WorldWideScience

Sample records for falciparum-specific cellular immune

  1. Low density parasitaemia, red blood cell polymorphisms and Plasmodium falciparum specific immune responses in a low endemic area in northern Tanzania

    DEFF Research Database (Denmark)

    Shekalaghe, Seif; Alifrangis, Michael; Mwanziva, Charles;

    2009-01-01

    BACKGROUND: Low density Plasmodium falciparum infections, below the microscopic detection limit, may play an important role in maintaining malaria transmission in low endemic areas as well as contribute to the maintenance of acquired immunity. Little is known about factors influencing the occurre...

  2. Cellular immune responses to HIV

    Science.gov (United States)

    McMichael, Andrew J.; Rowland-Jones, Sarah L.

    2001-04-01

    The cellular immune response to the human immunodeficiency virus, mediated by T lymphocytes, seems strong but fails to control the infection completely. In most virus infections, T cells either eliminate the virus or suppress it indefinitely as a harmless, persisting infection. But the human immunodeficiency virus undermines this control by infecting key immune cells, thereby impairing the response of both the infected CD4+ T cells and the uninfected CD8+ T cells. The failure of the latter to function efficiently facilitates the escape of virus from immune control and the collapse of the whole immune system.

  3. The insect cellular immune response

    Institute of Scientific and Technical Information of China (English)

    Michael R. Strand

    2008-01-01

    The innate immune system of insects is divided into humoral defenses that include the production of soluble effector molecules and cellular defenses like phagocytosis and encapsulation that are mediated by hemocytes. This review summarizes current understanding of the cellular immune response. Insects produce several terminally differentiated types of hemocytes that are distinguished by morphology, molecular and antigenic markers, and function. The differentiated hemocytes that circulate in larval or nymphal stage insects arise from two sources: progenitor cells produced during embryogenesis and mesodermally derived hematopoietic organs. Regulation of hematopoiesis and hemocyte differentiation also involves several different signaling pathways. Phagocytosis and encapsulation require that hemocytes first recognize a given target as foreign followed by activation of downstream signaling and effector responses. A number of humoral and cellular receptors have been identified that recognize different microbes and multicellular parasites. In turn, activation of these receptors stimulates a number of signaling pathways that regulate different hemocyte functions. Recent studies also identify hemocytes as important sources of a number of humoral effector molecules required for killing different foreign invaders.

  4. Immune cellular response to HPV: current concepts

    Directory of Open Access Journals (Sweden)

    Maria Alice Guimarães Gonçalves

    Full Text Available Although cellular immunity is essential for the elimination of human papillomavirus (HPV, the mechanisms involved are still poorly understood. We summarize the main mechanisms involved in cellular immune response to infections caused by HPV. Immunotherapies for HPV-related cancers require the disruption of T-cell response control mechanisms, associated with the stimulation of the Th1 cytokine response.

  5. Cellular immunity in Hodgkin's disease.

    Science.gov (United States)

    Advani, S H; D'Silva, H; Gothoskar, B P; Dinshaw, K A; Nair, C N; Gopalkrishna, R; Talwalkar, G V; Desai, P B

    1979-02-01

    Defective cell-mediated immunity (CMI) occurs early in the course of Hodgkin's disease (HD) and may persist even two years after successful treatment. This has been confirmed by in vivo and in vitro tests performed on 51 untreated and 52 treated patients of HD. The grading of skin reponse in vivo to dinitrochlorobenzene (DNCB) correlated very well with the in vitro leukocyte migration inhibition (LMI) response against phytohemagglutinin (PHA). An inhibitory influence of HD patients' sera was demonstrated by LMI tests in vitro. The response of peripheral leukocytes from HD patients in the LMI tests could be augmented in vitro by addition of levamisole (an immuno-potentiator) to the culture medium, thus pointing to an intrinsic defect in Lymphocytes. The data indicate that defect at multiple sites in the immune system is responsible for persistent anergy in HD.

  6. Cellular immune findings in Lyme disease.

    Science.gov (United States)

    Sigal, L. H.; Moffat, C. M.; Steere, A. C.; Dwyer, J. M.

    1984-01-01

    From 1981 through 1983, we did the first testing of cellular immunity in Lyme disease. Active established Lyme disease was often associated with lymphopenia, less spontaneous suppressor cell activity than normal, and a heightened response of lymphocytes to phytohemagglutinin and Lyme spirochetal antigens. Thus, a major feature of the immune response during active disease seems to be a lessening of suppression, but it is not yet known whether this response plays a role in the pathophysiology of the disease. PMID:6240164

  7. [Cellular immunity in human periapical granuloma].

    Science.gov (United States)

    Terrié, B; Grégoire, G

    1991-03-01

    Numerous authors have produced different types of immunoglobulins in analyses of the human periapical granuloma. The present study examines the cellular immunity of the human periapical granuloma, and in particular the distribution of the lymphocyte sub-populations and the macrophage population. The technique used was that of cell surface marking, using monoclonal antibodies on frozen sections. The results reveal equal proportions of inductor T lymphocytes and suppressor T lymphocytes (whereas healthy tissue shows a ratio of 2/1), which explains the chronic nature of the lesion as far as the immune reaction is concerned. The presence of numerous macrophage cells shows that there are important local immune reactions.

  8. Cellular immune responses towards regulatory cells.

    Science.gov (United States)

    Larsen, Stine Kiær

    2016-01-01

    This thesis describes the results from two published papers identifying spontaneous cellular immune responses against the transcription factors Foxp3 and Foxo3. The tumor microenvironment is infiltrated by cells that hinder effective tumor immunity from developing. Two of these cell types, which have been linked to a bad prognosis for patients, are regulatory T cells (Treg) and tolerogenic dendritic cells (DC). Tregs inhibit effector T cells from attacking the tumor through various mechanisms, including secreted factors and cell-to-cell contact. Tregs express the transcription factor Foxp3, which is necessary for their development and suppressive activities. Tolerogenic DCs participate in creating an environment in the tumor where effector T cells become tolerant towards the tumor instead of attacking it. The transcription factor Foxo3 was recently described to be highly expressed by tolerogenic DCs and to programme their tolerogenic influence. This thesis describes for the first time the existence of spontaneous cellular immune responses against peptides derived from Foxp3 and Foxo3. We have detected the presence of cytotoxic T cells that recognise these peptides in an HLA-A2 restricted manner in cancer patients and for Foxp3 in healthy donors as well. In addition, we have demonstrated that the Foxp3- and Foxo3-specific CTLs recognize Foxp3- and Foxo3-expressing cancer cell lines and importantly, suppressive immune cells, namely Tregs and in vitro generated DCs. Cancer immunotherapy is recently emerging as an important treatment modality improving the survival of selected patients. The current progress is largely owing to targeting of the immune suppressive milieu that is dominating the tumor microenvironment. This is being done through immune checkpoint blockade with CTLA-4 and PD-1/PD-L1 antibodies and through lymphodepleting conditioning of patients and ex vivo activation of TILs in adoptive cell transfer. Several strategies are being explored for depletion of

  9. Novel Immune-Modulating Cellular Vaccine for Prostate Cancer Immunotherapy

    Science.gov (United States)

    2015-10-01

    AWARD NUMBER: W81XWH-13-1-0423 TITLE: Novel Immune-Modulating Cellular Vaccine for Prostate Cancer Immunotherapy PRINCIPAL INVESTIGATOR: Smita...SUBTITLE 5a. CONTRACT NUMBER W81XWH-13-1-0423 Novel Immune-Modulating Cellular Vaccine for Prostate Cancer Immunotherapy 5b. GRANT NUMBER 5c...immune checkpoint blockade, local CTLA-4 modulation, prostate cancer immunotherapy , prostatic acid phosphatase (PAP), RNA-based vaccines 16

  10. Cellular immune responses to respiratory viruses

    NARCIS (Netherlands)

    van Helden, M.J.G.

    2011-01-01

    When a respiratory virus successfully infects the lungs, cascades of immune responses are initiated aimed to remove the pathogen. Immediate non-specific protection is provided by the innate immune system and this reduces the viral load during the first days of infection. The adaptive immune response

  11. CONSECUTIVE IMMUNIZATION WITH RECOMBINANT FOWLPOX VIRUS AND PLASMID DNA FOR ENHANCING CELLULAR AND HUMORAL IMMUNITY

    Institute of Scientific and Technical Information of China (English)

    罗坤; 金宁一; 郭志儒; 秦云龙; 郭炎; 方厚华; 安汝国; 殷震

    2001-01-01

    To investigate the influence of consecutive immunization on cellular and humoral immunity in mice. Methods: We evaluated a consecutive immunization strategy of priming with recombinant fowlpox virus vUTALG and boosting with plasmid DNA pcDNAG encoding HIV-1 capsid protein Gag. Results: In immunized mice, the number of CD4+ T cells from splenic lymphocytes increased significantly and the proliferation response of splenocytes to ConA and LPS elevated markedly and HIV-1-specific antibody response could be induced. Conclusion: Consecutive immunization could increase cellular and humoral immunity responses in mice.

  12. Rapid Assay of Cellular Immunity in Q Fever.

    Science.gov (United States)

    1995-10-01

    requirement for expensive equipment or in time and manipulations. 5. Q Fever and the role of cellular immunity. Q fever is a zoonosis caused by the...812-818 Liang, S., et. al. (1994) Heterosubtypic Immunity to Influenza type A virus: effector mechanisms. J. Immunol.;152:1653. Liew, F.Y., O’Donnell

  13. Biliary Atresia: Cellular Dynamics and Immune Dysregulation

    Science.gov (United States)

    Feldman, Amy; Mack, Cara L.

    2012-01-01

    The cause of biliary atresia (BA) is unknown and in the past few decades the majority of investigations related to pathogenesis have centered on virus infections and immunity. The acquired or perinatal form of BA entails a progressive, inflammatory injury of bile ducts, leading to fibrosis and obliteration of both the extrahepatic and intrahepatic bile ducts. Theories of pathogenesis include viral infection, chronic inflammatory or autoimmune-mediated bile duct injury and abnormalities in bile duct development. This review will focus solely on human studies pertaining to a potential viral trigger of bile duct injury at diagnosis and provide insight into the interplay of the innate and adaptive immune responses in the pathogenesis of disease. PMID:22800972

  14. Modeling evolution and immune system by cellular automata

    Energy Technology Data Exchange (ETDEWEB)

    Bezzi, M. [Scuola Internazionale Superiore di Studi Avanzati, Trieste (Italy); Istituto Nazionale di Fisica della Materia, Florence (Italy)

    2001-07-01

    In this review the behavior of two different biological systems is investigated using cellular automata. Starting from this spatially extended approach it is also tried, in some cases, to reduce the complexity of the system introducing mean-field approximation, and solving (or trying to solve) these simplified systems. It is discussed the biological meaning of the results, the comparison with experimental data (if available) and the different features between spatially extended and mean-field versions. The biological systems considered in this review are the following: Darwinian evolution in simple ecosystems and immune system response. In the first section the main features of molecular evolution are introduced, giving a short survey of genetics for physicists and discussing some models for prebiotic systems and simple ecosystems. It is also introduced a cellular automaton model for studying a set of evolving individuals in a general fitness landscape, considering also the effects of co-evolution. In particular the process of species formation (speciation) is described in sect. 5. The second part deals with immune system modeling. The biological features of immune response are discussed, as well as it is introduced the concept of shape space and of idiotypic network. More detailed reviews which deal with immune system models (mainly focused on idiotypic network models) can be found. Other themes here discussed: the applications of CA to immune system modeling, two complex cellular automata for humoral and cellular immune response. Finally, it is discussed the biological data and the general conclusions are drawn in the last section.

  15. Polyomavirus specific cellular immunity: from BK-virus-specific cellular immunity to BK-virus-associated nephropathy ?

    Directory of Open Access Journals (Sweden)

    manon edekeyser

    2015-06-01

    Full Text Available In renal transplantation, BK-virus-associated nephropathy has emerged as a major complication, with a prevalence of 5–10% and graft loss in >50% of cases. BK-virus is a member of the Polyomavirus family and rarely induces apparent clinical disease in the general population. However, replication of polyomaviruses, associated with significant organ disease, is observed in patients with acquired immunosuppression, which suggests a critical role for virus-specific cellular immunity to control virus replication and prevent chronic disease. Monitoring of specific immunity combined with viral load could be used to individually assess the risk of viral reactivation and virus control. We review the current knowledge on BK-virus specific cellular immunity and, more specifically, in immunocompromised patients. In the future, immune-based therapies could allow us to treat and prevent BK-virus-associated nephropathy.

  16. Cellular metabolism as a basis for immune privilege.

    Science.gov (United States)

    Newell, M Karen; Villalobos-Menuey, Elizabeth; Schweitzer, Susan C; Harper, Mary-Ellen; Camley, Robert E

    2006-03-17

    We hypothesize that the energy strategy of a cell is a key factor for determining how, or if, the immune system interacts with that cell. Cells have a limited number of metabolic states, in part, depending on the type of fuels the cell consumes. Cellular fuels include glucose (carbohydrates), lipids (fats), and proteins. We propose that the cell's ability to switch to, and efficiently use, fat for fuel confers immune privilege. Additionally, because uncoupling proteins are involved in the fat burning process and reportedly in protection from free radicals, we hypothesize that uncoupling proteins play an important role in immune privilege. Thus, changes in metabolism (caused by oxidative stresses, fuel availability, age, hormones, radiation, or drugs) will dictate and initiate changes in immune recognition and in the nature of the immune response. This has profound implications for controlling the symptoms of autoimmune diseases, for preventing graft rejection, and for targeting tumor cells for destruction.

  17. Waning and aging of cellular immunity to Bordetella pertussis.

    Science.gov (United States)

    van Twillert, Inonge; Han, Wanda G H; van Els, Cécile A C M

    2015-11-01

    While it is clear that the maintenance of Bordetella pertussis-specific immunity evoked both after vaccination and infection is insufficient, it is unknown at which pace waning occurs and which threshold levels of sustained functional memory B and T cells are required to provide long-term protection. Longevity of human cellular immunity to B. pertussis has been studied less extensively than serology, but is suggested to be key for the observed differences between the duration of protection induced by acellular vaccination and whole cell vaccination or infection. The induction and maintenance of levels of protective memory B and T cells may alter with age, associated with changes of the immune system throughout life and with accumulating exposures to circulating B. pertussis or vaccine doses. This is relevant since pertussis affects all age groups. This review summarizes current knowledge on the waning patterns of human cellular immune responses to B. pertussis as addressed in diverse vaccination and infection settings and in various age groups. Knowledge on the effectiveness and flaws in human B. pertussis-specific cellular immunity ultimately will advance the improvement of pertussis vaccination strategies.

  18. Combinatorial Contextualization of Peptidic Epitopes for Enhanced Cellular Immunity

    Science.gov (United States)

    Ito, Masaki; Hayashi, Kazumi; Adachi, Eru; Minamisawa, Tamiko; Homma, Sadamu; Koido, Shigeo; Shiba, Kiyotaka

    2014-01-01

    Invocation of cellular immunity by epitopic peptides remains largely dependent on empirically developed protocols, such as interfusion of aluminum salts or emulsification using terpenoids and surfactants. To explore novel vaccine formulation, epitopic peptide motifs were co-programmed with structural motifs to produce artificial antigens using our “motif-programming” approach. As a proof of concept, we used an ovalbumin (OVA) system and prepared an artificial protein library by combinatorially polymerizing MHC class I and II sequences from OVA along with a sequence that tends to form secondary structures. The purified endotoxin-free proteins were then examined for their ability to activate OVA-specific T-cell hybridoma cells after being processed within dendritic cells. One clone, F37A (containing three MHC I and two MHC II OVA epitopes), possessed a greater ability to evoke cellular immunity than the native OVA or the other artificial antigens. The sensitivity profiles of drugs that interfered with the F37A uptake differed from those of the other artificial proteins and OVA, suggesting that alteration of the cross-presentation pathway is responsible for the enhanced immunogenicity. Moreover, F37A, but not an epitopic peptide, invoked cellular immunity when injected together with monophosphoryl lipid A (MPL), and retarded tumor growth in mice. Thus, an artificially synthesized protein antigen induced cellular immunity in vivo in the absence of incomplete Freund's adjuvant or aluminum salts. The method described here could be potentially used for developing vaccines for such intractable ailments as AIDS, malaria and cancer, ailments in which cellular immunity likely play a crucial role in prevention and treatment. PMID:25343355

  19. Norovirus P particle efficiently elicits innate, humoral and cellular immunity.

    Directory of Open Access Journals (Sweden)

    Hao Fang

    Full Text Available Norovirus (NoV P domain complexes, the 24 mer P particles and the P dimers, induced effective humoral immunity, but their role in the cellular immune responses remained unclear. We reported here a study on cellular immune responses of the two P domain complexes in comparison with the virus-like particle (VLP of a GII.4 NoV (VA387 in mice. The P domain complexes induced significant central memory CD4(+ T cell phenotypes (CD4(+ CD44(+ CD62L(+ CCR7(+ and activated polyclonal CD4(+ T cells as shown by production of Interleukin (IL-2, Interferon (IFN-γ, and Tumor Necrosis Factor (TNF-α. Most importantly, VA387-specific CD4(+ T cell epitope induced a production of IFN-γ, indicating an antigen-specific CD4(+ T cell response in P domain complex-immunized mice. Furthermore, P domain complexes efficiently induced bone marrow-derived dendritic cell (BMDC maturation, evidenced by up-regulation of co-stimulatory and MHC class II molecules, as well as production of IL-12 and IL-1β. Finally, P domain complex-induced mature dendritic cells (DCs elicited proliferation of specific CD4(+ T cells targeting VA387 P domain. Overall, we conclude that the NoV P domain complexes are efficiently presented by DCs to elicit not only humoral but also cellular immune responses against NoVs. Since the P particle is highly effective for both humoral and cellular immune responses and easily produced in Escherichia coli (E. coli, it is a good choice of vaccine against NoVs and a vaccine platform against other diseases.

  20. SPECIFIC IMMUNOTHERAPY AND CELLULAR IMMUNITY IN PATIENTS WITH CERVICAL CANCER

    Directory of Open Access Journals (Sweden)

    D. K. Kenbaeva

    2013-01-01

    Full Text Available Cellular mechanisms are quite important immunological components of tumor surveillance, being, however, most vulnerable to influence of different adverse factors, including surgery-associated stress and ionizing radiation. Our study was aimed for assessing specific effects of immunotherapy upon indices of cellular immunity in patients with cervical cancer. Eighty-eight patients with cervical cancer (clinical stage I-IIA, Т1аN0M0-T2aN0M0, who underwent appropriate surgery (for IA stage, or a combined treatment, including surgery gamma-ray teletherapy (IB, IIA stages are under study. The patients were distributed in two groups, depending on the therapy applied. Group 1 included patients subjected to surgical treatment plus and radiation therapy, Group 2 included those patients who were treated according to this protocol, with addition of a specific immunotherapy. Contents of T cells and various CD subpopulations of T-lymphocytes were identified by immunofluorescence techniques. Among patients with cervical cancer at clinical stages IA, IB, IIA, a reliable decrease in cellular immunity indices was registered, both after surgery, and during combined treatment. Introduction of specific immunotherapy to the conventional treatment schedule was associated with increase of cellular immune indices, and, in first line, the antineoplastic mechanisms (e.g., NK’s and NKT cell contents. One should point to a relatively low efficiency of this immunotherapy in combined treatment of patients with cervical cancer at IIA stage.

  1. Depression, family and cellular immunity: Influence of family relationships and cellular immunity on the severity of depression.

    Science.gov (United States)

    Zdanowicz, Nicolas; Reynaert, Christine; Jacques, Denis; Tordeurs, David; Lepiece, Brice; Maury, Julien

    2015-09-01

    Exposure to stress activates the hypothalamic-pituitary-adrenal axis through the release of catecholamines, which modify humoral and cellular immunity. On the one hand, this psycho-immunological theory makes it possible to forge links between immunity and depression. On the other hand, we know that family determinants are an important variable in the model of vulnerability to depression. Our study weighs the influence of cellular immunity and family relations on the severity of depression. 498 inpatients with major depressive disorder were enrolled in an open-label trial. In addition to a socio-demographic questionnaire, they completed Olsen's FACES III and the Beck Depression Inventory (BDI). Flow cytometry was used to assess lymphocyte subsets. In terms of immunity, there are correlations between the BDI and percentages of CD3 (p=0.015; r=-0.112), CD4 (pfamily relationships, there is a correlation between the BDI and family of origin, both for cohesion (p=0.007; r=-0.169) and adaptability (p=0.035; r=-0.133) measures. With respect to the relationship between family dynamics and immunity, there are correlations between adaptability in the family of origin and CD3 (p=0.04; r=0.094) and CD4 (p=0.044; r=0.093). A logistic regression model for family variables explained 11.4% of the BDI, compared to 12.7% for immune variables, while a model including the two explained 16%. While both the family and immunity can explain the BDI, it is surprising they have a greater effect in combination than individually. This suggests that the psycho-immunological theory should look at the relation between immunity and family life, notably in relation to the family of origin.

  2. Cellular factors targeting APCs to modulate adaptive T cell immunity.

    Science.gov (United States)

    Visperas, Anabelle; Do, Jeongsu; Min, Booki

    2014-01-01

    The fate of adaptive T cell immunity is determined by multiple cellular and molecular factors, among which the cytokine milieu plays the most important role in this process. Depending on the cytokines present during the initial T cell activation, T cells become effector cells that produce different effector molecules and execute adaptive immune functions. Studies thus far have primarily focused on defining how these factors control T cell differentiation by targeting T cells themselves. However, other non-T cells, particularly APCs, also express receptors for the factors and are capable of responding to them. In this review, we will discuss how APCs, by responding to those cytokines, influence T cell differentiation and adaptive immunity.

  3. Cellular Factors Targeting APCs to Modulate Adaptive T Cell Immunity

    Directory of Open Access Journals (Sweden)

    Anabelle Visperas

    2014-01-01

    Full Text Available The fate of adaptive T cell immunity is determined by multiple cellular and molecular factors, among which the cytokine milieu plays the most important role in this process. Depending on the cytokines present during the initial T cell activation, T cells become effector cells that produce different effector molecules and execute adaptive immune functions. Studies thus far have primarily focused on defining how these factors control T cell differentiation by targeting T cells themselves. However, other non-T cells, particularly APCs, also express receptors for the factors and are capable of responding to them. In this review, we will discuss how APCs, by responding to those cytokines, influence T cell differentiation and adaptive immunity.

  4. Longevity and composition of cellular immune responses following experimental Plasmodium falciparum malaria infection in humans.

    NARCIS (Netherlands)

    Teirlinck, A.C.; McCall, M.B.B.; Roestenberg, M.; Scholzen, A.; Woestenenk, R.M.; Mast, Q. de; Ven, A.J.A.M. van der; Hermsen, C.C.; Luty, A.J.F.; Sauerwein, R.W.

    2011-01-01

    Cellular responses to Plasmodium falciparum parasites, in particular interferon-gamma (IFNgamma) production, play an important role in anti-malarial immunity. However, clinical immunity to malaria develops slowly amongst naturally exposed populations, the dynamics of cellular responses in relation

  5. Humoral and Cellular Immune Response in Canine Hypothyroidism.

    Science.gov (United States)

    Miller, J; Popiel, J; Chełmońska-Soyta, A

    2015-07-01

    Hypothyroidism is one of the most common endocrine diseases in dogs and is generally considered to be autoimmune in nature. In human hypothyroidism, the thyroid gland is destroyed by both cellular (i.e. autoreactive helper and cytotoxic T lymphocytes) and humoral (i.e. autoantibodies specific for thyroglobulin, thyroxine and triiodothyronine) effector mechanisms. Other suggested factors include impaired peripheral immune suppression (i.e. the malfunction of regulatory T cells) or an additional pro-inflammatory effect of T helper 17 lymphocytes. The aim of this study was to evaluate immunological changes in canine hypothyroidism. Twenty-eight clinically healthy dogs, 25 hypothyroid dogs without thyroglobulin antibodies and eight hypothyroid dogs with these autoantibodies were enrolled into the study. There were alterations in serum proteins in hypothyroid dogs compared with healthy controls (i.e. raised concentrations of α-globulins, β2- and γ-globulins) as well as higher concentration of acute phase proteins and circulating immune complexes. Hypothyroid animals had a lower CD4:CD8 ratio in peripheral blood compared with control dogs and diseased dogs also had higher expression of interferon γ (gene and protein expression) and CD28 (gene expression). Similar findings were found in both groups of hypothyroid dogs. Canine hypothyroidism is therefore characterized by systemic inflammation with dominance of a cellular immune response.

  6. Cellular immunity and immunopathology in autoimmune Addison's disease.

    Science.gov (United States)

    Bratland, Eirik; Husebye, Eystein S

    2011-04-10

    Autoimmune adrenocortical failure, or Addison's disease, is a prototypical organ-specific autoimmune disorder. In common with related autoimmune endocrinopathies, Addison's disease is only manageable to a certain extent with replacement therapy being the only treatment option. Unfortunately, the available therapy does not restore the physiological hormone levels and biorhythm. The key to progress in treating and preventing autoimmune Addison's disease lies in improving our understanding of the predisposing factors, the mechanisms responsible for the progression of the disease, and the interactions between adrenal antigens and effector cells and molecules of the immune system. The aim of the present review is to summarize the current knowledge on the role of T cells and cellular immunity in the pathogenesis of autoimmune Addison's disease. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  7. Innate and Adaptive Cellular Immune Responses to Mycobacterium tuberculosis Infection.

    Science.gov (United States)

    Mayer-Barber, Katrin D; Barber, Daniel L

    2015-07-17

    Host resistance to Mycobacterium tuberculosis (Mtb) infection requires the coordinated efforts of innate and adaptive immune cells. Diverse pulmonary myeloid cell populations respond to Mtb with unique contributions to both host-protective and potentially detrimental inflammation. Although multiple cell types of the adaptive immune system respond to Mtb infection, CD4 T cells are the principal antigen-specific cells responsible for containment of Mtb infection, but they can also be major contributors to disease during Mtb infection in several different settings. Here, we will discuss the role of different myeloid populations as well as the dual nature of CD4 T cells in Mtb infection with a primary focus on data generated using in vivo cellular immunological studies in experimental animal models and in humans when available. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.

  8. Innate Cellular Immune Responses in Aedes caspius (Diptera: Culicidae) Mosquitoes.

    Science.gov (United States)

    Soliman, D E; Farid, H A; Hammad, R E; Gad, A M; Bartholomay, L C

    2016-03-01

    Mosquitoes transmit a variety of pathogens that have devastating consequences for global public and veterinary health. Despite their capacity to serve as vectors, these insects have a robust capacity to respond to invading organisms with strong cellular and humoral immune responses. In Egypt, Aedes caspius (Pallas, 1771) has been suspected to act as a bridge vector of Rift Valley Fever virus between animals and humans. Microscopic analysis of Ae. caspius hemolymph revealed the presence of phagocytic cells called granulocytes. We further evaluated cellular immune responses produced by Ae. caspius as a result of exposure to a Gram-negative, and Gram-positive bacterium, and to latex beads. After challenge, a rapid and strong phagocytic response against either a natural or synthetic invader was evident. Hemocyte integrity in bacteria-inoculated mosquitoes was not morphologically affected. The number of circulating granulocytes decreased with age, reducing the overall phagocytic capacity of mosquitoes over time. The magnitude and speed of the phagocytic response suggested that granulocytes act as an important force in the battle against foreign invaders, as has been characterized in other important mosquito vector species.

  9. Herpesviral microRNAs in Cellular Metabolism and Immune Responses

    Directory of Open Access Journals (Sweden)

    Hyoji Kim

    2017-07-01

    Full Text Available The microRNAs (miRNAs function as a key regulator in many biological processes through post-transcriptional suppression of messenger RNAs. Recent advancements have revealed that miRNAs are involved in many biological functions of cells. Not only host cells, but also some viruses encode miRNAs in their genomes. Viral miRNAs regulate cell proliferation, differentiation, apoptosis, and the cell cycle to establish infection and produce viral progeny. Particularly, miRNAs encoded by herpes virus families play integral roles in persistent viral infection either by regulation of metabolic processes or the immune response of host cells. The life-long persistent infection of gamma herpes virus subfamilies, such as Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus, induces host cells to malignant transformation. The unbalanced metabolic processes and evasion from host immune surveillance by viral miRNAs are induced either by direct targeting of key proteins or indirect regulation of multiple signaling pathways. We provide an overview of the pathogenic roles of viral miRNAs in cellular metabolism and immune responses during herpesvirus infection.

  10. Effects of antibacterial peptide on cellular immunity in weaned piglets.

    Science.gov (United States)

    Ren, Z H; Yuan, W; Deng, H D; Deng, J L; Dan, Q X; Jin, H T; Tian, C L; Peng, X; Liang, Z; Gao, S; Xu, S H; Li, G; Hu, Y

    2015-01-01

    The aim of this study was to evaluate the effects of antibacterial peptide (ABP) sufficiency on cellular immune functions by determining the spleen cell cycle and apoptosis, peripheral blood T cell subsets, and T cell proliferation function in weaned piglets. A total of 90 piglets (Duroc × Landrace × Yorkshire) of both sexes were randomly allotted to 5 dietary treatments. Each treatment consisted of 3 replicates with 6 piglets per replicate. The dietary treatments consisted of the negative control (NC; basal diet), positive control (PC; basal diet supplemented with 400 mg/kg Astragalus polysaccharide), and ABP (basal diet mixed with 250, 500, and 1,000 mg/kg ABP). The experimental lasted for 28 d. Two piglets from each replicate were selected randomly for blood samples extraction from the jugular vein to obtain peripheral blood T cell subsets, and T cell proliferation function analysis was performed on d 32, 39, 46, and 53. Two piglets from each replicate were selected and euthanized to observe the spleen cell cycle and apoptosis on d 39 and 53. In ABP-sufficient piglets, the G0/G1 phase of the spleen cell cycle was much lower (P ABP sufficiency (P ABP-sufficient piglets. Percentages of CD3 (+) and CD3 (+)CD4 (+) ratios (d 39, 46, and 53) and CD4 (+)CD8 (+) ratios (d 32, 39, 46, and 53) increased remarkably (P ABP sufficiency compared with NC. These results suggest that ABP sufficiency could increase the T cell population and proliferation function of T cells and could induce decreased percentages of apoptotic cells. Overall, the cellular immune function was evidently improved in weaned piglets. We suggest optimal dosages of 500 mg/kg ABP for 4-wk addition and 1,000 mg/kg ABP for 2-wk addition.

  11. Transition between immune and disease states in a cellular automaton model of clonal immune response

    CERN Document Server

    Bezzi, M; Ruffo, S; Seiden, P E; Bezzi, Michele; Celada, Franco; Ruffo, Stefano; Seiden, Philip E.

    1997-01-01

    In this paper we extend the Celada-Seiden (CS) model of the humoral immune response to include infectious virus and cytotoxic T lymphocytes (cellular response). The response of the system to virus involves a competition between the ability of the virus to kill the host cells and the host's ability to eliminate the virus. We find two basins of attraction in the dynamics of this system, one is identified with disease and the other with the immune state. There is also an oscillating state that exists on the border of these two stable states. Fluctuations in the population of virus or antibody can end the oscillation and drive the system into one of the stable states. The introduction of mechanisms of cross-regulation between the two responses can bias the system towards one of them. We also study a mean field model, based on coupled maps, to investigate virus-like infections. This simple model reproduces the attractors for average populations observed in the cellular automaton. All the dynamical behavior connect...

  12. Natural Products as Tools for Defining How Cellular Metabolism Influences Cellular Immune and Inflammatory Function during Chronic Infection

    Directory of Open Access Journals (Sweden)

    Erica S. Lovelace

    2015-11-01

    Full Text Available Chronic viral infections like those caused by hepatitis C virus (HCV and human immunodeficiency virus (HIV cause disease that establishes an ongoing state of chronic inflammation. While there have been tremendous improvements towards curing HCV with directly acting antiviral agents (DAA and keeping HIV viral loads below detection with antiretroviral therapy (ART, there is still a need to control inflammation in these diseases. Recent studies indicate that many natural products like curcumin, resveratrol and silymarin alter cellular metabolism and signal transduction pathways via enzymes such as adenosine monophosphate kinase (AMPK and mechanistic target of rapamycin (mTOR, and these pathways directly influence cellular inflammatory status (such as NF-κB and immune function. Natural products represent a vast toolkit to dissect and define how cellular metabolism controls cellular immune and inflammatory function.

  13. Structural, cellular and molecular aspects of immune privilege in the testis

    Directory of Open Access Journals (Sweden)

    Nan eLi

    2012-06-01

    Full Text Available The testis presents a special immunological environment, considering its property of immune privilege that tolerates allo- and auto-antigens. Testicular immune privilege was once believed to be mainly based on the sequestration of antigens from the immune system by the blood-testis barrier in the seminiferous epithelium. Substantial evidence supports the view that the combination of physical structure, testicular cells, and cytokines controls immune responses in the testis to preserve the structural and functional integrity of testicular immune privilege. Both systemic immune tolerance and local immunosuppression help maintain the immune privilege status. Constitutive expression of anti-inflammatory factors in testicular cells is critical for local immunosuppression. However, the testis locally generates an efficient innate immune system against pathogens. Disruption of these mechanisms may lead to orchitis and impair fertility. This review article highlights the current understanding of structural, cellular and molecular mechanisms underlying the unique immune environment of the testis, particularly its immune privilege status.

  14. The cellular and humoral immunity assay in patients with complicated urolithiasis

    Science.gov (United States)

    Ceban, E; Banov, P; Galescu, A; Tanase, D

    2017-01-01

    Especially complicated, renal lithiasis contributes to the general inflammatory syndrome development that interferes with nonspecific, humoral and cellular immune system. The surgical treatment of nephrolithiasis is closely related to drug therapy of urinary infection, one of the reasons being the reduction of the immune status. The work is performed by evaluating the immunological status preoperatively in 58 patients with complicated lithiasis. The analysis of the status in these patients demonstrated that complicated urolithiasis results in significant changes in the immune system, these changes being expressed at the cellular and humoral level of immunity. PMID:28255384

  15. Research advances in immune cellular pathogenesis in liver fibrosis

    Directory of Open Access Journals (Sweden)

    XIAO Chunyang

    2015-09-01

    Full Text Available Liver fibrosis is the common pathological consequence of all chronic liver diseases with various etiologies. The mechanism of liver fibrosis is associated with the activation and proliferation of hepatic stellate cells (HSCs. The interaction between immune cells and HSCs can regulate the production of extracellular matrix (ECM and lead to the excessive deposition of ECM and subsequent liver fibrosis and cirrhosis. This article reviews the current understanding of the effects and action mechanisms of immune cells in the development of liver fibrosis and summarizes the regulatory functions of the innate and adaptive immune systems in liver fibrosis. Further study of the interactions between immune cells, cytokines, and HSCs and the regulatory mechanisms of the immune system will provide novel opportunity for the treatment of liver fibrosis.

  16. The effect of oral consumption of shark cartilage on the cellular immune responses of cancer patients

    Directory of Open Access Journals (Sweden)

    somaye Shahrokhi

    2006-11-01

    Conclusion: It seems that shark cartilage could help strengthen cellular immunity which is important in tumor regression in breast cancer patients. So we suppose that it could be a good candidate for cancer treatment along with conventional medicine.

  17. The cellular composition of the human immune system is shaped by age and cohabitation.

    Science.gov (United States)

    Carr, Edward J; Dooley, James; Garcia-Perez, Josselyn E; Lagou, Vasiliki; Lee, James C; Wouters, Carine; Meyts, Isabelle; Goris, An; Boeckxstaens, Guy; Linterman, Michelle A; Liston, Adrian

    2016-04-01

    Detailed population-level description of the human immune system has recently become achievable. We used a 'systems-level' approach to establish a resource of cellular immune profiles of 670 healthy individuals. We report a high level of interindividual variation, with low longitudinal variation, at the level of cellular subset composition of the immune system. Despite the profound effects of antigen exposure on individual antigen-specific clones, the cellular subset structure proved highly elastic, with transient vaccination-induced changes followed by a return to the individual's unique baseline. Notably, the largest influence on immunological variation identified was cohabitation, with 50% less immunological variation between individuals who share an environment (as parents) than between people in the wider population. These results identify local environmental conditions as a key factor in shaping the human immune system.

  18. Cellular networks controlling Th2 polarization in allergy and immunity

    NARCIS (Netherlands)

    M. Kool (Mirjam); H. Hammad (Hamida); B.N.M. Lambrecht (Bart)

    2012-01-01

    textabstractIn contrast to the development of Th1 (type 1 T helper cells), Th17 and Treg (regulatory T cells), little is known of the mechanisms governing Th2 development, which is important for immunity to helminths and for us to understand the pathogenesis of allergy. A picture is emerging in

  19. Humoral and cellular immunity in cosmonauts after the ISS missions

    Science.gov (United States)

    Rykova, M. P.; Antropova, E. N.; Larina, I. M.; Morukov, B. V.

    Spaceflight effects on the immune system were studied in 30 cosmonauts flown onto the International Space Station (ISS) for long- (125-195 d, n=15) and short-term (8-10 d, n=15) missions. Immunological investigations before launch and after landing were performed by using methods for quantitative and functional evaluation of the immunologically competent cells. Specific assays include: peripheral leukocyte distribution, natural killer (NK) cell cytotoxic activity, phagocytic activity of monocytes and granulocytes, proliferation of T-cells in response to a mitogen, levels of immunoglobulins IgA, IgM, IgG, virus-specific antibody and cytokine in serum. It was noticed that after long-term spaceflights the percentage of NK (CD3-/CD16+/CD56+) cells was significantly reduced compared with pre-flight data (pcytokines (IL- 1β, IL-2, IL-4 and TNF- α) in serum changed in an apparently random manner as compared with values before long- and short-term missions. Despite the fact that many improvements have been made to the living conditions of aboard the ISS our investigations demonstrate the remarkable depression of the immunological function after the ISS missions. These results suggest that the clinical health risk (related to immune dysfunction) will occur during exploration class missions.

  20. Serum cortisol level in cerebral infarction patients with infection and its correlation with nerve function, humoral immunity and cellular immunity

    Institute of Scientific and Technical Information of China (English)

    Jie-Min Zhai; Hui-Qi Li; Jian-Bo He; Hai-Guo Wang

    2016-01-01

    Objective:To analyze the serum cortisol level in cerebral infarction patients with infection and its correlation with nerve function, humoral immunity and cellular immunity.Methods:A total of 86 patients with cerebral infarction were divided into observation group (cerebral infarction combined with infection) (n=40) and control group (cerebral infarction alone) (n=46) according to the combination of infection. Serum content of cortisol, nerve function-related indexes and humoral immunity indexes as well as peripheral blood levels of cellular immunity indexes of two groups of patients were determined on admission, and the correlation between serum cortisol level and the above illness-related indexes in cerebral infarction patients with infection was further analyzed.Results: Serum cortisol content of observation group was significantly higher than that of control group; serum nerve function indexes S100β, GFAP, Hcy and HO1 content were significantly higher than those of control group while IGF-1 content was significantly lower than that of control group; humoral immunity indexes IgA, IgM, IgG, C3 and C4 content in serum were significantly lower than those of control group; cellular immunity indexes CD3+, CD4+ and CD54+T lymphocyte content in peripheral blood were significantly lower than those of control group while CD19+T lymphocyte content and CD4+/CD8+ level were significantly higher than those of control group; hemodynamic indexes rCBF and rCBV levels were significantly lower than those of control group while MTT, TTP and DLY levels were significantly higher than those of control group. Serum cortisol level in cerebral infarction patients with infection was directly correlated with the levels of nerve function, humoral immunity, cellular immunity and other illness-related indexes. Conclusions:The high cortisol state in cerebral infarction patients with infection is the visual sign of severe nerve function damage and suppressed immune function, and it can be a

  1. Subacute ruminal acidosis (SARA) challenge, ruminal condition and cellular immunity in cattle.

    Science.gov (United States)

    Sato, Shigeru

    2015-02-01

    Subacute ruminal acidosis (SARA) is characterized by repeated bouts of low ruminal pH. Cows with SARA often develop complications or other diseases, and associate physiologically with immunosuppression and inflammation. Ruminal free lipopolysaccharide (LPS) increases during SARA and translocates into the blood circulation activating an inflammatory response. Ruminal fermentation and cellular immunity are encouraged by supplementing hay with calf starter during weaning. SARA calves given a 5-day repeated administration of a bacteria-based probiotic had stable ruminal pH levels (6.6-6.8). The repeated administration of probiotics enhance cellular immune function and encourage recovery from diarrhea in pre-weaning calves. Furthermore, the ruminal fermentation could guard against acute and short-term feeding changes, and changes in the rumen microbial composition of SARA cattle might occur following changes in ruminal pH. The repeated bouts of low ruminal pH in SARA cattle might be associated with depression of cellular immunity.

  2. Cellular and humoral immunity of virus-induced asthma

    Directory of Open Access Journals (Sweden)

    Yoshimichi eOkayama

    2013-08-01

    Full Text Available Asthma inception is associated with respiratory viral infection, especially infection with respiratory syncytial virus (RSV and/or human rhinovirus (HRV, in the vast majority of cases. However, the reason why RSV and HRV induce the majority of bronchiolitis cases during early childhood and why only a small percentage of children with RSV- and HRV-induced bronchiolitis later develop asthma remains unclear. A genetic association study has revealed the important interaction between viral illness and genetic variants in patients with asthma. Severe RSV- and HRV-induced bronchiolitis may be associated with a deficiency in the innate immune response to RSV and HRV. RSV and HRV infections in infants with deficient innate immune response and the dysfunction of regulatory T cells are considered to be a risk factor for the development of asthma. Sensitization to aeroallergens, beginning in the first year of life, consistently predisposes children to HRV-induced wheezing illnesses, but the converse is not true. Some evidence of virus specificity exists, in that allergic sensitization specifically increased the risk of wheezing in individuals infected with HRV, but not RSV. Administration of Palivizumab, a humanized monoclonal antibody that targets the A antigenic site of the Fusion-protein of RSV, decreases the risk of hospitalization in high-risk infants and the risk of recurrent of wheezing. However, palivizumab did not have any effect on subsequent recurrent wheezing in children with a family history of atopy. These findings suggest that infection with RSV and infection with HRV might predispose individuals to recurrent wheezing through an atopy-independent and an atopy-dependent mechanism, respectively. Respiratory virus-induced wheezing illnesses may encompass multiple sub-phenotypes that relate to asthma in different ways.

  3. Humoral and Cellular Immunity Changed after Traumatic Brain Injury in Human Patients.

    Science.gov (United States)

    Wang, Jia-Wei; Li, Jin-Ping; Song, Ying-Lun; Zhao, Qi-Huang

    2017-01-01

    Previous studies have suggested that there is a disproportionally higher risk of infection following traumatic brain injury (TBI). This predisposition to infection may be driven by a poorly understood, brain-specific response in the immune system after TBI. However, there is a lack of studies that have fully characterized TBI patients to understand the relationship between TBI and peripheral immune function. In the present study, markers for humoral immunity and cellular immunity were measured for up to 2 weeks in the peripheral blood of 37 patients with TBI in order to elucidate the time course and the type of the peripheral immune response following TBI. 12 relatively healthy individuals without TBI and other neurological diseases were enrolled into the control group. Our data indicated that TBI could induce significant changes in humoral immunity characterized by a decrease in IgG and IgM levels and an increase in the complements C3 and C4 levels in comparison with the control group. Moreover, compared with the control group, a significant reduction in peripheral blood CD3(+) and CD3(+)CD4(+) lymphocyte counts occurred early (days 1-3) following the onset of trauma. These results provide evidence that TBI is associated with substantial changes in humoral immunity and cellular immunity, which may explain the high incidence of infection encountered in these patients. © 2017 by the Association of Clinical Scientists, Inc.

  4. Encapsulated Cellular Implants for Recombinant Protein Delivery and Therapeutic Modulation of the Immune System

    Directory of Open Access Journals (Sweden)

    Aurélien Lathuilière

    2015-05-01

    Full Text Available Ex vivo gene therapy using retrievable encapsulated cellular implants is an effective strategy for the local and/or chronic delivery of therapeutic proteins. In particular, it is considered an innovative approach to modulate the activity of the immune system. Two recently proposed therapeutic schemes using genetically engineered encapsulated cells are discussed here: the chronic administration of monoclonal antibodies for passive immunization against neurodegenerative diseases and the local delivery of a cytokine as an adjuvant for anti-cancer vaccines.

  5. Effect of hyperthermic water bath on parameters of cellular immunity.

    Science.gov (United States)

    Blazícková, S; Rovenský, J; Koska, J; Vigas, M

    2000-01-01

    Effects of hyperthermic water bath on selected immune parameters (lymphocyte subpopulations, natural killer (NK) cell counts and their activity) were studied in a group of 10 volunteers. Application of hyperthermic water bath (both topical and whole-body) was followed by a significant reduction of relative B lymphocyte counts. Whole-body hyperthermic water bath reduced relative total T lymphocyte counts, increased relative CD8+ T lymphocyte and NK cell counts and increased NK activity. Whole-body hyperthermic bath increased somatotropic hormone (STH) activity in eight out of 10 volunteers; higher relative counts of CD8+ lymphocytes and NK cells were observed compared with the group of volunteers not responding to hyperthermic water bath by STH secretion. In five volunteers STH was released in response to local hyperthermic water bath and the NK activity of lymphocytes also increased but their relative counts did not. The results suggest that these increases in CD8+ lymphocyte and NK cell counts are probably dependent on increased STH production.

  6. Emerging Microfluidic Tools for Functional Cellular Immunophenotyping: A New Potential Paradigm for Immune Status Characterization

    Directory of Open Access Journals (Sweden)

    Weiqiang eChen

    2013-04-01

    Full Text Available Rapid, accurate, and quantitative characterization of immune status of patients is of utmost importance for disease diagnosis and prognosis, evaluating efficacy of immunotherapeutics and tailoring drug treatments. Immune status of patients is often dynamic and patient-specific, and such complex heterogeneity has made accurate, real-time measurements of patient immune status challenging in the clinical setting. Recent advances in microfluidics have demonstrated promising applications of microfluidics for immune monitoring with minimum sample requirement and rapid functional immunophenotyping capability. This review will highlight recent developments of microfluidic platforms that can perform rapid and accurate cellular functional assays on patient immune cells. We will also discuss the future potential of integrated microfluidics to perform rapid, accurate, and sensitive cellular functional assays at a single-cell resolution on different types or subpopulations of immune cells, to provide an unprecedented level of information depth on the distribution of immune cell functionalities. We envision that such microfluidic immunophenotyping tools will allow comprehensive and systems-level immunomonitoring, unlocking the potential to transform experimental clinical immunology into an information-rich science.

  7. A mathematical model representing cellular immune development and response to Salmonella of chicken intestinal tissue

    NARCIS (Netherlands)

    Schokker, D.; Bannink, A.; Smits, M.A.; Rebel, J.M.J.

    2013-01-01

    The aim of this study was to create a dynamic mathematical model of the development of the cellular branch of the intestinal immune system of poultry during the first 42 days of life and of its response towards an oral infection with Salmonella enterica serovar Enteritidis. The system elements were

  8. Various eicosanoids modulate the cellular and humoral immune responses of the beet armyworm, Spodoptera exigua.

    Science.gov (United States)

    Shrestha, Sony; Kim, Yonggyun

    2009-09-01

    Cyclooxygenase (COX) and lipoxygenase (LOX) can catalyze the oxidation of C20 fatty acids to produce certain eicosanoids, which play roles in mediating immune responses in insects. Despite their critical role in insect immunity, there have been few studies of the unique effects of different eicosanoids on immune responses. This study analyzed cellular and humoral immune responses of the beet armyworm, Spodoptera exigua, using seven eicosanoids selected from two major eicosanoid subgroups: prostaglandin (PG) and leukotriene (LT), derived from catalytic activities of COX and LOX respectively. Upon bacterial challenge, all seven eicosanoids (PGA(1), PGB(2), PGD(2), PGE(1), PGE(2), PGF(1alpha), and LTB(4)) significantly induced hemocyte nodulation and phagocytosis in the presence of dexamethasone, an eicosanoid biosynthesis inhibitor. However, only PGs induced cell lysis of oenocytoids to release prophenoloxidase, which resulted in an increase in phenoloxidase activity. These seven eicosanoids also induced expression of humoral immune-associated genes, including prophenoloxidase, serpin, dopa decarboxylase, cecropin, and lysozyme, in which PGB(2) and PGE(1) did not induce gene expression of prophenoloxidase. To understand the interactions between different eicosanoids, mixture effects of these eicosanoids were compared with their individual eicosanoid effects on mediating nodule formation in response to bacterial challenge. All six single PGs showed increases in nodule formation in a dose-dependent manner without significant difference among the different types. LTB(4) was more potent than the tested PGs in mediating the cellular immune response. At low doses, all combinations of two eicosanoids showed significant additive effects on nodule formation. These results indicate that immune target cells, such as hemocyte and fat body, of S. exigua can respond to different COX and LOX products to express cellular and humoral immune responses, and their overlapping, additive

  9. T cell immunity as a tool for studying epigenetic regulation of cellular differentiation

    Directory of Open Access Journals (Sweden)

    Brendan Edward Russ

    2013-11-01

    Full Text Available Cellular differentiation is regulated by the strict spatial and temporal control of gene expression. This is achieved, in part, by regulating changes in histone post-translational modifications (PTMs and DNA methylation that in-turn, impact transcriptional activity. Further, histone PTMs and DNA methylation are often propagated faithfully at cell division (termed epigenetic propagation, and thus contribute to maintaining cellular identity in the absence of signals driving differentiation. Cardinal features of adaptive T cell immunity include the ability to differentiate in response to infection, resulting in acquisition of immune functions required for pathogen clearance; and the ability to maintain this functional capacity in the long-term, allowing more rapid and effective pathogen elimination following re-infection. These characteristics underpin vaccination strategies by effectively establishing a long-lived T cell population that contributes to an immunologically protective state (termed immunological memory. As we discuss in this review, epigenetic mechanisms provide attractive and powerful explanations for key aspects of T cell-mediated immunity - most obviously and notably, immunological memory, because of the capacity of epigenetic circuits to perpetuate cellular identities in the absence of the initial signals that drive differentiation. Indeed, T cell responses to infection are an ideal model system for studying how epigenetic factors shape cellular differentiation and development generally. This review will examine how epigenetic mechanisms regulate T cell function and differentiation, and how these model systems are providing general insights into the epigenetic regulation of gene transcription during cellular differentiation.

  10. Immune responses in human infections with Brugia malayi: specific cellular unresponsiveness to filarial antigens.

    Science.gov (United States)

    Piessens, W F; McGreevy, P B; Piessens, P W; McGreevy, M; Koiman, I; Saroso, J S; Dennis, D T

    1980-01-01

    We evaluated the cellular immune competence of 101 subjects living in an area of South Kalimantan (Borneo) where Malayan filariasis is endemic. All patients with elephantiasis but none with other clinical stages of filariasis reacted with adult worm antigens. The majority of subjects without clinical or parasitological evidence of filariasis and approximately one-half of those with amicrofilaremic filariasis reacted with microfilarial antigens. In contrast, most patients with patent microfilaremia did not respond to microfilarial antigens. The in vitro reactivity of all patient categories to nonparasite antigens was similar to that of the distant control group. These results indicate that patent microfilaremia is associated with a state of specific cellular immune unresponsiveness and are consistent with the current hypothesis that the various clinical manifestations of filariasis result from different types of immune responses to distinct antigens associated with different developmental stages of filarial worms. PMID:7350196

  11. Dynamics of cellular immune responses in the acute phase of dengue virus infection.

    Science.gov (United States)

    Yoshida, Tomoyuki; Omatsu, Tsutomu; Saito, Akatsuki; Katakai, Yuko; Iwasaki, Yuki; Kurosawa, Terue; Hamano, Masataka; Higashino, Atsunori; Nakamura, Shinichiro; Takasaki, Tomohiko; Yasutomi, Yasuhiro; Kurane, Ichiro; Akari, Hirofumi

    2013-06-01

    In this study, we examined the dynamics of cellular immune responses in the acute phase of dengue virus (DENV) infection in a marmoset model. Here, we found that DENV infection in marmosets greatly induced responses of CD4/CD8 central memory T and NKT cells. Interestingly, the strength of the immune response was greater in animals infected with a dengue fever strain than in those infected with a dengue hemorrhagic fever strain of DENV. In contrast, when animals were re-challenged with the same DENV strain used for primary infection, the neutralizing antibody induced appeared to play a critical role in sterilizing inhibition against viral replication, resulting in strong but delayed responses of CD4/CD8 central memory T and NKT cells. The results in this study may help to better understand the dynamics of cellular and humoral immune responses in the control of DENV infection.

  12. JAK/STAT signaling in Drosophila muscles controls the cellular immune response against parasitoid infection.

    Science.gov (United States)

    Yang, Hairu; Kronhamn, Jesper; Ekström, Jens-Ola; Korkut, Gül Gizem; Hultmark, Dan

    2015-12-01

    The role of JAK/STAT signaling in the cellular immune response of Drosophila is not well understood. Here, we show that parasitoid wasp infection activates JAK/STAT signaling in somatic muscles of the Drosophila larva, triggered by secretion of the cytokines Upd2 and Upd3 from circulating hemocytes. Deletion of upd2 or upd3, but not the related os (upd1) gene, reduced the cellular immune response, and suppression of the JAK/STAT pathway in muscle cells reduced the encapsulation of wasp eggs and the number of circulating lamellocyte effector cells. These results suggest that JAK/STAT signaling in muscles participates in a systemic immune defense against wasp infection.

  13. Morphological and Cellular Features of Innate Immune Reaction in Helicobacter pylori Gastritis: A Brief Review.

    Science.gov (United States)

    Ieni, Antonio; Barresi, Valeria; Rigoli, Luciana; Fedele, Francesco; Tuccari, Giovanni; Caruso, Rosario Alberto

    2016-01-15

    Innate and adaptive immunity are both involved in acute and chronic inflammatory processes. The main cellular players in the innate immune system are macrophages, mast cells, dendritic cells, neutrophils, eosinophils, and natural killer (NK), which offer antigen-independent defense against infection. Helicobacter pylori (H. pylori) infection presents peculiar characteristics in gastric mucosa infrequently occurring in other organs; its gastric colonization determines a causal role in both gastric carcinomas and mucosa-associated lymphoid tissue lymphoma. In contrast, an active role for Epstein-Barr virus (EBV) has been identified only in 9% of gastric carcinomas. The aim of the present review is to discuss the role of cellular morphological effectors in innate immunity during H. pylori infection and gastric carcinogenesis.

  14. Differential impact of ageing on cellular and humoral immunity to a persistent murine γ-herpesvirus

    Directory of Open Access Journals (Sweden)

    Burkum Claire E

    2010-02-01

    Full Text Available Abstract Background Oncogenic γ-herpesviruses establish life-long infections in their hosts and control of these latent infections is dependent on continual immune surveillance. Immune function declines with age, raising the possibility that immune control of γ-herpesvirus infection becomes compromised with increasing age, allowing viral reactivation and/or increased latent load, both of which are associated with the development of malignancies. Results In this study, we use the experimental mouse γ-herpesvirus model, γHV68, to investigate viral immunity in aged mice. We found no evidence of viral recrudescence or increased latent load in aged latently-infected mice, suggesting that effective immune control of γ-herpesvirus infection remains intact with ageing. As both cellular and humoral immunity have been implicated in host control of γHV68 latency, we independently examined the impact of ageing on γHV68-specific CD8 T cell function and antibody responses. Virus-specific CD8 T cell numbers and cytolytic function were not profoundly diminished with age. In contrast, whereas ELISA titers of virus-specific IgG were maintained over time, there was a progressive decline in neutralizing activity. In addition, although aged mice were able to control de novo acute infection with only slightly delayed viral clearance, serum titers of neutralizing antibody were reduced in aged mice as compared to young mice. Conclusion Although there is no obvious loss of immune control of latent virus, these data indicate that ageing has differential impacts on anti-viral cellular and humoral immune protection during persistent γHV68 infection. This observation has potential relevance for understanding γ-herpesvirus immune control during disease-associated or therapeutic immunosuppression.

  15. Alterations of Cellular Immune Reactions in Crew Members Overwintering in the Antarctic Research Station Concordia

    Science.gov (United States)

    Crucian, Brian; Feuerecker, Matthias; Moreels, Marjan; Crucian, Brian; Kaufmann, Ines; Salam, Alex Paddy; Rybka, Alex; Ulrike, Thieme; Quintens, Roel; Sams, Clarence F.; Schelling, Gustav; Thiel, Manfred; Baatout, Sarah; Chouker, Alexander

    2012-01-01

    Background: Concordia Station is located inside Antarctica about 1000km from the coast at an altitude of 3200m (Dome C). Hence, individuals living in this harsh environment are exposed to two major conditions: 1.) hypobaric hypoxia and 2.) confinement and extreme isolation. Both hypoxia and confinement can affect human immunity and health, and are likely to be present during exploration class space missions. This study focused on immune alterations measured by a new global immunity test assay, similar to the phased out delayed type hypersensitivity (DTH) skin test. Methods: After informed written consent 14 healthy male subjects were included to the CHOICE-study (Consequences-of-longterm-Confinement-and-Hypobaric-HypOxia-on-Immunity-in-the Antarctic-Concordia-Environment). Data collection occurred during two winter-over periods lasting each one year. During the first campaign 6 healthy male were enrolled followed by a second campaign with 8 healthy males. Blood was drawn monthly and incubated for 48h with various bacterial, viral and fungal antigens followed by an analysis of plasma cytokine levels (TNF-alpha, IL2, IFN-gamma, IL10). As a control, blood was incubated without stimulation ("resting condition"). Goals: The scope of this study was to assess the consequences of hypoxia and confinement on cellular immunity as assessed by a new in vitro DTH-like test. Results: Initial results indicate that under resting conditions the in vitro DTH-like test showed low cytokine levels which remained almost unchanged during the entire observation period. However, cytokine responses to viral, bacterial and fungal antigens were remarkably reduced at the first month after arrival at Concordia when compared to levels measured in Europe prior to departure for Antarctica. With incrementing months of confinement this depressed DTH-like response tended to reverse, and in fact to show an "overshooting" immune reaction after stimulation. Conclusion: The reduced in vitro DTH-like test

  16. Microbial Degradation of Cellular Kinases Impairs Innate Immune Signaling and Paracrine TNFα Responses.

    Science.gov (United States)

    Barth, Kenneth; Genco, Caroline Attardo

    2016-10-04

    The NFκB and MAPK signaling pathways are critical components of innate immunity that orchestrate appropriate immune responses to control and eradicate pathogens. Their activation results in the induction of proinflammatory mediators, such as TNFα a potent bioactive molecule commonly secreted by recruited inflammatory cells, allowing for paracrine signaling at the site of an infection. In this study we identified a novel mechanism by which the opportunistic pathogen Porphyromonas gingivalis dampens innate immune responses by disruption of kinase signaling and degradation of inflammatory mediators. The intracellular immune kinases RIPK1, TAK1, and AKT were selectively degraded by the P. gingivalis lysine-specific gingipain (Kgp) in human endothelial cells, which correlated with dysregulated innate immune signaling. Kgp was also observed to attenuate endothelial responsiveness to TNFα, resulting in a reduction in signal flux through AKT, ERK and NFκB pathways, as well as a decrease in downstream proinflammatory mRNA induction of cytokines, chemokines and adhesion molecules. A deficiency in Kgp activity negated decreases to host cell kinase protein levels and responsiveness to TNFα. Given the essential role of kinase signaling in immune responses, these findings highlight a unique mechanism of pathogen-induced immune dysregulation through inhibition of cell activation, paracrine signaling, and dampened cellular proinflammatory responses.

  17. The development of cellular immune defence in marine medaka Oryzias melastigma.

    Science.gov (United States)

    Seemann, Frauke; Peterson, Drew Ryan; Chiang, Michael Wai Lun; Au, Doris Wai Ting

    2017-09-01

    Environmentally induced alterations of the immune system during sensitive developmental stages may manifest as abnormalities in immune organ configuration and/or immune cell differentiation. These not only render the early life stages more vulnerable to pathogens, but may also affect the adult immune competence. Knowledge of these sensitive periods in fish would provide an important prognostic/diagnostic tool for aquatic risk assessment of immunotoxicants. The marine medaka Oryzias melastigma is an emerging seawater fish model for immunotoxicology. Here, the presence and onset of four potentially sensitive periods during the development of innate and adaptive cellular immune defence were revealed in O. melastigma: 1.) initiation of phagocyte differentiation, 2.) migration and expansion of lymphoid progenitor cells, 3.) colonization of immune organs through lymphocyte progenitors and 4.) establishment of immune competence in the thymus. By using an established bacterial resistance assay for O. melastigma, larval immune competence (from newly hatched 1dph to 14dph) was found concomitantly increased with advanced thymus development and the presence of mature T-lymphocytes. A comparison between the marine O. melastigma and the freshwater counterpart Oryzias latipes disclosed a disparity in the T-lymphocyte maturation pattern, resulting in differences in the length of T-lymphocyte maturation. The results shed light on a potential difference between seawater and freshwater medaka in their sensitivity to environmental immunotoxicants. Further, medaka immune system development was compared and contrasted to economically important fish. The present study has provided a strong scientific basis for advanced investigation of critical windows for immune system development in fish. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Role of Cellular Immunity in Cow’s Milk Allergy: Pathogenesis, Tolerance Induction, and Beyond

    Directory of Open Access Journals (Sweden)

    Juandy Jo

    2014-01-01

    Full Text Available Food allergy is an aberrant immune-mediated reaction against harmless food substances, such as cow’s milk proteins. Due to its very early introduction, cow’s milk allergy is one of the earliest and most common food allergies. For this reason cow’s milk allergy can be recognized as one of the first indications of an aberrant inflammatory response in early life. Classically, cow’s milk allergy, as is true for most other allergies as well, is primarily associated with abnormal humoral immune responses, that is, elevation of specific immunoglobulin E levels. There is growing evidence indicating that cellular components of both innate and adaptive immunity play significant roles during the pathogenesis of cow’s milk allergy. This is true for the initiation of the allergic phenotype (stimulation and skewing towards sensitization, development and outgrowth of the allergic disease. This review discusses findings pertaining to roles of cellular immunity in allergic inflammation, and tolerance induction against cow’s milk proteins. In addition, a possible interaction between immune mechanisms underlying cow’s milk allergy and other types of inflammation (infections and noncommunicable diseases is discussed.

