shigetoshi; Imanishi, Toshito [Industrial Technology Center of Wakayama Prefecture, 60 Ogura, Wakayama-shi 6496261 (Japan); Nakamura, Shigeyuki [Tsuyama National College of Technology, Tsuyama-shi 708-8509 (Japan)

    2011-01-15

    Cu(In,Ga)(S,Se){sub 2} thin films with high Ga/III ratio (around 0.8) were prepared by sequential evaporation from CuGaSe{sub 2}, CuInSe{sub 2}, In{sub 2}Se{sub 3} and Ga{sub 2}Se{sub 3} compounds and then annealing in H{sub 2}S gas atmosphere. The annealing temperature was varied from 400 to 500 C. These samples were characterized by means of XRF, EPMA, XRD and SEM. The S/(S+Se) mole ratio in the thin films increased with increase in the annealing temperature, keeping the Cu, In and Ga contents nearly constant. The open circuit voltage increased and the short circuit current density decreased with increase in the annealing temperature. The best solar cell using Cu(In,Ga)(S,Se){sub 2} thin film with Ga/(In+Ga)=0.79 and S/(S+Se)=0.11 annealed at 400 C demonstrated V{sub oc}=535 mV, I{sub sc}=13.3 mA/cm{sup 2}, FF=0.61 and efficiency=4.34% without AR-coating. (author)

  12. Study of optical properties of vacuum evaporated carbon nanotube containing Se80Te16Cu4 thin films

    Science.gov (United States)

    Upadhyay, A. N.; Tiwari, R. S.; Singh, Kedar

    2016-08-01

    Thin films of Se80Te16Cu4 glassy alloy and 3 wt.% of carbon nanotubes (CNTs) containing Se80Te16Cu4 glassy composite were deposited on clean glass substrate by thermal evaporation technique. The scanning electron microscope and energy dispersive x-ray analysis were performed to investigate the surface morphology and elemental composition of as synthesised samples. The reflectance and transmittance spectra of as-deposited thin films were recorded (200-1100 nm) by using UV/VIS/NIR spectrophotometer. The optical band gap and optical constants such as absorption coefficient (α), refractive index (n) and extinction coefficient (k) of Se80Te16Cu4 and 3 wt.% CNTs-Se80Te16Cu4 glassy composite thin films were calculated. It is observed that optical properties alter due to CNTs incorporation in Se80Te16Cu4 glassy alloy. Effect on optical properties due to CNTs incorporation can be explained in terms of concentration of unsaturated bonds/defects in the localised states.

  13. Thickness Dependence of Optoelectrical Properties of Mo-Doped In2O3 Films Deposited on Polyethersulfone Substrates by Ion-Beam-Assisted Evaporation

    Directory of Open Access Journals (Sweden)

    Chin-Chiuan Kuo

    2010-01-01

    Full Text Available Indium molybdenum oxide (IMO films were deposited onto the polyethersulfone (PES substrates by ion-beam-assisted evaporation (IBAE deposition at low temperature in this study. The effects of film thickness on their optical and electrical properties were investigated. The results show that the deposited IMO films exhibit a preferred orientation of B(222. The electrical resistivity of the deposited film initially reduces then subsequently increases with film thickness. The IMO film with the lowest resistivity of 7.61 × 10−4 ohm-cm has been achieved when the film thickness is 120 nm. It exhibits a satisfactory surface roughness pv of 8.75 nm and an average visible transmittance of 78.7%.

  14. Optical properties on thermally evaporated and heat-treated disodium phthalocyanine derivative thin films

    Indian Academy of Sciences (India)

    M E Sánchez-Vergara; M Rivera; R A Torres-García; C O Perez-Baeza; E A Loza-Neri

    2014-08-01

    Thin films were grown on quartz substrates and crystalline silicon wafers using disodium phthalocyanine and the organic ligands 2,6-diaminoanthraquinone, 2,6-dihydroxianthraquinone and its potassium derivative salt. The surface morphology of these films was analysed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). IR spectroscopy was employed in order to investigate possible changes of the intra-molecular bonds between the powder compounds and thin films. The optical parameters have been investigated using spectrophotometric measurements of absorbance in the wavelength range of 200–1100 nm and the effects of post-deposition heat treatment were analysed. The absorption spectra recorded in the UV–Vis region for the deposited samples showed two bands, namely the Q and Soret bands. The absorption coefficient in the absorption region reveals non-direct transitions. In addition, the optical gap dependence upon the thickness of these thin films was evaluated.

  15. GALVANIC MAGNETIC PROPERTIES OF BISMUTH THIN FILMS DOPED WITH TELLURIUM MADE BY THERMAL VACUUM EVAPORATION

    Directory of Open Access Journals (Sweden)

    V. A. Komarov

    2013-01-01

    Full Text Available The influence of n-type impurity of tellurium (concentration range from 0.005 atomic % Te to 0.15 atomic % Te on galvanic magnetic properties (resistivity, magnetic resistance and Hall constant of Bi thin films with various thicknesses was studied. The properties were measured in temperature range from 77 to 300 K. It was established that the classical size effect in the films is significant and decreases with higher concentration of Te impurity. The analysis of experimental results was carried out in approximation of the law of Jones-Schoenberg dispersion for Bi films doped with tellurium. Calculation of concentration and mobility of charge carriers in the studied films was made.

  16. Decolorization of reactive textile dyes using water falling film dielectric barrier discharge.

    Science.gov (United States)

    Dojčinović, Biljana P; Roglić, Goran M; Obradović, Bratislav M; Kuraica, Milorad M; Kostić, Mirjana M; Nešić, Jelena; Manojlović, Dragan D

    2011-08-30

    Decolorization of reactive textile dyes Reactive Black 5, Reactive Blue 52, Reactive Yellow 125 and Reactive Green 15 was studied using advanced oxidation processes (AOPs) in a non-thermal plasma reactor, based on coaxial water falling film dielectric barrier discharge (DBD). Used initial dye concentrations in the solution were 40.0 and 80.0mg/L. The effects of different initial pH of dye solutions, and addition of homogeneous catalysts (H(2)O(2), Fe(2+) and Cu(2+)) on the decolorization during subsequent recirculation of dye solution through the DBD reactor, i.e. applied energy density (45-315kJ/L) were studied. Influence of residence time was investigated over a period of 24h. Change of pH values and effect of pH adjustments of dye solution after each recirculation on the decolorization was also tested. It was found that the initial pH of dye solutions and pH adjustments of dye solution after each recirculation did not influence the decolorization. The most effective decolorization of 97% was obtained with addition of 10mM H(2)O(2) in a system of 80.0mg/L Reactive Black 5 with applied energy density of 45kJ/L, after residence time of 24h from plasma treatment. Toxicity was evaluated using the brine shrimp Artemia salina as a test organism.

  17. Numerical Anaysis on Heat Transfer Enhancement by Waves on Falling Liquid Film

    Institute of Scientific and Technical Information of China (English)

    AkioMiyara

    2000-01-01

    Numerical simulations have been carried out for two dimensional wavy falling liquid films on a vertical wall.The algorithm of the simulation is based on MAC method and schemes for interfacial boundary conditions are modifed.Small artificial perturbations given at the inflow boundary grow rapidly and then the amplitude of the waves approaches to developed waves.Effects of the disturbance frequency on the wave development behavior and heat transfer characteristics are especially investigated.For low frequency,a disturbance wave develops to a solitary wave consisted of a large amplitude roll wave and small amplitude capillary waves,Increasing the frequency,the wave amplitude decreases and the capillary wave disappears.For further high frequency,the disturbance amplitude reduces along down stream.The heat transfer coefficient is enhanced by the surface wave and has a maximum at a certain frequency,The streamlines and the temperature comtoure contours are shown for various frequency waves and the heat transfer enhancement mechanism is clarified.

  18. Structure of MoCN films deposited by cathodic arc evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Gilewicz, A., E-mail: adam.gilewicz@tu.koszalin.pl [Koszalin University of Technology, Faculty of Technology and Education, Sniadeckich 2, 75-453 Koszalin (Poland); Jedrzejewski, R.; Kochmanska, A.E. [West Pomeranian University of Technology Szczecin, Faculty of Mechanical Engineering and Mechatronics, 19 Piastów Ave., 70-313 Szczecin (Poland); Warcholinski, B. [Koszalin University of Technology, Faculty of Technology and Education, Sniadeckich 2, 75-453 Koszalin (Poland)

    2015-02-27

    Molybdenum carbonitride (MoCN) coatings were deposited onto HS6-5-2 steel substrate using pure Mo targets in mixed acetylene and nitrogen atmosphere by cathodic arc evaporation. The structural properties of MoCN coatings with different carbon contents (as an effect of the C{sub 2}H{sub 2} flow rate) were investigated systematically. Phase and chemical composition evolution of the coatings were characterized both by the glancing angle of X-ray diffraction (XRD) and wavelength dispersive spectrometry, respectively. These analyses have been supplemented by estimates of grain sizes and stress in the coatings. The XRD results show that the increase in acetylene flow rate causes the formation of molybdenum carbide (MoC) hexagonal phase in the coatings, a reduction of grain size and an increase in internal stress. - Highlights: • MoN and MoCN coatings were deposited by cathodic arc evaporation in nitrogen atmosphere. • MoCN coatings were formed using different acetylene flow rates. • Phase composition evolution was observed. • Crystallite size and stress were calculated.

  19. a Cdlts Study of the Deep Levels in n- and P - Cadmium Telluride Thin Films Deposited by Hot Wall Evaporation

    Science.gov (United States)

    Ginting, Masno

    CdTe thin films, both undoped and with different dopants, have been deposited unto graphite and Corning 7059 glass substrates using a Three-Stage Hot Wall Vacuum Evaporator (TSHWVE) system. The dopants were incorporated into the CdTe thin films using a "delta doping" technique. The conductivity type of the doped CdTe thin films was determined using the hot probe method, and the film stoichiometry was determined using X-ray and Auger electron spectroscopy measurements. Schottky diodes fabricated on the CdTe thin films that were deposited on graphite substrates have been studied using Current-Voltage (I-V), Capacitance-Voltage (C-V), and Capacitance Deep Level Transient Spectroscopy (CDLTS). The conductivity type of CdTe films that were undoped and doped with Antimony (Sb), Phosphorus (P), Gold (Au), Silver (Ag), and Copper (Cu) were found to be p-type, while Indium (In) doped CdTe thin films were found to be n-type. The highest carrier concentration of the CdTe films are 1 times 10^ {16} cm^{-3} , 1 times 10^ {17} cm^{-3} , and 7.5 times 10 ^{15} cm^{ -3} for In-, Sb-, and P-doped CdTe, respectively. For the In-doped CdTe films three majority carrier trap are found with activation energies measured from the conduction band of 0.23 +/- 0.05 eV, 0.46 +/- 0.06 eV, and 0.78 +/- 0.05 eV. For the Sb-doped CdTe films three majority carrier traps are found with activation energies measured from the valence band of 0.27 +/- 0.06 eV, 0.50 +/- 0.06 eV, and 0.80 +/- 0.06 eV. For the P-doped CdTe films three majority carrier traps are found with activation energies measured from the valence band of 0.28 +/- 0.05 eV, 0.50 +/- 0.06 eV and 0.75 +/- 0.05 eV. Our capture measurements on In-, Sb-, and P-doped CdTe showed non-exponential transients, however they could be fitted very well by Pons theory, and allowed us to determine values for the trap concentration (N_{ rm T}), the trap capture rate (c _{rm n,p}) and the trap capture cross-section (sigma_{rm n,p}). However, the capture

  20. Application of well characterized e - beam evaporated WSe2 thin films in Schottky Barrier diodes

    Science.gov (United States)

    Patel, Mayurkumar M.

    The studies of semiconductor thin films and their junctions such as metal semiconductor junctions (Schottky Barriers) have received much attention due to their applications in various electronic and optoelectronic devices including high frequency switching device, Schottky barrier devices, solar cells etc. But, realization of any electronic device using a combination of bulk and thin film or all bulk or all thin film components essentially requires metallization of metal contacts for electrical signals to flow into and out of the device. Thus junction between two metals and metal-semiconductor is an integral part of the device without which communication to the external circuit components would not be possible. In this reference stable metalsemiconductor contacts of ohmic as well as rectifying nature are very much important from technological point of view. In both cases preparation of reliable and efficient metal contacts with high yield and stability is challenging task for devices operating at high frequencies when packing density is increased by many fold. Thus, the behavior of metal-semiconductor contacts at microscopic scale may be explored for the development of future technology. The subject matter of such contacts is well documented in many books with review of developments in the recent past. Earlier devices were prepared on the bulk elemental semiconductors as an active region which was then followed by crystalline/amorphous compound semiconductors in bulk as well as thin film forms like Solar cells, p-n junction diodes, Schottky barrier devices etc. in recent past. Normally bulk crystalline'or amorphous substrate is used to support device structure made from crystalline/amorphous bulk and thin film. However, to the best of author's knowledge no attempts have been made to study the devices prepared by depositing semiconductor thin film with thin metal film supported by a by a non-conducting glass substrate. For this purpose, studies were carried out on

  1. Reflection of circularly polarized light and the effect of particle distribution on circular dichroism in evaporation induced self-assembled cellulose nanocrystal thin films

    Science.gov (United States)

    Hewson, D.; Vukusic, P.; Eichhorn, S. J.

    2017-06-01

    Evaporation induced self-assembled (EISA) thin films of cellulose nanocrystals (CNCs) have shown great potential for displaying structural colour across the visible spectrum. They are believed primarily to reflect left handed circularly polarised (LCP) light due to their natural tendency to form structures comprising left handed chirality. Accordingly the fabrication of homogenously coloured CNC thin films is challenging. Deposition of solid material towards the edge of a dried droplet, via the coffee-stain effect, is one such difficulty in achieving homogenous colour across CNC films. These effects are most easily observed in films prepared from droplets where observable reflection of visible light is localised around the edge of the dry film. We report here, the observation of both left and right hand circularly polarised (LCP/RCP) light in reflection from distinct separate regions of CNC EISA thin films and we elucidate how these reflections are dependent on the distribution of CNC material within the EISA thin film. Optical models of reflection are presented which are based on structures revealed using high resolution transmission electron microscopy (TEM) images of film cross sections. We have also employed spectroscopic characterisation techniques to evaluate the distribution of solid CNC material within a selection of CNC EISA thin films and we have correlated this distribution with polarised light spectra collected from each film. We conclude that film regions from which RCP light was reflected were associated with lower CNC concentrations and thicker film regions.

  2. Reflection of circularly polarized light and the effect of particle distribution on circular dichroism in evaporation induced self-assembled cellulose nanocrystal thin films

    Directory of Open Access Journals (Sweden)

    D. Hewson

    2017-06-01

    Full Text Available Evaporation induced self-assembled (EISA thin films of cellulose nanocrystals (CNCs have shown great potential for displaying structural colour across the visible spectrum. They are believed primarily to reflect left handed circularly polarised (LCP light due to their natural tendency to form structures comprising left handed chirality. Accordingly the fabrication of homogenously coloured CNC thin films is challenging. Deposition of solid material towards the edge of a dried droplet, via the coffee-stain effect, is one such difficulty in achieving homogenous colour across CNC films. These effects are most easily observed in films prepared from droplets where observable reflection of visible light is localised around the edge of the dry film. We report here, the observation of both left and right hand circularly polarised (LCP/RCP light in reflection from distinct separate regions of CNC EISA thin films and we elucidate how these reflections are dependent on the distribution of CNC material within the EISA thin film. Optical models of reflection are presented which are based on structures revealed using high resolution transmission electron microscopy (TEM images of film cross sections. We have also employed spectroscopic characterisation techniques to evaluate the distribution of solid CNC material within a selection of CNC EISA thin films and we have correlated this distribution with polarised light spectra collected from each film. We conclude that film regions from which RCP light was reflected were associated with lower CNC concentrations and thicker film regions.

  3. Optical properties of silver sulphide thin films formed on evaporated Ag by a simple sulphurization method

    Energy Technology Data Exchange (ETDEWEB)

    Barrera-Calva, E., E-mail: ebc@xanum.uam.m [Departamento de Ingenieria de Procesos e hidraulica, Universidad Autonoma Metropolitana - Iztapalapa, Av. Purisima Esq. Michoacan, Col. Vicentina, Mexico, D.F., 09340 (Mexico); Ortega-Lopez, M.; Avila-Garcia, A.; Matsumoto-Kwabara, Y. [Departamento de Ingenieria Electrica, Centro de Investigacion y de Estudios Avanzados del IPN, Mexico DF 07360 (Mexico)

    2010-01-31

    Silver sulphide (Ag{sub 2}S) thin films were grown on the surface of silver films (Ag) deposited on glass substrate by using a simple chemical sulphurization method. According to X-ray diffraction analysis, the Ag{sub 2}S thin films display low intensity peaks at 34.48{sup o}, 36.56{sup o}, and 44.28{sup o}, corresponding to diffraction from (100), (112) and (103) planes of the acanthite phase (monoclinic). A model of the type Ag{sub 2}S/Ag/glass was deduced from spectroscopic ellipsometric measurements. Also, the optical constants (n, k) of the system were determined. Furthermore, the optical properties as solar selective absorber for collector applications were assessed. The optical reflectance of the Ag{sub 2}S/Ag thin film systems exhibits the expected behavior for an ideal selective absorber, showing a low reflectance in the wavelength range below 2 {mu}m and a high reflectance for wavelengths higher than that value. An absorptance about 70% and an emittance about 3% or less were calculated for several samples.

  4. Silver-Doping Effects and Photostructural Transformation in Evaporated AS2S3 Thin Films.

    Science.gov (United States)

    1982-02-16

    composite resists will be discussed. 2.3.3 Electron-Beam Exposure Suhara et. al.(7) have determined that amorphous chalco - genide semiconductor films...bonding states of pnictldes and chalco - genides, respectively. The proposed possible bonding rearrangement between neighboring As4S4 molecules is shown

  5. Reflectance of evaporated Ruthenium films from 300 A to 50 microns

    Science.gov (United States)

    Hass, G.; Hunter, W. R.

    1981-07-01

    Results of an experimental investigation are presented for the reflectance spectra of vacuum-deposited Rhodium and Ruthenium films. Comparison of normal incidence reflectance data between 0.22 and 15.0 microns shows Rhodium to be the superior front surface mirror material, due both to its greater reflectance and exceptional hardness and resistance to atmospheric corrosion.

  6. Effect of argon gas flow rate on properties of film electrodes prepared by thermal vacuum evaporation from synthesized Cu{sub 2}SnSe{sub 3} source

    Energy Technology Data Exchange (ETDEWEB)

    Sabli, Nordin; Talib, Zainal Abidin; Yunus, Wan Mahmood Mat [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang (Malaysia); Zainal, Zulkarnain [Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang (Malaysia); Hilal, Hikmat S. [SSERL, Department of Chemistry An-Najah N. University, PO Box 7, Nablus, West Bank (Country Unknown); Fujii, Masatoshi [Department of Molecular Science, School of Medicine, Shimane University, Izumo, Shimane, 693-8501 (Japan)

    2014-03-05

    This work describes a new technique to enhance photoresponse of metal chalcogenide-based semiconductor film electrodes deposited by thermal vacuum evaporation under argon gas flow from synthesized Cu{sub 2}SnSe{sub 3} sources. SnSe formation with Cu-doped was obtained under higher argon gas flow rate (V{sub A} = 25 cm{sup 3}/min). Higher value of photoresponse was observed for films deposited under V{sub A} = 25 cm{sup 3}/min which was 9.1%. This finding indicates that Cu atoms inside the SnSe film were important to increase carrier concentrations that promote higher photoresponse.

  7. Effect of H{sup +} irradiation on the optical properties of vacuum evaporated AgInSe{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, M.C. Santhosh, E-mail: santhoshmc@nitt.edu [Advanced Materials Laboratory, Department of Physics, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620 015 (India); Pradeep, B. [Solid State Physics Laboratory, Department of Physics, Cochin University of Science and Technology, Cochin, Kerala 682 022 (India)

    2009-07-30

    We prepared polycrystalline AgInSe{sub 2} thin films by vacuum evaporation on glass substrate at a high temperature using the stoichiometric powder. The thin films were characterized by X-ray diffraction and UV-vis-NIR spectroscopy. The samples were subjected to the irradiation of 1.26 MeV protons (H{sup +}). The effect of irradiation on the optical properties has been investigated for different doses of H{sup +}. It is observed that the band gap of silver indium selenide thin films decreases gradually with ion irradiation dose.

  8. Thermal evaporation and characterization of Sb2Se3 thin film for substrate Sb2Se3/CdS solar cells.

    Science.gov (United States)

    Liu, Xinsheng; Chen, Jie; Luo, Miao; Leng, Meiying; Xia, Zhe; Zhou, Ying; Qin, Sikai; Xue, Ding-Jiang; Lv, Lu; Huang, Han; Niu, Dongmei; Tang, Jiang

    2014-07-09

    Sb2Se3 is a promising absorber material for photovoltaic cells because of its optimum band gap, strong optical absorption, simple phase and composition, and earth-abundant and nontoxic constituents. However, this material is rarely explored for photovoltaic application. Here we report Sb2Se3 solar cells fabricated from thermal evaporation. The rationale to choose thermal evaporation for Sb2Se3 film deposition was first discussed, followed by detailed characterization of Sb2Se3 film deposited onto FTO with different substrate temperatures. We then studied the optical absorption, photosensitivity, and band position of Sb2Se3 film, and finally a prototype photovoltaic device FTO/Sb2Se3/CdS/ZnO/ZnO:Al/Au was constructed, achieving an encouraging 2.1% solar conversion efficiency.

  9. Low-temperature solid-state reaction of in situ growth of YBa2Cu3O7 - delta thin films by resistive evaporation

    Science.gov (United States)

    Azoulay, Jacob

    1992-12-01

    Thin films of Y-Ba-Cu-O were in situ prepared with the use of a simple conventional inexpensive vacuum system. No thickness monitor or control system is required. A pulverized mixture of Y, BaF2, and Cu constituents weighed in the atomic proportion was evaporated from resistively heated source onto a MgO substrate. The substrates temperature was then raised to 700 °C after evaporation. Oxygen was injected through a nozzle placed near the substrate surface, thus raising the pressure to about 8 Pa (60 mTorr). The film was kept at this stage for about 15 min, after which it was gradually cooled to room temperature and the pressure raised to atmospheric pressure. The obtained films with no further heat treatment were found to be superconductors with zero resistance at 85 K detected by four-probe dc measurements.

  10. Decolorization of reactive textile dyes using water falling film dielectric barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Dojcinovic, Biljana P. [Institute of Chemistry, Technology and Metallurgy, Center of Chemistry, Studentski trg 12-16, 11000 Belgrade (Serbia); Roglic, Goran M. [Faculty of Chemistry, University of Belgrade, P.O. Box 158, 11000 Belgrade (Serbia); Obradovic, Bratislav M., E-mail: obrat@ff.bg.ac.rs [Faculty of Physics, University of Belgrade, P.O. Box 368, 11000 Belgrade (Serbia); Kuraica, Milorad M. [Faculty of Physics, University of Belgrade, P.O. Box 368, 11000 Belgrade (Serbia); Kostic, Mirjana M. [Faculty of Technology and Metallurgy, Department of Textile Engineering, Karnegijeva 4, 11000 Belgrade (Serbia); Nesic, Jelena; Manojlovic, Dragan D. [Faculty of Chemistry, University of Belgrade, P.O. Box 158, 11000 Belgrade (Serbia)

    2011-08-30

    Highlights: {yields} Decolorization of four reactive textile dyes using non-thermal plasma reactor. {yields} Influence of applied energy on decolorization. {yields} Effects of initial pH and addition of homogeneous catalysts. {yields} Toxicity evaluation using the brine shrimp as a test organism. - Abstract: Decolorization of reactive textile dyes Reactive Black 5, Reactive Blue 52, Reactive Yellow 125 and Reactive Green 15 was studied using advanced oxidation processes (AOPs) in a non-thermal plasma reactor, based on coaxial water falling film dielectric barrier discharge (DBD). Used initial dye concentrations in the solution were 40.0 and 80.0 mg/L. The effects of different initial pH of dye solutions, and addition of homogeneous catalysts (H{sub 2}O{sub 2}, Fe{sup 2+} and Cu{sup 2+}) on the decolorization during subsequent recirculation of dye solution through the DBD reactor, i.e. applied energy density (45-315 kJ/L) were studied. Influence of residence time was investigated over a period of 24 h. Change of pH values and effect of pH adjustments of dye solution after each recirculation on the decolorization was also tested. It was found that the initial pH of dye solutions and pH adjustments of dye solution after each recirculation did not influence the decolorization. The most effective decolorization of 97% was obtained with addition of 10 mM H{sub 2}O{sub 2} in a system of 80.0 mg/L Reactive Black 5 with applied energy density of 45 kJ/L, after residence time of 24 h from plasma treatment. Toxicity was evaluated using the brine shrimp Artemia salina as a test organism.

  11. Optical studies of E-beam evaporated MgO films for plasma display panels

    CERN Document Server

    Lee, S I; Oh, S G

    1999-01-01

    Variable-incident-angle spectroscopic ellipsometry has been used for non-destructive depth profiling of MgO thin films, one of the key elements of plasma display panels. We have found that all the examined MgO films have a three-layer structure with a dense interface layer , a void-included middle layer, and a surface layer. We have also found that the void fraction is increased with the oxygen-flow rate at a fixed substrate temperature and decreased with the substrate temperature at a fixed oxygen-flow rate. Moreover, discuss the close correlation between the water adsorption and the void fraction and show a general agreement between the surface layer thickness and the mean height determined by using a atomic force microscopy.

  12. Size-dependent structure and magnetic properties of co-evaporated Fe-SiO2 nanoparticle composite film under high magnetic field

    Directory of Open Access Journals (Sweden)

    Yonghui Ma

    2016-05-01

    Full Text Available Composite film of Fe nanoparticles embedded in a SiO2 matrix has been prepared by the co-evaporation of Fe and SiO2. Both source temperature and in-situ high magnetic field (HMF have been used to adjust the Fe particle size and the growth of Fe-SiO2 film. The size of Fe particle decreased with increasing the source temperature without HMF. When HMF was presented during the growth of the film, the size of Fe particle was enlarged and reduced for source temperatures of 1300 °C and 1400 °C, respectively. Meanwhile, the preferred orientation of the film grown at 1400 °C became uniform with the application of HMF. In addition, it is also found that the film was formed in two layers. One layer is formed by the Fe particle, while the other is free of Fe particles due to the existence of more SiO2. The structural variation has a significant effect on the magnetic properties. The coercivity (90 Oe of the 1300 °C film is much higher than that (6 Oe of the 1400 °C film with a small particle size and uniform orientation. The saturation magnetization can be increased by increasing the Fe particle volume fraction. This study develops a new method to tune the soft magnetic properties by the co-evaporation of Fe and SiO2.

  13. Determination of the Origin of Crystal Orientation for Nanocrystalline Bismuth Telluride-Based Thin Films Prepared by Use of the Flash Evaporation Method

    Science.gov (United States)

    Takashiri, M.; Tanaka, S.; Miyazaki, K.