  19. The immune system strikes back: cellular immune responses against indoleamine 2,3-dioxygenase.

    Science.gov (United States)

    Sørensen, Rikke Baek; Berge-Hansen, Linda; Junker, Niels; Hansen, Christina Aaen; Hadrup, Sine Reker; Schumacher, Ton N M; Svane, Inge Marie; Becker, Jürgen C; thor Straten, Per; Andersen, Mads Hald

    2009-09-07

    The enzyme indoleamine 2,3-dioxygenase (IDO) exerts an well established immunosuppressive function in cancer. IDO is expressed within the tumor itself as well as in antigen-presenting cells in tumor-draining lymph nodes, where it promotes the establishment of peripheral immune tolerance to tumor antigens. In the present study, we tested the notion whether IDO itself may be subject to immune responses. The presence of naturally occurring IDO-specific CD8 T cells in cancer patients was determined by MHC/peptide stainings as well as ELISPOT. Antigen specific cytotoxic T lymphocytes (CTL) from the peripheral blood of cancer patients were cloned and expanded. The functional capacity of the established CTL clones was examined by chrome release assays. The study unveiled spontaneous cytotoxic T-cell reactivity against IDO in peripheral blood as well as in the tumor microenvironment of different cancer patients. We demonstrate that these IDO reactive T cells are indeed peptide specific, cytotoxic effector cells. Hence, IDO reactive T cells are able to recognize and kill tumor cells including directly isolated AML blasts as well as IDO-expressing dendritic cells, i.e. one of the major immune suppressive cell populations. IDO may serve as an important and widely applicable target for anti-cancer immunotherapeutic strategies. Furthermore, as emerging evidence suggests that IDO constitutes a significant counter-regulatory mechanism induced by pro-inflammatory signals, IDO-based immunotherapy holds the promise to boost anti-cancer immunotherapy in general.

  20. A Novel Chitosan CpG Nanoparticle Regulates Cellular and Humoral Immunity of Mice

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    To develop a safe and novel immunoadjuvant to enhance the immunity and resistance of animals against E.coli infection. Methods An 88-base immunostimulatory oligodeoxynuleotide containing eleven CpG motifs (CpG ODN)was synthesized and amplified by PCR. The chitosan nanoparticle (CNP) was prepared by ion linking method to entrap the CpG ODN that significantly promotes the proliferation of lymphocytes of pig in vitro. Then the CpG- CNP was inoculated into 21-day old Kunming mice, which were orally challenged with virulent K88/K99 E. Coli 35 days after inoculation. Blood was collected from the tail vein of mice on days 0, 7, 14, 21, 28, 35, 42, and 49 after inoculation to detect the changes and content of immunoglobulins, cytokines and immune cells by ELISA, such as IgG, IgA, IgM, IL-2, IL-4, and IL-6. Results The CpG provoked remarkable proliferation of lymphocytes of pig in vitro in comparison with that of control group (P<0.05). The inoculation with CpG-CNP significantly raised the content of IgG, IgM, and IgA in the sera of immunized mice (P<0.05). The levels of IL-2, IL-4, and IL-6 in the mice significantly increased in comparison with those in controls (P<0.05), so was the number of white blood cells and lymphocytes in immunized mice. The humoral and cellular immunities were significantly enhanced in immunized mice, which resisted the infection of E. coli and survived, while the control mice manifested evident symptoms and lesions of infection. Conclusions CpG-CNP can significantly promote cellular and humoral immunity and resistance of mice against E. coli infection, and can be utilized as an effective adjuvant to improve the immunoprotection and resistance of porcine against infectious disease.

  1. Effect of liniment levamisole on cellular immune functions of patients with chronic hepatitis B

    Institute of Scientific and Technical Information of China (English)

    Ke-Xia Wang; Li-Hua Zhang; Jiang-Long Peng; Yong Liang; Xue-Feng Wang; Hui Zhi; Xiang-Xia Wang; Huan-Xiong Geng

    2005-01-01

    AIM: To explore the effects of liniment levamisole on cellular immune functions of patients with chronic hepatitis B.METHODS: The levels of T lymphocyte subsets and mlL-2R in peripheral blood mononuclear cells (PBMCs)were measured by biotin-streptavidin (BSA) technique in patients with chronic hepatitis B before and after the treatment with liniment levamisole.RESULTS: After one course of treatment with liniment levamisole, the levels of CD3+, CD4+, and the ratio of CD4+/CD8+ increased as compared to those before the treatment but the level of CD8+ decreased. The total expression level of mIL-2R in PBMCs increased before and after the treatment with liniment levamisole.CONCLUSION: Liniment levamisole may reinforce cellular immune functions of patients with chronic hepatitis B.

  2. Impaired cellular immune response to diphtheria and tetanus vaccines in children after thoracic transplantation.

    Science.gov (United States)

    Urschel, Simon; Rieck, Birgit D; Birnbaum, Julia; Dalla Pozza, Robert; Rieber, Nikolaus; Januszewska, Katarzyna; Fuchs, Alexandra; West, Lori J; Netz, Heinrich; Belohradsky, Bernd H

    2011-05-01

    Safety and immunogenicity of diphtheria and tetanus booster vaccination were evaluated in 28 children after thoracic transplantation. Adverse events were documented in a patient diary. Blood was collected prior to and four wk after vaccination. Specific antibody concentrations were measured by ELISA. Lymphocytes were investigated for expression of activation markers (CD25, HLA-DR) by flow cytometry and proliferation assays with and without stimulation. Post-vaccination antibody titers were higher than prevaccination (p antibody levels against diphtheria (p antibodies was negatively correlated with tacrolimus dose, and impaired cellular immunity was associated with higher tacrolimus dose and steroid use. Adverse events were similar to the general population; serious adverse events and rejection did not occur. Vaccination with inactivated vaccines can be performed safely in immunosuppressed children after thoracic transplantation and induces protective antibody levels in the majority of patients. Impaired induction of specific cellular immunity is correlated with intensity of immunosuppression and may explain reduced sustainability of antibodies.

  3. Achievement of Cellular Immunity and Discordant Xenogeneic Tolerance in Mice by Porcine Thymus Grafts

    Institute of Scientific and Technical Information of China (English)

    Yong Zhao; Zuyue Sun; Yimin Sun; Alan N. Langnas

    2004-01-01

    Specific cellular immune tolerance may be essential for successful xenotransplantation in humans. Thymectomized (ATX), T and NK cell-depleted immunocompetent mice grafted with xenogeneic fetal pig thymic and liver tissue (FP THY/LIV) result in efficient mouse thymopoiesis and peripheral repopulation of functional mouse CD4+ T cell. Very importantly, the reconstituted mouse T cells are specifically tolerant to pig donor antigens. Studies demonstrated that porcine MHCs mediated positive and negative selection of mouse thymocytes in FP THY grafts, whereas mouse MHCs were involved in negative selection in grafts. Therefore, T cell tolerance to xenogeneic donor antigens could be induced by grafting donor thymus tissue. Xenogeneic thymic replacement might have a potential role in the reconstitution of cellular immunity in patients with AIDS or other immunodeficiencies caused by thymus dysfunction.

  4. Achievement of Cellular Immunity and Discordant Xenogeneic Tolerance in Mice by Porcine Thymus Grafts

    Institute of Scientific and Technical Information of China (English)

    YongZhao; ZuyueSun; YiminSun; AlanN.Langnas

    2004-01-01

    Specific cellular immune tolerance may be essential for successful xenotransplantation in humans. Thymectomized (ATX), T and NK ceil-depleted immunocompetent mice grafted with xenogeneic fetal pig thymic and liver tissue (FP THY/LIV) result in efficient mouse thymopoiesis and peripheral repopulation of functional mouse CD4+ T cell.Very importantly, the reconstituted mouse T cells are specifically tolerant to pig donor antigens. Studies demonstrated that porcine MHCs mediated positive and negative selection of mouse thymocytes in FP THY grafts, whereas mouse MHCs were involved in negative selection in grafts. Therefore, T cell tolerance to xenogeneic donor antigens could be induced by grafting donor thymus tissue. Xenogeneic thymic replacement might have a potential role in the reconstitution of cellular immunity in patients with AIDS or other immunodeficiencies caused bv thvmus dvsfunction.

  5. The immune system strikes back: cellular immune responses against indoleamine 2,3-dioxygenase.

    Directory of Open Access Journals (Sweden)

    Rikke Baek Sørensen

    Full Text Available BACKGROUND: The enzyme indoleamine 2,3-dioxygenase (IDO exerts an well established immunosuppressive function in cancer. IDO is expressed within the tumor itself as well as in antigen-presenting cells in tumor-draining lymph nodes, where it promotes the establishment of peripheral immune tolerance to tumor antigens. In the present study, we tested the notion whether IDO itself may be subject to immune responses. METHODS AND FINDINGS: The presence of naturally occurring IDO-specific CD8 T cells in cancer patients was determined by MHC/peptide stainings as well as ELISPOT. Antigen specific cytotoxic T lymphocytes (CTL from the peripheral blood of cancer patients were cloned and expanded. The functional capacity of the established CTL clones was examined by chrome release assays. The study unveiled spontaneous cytotoxic T-cell reactivity against IDO in peripheral blood as well as in the tumor microenvironment of different cancer patients. We demonstrate that these IDO reactive T cells are indeed peptide specific, cytotoxic effector cells. Hence, IDO reactive T cells are able to recognize and kill tumor cells including directly isolated AML blasts as well as IDO-expressing dendritic cells, i.e. one of the major immune suppressive cell populations. CONCLUSION: IDO may serve as an important and widely applicable target for anti-cancer immunotherapeutic strategies. Furthermore, as emerging evidence suggests that IDO constitutes a significant counter-regulatory mechanism induced by pro-inflammatory signals, IDO-based immunotherapy holds the promise to boost anti-cancer immunotherapy in general.

  6. A nonstandard finite difference scheme for a basic model of cellular immune response to viral infection

    Science.gov (United States)

    Korpusik, Adam

    2017-02-01

    We present a nonstandard finite difference scheme for a basic model of cellular immune response to viral infection. The main advantage of this approach is that it preserves the essential qualitative features of the original continuous model (non-negativity and boundedness of the solution, equilibria and their stability conditions), while being easy to implement. All of the qualitative features are preserved independently of the chosen step-size. Numerical simulations of our approach and comparison with other conventional simulation methods are presented.

  7. Metal oxide nanoparticles interact with immune cells and activate different cellular responses

    OpenAIRE

    Simón-Vázquez R; Lozano-Fernández T; Dávila-Grana A; González-Fernández A

    2016-01-01

    Rosana Simón-Vázquez, Tamara Lozano-Fernández, Angela Dávila-Grana, Africa González-Fernández Immunology Laboratory, Biomedical Research Center (CINBIO) and Institute of Biomedical Research of Ourense-Pontevedra-Vigo (IBI), University of Vigo, Campus Lagoas Marcosende, Vigo, Pontevedra, Spain Abstract: Besides cell death, nanoparticles (Nps) can induce other cellular responses such as inflammation. The potential immune respon...

  8. Clonal priming of human lymphocytes: Specificity and cross-reactivity of cellular immune reactions.

    Science.gov (United States)

    Levis, W R; Datiner, A M

    1977-04-23

    Clonal priming in response to chemical and microbial antigens which defines the specificity of cellular immune reactions, was demonstrated by culture techniques. Human leucocyte cultures stimulated with specific antigens typically show peak levels of D.N.A. synthesis after 5 to 7 days in culture. Such primary leucocyte cultures were incubated for 10-20 days, then the cells were gently centrifuged and resuspended in fresh RPMI 1640 with 20% plasma. These secondary or primed cultures typically showed less than 1000 c.p.m. after 48 hours. However, if the original antigenic stimulant was added, specific accelerated responses were seen by 48 hours in the secondary cultures. Lymphocyte clones in these sceondary cultures primed with dinitrophenylated (D.N.P.) antigens (from subjects sensitised to dinitrochlorobenzene) showed enhanced D.N.A. sythesis in response to the same dinitrophenylated antigens and showed varible accelerated responses to related chemically modified antigens. However, D.N.P.-activated clones in these secondary cultures did not show enhanced responses to microbial antigens even though the lymphocytes had been highly responsive to tetanus toxoid and other microbial antigens in primary cultures. The specificity of this clonal activation was further demonstrated by the enhanced response of secondary cultures of tetanus-toxoid-activated clones to tetanus toxoid but not to dinitrophenylated antigens. The abiltty to detect specificity and cross-reactivity of cellular immune reaction has broad implications for investigations of cellular immunity as well as many potential applications in the diagnosis and understanding the patogenesis of inflammatory and neoplastic diseases in which cellular immune discrimination may be involved.

  9. Modulation of innate and adaptive cellular immunity relevant to HIV-1 vaccine design by seminal plasma.

    Science.gov (United States)

    Selva, Kevin J; Kent, Stephen J; Parsons, Matthew S

    2017-01-28

    Mucosal exposure to HIV-1 infection generally occurs in the presence of semen. Immunomodulation by seminal plasma is well described in the reproductive biology literature. Little is known, however, about the impact of seminal plasma on innate and adaptive anti-HIV-1 cellular immunity. The study investigated the effects of seminal plasma on immune responses considered important for prophylactic HIV-1 vaccine development, namely innate and adaptive cellular immunity mediated by natural killer (NK) cells and T cells, respectively. The ability of seminal plasma to modulate direct, antibody-dependent and cytokine-stimulated NK cell activation was assessed utilizing intracellular cytokine staining. Direct and antibody-dependent cellular cytotoxicity was assessed using lactate dehydrogenase release assays. The effects of seminal plasma on T-cell activation upon stimulation with staphylococcus enterotoxin B or HIV-1 Gag peptides were assessed by intracellular cytokine staining. The impact of seminal plasma on redirected cytolysis mediated by T cells was measured using lactate dehydrogenase release assays. Both direct and antibody-dependent NK cell activation were dramatically impaired by the presence of either HIV-1-uninfected or HIV-1-infected seminal plasma in a dose-dependent manner. Additionally, seminal plasma suppressed both direct and antibody-dependent NK cell-mediated cytolysis, including anti-HIV-1 antibody-dependent cytolysis of gp120-pulsed CEM.NKr-CCR5 cells. Finally, seminal plasma attenuated both HIV-1 Gag-specific and staphylococcus enterotoxin B-induced CTL activation. Semen contains potent immunosuppressors of both NK cell and CD8 T-cell-mediated anti-HIV-1 immune responses. This could impede attempts to provide vaccine-induced immunity to HIV-1.

  10. Results of cellular immunity research in persons using fixed dentures based on different metal alloys

    Directory of Open Access Journals (Sweden)

    Grizodub D.V.

    2014-09-01

    Full Text Available Purpose of the work was to explore the possibilities of forecasting adverse reactions based on the study of the immune system of the potential denture user and features of its interaction with potential materials of future depture. Methods: The author conducted study of cellular immunity components in patients with complaints on intolerance of dentures. Results: The most pronounced negative dynamics of cellular immunity was observed in patients with cobalt-chromium alloys: marked reduction of T-lymphocytes, change in subpopulation ratio towards pre¬dominance of T-helper cells, which led to the development of cellular intolerance reactions, higher content of Ig E, increased histamine release in response to denture material. Comprehensive assessment of allergic history data, im¬une status parameters allows to carry out a preliminary assessment of materials biocompatibility and their individual selection in each case both in healthy subjects and in patients with allergic diseases. Identification of materials which have the ability to cause adverse reactions in particular patient caused by the action of histamine on the cells and tissues, allows to replace the material or not to use it in a particular patient.

  11. Dehydroepiandrosterone and metyrapone partially restore the adaptive humoral and cellular immune response in endotoxin immunosuppressed mice.

    Science.gov (United States)

    Rearte, Bárbara; Maglioco, Andrea; Machuca, Damián; Greco, Daiana Martire; Landoni, Verónica I; Rodriguez-Rodrigues, Nahuel; Meiss, Roberto; Fernández, Gabriela C; Isturiz, Martín A

    2014-08-01

    Prior exposure to endotoxins renders the host temporarily refractory to subsequent endotoxin challenge (endotoxin tolerance). Clinically, this state has also been pointed out as the initial cause of the non-specific humoral and cellular immunosuppression described in these patients. We recently demonstrated the restoration of immune response with mifepristone (RU486), a receptor antagonist of glucocorticoids. Here we report the treatment with other modulators of glucocorticoids, i.e. dehydroepiandrosterone (DHEA), a hormone with anti-glucocorticoid properties, or metyrapone (MET) an inhibitor of corticosterone synthesis. These drugs were able to partially, but significantly, restore the humoral immune response in immunosuppressed mice. A significant recovery of proliferative responsiveness was also observed when splenocytes were obtained from DHEA- or MET-treated immunosuppressed mice. In addition, these treatments restored the hypersensitivity response in immunosuppressed mice. Finally, although neither DHEA nor MET improved the reduced CD4 lymphocyte count in spleen from immunosuppressed mice, both treatments promoted spleen architecture reorganization, partially restoring the distinct cellular components and their localization in the spleen. The results from this study indicate that DHEA and MET could play an important role in the restoration of both adaptive humoral and cellular immune response in LPS-immunosuppressed mice, reinforcing the concept of a central involvement of endogenous glucocorticoids on this phenomenon. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  12. The fungal quorum-sensing molecule farnesol activates innate immune cells but suppresses cellular adaptive immunity.

    Science.gov (United States)

    Leonhardt, Ines; Spielberg, Steffi; Weber, Michael; Albrecht-Eckardt, Daniela; Bläss, Markus; Claus, Ralf; Barz, Dagmar; Scherlach, Kirstin; Hertweck, Christian; Löffler, Jürgen; Hünniger, Kerstin; Kurzai, Oliver

    2015-03-17

    Farnesol, produced by the polymorphic fungus Candida albicans, is the first quorum-sensing molecule discovered in eukaryotes. Its main function is control of C. albicans filamentation, a process closely linked to pathogenesis. In this study, we analyzed the effects of farnesol on innate immune cells known to be important for fungal clearance and protective immunity. Farnesol enhanced the expression of activation markers on monocytes (CD86 and HLA-DR) and neutrophils (CD66b and CD11b) and promoted oxidative burst and the release of proinflammatory cytokines (tumor necrosis factor alpha [TNF-α] and macrophage inflammatory protein 1 alpha [MIP-1α]). However, this activation did not result in enhanced fungal uptake or killing. Furthermore, the differentiation of monocytes to immature dendritic cells (iDC) was significantly affected by farnesol. Several markers important for maturation and antigen presentation like CD1a, CD83, CD86, and CD80 were significantly reduced in the presence of farnesol. Furthermore, farnesol modulated migrational behavior and cytokine release and impaired the ability of DC to induce T cell proliferation. Of major importance was the absence of interleukin 12 (IL-12) induction in iDC generated in the presence of farnesol. Transcriptome analyses revealed a farnesol-induced shift in effector molecule expression and a down-regulation of the granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor during monocytes to iDC differentiation. Taken together, our data unveil the ability of farnesol to act as a virulence factor of C. albicans by influencing innate immune cells to promote inflammation and mitigating the Th1 response, which is essential for fungal clearance. Farnesol is a quorum-sensing molecule which controls morphological plasticity of the pathogenic yeast Candida albicans. As such, it is a major mediator of intraspecies communication. Here, we investigated the impact of farnesol on human innate immune cells known to be

  13. Cellular immune activation in children with acute dengue virus infections is modulated by apoptosis.

    Science.gov (United States)

    Myint, Khin S; Endy, Timothy P; Mongkolsirichaikul, Duangrat; Manomuth, Choompun; Kalayanarooj, Siripen; Vaughn, David W; Nisalak, Ananda; Green, Sharone; Rothman, Alan L; Ennis, Francis A; Libraty, Daniel H

    2006-09-01

    Apoptosis is an important modulator of cellular immune responses during systemic viral infections. Peripheral-blood mononuclear cell (PBMC) apoptosis and plasma soluble levels of CD95, a mediator of apoptosis, were determined in sequential samples from children participating in a prospective study of dengue virus (DV) infections. During the period of defervescence, levels of PBMC apoptosis were higher in children developing dengue hemorrhagic fever (DHF), the most severe form of illness, than in those with dengue fever (DF) and other, nondengue, febrile illnesses. CD8(+) T lymphocytes made up approximately half of the peak circulating apoptotic PBMCs in DHF and DF. Maximum plasma levels of soluble CD95 were also higher in children with DHF than in those with DF. The level of PBMC apoptosis correlated with dengue disease severity. Apoptosis appears to be involved in modulation of the innate and adaptive immune responses to DV infection and is likely involved in the evolution of immune responses in other viral hemorrhagic fevers.

  14. Effect of tylosin tartrate (Tylan Soluble) on cellular immune responses in chickens.

    Science.gov (United States)

    Baba, T; Yamashita, N; Kodama, H; Mukamoto, M; Asada, M; Nakamoto, K; Nose, Y; McGruder, E D

    1998-09-01

    Although many antimicrobial agents have been reported to cause immunosuppression in animals, macrolide antibiotics enhance immune function. Tylosin is a macrolide antibiotic approved for the control of mycoplasmosis in poultry. The purpose of this investigation was to determine the effect of tylosin on cellular immune functions in chickens. There was no significant difference in adherent splenocyte chemotaxis between tylosin-treated and untreated (control) chickens. Tylosin increased splenocyte proliferation and splenocyte conditioned medium (CM) proliferative activity above control levels. Removal of adherent splenocytes before preparation of CM caused a reduction in CM proliferative activity. Tylosin also increased antitumor activity of splenocytes. These data are the first to suggest that the macrolide antibiotic, tylosin tartrate, has a modulatory effect in chickens on the immune parameters studied.

  15. Cellular immunity and pathogen strategies in combative interactions involving Drosophila hosts and their endoparasitic wasps

    Directory of Open Access Journals (Sweden)

    AJ Nappi

    2010-09-01

    Full Text Available Various cellular innate immune responses protect invertebrates from attack by eukaryotic pathogens. In insects, assessments of the factor(s causing, or contributing to, pathogen mortality have long considered as toxic components certain molecules associated with enzyme-mediated melanogenesis. In Drosophila hosts, observations that have prompted additional or alternative considerations are those that document either the survival of certain endoparasitic wasps despite melanotic encapsulation, or the destruction of the parasite with no evidence of this type of host response. Investigations of the production of some reactive intermediates of oxygen and nitrogen during infection provide a basis for proposing that these molecules constitute important elements of the immune arsenal of Drosophila. Studies of the target specificity of virulence factors injected by female wasps during infection that suppress the host immune response will likely facilitate identification of the toxic host molecules, and contribute to a more detailed understanding of the cell-signaling pathways that regulate their synthesis.

  16. Trade-off between cellular immunity and life span in mealworm beetles Tenebrio molitor

    Institute of Scientific and Technical Information of China (English)

    Indrikis KRAMS; Jan(i)na DAUK(S)TE; Inese KIVLENIECE; Ants KAASIK; Tatjana KRAMA; Todd M.FREEBERG; Markus J.RANTALA

    2013-01-01

    Encapsulation is a nonspecific,cellular response through which insects defend themselves against multicellular pathogens.During this immune reaction,haemocytes recognize an object as foreign and cause other haemocytes to aggregate and form a capsule around the object,often consisting of melanized cells.The process of melanisation is accompanied by the formation of potentially toxic reactive oxygen species,which can kill not only pathogens but also host cells.In this study we tested whether the encapsulation response is costly in mealworm beetles Tenebrio molitor.We found a negative relationship between the duration of implantation via a nylon monofilament and remaining life span.We also found a negative relationship between the strength of immune response and remaining life span,suggesting that cellular immunity is costly in T.molitor,and that there is a trade-off between immune response and remaining life span.However,this relationship disappeared at 31-32 hours of implantation at 25 ± 2℃.As the disappearance of a relationship between duration of implantation and lifespan coincided with the highest values of encapsulation response,we concluded that the beetles stopped investment in the production of melanotic cells,as the implant,a synthetic parasite,was fully isolated from the host's tissues.

  17. Trade-off between cellular immunity and life span in mealworm beetles Tenebrio molitor

    Directory of Open Access Journals (Sweden)

    Indrikis KRAMS, Janīna DAUKŠTE, Inese KIVLENIECE, Ants KAASIK, Tatjana KRAMA, Todd M. REEBERG, Markus J. RANTALA

    2013-06-01

    Full Text Available Encapsulation is a nonspecific, cellular response through which insects defend themselves against multicellular pathogens. During this immune reaction, haemocytes recognize an object as foreign and cause other haemocytes to aggregate and form a capsule around the object, often consisting of melanized cells. The process of melanisation is accompanied by the formation of potentially toxic reactive oxygen species, which can kill not only pathogens but also host cells. In this study we tested whether the encapsulation response is costly in mealworm beetles Tenebrio molitor. We found a negative relationship between the duration of implantation via a nylon monofilament and remaining life span. We also found a negative relationship between the strength of immune response and remaining life span, suggesting that cellular immunity is costly in T. molitor, and that there is a trade-off between immune response and remaining life span. However, this relationship disappeared at 31-32 hours of implantation at 25 ± 2℃. As the disappearance of a relationship between duration of implantation and lifespan coincided with the highest values of encapsulation response, we concluded that the beetles stopped investment in the production of melanotic cells, as the implant, a synthetic parasite, was fully isolated from the host’s tissues [Current Zoology 59 (3: 340–346, 2013].

  18. The long pentraxin PTX3 as a prototypic humoral pattern recognition receptor: interplay with cellular innate immunity.

    Science.gov (United States)

    Bottazzi, Barbara; Garlanda, Cecilia; Cotena, Alessia; Moalli, Federica; Jaillon, Sebastien; Deban, Livija; Mantovani, Alberto

    2009-01-01

    The innate immune system consists of a cellular arm and a humoral arm. Components of humoral immunity include diverse molecular families, which represent functional ancestors of antibodies. They play a key role as effectors and modulators of innate resistance in animals and humans, interacting with cellular innate immunity. The prototypic long pentraxin, pentraxin 3 (PTX3), represents a case in point of this interplay. Gene targeting of this evolutionarily conserved long pentraxin has unequivocally defined its role at the crossroads of innate immunity, inflammation, matrix deposition, and female fertility. Phagocytes represent a key source of this fluid-phase pattern recognition receptor, which, in turn, facilitates microbial recognition by phagocytes acting as an opsonin. Moreover, PTX3 has modulatory functions on innate immunity and inflammation. Here, we review the studies on PTX3 which emphasize the complexity and complementarity of the crosstalk between the cellular and humoral arms of innate immunity.

  19. Human papillomavirus (HPV upregulates the cellular deubiquitinase UCHL1 to suppress the keratinocyte's innate immune response.

    Directory of Open Access Journals (Sweden)

    Rezaul Karim

    Full Text Available Persistent infection of basal keratinocytes with high-risk human papillomavirus (hrHPV may cause cancer. Keratinocytes are equipped with different pattern recognition receptors (PRRs but hrHPV has developed ways to dampen their signals resulting in minimal inflammation and evasion of host immunity for sustained periods of time. To understand the mechanisms underlying hrHPV's capacity to evade immunity, we studied PRR signaling in non, newly, and persistently hrHPV-infected keratinocytes. We found that active infection with hrHPV hampered the relay of signals downstream of the PRRs to the nucleus, thereby affecting the production of type-I interferon and pro-inflammatory cytokines and chemokines. This suppression was shown to depend on hrHPV-induced expression of the cellular protein ubiquitin carboxyl-terminal hydrolase L1 (UCHL1 in keratinocytes. UCHL1 accomplished this by inhibiting tumor necrosis factor receptor-associated factor 3 (TRAF3 K63 poly-ubiquitination which lead to lower levels of TRAF3 bound to TANK-binding kinase 1 and a reduced phosphorylation of interferon regulatory factor 3. Furthermore, UCHL1 mediated the degradation of the NF-kappa-B essential modulator with as result the suppression of p65 phosphorylation and canonical NF-κB signaling. We conclude that hrHPV exploits the cellular protein UCHL1 to evade host innate immunity by suppressing PRR-induced keratinocyte-mediated production of interferons, cytokines and chemokines, which normally results in the attraction and activation of an adaptive immune response. This identifies UCHL1 as a negative regulator of PRR-induced immune responses and consequently its virus-increased expression as a strategy for hrHPV to persist.

  20. Sand fly salivary proteins induce strong cellular immunity in a natural reservoir of visceral leishmaniasis with adverse consequences for Leishmania

    National Research Council Canada - National Science Library

    Collin, Nicolas; Gomes, Regis; Teixeira, Clarissa; Cheng, Lily; Laughinghouse, Andre; Ward, Jerrold M; Elnaiem, Dia-Eldin; Fischer, Laurent; Valenzuela, Jesus G; Kamhawi, Shaden

    2009-01-01

    .... To date, there are no data available regarding the cellular immune response to sand fly saliva in dogs, the main reservoirs of VL in Latin America, and its role in protection from this fatal disease...

  1. Signaling pathways implicated in the cellular innate immune responses of Drosophila

    Directory of Open Access Journals (Sweden)

    AJ Nappi

    2004-06-01

    Full Text Available The phylogenetically conserved innate immune systems of insects and other invertebrates employblood cells (hemocytes that are functionally reminiscent of vertebrate macrophages, attesting to theimportance of phagocytosis and other cell-mediated responses in eliminating various pathogens. Receptorligandbinding activates signaling cascades that promote collaborative cellular interactions and theproduction of pathogen-specific cytotoxic responses. Numerous comparative genetic and molecularstudies have shown the cytotoxic effector responses made by cells of the innate immune system to beevolutionarily conserved. Comparative analyses of genomic sequences provide convincing evidence thatmany of the biochemical processes manifested by immune-activated hemocytes are similar to thosemade by activated vertebrate macrophages. Included in this genomic repertoire are enzymes associatedwith reactive intermediates of oxygen and nitrogen, cellular redox homeostasis, and apoptosis, thesynthesis of extracellular matrix, cell adhesion and pattern recognition molecules. Surprisingly, little isknown of the types of cytotoxic molecules produced by invertebrate hemocytes, and the signaling andtranscriptional events associated with their collaborative interactions when engaging pathogens andparasites. This review examines certain aspects of the blood cell-mediated defense responses ofDrosophila, and some of the signaling pathways that have been implicated in hemocyte activation,differentiation, and the regulation of hematopoiesis.

  2. Immunostimulating effect of aqueous extract of Amphypterygium adstringens on immune cellular response in immunosuppressed mice.

    Science.gov (United States)

    Ramírez-León, Adriana; Barajas-Martinez, Héctor; Flores-Torales, Edgardo; Orozco-Barocio, Arturo

    2012-01-01

    Amphypterygium adstringens is a Mexican tree known as cuachalalate whose bark is habitually used for the treatment of fresh wounds, gastric ulcers, gastrointestinal cancer and various inflammatory conditions. The aim of this study was to evaluate the immunostimulant effect of the aqueous extract of A. adstringens on immune cellular response in immunosuppressed mice. An aqueous extract from the bark of cuachalalate was administered into BALB/c mice for 10 days. We assessed their immunostimmulant activity on cellular immune response by Delayed Type Hypersensitivity Response (DHT) to dinitrofluorobencene (DNFB) and by MTT assay. L5178Y lymphoma was used as immunossuppression model. An increase in DHT was observed after treatment with 10 and 100 mg/kg of the aqueous extract from A. adstringens oral treatment in lymphoma bearing mice. Splenocyte proliferation rate was significantly increased (2.5 time) in immunosuppresed mice treated with 10 mg/kg oral treatment compared with group that received vehicle only. The present study showed for the first time the aqueous extract from A. adstringens as a positive immunostimulant agent in lymphoma bearing mice and we demonstrated evidence to support the traditionally use of cuachalalate in conditions in which the immune system is depressed.

  3. Experimental studies on extremely low frequency pulsed magnetic field inhibiting sarcoma and enhancing cellular immune functions

    Institute of Scientific and Technical Information of China (English)

    张沪生; 叶晖; 张传清; 曾繁清; 黄兴鼎; 张晴川; 李宗山; 杜碧

    1997-01-01

    The previous observation with an electron microscope showed that extremely low frequency (ELF) pulsed magnetic field (PMF) (with the maximum intensity of 0. 6-2. 0 T, gradient of 10-100 T. M-1, pulse width of 20-200 ms and frequency of 0. 16-1. 34 Hz) inhibited the growth of S-180 sarcoma in mice and enhanced the ability of immune cell’s dissolving sarcoma cells. In this study, the DNA contents of nuclei were assayed by using Faulgen Staining method. With an electron microscope and cell stereoscopy technology it was observed that magnetic field affected the sarcoma cell’s metabolism, lowered its malignancy, and restrained its rapid and heteromorphic growth. The magnetic field enhanced the cellular immune ability and the reaction of lymphocytes and plasma. Since ELF pulsed magnetic fields can inhibit the growth of sarcomas and enhance the cellular immune ability, it is possible to use it as a new method to treat cancer.

  4. Longevity and composition of cellular immune responses following experimental Plasmodium falciparum malaria infection in humans.

    Directory of Open Access Journals (Sweden)

    Anne C Teirlinck

    2011-12-01

    Full Text Available Cellular responses to Plasmodium falciparum parasites, in particular interferon-gamma (IFNγ production, play an important role in anti-malarial immunity. However, clinical immunity to malaria develops slowly amongst naturally exposed populations, the dynamics of cellular responses in relation to exposure are difficult to study and data about the persistence of such responses are controversial. Here we assess the longevity and composition of cellular immune responses following experimental malaria infection in human volunteers. We conducted a longitudinal study of cellular immunological responses to sporozoites (PfSpz and asexual blood-stage (PfRBC malaria parasites in naïve human volunteers undergoing single (n = 5 or multiple (n = 10 experimental P. falciparum infections under highly controlled conditions. IFNγ and interleukin-2 (IL-2 responses following in vitro re-stimulation were measured by flow-cytometry prior to, during and more than one year post infection. We show that cellular responses to both PfSpz and PfRBC are induced and remain almost undiminished up to 14 months after even a single malaria episode. Remarkably, not only 'adaptive' but also 'innate' lymphocyte subsets contribute to the increased IFNγ response, including αβT cells, γδT cells and NK cells. Furthermore, results from depletion and autologous recombination experiments of lymphocyte subsets suggest that immunological memory for PfRBC is carried within both the αβT cells and γδT compartments. Indeed, the majority of cytokine producing T lymphocytes express an CD45RO(+ CD62L(- effector memory (EM phenotype both early and late post infection. Finally, we demonstrate that malaria infection induces and maintains polyfunctional (IFNγ(+IL-2(+ EM responses against both PfRBC and PfSpz, previously found to be associated with protection. These data demonstrate that cellular responses can be readily induced and are long-lived following infection with P

  5. Different Candida parapsilosis clinical isolates and lipase deficient strain trigger an altered cellular immune response

    Directory of Open Access Journals (Sweden)

    Renata eToth

    2015-10-01

    Full Text Available Numerous human diseases can be associated with fungal infections either as potential causative agents or as a result of changed immune status due to a primary disease. Fungal infections caused by Candida species can vary from mild to severe dependent upon the site of infection, length of exposure and past medical history. Patients with impaired immune status are at increased risk for chronic fungal infections. Recent epidemiologic studies have revealed the increasing incidence of candidiasis caused by non-albicans species such as C. parapsilosis. Due to its increasing relevance we chose two distinct C. parapsilosis strains, to describe the cellular innate immune response towards this species. In the first section of our study we compared the interaction of CLIB 214 and GA1 cells with murine and human macrophages. Both strains are commonly used to investigate C. parapsilosis virulence properties. CLIB 214 is a rapidly pseudohyphae-forming strain and GA1 is an isolate that mainly exists in a yeast form. Our results showed, that the phagocyte response was similar in terms of overall uptake, however differences were observed in macrophage migration and engulfment of fungal cells. As C. parapsilosis releases extracellular lipases in order to promote host invasion we further investigated the role of these secreted components during the distinct stages of the phagocytic process. Using a secreted lipase deficient mutant strain and the parental strain GA1 individually and simultaneously, we confirmed that fungal secreted lipases influence the fungi’s virulence by detecting altered innate cellular responses.In this study we report that two isolates of a single species can trigger markedly distinct host responses and that lipase secretion plays a role on the cellular level of host pathogen interactions.

  6. Effect of Astragalus Injection on Serious Abdominal Traumatic Patients' Cellular Immunity

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Objective: To explore the change of serious abdominal traumatic patients' cellular immunity and the effect of Astragalus Injection (Al) on it. Methods: Sixty-three serious abdominal traumatic patients were randomly assigned into two groups, the conventional group and the treated group, patients in the conventional group were given conventional treatment, while others in the treated group were given conventional treatment as the basis, with Al 20 mi was added into 250 mi of 5% glucose solution given through intravenous dripping, and then on the first day and 14th day, their T cell activated antigens as well as that of 10 healthy subjects were monitored.Results: On the first day, in the conventional group and treated group, the levels of CD3 + , CD4 + , CD4 +/CD8 + ,CD16+ , CD69 + and CD3 +/homologous leucocytic antigen-DR (HLA-DR+) were apparently lower than those in the healthy group (P<0.05), while the CD8 + was significantly higher than that in the healthy group ( P<0.05), and there was no significant difference between the conventional group and the treated group (P>0.05) ; on the 14th days, the levels of CD3+, CD4+, CD4+/CD8+, CD16+, CD69+ and CD3+/HLA-DR+ of the treated group gotclosed to healthy subject value, and got even higher than those of conventional group (P<0.05); CD8 + got close to that of healthy subjects, while obviously lower than that of conventional group (P<0.05). Conclusion: After serious abdominal trauma, cellular immunity lowered, auxiliary use of Al was beneficial to the restoration of cellular immunity.

  7. A candidate DNA vaccine elicits HCV specific humoral and cellular immune responses

    Institute of Scientific and Technical Information of China (English)

    Li-Xin Zhu; Jing Liu; Ye Ye; You-Hua Xie; Yu-Ying Kong; Guang-Di Li; Yuan Wang

    2004-01-01

    AIM: To investigate the immunogenicity of candidate DNA vaccine against hepatitis C virus (HCV) delivered by two plasmids expressing HCV envelope protein 1 (E1) and envelope protein 2 (E2) antigens respectively and to study the effect of CpG adjuvant on this candidate vaccine.METHODS: Recombinant plasmids expressing HCV E1 and E2 antigens respectively were used to simultaneously inoculate mice with or without CpG adjuvant. Antisera were then collected and titers of anti-HCV antibodies were analyzed by ELISA. One month after the last injection, animals were sacrificed to prepare single-cell suspension of splenocytes.These cells were subjected to HCVantigen specific proliferation assays and cytokine secretion assays to evaluate the cellular immune responses of the vaccinated animals.RESULTS: Antibody responses to HCV E1 and E2 antigens were detected in vaccinated animals. Animals receiving CpG adjuvant had slightly lower titers of anti-HCV antibodies in the sera, while the splenocytes from these animals showed higher HCV-antigen specific proliferation. Analysis of cytokine secretion from the splenocytes was consistent with the above results. While no antigen-specific IL-4 secretion was detected for all vaccinated animals, HCV antigen-specific INF-γ secretion was detected for the splenocytes of vaccinated animals. CpG adjuvant enhanced the secretion of INF-γ but did not change the profile of IL-4 secretion.CONCLUSION: Vaccination of mice with plasmids encoding HCV E1 and E2 antigens induces humoral and cellular immune responses. CpG adjuvant significantly enhances the cellular immune response.

  8. Study on Effect of Aloe Glue on Cytogenetics, Cellular Immunity and Cell Proliferation of Human Cells

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jiahua; WEN Shaluo; XIA Yun; ZHANG Lijun

    2002-01-01

    Objective To provide the scientific evidence for the exploiture of aloe resource. Methods Cytological combined determination was used to study the effect of aloe glue(0.01 ~ 0.3ml) on cytogenetics, cellular immunity and cell proliferation of human cells. Results SCE and MNR in varying dose groups had no significant differences as compared with control group( P > 0.05). LTR was significantly higher than that of control group(P < 0.005). MI was significantly higher than that of control group ( P < 0.05). M3 and PRI in highest dose group had significant differences as compared with control group (P < 0.05). Conclusion Aloe gel had no significant effect on cytogenetics. But it had activating effects on immunity and proliferation of cells.

  9. Cellular and humoral local immune responses in sheep experimentally infected with Oestrus ovis (Diptera: Oestridae).

    Science.gov (United States)

    Tabouret, Guillaume; Lacroux, Caroline; Andreoletti, Olivier; Bergeaud, Jean Paul; Hailu-Tolosa, Yacob; Hoste, Hervé; Prevot, Françoise; Grisez, Christelle; Dorchies, Philippe; Jacquiet, Philippe

    2003-01-01

    Cellular and humoral local responses were investigated following repetitive artificial Oestrus ovis infections in lambs. The presence of larvae induced a huge local recruitment of either leucocytes (T and B lymphocytes, macrophages) or granulocytes (eosinophils, mast cells and globule leucocytes). This cellular response was more pronounced in the ethmoid and sinus (development sites of second and third instar larvae) than in the septum or turbinates where first instar larvae migrate. Infected lambs produced Oestrus ovis specific IgG and IgA antibodies in their mucus. This local humoral response was mainly directed against larval salivary gland antigens and not against larval digestive tract antigens. Compared to the control animals, the sinusal mucosa of infected animals was extremely thickened and the epithelium exhibited hyperplasia, metaplasia and eosinophilic exocytosis. The possible roles of these local immune responses in the regulation of O. ovis larvae populations in sheep are discussed.

  10. Impaired innate, humoral, and cellular immunity despite a take in smallpox vaccine recipients.

    Science.gov (United States)

    Kennedy, Richard B; Poland, Gregory A; Ovsyannikova, Inna G; Oberg, Ann L; Asmann, Yan W; Grill, Diane E; Vierkant, Robert A; Jacobson, Robert M

    2016-06-14

    Smallpox vaccine is highly effective, inducing protective immunity to smallpox and diseases caused by related orthopoxviruses. Smallpox vaccine efficacy was historically defined by the appearance of a lesion or "take" at the vaccine site, which leaves behind a characteristic scar. Both the take and scar are readily recognizable and were used during the eradication effort to indicate successful vaccination and to categorize individuals as "protected." However, the development of a typical vaccine take may not equate to the successful development of a robust, protective immune response. In this report, we examined two large (>1000) cohorts of recipients of either Dryvax(®) or ACAM2000 using a testing and replication study design and identified subgroups of individuals who had documented vaccine takes, but who failed to develop robust neutralizing antibody titers. Examination of these individuals revealed that they had suboptimal cellular immune responses as well. Further testing indicated these low responders had a diminished innate antiviral gene expression pattern (IFNA1, CXCL10, CXCL11, OASL) upon in vitro stimulation with vaccinia virus, perhaps indicative of a dysregulated innate response. Our results suggest that poor activation of innate antiviral pathways may result in suboptimal immune responses to the smallpox vaccine. These genes and pathways may serve as suitable targets for adjuvants in new attenuated smallpox vaccines and/or effective antiviral therapy targets against poxvirus infections.

  11. Cellular immune profiling after sequential clofarabine and lenalidomide for high risk myelodysplastic syndromes and acute myeloid leukemia.

    Science.gov (United States)

    Jain, Prachi; Klotz, Jeffrey; Dunavin, Neil; Lu, Kit; Koklanaris, Eleftheria; Draper, Debbie; Superata, Jeanine; Chinian, Fariba; Yu, Quan; Keyvanfar, Keyvan; Wong, Susan; Muranski, Pawel; Barrett, A John; Ito, Sawa; Battiwalla, Minoo

    2017-01-01

    Patients with high risk myelodysplastic syndromes (MDS) and acute myelogenous leukemia (AML) are commonly older with multiple co-morbidities, rendering them unsuitable for intensive induction chemotherapy or transplantation. We report preliminary cellular immune profiling of four cases receiving sequential clofarabine and lenalidomide for high risk MDS and AML in a phase I study. Our results highlight the potential of immune profiling for monitoring immune-modifying agents in high risk MDS and AML.

  12. Cellular immune profiling after sequential clofarabine and lenalidomide for high risk myelodysplastic syndromes and acute myeloid leukemia

    Directory of Open Access Journals (Sweden)

    Prachi Jain

    2017-01-01

    Full Text Available Patients with high risk myelodysplastic syndromes (MDS and acute myelogenous leukemia (AML are commonly older with multiple co-morbidities, rendering them unsuitable for intensive induction chemotherapy or transplantation. We report preliminary cellular immune profiling of four cases receiving sequential clofarabine and lenalidomide for high risk MDS and AML in a phase I study. Our results highlight the potential of immune profiling for monitoring immune-modifying agents in high risk MDS and AML.

  13. The cellular immune response of the pea aphid to foreign intrusion and symbiotic challenge.

    Directory of Open Access Journals (Sweden)

    Antonin Schmitz

    Full Text Available Recent studies suggest that the pea aphid (Acyrthosiphon pisum has low immune defenses. However, its immune components are largely undescribed, and notably, extensive characterization of circulating cells has been missing. Here, we report characterization of five cell categories in hemolymph of adults of the LL01 pea aphid clone, devoid of secondary symbionts (SS: prohemocytes, plasmatocytes, granulocytes, spherulocytes and wax cells. Circulating lipid-filed wax cells are rare; they otherwise localize at the basis of the cornicles. Spherulocytes, that are likely sub-cuticular sessile cells, are involved in the coagulation process. Prohemocytes have features of precursor cells. Plasmatocytes and granulocytes, the only adherent cells, can form a layer in vivo around inserted foreign objects and phagocytize latex beads or Escherichia coli bacteria injected into aphid hemolymph. Using digital image analysis, we estimated that the hemolymph from one LL01 aphid contains about 600 adherent cells, 35% being granulocytes. Among aphid YR2 lines differing only in their SS content, similar results to LL01 were observed for YR2-Amp (without SS and YR2-Ss (with Serratia symbiotica, while YR2-Hd (with Hamiltonella defensa and YR2(Ri (with Regiella insecticola had strikingly lower adherent hemocyte numbers and granulocyte proportions. The effect of the presence of SS on A. pisum cellular immunity is thus symbiont-dependent. Interestingly, Buchnera aphidicola (the aphid primary symbiont and all SS, whether naturally present, released during hemolymph collection, or artificially injected, were internalized by adherent hemocytes. Inside hemocytes, SS were observed in phagocytic vesicles, most often in phagolysosomes. Our results thus raise the question whether aphid symbionts in hemolymph are taken up and destroyed by hemocytes, or actively promote their own internalization, for instance as a way of being transmitted to the next generation. Altogether, we

  14. Modelling cross-reactivity and memory in the cellular adaptive immune response to influenza infection in the host.

    Science.gov (United States)

    Yan, Ada W C; Cao, Pengxing; Heffernan, Jane M; McVernon, Jodie; Quinn, Kylie M; La Gruta, Nicole L; Laurie, Karen L; McCaw, James M

    2017-01-21

    The cellular adaptive immune response plays a key role in resolving influenza infection. Experiments where individuals are successively infected with different strains within a short timeframe provide insight into the underlying viral dynamics and the role of a cross-reactive immune response in resolving an acute infection. We construct a mathematical model of within-host influenza viral dynamics including three possible factors which determine the strength of the cross-reactive cellular adaptive immune response: the initial naive T cell number, the avidity of the interaction between T cells and the epitopes presented by infected cells, and the epitope abundance per infected cell. Our model explains the experimentally observed shortening of a second infection when cross-reactivity is present, and shows that memory in the cellular adaptive immune response is necessary to protect against a second infection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Impaired cellular immune response to tetanus toxoid but not to cytomegalovirus in effectively HAART-treated HIV-infected children.

    Science.gov (United States)

    Alsina, Laia; Noguera-Julian, Antoni; Fortuny, Clàudia

    2013-05-07

    Despite of highly active antiretroviral therapy, the response to vaccines in HIV-infected children is poor and short-lived, probably due to a defect in cellular immune responses. We compared the cellular immune response (assessed in terms of IFN-γ production) to tetanus toxoid and to cytomegalovirus in a series of 13 HIV-perinatally-infected children and adolescents with optimal immunovirological response to first line antiretroviral therapy, implemented during chronic infection. A stronger cellular response to cytomegalovirus (11 out of 13 patients) was observed, as compared to tetanus toxoid (1 out of 13; p=0.003). These results suggest that the repeated exposition to CMV, as opposed to the past exposition to TT, is able to maintain an effective antigen-specific immune response in stable HIV-infected pediatric patients and strengthen current recommendations on immunization practices in these children.

  16. Cellular changes, molecular pathways and the immune system following photodynamic treatment.

    Science.gov (United States)

    Skupin-Mrugalska, P; Sobotta, L; Kucinska, M; Murias, M; Mielcarek, J; Düzgüneş, N

    2014-01-01

    Photodynamic therapy (PDT) is a novel medical technique involving three key components: light, a photosensitizer molecule and molecular oxygen, which are essential to achieve the therapeutic effect. There has been great interest in the use of PDT in the treatment of many cancers and skin disorders. Upon irradiation with light of a specific wavelength, the photosensitizer undergoes several reactions resulting in the production of reactive oxygen species (ROS). ROS may react with different biomolecules, causing defects in many cellular structures and biochemical pathways. PDT-mediated tumor destruction in vivo involves cellular mechanisms with photodamage of mitochondria, lysosomes, nuclei, and cell membranes that activate apoptotic, necrotic and autophagic signals, leading to cell death. PDT is capable of changing the tumor microenvironment, thereby diminishing the supply of oxygen, which explains the antiangiogenic effect of PDT. Finally, inflammatory and immune responses play a crucial role in the long-lasting consequences of PDT treatment. This review is focused on the biochemical effects exerted by photodynamic treatment on cell death signaling pathways, destruction of the vasculature, and the activation of the immune system.

  17. Role of cellular immunity in halothane hepatitis: an in vitro study

    Institute of Scientific and Technical Information of China (English)

    Lu Zhijie; Miao Xuerong; Wang Xiaoyan; Wu Jingxiang; Lv Xin; Yu Weifeng

    2008-01-01

    Objective: To explore the effect of cellular immunity in halothane hepatitis. Methods: Hepatotoxicity model was established by exposing male Hartley guinea pigs to 1% halothane via inspiration for 4 h each time for 1 or 3 times within a 42-day interval. Then their hepatocytes and lymphocytes were collected and divided into 2 parts for different cultures. Hepatocytes were cultivated with or without 1% halothane for 4 h and lymphocytes were cultivated with or without 12.5 μg/ml trifluoroacetylated guinea pig serum albumin (TFA-GSA). Then the 2 kinds of hepatocytes were co-cultivated with lymphocytes (1:100) with or without TFA-GSA induction respectively and the supernatant fluid was taken after 24, 48 and 72 h to determine the concentration of alanine aminotransferase (ALT). The halothane cultivated hepatocytes were co-cultivated with various proportion of TFA-GSA antigen induced lymphocytes and ALT was determined after 48 h to determine the proper proportion of hepatocytes and lymphocyte. Results: Lymphocytes of 3 times halothane induced guinea pigs caused a significant increase of ALT in hepatocytes with or without halothane induction. But the lymphocytes of l time halothane induced guinea pigs only caused a significant increase of ALT in hepatocytes with induction of halothane. The increase of ALT was only seen after 48- and 72-hour co-culture. The proper proportion of hepatocytes and lymphocytes was l:100 for lymphocytes cytotoxicity. Conclusion: Lymphocytes is sensitized after inhalation of halothane and generates cytotoxicity to hepatocytes. The immune response of lymphocytes to hepatocytes will be enhanced by repeated inhalation of halothane. The cellular immunity may be one of the mechanisms of halothane induced hepatotoxicity.

  18. Maize Prolamins Could Induce a Gluten-Like Cellular Immune Response in Some Celiac Disease Patients

    Science.gov (United States)

    Ortiz-Sánchez, Juan P.; Cabrera-Chávez, Francisco; Calderón de la Barca, Ana M.

    2013-01-01

    Celiac disease (CD) is an autoimmune-mediated enteropathy triggered by dietary gluten in genetically prone individuals. The current treatment for CD is a strict lifelong gluten-free diet. However, in some CD patients following a strict gluten-free diet, the symptoms do not remit. These cases may be refractory CD or due to gluten contamination; however, the lack of response could be related to other dietary ingredients, such as maize, which is one of the most common alternatives to wheat used in the gluten-free diet. In some CD patients, as a rare event, peptides from maize prolamins could induce a celiac-like immune response by similar or alternative pathogenic mechanisms to those used by wheat gluten peptides. This is supported by several shared features between wheat and maize prolamins and by some experimental results. Given that gluten peptides induce an immune response of the intestinal mucosa both in vivo and in vitro, peptides from maize prolamins could also be tested to determine whether they also induce a cellular immune response. Hypothetically, maize prolamins could be harmful for a very limited subgroup of CD patients, especially those that are non-responsive, and if it is confirmed, they should follow, in addition to a gluten-free, a maize-free diet. PMID:24152750

  19. Chemical conjugate TMV-peptide bivalent fusion vaccines improve cellular immunity and tumor protection.

    Science.gov (United States)

    McCormick, Alison A; Corbo, Tina A; Wykoff-Clary, Sherri; Palmer, Kenneth E; Pogue, Gregory P

    2006-01-01

    Chemical conjugation of CTL peptides to tobacco mosaic virus (TMV) has shown promise as a molecular adjuvant scaffold for augmentation of cellular immune responses to peptide vaccines. This study demonstrates the ease of generating complex multipeptide vaccine formulations using chemical conjugation to TMV for improved vaccine efficacy. We have tested a model foreign antigen target-the chicken ovalbumin-derived CTL peptide (Ova peptide), as well as mouse melanoma-associated CTL epitopes p15e and tyrosinase-related protein 2 (Trp2) peptides that are self-antigen targets. Ova peptide fusions to TMV, as bivalent formulations with peptides encoding additional T-help or cellular uptake via the integrin-receptor binding RGD peptide, showed improved vaccine potency evidenced by significantly enhanced numbers of antigen-reactive T cells measured by in vitro IFNgamma cellular analysis. We measured the biologically relevant outcome of vaccination in protection of mice from EG.7-Ova tumor challenge, which was achieved with only two doses of vaccine ( approximately 600 ng peptide) given without adjuvant. The p15e peptide alone or Trp2 peptide alone, or as a bivalent formulation with T-help or RGD uptake epitopes, was unable to stimulate effective tumor protection. However, a vaccine with both CTL peptides fused together onto TMV generated significantly improved survival. Interestingly, different bivalent vaccine formulations were required to improve vaccine efficacy for Ova or melanoma tumor model systems.

  20. Cellular immune response of humans to the circumsporozoite protein of Plasmodium vivax

    Directory of Open Access Journals (Sweden)

    Mauricio M. Rodrigues

    1991-06-01

    Full Text Available The cellular immune response to the circumsporozoite (CS protein of plasmodium vivax of individuals from malaria-endemic areas of Brazil was studied. We examined the in vitro proliferative response of the peripheral blood mononuclear cells (PBMC of 22 individuals when stimulated with a CS recombinant protein (rPvCS-2 and two other synthetic peptides based on the sequenceof the P. vivax CS protein. Seven of the individuals from malaria-endemic area displayed an antigen specific in vitro proliferative responseto the recombinant protein PvCS-2 and one out of 6, proliferative response to the peptide 308-320. In contrast, none of the individuals displayed a proliferative reponse when stimulated with the D/A peptide which represent some of the repeated units present in this CS protein. Our study, therefore, provides evidence for the presence, withinthe major surface antigen of P. vivax sporozoites, of epitopes capble to induce proliferation of human PBMC.

  1. Cellular immune responses and occult infection in seronegative heterosexual partners of chronic hepatitis C patients.

    Science.gov (United States)

    Roque-Cuéllar, M C; Sánchez, B; García-Lozano, J R; Praena-Fernández, J M; Núñez-Roldán, A; Aguilar-Reina, J

    2011-10-01

    It is unknown whether hepatitis C virus (HCV)-specific cellular immune responses can develop in seronegative sexual partners of chronically HCV-infected patients and whether they have occult infection. Thirty-one heterosexual partners of patients with chronic HCV were studied, fifteen of them with HCV transmission risks. Ten healthy individuals and 17 anti-HCV seropositive patients, without viremia, were used as controls. Virus-specific CD4+ and CD8+ T-cell responses were measured by flow cytometry against six HCV peptides, situated within the nonstructural (NS) proteins NS3, NS4 and NS5, through intracellular detection of gamma interferon (IFN-γ) or interleukin 4 (IL-4) production and CD69 expression. Sexual partners had a higher production of IFN-γ and IL-4 by CD4+ cells against NS3-p124 (P = 0.003), NS5b-p257 (P = 0.005) and NS5b-p294 (P = 0.012), and CD8+ cells against NS3-p124 (P = 0.002), NS4b-p177 (P = 0.001) and NS3-p294 (P = 0.004) as compared with healthy controls. We observed elevated IFN-γ production by CD4+ T cells against NS5b-p257 (P = 0.042) and NS5b-p294 (P = 0.009) in the sexual partners with HCV transmission risks (sexual, professional and familial altogether) than in those without risks. RNA was extracted from peripheral blood mononuclear cells (PBMC), and detection of HCV-RNA positive and replicative (negative) strands was performed by strand-specific real-time PCR. In four sexual partners, the presence of positive and negative HCV- RNA strands in PBMC was confirmed. Hence, we found an HCV-specific cellular immune response as well as occult HCV infection in seronegative and aviremic sexual partners of chronically HCV-infected patients.

  2. Cellular and Biochemical Changes of Antheraea mylitta D. on Immunization with Attenuated Antheraea mylitta Cytoplasmic Polyhedrosis Virus

    Directory of Open Access Journals (Sweden)

    Phani Kiran Kumar

    2011-01-01

    Full Text Available The aim of the present study is to analyze the cellular and biochemical changes noticed in tasar silkworm larva (Antheraea mylitta D. immunized with attenuated cytoplasmic polyhedrosis virus (AmCPV. The bioassay was carried out to confirm the no induction of disease in attenuated AmCPV inoculated larvae. Total Haemocytes count and Differential Haemocytes counts were carried out in healthy control, immunized and non immunized silkworm larvae at different time intervals. The hemolymph proteins were estimated in healthy control, immunized and non immunized silkworm larvae. The results confirm that, attenuated AmCPV provides protection against AmCPV infection for a short period (6 to 8 days. The mortality in immunized silkworms was reduced significantly as compared to non immunized inoculated control. The total haemocyte counts increased in haemolymph up to 8th day in immunized silkworms in comparison with non immunized inoculated control indicating the positive haemocyte mediated response in silkworm immunized with attenuated AmCPV. Similarly, differential haemocyte count was different in immunized silkworms from the inoculated control. The prohaemocyte, plasmatocytes and granulocytes were maximum in number whereas oenocytoids were minimum in number. The number of degenerated blood cells was increased in inoculated control up to 8th days of post inoculation. The hemolymph protein in immunized silkworms was significantly higher than non immunized control. The gradual increase 1st day to 8th day was observed in immunized silkworm. In non immunized inoculated control, the total hemolymph proteins have shown increasing trend from 1st to 5th day and decreasing from 6th day onwards.

  3. Adult Drosophila melanogaster evolved for antibacterial defense invest in infection-induced expression of both humoral and cellular immunity genes

    Directory of Open Access Journals (Sweden)

    McGraw Elizabeth A

    2011-08-01

    Full Text Available Abstract Background While the transcription of innate immunity genes in response to bacterial infection has been well-characterised in the Drosophila model, we recently demonstrated the capacity for such transcription to evolve in flies selected for improved antibacterial defense. Here we use this experimental system to examine how insects invest in constitutive versus infection-induced transcription of immunity genes. These two strategies carry with them different consequences with respect to energetic and pleiotropic costs and may be more or less effective in improving defense depending on whether the genes contribute to humoral or cellular aspects of immunity. Findings Contrary to expectation we show that selection preferentially increased the infection-induced expression of both cellular and humoral immunity genes. Given their functional roles, infection induced increases in expression were expected for the humoral genes, while increases in constitutive expression were expected for the cellular genes. We also report a restricted ability to improve transcription of immunity genes that is on the order of 2-3 fold regardless of total transcription level of the gene. Conclusions The evolved increases in infection-induced expression of the cellular genes may result from specific cross talk with humoral pathways or from generalised strategies for enhancing immunity gene transcription. A failure to see improvements in constitutive expression of the cellular genes suggests either that increases might come at too great a cost or that patterns of expression in adults are decoupled from the larval phase where increases would be most effective. The similarity in fold change increase across all immunity genes may suggest a shared mechanism for the evolution of increased transcription in small, discrete units such as duplication of cis-regulatory elements.

  4. Innate and adaptive cellular phenotypes contributing to pulmonary disease in mice after respiratory syncytial virus immunization and infection.

    Science.gov (United States)

    Lee, Young-Tae; Kim, Ki-Hye; Hwang, Hye Suk; Lee, Youri; Kwon, Young-Man; Ko, Eun-Ju; Jung, Yu-Jin; Lee, Yu-Na; Kim, Min-Chul; Kang, Sang-Moo

    2015-11-01

    Respiratory syncytial virus (RSV) is the major leading cause of infantile viral bronchiolitis. However, cellular phenotypes contributing to the RSV protection and vaccine-enhanced disease remain largely unknown. Upon RSV challenge, we analyzed phenotypes and cellularity in the lung of mice that were naïve, immunized with formalin inactivated RSV (FI-RSV), or re-infected with RSV. In comparison with naïve and live RSV re-infected mice, the high levels of eosinophils, neutrophils, plasmacytoid and CD11b(+) dendritic cells, and IL-4(+) CD4(+) T cells were found to be contributing to pulmonary inflammation in FI-RSV immune mice despite lung viral clearance. Alveolar macrophages appeared to play differential roles in protection and inflammation upon RSV infection of different RSV immune mice. These results suggest that multiple innate and adaptive immune components differentially contribute to RSV disease and inflammation. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. A novel HIV vaccine adjuvanted by IC31 induces robust and persistent humoral and cellular immunity.