    2014-06-01

    We have investigated the origin of crystal orientation for nanocrystalline bismuth telluride-based thin films. Thin films of p-type bismuth telluride antimony (Bi-Te-Sb) and n-type bismuth telluride selenide (Bi-Te-Se) were fabricated by a flash evaporation method, with exactly the same deposition conditions except for the elemental composition of the starting powders. For p-type Bi-Te-Sb thin films the main x-ray diffraction (XRD) peaks were from the c-axis (Σ{00l}/Σ{ hkl} = 0.88) whereas n-type Bi-Te-Se thin films were randomly oriented (Σ{00l}/Σ{ hkl} = 0.40). Crystal orientation, crystallinity, and crystallite size were improved for both types of thin film by sintering. For p-type Bi-Te-Sb thin films, especially, high-quality structures were obtained compared with those of n-type Bi-Te-Se thin films. We also estimated the thermoelectric properties of the as-grown and sintered thin films. The power factor was enhanced by sintering; maximum values were 34.9 μW/cm K2 for p-type Bi-Te-Sb thin films at a sintering temperature of 300°C and 23.9 μW/cm K2 for n-type Bi-Te-Se thin films at a sintering temperature of 350°C. The exact mechanisms of film growth are not yet clear but we deduce the crystal orientation originates from the size of nano-clusters generated on the tungsten boat during flash evaporation.

  14. Effect of Annealing Temperature on CuInSe2/ZnS Thin-Film Solar Cells Fabricated by Using Electron Beam Evaporation

    OpenAIRE

    2013-01-01

    CuInSe2 (CIS) thin films are successfully prepared by electron beam evaporation. Pure Cu, In, and Se powders were mixed and ground in a grinder and made into a pellet. The pallets were deposited via electron beam evaporation on FTO substrates and were varied by varying the annealing temperatures, at room temperature, 250°C, 300°C, and 350°C. Samples were analysed by X-ray diffractometry (XRD) for crystallinity and field-emission scanning electron microscopy (FESEM) for grain size and thicknes...

  15. Heat And Mass Transfer Analysis of a Film Evaporative MEMS Tunable Array

    Science.gov (United States)

    O'Neill, William J.

    This thesis details the heat and mass transfer analysis of a MEMs microthruster designed to provide propulsive, attitude control and thermal control capabilities to a cubesat. This thruster is designed to function by retaining water as a propellant and applying resistive heating in order to increase the temperature of the liquid-vapor interface to either increase evaporation or induce boiling to regulate mass flow. The resulting vapor is then expanded out of a diverging nozzle to produce thrust. Because of the low operating pressure and small length scale of this thruster, unique forms of mass transfer analysis such as non-continuum gas flow were modeled using the Direct Simulation Monte Carlo method. Continuum fluid/thermal simulations using COMSOL Multiphysics have been applied to model heat and mass transfer in the solid and liquid portions of the thruster. The two methods were coupled through variables at the liquid-vapor interface and solved iteratively by the bisection method. The simulations presented in this thesis confirm the thermal valving concept. It is shown that when power is applied to the thruster there is a nearly linear increase in mass flow and thrust. Thus, mass flow can be regulated by regulating the applied power. This concept can also be used as a thermal control device for spacecraft.

  16. Structure and magnetic properties of Fe doped In{sub 2}O{sub 3} thin films prepared by electron beam evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Krishna, N. Sai; Kaleemulla, S., E-mail: skaleemulla@gmail.com; Rao, N. Madhusudhana; Krishnamoorthi, C.; Begam, M. Rigana [Thin Films Laboratory, School of Advanced Sciences, VIT University, Vellore – 632014 (India); Amarendra, G. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India); UGC-DAE-CSR, Kalpakkam Node, Kokilamedu, Tamilnadu -603104 (India)

    2015-06-24

    Pure and Fe (7 at.%) doped In{sub 2}O{sub 3} thin films were grown onto the glass substrates by electron beam evaporation technique. The structural and magnetic properties of the pure and Fe doped In{sub 2}O{sub 3} thin films have been studied. The undoped and Fe doped In{sub 2}O{sub 3} thin films shown ferromagnetic property at room temperature. A magnetization of 24 emu/cm{sup 3} was observed for pure In{sub 2}O{sub 3} thin films. The magnetization of 38.23 emu/cm{sup 3} was observed for the Fe (7 at.%) doped In{sub 2}O{sub 3} thin films.

  17. Study of effect annealing temperature on the structure, morphology and photocatalytic activity of Si doped TiO{sub 2} thin films deposited by electron beam evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Lu Zhongdan [Key Lab of Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing 210094 (China); Jiang Xiaohong, E-mail: jiangxh24@mail.njust.edu.cn [Key Lab of Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing 210094 (China); Zhou Bing; Wu Xiaodong; Lu Lude [Key Lab of Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing 210094 (China)

    2011-10-01

    Transparent Si-doped TiO{sub 2} thin films (Si-TiO{sub 2}) were deposited on quartz glasses using electron beam evaporation (EBE) and annealed at different temperature in an air atmosphere. The structure and morphology of these films were analyzed by X-ray diffraction (XRD), Raman microscopy (Raman), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Meanwhile the photocatalytic activity of the films has also been evaluated on the basis of the degradation degree of rhodamine B in aqueous solution. Our experimental results suggest that the annealing temperature impact a strong effect on the structure, morphology and photocatalytic activity of Si-TiO{sub 2} thin films. Furthermore the enhanced thermal stability of Si-TiO{sub 2} films enabled them to elevate the phase transformation temperature of TiO{sub 2} from anatase to rutile and enhanced the photocatalytic efficiency.

  18. Influence of LiBaO5 Structure on Microstructure and Optical Properties of ZrO2 Thin Films Prepared by Electron Beam Evaporation

    Institute of Scientific and Technical Information of China (English)

    TAN Tian-Ya; ZHANG Da-Wei; ZHAN Mei-Qiong; SHAO Jian-Da; FAN Zheng-Xiu

    2005-01-01

    @@ ZrO2 thin films were deposited by using an electron beam evaporation technique on three kinds of lithium triborate (LiB3O5 or LBO) substrates with the surfaces at specified crystalline orientations. The influences of the LBO structure on the structural and optical properties of ZrO2 thin films are studied by spectrophotometerand x-ray diffraction. The results indicate that the substrate structure has obvious effects on the structural and optical properties of the film: namely, the ZrO2 thin film deposited on the X-LBO, Y-LBO and Z-LBO orients to m(-212), m(021) and o(130) directions. It is also found that the ZrO2 thin film with m(021) has the highest refractive index and theleast lattice misfit.

  19. Quarternair CuGaSeTe and CuGa0.5In 0.5Te2 Thin Films Fabrication Using Flash Evaporation

    Directory of Open Access Journals (Sweden)

    A Harsono Soepardjo

    2010-10-01

    Full Text Available Quarternair materials CuGaSeTe and CuGa0.5In 0.5Te2 are the basic materials to solar cell fabrication. These materials have high absorption coefficients around 103 - 105 cm-1 and band gap energy in the range of 1-5 eV. In this research, the films were made by flash evaporation method using quarternair powder materials of CuGaSeTe and CuGa0.5In 0.5Te2 to adhere in a glass substrate. After the films were obtained, the properties of these films will be characterized optically and electrically. The lattice parameter of the films and the crystalline film structure were obtained using X-Ray Diffraction (XRD spectroscopy. The XRD results show that the quarternair CuGaSeTe and CuGa0.5In 0.5Te2 films have a chalcopyrite structure. The absorption coefficient and the  band gap energy of the films were calculated using transmittance and reflectance patterns that measured using UV-VIS Difractometer. The films composition can be detected by using the Energy Dispersive Spectroscopy (EDS, while the films resistivity, mobility and the majority carrier of the films were obtained from Hall Effect experiments.

  20. Copper tin sulfide (CTS) absorber thin films obtained by co-evaporation: Influence of the ratio Cu/Sn

    Energy Technology Data Exchange (ETDEWEB)

    Robles, V., E-mail: victor.robles@ciemat.es; Trigo, J.F.; Guillén, C.; Herrero, J.

    2015-09-05

    Highlights: • Copper tin sulfide (CTS) thin films were grown by co-evaporation at different Cu/Sn atomic ratios. • Smooth Cu{sub 2}SnS{sub 3} layers with large grains are obtained at Cu/Sn ⩾ 1.5 and T ⩾ 350 °C. • At 450 °C, the cubic Cu{sub 2}SnS{sub 3} phase changes to tetragonal phase. • Cu{sub 2}SnS{sub 3} presents suitable optical and electrical properties for use as photovoltaic absorbers. - Abstract: Copper tin sulfide thin films have been grown on soda-lime glass substrates from the elemental constituents by co-evaporation. The synthesis was performed at substrate temperatures of 350 °C and 450 °C and different Cu/Sn ratios, adjusting the deposition time in order to obtain thicknesses above 1000 nm. The evolution of the morphological, structural, chemical, optical and electrical properties has been analyzed as a function of the substrate temperature and the Cu/Sn ratio. For the samples with Cu/Sn ⩽ 1, Cu{sub 2}Sn{sub 3}S{sub 7} and Cu{sub 2}SnS{sub 3} have been observed by XRD. Increasing the Cu/Sn to 1.5, the Cu{sub 2}SnS{sub 3} phase was the majority, being the formation completed at Cu/Sn ratio around 2. The increment of the substrate temperature leads to a change of cubic structure to tetragonal of the Cu{sub 2}SnS{sub 3} phase. The chemical treatment with KCN was effective to eliminate CuS excess detected in the samples with Cu/Sn > 2.2. The samples with Cu{sub 2}SnS{sub 3} structure show a band gap energy increasing from 0.9 to 1.25 eV and an electrical resistivity decreasing from 7 ∗ 10{sup −2} Ω cm to 3 ∗ 10{sup −3} Ω cm when the Cu/Sn atomic ratio increases from 1.5 to 2.2.

  1. A study of the electronic processes in evaporated thin films of nickel phthalocyanine

    CERN Document Server

    Anthopoulos, T D

    2003-01-01

    Design and development of electronic devices based on organic semiconductors requires knowledge of the electronic conduction processes that occur within these solids. In this thesis the structural, optical and electrical properties of nickel phthalocyanine (NiPc) are investigated. In particular, various electrical properties of NiPc were studied (to the best of knowledge for the first time) in situ employing a fabrication and characterisation method developed in-house for this particular purpose. Films deposited onto quartz substrates, maintained at room temperature, were identified by X-ray diffractometry to be of the alpha-form. Optical studies of absorption in the ultraviolet (UV) and visible (Vis) spectrum of the same films showed the existence of two absorption bands. The absorption maxima in the Vis and UV were identified as the Q and Soret band, respectively, and were both attributed to pi-> pi sup * transition. Analysis of optical data yielded a value of 2.32 eV for the optical energy band gap (E sub ...

  2. Friction and hardness of gold films deposited by ion plating and evaporation

    Science.gov (United States)

    Miyoshi, K.; Spalvins, T.; Buckley, D. H.

    1983-01-01

    Sliding friction experiments were conducted with ion-plated and vapor-deposited gold films on various substrates in contact with a 0.025-mm-radius spherical silicon carbide rider in mineral oil. Hardness measurements were also made to examine the hardness depth profile of the coated gold on the substrate. The results indicate that the hardness is influenced by the depth of the gold coating from the surface. The hardness increases with an increase in the depth. The hardness is also related to the composition gradient in the graded interface between the gold coating and the substrate. The graded interface exhibited the highest hardness resulting from an alloy hardening effect. The coefficient of friction is inversely related to the hardness, namely, the load carrying capacity of the surface. The greater the hardness that the metal surface possesses, the lower is the coefficient of friction. The graded interface exhibited the lowest coefficient of friction.

  3. Evaporation by mechanical vapor recompression. Technical progress report, September 1-December 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Iverson, C.H.; Coury, G.E.

    1979-01-01

    Progress to date in the development of a study of the application of the technologies of mechanical vapor recompression and falling film evaporators as applied to the beet sugar industry is reported. Progress is reported in the following areas: technical literature search and plant visitations of existing applications of VR/FFE.

  4. Thickness and annealing effects on thermally evaporated InZnO thin films for gas sensors and blue, green and yellow emissive optical devices

    Science.gov (United States)

    Sugumaran, Sathish; Jamlos, Mohd Faizal; Ahmad, Mohd Noor; Bellan, Chandar Shekar; Sivaraj, Manoj

    2016-08-01

    Indium zinc oxide (InZnO) thin films with thicknesses of 100 nm and 200 nm were deposited on glass plate by thermal evaporation technique. Fourier transform infrared spectra showed a strong metal-oxide bond. X-ray diffraction patterns revealed amorphous nature for as-deposited film whereas polycrystalline structure for annealed films. Scanning electron microscope images showed a uniform distribution of spherical shape grains. Grain size was found to be higher for 200 nm film than 100 nm film. The presence of elements (In, Zn and O) was confirmed from energy dispersive X-ray analysis. Photoluminescence study of 200 nm film showed a blue, blue-green and blue-yellow emission whereas 100 nm film showed a broad green and green-yellow emissions. Both 100 nm and 200 nm films showed good oxygen sensitivity from room temperature to 400 °C. The observed optical and sensor results indicated that the prepared InZnO films are highly potential for room temperature gas sensor and blue, green and yellow emissive opto-electronic devices.

  5. Effect of thickness on physical properties of electron beam vacuum evaporated CdZnTe thin films for tandem solar cells

    Science.gov (United States)

    Chander, Subhash; Dhaka, M. S.

    2016-10-01

    The thickness and physical properties of electron beam vacuum evaporated CdZnTe thin films have been optimized in the present work. The films of thickness 300 nm and 400 nm were deposited on ITO coated glass substrates and subjected to different characterization tools like X-ray diffraction (XRD), UV-Vis spectrophotometer, source meter and scanning electron microscopy (SEM) to investigate the structural, optical, electrical and surface morphological properties respectively. The XRD results show that the as-deposited CdZnTe thin films have zinc blende cubic structure and polycrystalline in nature with preferred orientation (111). Different structural parameters are also evaluated and discussed. The optical study reveals that the optical transition is found to be direct and energy band gap is decreased for higher thickness. The transmittance is found to increase with thickness and red shift observed which is suitable for CdZnTe films as an absorber layer in tandem solar cells. The current-voltage characteristics of deposited films show linear behavior in both forward and reverse directions as well as the conductivity is increased for higher film thickness. The SEM studies show that the as-deposited CdZnTe thin films are found to be homogeneous, uniform, small circle-shaped grains and free from crystal defects. The experimental results confirm that the film thickness plays an important role to optimize the physical properties of CdZnTe thin films for tandem solar cell applications as an absorber layer.

  6. The secondary electron yield of TiZr and TiZrV non evaporable getter thin film coatings

    CERN Document Server

    Scheuerlein, C; Hilleret, Noël; Taborelli, M

    2001-01-01

    The secondary electron yield (SEY) of two different non evaporable getter (NEG) samples has been measured 'as received' and after thermal treatment. The investigated NEGs are TiZr and TiZrV thin film coatings of 1 mm thickness, which are sputter deposited onto copper substrates. The maximum SEY dmax of the air exposed TiZr and TiZrV coating decreases from above 2.0 to below 1.1 during a 2 hour heat treatment at 250 °C and 200 °C, respectively. Saturating an activated TiZrV surface under vacuum with the gases typically present in ultra high vacuum systems increases dmax by about 0.1. Changes in elemental surface composition during the applied heat treatments were monitored by Auger electron spectroscopy (AES). After activation carbon, oxygen and chlorine were detected on the NEG surfaces. The potential of AES for detecting the surface modifications which cause the reduction of SE emission during the applied heat treatments is critically discussed.

  7. Improving the performance of organic thin film transistors formed on a vacuum flash-evaporated acrylate insulator

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Z., E-mail: ziqian.ding@materials.ox.ac.uk; Abbas, G. A.; Assender, H. E. [Department of Materials, University of Oxford, Oxford OX1 3PH (United Kingdom); Morrison, J. J.; Sanchez-Romaguera, V.; Yeates, S. G. [School of Chemistry, University of Manchester, Manchester M13 9PL (United Kingdom); Taylor, D. M. [School of Electronic Engineering, Bangor University, Bangor LL57 1UT (United Kingdom)

    2013-12-02

    A systematic investigation has been undertaken, in which thin polymer buffer layers with different ester content have been spin-coated onto a flash-evaporated, cross-linked diacrylate gate-insulator to form bottom-gate, top-contact organic thin-film transistors. The highest device mobilities, ∼0.65 cm{sup 2}/V s and ∼1.00 cm{sup 2}/V s for pentacene and dinaphtho[2,3-b:2′,3′-f]-thieno[3,2-b]thiophene (DNTT), respectively, were only observed for a combination of large-grain (∼1–2 μm) semiconductor morphology coupled with a non-polar dielectric surface. No correlation was found between semiconductor grain size and dielectric surface chemistry. The threshold voltage of pentacene devices shifted from −10 V to −25 V with decreasing surface ester content, but remained close to 0 V for DNTT.

  8. Electron beam evaporation induced discoloration of reflective film on InGaN/sapphire in III-V LED TFFC device manufacturing

    Science.gov (United States)

    Neelakandan, Sivanantham; Chai, Chun Hoo; Chaw, Kam Hoe; Sae Tae, Veera

    2015-07-01

    In this paper, the discoloration of indium-gallium-nitride (InGaN) on sapphire (Al2O3) substrate after processing in electron beam vacuum evaporation for mirror metal evaporation has been investigated. Discoloration can be detrimental to light output of a light emitting diode (LED) as the light extraction through discolored gallium nitride (GaN) epitaxy is impacted. The investigation shows that the discoloration caused by an interaction between few factors such as the level of organic contamination present at the edges of the substrate, contact area with holding dome of the evaporator, thickness of the film deposited and radiation intensity from the evaporation source. Reflection Spectroscopy was used to quantify reflectivity of discolored mirror metal while X-ray fluorescence spectrometry (XRF) was used to measure film thickness and time of flight - secondary ion mass spectrometry (TOF-SIMS) was employed to measure organic contamination amounts. A residual gas analyzing (RGA) technique was established to detect potential discoloration to eliminate disruptions to manufacturing.

  9. Analysis of a Free Surface Film from a Controlled Liquid Impinging Jet over a Rotating Disk Including Conjugate Effects, with and without Evaporation

    Science.gov (United States)

    Sankaran, Subramanian (Technical Monitor); Rice, Jeremy; Faghri, Amir; Cetegen, Baki M.

    2005-01-01

    A detailed analysis of the liquid film characteristics and the accompanying heat transfer of a free surface controlled liquid impinging jet onto a rotating disk are presented. The computations were run on a two-dimensional axi-symmetric Eulerian mesh while the free surface was calculated with the volume of fluid method. Flow rates between 3 and 15 1pm with rotational speeds between 50 and 200 rpm are analyzed. The effects of inlet temperature on the film thickness and heat transfer are characterized as well as evaporative effects. The conjugate heating effect is modeled, and was found to effect the heat transfer results the most at both the inner and outer edges of the heated surface. The heat transfer was enhanced with both increasing flow rate and increasing rotational speeds. When evaporative effects were modeled, the evaporation was found to increase the heat transfer at the lower flow rates the most because of a fully developed thermal field that was achieved. The evaporative effects did not significantly enhance the heat transfer at the higher flow rates.

  10. Wetting and Photocatalytic Properties of TiO2 Nanotube Arrays Prepared via Anodic Oxidation of E-Beam Evaporated Ti Thin Films

    Directory of Open Access Journals (Sweden)

    Soon Wook Kim

    2015-01-01

    Full Text Available TiO2 nanotube arrays (TNAs are fabricated on quartz substrate by anodizing E-beam evaporated Ti films. E-beam evaporated Ti films are directly anodized at various anodizing voltages ranging from 20 to 45 V and their morphological, wetting, and photocatalytic properties are examined. The photocatalytic activity of the prepared TNAs is evaluated by the photodecomposition of methylene blue under UV illumination. The TNAs prepared at an anodizing voltage of 30 V have a high roughness of 30.1 nm and a low water contact angle of 7.5°, resulting in a high photocatalytic performance. The surface roughness of the TNAs is found to correlate inversely with the water contact angle. High roughness (i.e., high surface area, which leads to high hydrophilicity, is desirable for effective photocatalytic activity.

  11. Evidence of room temperature ferromagnetism in argon/oxygen annealed TiO{sub 2} thin films deposited by electron beam evaporation technique

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, P. [School of Materials Science and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005 (India); Kabiraj, D. [Inter University Accelerator Center, Aruna Asaf Ali Marg, New Delhi 110067 (India); Mandal, R.K. [Department of Metallurgical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005 (India); Kulriya, P.K. [Inter University Accelerator Center, Aruna Asaf Ali Marg, New Delhi 110067 (India); Sinha, A.S.K. [Department of Chemical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005 (India); Rath, Chandana, E-mail: chandanarath@yahoo.com [School of Materials Science and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005 (India)

    2014-04-15

    TiO{sub 2} thin films deposited by electron beam evaporation technique annealed in either O{sub 2} or Ar atmosphere showed ferromagnetism at room temperature. The pristine amorphous film demonstrates anatase phase after annealing under Ar/O{sub 2} atmosphere. While the pristine film shows a super-paramagnetic behavior, both O{sub 2} and Ar annealed films display hysteresis at 300 K. X-ray photo emission spectroscopy (XPS), Raman spectroscopy, Rutherford’s backscattering spectroscopy (RBS), cross-sectional transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS) were used to refute the possible role of impurities/contaminants in magnetic properties of the films. The saturation magnetization of the O{sub 2} annealed film is found to be higher than the Ar annealed one. It is revealed from shifting of O 1s and Ti 2p core level spectra as well as from the enhancement of high binding energy component of O 1s spectra that the higher magnetic moment is associated with higher oxygen vacancies. In addition, O{sub 2} annealed film demonstrates better crystallinity, uniform deposition and smoother surface than that of the Ar annealed one from glancing angle X-ray diffraction (GAXRD) and atomic force microscopy (AFM). We conclude that although ferromagnetism is due to oxygen vacancies, the higher magnetization in O{sub 2} annealed film could be due to crystallinity, which has been observed earlier in Co doped TiO{sub 2} film deposited by pulsed laser deposition (Mohanty et al., 2012 [10]). - Highlights: • TiO{sub 2} films were deposited by e-beam evaporation technique and post annealed under O{sub 2}/Ar at 500 °C. • The pristine film shows SPM behavior where as O{sub 2} and Ar annealed films demonstrate RTFM. • The presence of magnetic impurities has been discarded by various characterization techniques. • The magnetic moment is found to be higher in O{sub 2} annealed film than the Ar annealed one. • The higher M{sub s} in O{sub 2

  12. Effect of Ge Addition on the Optical Band Gap and Refractive Index of Thermally Evaporated As2Se3 Thin Films

    OpenAIRE

    Pankaj Sharma; S. C. Katyal

    2008-01-01

    The present paper reports the effect of Ge addition on the optical band gap and refractive index of A s 2 S e 3 thin films. Thin films of A s 2 S e 3 and ( A s 2 S e 3 ) 9 0 G e 1 0 were prepared by thermal evaporation technique at base pressure 1 0 − 4  Pa. Optical band gap and refractive index were calculated by analyzing the transmission spectrum in the spectral range 400–1500 nm. The optical band gap decreases while the refractive index increases with the addition of Ge to A s 2 S e 3 . T...

  13. Preparation of YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} epitaxial thin films by pulsed ion-beam evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Sorasit, S.; Yoshida, G.; Suzuki, T.; Suematsu, H.; Jiang, W.; Yatsui, K. [Nagaoka University of Technology, Extreme Energy-Density Research Institute, Nagaoka, Niigata (Japan)

    2001-09-01

    Thin films of YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} (Y-123) grown epitaxially have been successfully deposited by ion-beam evaporation (IBE). The c-axis oriented YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} thin films were successfully deposited on MgO and SrTiO{sub 3} substrates. The Y-123 thin films which were prepared on the SrTiO{sub 3} substrates were confirmed to be epitaxially grown, by X-ray diffraction analysis. The instantaneous deposition rate of the Y-123 thin films was estimated as high as 4 mm/s. (author)

  14. Influence of oxygen flow rate on properties of indium tin oxide thin films prepared by ion-assisted electron beam evaporation

    Directory of Open Access Journals (Sweden)

    Artorn Pokaipisit

    2009-11-01

    Full Text Available Indium tin oxide (ITO thin films with various oxygen flow rates were deposited onto glass substrates by ion-assistedelectron beam evaporation. All other deposition parameters were kept constant. The electrical and optical properties of theITO thin films have been investigated as a function of oxygen flow rate. Optical transmittance and optical band gap energy were measured by spectrophotometer. Sheet resistance was measured by four-point probe method. It has been found that an oxygen flow rate at 12 sccm was suitable for improving the properties of ITO thin films. The resistivity and optical transmittance of ITO thin films were 7.210-4 -cm and 84%, respectively. The optical band gap was 4.19 eV.

  15. Effect of Annealing Temperature on CuInSe2/ZnS Thin-Film Solar Cells Fabricated by Using Electron Beam Evaporation

    Directory of Open Access Journals (Sweden)

    H. Abdullah

    2013-01-01

    Full Text Available CuInSe2 (CIS thin films are successfully prepared by electron beam evaporation. Pure Cu, In, and Se powders were mixed and ground in a grinder and made into a pellet. The pallets were deposited via electron beam evaporation on FTO substrates and were varied by varying the annealing temperatures, at room temperature, 250°C, 300°C, and 350°C. Samples were analysed by X-ray diffractometry (XRD for crystallinity and field-emission scanning electron microscopy (FESEM for grain size and thickness. I-V measurements were used to measure the efficiency of the CuInSe2/ZnS solar cells. XRD results show that the crystallinity of the films improved as the temperature was increased. The temperature dependence of crystallinity indicates polycrystalline behaviour in the CuInSe2 films with (1 1 1, (2 2 0/(2 0 4, and (3 1 2/(1 1 6 planes at 27°, 45°, and 53°, respectively. FESEM images show the homogeneity of the CuInSe2 formed. I-V measurements indicated that higher annealing temperatures increase the efficiency of CuInSe2 solar cells from approximately 0.99% for the as-deposited films to 1.12% for the annealed films. Hence, we can conclude that the overall cell performance is strongly dependent on the annealing temperature.

  16. Effect of Cu/(Zn+Sn) ratio on the properties of co-evaporated Cu{sub 2}ZnSnSe{sub 4} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Suresh Babu, G.; Kishore Kumar, Y.B.; Uday Bhaskar, P.; Raja Vanjari, Sundara [Sri Venkateswara University, Solar Energy Laboratory, Department of Physics, S.V.U. Campus, Tirupati 517 502 (India)

    2010-02-15

    The effect of Cu/(Zn+Sn) ratio on the properties of Cu{sub 2}ZnSnSe{sub 4} (CZTSe) thin films is investigated. CZTSe thin films with Cu/(Zn+Sn) ratio in the range 0.85-1.15 are deposited using 4-source co-evaporation technique onto glass substrates held at a substrate temperature T{sub s}=623 K and post-deposition annealed at T{sub pa}=723 K for 1 h in the selenium atmosphere. Powder X-ray diffraction (XRD) patterns reveal that CZTSe films deposited with Cu/(Zn+Sn) ratio in the range 0.90-1.10 are single phase and polycrystalline. CZTSe films, deposited with Cu/(Zn+Sn) ratio of 0.85 contain ZnSe as secondary phase and films with ratio of 1.15 contain Cu{sub 2-X}Se as the secondary phase. The films are found to exhibit kesterite structure. Band gap of the films is found to increase with decrease in Cu/(Zn+Sn) ratio. Electrical resistivity of the films is found to lie in the range 0.02-23-{omega}-cm depending on Cu/(Zn+Sn) ratio. (author)

  17. Impact of Resonant Infrared Matrix-Assisted Pulsed Laser Evaporation (RIR-MAPLE) on Morphology and Charge Conduction in Conjugated Polymer and Bulk Heterojunction Thin Films

    Science.gov (United States)

    Stiff-Roberts, Adrienne; McCormick, Ryan; Atewologun, Ayomide

    2014-03-01

    An approach to improve organic photovoltaic efficiency is to increase vertical charge conduction by promoting out-of-plane π- π stacking in conjugated polymers. Resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) features multiple growth parameters that can be varied to achieve a desired organic thin film property. In addition, RIR-MAPLE enables nanoscale domains in blended polymeric films and multi-layer polymeric films regardless of constituent solubility. Thus, RIR-MAPLE deposition is compared to solution-cast films as a possible approach to increase out-of-plane charge transport in polymers and bulk heterojunctions. Two common, solar cell polymers are investigated: P3HT and PCPDTBT. Materials characterization includes grazing-incidence, wide angle x-ray scattering (GIWAXS) for structural information and two techniques to determine hole mobility: organic field effect transistors to measure in-plane mobility and charge extraction by linearly increasing voltage to measure out-of-plane mobility. Initial indications are that the RIR-MAPLE films have a fundamentally different morphology compared to solution-cast films. In the case of P3HT, an enhancement in out-of-plane π- π stacking was observed by GIWAXS in RIR-MAPLE films compared to solution-cast films. A portion of this research was conducted at CNMS at ORNL.

  18. Convective mass transfer from a submerged drop in a thin falling film

    CERN Document Server

    Landel, Julien R; McEvoy, H; Dalziel, Stuart B

    2015-01-01

    We study the fluid mechanics of removing a passive tracer contained in small, viscous drops attached to a flat inclined substrate using thin gravity-driven film flows. A convective mass transfer establishes across the drop-film interface and the tracer in the drop diffuses into the film flow. The Peclet number for the tracer in the film is large. The Peclet number Pe_d in the drop varies from 0.01 to 1. The characteristic transport time in the drop is much larger than in the film. We model the mass transfer of the tracer from the drop bulk into the film using an empirical model based on Newton's law of cooling. This model is supported by a theoretical model solving the quasi-steady 2D advection-diffusion equation in the film coupled with a time-dependent 1D diffusion equation in the drop. We find excellent agreement between our experimental data and the 2 models, which predict an exponential decrease in time of the tracer concentration in the drop. The results are valid for all drop and film Peclet numbers st...

  19. Structural, optical and electrical properties of CuIn{sub 5}S{sub 8} thin films grown by thermal evaporation method

    Energy Technology Data Exchange (ETDEWEB)

    Gannouni, M., E-mail: gm_mounir@yahoo.fr [Laboratoire de Photovoltaique et Materiaux Semi-conducteurs -ENIT BP 37, Le belvedere 1002-Tunis (Tunisia); Kanzari, M. [Laboratoire de Photovoltaique et Materiaux Semi-conducteurs -ENIT BP 37, Le belvedere 1002-Tunis (Tunisia)

    2011-05-19

    Highlights: > In this work, thin films of CuIn{sub 5}S{sub 8} were successfully deposited onto glass substrates by thermal evaporation and annealed in air. > Post-depositional annealing effects on structural, optical and electrical properties of thermal evaporated CuIn{sub 5}S{sub 8} thin films were studied. > The results reported in this work make this material attractive as an absorber material in solar cells applications. - Abstract: Stoichiometric compound of copper indium sulfur (CuIn{sub 5}S{sub 8}) was synthesized by direct reaction of high purity elemental copper, indium and sulfur in an evacuated quartz tube. The phase structure of the synthesized material revealed the cubic spinel structure. The lattice parameter (a) of single crystals was calculated to be 10.667 A. Thin films of CuIn{sub 5}S{sub 8} were deposited onto glass substrates under the pressure of 10{sup -6} Torr using thermal evaporation technique. CuIn{sub 5}S{sub 8} thin films were then thermally annealed in air from 100 to 300 deg. C for 2 h. The effects of thermal annealing on their physico-chemical properties were investigated using X-ray diffraction (XRD), Energy-dispersive X-ray spectroscopy (EDX), scanning electron microscope (SEM), optical transmission and hot probe method. XRD studies of CuIn{sub 5}S{sub 8} thin films showed that as-deposited films were amorphous in nature and transformed into polycrystalline spinel structure with strong preferred orientation along the (3 1 1) plane after the annealing at 200 deg. C. The composition is greatly affected by thermal treatment. From the optical transmission and reflection, an important absorption coefficient exceeds 10{sup 4} cm{sup -1} was found. As increasing the annealing temperature, the optical energy band gap decreases from 1.83 eV for the as-deposited films to 1.43 eV for the annealed films at 300 deg. C. It was found that CuIn{sub 5}S{sub 8} thin film is an n-type semiconductor at 300 deg. C.

  20. Nonlinear optical studies on 4-(ferrocenylmethylimino)-2-hydroxy-benzoic acid thin films deposited by matrix-assisted pulsed laser evaporation (MAPLE)

    Energy Technology Data Exchange (ETDEWEB)

    Matei, Andreea [INFLPR - National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Str., Magurele RO-077125, Bucharest (Romania); Marinescu, Maria, E-mail: maria.marinescu@chimie.unibuc.ro [UB - University of Bucharest, Faculty of Chemistry, 90-92 Şoseaua Panduri, Sector 5, RO-010184, Bucharest (Romania); Constantinescu, Catalin, E-mail: catalin.constantinescu@inflpr.ro [INFLPR - National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Str., Magurele RO-077125, Bucharest (Romania); Ion, Valentin; Mitu, Bogdana [INFLPR - National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Str., Magurele RO-077125, Bucharest (Romania); Ionita, Iulian [INFLPR - National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Str., Magurele RO-077125, Bucharest (Romania); UB - University of Bucharest, Faculty of Physics, 405 Atomistilor Str., Magurele RO-077125, Bucharest (Romania); Dinescu, Maria [INFLPR - National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Str., Magurele RO-077125, Bucharest (Romania); Emandi, Ana [INFLPR - National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Str., Magurele RO-077125, Bucharest (Romania); UB - University of Bucharest, Faculty of Chemistry, 90-92 Şoseaua Panduri, Sector 5, RO-010184, Bucharest (Romania)

    2016-06-30

    Graphical abstract: - Highlights: • A newly synthesized ferrocene-derivative exhibits SHG potential. • Matrix-assisted pulsed laser evaporation is employed for thin film fabrication. • The optical properties of the films are investigated, presented and discussed. • At maximum laser output power, the SHG signal is strongly influenced by thin film thickness. - Abstract: We present results on a new, laboratory synthesized ferrocene-derivative, i.e. 4-(ferrocenylmethylimino)-2-hydroxy-benzoic acid. Thin films with controlled thickness are deposited by matrix-assisted pulsed laser evaporation (MAPLE), on quartz and silicon substrates, with the aim of evaluating the nonlinear optical properties for potential optoelectronic applications. Dimethyl sulfoxide was used as matrix, with 1% wt. concentration of the guest compound. The frozen target is irradiated by using a Nd:YAG laser (4ω/266 nm, 7 ns pulse duration, 10 Hz repetition rate), at low fluences ranging from 0.1 to 1 J/cm{sup 2}. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) are used to probe the surface morphology of the films. Fourier transform infrared (FTIR) and Raman spectroscopy reveal similar structure of the thin film material when compared to the starting material. The optical properties of the thin films are investigated by spectroscopic-ellipsometry (SE), and the refractive index dependence with respect to temperature is studied. The second harmonic generation (SHG) potential is assessed by using a femtosecond Ti:sapphire laser (800 nm, 60–100 fs pulse duration, 80 MHz repetition rate), at 200 mW maximum output power, revealing that the SHG signal intensity is strongly influenced by the films’ thickness.

  1. Structural, morphological, gas sensing and photocatalytic characterization of MoO3 and WO3 thin films prepared by the thermal vacuum evaporation technique

    Science.gov (United States)

    Arfaoui, A.; Touihri, S.; Mhamdi, A.; Labidi, A.; Manoubi, T.

    2015-12-01

    Thin films of molybdenum trioxide and tungsten trioxide were deposited on glass substrates using a simplified thermal evaporation under vacuum method monitored by heat treatment in flowing oxygen at 500 °C for 1 h. The structural and morphological properties of the films were investigated using X-ray diffraction, Raman spectroscopy, atomic force microscopy and scanning electron microscopy. The X-ray diffraction analysis shows that the films of MoO3 and WO3 were well crystallized in orthorhombic and monoclinic phase respectively with the crystallites preferentially oriented toward (2 0 0) direction parallel a-axis for both samples. In literature, we have shown in previous papers that structural and surface morphology of metal thin films play an important role in the gas detection mechanism. In this article, we have studied the response evolution of MoO3 and WO3 thin films sensors ethanol versus time, working temperature and the concentration of the ethanol. It was found that these films had high sensitivity to ethanol, which made them as a good candidate for the ethanol sensor. Finally, the photocatalytic activity of the samples was evaluated with respect to the degradation reaction of a wastewater containing methylene blue (MB) under UV-visible light irradiation. The molybdenum trioxide exhibits a higher degradation rate than the tungsten trioxide thin films under similar experimental conditions.

  2. Cu2ZnSnSe4 Thin Films by Selenization of Simultaneously Evaporated Sn-Zn-Cu Metallic Lays for Photovoltaic Applications

    Science.gov (United States)

    Shao, Lexi; Zhang, Jun; Zou, Changwei; Xie, Wei

    Cu2ZnSnSe4 (CZTSe) thin films were prepared by selenization of simultaneously evaporated metallic Cu-Zn-Sn on soda lime glass (SLG) substrates. The selenization were performed in elemental selenium vapor ambient at 450 °C for 1.5 h using Argon as the carrier gas. The compositions and structural properties of the films were characterized by using EDS, XRD, and Raman, respectively. The results show that the synthesized CZTSe thin films are nearly stoichiometric and single-phase with a kesterite structure. The measurement for electrical and optical properties indicated that a high absorption coefficient of 104 cm-1 and a low resistivity of 30 Ωcm are obtained. The optical band-gap energy of the CZTSe thin film can be fitted to be as 1.52 eV, which closes to the optimum value for solar cell absorber. The preparation processing for CZTSe developed in this woek is more attractive than others reported in the industrialization applications because the atomic ratio of Cu:Sn:Zn in the precursor can be easily controlled by adjusting the ratio of the evaporation sources, meanwhile, it is more suitable for large-scale production.

  3. In{sub 6}Se{sub 7} thin films by heating thermally evaporated indium and chemical bath deposited selenium multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Ornelas, R.E.; Avellaneda, D. [Universidad Autonoma de Nuevo Leon, Facultad de Ingenieria Mecanica y Electrica, San Nicolas de los Garza, Nuevo Leon-66450 (Mexico); Shaji, S. [Universidad Autonoma de Nuevo Leon, Facultad de Ingenieria Mecanica y Electrica, San Nicolas de los Garza, Nuevo Leon-66450 (Mexico); Universidad Autonoma de Nuevo Leon-CIIDIT, Apodaca, N.L (Mexico); Castillo, G.A.; Roy, T.K. Das [Universidad Autonoma de Nuevo Leon, Facultad de Ingenieria Mecanica y Electrica, San Nicolas de los Garza, Nuevo Leon-66450 (Mexico); Krishnan, B., E-mail: kbindu_k@yahoo.com [Universidad Autonoma de Nuevo Leon, Facultad de Ingenieria Mecanica y Electrica, San Nicolas de los Garza, Nuevo Leon-66450 (Mexico); Universidad Autonoma de Nuevo Leon-CIIDIT, Apodaca, N.L (Mexico)

    2012-05-15

    Indium selenide (In{sub 6}Se{sub 7}) thin films were prepared via selenization of thermally evaporated indium thin films by dipping in sodium selenosulphate solution followed by annealing in nitrogen atmosphere. First, indium was thermally evaporated on glass substrate. Then, the indium coated glass substrates were dipped in a solution containing 80 ml 0.125 M sodium selenosulphate and 1.5 ml dilute acetic acid (25%) for 5 min. Glass/In-Se layers were annealed at 200-400 Degree-Sign C in nitrogen atmosphere (0.1 Torr) for 30 min. X-ray diffraction studies showed the formation of monoclinic In{sub 6}Se{sub 7}. Morphology of the thin films formed at different conditions was analyzed using Scanning electron microscopy. The elemental analysis was done using Energy dispersive X-ray detection. Electrical conductivity under dark and illumination conditions was evaluated. Optical band gap was computed using transmittance and reflectance spectra. The band gap value was in the range 1.8-2.6 eV corresponding to a direct allowed transition. We studied the effect of indium layer thickness and selenium deposition time on the structure, electrical and optical properties of In{sub 6}Se{sub 7} thin films.

  4. Effect of deposition distance on thickness and microstructure of silicon thin film produced by electron beam evaporation; Efeito da distancia de deposicao na espessura e microestrutura de filme fino obtido por evaporacao por feixe de eletrons

    Energy Technology Data Exchange (ETDEWEB)

    Toledo, T.F.; Ramanery, F.P.; Branco, J.R.T. [Fundacao Centro Tecnologico de Minas Gerais, Belo Horizonte, MG (Brazil)], e-mail: thalitaqui@yahoo.com.br; Cunha, M.A. [Acos Especiais Itabira S.A. (Acesita), Belo Horizonte, MG (Brazil)

    2006-07-01

    The interest for materials with new characteristics and properties made thin films an area of highest research interest. Silicon thin films have been widely used in solar cells, being the main active layer. In this work, the effect of deposition distance on thickness and microstructure of silicon films was investigated. The electron beam evaporation technique with argon plasma assistance was used to obtain films on stainless steel 304, Fe-Si alloy and soda lime glass. The experiments were made varying electron beam current and deposition pressure. The results are discussed based on Hertz-Knudsen's law and thin films microstructure evolution models. The samples were characterized by scanning electron microscopy, atomic force microscopy, X-ray diffraction and profilometer. (author)

  5. Impact of internal transport on the convective mass transfer from a droplet into a submerging falling film

    Science.gov (United States)

    Landel, Julien R.; Thomas, Amalia; McEvoy, Harry; Dalziel, Stuart B.

    2015-11-01

    We investigate the convective mass transfer of dilute passive tracers contained in small viscous drops into a submerging falling film. This problem has applications in industrial cleaning, domestic dishwashers, and decontamination of hazardous material. The film Peclet number is very high, whereas the drop Peclet number varies from 0.1 to 1. The characteristic transport time in the drop is much larger than in the film. We model the mass transfer using an analogy with Newton's law of cooling. This empirical model is supported by an analytical model solving the quasi-steady two-dimensional advection-diffusion equation in the film that is coupled with a time-dependent one-dimensional diffusion equation in the drop. We find excellent agreement between our experimental data and the two models, which predict an exponential decrease in time of the drop concentration. The transport characteristic time is related to the drop diffusion time scale, as diffusion within the drop is the limiting process. Our theoretical model not only predicts the well-known relationship between the Sherwood number and the external Reynolds number in the case of a well-mixed drop Sh ~ Re1/3, it also predicts a correction in the case of a non-uniform drop concentration. The correction depends on Re, the film Schmidt number, the drop aspect ratio and the diffusivity ratio between the two phases. This prediction is in good agreement with experimental data. This material is based upon work supported by the Defense Threat Reduction Agency under Contract No. HDTRA1-12-D-0003-0001.

  6. Atom probe study of Cu2ZnSnSe4 thin-films prepared by co-evaporation and post-deposition annealing

    Science.gov (United States)

    Schwarz, T.; Cojocaru-Mirédin, O.; Choi, P.; Mousel, M.; Redinger, A.; Siebentritt, S.; Raabe, D.

    2013-01-01

    We use atom probe tomography (APT) for resolving nanometer scale compositional fluctuations in Cu2ZnSnSe4 (CZTSe) thin-films prepared by co-evaporation and post-deposition annealing. We detect a complex, nanometer-sized network of CZTSe and ZnSe domains in these films. Some of the ZnSe domains contain precipitates having a Cu- and Sn-rich composition, where the composition cannot be assigned to any of the known equilibrium phases. Furthermore, Na impurities are found to be segregated at the CZTSe/ZnSe interface. The insights given by APT are essential for understanding the growth of CZTSe absorber layers for thin-film solar cells and for optimizing their optoelectronic properties.

  7. Influence of the elemental composition and crystal structure on the vacuum properties of Ti-Zr-V non-evaporable getter films

    CERN Document Server

    Prodromides, A E; Chiggiato, P; Mongelluzzo, A; Ruzinov, V; Scheuerlein, C; Taborelli, M; Lévy, F

    2001-01-01

    Non-evaporable thin film getters based on the elements of the 4th and 5th columns of the periodic table have been deposited by sputtering. Among the about 20 alloys studied to date, the lowest activation temperature (about 180 °C for a 24-hour heating) has been found for the Ti-Zr-V system in a well-defined composition range. The characterization of the activation behavior of such Ti-Zr-V films is presented. The evolution of the surface chemical composition during activation is monitored by Auger Electron Spectroscopy (AES) and the functional properties are evaluated by pumping speed measurements. The pumping speed characteristics are quite similar to those already measured for commercially available NEG materials, except for the much lower saturation coverage for CO. This inconvenience, which is due to the smooth surface structure of these films, can be counteracted by increasing the roughness of the substrate.

  8. Post annealing effects on structural, optical and electrical properties of CuSbS2 thin films fabricated by combinatorial thermal evaporation technique

    Science.gov (United States)

    Hussain, Arshad; Ahmed, R.; Ali, N.; Butt, Faheem K.; Shaari, A.; Shamsuri, W. N. Wan; Khenata, R.; Prakash, Deo; Verma, K. D.

    2016-01-01

    Copper antimony sulfide (CuSbS2) thin films were fabricated by combinatorial thermal evaporation technique on well cleaned glass substrates. The deposited thin films were annealed in argon gas atmosphere for 1 h at temperature range of 150-350 °C. The effect of annealing temperature on structural, morphological, optical and electrical properties was studied using the different characterization techniques. The XRD analysis confirmed the crystallinity of the obtained samples with CuSbS2 phase in chalcostibite structure. Optical properties of the deposited samples showed good response in the visible and NIR region, envisaging the potential of CuSbS2 as an efficient solar cell material. The optical band gap of CuSbS2 thin films was measured to be 1.5 eV. A decrease (12.5-1.43 KΩ-cm) was observed for the resistivity of samples with the increase in annealing temperature. The plot of sheet resistance with annealing temperature confirmed the uniformity of samples. These thin films were found as a sustainable substitute material for the absorber layer in conventional thin film solar cell system, because of the abundance and low cost of its constituent elements. This study opens new avenue of research for scalable synthesis of CuSbS2 thin films for solar cell and photovoltaic applications.

  9. Influence of Annealing Temperature on Surface Morphological and Electrical Properties of Aluminum Thin Film on Glass Substrate by Vacuum Thermal Evaporator

    Science.gov (United States)

    Wibowo, K. M.; Sahdan, M. Z.; Asmah, M. T.; Saim, H.; Adriyanto, F.; Suyitno; Hadi, S.

    2017-08-01

    This paper explains the effects of the annealing temperature on structural and electrical properties of Aluminum (Al) thin films. Al thin films were deposited on glass substrate by thermal vacuum evaporator. The films were then annealed at 100°, 200°, 300°, 400°, and 500°C for 1 hour. The surface morphology of Al films after annealing were characterized using atomic force microscope (AFM) and field emission scanning electron microscope (FESEM). The electrical properties were characterized using four point probe. From the results of this experiment, the roughness of Al films gradually decrease from 8.5 nm (before annealing) to 7.7 nm and the grain size gradually increase from 127 nm to 145 nm, when the temperature of annealing increased. The resistivity of the films was also decreased from 2.32 x 10-5 ohm.cm to 1.9 x 10-5 ohm.cm when the samples were annealed from 100° to ohm.cm.

  10. Vacuum annealing phenomena in ultrathin TiDy/Pd bi-layer films evaporated on Si(100) as studied by TEM and XPS.

    Science.gov (United States)

    Lisowski, W; Keim, E G

    2010-04-01

    Using a combination of TEM and XPS, we made an analysis of the complex high-temperature annealing effect on ultrathin titanium deuteride (TiD(y)) films evaporated on a Si(100) substrate and covered by an ultrathin palladium layer. Both the preparation and annealing of the TiD(y)/Pd bi-layer films were performed in situ under UHV conditions. It was found that the surface and bulk morphology of the bi-layer film as well as that of the Si substrate material undergo a microstructural and chemical conversion after annealing and annealing-induced deuterium evolution from the TiD(y) phase. Energy-filtered TEM (EFTEM) mapping of cross-section images and argon ion sputter depth profiling XPS analysis revealed both a broad intermixing between the Ti and Pd layers and an extensive inter-diffusion of Si from the substrate into the film bulk area. Segregation of Ti at the Pd top layer surface was found to occur by means of angle-resolved XPS (ARXPS) and the EFTEM analyses. Selected area diffraction (SAD) and XPS provided evidence for the formation of a new PdTi(2) bimetallic phase within the top region of the annealed film. Moreover, these techniques allowed to detect the initial stages of TiSi phase formation within the film-substrate interlayer.

  11. Structural, microstructural and optical properties of Cu$_2$ZnSnS$_4$ thin films prepared by thermal evaporation: effect of substrate temperature and annealing

    Indian Academy of Sciences (India)

    U CHALAPATHI; S UTHANNA; V SUNDARA RAJA

    2017-09-01

    Thin films of Cu$_2$ZnSnS$_4$ (CZTS), a promising solar cell absorber, were grown by thermal evaporation ofZnS, Sn and Cu precursors and subsequent annealing in sulphur atmosphere. Two aspects are chosen for investigation:(i) the effect of substrate temperature ($T_S$) used for the deposition of precursors and (ii) (N$_2$ $+$ S$_2$) pressure during annealing, to study their impact on the growth of CZTS films. X-ray diffraction analysis of these films revealed the structure to be kesterite with (112) preferred orientation. Crystallite size is found to slightly increase with increase in TS as well as pressureduring annealing. From optical absorption studies, the direct optical band gap of CZTS films is found to be $\\sim$1.45 eV. Room temperature electrical resistivity of the films obtained on annealing the stacks at 10 and 100 mbar pressures is found to be in the ranges 25–55 and 5–25 cm, respectively, depending on $T_S$. Films prepared by annealing the stack deposited at 300$^{\\circ}$C under 100 mbar pressure for 90 min are slightly Cu-poor and Zn-rich with compact grain morphology.

  12. Structural and optical properties of Sn{sub 1−x}Fe{sub x}O{sub 2} thin films prepared by flash evaporation technique

    Energy Technology Data Exchange (ETDEWEB)

    Kuppan, M., E-mail: skaleemulla@gmail.com; Kaleemulla, S., E-mail: skaleemulla@gmail.com; Rao, N. Madhusudhana, E-mail: skaleemulla@gmail.com; Krishna, N. Sai, E-mail: skaleemulla@gmail.com; Begam, M. Rigana, E-mail: skaleemulla@gmail.com [Thin Films Laboratory, School of Advanced Sciences, VIT University, Vellore-632014, Tamilnadu (India)

    2014-04-24

    Sn{sub 1−x}Fe{sub X}O{sub 2} (x = 0, 0.05) thin films were prepared on glass substrate using the flash evaporation technique. The samples were annealed at 773 K for 2 hrs in air atmosphere. A systematic study was carried out on the structural and optical properties of the as deposited and annealed thin films. From the X-ray diffraction analysis it was found that the Sn{sub 1−x}Fe{sub X}O{sub 2} films deposited at 623 K were amorphous in nature and the Sn{sub 1−x}Fe{sub X}O{sub 2} films annealed at 773 K exhibited the tetragonal structure of the SnO{sub 2}. The optical band gap of the SnO{sub 2} thin films was found to be as 3.17 eV whereas the optical band gap of the Sn{sub 1−x}Fe{sub X}O{sub 2} films was found to be as 3.01 eV after air annealing.

  13. Thickness dependent magnetic and structural properties of Co(x)Cr(1-x) thin films evaporated on Si(100) and glass substrates.

    Science.gov (United States)

    Kharmouche, A

    2011-06-01

    Series of Co(x)Cr(1-x) thin films have been prepared by thermal evaporation onto Si(100) and Corning glass substrates, x ranging from 1 to 0.60, and the magnetic layer thickness from 17 to 220 nm. The dependence of the magnetic and crystallographic properties on the thickness of CoCr layers have been investigated. The chromium content effect on the saturation magnetization of the films has also been examined. Microscopic characterizations of the films, performed with X-ray diffraction (XRD) measurements, infer that all the samples are composed of hcp phase crystallites with good orientation of the c axis showing a (0001) preferred orientation. The grain size increases with thickness. Atomic force microscopy (AFM) observations show very smooth film surfaces, the highest rms value being 18 amgstroms. The saturation magnetization M(s) was found to decrease from 1400 emu/cm3 to a few emu/cm3 as x decreases from 1 to 0.60, for all values of the thickness. In-plane squareness up to S = 0.83 has been observed for the CoCr/Si thinnest film, and S = 0.90 for the Co/Si thinnest film, too. Magnetic Force Microscopy (MFM) study points out the absence of stripe domains equilibrium magnetization structure for the CoCr thin films whereas the thick Co films present a well defined stripe pattern. From the magnetocrystalline anisotropy field H(a) values extracted from the fit of the BLS spectra, we have computed effective magnetic anisotropy factors K(u), as well. Their negative values for the CoCr samples confirm an in-plane magnetic anisotropy for the thin film magnetization.

  14. The effect of superficial gas velocity on wavy films and its use in enhancing the performance of falling film reactors

    Energy Technology Data Exchange (ETDEWEB)

    Talens-Alesson, F.I. [TALENCO Chemical Engineering Consulting, Hospitalet de Llobregat (Spain)

    2000-07-01

    Mass transfer in co-current downward annular flow depends on the amount of liquid carried by the waves. The thickness of the wavy portion of the liquid film increases with the superficial gas velocity. By calculating superficial friction factors from simple pressure drop experiments, an estimate of the velocity at which the maximum development of waviness is achieved can be obtained, and optimized performance conditions can be found. (orig.)