    Directory of Open Access Journals (Sweden)

    Laura Pattacini

    Full Text Available The HIV vaccine strategy that, to date, generated immune protection consisted of a prime-boost regimen using a canarypox vector and an HIV envelope protein with alum, as shown in the RV144 trial. Since the efficacy was weak, and previous HIV vaccine trials designed to generate antibody responses failed, we hypothesized that generation of T cell responses would result in improved protection. Thus, we tested the immunogenicity of a similar envelope-based vaccine using a mouse model, with two modifications: a clade C CN54gp140 HIV envelope protein was adjuvanted by the TLR9 agonist IC31®, and the viral vector was the vaccinia strain NYVAC-CN54 expressing HIV envelope gp120. The use of IC31® facilitated immunoglobulin isotype switching, leading to the production of Env-specific IgG2a, as compared to protein with alum alone. Boosting with NYVAC-CN54 resulted in the generation of more robust Th1 T cell responses. Moreover, gp140 prime with IC31® and alum followed by NYVAC-CN54 boost resulted in the formation and persistence of central and effector memory populations in the spleen and an effector memory population in the gut. Our data suggest that this regimen is promising and could improve the protection rate by eliciting strong and long-lasting humoral and cellular immune responses.

  6. DNA-encapsulated magnesium phosphate nanoparticles elicit both humoral and cellular immune responses in mice

    Directory of Open Access Journals (Sweden)

    Gajadhar Bhakta

    2014-01-01

    Full Text Available The efficacy of pEGFP (plasmid expressing enhanced green fluorescent protein-encapsulated PEGylated (meaning polyethylene glycol coated magnesium phosphate nanoparticles (referred to as MgPi-pEGFP nanoparticles for the induction of immune responses was investigated in a mouse model. MgPi-pEGFP nanoparticles induced enhanced serum antibody and antigen-specific T-lymphocyte responses, as well as increased IFN-γ and IL-12 levels compared to naked pEGFP when administered via intravenous, intraperitoneal or intramuscular routes. A significant macrophage response, both in size and activity, was also observed when mice were immunized with the nanoparticle formulation. The response was highly specific for the antigen, as the increase in interaction between macrophages and lymphocytes as well as lymphocyte proliferation took place only when they were re-stimulated with recombinant green fluorescence protein (rGFP. Thus the nanoparticle formulation elicited both humoral as well as cellular responses. Cytokine profiling revealed the induction of Th-1 type responses. The results suggest DNA-encapsulated magnesium phosphate (MgPi nanoparticles may constitute a safer, more stable and cost-efficient DNA vaccine formulation.

  7. Cellular Immune Responses Associated with Occult Hepatitis C Virus Infection of the Liver

    Science.gov (United States)

    Quiroga, Juan A.; Llorente, Silvia; Castillo, Inmaculada; Rodríguez-Iñigo, Elena; Pardo, Margarita; Carreño, Vicente

    2006-01-01

    Occult hepatitis C virus (HCV) infection is a type of recently identified chronic infection that is evidenced only by detection of HCV RNA in liver; patients consistently test negative for antibodies to HCV and HCV RNA in serum. Using ex vivo and in vitro measures of T-cell responses, we have identified functional virus-specific memory CD4+ and CD8+ T cells in the peripheral blood of patients with occult HCV infection. The features of the virus-specific T cells were consistent with immune surveillance functions, supporting previous exposure to HCV. In addition, the magnitudes of CD4+ and CD8+ T-cell responses were in parallel and correlated inversely with the extent of liver HCV infection. The detection of HCV-specific T cells in individuals in whom HCV RNA can persist in the liver despite the absence of viremia and antibodies indicates that HCV replication is prolonged in the face of virus-specific CD4+ and CD8+ T-cell responses. These findings demonstrate that HCV-specific cellular immune responses are markers not only of previous exposure to and recovery from HCV but also of ongoing occult HCV infection. PMID:17071928

  8. Vaccination with dengue virus-like particles induces humoral and cellular immune responses in mice

    Directory of Open Access Journals (Sweden)

    Zhang Quanfu

    2011-06-01

    Full Text Available Abstract Background The incidence of dengue, an infectious disease caused by dengue virus (DENV, has dramatically increased around the world in recent decades and is becoming a severe public health threat. However, there is currently no specific treatment for dengue fever, and licensed vaccine against dengue is not available. Vaccination with virus-like particles (VLPs has shown considerable promise for many viral diseases, but the effect of DENV VLPs to induce specific immune responses has not been adequately investigated. Results By optimizing the expression plasmids, recombinant VLPs of four antigenically different DENV serotypes DENV1-4 were successfully produced in 293T cells. The vaccination effect of dengue VLPs in mice showed that monovalent VLPs of each serotype stimulated specific IgG responses and potent neutralizing antibodies against homotypic virus. Tetravalent VLPs efficiently enhanced specific IgG and neutralizing antibodies against all four serotypes of DENV. Moreover, vaccination with monovalent or tetravalent VLPs resulted in the induction of specific cytotoxic T cell responses. Conclusions Mammalian cell expressed dengue VLPs are capable to induce VLP-specific humoral and cellular immune responses in mice, and being a promising subunit vaccine candidate for prevention of dengue virus infection.

  9. The adaptor protein FHL2 enhances the cellular innate immune response to influenza A virus infection.

    Science.gov (United States)

    Nordhoff, Carolin; Hillesheim, Andrea; Walter, Beate M; Haasbach, Emanuel; Planz, Oliver; Ehrhardt, Christina; Ludwig, Stephan; Wixler, Viktor

    2012-07-01

    The innate immune response of influenza A virus-infected cells is predominantly mediated by type I interferon-induced proteins. Expression of the interferon β (IFNβ) itself is initiated by accumulating viral RNA and is transmitted by different signalling cascades that feed into activation of the three transcriptional elements located in the IFNβ promoter, AP-1, IRF-3 and NF-κB. FHL2 (four-and-a-half LIM domain protein 2) is an adaptor molecule that shuttles between membrane and nucleus regulating signalling cascades and gene transcription. Here we describe FHL2 as a novel regulator of influenza A virus propagation. Using mouse FHL2 wild-type, knockout and rescued cells and human epithelial cells with different expression levels of FHL2 we showed that FHL2 decreases influenza A virus propagation by regulating the intrinsic cellular antiviral immune response. On virus infection FHL2 translocates into the nucleus, potentiating the IRF-3-dependent transcription of the IFNβ gene.

  10. Metal oxide nanoparticles interact with immune cells and activate different cellular responses

    Directory of Open Access Journals (Sweden)

    Simón-Vázquez R

    2016-09-01

    Full Text Available Rosana Simón-Vázquez, Tamara Lozano-Fernández, Angela Dávila-Grana, Africa González-Fernández Immunology Laboratory, Biomedical Research Center (CINBIO and Institute of Biomedical Research of Ourense-Pontevedra-Vigo (IBI, University of Vigo, Campus Lagoas Marcosende, Vigo, Pontevedra, Spain Abstract: Besides cell death, nanoparticles (Nps can induce other cellular responses such as inflammation. The potential immune response mediated by the exposure of human lymphoid cells to metal oxide Nps (moNps was characterized using four different moNps (CeO2, TiO2, Al2O3, and ZnO to study the three most relevant mitogen-activated protein kinase subfamilies and the nuclear factor kappa-light-chain-enhancer of the activated B-cell inhibitor, IκBα, as well as the expression of several genes by immune cells incubated with these Nps. The moNps activated different signaling pathways and altered the gene expression in human lymphocyte cells. The ZnO Nps were the most active and the release of Zn2+ ions was the main mechanism of toxicity. CeO2 Nps induced the smallest changes in gene expression and in the IκBα protein. The effects of the particles were strongly dependent on the type and concentration of the Nps and on the cell activation status prior to Np exposure. Keywords: Jurkat, MAPK, NFκB, qPCR, inflammation, metabolism

  11. Quantitative, Phenotypical, and Functional Characterization of Cellular Immunity in Children and Adolescents With Down Syndrome.

    Science.gov (United States)

    Schoch, Justine; Rohrer, Tilman R; Kaestner, Michael; Abdul-Khaliq, Hashim; Gortner, Ludwig; Sester, Urban; Sester, Martina; Schmidt, Tina

    2017-05-15

    Infections and autoimmune disorders are more frequent in Down syndrome, suggesting abnormality of adaptive immunity. Although the role of B cells and antibodies is well characterized, knowledge regarding T cells is limited. Lymphocyte subpopulations of 40 children and adolescents with Down syndrome and 51 controls were quantified, and phenotype and functionality of antigen-specific effector T cells were analyzed with flow cytometry after polyclonal and pathogen-specific stimulation (with varicella-zoster virus [VZV] and cytomegalovirus [CMV]). Results were correlated with immunoglobulin (Ig) G responses. Apart from general alterations in the percentage of lymphocytes, regulatory T cells, and T-helper 1 and 17 cells, all major T-cell subpopulations showed higher expression of the inhibitory receptor PD-1. Polyclonally stimulated effector CD4+ T-cell frequencies were significantly higher in subjects with Down syndrome, whereas their inhibitory receptor expression (programmed cell death 1 [PD-1] and cytotoxic T-lymphocyte antigen 4 [CTLA-4]) was similar to that of controls and cytokine expression profiles were only marginally altered. Pathogen-specific immunity showed age-appropriate levels of endemic infection, with correlation of CMV-specific cellular and humoral immunity in all subjects. Among VZV IgG-positive individuals, a higher percentage of VZV-specific T-cell-positive subjects was seen in those with Down syndrome. Despite alterations in lymphocyte subpopulations, individuals with Down syndrome can mount effector T-cell responses with similar phenotype and functionality as controls but may require higher effector T-cell frequencies to ensure pathogen control.

  12. The cellular immune response plays an important role in protecting against dengue virus in the mouse encephalitis model.

    Science.gov (United States)

    Gil, Lázaro; López, Carlos; Blanco, Aracelys; Lazo, Laura; Martín, Jorge; Valdés, Iris; Romero, Yaremis; Figueroa, Yassel; Guillén, Gerardo; Hermida, Lisset

    2009-02-01

    For several years, researchers have known that the generation of neutralizing antibodies is a prerequisite for attaining adequate protection against dengue virus. Nevertheless, the cellular immune response is the principal arm of the adaptive immune system against non-cytopathic viruses such as dengue, as once the virus enters into the cell it is necessary to destroy it to eliminate the virus. To define the role of the cellular immune response in the protection against dengue, we selected the mouse encephalitis model. Mice were immunized with a single dose of infective dengue 2 virus and different markers of both branches of the induced adaptive immunity were measured. Animals elicited a broad antibody response against the four dengue virus serotypes, but neutralizing activity was only detected against the homologous serotype. On the other hand, the splenocytes of the infected animals strongly proliferated after in vitro stimulation with the homologous virus, and specifically the CD8 T-cell subset was responsible for the secretion of the cytokine IFN-gamma. Finally, to define the role of T cells in in vivo protection, groups of animals were inoculated with the depleting monoclonal antibodies anti-CD4 or anti-CD8. Only depletion with anti-CD8 decreased to 50% the level of protection reached in the non-depleted mice. The present work constitutes the first report defining the role of the cellular immune response in protection against dengue virus in the mouse model.

  13. Modulation of cellular and humoral immune responses to anHIV-1 DNA vaccine by interleukin-12 and interleukin-18 DNA immunization

    Institute of Scientific and Technical Information of China (English)

    孙永涛; 王福祥; 孙永年; 徐哲; 王临旭; 刘娟; 白雪帆; 黄长形

    2004-01-01

    Objective: To investigate the effect of interleukin-12 (IL-12) and interleukin-18 (IL-18)DNA immunization on immune response induced by HIV-1 DNA vaccine and to explore new strategies for therapeutic HIV DNA vaccine.Methods: The recombinant expression vector pCI-neoGAG was constructed by inserting HIV Gag gene into the eukaryotic expression vector pCI-neo. Balb/c mice were immunized with pCI-neoGAG alone or co-immunized with the DNA encoding for IL-12 or IL-18. Anti-HIV antibody and IFN-γ were tested by ELISA, and splenocytes were isolated for detecting antigen-specific lymphoproliferative responses and specific CTL response by MTT assay and LDH assay respectively. Results: The antiHIV antibody titers of mice co-immunized with pCI-neoGAG and the DNA encoding for IL-12 or IL-18 were lower than that of mice immunized with pCI-neoGAG alone( P < 0.01). In contrast, the IFN-γ level of mice co-immunized with pCI-neoGAG and the DNA encoding for IL-12 or IL-18 was higher than that of mice immunized with pCI-neoGAG alone ( P <0.01). Furthermore, compared with mice injected with pCI-neoGAG alone, the specific CTL cytotoxity activity and antigenspecific lymphoproliferative responses of mice immunized with pCI-neoGAG and the DNA encoding for IL-12 or IL-18 were significantly enhanced respectively ( P < 0.01). Conclusion: The DNA encoding for IL-12 or IL-18 together with HIV DNA vaccine may enhance specific Th-1 responses and cellular immune response elicited in mice. Hence, the DNA encoding for IL-12 or IL-18 are promising immune adjuvants for HIV-1 DNA vaccine.

  14. Delayed type hypersensitivity reaction as indicator of cellular immune competence in broiler chickens exposed to dietary corticosterone

    NARCIS (Netherlands)

    Post, J.; Gielkens, A.; Huurne, ter A.A.H.M.

    2004-01-01

    Three experiments were performed to evaluate the delayed type hypersensitivity test against keyhole limpet haemocyanin as a parameter to measure stress-induced cellular immune suppression. The test was optimised for broiler chickens and evaluated in a stress model in which plasma corticosterone

  15. Cellular and humoral immune responses in a population from the Baringo District, Kenya to Leishmania promastigote lipophosphoglycan

    DEFF Research Database (Denmark)

    Kurtzhals, J A; Hey, A S; Theander, T G

    1992-01-01

    In a cross-sectional house-to-house study in a leishmaniasis-endemic area in Kenya, the cellular and humoral immune response to Leishmania lipophosphoglycan (LPG) was determined. Clinical data, peripheral blood mononuclear cells, and plasma were obtained from 50 individuals over the age of eight...

  16. Intraspecies variability in the dose-response relationship for Salmonella Enteritidis associated with genetic differences in cellular immune response.

    NARCIS (Netherlands)

    Havelaar, A.H.; Garssen, J.; Takumi, K.; Koedam, M.I.; Ritmeester, W.; Fonteyne, L. de la; Bousema, T.; Vos, J.

    2004-01-01

    To evaluate the effects of differences in host cellular immunity, we studied the dose-response relationship for infection with Salmonella enterica serovar Enteritidis (SE) in two different rat strains, skewed towards T helper 1 (Th1, Lewis rats) or T helper 2 (Th2, Brown Norway rats) immunoregulatio

  17. Delayed type hypersensitivity reaction as indicator of cellular immune competence in broiler chickens exposed to dietary corticosterone

    NARCIS (Netherlands)

    Post, J.; Gielkens, A.; Huurne, ter A.A.H.M.

    2004-01-01

    Three experiments were performed to evaluate the delayed type hypersensitivity test against keyhole limpet haemocyanin as a parameter to measure stress-induced cellular immune suppression. The test was optimised for broiler chickens and evaluated in a stress model in which plasma corticosterone leve

  18. Effects of dietary conjugated linoleic acids on cellular immune response of piglets after cyclosporin A injection.

    Science.gov (United States)

    Liu, Y X; Zhu, K Y; Liu, Y L; Jiang, D F

    2016-10-01

    The present study investigated the effects of dietary conjugated linoleic acid (CLA) on the cellular immune response of piglets after cyclosporin A (CsA) treatment. The experimental study had a 2×2 factorial design, and the main factors consisted of diets (0% or 2% CLA) and immunosuppression treatments (CsA or saline injection). CsA injection significantly increased feed : gain (F : G) of piglets (P<0.05); however, dietary CLA significantly decreased F : G of piglets (P<0.05). Dietary CLA partly ameliorated the deterioration of the feed conversion rate caused by CsA treatment (P<0.01). CsA treatment significantly decreased the percentages of CD4+ and CD8+ T lymphocytes in the thymus (P<0.01). Dietary CLA increased the percentages of CD4+ CD8+ double-positive and CD8+ single-positive T lymphocytes in the thymus (P<0.05), and had the trend to inhibit the decrease of CD4+ T lymphocytes in the thymus after CsA injection (P=0.07). CsA treatment significantly depleted the peripheral blood CD3+, CD4+ and CD8+ T lymphocytes (P<0.01). Dietary CLA significantly increased the number of peripheral blood CD8+ T lymphocytes and interleukin-2 (IL-2) production (P<0.05), and inhibited the decreases of peripheral blood CD3+, CD4+ and CD8+ T lymphocytes counts (P<0.01) as well as IL-2 production (P<0.05) after CsA treatment. Dietary CLA partly rescued the decrease of lymphocyte proliferation after CsA injection (P<0.05). In summary, dietary CLA effectively ameliorated CsA-induced cellular immunosuppression in piglets.

  19. The modulatory influence of some Echinacea-based remedies on antibody production and cellular immunity in mice

    Science.gov (United States)

    Sokolnicka, Irena; Skopińska-Różewska, Ewa; Skopiński, Piotr

    2016-01-01

    Echinacea purpurea-containing remedies are herbal medicines used in respiratory tract infections and several inflammatory conditions as enhancers of non-specific and modulators of specific cellular immunity. They also exert anti-inflammatory, anti-viral, and anti-microbial activity. The aim of the present study was to compare the in vivo influence of orally administered three Echinacea purpurea-based remedies (IMMUNAL drops, ECHINACEA FORTE drops, IMMUNAL FORTE tablets) on some parameters of cellular and humoral immunity in mice. Results Feeding mice for seven days with IMMUNAL drops resulted in enhanced anti-SRBC antibody production and modulatory effect on proliferative response to PHA of their splenic lymphocytes. No stimulatory effect was observed on splenocytes chemokinesis. Mice fed with ECHINACEA FORTE drops presented enhanced response to PHA of their splenocytes. However, contrary to the previous group, no enhancement of antibody production was observed. In this group, lymphocyte-induced immunological angiogenesis (LIA) and chemokinesis (spontaneous migration – SM) of spleen lymphocytes was diminished after feeding mice with both doses (LIA) or with a higher dose (SM) of remedy. Lymphocyte-induced immunological angiogenesis activity of splenocytes collected from animals fed with prophylactic and therapeutic IMMUNAL FORTE tablet doses did not differ from the controls. PMID:27095917

  20. IgE low affinity receptor (CD23) expression, Plasmodium falciparum specific IgE and tumor necrosis factor-alpha production in Thai uncomplicated and severe falciparum malaria patients.

    Science.gov (United States)

    Kumsiri, Ratchanok; Troye-Blomberg, Marita; Pattanapanyasat, Kovit; Krudsood, Srivicha; Maneerat, Yaowapa

    2016-02-01

    Previous studies have suggested that Plasmodium falciparum (P. falciparum) specific IgE in the form of immune complexes crosslinking the low-affinity receptor (CD23) on monocyte results in tumor necrosis factor (TNF)-α and nitric oxide (NO) production. However, the roles of these parameters in severity and immune protection are still unclear. This study aimed to determine the association between CD23 expression on monocytes, plasma soluble CD23 (sCD23), total IgE, malaria-specific IgE and IgG, and TNF-α levels in P. falciparum infected patients. We evaluated 64 uncomplicated (UC) and 25 severe patients (S), admitted at the Hospital for Tropical Diseases, Mahidol University, and 34 healthy controls (C) enrolled in 2001. Flow cytometry and enzyme linked immunosorbent assays (ELISA) demonstrated that trends of the CD23 expression, levels of sCD23 and specific IgE were higher in the S group as compared to those in the UC and C groups. Plasma levels of P. falciparum specific IgE in the UC (p=0.011) and S groups (p=0.025) were significantly higher than those in C group. In contrast the TNF-α levels tended to be higher in the UC than those in the S (p=0.343) and significantly higher than those in C (p=0.004) groups. The specific IgG levels in UC were significantly higher than those in S and C (pIgE-IgG complexes (r=-0.715, p=0.002). Significant positive correlations between levels of specific IgE and TNF-α (r=0.575, p=0.010); and sCD23 (r=0.597, p=0.000) were also observed. In conclusion, our data suggest that CD23 expression and malaria-specific IgE levels may be involved in the severity of the disease while TNF-α and the malaria-specific IgG may correlate with protection against falciparum malaria.

  1. Cellular and humoral immune responses to Borrelia burgdorferi antigens in patients with culture-positive early Lyme disease.

    Science.gov (United States)

    Vaz, A; Glickstein, L; Field, J A; McHugh, G; Sikand, V K; Damle, N; Steere, A C

    2001-12-01

    We determined cellular and humoral immune responses to Borrelia burgdorferi lysate and to recombinant flagellin (FlaB), OspC, and OspA in acute- and convalescent-phase samples from 39 culture-positive patients with erythema migrans and in 20 healthy control subjects. During the acute illness, a median of 4 days after the onset of erythema migrans, 51% of the patients had proliferative cellular responses and 72% had antibody responses to at least one of the borrelial antigens tested. During convalescence, at the conclusion of antibiotic therapy, 64% of the patients had proliferative cellular reactivity and 95% had antibody reactivity with at least one of the spirochetal antigens tested. In both acute- and convalescent-phase samples, cellular immune responses were found as frequently to OspA as to OspC and FlaB. Although antibody responses were also frequently seen to OspC and FlaB, only a few patients had marginal antibody reactivity with OspA. The percentage of patients with proliferative responses was similar in those with clinical evidence of localized or disseminated infection, whereas humoral reactivity was found more often in those with disseminated disease. We conclude that cellular and humoral responses to B. burgdorferi antigens are often found among patients with early Lyme disease. In contrast with the other antigens tested, cellular but not humoral reactivity was often found with OspA.

  2. Enhancing cellular immune response to HBV M DNA vaccine in mice by codelivery of interleukin-18 recombinant

    Institute of Scientific and Technical Information of China (English)

    陈建忠; 朱海红; 刘克洲; 陈智

    2004-01-01

    Objective:To investigate the effect of interleukin-18 (IL-18) on immune response induced by plasmid encoding hepatitis B virus middle protein antigen and to explore new strategies for prophylactic and therapeutic HBV DNA vaccines.Methods:BALB/c mice were immunized with pCMV-M alone or co-immunized with pcDNA3-18 and pCMV-M and then their sera were collected for analysing anti-HBsAg antibody by ELISA;splenocytes were isolated for detecting specific CTL response and cytokine assay in vitro.Results:The anti-HBs antibody level of mice co-immunized with pcDNA3-18 and pCMV-M was slightly higher than that of mice immunized with pCMV-M alone,but there was not significantly different (P>0.05).Compared with mice injected with pCMV-M, the specific CTL cytotoxity activity of mice immunized with pcDNA3-18 and pCMV-M was significantly enhanced (P0.05).Conclusion:The plasmid encoding IL-18 together with HBV M gene DNA vaccines may enhance specific TH1 cells and CTL cellular immune response induced in mice, so that IL-18 is a promising immune adjuvant.

  3. JH modulates a cellular immunity of Tribolium castaneum in a Met-independent manner.

    Science.gov (United States)

    Hepat, Rahul; Kim, Yonggyun

    2014-04-01

    Juvenile hormone (JH) regulates diverse physiological processes in insects during entire developmental stages. Especially, the identification of Methoprene-tolerant (Met), a JH nuclear receptor, allows us to better understand molecular actions of JH to control gene expressions related with metamorphosis. However, several physiological processes including cellular immune response and some molecular actions of JH have been suspected to be mediated via its non-genomic actions. To prove its non-genomic action, JH nuclear signals were suppressed by RNA interference (RNAi) of Met or its downstream gene, Krüppel homolog 1 (Kr-h1), in the red flour beetle, Tribolium castaneum. These RNAi-treated larvae failed to undergo a normal development and suffered precocious metamorphosis. Hemocytes of T. castaneum exhibited their spreading behavior on extracellular matrix and nodule formation in response to bacterial challenge. When the larvae were treated with either RNAi of Met or Kr-h1, the hemocytes of the treated larvae were responsive to JH without any significant difference with those of control larvae. These results suggest that the response of hemocytes to JH is not mediated by its nuclear signal. On the other hand, the JH modulation of hemocyte behaviors of T. castaneum was significantly influenced by membrane and cytosolic protein activities, in which ethoxyzolamide (a specific inhibitor of carbonic anhydrase), calphostin C (a specific inhibitor of protein kinase C) or ouabain (a specific inhibitor of Na(+)-K(+) ATPase) significantly suppressed the responsiveness of hemocytes to JH.

  4. Study on the Functional Dynamic Changes of Peri-Operative Cellular Immunity in Esophageal and Cardiac Cancer

    Institute of Scientific and Technical Information of China (English)

    Chen Sheng; Li Shiting; Fang Youping

    2014-01-01

    Objective: To explore the systemic and local cellular immune function of patients with esophageal carcinoma or cardiac cancer. Methods: The distribution of tumor-infiltrating lymphocyte (TIL) and cancer-associated macrophage (TAM) in local tumor tissues of 52 patients with esophageal cancer or cardiac cancer were observed by immunehistochemical method. The level of peripheral SIL-2R and TNF-α of preoperative and postoperative 1, 2, 3 weeks were detected by ELISA and ABC-ELISA methods respectively, then the acquired results were compared with 30 cases of normal control group. Results:The peritumor inifltration densities of TIL and TAM was greater than that of cancer nest stroma (P<0.05). Compared with the normal control group, the levels of sIL-2R and TNF-α increased signiifcantly (P<0.01). Immune function could be suppressed by operative wound in a short time of post-operation, whose damage severity was closely associated with tumor TNM stages. Conclusion: Patients with esophageal or cardiac cancer have cellular immune function disorders. Dynamic testing of peripheral sIL-2R and TNT-α level in patients with esophageal or cardiac cancer has positive clinical signiifcance in the evaluation of cellular immune function, tumor lesion degree and curative effect.

  5. A Shift from Cellular to Humoral Responses Contributes to Innate Immune Memory in the Vector Snail Biomphalaria glabrata.

    Science.gov (United States)

    Pinaud, Silvain; Portela, Julien; Duval, David; Nowacki, Fanny C; Olive, Marie-Aude; Allienne, Jean-François; Galinier, Richard; Dheilly, Nolwenn M; Kieffer-Jaquinod, Sylvie; Mitta, Guillaume; Théron, André; Gourbal, Benjamin

    2016-01-01

    Discoveries made over the past ten years have provided evidence that invertebrate antiparasitic responses may be primed in a sustainable manner, leading to the failure of a secondary encounter with the same pathogen. This phenomenon called "immune priming" or "innate immune memory" was mainly phenomenological. The demonstration of this process remains to be obtained and the underlying mechanisms remain to be discovered and exhaustively tested with rigorous functional and molecular methods, to eliminate all alternative explanations. In order to achieve this ambitious aim, the present study focuses on the Lophotrochozoan snail, Biomphalaria glabrata, in which innate immune memory was recently reported. We provide herein the first evidence that a shift from a cellular immune response (encapsulation) to a humoral immune response (biomphalysin) occurs during the development of innate memory. The molecular characterisation of this process in Biomphalaria/Schistosoma system was undertaken to reconcile mechanisms with phenomena, opening the way to a better comprehension of innate immune memory in invertebrates. This prompted us to revisit the artificial dichotomy between innate and memory immunity in invertebrate systems.

  6. Effects of levamisole hydrochloride on cellular immune response and flock performance of commercial broilers

    Directory of Open Access Journals (Sweden)

    OA Oladele

    2012-12-01

    Full Text Available Levamisole hydrochloride (Lev.HCl has been acclaimed to boost immune response particularly in immunocompromised state. Its routine use as an immunomodulator in poultry production is yet to be well embraced, thus its effects of on cellular immunity and flock performance of commercial broilers were evaluated. One hundred and fifty Anak broiler chicks were separated into two groups of 75 each. Broilers in group 1 were sensitized with 150µg of Staphylococcus aureus antigen each at 4 and 5 weeks, while those in group 2 were not sensitized. Each group was further divided into subgroups A, B, and C. Levamisole hydrochloride (40 mg/kg was administered orally to 1A and 2A at 45 and 46 days of age and to 1B and 2B at 47 and 48 days of age, while 1C and 2C were not treated. At 47 days of age, 12 broilers from all subgroups were challenged with 75µg of S. aureus antigen each at the right wattle. Wattle thickness was measured till 72 hours post challenge (pc and delayed wattle reaction (DWR was determined. Tissues were harvested at 72 hours pc for histopathology. Morbidity, mortality and live weights at 8 weeks of age were recorded. DWR peaked at 4 hours pc in 1A (2.22 ± 0.21 mm and 1B (2.96 ± 0.21 mm and 24 hours pc in 1C (3.39 ± 0.34 mm, the difference being significant (p<0.05. Inflammatory lesions were observed in wattles of sensitized subgroups and were more severe in 1C. Mortality rates were 4.17% and 29.17% in 1A and 1C respectively. Mean live weights in A and B i.e. 1.57± 0.06 kg and 1.56 ± 0.06 kg respectively, were significantly higher (p<0.0 than 1.43 ± 0.08 kg in C. Levamisole enhanced DTH via an early response, improved broiler liveability, and its anti-inflammatory property was confirmed.

  7. Characterization of Cellular and Humoral Immune Responses After IBV Infection in Chicken Lines Differing in MBL Serum Concentration

    DEFF Research Database (Denmark)

    Kjærup, Rikke Munkholm; Dalgaard, Tina Sørensen; Norup, Liselotte Rothmann

    2014-01-01

    Chickens from two inbred lines selected for high (L10H) or low (L10L) mannose-binding lectin (MBL) serum concentrations were infected with infectious bronchitis virus (IBV), and innate as well as adaptive immunological parameters were measured throughout the experimental period. Chickens with high...... L10H chickens than in the infected and noninfected L10L chickens. Thus, these results indicate that MBL is produced locally and may be involved in the regulation of the cellular immune response after an IBV infection. However, MBL did not appear to influence the humoral immune response after IBV...

  8. Effect of preoperative immunonutrition and other nutrition models on cellular immune parameters

    Institute of Scientific and Technical Information of China (English)

    Yusuf Gunerhan; Neset Koksal; Umit Yasar Sahin; Mehmet Ali Uzun; Emel Ek(s)ioglu-Demiralp

    2009-01-01

    AIM: To evaluate the effects of preoperative immunonutrition and other nutrition models on the cellular immunity parameters of patients with gastrointestinal tumors before surgical intervention. In addition, effects on postoperative complications were examined.METHODS: Patients with gastrointestinal tumors were randomized into 3 groups. The immunonutrition group received a combination of arginine, fatty acids and nucleotides. The second and third group received normal nutrition and standard enteral nutrition,respectively. Nutrition protocols were administered for 7 d prior to the operation. Nutritional parameters,in particular prealbumin levels and lymphocyte subpopulations (CD4+, CD8+, CD16+/56+, and CD69 cells) were evaluated before and after the nutrition protocols. Groups were compared in terms of postoperative complications and duration of hospital stay.RESULTS: Of the 42 patients who completed the study, 16 received immunonutrition, 13 received normal nutrition and 13 received standard enteral nutrition.prealbumin values were low in every group, but this parameter was improved after the nutritional protocol only in the immunonutrition group (13.64 ± 8.83vs 15.98 ± 8.66, P = 0.037). Groups were similar in terms of CD4+, CD16+/56, and CD69+ prior to the nutritional protocol; whereas CD8+ was higher in the standard nutrition group compared to the immunonutrition group. After nutritional protocols,none of the groups had an increase in their lymphocyte subpopulations. Also, groups did not differ in terms of postoperative complications and postoperative durations of hospital stay.CONCLUSION: Preoperative immunonutrition provided a significant increase in prealbumin levels,while it did not significantly alter T lymphocyte subpopulation counts, the rate of postoperative complications and the duration of hospital stay.

  9. [Studies of cellular immunity in medical workers with occupational asthma and obstructive bronchitis in health care institutions of Primorsky Krai].

    Science.gov (United States)

    Bektasova, M V; Kaptsov, V A; Sheparev, A A

    2013-01-01

    Research was carried out on the basis of voluntary consent to the study of the characteristics of cellular immunity from the blood samples of the medical staff of health institutions of Primorsky Krai suffered from occupational bronchial asthma and obstructive bronchitis. For this purpose, 23 female patients with a diagnosis of occupational asthma, 100 female cases with obstructive bronchitis were examined. Mean age was 47.9 +/- 3.5 years. The control group was consisted of 30 healthy women, average age of 46.7 +/- 3.7years. The aim of our study was to investigate the changes of cellular immunity in health care workers with occupational asthma and obstructive bronchitis. There is an urgent need to study the dynamics of immunogram for proper interpretation and to take measures to prevent complications timely.

  10. Comparative analysis of SIV-specific cellular immune responses induced by different vaccine platforms in rhesus macaques.

    Science.gov (United States)

    Valentin, Antonio; McKinnon, Katherine; Li, Jinyao; Rosati, Margherita; Kulkarni, Viraj; Pilkington, Guy R; Bear, Jenifer; Alicea, Candido; Vargas-Inchaustegui, Diego A; Jean Patterson, L; Pegu, Poonam; Liyanage, Namal P M; Gordon, Shari N; Vaccari, Monica; Wang, Yichuan; Hogg, Alison E; Frey, Blake; Sui, Yongjun; Reed, Steven G; Sardesai, Niranjan Y; Berzofsky, Jay A; Franchini, Genoveffa; Robert-Guroff, Marjorie; Felber, Barbara K; Pavlakis, George N

    2014-11-01

    To identify the most promising vaccine candidates for combinatorial strategies, we compared five SIV vaccine platforms including recombinant canary pox virus ALVAC, replication-competent adenovirus type 5 host range mutant RepAd, DNA, modified vaccinia Ankara (MVA), peptides and protein in distinct combinations. Three regimens used viral vectors (prime or boost) and two regimens used plasmid DNA. Analysis at necropsy showed that the DNA-based vaccine regimens elicited significantly higher cellular responses against Gag and Env than any of the other vaccine platforms. The T cell responses induced by most vaccine regimens disseminated systemically into secondary lymphoid tissues (lymph nodes, spleen) and effector anatomical sites (including liver, vaginal tissue), indicative of their role in viral containment at the portal of entry. The cellular and reported humoral immune response data suggest that combination of DNA and viral vectors elicits a balanced immunity with strong and durable responses able to disseminate into relevant mucosal sites.

  11. Serratia marcescens suppresses host cellular immunity via the production of an adhesion-inhibitory factor against immunosurveillance cells.

    Science.gov (United States)

    Ishii, Kenichi; Adachi, Tatsuo; Hamamoto, Hiroshi; Sekimizu, Kazuhisa

    2014-02-28

    Injection of a culture supernatant of Serratia marcescens into the bloodstream of the silkworm Bombyx mori increased the number of freely circulating immunosurveillance cells (hemocytes). Using a bioassay with live silkworms, serralysin metalloprotease was purified from the culture supernatant and identified as the factor responsible for this activity. Serralysin inhibited the in vitro attachment of both silkworm hemocytes and murine peritoneal macrophages. Incubation of silkworm hemocytes or murine macrophages with serralysin resulted in degradation of the cellular immune factor BmSPH-1 or calreticulin, respectively. Furthermore, serralysin suppressed in vitro phagocytosis of bacteria by hemocytes and in vivo bacterial clearance in silkworms. Disruption of the ser gene in S. marcescens attenuated its host killing ability in silkworms and mice. These findings suggest that serralysin metalloprotease secreted by S. marcescens suppresses cellular immunity by decreasing the adhesive properties of immunosurveillance cells, thereby contributing to bacterial pathogenesis.

  12. Plasmid DNA Vaccine Co-Immunisation Modulates Cellular and Humoral Immune Responses Induced by Intranasal Inoculation in Mice.

    Directory of Open Access Journals (Sweden)

    Deborah F L King

    Full Text Available An effective HIV vaccine will likely require induction of both mucosal and systemic cellular and humoral immune responses. We investigated whether intramuscular (IM delivery of electroporated plasmid DNA vaccine and simultaneous protein vaccinations by intranasal (IN and IM routes could be combined to induce mucosal and systemic cellular and humoral immune responses to a model HIV-1 CN54 gp140 antigen in mice.Co-immunisation of DNA with intranasal protein successfully elicited both serum and vaginal IgG and IgA responses, whereas DNA and IM protein co-delivery did not induce systemic or mucosal IgA responses. Cellular IFNγ responses were preserved in co-immunisation protocols compared to protein-only vaccination groups. The addition of DNA to IN protein vaccination reduced the strong Th2 bias observed with IN protein vaccination alone. Luminex analysis also revealed that co-immunisation with DNA and IN protein induced expression of cytokines that promote B-cell function, generation of TFH cells and CCR5 ligands that can reduce HIV infectivity.These data suggest that while IN inoculation alone elicits both cellular and humoral responses, co-administration with homologous DNA vaccination can tailor these towards a more balanced Th1/Th2 phenotype modulating the cellular cytokine profile while eliciting high-levels of antigen-specific antibody. This work provides insights on how to generate differential immune responses within the same vaccination visit, and supports co-immunisation with DNA and protein by a mucosal route as a potential delivery strategy for HIV vaccines.

  13. Modification to the capsid of the adenovirus vector that enhances dendritic cell infection and transgene-specific cellular immune responses.

    Science.gov (United States)

    Worgall, Stefan; Busch, Annette; Rivara, Michael; Bonnyay, David; Leopold, Philip L; Merritt, Robert; Hackett, Neil R; Rovelink, Peter W; Bruder, Joseph T; Wickham, Thomas J; Kovesdi, Imi; Crystal, Ronald G

    2004-03-01

    Adenovirus (Ad) gene transfer vectors can be used to transfer and express antigens and function as strong adjuvants and thus are useful platforms for the development of genetic vaccines. Based on the hypothesis that Ad vectors with enhanced infectibility of dendritic cells (DC) may be able to evoke enhanced immune responses against antigens encoded by the vector in vivo, the present study analyzes the vaccine potential of an Ad vector expressing beta-galactosidase as a model antigen and genetically modified with RGD on the fiber knob [AdZ.F(RGD)] to more selectively infect DC and consequently enhance immunity against the beta-galactosidase antigen. Infection of murine DC in vitro with AdZ.F(RGD) showed an eightfold-increased transgene expression following infection compared to AdZ (also expressing beta-galactosidase, but with a wild-type capsid). Binding, cellular uptake, and trafficking in DC were also increased with AdZ.F(RGD) compared to AdZ. To determine whether AdZ.F(RGD) could evoke enhanced immune responses to beta-galactosidase in vivo, C57BL/6 mice were immunized with AdZ.F(RGD) or AdZ subcutaneously via the footpad. Humoral responses with both vectors were comparable, with similar anti-beta-galactosidase antibody levels following vector administration. However, cellular responses to beta-galactosidase were significantly enhanced, with the frequency of CD4(+) as well as the CD8(+) beta-galactosidase-specific gamma interferon response in cells isolated from the draining lymph nodes increased following immunization with AdZ.F(RGD) compared to Ad.Z (P AdZ.F(RGD) vector was sufficient to evoke enhanced inhibition of the growth of preexisting tumors expressing beta-galactosidase: BALB/c mice implanted with the CT26 syngeneic beta-galactosidase-expressing colon carcinoma cell line and subsequently immunized with AdZ.F(RGD) showed decreased tumor growth and improved survival compared to mice immunized with AdZ. These data demonstrate that addition of an RGD motif

  14. Analysis of cellular phenotype during in vitro immunization of murine splenocytes for generating antigen-specific immunoglobulin.

    Science.gov (United States)

    Inagaki, Takashi; Yoshimi, Tatsunari; Kobayashi, Satoshi; Kawahara, Masahiro; Nagamune, Teruyuki

    2013-03-01

    Although various in vitro immunization methods to generate antigen-specific antibodies have been described, a highly effective method that can generate high-affinity immunoglobulins has not yet been reported. Herein, we analyzed a cellular phenotype during in vitro immunization of murine splenocytes for generating antigen-specific immunoglobulins. We identified a combination of T cell-dependent stimuli (IL-4, IL-5, anti-CD38 and anti-CD40 antibodies) plus lipopolysaccharides (LPS) that stimulates antigen-exposed splenocytes in vitro, followed by induction of the cells phenotypically equivalent to germinal center B cells. We also observed that LPS induced high expression levels of mRNA for activation-induced cytidine deaminase. We stimulated antigen-exposed splenocytes, followed by the accumulation of mutations in immunoglobulin genes. From the immunized splenocytes, hybridoma clones secreting antigen-specific immunoglobulins were obtained.

  15. Humoral and cellular immunity to hepatitis B virus-derived antigens: comparative activity of Freund complete adjuvant alum, and liposomes.

    Science.gov (United States)

    Sanchez, Y; Ionescu-Matiu, I; Dreesman, G R; Kramp, W; Six, H R; Hollinger, F B; Melnick, J L

    1980-01-01

    Complete Freud adjuvant, aluminum gel, and liposomes were compared for their ability to enhance the immunogenicity of an intact 22-nm HBsAg particle vaccine and an HBsAg-derived polypeptide vaccine in guinea pigs. Both humoral and cell-mediated immune responses were evaluated. The greatest immune response was obtained with complete Freund adjuvant, regardless of the antigen preparation. Aluminum gel appeared to be a better adjuvant for 22-nm HBsAg particles, but the liposomes rendered polypeptide preparations more immunogenic. The possibility that various proportions were entrapped in aqueous compartments instead of being inserted into the lipid bilayers of liposomes might account for this difference. The development of both humoral and cellular immunity was dependent upon the use of an adjuvant, because aqueous preparations had poor immunogenicity. PMID:7014445

  16. An experimental protocol for the establishment of dogs with long-term cellular immune reactions to Leishmania antigens

    Directory of Open Access Journals (Sweden)

    Márcia Cristina Aquino Teixeira

    2011-03-01

    Full Text Available Domestic dogs are considered to be the main reservoirs of zoonotic visceral leishmaniasis. In this work, we evaluated a protocol to induce Leishmania infantum/Leishmania chagasi-specific cellular and humoral immune responses in dogs, which consisted of two injections of Leishmania promastigote lysate followed by a subcutaneous inoculation of viable promastigotes. The primary objective was to establish a canine experimental model to provide positive controls for testing immune responses to Leishmania in laboratory conditions. After inoculation of viable promastigotes, specific proliferative responses of peripheral blood mononuclear cells (PBMCs to either Leishmania lysate or recombinant proteins, the in vitro production of interferon-γ by antigen-stimulated PBMCs and a significant increase in circulating levels of anti-Leishmania antibodies were observed. The immunized dogs also displayed positive delayed-type hypersensitivity reactions to Leishmania crude antigens and to purified recombinant proteins. An important finding that supports the suitability of the dogs as positive controls is that they remained healthy for the entire observation period, i.e., more than seven years after infection. Following the Leishmania antigen lysate injections, the infection of dogs by the subcutaneous route appears to induce a sustained cellular immune response, leading to an asymptomatic infection. This provides a useful model for both the selection of immunogenic Leishmania antigens and for immunobiological studies on their possible immunoprotective activities.

  17. CHARACTERISTICS OF CELLULAR AND SERUM COMPONENTS OF MUCO-SALIVARY IMMUNE COMPARTMENT IN MATURE, AGED, AND SENESCENT PERSONS

    Directory of Open Access Journals (Sweden)

    E. D. Altman

    2011-01-01

    Full Text Available Аbstract. The objective of present study was to determine the immunological features of immune system aging in mucosa-associated lymphoid tissue (MALT in the patients at different ages (mature, aging and old observed at a dental unit. A study of cellular spectrum and humoral factors in salivary gland secretions has been performed in a group of 106 persons (35 to 90 years old. A number of age-dependent features of the immune profile were revealed for the mucous-salivary area, thus characterizing involution events within MALT structures. Among specific markers determining intensity of MALT-associated aging, a decreased percentage of viable immune cells (below 40%, along with the prevalence of the neutrophilic granulocytes in the salivary secretions (over 98% (with increased expression of β2-integrins; decreased counts of mononuclear cells, i.e., mononuclear cells with low expression of CD11β adhesion molecules, B-lymhocytes, and Th-lymphocytes have been revealed. Alterations in serum factors included a general decrease in complement system activity (СН50 and anaphylotoxines (С3а,С5а; elevated protein, mucine, and IgМ levels. The revealed specific features of cellular and humoral immunity within MALT-associated muco-salivary zone may be considered as a normal response connected with natural aging processes. (Med. Immunol., 2011, vol. 13, N 2-3, pp 167-174

  18. Kinetic approach and estimation of the parameters of cellular interaction between the immunity system and a tumor.

    Science.gov (United States)

    Kuznetsov, V A; Zhivoglyadov, V P; Stepanova, L A

    1993-01-01

    A method is suggested to estimate multi component dynamic systems, which permits, with the help of the computer-calculated kinetic curves, to obtain information about the possible mechanisms of the system component interaction. The method is based on the structural and parametrical identification of mathematical models presented in the form of a system of nonlinear differential equations, using a multi-criterial approach. Using experimental data of studies on growth kinetics and regression of multicellular tumor EMT6 line spheroids in the mouse allogenic system and the immune system cell accumulation in spheroids a mathematical model has been developed of the cellular interaction process in a spheroid. It has been stated that the rate of macrophage and neutrophil accumulation in a spheroid depends on the amount of tumor cells and is determined by the hyperbolic law (as analogous to the Michaelis-Menthen kinetics), while the accumulation of immune lymphocytes in a tumor is determined besides that by the three-cellular cooperation of lymphocytes, macrophages and tumor cells. According to the model, the inhibition of the process of neutrophil and lymphocyte (but not of macrophages) accumulation is realized through the auto-suppression mechanism. The numerical values of the process parameters, which characterise the rates of accumulation, cellular death in a tumor and of local cellular interactions intensity are obtained.

  19. Proteomic Analysis of Kveim Reagent Identifies Targets of Cellular Immunity in Sarcoidosis.

    Science.gov (United States)

    Eberhardt, Christian; Thillai, Muhunthan; Parker, Robert; Siddiqui, Nazneen; Potiphar, Lee; Goldin, Rob; Timms, John F; Wells, Athol U; Kon, Onn M; Wickremasinghe, Melissa; Mitchell, Donald; Weeks, Mark E; Lalvani, Ajit

    2017-01-01

    -inflammatory cytokine secretion from sarcoidosis PBMCs. Further investigation of cellular immune responses to Kveim-specific proteins may identify novel biomarkers to assist the diagnosis of sarcoidosis.

  20. Cellular self-defense: how cell-autonomous immunity protects against pathogens

    National Research Council Canada - National Science Library

    Randow, Felix; MacMicking, John D; James, Leo C

    2013-01-01

    .... Here, we discuss the organizing principles that govern cellular self-defense and how intracellular compartmentalization has shaped its activities to provide effective protection against a wide...

  1. THE HUMORAL AND CELLULAR IMMUNE RESPONSES INDUCED BY HPV18L1-E6/E7 DNA VACCINES IN MICE

    Institute of Scientific and Technical Information of China (English)

    Yang Jin; Li Xu; Li Ang; Wang Yili; Si Lüsheng

    2006-01-01

    Objective To construct eukaryotic expression vector of HPV18 L1- E6, E7 chimeric gene and examine the humoral and cellular immune responses induced by this DNA vaccines in mice. Methods The C-terminal of major capsid protein L1 gene and mutant zinc finger domains of early E6/7 oncogenes in HPV18 were integrated and inserted into eukaryotic expression vector pVAX1 to generate vaccines pVAX1-L1E6Mxx, E7Mxx. CHO cells were transiently transfected with the individual construct. Target protein expressions in the lysate of the transfected cells were measured by ELISA and immunocytochemistry. After BALB/c mice were vaccinated with various recombinant plasmids(pVAX1-L1-E6M3 or pVAX1-L1-E7M3) and immunie adjuvants (pLXHDmB7-2 or LTB) through different administration routes (intramuscular or intranasal) , the great cellular immune responses were produced as revealed by delayed-type hypersensitivity (DTH) and lymphocyte proliferation, and the expression of IL-4 and IFN- γ cells in CD4+ and CD8+subpopulations. Results The highly efficient expression of pVAX1-L1E6Mxx, E7Mxx vector in host eukaryotic cells were demonstrated both by ELISA and immunocytochemistry. The level of specific serum IgG against HPV in experiment groups mice was much higher than that of control group, and intranuscular immunization group had the highest antibody level. Intramuscular immunization groups were superior to intranasal immunization groups in DTH response, splenocyte proliferation and CD8+ IFN-γ + cells number, but CD4+ IL4+ cell number was higher in intranasal immunization groups. The immunization groups using pLXHDmB7-2 as adjuvant were superior to other groups in immunoresponse. Conclusion These DNA vaccines produce remarkable cellular and humoral immuneresponses in the mouse and may provide as prophylatic and therapeutic candidates for HPV induced cancer treatment.

  2. Expression patterns and action analysis of genes associated with physiological responses during rat liver regeneration: Cellular immune response

    Institute of Scientific and Technical Information of China (English)

    Lian-Xing Zhang; Li-Feng Zhao; An-Shi Zhang; Xiao-Guang Chen; Cun-Shuan Xu

    2006-01-01

    AIM: To study the cellular immune response during rat liver regeneration (LR) at a transcriptional level.METHODS: Genes associated with the cellular immune response were obtained by collecting the data from databases and retrieving articles. Gene expression changes during LR were detected by rat genome 230 2.0 array.RESULTS: A total of 127 genes were found to be associated with LR. The number of initially and totally expressing genes in the initial phase of LR [0.5-4 h after partial hepatectomy (PH)], transition from G0-G1(4-6 h after PH), cell proliferation (6-66 h after PH),cell differentiation and structure-function reconstruction (66-168 h after PH) was 54, 11, 34, 3 and 54, 49, 70, 49 respectively, illustrating that the associated genes were mainly triggered at the initiation of LR, and worked at different phases. According to their expression similarity,these genes were classified into 41 up-regulated, 21 predominantly up-regulated, 41 down-regulated, 14 predominantly down-regulated, 10 similarly up-regulated and down-regulated genes, respectively. The total upand down-regulated expression times were 419 and 274,respectively, demonstrating that the expression of most genes was increased while the expression of a small number of genes was decreased. Their time relevance was classified into 14 groups, showing that the cellular physiological and biochemical activities were staggered during LR. According to the gene expression patterns,they were classified into 21 types, showing the activities were diverse and complicated during LR.CONCLUSION: Antigen processing and presentation are enhanced mainly in the forepart, prophase and anaphase of LR. T-cell activation and antigen elimination are enhanced mainly in the forepart and prophase of LR. A total of 127 genes associated with LR play an important role in cellular immunity.

  3. Pteromalus puparum venom impairs host cellular immune responses by decreasing expression of its scavenger receptor gene

    Science.gov (United States)

    Insect host/parasitoid interactions are co-evolved systems in which host defenses are balanced by parasitoid mechanisms to disable or hide from host immune effectors. Although there is a rich literature on these systems, parasitoid immune-disabling mechanisms have not been fully elucidated. Here we ...

  4. scFv from Antibody That Mimics gp43 Modulates the Cellular and Humoral Immune Responses during Experimental Paracoccidioidomycosis.

    Science.gov (United States)

    Jannuzzi, Grasielle Pereira; Tavares, Aldo Henrique F P; Kaihami, Gilberto Hideo; de Almeida, José Roberto Fogaça; de Almeida, Sandro Rogério; Ferreira, Karen Spadari

    2015-01-01

    Paracoccidioidomycosis (PCM), caused by Paracoccidioides species is a prevalent systemic and progressive mycosis that occurs in Latin America. It is caused by Paracoccidioides species. Immunization with dendritic cells transfected with a plasmid encoding the scFv (pMAC/PS-scFv) that mimics the main antigen of P. brasiliensis (gp43) confers protection in experimental PCM. DCs link innate and adaptive immunity by recognizing invading pathogens and selecting the type of effector T cell to mediate the immune response. Here, we showed that DC-pMAC/PS-scFv induces the activation of CD4+ and CD8+ T cells. Moreover, our results demonstrated that BALB/c mice infected with P. brasiliensis and treated with DC-pMAC/PS-scFv showed the induction of specific IgG production against gp43 and IFN-γ, IL-12 and IL-4 cytokines. Analysis of regional lymph nodes revealed increases in the expression of clec7a, myd88, tlr2, gata3 and tbx21, which are involved in the immune response. Taken together, our results indicate that the scFv modulates the humoral and cellular immune responses and presents epitopes to CD4+ and CD8+ T cells.

  5. scFv from Antibody That Mimics gp43 Modulates the Cellular and Humoral Immune Responses during Experimental Paracoccidioidomycosis.

    Directory of Open Access Journals (Sweden)

    Grasielle Pereira Jannuzzi

    Full Text Available Paracoccidioidomycosis (PCM, caused by Paracoccidioides species is a prevalent systemic and progressive mycosis that occurs in Latin America. It is caused by Paracoccidioides species. Immunization with dendritic cells transfected with a plasmid encoding the scFv (pMAC/PS-scFv that mimics the main antigen of P. brasiliensis (gp43 confers protection in experimental PCM. DCs link innate and adaptive immunity by recognizing invading pathogens and selecting the type of effector T cell to mediate the immune response. Here, we showed that DC-pMAC/PS-scFv induces the activation of CD4+ and CD8+ T cells. Moreover, our results demonstrated that BALB/c mice infected with P. brasiliensis and treated with DC-pMAC/PS-scFv showed the induction of specific IgG production against gp43 and IFN-γ, IL-12 and IL-4 cytokines. Analysis of regional lymph nodes revealed increases in the expression of clec7a, myd88, tlr2, gata3 and tbx21, which are involved in the immune response. Taken together, our results indicate that the scFv modulates the humoral and cellular immune responses and presents epitopes to CD4+ and CD8+ T cells.

  6. Germination-independent induction of cellular immune response by Bacillus subtilis spores displaying the C fragment of the tetanus toxin.

    Science.gov (United States)

    Mauriello, Emilia M F; Cangiano, Giuseppina; Maurano, Francesco; Saggese, Virgilio; De Felice, Maurilio; Rossi, Mauro; Ricca, Ezio

    2007-01-15

    Bacillus subtilis spores displaying the tetanus toxin fragment C (TTFC) on their surface have been previously shown to induce the production of specific IgG and secretory IgA in mice immunized through the oral or nasal route. Aim of this study was to analyze whether these spores were also able to induce cellular immunity, and whether such immune response was dependent on spore germination in the animal gastro-intestinal tract (GIT). We first developed a germination defective strain of B. subtilis unable to produce viable cells inside the mouse GIT. Germination-defective and congenic wild-type spores both expressing TTFC on their surface were then used to orally immunize Balb/C mice. Both types of spores induced spleen and mesenteric lymph nodes cell proliferation as well as production of IFNgamma but not of IL-4 and IL-10 in both districts. Our results indicate that recombinant spores preferentially induce a strong cell-mediated immune response with a Th1 phenotype, independently from their ability to germinate in the GIT.

  7. Immunostimulatory properties and enhanced TNF- α mediated cellular immunity for tumor therapy by C60(OH)20 nanoparticles

    Science.gov (United States)

    Liu, Ying; Jiao, Fang; Qiu, Yang; Li, Wei; Qu, Ying; Tian, Chixia; Li, Yufeng; Bai, Ru; Lao, Fang; Zhao, Yuliang; Chai, Zhifang; Chen, Chunying

    2009-10-01

    Publications concerning the mechanism of biological activity, especially the immunological mechanism of C60(OH)20 nanoparticles, are relatively limited. However, the structure and characteristics of this carbon allotrope have been widely investigated. In this paper, we have demonstrated that water-soluble C60(OH)20 nanoparticles have an efficient anti-tumor activity in vivo, and show specific immunomodulatory effects to the immune cells, such as T cells and macrophages, both in vivo and in vitro. For example, C60(OH)20 nanoparticles can increase the production of T-helper cell type 1 (Th1) cytokines (IL-2, IFN- γ and TNF-α), and decrease the production of Th2 cytokines (IL-4, IL-5 and IL-6) in serum samples. On the other hand, C60(OH)20 nanoparticles show almost no adverse effect to the viability of immune cells in vitro but stimulate the immune cells to release more cytokines, in particular TNF- α, which plays a key role in the cellular immune process to help eliminate abnormal cells. TNF- α production increased almost three-fold in treated T lymphocytes and macrophages. Accordingly, we conclude that C60(OH)20 nanoparticles have an efficient anti-tumor activity and this effect is associated with an increased CD4+/CD8+ lymphocyte ratio and the enhancement of TNF- α production. The data suggest that C60(OH)20 nanoparticles can improve the immune response to help to scavenge and kill tumor cells.

  8. Combining cellular automata and Lattice Boltzmann method to model multiscale avascular tumor growth coupled with nutrient diffusion and immune competition.

    Science.gov (United States)

    Alemani, Davide; Pappalardo, Francesco; Pennisi, Marzio; Motta, Santo; Brusic, Vladimir

    2012-02-28

    In the last decades the Lattice Boltzmann method (LB) has been successfully used to simulate a variety of processes. The LB model describes the microscopic processes occurring at the cellular level and the macroscopic processes occurring at the continuum level with a unique function, the probability distribution function. Recently, it has been tried to couple deterministic approaches with probabilistic cellular automata (probabilistic CA) methods with the aim to model temporal evolution of tumor growths and three dimensional spatial evolution, obtaining hybrid methodologies. Despite the good results attained by CA-PDE methods, there is one important issue which has not been completely solved: the intrinsic stochastic nature of the interactions at the interface between cellular (microscopic) and continuum (macroscopic) level. CA methods are able to cope with the stochastic phenomena because of their probabilistic nature, while PDE methods are fully deterministic. Even if the coupling is mathematically correct, there could be important statistical effects that could be missed by the PDE approach. For such a reason, to be able to develop and manage a model that takes into account all these three level of complexity (cellular, molecular and continuum), we believe that PDE should be replaced with a statistic and stochastic model based on the numerical discretization of the Boltzmann equation: The Lattice Boltzmann (LB) method. In this work we introduce a new hybrid method to simulate tumor growth and immune system, by applying Cellular Automata Lattice Boltzmann (CA-LB) approach. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Alphavirus replicon particles expressing TRP-2 provide potent therapeutic effect on melanoma through activation of humoral and cellular immunity.

    Directory of Open Access Journals (Sweden)

    Francesca Avogadri

    Full Text Available BACKGROUND: Malignant melanoma is the deadliest form of skin cancer and is refractory to conventional chemotherapy and radiotherapy. Therefore alternative approaches to treat this disease, such as immunotherapy, are needed. Melanoma vaccine design has mainly focused on targeting CD8+ T cells. Activation of effector CD8+ T cells has been achieved in patients, but provided limited clinical benefit, due to immune-escape mechanisms established by advanced tumors. We have previously shown that alphavirus-based virus-like replicon particles (VRP simultaneously activate strong cellular and humoral immunity against the weakly immunogenic melanoma differentiation antigen (MDA tyrosinase. Here we further investigate the antitumor effect and the immune mechanisms of VRP encoding different MDAs. METHODOLOGY/PRINCIPAL FINDINGS: VRP encoding different MDAs were screened for their ability to prevent the growth of the B16 mouse transplantable melanoma. The immunologic mechanisms of efficacy were investigated for the most effective vaccine identified, focusing on CD8+ T cells and humoral responses. To this end, ex vivo immune assays and transgenic mice lacking specific immune effector functions were used. The studies identified a potent therapeutic VRP vaccine, encoding tyrosinase related protein 2 (TRP-2, which provided a durable anti-tumor effect. The efficacy of VRP-TRP2 relies on a novel immune mechanism of action requiring the activation of both IgG and CD8+ T cell effector responses, and depends on signaling through activating Fcγ receptors. CONCLUSIONS/SIGNIFICANCE: This study identifies a VRP-based vaccine able to elicit humoral immunity against TRP-2, which plays a role in melanoma immunotherapy and synergizes with tumor-specific CD8+ T cell responses. These findings will aid in the rational design of future immunotherapy clinical trials.

  10. Alphavirus replicon particles expressing TRP-2 provide potent therapeutic effect on melanoma through activation of humoral and cellular immunity.

    Science.gov (United States)

    Avogadri, Francesca; Merghoub, Taha; Maughan, Maureen F; Hirschhorn-Cymerman, Daniel; Morris, John; Ritter, Erika; Olmsted, Robert; Houghton, Alan N; Wolchok, Jedd D

    2010-09-10

    Malignant melanoma is the deadliest form of skin cancer and is refractory to conventional chemotherapy and radiotherapy. Therefore alternative approaches to treat this disease, such as immunotherapy, are needed. Melanoma vaccine design has mainly focused on targeting CD8+ T cells. Activation of effector CD8+ T cells has been achieved in patients, but provided limited clinical benefit, due to immune-escape mechanisms established by advanced tumors. We have previously shown that alphavirus-based virus-like replicon particles (VRP) simultaneously activate strong cellular and humoral immunity against the weakly immunogenic melanoma differentiation antigen (MDA) tyrosinase. Here we further investigate the antitumor effect and the immune mechanisms of VRP encoding different MDAs. VRP encoding different MDAs were screened for their ability to prevent the growth of the B16 mouse transplantable melanoma. The immunologic mechanisms of efficacy were investigated for the most effective vaccine identified, focusing on CD8+ T cells and humoral responses. To this end, ex vivo immune assays and transgenic mice lacking specific immune effector functions were used. The studies identified a potent therapeutic VRP vaccine, encoding tyrosinase related protein 2 (TRP-2), which provided a durable anti-tumor effect. The efficacy of VRP-TRP2 relies on a novel immune mechanism of action requiring the activation of both IgG and CD8+ T cell effector responses, and depends on signaling through activating Fcγ receptors. This study identifies a VRP-based vaccine able to elicit humoral immunity against TRP-2, which plays a role in melanoma immunotherapy and synergizes with tumor-specific CD8+ T cell responses. These findings will aid in the rational design of future immunotherapy clinical trials.