  15. In vitro and in vivo studies on the thin and defect-free calcium phosphate films formed by electron-beam evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D.H.; Kwon, S.H.; Hong, S.H.; Kim, H.E.; Lee, I.S. [Seoul National Univ. (Korea). School of Materials Science and Engineering; Jung, Y.C. [Yonsei Univ. (Korea). Coll. of Dentistry

    2001-07-01

    The thin and defect-free calcium phosphate film deposited to a thickness of 1 {mu}m by electron beam evaporation was characterized in vivo and in vitro. For the in vivo study, as-machined, as-blasted, and calcium phosphate coating on machined surface of commercially pure titanium screw implants were inserted in the rabbit tibiae. Twelve screws of each condition were implanted, and the total of 144 implants were evaluated. The various Ca/P ratios of calcium phosphate films were formed by e-beam evaporation without simultaneous Ar ion bombardment. The as-deposited films had the average bonding strengths of 64.8 MPa to metal implant and different dissolution rates with the Ca/P ratio. After a healing period of 12-week, at the day of sacrifice, the implants were unscrewed with a torque gauge instrument. The coated sample showed the highest removal torque in both normal and ovariectomized group indicating direct chemical bond with bone tissues. (orig.)

  16. PS-b-PEO/Silica Films with Regular and Reverse Mesostructures of Large Characteristic Length Scales Prepared by Solvent Evaporation-Induced Self-Assembly

    Energy Technology Data Exchange (ETDEWEB)

    YU,KUI; BRINKER,C. JEFFREY; HURD,ALAN J.; EISENBERG,ADI

    2000-11-22

    Since the discovery of surfactant-templated silica by Mobil scientists in 1992, mesostructured silica has been synthesized in various forms including thin films, powders, particles, and fibers. In general, mesostructured silica has potential applications, such as in separation, catalysis, sensors, and fluidic microsystems. In respect to these potential applications, mesostructured silica in the form of thin films is perhaps one of the most promising candidates. The preparation of mesostructured silica films through preferential solvent evaporation-induced self-assembly (EISA) has recently received much attention in the laboratories. However, no amphiphile/silica films with reverse mesophases have ever been made through this EISA procedure. Furthermore, templates employed to date have been either surfactants or poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) triblock copolymers, such as pluronic P-123, both of which are water-soluble and alcohol-soluble. Due to their relatively low molecular weight, the templated silica films with mesoscopic order have been limited to relatively small characteristic length scales. In the present communication, the authors report a novel synthetic method to prepare mesostructured amphiphilic/silica films with regular and reverse mesophases of large characteristic length scales. This method involves evaporation-induced self-assembly (EISA) of amphiphilic polystyrene-block-poly(ethylene oxide) (PS-b-PEO) diblock copolymers. In the present study, the PS-b-PEO diblocks are denoted as, for example, PS(215)-b-PEO(100), showing that this particular sample contains 215 S repeat units and 100 EO repeat units. This PS(215)-b-PEO(100) diblock possesses high molecular weight and does not directly mix with water or alcohol. To the authors knowledge, no studies have reported the use of water-insoluble and alcohol-insoluble amphiphilic diblocks as structure-directing agents in the synthesis of mesostructured silica films through

  17. Structure, microstructure and magnetic properties of Ni{sub 75}Fe{sub 25} films elaborated by evaporation from nanostructured powder

    Energy Technology Data Exchange (ETDEWEB)

    Kaibi, A., E-mail: kaibi_amel@yahoo.fr [Laboratory of Materials Physics (LPM), Faculty of Physics, USTHB, BP 32 El Alia, Algiers (Algeria); Guittoum, A. [Nuclear Research Centre of Algiers, 02 Bd Frantz Fanon, BP 399, Algiers (Algeria); Öksüzoğlu, R.M.; Yağci, A.M. [University of Anadolu, Faculty of Engineering, Department of Materials Sciences and Engineering, İkiEylül Campus, 26555 Eskişehir (Turkey); Boudissa, M. [ENMC Laboratory, Physics Department, University of Sétif, 19000 (Algeria); Kechouane, M. [Laboratory of Materials Physics (LPM), Faculty of Physics, USTHB, BP 32 El Alia, Algiers (Algeria)

    2015-09-30

    Highlights: • Ni{sub 75}Fe{sub 25} permalloy (Py) thin films with different thicknesses were deposited by vacuum evaporation from nanocrystalline powder onto Si(1 1 1) substrate. • The texture was found to change with increasing thickness. • The existence of nanosized grains with a uniform distribution has been observed. • The existence of a uniaxial magnetic anisotropy with an easy axis parallel to the film plane has been evidenced. • The coercive field was found to decrease with increasing thickness. - Abstract: We report on the structural, microstructural and magnetic properties of Ni{sub 75}Fe{sub 25} permalloy (Py) thin films. Py thin films with different thicknesses were deposited by vacuum evaporation from nanocrystalline powder onto Si (11) substrate. The thickness varies from 16 nm to 250 nm. From grazing X-ray diffraction patterns (GIXRD), we have shown the presence of a strong 〈200〉 texture for the lowest thickness (16 nm). For the 52 nm and 84 nm thick samples, a strong 〈111〉 preferred orientation is developed. However, for higher thicknesses, a polycrystalline structure is present. From the Scanning Electron Microscopy observations (SEM), we have shown that the surface seems to be very dense with many fine grains. The analysis of EDX spectra revealed that the sample composition is close to the starting Ni{sub 75}Fe{sub 25} powder. A more accurate investigation of the morphology was performed with the atomic force microscopy (AFM). We have shown the existence of nanosized grains with a uniform distribution. The mean diameter of the grains increases from 27 nm to 40 nm when the thickness increases. From magnetic measurements, we have shown the existence of a uniaxial magnetic anisotropy with an easy axis parallel to the film plane. The coercive field, H{sub C} was found to decrease with increasing thickness.

  18. Film at Fall Meeting: Do-it-yourself flicks, Richard Alley preview

    Science.gov (United States)

    Adams, Mary Catherine

    2011-11-01

    Have you ever wished science had Hollywood star power? On Tuesday evening, 6 December, watch short science films and hear Hollywood filmmakers give advice to AGU scientists about these short films. Oceanographer-turned-filmmaker Randy Olson will host AGU's "The S Factor" video workshop along with screenwriter Sean Hood, cowriter of Halloween: Resurrection and the 2011 remake ofConan the Barbarian, and Jason Ensler, co-producer-director of TNT's Franklin & Bash. Olson is writer-director of the documentaries Flock of Dodos and Sizzle: A Global Warming Comedy and author of Don't Be Such a Scientist: Talking Substance in an Age of Style. The workshop starts at 7:00 P.M. in Moscone South, Room 300.

  19. Influence of the substrate temperature on the structural, optical, and electrical properties of tin selenide thin films deposited by thermal evaporation method

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, N.; Sharma, V.; Padha, N. [Department of Physics and Electronics, Dr. Ambedkar Road, University of Jammu, Jammu-180 006, Jammu and Kashmir State (India); Shah, N.M.; Desai, M.S.; Panchal, C.J. [Applied Physics Department, Faculty of Technology and Engineering, M. S. University of Baroda, Vadodara-390 001, Gujarat State (India); Protsenko, I.Yu. [Appl. Physics Dept., Faculty of Electronic and Information Technologies, Sumy State University (Ukraine)

    2010-01-15

    Thin films of tin selenide (SnSe) were deposited on sodalime glass substrates, which were held at different temperatures in the range of 350-550 K, from the pulverized compound material using thermal evaporation method. The effect of substrate temperature (T{sub s}) on the structural, morphological, optical, and electrical properties of the films were investigated using x-ray diffraction analysis (XRD), scanning electron microscopy (SEM), transmission measurements, and Hall-effect characterization techniques. The temperature dependence of the resistance of the films was also studied in the temperature range of 80-330 K. The XRD spectra and the SEM image analyses suggest that the polycrystalline thin films having uniform distribution of grains along the (111) diffraction plane was obtained at all T{sub s}. With the increase of T{sub s} the intensity of the diffraction peaks increased and well-resolved peaks at 550 K, substrate temperature, were obtained. The analysis of the data of the optical transmission spectra suggests that the films had energy band gap in the range of 1.38-1.18 eV. Hall-effect measurements revealed the resistivity of films in the range 112-20 {omega} cm for films deposited at different T{sub s}. The activation energy for films deposited at different T{sub s} was in the range of 0.14 eV-0.28 eV as derived from the analysis of the data of low-temperature resistivity measurements. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Development of Co-evaporated In2S3 Buffer Layer for Cu2ZnSnSe4 Thin Film Solar Cells

    OpenAIRE

    Buffiere, Marie; Barreau, Nicolas; Brammertz, Guy; Sahayaraj, Sylvester; Meuris, Marc; Poortmans, Jef

    2015-01-01

    In this work, we focus on the replacement of the commonly used but toxic Cd-based buffer layer by In2S3 thin films deposited by co-evaporation for application in Cu2ZnSnSe4 (CZTSe) solar cells. The impact of the deposition conditions of the buffer layer on the electrical behavior of CZTSe/In2S3 devices is first investigated. The best solar cell efficiencies were obtained for relatively thick In2S3 buffer layers (similar to 100 nm) deposited at low temperature (

  1. Hydrodynamic Characterization of Harmonically Excited Falling-Films: A Detailed Experimental and Computational Study

    Science.gov (United States)

    Charogiannis, Alexandros; Denner, Fabian; van Wachem, Berend; Pradas, Marc; Kalliadasis, Serafim; Markides, Christos

    2016-11-01

    We investigate the hydrodynamic characteristics of harmonically excited liquid-films flowing down a 20circ; incline by simultaneous application of Particle Tracking Velocimetry and Planar Laser-Induced Fluorescence (PLIF) imaging, complemented by Direct Numerical Simulations. By simultaneously implementing the above two optical techniques, instantaneous and highly localised flow-rate data were also retrieved, based on which the effect of local film topology on the flow-field underneath the wavy interface is studied in detail. Our main result is that the instantaneous flow rate varies linearly with the instantaneous film-height, as confirmed by both experiments and simulations. Furthermore, both experimental and numerical flow-rate data are closely approximated by a simple analytical relationship, which is reported here for the first time, with only minor deviations. This relationship includes the wave speed c and mean flow-rate Q , both of which can be obtained by simple and inexpensive measurement techniques, thus allowing for spatiotemporally resolved flow-rate predictions to be made without requiring any knowledge of the full flow-field from below the wavy interface.

  2. Optical parameters of ternary Te{sub 15}(Se{sub 100-x}Bi{sub x}){sub 85} thin films deposited by thermal evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Kameshwar; Thakur, Nagesh [Department of Physics, HP University, Shimla 171005 (India); Sharma, Pankaj [Department of Physics, Jaypee University of Information Technology, Waknaghat, Solan, HP 173215 (India); Katyal, S C, E-mail: kameshwarkumar01@gmail.com, E-mail: pankaj.sharma@juit.ac.in, E-mail: ntb668@yahoo.co.in [Department of Physics, Jaypee Institute of Information Technology, Noida, UP (India)

    2011-10-15

    Thin films of Te{sub 15}(Se{sub 100-x}Bi{sub x}){sub 85} (x=0, 1, 2, 3, 4 and 5 at.%) glassy alloys were deposited by thermal evaporation (at 10{sup -4} Pa) from bulk samples. Optical characterization of the films was done by analysing their transmission spectra taken in the spectral range 400-2300 nm. Swanepoel's method was used to calculate the refractive index (n) and extinction coefficient (k). It was found that the refractive index increases with an increase in Bi content. The Wemple-DiDomenico single-oscillator approach was used to calculate the average band gap energy (E{sub o}), dispersion energy (E{sub d}) and static refractive index (n{sub o}). The absorption coefficient ({alpha}) and film thickness were calculated from the transmission spectra of the films. The optical band gap (E{sub g}) was estimated using Tauc's extrapolation and was found to decrease from 1.37 to 1.21 eV with Bi addition from 0 to 5 at.% in glassy alloys. The decrease in optical band gap is explained on the basis of the decrease in cohesive energy of the samples and the difference of electronegativity of the atoms involved. The real ({epsilon}{sub r}) and imaginary parts ({epsilon}{sub i}) of the dielectric constant for the films were also calculated and reported.

  3. Influence of ion-to-atom ratio on the microstructure of evaporated molybdenum thin films grown using low energy argon ions

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Praveen Kumar, E-mail: praveenyadav@rrcat.gov.in; Nayak, Maheswar; Rai, Sanjay Kumar; Lodha, Gyanendra Singh [X-ray Optics Section, Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Sant, Tushar; Sharma, Surinder Mohan [High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Mukherjee, Chandrachur [Mechanical and Optical Support Section, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India)

    2014-03-15

    The authors report the effect of argon ion to molybdenum atom ratio (r) on the microstructure of low energy (70 eV) argon ion assisted electron beam evaporated Mo thin films. Surface roughness, morphology, and crystallinity of Mo films are found to strongly depend on “r.” Increase of “r” from 0 to 100 induces gradual loss in crystallinity, reduction in surface roughness and systematic increase in density of the film. For “r” ∼ 100, average atomic density of the film approaches the bulk value (97%) with lowest surface roughness. Further, increasing “r” up to 170 reduces the atomic density, increases roughness, and increase in crystallinity induced by low energy Ar ion beam. The observed surface roughness and grain size determined by x-ray reflectivity and glancing incidence x-ray diffraction correlate well with atomic force microscopy measurements. This study demonstrates that for r = 100 one gets lowest roughness Mo film with highest density and nearly amorphous microstructure. The growth model is discussed by structural zone model.

  4. Electrical and optical transport characterizations of electron beam evaporated V doped In{sub 2}O{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Islam, Md. Ariful, E-mail: arifapee19@gmail.com [Department of Physics, Rajshahi University of Engineering & Technology (RUET), Rajshahi (Bangladesh); Roy, Ratan Chandra; Hossain, Jaker; Julkarnain, Md.; Khan, Khairul Alam [Department of Applied Physics & Electronic Engineering, University of Rajshahi (Bangladesh)

    2017-01-15

    Vanadium (5 at. %) doped Indium Oxide (V: In{sub 2}O{sub 3}) thin films with different thicknesses (50 nm, 100 nm and 150 nm) were prepared onto glass substrate by electron beam evaporation technique in a vacuum of about 4 x 10{sup -3} Pa. X-ray diffraction (XRD) pattern revealed that the prepared films of thickness 50 nm are amorphous in nature. Temperature dependence of electrical resistivity was studied in the 300 < T < 475 K temperature range. The films exhibit a metallic behavior in the 300 < T < 380 K range with a positive temperature coefficient of the resistivity (TCR), whereas at T > 380 K, the conduction behavior turns into a semiconductor with a negative TCR. Optical studies revealed that the films of thickness 50 nm possess high transmittance of about 86 % in the near-infrared spectral region. The direct optical band gap lies between 3.26 and 3.00 eV depending on the film thickness. (author)

  5. High-rate and low-temperature growth of ZnO:Ga thin films by steered cathodic arc plasma evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Chih-Hao [Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan (China); Wang, Wei-Lin [Nano Materials Center, ITRI South, Industrial Technology Research Institute, Tainan, Taiwan (China); Hwang, Weng-Sing, E-mail: wshwang@mail.ncku.edu.tw [Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan (China)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer ZnO:Ga (GZO) films are deposited on glass by steered cathodic arc plasma evaporation. Black-Right-Pointing-Pointer GZO films are grown at a high growth rate (220 nm/min) and low temperature (120 Degree-Sign C). Black-Right-Pointing-Pointer Films with low strain show low resistivity and high transparency. Black-Right-Pointing-Pointer Droplet size is reduced when a high-melting-point GZO ceramic target is adopted. Black-Right-Pointing-Pointer Metal-like conductivity indicates GZO films became degenerated semiconductors. - Abstract: Ga-doped ZnO (GZO) thin films with various thicknesses (120-520 nm) are deposited on the glass substrate at a high growth rate of 220 nm/min and a low temperature of 120 Degree-Sign C by a steered cathodic arc plasma evaporation (steered CAPE). The growth mechanism, microstructure, residual stress, surface morphology, electrical and optical properties, chemical states, electron transport behaviors and thickness effect of the GZO films are investigated. The film stress is gradually relaxed from -0.516 GPa to -0.090 GPa with thickness increasing. Transmission electron microscopy (TEM) images show that the GZO microstructure consists of c-axis textured columnar grains accompanied by some embedded nanodroplets. The droplet size is significantly reduced when a high-melting-point (1975 Degree-Sign C) GZO ceramic target is adopted. High-resolution TEM image shows the GZO crystallites nucleated directly onto the amorphous substrate. The electrical properties improve with increasing thickness. The lowest resistivity (4.72 Multiplication-Sign 10{sup -4} {Omega} cm) is achieved at the thickness of 520 nm, with a corresponding transmittance of 89% in the visible region. Temperature-dependent resistivity measurements show that metal-semiconductor transition temperature increases from 136 K to 225 K when decreasing the thickness, which is due to the increasing the localized states caused by the defects and

  6. Modeling and Optimizing of Producing Recycled PET from Fabrics Waste via Falling Film-Rotating Disk Combined Reactor

    Directory of Open Access Journals (Sweden)

    Dan Qin

    2017-01-01

    Full Text Available Recycling and reusing of poly (ethylene terephthalate (PET fabrics waste are essential for reducing serious waste of resources and environmental pollution caused by low utilization rate. The liquid-phase polymerization method has advantages of short process flow, low energy consumption, and low production cost. However, unlike prepolymer, the material characteristics of PET fabrics waste (complex composition, high intrinsic viscosity, and large quality fluctuations make its recycling a technique challenge. In this study, the falling film-rotating disk combined reactor is proposed, and the continuous liquid-phase polymerization is modeled by optimizing and correcting existing models for the final stage of PET polymerization to improve the product quality in plant production. Through modeling and simulation, the weight analysis of indexes closely related to the product quality (intrinsic viscosity, carboxyl end group concentration, and diethylene glycol content was investigated to optimize the production process in order to obtain the desired polymer properties and meet specific product material characteristics. The model could be applied to other PET wastes (e.g., bottles and films and extended to investigate different aspects of the recycling process.

  7. Effect of Ge Addition on the Optical Band Gap and Refractive Index of Thermally Evaporated As2Se3 Thin Films

    Directory of Open Access Journals (Sweden)

    Pankaj Sharma

    2008-01-01

    Full Text Available The present paper reports the effect of Ge addition on the optical band gap and refractive index of As2Se3 thin films. Thin films of As2Se3 and (As2Se390Ge10 were prepared by thermal evaporation technique at base pressure 10−4 Pa. Optical band gap and refractive index were calculated by analyzing the transmission spectrum in the spectral range 400–1500 nm. The optical band gap decreases while the refractive index increases with the addition of Ge to As2Se3. The decrease of optical band gap has been explained on the basis of density of states; and the increase in refractive index has been explained on the basis increase in disorder in the system.

  8. Rational design of a bi-layered reduced graphene oxide film on polystyrene foam for solar-driven interfacial water evaporation

    KAUST Repository

    Shi, Le

    2016-12-20

    Solar-driven water evaporation has been emerging as a highly efficient way for utilizing solar energy for clean water production and wastewater treatment. Here we rationally designed and fabricated a bi-layered photothermal membrane with a porous film of reduced graphene oxide (rGO) on the top and polystyrene (PS) foam at the bottom. The top porous rGO layer acts as a light absorber to harvest and convert light efficiently to thermal energy and the bottom PS layer, which purposefully disintegrates water transport channels, acts as an excellent thermal barrier to minimize heat transfer to the nonevaporative bulk water. The optimized bi-layered membrane was able to produce water evaporation rate as high as 1.31 kg m−2 h−1 with light to evaporation conversion efficiency as high as 83%, which makes it a promising photothermal material in the literature. Furthermore, the experiments and theoretical simulation were both conducted to examine the relationship between the overall energy efficiency and the depth of the photothermal material underwater and the experimental and simulations results coincided with each other. Therefore, this work provides systematic evidence in support of the concept of the interfacial heating and shines important light on practical applications of solar-driven processes for clean water production.

  9. Analysis of Evaporation Heat Transfer of Thin Liquid Film in a Capillary of Equilateral Triangular Cross-Section

    Institute of Scientific and Technical Information of China (English)

    Miao Jianyin; Wang Jinliang; Ma Tongze

    2001-01-01

    In this paper, theoretical analysis on evaporating heat transfer in capillary with equilateral triangular cross section is presented and numerical calculations based on glass-water system are carried out. Considering evaporation mechanism in capillary with polygonal section, one-dimensional model is used to describe the three-dimensional case. The evaporating meniscus in the capillary along axis can be divided into six regions. The following conclusions are obtained: (1) The local heat transfer coefficients and heat fluxes in capillary increase quickly in the first and second regions, and slowly in the third region. The maximum value appears at interline between the third and fourth regions, then gradually decreases in the last three regions. (2) The average heat transfer coefficients decrease when the sizes of the capillary section increase, and become larger under higher wall temperature.

  10. Heat and mass transfer of heated falling film under gas-liquid cross-flow condition%气液叉流下受热液膜的热质传递特性

    Institute of Scientific and Technical Information of China (English)

    蒋斌; 王子云; 付祥钊; 王勇

    2011-01-01

    采用VOF两相流模型研究了气液叉流条件下受热液膜热质传递特性,在模型中添加了表面张力源项和气液相间传质源项.为了验证所建立模型的可靠性,采用非接触式红外热成像测温方法,进行了相应的气液叉流试验.对叉流条件下受热液膜热质传递过程进行了试验和模拟计算,结果显示无量纲壁面温度计算结果与试验结果吻合很好.应用所建立的模型,模拟计算并分析了表面张力、固液接触角、液膜流量等因素对液膜流动侧形和热质传递性能的影响,结果表明:在其他参数保持不变的情况下,表面张力从0.014 N/m增大到0.072 N/m的过程中,液膜覆盖面积由82.7%减小到73.2%;固液接触角从30°增大到60°的过程中,液膜覆盖面积由80.6%减小到69.4%;液膜流量越小,液膜厚度越小,越有利于液膜的蒸发;相反,较高的液膜流量会使液膜厚度增大,阻碍了液膜蒸发,从而使外掠过液膜的单位体积空气含湿量减小.%Based on volume of fluid(VOF) method,heat and mass transfer of heated falling film under gas-liquid cross-flow condition was investigated. Surface tension and species transport were taken into account. In order to verify reliability of the model,the experiment was performed by non-contact infrared thermal imaging technology under gas-liquid cross-flow condition. Heat and mass transfer of heated falling film under gas-liquid cross-flow condition was investigated experimentally and theoretically. The results show that the simulated dimensionless wall temperature is in good agreement with the experimental data. Based on the model, the influence of surface tension coefficient, solid-liquid contact angle and liquid film flow rate on heat transfer of liquid film was simulated. It is found that, remaining constant of other parameters, liquid film interfacial area decreases from 82. 7% to 73. 2% in corresponding with surface tension coefficient increases

  11. Efficient upconversion polymer-inorganic nanocomposite thin film emitters prepared by the double beam matrix assisted pulsed laser evaporation (DB-MAPLE)

    Science.gov (United States)

    Darwish, Abdalla M.; Burkett, Allan; Blackwell, Ashley; Taylor, Keylantra; Walker, Vernell; Sarkisov, Sergey; Koplitz, Brent

    2014-09-01

    We report on fabrication and investigation of optical and morphological properties of highly efficient (a quantum yield of 1%) upconversion polymer-inorganic nanocomposite thin film emitters prepared by the new technique of double beam matrix assisted pulsed laser evaporation (DB-MAPLE). Polymer poly(methyl methacrylate) (PMMA) host was evaporated on a silicon substrate using a 1064-nm pulsed laser beam using a target made of frozen (to the temperature of liquid nitrogen) solution of PMMA in chlorobenzene. Concurrently, the second 532-nm pulsed beam from the same laser was used to impregnate the polymer host with the inorganic nanoparticulate made of the rare earth upconversion compounds NaYF4: Yb3+, Er3+, NaYF4: Yb3+, Ho3+, and NaYF4: Yb3+, Tm3+. The compounds were initially synthesized using the wet process, baked, and compressed in solid pellet targets. The proposed DB-MAPLE method has the advantage of making highly homogeneous nanocomposite films with precise control of the doping rate due to the optimized overlapping of the plumes produced by the ablation of the organic and inorganic target with the infrared and visible laser beams respectively. X-ray diffraction, electron and atomic force microscopy, and optical fluorescence spectroscopy indicated that the inorganic nanoparticulate preserved its crystalline structure and upconversion properties (strong emission in green, red, and blue bands upon illumination with 980-nm laser diode) after being transferred from the target in the polymer nanocomposite film. The produced films can be used in applications varying from the efficiency enhancement of the photovoltaic cells, optical sensors and biomarkers to anti-counterfeit labels.

  12. Preparation of multiband structure with Cu2Se/Ga3Se2/In3Se2 thin films by thermal evaporation technique for maximal solar spectrum utilization

    Science.gov (United States)

    Mohan, A.; Rajesh, S.; Gopalakrishnan, M.

    2016-10-01

    The paper investigates and discusses the formation of multiband structure through the Cu2Se-Ga3Se-In3Se2 thin films for maximal solar spectrum utilization. Stacking different semiconductor materials with various band gaps were done by successive evaporation method. Based on the band gap values the layers are arranged (low to high bandgap from the substrate). The XRD results exhibits the formation of CIGS composites through this successive evaporation of Cu2Se/Ga3Se/In3Se2 and treating then with temperature. Scanning Electron Microscope images shows improved crystallinity with the reduction in the larger grain boundary scattering after annealing. Optical spectra shows the stronger absorption in an UV-Visible region and higher transmission in the infrared and near infrared region. The optical band gap values calculated for as prepared films is 2.20 eV and the band gap was split into 1.62, 1.92 eV and 2.27eV for annealed samples. This multiband structures are much needed to utilize the full solar spectrum.

  13. Optimization of co-evaporation conditions of as-grown MgB{sub 2} thin films by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Harada, Y. [Iwate Industry Promotion Center, Iioka-shinden 3-35-2, Morioka, Iwate 020-0852 (Japan)]. E-mail: yharada@luck.ocn.ne.jp; Takahashi, T. [Graduate School of Engineering, Iwate University, Ueda 4-3-5, Morioka, Iwate 020-8551 (Japan); Iriuda, H. [Department of Materials Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551 (Japan); Kuroha, M. [Department of Materials Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551 (Japan); Nakanishi, Y. [Graduate School of Engineering, Iwate University, Ueda 4-3-5, Morioka, Iwate 020-8551 (Japan); Yoshizawa, M. [Graduate School of Engineering, Iwate University, Ueda 4-3-5, Morioka, Iwate 020-8551 (Japan)

    2005-10-01

    We have made as-grown MgB{sub 2} film deposited by molecular beam epitaxy (MBE) under co-evaporation conditions of low temperature, low growth rate, and ultra high vacuum on three types of substrates, MgO(1 0 0), Al{sub 2}O{sub 3}(0 0 0 1), and SrTiO{sub 3}(1 0 0). The optimization of these conditions was investigated with respect to (1) growth temperature (T {sub s} < 250 deg. C) (2) B deposition rate, and (3) Mg/B deposition ratio. The film properties were investigated by RHEED, XRD, AFM, electrical resistivity, and SQUID magnetometer. The film grown at 200 deg. C, B deposition rate of 0.3 A/s and Mg/B ratio of 8 showed the highest T {sub c,onset} of 35 K and had a sharp transition ({delta}T {sub c} = 0.5 K). We report the upper critical field and anisotropy ratio of these films.