  11. Genetic polymorphisms associated with rubella virus-specific cellular immunity following MMR vaccination.

    Science.gov (United States)

    Kennedy, Richard B; Ovsyannikova, Inna G; Haralambieva, Iana H; Lambert, Nathaniel D; Pankratz, V Shane; Poland, Gregory A

    2014-11-01

    Rubella virus causes a relatively benign disease in most cases, although infection during pregnancy can result in serious birth defects. An effective vaccine has been available since the early 1970s and outbreaks typically do not occur among highly vaccinated (≥2 doses) populations. Nevertheless, considerable inter-individual variation in immune response to rubella immunization does exist, with single-dose seroconversion rates ~95 %. Understanding the mechanisms behind this variability may provide important insights into rubella immunity. In the current study, we examined associations between single nucleotide polymorphisms (SNPs) in selected cytokine, cytokine receptor, and innate/antiviral genes and immune responses following rubella vaccination in order to understand genetic influences on vaccine response. Our approach consisted of a discovery cohort of 887 subjects aged 11-22 at the time of enrollment and a replication cohort of 542 older adolescents and young adults (age 18-40). Our data indicate that SNPs near the butyrophilin genes (BTN3A3/BTN2A1) and cytokine receptors (IL10RB/IFNAR1) are associated with variations in IFNγ secretion and that multiple SNPs in the PVR gene, as well as SNPs located in the ADAR gene, exhibit significant associations with rubella virus-specific IL-6 secretion. This information may be useful, not only in furthering our understanding immune responses to rubella vaccine, but also in identifying key pathways for targeted adjuvant use to boost immunity in those with weak or absent immunity following vaccination.

  12. Tetanus toxoid-loaded cationic non-aggregated nanostructured lipid particles triggered strong humoral and cellular immune responses.

    Science.gov (United States)

    Kaur, Amandeep; Jyoti, Kiran; Rai, Shweta; Sidhu, Rupinder; Pandey, Ravi Shankar; Jain, Upendra Kumar; Katyal, Anju; Madan, Jitender

    2016-05-01

    In the present investigation, non-aggregated cationic and unmodified nanoparticles (TT-C-NLPs4 and TT-NLPs1) were prepared of about 49.2 ± 6.8-nm and 40.8 ± 8.3-nm, respectively. In addition, spherical shape, crystalline architecture and cationic charge were also noticed. Furthermore, integrity and conformational stability of TT were maintained in both TT-C-NLPs4 and TT-NLPs1, as evidenced by symmetrical position of bands and superimposed spectra, respectively in SDS-PAGE and circular dichroism. Cellular uptake in RAW264.7 cells indicating the concentration-dependent internalisation of nanoparticles. Qualitatively, CLSM exhibited enhanced cellular uptake of non-aggregated TT-C-NLPs4 owing to interaction with negatively charged plasma membrane and clevaloe mediated/independent endocytosis. In last, in vivo immunisation with non-aggregated TT-C-NLPs4 elicited strong humoral (anti-TT IgG) and cellular (IFN-γ) immune responses at day 42, as compared to non-aggregated TT-NLPs1 and TT-Alum following booster immunisation at day 14 and 28. Thus, non-aggregated cationic lipid nanoparticles may be a potent immune-adjuvant for parenteral delivery of weak antigens.

  13. Cellular Immune Response to an Engineered Cell-Based Tumor Vaccine at the Vaccination Site

    OpenAIRE

    Zhou,Qiang; Johnson, Bryon D.; Rimas J Orentas

    2007-01-01

    The engineered expression of the immune co-stimulatory molecules CD80 and CD137L on the surface of a neuroblastoma cell line converts this tumor into a cell-based cancer vaccine. The mechanism by which this vaccine activates the immune system was investigated by capturing and analyzing immune cells responding to the vaccine cell line embedded in a collagen matrix and injected subcutaneously. The vaccine induced a significant increase in the number of activated CD62L− CCR7− CD49b+ CD8 effector...

  14. Vaccination with dengue virus-like particles induces humoral and cellular immune responses in mice

    National Research Council Canada - National Science Library

    Zhang, Shuo; Liang, Mifang; Gu, Wen; Li, Chuan; Miao, Fang; Wang, Xiaofang; Jin, Cong; Zhang, Li; Zhang, Fushun; Zhang, Quanfu; Jiang, Lifang; Li, Mengfeng; Li, Dexin

    2011-01-01

    .... Vaccination with virus-like particles (VLPs) has shown considerable promise for many viral diseases, but the effect of DENV VLPs to induce specific immune responses has not been adequately investigated...

  15. Microbiota-driven immune cellular maturation is essential for antibody-mediated adaptive immunity to Staphylococcus aureus infection in the eye.

    Science.gov (United States)

    Zaidi, Tanweer; Zaidi, Tauqeer; Cywes-Bentley, Colette; Lu, Roger; Priebe, Gregory P; Pier, Gerald B

    2014-08-01

    As an immune-privileged site, the eye, and particularly the outer corneal surface, lacks resident mature immune effector cells. Physical barriers and innate mediators are the best-described effectors of immunity in the cornea. When the barriers are breached, infection can result in rapid tissue destruction, leading to loss of visual acuity and frank blindness. To determine the cellular and molecular components needed for effective adaptive immunity on the corneal surface, we investigated which immune system effectors were required for protection against Staphylococcus aureus corneal infections in mice, which are a serious cause of human eye infections. Both systemically injected and topically applied antibodies to the conserved cell surface polysaccharide poly-N-acetylglucosamine (PNAG) were effective at mediating reductions in corneal pathology and bacterial levels. Additional host factors impacting protection included intercellular adhesion molecule 1 (ICAM-1)-dependent polymorphonuclear leukocyte (PMN) recruitment, functional CD4(+) T cells, signaling via the interleukin-17 (IL-17) receptor, and IL-22 production. In germfree mice, there was no protective efficacy of antibody to PNAG due to the lack of LY6G(+) inflammatory cell coeffector recruitment to the cornea. Protection was manifest after 3 weeks of exposure to conventional mice and acquisition of a resident microbiota. We conclude that in the anterior eye, ICAM-1-mediated PMN recruitment to the infected cornea along with endogenous microbiota-matured CD4(+) T cells producing both IL-17 and IL-22 is required for antibody to PNAG to protect against S. aureus infection. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  16. Plasmodium falciparum synthetic LbL microparticle vaccine elicits protective neutralizing antibody and parasite-specific cellular immune responses.

    Science.gov (United States)

    Powell, Thomas J; Tang, Jie; Derome, Mary E; Mitchell, Robert A; Jacobs, Andrea; Deng, Yanhong; Palath, Naveen; Cardenas, Edwin; Boyd, James G; Nardin, Elizabeth

    2013-04-01

    Epitopes of the circumsporozoite (CS) protein of Plasmodium falciparum, the most pathogenic species of the malaria parasite, have been shown to elicit protective immunity in experimental animals and human volunteers. The mechanisms of immunity include parasite-neutralizing antibodies that can inhibit parasite motility in the skin at the site of infection and in the bloodstream during transit to the hepatocyte host cell and also block interaction with host cell receptors on hepatocytes. In addition, specific CD4+ and CD8+ cellular mechanisms target the intracellular hepatic forms, thus preventing release of erythrocytic stage parasites from the infected hepatocyte and the ensuing blood stage cycle responsible for clinical disease. An innovative method for producing particle vaccines, layer-by-layer (LbL) fabrication of polypeptide films on solid CaCO3 cores, was used to produce synthetic malaria vaccines containing a tri-epitope CS peptide T1BT comprising the antibody epitope of the CS repeat region (B) and two T-cell epitopes, the highly conserved T1 epitope and the universal epitope T. Mice immunized with microparticles loaded with T1BT peptide developed parasite-neutralizing antibodies and malaria-specific T-cell responses including cytotoxic effector T-cells. Protection from liver stage infection following challenge with live sporozoites from infected mosquitoes correlated with neutralizing antibody levels. Although some immunized mice with low or undetectable neutralizing antibodies were also protected, depletion of T-cells prior to challenge resulted in the majority of mice remaining resistant to challenge. In addition, mice immunized with microparticles bearing only T-cell epitopes were not protected, demonstrating that cellular immunity alone was not sufficient for protective immunity. Although the microparticles without adjuvant were immunogenic and protective, a simple modification with the lipopeptide TLR2 agonist Pam3Cys increased the potency and

  17. The specifically enhanced cellular immune responses in Pacific oyster (Crassostrea gigas) against secondary challenge with Vibrio splendidus.

    Science.gov (United States)

    Zhang, Tao; Qiu, Limei; Sun, Zhibin; Wang, Lingling; Zhou, Zhi; Liu, Rui; Yue, Feng; Sun, Rui; Song, Linsheng

    2014-07-01

    The increasing experimental evidences suggest that there are some forms of specific acquired immunity in invertebrates, but the underlying mechanism is not fully understood. In the present study, Pacific oyster (Crassostrea gigas) stimulated primarily by heat-killed Vibrio splendidus displayed stronger immune responses at cellular and molecular levels when they encountered the secondary challenge of live V. splendidus. The total hemocyte counts (THC) increased significantly after the primary stimulation of heat-killed V. splendidus, and it increased even higher (p oysters received the secondary stimulation with live V. splendidus, and the phagocytic rate was also enhanced significantly (p oysters after the secondary stimulation of V. splendidus were higher (p oyster with specifically enhanced phagocytosis and rapidly promoted regeneration of circulating hemocytes when the primed oysters encountered the secondary challenge with V. splendidus.

  18. Pathogen-Mimicking Polymeric Nanoparticles based on Dopamine Polymerization as Vaccines Adjuvants Induce Robust Humoral and Cellular Immune Responses.

    Science.gov (United States)

    Liu, Qi; Jia, Jilei; Yang, Tingyuan; Fan, Qingze; Wang, Lianyan; Ma, Guanghui

    2016-04-06

    Aiming to enhance the immunogenicity of subunit vaccines, a novel antigen delivery and adjuvant system based on dopamine polymerization on the surface of poly(D,L-lactic-glycolic-acid) nanoparticles (NPs) with multiple mechanisms of immunity enhancement is developed. The mussel-inspired biomimetic polydopamine (pD) not only serves as a coating to NPs but also functionalizes NP surfaces. The method is facile and mild including simple incubation of the preformed NPs in the weak alkaline dopamine solution, and incorporation of hepatitis B surface antigen and TLR9 agonist unmethylated cytosine-guanine (CpG) motif with the pD surface. The as-constructed NPs possess pathogen-mimicking manners owing to their size, shape, and surface molecular immune-activating properties given by CpG. The biocompatibility and biosafety of these pathogen-mimicking NPs are confirmed using bone marrow-derived dendritic cells. Pathogen-mimicking NPs hold great potential as vaccine delivery and adjuvant system due to their ability to: 1) enhance cytokine secretion and immune cell recruitment at the injection site; 2) significantly activate and maturate dendritic cells; 3) induce stronger humoral and cellular immune responses in vivo. Furthermore, this simple and versatile dopamine polymerization method can be applicable to endow NPs with characteristics to mimic pathogen structure and function, and manipulate NPs for the generation of efficacious vaccine adjuvants. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Effect of psychological intervention in the form of relaxation and guided imagery on cellular immune function in normal healthy subjects. An overview

    DEFF Research Database (Denmark)

    Zachariae, R; Kristensen, J S; Hokland, P;

    1991-01-01

    The present study measured the effects of relaxation and guided imagery on cellular immune function. During a period of 10 days 10 healthy subjects were given one 1-hour relaxation procedure and one combined relaxation and guided imagery procedure, instructing the subjects to imagine their immune...

  20. Positive and Negative Regulation of Cellular Immune Responses in Physiologic Conditions and Diseases

    Directory of Open Access Journals (Sweden)

    S. Viganò

    2012-01-01

    Full Text Available The immune system has evolved to allow robust responses against pathogens while avoiding autoimmunity. This is notably enabled by stimulatory and inhibitory signals which contribute to the regulation of immune responses. In the presence of a pathogen, a specific and effective immune response must be induced and this leads to antigen-specific T-cell proliferation, cytokines production, and induction of T-cell differentiation toward an effector phenotype. After clearance or control of the pathogen, the effector immune response must be terminated in order to avoid tissue damage and chronic inflammation and this process involves coinhibitory molecules. When the immune system fails to eliminate or control the pathogen, continuous stimulation of T cells prevents the full contraction and leads to the functional exhaustion of effector T cells. Several evidences both in vitro and in vivo suggest that this anergic state can be reverted by blocking the interactions between coinhibitory molecules and their ligands. The potential to revert exhausted or inactivated T-cell responses following selective blocking of their function made these markers interesting targets for therapeutic interventions in patients with persistent viral infections or cancer.

  1. Analytical tools for the study of cellular glycosylation in the immune system

    Directory of Open Access Journals (Sweden)

    Yvette eVan Kooyk

    2013-12-01

    Full Text Available It is becoming increasingly clear that glycosylation plays important role in intercellular communication within the immune system. Glycosylation-dependent interactions are crucial for the innate and adaptive immune system and regulate immune cell trafficking, synapse formation, activation, and survival. These functions take place by the cis or trans interaction of lectins with glycans. Classical immunological and biochemical methods have been used for the study of lectin function; however, the investigation of their counterparts, glycans, requires very specialized methodologies that have been extensively developed in the past decade within the Glycobiology scientific community. This Mini-Review intends to summarize the available technology for the study of glycan biosynthesis, its regulation and characterization for their application to the study of glycans in Immunology.

  2. Particular Characterisation of an In-Vitro-DTH Test to Monitor Cellular Immunity - Applications for Patient Care and Space Flight

    Science.gov (United States)

    Feurecker, M.; Mayer, W.; Gruber, M.; Muckenthaler, F.; Draenert, R.; Bogner, J.; Kaufmann, I.; Crucian, B.; Rykova, M.; Morukov, B.; Sams, C.; Chouker, A.

    2010-01-01

    Goal:i) Characterization of the role of the main immune reactive cell types contributing to the cellular immune response in the in-vitro DTH and ii) Validation of the in-vitro DTH under different clinical and field conditions. Methods:As positive control whole blood was incubated in the in-vitro DTH, supernatants were gathered after 12, 24 and 48h. Readout parameters of this test are cytokines in the assay's supernatant. To determine the role of T-cells, monocytes and natural killer (NK), these cell populations were depleted using magnetic beads prior to in-vitro-DTH incubation. Validation of the test has occurred under clinical (HIV-patients, ICU) and field-conditions (parabolic/space-flights, confinement). Results:T-cell depletion abandoned almost any IL-2 production and reduced IFN-gamma production irrespective of the type of antigen, whereas CD56 depleted cultures tended to lower IL-2 secretion and IFN-gamma and to parallel a IL-10-increase after viral challenge. This IL-10-increase was seen also in CD14-depleted setups. DTH read-out was significantly different under acute stress (parabolic flight) or chronic stress (ISS), respectively. Preliminary data of HIV infected patients demonstrate that this test can display the contemporary immune status during an antiviral therapy. Conclusion:The in-vitro DTH mirrors adaptive and innate immune activation and may serve as tool also for longitudinal follow up of Th1/Th2 weighed immune response under adverse life conditions on earth and in space. It is planned to implement the assay in the on the ISS (MoCISS).

  3. Human papillomavirus (HPV) upregulates the cellular deubiquitinase UCHL1 to suppress the keratinocyte's innate immune response

    NARCIS (Netherlands)

    Karim, R.; Tummers, B.; Meyers, C.; Biryukov, J.L.; Alam, S.; Backendorf, C.; Jha, V.; Offringa, R.; van Ommen, G.J.; Melief, C.J.; Guardavaccaro, D.; Boer, J.M.; van der Burg, S.H.

    2013-01-01

    Persistent infection of basal keratinocytes with high-risk human papillomavirus (hrHPV) may cause cancer. Keratinocytes are equipped with different pattern recognition receptors (PRRs) but hrHPV has developed ways to dampen their signals resulting in minimal inflammation and evasion of host immunity

  4. Aberrant cellular immune responses in humans infected persistently with parvovirus B19

    DEFF Research Database (Denmark)

    Isa, Adiba; Norbeck, Oscar; Hirbod, Taha

    2006-01-01

    A subset of parvovirus B19 (B19) infected patients retains the infection for years, as defined by detection of B19 DNA in bone marrow. Thus far, analysis of B19-specific humoral immune responses and viral genome variations has not revealed a mechanism for the absent viral clearance. In this study...

  5. Human papillomavirus (HPV) upregulates the cellular deubiquitinase UCHL1 to suppress the keratinocyte's innate immune response

    NARCIS (Netherlands)

    Karim, R.; Tummers, B.; Meyers, C.; Biryukov, J.L.; Alam, S.; Backendorf, C.; Jha, V.; Offringa, R.; van Ommen, G.J.; Melief, C.J.; Guardavaccaro, D.; Boer, J.M.; van der Burg, S.H.

    2013-01-01

    Persistent infection of basal keratinocytes with high-risk human papillomavirus (hrHPV) may cause cancer. Keratinocytes are equipped with different pattern recognition receptors (PRRs) but hrHPV has developed ways to dampen their signals resulting in minimal inflammation and evasion of host immunity

  6. Human papillomavirus clade A9 specific cellular immunity during the natural course of disease

    NARCIS (Netherlands)

    Hende, Muriel van den

    2012-01-01

    The immune system plays an important role in the balance between viral clearance and viral persistence in HPV related (pre)malignant lesions. In this thesis, we analyzed HPV clade A9-specific T-cell responses in relation to virological and clinical outcome to gain further insight into HPV-specific

  7. A complementary role for the tetraspanins CD37 and Tssc6 in cellular immunity.

    NARCIS (Netherlands)

    Gartlan, K.H.; Belz, G.T.; Tarrant, J.M.; Minigo, G.; Katsara, M.; Sheng, K.C.; Sofi, M.; Spriel, A.B. van; Apostolopoulos, V.; Plebanski, M.; Robb, L.; Wright, M.D.

    2010-01-01

    The cooperative nature of tetraspanin-tetraspanin interactions in membrane organization suggests functional overlap is likely to be important in tetraspanin biology. Previous functional studies of the tetraspanins CD37 and Tssc6 in the immune system found that both CD37 and Tssc6 regulate T cell pro

  8. Quantifying the dynamics of viruses and the cellular immune response of the host

    NARCIS (Netherlands)

    Althaus, C.L.

    2009-01-01

    Infections can be caused by viruses, which attack certain cells within an infected host. However, the immune system of the host has evolved remarkable defense mechanisms that counter against an infection. In particular, so-called cytotoxic T lymphocytes can recognize and eliminate infected cells. Th

  9. Effect of Compound Glycyrrhizin Injection on Liver Function and Cellular Immunity of Children with Infectious Mononucleosis Complicated Liver Impairment

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Objective: To investigate the effects of Compound Glycyrrhizin Injection (CGI) on liver function and cellular immunity of children with infectious mononucleosis complicated liver impairment (IM-LI) and to explore its clinical therapeutic effect. Methods: Forty-two patients with IM-LI were randomly assigned, according to the randomizing number table, to two groups, 20 in the control group and 22 in the treated group.All the patients were treated with conventional treatment, but to those in the treated group, CGI was given additionally once a day, at the dosage of 10 ml for children aged below 2 years, 20 ml for 2-4 years old, 30 ml for 5-7 years old and 40 ml for 8- 12 years old, in 100-200 ml of 5% glucose solution by intravenous dripping. The treatment lasted for 2 weeks. T lymphocyte subsets and serum levels of alanine transaminase (ALT), aspartate aminotransferase (AST) and total bilirubin (TBil) were detected before and after treatment. Besides, a normal control group consisting of 20 healthy children was also set up. Results: Baseline of the percentage of CD3 + , CD8 + lymphocyte and serum levels of ALT, AST, TBiL in the children with IM-LI were markedly higher, while the percentage of CD4 + lymphocyte and the CD4 +/CD8 + ratio was markedly lower in IM-LI children as compared with the corresponding indices in the healthy children ( P<0.01 ). These indices were improved after treatment in both groups of patients, but the improvement in the treated group was better than that in the control group (P<0.01). Conclusion: Cellular immunity dysfunction often occurs in patients with IM-LI, and CGI treatment can not only obviously promote the recovery of liver function, but also regulate the immune function in organism.

  10. Immune and cellular impacts in the autogenous Aedes caspius larvae after experimentally-induced stress: Effects of Bacillus thuringiensis infection

    Directory of Open Access Journals (Sweden)

    Ashraf M. Ahmed

    2013-01-01

    Full Text Available Insects possess effective defense mechanisms against pathogens via induction of antimicrobial immune and oxidative stress responses. In this study, immune impact and histological damages in the gastric caeca have been investigated in the 3rd instar larvae of the autogenous Aedes caspius upon infection with Bacillus thuringiensis (Bt. Data showed a significant increase in phenoloxidase (PO activity by 1.23 folds at 4 h post-infection which then reduced to the normal level at 8 h post-infection and until larval death. Besides, the nitric oxide (NO titer was significantly increased by 1.4 folds at 4 h post-infection, then, reduced down to its normal level at 8 h post-infection, after which, it was significantly decreasing by time until being hardly detected at 44 h post-infection compared to that of control mosquitoes. Moreover, percentages of cellular apoptosis were significantly elevating from 6 to 48 h post-infection. Consequently, cytological damages in the epithelium and the microvilli of the gastric caeca were observed at 48 h post-infection. Finally, larval body sizes were significantly smaller prior to death (at 48 h post-infection. Taken together, these data suggest further modes of action of Bt as inhibiting the antibacterial immune responses, inducing cellular apoptosis prior to damaging the epithelium of gastric caeca. This may explain – partially at least – the irresistibility and high pathogenicity of Bt against mosquito vector, which may help in understanding, and hence, overcoming the developing resistance by some mosquito vectors to some mosquitocidal bacteria. This may help in improving the biocontrol measures against mosquito vectors.

  11. Synergistic and additive effects of cimetidine and levamisole on cellular immune responses to hepatitis B virus DNA vaccine in mice.

    Science.gov (United States)

    Niu, X; Yang, Y; Wang, J

    2013-02-01

    We and others have previously shown that both cimetidine (CIM) and levamisole (LMS) enhance humoral and cellular responses to DNA vaccines via different mechanisms. In this study, we investigated the synergistic and additive effects of CIM and LMS on the potency of antigen-specific immunities generated by a DNA vaccine encoding the hepatitis B surface antigen (HBsAg, pVax-S2). Compared with CIM or LMS alone, the combination of CIM and LMS elicited a robust HBsAg-specific cellular response that was characterized by higher IgG2a, but did not further increase HBsAg-specific antibody IgG and IgG1 production. Consistent with these results, the combination of CIM and LMS produced the highest level of IL-2 and IFN-γ in antigen-specific CD4(+) T cells, whereas the combination of CIM and LMS did not further increase IL-4 production. Significantly, a robust HBsAg-specific cytotoxic response was also observed in the animals immunized with pVax-S2 in the presence of the combination of CIM and LMS. Further mechanistic studies demonstrated that the combination of CIM and LMS promoted dendritic cell (DC) activation and blocked anti-inflammatory cytokine IL-10 and TGF-β production in CD4(+) CD25(+) T cells. These findings suggest that CIM and LMS have the synergistic and additive ability to enhance cellular response to hepatitis B virus DNA vaccine, which may be mediated by DC activation and inhibition of anti-inflammatory cytokine expression. Thus, the combination of cimetidine and levamisole may be useful as an effective adjuvant in DNA vaccinations for chronic hepatitis B virus infection.

  12. Cellular Immune Responses in Humans Induced by Two Serogroup B Meningococcal Outer Membrane Vesicle Vaccines Given Separately and in Combination.

    Science.gov (United States)

    Oftung, Fredrik; Korsvold, Gro Ellen; Aase, Audun; Næss, Lisbeth M

    2016-04-01

    MenBvac and MeNZB are safe and efficacious outer membrane vesicle (OMV) vaccines against serogroup B meningococcal disease. Antibody responses have previously been investigated in a clinical trial with these two OMV vaccines given separately (25 μg/dose) or in combination (12.5 and 12.5 μg/dose) in three doses administered at 6-week intervals. Here, we report the results from analyzing cellular immune responses against MenBvac and MeNZB OMVs in terms of antigen-specific CD4(+)T cell proliferation and secretion of cytokines. The proliferative CD4(+)T cell responses to the combined vaccine were of the same magnitude as the homologous responses observed for each individual vaccine. The results also showed cross-reactivity in the sense that both vaccine groups receiving separate vaccines responded to both homologous and heterologous OMV antigen when assayed for antigen-specific cellular proliferation. In addition, a multiplex bead array assay was used to analyze the presence of Th1 and Th2 cytokines in cell culture supernatants. The results showed that gamma interferon, interleukin-4 (IL-4), and IL-10 responses could be detected as a result of vaccination with both the MenBvac and the MeNZB vaccines given separately, as well as when given in combination. With respect to cross-reactivity, the cytokine results paralleled the observations made for proliferation. In conclusion, the results demonstrate that cross-reactive cellular immune responses involving both Th1 and Th2 cytokines can be induced to the same extent by different tailor-made OMV vaccines given either separately or in combination with half the dose of each vaccine. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  13. HIV-specific humoral and cellular immunity in rabbits vaccinated with recombinant human immunodeficiency virus-like gag-env particles

    Energy Technology Data Exchange (ETDEWEB)

    Haffar, O.K.; Smithgall, M.D.; Moran, P.A.; Travis, B.M.; Zarling, J.M.; Hu, S.L. (Department of Virology, Bristol-Myers Squibb Pharmaceutical Research Institute-Seattle, WA (USA))

    1991-08-01

    Recombinant human immunodeficiency virus type-1 (HIV-1)-like gag-env particles produced in mammalian cells were inoculated into two New Zealand white rabbits. In parallel, two control rabbits were inoculated with the homologous HIV-1 virions inactivated by ultraviolet light (uv) and psoralen treatments. The humoral and cellular immune responses to HIV-1 were evaluated for both groups of animals. Recombinant particles elicited humoral immunity that was specific for all the viral structural proteins. The antibodies recognized both denatured and nondenatured proteins. Moreover, the sera neutralized the in vitro infectivity of the homologous virus in CEM cells. Importantly, the recombinant particles also generated a T helper response by priming with the HIV proteins. Similar results were observed with inactivated virus immunization. Therefore, the authors results suggest that the recombinant HIV-like particles elicit functional humoral immunity as well as cellular immunity and represent a novel vaccine candidate for AIDS.

  14. Avian CD154 enhances humoral and cellular immune responses induced by an adenovirus vector-based vaccine in chickens.

    Science.gov (United States)

    Sánchez Ramos, Oliberto; González Pose, Alain; Gómez-Puerta, Silvia; Noda Gomez, Julia; Vega Redondo, Armando; Águila Benites, Julio César; Suárez Amarán, Lester; Parra, Natalie C; Toledo Alonso, Jorge R

    2011-05-01

    Recombinant adenoviral vectors have emerged as an attractive system for veterinary vaccines development. However, for poultry vaccination a very important criterion for an ideal vaccine is its low cost. The objective of this study was to test the ability of chicken CD154 to enhance the immunogenicity of an adenoviral vector-based vaccine against avian influenza virus in order to reduce the amount of antigen required to induce an effective immune response in avian. Chickens were vaccinated with three different doses of adenoviral vectors encoding either HA (AdHA), or HA fused to extracellular domain chicken's CD154 (AdHACD). Hemagglutination inhibition (HI) assay and relative quantification of IFN-γ showed that the adenoviral vector encoding for the chimeric antigen is able to elicit an improved humoral and cellular immune response, which demonstrated that CD154 can be used as a molecular adjuvant allowing to reduce in about 50-fold the amount of adenoviral vector vaccine required to induce an effective immune response.

  15. Immune modulation by a cellular network of mesenchymal stem cells and breast cancer cell subsets: Implication for cancer therapy.

    Science.gov (United States)

    Eltoukhy, Hussam S; Sinha, Garima; Moore, Caitlyn A; Sandiford, Oleta A; Rameshwar, Pranela

    2017-08-01

    The immune modulatory properties of mesenchymal stem cells (MSCs) are mostly controlled by the particular microenvironment. Cancer stem cells (CSCs), which can initiate a clinical tumor, have been the subject of intense research. This review article discusses investigative studies of the roles of MSCs on cancer biology including on CSCs, and the potential as drug delivery to tumors. An understanding of how MSCs behave in the tumor microenvironment to facilitate the survival of tumor cells would be crucial to identify drug targets. More importantly, since CSCs survive for decades in dormancy for later resurgence, studies are presented to show how MSCs could be involved in maintaining dormancy. Although the mechanism by which CSCs survive is complex, this article focus on the cellular involvement of MSCs with regard to immune responses. We discuss the immunomodulatory mechanisms of MSC-CSC interaction in the context of therapeutic outcomes in oncology. We also discuss immunotherapy as a potential to circumventing this immune modulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Mycoplasma hyopneumoniae and Mycoplasma flocculare differential domains from orthologous surface proteins induce distinct cellular immune responses in mice.

    Science.gov (United States)

    Leal, Fernanda Munhoz Dos Anjos; Virginio, Veridiana Gomes; Martello, Carolina Lumertz; Paes, Jéssica Andrade; Borges, Thiago J; Jaeger, Natália; Bonorino, Cristina; Ferreira, Henrique Bunselmeyer

    2016-07-15

    Mycoplasma hyopneumoniae and Mycoplasma flocculare are two genetically close species found in the swine respiratory tract. Despite their similarities, while M. hyopneumoniae is the causative agent of porcine enzootic pneumonia, M. flocculare is a commensal bacterium. Genomic and transcriptional comparative analyses so far failed to explain the difference in pathogenicity between these two species. We then hypothesized that such difference might be, at least in part, explained by amino acid sequence and immunological or functional differences between ortholog surface proteins. In line with that, it was verified that approximately 85% of the ortholog surface proteins from M. hyopneumoniae 7448 and M. flocculare present one or more differential domains. To experimentally assess possible immunological implications of this kind of difference, the extracellular differential domains from one pair of orthologous surface proteins (MHP7448_0612, from M. hyopneumoniae, and MF_00357, from M. flocculare) were expressed in E. coli and used to immunize mice. The recombinant polypeptides (rMHP61267-169 and rMF35767-196, respectively) induced distinct cellular immune responses. While, rMHP61267-169 induced both Th1 and Th2 responses, rMF35767-196 induced just an early pro-inflammatory response. These results indicate that immunological properties determined by differential domains in orthologous surface protein might play a role in pathogenicity, contributing to elicit specific and differential immune responses against each species.

  17. Evaluation of Cellular Phenotypes Implicated in Immunopathogenesis and Monitoring Immune Reconstitution Inflammatory Syndrome in HIV/Leprosy Cases

    Science.gov (United States)

    Giacoia-Gripp, Carmem Beatriz Wagner; Sales, Anna Maria; Nery, José Augusto da Costa; Santos-Oliveira, Joanna Reis; de Oliveira, Ariane Leite; Sarno, Euzenir Nunes; Morgado, Mariza Gonçalves

    2011-01-01

    Background It is now evident that HAART-associated immunological improvement often leads to a variety of new clinical manifestations, collectively termed immune reconstitution inflammatory syndrome, or IRIS. This phenomenon has already been described in cases of HIV coinfection with Mycobacterium leprae, most of them belonging to the tuberculoid spectrum of leprosy disease, as observed in leprosy reversal reaction (RR). However, the events related to the pathogenesis of this association need to be clarified. This study investigated the immunological profile of HIV/leprosy patients, with special attention to the cellular activation status, to better understand the mechanisms related to IRIS/RR immunopathogenesis, identifying any potential biomarkers for IRIS/RR intercurrence. Methods/Principal Findings Eighty-five individuals were assessed in this study: HIV/leprosy and HIV-monoinfected patients, grouped according to HIV-viral load levels, leprosy patients without HIV coinfection, and healthy controls. Phenotypes were evaluated by flow cytometry for T cell subsets and immune differentiation/activation markers. As expected, absolute counts of the CD4+ and CD8+ T cells from the HIV-infected individuals changed in relation to those of the leprosy patients and controls. However, there were no significant differences among the groups, whether in the expression of cellular differentiation phenotypes or cellular activation, as reflected by the expression of CD38 and HLA-DR. Six HIV/leprosy patients identified as IRIS/RR were analyzed during IRIS/RR episodes and after prednisone treatment. These patients presented high cellular activation levels regarding the expression of CD38 in CD8+ cells T during IRIS/RR (median: 77,15%), dropping significantly (p<0,05) during post-IRIS/RR moments (median: 29,7%). Furthermore, an increase of cellular activation seems to occur prior to IRIS/RR. Conclusion/Significance These data suggest CD38 expression in CD8+ T cells interesting tool

  18. Evaluation of cellular phenotypes implicated in immunopathogenesis and monitoring immune reconstitution inflammatory syndrome in HIV/leprosy cases.

    Directory of Open Access Journals (Sweden)

    Carmem Beatriz Wagner Giacoia-Gripp

    Full Text Available BACKGROUND: It is now evident that HAART-associated immunological improvement often leads to a variety of new clinical manifestations, collectively termed immune reconstitution inflammatory syndrome, or IRIS. This phenomenon has already been described in cases of HIV coinfection with Mycobacterium leprae, most of them belonging to the tuberculoid spectrum of leprosy disease, as observed in leprosy reversal reaction (RR. However, the events related to the pathogenesis of this association need to be clarified. This study investigated the immunological profile of HIV/leprosy patients, with special attention to the cellular activation status, to better understand the mechanisms related to IRIS/RR immunopathogenesis, identifying any potential biomarkers for IRIS/RR intercurrence. METHODS/PRINCIPAL FINDINGS: Eighty-five individuals were assessed in this study: HIV/leprosy and HIV-monoinfected patients, grouped according to HIV-viral load levels, leprosy patients without HIV coinfection, and healthy controls. Phenotypes were evaluated by flow cytometry for T cell subsets and immune differentiation/activation markers. As expected, absolute counts of the CD4+ and CD8+ T cells from the HIV-infected individuals changed in relation to those of the leprosy patients and controls. However, there were no significant differences among the groups, whether in the expression of cellular differentiation phenotypes or cellular activation, as reflected by the expression of CD38 and HLA-DR. Six HIV/leprosy patients identified as IRIS/RR were analyzed during IRIS/RR episodes and after prednisone treatment. These patients presented high cellular activation levels regarding the expression of CD38 in CD8+ cells T during IRIS/RR (median: 77,15%, dropping significantly (p<0,05 during post-IRIS/RR moments (median: 29,7%. Furthermore, an increase of cellular activation seems to occur prior to IRIS/RR. CONCLUSION/SIGNIFICANCE: These data suggest CD38 expression in CD8+ T cells

  19. [Effect of an anabolic steroid on the cellular immunity and postoperative evaluation of uterine cervical cancer].

    Science.gov (United States)

    Ooshika, Y; Umesaki, N; Sako, H; Kawabata, M; Sugana, T

    1984-10-01

    The effects of an anabolic steroid on the immune activity and clinical condition of patients with cancer of the uterine cervix were studied. The effects of the steroid on tumor growth were also studied in animals. The results obtained demonstrated that the anabolic steroid (1) enhanced the activity of macrophages and cell-mediated immune activity, (2) reduced the incidence of post-operative infection, (3) reduced pose-operative loss of weight of patients due to the intrinsic anabolic activity of the steroid, and (4) did not exert any influence on tumor growth. Judging from these results, administration of the anabolic steroid would appear to be effective for the improvement of the general condition of cancer patients following surgery or in terminal cases.

  20. Stability of a general delayed virus dynamics model with humoral immunity and cellular infection

    Science.gov (United States)

    Elaiw, A. M.; Raezah, A. A.; Alofi, A. S.

    2017-06-01

    In this paper, we investigate the dynamical behavior of a general nonlinear model for virus dynamics with virus-target and infected-target incidences. The model incorporates humoral immune response and distributed time delays. The model is a four dimensional system of delay differential equations where the production and removal rates of the virus and cells are given by general nonlinear functions. We derive the basic reproduction parameter R˜0 G and the humoral immune response activation number R˜1 G and establish a set of conditions on the general functions which are sufficient to determine the global dynamics of the models. We use suitable Lyapunov functionals and apply LaSalle's invariance principle to prove the global asymptotic stability of the all equilibria of the model. We confirm the theoretical results by numerical simulations.

  1. Genetic polymorphisms in host antiviral genes: associations with humoral and cellular immunity to measles vaccine.

    Science.gov (United States)

    Haralambieva, Iana H; Ovsyannikova, Inna G; Umlauf, Benjamin J; Vierkant, Robert A; Shane Pankratz, V; Jacobson, Robert M; Poland, Gregory A

    2011-11-08

    Host antiviral genes are important regulators of antiviral immunity and plausible genetic determinants of immune response heterogeneity after vaccination. We genotyped and analyzed 307 common candidate tagSNPs from 12 antiviral genes in a cohort of 745 schoolchildren immunized with two doses of measles-mumps-rubella (MMR) vaccine. Associations between SNPs/haplotypes and measles virus-specific immune outcomes were assessed using linear regression methodologies in Caucasians and African-Americans. Genetic variants within the DDX58/RIG-I gene, including a coding polymorphism (rs3205166/Val800Val), were associated as single-SNPs (p≤0.017; although these SNPs did not remain significant after correction for false discovery rate/FDR) and in haplotype-level analysis, with measles-specific antibody variations in Caucasians (haplotype allele p-value=0.021; haplotype global p-value=0.076). Four DDX58 polymorphisms, in high LD, demonstrated also associations (after correction for FDR) with variations in both measles-specific IFN-γ and IL-2 secretion in Caucasians (p≤0.001, q=0.193). Two intronic OAS1 polymorphisms, including the functional OAS1 SNP rs10774671 (p=0.003), demonstrated evidence of association with a significant allele-dose-related increase in neutralizing antibody levels in African-Americans. Genotype and haplotype-level associations demonstrated the role of ADAR genetic variants, including a non-synonymous SNP (rs2229857/Arg384Lys; p=0.01), in regulating measles virus-specific IFN-γ Elispot responses in Caucasians (haplotype global p-value=0.017). After correction for FDR, 15 single-SNP associations (11 SNPs in Caucasians and 4 SNPs in African-Americans) still remained significant at the q-valuemeasles vaccine in Caucasians and African-Americans.

  2. Specific cellular stimulation in the primary immune response: a quantized model.

    OpenAIRE

    1982-01-01

    A general theory for the initial phase of T cell independent immune response is derived from elementary physical-chemical considerations and from the premise that response entails a quantized linkage of cell surface receptors. The theory leads to the construction of explicit antigen dose--response and antigen dose--suppression curves, to the calculation of intrinsic affinities for receptors, and to the deduction that receptors are divalent in character. The theory may be applicable to other c...

  3. Specific cellular stimulation in the primary immune response: experimental test of a quantized model.

    OpenAIRE

    Dintzis, R Z; Vogelstein, B; Dintzis, H M

    1982-01-01

    Dose-response and dose-suppression curves have been measured for the primary immune response in mice, in vivo and in vitro, by using size-fractionated linear polymers of acrylamide substituted with hapten. The results are in general agreement with a simple theory based on the premise that the specific primary immunological response is quantized at some fundamental and limiting step, requiring a minimum number of linked antigen receptors for response.

  4. Enhancement of cellular and humoral immunity following embryonic exposure to melatonin in turkeys (Meleagris gallopavo).

    Science.gov (United States)

    Moore, C B; Siopes, T D

    2005-09-01

    Two experiments were performed to determine the effect of in ovo melatonin supplementation on the ontogeny of immunity in the Large White turkey poult. Different levels of melatonin were injected into the air cell of the egg 4 days prior to hatch. In Experiment 1, turkey embryos received 3 ml of solution containing 200, 100, 50, 25, 10, or 1 microg/ml of melatonin. The hatchability at each dose was determined and compared to vehicle-injected controls. In Experiment 2, only poults from melatonin treatments in Experiment 1 that resulted in normal hatchability (10 and 1 microg/ml) were used. Lymphoproliferative responses to phytohemagglutinin (PHA-P) and primary antibody responses to Chukar red blood cells (CRBC) were determine at five time intervals: 0, 1, 7, 14, and 21 days post-hatch. At each of these times, including 28 days post-hatch, treatment effects on body weights were determined. At 28 days post-hatch, bursal, thymic, and splenic weights were obtained. In ovo melatonin administration significantly accelerated (P0.05) the development of cell-mediated (PHA-P) and humoral (CRBC) immune responses, and these responses were significantly elevated above vehicle-injected controls through 21 days post-hatch. No effect was observed on bursal, thymic, splenic or body weights. These data suggest that embryonic exposure to melatonin enhances post-hatch immune development and responsiveness.

  5. A role for effectors of cellular immunity in epimorphic regeneration of amphibian limbs.

    Science.gov (United States)

    Fahmy, Gehan H; Sicard, Raymond E

    2002-01-01

    Immune modulation of regeneration of amphibian appendages is suggested, but not proven, by previous studies. Earlier studies have not demonstrated effects of treatments on both epimorphic regeneration and immune responses or restoration of regeneration by specific reversal of immunomodulation. Cyclosporin A (CsA) and interleukin-2 (IL-2) were used in this study to demonstrate the effects of immune suppression and its reversal, on allograft rejection and forelimb regeneration. When administered alone, CsA suppressed rejection of skin allografts and induced a dose-dependent retardation of regeneration. IL-2, administered alone, did not affect allograft rejection or regeneration. However, when combined with CsA, IL-2 abrogated or reversed effects of CsA on both allograft rejection and forelimb regeneration, in a dose-dependent manner. The selective focus of CsA's action and the ability of IL-2 to overcome and reverse these effects strongly suggest that T-lymphocytes participate in or contribute to expression of epimorphic regeneration of amphibian appendages. Further studies are required to better characterize this role.

  6. Cellular Immune Responses and Viral Diversity in Individuals Treated during Acute and Early HIV-1 Infection

    Science.gov (United States)

    Altfeld, Marcus; Rosenberg, Eric S.; Shankarappa, Raj; Mukherjee, Joia S.; Hecht, Frederick M.; Eldridge, Robert L.; Addo, Marylyn M.; Poon, Samuel H.; Phillips, Mary N.; Robbins, Gregory K.; Sax, Paul E.; Boswell, Steve; Kahn, James O.; Brander, Christian; Goulder, Philip J.R.; Levy, Jay A.; Mullins, James I.; Walker, Bruce D.

    2001-01-01

    Immune responses induced during the early stages of chronic viral infections are thought to influence disease outcome. Using HIV as a model, we examined virus-specific cytotoxic T lymphocytes (CTLs), T helper cells, and viral genetic diversity in relation to duration of infection and subsequent response to antiviral therapy. Individuals with acute HIV-1 infection treated before seroconversion had weaker CTL responses directed at fewer epitopes than persons who were treated after seroconversion. However, treatment-induced control of viremia was associated with the development of strong T helper cell responses in both groups. After 1 yr of antiviral treatment initiated in acute or early infection, all epitope-specific CTL responses persisted despite undetectable viral loads. The breadth and magnitude of CTL responses remained significantly less in treated acute infection than in treated chronic infection, but viral diversity was also significantly less with immediate therapy. We conclude that early treatment of acute HIV infection leads to a more narrowly directed CTL response, stronger T helper cell responses, and a less diverse virus population. Given the need for T helper cells to maintain effective CTL responses and the ability of virus diversification to accommodate immune escape, we hypothesize that early therapy of primary infection may be beneficial despite induction of less robust CTL responses. These data also provide rationale for therapeutic immunization aimed at broadening CTL responses in treated primary HIV infection. PMID:11148221

  7. Changes in cellular immune activation and memory T-cell subsets in HIV-infected Zambian children receiving HAART.

    Science.gov (United States)

    Rainwater-Lovett, Kaitlin; Nkamba, Hope; Mubiana-Mbewe, Mwangelwa; Moore, Carolyn B; Margolick, Joseph; Moss, William J

    2014-12-15

    Increased exposure to a broad array of pathogens in children residing in sub-Saharan Africa may lead to heightened immune activation and increased proportions of memory T cells. Changes in the size of these cellular subsets have implications for restoration of normal immune function after treatment with highly active antiretroviral therapy (HAART) and are not well characterized in young sub-Saharan African children. CD4⁺ and CD8⁺ T-cell subsets were measured by flow cytometry in 157 HIV-infected Zambian children before and at 3-month intervals during HAART for up to 30 months and in 34 control children at a single study visit. Before HAART, HIV-infected children had higher levels of activated and effector memory (EM) CD4⁺ and CD8⁺ T cells, and lower levels of naive T cells and CD8⁺ T cells expressing IL-7Rα, compared with control children. The median duration of follow-up was 14.9 months (interquartile range, 6.4-23.2) among 120 HIV-infected children with at least 1 study follow-up visit. Levels of immune activation and EM CD4⁺ T cells declined within 6 months of HAART, but the percentages of EM CD4 T cells and effector CD8⁺ T cells remained elevated through 30 months of HAART. IL-7Rα-expressing CD8⁺ T cells increased with HAART, suggesting expansion of memory capacity. HAART significantly reduced levels of immune activation and EM CD4⁺ T cells, and promoted reconstitution of naive T cells and IL-7Rα-expressing CD8⁺ T cells. However, persistently high levels of EM CD4⁺ T cells in HIV-infected children may reflect chronic perturbations in T-cell subset composition.

  8. The Effect of Cellular Stress on T and B Cell Memory Pathways in Immunized and Unimmunized BALB/c Mice.

    Science.gov (United States)

    Wang, Yufei; Rahman, Durdana; Mistry, Mukesh; Lehner, Thomas

    2016-09-23

    Immunological memory is a fundamental function of vaccination. The antigenic breakdown products of the vaccine may not persist, and undefined tonic stimulation has been proposed to maintain the specific memory. We have suggested that cellular stress agents to which the immune cells are constantly exposed may be responsible for tonic stimulation. Here we have studied four stress agents: sodium arsenite, an oxidative agent; Gramicidin, eliciting K(+) efflux and calcium influx; dithiocarbamate, a metal ionophore; and aluminum hydroxide (alum), an immunological adjuvant. The aims of this study are to extend these investigations to T and B cell responses of unimmunized and ovalbumin (OVA)-immunized BALB/c mice, and furthermore, to ascertain whether stress is involved in optimal expression of memory B cells, as demonstrated in CD4(+) T cells. Examination of the homeostatic pathway defined by IL-15/IL-15R (IL-15 receptor) interaction and the inflammasome pathway defined by the IL-1-IL-1R interaction between dendritic cells (DC) and CD4(+) T cells suggests that both pathways are involved in the development of optimal expression of CD4(+)CD45RO(+) memory T cells in unimmunized and OVA-immunized BALB/c mice. Furthermore, significant direct correlation was found between CD4(+)CD44(+) memory T cells and both IL-15 of the homeostatic and IL-1β of the inflammasome pathways. However, CD19(+)CD27(+) memory B cells in vivo seem to utilize only the IL-15/IL-15R homeostatic pathway, although the proliferative responses are enhanced by the stress agents. Altogether, stress agents may up-regulate unimmunized and OVA-immunized CD4(+)CD44(+) memory T cells by the homeostatic and inflammasome pathways. However, the CD19(+)CD27(+) memory B cells utilize only the homeostatic pathway. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Interaction of Streptococcus agalactiae and cellular innate immunity in colonization and disease

    Directory of Open Access Journals (Sweden)

    Sybille eLandwehr-Kenzel

    2014-10-01

    Full Text Available Streptococcus agalactiae (Group B streptococcus, GBS is highly adapted to humans, where it is a normal constituent of the intestinal and vaginal flora. Yet, GBS has highly invasive potential and causes excessive inflammation, sepsis and death at the beginning of life, in the elderly and in diabetic patients. Thus GBS is a model pathobiont that thrives in the healthy host, but has not lost its potential virulence during coevolution with mankind. It remains incompletely understood how the innate immune system contains GBS in the natural niches, the intestinal and genital tracts, and which molecular events underlie breakdown of mucocutaneous resistance. Newborn infants between days seven and 90 of life are at risk of a particularly striking sepsis manifestation (late onset disease, LOD, where the transition from colonization to invasion and dissemination, and thus from health to severe sepsis is typically fulminant and not predictable. The great majority of late-onset sepsis cases is caused by one clone, GBS ST-17, which expresses HvgA as a signature virulence factor and adhesin. In mice, HvgA promotes the crossing of both the mucosal and the blood brain barrier. Expression levels of HvgA and other GBS virulence factors, such as pili and toxins, are regulated by the upstream two-component control system CovR/S. This in turn is modulated by acidic epithelial pH, high glucose levels and during the passage through the mouse intestine. After invasion, GBS has the ability to subvert innate immunity by mechanisms like GAPDH-dependent induction of IL-10 and β-protein binding to the inhibitory phagocyte receptors sialic acid binding immunoglobulin-like lectin 5 and 14. On the host side, sensing of GBS nucleic acids and lipopeptides by both Toll-like receptors (TLRs and the inflammasome appears to be critical for host resistance against GBS. Yet, comprehensive models on the interplay between GBS and human immune cells at the colonizing site are just

  10. The immune cellular effectors of terrestrial isopod Armadillidium vulgare: meeting with their invaders, Wolbachia.

    Directory of Open Access Journals (Sweden)

    Frédéric Chevalier

    Full Text Available BACKGROUND: Most of crustacean immune responses are well described for the aquatic forms whereas almost nothing is known for the isopods that evolved a terrestrial lifestyle. The latter are also infected at a high prevalence with Wolbachia, an endosymbiotic bacterium which affects the host immune system, possibly to improve its transmission. In contrast with insect models, the isopod Armadillidium vulgare is known to harbor Wolbachia inside the haemocytes. METHODOLOGY/PRINCIPAL FINDINGS: In A. vulgare we characterized three haemocyte types (TEM, flow cytometry: the hyaline and semi-granular haemocytes were phagocytes, while semi-granular and granular haemocytes performed encapsulation. They were produced in the haematopoietic organs, from central stem cells, maturing as they moved toward the edge (TEM. In infected individuals, live Wolbachia (FISH colonized 38% of the haemocytes but with low, variable densities (6.45±0.46 Wolbachia on average. So far they were not found in hyaline haemocytes (TEM. The haematopoietic organs contained 7.6±0.7×10(3Wolbachia, both in stem cells and differentiating cells (FISH. While infected and uninfected one-year-old individuals had the same haemocyte density, in infected animals the proportion of granular haemocytes in particular decreased by one third (flow cytometry, Pearson's test = 12 822.98, df = 2, p<0.001. CONCLUSIONS/SIGNIFICANCE: The characteristics of the isopod immune system fell within the range of those known from aquatic crustaceans. The colonization of the haemocytes by Wolbachia seemed to stand from the haematopoietic organs, which may act as a reservoir to discharge Wolbachia in the haemolymph, a known route for horizontal transfer. Wolbachia infection did not affect the haemocyte density, but the quantity of granular haemocytes decreased by one third. This may account for the reduced prophenoloxidase activity observed previously in these animals.

  11. The Immune Cellular Effectors of Terrestrial Isopod Armadillidium vulgare: Meeting with Their Invaders, Wolbachia

    Science.gov (United States)

    Bertaux, Joanne; Raimond, Maryline; Morel, Franck; Bouchon, Didier; Grève, Pierre; Braquart-Varnier, Christine

    2011-01-01

    Background Most of crustacean immune responses are well described for the aquatic forms whereas almost nothing is known for the isopods that evolved a terrestrial lifestyle. The latter are also infected at a high prevalence with Wolbachia, an endosymbiotic bacterium which affects the host immune system, possibly to improve its transmission. In contrast with insect models, the isopod Armadillidium vulgare is known to harbor Wolbachia inside the haemocytes. Methodology/Principal Findings In A. vulgare we characterized three haemocyte types (TEM, flow cytometry): the hyaline and semi-granular haemocytes were phagocytes, while semi-granular and granular haemocytes performed encapsulation. They were produced in the haematopoietic organs, from central stem cells, maturing as they moved toward the edge (TEM). In infected individuals, live Wolbachia (FISH) colonized 38% of the haemocytes but with low, variable densities (6.45±0.46 Wolbachia on average). So far they were not found in hyaline haemocytes (TEM). The haematopoietic organs contained 7.6±0.7×103 Wolbachia, both in stem cells and differentiating cells (FISH). While infected and uninfected one-year-old individuals had the same haemocyte density, in infected animals the proportion of granular haemocytes in particular decreased by one third (flow cytometry, Pearson's test = 12 822.98, df = 2, p<0.001). Conclusions/Significance The characteristics of the isopod immune system fell within the range of those known from aquatic crustaceans. The colonization of the haemocytes by Wolbachia seemed to stand from the haematopoietic organs, which may act as a reservoir to discharge Wolbachia in the haemolymph, a known route for horizontal transfer. Wolbachia infection did not affect the haemocyte density, but the quantity of granular haemocytes decreased by one third. This may account for the reduced prophenoloxidase activity observed previously in these animals. PMID:21533137

  12. Cellular immune responses and phagocytic activity of fishes exposed to pollution of volcano mud.

    Science.gov (United States)

    Risjani, Yenny; Yunianta; Couteau, Jerome; Minier, Christophe

    2014-05-01

    Since May 29, 2006, a mud volcano in the Brantas Delta of the Sidoarjo district has emitted mud that has inundated nearby villages. Pollution in this area has been implicated in detrimental effects on fish health. In fishes, leukocyte and phagocytic cells play a vital role in body defenses. We report for the first time the effect of "LUSI" volcano mud on the immune systems of fish in the Brantas Delta. The aim of this study was to find biomarkers to allow the evaluation of the effects of volcanic mud and anthropogenic pollution on fish health in the Brantas Delta. The study took places at the Brantas Delta, which was polluted by volcano mud, and at reference sites in Karangkates and Pasuruan. Leukocyte numbers were determined using a Neubauer hemocytometer and a light microscope. Differential leukocyte counts were determined using blood smears stained with May Grunwald-Giemsa, providing neutrophil, lymphocyte and monocyte counts. Macrophages were taken from fish kidney, and their phagocytic activity was measured. In vitro analyses revealed that leukocyte and differential leukocyte counts (DLC) were higher in Channa striata and Chanos chanos caught from the polluted area. Macrophage numbers were higher in Oreochromis mossambicus than in the other species, indicating that this species is more sensitive to pollution. In areas close to volcanic mud eruption, all specimens had lower phagocytic activity. Our results show that immune cells were changed and phagocytic activity was reduced in the polluted area indicating cytotoxicity and alteration of the innate immune system in fishes exposed to LUSI volcano mud and anthropogenic pollution.

  13. Cellular Immune Responses Associated with Occult Hepatitis C Virus Infection of the Liver

    OpenAIRE

    Quiroga, Juan A.; Llorente, Silvia; Castillo, Inmaculada; Rodríguez-Iñigo, Elena; Pardo, Margarita; CARREÑO, VICENTE

    2006-01-01

    Occult hepatitis C virus (HCV) infection is a type of recently identified chronic infection that is evidenced only by detection of HCV RNA in liver; patients consistently test negative for antibodies to HCV and HCV RNA in serum. Using ex vivo and in vitro measures of T-cell responses, we have identified functional virus-specific memory CD4+ and CD8+ T cells in the peripheral blood of patients with occult HCV infection. The features of the virus-specific T cells were consistent with immune sur...

  14. Immunosuppressive effects of the standardized extract of Phyllanthus amarus on cellular immune responses in Wistar-Kyoto rats

    Directory of Open Access Journals (Sweden)

    Ilangkovan M

    2015-08-01

    Full Text Available Menaga Ilangkovan, Ibrahim Jantan, Mohamed Ahmed Mesaik, Syed Nasir Abbas BukhariDrug and Herbal Research Center, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, MalaysiaAbstract: Phyllanthus amarus (family: Euphorbiaceae is of immense interest due to its wide spectrum of biological activities. In the present study, the standardized 80% ethanol extract of P. amarus was investigated for its modulatory activity on various cellular immune parameters, including chemotaxis of neutrophils, engulfment of Escherichia coli by neutrophils, and Mac-1 expression, in leukocytes isolated from treated/nontreated Wistar-Kyoto rats. The detailed cell-mediated activity of P. amarus was also investigated, including analysis of the effects on T- and B-cell proliferation and CD4+ and CD8+ T-cell subsets in splenic mononuclear cells, and estimation of serum cytokine production by activated T-cells. The main components of the extract, phyllanthin, hypophyllanthin, corilagin, geraniin, ellagic acid, and gallic acid were identified and quantitatively analyzed in the extracts, using validated reversed-phase high-performance liquid chromatography (HPLC methods. N-formyl-methionyl-leucyl-phenylalanine (fMLP-induced neutrophils isolated from rats administered with the extract of P. amarus, at doses ranging from 100 to 400 mg/kg for 14 days, revealed a significant dose-dependent reduction in neutrophil migration (P<0.05. Similar patterns of inhibition were also observed in phagocytic activity and in fMLP-induced changes in expression of β2 integrin polymorphonuclear neutrophils. The results in P. amarus-treated rats also demonstrated a dose-dependent inhibition of both lipopolysaccharide-stimulated B-cell proliferation and concanavalin A–stimulated T-cell proliferation as compared with sensitized control. At a dose of 400 mg/kg (P<0.01, there was a significant decrease in the (% expression of CD4+ and CD8+ in splenocytes and in serum cytokines of T

  15. Dammarane triterpenes from the leaves of Panax ginseng enhance cellular immunity

    DEFF Research Database (Denmark)

    Tran, Tien-Lam; Kim, Young-Ran; Yang, Jun-Li

    2014-01-01

    In our search for immune stimulating materials from natural source, bioassay-guided fractionation of a methanol extract of Panax ginseng leaves led to the isolation of three dammarane triterpenes (1-3), including two previously unknown compounds 27-demethyl-(E,E)-20(22),23-dien-3β,6α,12β-trihydro......In our search for immune stimulating materials from natural source, bioassay-guided fractionation of a methanol extract of Panax ginseng leaves led to the isolation of three dammarane triterpenes (1-3), including two previously unknown compounds 27-demethyl-(E,E)-20(22),23-dien-3β,6α,12β...... expression in LPS-activated mouse peritoneal macrophage at a concentration of 100 ng/mL. Furthermore, compound 1 strongly increased the Th1 response-mediated cytokine IL-2, and decreased Th2 response-mediated cytokines IL-4 and IL-6 expression at 100 ng/mL on ConA-activated splenocytes. This study indicated...

  16. Roles of peroxinectin in PGE2-mediated cellular immunity in Spodoptera exigua.

    Directory of Open Access Journals (Sweden)

    Jiyeong Park

    Full Text Available Prostaglandins (PGs mediate insect immune responses to infections and invasions. Although the presence of PGs has been confirmed in several insect species, their biosynthesis in insects remains a conundrum because orthologs of the mammalian cyclooxygenases (COXs have not been found in the known insect genomes. PG-mediated immune reactions have been documented in the beet armyworm, Spodoptera exigua. The purpose of this research is to identify the source of PGs in S. exigua.Peroxidases (POXs are a sister group of COX genes. Ten putative POXs (SePOX-A ∼ SePOX-J were expressed in S. exigua. Expressions of SePOX-F and -H were induced by bacterial challenge and expressed in the hemocytes and the fat body. RNAi of each POX was performed by hemocoelic injection of their specific double-stranded RNAs. dsPOX-F or, separately, dsPOX-H, but not the other eight dsRNA constructs, specifically suppressed hemocyte-spreading behavior and nodule formation; these two reactions were also inhibited by aspirin, a COX inhibitor. PGE2, but not arachidonic acid, treatment rescued the immunosuppression. Sequence analysis indicated that both POX genes were clustered with peroxinectin (Pxt and their cognate proteins shared some conserved domains corresponding to the Pxt of Drosophila melanogaster.SePOX-F and -H are Pxt-like genes associated with PG biosynthesis in S. exigua.

  17. Detection and characterization of cellular immune responses using peptide-MHC microarrays.

    Directory of Open Access Journals (Sweden)

    Yoav Soen

    2003-12-01

    Full Text Available The detection and characterization of antigen-specific T cell populations is critical for understanding the development and physiology of the immune system and its responses in health and disease. We have developed and tested a method that uses arrays of peptide-MHC complexes for the rapid identification, isolation, activation, and characterization of multiple antigen-specific populations of T cells. CD4(+ or CD8(+ lymphocytes can be captured in accordance with their ligand specificity using an array of peptide-MHC complexes printed on a film-coated glass surface. We have characterized the specificity and sensitivity of a peptide-MHC array using labeled lymphocytes from T cell receptor transgenic mice. In addition, we were able to use the array to detect a rare population of antigen-specific T cells following vaccination of a normal mouse. This approach should be useful for epitope discovery, as well as for characterization and analysis of multiple epitope-specific T cell populations during immune responses associated with viral and bacterial infection, cancer, autoimmunity, and vaccination.

  18. Improving cellular therapy for primary immune deficiency diseases: recognition, diagnosis, and management.

    Science.gov (United States)

    Griffith, Linda M; Cowan, Morton J; Notarangelo, Luigi D; Puck, Jennifer M; Buckley, Rebecca H; Candotti, Fabio; Conley, Mary Ellen; Fleisher, Thomas A; Gaspar, H Bobby; Kohn, Donald B; Ochs, Hans D; O'Reilly, Richard J; Rizzo, J Douglas; Roifman, Chaim M; Small, Trudy N; Shearer, William T

    2009-12-01

    More than 20 North American academic centers account for the majority of hematopoietic stem cell transplantation (HCT) procedures for primary immunodeficiency diseases (PIDs), with smaller numbers performed at additional sites. Given the importance of a timely diagnosis of these rare diseases and the diversity of practice sites, there is a need for guidance as to best practices in management of patients with PIDs before, during, and in follow-up for definitive treatment. In this conference report of immune deficiency experts and HCT physicians who care for patients with PIDs, we present expert guidance for (1) PID diagnoses that are indications for HCT, including severe combined immunodeficiency disease (SCID), combined immunodeficiency disease, and other non-SCID diseases; (2) the critical importance of a high degree of suspicion of the primary care physician and timeliness of diagnosis for PIDs; (3) the need for rapid referral to an immune deficiency expert, center with experience in HCT, or both for patients with PIDs; (4) medical management of a child with suspicion of SCID/combined immunodeficiency disease while confirming the diagnosis, including infectious disease management and workup; (5) the posttransplantation follow-up visit schedule; (6) antimicrobial prophylaxis after transplantation, including gamma globulin administration; and (7) important indications for return to the transplantation center after discharge. Finally, we discuss the role of high-quality databases in treatment of PIDs and HCT as an element of the infrastructure that will be needed for productive multicenter clinical trials in these rare diseases.