  14. Correlations between the Optical Properties and the Microstructure of TiO2 Thin Films Prepared by Reactive Electron-beam Evaporation

    Institute of Scientific and Technical Information of China (English)

    WANG Xue-hua; XUE Yi-yu; ZHANG You-ling; CAO Hong

    2004-01-01

    High refractive index TiO2 thin films were deposited on BK7 glass by reactive electron - beam(REB) evaporation at pressure of 2 × 10- 2 Pa, deposition rate of 0.2nm/s and at various substrate temperaturesfrom 120℃ to 300℃ . The refractive index and the thickness of the films were measured by visible spectroscopic el-lipsometry (SE) and determined from transmission spectra. Optical properties and structure features were charac-terized by UV - VIS, SEM and XRD, respectively. The measurement and analysis on transmission spectra of allsamples shaw that with the substrate temperature increasing from 120℃ to 300℃ , the refractive indices of thinfilms increase from 1.7 to 2.1 and the films after heat treatment have higher refractive indices due to its crystalliz-ing. The XRD analysis results indicate that the structure of TiO2 thin films deposited on BK7 glass at substratetemperatures of 120℃ ,200℃ and 300℃ is amorphous, after post-annealing under air condition at 400℃ for 1hour, the amorphous structure is crystallized, the crystal phase is of 100% anatase with strong preferred orientation(004) and the grain size of crystalline is within 3.6-8.1 nm, which is consistent with results from SEM observation.

  15. Composition and structure of CuInSe2 thin films prepared by vacuum evaporation of the constituent elements

    Science.gov (United States)

    Dhere, N. G.; Lourenco, M. C.; Dhere, R. G.; Kazmerski, L. L.

    1984-11-01

    The characteristics of CuInSe2 thin film solar cells produced by a three-source deposition method were investigated. The films were deposited at 350 C, followed by 30 min annealing at the same temperature. The compositions of the cells and intracell fractional variations were dependent on the proximity to the film source during formation. A chalcopyrite CuInSe2 structure was observed in X-ray diffraction patterns and high energy electron diffraction studies of the films on NaCl single crystal substrates. Grain sizes ranged from 0.2-0.6 micron, and the films had a band gap in the 1.02-1.04 eV interval.

  16. Ultra thin films of gadolinium deposited by evaporation in ultra high vacuum conditions: Composition, growth and morphology

    Energy Technology Data Exchange (ETDEWEB)

    Herrera-Sancho, O.A.; Castro-Gonzalez, D.; Araya-Pochet, J.A. [Centro de Investigacion en Ciencia e Ingenieria de Materiales, Universidad de Costa Rica, 2060 San Pedro, San Jose (Costa Rica); Escuela de Fisica, Universidad de Costa Rica, 2060 San Pedro, San Jose (Costa Rica); Vargas-Castro, W.E., E-mail: william.vargascastro@ucr.ac.cr [Centro de Investigacion en Ciencia e Ingenieria de Materiales, Universidad de Costa Rica, 2060 San Pedro, San Jose (Costa Rica); Escuela de Fisica, Universidad de Costa Rica, 2060 San Pedro, San Jose (Costa Rica)

    2011-02-01

    Ultra-thin gadolinium films with thicknesses between 8 and 101 A were deposited on AT-cut crystalline quartz substrates under ultra high vacuum conditions, and subsequently subjected to composition and morphologic characterization through X-ray photo-spectroscopy analysis and atomic force microscopy. Oxygen contamination is found on the samples, and its amount is estimated in terms of the thickness of an oxygen layer over the gadolinium films after subtracting the contribution to the XPS spectra of the underlying background. Atomic force microscope pictures provide evidence of having metal island films, with two growing regimes: the Volmer-Weber mode for the thinner films considered and the Stranski-Krastanov growing mode for the thicker ones. From evaluation of the sticking coefficient, the shape of the islands is approximated in terms of oblate spheroid caps and variation of the contact angle with film mass thickness is reported.

  17. Incorporation of Li in MoO{sub 3} thin films grown by evaporation with a CO{sub 2} laser

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, D.; Pardo, A.P.; Alfonso, J.E. [Grupo de Materiales con Aplicaciones Tecnologicas - GMAT, Physics Department, Universidad Nacional de Colombia, A.A. 14490, Bogota DC (Colombia); Moreno, L.C. [Centro de Catalisis Heterogenea, Departamento de Quimica, Universidad Nacional de Colombia Bogota DC (Colombia); Torres, J.

    2007-07-01

    This work describes the lithium incorporation process in thin films of MoO{sub 3} prepared by evaporation with a laser of CO{sub 2,} working in continuous wave mode. Targets prepared from mixtures of MoO{sub 3} (99.97%) and Li{sub 2}CO{sub 3} (99.98%) in powder were used in the growth of the films. The targets had Li concentrations of 1%, 2% and 5% (lithium ions/total cations). The samples were characterized through X-rays diffraction, (XRD) and transmittance in the visible spectrum. The XRD spectra show an evolution in the growth of the films, beginning by an amorphous phase for samples with temperatures lower than 200 C. From this temperature on a mixture of the {alpha} and {beta} phases of LiMoO{sub 3} and Li{sub 2}MoO{sub 4} appears, which grow along planes (100), (111) for LiMoO{sub 3} and (012) for Li{sub 2}MoO{sub 4}. The transmittance spectra showed a shift of the material's energy gap towards long wavelengths as the lithium concentration increases in the sample. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Heat and mass transfer analogies for evaporation models at high evaporation rate

    OpenAIRE

    Trontin, P.; Villedieu, P.

    2014-01-01

    International audience; In the framework of anti and deicing applications, heated liquid films can appear above the ice thickness, or directly above the wall. Then, evaporation plays a major role in the Messinger balance and evaporated mass has to be predicted accurately. Unfortunately, it appears that existing models under-estimate evaporation at high temperature. In this study, different evaporation models at high evaporation rates are studied. The different hypothesis on which these models...

  19. Effect of high magnetic field on structure and magnetic properties of evaporated crystalline and amorphous Fe-Sm thin films

    Science.gov (United States)

    Li, Guojian; Li, Mengmeng; Wang, Jianhao; Du, Jiaojiao; Wang, Kai; Wang, Qiang

    2017-02-01

    Crystalline and amorphous Fe-Sm thin films have been fabricated by using molecular beam vapor deposition method. Then, the effects of both variation of Sm content and application of high magnetic field during film growth on the structure and magnetic properties of the Fe-Sm films have been explored. The results show that bcc structure of the Fe-Sm films with 5.8% Sm transforms to amorphization with 33.0% Sm. Meanwhile, nanocrystallite is formed in the amorphous Fe-Sm films. However, no Fe-Sm compound exists with the change of Sm content and with the application of high magnetic field. Nevertheless, high magnetic field decreases interplanar spacing. The structural evolution has a significant effect on magnetic properties. Saturation magnetization decreases 290% from 1456 emu/cm3 to 373 emu/cm3 with the increase of Sm content from 5.8% to 33.0%. The coercivity increases 1225% from 20 Oe to 265 Oe. Meanwhile, both the saturation magnetization and coercivity of the films decrease with the application of high magnetic field. The reason has been discussed.

  20. How do evaporating thin films evolve? Unravelling phase-separation mechanisms during solvent-based fabrication of polymer blends

    KAUST Repository

    Wodo, Olga

    2014-10-13

    © 2014 AIP Publishing LLC. Solvent-based fabrication is a flexible and affordable approach to manufacture polymer thin films. The properties of products made from such films can be tailored by the internal organization (morphology) of the films. However, a precise knowledge of morphology evolution leading to the final film structure remains elusive, thus limiting morphology control to a trial and error approach. In particular, understanding when and where phases are formed, and how they evolve would provide rational guidelines for more rigorous control. Here, we identify four modes of phase formation and subsequent propagation within the thinning film during solvent-based fabrication. We unravel the origin and propagation characteristics of each of these modes. Finally, we construct a mode diagram that maps processing conditions with individual modes. The idea introduced here enables choosing processing conditions to tailor film morphology characteristics and paves the ground for a deeper understanding of morphology control with the ultimate goal of precise, yet affordable, morphology manipulation for a large spectrum of applications.

  1. Effect of Cd and Pb impurities on the optical properties of fresh evaporated amorphous (As2Se3)90Ge10 thin films

    Science.gov (United States)

    Sharma, P.; Katyal, S. C.

    2009-05-01

    Transmission spectra (400-1500 nm) of thermally evaporated amorphous [(As2Se3)90Ge10]95M5 thin films have been analyzed to study the effect of impurities (M = Cd and Pb) on their optical properties. The refractive index increases with addition of metal impurities. The dispersion of refractive index has been studied using Wemple-DiDomenico single oscillator model. The optical gap has been estimated using Tauc’s extrapolation and was found to decrease with the addition of metal impurities from 1.46 to 1.36 eV (Cd) and 1.41 eV (Pb) with an uncertainty of ±0.01 eV. The change in optical properties with metal impurities has been explained on the basis of density, polarizability and bond energy of the system.

  2. Influence of Annealing on the Optical Parameters of In2S3 Thin Films Produced by Thermal Evaporation

    Science.gov (United States)

    Izadneshan, H.; Gremenok, V. F.

    2014-05-01

    In2S3 thin fi lms are grown on glass substrates by vacuum thermal evaporation followed by annealing in vacuum between 330 and 400 °C for different time durations. We have investigated the infl uence of the annealing parameters on the characteristics of thin fi lms. It is shown that thermal treatment changed the crystal structure and optical energy band gap of In2S3 thin fi lms. Two energy band gaps were determined for all the fi lms, one indirect and the other direct.

  3. Heat Exchangers for Condensation and Evaporation Applications Operating in a Low Pressure Atmosphere

    Directory of Open Access Journals (Sweden)

    Petr Kracík

    2012-01-01

    Full Text Available This paper presents a state-of-the-art study of a heat transfer process in liquid spraying heat exchangers placed in a vacuum chamber. The experimental case studied here describes the behavior of a falling film evaporation and condensation mode on horizontal tube bundles. The study aims to obtain the heat transfer coefficient and its correlations by means of a mathematical model.

  4. Characteristics of evaporation from perforated plastic film in drip irrigation under film mulching in arid areas%干旱区膜下滴灌条件下膜孔蒸发特征研究

    Institute of Scientific and Technical Information of China (English)

    王春霞; 王全九; 庄亮; 单鱼洋; 张明

    2011-01-01

    Plastic film mulching has been widely used in crop planting in arid areas, but due to the seeding holes and other factors, entire mulching can not be performed in the field, and this must affect the distribution of soil water and salt content. Evaporation was simulated with different holes opening ratio to study the dynamic distribution characteristics of wetness van and soil water and salt transfer with different holes opening ratio in evaporation process. The results indicated that vertical wetness distances were increasing with the elongation of evaporation time, and the increment was the biggest after a day of evaporation; The vertical wetness distances were depressed with holes opening ratio increasing at the end of evaporation. The soil water content was inducing with the extension of evaporation time, it was the most rapid in the top layer, but it increased in the bottom of soil profile; The soil salt content was increasing in top and bottom layers. At the end of evaporation the soil water content was reducing with hole opening ratio increasing at the same profile position, but the increased salt content accumulated at top layer was getting higher with hole opening ratio increasing, and the soil salt content of lower profile was moving along inclined below direction, and assembled in the wetness van. Therewas fine linear relationship between cumulative evaporation and evaporation time, and there was also powerful function relationship between cumulative evaporation increment and open holes ratio.%模拟不同覆膜开孔率下的蒸发试验,研究了蒸发过程中不同覆膜开孔率下土体湿润锋及水盐运移情况的动态分布特征.结果表明:随蒸发历时的延长垂直湿润距离增大,在蒸发1d后垂直湿润距离的增加量最大,蒸发结束时随覆膜开孔率的增大垂直湿润距离减小;随蒸发历时的延长土体剖面内的含水量在减小,表层减小最快,剖面底部边侧含水量有所增加;盐分则呈现

  5. Working Pressure Dependence of Properties of Al2O3 Thin Films Prepared by Electron Beam Evaporation

    Institute of Scientific and Technical Information of China (English)

    ZHAN Mei-Qiong; Wu Zhong-Lin; FAN Zheng-xiu

    2008-01-01

    The effects of working pressure of Al2O3 thin films are investigated.Transmittance of the Al2Oa thin film is measured by a Lambda 900 spectrometer.Laser-induced damage threshold(LIDT)is measured by a Nd:YAG laser at 355nm with 8 pulse width of 7ns.Microdefects were observed under a Nomarski microscope.The samples are characterized by optical properties and defect,as well as LIDT under the 355nm Nd:YAG laser radiation.It js found that the working pressure has fundamental effect on the LIDT.It is the absorption rather than the microdefect that plays an important role on the LIDT of Al2O3 thin film.

  6. YBCO thin film formation near the stability line by resistive evaporation of BaF{sub 2}, Cu, and Y

    Energy Technology Data Exchange (ETDEWEB)

    Azoulay, J. [Center for Technological Education Holon (Israel)

    1996-02-01

    A single resistivity heated source was used to deposit a mixture of BaF{sub 2}, Cu, and Y to form precursor films onto MgO substrates held at room temperature. Different heat treatment conditions were applied to study the stability diagram of YBa{sub 2}Cu{sub 3}O{sub 7{minus}x}. It was found that the stability line is shifted toward the higher oxygen partial pressure and lower temperature side of the pure YBCO line in the presence of fluorine and fluorides in the precursor. Films of good quality were obtained when the annealing conditions were in close proximity to this line.

  7. Predictive control applied to an evaporator mathematical model

    Directory of Open Access Journals (Sweden)

    Daniel Alonso Giraldo Giraldo

    2010-07-01

    Full Text Available This paper outlines designing a predictive control model (PCM applied to a mathematical model of a falling film evaporator with mechanical steam compression like those used in the dairy industry. The controller was designed using the Connoisseur software package and data gathered from the simulation of a non-linear mathematical model. A control law was obtained from minimising a cost function sublect to dynamic system constraints, using a quadratic programme (QP algorithm. A linear programming (LP algorithm was used for finding a sub-optimal operation point for the process in stationary state.

  8. Enhanced bone forming ability of SLA-treated Ti coated with a calcium phosphate thin film formed by e-beam evaporation.

    Science.gov (United States)

    Kim, Hyeongil; Choi, Seong-Ho; Chung, Sung-Min; Li, Long-Hao; Lee, In-Seop

    2010-08-01

    With an electron-beam evaporation process, a calcium phosphate (Ca-P) thin film of approximately 500 nm thick was deposited on sand blasted with large grits and acid etched (SLA) Ti without changing the typical morphology of the SLA surface. Dissolution behavior was investigated by measuring the amount of dissolved phosphate ions with ion chromatography after immersing the SLA Ti sample coated with a Ca-P film in 1 ml de-ionized water maintained at 37 degrees C for different periods of soaking time, and the surface morphology was observed with field emission scanning electron microscopy. The amount of phosphate ions increased quickly right after immersion but began to decrease after 2 days of immersion by redeposition with Ca ions as apatite, and the amount of biomimetic apatite increased with the extended soaking time. The Saos-2 cell was more attached on the coated surface, and the in vivo evaluation was that the Ca-P deposited SLA implant greatly improved the new bone formation ability.

  9. Enhanced bone forming ability of SLA-treated Ti coated with a calcium phosphate thin film formed by e-beam evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyeongil [Restorative Dentistry, School of Dental Medicine, University at Buffalo, NY 14214 (United States); Choi, Seong-Ho [Department of Periodontology, Research Institute for Periodontal Regeneration, College of Dentistry, Yonsei University, Seoul 120-752 (Korea, Republic of); Chung, Sung-Min; Li, Long-Hao [Dentium Clinic Implantium Institute, Seoul 135-879 (Korea, Republic of); Lee, In-Seop, E-mail: inseop@yonsei.ac.k [Atomic-Scale Surface Science Research Center, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2010-08-01

    With an electron-beam evaporation process, a calcium phosphate (Ca-P) thin film of {approx}500 nm thick was deposited on sand blasted with large grits and acid etched (SLA) Ti without changing the typical morphology of the SLA surface. Dissolution behavior was investigated by measuring the amount of dissolved phosphate ions with ion chromatography after immersing the SLA Ti sample coated with a Ca-P film in 1 ml de-ionized water maintained at 37 {sup 0}C for different periods of soaking time, and the surface morphology was observed with field emission scanning electron microscopy. The amount of phosphate ions increased quickly right after immersion but began to decrease after 2 days of immersion by redeposition with Ca ions as apatite, and the amount of biomimetic apatite increased with the extended soaking time. The Saos-2 cell was more attached on the coated surface, and the in vivo evaluation was that the Ca-P deposited SLA implant greatly improved the new bone formation ability.

  10. Lab-on-a-Chip Sensor with Evaporated Bismuth Film Electrode for Anodic Stripping Voltammetry of Zinc

    Science.gov (United States)

    Kang, Wenjing; Pei, Xing; Yue, Wei; Bange, Adam; Heineman, William R.; Papautsky, Ian

    2013-01-01

    In this work, we report on the development of a lab-on-a-chip electrochemical sensor that uses an evaporated bismuth electrode to detect zinc using square wave anodic stripping voltammetry. The microscale electrochemical cell consists of a bismuth working electrode, an integrated silver/silver chloride reference electrode, and a gold auxiliary electrode. The sensor demonstrated linear response in 0.1 M acetate buffer at pH 6 with zinc concentrations ranging from 1 μM to 30 μM and a calculated detection limit of 60 nM. The sensor was also able to successfully detect zinc in a bovine serum extract and the results were verified with independent AAS measurements. These results demonstrate the advantageous qualities of this lab-on-a-chip electrochemical sensor for clinical applications, which include a small sample volume (μL scale), reduced cost, short response time and high accuracy at low concentrations of analyte. PMID:24436575

  11. Cu(In{sub 1-x}Ga{sub x})Se{sub 2} co-evaporated thin films from simple tungsten baskets-Influence of the gallium source

    Energy Technology Data Exchange (ETDEWEB)

    Drici, A. [LEREC, Departement de Physique, Universite Badji Mokhtar, BP 12, Annaba 23000 (Algeria)], E-mail: abdelaziz.drici@univ-annaba.org; Mekhnache, M.; Bouraoui, A. [LEREC, Departement de Physique, Universite Badji Mokhtar, BP 12, Annaba 23000 (Algeria); Kachouane, A.; Bernede, J.C. [LAMP, 2 Rue de la Houssiniere, BP 92208, 44322 Nantes Cedex (France); Amara, A.; Guerioune, M. [LEREC, Departement de Physique, Universite Badji Mokhtar, BP 12, Annaba 23000 (Algeria)

    2008-07-15

    Cu(In{sub 1-x}Ga{sub x})Se{sub 2} (CIGSe) thin films with 0 {<=} x {<=} 1 are grown by co-evaporation. Cu, In and Ga elements are evaporated from simple tungsten baskets, while Se is evaporated from broad Ta basket. Different combinations of the metal sources have been tested using three and two tungsten baskets. It is shown that, when deposited on a substrate heated at 500 deg. C, the Ga is present throughout the thickness of the films whatever the technique used. X-ray photoelectron spectroscopy (XPS measurements have shown that Ga depth profile is more reliable in that case. X-ray diffraction shows that the films crystallize in the expected chalcopyrite structure. The lattice parameters decrease with increasing Ga atomic percentage. It is revealed that the optical band gap increases with the Ga content and yielded a bowing parameter around 0.28. The best results have been obtained with the four sources technique. Thin film solar cells, Mo/CIGSe/In{sub 2}S{sub 3-x}O{sub 3x}/i-ZnO/ZnO:Al/Ni-Al grid, have been fabricated and probed. The efficiency of the cells depends strongly in the film composition but also in the metal source number.

  12. Evaporating metal nanocrystal arrays

    Science.gov (United States)

    Zhang, Xue; Joy, James C.; Zhao, Chenwei; Kim, Jin Ho; Fernandes, Gustavo; Xu, J. M.; Valles, James M., Jr.

    2017-03-01

    Anodic aluminum oxide (AAO) substrates with a self-ordered triangular array of nanopores provide the means to fabricate multiple forms of nano materials, such as nanowires and nanoparticles. This study focuses on nanostructures that emerge in thin films of metals thermally evaporated onto the surface of AAO. Previous work showed that films of different evaporated metals assume dramatically different structures, e.g. an ordered triangular array of nearly monodisperse nanoparticles forms for lead (Pb) while a polycrystalline nanohoneycomb structure forms for silver (Ag). Here, we present investigations of the effects of substrate temperature and deposition angle that reveal the processes controlling the nano particle array formation. Our findings indicate that arrays form provided the grain nucleation density exceeds the pore density and the atomic mobility is high enough to promote grain coalescence. They introduce a method for producing films with anisotropic grain array structure. The results provide insight into the influence of substrate nano-morphology on thin film growth energetics and kinetics that can be harnessed for creating films with other novel nano-structures.

  13. Substate and evaporation rate dependent orientation and crystalline organization of sexithiophene films vacuum deposited onto Au and HOPG

    Science.gov (United States)

    El Ardhaoui, M.; Lang, P.; Garnier, F.; Roger, J. P.

    1998-06-01

    The orientation and the crystalline organization of the films depend largely on the nature of the substrate and the deposition rate. The substrate effect is related to its interactions with the oligomers and also to the molecular mobility at the surface. It depends also largely on the deposition rate. L'orientation et l'organisation structurale des films de sexithiophène évaporés sous vide sont fortement liées à la nature du substrat (Au, HOPG) et à la vitesse de dépôt. L'effet du substrat est lié aux interactions avec les oligomères ainsi qu'à la mobilité de ces derniers sur la surface. Cet effet dépend largement de la vitesse d'évaporation.

  14. Study of a sandwich structure of transparent conducting oxide films prepared by electron beam evaporation at room temperature

    OpenAIRE

    Chiu, Po Kai; Cho, Wen Hao; Chen, Hung Ping; Hsiao, Chien Nan; Yang, Jer Ren

    2012-01-01

    Transparent conducting ZnO/Ag/ZnO multilayer electrodes having electrical resistance much lower than that of widely used transparent electrodes were prepared by ion-beam-assisted deposition (IAD) under oxygen atmosphere. The optical parameters were optimized by admittance loci analysis to show that the transparent conducting oxide (TCO) film can achieve an average transmittance of 93%. The optimum thickness for high optical transmittance and good electrical conductivity was found to be 11 nm ...

  15. In situ fabrication of high-Tc Y-Ba-Cu-O thin film by resistive evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Azoulay, J. (Centre for Technological Education, Holon (Israel) Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv Univ. (Israel))

    1992-11-20

    We have recently used a simple conventional oil-pumped vacuum system equipped with a resistively heated boat for in situ fabrication of Y-Ba-Cu-O high Tc superconductivity phase thin films at a relatively low substrate temperature. A well-ground mixture of yttrium, BaF[sub 2] and copper, weighed in the atomic proportion to yield a stoichiometric YBa[sub 2]Cu[sub 3]O[sub 7-[delta

  16. Tailoring Energy Bandgap of Al Doped ZnO Thin Films Grown by Vacuum Thermal Evaporation Method.

    Science.gov (United States)

    Vyas, Sumit; Singh, Shaivalini; Chakrabarti, P

    2015-12-01

    The paper presents the results of our experimental investigation pertaining to tailoring of energy bandgap and other associated characteristics of undoped and Al doped ZnO (AZO) thin film by varying the atomic concentration of Al in ZnO. Thin films of ZnO and ZnO doped with Al (1, 3, and 5 atomic percent (at.%)) were deposited on silicon substrate for structural characterization and on glass substrate for optical characterization. The dependence of structural and optical properties of Al doped ZnO on the atomic concentration of Al added to ZnO has been reported. On the basis of the experimental results an empirical formula has been proposed to calculate the energy bandgap of AZO theoretically in the range of 1 to 5 at.% of Al. The study revealed that AZO films are composed of smaller and larger number of grains as compared to pure ZnO counterpart and density of the grains was found to increase as the Al concentration increased (from 1 to 5 at.%). The transmittance in the visible region was greater than 90% and found to increase with increasing Al concentration up to 5 at.%. The optical bandgap was found to increase initially with increase in atomic concentration of Al concentration up to 3 at.% and decrease thereafter with increasing concentration of Al.

  17. (112) and (220)/(204)-oriented CuInSe{sub 2} thin films grown by co-evaporation under vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Ruffenach, Sandra; Robin, Yoann; Moret, Matthieu, E-mail: matthieu.moret@univ-montp2.fr; Aulombard, Roger-Louis; Briot, Olivier

    2013-05-01

    CuInSe{sub 2} (CIS) layers were grown by co-evaporation in a molecular beam epitaxy system onto soda lime glass substrates by using both two-step and three step processes. The physical properties of the layers were investigated using X-ray diffraction (XRD) and optical spectroscopy. The sample atomic composition was assessed by energy dispersive analysis of X-rays. Cu-rich or In-rich CIS thin films were obtained exhibiting strong preferential (112) and (220)/(204) orientations in both cases. We performed thermal annealing at 450 °C under nitrogen, keeping Se overpressure to avoid Se desorption from the layer. The annealed layers all exhibit improved crystalline quality, with reduced stoichiometric discrepancy. The secondary phases like Cu{sub x}Se{sub 1−x} or In{sub x}Se{sub 1−x} are no more observable by XRD measurements. Regarding the preferential orientation, thermal annealing of Cu-rich CIS layers favours the (112) orientation leading to a more (112) textured layer after annealing, whatever the initial preferential growth orientation was. In opposite, thermal annealing of In-rich samples increases the (220)/(204) texture of the sample. - Highlights: ► We have studied the thermal annealing effect of Cu-rich and In-rich CuInSe{sub 2}. ► Thermal annealing improves the optical and crystalline quality. ► Secondary phase turned to CuInSe{sub 2} through a recrystallization process or evaporated. ► Thermal annealing of Cu-rich layers leads to an increase of the (112) texture. ► Thermal annealing of In-rich layers leads to an increase of the (220)/(204) texture.

  18. Controlling the texture and crystallinity of evaporated lead phthalocyanine thin films for near-infrared sensitive solar cells.

    Science.gov (United States)

    Vasseur, Karolien; Broch, Katharina; Ayzner, Alexander L; Rand, Barry P; Cheyns, David; Frank, Christian; Schreiber, Frank; Toney, Michael F; Froyen, Ludo; Heremans, Paul

    2013-09-11

    To achieve organic solar cells with a broadened spectral absorption, we aim to promote the growth of the near-infrared (NIR)-active polymorph of lead phthalocyanine (PbPc) on a relevant electrode for solar cell applications. We studied the effect of different substrate modification layers on PbPc thin film structure as a function of thickness and deposition rate (rdep). We characterized crystallinity and orientation by grazing incidence X-ray diffraction (GIXD) and in situ X-ray reflectivity (XRR) and correlated these data to the performance of bilayer solar cells. When deposited onto a self-assembled monolayer (SAM) or a molybdenum oxide (MoO3) buffer layer, the crystallinity of the PbPc films improves with thickness. The transition from a partially crystalline layer close to the substrate to a more crystalline film with a higher content of the NIR-active phase is enhanced at low rdep, thereby leading to solar cells that exhibit a higher maximum in short circuit current density (JSC) for thinner donor layers. The insertion of a CuI layer induces the formation of strongly textured, crystalline PbPc layers with a vertically homogeneous structure. Solar cells based on these templated donor layers show a variation of JSC with thickness that is independent of rdep. Consequently, without decreasing rdep we could achieve JSC=10 mA/cm2, yielding a bilayer solar cell with a peak external quantum efficiency (EQE) of 35% at 900 nm, and an overall power conversion efficiency (PCE) of 2.9%.

  19. Droplets Evaporation on Heated Wall

    Directory of Open Access Journals (Sweden)

    Misyura S. Y.

    2015-01-01

    Full Text Available Various modes of evaporation in a wide range of droplet sizes and wall temperatures have been investigated in the present work. For any initial drop size there are three typical boiling regime: 1 the nucleate boiling; 2 the transitional regime; 3 the film boiling. The width of the transition region of boiling crisis increases with increasing the initial volume V0. Evaporation of large droplets at high superheat depends on the initial droplet shape.

  20. Optical and structural study of In{sub 2}S{sub 3} thin films growth by co-evaporation and chemical bath deposition (CBD) on Cu{sub 3}BiS{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Mesa, F., E-mail: fgmesar@unal.edu.co [Unidad de Estudios Universitarios, Colegio Mayor de Nuestra Señora del Rosario, Cra. 24 N° 63C-69, Bogotá (Colombia); Chamorro, W. [Université de Lorraine, Institut Jean Lamour, Nancy (France); Hurtado, M. [Departamento de Quimica, Universidad Nacional de Colombia, Cra. 30 N° 45-03, Bogotá (Colombia); Departamento de Física, Universidad de los Andes, Calle 21 No. 1-20, Bogotá (Colombia)

    2015-09-30

    Highlights: • In{sub 2}S{sub 3} thin films usually grow like an ultrathin. • Samples grown by CBD have a higher degree of coverage of the substrate unlike co-evaporation method. • Solar cells of Al/TCO/In{sub 2}S{sub 3}/Cu{sub 3}BiS{sub 3}/Mo structure. • In{sub 2}S{sub 3} thin films were deposited on Cu{sub 3}BiS{sub 3} (CBS), with of In{sub 2}S{sub 3} β-phase with tetragonal structure. - Abstract: We present the growth of In{sub 2}S{sub 3} onto Cu{sub 3}BiS{sub 3} layers and soda-lime glass (SLG) substrates by using chemical bath deposition (CBD) and physical co-evaporation. The results reveal that the microstructure and the optical properties of the In{sub 2}S{sub 3} films are highly dependent on the growth method. X-ray diffractrograms show that In{sub 2}S{sub 3} films have a higher crystallinity when growing by co-evaporation than by CBD. In{sub 2}S{sub 3} thin films grown by CBD with a thickness below 170 nm have an amorphous structure however when increasing the thickness the films exhibit two diffraction peaks associated to the (1 0 3) and (1 0 7) planes of the β-In{sub 2}S{sub 3} tetragonal structure. It was also found that the In{sub 2}S{sub 3} films present an energy bandgap (E{sub g}) of about 2.75 eV, regardless of the thickness of the samples.

  1. Evaporating firewalls

    Science.gov (United States)

    Van Raamsdonk, Mark

    2014-11-01

    In this note, we begin by presenting an argument suggesting that large AdS black holes dual to typical high-energy pure states of a single holographic CFT must have some structure at the horizon, i.e. a fuzzball/firewall, unless the procedure to probe physics behind the horizon is state-dependent. By weakly coupling the CFT to an auxiliary system, such a black hole can be made to evaporate. In a case where the auxiliary system is a second identical CFT, it is possible (for specific initial states) that the system evolves to precisely the thermofield double state as the original black hole evaporates. In this case, the dual geometry should include the "late-time" part of the eternal AdS black hole spacetime which includes smooth spacetime behind the horizon of the original black hole. Thus, if a firewall is present initially, it evaporates. This provides a specific realization of the recent ideas of Maldacena and Susskind that the existence of smooth spacetime behind the horizon of an evaporating black hole can be enabled by maximal entanglement with a Hawking radiation system (in our case the second CFT) rather than prevented by it. For initial states which are not finely-tuned to produce the thermofield double state, the question of whether a late-time infalling observer experiences a firewall translates to a question about the gravity dual of a typical high-energy state of a two-CFT system.

  2. Droplet evaporation with complexity of evaporation modes

    Science.gov (United States)

    Hwang, In Gyu; Kim, Jin Young; Weon, Byung Mook

    2017-01-01

    Evaporation of a sessile droplet often exhibits a mixed evaporation mode, where the contact radius and the contact angle simultaneously vary with time. For sessile water droplets containing polymers with different initial polymer concentrations, we experimentally study their evaporation dynamics by measuring mass and volume changes. We show how diffusion-limited evaporation governs droplet evaporation, regardless of the complexity of evaporation behavior, and how the evaporation rate depends on the polymer concentration. Finally, we suggest a unified expression for a diffusion-limited evaporation rate for a sessile droplet with complexity in evaporation dynamics.

  3. Spectroscopic ellipsometry study of xPbO-(1 - x)TiO{sub 2} thin films elaborated by mixed reactive thermal co-evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Boulouz, A; Koutti, L [Faculte des Sciences, LabSIV, Universite Ibn Zohr, 80000 Agadir (Morocco); Nacri, A En [LPMD, Universite Paul Verlaine-Metz, Technopole-Arago, 57010 Metz (France); Pascal-Delannoy, F; Sorli, B, E-mail: ennacir@univ-metz.f [Institut d' Electronique de Sud (IES) UMR CNRS 5214, Universite Montpellier II, Place E. Bataillon, 34095 Montpellier, cedex 05 (France)

    2009-12-21

    In this paper, the refractive index, extinction coefficient and optical band gap of xPbO-(1 - x)TiO{sub 2} systems are determined by spectroscopic ellipsometry in the spectral range of wavelength 250-850 nm. All films are elaborated by mixed reactive thermal co-evaporation on a SiO{sub 2}/Si substrate. The Tauc-Lorentz model is used to extract the optical responses and characteristics of the layers. The best values of the fitted parameters are reported. The wavelength-by-wavelength numerical inversion, carried out without considering any fitting parameter, is also represented as another way to derive the optical constants of the layers. The refractive index and the extinction coefficient depend on the PbO content in xPbO-(1 - x)TiO{sub 2} systems. The obtained values of the optical band gap are found to change between 2.54 and 3.38 eV. It is demonstrated here that the xPbO-(1 - x)TiO{sub 2} systems with the studied compositions have an indirect optical band gap.

  4. Tuning of electrical and structural properties of metal-polymer nanocomposite films prepared by co-evaporation technique

    Energy Technology Data Exchange (ETDEWEB)

    Takele, H.; Strunskus, T.; Zaporojchenko, V.; Faupel, F. [Christian-Albrechts-University of Kiel, Institute for Materials Science, Faculty of Engineering, Kiel (Germany); Jebril, S.; Adelung, R. [Christian-Albrechts-University of Kiel, Functional Nanomaterials Institute for Materials Science, Kiel (Germany)

    2008-08-15

    Nanocomposites consisting of Au and Ag nanoparticles embedded in Teflon AF 1600 (Teflon) and Nylon 6 (Nylon) matrices were prepared by a simultaneous vapor phase deposition of both the polymer and the metal. The composite films were deposited between two Au-Pd alloy electrodes prepared by sputtering onto kapton foil substrates enabling further electrical measurements. The electrical properties of the composites are strongly influenced by the metal filling factor and changes in the microstructure. At first, the dependence of the resistivity of the composites consisting of various Ag and Au nanoparticle concentrations was investigated. The resistivity is characterized by a threshold region with a critical metal filling factor. Changes in the microstructure, in particular, can occur as a result of an induced electric field in between the metal nanoparticles and a heat treatment. The I-V characteristics of Teflon AF composites for different Au concentrations were studied thoroughly. An increase in the slope of the I-V curve up to a certain voltage (breakdown voltage) was observed. This phenomenon is accompanied by the field induced tunneling of the charge carriers which enhances the conductivity. The change in conductivity was also analyzed for Nylon nanocomposites with various Au concentrations in the temperature range 20-180 C. The observed temperature dependence is explained by activated electron tunneling between metal nanoparticles and by rearrangements in the microstructure (e.g. coalescence of metal nanoparticles). (orig.)

  5. Evaporation-Induced Self-Assembly of Hybrid Bridged Silsesquioxane Film and Particulate Mesophases with Integral Organic Functionality

    Energy Technology Data Exchange (ETDEWEB)

    LU,YUNFENG; FAN,HONGYOU; DOKE,NILESH; LOY,DOUGLAS A.; ASSINK,ROGER A.; LAVAN,DAVID A.; BRINKER,C. JEFFREY

    2000-06-12

    Since the discovery of surfactant-templated silica mesophases, the development of organic modification schemes to impart functionality to the pore surfaces has received much attention. Most recently, using the general class of compounds referred to as bridged silsesquioxanes (RO){sub 3}Si-R{prime}-Si(OR){sub 3} (Scheme 1), three research groups have reported the formation of a new class of poly(bridgedsilsesquioxane) mesophases BSQMs with integral organic functionality. In contrast to previous hybrid mesophases where organic ligands or molecules are situated on pore surfaces, this class of materials necessarily incorporates the organic constituents into the framework as molecularly dispersed bridging ligands. Although it is anticipated that this new mesostructural organization should result in synergistic properties derived from the molecular scale mixing of the inorganic and organic components, few properties of BSQMs have been measured. In addition samples prepared to date have been in the form of granular precipitates, precluding their use in applications like membranes, fluidics, and low k dielectric films needed for all foreseeable future generations of microelectronics.

  6. Light geodesics near an evaporating black hole

    Energy Technology Data Exchange (ETDEWEB)

    Guerreiro, Thiago, E-mail: thiago.barbosa@unige.ch; Monteiro, Fernando, E-mail: fernando.monteiro@unige.ch

    2015-10-16

    Quantum effects imply that an infalling observer cannot cross the event horizon of an evaporating black hole, even in her proper time. The Penrose diagram of an evaporating black hole is different from the one usually reported in the literature. We show that before the observer can cross the horizon the black hole disappears. Possible observational consequences are discussed. - Highlights: • We calculate the in-falling light geodesics in an evaporating black hole. • For our calculation we use a non-static metric called Vaydia metric. • We show that in-falling light cannot cross the event horizon. • In this case there is no information paradox.

  7. Steady-state evaporator models of Solar Sea Power Plants. Part I

    Energy Technology Data Exchange (ETDEWEB)

    Hetyei, S. A.; Neuman, C. P.

    1976-08-01

    Previously, a methodology was developed for modeling the dynamic and steady-state behavior of Solar Sea Power Plants (SSPP). Here, the pertinent physical laws of heat transfer and mass balance are applied to develop a lumped parameter, steady-state model for tube-and-shell evaporators incorporating falling films. This model is analyzed to investigate the assumption of constant heat transfer coefficients in modeling the steady-state behavior of smooth-tube evaporators operated in the turbulent flow regime. It is concluded that, for all practical purposes, the local heat transfer coefficient on the working fluid side of the evaporator tube is constant for both fixed and +-10% changes in the inlet working fluid flow rate. The overall objective is to develop simulation models of a complete SSPP as tools of design and optimization.

  8. Zn incorporation and (CuIn)1-xZn2xSe2 thin film formation during the selenization of evaporated Cu and In precursors on Al:ZnO coated glass substrates

    Science.gov (United States)

    Guillén, C.; Herrero, J.

    2011-11-01

    CuInSe2 thin films with typical 1.0 eV gap energy and tetragonal chalcopyrite structure have been obtained on soda-lime glass substrates by the reaction of sequentially evaporated Cu and In layers with elemental selenium vapor, at 500 °C in flowing Ar. When analogous deposition and reaction processes were performed on Al:ZnO coated glasses, some increment in the band gap energy and diminution in the crystalline interplanar spacings have been detected for the resulting films with an extent that depends on the Cu/In atomic ratio of the evaporated precursor layers. This fact has been related to Zn incorporation into the selenized film, with quaternary (CuIn)1-xZn2xSe2 compound formation that is influenced by the presence of copper selenide phases during the reaction process. Such deductions are supported by the optical, structural and compositional characterizations that have been performed comparatively on samples prepared by selenization of evaporated metallic precursors with two different Cu/In ratios (0.9 and 1.1) on bare and Al:ZnO coated glass substrates.

  9. Effect of the RE (RE = Eu, Er) doping on the structural and textural properties of mesoporous TiO{sub 2} thin films obtained by evaporation induced self-assembly method

    Energy Technology Data Exchange (ETDEWEB)

    Borlaf, Mario, E-mail: mborlaf@icv.csic.es [Instituto de Cerámica y Vidrio, CSIC, C/Kelsen, 5, Cantoblanco, E-28049 Madrid (Spain); Caes, Sebastien; Dewalque, Jennifer [LCIS-GREENMAT, Institute of Chemistry, University of Liege, B6 Sart Tilman, 4000 Liege (Belgium); Colomer, María Teresa; Moreno, Rodrigo [Instituto de Cerámica y Vidrio, CSIC, C/Kelsen, 5, Cantoblanco, E-28049 Madrid (Spain); Cloots, Rudi; Boschini, Frederic [LCIS-GREENMAT, Institute of Chemistry, University of Liege, B6 Sart Tilman, 4000 Liege (Belgium); APTIS, Institute of Physics, University of Liege, B5 Sart Tilman, 4000 Liege (Belgium)

    2014-05-02

    Polymeric sol–gel route has been used for the preparation of TiO{sub 2} and RE{sub 2}O{sub 3–}TiO{sub 2} (RE = Eu, Er) mesoporous thin films by evaporation induced self-assembly method using Si (100) as a substrate. The influence of the relative humidity (RH) on the preparation of the film has been studied being necessary to work under 40% RH in order to obtain homogeneous and transparent thin films. The films were annealed at different temperatures until 900 °C/1 h and the anatase crystallization and its crystal size evolution were followed by low angle X-ray diffraction. Neither the anatase–rutile transition nor the formation of other compounds was observed in the studied temperature range. Ellipsoporosimetry studies demonstrated that the thickness of the thin films did not change after calcination at 500 °C, the porosity was constant until 700 °C, the pore size increased and the specific surface area decreased with temperature. Moreover, the effect of the doping with Er{sup 3+} and Eu{sup 3+} was studied and a clear inhibition of the crystal growth and the sintering process was detected (by transmission electron and atomic force microscopy) when the doped films are compared with the undoped ones. Finally, Eu{sup 3+} and Er{sup 3+} f–f transitions were detected by PL measurements. - Highlights: • Eu and Er–TiO{sub 2} mesoporous films were prepared by evaporation induced self-assembly. • Influence of humidity on porosity and photoluminescent properties has been tested. • Influence of calcination on structural and textural properties has been also studied. • f–f transitions indicate that the thin films are active photoluminescent materials.

  10. Effect of post-sulfurization on the structural and optical properties of Cu{sub 2}ZnSnS{sub 4} thin films deposited by vacuum evaporation method

    Energy Technology Data Exchange (ETDEWEB)

    Touati, R., E-mail: rym.touati@gmail.com [Laboratoire de Photovoltaïque et Matériaux Semi-conducteurs, ENIT, BP 37, le Belvédère, 1002 Tunis (Tunisia); Ben Rabeh, M. [Laboratoire de Photovoltaïque et Matériaux Semi-conducteurs, ENIT, BP 37, le Belvédère, 1002 Tunis (Tunisia); Kanzari, M. [Laboratoire de Photovoltaïque et Matériaux Semi-conducteurs, ENIT, BP 37, le Belvédère, 1002 Tunis (Tunisia); Laboratoire de Photovoltaïques et Matériaux Semi-conducteurs, ENIT, IPEITunis Montfleury, Université de Tunis (Tunisia)

    2015-05-01

    The influence of post deposition annealing in sulfur atmosphere on the structural and optical properties of Cu{sub 2}ZnSnS{sub 4} (CZTS) thin films was investigated. The samples were deposited by thermal evaporation under vacuum method at different glass substrate temperatures ranging from 60 °C to 210 °C. After the deposition, all CZTS thin films were annealed in a furnace in sulfur atmosphere at a temperature of 400 °C during 2 h so as to optimize the kesterite CZTS phase. Structural characterization was carried out using X-ray diffraction and Raman Scattering whereas optical characterization was performed by recording transmittance and reflectance of the samples in the spectral range of 300 nm-2400 nm. The X-ray diffraction spectra indicated that polycrystalline CZTS films were obtained after annealing and the samples exhibit (112) preferred diffraction plane. Hence, crystallinity was enhanced with substrate temperature as well as with post deposition annealing due to the diffusion of sulfur in the film during the annealing process. Optical study reveals that after annealing, the absorption coefficient is found to be higher than 10{sup 5} cm{sup −1} whereas the direct band gap energy varies in the range of 1.4 eV-1.6 eV. - Highlights: • Growth of Cu{sub 2}ZnSnS{sub 4} (CZTS) films on heated substrates by thermal evaporation method • Annealing of CZTS thin films in sulfur vapor under vacuum at 400 °C • XRD and Raman results revealed that Kesterite CZTS is the major crystalline phase. • Post-annealed films demonstrated a high absorption coefficient (> 10{sup 4} cm{sup −1}). • Post-annealed films showed an optical band gap between 1.46 eV and 1.66 eV.

  11. Comparative study of structural and electro-optical properties of ZnO:Ga films grown by steered cathodic arc plasma evaporation and sputtering on plastic and their application on polymer-based organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Chih-Hao, E-mail: dataman888@hotmail.com [R& D Division, Walsin Technology Corporation, Kaohsiung, Taiwan (China); Hsiao, Yu-Jen [National Nano Device Laboratories, National Applied Research Laboratories, Tainan, Taiwan (China); Hwang, Weng-Sing [Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan (China)

    2016-08-01

    Ga-doped ZnO (GZO) films with various thicknesses (105–490 nm) were deposited on PET substrates at a low temperature of 90 °C by a steered cathodic arc plasma evaporation (steered CAPE), and a GZO film with a thickness of 400 nm was deposited at 90 °C by a magnetron sputtering (MS) for comparison. The comparative analysis of the microstructure, residual stress, surface morphology, electrical and optical properties, chemical states, and doping efficiency of the films produced by the steered CAPE and MS processes was performed, and the effect of thickness on the CAPE-grown GZO films was investigated in detail. The results showed that the GZO films grown by steered CAPE exhibited higher crystallinity and lower internal stress than those deposited by MS. The transmittance and electrical properties were also enhanced for the steered CAPE-grown films. The figure of merit (Φ = T{sup 10}/R{sub s}, where T is the transmittance and R{sub s} is the sheet resistance in Ω/□). was used to evaluate the performance of the electro-optical properties. The GZO films with a thickness of 400 nm deposited by CAPE had the highest Φ value, 1.94 × 10{sup −2} Ω{sup −1}, a corresponding average visible transmittance of 88.8% and resistivity of 6.29 × 10{sup −4} Ω·cm. In contrast, the Φ value of MS-deposited GZO film with a thickness of 400 nm is only 1.1 × 10{sup −3} Ω{sup −1}. This can be attributed to the increase in crystalline size, [0001] preferred orientation, decrease in stacking faults density and Ar contamination in steered CAPE-grown films, leading to increases in the Hall mobility and carrier density. In addition, the power conversion efficiency (PCE) of organic solar cells was significantly improved by using the CAPE-grown GZO electrode, and the PCE values were 1.2% and 1.7% for the devices with MS-grown and CAPE-grown GZO electrodes, respectively. - Highlights: • ZnO:Ga (GZO) films were grown on PET by steered cathodic arc plasma evaporation (CAPE

  12. Synthesis, structure and optical properties of thin films from GeS{sub 2}–In{sub 2}S{sub 3} system deposited by thermal co-evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Todorov, R., E-mail: rossen@iomt.bas.bg [Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 109, 1113 Sofia (Bulgaria); Petkov, K. [Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 109, 1113 Sofia (Bulgaria); Kincl, M. [Institute of Macromolecular Chemistry of Czech Academy of Science, Heyrovsky sq. 2, 162 06 Prague 6 (Czech Republic); Černošková, E. [Faculty of Chemical Technology, University of Pardubice, Studentská 84, 532 10 Pardubice (Czech Republic); Vlček, Mil.; Tichý, L. [Institute of Macromolecular Chemistry of Czech Academy of Science, Heyrovsky sq. 2, 162 06 Prague 6 (Czech Republic)

    2014-05-02

    This paper deals with the properties of the glasses and thin films from multi-component chalcogenide prepared by co-evaporation technique. The thin chalcogenide layers from GeS{sub 2}–In{sub 2}S{sub 3} system were deposited by thermal co-evaporation of GeS{sub 2} and In{sub 2}S{sub 3}. Using X-ray microanalysis it was found that the film compositions are closed to the expected ones. X-ray diffraction analysis shows that the thin films deposited by co-evaporation are amorphous. The refractive index, n and the optical band gap, E{sub g}{sup opt} were calculated from the transmittance and reflectance spectra. The thin film's structure was investigated by infrared spectroscopy. It was found that the photo-induced optical changes decrease with increase of indium content while significant thermo-induced changes in the optical properties and structure were observed at 14 at.% indium. The infrared spectra demonstrated high transmittance of the thin films in the range 4000–500 cm{sup −1}. The far-infrared spectra indicated that the indium participates in the glass network of the layers from Ge–S–In system in four coordinated InS{sub 4/2}{sup −} tetrahedral and six-coordinated InS{sub 6/2}{sup 3−} octahedral units. The changes in infrared spectra after annealing of the thin films evidence an increase of population of ethane-like S{sub 3}Ge–GeS{sub 3} units and/or structural or phase change of indium contain units. - Highlights: • The thin layers from GeS{sub 2}–In{sub 2}S{sub 3} system were deposited by thermal co-evaporation. • The photo-induced optical changes decrease with increase of indium content. • The thermo-induced changes in the optical properties and structure were investigated. • The structure of the thin films was investigated by infrared spectroscopy.

  13. Experimental Study on Pressure Drop of Falling Film Flow Across Tube Bundles in Rotated Square Arrangement%转角正方形管束有降膜流动时的压降实验

    Institute of Scientific and Technical Information of China (English)

    刘华; 沈胜强; 陈石; 龚路远; 刘瑞; 陈学

    2013-01-01

    To study the effects of flow resistance in large-scale seawater desalination facility on the performance itself,an experimental setup was built to simulate the steam flow process in a horizontal-tube falling film evaporator,so as to analyze the influence of saturated steam temperature and spray density on the flow resistance in the tube bundle.The new parameter (Reynolds number of spray water) was used to fit the experimental results,and subsequently a pressure drop coefficient formula was obtained for the steam flow across the tube bundle in rotated square arrangement.Results show that for a constant steam flow and spray density,the pressure drop reduces with rising saturated steam temperature,and the error of differential pressure is within-± 15% between predicted value and actual measurement.%为了深入研究大型海水淡化装置中流动阻力对装置性能的影响,建立了大型水平管束降膜流动特性实验台,模拟了水平管降膜蒸发器内蒸汽的流动过程,分析了饱和蒸汽温度和喷淋密度对管束流动阻力的影响,引入新的参数(喷淋雷诺数)对实验数据进行了拟合,得出蒸汽横掠有降膜流动的转角正方形管束的压降系数公式.结果表明:在相同的蒸汽质量流量和喷淋密度下,压降随饱和蒸汽温度的升高而降低;压差预测值与实验值的误差小于±15%.

  14. Structural and spectroscopic ellipsometry studies on vacuum-evaporated Sn{sub 2m−4}Sb{sub 4}S{sub 2m+2} (m = 2.5, 3 and 4) thin films deposited on glass and Si substrates

    Energy Technology Data Exchange (ETDEWEB)

    Abdelkader, D., E-mail: dhaferabdelkader@gmail.com [Laboratoire de Photovoltaïque et Matériaux Semi-conducteurs-ENIT, Université Tunis ElManar, BP37, Lebelvédère, 1002 Tunis (Tunisia); Akkari, F. Chaffar; Khemiri, N. [Laboratoire de Photovoltaïque et Matériaux Semi-conducteurs-ENIT, Université Tunis ElManar, BP37, Lebelvédère, 1002 Tunis (Tunisia); Gallas, B. [Institut des NanoSciences de Paris-CNRS-Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris Cedex 05 (France); Antoni, F. [ICube-Laboratoire des sciences de l’Ingénieur, de l' Informatique et de l’Imagerie, Université de Strasbourg-CNRS, 23, rue du Loess, 67037 Strasbourg Cedex (France); Kanzari, M. [Laboratoire de Photovoltaïque et Matériaux Semi-conducteurs-ENIT, Université Tunis ElManar, BP37, Lebelvédère, 1002 Tunis (Tunisia); Institut Préparatoire aux Etudes d' Ingénieurs de Tunis-IPEIT, Université de Tunis, 2, Rue Jawaher Lel Nehru, 1089 Montfleury (Tunisia)

    2015-10-15

    Sn{sub 2m−4}Sb{sub 4}S{sub 2m+2} (m = 2.5, 3 and 4) thin films were deposited on glass and Si substrates using vacuum evaporation technique. The structural properties have been investigated by X-ray diffraction (XRD) and Raman spectroscopy. The XRD patterns revealed the polycrystalline nature of the films on substrates even when they are not heated during evaporation process. Raman spectra revealed four main peaks. The main structural units of Sn–Sb–S thin films are tetrahedral [SnS{sub 4}] and pyramidal [SbS{sub 3}]. The cross-section morphology was obtained by scanning electron microscopy (SEM). Spectroscopic ellipsometry (SE) measurements (ψ and Δ) were carried out to study the optical properties of the films. SE measured data were analyzed by considering double layer optical model for all the samples, with the two oscillators Tauc-Lorentz and Gaussian dispersion relations. Surface roughness was taken into consideration as shown in SEM micrographs. From the ellipsometric study, we determined the thicknesses of the modeled layers and their optical parameters (refractive index, absorption coefficient …). All the films exhibit high absorption coefficient α in the visible range (>10{sup 5} cm{sup −1}). The values of the band gap energy E{sub g} of Sn{sub 2m−4}Sb{sub 4}S{sub 2m+2} thin films deposited on glass were 1.52, 1.29 and 1.28 eV, respectively for m = 2.5, 3 and 4. For the samples deposited on silicon, E{sub g}(SnSb{sub 4}S{sub 7}) = 1.29 eV, E{sub g}(SnSb{sub 2}S{sub 4}) = 1.13 eV and E{sub g}(Sn{sub 2}Sb{sub 2}S{sub 5}) = 1.48 eV. - Highlights: • Sn{sub 2m−4}Sb{sub 4}S{sub 2m+2} films were thermally evaporated on glass and Si substrates. • The films have polycrystalline nature without any heat treatment. • [SnS{sub 4}] tetrahedral and [SbS{sub 3}] pyramidal are the main structural units. • Thicknesses and optical parameters were determined by ellipsometric study. • The films exhibit high absorption coefficient α in the visible

  15. Structural ordering, morphology and optical properties of amorphous Al{sub x}In{sub 1−x}N thin films grown by plasma-assisted dual source reactive evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Alizadeh, M., E-mail: alizadeh_kozerash@yahoo.com [Low Dimensional Materials Research Centre (LDMRC), Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Ganesh, V. [Low Dimensional Materials Research Centre (LDMRC), Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Mehdipour, H. [Plasma Nanoscience @ Complex Systems, The University of Sydney, New South Wales 2006 (Australia); Department of Physics, Sharif University of Technology, Tehran 11155-9161 (Iran, Islamic Republic of); Nazarudin, N.F.F.; Goh, B.T.; Shuhaimi, A. [Low Dimensional Materials Research Centre (LDMRC), Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Rahman, S.A., E-mail: saadah@um.edu.my [Low Dimensional Materials Research Centre (LDMRC), Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-05-25

    Highlights: • In-rich and Al-rich Al{sub x}In{sub 1−x}N films were grown by plasma-aided reactive evaporation. • The A{sub 1}(LO) phonon mode of the Al-rich films exhibits two-mode behavior. • The band gap of the films was tuned from 1.08 to 2.50 eV. • A bowing parameter of 4.3 eV was calculated for the grown Al{sub x}In{sub 1−x}N films. • The morphology was changed from clusters to uniformly shaped grains by decreasing x. - Abstract: Amorphous aluminum indium nitride (Al{sub x}In{sub 1−x}N) thin films were deposited on quartz substrates by plasma-assisted dual source reactive evaporation system. In-rich (x = 0.10 and 0.18) and Al-rich (x = 0.60 and 0.64) films were prepared by simply varying an AC voltage applied to indium wire. The X-ray-diffraction patterns revealed a small broad peak assigned to Al{sub 0.10}In{sub 0.90}N (0 0 2) plane, but no perceivable peaks assigned to crystalline Al{sub x}In{sub 1−x}N were observed for the films with x = 0.18, 0.60 and 0.64. The morphology of the film was changed from clusters of small grains to uniformly shaped particles with decrease of x. The band gap energy of the films increased from 1.08 eV to 2.50 eV as the Al composition varied from 0.1 to 0.64. Also, Raman results indicated that E{sub 2}(high) and A{sub 1}(LO) peaks of the Al{sub x}In{sub 1−x}N films are remarkably blue-shifted by increasing x and the A{sub 1}(LO) phonon mode of the Al-rich films exhibits two-mode behavior. A bowing parameter of 4.3 eV was obtained for AlInN films. The extrapolated value from bowing equation was 0.85 eV for band gap energy of InN.