  19. Involvement of the thymus and cellular immune system in craniofacial malformation syndromes.

    Science.gov (United States)

    Scheuerle, A E; Good, R A; Habal, M B

    1990-04-01

    Craniofacial structures, the aortic arch, thymus, and parathyroid glands all arise from the embryologic pharyngeal pouches, and DiGeorge and Job craniofacial malformation syndromes have defined immunologic deficiencies. The question addressed by this study is whether patients with other pharyngeal pouch malformations could also have immunologic abnormalities. Twelve patients, 4 female and 8 male, were selected at random from the Tampa Bay Craniofacial Center. Their diagnoses included: cleft lip/cleft palate, hemifacial microsomia/Goldenhar syndrome, Treacher-Collins syndrome, craniofacial hemangiomata, cranio-synostosis syndromes, and Tessier 13 cleft. Fresh blood samples were analyzed against age-matched controls for immunoglobin number, using immunoelectrophoresis, T-cell, B-cell, and natural killer cell quantity via Coulter counter and monoclonal antibody labeling, as well as lymphocyte stimulation and response functions with phytohemagglutinin, concanavalin A, pokeweed mitogen, and Staphylococcus aureus mitogens. All patients studied had some abnormality of their immune systems. Seven had specific T-cell abnormalities and three patients had abnormalities in all three categories studied. This indicates that patients with any pharyngeal pouch malformation may have an abnormality of the immune system.

  20. Hemodialysis vintage, black ethnicity, and pretransplantation antidonor cellular immunity in kidney transplant recipients.

    Science.gov (United States)

    Augustine, Joshua J; Poggio, Emilio D; Clemente, Michael; Aeder, Mark I; Bodziak, Kenneth A; Schulak, James A; Heeger, Peter S; Hricik, Donald E

    2007-05-01

    Prolonged exposure to dialysis before transplantation and black ethnicity are known risk factors for acute rejection and graft loss in kidney transplant recipients. Because the strength of the primed antidonor T cell repertoire before transplantation also is associated with rejection and graft dysfunction, this study sought to determine whether hemodialysis (HD) vintage and/or black ethnicity affected donor-directed T cell immunity. An enzyme-linked immunosorbent spot (ELISPOT) assay was used to measure the frequency of peripheral T cells that expressed IFN-gamma in response to donor stimulator cells before transplantation in 100 kidney recipients. Acute rejection occurred in 38% of ELISPOT (+) patients versus 14% of ELISPOT (-) patients (P = 0.008). The median (HD) vintage was 46 mo (0 to 125 mo) in ELISPOT (+) patients versus 24 mo (0 to 276 mo) in ELISPOT (-) patients (P = 0.009). Black recipients had a greater median HD vintage (55 versus 14 mo in nonblack recipients; P vintage remained a significant positive correlate with an ELISPOT (+) result (odds ratio per year of HD 1.3; P = 0.003). These data suggest that the risk for developing cross-reactive antidonor T cell immunity increases with longer HD vintage, providing an explanation for the previously observed relationship between increased dialysis exposure and worse posttransplantation outcome. Longer HD vintage may also explain the increased T cell alloreactivity that previously was observed in black kidney recipients.

  1. Cellular immune responses to nine Mycobacterium tuberculosis vaccine candidates following intranasal vaccination.

    Directory of Open Access Journals (Sweden)

    Suraj B Sable

    Full Text Available BACKGROUND: The identification of Mycobacterium tuberculosis vaccines that elicit a protective immune response in the lungs is important for the development of an effective vaccine against tuberculosis. METHODS AND PRINCIPAL FINDINGS: In this study, a comparison of intranasal (i.n. and subcutaneous (s.c. vaccination with the BCG vaccine demonstrated that a single moderate dose delivered intranasally induced a stronger and sustained M. tuberculosis-specific T-cell response in lung parenchyma and cervical lymph nodes of BALB/c mice than vaccine delivered subcutaneously. Both BCG and a multicomponent subunit vaccine composed of nine M. tuberculosis recombinant proteins induced strong antigen-specific T-cell responses in various local and peripheral immune compartments. Among the nine recombinant proteins evaluated, the alanine proline rich antigen (Apa, Rv1860 was highly antigenic following i.n. BCG and immunogenic after vaccination with a combination of the nine recombinant antigens. The Apa-induced responses included induction of both type 1 and type 2 cytokines in the lungs as evaluated by ELISPOT and a multiplexed microsphere-based cytokine immunoassay. Of importance, i.n. subunit vaccination with Apa imparted significant protection in the lungs and spleen of mice against M. tuberculosis challenge. Despite observed differences in the frequencies and location of specific cytokine secreting T cells both BCG vaccination routes afforded comparable levels of protection in our study. CONCLUSION AND SIGNIFICANCE: Overall, our findings support consideration and further evaluation of an intranasally targeted Apa-based vaccine to prevent tuberculosis.

  2. [Functional activity of peritonal macrophages in liver immune damage of cellular and antibody genesis in mice].

    Science.gov (United States)

    Martynova, T V; Aleksieieva, I M

    2009-01-01

    The aim of present work was to compare the functional activity of peritoneal macrophages (Mf) at T-cellular and antibody induced hepatitis in mice of CBA line. T-cellular hepatitis was caused by concanavalin A (ConA), antibody-induced hepatitis was caused by administration of xenogenic anti-liver antibodies: gamma-globulin fractions of antihepatocytotoxic serum (gamma-AHCS). It was found that single injection of ConA or gamma-AHCS caused damage of liver with cytolytic syndrome through 20 hours. Functional activity of Mf in these conditions was significantly different. Application of ConA resulted in the decrease in phagocytosis of latex particles and oxygen-dependent metabolism; application of gamma-AHCS--to increase of these processes. Weakening of Mf activity may be one of the reasons for the decrease of dead cell eliminations that results in the maintenance of inflammatory reaction. At the same time significant amplification of phagocytic Mf activity may be one of the pathways of free radical endogenic sources increase that causes cell alteration and plays its role as mediators at inflammation.

  3. Humoral and cellular immune responses to synthetic peptides of the Leishmania donovani kinetoplastid membrane protein-11

    DEFF Research Database (Denmark)

    Jensen, A T; Gasim, S; Ismail, A

    1998-01-01

    Native kinetoplastid membrane protein-11 (KMP-11), purified from crude extracts of Leishmania donovani parasites, activates T cells from individuals who have recovered from visceral leishmaniasis. In this work we used three 38-mer peptides spanning the amino acid sequence of the L. donovani KMP-11...... as solid-phase ligands in enzyme-linked immunosorbent assays (ELISAs) and as stimulating antigens in lymphoproliferative assays in order to evaluate humoral and cellular immune responses to well-defined sequences of the protein. Antibody reactivity against the three peptides was measured in plasma from 63...... Sudanese visceral leishmaniasis patients (VL) and the percentage of patients with anti-KMP-11 antibodies in ELISA were 37% (KMP-11-1), 30% (KMP-11-2) and 58% (KMP-11-3). The fraction of VL patients with measurable antibody reactivity in one or more of the three ELISAs was 79%. Cross-reactivity to the KMP...

  4. Local and regional re-establishment of cellular immunity during curative antibiotherapy of murine Mycobacterium ulcerans infection.

    Directory of Open Access Journals (Sweden)

    Teresa G Martins

    several months after lesion sterilization. This RS regimen prevented DLN destruction, allowing the rapid re-establishment of local and regional cell mediated immune responses associated with macrophage activation. Therefore it is likely that this re-establishment of protective cellular immunity synergizes with antibiotherapy.

  5. Local and Regional Re-Establishment of Cellular Immunity during Curative Antibiotherapy of Murine Mycobacterium ulcerans Infection

    Science.gov (United States)

    Martins, Teresa G.; Gama, José B.; Fraga, Alexandra G.; Saraiva, Margarida; Silva, Manuel T.; Castro, António G.; Pedrosa, Jorge

    2012-01-01

    lesion sterilization. This RS regimen prevented DLN destruction, allowing the rapid re-establishment of local and regional cell mediated immune responses associated with macrophage activation. Therefore it is likely that this re-establishment of protective cellular immunity synergizes with antibiotherapy. PMID:22393444

  6. Role of Natural Immunomodulator (Aloe Vera in Cellular and Humoral Immune Responses

    Directory of Open Access Journals (Sweden)

    Ening Wiedosari

    2007-12-01

    Full Text Available Aloe vera belongs to a group of Liliaceae family plant and cultivated worldwide. It possesses acemannan (acetylated mannan, which has a significant pharmacological property. The acemannan has an immunomodulatory activity when administered to animals. The major immunomodulating effect includes the activation of immune effector cells, such as lymphocytes and macrophages, resulting in the production of cytokines, interleukin (IL-1, IL-6, IL-12 and tumor necrosis factor alpha (TNFα. In particular, this extract can modulate the differentiation capacity of CD4+T cells to mature into Th1 subsets and enhance the innate cytokine response. As a consequence, this extract will have a profound effect in controlling disease, caused by intracellular infectious agents (bacteria and viruses. However, further studies are needed to determine the immunomodulating effects of Aloe vera in multi-component extracts equivalent to what are being used commonly in traditional medicine.

  7. Intranasal Immunization with Pressure Inactivated Avian Influenza Elicits Cellular and Humoral Responses in Mice.

    Directory of Open Access Journals (Sweden)

    Shana P C Barroso

    Full Text Available Influenza viruses pose a serious global health threat, particularly in light of newly emerging strains, such as the avian influenza H5N1 and H7N9 viruses. Vaccination remains the primary method for preventing acquiring influenza or for avoiding developing serious complications related to the disease. Vaccinations based on inactivated split virus vaccines or on chemically inactivated whole virus have some important drawbacks, including changes in the immunogenic properties of the virus. To induce a greater mucosal immune response, intranasally administered vaccines are highly desired as they not only prevent disease but can also block the infection at its primary site. To avoid these drawbacks, hydrostatic pressure has been used as a potential method for viral inactivation and vaccine production. In this study, we show that hydrostatic pressure inactivates the avian influenza A H3N8 virus, while still maintaining hemagglutinin and neuraminidase functionalities. Challenged vaccinated animals showed no disease signs (ruffled fur, lethargy, weight loss, and huddling. Similarly, these animals showed less Evans Blue dye leakage and lower cell counts in their bronchoalveolar lavage fluid compared with the challenged non-vaccinated group. We found that the whole inactivated particles were capable of generating a neutralizing antibody response in serum, and IgA was also found in nasal mucosa and feces. After the vaccination and challenge we observed Th1/Th2 cytokine secretion with a prevalence of IFN-γ. Our data indicate that the animals present a satisfactory immune response after vaccination and are protected against infection. Our results may pave the way for the development of a novel pressure-based vaccine against influenza virus.

  8. Autoimmunity in ulcerative colitis: humoral and cellular immune response bytropomyosin in ulcerative colitis

    Institute of Scientific and Technical Information of China (English)

    Xin Geng; Masato Taniguchi; Hui Hui Dai; JJ-C Lin; Jim Lin; Kiron Moy Das

    2000-01-01

    AIM Autoimmunity has been emphasized in the pathogenesis of ulcerative colitis (UC). We reported thattropomyosin (TM) or TM related protein is a putative autoantigen in UC. In human fibroblast, at least 8isoforms of TM have been identified with molecular weight range from 30kD to 40kD, depending upon theisoforms, and human TM isoforms (hTM5) has been found the main isoform in human intestinal epithelialcells. In this study, hTM5 was used as a putative auto-antigen for the humoral and T cell immune responses inpatients with UC, Crohn's disease (CD) and healthy subjects (HS) as controls.METHODS Anti-bTM antibody was examined by enzyme-linked immunosorbent assay using human sera(UC 59, CD 28, HS 26) against hTM isoforms. The IFN-γ production by peripheral blood T cells followingstimulation by recombinant hTM5 was analyzed by ELISPOT assay.RESULTS Anti-hTM5 antibody (IgG1) was detected in 15/59 (25.4%) patients with UC, 3/28 (10.γ%)with CD, and 3/26 (11.5%) of HS. The OD value in UC was significantly higher than in CD and HS groups(P < 0.05; P < 0.01 respectively). Western blot analysis demonstrated immunoreactivity against hTM5 inseveral UC sera. ELISPOT assay demonstrated that IFN-γ production is significantly higher in UC (7/18),39.0%), compared with CD (0/8, 0%) and HS (0/7, 0%), (P<0.05).CONCLUSION A significantly higher immune response to hTM5 was present in UC compared to CD andHS. Further studies of the hTM5/peptides may provide immuno-biochemical mechanism of autoimmuneprocess in UC.

  9. Intranasal Immunization with Pressure Inactivated Avian Influenza Elicits Cellular and Humoral Responses in Mice.

    Science.gov (United States)

    Barroso, Shana P C; Nico, Dirlei; Nascimento, Danielle; Santos, Ana Clara V; Couceiro, José Nelson S S; Bozza, Fernando A; Ferreira, Ana M A; Ferreira, Davis F; Palatnik-de-Sousa, Clarisa B; Souza, Thiago Moreno L; Gomes, Andre M O; Silva, Jerson L; Oliveira, Andréa C

    2015-01-01

    Influenza viruses pose a serious global health threat, particularly in light of newly emerging strains, such as the avian influenza H5N1 and H7N9 viruses. Vaccination remains the primary method for preventing acquiring influenza or for avoiding developing serious complications related to the disease. Vaccinations based on inactivated split virus vaccines or on chemically inactivated whole virus have some important drawbacks, including changes in the immunogenic properties of the virus. To induce a greater mucosal immune response, intranasally administered vaccines are highly desired as they not only prevent disease but can also block the infection at its primary site. To avoid these drawbacks, hydrostatic pressure has been used as a potential method for viral inactivation and vaccine production. In this study, we show that hydrostatic pressure inactivates the avian influenza A H3N8 virus, while still maintaining hemagglutinin and neuraminidase functionalities. Challenged vaccinated animals showed no disease signs (ruffled fur, lethargy, weight loss, and huddling). Similarly, these animals showed less Evans Blue dye leakage and lower cell counts in their bronchoalveolar lavage fluid compared with the challenged non-vaccinated group. We found that the whole inactivated particles were capable of generating a neutralizing antibody response in serum, and IgA was also found in nasal mucosa and feces. After the vaccination and challenge we observed Th1/Th2 cytokine secretion with a prevalence of IFN-γ. Our data indicate that the animals present a satisfactory immune response after vaccination and are protected against infection. Our results may pave the way for the development of a novel pressure-based vaccine against influenza virus.

  10. Cellular immune correlates analysis of an HIV-1 preexposure prophylaxis trial

    Science.gov (United States)

    Kuebler, Peter J.; Mehrotra, Megha L.; McConnell, J. Jeff; Holditch, Sara J.; Shaw, Brian I.; Tarosso, Leandro F.; Leadabrand, Kaitlyn S.; Milush, Jeffrey M.; York, Vanessa A.; Raposo, Rui André Saraiva; Cheng, Rex G.; Eriksson, Emily M.; McMahan, Vanessa; Glidden, David V.; Shiboski, Stephen; Grant, Robert M.; Nixon, Douglas F.; Kallás, Esper G.

    2015-01-01

    HIV-1–specific T-cell responses in exposed seronegative subjects suggest that a viral breach of the exposure site is more common than current transmission rates would suggest and that host immunity can extinguish subsequent infection foci. The Preexposure Prophylaxis Initiative (iPrEx) chemoprophylaxis trial provided an opportunity to rigorously investigate these responses in a case–control immunology study; 84 preinfection peripheral blood mononuclear cell samples from individuals enrolled in the iPrEx trial who later seroconverted were matched with 480 samples from enrolled subjects who remained seronegative from both the placebo and active treatment arms. T-cell responses to HIV-1 Gag, Protease, Integrase, Reverse Transcriptase, Vif, and Nef antigens were quantified for all subjects in an IFN-γ enzyme-linked immunospot (ELISpot) assay. IFN-γ responses varied in magnitude and frequency across subjects. A positive response was more prevalent in those who remained persistently HIV-1–negative for Gag (P = 0.007), Integrase (P < 0.001), Vif (P < 0.001), and Nef (P < 0.001). When correlated with outcomes in the iPrEx trial, Vif- and Integrase-specific T-cell responses were associated with reduced HIV-1 infection risk [hazard ratio (HR) = 0.36, 95% confidence interval (95% CI) = 0.19–0.66 and HR = 0.52, 95% CI = 0.28–0.96, respectively]. Antigen-specific responses were independent of emtricitabine/tenofovir disoproxil fumarate use. IFN-γ secretion in the ELISpot was confirmed using multiparametric flow cytometry and largely attributed to effector memory CD4+ or CD8+ T cells. Our results show that HIV-1–specific T-cell immunity can be detected in exposed but uninfected individuals and that these T-cell responses can differentiate individuals according to infection outcomes. PMID:26100867

  11. Plasma cytokines, chemokines and cellular immune responses in pre-school Nigerian children infected with Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Noone Cariosa

    2013-01-01

    Full Text Available Abstract Background Malaria is a major cause of morbidity and mortality worldwide with over one million deaths annually, particularly in children under five years. This study was the first to examine plasma cytokines, chemokines and cellular immune responses in pre-school Nigerian children infected with Plasmodium falciparum from four semi-urban villages near Ile-Ife, Osun State, Nigeria. Methods Blood was obtained from 231 children (aged 39–73 months who were classified according to mean P. falciparum density per μl of blood (uninfected (n = 89, low density (10,000, n = 22. IL-12p70, IL-10, Nitric oxide, IFN-γ, TNF, IL-17, IL-4 and TGF-β, C-C chemokine RANTES, MMP-8 and TIMP-1 were measured in plasma. Peripheral blood mononuclear cells were obtained and examined markers of innate immune cells (CD14, CD36, CD56, CD54, CD11c AND HLA-DR. T-cell sub-populations (CD4, CD3 and γδTCR were intracellularly stained for IL-10, IFN-γ and TNF following polyclonal stimulation or stimulated with malaria parasites. Ascaris lumbricoides was endemic in these villages and all data were analysed taking into account the potential impact of bystander helminth infection. All data were analysed using SPSS 15 for windows and in all tests, p Results The level of P. falciparum parasitaemia was positively associated with plasma IL-10 and negatively associated with IL-12p70. The percentage of monocytes was significantly decreased in malaria-infected individuals while malaria parasitaemia was positively associated with increasing percentages of CD54+, CD11c+ and CD56+ cell populations. No association was observed in cytokine expression in mitogen-activated T-cell populations between groups and no malaria specific immune responses were detected. Although A. lumbricoides is endemic in these villages, an analysis of the data showed no impact of this helminth infection on P. falciparum parasitaemia or on immune responses associated with P. falciparum infection

  12. Role of cellular density, in vitro, in anti-tumor activity of CFA-treated and immunized cells.

    Science.gov (United States)

    Uyeki, E M; Truitt, G A; Bisel, T U

    1976-11-01

    Incorporation of tritiated deoxythymidine (3HdT) into DNA was used to measure growth, in vitro, of P815 tumor cells admixed with spleen and peritoneal effector cells. At a high tumor cell density ((1x10(5) cells per dish), using anti-theta and anti-macrophage sera, T-cells and macrophages from the peritoneum of immunized mice could be identified as cells possessing anti-tumor activity. A nonspecific inhibition by normal effector cells, which occurred at the high tumor cell density, did not occur at a lower tumor cell density (1x10(4) cells per dish). Therefore, the effects of immunization and Freund's adjuvant treatment on the anti-tumor activity of effector cells were determined more accurately when normal cells were no longer inhibitory. Thus, experimental variables dealing with cellular density (cells/mm2 of the culture vessel surface) and effector:tumor cell ratios play an important role in the anti-proliferative capacity of effector cells.

  13. Pleuran (β-glucan from Pleurotus ostreatus) supplementation, cellular immune response and respiratory tract infections in athletes.

    Science.gov (United States)

    Bergendiova, Katarina; Tibenska, Elena; Majtan, Juraj

    2011-09-01

    Prolonged and exhausting physical activity causes numerous changes in immunity and sometimes transient increases the risk of upper respiratory tract infections (URTIs). Nutritional supplements as countermeasures to exercise-induced changes have increasingly been studied in the last decade. One of the most promising nutritional supplements is β-glucan, a well-known immunomodulator with positive effects on the function of immunocompetent cells. In this double blind, placebo-controlled study, we investigated the effect of pleuran, an insoluble β-(1,3/1,6) glucan from mushroom Pleurotus ostreatus, on selected cellular immune responses and incidence of URTI symptoms in athletes. Fifty athletes were randomized to pleuran or placebo group, taking pleuran (commercial name Imunoglukan(®)) or placebo supplements during 3 months. Venous whole blood was collected before and after 3 months of supplementation and additionally 3 months after supplementation period was completed. Incidence of URTI symptoms together with characterization of changes in phagocytosis and natural killer (NK) cell count was monitored during the study. We found that pleuran significantly reduced the incidence of URTI symptoms and increased the number of circulating NK cells. In addition, the phagocytosis process remained stable in pleuran group during the study in contrast to placebo group where significant reduction of phagocytosis was observed. These findings indicate that pleuran may serve as an effective nutritional supplement for athletes under heavy physical training. Additional research is needed to determine the mechanisms of pleuran function.

  14. Solid bioneedle-delivered influenza vaccines are highly thermostable and induce both humoral and cellular immune responses.

    Directory of Open Access Journals (Sweden)

    Peter C Soema

    Full Text Available The potential of bioneedles to deliver influenza vaccines was investigated. Four influenza vaccine formulations were screened to determine the optimal formulation for use with bioneedles. The stability of the formulations after freeze-drying was checked to predict the stability of the influenza vaccines in the bioneedles. Subunit, split, virosomal and whole inactivated influenza (WIV vaccine were formulated and lyophilized in bioneedles, and subsequently administered to C57BL/6 mice. Humoral and cellular immune responses were assessed after vaccination. The thermostability of lyophilized vaccines was determined after one-month storage at elevated temperatures. Bioneedle influenza vaccines induced HI titers that are comparable to those induced by intramuscular WIV vaccination. Delivery by bioneedles did not alter the type of immune response induced by the influenza vaccines. Stability studies showed that lyophilized influenza vaccines have superior thermostability compared to conventional liquid vaccines, and remained stable after one-month storage at 60°C. Influenza vaccines delivered by bioneedles are a viable alternative to conventional liquid influenza vaccines. WIV was determined to be the most potent vaccine formulation for administration by bioneedles. Lyophilized influenza vaccines in bioneedles are independent of a cold-chain, due to their increased thermostability, which makes distribution and stockpiling easier.

  15. Fusarium ramigenum, a novel human opportunist in a patient with common variable immunodeficiency and cellular immune defects: case report.

    Science.gov (United States)

    Moroti, Ruxandra V; Gheorghita, Valeriu; Al-Hatmi, Abdullah M S; de Hoog, G Sybren; Meis, Jacques F; Netea, Mihai G

    2016-02-15

    Fusarium species are ubiquitous environmental fungi that occasionally provoke serious invasive infections in immunocompromised hosts. Among Fusarium species, Fusarium ramigenum, belonging to the Fusarium fujikuroi species complex, has thus far never been found to cause human infections. Here we describe the first case of invasive fusariosis caused by Fusarium ramigenum in a human and also identify immunological deficiencies that most likely contributed to invasiveness. A 32-year-old Caucasian male with a seemingly insignificant medical history of mild respiratory illness during the preceding two years, developed invasive pulmonary fusariosis. Detailed immunological assessment revealed the presence of common variable immunodeficiency, complicated by a severe impairment of the capacity of T-cells to produce both gamma-interferon and interleukin-17. In-depth microbiological assessment identified the novel human opportunistic pathogen Fusarium ramigenum as cause of the infection. This report demonstrated that an opportunistic invasive fungal infection may indicate an underlying cellular immune impairment of the host. The unexpected invasive infection with Fusarium ramigenum in this case unmasked a complex combined humoral and cellular immunological deficiency.

  16. Humoral and cellular immunity to Plasmodium falciparum merozoite surface protein 1 and protection from infection with blood-stage parasites.

    Science.gov (United States)

    Moormann, Ann M; Sumba, Peter Odada; Chelimo, Kiprotich; Fang, Hua; Tisch, Daniel J; Dent, Arlene E; John, Chandy C; Long, Carole A; Vulule, John; Kazura, James W

    2013-07-01

     Acquired immunity to malaria develops with increasing age and repeated infections. Understanding immune correlates of protection from malaria would facilitate vaccine development and identification of biomarkers that reflect changes in susceptibility resulting from ongoing malaria control efforts.  The relationship between immunoglobulin G (IgG) antibody and both interferon γ (IFN-γ) and interleukin 10 (IL-10) responses to the 42-kD C-terminal fragment of Plasmodium falciparum merozoite surface protein 1 (MSP142) and the risk of (re)infection were examined following drug-mediated clearance of parasitemia in 94 adults and 95 children in an area of holoendemicity of western Kenya.  Positive IFN-γ enzyme-linked immunosorbent assay (ELISA) and enzyme-linked immunosorbent spot assay (ELISPOT) responses to MSP142 3D7 were associated with delayed time to (re)infection, whereas high-titer IgG antibodies to MSP142 3D7 or FVO alleles were not independently predictive of the risk of (re)infection. When IFN-γ and IL-10 responses were both present, the protective effect of IFN-γ was abrogated. A Cox proportional hazard model including IFN-γ, IL-10, MSP142 3D7 IgG antibody responses, hemoglobin S genotype, age, and infection status at baseline showed that the time to blood-stage infection correlated positively with IFN-γ responses and negatively with IL-10 responses, younger age, and asymptomatic parasitemia.  Evaluating combined allele-specific cellular and humoral immunity elicited by malaria provides a more informative measure of protection relative to evaluation of either measure alone.

  17. Cellular immune responses in HIV-negative immunodeficiency with anti-interferon-γ antibodies and opportunistic intracellular microorganisms.

    Directory of Open Access Journals (Sweden)

    Jiraprapa Wipasa

    Full Text Available BACKGROUND: Cell-mediated immunity plays a crucial role in resistance to intracellular infection. We previously reported antibodies against interferon-gamma (IFN-γ in HIV- negative (HIV- patients with acquired immunodeficiency presenting with repeated episodes of disseminated infection caused by uncommon opportunistic intracellular fungal, bacterial, and viral pathogens. This follow-up study aimed to investigate cellular immune responses in these unusual patients. METHODS: Twenty HIV- patients presenting with ≥2 episodes of culture- or histopathologic-proven opportunistic infections were enrolled along with age- and sex-matched controls comprised of 20 HIV+ patients plus 20 healthy adults. Monocyte phenotyping and intracellular cytokine production were determined by staining with specific antibodies followed by flow cytometry. Anti-interferon-γ antibodies were measured by enzyme-linked immunosorbent assay, and inducible nitric oxide synthase by reverse-transcription polymerase chain reaction. RESULTS: There were no differences among cases, HIV+, and healthy controls in the percentage of monocytes, or CD68 and HLA-DR expression on their surfaces. FcR1 (CD119 expression on monocytes was significantly higher in cases than in HIV+ (p<0.05 and healthy controls (p<0.01, suggesting the presence of activated monocytes in the circulation. Interleukin (IL-2 and tumor necrosis factor (TNF-α production in CD4 cells were significantly lower in cases than in healthy controls (p<0.01 and p<0.001, respectively. CD8 production of TNF-α among cases was significantly lower than that of healthy controls (p<0.05. CONCLUSION: Immunodeficiency in HIV- individuals with repeated infections with intracellular pathogens may be associated with one or more of the abnormal immune responses reflected by the reduced production of both IL-2 by CD4 T cells and TNF-α by CD4 T cells and CD8 T cells, as well as presence of anti-IFN-γ antibody, as previously reported.

  18. Loss of Humoral and Cellular Immunity to Invasive Nontyphoidal Salmonella during Current or Convalescent Plasmodium falciparum Infection in Malawian Children.

    Science.gov (United States)

    Nyirenda, Tonney S; Nyirenda, James T; Tembo, Dumizulu L; Storm, Janet; Dube, Queen; Msefula, Chisomo L; Jambo, Kondwani C; Mwandumba, Henry C; Heyderman, Robert S; Gordon, Melita A; Mandala, Wilson L

    2017-07-01

    Invasive nontyphoidal Salmonella (iNTS) infections are commonly associated with Plasmodium falciparum infections, but the immunologic basis for this linkage is poorly understood. We hypothesized that P. falciparum infection compromises the humoral and cellular immunity of the host to NTS, which increases the susceptibility of the host to iNTS infection. We prospectively recruited children aged between 6 and 60 months at a Community Health Centre in Blantyre, Malawi, and allocated them to the following groups; febrile with uncomplicated malaria, febrile malaria negative, and nonfebrile malaria negative. Levels of Salmonella enterica serovar Typhimurium-specific serum bactericidal activity (SBA) and whole-blood bactericidal activity (WBBA), complement C3 deposition, and neutrophil respiratory burst activity (NRBA) were measured. Levels of SBA with respect to S Typhimurium were reduced in febrile P. falciparum-infected children (median, -0.20 log10 [interquartile range {IQR}, -1.85, 0.32]) compared to nonfebrile malaria-negative children (median, -1.42 log10 [IQR, -2.0, -0.47], P = 0.052). In relation to SBA, C3 deposition on S Typhimurium was significantly reduced in febrile P. falciparum-infected children (median, 7.5% [IQR, 4.1, 15.0]) compared to nonfebrile malaria-negative children (median, 29% [IQR, 11.8, 48.0], P = 0.048). WBBA with respect to S Typhimurium was significantly reduced in febrile P. falciparum-infected children (median, 0.25 log10 [IQR, -0.73, 1.13], P = 0.0001) compared to nonfebrile malaria-negative children (median, -1.0 log10 [IQR, -1.68, -0.16]). In relation to WBBA, S Typhimurium-specific NRBA was reduced in febrile P. falciparum-infected children (median, 8.8% [IQR, 3.7, 20], P = 0.0001) compared to nonfebrile malaria-negative children (median, 40.5% [IQR, 33, 65.8]). P. falciparum infection impairs humoral and cellular immunity to S Typhimurium in children during malaria episodes, which may explain the increased risk of iNTS observed in

  19. Insight on cellular and humoral components of innate immunity in Squilla mantis (Crustacea, Stomatopoda).

    Science.gov (United States)

    Gallo, Chiara; Schiavon, Filippo; Ballarin, Loriano

    2011-09-01

    For deeper insights into the function of crustacean haemocytes in immune responses, we studied the morphology and enzyme content of circulating cells of the mantis shrimp Squilla mantis from the North Adriatic Sea, together with their ability to phagocytose foreign cells. We also assayed the enzyme content and the agglutinating and haemolytic activities of cell-free haemolymph. Three haemocyte types, i.e., hyalinocytes, semigranulocytes and granulocytes, can be distinguished, according to cell and nuclear morphology and the presence of cytoplasmic granules. All of them share the same patterns of enzyme activities and are recognised by the same lectins. Spreading cells (hyalinocytes and semigranulocytes) can ingest foreign cells; granules of semigranular and granular cells have similar cytochemical properties. Injection of Micrococcus luteus into the heart sinus results in an increase in the frequency of hyaline cells and a decrease in the frequency of granulocytes. After 24 h from the injection, a decrease in the number of phagocytosing hyalinocytes, and a general decrease in the frequency of acid phosphatase-positive cells was reported. Our data match previous results and suggest the existence of a single differentiation pathway for Squilla haemocytes with the three haemocyte morphs as different stages of cell differentiation. Results also indicate that Squilla haemolymph performs immunosurveillance, through rapid changes in haemocyte distribution, increase of antimicrobial and antioxidant enzymes and secretion of lectins stimulating agglutination, phagocytosis and encapsulation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Structural basis of evasion of cellular adaptive immunity by HIV-1 Nef

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Xiaofei; Singh, Rajendra; Homann, Stefanie; Yang, Haitao; Guatelli, John; Xiong, Yong (Yale); (VA); (UCSD)

    2012-10-24

    The HIV-1 protein Nef inhibits antigen presentation by class I major histocompatibility complex (MHC-I). We determined the mechanism of this activity by solving the crystal structure of a protein complex comprising Nef, the MHC-I cytoplasmic domain (MHC-I CD) and the {mu}1 subunit of the clathrin adaptor protein complex 1. A ternary, cooperative interaction clamps the MHC-I CD into a narrow binding groove at the Nef-{mu}1 interface, which encompasses the cargo-recognition site of {mu}1 and the proline-rich strand of Nef. The Nef C terminus induces a previously unobserved conformational change in {mu}1, whereas the N terminus binds the Nef core to position it optimally for complex formation. Positively charged patches on {mu}1 recognize acidic clusters in Nef and MHC-I. The structure shows how Nef functions as a clathrin-associated sorting protein to alter the specificity of host membrane trafficking and enable viral evasion of adaptive immunity.

  1. DHA Supplementation during Pregnancy and Lactation Affects Infants' Cellular but Not Humoral Immune Response

    Directory of Open Access Journals (Sweden)

    Esther Granot

    2011-01-01

    Full Text Available Background. It is currently recommended that diet of pregnant mothers contain 200–300 mg DHA/day. Aim. To determine whether DHA supplementation during pregnancy and lactation affects infants' immune response. Methods. 60 women in ≥3rd pregnancy studied; 30 randomly assigned to receive DHA 400 mg/day from 12th week gestation until 4 months postpartum. From breast-fed infants, blood obtained for anti-HBs antibodies, immunoglobulins, lymphocyte subset phenotyping, and intracellular cytokine production. Results. CD4+ lymphocytes did not differ between groups, but CD4CD45RA/CD4 (naïve cells significantly higher in infants in DHA+ group. Proportion of CD4 and CD8 cells producing IFNγ significantly lower in DHA+ group, with no differences in proportion of IL4-producing cells. Immunoglobulins and anti-HBs levels did not differ between groups. Conclusions. In infants of mothers receiving DHA supplementation, a higher percentage of CD4 naïve cells and decreased CD4 and CD8 IFNγ production is compatible with attenuation of a proinflammatory response.

  2. Acute morphine treatment alters cellular immune function in the lungs of healthy rats.

    Science.gov (United States)

    Coussons-Read, M E; Giese, S

    2001-08-01

    Previous work has shown that morphine suppresses the pulmonary immune response to infection and reduces pulmonary inflammation. No published studies have addressed the impact of morphine on lymphocyte function in the lungs without infection. This study addressed this question by assessing the impact of acute morphine treatment on proliferation, cytokine production, and natural killer (NK) cell activity in resident pulmonary lymphocytes from healthy rats. Male Lewis rats received either a single 15 mg/kg morphine sulfate or vehicle injection 1 h prior to sacrifice. Lungs were minced and passed through wire mesh following collagenase digestion. The resulting cell preparations were pooled (2 rats/pool) to yield sufficient cell numbers for the functional assays, and a portion of these suspensions were separated using a density gradient. Crude and purified cell suspensions were used in assays of NK cell activity and mitogen-induced proliferation and cytokine production. Morphine significantly suppressed lymphocyte proliferation and cytokine production in whole cell suspensions, but not in purified cultures. NK activity was enhanced by morphine treatment in purified treated cultures. Studies of nitrate/nitrite levels in crude and purified cultures suggest that macrophage-derived nitric oxide may be a mechanism of the suppression observed in whole cell suspensions following morphine treatment. These data are consistent with previous work showing that morphine suppresses mitogenic responsiveness and NK activity in the spleen and peripheral blood, and may do so through a macrophage-derived nitric oxide mechanism.

  3. [Cellular immunity changes after total parenteral nutrition enriched with glutamine in patients with sepsis and malnutrition].

    Science.gov (United States)

    Słotwiński, R; Pertkiewicz, M; Lech, G; Szczygieł, B

    2000-06-01

    The influence of glutamine on human immune system is multidirectional but the exact changes still remain unclear. In this study the effect of total parenteral nutrition (TPN) enriched with glutamine on some selected immunological and nutritional parameters was examined in twelve surgical patients with sepsis and malnutrition. The reason for glutamine supplementation was lack of clinical improvement after standard TPN. All patients received TPN enriched with glutamine for 10 days. Phenotypic analysis of peripheral blood mononuclear subsets (CD4, CD8, CD16, CD56, HLA-DR) were measured before, during (on days 2, 4, 6) glutamine administration and two days after (day 12) glutamine withdrawal. Simultaneously some nutritional parameters were assessed. The number and percentage of CD4, CD16, CD56 mononuclear subsets increased significantly on day 2 and stayed on the same level during observation (with exception in CD4 on day 6, 12 and CD56 on day 4). No significant differences in CD8 and HLA-DR number and percentages were observed after TPN enriched with glutamine. BIA examination revealed on days 2 and 12 significant decrease of total body water and significant increase of body cell mass, intracellular water on day 12. It was correlated with significant higher total lymphocytes count and significantly higher total protein, serum albumin, transferrin, cholesterol and CRP concentration. Results demonstrated that TPN supplemented with glutamine improved rapidly some immunological and nutritional parameters in surgical, malnutrition patients with sepsis.

  4. Relationship between chicken cellular immunity and endotoxin levels in dust from chicken housing environments.

    Science.gov (United States)

    Roque, Katharine; Shin, Kyung-Min; Jo, Ji-Hoon; Kim, Hyoung-Ah; Heo, Yong

    2015-01-01

    Hazardous biochemical agents in animal husbandry indoor environments are known to promote the occurrence of various illnesses among workers and animals. The relationship between endotoxin levels in dust collected from chicken farms and various immunological markers was investigated. Peripheral blood was obtained from 20 broiler chickens and 20 laying hens from four different chicken farms in Korea. Concentrations of total or respirable dust in the inside the chicken farm buildings were measured using a polyvinyl chloride membrane filter and mini volume sampler. Endotoxin levels in the dust were determined by the Limulus Amebocyte Lysate Kinetic method. Interferon-γ production by peripheral blood mononuclear cells stimulated with concanavalin A was significantly lower in broilers or layers from the farms with higher endotoxin concentrations than the chickens from the farms with lower endotoxin levels. An opposite pattern was observed for plasma cortisol concentrations with higher cortisol levels found in chickens from the farms with higher endotoxin levels. When peripheral lymphocytes were examined, the percentage of CD3(-)Ia(+) B cells was lower in layers from farms with higher endotoxin levels than those from locations with lower endotoxin levels. Overall, these results suggest a probable negative association between dust endotoxin levels and cell-mediated immunity in chickens.

  5. Remnant Cholesterol Elicits Arterial Wall Inflammation and a Multilevel Cellular Immune Response in Humans.

    Science.gov (United States)

    Bernelot Moens, Sophie J; Verweij, Simone L; Schnitzler, Johan G; Stiekema, Lotte C A; Bos, Merijn; Langsted, Anne; Kuijk, Carlijn; Bekkering, Siroon; Voermans, Carlijn; Verberne, Hein J; Nordestgaard, Børge G; Stroes, Erik S G; Kroon, Jeffrey

    2017-05-01

    Mendelian randomization studies revealed a causal role for remnant cholesterol in cardiovascular disease. Remnant particles accumulate in the arterial wall, potentially propagating local and systemic inflammation. We evaluated the impact of remnant cholesterol on arterial wall inflammation, circulating monocytes, and bone marrow in patients with familial dysbetalipoproteinemia (FD). Arterial wall inflammation and bone marrow activity were measured using (18)F-FDG PET/CT. Monocyte phenotype was assessed with flow cytometry. The correlation between remnant levels and hematopoietic activity was validated in the CGPS (Copenhagen General Population Study). We found a 1.2-fold increase of (18)F-FDG uptake in the arterial wall in patients with FD (n=17, age 60±8 years, remnant cholesterol: 3.26 [2.07-5.71]) compared with controls (n=17, age 61±8 years, remnant cholesterol 0.29 [0.27-0.40]; Pcholesterol accumulates in human hematopoietic stem and progenitor cells coinciding with myeloid skewing. Patients with FD have increased arterial wall and cellular inflammation. These findings imply an important inflammatory component to the atherogenicity of remnant cholesterol, contributing to the increased cardiovascular disease risk in patients with FD. © 2017 American Heart Association, Inc.

  6. The catalytic A1 domains of cholera toxin and heat-labile enterotoxin are potent DNA adjuvants that evoke mixed Th1/Th17 cellular immune responses.

    Science.gov (United States)

    Bagley, Kenneth; Xu, Rong; Ota-Setlik, Ayuko; Egan, Michael; Schwartz, Jennifer; Fouts, Timothy

    2015-01-01

    DNA encoded adjuvants are well known for increasing the magnitude of cellular and/or humoral immune responses directed against vaccine antigens. DNA adjuvants can also tune immune responses directed against vaccine antigens to better protect against infection of the target organism. Two potent DNA adjuvants that have unique abilities to tune immune responses are the catalytic A1 domains of Cholera Toxin (CTA1) and Heat-Labile Enterotoxin (LTA1). Here, we have characterized the adjuvant activities of CTA1 and LTA1 using HIV and SIV genes as model antigens. Both of these adjuvants enhanced the magnitude of antigen-specific cellular immune responses on par with those induced by the well-characterized cytokine adjuvants IL-12 and GM-CSF. CTA1 and LTA1 preferentially enhanced cellular responses to the intracellular antigen SIVmac239-gag over those for the secreted HIVBaL-gp120 antigen. IL-12, GM-CSF and electroporation did the opposite suggesting differences in the mechanisms of actions of these diverse adjuvants. Combinations of CTA1 or LTA1 with IL-12 or GM-CSF generated additive and better balanced cellular responses to both of these antigens. Consistent with observations made with the holotoxin and the CTA1-DD adjuvant, CTA1 and LTA1 evoked mixed Th1/Th17 cellular immune responses. Together, these results show that CTA1 and LTA1 are potent DNA vaccine adjuvants that favor the intracellular antigen gag over the secreted antigen gp120 and evoke mixed Th1/Th17 responses against both of these antigens. The results also indicate that achieving a balanced immune response to multiple intracellular and extracellular antigens delivered via DNA vaccination may require combining adjuvants that have different and complementary mechanisms of action.

  7. Evaluation of approaches to identify the targets of cellular immunity on a proteome-wide scale.

    Directory of Open Access Journals (Sweden)

    Fernanda C Cardoso

    Full Text Available BACKGROUND: Vaccine development against malaria and other complex diseases remains a challenge for the scientific community. The recent elucidation of the genome, proteome and transcriptome of many of these complex pathogens provides the basis for rational vaccine design by identifying, on a proteome-wide scale, novel target antigens that are recognized by T cells and antibodies from exposed individuals. However, there is currently no algorithm to effectively identify important target antigens from genome sequence data; this is especially challenging for T cell targets. Furthermore, for some of these pathogens, such as Plasmodium, protein expression using conventional platforms has been problematic but cell-free in vitro transcription translation (IVTT strategies have recently proved successful. Herein, we report a novel approach for proteome-wide scale identification of the antigenic targets of T cell responses using IVTT products. PRINCIPAL FINDINGS: We conducted a series of in vitro and in vivo experiments using IVTT proteins either unpurified, absorbed to carboxylated polybeads, or affinity purified through nickel resin or magnetic beads. In vitro studies in humans using CMV, EBV, and Influenza A virus proteins showed antigen-specific cytokine production in ELIspot and Cytometric Bead Array assays with cells stimulated with purified or unpurified IVTT antigens. In vitro and in vivo studies in mice immunized with the Plasmodium yoelii circumsporozoite DNA vaccine with or without IVTT protein boost showed antigen-specific cytokine production using purified IVTT antigens only. Overall, the nickel resin method of IVTT antigen purification proved optimal in both human and murine systems. CONCLUSIONS: This work provides proof of concept for the potential of high-throughput approaches to identify T cell targets of complex parasitic, viral or bacterial pathogens from genomic sequence data, for rational vaccine development against emerging and re

  8. In vitro induction of tumor-specific immunity. VI: analysis of specificity of immune response by cellular competitive inhibition: limitations and advantages of the technique.

    Science.gov (United States)

    Chism, S E; Burton, R C; Grail, D L; Bell, P M; Warner, N L

    1977-01-01

    The cellular competitive inhibition 51Cr-release assay makes two distinct contributions to the in vitro study of cell-mediated immunity. It allows target cells which are not amenable to isotopic labelling to be investigated for their antigenic specificity, and it provides a means, complementary to the direct cytotoxicity assay, of estimating qualitative and quantitative differences in antigen expression on intact normal and neoplastic cells. Various parameters of a micro-51Cr-release inhibition assay have been studied, and it was found that the assay conditions markedly influenced both the sensitivity and specificity. It is concluded that optimal assay conditions for specificity include: 1) moderate levels of lysis on the linear part of the CL/T titration curve, 2) avoidance of prolonged assay times, and 3) low ratios of blocker to target cells. When tumor cells with large cell volumes are used as competitive inhibitor (blocker) cells, non-specific blocking will occur; limits have been defined for this particular micro-inhibition assay which, in general, exclude these effects.

  9. Ivermectin-facilitated immunity in onchocerciasis. Reversal of lymphocytopenia, cellular anergy and deficient cytokine production after single treatment.

    Science.gov (United States)

    Soboslay, P T; Dreweck, C M; Hoffmann, W H; Lüder, C G; Heuschkel, C; Görgen, H; Banla, M; Schulz-Key, H

    1992-09-01

    A longitudinal investigation has been conducted into the cell-mediated immune responses of onchocerciasis patients after a single-dose treatment with ivermectin. Untreated patients tested for delayed cutaneous hypersensitivity (DCH) to seven recall antigens showed lower responses than infection-free control individuals (P less than 0.01), but 6 and 14 months after treatment DCH reactions increased to similar levels to those seen in the controls. The in vitro cellular reactivity to Onchocerca volvulus-derived antigen (OvAg) was reduced in untreated patients as compared with controls, and the lymphocyte blastogenic responses to OvAg and streptolysin-O clearly improved up to 14 months after treatment. Peripheral blood mononuclear cells (PBMC) from untreated patients produced IL-1 beta, tumour necrosis factor-alpha (TNF-alpha) and IL-6 in response to mitogenic stimulation with phytohaemagglutinin (PHA), only low levels of IL-1 beta, IL-2 and TNF-alpha in response to OvAg, but higher amounts of IL-4 and interferon-gamma (IFN-gamma) in response to OvAg than control individuals. After ivermectin treatment, the OvAg-induced production of IL-1 beta and TNF-alpha increased significantly 1 and 14 months after treatment. The PHA-induced production of IL-2 and IL-4 increased 1 month after treatment and remained significantly elevated until 14 months after treatment, whereas the OvAg-specific secretion of IL-2, IL-4 and IFN-gamma did not change after ivermectin treatment. Flow cytometric analysis of lymphocyte-subsets in the peripheral blood of untreated patients revealed a relative and absolute (P less than 0.01) diminution of CD4+ cells and a significantly smaller CD4+/CD8+ cell ratio as compared with controls. By 4 weeks after treatment and thereafter, CD4+ T cells increased relatively and absolutely (P less than 0.01); likewise there was an absolute increase in T-helper-inducer cells (CD4+CD45RO+) and a temporarily improved CD4+/CD8+ cell ratio (P = 0.001). The expression of

  10.  Evaluation of the humoral and cellular immune responses after implantation of a PTFE vascular prosthesis

    Directory of Open Access Journals (Sweden)

    Jan Skóra

    2012-07-01

    Full Text Available  Introduction:The experiment was designed in order to determine the immunological processes that occur during the healing in synthetic vascular grafts, especially to establish the differences in the location of the complement system proteins between the proximal and distal anastomosis and the differences in the arrangement of inflammatory cells in those anastomoses. The understanding of those processes will provide a true basis for determining risk factors for complications after arterial repair procedures.Material/Methods:The experiment was carried out on 16 dogs that underwent implantation of unilateral aorto-femoral bypass with expanded polytetrafluoroethylene (ePTFE. After 6 months all animals were euthanized to dissect the vascular grafts. Immunohistochemical assays and electron microscopic examinations were performed.Results:Immunohistochemical findings in the structure of neointima between anastomoses of vascular prostheses demonstrated significant differences between humoral and cellular responses. The area of proximal anastomosis revealed the presence of fibroblasts, but no macrophages were detected. The histological structure of the proximal anastomosis indicates that inflammatory processes were ended during the prosthesis healing. The immunological response obtained in the distal anastomosis corresponded to the chronic inflammatory reaction with the presence of macrophages, myofibroblasts and deposits of complement C3.Discussion:The identification of differences in the presence of macrophages and myofibroblasts and the presence of the C3 component between the anastomoses is the original achievement of the present study. In the available literature, no such significant differences have been shown so far in the humoral and cellular immune response caused by the presence of an artificial vessel in the arterial system.

  11. A matured fruit extract of date palm tree (Phoenix dactylifera L.) stimulates the cellular immune system in mice.

    Science.gov (United States)

    Karasawa, Koji; Uzuhashi, Yuji; Hirota, Mitsuru; Otani, Hajime

    2011-10-26

    The immunomodulatory effects of a hot water extract from matured fruit of the date palm tree (Phoenix dactylifera L.) were investigated in comparison to those of prune and fig fruit in mice. The number of spleen IFN-γ(+)CD4(+), IFN-γ(+)CD49b(+) and IL-12(+)CD11b(+) cells was highest in mice given the date extract-added diet. Polyphenols identified in the date extract, such as chlorogenic acid, caffeic acid, pelargonin and ferulic acid, stimulated IFN-γ mRNA expression significantly in mouse Peyer's patch cell cultures. Chlorogenic acid and caffeic acid also increased the number of IFN-γ(+)CD4(+) cells significantly, while some polyphenols increased the number of IFN-γ(+)CD49b(+) and IL-12(+)CD11b(+) cells significantly. On the other hand, a 70% ethanol-insoluble date extract treated with trypsin increased the number of IFN-γ(+)CD49b(+) and IL-12(+)CD11b(+) cells significantly. These results indicate that some polyphenols and polysaccharides present in date fruit stimulate the cellular immune system in mice.

  12. Interferon (IFN) and Cellular Immune Response Evoked in RNA-Pattern Sensing During Infection with Hepatitis C Virus (HCV).

    Science.gov (United States)

    Nakai, Masato; Oshiumi, Hiroyuki; Funami, Kenji; Okamoto, Masaaki; Matsumoto, Misako; Seya, Tsukasa; Sakamoto, Naoya

    2015-01-01

    Hepatitis C virus (HCV) infects hepatocytes but not dendritic cells (DCs), but DCs effectively mature in response to HCV-infected hepatocytes. Using gene-disrupted mice and hydrodynamic injection strategy, we found the MAVS pathway to be crucial for induction of type III interferons (IFNs) in response to HCV in mouse. Human hepatocytes barely express TLR3 under non-infectious states, but frequently express it in HCV infection. Type I and III IFNs are induced upon stimulation with polyI:C, an analog of double-stranded (ds)RNA. Activation of TLR3 and the TICAM-1 pathway, followed by DC-mediated activation of cellular immunity, is augmented during exposure to viral RNA. Although type III IFNs are released from replication-competent human hepatocytes, DC-mediated CTL proliferation and NK cell activation hardly occur in response to the released type III IFNs. Yet, type I IFNs and HCV-infected hepatocytes can induce maturation of DCs in either human or mouse origin. In addition, mouse CD8+ DCs mature in response to HCV-infected hepatocytes unless the TLR3/TICAM-1 pathway is blocked. We found the exosomes containing HCV RNA in the supernatant of the HCV-infected hepatocytes act as a source of TLR3-mediated DC maturation. Here we summarize our view on the mechanism by which DCs mature to induce NK and CTL in a status of HCV infection.

  13. Cellular immune responses of filaria (Litomosoides sigmodontis) infected BALB/c mice detected on the level of cytokine transcription.

    Science.gov (United States)

    Taubert, A; Zahner, H

    2001-08-01

    Cellular immune responses of BALB/c mice infected with 80 or 160 L3 of Litomosoides sigmodontis were studied over a period of 200 days postinfection (p.i.) by stimulating spleen cells with specific microfilariae and adult antigens and Concanavalin A (Con A). Effects were determined as the level of transcription of cytokine genes [interleukin (IL)-2, interferon (IFN)-gamma, IL-4, IL-5, IL-10, IL-13] employing a semiquantitative reverse transcriptase-polymerase chain reaction technique. Con A stimulation resulted in generally enhanced transcription levels in infected animals. Exposure to filarial antigens stimulated T cells of infected animals dependent on time p.i. There was a general strong response in the early prepatency (24 days p.i.), a temporary almost complete downregulation of cytokine gene transcription except IL-10 towards the end of prepatency (45 days p.i.), and subsequently strong reactions particularly concerning IFN-gamma and IL-13 during patency and postpatency. The dose of infection as well as the mode of antigenic stimulation had generally only small effects on the cytokine gene transcription: following the same type of kinetics, infection with 160 L3 as well as the use of microfilarial antigen generally induced lower levels of cytokine gene transcription compared with infection with 80 L3 and stimulation with female antigen, respectively.

  14. Effects of the endoparasitoid Cotesia chilonis (Hymenoptera: Braconidae) parasitism, venom, and calyx fluid on cellular and humoral immunity of its host Chilo suppressalis (Lepidoptera: Crambidae) larvae.

    Science.gov (United States)

    Teng, Zi-Wen; Xu, Gang; Gan, Shi-Yu; Chen, Xuan; Fang, Qi; Ye, Gong-Yin

    2016-02-01

    The larval endoparasitoid Cotesia chilonis injects venom and bracoviruses into its host Chilo suppressalis during oviposition. Here we study the effects of the polydnavirus (PDV)-carrying endoparasitoid C. chilonis (Hymenoptera: Braconidae) parasitism, venom and calyx fluid on host cellular and humoral immunity, specifically hemocyte composition, cellular spreading, encapsulation and melanization. Total hemocyte counts (THCs) were higher in parasitized larvae than in unparasitized larvae in the late stages following parasitization. While both plasmatocyte and granulocyte fractions and hemocyte mortality did not differ between parasitized and unparasitized hosts, in vitro spreading behavior of hemocytes was inhibited significantly by parasitism throughout the course of parasitoid development. C. chilonis parasitism suppressed the encapsulation response and melanization in the early stages. Venom alone did not alter cellular immune responses, including effects on THCs, mortality, hemocyte composition, cell spreading and encapsulation, but venom did inhibit humoral immunity by reducing melanization within 6h after injection. In contrast to venom, calyx fluid had a significant effect on cell spreading, encapsulation and melanization from 6h after injection. Dose-response injection studies indicated the effects of venom and calyx fluid synergized, showing a stronger and more persistent reduction in immune system responses than the effect of either injected alone.

  15. Augmentation of humoral and cellular immunity in response to Tetanus and Diphtheria toxoids by supercritical carbon dioxide extracts of Hippophae rhamnoides L. leaves.

    Science.gov (United States)

    Jayashankar, Bindhya; Singh, Divya; Tanwar, Himanshi; Mishra, K P; Murthy, Swetha; Chanda, Sudipta; Mishra, Jigni; Tulswani, R; Misra, K; Singh, S B; Ganju, Lilly

    2017-03-01

    Hippophae rhamnoides L. commonly known as Seabuckthorn (SBT), a wild shrub of family Elaegnacea, has extensively used for treating various ailments like skin diseases, jaundice, asthma, lung troubles. SBT leaves have been reported to possess several pharmacological properties including immunomodulatory, antioxidant, anti-inflammatory, antimicrobial and tissue regeneration etc. The present study was undertaken to evaluate the adjuvant property of supercritical carbon dioxide extracts (SCEs 300ET and 350ET) of SBT leaves in balb/c mice immunized with Tetanus and Diphtheria toxoids. The dynamic changes in the immune response were measured in terms of humoral and cell-mediated immune responses. We have seen the effect of SCEs on immunoglobulin subtypes and secondary immune response generation. In addition, the effect of SCEs on antigen specific cellular immunity was evaluated. Our results show that SCEs 300ET and 350ET significantly enhanced antibody titers in response to both TT and DT antigens. The secondary immune response generated was significantly increased in case of TT immunized animals. SCEs also enhanced cytokine levels (IFN-γ, IL-4, TNF-α and IL-1β) and increased lymphoproliferation. Besides, both SCEs did not show any toxic effects. Therefore, the study suggests that SCEs are safe and have potent immunostimulatory activity and hence, seems to be a promising balanced Th1 and Th2 directing immunological adjuvant for various veterinary as well as human vaccines. Copyright © 2017. Published by Elsevier B.V.

  16. Cellular immune responses of BALB/c mice induced by intramuscular injection of PRRSV-ORF5 DNA vaccine with different doses

    Institute of Scientific and Technical Information of China (English)

    CHENG Anchun; WANG Mingshu; CHEN Xiwen; XINI Nigen; DOU Wenbo; LI Xuemei; LIU Wumei; WANG Gang; ZHANG Pingying

    2007-01-01

    BALB/c mice were immunized with 50 μg,100 μg,200 μg of pcDNA-PRRSV-ORF5 DNA vaccine respectively by intramuscular injection,with PBS and pcDNA3.1(+)as controls.Fluorescence activated cell Sorter (FACS)was used to detect the number of CD4+ and CD8+T-lymphocytes.T-lymphocyte proliferation test was used to detect proliferation of the T-lymphocyte cells in peripheral blood lymphocytes of mice vaccinated with pcDNA-PRRSV-ORF5 DNA vaccine.The results showed that the difference in ConA response to T-lymphocytes in blood was highly significant between all experimental groups and the control group(P<0.01).The number of CD4+T-lymphocytes in experimental groups was significantly higher than that of the control group 7d after vaccination.The number of CD8+ T-lymphocytes in the experimental groups was higher than that of the control group 28 d after vaccination.Mice immunized with a higher dose(200 μg)of DNA vaccine demonstrated higher cellular immune response than those immunized with a lower dose(100 μg,50 μg)of DNA vaccine.The results demonstrated that pcDNA-PRRSV-ORF5 DNA vaccine could induce a good cellular immune response which may be dose-dependent.

  17. Cellular and Molecular Dynamics of Th17 Differentiation and its Developmental Plasticity in the Intestinal Immune Response

    Science.gov (United States)

    Bhaumik, Suniti; Basu, Rajatava

    2017-01-01

    After emerging from the thymus, naive CD4 T cells circulate through secondary lymphoid tissues, including gut-associated lymphoid tissue of the intestine. The activation of naïve CD4 T cells by antigen-presenting cells offering cognate antigen initiate differentiation programs that lead to the development of highly specialized T helper (Th) cell lineages. Although initially believed that developmental programing of effector T cells such as T helper 1 (Th1) or T helper 2 (Th2) resulted in irreversible commitment to a fixed fate, subsequent studies have demonstrated greater flexibility, or plasticity, in effector T cell stability than originally conceived. This is particularly so for the Th17 subset, differentiation of which is a highly dynamic process with overlapping developmental axes with inducible regulatory T (iTreg), T helper 22 (Th22), and Th1 cells. Accordingly, intermediary stages of Th17 cells are found in various tissues, which co-express lineage-specific transcription factor(s) or cytokine(s) of developmentally related CD4 T cell subsets. A highly specialized tissue like that of the intestine, which harbors the largest immune compartment of the body, adds several layers of complexity to the intricate process of Th differentiation. Due to constant exposure to millions of commensal microbes and periodic exposure to pathogens, the intestinal mucosa maintains a delicate balance between regulatory and effector T cells. It is becoming increasingly clear that equilibrium between tolerogenic and inflammatory axes is maintained in the intestine by shuttling the flexible genetic programming of a developing CD4 T cell along the developmental axis of iTreg, Th17, Th22, and Th1 subsets. Currently, Th17 plasticity remains an unresolved concern in the field of clinical research as targeting Th17 cells to cure immune-mediated disease might also target its related subsets. In this review, we discuss the expanding sphere of Th17 plasticity through its shared

  18. Effect of adenosine cyclophosphate combined with vitamin C on cellular immune function of children with viral myocarditis

    Institute of Scientific and Technical Information of China (English)

    Xiu Chang; Lan-Hui Jiu

    2016-01-01

    Objective:To investigate the curative effect of adenosine cyclophosphate combined with vitamin C on children with viral myocarditis andon cellular immune function.Methods:A total of96 cases of children with viral myocarditis were randomly divided into control group and observation group, 48 cases in each. The control group received routine treatment for viral myocarditis. The observation group received routine treatment for viral myocarditis as well as vitamin C and adenosine cyclophosphate.Results:The total effective rate of observation group 89.59% was higher than that of control group 64.58%, and differences were statistical significant. The electrocardiogram total effective rate of observation group 91.67% was higher than that of control group 68.75%, and differences were statistical significant. After treatment, the level of CD3+ (65.09±10.35)%, the level of CD4+ (42.93±6.22)%, the level of CD8+ (29.55±4.87)% and the level of NK (47.37±8.52)% of observation group were higher than the level of CD3+ (51.85±9.33)%, the level of CD4+ (35.18±5.73)%, the level of CD8+(24.46±4.03)% and the level of NK (35.64±7.72)% of control group, and differences were statistical significant. After treatment, myocardial enzyme indexes lactate dehydrogenase (329.65±19.76) U/L, creatine phosphate kinase (126.36±12.92) U/L, hydroxybutyrate dehydrogenase (271.68±14.73) U/L, glutamic oxaloacetic transaminase (31.22±3.76) U/L and creatine kinase (185.28±13.83) U/L of observation group were lower than lactate dehydrogenase (348.06±20.51) U/L, creatine phosphate kinase (163.19±13.15) U/L, hydroxybutyrate dehydrogenase (305.50±16.42) U/L, glutamic oxaloacetic transaminase (37.87±4.07) U/L and creatine kinase (202.79±15.47) U/L of control group, and differences were statistical significant. After treatment, heart function indexes CI, FS and EF levels of observation group were higher than those of control group, and differences were statistical significant

  19. Effect of psychological intervention in the form of relaxation and guided imagery on cellular immune function in normal healthy subjects. An overview

    DEFF Research Database (Denmark)

    Zachariae, R; Kristensen, J S; Hokland, P

    1991-01-01

    The present study measured the effects of relaxation and guided imagery on cellular immune function. During a period of 10 days 10 healthy subjects were given one 1-hour relaxation procedure and one combined relaxation and guided imagery procedure, instructing the subjects to imagine their immune...... system becoming very effective. Even though no major changes in the composition of the major mononuclear leukocyte subsets could be demonstrated a significant increase in natural killer function was demonstrated. These data suggest that relaxation and guided imagery might have a beneficial effect...

  20. Impact of comorbid anxiety and depression on quality of life and cellular immunity changes in patients with digestive tract cancers

    Institute of Scientific and Technical Information of China (English)

    Fu-Ling Zhou; Wang-Gang Zhang; Yong-Chang Wei; Kang-Ling Xu; Ling-Yun Hui; Xu-Sheng Wang; Ming-Zhong Li

    2005-01-01

    AIM: A study was performed to investigate the impact of comorbid anxiety and depression (CAD) on quality of life (QOL) and cellular immunity changes in patients with digestive tract cancers.METHODS: One hundred and fifty-six cases of both sexes with cancers of the digestive tract admitted between March 2001 and February 2004 in the Department of Medical Oncology, First Affiliated Hospital of Xi'an Jiaotong University were randomly enrolled in the study. Depressive and anxiety disorder diagnoses were assessed by using the Structured Clinical Interview for DSM-Ⅳ. All adult patients were evaluated with the Hamilton depressive scale (HAMD, the 24-item version), the Hamilton anxiety scale (HAMA, a modified 14-item version), quality of life questionnaire-core 30 (QLQ-C30), social support rating scale (SSRS), simple coping style questionnaire (SCSQ), and other questionnaires, respectively. In terms of HAMD ≥ 20 and HAMA ≥ 14, the patients were categorized, including CAD (n = 31) in group A, anxiety disorder (n = 23) in group B,depressive disorder (n = 37) in group C, and non-disorder (n = 65) in group D. Immunological parameters such as T-lymphocyte subsets and natural killer (NK) cell activities in peripheral blood were determined and compared among the four groups.RESULTS: The incidence of CAD was 21.15% in patients with digestive tract cancers. The average scores of social support was 43.67±7.05 for 156 cases, active coping 20.34±7.33, and passive coping 9.55±5.51. Compared with group D, subjective support was enhanced slightly in group A, but social support, objective support, and utilization of support reduced, especially utilization of support with significance (6.16 vs 7.80, P<0.05); total scores of active coping decreased, while passive coping reversed; granulocytes proliferated, monocytes declined,and lymphocytes declined significantly (32.87 vs 34.00,P<0.05); moreover, the percentage of CD3, CD4, CD8and CD56 in T lymphocyte subsets was in lower

  1. Functionalized graphene oxide serves as a novel vaccine nano-adjuvant for robust stimulation of cellular immunity

    Science.gov (United States)

    Xu, Ligeng; Xiang, Jian; Liu, Ye; Xu, Jun; Luo, Yinchan; Feng, Liangzhu; Liu, Zhuang; Peng, Rui

    2016-02-01

    Benefiting from their unique physicochemical properties, graphene derivatives have attracted great attention in biomedicine. In this study, we carefully engineered graphene oxide (GO) as a vaccine adjuvant for immunotherapy using urease B (Ure B) as the model antigen. Ure B is a specific antigen for Helicobacter pylori, which is a class I carcinogen for gastric cancer. Polyethylene glycol (PEG) and various types of polyethylenimine (PEI) were used as coating polymers. Compared with single-polymer modified GOs (GO-PEG and GO-PEI), certain dual-polymer modified GOs (GO-PEG-PEI) can act as a positive modulator to promote the maturation of dendritic cells (DCs) and enhance their cytokine secretion through the activation of multiple toll-like receptor (TLR) pathways while showing low toxicity. Moreover, this GO-PEG-PEI can serve as an antigen carrier to effectively shuttle antigens into DCs. These two advantages enable GO-PEG-PEI to serve as a novel vaccine adjuvant. In the subsequent in vivo experiments, compared with free Ure B and clinically used aluminum-adjuvant-based vaccine (Alum-Ure B), GO-PEG-PEI-Ure B induces stronger cellular immunity via intradermal administration, suggesting promising applications in cancer immunotherapy. Our work not only presents a novel, highly effective GO-based vaccine nano-adjuvant, but also highlights the critical roles of surface chemistry for the rational design of nano-adjuvants.Benefiting from their unique physicochemical properties, graphene derivatives have attracted great attention in biomedicine. In this study, we carefully engineered graphene oxide (GO) as a vaccine adjuvant for immunotherapy using urease B (Ure B) as the model antigen. Ure B is a specific antigen for Helicobacter pylori, which is a class I carcinogen for gastric cancer. Polyethylene glycol (PEG) and various types of polyethylenimine (PEI) were used as coating polymers. Compared with single-polymer modified GOs (GO-PEG and GO-PEI), certain dual

  2. PIKA as an Adjuvant Enhances Specific Humoral and Cellular Immune Responses Following the Vaccination of Mice with HBsAg plus PIKA

    Institute of Scientific and Technical Information of China (English)

    Erxia Shen; Li Li; Lietao Li; Lianqiang Feng; Lin Lu; Ziliang Yao; Haixiang Lin; Changyou Wu

    2007-01-01

    An adjuvant is usually used to enhance the immune response induced by vaccines. The choice of adjuvant or immune enhancer determines the effectiveness of the immune response. Currently, aluminium (Alum, a generic term for salts of aluminium) is the only FDA-approved adjuvant. Alum predominantly induces the differentiation of Th2 cells and thus mediates an antibody immune response. Therefore, there is an urgent need for new adjuvants that enhance not only humoral but also cellular immune responses. In the present study, we demonstrates that PIKA (a stabilized dsRNA) as an adjuvant directly induces the activation and the proliferation of both B and NK cells in vitro. Injection of PIKA into mice results in the production of cytokines in vivo. In addition, the study demonstrates that PIKA promotes the maturation of bone marrow-derived dendritic cells (BMDCs) including up-regulation of the co-stimulatory molecules CD80, CD86 and CD40, and the induction of cytokines such as IL-12p70, IL-12p40 and IL-6. Importantly, after immunization of mice with HBsAg plus PIKA, the presence of PIKA enhances the titers of HBsAg-specific IgG and HBsAg-specific IFN-γ production. These results demonstrate that PIKA as an adjuvant can promote both humoral and cellular immune responses. These might have an implication in applying PIKA as an adjuvant to be used in the design and development of both therapeutic and preventive vaccines, and used in the clinical study.

  3. Development of monoclonal antibodies (MAbs) to feline interferon (fIFN)-γ as tools to evaluate cellular immune responses to feline infectious peritonitis virus (FIPV).

    Science.gov (United States)

    Satoh, Ryoichi; Kaku, Ayumi; Satomura, Megumi; Kohori, Michiyo; Noura, Kanako; Furukawa, Tomoko; Kotake, Masako; Takano, Tomomi; Hohdatsu, Tsutomu

    2011-06-01

    Feline infectious peritonitis virus (FIPV) can cause a lethal disease in cats, feline infectious peritonitis (FIP). The antibody-dependent enhancement (ADE) of FIPV infection has been recognised in experimentally infected cats, and cellular immunity is considered to play an important role in preventing the onset of FIP. To evaluate the importance of cellular immunity for FIPV infection, monoclonal antibodies (MAbs) against feline interferon (fIFN)-γ were first created to establish fIFN-γ detection systems using the MAbs. Six anti-fIFN-γ MAbs were created. Then, the difference in epitope which those MAbs recognise was demonstrated by competitive enzyme-linked immunosorbent assay (ELISA) and IFN-γ neutralisation tests. Detection systems for fIFN-γ (sandwich ELISA, ELISpot assay, and two-colour flow cytometry) were established using anti-fIFN-γ MAbs that recognise different epitopes. In all tests, fIFN-γ production from peripheral blood mononuclear cells (PBMCs) obtained from cats experimentally infected with an FIPV isolate that did not develop the disease was significantly increased by heat-inactivated FIPV stimulation in comparison with medium alone. Especially, CD8(+)fIFN-γ(+) cells, but not CD4(+)fIFN-γ(+) cells, were increased. In contrast, fIFN-γ production from PBMCs isolated from cats that had developed FIP and specific pathogen-free (SPF) cats was not increased by heat-inactivated FIPV stimulation. These results suggest that cellular immunity plays an important role in preventing the development of FIP. Measurement of fIFN-γ production with the anti-fIFN-γ MAbs created in this study appeared to be useful in evaluating cellular immunity in cats.

  4. Cellular and humoral cross-immunity against two H3N2v influenza strains in presumably unexposed healthy and HIV-infected subjects.

    Directory of Open Access Journals (Sweden)

    Chiara Agrati

    Full Text Available Human cases of infection due to a novel swine-origin variant of influenza A virus subtype H3N2 (H3N2v have recently been identified in the United States. Pre-existing humoral and cellular immunity has been recognized as one of the key factors in limiting the infection burden of an emerging influenza virus strain, contributing to restrict its circulation and to mitigate clinical presentation. Aim of this study was to assess humoral and cell-mediated cross immune responses to H3N2v in immuno-competent (healthy donors, n = 45 and immuno-compromised hosts (HIV-infected subjects, n = 46 never exposed to H3N2v influenza strain. Humoral response against i H3N2v (A/H3N2/Ind/08/11, ii animal vaccine H3N2 strain (A/H3N2/Min/11/10, and iii pandemic H1N1 virus (A/H1N1/Cal/07/09 was analysed by hemagglutination inhibition assay; cell-mediated response against the same influenza strains was analysed by ELISpot assay. A large proportion of healthy and HIV subjects displayed cross-reacting humoral and cellular immune responses against two H3N2v strains, suggesting the presence of B- and T-cell clones able to recognize epitopes from emerging viral strains in both groups. Specifically, humoral response was lower in HIV subjects than in HD, and a specific age-related pattern of antibody response against different influenza strains was observed both in HD and in HIV. Cellular immune response was similar between HD and HIV groups and no relationship with age was reported. Finally, no correlation between humoral and cellular immune response was observed. Overall, a high prevalence of HD and HIV patients showing cross reactive immunity against two H3N2v strains was observed, with a slightly lower proportion in HIV persons. Other studies focused on HIV subjects at different stages of diseases are needed in order to define how cross immunity can be affected by advanced immunosuppression.

  5. Mucosal vaccination against serogroup B meningococci: induction of bactericidal antibodies and cellular immunity following intranasal immunization with NadA of Neisseria meningitidis and mutants of Escherichia coli heat-labile enterotoxin.

    Science.gov (United States)

    Bowe, Frances; Lavelle, Ed C; McNeela, Edel A; Hale, Christine; Clare, Simon; Arico, Beatrice; Giuliani, Marzia M; Rae, Aaron; Huett, Alan; Rappuoli, Rino; Dougan, Gordon; Mills, Kingston H G

    2004-07-01

    Conjugated polysaccharide vaccines protect against serogroup C meningococci. However, this approach cannot be applied to serogroup B, which is still a major cause of meningitis. We evaluated the immunogenicity of three surface-exposed proteins from serogroup B Neisseria meningitidis (App, NhhA, and NadA) identified during whole-genome sequencing. Mice were immunized intranasally with individual proteins in the presence of wild-type Escherichia coli heat-labile enterotoxin (LTwt), LTR72, a partially inactivated mutant, or LTK63, a completely nontoxic mutant, as the adjuvant. Each of the meningococcal proteins induced significant cellular responses; NhhA and NadA induced strong antibody responses, but only NadA induced bactericidal antibody when administered intranasally with mucosal adjuvants. In addition, immunoglobulin A and bactericidal antibodies were detected in the respiratory tract following intranasal delivery of NadA. Analysis of antigen-specific cytokine production by T cells from immunized mice revealed that intranasal immunization with NadA alone failed to generate detectable cellular immune responses. In contrast, LTK63, LTR72, and LTwt significantly augmented NadA-specific gamma interferon, interleukin-4 (IL-4), IL-5, and IL-10 production by spleen and lymph node cells, suggesting that both Th1 and Th2 cells were induced in vivo. The strongest cellular responses and highest bactericidal antibody titers were generated with LTR72 as the adjuvant. These findings demonstrate that the quality and magnitude of the immune responses generated by mucosal vaccines are influenced by the antigen as well as the adjuvant and suggest that nasal delivery of NadA with mucosal adjuvants has considerable potential in the development of a mucosal vaccine against serogroup B meningococci.

  6. Comparative genomic analysis of buffalo (Bubalus bubalis NOD1 and NOD2 receptors and their functional role in in-vitro cellular immune response.

    Directory of Open Access Journals (Sweden)

    Biswajit Brahma

    Full Text Available Nucleotide binding and oligomerization domain (NOD-like receptors (NLRs are innate immune receptors that recognize bacterial cell wall components and initiate host immune response. Structure and function of NLRs have been well studied in human and mice, but little information exists on genetic composition and role of these receptors in innate immune system of water buffalo--a species known for its exceptional disease resistance. Here, a comparative study on the functional domains of NOD1 and NOD2 was performed across different species. The NOD mediated in-vitro cellular responses were studied in buffalo peripheral blood mononuclear cells, resident macrophages, mammary epithelial, and fibroblast cells. Buffalo NOD1 (buNOD1 and buNOD2 showed conserved domain architectures as found in other mammals. The domains of buNOD1 and buNOD2 showed analogy in secondary and tertiary conformations. Constitutive expressions of NODs were ubiquitous in different tissues. Following treatment with NOD agonists, peripheral lymphocytes showed an IFN-γ response along-with production of pro-inflammatory cytokines. Alveolar macrophages and mammary epithelial cells showed NOD mediated in-vitro immune response through NF-κB dependent pathway. Fibroblasts showed pro-inflammatory cytokine response following agonist treatment. Our study demonstrates that both immune and non-immune cells could generate NOD-mediated responses to pathogens though the type and magnitude of response depend on the cell types. The structural basis of ligand recognition by buffalo NODs and knowledge of immune response by different cell types could be useful for development of non-infective innate immune modulators and next generation anti-inflammatory compounds.

  7. Epitope-based vaccines with the Anaplasma marginale MSP1a functional motif induce a balanced humoral and cellular immune response in mice.

    Directory of Open Access Journals (Sweden)

    Paula S Santos

    Full Text Available Bovine anaplasmosis is a hemoparasitic disease that causes considerable economic loss to the dairy and beef industries. Cattle immunized with the Anaplasma marginale MSP1 outer membrane protein complex presents a protective humoral immune response; however, its efficacy is variable. Immunodominant epitopes seem to be a key-limiting factor for the adaptive immunity. We have successfully demonstrated that critical motifs of the MSP1a functional epitope are essential for antibody recognition of infected animal sera, but its protective immunity is yet to be tested. We have evaluated two synthetic vaccine formulations against A. marginale, using epitope-based approach in mice. Mice infection with bovine anaplasmosis was demonstrated by qPCR analysis of erythrocytes after 15-day exposure. A proof-of-concept was obtained in this murine model, in which peptides conjugated to bovine serum albumin were used for immunization in three 15-day intervals by intraperitoneal injections before challenging with live bacteria. Blood samples were analyzed for the presence of specific IgG2a and IgG1 antibodies, as well as for the rickettsemia analysis. A panel containing the cytokines' transcriptional profile for innate and adaptive immune responses was carried out through qPCR. Immunized BALB/c mice challenged with A. marginale presented stable body weight, reduced number of infected erythrocytes, and no mortality; and among control groups mortality rates ranged from 15% to 29%. Additionally, vaccines have significantly induced higher IgG2a than IgG1 response, followed by increased expression of pro-inflammatory cytokines. This is a successful demonstration of epitope-based vaccines, and protection against anaplasmosis may be associated with elicitation of effector functions of humoral and cellular immune responses in murine model.

  8. Immunity

    Institute of Scientific and Technical Information of China (English)

    1992-01-01

    920630 Effects of the spleen on immunestate of patients with gastric cancer.QIUDengbo (仇登波), et al. Dept General Surg,Union Hosp, Tongji Med Univ, Wuhan, 430022.Natl Med J China 1992; 72(6): 334-337. For analysing the effects of the spleen on im-mune state of gastric cancer patients.T-lym-

  9. Powerful Complex Immunoadjuvant Based on Synergistic Effect of Combined TLR4 and NOD2 Activation Significantly Enhances Magnitude of Humoral and Cellular Adaptive Immune Responses.

    Science.gov (United States)

    Tukhvatulin, Amir I; Dzharullaeva, Alina S; Tukhvatulina, Natalia M; Shcheblyakov, Dmitry V; Shmarov, Maxim M; Dolzhikova, Inna V; Stanhope-Baker, Patricia; Naroditsky, Boris S; Gudkov, Andrei V; Logunov, Denis Y; Gintsburg, Alexander L

    2016-01-01

    Binding of pattern recognition receptors (PRRs) by pathogen-associated molecular patterns (PAMPs) activates innate immune responses and contributes to development of adaptive immunity. Simultaneous stimulation of different types of PRRs can have synergistic immunostimulatory effects resulting in enhanced production of molecules that mediate innate immunity such as inflammatory cytokines, antimicrobial peptides, etc. Here, we evaluated the impact of combined stimulation of PRRs from different families on adaptive immunity by generating alum-based vaccine formulations with ovalbumin as a model antigen and the Toll-like receptor 4 (TLR4) agonist MPLA and the Nucleotide-binding oligomerization domain-containing protein 2 (NOD2) agonist MDP adsorbed individually or together on the alum-ovalbumin particles. Multiple in vitro and in vivo readouts of immune system activation all showed that while individual PRR agonists increased the immunogenicity of vaccines compared to alum alone, the combination of both PRR agonists was significantly more effective. Combined stimulation of TLR4 and NOD2 results in a stronger and broader transcriptional response in THP-1 cells compared to individual PRR stimulation. Immunostimulatory composition containing both PRR agonists (MPLA and MDP) in the context of the alum-based ovalbumin vaccine also enhanced uptake of vaccine particles by bone marrow derived dendritic cells (BMDCs) and promoted maturation (up-regulation of expression of CD80, CD86, MHCII) and activation (production of cytokines) of BMDCs. Finally, immunization of mice with vaccine particles containing both PRR agonists resulted in enhanced cellular immunity as indicated by increased proliferation and activation (IFN-γ production) of splenic CD4+ and CD8+ T cells following in vitro restimulation with ovalbumin and enhanced humoral immunity as indicated by higher titers of ovalbumin-specific IgG antibodies. These results indicate that combined stimulation of TLR4 and NOD2

  10. Cyclophilin A as a potential genetic adjuvant to improve HIV-1 Gag DNA vaccine immunogenicity by eliciting broad and long-term Gag-specific cellular immunity in mice

    Science.gov (United States)

    Hou, Jue; Zhang, Qicheng; Liu, Zheng; Wang, Shuhui; Li, Dan; Liu, Chang; Liu, Ying; Shao, Yiming

    2016-01-01

    Previous research has shown that host Cyclophilin A (CyPA) can promote dendritic cell maturation and the subsequent innate immune response when incorporated into an HIV-1 Gag protein to circumvent the resistance of dendritic cells to HIV-1 infection. This led us to hypothesize that CyPA may improve HIV-1 Gag-specific vaccine immunogenicity via binding with Gag antigen. The adjuvant effect of CyPA was evaluated using a DNA vaccine with single or dual expression cassettes. Mouse studies indicated that CyPA specifically and markedly promoted HIV-1 Gag-specific cellular immunity but not an HIV-1 Env-specific cellular response. The Gag/CyPA dual expression cassettes stimulated a greater Gag-specific cellular immune response, than Gag immunization alone. Furthermore, CyPA induced a broad Gag-specific T cell response and strong cellular immunity that lasted up to 5 months. In addition, CyPA skewed to cellular rather than humoral immunity. To investigate the mechanisms of the adjuvant effect, site-directed mutagenesis in CyPA, including active site residues H54Q and F60A resulted in mutants that were co-expressed with Gag in dual cassettes. The immune response to this vaccine was analyzed in vivo. Interestingly, the wild type CyPA markedly increased Gag cellular immunity, but the H54Q and F60A mutants drastically reduced CyPA adjuvant activation. Therefore, we suggest that the adjuvant effect of CyPA was based on Gag-CyPA-specific interactions. Herein, we report that Cyclophilin A can augment HIV-1 Gag-specific cellular immunity as a genetic adjuvant in multiplex DNA immunization strategies, and that activity of this adjuvant is specific, broad, long-term, and based on Gag-CyPA interaction. PMID:26305669

  11. Influence of postoperative enteral nutrition on cellular immunity. A random double-blinded placebo controlled clinical trial

    DEFF Research Database (Denmark)

    Beier-Holgersen, R; Brandstrup, B

    2012-01-01

    The aim of this study was to discover if the cellular immunological response is different in patients receiving early postoperative enteral nutrition compared to patients who only receive "water".......The aim of this study was to discover if the cellular immunological response is different in patients receiving early postoperative enteral nutrition compared to patients who only receive "water"....

  12. Induction of potent and long-lived antibody and cellular immune responses in the genito-rectal mucosae could be the critical determinant of HIV vaccine efficacy

    Directory of Open Access Journals (Sweden)

    Nadia eChanzu

    2014-05-01

    Full Text Available The field of HIV prevention has indeed progressed in leaps and bounds, but with major limitations of the current prevention and treatment options, the world remains desperate for an HIV vaccine. Sadly, this continues to be elusive as more than 30 years since its discovery there is no licensed HIV vaccine. Research aiming to define immunological biomarkers to accurately predict vaccine efficacy have focussed mainly on systemic immune responses, and as such, studies defining correlates of protection in the genito-rectal mucosae, the primary target site for HIV entry and seeding are sparse. Clearly, difficulties in sampling and analysis of mucosal specimens, as well as their limited size have been a major deterrent in characterizing the type (mucosal antibodies, cytokines, chemokines or CTL, threshold (magnitude, depth and breadth and viral inhibitory capacity of HIV-1 specific immune responses in the genito-rectal mucosae, where they are needed to immediately block HIV acquisition and arrest subsequent virus dissemination. Nevertheless, a few studies document the existence of HIV-specific immune responses in the genito-rectal mucosae of HIV-infected aviremic and viremic controllers, as well as in highly exposed persistently seronegative (HEPS individuals with natural resistance to HIV-1. Some of these responses strongly correlate with protection from HIV acquisition and/or disease progression, thus providing significant clues of the ideal components of an efficacious HIV vaccine. In this article, we provide an overview of the key features of protective immune responses found in HEPS, elite and viremic controllers and discuss how these can be achieved through mucosal immunization. Inevitably, HIV vaccine development research will have to consider strategies which elicit potent antibody and cellular immune responses within the genito-rectal mucosae or induction of systemic immune cells with an inherent potential to home and persist at mucosal sites

  13. Retrospective Proteomic Analysis of Cellular Immune Responses and Protective Correlates of p24 Vaccination in an HIV Elite Controller Using Antibody Arrays

    Directory of Open Access Journals (Sweden)

    Suneth S. Perera

    2016-06-01

    Full Text Available Background: HIV p24 is an extracellular HIV antigen involved in viral replication. Falling p24 antibody responses are associated with clinical disease progression and their preservation with non-progressive disease. Stimulation of p24 antibody production by immunization to delay progression was the basis of discontinued p24 vaccine. We studied a therapy-naive HIV+ man from Sydney, Australia, infected in 1988. He received the HIV-p24-virus like particle (VLP vaccine in 1993, and continues to show vigorous p24 antigen responses (>4% p24-specific CD4+ T cells, coupled with undetectable plasma viremia. We defined immune-protective correlates of p24 vaccination at the proteomic level through parallel retrospective analysis of cellular immune responses to p24 antigen in CD4+ and CD8+ T cells and CD14+ monocytes at viremic and aviremic phases using antibody-array. We found statistically significant coordinated up-regulation by all three cell-types with high fold-changes in fractalkine, ITAC, IGFBP-2, and MIP-1α in the aviremic phase. TECK and TRAIL-R4 were down-regulated in the viremic phase and up-regulated in the aviremic phase. The up-regulation of fractalkine in all three cell-types coincided with protective effect, whereas the dysfunction in anti-apoptotic chemokines with the loss of immune function. This study highlights the fact that induction of HIV-1-specific helper cells together with coordinated cellular immune response (p < 0.001 might be important in immunotherapeutic interventions and HIV vaccine development.

  14. A Recombinant Trivalent Fusion Protein F1-LcrV-HSP70(II) Augments Humoral and Cellular Immune Responses and Imparts Full Protection against Yersinia pestis.

    Science.gov (United States)

    Verma, Shailendra K; Batra, Lalit; Tuteja, Urmil

    2016-01-01

    Plague is one of the most dangerous infections in humans caused by Yersinia pestis, a Gram-negative bacterium. Despite of an overwhelming research success, no ideal vaccine against plague is available yet. It is well established that F1/LcrV based vaccine requires a strong cellular immune response for complete protection against plague. In our earlier study, we demonstrated that HSP70(II) of Mycobacterium tuberculosis modulates the humoral and cellular immunity of F1/LcrV vaccine candidates individually as well as in combinations in a mouse model. Here, we made two recombinant constructs caf1-lcrV and caf1-lcrV-hsp70(II). The caf1 and lcrV genes of Y. pestis and hsp70 domain II of M. tuberculosis were amplified by polymerase chain reaction. Both the recombinant constructs caf1-lcrV and caf1-lcrV-hsp70(II) were cloned in pET28a vector and expressed in Escherichia coli. The recombinant fusion proteins F1-LcrV and F1-LcrV-HSP70(II) were purified using Ni-NTA columns and formulated with alum to evaluate the humoral and cell mediated immune responses in mice. The protective efficacies of F1-LcrV and F1-LcrV-HSP70(II) were determined following challenge of immunized mice with 100 LD50 of Y. pestis through intraperitoneal route. Significant differences were noticed in the titers of IgG and it's isotypes, i.e., IgG1, IgG2b, and IgG3 in anti- F1-LcrV-HSP70(II) sera in comparison to anti-F1-LcrV sera. Similarly, significant differences were also noticed in the expression levels of IL-2, IFN-γ and TNF-α in splenocytes of F1-LcrV-HSP(II) immunized mice in comparison to F1-LcrV. Both F1-LcrV and F1-LcrV-HSP70(II) provided 100% protection. Our research findings suggest that F1-LcrV fused with HSP70 domain II of M. tuberculosis significantly enhanced the humoral and cellular immune responses in mouse model.

  15. Cellular immunity of monovalent influenza vaccine lyophilized liposome%单价流感疫苗脂质体干粉细胞免疫研究

    Institute of Scientific and Technical Information of China (English)

    刘洁; 马波; 鲁卫东; 徐勇军; 林华; 代云波

    2011-01-01

    从细胞免疫水平考察流感疫苗脂质体干粉肺部免疫的免疫原性,以验证在稳定性提高的同时,流感疫苗脂质体干粉肺部免疫原性不低于现行应用的流感疫苗原液腹腔注射免疫.将实验小鼠分为2个大组,每组分为阴性对照组、疫苗脂质体冻干粉组、非脂质体流感疫苗原液组和阳性对照组(n=5).非脂质体流感疫苗原液组和疫苗脂质体冻干粉组分别以每只6μg血凝素(以H1N1计)肺部灌注免疫,同时以每只6μg非脂质体流感疫苗原液组腹腔免疫作为阳性对照.分别免疫14d和28 d后,用四甲基偶氮唑盐微量酶反应比色法(MTT法)检测脾淋巴细胞增殖情况,以考察其细胞免疫原性.脂质体肺部免疫可以诱导细胞免疫,且其免疫原性明显高于流感疫苗原液传统腹腔注射免疫组.与流感疫苗原液腹腔注射免疫相比,流感疫苗脂质体干粉通过肺部免疫,细胞免疫效果明显提高.%To evaluate the immunogenicity of the influenza vaccine lyophilized liposomes through cellular immunity, it could be confirm that, with the increasing of the stability, the immunogenicity of the influenza vaccine lyophilized liposomes by pulmonary delivery was better than that of the influenza vaccine non-liposome immunized by intraperitoneal injection. Experimental mice were divided into two groups, and each group was divided into the negative control group, the influenza vaccine lyophilized liposome group, the influenza vaccine non-liposome group, and the positive control group (n = 5). The influenza vaccine lyophilized liposome group and the influenza vaccine non-liposome group were immunized with 6 |xg hemagglutinin of H1N1 per mouse through pulmonary deli very, and the positive control group was immunized with 6 u,g hemagglutinin of H1N1 per mouse through intraperitoneal injection. MTT method was used to measure the spleen cell proliferation after immunization to mice 14 days and 28 days in order to study

  16. Comparative ability of IL-12 and IL-28B to regulate Treg populations and enhance adaptive cellular immunity

    National Research Council Canada - National Science Library

    Morrow, Matthew P; Pankhong, Panyupa; Laddy, Dominick J; Schoenly, Kimberly A; Yan, Jian; Cisper, Neil; Weiner, David B

    2009-01-01

    .... IL-28B belongs to the newly described interferon lambda (IFNlambda) family of cytokines, and has not yet been assessed for its potential ability to influence adaptive immune responses or act as a vaccine adjuvant...

  17. The complementary roles of cellular and humoral immunity in resistance to re-infection with LCM virus

    DEFF Research Database (Denmark)

    Thomsen, Allan Randrup; Marker, O

    1988-01-01

    used for rechallenge (10(6) - 10(8) LD50), significant re-infection as well as reactivation of cytotoxicity were observed. Both resistance and memory expression were controlled by an antigen-specific, radio-resistant factor in the immune mouse. Transfusion of serum from immune mice to naive recipients...... conclude that preformed antibodies constitute a primary barrier to re-infection with LCMV; only if the first line of defence fails, does memory function become critical and a secondary immune response induced. In the latter case the accelerated kinetics of this response will ensure that the infection...... is controlled before substantial cell damage has occurred. We find no need to invoke active suppression of immunity in order to explain the difficulty to obtain a typical memory response in situ....

  18. Effect of Pleuran ( β-glucan from Pleurotus ostreatus) supplementation on cellular immune response after intensive exercise in elite athletes

    National Research Council Canada - National Science Library

    Gabri ž, Ján; Bobov čák, Marián; Kuniaková, Renata; Majtán, Juraj

    2010-01-01

    .... The goal of this study was to determine whether β-glucan dietary supplementation from the mushroom Pleurotus ostreatus decreases the suppressed immune system responses induced by short-term high-intensity exercise in humans...

  19. Potent SIV-specific Cellular Immune Responses in the Breast Milk of SIV-infected, Lactating Rhesus Monkeys1

    OpenAIRE

    2008-01-01

    Breast milk transmission of HIV is a leading cause of infant HIV/AIDS in the developing world. Remarkably, only a small minority of breastfeeding infants born to HIV-infected mothers contract HIV via breast milk exposure, raising the possibility that immune factors in the breast milk confer protection to the infants who remain uninfected. To model HIV-specific immunity in breast milk, lactation was pharmacologically induced in Mamu-A*01+ female rhesus monkeys. The composition of lymphocyte su...

  20. A new adenovirus based vaccine vector expressing an Eimeria tenella derived TLR agonist improves cellular immune responses to an antigenic target.

    Directory of Open Access Journals (Sweden)

    Daniel M Appledorn

    Full Text Available BACKGROUND: Adenoviral based vectors remain promising vaccine platforms for use against numerous pathogens, including HIV. Recent vaccine trials utilizing Adenovirus based vaccines expressing HIV antigens confirmed induction of cellular immune responses, but these responses failed to prevent HIV infections in vaccinees. This illustrates the need to develop vaccine formulations capable of generating more potent T-cell responses to HIV antigens, such as HIV-Gag, since robust immune responses to this antigen correlate with improved outcomes in long-term non-progressor HIV infected individuals. METHODOLOGY/PRINCIPAL FINDINGS: In this study we designed a novel vaccine strategy utilizing an Ad-based vector expressing a potent TLR agonist derived from Eimeria tenella as an adjuvant to improve immune responses from a [E1-]Ad-based HIV-Gag vaccine. Our results confirm that expression of rEA elicits significantly increased TLR mediated innate immune responses as measured by the influx of plasma cytokines and chemokines, and activation of innate immune responding cells. Furthermore, our data show that the quantity and quality of HIV-Gag specific CD8(+ and CD8(- T-cell responses were significantly improved when coupled with rEA expression. These responses also correlated with a significantly increased number of HIV-Gag derived epitopes being recognized by host T cells. Finally, functional assays confirmed that rEA expression significantly improved antigen specific CTL responses, in vivo. Moreover, we show that these improved responses were dependent upon improved TLR pathway interactions. CONCLUSION/SIGNIFICANCE: The data presented in this study illustrate the potential utility of Ad-based vectors expressing TLR agonists to improve clinical outcomes dependent upon induction of robust, antigen specific immune responses.

  1. HIVIS-DNA or HIVISopt-DNA priming followed by CMDR vaccinia-based boosts induce both humoral and cellular murine immune responses to HIV

    Directory of Open Access Journals (Sweden)

    J Hinkula

    2017-06-01

    Conclusions: HIVIS-DNA was modified to obtain HIVISopt-DNA that had fewer plasmids, and additional epitopes. Even with one DNA prime followed by two MVA-CMDR boosts, humoral and cell-mediated immune responses were readily induced by priming with either DNA construct composition. Priming by HIV-DNA augmented neutralizing antibody responses revealed by boosting with the vaccinia-based heterologous sequences. Cellular and antibody responses covered selected strains representing HIV-1 subtypes A, B, C and CRF01_AE. We assume this is related to the inclusion of heterologous full genes in the vaccine schedule.

  2. Immunopotentiation of Different Adjuvants on Humoral and Cellular Immune Responses Induced by HA1-2 Subunit Vaccines of H7N9 Influenza in Mice.

    Directory of Open Access Journals (Sweden)

    Li Song

    Full Text Available In spring 2013, human infections with a novel avian influenza A (H7N9 virus were reported in China. The number of cases has increased with over 200 mortalities reported to date. However, there is currently no vaccine available for the H7 subtype of influenza A virus. Virus-specific cellular immune responses play a critical role in virus clearance during influenza infection. In this study, we undertook a side-by-side evaluation of two different adjuvants, Salmonella typhimurium flagellin (fliC and polyethyleneimine (PEI, through intraperitoneal administration to assess their effects on the immunogenicity of the recombinant HA1-2 subunit vaccine of H7N9 influenza. The fusion protein HA1-2-fliC and HA1-2 combined with PEI could induce significantly higher HA1-2-specific IgG and hemagglutination inhibition titers than HA1-2 alone at 12 days post-boost, with superior HA1-2 specific IgG titers in the HA1-2-fliC group compared with the PEI adjuvanted group. The PEI adjuvanted vaccine induced higher IgG1/IgG2a ratio and significantly increased numbers of IFN-γ- and IL-4-producing cells than HA1-2 alone, suggesting a mixed Th1/Th2-type cellular immune response with a Th2 bias. Meanwhile, the HA1-2-fliC induced higher IgG2a and IgG1 levels, which is indicative of a mixed Th1/Th2-type profile. Consistent with this, significant levels, and equal numbers, of IFN-γ- and IL-4-producing cells were detected after HA1-2-fliC vaccination. Moreover, the marked increase in CD69 expression and the proliferative index with the HA1-2-fliC and PEI adjuvanted vaccines indicated that both adjuvanted vaccine candidates effectively induced antigen-specific cellular immune responses. Taken together, our findings indicate that the two adjuvanted vaccine candidates elicit effective and HA1-2-specific humoral and cellular immune responses, offering significant promise for the development of a successful recombinant HA1-2 subunit vaccine for H7N9 influenza.

  3. Immunopotentiation of Different Adjuvants on Humoral and Cellular Immune Responses Induced by HA1-2 Subunit Vaccines of H7N9 Influenza in Mice

    Science.gov (United States)

    Song, Li; Xiong, Dan; Hu, Maozhi; Kang, Xilong; Pan, Zhiming; Jiao, Xinan

    2016-01-01

    In spring 2013, human infections with a novel avian influenza A (H7N9) virus were reported in China. The number of cases has increased with over 200 mortalities reported to date. However, there is currently no vaccine available for the H7 subtype of influenza A virus. Virus-specific cellular immune responses play a critical role in virus clearance during influenza infection. In this study, we undertook a side-by-side evaluation of two different adjuvants, Salmonella typhimurium flagellin (fliC) and polyethyleneimine (PEI), through intraperitoneal administration to assess their effects on the immunogenicity of the recombinant HA1-2 subunit vaccine of H7N9 influenza. The fusion protein HA1-2-fliC and HA1-2 combined with PEI could induce significantly higher HA1-2-specific IgG and hemagglutination inhibition titers than HA1-2 alone at 12 days post-boost, with superior HA1-2 specific IgG titers in the HA1-2-fliC group compared with the PEI adjuvanted group. The PEI adjuvanted vaccine induced higher IgG1/IgG2a ratio and significantly increased numbers of IFN-γ- and IL-4-producing cells than HA1-2 alone, suggesting a mixed Th1/Th2-type cellular immune response with a Th2 bias. Meanwhile, the HA1-2-fliC induced higher IgG2a and IgG1 levels, which is indicative of a mixed Th1/Th2-type profile. Consistent with this, significant levels, and equal numbers, of IFN-γ- and IL-4-producing cells were detected after HA1-2-fliC vaccination. Moreover, the marked increase in CD69 expression and the proliferative index with the HA1-2-fliC and PEI adjuvanted vaccines indicated that both adjuvanted vaccine candidates effectively induced antigen-specific cellular immune responses. Taken together, our findings indicate that the two adjuvanted vaccine candidates elicit effective and HA1-2-specific humoral and cellular immune responses, offering significant promise for the development of a successful recombinant HA1-2 subunit vaccine for H7N9 influenza. PMID:26930068

  4. Immunopotentiation of Different Adjuvants on Humoral and Cellular Immune Responses Induced by HA1-2 Subunit Vaccines of H7N9 Influenza in Mice.

    Science.gov (United States)

    Song, Li; Xiong, Dan; Hu, Maozhi; Kang, Xilong; Pan, Zhiming; Jiao, Xinan

    2016-01-01

    In spring 2013, human infections with a novel avian influenza A (H7N9) virus were reported in China. The number of cases has increased with over 200 mortalities reported to date. However, there is currently no vaccine available for the H7 subtype of influenza A virus. Virus-specific cellular immune responses play a critical role in virus clearance during influenza infection. In this study, we undertook a side-by-side evaluation of two different adjuvants, Salmonella typhimurium flagellin (fliC) and polyethyleneimine (PEI), through intraperitoneal administration to assess their effects on the immunogenicity of the recombinant HA1-2 subunit vaccine of H7N9 influenza. The fusion protein HA1-2-fliC and HA1-2 combined with PEI could induce significantly higher HA1-2-specific IgG and hemagglutination inhibition titers than HA1-2 alone at 12 days post-boost, with superior HA1-2 specific IgG titers in the HA1-2-fliC group compared with the PEI adjuvanted group. The PEI adjuvanted vaccine induced higher IgG1/IgG2a ratio and significantly increased numbers of IFN-γ- and IL-4-producing cells than HA1-2 alone, suggesting a mixed Th1/Th2-type cellular immune response with a Th2 bias. Meanwhile, the HA1-2-fliC induced higher IgG2a and IgG1 levels, which is indicative of a mixed Th1/Th2-type profile. Consistent with this, significant levels, and equal numbers, of IFN-γ- and IL-4-producing cells were detected after HA1-2-fliC vaccination. Moreover, the marked increase in CD69 expression and the proliferative index with the HA1-2-fliC and PEI adjuvanted vaccines indicated that both adjuvanted vaccine candidates effectively induced antigen-specific cellular immune responses. Taken together, our findings indicate that the two adjuvanted vaccine candidates elicit effective and HA1-2-specific humoral and cellular immune responses, offering significant promise for the development of a successful recombinant HA1-2 subunit vaccine for H7N9 influenza.

  5. In vivo monitoring of transfected DNA, gene expression kinetics, and cellular immune responses in mice immunized with a human NIS gene-expressing plasmid.

    Science.gov (United States)

    Son, Hye-Youn; Jeon, Yong-Hyun; Chung, June-Key; Kim, Chul-Woo

    2016-12-01

    In assessing the effectiveness of DNA vaccines, it is important to monitor: (1) the kinetics of target gene expression in vivo; and (2) the movement of cells that become transfected with the plasmid DNA used in the immunization of a subject. In this study, we used, as a visual imaging marker, expression of the transfected human sodium/iodide symporter (hNIS) gene, which enhances intracellular radio-pertechnetate (TcO4-) accumulation. After intradermal (i.d.) and systemic injection of mice with pcDNA-hNIS and radioactive Technetium-99m (Tc-99m), respectively, whole-body images were obtained by nuclear scintigraphy. The migration of mice cells transfected with the hNIS gene was monitored over a 2-week period by gamma-radioactivity counting of isolated cell populations and was demonstrated in peripheral lymphoid tissues, especially in the draining lymph nodes (dLNs). Beginning at 24 h after DNA inoculation and continuing for the 2-week monitoring period, hNIS-expressing cells were observed specifically in the T-cell-rich zones of the paracortical area of the dLNs. Over the same time period, high levels of INF-γ-secreting CD8 T-cells were found in the dLNs of the pcDNA-hNIS immunized mice. Tumor growth was also significantly retarded in the mice that received hNIS DNA immunization followed by inoculation with CT26 colorectal adenocarcinoma cells that had been transfected with the rat NIS gene (rNIS), which is 93% homologous to the hNIS gene. In conclusion, mouse cells transfected with hNIS DNA after i.d. immunization were found to traffic to the dLNs, and hNIS gene expression in these cells continued for at least 2 weeks post immunization. Furthermore, sequential presentation of NIS DNA to T-cells by migratory antigen presenting cells could induce NIS DNA-specific Th1 immune responses and thus retard the growth of NIS-expressing tumors.

  6. Engineered outer membrane vesicle is potent to elicit HPV16E7-specific cellular immunity in a mouse model of TC-1 graft tumor.

    Science.gov (United States)

    Wang, Shijie; Huang, Weiwei; Li, Kui; Yao, Yufeng; Yang, Xu; Bai, Hongmei; Sun, Wenjia; Liu, Cunbao; Ma, Yanbing

    2017-01-01

    Currently, therapeutic tumor vaccines under development generally lack significant effects in human clinical trials. Exploring a powerful antigen delivery system is a potential approach to improve vaccine efficacy. We sought to explore engineered bacterial outer membrane vesicles (OMVs) as a new vaccine carrier for efficiently delivering tumor antigens and provoking robust antitumor immune responses. First, the tumoral antigen human papillomavirus type 16 early protein E7 (HPV16E7) was presented on Escherichia coli-derived OMVs by genetic engineering methods, acquiring the recombinant OMV vaccine. Second, the ability of recombinant OMVs delivering their components and the model antigen green fluorescent protein to antigen-presenting cells was investigated in the macrophage Raw264.7 cells and in bone marrow-derived dendritic cells in vitro. Third, it was evaluated in TC-1 graft tumor model in mice that the recombinant OMVs displaying HPV16E7 stimulated specific cellular immune response and intervened the growth of established tumor. E. coli DH5α-derived OMVs could be taken up rapidly by dendritic cells, for which vesicle structure has been proven to be important. OMVs significantly stimulated the expression of dendritic cellmaturation markers CD80, CD86, CD83 and CD40. The HPV16E7 was successfully embedded in engineered OMVs through gene recombinant techniques. Subcutaneous immunization with the engineered OMVs induced E7 antigen-specific cellular immune responses, as shown by the increased numbers of interferon-gamma-expressing splenocytes by enzyme-linked immunospot assay and interferon-gamma-expressing CD4(+) and CD8(+) cells by flow cytometry analyses. Furthermore, the growth of grafted TC-1 tumors in mice was significantly suppressed by therapeutic vaccination. The recombinant E7 proteins presented by OMVs were more potent than those mixed with wild-type OMVs or administered alone for inducing specific cellular immunity and suppressing tumor growth. The

  7. Genetic vaccination with Flt3-L and GM-CSF as adjuvants:Enhancement of cellular and humoral immune responses that results in protective immunity in a murine model of hepatitis C virus infection

    Institute of Scientific and Technical Information of China (English)

    Jens Encke; Jomo Bernardin; Jasmin Geib; Gocha Barbakadze; Raymond Bujdoso; Wolfgang Stremmel

    2006-01-01

    AIM: To investigate whether transfection of plasmid DNA encoding these cytokines enhances both humoral and cellular immune responses to hepatitis C virus (HCV) in a murine model.METHODS: We established a tumor model of HCV infection using syngenic mouse myeloma cells stably transfected with NS5. Co-vaccination of DNA encoding granulocyte macrophage colony-stimulating factor (GMCSF) and Fit-3 ligand together with a plasmid encoding for the HCV NS5 protein was carried out. Mice were sacrificed 14 d after the last immunization event with collection of spleen cells and serum to determine humoral and cellular immune responses.RESULTS: Co-vaccination of DNA encoding GM-CSF and Flt-3 ligand together with a plasmid encoding for the HCV NS5 protein induced increased antibody responses and CD4+ T cell proliferation to this protein. Vaccination with DNA encoding GM-CSF and Flt-3L promoted protection against tumor formation and/or reduction in mice coimmunized with cytokine-encoding DNA constructs. This suggests this strategy is capable of generating cytotoxic T lymphocyte activity in vivo. Following inoculation with plasmid DNA encoding Flt-3L, no increase in spleen size or in dendritic cell (DC) and natural killer cell numbers was observed. This was in contrast to a dramatic increase of both cell types after administration of recombinant Flt3-L in vivo. This suggests that vaccination with plasmid DNA encoding cytokines that regulate DC generation and mobilization may not promote unwanted side effects, such as autoimmunity, splenic fibrosis or hematopoietic malignancies that may occur with administration of recombinant forms of these proteins.CONCLUSION: Our data support the view that plasmid DNA vaccination is a promising approach for HCV immunization, and may provide a general adjuvant vaccination strategy against malignancies and other pathogens.

  8. Rising Cellular Immune Response after Injection of pVax/iutA: A Genetic DNA Cassette as Candidate Vaccine against Urinary Tract Infection

    Directory of Open Access Journals (Sweden)

    Ronak BAKHTIARI

    2016-08-01

    Full Text Available Background: Uropathogenic Escherichia coli (UPEC are major bacterial agent of Urinary Tract Infection (UTI. This infection is more prevalent among women because approximately half of all women will experience a UTI in their life-time and near a quarter of them will have a recurrent infection within 6–12 months. IutA protein has a major role during UPEC pathogenesis and consequently infection. Therefore, the aim of current study was assessment of IutA protein roles as a potential candidate antigen based for vaccine designing.Methods: This survey was conducted during 2014-2015 at the University of Tehran, Iran. Chromosomal DNA extracted from E. coli 35218 and iutA gene amplified by PCR. The amplicon cloned to pVax.1 eukaryotic expression vector and recombinant vector confirmed by sequencing. The iutA gene expression in genetic cassette of pVax/iutA was evaluated in COS7 cell line by RT-PCR. Then, injected to mouse model, which divided to three groups: injected with pVax vector, PBS and pVax/iutA cassette respectively in two stages (d 1 and 14. One week after the second injection, bleeding from immunized mouse was performed and IFN-gamma was measured.Results: The mice immunized with pVax/iutA showed increased interferon-γ responses significantly higher than two non-immunized groups (P<0.05.Conclusion: Cellular immune response has a main protective role against UTI. Raising this kind of immune response is important to preventing of recurrent infection. Moreover, the current DNA cassette will be valuable for more trying to prepare a new vaccine against UTI. Keywords: Genetic vaccination, Uropathogenic escherichia coli, IutA

  9. Rising Cellular Immune Response after Injection of pVax/iutA: A Genetic DNA Cassette as Candidate Vaccine against Urinary Tract Infection

    Science.gov (United States)

    BAKHTIARI, Ronak; AHMADIAN, Shahin; FALLAH MEHRABADI, Jalil

    2016-01-01

    Background: Uropathogenic Escherichia coli (UPEC) are major bacterial agent of Urinary Tract Infection (UTI). This infection is more prevalent among women because approximately half of all women will experience a UTI in their life-time and near a quarter of them will have a recurrent infection within 6–12 months. IutA protein has a major role during UPEC pathogenesis and consequently infection. Therefore, the aim of current study was assessment of IutA protein roles as a potential candidate antigen based for vaccine designing. Methods: This survey was conducted during 2014–2015 at the University of Tehran, Iran. Chromosomal DNA extracted from E. coli 35218 and iutA gene amplified by PCR. The amplicon cloned to pVax.1 eukaryotic expression vector and recombinant vector confirmed by sequencing. The iutA gene expression in genetic cassette of pVax/iutA was evaluated in COS7 cell line by RT-PCR. Then, injected to mouse model, which divided to three groups: injected with pVax vector, PBS and pVax/iutA cassette respectively in two stages (d 1 and 14). One week after the second injection, bleeding from immunized mouse was performed and IFN-gamma was measured. Results: The mice immunized with pVax/iutA showed increased interferon-γ responses significantly higher than two non-immunized groups (P<0.05). Conclusion: Cellular immune response has a main protective role against UTI. Raising this kind of immune response is important to preventing of recurrent infection. Moreover, the current DNA cassette will be valuable for more trying to prepare a new vaccine against UTI. PMID:27516995

  10. Epitope DNA vaccines against tuberculosis: spacers and ubiquitin modulates cellular immune responses elicited by epitope DNA vaccine

    Institute of Scientific and Technical Information of China (English)

    Wang QM; Sun SH; Hu ZL; Zhou FJ; Yin M; Xiao CJ; Zhang JC

    2005-01-01

    Cell-mediated immune responses are crucial in the protection against tuberculosis. In this study, we constructed epitope DNA vaccines (p3-M-38) encoding cytotoxic T lymphocyte (CTL) epitopes of MPT64 and 38 kDa proteins of Mycobacterium tuberculosis. In order to observe the influence of spacer sequence (Ala-Ala-Tyr) or ubiquitin (UbGR) on the efficacy of the two CTL epitopes, we also constructed DNA vaccines, p3-M-S(spacer)-38, p3-Ub (UbGR)-M-S-38 and p3-Ub-M-38. The immune responses elicited by the four DNA vaccines were tested in C57BL/6 (H-2b) mice. The cytotoxicity of T cells was detected by LDH-release method and by enzyme-linked immunospot assay for epitope-specific cells secreting interferon-gamma. The results showed that DNA immunization with p3-M-38 vaccine could induce epitope-specific CD8+ CTL response and that the spacer sequence (AAY) only enhanced M epitope presentation. The protein-targeting sequence (UbGR) enhanced the immunogenicity of the two epitopes. The finding that defined spacer sequences at C-terminus and protein-targeting degradation modulated the immune response of epitope string DNA vaccines will be of importance for the further development of multi-epitope DNA vaccines against tuberculosis.

  11. Cellular and humoral immunity after infection with B. pertussis : the role of age, antigen and vaccination history

    NARCIS (Netherlands)

    van Twillert, I

    2017-01-01

    Pertussis (whooping cough), is a bacterial disease of the respiratory tract, caused by the human pathogen Bordetella pertussis. Vaccination against pertussis has dramatically lowered pertussis incidence and mortality rates; however pertussis still occurs. The duration of immunity to B. pertussis aft

  12. The Effect of Bifidobacterium animalis ssp. lactis HN019 on Cellular Immune Function in Healthy Elderly Subjects: Systematic Review and Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Larry E. Miller

    2017-02-01

    Full Text Available Elderly people have increased susceptibility to infections and cancer that are associated with decline in cellular immune function. The objective of this work was to determine the efficacy of Bifidobacterium (B. animalis ssp. lactis HN019 (HN019 supplementation on cellular immune activity in healthy elderly subjects. We conducted a systematic review of Medline and Embase for controlled trials that reported polymorphonuclear (PMN cell phagocytic capacity or natural killer (NK cell tumoricidal activity following B. lactis HN019 consumption in the elderly. A random effects meta-analysis was performed with standardized mean difference (SMD and 95% confidence interval between probiotic and control groups for each outcome. A total of four clinical trials were included in this analysis. B. lactis HN019 supplementation was highly efficacious in increasing PMN phagocytic capacity with an SMD of 0.74 (95% confidence interval: 0.38 to 1.11, p < 0.001 and moderately efficacious in increasing NK cell tumoricidal activity with an SMD of 0.43 (95% confidence interval: 0.08 to 0.78, p = 0.02. The main limitations of this research were the small number of included studies, short-term follow-up, and assessment of a single probiotic strain. In conclusion, daily consumption of B. lactis HN019 enhances NK cell and PMN function in healthy elderly adults.

  13. Single and mixed-species trypanosome and microsporidia infections elicit distinct, ephemeral cellular and humoral immune responses in honey bees.

    Science.gov (United States)

    Schwarz, Ryan S; Evans, Jay D

    2013-01-01

    Frequently encountered parasite species impart strong selective pressures on host immune system evolution and are more apt to concurrently infect the same host, yet molecular impacts in light of this are often overlooked. We have contrasted immune responses in honey bees to two common eukaryotic endoparasites by establishing single and mixed-species infections using the long-associated parasite Crithidia mellificae and the emergent parasite Nosema ceranae. Quantitative polymerase chain reaction was used to screen host immune gene expression at 9 time points post inoculation. Systemic responses in abdomens during early stages of parasite establishment revealed conserved receptor (Down syndrome cell adhesion molecule, Dscam and nimrod C1, nimC1), signaling (MyD88 and Imd) and antimicrobial peptide (AMP) effector (Defensin 2) responses. Late, established infections were distinct with a refined 2 AMP response to C. mellificae that contrasted starkly with a 5 AMP response to N. ceranae. Mixed species infections induced a moderate 3 AMPs. Transcription in gut tissues highlighted important local roles for Dscam toward both parasites and Imd signaling toward N. ceranae. At both systemic and local levels Dscam, MyD88 and Imd transcription was consistently correlated based on clustering analysis. Significant gene suppression occurred in two cases from midgut to ileum tissue: Dscam was lowered during mixed infections compared to N. ceranae infections and both C. mellificae and mixed infections had reduced nimC1 transcription compared to uninfected controls. We show that honey bees rapidly mount complex immune responses to both Nosema and Crithidia that are dynamic over time and that mixed-species infections significantly alter local and systemic immune gene transcription.

  14. Role of SEREX-defined immunogenic wild-type cellular molecules in the development of tumor-specific immunity.

    Science.gov (United States)

    Nishikawa, H; Tanida, K; Ikeda, H; Sakakura, M; Miyahara, Y; Aota, T; Mukai, K; Watanabe, M; Kuribayashi, K; Old, L J; Shiku, H

    2001-12-04

    Recognition of altered self-antigens in tumor cells by lymphocytes forms the basis for antitumor immune responses. The effector cells in most experimental tumor systems are CD8(+) T cells that recognize MHC class I binding peptides derived from molecules with altered expression in tumor cells. Although the need for CD4(+) helper T cells in regulating CD8(+) T cells has been documented, their target epitopes and functional impact in antitumor responses remain unclear. We examined whether broadly expressed wild-type molecules in murine tumor cells eliciting humoral immunity contributed to the generation of CD8(+) T cells and protective antitumor immune responses to unrelated tumor-specific antigens [mutated ERK2 (mERK2) and c-erbB2/HER/neu (HER2)]. The immunogenic wild-type molecules, presumably dependent on recognition by CD4(+) helper T cells, were defined by serological analysis of recombinant cDNA expression libraries (SEREX) using tumor-derived lambda phage libraries screened with IgG antibodies of hosts bearing transplanted 3-methylchoranthrene-induced tumors. Coimmunization of mice with plasmids encoding SEREX-defined murine wild-type molecules and mERK2 or HER2 led to a profound increase in CD8(+) T cells specific for mERK2 or HER2 peptides. This heightened response depended on CD4(+) T cells and copresentation of SEREX-defined molecules and CD8(+) T cell epitopes. In tumor protection assays, immunization with SEREX-defined wild-type molecules and mERK2 resulted in an inhibition of pulmonary metastasis, which was not achieved by immunization with mERK2 alone.

  15. Development of cellular immune response of mice to infection with low doses of Trichinella spiralis, Trichinella britovi and Trichinella pseudospiralis larvae.

    Science.gov (United States)

    Dvorožňáková, Emília; Hurníková, Zuzana; Kołodziej-Sobocińska, Marta

    2011-01-01

    The murine cellular immune response to the infection with ten larvae of encapsulating (Trichinella spiralis, Trichinella britovi) and non-encapsulating species (Trichinella pseudospiralis) was studied. Both T. spiralis and T. britovi stimulated the proliferation of splenic T and B lymphocytes during the intestinal phase of infection, but T. spiralis activated the proliferative response also at the muscle phase, particularly in B cells. Non-encapsulating T. pseudospiralis stimulated the proliferation of T and B cells only on day 10 post-infection (p.i.) and later at the muscle phase. The numbers of splenic CD4 and CD8 T cells of T. spiralis infected mice were significantly increased till day 10 p.i., i.e., at the intestinal phase, and then at the late muscle phase, on day 60 p.i. T. britovi infection increased the CD4 and CD8 T cell numbers only on day 30 p.i. Decreased numbers of CD4 and CD8 T cells after T. pseudospiralis infection suggest a suppression of cellular immunity. Both encapsulating Trichinella species induced the Th2 response (cytokines interleukin-5 (IL-5) and interleukin-10) at the intestinal phase and the Th2 dominant response at the advanced muscle phase. Interferon-γ (IFN-γ) production (Th1 type) started to increase with migrating newborn larvae from day 15 p.i. till the end of the experiment. IL-5 production was suppressed during the intestinal phase of T. pseudospiralis infection. The immune response to T. pseudospiralis was directed more to the Th1 response at the muscle phase, the high IFN-γ production was found on day 10 p.i. and it peaked on days 45 and 60 p.i.

  16. DNA-based vaccination induces humoral and cellular immune responses against hepatitis B virus surface antigen in mice without activation of C-myc.

    Science.gov (United States)

    Zhao, Lian-San; Qin, Shan; Zhou, Tao-You; Tang, Hong; Liu, Li; Lei, Bing-Jun

    2000-04-01

    AIM:To develop a safe and effective DNA vaccine for inducing humoral and cellular immunological responses against hepatitis B virus surface antigen (HBsAg).METHODS:BALB/c mice were inoculated with NV-HB/s, a recombinant plasmid that had been inserted S gene of hepatitis B virus genome and could express HBsAg in eukaryotes. HBsAg expression was measured by ABC immunohis tochemical assay, generation of anti-HBs by ELISA and cytotoxic T lymphocyte (CTL), by MTT method, existence of vaccine DNA by Southern blot hybridization and activation of oncogene C-myc by in situ hybridization.RESULTS:With NV-HB/s vaccination by intramuscular injection, anti-HBs was initially positive 2 weeks after inoculation while all mice tested were HBsAg positive in the muscles.The titers and seroconversion rate of anti-HBs were steadily increasing as time went on and were dose dependent. All the mice inoculated with 100&mgr;g NV-HB/s were anti-HBs positive one month after inoculation, the titer was 1 1024 or more. The humoral immune response was similar induced by either intramuscular or intradermal injection. CTL activities were much stronger (45.26%) in NV-HB/s DNA immunized mice as compared with those (only 6%) in plasma-derived HBsAg vaccine immunized mice. Two months after inoculation, all muscle samples were positive by Southernblot hybridization for NV-HB/s DNA detection, but decreased to 25% and all were undetectable by in situ hybridiza-tion after 6 months.No oncogene C-myc activation was found in the muscle of inoculation site.CONCLUSION:NV-HB/s could generate humoral and cellular immunolo-gical responses against HBsAg that had been safely expressed in situ by NV-HB/s vaccination.

  17. Monocyte Chemotactic Protein 1 in Plasma from Soluble Leishmania Antigen-Stimulated Whole Blood as a Potential Biomarker of the Cellular Immune Response to Leishmania infantum

    Directory of Open Access Journals (Sweden)

    Ana V. Ibarra-Meneses

    2017-09-01

    Full Text Available New biomarkers are needed to identify asymptomatic Leishmania infection as well as immunity following vaccination or treatment. With the aim of finding a robust biomarker to assess an effective cellular immune response, monocyte chemotactic protein 1 (MCP-1 was examined in plasma from soluble Leishmania antigen (SLA-stimulated whole blood collected from subjects living in a Leishmania infantum-endemic area. MCP-1, expressed 110 times more strongly than IL-2, identified 87.5% of asymptomatic subjects and verified some asymptomatic subjects close to the cutoff. MCP-1 was also significantly elevated in all patients cured of visceral leishmaniasis (VL, unlike IL-2, indicating the specific memory response generated against Leishmania. These results show MCP-1 to be a robust candidate biomarker of immunity that could be used as a marker of cure and to both select and follow the population in vaccine phase I–III human clinical trials with developed rapid, easy-to-use field tools.

  18. The Rab GTPase Rab8 as a shared regulator of ciliogenesis and immune synapse assembly: From a conserved pathway to diverse cellular structures

    Science.gov (United States)

    Patrussi, Laura; Baldari, Cosima T.

    2016-01-01

    ABSTRACT Rab GTPases, which form the largest branch of the Ras GTPase superfamily, regulate almost every step of vesicle-mediated trafficking. Among them, Rab8 is an essential participant in primary cilium formation. In a report recently published in the Journal of Cell Science, Finetti and colleagues identify Rab8 as a novel player in vesicular traffic in the non-ciliated T lymphocytes, which contributes to the assembly of the specialized signaling platform known as the immune synapse. By interacting with the v-SNARE VAMP-3, Rab8 is indeed responsible for the final docking/fusion step in T cell receptor (TCR) recycling to the immune synapse. A second important take-home message which comes to light from this work is that VAMP-3 also interacts with Rab8 at the base of the cilium in NIH-3T3 cells, where it regulates ciliary growth and targeting of Smoothened at the plasma membrane. Hence the data presented in this report, in addition to identifying Rab8 as a novel player in vesicular traffic to the immune synapse, reveal how both ciliated and non-ciliated cells take advantage of a conserved pathway to build highly specific cellular structures. PMID:26587735

  19. Cellular and humoral immune responses in sheep vaccinated with candidate antigens MAP2698c and MAP3567 from Mycobacterium avium subspecies paratuberculosis.

    Science.gov (United States)

    Gurung, Ratna B; Purdie, Auriol C; Whittington, Richard J; Begg, Douglas J

    2014-01-01

    Control of Johne's disease, caused by Mycobacterium avium subspecies paratuberculosis (MAP) in ruminants using commercially available vaccine reduces production losses, mortality, fecal shedding and histopathological lesions but does not provide complete protection from infection and interferes with serological diagnosis of Johne's disease and bovine tuberculosis. At this time no recombinant antigens have been found to provide superior protection compared to whole killed or live-attenuated MAP vaccines. Therefore, there is a need to evaluate more candidate MAP antigens. In this study recombinant MAP antigens MAP2698c and MAP3567 were formulated with four different MONTANIDE™ (ISA 50V2, 61VG, 71VG, and 201VG) adjuvants and evaluated for their ability to produce specific immune responses in vaccinated sheep. The cellular immune response was measured with an interferon-gamma (IFN-γ) release assay and the humoral immune response was measured by antibody detection enzyme linked immunosorbent assay. Recombinant vaccine formulation with the antigen MAP2698c and MONTANIDE™ ISA 201VG adjuvant produced strong whole-MAP as well as MAP2698c-specific IFN-γ responses in a high proportion of the vaccinated sheep. The formulation caused less severe injection site lesions in comparison to other formulations. The findings from this study suggest that the MAP2698c + 201VG should be evaluated in a challenge trial to determine the efficacy of this vaccine candidate.