  16. Denton E-beam Evaporator #2

    Data.gov (United States)

    Federal Laboratory Consortium — Description: CORAL Name: E-Beam Evap 2 This is an electron gun evaporator for the deposition of metals and dielectrics thin films. Materials available are: Ag, Al,...

  17. Denton E-beam Evaporator #1

    Data.gov (United States)

    Federal Laboratory Consortium — Description: CORAL Name: E-Beam Evap 1 This is a dual e-beam/thermal evaporator for the deposition of metal and dielectric thin films. Materials available are: Ag,...

  18. Denton E-beam Evaporator #1

    Data.gov (United States)

    Federal Laboratory Consortium — Description:CORAL Name: E-Beam Evap 1This is a dual e-beam/thermal evaporator for the deposition of metal and dielectric thin films. Materials available are: Ag, Al,...

  19. Denton E-beam Evaporator #2

    Data.gov (United States)

    Federal Laboratory Consortium — Description:CORAL Name: E-Beam Evap 2This is an electron gun evaporator for the deposition of metals and dielectrics thin films. Materials available are: Ag, Al, Au,...

  20. Preparation and properties of evaporated CdTe films compared with single crystal CdTe. Progress report No. 4, August 1-October 31, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Bube, R H

    1981-10-01

    The hot-wall vacuum evaporation system is nearly complete and the first films are expected in early December. CdTe homojunction cells were theoretically modelled and to some extent tested experimentally using the n-type CdTe film on p-type CdTe crystal homojunction cells previously deposited at Linz. Modelling emphasizes the known importance of surface recombination velocity for such homojunction cells. The n-type layer on the experimental cell was thinned by etching from 5 micrometers to 1.5 micrometers, with a corresponding increase in short-circuit current from 0.1 to 1 mA/cm/sup 2/. This behavior is as theoretically expected; to obtain a short-circuit current of 11 mA/cm/sup 2/, as required for a 10% cell, requires a thickness of about 0.2 micrometers for a surface recombination velocity of 10/sup 6/ cm/sec and other realistic cell parameters. By doping experiments on single crystal CdTe, it has been shown that the hole density does decrease when the P dopant density is decreased below a critical value in CdTe:P crystals, thus eliminating the possibility that the major acceptors in the P-doped crystals were not P impurity. Attempts to heavily dope CdTe with As were less successful, but this may be due to the use of elemental As as the dopant in this case rather than a compound of the dopant. Cs was shown to be an effective dopant of CdTe and resistivities as low as 0.3 ohm-cm corresponding to hole densities in the low 10/sup 17/ cm/sup -3/ range were obtained. An apparent correlation between the low-temperature barrier height associated with a grain boundary in CdTe and the angle of mismatch between the two grains has been observed. Improved capacitance of grain boundary measurements should yield defect densities.

  1. 多效降膜式蒸发器不同加料方法及出料方法的比较及其意义%Comparison of Different Feeding and Discharging Methods for Multi-stage Film Evaporator

    Institute of Scientific and Technical Information of China (English)

    刘殿宇

    2014-01-01

    There are two temperatures of lfuids fed into evaporator, one is below the boiling point of lfuid, and another is equal or higher than the boiling point of lfuid. The lfuid of which the temperature is below its boiling point is needed to preheat by stages in falling iflm evaporator, the lfuid can only be fed into evaporator until the temperature reaches or is higher than boiling point. In multi-stage falling iflm evaporator, different feeding types can be used, that are parallel-current, countercurrent and mixing current, in which parallel-current is most commonly used. Use of which feeding type and discharging lfuid in which stage are determined based on the property of lfuid. In this article, exampled with the application of TNJM03-6200 three-stage falling iflm evaporator in xylose production, different feeding and discharging methods were described.%进入蒸发器的料液的温度有两种,一种为低于沸点温度进料,一种为高于或等于沸点温度进料。低于沸点温度的料液在降膜式蒸发器中都要经过逐级预热的方式将料液预热至沸点或沸点以上的温度方可进入蒸发器中进行蒸发,在多效降膜式蒸发器中,加料方式也不尽相同。有并流加料法,逆流加料法及混流加料法。其中,以并流加料方法最为常见。采用什么样的加料方法及第几效出料是由物料的特性决定的。仅以TNJM03-6200型三效降膜式蒸发器在木糖生产中的应用为例进行比较阐述。

  2. Electron-gun Evaporation of Cu and In thin films as Precursors for CuInSe{sub 2} Formation; Evaporacion mediante Canon de Electrones de Laminas Delgadas de Cu e In como Precursores para la Obtencion de CuInSe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Caballero, R.; Guillen, C.

    2001-07-01

    In the present investigation CuInSe{sub 2} is obtained in two stages: sequential evaporation of Cu and In using an electron gun evaporator on substrates up to 30 x 30 cm''2, and a posterior selenization of the deposited films. The study is mainly focused on the first stage, in where the control of the different evaporation parameters of the metal precursors is essential. Electrical measurements are carried out, and also the topography and the thickness are determined with the object of studying the properties and homogeneity of the thin films. (Author) 19 refs.

  3. Effects of residual plastic film mixed in soil on water infiltration, evaporation and its uncertainty analysis%残膜对土壤水分入渗和蒸发的影响及不确定性分析

    Institute of Scientific and Technical Information of China (English)

    牛文全; 邹小阳; 刘晶晶; 张明智; 吕望; 古君

    2016-01-01

    Pollution of residual plastic film, a continuous pollutant and difficult to degrade, is a major limiting factor for sustainable development of agriculture in northwest China. Residual plastic film can destroy homogeneity of soil texture and seriously impede the movement of soil water and solute, and thus greatly enhance the uncertainties in soil water movement. In order to reveal the negative effects of residual plastic film on soil water infiltration, evaporation and their uncertainties, soil column simulation experiments were conducted to observe the processes of soil water infiltration and evaporation with different amounts of residual plastic film in the Key Laboratory of Agricultural Soil and Water Engineering in Arid Area (108°02′E, 34°17′N), at Northwest A&F University, in Yangling, Shaanxi Province of China, from September to October, 2015. Six amounts of residual plastic film were designed including 0, 80, 160, 320, 640, 1 280 kg/hm2 with triplicate. During the experiment, the wetting front, the cumulative infiltration and the cumulative evaporation were investigated. Meanwhile, gravimetric soil moisture was measured after the evaporation process. To mimic the actual distribution characteristic of residual plastic film in field, fragile plastic film and soil samples were mixed evenly with a blender. During infiltration, when the wetting front arrived at 40 cm, irrigation water was cut off. Soil columns were covered with waterproof plastic film to reduce atmospheric evaporation. Soil columns stood for 12 h until the infiltration process completely stopped. In the consequent process of soil water evaporation, the columns were continuously heated by infrared lamps of 275 W from morning till night. Soil columns were weighed with an electronic balance at 9:00 a.m. every day to calculate mass change and standard daily evaporation. Furthermore, an evaporation pan that had the same diameter as soil column was used to measure daily evaporation from free water

  4. Streamer Evaporation

    Science.gov (United States)

    Suess, Steven T.; Wang, A. H.; Wu, Shi T.; Nerney, S.

    1998-01-01

    Evaporation is the consequence of slow plasma heating near the tops of streamers where the plasma is only weakly contained by the magnetic field. The form it takes is the slow opening of field lines at the top of the streamer and transient formation of new solar wind. It was discovered in polytropic model calculations, where due to the absence of other energy loss mechanisms in magnetostatic streamers, its ultimate endpoint is the complete evaporation of the streamer. This takes, for plausible heating rates, weeks to months in these models. Of course streamers do not behave this way, for more than one reason. One is that there are losses due to thermal conduction to the base of the streamer and radiation from the transition region. Another is that streamer heating must have a characteristic time constant and depend on the ambient physical conditions. We use our global Magnetohydrodynamics (MHD) model with thermal conduction to examine a few examples of the effect of changing the heating scale height and of making ad hoc choices for how the heating depends on ambient conditions. At the same time, we apply and extend the analytic model of streamers, which showed that streamers will be unable to contain plasma for temperatures near the cusp greater than about 2xl0(exp 6) K. Slow solar wind is observed to come from streamers through transient releases. A scenario for this that is consistent with the above physical process is that heating increases the near-cusp temperature until field lines there are forced open. The subsequent evacuation of the flux tubes by the newly forming slow wind decreases the temperature and heating until the flux tubes are able to reclose. Then, over a longer time scale, heating begins to again refill the flux tubes with plasma and increase the temperature until the cycle repeats itself. The calculations we report here are first steps towards quantitative evaluation of this scenario.

  5. Magnetic properties and structure of Ni80Fe20/Ni48Fe12Cr40 bilayer films deposited on SiO2/Si(100) by electron beam evaporation

    Institute of Scientific and Technical Information of China (English)

    WU Ping; GAO Yanqing; QIU Hong; PAN Liqing; TIAN Yue; Wang Fengping

    2007-01-01

    Ni80Fe20/Ni48Fe12Cr40 bilayer films and Ni80Fe20 monolayer films were deposited at room temperature on SiO2/Si(100) substrates by electron beam evaporation. The influence of the thickness of the Ni48Fe12Cr40underlayer on the structure, magnetization, and magnetoresistance of the Ni80Fe20/Ni48Fe12Cr40 bilayer film was investigated. The thickness of the Ni48Fe12Cr40 layer varied from about 1 nm to 18 nm while the Ni80Fe20 layer thickness was fixed at 45 nm. For the as-deposited bilayer films the introducing of the Ni48Fe12Cr40 underlayer promotes both the (111) texture and grain growth in the Ni80Fe20 layer. The Ni48Fe12Cr40 underlayer has no significant influence on the magnetic moment of the Ni80Fe20/Ni48Fe12Cr40 bilayer film. However, the coercivity of the bilayer film changes with the thickness of the Ni48Fe12Cr40underlayer. The optimum thickness of the Ni48Fe12Cr40 underlayer for improving the anisotropic magnetoresistance effect of the Ni80Fe20/Ni48Fe12Cr40 bilayer film is about 5 nm. With a decrease in temperature from 300 K to 81 K, the anisotropic magnetoresistance ratio of the Ni80Fe20 (45 nm)/Ni48Fe12Cr40 (5 nm) bilayer film increases linearly from 2.1% to 4.8% compared with that of the Ni80Fe20 monolayer film from 1.7% to 4.0%.

  6. Plasma-Enhanced Chemical Vapor Deposition (PE-CVD) yields better Hydrolytical Stability of Biocompatible SiOx Thin Films on Implant Alumina Ceramics compared to Rapid Thermal Evaporation Physical Vapor Deposition (PVD).

    Science.gov (United States)

    Böke, Frederik; Giner, Ignacio; Keller, Adrian; Grundmeier, Guido; Fischer, Horst

    2016-07-20

    Densely sintered aluminum oxide (α-Al2O3) is chemically and biologically inert. To improve the interaction with biomolecules and cells, its surface has to be modified prior to use in biomedical applications. In this study, we compared two deposition techniques for adhesion promoting SiOx films to facilitate the coupling of stable organosilane monolayers on monolithic α-alumina; physical vapor deposition (PVD) by thermal evaporation and plasma enhanced chemical vapor deposition (PE-CVD). We also investigated the influence of etching on the formation of silanol surface groups using hydrogen peroxide and sulfuric acid solutions. The film characteristics, that is, surface morphology and surface chemistry, as well as the film stability and its adhesion properties under accelerated aging conditions were characterized by means of X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), inductively coupled plasma-optical emission spectroscopy (ICP-OES), and tensile strength tests. Differences in surface functionalization were investigated via two model organosilanes as well as the cell-cytotoxicity and viability on murine fibroblasts and human mesenchymal stromal cells (hMSC). We found that both SiOx interfaces did not affect the cell viability of both cell types. No significant differences between both films with regard to their interfacial tensile strength were detected, although failure mode analyses revealed a higher interfacial stability of the PE-CVD films compared to the PVD films. Twenty-eight day exposure to simulated body fluid (SBF) at 37 °C revealed a partial delamination of the thermally deposited PVD films whereas the PE-CVD films stayed largely intact. SiOx layers deposited by both PVD and PE-CVD may thus serve as viable adhesion-promoters for subsequent organosilane coupling agent binding to α-alumina. However, PE-CVD appears to be favorable for long-term direct film exposure to aqueous

  7. A simple physical model for steam absorption into a falling film of aqueous lithium bromide solution on a horizontal tube

    Science.gov (United States)

    Auracher, Hein; Wohlfeil, Arnold; Ziegler, Felix

    2008-03-01

    For one horizontal tube in an absorber the Nusselt solution for film thickness and velocity distribution was applied, assuming steady state in heat transfer and a semi-infinite body’s concentration profile with unsteady state mass transfer. The model was applied to the absorption of steam into aqueous lithium bromide in absorption chillers. The results are compared to published experimental values and show fair agreement.

  8. Experimental study of heat transfer performance and flow visualization in the climbing film evaporation pipe%升膜蒸发管内流型可视化及传热性能

    Institute of Scientific and Technical Information of China (English)

    张琳; 崔腾飞; 蒋枫; 单高峰; 黄子雄; 胡泽训; 赵利群

    2015-01-01

    In order to explore the effects of the heat flux density,vacuum degree and flow on heat transfer performance of climbing film evaporator,this paper observed and analyzed the fluid flow pattern in the climbing film heating pipe,established the heat transfer experimental platform of climbing film evaporation system,and studied the heat transfer characteristics and fluid flow pattern of climbing film evaporator. The length of the climbing film evaporation pipe used in the experiment was 2200mm,the climbing film pipe was a quartz tube coated with transparent conductive film,the working medium was water,and electrical heating was employed in the evaporation section. The effects of the heat flux densities(6.71kW/m2≤q≤26.79kW/m2),flow rates(20L/h≤M≤100L/h) and vacuum degrees(0≤P≤15kPa) on fluid flow pattern and heat transfer characteristics of the climbing film heating pipe were studied. The results showed that climbing film evaporation for the solution in the quartz pipe could be achieved in the way of electric heating. And bubbly flow,bulk flow,slug flow,plug flow,annular flow and mist flow were observed. When heat flux was less than 6.71kW/m2,climbing film evaporation was not formed. With the increase of the evaporation side heat flux density,annular flow length increased in the climbing film pipe,and the inner pipe heat transfer coefficient increased. With the increases of the flow,liquid turbulence intensity increased inside the climbing film pipe,the inner pipe heat transfer coefficient increased as well. And vacuum degree had a significant influence on the fluid flow pattern.%为了探究热流密度、真空度和流量对升膜蒸发器传热性能的影响,以及对升膜加热管内流体流型进行观测和分析,本文建立了升膜蒸发系统传热实验平台,对升膜蒸发器的传热特性和流体流型进行实验研究。实验所用升膜管管长2200mm,升膜管采用镀透明导电膜石英管,工作介质为水;升膜

  9. Accelerated evaporation of water on graphene oxide.

    Science.gov (United States)

    Wan, Rongzheng; Shi, Guosheng

    2017-03-15

    Using molecular dynamics simulations, we show that the evaporation of nanoscale volumes of water on patterned graphene oxide is faster than that on homogeneous graphene oxide. The evaporation rate of water is insensitive to variation in the oxidation degree of the oxidized regions, so long as the water film is only distributed on the oxidized regions. The evaporation rate drops when the water film spreads onto the unoxidized regions. Further analysis showed that varying the oxidation degree observably changed the interaction between the outmost water molecules and the solid surface, but the total interaction for the outmost water molecules only changed a very limited amount due to the correspondingly regulated water-water interaction when the water film is only distributed on the oxidized regions. When the oxidation degree is too low and some unoxidized regions are also covered by the water film, the thickness of the water film decreases, which extends the lifetime of the hydrogen bonds for the outmost water molecules and lowers the evaporation rate of the water. The insensitivity of water evaporation to the oxidation degree indicates that we only need to control the scale of the unoxidized and oxidized regions for graphene oxide to regulate the evaporation of nanoscale volumes of water.

  10. Numerical Simulation Using Boundary Element Method of the Mechanism to Enhance Heat Transport by Solitary Wave on Falling Thin Liquid Films

    Institute of Scientific and Technical Information of China (English)

    Wen-QingLu

    1993-01-01

    A boundary element method has been developed for analysing heat transport phenomena in solitary wave on falling thin liquid films at high Reynolds numbers.The divergence theorem is applied to the non-linear convective volume integral of the boundary element formulation with the pressure penalty function.Consequently,velocity and temperature gradients are dliminated.and the complete formulation is written in terms of velocity and temperature,This provides considerable reduction is storage and computational requirements while improving accuracy.The non-linear equation systems of boundary element discretization are solved by the quasi-Nweton iterative scheme with Broyden's update.The streamline maps and the temperature distributions in solitary wave and wavy film flow have been obtained,and the variations of Nusselt numbers along the wall-liquid interface are also given.There are large cross-flow velocities and S-shape temperature distributions in the recirculating region of solitary wave.This special flow and thermal process can be a mechanism to enhance heat transport.

  11. High Performance Graphite Falling Film Absorber%高性能石墨降膜吸收器

    Institute of Scientific and Technical Information of China (English)

    姚松年

    2016-01-01

    A brief introduction to which is considered as further innovation and development of a industrial production technological revolution of graphite falling iflm absorber, performance and e'cacy of domestic tubular, graphite block heat absorber has been further improved, reached the international advanced level.%简要介绍对曾被誉为是盐酸工业生产的一次技术革命的石墨降膜吸收器的进一步创新开发,使国产列管式、圆块式石墨降膜吸收器的性能与功效得到进一步提高,达国际先进水平。

  12. Use of a thin-film evaporator for bitumen coating of radioactive concentrates; Utilisation d'un evaporateur a couche mince pour l'enrobage par le bitume de concentrats radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Lefillatre, G.; Rodier, J.; Hullo, R.; Cudel, Y.; Rodi, L. [Commissariat a l' Energie Atomique, Chusclan (France). Centre de Production de Plutonium de Marcoule

    1969-07-01

    Following the development in the laboratory of a process for coating evaporation concentrates with bitumen, a technological study of this coating process has been undertaken. The report describes a pilot installation for the bitumen coating of concentrates, which uses a thin-film evaporator LUWA L 150. The first, inactive series of tests was designed to determine the maximum and optimum capacities of the evaporator by varying the amounts of bitumen and of concentrate, the rotor speed and the thermo-fluid temperature. Two rotors were tested, one of conventional type, the other a model especially designed for high viscosity products. The maximum capacity of evaporation of the apparatus is 72 kg/hr for a heating temperature of 221 deg. C. During normal operation, the evaporator can produce 50 kg/hr of coated product containing 55 to 60 per cent of bitumen (Mexphalte 40/50), the water content of the product remaining under 0.5 per cent. A second series of tests will shortly be carried out on this pilot installation using, in particular, bituminous emulsions containing mainly Mexphalte 40/50 and 80/100. (authors) [French] A la suite de la mise au point en laboratoire d'un procede d'enrobage par le bitume de concentrats d'evaporation, une etude technologique de cet enrobage a ete entreprise. Ce rapport decrit une installation pilote d'enrobage par le bitume de concentrats utilisant un evaporateur a couche mince LUWA L 150. La premiere serie d'essais en inactif a eu pour but de definir les capacites maximales et optimales de l'evaporateur en faisant varier les dosages en bitume et en concentrats, la vitesse du rotor et la temperature du thermo-fluide. Deux rotors ont ete testes, l'un de type classique, l'autre d'un modele special concu pour les produits de haute viscosite. La capacite d'evaporation maximale de l'appareil est de 72 kg/h d'eau pour une temperature de chauffage de 221 deg. C. En marche normale l

  13. Morphological, Structural, and Optical Properties of Single-Phase Cu(In,Ga)Se2 Thin Films from the Selenization of Thermally Evaporated InSe/Cu/GaSe Precursors

    OpenAIRE

    Francis B. Dejene

    2014-01-01

    The relatively small band gap values (~1 eV) of CuInSe2 thin films limit the conversion efficiencies of completed CuInSe2/CdS/ZnO solar cell devices. In the case of traditional two-stage growth techniques, limited success has been achieved to homogeneously increase the band gap by substituting indium with gallium. In this study, thermal evaporation of InSe/Cu/Gase precursors was exposed to an elemental Se vapour under defined conditions. This technique produced large-grained, single-phase Cu(...

  14. Development of a fully integrated falling film microreactor for gas-liquid-solid biotransformation with surface immobilized O2 -dependent enzyme.

    Science.gov (United States)

    Bolivar, Juan M; Krämer, Christina E M; Ungerböck, Birgit; Mayr, Torsten; Nidetzky, Bernd

    2016-09-01

    Microstructured flow reactors are powerful tools for the development of multiphase biocatalytic transformations. To expand their current application also to O2 -dependent enzymatic conversions, we have implemented a fully integrated falling film microreactor that provides controllable countercurrent gas-liquid phase contacting in a multi-channel microstructured reaction plate. Advanced non-invasive optical sensing is applied to measure liquid-phase oxygen concentrations in both in- and out-flow as well as directly in the microchannels (width: 600 μm; depth: 200 μm). Protein-surface interactions are designed for direct immobilization of catalyst on microchannel walls. Target enzyme (here: d-amino acid oxidase) is fused to the positively charged mini-protein Zbasic2 and the channel surface contains a negatively charged γ-Al2 O3 wash-coat layer. Non-covalent wall attachment of the chimeric Zbasic2 _oxidase resulted in fully reversible enzyme immobilization with fairly uniform surface coverage and near complete retention of biological activity. The falling film at different gas and liquid flow rates as well as reactor inclination angles was shown to be mostly wavy laminar. The calculated film thickness was in the range 0.5-1.3 × 10(-4)  m. Direct O2 concentration measurements at the channel surface demonstrated that the liquid side mass transfer coefficient (KL ) for O2 governed the overall gas/liquid/solid mass transfer and that the O2 transfer rate (≥0.75 mM · s(-1) ) vastly exceeded the maximum enzymatic reaction rate in a wide range of conditions. A value of 7.5 (±0.5) s(-1) was determined for the overall mass transfer coefficient KL a, comprising a KL of about 7 × 10(-5)  m · s(-1) and a specific surface area of up to 10(5)  m(-1) . Biotechnol. Bioeng. 2016;113: 1862-1872. © 2016 Wiley Periodicals, Inc.

  15. Synthesis, characterization, and photoactivity of InTaO{sub 4} and In{sub 0.9}Ni{sub 0.1}TaO{sub 4} thin films prepared by electron evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Rico, V. J.; Frutos, F.; Yubero, F.; Espinos, J. P.; Gonzales-Elipe, A. R. [Instituto de Ciencia de Materiales de Sevilla, CSIC/Universidad de Sevilla, Avda. Americo Vespucio 49, 41092 Sevilla (Spain); Departamento de Fisica Aplicada I, Universidad de Sevilla, Avenida Reina Mercedes s/n, 41012 Sevilla (Spain); Instituto de Ciencia de Materiales de Sevilla, CSIC/Universidad de Sevilla, Avda. Americo Vespucio 49, 41092 Sevilla (Spain)

    2010-01-15

    InTaO{sub 4} and In{sub 0.9}Ni{sub 0.1}TaO{sub 4} thin films have been prepared by electron evaporation of successive layers of the single oxide components and posterior annealing at T>800 deg. C. The annealed thin films presented the monoclinic crystallographic structure typical of these mixed oxides. The electrical and optical behaviors of the films, assessed by C-V measurements, surface conductivity as a function of temperature, and UV-vis absorption spectroscopy, indicate that these oxides are wide band gap semiconductors with a variable dielectric constant depending on the annealing conditions. By reflection electron energy loss spectroscopy some electronic states have been found in the gap at an energy that is compatible with the activation energy deduced from the conductivity versus 1/T plots for these oxides. The photoactivity of these materials has been assessed by looking to the evolution of the wetting contact angle as a function of the irradiation time. All the films became superhydrophilic when irradiated with UV light, while the In{sub 0.9}Ni{sub 0.1}TaO{sub 4} thin films also presented a small partial decrease in wetting angle when irradiated with visible photons.

  16. Composite optical waveguide composed of a tapered film of bromothymol blue evaporated onto a potassium ion-exchanged waveguide and its application as a guided wave absorption-based ammonia-gas sensor.

    Science.gov (United States)

    Qi, Z M; Yimit, A; Itoh, K; Murabayashi, M; Matsuda, N; Takatsu, A; Kato, K

    2001-05-01

    For what is the first time to our knowledge, we have successfully evaporated a tapered film of bromothymol blue (BTB) onto a potassium ion-exchanged (PIE) waveguide to form a composite optical waveguide (COWG) for trace-ammonia detection. The BTB film has a high refractive index (1.69) and a smooth surface and is transparent to a 633-nm laser beam in air. In the COWG structure, the BTB film serves as a single-mode waveguide, and adiabatic transition of the TE(0) mode was realized between the BTB waveguide and the PIE waveguide with both BTB tapers. In the presence of ammonia, the BTB film changes color from yellow to blue, which causes absorption of the 633-nm guided wave. Our experimental results demonstrate that such a guided wave absorption-based ammonia-gas sensor is much more sensitive than one based on evanescent-wave absorption. A detection limit of part in 10(9) of ammonia has been realized for a BTB film-PIE glass COWG.