  20. Cellular and humoral immune responses in sheep vaccinated with candidate antigens MAP2698c and MAP3567 from Mycobacterium avium subspecies paratuberculosis

    Directory of Open Access Journals (Sweden)

    Ratna eGurung

    2014-07-01

    Full Text Available Control of Johne’s disease, caused by Mycobacterium avium subspecies paratuberculosis (MAP in ruminants using commercially available vaccine reduces production losses, mortality, faecal shedding and histopathological lesions but does not provide complete protection from infection and interferes with serological diagnosis of Johne’s disease and bovine tuberculosis. At this time no recombinant antigens have been found to provide superior protection compared to whole killed or live-attenuated MAP vaccines. Therefore, there is a need to evaluate more candidate MAP antigens. In this study recombinant MAP antigens MAP2698c and MAP3567 were formulated with four different MONTANIDE (ISA 50V2, 61VG, 71VG and 201VG adjuvants and evaluated for their ability to produce specific immune responses in vaccinated sheep. The cellular immune response was measured with an interferon-gamma (IFN-γ release assay and the humoral immune response was measured by antibody detection enzyme linked immunosorbent assay. Recombinant vaccine formulation with the antigen MAP2698c and MONTANIDE ISA 201VG adjuvant produced strong whole-MAP as well as MAP2698c-specific IFN-γ responses in a high proportion of the vaccinated sheep. The formulation caused less severe injection site lesions in comparison to other formulations. The findings from this study suggest that the MAP2698c + 201VG should be evaluated in a challenge trial to determine the efficacy of this vaccine candidate.

  1. Cellular and humoral immune responses in sheep vaccinated with candidate antigens MAP2698c and MAP3567 from Mycobacterium avium subspecies paratuberculosis

    Science.gov (United States)

    Gurung, Ratna B.; Purdie, Auriol C.; Whittington, Richard J.; Begg, Douglas J.

    2014-01-01

    Control of Johne's disease, caused by Mycobacterium avium subspecies paratuberculosis (MAP) in ruminants using commercially available vaccine reduces production losses, mortality, fecal shedding and histopathological lesions but does not provide complete protection from infection and interferes with serological diagnosis of Johne's disease and bovine tuberculosis. At this time no recombinant antigens have been found to provide superior protection compared to whole killed or live-attenuated MAP vaccines. Therefore, there is a need to evaluate more candidate MAP antigens. In this study recombinant MAP antigens MAP2698c and MAP3567 were formulated with four different MONTANIDE™ (ISA 50V2, 61VG, 71VG, and 201VG) adjuvants and evaluated for their ability to produce specific immune responses in vaccinated sheep. The cellular immune response was measured with an interferon-gamma (IFN-γ) release assay and the humoral immune response was measured by antibody detection enzyme linked immunosorbent assay. Recombinant vaccine formulation with the antigen MAP2698c and MONTANIDE™ ISA 201VG adjuvant produced strong whole-MAP as well as MAP2698c-specific IFN-γ responses in a high proportion of the vaccinated sheep. The formulation caused less severe injection site lesions in comparison to other formulations. The findings from this study suggest that the MAP2698c + 201VG should be evaluated in a challenge trial to determine the efficacy of this vaccine candidate. PMID:25077074

  2. Cellular immunity confers transient protection in experimental Buruli ulcer following BCG or mycolactone-negative Mycobacterium ulcerans vaccination.

    Directory of Open Access Journals (Sweden)

    Alexandra G Fraga

    Full Text Available BACKGROUND: Buruli ulcer (BU is an emerging infectious disease caused by Mycobacterium ulcerans that can result in extensive necrotizing cutaneous lesions due to the cytotoxic exotoxin mycolactone. There is no specific vaccine against BU but reports show some degree of cross-reactive protection conferred by M. bovis BCG immunization. Alternatively, an M. ulcerans-specific immunization could be a better preventive strategy. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we used the mouse model to characterize the histological and cytokine profiles triggered by vaccination with either BCG or mycolactone-negative M. ulcerans, followed by footpad infection with virulent M. ulcerans. We observed that BCG vaccination significantly delayed the onset of M. ulcerans growth and footpad swelling through the induction of an earlier and sustained IFN-γ T cell response in the draining lymph node (DLN. BCG vaccination also resulted in cell-mediated immunity (CMI in M. ulcerans-infected footpads, given the predominance of a chronic mononuclear infiltrate positive for iNOS, as well as increased and sustained levels of IFN-γ and TNF. No significant IL-4, IL-17 or IL-10 responses were detected in the footpad or the DLN, in either infected or vaccinated mice. Despite this protective Th1 response, BCG vaccination did not avoid the later progression of M. ulcerans infection, regardless of challenge dose. Immunization with mycolactone-deficient M. ulcerans also significantly delayed the progression of footpad infection, swelling and ulceration, but ultimately M. ulcerans pathogenic mechanisms prevailed. CONCLUSIONS/SIGNIFICANCE: The delay in the emergence of pathology observed in vaccinated mice emphasizes the relevance of protective Th1 recall responses against M. ulcerans. In future studies it will be important to determine how the transient CMI induced by vaccination is compromised.

  3. Modification to the Capsid of the Adenovirus Vector That Enhances Dendritic Cell Infection and Transgene-Specific Cellular Immune Responses

    OpenAIRE

    Worgall, Stefan; Busch, Annette; Rivara, Michael; Bonnyay, David; Leopold, Philip L.; Merritt, Robert; Hackett, Neil R.; Rovelink, Peter W.; Joseph T Bruder; Wickham, Thomas J.; Kovesdi, Imi; Crystal, Ronald G.

    2004-01-01

    Adenovirus (Ad) gene transfer vectors can be used to transfer and express antigens and function as strong adjuvants and thus are useful platforms for the development of genetic vaccines. Based on the hypothesis that Ad vectors with enhanced infectibility of dendritic cells (DC) may be able to evoke enhanced immune responses against antigens encoded by the vector in vivo, the present study analyzes the vaccine potential of an Ad vector expressing β-galactosidase as a model antigen and genetica...

  4. Cellular Immunity Confers Transient Protection in Experimental Buruli Ulcer following BCG or Mycolactone-Negative Mycobacterium ulcerans Vaccination

    Science.gov (United States)

    Fraga, Alexandra G.; Martins, Teresa G.; Torrado, Egídio; Huygen, Kris; Portaels, Françoise; Silva, Manuel T.; Castro, António G.; Pedrosa, Jorge

    2012-01-01

    Background Buruli ulcer (BU) is an emerging infectious disease caused by Mycobacterium ulcerans that can result in extensive necrotizing cutaneous lesions due to the cytotoxic exotoxin mycolactone. There is no specific vaccine against BU but reports show some degree of cross-reactive protection conferred by M. bovis BCG immunization. Alternatively, an M. ulcerans-specific immunization could be a better preventive strategy. Methodology/Principal Findings In this study, we used the mouse model to characterize the histological and cytokine profiles triggered by vaccination with either BCG or mycolactone-negative M. ulcerans, followed by footpad infection with virulent M. ulcerans. We observed that BCG vaccination significantly delayed the onset of M. ulcerans growth and footpad swelling through the induction of an earlier and sustained IFN-γ T cell response in the draining lymph node (DLN). BCG vaccination also resulted in cell-mediated immunity (CMI) in M. ulcerans-infected footpads, given the predominance of a chronic mononuclear infiltrate positive for iNOS, as well as increased and sustained levels of IFN-γ and TNF. No significant IL-4, IL-17 or IL-10 responses were detected in the footpad or the DLN, in either infected or vaccinated mice. Despite this protective Th1 response, BCG vaccination did not avoid the later progression of M. ulcerans infection, regardless of challenge dose. Immunization with mycolactone-deficient M. ulcerans also significantly delayed the progression of footpad infection, swelling and ulceration, but ultimately M. ulcerans pathogenic mechanisms prevailed. Conclusions/Significance The delay in the emergence of pathology observed in vaccinated mice emphasizes the relevance of protective Th1 recall responses against M. ulcerans. In future studies it will be important to determine how the transient CMI induced by vaccination is compromised. PMID:22413022

  5. Effect of Pleuran (β-glucan from Pleurotus ostreatus) supplementation on cellular immune response after intensive exercise in elite athletes.

    Science.gov (United States)

    Bobovčák, Marián; Kuniaková, Renata; Gabriž, Ján; Majtán, Juraj

    2010-12-01

    Excessive and exhausting physical loads depress the immune system. Carbohydrate consumption may minimize the postexercise suppression of the innate immune system. β-Glucan is a well-known immunomodulator, with positive effects on the functioning of immunocompetent cells. The goal of this study was to determine whether β-glucan dietary supplementation from the mushroom Pleurotus ostreatus decreases the suppressed immune system responses induced by short-term high-intensity exercise in humans. In this double-blind pilot study, 20 elite athletes were randomized to β-glucan (n = 9) or placebo (n = 11) groups; these groups consumed 100 mg of β-glucan (Imunoglukan) or placebo supplements, respectively, once a day for 2 months. Venous whole blood was collected before and after 2 months of supplementation (baseline), both immediately and 1 h after (recovery period) a 20-min intensive exercise bout at the end of the supplementation period. The blood samples were used to measure the cell counts of leukocytes, erythrocyte, and lymphocytes; subpopulations of lymphocytes, granulocytes, and monocytes; and natural killer (NK) cell activity (NKCA). A 28% reduction in NKCA (p athletes.

  6. Persistence at one year of age of antigen-induced cellular immune responses in preterm infants vaccinated against whooping cough: comparison of three different vaccines and effect of a booster dose.

    Science.gov (United States)

    Vermeulen, Françoise; Dirix, Violette; Verscheure, Virginie; Damis, Eliane; Vermeylen, Danièle; Locht, Camille; Mascart, Françoise

    2013-04-01

    Due to their high risk of developing severe Bordetella pertussis (Bp) infections, it is recommended to immunize preterm infants at their chronological age. However, little is known about the persistence of their specific immune responses, especially of the cellular responses recognized to play a role in protection. We compared here the cellular immune responses to two major antigens of Bp between three groups of one year-old children born prematurely, who received for their primary vaccination respectively the whole cell vaccine Tetracoq(®) (TC), the acellular vaccine Tetravac(®) (TV), or the acellular vaccine Infanrix-hexa(®) (IR). Whereas most children had still detectable IFN-γ responses at one year of age, they were lower in the IR-vaccinated children compared to the two other groups. In contrast, both the TV- and the IR-vaccinated children displayed higher Th2-type immune responses, resulting in higher antigen-specific IFN-γ/IL-5 ratios in TC- than in TV- or IR-vaccinated children. The IFN-γ/IL-5 ratio of mitogen-induced cytokines was also lower in IR- compared to TC- or TV-vaccinated children. No major differences in the immune responses were noted after the booster compared to the pre-booster responses for each vaccine. The IR-vaccinated children had a persistently low specific Th1-type immune response associated with high specific Th2-type immune responses, resulting in lower antigen-specific IFN-γ/IL-5 ratios compared to the two other groups. We conclude that antigen-specific cellular immune responses persisted in one year-old children born prematurely and vaccinated during infancy at their chronological age, that a booster dose did not significantly boost the cellular immune responses, and that the Th1/Th2 balance of the immune responses is modulated by the different vaccines.

  7. Modulation of the cellular immune response by a carbohydrate rich fraction from Echinococcus granulosus protoscoleces in infected or immunized Balb/c mice.

    Science.gov (United States)

    Dematteis, S; Pirotto, F; Marqués, J; Nieto, A; Orn, A; Baz, A

    2001-01-01

    Infection of Balb/c mice with Echinococcus granulosus protoscoleces constitutes the model for secondary hydatid infection. The immune response of Balb/c mice infected with E. granulosus is characterized by secretion of antibodies specific for carbohydrate epitopes and production of type-2 cytokines. A role for glycoconjugates in the induction of type-2 responses has been suggested in other host--parasite systems. Although glycoconjugates are immunogenic in E. granulosus infection, the role of these molecules in the establishment of the type-2 response has never been analysed. In this study, a carbohydrate rich fraction (E4+) from E. granulosus protoscoleces was obtained using the monoclonal antibody E492/G1 specific for the moiety Galalpha(1,4)Gal which is widely represented in protoscoleces and other E. granulosus antigenic preparations. The results showed that E4+ was immunogenic in Balb/c mice evoking an antibody response mainly directed against carbohydrate epitopes. In addition, splenocytes from E4+-immunized mice showed suppressed proliferative responses to Con A and E4+ induced IL-10 secretion by E4+-primed and naive splenocytes. The fraction E4+ also was immunogenic in infected mice during early infection. In this case also, splenocytes from infected mice as well as peritoneal cells from infected or naive mice, when stimulated in vitro with E4+, secreted IL-10. Collectively, these results suggest that E4+ may be involved in immunosuppression phenomena and, by stimulating IL-10 secretion, may contribute to the induction and sustaining of the type-2 cytokine response established in early experimental infection.

  8. Impaired Cellular Immunity in the Murine Neural Crest Conditional Deletion of Endothelin Receptor-B Model of Hirschsprung's Disease.

    Directory of Open Access Journals (Sweden)

    Ankush Gosain

    Full Text Available Hirschsprung's disease (HSCR is characterized by aganglionosis from failure of neural crest cell (NCC migration to the distal hindgut. Up to 40% of HSCR patients suffer Hirschsprung's-associated enterocolitis (HAEC, with an incidence that is unchanged from the pre-operative to the post-operative state. Recent reports indicate that signaling pathways involved in NCC migration may also be involved in the development of secondary lymphoid organs. We hypothesize that gastrointestinal (GI mucosal immune defects occur in HSCR that may contribute to enterocolitis. EdnrB was deleted from the neural crest (EdnrBNCC-/- resulting in mutants with defective NCC migration, distal colonic aganglionosis and the development of enterocolitis. The mucosal immune apparatus of these mice was interrogated at post-natal day (P 21-24, prior to histological signs of enterocolitis. We found that EdnrBNCC-/- display lymphopenia of their Peyer's Patches, the major inductive site of GI mucosal immunity. EdnrBNCC-/- Peyer's Patches demonstrate decreased B-lymphocytes, specifically IgM+IgDhi (Mature B-lymphocytes, which are normally activated and produce IgA following antigen presentation. EdnrBNCC-/- animals demonstrate decreased small intestinal secretory IgA, but unchanged nasal and bronchial airway secretory IgA, indicating a gut-specific defect in IgA production or secretion. In the spleen, which is the primary source of IgA-producing Mature B-lymphocytes, EdnrBNCC-/- animals display decreased B-lymphocytes, but an increase in Mature B-lymphocytes. EdnrBNCC-/- spleens are also small and show altered architecture, with decreased red pulp and a paucity of B-lymphocytes in the germinal centers and marginal zone. Taken together, these findings suggest impaired GI mucosal immunity in EdnrBNCC-/- animals, with the spleen as a potential site of the defect. These findings build upon the growing body of literature that suggests that intestinal defects in HSCR are not restricted

  9. 中药对细胞免疫调控作用的研究进展%Recent advances in traditional Chinese medicine effect on cellular immunity

    Institute of Scientific and Technical Information of China (English)

    刘微; 洪涛; 王福玲; 雒江菡; 王艳; 李伦; 阎力君

    2014-01-01

    目的:免疫系统是防卫病原体入侵机体最有效的武器,它能发现并调控由异物、外来病原微生物等引起内环境的波动,其中细胞免疫是最主要免疫应答反应。随着对中药研究的深入发现,中药对细胞免疫具有特定的双向调控作用,不仅在抗移植排斥中发挥作用,而且还可以作为抗肿瘤药物的增效剂而发挥间接的抗肿瘤作用,因此得到了广泛关注。本文就近年来中药对细胞免疫的调控作用做一综述。%Objective:The immune system is the most effective defensive weapon from invading pathogens. It can detect and regulate internal environmental fluctuations caused by foreign matter and exotic pathogens, in which the cell immune response is the most important. Accumulating evidence suggested that Chinese medicine has a specific and bidirectional cellular immune regulation. The traditional Chinese medicine not only plays a role in anti-allograft rejection, but also indirectly has anti-tumor effect as synergist of antitumor agents. Thus it has been concern. In this paper, we summarized the recent regulation of traditional Chinese medicine on the role of cell-mediated immunity.

  10. Humoral and cellular immune responses induced in mice by purified iridoid mixture that inhibits penetration of Schistosoma mansoni cercariae upon topical treatment of mice tails.

    Science.gov (United States)

    Bahgat, Mahmoud; Shalaby, Nagwa M M; Ruppel, Andreas; Maghraby, Amany S

    2005-08-01

    When tested for possible blocking effect on the cercarial, serine proteinase, elastase (CE) activity, an iridoid mixture extracted from leaves of Citharexylum quadrangular abolished 31% of the enzyme activity at final concentration 15 microg. When formulated in jojoba oil and applied to mice tails followed by infection with Schistosoma mansoni cercariae, the iridoid mixture blocked cercarial penetration and caused significant reducetion (94%; P < 0.05) in worm burden in treated mice in comparison to controls. Also, immunomodulatory effects of iridoid mixture, iridoid-treated S. mansoni worm homogenate on mice were studied by measuring IgG and IgM levels against E. coli lysates (ECL), solube S. mansoni worm antigenic preparation (SWAP) and cancer bladder homogenates (CBH) as antigens by ELISA. Cellular immune responses were studied by calculating mean percent of CD4+, CD8(+)-T, B-mesenteric lymph node cells (MLNC) and CD4+, CD8(+)-T thymocytes by direct immunofluorescence staining in treated mice as compared to untreated homogenate given mice or untreated mice. Injecting mice with serial dilutions of iridoid mixture resulted in fluctuation, peaks and troughs, in both IgG and IgM responses against the above mentioned antigens. 1st and 2nd immunizations with iridoid mixture treated homogenate resulted in significantly elevated (P < 0.05). IgM and IgG levels against the 3 used antigens in comparison with sera from control mice. Immunized mice with homogenate treated with iridoid mixture showed a significant increase (P < 0.05) in CD4+T thymocytes, a non significant increase in CD8+T thymocytes, a significant increase (P < 0.05) in CD4+T lymphocytes (MLNC) and a non significant increase in CD8+ T- and B-lymphocytes (MLNC) compared with mice immunized with untreated homogenate or non-injected normal mice.

  11. Differential Roles for the Interferon-inducible IFI16 and AIM2 Innate Immune Sensors for Cytosolic DNA in Cellular Senescence of Human Fibroblasts

    Science.gov (United States)

    Duan, Xin; Ponomareva, Larissa; Veeranki, Sudhakar; Panchanathan, Ravichandran; Dickerson, Eric; Choubey, Divaker

    2011-01-01

    The interferon (IFN)-inducible IFI16 and AIM2 proteins act as innate immune sensors for cytosolic double-stranded DNA (dsDNA). Upon sensing dsDNA, the IFI16 protein induces the expression of IFN-β whereas the AIM2 protein forms an inflammasome, which promotes the secretion of IL-1β. Given that the knockdown of IFI16 expression in human diploid fibroblasts (HDFs) delays the onset of cellular senescence, we investigated the potential roles for the IFI16 and AIM2 proteins in cellular senescence. We found that increased IFI16 protein levels in old (versus young) HDFs were associated with the induction of IFN-β. In contrast, increased levels of the AIM2 protein in the senescent (versus old) HDFs were associated with increased production of IL-1β. The knockdown of type I IFN-receptor subunit-α, which reduced the basal levels of the IFI16, but not the AIM2, protein delayed the onset of cellular senescence. Accordingly, increased constitutive levels of IFI16 and AIM2 proteins in ataxia telangiectasia (AT) HDFs were associated with the activation of the IFN-signaling and increased levels of IL-1β. The IFN-β treatment of the young HDFs, which induced the expression of IFI16 and AIM2 proteins, activated a DNA-damage response and also increased basal levels of IL-1β. Interestingly, the knockdown of AIM2 expression in HDFs increased the basal levels of IFI16 protein and activated the IFN-signaling. In contrast, the knockdown of the IFI16 expression in HDFs decreased the basal and dsDNA-induced activation of the IFN-signaling. Collectively, our observations demonstrate differential roles for the IFI16 and AIM2 proteins in cellular senescence and associated secretory phenotype. PMID:21471287

  12. DNA encoding an HIV-1 Gag/human lysosome-associated membrane protein-1 chimera elicits a broad cellular and humoral immune response in Rhesus macaques.

    Directory of Open Access Journals (Sweden)

    Priya Chikhlikar

    Full Text Available Previous studies of HIV-1 p55Gag immunization of mice have demonstrated the usefulness of targeting antigens to the cellular compartment containing the major histocompatibility complex type II (MHC II complex molecules by use of a DNA antigen formulation encoding Gag as a chimera with the mouse lysosome-associated membrane protein (mLAMP/gag. In the present study, we have analyzed the magnitude and breadth of Gag-specific T-lymphocyte and antibody responses elicited in Rhesus macaques after immunization with DNA encoding a human LAMP/gag (hLAMP/gag chimera. ELISPOT analyses indicated that the average Gag-specific IFN-gamma response elicited by the hLAMP/gag chimera was detectable after only two or three naked DNA immunizations in all five immunized macaques and reached an average of 1000 spot-forming cells (SFC/10(6 PBMCs. High IFN-gamma ELISPOT responses were detected in CD8(+-depleted cells, indicating that CD4(+ T-cells play a major role in these responses. The T-cell responses of four of the macaques were also tested by use of ELISPOT to 12 overlapping 15-amino acids (aa peptide pools containing ten peptides each, encompassing the complete Gag protein sequence. The two Mamu 08 immunized macaques responded to eight and twelve of the pools, the Mamu B01 to six, and the other macaque to five pools indicating that the hLAMP/gag DNA antigen formulation elicits a broad T-cell response against Gag. Additionally, there was a strong HIV-1-specific IgG response. The IgG antibody titers increased after each DNA injection, indicating a strong amnestic B-cell response, and were highly elevated in all the macaques after three immunizations. Moreover, the serum of each macaque recognized 13 of the 49 peptides of a 20-aa peptide library covering the complete Gag amino acid sequence. In addition, HIV-1-specific IgA antibodies were present in the plasma and external secretions, including nasal washes. These data support the findings of increased

  13. Adaptive Immunity Dysregulation in Acute Coronary Syndromes: From Cellular and Molecular Basis to Clinical Implications.

    Science.gov (United States)

    Flego, Davide; Liuzzo, Giovanna; Weyand, Cornelia M; Crea, Filippo

    2016-11-08

    Although the early outcome of acute coronary syndrome (ACS) has considerably improved in the last decade, cardiovascular diseases still represent the main cause of morbidity and mortality worldwide. This is mainly because recurrence of ACS eventually leads to the pandemics of heart failure and sudden cardiac death, thus calling for a reappraisal of the mechanisms responsible for coronary instability. This review discusses recent advances in our understanding of how adaptive immunity contributes to the pathogenesis of ACS and the clinical implications that arise from these new pathogenic concepts. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  14. Influence of immunomodulators of natural origin on cellular immunity indices in blood of broiler chicken under stress

    Directory of Open Access Journals (Sweden)

    S. Grabovskyi

    2015-03-01

    Full Text Available The paper deals with researching of T- and B-lymphocytes relative quantity and functional activity in broiler chicken blood after using of animal origin immunomodulators in conditions of pre-slaughter stress. The authors determined the relative amount of T- and B-lymphocytes and their individual populations in the reaction of spontaneous rоsetting with the sheep erythrocytes in blood. Besides, the differentiated count of rоsetting lymphocytes with the various degree of functional activity was conducted. The spleen extract (70% alcohol solution in volume of 1.4 ml per chicken was added to the diet of broiler chicken of experimental groups by aerosol method. This extract was obtained with/ without ultrasound application. 70% alcohol solution in the same volume and using the same method was added to the diet of broiler chicken of the control group five days before slaughter. The authors have not established probable increase of T-lymphocytes general quantity in broiler chicken blood in both experimental groups. It is shown that pre-slaughter stress in broiler chicken caused by weaning has immuno-suppressive effect on T- and B-lymphocytes in blood, which is accompanied by their quantity and functional activity decrease. T- and B-lymphocytes amount and functional activity of T- and B-cell immunity was stimulated after adding immunomodulators of natural origin to broiler chicken diet. Spleen extract polyamines as immunomodulators and antistressors most effectively influenced on some of cell immunity indices before slaughter – it is necessary to note the increase in T-helper lymphocytes in the broiler chickens blood caused by lymphocytes with medium (6–10 – by 18% (Р < 0.05 and high density receptors (М – by 35% (Р < 0.05 compared to the control. It is shown that decrease of T-lymphocytes quantity in broiler chicken blood is caused by lymphocytes with law (3–5 – by 22% (Р < 0.01 and high (M – by 11% (Р < 0.05 density receptors with

  15. Comparisons of the humoral and cellular immunity induced by live A16R attenuated spore and AVA-like anthrax vaccine in mice.

    Science.gov (United States)

    Lv, Jin; Zhang, Ying-Ying; Lu, Xun; Zhang, Hao; Wei, Lin; Gao, Jun; Hu, Bin; Hu, Wen-Wei; Hu, Dun-Zhong; Jia, Na; Feng, Xin

    2017-03-01

    The live attenuated anthrax vaccine and anthrax vaccine adsorbed (AVA) are two main types of anthrax vaccines currently used in human. However, the immunoprotective mechanisms are not fully understood. In this study, we compared humoral and cellular immunity induced by live A16R spore vaccine and A16R strain derived AVA-like vaccine in mice peripheral blood, spleen and bone marrow. Both A16R spores and AVA-like vaccines induced a sustained IgG antibody response with IgG1/IgG2b subtype dominance. However, A16R spores vaccine induced higher titer of IgG2a compared with AVA-like vaccine, indicating a stronger Th1 response to A16R spores. Using antigen-specific ELISpot assay, we observed a significant response of ASCs (antibody secreting cells) and IL4-CSCs (cytokine secreting cells) in mice. Specially, there was a positive correlation between the frequencies of antigen specific ASCs and IL4-CSCs in bone marrow derived cells, either by A16R spore or AVA-like vaccine vaccination. Moreover, we also found A16R spore vaccine, not AVA-like vaccine, could induce sustained frequency of IFN-γ-CSCs in bone marrow derived cells. Collectively, both the vaccines induced a mixed Th1/Th2 response with Th2 dominance in mice and A16R spore vaccine might provide a more comprehensive protection because of humoral and cellular immunity induced in bone marrow. Copyright © 2017 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  16. Study of cellular immunity response of mB7-1 gene transfected mouse ovarian cancer cell line and its tumorigeneeities in vivo

    Institute of Scientific and Technical Information of China (English)

    Jiang Jie; Liang Huamao; Yang Xingsheng; Cui Baoxia; Zhang Youzhong; Kong Beihua

    2003-01-01

    Objective: To investigate the cellular immunity response in vitro and the tumorigenecities in vivo of mB7-1 gene transfected murine ovarian cancer cell line. Methods: mB7-1 gene was transfected into the NuTu-19 cell line by retrovirus vector, and the expression of mB7-1 gene was confirmed by flow cytometry(FCM).NuTu-19/neo and NuTu-19/mB7-1 cells were injected subcutaneously into syngeneic Fischer 344 rats respectively, and their tumorigenecities were recorded. Proliferation indices of lymphocyte were assayed after syngenieic mixed tumor-lymphocyte cultures(MTLCs). The lysis activity of CTL toward tumor cells was determined using methyl thiazolyl tetrazolium(MTT) assay. Results: Successful transfection of mB7-1 gene into NuTu-19 cell line was comfirmed with FCM. In vitro study showed that there was no obvious changes in cell growth of gene transfected cell line, compared with the cell line NuTu-19. NuTu-19/mB7-1 cells could induce more effective proliferation of effector lymphocytes( P < 0.05). The lysis activity of CTL activated by NuTu-19/mB7-1 was stronger than that of NuTu-19/neo ( P < 0.01). Tumor sizes were smaller in the NuTu-19/mB7-1 receptance syngeneic Fischer 344 rats compared with those in the control group. Conclusion: mB7-1 genetically modified ovarian cancer cells could induce the cellular immunity response in vitro and the tumorigenecitiy of NuTu-19 cells was decreased after inoculation with the experimental vaccine.

  17. A novel respiratory syncytial virus (RSV F subunit vaccine adjuvanted with GLA-SE elicits robust protective TH1-type humoral and cellular immunity in rodent models.

    Directory of Open Access Journals (Sweden)

    Stacie L Lambert

    Full Text Available Illness associated with Respiratory Syncytial Virus (RSV remains an unmet medical need in both full-term infants and older adults. The fusion glycoprotein (F of RSV, which plays a key role in RSV infection and is a target of neutralizing antibodies, is an attractive vaccine target for inducing RSV-specific immunity.BALB/c mice and cotton rats, two well-characterized rodent models of RSV infection, were used to evaluate the immunogenicity of intramuscularly administered RSV vaccine candidates consisting of purified soluble F (sF protein formulated with TLR4 agonist glucopyranosyl lipid A (GLA, stable emulsion (SE, GLA-SE, or alum adjuvants. Protection from RSV challenge, serum RSV neutralizing responses, and anti-F IgG responses were induced by all of the tested adjuvanted RSV sF vaccine formulations. However, only RSV sF + GLA-SE induced robust F-specific TH1-biased humoral and cellular responses. In mice, these F-specific cellular responses include both CD4 and CD8 T cells, with F-specific polyfunctional CD8 T cells that traffic to the mouse lung following RSV challenge. This RSV sF + GLA-SE vaccine formulation can also induce robust RSV neutralizing titers and prime IFNγ-producing T cell responses in Sprague Dawley rats.These studies indicate that a protein subunit vaccine consisting of RSV sF + GLA-SE can induce robust neutralizing antibody and T cell responses to RSV, enhancing viral clearance via a TH1 immune-mediated mechanism. This vaccine may benefit older populations at risk for RSV disease.

  18. Cord blood Streptococcus pneumoniae-specific cellular immune responses predict early pneumococcal carriage in high-risk infants in Papua New Guinea.

    Science.gov (United States)

    Francis, J P; Richmond, P C; Strickland, D; Prescott, S L; Pomat, W S; Michael, A; Nadal-Sims, M A; Edwards-Devitt, C J; Holt, P G; Lehmann, D; van den Biggelaar, A H J

    2017-03-01

    In areas where Streptococcus pneumoniae is highly endemic, infants experience very early pneumococcal colonization of the upper respiratory tract, with carriage often persisting into adulthood. We aimed to explore whether newborns in high-risk areas have pre-existing pneumococcal-specific cellular immune responses that may affect early pneumococcal acquisition. Cord blood mononuclear cells (CBMC) of 84 Papua New Guinean (PNG; high endemic) and 33 Australian (AUS; low endemic) newborns were stimulated in vitro with detoxified pneumolysin (dPly) or pneumococcal surface protein A (PspA; families 1 and 2) and compared for cytokine responses. Within the PNG cohort, associations between CBMC dPly and PspA-induced responses and pneumococcal colonization within the first month of life were studied. Significantly higher PspA-specific interferon (IFN)-γ, tumour necrosis factor (TNF)-α, interleukin (IL)-5, IL-6, IL-10 and IL-13 responses, and lower dPly-IL-6 responses were produced in CBMC cultures of PNG compared to AUS newborns. Higher CBMC PspA-IL-5 and PspA-IL-13 responses correlated with a higher proportion of cord CD4 T cells, and higher dPly-IL-6 responses with a higher frequency of cord antigen-presenting cells. In the PNG cohort, higher PspA-specific IL-5 and IL-6 CBMC responses were associated independently and significantly with increased risk of earlier pneumococcal colonization, while a significant protective effect was found for higher PspA-IL-10 CBMC responses. Pneumococcus-specific cellular immune responses differ between children born in pneumococcal high versus low endemic settings, which may contribute to the higher risk of infants in high endemic settings for early pneumococcal colonization, and hence disease.

  19. A novel granulocyte-specific α integrin is essential for cellular immunity in the silkworm Bombyx mori.

    Science.gov (United States)

    Zhang, Kui; Tan, Juan; Xu, Man; Su, Jingjing; Hu, Renjian; Chen, Yibiao; Xuan, Fan; Yang, Rui; Cui, Hongjuan

    2014-12-01

    Haemocytes play crucial roles in immune responses and survival in insects. Specific cell markers have proven effective in clarifying the function and haematopoiesis of haemocytes. The silkworm Bombyx mori is a good model for studying insect haemocytes; however, little is known about haemocyte-specific markers or their functions in silkworm. In this study, we identified the α subunit of integrin, BmintegrinαPS3, as being specifically and highly expressed in silkworm haemocytes. Immunofluorescence analysis validated the specificity of BmintegrinαPS3 in larval granulocytes. Further analyses indicated that haemocytes dispersed from haematopoietic organs (HPOs) into the circulating haemolymph could differentiate into granulocytes. In addition, the processes of encapsulation and phagocytosis were controlled by larval granulocytes. Our work demonstrated that BmintegrinαPS3 could be used as a specific marker for granulocytes and could be applied to future molecular cell biology studies.

  20. Induced Pluripotent Stem Cell-conditioned Medium Suppressed Melanoma Tumorigenicity Through the Enhancement of Natural-Killer Cellular Immunity.

    Science.gov (United States)

    Hsieh, Chang-Ting; Luo, Yung-Hung; Chien, Chian-Shiu; Wu, Chieh-Hung; Tseng, Pei-Chun; Chiou, Shih-Hwa; Lee, Yu-Chin; Whang-Peng, Jacqueline; Chen, Yuh-Min

    2016-05-01

    Induced pluripotent stem cells (iPSCs) can secrete cytokines that are involved in T-cell development and affect cytotoxic activity. To assess the effect of iPSC-conditioned medium on tumorigenicity, we retrieved splenocytes from B6 mice and cocultured them with or without irradiated B16 melanoma cells, mouse interleukin-2 (mIL-2), or iPSC-conditioned medium. Splenocyte cytotoxicity assays against B16 melanoma cells [as cytotoxic T lymphocyte (CTL) activity] and P815 cells [as natural killer (NK) activity] were performed. IL-10 and interferon-γ concentrations were measured. An in vivo subcutaneous B16 melanoma growth model was performed in B6 mice and treated with iPSC-conditioned medium. The lymphocyte subpopulation depletion test was performed to determine effectors against B16 melanoma cells. We found that unstimulated splenocytes had little cytotoxic activity. Without tumor cells, mIL-2 could augment iPSC-conditioned medium-treated CTL and NK activities (Pcells, mIL-2 treatment of splenocytes could not enhance CTL or NK activity, but iPSC-conditioned medium could enhance CTL and NK activity (Pcells induced mice splenocytes to secrete more IL-10, similar to mIL-2 treatment, but not iPSC-conditioned medium treatment. mIL-2 had better efficacy than conditioned medium in inducing splenocyte interferon-γ production. The CTL and NK cell depletion test showed that the immunostimulating effect of iPSC-conditioned medium on splenocytes was through the enhancement of NK cellular activity (Pmedium intraperitoneal injection had a decreased tumor growth rate (Pmedium had a protective effect against tumor-induced immunosuppression through the enhancement of host NK cellular activity.

  1. A synthetic lymph node containing inactivated Treponema pallidum cells elicits strong, antigen-specific humoral and cellular immune responses in mice.

    Science.gov (United States)

    Stamm, Lola V; Drapp, Rebecca L

    2014-02-01

    The goal of this study was to investigate the use of a synthetic lymph node (SLN) for delivery of Treponema pallidum (Tp) antigens. Immune responses of C57BL/6 mice were analyzed at 4, 8, and 12 weeks after SLN implantation. Group 1 mice received SLN with no antigen; Group 2, SLN with formalin-inactivated Tp (f-Tp); and Group 3, SLN with f-Tp plus a CpG oligodeoxynucleotide. When tested by ELISA, sera from Group 2 and Group 3 mice showed stronger IgG antibody reactivity than sera from Group 1 mice to sonicates of f-Tp or untreated Tp, but not to sonicate of normal rabbit testicular extract at all times. The IgG1 level was higher than IgG2c level for Group 2 mice at all times and for Group 3 mice at 4 and 8 weeks. IgG1 and IgG2c levels were nearly equivalent for Group 3 mice at 12 weeks. Immunoblotting showed that IgG from Group 2 and Group 3 mice recognized several Tp proteins at all times. Supernatants of splenocytes from Group 2 and Group 3 mice contained significantly more IFNγ than those from Group 1 mice after stimulation with f-Tp at all times. A significant level of IL-4 was not detected in any supernatants. These data show that strong humoral and cellular immune responses to Tp can be elicited via a SLN.

  2. Innate and adaptive cellular immunity in flavivirus-naïve human recipients of a live-attenuated dengue serotype 3 vaccine produced in Vero cells (VDV3).

    Science.gov (United States)

    Sanchez, Violette; Gimenez, Sophie; Tomlinson, Brian; Chan, Paul K S; Thomas, G Neil; Forrat, Remi; Chambonneau, Laurent; Deauvieau, Florence; Lang, Jean; Guy, Bruno

    2006-06-05

    VDV3, a clonal derivative of the Mahidol live-attenuated dengue 3 vaccine was prepared in Vero cells. Despite satisfactory preclinical evaluation, VDV3 was reactogenic in humans. We explored whether immunological mechanisms contributed to this outcome by monitoring innate and adaptive cellular immune responses for 28 days after vaccination. While no variations were seen in serum IL12 or TNFalpha levels, a high IFNgamma secretion was detected from Day 8, concomitant to IFNalpha, followed by IL10. Specific Th1 and CD8 responses were detected on Day 28, with high IFNgamma/TNFalpha ratios. Vaccinees exhibited very homogeneous class I HLA profiles, and a new HLA B60-restricted CD8 epitope was identified in NS3. We propose that, among other factors, adaptive immunity may have contributed to reactogenicity, even after this primary vaccination. In addition, the unexpected discordance observed between preclinical results and clinical outcome in humans led us to reconsider some of our preclinical acceptance criteria. Lessons learned from these results will help us to pursue the development of safe and immunogenic vaccines.

  3. 白癜风细胞免疫研究新进展%Advances in the Research of Vitiligo Cellular Immunity

    Institute of Scientific and Technical Information of China (English)

    吴成

    2012-01-01

    Vitiligo is a common skin disorder characterized by the skin devoid of melanocytes. The etiology of vitiligo is complex and the pathogenesis has not been well understood. In resent years many intensive studies show that cellular immunity is closely related with vitiligo pathogenesis. Researches have found that CD4+ T cells,CD8+ T cells,Langerhans cells,nature killer cells,melanocyte-specific T cells,immunity cells and cytokines play important roles in the pathogenesis and melanocyte injuries and apoptosis.%白癜风是一种常见的色素脱失性皮肤病,其病因复杂,发病机制尚未完全明确.近年来的研究表明,细胞免疫与白癜风的发病发展关系密切.异常分布的CD4+T细胞、CD8+T细胞、朗格汉斯细胞、自然杀伤细胞、黑素特异性T细胞及其他免疫细胞及细胞因子在白癜风的发病与黑素细胞损伤和凋亡过程中发挥着重要的作用.

  4. Patterns of Cellular Immunity Associated with Experimental Infection with rDEN2Δ30 (Tonga/74) Support Its Suitability as a Human Dengue Virus Challenge Strain.

    Science.gov (United States)

    Grifoni, Alba; Angelo, Michael; Sidney, John; Paul, Sinu; Peters, Bjoern; de Silva, Aruna D; Phillips, Elizabeth; Mallal, Simon; Diehl, Sean A; Botten, Jason; Boyson, Jonathan; Kirkpatrick, Beth D; Whitehead, Stephen S; Durbin, Anna P; Sette, Alessandro; Weiskopf, Daniela

    2017-04-15

    A deletion variant of the dengue virus (DENV) serotype 2 (DENV2) Tonga/74 strain lacking 30 nucleotides from its 3' untranslated region (rDEN2Δ30) has previously been established for use in a controlled human DENV challenge model. To evaluate if this model is appropriate for the derivation of correlates of protection for DENV vaccines on the basis of cellular immunity, we wanted to compare the cellular immune response to this challenge strain to the response induced by natural infection. To achieve this, we predicted HLA class I- and class II-restricted peptides from rDEN2Δ30 and used them in a gamma interferon enzyme-linked immunosorbent spot assay to interrogate CD8(+) and CD4(+) T cell responses in healthy volunteers infected with rDEN2Δ30. At the level of CD8 responses, vigorous ex vivo responses were detected in approximately 80% of donors. These responses were similar in terms of the magnitude and the numbers of epitopes recognized to the responses previously observed in peripheral blood mononuclear cells from donors from regions where DENV is hyperendemic. The similarity extended to the immunodominance hierarchy of the DENV nonstructural proteins, with NS3, NS5, and NS1 being dominant in both donor cohorts. At the CD4 level, the responses to rDEN2Δ30 vaccination were less vigorous than those to natural DENV infection and were more focused on nonstructural proteins. The epitopes recognized following rDEN2Δ30 infection and natural infection were largely overlapping for both the CD8 (100%) and CD4 (85%) responses. Finally, rDEN2Δ30 induced stronger CD8 responses than other, more attenuated DENV isolates.IMPORTANCE The lack of a known correlate of protection and the failure of a neutralizing antibody to correlate with protection against dengue virus have highlighted the need for a human DENV challenge model to better evaluate the candidate live attenuated dengue vaccines. In this study, we sought to characterize the immune profiles of rDEN2Δ30-infected

  5. Synthetic consensus HIV-1 DNA induces potent cellular immune responses and synthesis of granzyme B, perforin in HIV infected individuals.

    Science.gov (United States)

    Morrow, Matthew P; Tebas, Pablo; Yan, Jian; Ramirez, Lorenzo; Slager, Anna; Kraynyak, Kim; Diehl, Malissa; Shah, Divya; Khan, Amir; Lee, Jessica; Boyer, Jean; Kim, J Joseph; Sardesai, Niranjan Y; Weiner, David B; Bagarazzi, Mark L

    2015-03-01

    This study evaluated the safety and immunogenicity of PENNVAX-B in 12 HIV infected individuals. PENNVAX-B is a combination of three optimized synthetic plasmids encoding for multiclade HIV Gag and Pol and a consensus CladeB Env delivered by electroporation. HIV infected individuals whose virus was effectively suppressed using highly active antiretroviral therapy (HAART) received PENNVAX-B DNA followed by electroporation with CELLECTRA-5P at study weeks 0, 4, 8, and 16. Local administration site and systemic reactions to PENNVAX-B were recorded after each treatment along with any adverse events. Pain of the treatment procedure was assessed using a Visual Analog Scale. Whole PBMCs were isolated for use in IFN ELISpot and Flow Cytometric assays. PENNVAX-B was generally safe and well tolerated. Overall, the four dose regimen was not associated with any serious adverse events or severe local or systemic reactions. A rise in antigen-specific SFU was detected in the INFγ ELISpot assay in all 12 participants. T cells from 8/12 participants loaded with both granzyme B and perforin in response to HIV antigen, an immune finding characteristic of long-term nonprogressors (LTNPs) and elite controllers (ECs). Thus administration of PENNVAX-B may prove useful adjunctive therapy to ART for treatment and control of HIV infection.

  6. A two year BTV-8 vaccination follow up: molecular diagnostics and assessment of humoral and cellular immune reactions.

    Science.gov (United States)

    Hund, Alexandra; Gollnick, Nicole; Sauter-Louis, Carola; Neubauer-Juric, Antonie; Lahm, Harald; Büttner, Mathias

    2012-01-27

    The compulsory vaccination campaign against Bluetongue virus serotype eight (BTV-8) in Germany was exercised in the state of Bavaria using three commercial monovalent inactivated vaccines given provisional marketing authorisation for emergency use. In eleven Bavarian farms representing a cross sectional area of the state the immune reactions of sheep and cattle were followed over a two year period (2008-2009) using cELISA, a serum neutralisation test (SNT) and interferon gamma (IFN-γ) ELISPOT. For molecular diagnostics of BTV genome presence two recommended real time quantitative RT-PCR protocols were applied. The recommended vaccination scheme led to low or even undetectable antibody titers (ELISA) in serum samples of both cattle and sheep. A fourfold increase of the vaccine dose in cattle, however, induced higher ELISA titers and virus neutralising antibodies. Accordingly, repeated vaccination in sheep caused an increase in ELISA-antibody titers. BTV-8 neutralising antibodies occurred in most animals only after multiple vaccinations in the second year of the campaign. The secretion of interferon gamma (IFN-γ) in ELISPOT after in vitro re-stimulation of PBMC of BTV-8 vaccinated animals with BTV was evaluated in the field for the first time. Sera of BTV-8 infected or vaccinated animals neutralising BTV-8 could also neutralise an Italian BTV serotype 1 cell culture adapted strain and PBMC of such animals secreted IFN-γ when stimulated with BTV-1.

  7. Surface structure characterization of Aspergillus fumigatus conidia mutated in the melanin synthesis pathway and their human cellular immune response.

    Science.gov (United States)

    Bayry, Jagadeesh; Beaussart, Audrey; Dufrêne, Yves F; Sharma, Meenu; Bansal, Kushagra; Kniemeyer, Olaf; Aimanianda, Vishukumar; Brakhage, Axel A; Kaveri, Srini V; Kwon-Chung, Kyung J; Latgé, Jean-Paul; Beauvais, Anne

    2014-08-01

    In Aspergillus fumigatus, the conidial surface contains dihydroxynaphthalene (DHN)-melanin. Six-clustered gene products have been identified that mediate sequential catalysis of DHN-melanin biosynthesis. Melanin thus produced is known to be a virulence factor, protecting the fungus from the host defense mechanisms. In the present study, individual deletion of the genes involved in the initial three steps of melanin biosynthesis resulted in an altered conidial surface with masked surface rodlet layer, leaky cell wall allowing the deposition of proteins on the cell surface and exposing the otherwise-masked cell wall polysaccharides at the surface. Melanin as such was immunologically inert; however, deletion mutant conidia with modified surfaces could activate human dendritic cells and the subsequent cytokine production in contrast to the wild-type conidia. Cell surface defects were rectified in the conidia mutated in downstream melanin biosynthetic pathway, and maximum immune inertness was observed upon synthesis of vermelone onward. These observations suggest that although melanin as such is an immunologically inert material, it confers virulence by facilitating proper formation of the A. fumigatus conidial surface.

  8. Negative relationships between cellular immune response, Mhc class II heterozygosity and secondary sexual trait in the montane water vole.

    Science.gov (United States)

    Charbonnel, Nathalie; Bryja, Josef; Galan, Maxime; Deter, Julie; Tollenaere, Charlotte; Chaval, Yannick; Morand, Serge; Cosson, Jean-François

    2010-05-01

    Heterogeneities in immune responsiveness may affect key epidemiological parameters and the dynamics of pathogens. The roles of immunogenetics in these variations remain poorly explored. We analysed the influence of Major histocompatibility complex (Mhc) genes and epigamic traits on the response to phytohaemagglutinin in males from cyclic populations of the montane water vole (Arvicola scherman). Besides, we tested the relevance of lateral scent glands as honest signals of male quality. Our results did not corroborate neither the hypotheses of genome-wide heterozygosity-fitness correlation nor the Mhc heterozygote advantage. We found a negative relationship between Mhc hetetozygosity and response to phytohaemagglutinin, mediated by a specific Mhc homozygous genotype. Our results therefore support the hypothesis of the Arte-Dqa-05 homozygous genotype being a 'good' Mhc variant in terms of immunogenetic quality. The development of the scent glands seems to be an honest signal for mate choice as it is negatively correlated with helminth load. The 'good gene' hypothesis was not validated as Arte-Dqa-05 homozygous males did not exhibit larger glands. Besides, the negative relationship observed between the size of these glands and the response to phytohaemagglutinin, mainly for Mhc homozygotes, corroborates the immunocompetence handicap hypothesis. The Mhc variants associated with larger glands remain yet to be determined.

  9. SAP gene transfer restores cellular and humoral immune function in a murine model of X-linked lymphoproliferative disease.

    Science.gov (United States)

    Rivat, Christine; Booth, Claire; Alonso-Ferrero, Maria; Blundell, Michael; Sebire, Neil J; Thrasher, Adrian J; Gaspar, H Bobby

    2013-02-14

    X-linked lymphoproliferative disease (XLP1) arises from mutations in the gene encoding SLAM-associated protein (SAP) and leads to abnormalities of NKT-cell development, NK-cell cytotoxicity, and T-dependent humoral function. Curative treatment is limited to allogeneic hematopoietic stem cell (HSC) transplantation. We tested whether HSC gene therapy could correct the multilineage defects seen in SAP(-/-) mice. SAP(-/-) murine HSCs were transduced with lentiviral vectors containing either SAP or reporter gene before transplantation into irradiated recipients. NKT-cell development was significantly higher and NK-cell cytotoxicity restored to wild-type levels in mice receiving the SAP vector in comparison to control mice. Baseline immunoglobulin levels were significantly increased and T-dependent humoral responses to NP-CGG, including germinal center formation, were restored in SAP-transduced mice.We demonstrate for the first time that HSC gene transfer corrects the cellular and humoral defects in SAP(-/-) mice providing proof of concept for gene therapy in XLP1.

  10. C3-Luc Cells Are an Excellent Model for Evaluation of Cellular Immunity following HPV16L1 Vaccination.

    Directory of Open Access Journals (Sweden)

    Li-Li Li

    Full Text Available C3 and TC-1 are the two model cell lines most commonly used in studies of vaccines and drugs against human papillomavirus (HPV infection. Because C3 cells contain both the HPV16 E and L genes, but TC-1 cells contain only the HPV16 E genes, C3 cells are usually used as the model cell line in studies targeting the HPV16 L protein. However, expression of the L1 protein is difficult to detect in C3 cells using common methods. In our study, Short tandem repeat analysis (STR was used to demonstrate that C3 cells are indeed derived from mice, PCR results show that HPV16 L1, E6 and E7 genes were detected in C3 genomic DNA, and RT-PCR results demonstrated that L1 transcription had occurred in C3 cells. However, the expression of C3 protein was not found in the results of western blot and immunohistochemistry (IHC. Growth and proliferation of C3 were inhibited by mice spleen lymphocytes that had been immunized with a vaccine against HPV16L1. The luciferase gene was integrated into C3 cells, and it was confirmed that addition of the exogenous gene had no effect on C3 cells by comparing cell growth and tumor formation with untransformed cells. Cells stably expressing luciferase (C3-luc were screened and subcutaneously injected into the mice. Tumors became established and were observed using a Spectrum Pre-clinical in Vivo Imaging System. Tumor size of mice in the different groups at various time points was calculated by counting photons. The sensitivity of the animals to the vaccine was quantified by statistical comparison. Ten or 30 days following injection of the C3-luc cells, tumor size differed significantly between the PBS and vaccine groups, indicating that C3 cells were susceptible to vaccination even after tumors were formed in vivo.

  11. Increased β-haemolytic group A streptococcal M6 serotype and streptodornase B-specific cellular immune responses in Swedish narcolepsy cases.

    Science.gov (United States)

    Ambati, A; Poiret, T; Svahn, B-M; Valentini, D; Khademi, M; Kockum, I; Lima, I; Arnheim-Dahlström, L; Lamb, F; Fink, K; Meng, Q; Kumar, A; Rane, L; Olsson, T; Maeurer, M

    2015-09-01

    Type 1 narcolepsy is a neurological disorder characterized by excessive daytime sleepiness and cataplexy associated with the HLA allele DQB1*06:02. Genetic predisposition along with external triggering factors may drive autoimmune responses, ultimately leading to the selective loss of hypocretin-positive neurons. The aim of this study was to investigate potential aetiological factors in Swedish cases of postvaccination (Pandemrix) narcolepsy defined by interferon-gamma (IFNγ) production from immune cells in response to molecularly defined targets. Cellular reactivity defined by IFNγ production was examined in blood from 38 (HLA-DQB1*06:02(+) ) Pandemrix-vaccinated narcolepsy cases and 76 (23 HLA-DQB1*06:02(+) and 53 HLA-DQB1*06:02(-) ) control subjects, matched for age, sex and exposure, using a variety of different antigens: β-haemolytic group A streptococcal (GAS) antigens (M5, M6 and streptodornase B), influenza (the pandemic A/H1N1/California/7/09 NYMC X-179A and A/H1N1/California/7/09 NYMC X-181 vaccine antigens, previous Flu-A and -B vaccine targets, A/H1N1/Brisbane/59/2007, A/H1N1/Solomon Islands/3/2006, A/H3N2/Uruguay/716/2007, A/H3N2/Wisconsin/67/2005, A/H5N1/Vietnam/1203/2004 and B/Malaysia/2506/2004), noninfluenza viral targets (CMVpp65, EBNA-1 and EBNA-3) and auto-antigens (hypocretin peptide, Tribbles homolog 2 peptide cocktail and extract from rat hypothalamus tissue). IFN-γ production was significantly increased in whole blood from narcolepsy cases in response to streptococcus serotype M6 (P = 0.0065) and streptodornase B protein (P = 0.0050). T-cell recognition of M6 and streptodornase B was confirmed at the single-cell level by intracellular cytokine (IL-2, IFNγ, tumour necrosis factor-alpha and IL-17) production after stimulation with synthetic M6 or streptodornase B peptides. Significantly, higher (P = 0.02) titres of serum antistreptolysin O were observed in narcolepsy cases, compared to vaccinated controls. β-haemolytic GAS may be

  12. A change in inflammatory footprint precedes plaque instability: a systematic evaluation of cellular aspects of the adaptive immune response in human atherosclerosis.

    Science.gov (United States)

    van Dijk, R A; Duinisveld, A J F; Schaapherder, A F; Mulder-Stapel, A; Hamming, J F; Kuiper, J; de Boer, O J; van der Wal, A C; Kolodgie, F D; Virmani, R; Lindeman, J H N

    2015-03-26

    Experimental studies characterize adaptive immune response as a critical factor in the progression and complications of atherosclerosis. Yet, it is unclear whether these observations translate to the human situation. This study systematically evaluates cellular components of the adaptive immune response in a biobank of human aortas covering the full spectrum of atherosclerotic disease. A systematic analysis was performed on 114 well-characterized perirenal aortic specimens with immunostaining for T-cell subsets (CD3/4/8/45RA/45RO/FoxP3) and the Th1/non-Th1/Th17 ratio (CD4(+)T-bet(+)/CD4(+)T-bet(-)/CD4(+)/interleukin-17(+) double staining). CD20 and CD138 were used to identify B cells and plasma cells, while B-cell maturation was evaluated by AID/CD21 staining and expression of lymphoid homeostatic CXCL13. Scattered CD4 and CD8 cells with a T memory subtype were found in normal aorta and early, nonprogressive lesions. The total number of T cells increases in progressive atherosclerotic lesions (≈1:5 CD4/CD8 T-cell ratio). A further increase in medial and adventitial T cells is found upon progression to vulnerable lesions.This critical stage is further hallmarked by de novo formation of adventitial lymphoidlike structures containing B cells and plasma cells, a process accompanied by transient expression of CXCL13. A dramatic reduction of T-cell subsets, disappearance of lymphoid structures, and loss of CXCL13 expression characterize postruptured lesions. FoxP3 and Th17 T cells were minimally present throughout the atherosclerotic process. Transient CXCL13 expression, restricted presence of B cells in human atherosclerosis, along with formation of nonfunctional extranodal lymphoid structures in the phase preceding plaque rupture, indicates a "critical" change in the inflammatory footprint before and during plaque destabilization. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  13. Dual role of TRBP in HIV replication and RNA interference: viral diversion of a cellular pathway or evasion from antiviral immunity?

    Directory of Open Access Journals (Sweden)

    Clerzius Guerline

    2005-10-01

    Full Text Available Abstract Increasing evidence indicates that RNA interference (RNAi may be used to provide antiviral immunity in mammalian cells. Human micro (miRNAs can inhibit the replication of a primate virus, whereas a virally-encoded miRNA from HIV inhibits its own replication. Indirect proof comes from RNAi suppressors encoded by mammalian viruses. Influenza NS1 and Vaccinia E3L proteins can inhibit RNAi in plants, insects and worms. HIV-1 Tat protein and Adenovirus VA RNAs act as RNAi suppressors in mammalian cells. Surprisingly, many RNAi suppressors are also inhibitors of the interferon (IFN-induced protein kinase R (PKR but the potential overlap between the RNAi and the IFN pathways remains to be determined. The link between RNAi as an immune response and the IFN pathway may be formed by a cellular protein, TRBP, which has a dual role in HIV replication and RNAi. TRBP has been isolated as an HIV-1 TAR RNA binding protein that increases HIV expression and replication by inhibiting PKR and by increasing translation of structured RNAs. A recent report published in the Journal of Virology shows that the poor replication of HIV in astrocytes is mainly due to a heightened PKR response that can be overcome by supplying TRBP exogenously. In two recent papers published in Nature and EMBO Reports, TRBP is now shown to interact with Dicer and to be required for RNAi mediated by small interfering (si and micro (miRNAs. The apparent discrepancy between TRBP requirement in RNAi and in HIV replication opens the hypotheses that RNAi may be beneficial for HIV-1 replication or that HIV-1 may evade the RNAi restriction by diverting TRBP from Dicer and use it for its own benefit.

  14. Evaluation of humoral and cellular immune responses to BP26 and OMP31 epitopes in the attenuated Brucella melitensis vaccinated sheep.

    Science.gov (United States)

    Wang, Wenjing; Wu, Jingbo; Qiao, Jun; Weng, Yunceng; Zhang, Hui; Liao, Qingyu; Qiu, Jinlang; Chen, Chuangfu; Allain, Jean-Pierre; Li, Chengyao

    2014-02-07

    In recent years, the number of cases of human brucellosis has been increasing by approximately 10% per year in China. Most cases were caused by Brucella melitensis through contacts with infected sheep, goats or their products. An attenuated B. melitensis vaccine M5-90 is currently used to vaccinate both animals in China. This vaccine has not been investigated for critical parameters such as immune response and its association with protective efficacy. In this study, humoral and cellular immune response to the periplasmic protein BP26 and the outer membrane protein OMP31 were evaluated in M5-90 vaccinated Chinese merino and Kazak sheep. Antibodies to BP26 or OMP31 were detected at low levels, and specific IFN-γ response was quantified. Strongly reactive peptides derived from BP26 and OMP31 identified five T-cell epitopes (BP26-6, -8, -11, -12 and OMP31-23) common to both sheep species, five species-specific epitopes (BP26-10, -18, -21 and -22 and OMP31-12) and four animal-specific epitopes (BP26-15, -23, OMP31-6 and -21), which stimulated specific IFN-γ response in vaccinated sheep. Among those T-cell epitopes, reactivity to BP26-18 and -21 epitopes was significantly associated with MHC-I B allele (P=0.024). However, a specific T-cell response induced by the M5-90 vaccine was relatively week and did not sustain long enough, which might be suppressed by rapid activation of T-regulatory (Treg) cells following vaccination. These findings provide an insight in designing a safer and more effective vaccine for use in animals and in humans.

  15. Involvement of cellular immunity and humoral immunity in mixed allergy induced by trichloroethylene%三氯乙烯致细胞免疫和体液免疫参与的混合型变态反应研究

    Institute of Scientific and Technical Information of China (English)

    徐新云; 李学余; 刘月峰

    2014-01-01

    目的 探讨三氯乙烯(TCE)致变态反应是否存在细胞免疫和体液免疫共同参与,为研究其发病机制提供科学依据.方法 应用豚鼠和大鼠进行实验,分别设立阴性对照组、阳性对照组、TCE实验组,用皮内注射方式分别注射橄榄油、2,4-二硝基氯苯(DNCB)和TCE.实验结束后收集大鼠外周血液,用流式细胞仪检测淋巴细胞CD3+、CD4+、CD8+比例;收集豚鼠外周血液测定IgG、IgA、IgM、C3、C4水平;收集豚鼠脾淋巴细胞,用荧光定量PCR检测免疫相关基因GATA3、T-bet、CTLA4和Foxp3的mRNA表达水平.此外,选取TCE药疹样皮炎患者作为病例组,采用荧光定量PCR检测外周血Foxp3、GATA3、CTLA4、T-bet的mRNA表达水平.结果 (1)TCE对豚鼠皮肤有明显致敏作用,致敏率为83.3%;TCE实验组和阳性对照组IgG水平比阴性对照组显著升高(P<0.01);TCE实验组和阳性对照组GATA3、T-bet、CTLA4 mRNA表达水平显著高于阴性对照组,Foxp3 mRNA表达水平低于阴性对照组.(2)TCE实验组和阳性对照组大鼠外周血淋巴细胞CD3+比例高于阴性对照组,TCE实验组CD4+、CD8+、CD4+/CD8+与阴性对照组比较无统计学差异.(3)TCE病例组Foxp3、GATA3、CTLA4 mRNA表达水平比对照组分别升高115%、97%和241%(P<0.01),T-bet mRNA表达水平下降47%(P<0.01).结论 TCE可引起细胞免疫和体液免疫发生明显改变,说明TCE导致的免疫损伤属于细胞免疫和体液免疫共同参与的混合型变态反应,可能是Ⅳ型和Ⅱ型变态反应.%Objective To investigate whether cellular immunity and humoral immunity are involved in trichlorethylene (TCE)-induced mixed allergy,then provide the scientific basis for the mechanism of this disease.Methods Guinea pigs and rats were tested for this study by application of guinea pig maximization test (GPMT),the animals were randomly divided into negative control,positive control and TCE treatment groups.Animals of these groups were

  16. Activation of Cellular Immunity in Herpes Simplex Virus Type 1-Infected Mice by the Oral Administration of Aqueous Extract of Moringa oleifera Lam. Leaves.