  17. Visualization study of evaporation of single n-pentane drops in water

    Science.gov (United States)

    Ehara, N.; Nojima, K.; Mori, Y. H.

    1993-12-01

    A laser shadowgraph system was constructed to enable successive filming of a drop or a bubble rising or falling in an immiscible liquid confined within a vertical column. The assembly was applied to a study of the evaporation of n-pentane drops in a stagnant medium of water. The liquid/vapor two-phase bubble evolving from each pentane drop was observed together with its wake, the morphology and the dynamics of which are our primary concern in considering the mechanism of the medium-to-bubble heat transfer.

  18. Effect of the dopant content on the physical properties of Y{sub 2}O{sub 3}-ZrO{sub 2} and CaO-ZrO{sub 2} thin films produced by evaporation and sputtering techniques

    Energy Technology Data Exchange (ETDEWEB)

    Boulouz, M. [Montpellier Univ-2, 34 (France). Centre d' Electronique de Montpellier; Martin, L. [Groupe d' etude des semiconducteurs (GES), Universite Montpellier II, Montpellier (France); Boulouz, A.; Boyer, A. [Centre d' Electronique et de Micro-optoelectronique de Montpellier, UMR 5507 CNRS-Universite Montpellier II, Sciences et Techniques du Languedoc, Place Eugene Bataillon, 34095, Montpellier (France)

    1999-12-15

    This paper describes the preparation and the characterization of zirconia-doped yttria (or calcia) produced by reactive thermal evaporation (RTE) and r.f. magnetron sputtering (R.F.MS) methods. The crystallographic, microstructural and optical properties of the deposited films were investigated as a function of dopant concentration in the ZrO{sub 2} matrix. X-ray diffraction (XRD) analysis permits the study of the stabilization process, lattice parameter and residual stress. XRD patterns show a gradual change in the crystalline structure from a monoclinic phase to a single cubic phase with increasing Y{sub 2}O{sub 3} (or CaO) mole percentage (mol%). The cubic lattice parameter seems to increase with increasing dopant mol%. A merely indicative stress study in stabilized samples shows tensile stress in the ZrO{sub 2}-Y{sub 2}O{sub 3} system obtained by co-evaporation. Residual stresses were highly compressive in ZrO{sub 2}-Y{sub 2}O{sub 3} (or CaO) systems deposited by the sputtering technique. Scanning electron microscopy (SEM) revealed a columnar structure for the overall films. Sputtered zirconia-based films show smooth surface topography with smaller crystallite dimensions. The film refractive index, the packing density and the absorption coefficient are determined in the wavelength range 350-800 nm from the measured reflectance and transmittance at normal incidence. All doped ZrO{sub 2} films exhibit high optical transmission over most of the visible and near infrared spectrum. The refractive index decreased with increasing dopant content and agreed reasonably well with published values for ZrO{sub 2} films. Bulk like refractive index with nearly unity packing density have been obtained for the samples containing 4-7 mol% Y{sub 2}O{sub 3} deposited by the sputtering method. The results suggest that the physical constant of ZrO{sub 2}-based films are principally determined by the crystallographic form rather than by the nature or amount of the added cation. (orig.)

  19. Falling chains

    Science.gov (United States)

    Wong, Chun Wa; Yasui, Kosuke

    2006-06-01

    The one-dimensional fall of a folded chain with one end suspended from a rigid support and a chain falling from a resting heap on a table is studied. Because their Lagrangians contain no explicit time dependence, the falling chains are conservative systems. Their equations of motion are shown to contain a term that enforces energy conservation when masses are transferred between subchains. We show that Cayley's 1857 energy nonconserving solution for a chain falling from a resting heap is incorrect because it neglects the energy gained when a link leaves a subchain. The maximum chain tension measured by Calkin and March for the falling folded chain is given a simple if rough interpretation. Other aspects of the falling folded chain are briefly discussed.

  20. Dynamic modeling of low thermal gradient evaporators and condensers

    Science.gov (United States)

    Mokhtarzadeh, M.

    1980-12-01

    The transient behavior of different types of heat exchangers proposed for ocean thermal energy conversion (OTEC) is discussed. Models are developed for both shell-tube condensers and evaporators and for two phase flow systems. Two numerical techniques for the simulation of distributed parameter systems which arise in heat exchanger modeling are investigated: classic finite difference methods and the more recent delay dissipation (sometimes called sine photography) approach. Frequency response analysis is used to compare the two simulation methods. The resultant heat exchanger models give the dynamic response of ammonia pressure (output of the model) to changes in ammonia vapor flow rate (input). An OTEC power cycle is molded so that different heat exchangers may be plugged in and their transient behavior analyzed. The dynamic stability of the OTEC power plant for all heat exchangers analyzed in this work (falling film, pool boiling and two phase flow system) is confirmed.

  1. PENGARUH SUHU DAN LAMA PROSES SULFONASI DALAM PROSES PRODUKSI METHYL ESTER SULFONIC ACID (MESA MENGGUNAKAN SINGLE TUBE FALLING FILM REACTOR (STFR

    Directory of Open Access Journals (Sweden)

    Siti Mujdalipah

    2013-03-01

    Full Text Available Effects of Temperature and Sulfonation Time on Methyl Ester Sulfonic Acid (MESA Production Process usingSingle Tube Falling Film Reactor (STFR Siti Mujdalipah, Erliza Hambali, Ani Suryani, Edi Zulchaidir ABSTRAK Methyl Ester Sulfonic Acid (MESA merupakan produk antara dari surfaktan Metil Ester Sulfonat (MES. MESmemiliki beragam aplikasi dalam produk personal care, pencuci dan pembersih, dan untuk Enhanced Oil Recovery(EOR. Proses produksi MESA menggunakan gas SO3 dalam Single Tube Falling Film Reactor (STFR merupakanteknologi yang umum digunakan. Kajian ini bertujuan untuk mendapatkan kondisi proses sulfonasi metil ester oleinterbaik menggunakan gas SO3 dalam STFR. Kajian dilakukan dalam tiga tahap, yaitu tahap penelitian, tahap analisis,dan tahap pengolahan data. Tahap produksi MESA terdiri dari pembuatan metil ester (ME dari olein minyak sawit dankajian pengaruh suhu dan lama proses sulfonasi. Tahap analisis meliputi analisis sifat Þ siko kimia olein minyak sawit,analisa sifat Þ siko kimia ME olein sawit, dan analisis sifat Þ siko kimia MESA olein sawit. Kajian pengaruh suhu danlama proses sulfonasi terhadap proses sulfonasi metil ester olein terdiri dari suhu 70, 90, dan 110 oC dan lama prosessulfonasi 30, 60, dan 90 menit. Analisis varian pada !=0,01 menunjukan bahwa lama proses sulfonasi berpengaruh nyataterhadap kadar bahan aktif. Analisis varian pada !=0,01 juga menunjukan bahwa lama proses sulfonasi berpengaruhnyata terhadap nilai pH, bilangan asam, bilangan iod, dan kemampuan MESA dalam menurunkan tegangan antarmuka(IFT, Interfacial Tension antara air formasi dan minyak bumi. Proses sulfonasi terbaik dicapai pada suhu sulfonasi 90oCdan lama proses sulfonasi 90 menit. Kondisi proses sulfonasi terbaik dapat menghasilkan MESA dengan karakteristikkadar bahan aktif 31,44%, pH 2,66, bilangan asam 24,88 ml NaOH/g sampel, bilangan iod 11,95 mg I/g sampel, danmemiliki kemampuan menurunkan IFT antara air formasi dan minyak bumi dari 30 dyne

  2. Electrical and optical properties of thermally-evaporated thin films from A{sub 2}[TiO(C{sub 2}O{sub 4}){sub 2}] (A = K, PPh{sub 4}) and 1,8-dihydroxyanthraquinone

    Energy Technology Data Exchange (ETDEWEB)

    Carbia-Ruelas, E. [Coordinacion de Ingenieria Mecatronica. Facultad de Ingenieria, Universidad Anahuac Mexico Norte. Avenida Universidad Anahuac 46, Col. Lomas Anahuac, 52786, Huixquilucan (Mexico); Sanchez-Vergara, M.E., E-mail: elena.sanchez@anahuac.mx [Coordinacion de Ingenieria Mecatronica. Facultad de Ingenieria, Universidad Anahuac Mexico Norte. Avenida Universidad Anahuac 46, Col. Lomas Anahuac, 52786, Huixquilucan (Mexico); Garcia-Montalvo, V. [Instituto de Quimica, Universidad Nacional Autonoma de Mexico. Circuito Exterior, Ciudad Universitaria, 04510, Mexico, D. F (Mexico); Morales-Saavedra, O.G. [Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico, CCADET-UNAM. A. P. 70-186, Coyoacan, 04510, Mexico, D. F (Mexico); Alvarez-Bada, J.R. [Coordinacion de Ingenieria Mecatronica. Facultad de Ingenieria, Universidad Anahuac Mexico Norte. Avenida Universidad Anahuac 46, Col. Lomas Anahuac, 52786, Huixquilucan (Mexico)

    2011-02-01

    In this work, the synthesis of molecular materials formed from A{sub 2}[TiO(C{sub 2}O{sub 4}){sub 2}] (A = K, PPh4) and 1,8 dihydroxyanthraquinone is reported. The synthesized materials were characterized by atomic force microscopy (AFM), infrared (IR) and ultraviolet-visible (UV-vis) spectroscopy. IR spectroscopy showed that the molecular-material thin-films, deposited by vacuum thermal evaporation, exhibit the same intra-molecular vibration modes as the starting powders, which suggests that the thermal evaporation process does not alter the initial chemical structures. Electrical transport properties were studied by dc conductivity measurements. The electrical activation energies of the complexes, which were in the range of 0.003-1.16 eV, were calculated from Arrhenius plots. Optical absorption studies in the wavelength range of 190-1090 nm at room temperature showed that the optical band gaps of the thin films were around 1.9-2.3 eV for direct transitions Eg{sub d}. The cubic NLO effects were substantially enhanced for materials synthesized from K{sub 2}[TiO(C{sub 2}O{sub 4}){sub 2}], where {chi}{sup (3)} (-3{omega}; {omega}, {omega}, {omega}) values in the promising range of 10{sup -12} esu have been evaluated.

  3. Preparation and properties of evaporated CdTe films compared with single crystal CdTe. Annual report, 1 February 1983-31 January 1984

    Energy Technology Data Exchange (ETDEWEB)

    Bube, R; Fahrenbruch, A; Huber, W; Fortmann, C; Thorpe, T

    1984-09-01

    Variation of CdS/CdTe/graphite thick film solar cell properties was investigated as a function of temperature for CdS film deposition. A maximum open-circuit voltage of 0.67 V was found for a deposition temperature of 160/sup 0/C, corresponding to a CdS film resistivity of 150 ohm-cm. The effect is not due to avoidance of higher temperature annealing of the CdTe film in higher temperature CdS film depositions nor to the diffusion of In from the outermost CdS: In layer. The effect of coating the graphite before CdTe deposition with Au or Cu was also investigated. Although high concentrations of both Au or Cu could be determined after CdTe deposition, CdTe films grown on this coated graphite had lower hole densities than films grown on uncoated graphite. Photovoltaic parameters of thin-film CdS/CdTe/graphite solar cells were investigated as a function of storage time to check the stability of these cells. Initial degradation of parameters (especially fill factor) could be reversed by heat treatment in hydrogen, with subsequent properties being stable. Heat treatment of CdS/CdTe/graphite solar cells in air increases cell resistivity and decreases fill factor; heat treatment in hydrogen produces the reverse effect. The hole density is not affected by these heat treatments, suggesting that effects are associated with grain boundaries in the film.

  4. Preparation of high T(c) Tl-Ba-Ca-Cu-O thin films by pulsed laser evaporation and Tl2O3 vapor processing

    Science.gov (United States)

    Johs, B.; Thompson, D.; Ianno, N. J.; Woollam, John A.; Liou, S. H.

    1989-01-01

    Tl-Ba-Ca-Cu-O superconducting thin films with zero-resistance temperatures up to 115 K have been prepared using a Tl2O3 vapor process on Ba-Ca-Cu-O precursor thin films. The Ba-Ca-Cu-O thin films were made by laser deposition on Y-stabilized ZrO2 substrates. This technique minimizes problems caused by the toxicity of Tl2O3, and its subsequent decomposition to the volatile and toxic Tl2O upon heating. Therefore, it may have practical application in the fabrication of high T(c) Tl-Ba-Ca-Cu-O superconducting thin-film devices.

  5. CdxTe薄膜的共蒸发法制备及其表征%Preparation and Characterization of CdxTe Thin Films Deposited by Co-evaporation

    Institute of Scientific and Technical Information of China (English)

    束青; 武莉莉; 冯良桓; 王文武; 曹五星; 张静全; 李卫; 黎兵

    2015-01-01

    采用CdTe和Te双源共蒸发的方法,调控CdTe和Te源的蒸发速率,首次制备出一系列不同x组分的CdxTe二元化合物薄膜,并在N2气气氛下进行185℃退火处理。通过XRD、SEM、紫外–可见吸收光谱分析及暗电导率–温度关系对CdxTe薄膜的结构、形貌、光学和电学性质进行表征。紫外–可见吸收光谱分析表明,不同x组分的CdxTe薄膜,其禁带宽度可在0.99~1.46 eV之间变化,随着x值从0.8减小到0.2,吸收边向长波方向移动,而且透过率也显著下降。XRD结果表明, x值小于0.6时,刚沉积的CdxTe薄膜为非晶相;随着x的值逐渐靠近1,刚沉积的薄膜明显结晶,沿CdTe(111)方向择优生长,退火处理促使薄膜从非晶转变为多晶。CdxTe薄膜的导电类型为p型,其暗电导率随温度的上升而增大,当温度继续升高至临界点时,薄膜暗电导率–温度关系出现反常。这些结果表明, CdxTe薄膜将有望用于CdTe薄膜太阳电池以拓展电池的长波光谱响应。%CdxTe thin films with differentx values were deposited for the first time through controlling evaporation rates of CdTe and Te powder by vacuum co-evaporation. Then the films were annealed in N2atmosphere at 185℃. The morphological, structural, optical, and electrical properties of the CdxTe films were investigated by X ray diffraction (XRD), scanning electron microscopy (SEM), UV-visible absorption spectrum and temperature dependence of the dark conductivity. UV-visible absorption spectrum demonstrates that energy band gaps (Eg) of different CdxTe films change from 0.99 eV to 1.46 eV. The absorption edges of different CdxTe films move towards longer wavelength and their transmittances reduce dramatically as thex value decreases from 0.8 to 0.2. XRD shows that as-deposited CdxTe thin films are amorphous when value ofx is less than 0.6. Otherwise, CdxTe thin films are crystalline whose CdTe phase with preferential in (111) direction while value ofx is

  6. Preparation and optical and electrical evaluation of bulk SiO{sub 2} sonogel hybrid composites and vacuum thermal evaporated thin films prepared from molecular materials derived from (Fe, Co) metallic phthalocyanines and 1,8 dihydroxiantraquinone compounds

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Vergara, Maria Elena [Coordinacion de Ingenieria Mecatronica, Facultad de Ingenieria, Universidad Anahuac Mexico Norte. Avenida Universidad Anahuac 46, Col. Lomas Anahuac, 52786 Huixquilucan, Estado de Mexico (Mexico); Morales-Saavedra, Omar G. [Universidad Nacional Autonoma de Mexico, Centro de Ciencias Aplicadas y Desarrollo Tecnologico, CCADET-UNAM, A.P. 70-186, Coyoacan, 04510 Mexico, D.F. (Mexico)], E-mail: omar.morales@ccadet.unam.mx; Ontiveros-Barrera, Fernando G.; Torres-Zuniga, Vicente; Ortega-Martinez, Roberto [Universidad Nacional Autonoma de Mexico, Centro de Ciencias Aplicadas y Desarrollo Tecnologico, CCADET-UNAM, A.P. 70-186, Coyoacan, 04510 Mexico, D.F. (Mexico); Ortiz Rebollo, Armando [Universidad Nacional Autonoma de Mexico, Instituto de Investigaciones en Materiales, IIM-UNAM, A.P. 70-360, Coyoacan, 04510 Mexico, D.F. (Mexico)

    2009-02-25

    Semiconducting molecular material of PcFe(CN)L1 and PcCo(CN)L1 (L1 = 1,8 dihydroxianthraquinone), PcFe(CN)L2 and PcCo(CN)L2 (L2 = double potassium salt of 1,8 dihydroxianthraquinone) have been successfully used to prepare thin film and bulk sol-gel hybrid optical materials. These samples were developed according to the vacuum thermal evaporation technique and the catalyst-free sonogel route, respectively. Thin films samples were deposited on Corning glass substrates and crystalline silicon wafers and were characterized by infrared (FTIR), Raman and ultraviolet-visible (UV-vis) spectroscopies. IR-spectroscopy and Raman studies unambiguously confirmed that the molecular material thin films exhibit the same intra-molecular bonds, which suggests that the thermal evaporation process does not alter these bonds significantly. These results show that it is possible to deposit molecular materials of PcFe(CN)L2 and PcCo(CN)L2 on Corning glass substrates and silicon wafers. From the UV-vis studies the optical band gap (E{sub g}) was evaluated. The effect of temperature on conductivity was also evaluated in these samples. Finally, the studied molecular systems dissolved at different concentrations in tetrahydrofuran (THF) were successfully embedded into a highly pure SiO{sub 2} sonogel network generated via sonochemical reactions to form several solid state, optically active sol-gel hybrid glasses. By this method, homogeneous and stable hybrid monoliths suitable for optical characterization can be produced. The linear optical properties of these amorphous bulk structures were determined by the Brewster angle method and by absorption-, Raman- and photoluminescent (PL)-spectroscopies, respectively.

  7. Photo-Fenton degradation of phenol, 2,4-dichlorophenoxyacetic acid and 2,4-dichlorophenol mixture in saline solution using a falling-film solar reactor.

    Science.gov (United States)

    Luna, Airton J; Nascimento, Cláudio A O; Foletto, Edson Luiz; Moraes, José E F; Chiavone-Filhoe, Osvaldo

    2014-01-01

    In this work, a saline aqueous solution of phenol, 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4-dichlorophenol (2,4-DCP) was treated by the photo-Fenton process in a falling-film solar reactor. The influence of the parameters such as initial pH (5-7), initial concentration of Fe2+ (1-2.5mM) and rate of H202 addition (1.87-3.74mmol min-1) was investigated. The efficiency of photodegradation was determined from the removal of dissolved organic carbon (DOC), described by the species degradation of phenol, 2,4-D and 2,4-DCP. Response surface methodology was employed to assess the effects of the variables investigated, i.e. [Fe2+], [H202] and pH, in the photo-Fenton process with solar irradiation. The results reveal that the variables' initial concentration of Fe2+ and H202 presents predominant effect on pollutants' degradation in terms of DOC removal, while pH showed no influence. Under the most adequate experimental conditions, about 85% DOC removal was obtained in 180 min by using a reaction system employed here, and total removal of phenol, 2,4- and 2,4-DCP mixture in about 30min.

  8. Characteristics of Nd:Y3Al5O12 thin film prepared by electron beam evaporation deposition%电子束蒸发制备掺钕钇铝石榴石薄膜特性研究

    Institute of Scientific and Technical Information of China (English)

    任豪; 曾群; 庞振华; 周应恒; 梁锡辉

    2012-01-01

    硅基光电集成技术是当代高速信息化的重要发展方向之一.为了研究制备在硅衬底上的新型发光材料,突破Nd∶YAG固体激光工作物质主要是晶体、透明陶瓷等固体形态的限制,采用电子束蒸发沉积工艺,在硅(100)衬底上制备了Nd∶ YAG薄膜,并对Nd∶YAG薄膜的表面形貌、晶体结构、光学特性进行了测试.X射线和扫描电子显微镜测试结果显示,Nd∶YAG薄膜经1100℃真空高温退火处理1h后有效结晶,采用钛蓝宝石激光器输出808nm激光激发,液氮冷却的InGaAs阵列探测器室温下得到Nd∶YAG薄膜的1064nm主荧光峰的荧光光谱.结果表明,采用电子束蒸发沉积和后续高温退火工艺可以在硅衬底上制备Nd∶YAG晶体薄膜.%Si-based optoelectronic integration technology is one of the main study topics and development directions for the high-speed information. New Si-based luminescent materials were developed to break the limits of Nd: YAG solid laser material, which was confined by two main solid states: single crystal and transparent ceramics. Nd: YAG thin film was prepared on Si (100) substrates by electron beam evaporation deposition. The surface morphology, crystalline phase and optical properties of Nd:YAG thin film were characterized by X-ray diffraction, scanning electron microscopy and spectrophotometer. The crystallization of Nd:YAG thin film was improved after annealing at ll00'C for lh in the vacuum, photoluminescent spectra of Nd:YAG thin film were measured at room temperature, with 808nm radiation from a Ti: sapphire laser, and photoluminescent spectrum in the region of 1064nm peak was detected by a liquid nitrogen cooled InGaAs detector array. The results showed thai Nd: YAG crystalline thin film was grown on Si substrates for the first time by means of electron beam evaporation deposition and subsequent high temperature annealing process.

  9. 薄膜精馏生产药品级亚油酸工艺研究%Study on purifying process of pharmaceutical grade soybean lionleic acid by film evaporation with distillation column

    Institute of Scientific and Technical Information of China (English)

    王文高; 曹洁; 印瑜洁; 朱天仪; 陈卫栋

    2014-01-01

    This article investigated purifying process of pharmaceutical grade soybean lionleic acid by film evaporation with distillation column from mixed fatty acids. The related factors influencing the separation of saturated fatty acid such as temperature and reflux ratio were studied through single-factor experiments. The three-stage separation process was determined. The solvent and water in the raw material were be removed in the one-stage film evaporation under the condition of temperature 90℃and pressure 1 000 Pa. The saturated fatty acids were separated in the two-stage rectification under the condition of distillation temperature 238℃,pressure 300 Pa and reflux ratio of 10. Iodine value of the heavy component was 148 gI/100g. Unsaturated fatty acids were collected as light component in the three-stage film evaporation under the condition of temperature 265℃ and pressure 300 Pa. Iodine value of light component reached 151.8 gI/100g and the content of linoleic acid was 58.00%,according with the requirement of pharmaceutical grade soybean lionleic acid.%该文研究了以混合脂肪酸为原料,通过薄膜精馏制备药品级亚油酸的工艺。考察了不同的精馏温度和回流比对饱和脂肪酸分离效果的影响,确定了三级分离工艺。在蒸发温度90℃、压力1000 Pa条件下,进行一级薄膜蒸发,脱除物料中的溶剂、水等轻物质;在精馏温度238℃、压力300 Pa和回流比为10条件下,进行二级薄膜精馏,分离出轻组分饱和脂肪酸,获得碘价148 gI/100g的重组分样品;在蒸发温度265℃、压力300 Pa条件下,进行三级薄膜蒸发,收集轻组分不饱和脂肪酸。轻组分样品碘价达到151.8 gI/100g,亚油酸含量为58.00%,符合了药品级亚油酸的要求。

  10. Morphological, Structural, and Optical Properties of Single-Phase Cu(In,GaSe2 Thin Films from the Selenization of Thermally Evaporated InSe/Cu/GaSe Precursors

    Directory of Open Access Journals (Sweden)

    Francis B. Dejene

    2014-01-01

    Full Text Available The relatively small band gap values (~1 eV of CuInSe2 thin films limit the conversion efficiencies of completed CuInSe2/CdS/ZnO solar cell devices. In the case of traditional two-stage growth techniques, limited success has been achieved to homogeneously increase the band gap by substituting indium with gallium. In this study, thermal evaporation of InSe/Cu/Gase precursors was exposed to an elemental Se vapour under defined conditions. This technique produced large-grained, single-phase Cu(In,GaSe2 thin films with a high degree of in-depth compositional uniformity. The selenization temperature, ramp time, reaction period, and the effusion cell temperature with respect to the Cu(In,GaSe2 films were optimized in this study. The homogeneous incorporation of Ga into CuInSe2 led to a systematic shift in the lattice spacing parameters and band gap of the absorber films. Under optimized conditions, gallium in cooperation resulted only in a marginal decrease in the grain size, X-ray diffraction studies confirmed single-phase Cu(In,GaSe2 material, and X-ray photoluminescence spectroscopy in-depth profiling revealed a uniform distribution of the elements through the entire depth of the alloy. From these studies optimum selenization conditions were determined for the deposition of homogeneous Cu(In,GaSe2 thin films with optimum band gap values between 1.01 and 1.21 eV.

  11. Falling chains

    CERN Document Server

    Wong, C W; Wong, Chun Wa; Yasui, Kosuke

    2006-01-01

    The one-dimensional falling motion of a bungee chain suspended from a rigid support and of a chain falling from a resting heap on a table is studied. Their Lagrangians are found to contain no explicit time dependence. As a result, these falling chains are conservative systems. Each of their Lagrange's equations of motion is shown to contain a term that enforces energy conservation when masses are transferred between subchains. We show in particular that Cayley's 1857 energy nonconserving solution for a chain falling from a resting heap is incorrect because it neglects the energy gained when the transferred link is emitted by the emitting subchain. The maximum chain tension measured by Calkin and March for the falling bungee chain is given a simple if rough interpretation. In the simplified one-dimensional treatment, the kinetic energy of the center of mass of the falling bungee chain is found to be converted by the chain tension at the rigid support into the internal kinetic energy of the chain. However, as t...

  12. Pr and F co-doped SnO₂ transparent conductive films with high work function deposited by ion-assisted electron beam evaporation.

    Science.gov (United States)

    Wu, Shaohang; Li, Yantao; Luo, Jinsong; Lin, Jie; Fan, Yi; Gan, Zhihong; Liu, Xingyuan

    2014-02-24

    A transparent conductive oxide (TCO) Pr and F co-doped SnO2 (PFTO) film is prepared by ion-assisted electron beam deposition. An optimized PFTO film shows a high average visible optical transmittance of 83.6% and a minimum electrical resistivity of 3.7 × 10(-3) Ω·cm corresponding to a carrier density of 1.298 × 10(20) cm(-3) and Hall mobility of 12.99 cm(2)/V⋅s. This PFTO film shows a high work function of 5.147 eV and favorable surface morphology with an average roughness of 1.45 nm. Praseodymium fluoride is found to be an effective material to dope F into SnO2 that can simplify the fabrication process of SnO2-based TCO films.

  13. Process-Parameter-Dependent Optical and Structural Properties of ZrO2MgO Mixed-Composite Films Evaporated from the solid Solution

    Science.gov (United States)

    Sahoo, N. K.; Shapiro, A. P.

    1998-01-01

    The process-parameter-dependent optical and structural properties of ZrO2MgO mixed-composite material have been investigated. Optical properties were derived from spectrophotometric measurements. By use of atomic force microscopy, x-ray diffraction analysis, and energy-dispersive x-ray (EDX) analysis, the surface morphology, grain size distributions, crystallographic phases, and process-dependent material composition of films have been investigated. EDX analysis made evident the correlation between the oxygen enrichment in the films prepared at a high level of oxygen pressure and the very low refractive index. Since oxygen pressure can be dynamically varied during a deposition process, coatings constructed of suitable mixed-composite thin films can benefit from continuous modulation of the index of refraction. A step modulation approach is used to develop various multilayer-equivalent thin-film devices.