    Science.gov (United States)

    Kurokawa, Masahiko; Wadhwani, Ashish; Kai, Hisahiro; Hidaka, Muneaki; Yoshida, Hiroki; Sugita, Chihiro; Watanabe, Wataru; Matsuno, Koji; Hagiwara, Akinori

    2016-05-01

    Moringa oleifera Lam. is used as a nutritive vegetable and spice. Its ethanol extract has been previously shown to be significantly effective in alleviating herpetic skin lesions in mice. In this study, we evaluated the alleviation by the aqueous extract (AqMOL) and assessed the mode of its anti-herpetic action in a murine cutaneous herpes simplex virus type 1 (HSV-1) infection model. AqMOL (300 mg/kg) was administered orally to HSV-1-infected mice three times daily on days 0 to 5 after infection. AqMOL significantly limited the development of herpetic skin lesions and reduced virus titers in the brain on day 4 without toxicity. Delayed-type hypersensitivity (DTH) reaction to inactivated HSV-1 antigen was significantly stronger in infected mice administered AqMOL and AqMOL augmented interferon (IFN)-γ production by HSV-1 antigen from splenocytes of HSV-1-infected mice at 4 days post-infection. AqMOL administration was effective in elevating the ratio of CD11b(+) and CD49b(+) subpopulations of splenocytes in infected mice. As DTH is a major host defense mechanism for intradermal HSV infection, augmentation of the DTH response by AqMOL may contribute to their efficacies against HSV-1 infection. These results provided an important insights into the mechanism by which AqMOL activates cellular immunity. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Granulocyte-macrophage stimulating factor (GM-CSF) increases circulating dendritic cells but does not abrogate suppression of adaptive cellular immunity in patients with metastatic colorectal cancer receiving chemotherapy.

    Science.gov (United States)

    Martinez, Micaela; Ono, Nadia; Planutiene, Marina; Planutis, Kestutis; Nelson, Edward L; Holcombe, Randall F

    2012-01-23

    Advanced cancer and chemotherapy are both associated with immune system suppression. We initiated a clinical trial in patients receiving chemotherapy for metastatic colorectal cancer to determine if administration of GM-CSF in this setting was immunostimulatory. Between June, 2003 and January, 2007, 20 patients were enrolled in a clinical trial (NCT00257322) in which they received 500 ug GM-CSF daily for 4 days starting 24 hours after each chemotherapy cycle. There were no toxicities or adverse events reported. Blood was obtained before chemotherapy/GM-CSF administration and 24 hours following the final dose of GM-CSF and evaluated for circulating dendritic cells and adaptive immune cellular subsets by flow cytometry. Peripheral blood mononuclear cell (PBMC) expression of γ-interferon and T-bet transcription factor (Tbx21) by quantitative real-time PCR was performed as a measure of Th1 adaptive cellular immunity. Pre- and post-treatment (i.e., chemotherapy and GM-CSF) samples were evaluable for 16 patients, ranging from 1 to 5 cycles (median 3 cycles, 6 biologic sample time points). Dendritic cells were defined as lineage (-) and MHC class II high (+). 73% of patients had significant increases in circulating dendritic cells of ~3x for the overall group (5.8% to 13.6%, p = 0.02) and ~5x excluding non-responders (3.2% to 14.5%, p cellular immunity in patients with metastatic colorectal cancer but demonstrates that mid-cycle administration of GM-CSF can significantly increase the proportion of circulating dendritic cells. As the role of dendritic cells in anti-tumor immunity becomes better defined, GM-CSF administration may provide a non-toxic intervention to augment this arm of the immune system for cancer patients receiving cytotoxic therapy. ClinicalTrials.gov: NCT00257322.

  18. Cellular Immune Mechanisms in Malaria.

    Science.gov (United States)

    1981-12-31

    1973. Relative 7 cell specificity of lymphocytotoxins from patients with systemic lupus erythematosus. Arthritis and Rheumatism 16:369. 30. Winfield, 3...lupus erythematosus. Arthritis and Rheumatism 18:1. 31. Park, M.S., P.I. Terasaki, and D. Bernoco. 1977. Autoantibody against B lymphocytes. Lancet 2:465...females with no more than a single pregnancy were accepted into the study. The degree of parisitemia was assessed by a Giemsa stained peripheral

  19. Cellular immunity in Pneumovirus infections

    NARCIS (Netherlands)

    Claassen, E.A.W.

    2006-01-01

    Human Respiratory Syncytial Virus (RSV) is the leading cause of viral respiratory tract infection in infants worldwide. In the developed world viral bronchiolitis is the most common cause of hospitalization among infants, 70% of these are associated with RSV. In recent years the realization is growi

  20. Evaluation of humoral and cellular immune responses to a DNA vaccine encoding chicken type II collagen for rheumatoid arthritis in normal rats.

    Science.gov (United States)

    Xiao, Zhao; Juan, Long; Song, Yun; Zhijian, Zhang; Jing, Jin; Kun, Yu; Yuna, Hao; Dongfa, Dai; Lili, Ding; Liuxin, Tan; Fei, Liang; Nan, Liu; Fang, Yuan; Yuying, Sun; Yongzhi, Xi

    2015-01-01

    A major challenge in the development of effective therapies for rheumatoid arthritis (RA) is finding a method for the specific inhibition of the inflammatory disease processes without the induction of generalized immunosuppression. Of note, the development of therapeutic DNA vaccines and boosters that may restore immunological tolerance remains a high priority. pcDNA-CCOL2A1 is a therapeutic DNA vaccine encoding chicken type II collagen(CCII). This vaccine was developed by our laboratory and has been shown to exhibit efficacy comparable to that of the current "gold standard" treatment, methotrexate (MTX). Here, we used enzyme-linked immunosorbent assays with anti-CII IgG antibodies, quantified the expression levels of Th1, Th2, and Th3 cytokines, and performed flow cytometric analyses of different T-cell subsets, including Th1, Th2, Th17, Tc, Ts, Treg, and CD4(+)CD29(+)T cells to systemically evaluate humoral and cellular immune responses to pcDNA-CCOL2A1 vaccine in normal rats. Similar to our observations at maximum dosage of 3 mg/kg, vaccination of normal rats with 300 μg/kg pcDNA-CCOL2A1 vaccine did not induce the production of anti-CII IgG. Furthermore, no significant changes were observed in the expression levels of pro-inflammatory cytokines interleukin (IL)-1α, IL-5, IL-6, IL-12(IL-23p40), monocyte chemotactic protein (MCP)-1, macrophage inflammatory protein (MIP)-1α, regulated on activation in normal T-cell expressed and secreted (RANTES), receptor activator for nuclear factor-κB ligand (RANKL), and granulocyte colony-stimulating factor (G-CSF) or anti-inflammatory cytokines IL-4 and IL-10 in vaccinated normal rats relative to that in controls(P > 0.05). However, transforming growth factor (TGF)-β levels were significantly increased on days 10 and 14, while interferon (IFN)-γ and tumor necrosis factor (TNF)-α levels were significantly decreased on days 28 and 35 after vaccination(P 0.05), with the exception of Treg cells, which were significantly

  1. Persistent Loss of Hepatitis B Virus Markers in Serum without Cellular Immunity by Combination of Peginterferon and Entecavir Therapy in Humanized Mice.

    Science.gov (United States)

    Uchida, Takuro; Imamura, Michio; Hayes, C Nelson; Hiraga, Nobuhiko; Kan, Hiromi; Tsuge, Masataka; Abe-Chayama, Hiromi; Zhang, Yizhou; Makokha, Grace Naswa; Aikata, Hiroshi; Miki, Daiki; Ochi, Hidenori; Ishida, Yuji; Tateno, Chise; Chayama, Kazuaki

    2017-09-01

    Nucleot(s)ide analogues and peginterferon (PEG-IFN) treatment are the only approved therapies for chronic hepatitis B virus (HBV) infection. However, complete eradication of the virus, as indicated by persistent loss of hepatitis B surface antigen (HBsAg), is rare among treated patients. This is due to long-term persistence of the HBV genome in infected hepatocytes in the form of covalently closed circular DNA (cccDNA). In this study, we investigated whether administration of a large dose of a nucleoside analogue in combination with PEG-IFN can achieve long-term loss of HBsAg in human hepatocyte chimeric mice. Mice were treated with a high dose of entecavir and/or PEG-IFN for 6 weeks. High-dose combination therapy with both drugs resulted in persistently negative HBV DNA in serum. Although small amounts of HBV DNA and cccDNA (0.1 and 0.01 copy/cell, respectively) remained in the mouse livers, some of the mice remained persistently negative for serum HBV DNA at 13 weeks after cessation of the therapy. Serum HBsAg and hepatitis B core-related antigen (HBcrAg) continued to decrease and eventually became negative at 12 weeks after cessation of the therapy. Analysis of the HBV genome in treated mice showed accumulation of G-to-A hypermutation and CpG III island methylation. Persistent loss of serum HBV DNA and loss of HBV markers by high-dose entecavir and PEG-IFN combination treatment in chimeric mice suggests that control of HBV can be achieved even in the absence of a cellular immune response. Copyright © 2017 American Society for Microbiology.

  2. Towards the conservation of endangered avian species: a recombinant West Nile Virus vaccine results in increased humoral and cellular immune responses in Japanese Quail (Coturnix japonica.

    Directory of Open Access Journals (Sweden)

    Jay A Young

    Full Text Available West Nile Virus (WNV arrived in North America in 1999 and is now endemic. Many families of birds, especially corvids, are highly susceptible to WNV and infection often results in fatality. Avian species susceptible to WNV infection also include endangered species, such as the Greater Sage-Grouse (Centrocercus uropbasianuts and the Eastern Loggerhead Shrike (Lanius ludovicianus migrans. The virus has been shown to contribute towards the likelihood of their extinction. Although a clear and present threat, there exists no avian WNV vaccine available to combat this lethal menace. As a first step in establishing an avian model for testing candidate WNV vaccines, avian antibody based reagents were assessed for cross-reactivity with Japanese quail (Coturnix japonica T cell markers CD4 and CD8; the most reactive were found to be the anti-duck CD8 antibody, clone Du-CD8-1, and the anti-chicken/turkey CD4 antibody, clone CT4. These reagents were then used to assess vaccine performance as well as to establish T cell populations in quail, with a novel population of CD4/CD8 double positive T cells being identified in Japanese quail. Concurrently, non-replicating recombinant adenoviruses, expressing either the WNV envelope or NS3 'genes' were constructed and assessed for effectiveness as avian vaccines. Japanese Quail were selected for testing the vaccines, as they provide an avian model that parallels the population diversity of bird species in the wild. Both the level of WNV specific antibodies and the number of T cells in vaccinated birds were increased compared to unvaccinated controls. The results indicate the vaccines to be effective in increasing both humoral and cellular immune responses. These recombinant vaccines therefore may find utility as tools to protect and maintain domestic and wild avian populations. Their implementation may also arrest the progression towards extinction of endangered avian species and reduce the viral reservoir that

  3. DNA Prime-Boost Vaccine Regimen To Increase Breadth, Magnitude, and Cytotoxicity of the Cellular Immune Responses to Subdominant Gag Epitopes of Simian Immunodeficiency Virus and HIV.

    Science.gov (United States)

    Hu, Xintao; Valentin, Antonio; Dayton, Frances; Kulkarni, Viraj; Alicea, Candido; Rosati, Margherita; Chowdhury, Bhabadeb; Gautam, Rajeev; Broderick, Kate E; Sardesai, Niranjan Y; Martin, Malcolm A; Mullins, James I; Pavlakis, George N; Felber, Barbara K

    2016-11-15

    HIV sequence diversity and the propensity of eliciting immunodominant responses targeting variable regions of the HIV proteome are hurdles in the development of an effective AIDS vaccine. An HIV-derived conserved element (CE) p24(gag) plasmid DNA (pDNA) vaccine is able to redirect immunodominant responses to otherwise subdominant and often more vulnerable viral targets. By homology to the HIV immunogen, seven CE were identified in SIV p27(Gag) Analysis of 31 rhesus macaques vaccinated with full-length SIV gag pDNA showed inefficient induction (58% response rate) of cellular responses targeting these CE. In contrast, all 14 macaques immunized with SIV p27CE pDNA developed robust T cell responses recognizing CE. Vaccination with p27CE pDNA was also critical for the efficient induction and increased the frequency of Ag-specific T cells with cytotoxic potential (granzyme B(+) CD107a(+)) targeting subdominant CE epitopes, compared with the responses elicited by the p57(gag) pDNA vaccine. Following p27CE pDNA priming, two booster regimens, gag pDNA or codelivery of p27CE+gag pDNA, significantly increased the levels of CE-specific T cells. However, the CE+gag pDNA booster vaccination elicited significantly broader CE epitope recognition, and thus, a more profound alteration of the immunodominance hierarchy. Vaccination with HIV molecules showed that CE+gag pDNA booster regimen further expanded the breadth of HIV CE responses. Hence, SIV/HIV vaccine regimens comprising CE pDNA prime and CE+gag pDNA booster vaccination significantly increased cytotoxic T cell responses to subdominant highly conserved Gag epitopes and maximized response breadth. Copyright © 2016 by The American Association of Immunologists, Inc.

  4. Chimeric Antigen Receptor-Engineered NK-92 Cells: An Off-the-Shelf Cellular Therapeutic for Targeted Elimination of Cancer Cells and Induction of Protective Antitumor Immunity

    Science.gov (United States)

    Zhang, Congcong; Oberoi, Pranav; Oelsner, Sarah; Waldmann, Anja; Lindner, Aline; Tonn, Torsten; Wels, Winfried S.

    2017-01-01

    Significant progress has been made in recent years toward realizing the potential of natural killer (NK) cells for cancer immunotherapy. NK cells can respond rapidly to transformed and stressed cells and have the intrinsic potential to extravasate and reach their targets in almost all body tissues. In addition to donor-derived primary NK cells, also the established NK cell line NK-92 is being developed for adoptive immunotherapy, and general safety of infusion of irradiated NK-92 cells has been established in phase I clinical trials with clinical responses observed in some of the cancer patients treated. To enhance their therapeutic utility, NK-92 cells have been modified to express chimeric antigen receptors (CARs) composed of a tumor-specific single chain fragment variable antibody fragment fused via hinge and transmembrane regions to intracellular signaling moieties such as CD3ζ or composite signaling domains containing a costimulatory protein together with CD3ζ. CAR-mediated activation of NK cells then bypasses inhibitory signals and overcomes NK resistance of tumor cells. In contrast to primary NK cells, CAR-engineered NK-92 cell lines suitable for clinical development can be established from molecularly and functionally well-characterized single cell clones following good manufacturing practice-compliant procedures. In preclinical in vitro and in vivo models, potent antitumor activity of NK-92 variants targeted to differentiation antigens expressed by hematologic malignancies, and overexpressed or mutated self-antigens associated with solid tumors has been found, encouraging further development of CAR-engineered NK-92 cells. Importantly, in syngeneic mouse tumor models, induction of endogenous antitumor immunity after treatment with CAR-expressing NK-92 cells has been demonstrated, resulting in cures and long-lasting immunological memory protecting against tumor rechallenge at distant sites. Here, we summarize the current status and future prospects of CAR

  5. Chimeric Antigen Receptor-Engineered NK-92 Cells: An Off-the-Shelf Cellular Therapeutic for Targeted Elimination of Cancer Cells and Induction of Protective Antitumor Immunity

    Directory of Open Access Journals (Sweden)

    Congcong Zhang

    2017-05-01

    Full Text Available Significant progress has been made in recent years toward realizing the potential of natural killer (NK cells for cancer immunotherapy. NK cells can respond rapidly to transformed and stressed cells and have the intrinsic potential to extravasate and reach their targets in almost all body tissues. In addition to donor-derived primary NK cells, also the established NK cell line NK-92 is being developed for adoptive immunotherapy, and general safety of infusion of irradiated NK-92 cells has been established in phase I clinical trials with clinical responses observed in some of the cancer patients treated. To enhance their therapeutic utility, NK-92 cells have been modified to express chimeric antigen receptors (CARs composed of a tumor-specific single chain fragment variable antibody fragment fused via hinge and transmembrane regions to intracellular signaling moieties such as CD3ζ or composite signaling domains containing a costimulatory protein together with CD3ζ. CAR-mediated activation of NK cells then bypasses inhibitory signals and overcomes NK resistance of tumor cells. In contrast to primary NK cells, CAR-engineered NK-92 cell lines suitable for clinical development can be established from molecularly and functionally well-characterized single cell clones following good manufacturing practice-compliant procedures. In preclinical in vitro and in vivo models, potent antitumor activity of NK-92 variants targeted to differentiation antigens expressed by hematologic malignancies, and overexpressed or mutated self-antigens associated with solid tumors has been found, encouraging further development of CAR-engineered NK-92 cells. Importantly, in syngeneic mouse tumor models, induction of endogenous antitumor immunity after treatment with CAR-expressing NK-92 cells has been demonstrated, resulting in cures and long-lasting immunological memory protecting against tumor rechallenge at distant sites. Here, we summarize the current status and future

  6. Effect of the sequential therapy of lamivudine and α-interferon on cellular immune function as well as serum PD-1 and Tin-3 levels in patients with chronic hepatitis B

    Institute of Scientific and Technical Information of China (English)

    Yan Jin; Ting Qiu; Yi-Fei Lyu; Chun-Ying Yan; Xue Wang; Tian-Jiao Duan; Rong Zhang; Gui-Sheng Liu

    2016-01-01

    Objective:To analyze the effect of the sequential therapy of lamivudine and α-interferon on cellular immune function as well as serum PD-1 and Tin-3 levels in patients with chronic hepatitis B. Methods: A total of 92 cases of patients with chronic hepatitis B who were treated in our hospital from May 2012 to May 2015 were selected as the research subjects and divided into observation group and control group (n=46) according to the random number table. Control group received lamivudine treatment alone, observation group received the sequential therapy of lamivudine and α-interferon, and then differences in ultrasound-related indexes, cellular immune function as well as PD-1 and Tin-3 levels were compared between two groups. Results:After observation group received the sequential therapy of lamivudine andα-interferon, ultrasonic major diameter of left hepatic lobe and PVM values were greater than those of control group, and internal diameter of portal vein was lower than that of control group; CD4+T and CD4+T/ CD8+T values of observation group were higher than those of control group, and CD8+T value was lower than that of control group;circulating blood CD8+T cell PD-1 and Tim-3 expression levels of observation group were lower than those of control group. Conclusion:Sequential therapy of lamivudine andα-interferon can optimize the cellular immune function of patients with chronic hepatitis B and inhibit the negative regulation process of immune function, and it helps to inhibit hepatitis B virus activity and disease control.

  7. The pH-sensitive fusogenic 3-methyl-glutarylated hyperbranched poly(glycidol)-conjugated liposome induces antigen-specific cellular and humoral immunity.

    Science.gov (United States)

    Hebishima, Takehisa; Yuba, Eiji; Kono, Kenji; Takeshima, Shin-Nosuke; Ito, Yoshihiro; Aida, Yoko

    2012-09-01

    We examined the ability of a novel liposome, surface modified by 3-methyl-glutarylated hyperbranched poly(glycidol) (MGlu-HPG), to enhance antigen-specific immunity in vitro and in vivo and to function as a vaccine carrier. Murine bone marrow-derived dendritic cells took up ovalbumin (OVA) encapsulated in MGlu-HPG-modified liposomes more effectively than free OVA or OVA encapsulated in unmodified liposomes. Immunization of mice with OVA-containing MGlu-HPG-modified liposomes induced antigen-specific splenocyte proliferation and production of gamma interferon (IFN-γ) more strongly than did immunization with free OVA or OVA encapsulated in unmodified liposomes. The immune responses induced by OVA encapsulated in MGlu-HPG-modified liposomes were significantly suppressed by addition of anti-major histocompatibility complex (MHC) class I and class II monoclonal antibodies, indicating the involvement of antigen presentation via MHC class I and II. Furthermore, delayed-type hypersensitivity responses and OVA-specific antibodies were induced more effectively in mice immunized with OVA encapsulated by MGlu-HPG-modified liposomes than with unencapsulated OVA or OVA encapsulated in unmodified liposomes. These results suggested that MGlu-HPG-modified liposomes effectively induced both cell-mediated and humoral immune responses. Collectively, this study is the first to demonstrate the induction of both cell-mediated and humoral immune responses in vivo by MGlu-HPG-modified liposomes.

  8. Protective anti-Pseudomonas aeruginosa humoral and cellular mucosal immunity by AdC7-mediated expression of the P. aeruginosa protein OprF.

    Science.gov (United States)

    Krause, Anja; Whu, Wen Zhu; Xu, Yaqin; Joh, Ju; Crystal, Ronald G; Worgall, Stefan

    2011-03-03

    Replication-deficient adenoviral (Ad) vectors are an attractive platform for a vaccine against lung infections caused by Pseudomonas aeruginosa. Ad vectors based on non-human serotypes have been developed to circumvent the problem of pre-existing anti-Ad immunity in humans. The present study analyzes the anti-P. aeruginosa systemic and lung mucosal immunity elicited by a non-human primate-based AdC7 vector expressing the outer membrane protein F (AdC7OprF) of P. aeruginosa. Intramuscular immunization of mice with AdC7OprF induced similar levels of serum and mucosal anti-OprF IgG and increased levels of anti-OprF IgA in lung epithelial lining fluid (ELF) compared to immunization with a human serotype Ad5OprF vector (p>0.05). OprF-specific INF-γ in splenic T cells stimulated with OprF-pulsed syngeneic splenic dendritic cells (DC) was similar following immunization with AdC7OprF compared to Ad5OprF (p>0.05). In contrast, OprF-specific INF-γ responses in lung T cells stimulated with either spleen or lung DC were increased following immunization with AdC7OprF compared to Ad5OprF (pmucosal immunity.

  9. Associations of IL-4, IL-6, and IL-12 levels in peripheral blood with lung function, cellular immune function, and quality of life in children with moderate-to-severe asthma

    Science.gov (United States)

    Cui, Ai-Hua; Zhao, Jing; Liu, Shu-Xiang; Hao, Ying-Shuang

    2017-01-01

    Abstract Background: Pediatric asthma has gained increasing concerns with poorly understood pathogenesis. The purpose of this study was to explore the associations of interleukin-4 (IL-4), IL-6, and IL-12 levels in peripheral blood (PB) with lung function, cellular immune function, and children's quality of life (QOL) with moderate-to-severe asthma. Methods: A total of 1158 children with moderate-to-severe asthma (the experimental group) and 1075 healthy children (the control group) were recruited for our study. Enzyme-linked immunosorbent assay was used to detect IL-4, IL-6, and IL-12 levels. T lymphocytes were detected by alkaline phosphatase antialkaline phosphatase, and erythrocyte immune was measured by red blood cell C 3b receptor (RBC-C3bR) rosette-forming test. The forced expiratory volume in 1 second (FEV1) and peak expiratory flow (PEF) were detected, after which FEV1/forced vital capacity (FVC) was calculated before and after treatment. PedsQL3.0 was used to measure the effect of asthma on QOL of children, and the correlation between IL-4, IL-6, and IL-12 levels and the lung function and QOL was measured. Logistic regression analysis was applied to detect related factors of moderate-to-severe asthma of children. Results: After treatment, the decreased IL-4 and IL-6 levels and increased IL-12 level were revealed in the experimental group. The cellular immune function's disorder was significantly decreased, and an elevated CD3, CD4, CD8, and declined CD4/CD8 level was performed in T lymphocytes. RBC-C3bR was increased, and red blood cell immune complex (RBC-IC) was reduced in erythrocyte immune in comparison with those before treatment. Lung function parameters all increased. After treatment, the symptoms of asthma in children reduced with scores of increased QOL. IL-4 was positively related to RBC-IC, but negatively associated with the QOL score. IL-6 showed negative connection with CD4/CD8, RBC-C3bR, FEV1/FVC, and QOL score, and had positive connection

  10. Granulocyte-macrophage stimulating factor (GM-CSF increases circulating dendritic cells but does not abrogate suppression of adaptive cellular immunity in patients with metastatic colorectal cancer receiving chemotherapy

    Directory of Open Access Journals (Sweden)

    Martinez Micaela

    2012-01-01

    Full Text Available Abstract Background Advanced cancer and chemotherapy are both associated with immune system suppression. We initiated a clinical trial in patients receiving chemotherapy for metastatic colorectal cancer to determine if administration of GM-CSF in this setting was immunostimulatory. Methods Between June, 2003 and January, 2007, 20 patients were enrolled in a clinical trial (NCT00257322 in which they received 500 ug GM-CSF daily for 4 days starting 24 hours after each chemotherapy cycle. There were no toxicities or adverse events reported. Blood was obtained before chemotherapy/GM-CSF administration and 24 hours following the final dose of GM-CSF and evaluated for circulating dendritic cells and adaptive immune cellular subsets by flow cytometry. Peripheral blood mononuclear cell (PBMC expression of γ-interferon and T-bet transcription factor (Tbx21 by quantitative real-time PCR was performed as a measure of Th1 adaptive cellular immunity. Pre- and post-treatment (i.e., chemotherapy and GM-CSF samples were evaluable for 16 patients, ranging from 1 to 5 cycles (median 3 cycles, 6 biologic sample time points. Dendritic cells were defined as lineage (- and MHC class II high (+. Results 73% of patients had significant increases in circulating dendritic cells of ~3x for the overall group (5.8% to 13.6%, p = 0.02 and ~5x excluding non-responders (3.2% to 14.5%, p Tbx21 levels declined by 75% following each chemotherapy cycle despite administration of GM-CSF (p = 0.02. PBMC γ-interferon expression, however was unchanged. Conclusions This clinical trial confirms the suppressive effects of chemotherapy on Th1 cellular immunity in patients with metastatic colorectal cancer but demonstrates that mid-cycle administration of GM-CSF can significantly increase the proportion of circulating dendritic cells. As the role of dendritic cells in anti-tumor immunity becomes better defined, GM-CSF administration may provide a non-toxic intervention to augment this arm

  11. Associations of IL-4, IL-6, and IL-12 levels in peripheral blood with lung function, cellular immune function, and quality of life in children with moderate-to-severe asthma.

    Science.gov (United States)

    Cui, Ai-Hua; Zhao, Jing; Liu, Shu-Xiang; Hao, Ying-Shuang

    2017-03-01

    Pediatric asthma has gained increasing concerns with poorly understood pathogenesis. The purpose of this study was to explore the associations of interleukin-4 (IL-4), IL-6, and IL-12 levels in peripheral blood (PB) with lung function, cellular immune function, and children's quality of life (QOL) with moderate-to-severe asthma. A total of 1158 children with moderate-to-severe asthma (the experimental group) and 1075 healthy children (the control group) were recruited for our study. Enzyme-linked immunosorbent assay was used to detect IL-4, IL-6, and IL-12 levels. T lymphocytes were detected by alkaline phosphatase antialkaline phosphatase, and erythrocyte immune was measured by red blood cell C 3b receptor (RBC-C3bR) rosette-forming test. The forced expiratory volume in 1 second (FEV1) and peak expiratory flow (PEF) were detected, after which FEV1/forced vital capacity (FVC) was calculated before and after treatment. PedsQL3.0 was used to measure the effect of asthma on QOL of children, and the correlation between IL-4, IL-6, and IL-12 levels and the lung function and QOL was measured. Logistic regression analysis was applied to detect related factors of moderate-to-severe asthma of children. After treatment, the decreased IL-4 and IL-6 levels and increased IL-12 level were revealed in the experimental group. The cellular immune function's disorder was significantly decreased, and an elevated CD3, CD4, CD8, and declined CD4/CD8 level was performed in T lymphocytes. RBC-C3bR was increased, and red blood cell immune complex (RBC-IC) was reduced in erythrocyte immune in comparison with those before treatment. Lung function parameters all increased. After treatment, the symptoms of asthma in children reduced with scores of increased QOL. IL-4 was positively related to RBC-IC, but negatively associated with the QOL score. IL-6 showed negative connection with CD4/CD8, RBC-C3bR, FEV1/FVC, and QOL score, and had positive connection with PEF. In addition, IL-12 was

  12. 仔猪痢清对动物细胞免疫功能影响的研究%Preliminary Study on the Effects of Zizhuliqing on Animal Cellular Immune Function

    Institute of Scientific and Technical Information of China (English)

    洪伟鸣; 邢晓玲; 郁杰; 葛竹兴; 王妲妲

    2008-01-01

    [Objective] The study aimed to explore the effects of Zizhuliqing Oral Liquid on animal cellular immune function. [Method] MTT method and phagocytizing natural red method were used to determine the effects of Zizhuliqing Oral Liquid on piglet lymphocyte transformation and the phagocytosis of mouse peritoneal macrophages respectively. [Result] The lymphocyte transformation rates of piglets in medicated groups were significantly higher than that in control group; the difference of mouse peritoneal macrophage activities between the medicated groups and the control group was obvious. [Conclusion] Zizhuliqing Oral Liquid could promote the transformation of piglet T lymphocytes induced by ConA and the phagocytosis of mouse peritoneal macrophages to natural red, indicating its good immune enhancement function.

  13. Reduction of porcine circovirus type 2 (PCV2 viremia by a reformulated inactivated chimeric PCV1-2 vaccine-induced humoral and cellular immunity after experimental PCV2 challenge

    Directory of Open Access Journals (Sweden)

    Seo Hwi

    2012-10-01

    Full Text Available Abstract Background The objective of the present study was to elucidate the humoral and cellular immune response mechanisms by which a reformulated inactivated chimeric PCV1-2 vaccine reduces the PCV2 viremia. Forty PCV2 seronegative 3-week-old pigs were randomly divided into the following four groups: vaccinated challenged (T01, vaccinated non-challenged (T02, non-vaccinated challenged (T03, and non-vaccinated non-challenged (T04 animals. The pigs in groups T01 and T02 were immunized with a reformulated inactivated chimeric PCV1-2 vaccine (Fostera™ PCV; Pfizer Animal Health administered as a 2.0 ml dose at 21 days of age. At 35 days of age (0 days post-challenge, the pigs in groups T01 and T03 were inoculated intranasally with 2 ml each of PCV2b. Results A reduction of PCV2 viremia coincided with the appearance of both PCV2-specific neutralizing antibodies (NA and interferon-γ-secreting cells (IFN-γ-SCs in the vaccinated animals. However, the presence of anti-PCV2 IgG antibodies did not correlate with the reduction of PCV2 viremia. Lymphocyte subset analysis indicated that the numbers of CD3+ and CD4+ cells increased in vaccinated animals but the numbers of CD4+ cells decreased transiently in non-vaccinated animals. The observation of a delayed type hypersensitivity response in only the vaccinated animals also supports a CD4+ cell-associated protective cellular immune response induced by the reformulated inactivated chimeric PCV1-2 vaccine. Conclusions The induction of PCV2-specific NA and IFN-γ-SCs, and CD4+ cells by the reformulated inactivated chimeric PCV1-2 vaccine is the important protective immune response leading to reduction of the PCV2 viremia and control of the PCV2 infection. To our knowledge this is the first demonstration of protective humoral and cellular immunity induced by the reformulated inactivated chimeric PCV1-2 vaccine and its effect on reduction of PCV2 viremia by vaccination.

  14. Chlamydia trachomatis recombinant MOMP encapsulated in PLGA nanoparticles triggers primarily T helper 1 cellular and antibody immune responses in mice: a desirable candidate nanovaccine

    Directory of Open Access Journals (Sweden)

    Fairley SJ

    2013-05-01

    Full Text Available Stacie J Fairley, Shree R Singh, Abebayehu N Yilma, Alain B Waffo, Praseetha Subbarayan, Saurabh Dixit, Murtada A Taha, Chino D Cambridge, Vida A Dennis Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL, USA Abstract: We recently demonstrated by in vitro experiments that PLGA (poly D, L-lactide-co-glycolide potentiates T helper 1 (Th1 immune responses induced by a peptide derived from the recombinant major outer membrane protein (rMOMP of Chlamydia trachomatis, and may be a promising vaccine delivery system. Herein we evaluated the immune-potentiating potential of PLGA by encapsulating the full-length rMOMP (PLGA-rMOMP, characterizing it in vitro, and investigating its immunogenicity in vivo. Our hypothesis was that PLGA-rMOMP triggers Th1 immune responses in mice, which are desirable prerequisites for a C. trachomatis candidate nanovaccine. Physical-structural characterizations of PLGA-rMOMP revealed its size (approximately 272 nm, zeta potential (−14.30 mV, apparent spherical smooth morphology, and continuous slow release pattern. PLGA potentiated the ability of encapsulated rMOMP to trigger production of cytokines and chemokines by mouse J774 macrophages. Flow cytometric analyses revealed that spleen cells from BALB/c mice immunized with PLGA-rMOMP had elevated numbers of CD4+ and CD8+ T cell subsets, and secreted more rMOMP-specific interferon-gamma (Th1 and interleukin (IL-12p40 (Th1/Th17 than IL-4 and IL-10 (Th2 cytokines. PLGA-rMOMP-immunized mice produced higher serum immunoglobulin (IgG and IgG2a (Th1 than IgG1 (Th2 rMOMP-specific antibodies. Notably, sera from PLGA-rMOMP-immunized mice had a 64-fold higher Th1 than Th2 antibody titer, whereas mice immunized with rMOMP in Freund's adjuvant had only a four-fold higher Th1 than Th2 antibody titer, suggesting primarily induction of a Th1 antibody response in PLGA-rMOMP-immunized mice. Our data underscore PLGA as an effective delivery system for a C

  15. A polyvalent influenza DNA vaccine applied by needle-free intradermal delivery induces cross-reactive humoral and cellular immune responses in pigs

    DEFF Research Database (Denmark)

    Borggren, Marie; Nielsen, Jens; Karlsson, Ingrid

    2016-01-01

    BACKGROUND: Pigs are natural hosts for influenza A viruses, and the infection is widely prevalent in swine herds throughout the world. Current commercial influenza vaccines for pigs induce a narrow immune response and are not very effective against antigenically diverse viruses. To control...... influenza in pigs, the development of more effective swine influenza vaccines inducing broader cross-protective immune responses is needed. Previously, we have shown that a polyvalent influenza DNA vaccine using vectors containing antibiotic resistance genes induced a broadly protective immune response...... of the optimized DNA vaccine were evaluated in groups of five to six pigs. The DNA vaccine consisted of six selected influenza genes of pandemic origin, including internally expressed matrix and nucleoprotein and externally expressed hemagglutinin and neuraminidase. RESULTS: Needle-free vaccination of growing pigs...

  16. 脓毒症免疫麻痹与细胞免疫调理治疗研究进展%Advances in cellular immunomodulatory therapy in patients with sepsis and immune compromized

    Institute of Scientific and Technical Information of China (English)

    马帅; 郭树彬

    2016-01-01

    脓毒症是目前引起 ICU 患者死亡的主要原因之一,其高病死率的原因可能与具体病理生理机制的认识不清楚相关,作为一种复杂的多系统、多机制疾病,免疫炎症系统反应紊乱可能是其主要机制之一,脓毒症免疫紊乱主要表现为炎症因子风暴和免疫麻痹,免疫麻痹的机制可能包括:免疫细胞凋亡、免疫细胞抑制和免疫细胞耗竭。本文就脓毒症免疫麻痹发生病理生理机制、免疫监测、细胞免疫调理治疗作一综述,以其提高脓毒症免疫抑制认识。%Sepsis is one of the most common causes of mortality in the intensive care units (ICUs) with high mortality rates which may be related to the lack of thoroughly understanding of the specific pathophysiological mechanisms.Improved treatment protocols have resulted in most patients got out of the initial hyperinflammatory phase and entered into a protracted immune suppressed phase.Deaths in this immunosuppressive phase are typically due to failure to control the primary infection or the secondary nosocomial infections often with opportunistic pathogens.As the complexity in multiple systems and varied mechanisms involved in the development of disease,the disorder of immune system and inflammation reaction may be one of the main mechanisms,which were mainly characterized by inflammation cytokines storm and immune dysfunction.The mechanism in the later course of disease may include apoptosis and depletion of immune cells,increased suppression of T regulatory cell and increased myeloid-derived suppressor cell,and cellular exhaustion.In this review we focus on the pathophysiologic mechanism of sepsis with immune compromized,monitoring the immune response,the cellular immunoadjuvant therapy,and improving the recognition of sepsis immunosuppression.

  17. Co-administration of Interleukin-2 Enhances Cellular and Humoral Immune Responses to HIV Vaccine DNA Prime/MVA Boost Regime

    Institute of Scientific and Technical Information of China (English)

    JIANG Chun-lai; YU Xiang-hui; WU Yong-ge; LI Wei; KONG Wei

    2005-01-01

    Interleukine-2(IL-2) is a growth factor for antigen-stimulated T lymphocytes and is responsible for T-cell clonal expansion after antigen recognition. It has been demonstrated that DNA vaccine-elicited immune responses in mice could be augmented substantially by using either an IL-2 protein or a plasmid expressing IL-2. Twenty mice, divided into four experimental groups, were immunized with: (1) sham plasmid; (2) HIV-1 DNA vaccine alone; (3) HIV-1 DNA vaccine and IL-2 protein; or (4) HIV-1 DNA vaccine and IL-2 plasmid, separately. All the groups were immunized 3 times at a 2-week interval. Fourteen days after the last DNA vaccine injection, recombinant MVA was injected into all the mice except those in group 1. ELISA and ELISPOT were employed to investigate the effect of IL-2 on DNA vaccine immune responses. The obtained results strongly indicate that the efficacy of HIV vaccine can be enhanced by co-administration of a plasmid encoding IL-2.

  18. Proanthocyanidins from grape seeds inhibit UV-radiation-induced immune suppression in mice: detection and analysis of molecular and cellular targets.

    Science.gov (United States)

    Katiyar, Santosh K

    2015-01-01

    Ultraviolet (UV)-radiation-induced immunosuppression has been linked with the risk of skin carcinogenesis. Approximately, 2 million new cases of skin cancers, including melanoma and nonmelanoma, diagnosed each year in the USA and therefore have a tremendous bad impact on public health. Dietary phytochemicals are promising options for the development of effective strategy for the prevention of photodamaging effects of UV radiation including the risk of skin cancer. Grape seed proanthocyanidins (GSPs) are such phytochemicals. Dietary administration of GSPs with AIN76A control diet significantly inhibits UV-induced skin tumor development as well as suppression of immune system. UV-induced suppression of immune system is commonly determined using contact hypersensitivity (CHS) model which is a prototype of T-cell-mediated immune response. We present evidence that inhibition of UV-induced suppression of immune system by GSPs is mediated through: (i) the alterations in immunoregulatory cytokines, interleukin (IL)-10 and IL-12, (ii) DNA repair, (iii) stimulation of effector T cells and (iv) DNA repair-dependent functional activation of dendritic cells in mouse model. These information have important implications for the use of GSPs as a dietary supplement in chemoprevention of UV-induced immunosuppression as well as photocarcinogenesis. © 2014 The American Society of Photobiology.

  19. In situ apoptosis of adaptive immune cells and the cellular escape of rabies virus in CNS from patients with human rabies transmitted by Desmodus rotundus.

    Science.gov (United States)

    Fernandes, Elaine Raniero; de Andrade, Heitor Franco; Lancellotti, Carmen Lúcia Penteado; Quaresma, Juarez Antônio Simões; Demachki, Samia; da Costa Vasconcelos, Pedro Fernando; Duarte, Maria Irma Seixas

    2011-03-01

    The aim of the current study was to investigate the apoptosis of neurons, astrocytes and immune cells from human patients that were infected with rabies virus by vampire bats bite. Apoptotic neurons were identified by their morphology and immune cells were identified using double immunostaining. There were very few apoptotic neurons present in infected tissue samples, but there was an increase of apoptotic infiltrating CD4+ and TCD8+ adaptive immune cells in the rabies infected tissue. No apoptosis was present in NK, macrophage and astrocytes. The dissemination of the human rabies virus within an infected host may be mediated by viral escape of the virus from an infected cell and may involve an anti-apoptotic mechanism, which does not kill the neuron or pro-apoptosis of TCD4+ and TCD8+ lymphocytes and which allows for increased proliferation of the virus within the CNS by attenuation of the adaptive immune response. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Cellular immune function change and chronic obstructive pulmonary disease%细胞免疫功能变化与慢性阻塞性肺疾病

    Institute of Scientific and Technical Information of China (English)

    姜素丽; 李亚; 李建生

    2012-01-01

    目前研究显示机体的免疫功能降低或紊乱在慢性阻塞性肺疾病的发生、发展过程中起着重要作用,执行非特异性免疫的细胞主要包括巨噬细胞、中性粒细胞、自然杀伤细胞、树突状细胞等,特异性免疫主要有T细胞和B细胞介导.参与免疫功能的细胞与慢性阻塞性肺疾病发生发展密切相关.%The current study shows that the body's immune function or disorders play an important role in the development and progression of chronic obstructive pulmonary disease (COPD).In which the non-specific immune cells include alveolar macrophage,polymorphonuclear,natural killer cells,dendritic cell,while the specific immunity are mediated by T lymphocytes and B lymphocyte cells. The cells involved in immune function are closely related with the development of COPD.

  1. Heavy metal mediated innate immune responses of the Indian green frog, Euphlyctis hexadactylus (Anura: Ranidae): Cellular profiles and associated Th1 skewed cytokine response

    Energy Technology Data Exchange (ETDEWEB)

    Jayawardena, Uthpala A.; Ratnasooriya, Wanigasekara D.; Wickramasinghe, Deepthi D.; Udagama, Preethi V., E-mail: dappvr@yahoo.com

    2016-10-01

    Immune cell and cytokine profiles in relation to metal exposure though much studied in mammals has not been adequately investigated in amphibians, due mainly to lack of suitable reagents for cytokine profiling in non-model species. However, interspecies cross reactivity of cytokines permitted us to assay levels of IFNγ, TNFα, IL6 and IL10in a common anuran, the Indian green frog (Euphlyctis hexadactylus), exposed to heavy metals (Cd, Cr, Cu, Zn and Pb, at ~ 5 ppm each) under field and laboratory settings in Sri Lanka. Enumeration of immune cells in blood and melanomacrophages in the liver, assay of serum and hepatic cytokines, and Th1/Th2 cytokine polarisation were investigated. Immune cell counts indicated overall immunosuppression with decreasing total WBC and splenocyte counts while neutrophil/lymphocyte ratio increased with metal exposure, indicating metal mediated stress. Serum IL6 levels of metal exposed frogs reported the highest (~ 9360 pg/mL) of all cytokines tested. Significantly elevated IFNγ production (P < 0.05) was evident in heavy metal exposed frogs. Th1/Th2 cytokine ratio in both serum and liver tissue homogenates was Th1 skewed due to significantly higher production of pro-inflammatory cytokines, IFNγ in serum and TNFα in the liver (P < 0.01).Metal mediated aggregations of melanomacrophages in the liver were positively and significantly (P < 0.05) correlated with the hepatic expression of TNFα, IL6 and IL10 activity. Overall, Th1 skewed response may well be due to oxidative stress mediated nuclear factor κ-light chain enhancer of activated B cells (NFκB) which enhances the transcription of pro-inflammatory cytokines. Xenobiotic stress has recently imposed an unprecedented level of threat to wildlife, particularly to sensitive species such as amphibians. Therefore, understanding the interactions between physiological stress and related immune responses is fundamental to conserve these environmental sentinels in the face of emerging eco

  2. 滤除白细胞异体血对围术期患儿细胞免疫功能的影响%Effects of leukocyte-depleted allogeneic blood transfusion on perioperative cellular immunity in children

    Institute of Scientific and Technical Information of China (English)

    邢准; 王秋实; 刁艳妮

    2014-01-01

    Objective To evaluate the effects of leukocyte-depleted allogeneic blood transfusion on perioperative cellular immunity in children.Methods Three hundred and fifty-nine ASA Ⅰ or Ⅱ children (aged 3 months-14 years and weighing 5-74 kg) requiring allogeneic blood transfusion during operation were randomly divided into two groups:163 children receiving normal allogeneic blood transfusion (control group,group C) and 196 children receiving leukocyte-depleted allogeneic blood transfusion (group D).Blood samples were collected from the peripheral vein before blood transfusion,and 2 and 6 days after blood transfusion for determination of the levels of CD3+,CD4+,CD8 +,and CD56+ by flow cytometry.CD4+ /CD8+ ratio was calculated.The volume of allogeneic blood transfusion during operation,the duration of operation,postoperative drainage,antibiotic administration,hospital stay and the incidence of postoperative infection were recorded.Rssults The levels of CD3+,CD4+,CD56+ and CD4+/CD8+ ratio significantly increased at 6 days after blood transfusion while the duration of postoperative drainage,postoperative antibiotic administration,hospital stay and the incidence of postoperative infection significantly decreased in group D compared with group C.Conclusion Leukocyte-depleted allogeneic blood transfusion is helpful in improving the postoperative cellular immunity in children.

  3. Heterologous prime-boost regimens using rAd35 and rMVA vectors elicit stronger cellular immune responses to HIV proteins than homologous regimens.

    Directory of Open Access Journals (Sweden)

    Silvia Ratto-Kim

    Full Text Available We characterized prime-boost vaccine regimens using heterologous and homologous vector and gene inserts. Heterologous regimens offer a promising approach that focuses the cell-mediated immune response on the insert and away from vector-dominated responses. Ad35-GRIN/ENV (Ad35-GE vaccine is comprised of two vectors containing sequences from HIV-1 subtype A gag, rt, int, nef (Ad35-GRIN and env (Ad35-ENV. MVA-CMDR (MVA-C, MVA-KEA (MVA-K and MVA-TZC (MVA-T vaccines contain gag, env and pol genes from HIV-1 subtypes CRF01_AE, A and C, respectively. Balb/c mice were immunized with different heterologous and homologous vector and insert prime-boost combinations. HIV and vector-specific immune responses were quantified post-boost vaccination. Gag-specific IFN-γ ELISPOT, intracellular cytokine staining (ICS (CD107a, IFN-γ, TNF-α and IL-2, pentamer staining and T-cell phenotyping were used to differentiate responses to inserts and vectors. Ad35-GE prime followed by boost with any of the recombinant MVA constructs (rMVA induced CD8+ Gag-specific responses superior to Ad35-GE-Ad35-GE or rMVA-rMVA prime-boost combinations. Notably, there was a shift toward insert-focus responses using heterologous vector prime-boost regimens. Gag-specific central and effector memory T cells were generated more rapidly and in greater numbers in the heterologous compared to the homologous prime-boost regimens. These results suggest that heterologous prime-boost vaccination regimens enhance immunity by increasing the magnitude, onset and multifunctionality of the insert-specific cell-mediated immune response compared to homologous vaccination regimens. This study supports the rationale for testing heterologous prime-boost regimens in humans.

  4. Can Aidi injection restore cellular immunity and improve clinical efficacy in non-small-cell lung cancer patients treated with platinum-based chemotherapy? A meta-analysis of 17 randomized controlled trials following the PRISMA guidelines.

    Science.gov (United States)

    Xiao, Zheng; Wang, Chengqiong; Sun, Yongping; Li, Nana; Li, Jing; Chen, Ling; Yao, Xingsheng; Ding, Jie; Ma, Hu

    2016-11-01

    Aidi injection is an adjuvant chemotherapy drug commonly used in China. Can Aidi injection restore the cellular immunity and improve the clinical efficacy in non-small-cell lung cancer (NSCLC) patients treated with platinum-based chemotherapy? There is a lack of strong evidence to prove it. To further reveal it, we systematically evaluated all related studies. We collected all studies about the clinical efficacy and cellular immunity of Aidi injection plus platinum-based chemotherapy for NSCLC in Medline, Embase, Web of Science, China national knowledge infrastructure database (CNKI), Chinese Scientific Journals Full-Text Database (VIP), Wanfang, China biological medicine database (CBM) (established to June 2015), Cochrane Central Register of Controlled Trials (CCRCT) (June 2015), Chinese clinical trial registry, and US-clinical trials (June 2015). We evaluated their quality according to the Cochrane evaluation handbook of randomized controlled trials (RCTs) (5.1.0), extracted data following the patient intervention control group outcomes principles and synthesized the data by meta-analysis. Seventeen (RCTs) with 1390 NSCLC patients were included, with general methodological quality in most trials. The merged relative risk (RR) values and their 95% CI of meta-analysis for objective response rate (ORR) and disease control rate (DCR) were as follows: 1.26 (1.12, 1.42) and 1.11(1.04, 1.17). The merged standardized mean difference (SMD) values and their 95% CI of meta-analysis for the percentage of CD3T cells, CD4T cells, CD8T cells, natural killer (NK) cells, and CD4/CD8 T cell ratio were as follows: 1.41, (0.89, 1.92), 1.59, (1.07, 2.11), 0.85, (0.38, 1.33), 1.64 (0.89, 2.39) and 0.91, (0.58, 1.24). Compared with platinum-based chemotherapy alone, all differences were statistically significant. These results might be overestimated or underestimated. Aidi injection plus platinum-based chemotherapy can improve the clinical efficacy of patients with NSCLC. Aidi

  5. Further Stimulation of Cellular Immune Responses through Association of HPV-16 E6, E7 and L1 Genes in order to produce more Effective Therapeutic DNA Vaccines in Cervical Cancer Model.

    Science.gov (United States)

    Fazeli, Maryam; Soleimanjahi, Hoorieh; Dadashzadeh, Simin

    2015-01-01

    Cervical cancer has been shown to be highly associated with human papillomavirus (HPV) infection. The viral oncogenes E6 and E7 are constantly expressed by the tumor cells and are therefore potent targets for therapeutic genetic vaccination. In the present study, it was investigated the potential effect of HPV-16 E6, E7 and L1 co-administration to activate specific cytotoxic T lymphocytes in tumor mice models. The HPV-16 E6, E7 and L1 genes from Iranian isolate were separately inserted into the mammalian expression vector, pcDNA3, to construct the DNA vaccine candidates. Tumor-bearing Animals (C57BL/6 mice) were immunized with the vaccine candidate; then, Lymphocyte Proliferation Assay (LPA) and relative tumor volume measurements were carried out in order to examine the immunological effects of the vaccine. Obtained results showed that co-administration of the HPV-16 E6, E7 and L1 DNA induced HPV-16 specific cellular immune responses and also protected against TC-1-induced tumor in vivo compared with negative controls. The results showed that mixed delivery systems might be valuable to improve the magnitude of the induced immune responses and confirmed therapeutic effects of HPV-16 E6, E7 through cytotoxic T lymphocyte induction and illustrate the new promising role for HPV-16 L1 CTL epitopes as a suitable CTL inducer.

  6. Aeromonas salmonicida Infection Only Moderately Regulates Expression of Factors Contributing to Toll-Like Receptor Signaling but Massively Activates the Cellular and Humoral Branches of Innate Immunity in Rainbow Trout (Oncorhynchus mykiss

    Directory of Open Access Journals (Sweden)

    Andreas Brietzke

    2015-01-01

    Full Text Available Toll-like receptors (TLRs are known to detect a defined spectrum of microbial structures. However, the knowledge about the specificity of teleost Tlr factors for distinct pathogens is limited so far. We measured baseline expression profiles of 18 tlr genes and associated signaling factors in four immune-relevant tissues of rainbow trout Oncorhynchus mykiss. Intraperitoneal injection of a lethal dose of Aeromonas salmonicida subsp. salmonicida induced highly increased levels of cytokine mRNAs during a 72-hour postinfection (hpi period. In contrast, only the fish-specific tlr22a2 and the downstream factor irak1 featured clearly increased transcript levels, while the mRNA concentrations of many other tlr genes decreased. Flow cytometry quantified cell trafficking after infection indicating a dramatic influx of myeloid cells into the peritoneum and a belated low level immigration of lymphoid cells. T and B lymphocytes were differentiated with RT-qPCR revealing that B lymphocytes emigrated from and T lymphocytes immigrated into head kidney. In conclusion, no specific TLR can be singled out as a dominant receptor for A. salmonicida. The recruitment of cellular factors of innate immunity rather than induced expression of pathogen receptors is hence of key importance for mounting a first immune defense against invading A. salmonicida.

  7. Interferon γ Stimulates Cellular Maturation of Dendritic Cell Line DC2.4 Leading to Induction of Efficient Cytotoxic T Cell Responses and Antitumor Immunity

    Institute of Scientific and Technical Information of China (English)

    Tianpei He; Chaoke Tang; Shulin Xu; Terence Moyana; Jim Xiang

    2007-01-01

    Dendritic cells (DCs) are the most potent antigen-presenting cells (APCs) for the initiation of antigen (Ag)-specific immune responses. In most studies, mature DCs are generated from bone marrow cells or peripheral monocytes; in either case, the harvested cells are then cultured in medium containing recombinant GM-CSF, IL-4 and TNF-α for 7-10 days and stimulated with lipopolysaccharide (LPS). However, this approach is time-consuming and expensive. There is another less cost approach of using immobilized DC cell lines, which can easily grow in the medium. A disadvantage with the immobilized DC cell lines, however, is that they are immature DCs and lack expression of MHC class Ⅱ and costimulatory CD40 and CD80 molecules. This, therefore, limits their capacity for inducing efficient antitumor immunity. In the current study, we investigated the possible efficacy of various stimuli (IL-1β,IFN-γ, TNF-α, CpG and LPS) in converting the immature dendritic cell line DC2.4 to mature DCs. Our findings were quite interesting since we demonstrated for the first time that IFN-γ was able to stimulate the maturation of DC2.4 cells. The IFN-γ-activated ovalbumin (OVA)-pulsed DC2.4 cells have capacity to upregulate MHC class Ⅱ,CD40, CD80 and CCR7, and to more efficiently stimulate in vitro and in vivo OVA-specific CD8+ T cell responses and antitumor immunity. Therefore, IFN-γ-activated immortal DC2.4 cells may prove to be useful in the study of DC biology and antitumor immunity.

  8. Heavy metal mediated innate immune responses of the Indian green frog, Euphlyctis hexadactylus (Anura: Ranidae): Cellular profiles and associated Th1 skewed cytokine response.

    Science.gov (United States)

    Jayawardena, Uthpala A; Ratnasooriya, Wanigasekara D; Wickramasinghe, Deepthi D; Udagama, Preethi V

    2016-10-01

    Immune cell and cytokine profiles in relation to metal exposure though much studied in mammals has not been adequately investigated in amphibians, due mainly to lack of suitable reagents for cytokine profiling in non-model species. However, interspecies cross reactivity of cytokines permitted us to assay levels of IFNγ, TNFα, IL6 and IL10in a common anuran, the Indian green frog (Euphlyctis hexadactylus), exposed to heavy metals (Cd, Cr, Cu, Zn and Pb, at ~5ppm each) under field and laboratory settings in Sri Lanka. Enumeration of immune cells in blood and melanomacrophages in the liver, assay of serum and hepatic cytokines, and Th1/Th2 cytokine polarisation were investigated. Immune cell counts indicated overall immunosuppression with decreasing total WBC and splenocyte counts while neutrophil/lymphocyte ratio increased with metal exposure, indicating metal mediated stress. Serum IL6 levels of metal exposed frogs reported the highest (~9360pg/mL) of all cytokines tested. Significantly elevated IFNγ production (Pfrogs. Th1/Th2 cytokine ratio in both serum and liver tissue homogenates was Th1 skewed due to significantly higher production of pro-inflammatory cytokines, IFNγ in serum and TNFα in the liver (P<0.01).Metal mediated aggregations of melanomacrophages in the liver were positively and significantly (P<0.05) correlated with the hepatic expression of TNFα, IL6 and IL10 activity. Overall, Th1 skewed response may well be due to oxidative stress mediated nuclear factor κ-light chain enhancer of activated B cells (NFκB) which enhances the transcription of pro-inflammatory cytokines. Xenobiotic stress has recently imposed an unprecedented level of threat to wildlife, particularly to sensitive species such as amphibians. Therefore, understanding the interactions between physiological stress and related immune responses is fundamental to conserve these environmental sentinels in the face of emerging eco-challenges.

  9. Plant viral nanoparticles-based HER2 vaccine: Immune response influenced by differential transport, localization and cellular interactions of particulate carriers.

    Science.gov (United States)

    Shukla, Sourabh; Myers, Jay T; Woods, Sarah E; Gong, Xingjian; Czapar, Anna E; Commandeur, Ulrich; Huang, Alex Y; Levine, Alan D; Steinmetz, Nicole F

    2017-03-01

    Cancer vaccines are designed to elicit an endogenous adaptive immune response that can successfully recognize and eliminate residual or recurring tumors. Such approaches can potentially overcome shortcomings of passive immunotherapies by generating long-lived therapeutic effects and immune memory while limiting systemic toxicities. A critical determinant of vaccine efficacy is efficient transport and delivery of tumor-associated antigens to professional antigen presenting cells (APCs). Plant viral nanoparticles (VNPs) with natural tropism for APCs and a high payload carrying capacity may be particularly effective vaccine carriers. The applicability of VNP platform technologies is governed by stringent structure-function relationships. We compare two distinct VNP platforms: icosahedral cowpea mosaic virus (CPMV) and filamentous potato virus X (PVX). Specifically, we evaluate in vivo capabilities of engineered VNPs delivering human epidermal growth factor receptor 2 (HER2) epitopes for therapy and prophylaxis of HER2(+) malignancies. Our results corroborate the structure-function relationship where icosahedral CPMV particles showed significantly enhanced lymph node transport and retention, and greater uptake by/activation of APCs compared to filamentous PVX particles. These enhanced immune cell interactions and transport properties resulted in elevated HER2-specific antibody titers raised by CPMV- vs. PVX-based peptide vaccine. The 'synthetic virology' field is rapidly expanding with numerous platforms undergoing development and preclinical testing; our studies highlight the need for systematic studies to define rules guiding the design and rational choice of platform, in the context of peptide-vaccine display technologies.

  10. Cationic lipid/DNA complexes (JVRS-100) combined with influenza vaccine (Fluzone) increases antibody response, cellular immunity, and antigenically drifted protection.

    Science.gov (United States)

    Lay, Marla; Callejo, Bernadette; Chang, Stella; Hong, David K; Lewis, David B; Carroll, Timothy D; Matzinger, Shannon; Fritts, Linda; Miller, Christopher J; Warner, John F; Liang, Lily; Fairman, Jeffery

    2009-06-12

    Safe and effective adjuvants for influenza vaccines that could increase both the levels of neutralizing antibody, including against drifted viral subtypes, and T-cell immunity would be a major advance in vaccine design. The JVRS-100 adjuvant, consisting of DOTIM/cholesterol cationic liposome-DNA complexes, is particularly promising for vaccines that require induction of high levels of antibody and T-cell immunity, including CD8(+) cytotoxic T lymphocytes (CTL). Inclusion of protein antigens with JVRS-100 results in the induction of enhanced humoral and cell-mediated (i.e., CD4(+) and CD8(+) T cells) immune responses. The JVRS-100 adjuvant combined with a split trivalent influenza vaccine (Fluzone-sanofi pasteur) elicited increased antibody and T-cell responses in mice and non-human primates compared to vaccination with Fluzone alone. Mice vaccinated with JVRS-100-Fluzone and challenged with antigenically drifted strains of H1N1 (PR/8/34) and influenza B (B/Lee/40) viruses had higher grade protection, as measured by attenuation of weight loss and increased survival, compared to recipients of unadjuvanted vaccine. The results indicate that the JVRS-100 adjuvant substantially increases immunogenicity and protection from drifted-strain challenge using an existing influenza vaccine.

  11. Skin innate immune system

    Directory of Open Access Journals (Sweden)

    Berna Aksoy

    2013-06-01

    Full Text Available All multicellular organisms protect themselves from external universe and microorganisms by innate immune sytem that is constitutively present. Skin innate immune system has several different components composed of epithelial barriers, humoral factors and cellular part. In this review information about skin innate immune system and its components are presented to the reader. Innate immunity, which wasn’t adequately interested in previously, is proven to provide a powerfull early protection system, control many infections before the acquired immunity starts and directs acquired immunity to develop optimally

  12. Matrix-M adjuvant enhances antibody, cellular and protective immune responses of a Zaire Ebola/Makona virus glycoprotein (GP) nanoparticle vaccine in mice.

    Science.gov (United States)

    Bengtsson, Karin Lövgren; Song, Haifeng; Stertman, Linda; Liu, Ye; Flyer, David C; Massare, Michael J; Xu, Ren-Huan; Zhou, Bin; Lu, Hanxin; Kwilas, Steve A; Hahn, Timothy J; Kpamegan, Eloi; Hooper, Jay; Carrion, Ricardo; Glenn, Gregory; Smith, Gale

    2016-04-01

    Ebola virus (EBOV) causes severe hemorrhagic fever for which there is no approved treatment or preventive vaccine. Immunological correlates of protective immunity against EBOV disease are not well understood. However, non-human primate studies have associated protection of experimental vaccines with binding and neutralizing antibodies to the EBOV glycoprotein (GP) as well as EBOV GP-specific CD4(+) and CD8(+) T cells. In this report a full length, unmodified Zaire EBOV GP gene from the 2014 EBOV Makona strain (EBOV/Mak) was cloned into a baculovirus vector. Recombinant EBOV/Mak GP was produced in Sf9 insect cells as glycosylated trimers and, when purified, formed spherical 30-40 nm particles. In mice, EBOV/Mak GP co-administered with the saponin adjuvant Matrix-M was significantly more immunogenic, as measured by virus neutralization titers and anti-EBOV/Mak GP IgG as compared to immunization with AlPO4 adjuvanted or non-adjuvanted EBOV/Mak GP. Similarly, antigen specific T cells secreting IFN-γ were induced most prominently by EBOV/Mak GP with Matrix-M. Matrix-M also enhanced the frequency of antigen-specific germinal center B cells and follicular helper T (TFH) cells in the spleen in a dose-dependent manner. Immunization with EBOV/Mak GP with Matrix-M was 100% protective in a lethal viral challenge murine model; whereas no protection was observed with the AlPO4 adjuvant and only 10% (1/10) mice were protected in the EBOV/Mak GP antigen alone group. Matrix-M adjuvanted vaccine induced a rapid onset of specific IgG and neutralizing antibodies, increased frequency of multifunctional CD4+ and CD8(+) T cells, specific TFH cells, germinal center B cells, and persistence of EBOV GP-specific plasma B cells in the bone marrow. Taken together, the addition of Matrix-M adjuvant to the EBOV/Mak GP nanoparticles enhanced both B and T-cell immune stimulation which may be critical for an Ebola subunit vaccine with broad and long lasting protective immunity.

  13. Vaccination of koalas (Phascolarctos cinereus) with a recombinant chlamydial major outer membrane protein adjuvanted with poly I:C, a host defense peptide and polyphosphazine, elicits strong and long lasting cellular and humoral immune responses.

    Science.gov (United States)

    Khan, Shahneaz Ali; Waugh, Courtney; Rawlinson, Galit; Brumm, Jacqui; Nilsson, Karen; Gerdts, Volker; Potter, Andrew; Polkinghorne, Adam; Beagley, Kenneth; Timms, Peter

    2014-10-07

    Chlamydial infections are wide spread in koalas across their range and a solution to this debilitating disease has been sought for over a decade. Antibiotics are the currently accepted therapeutic measure, but are not an effective treatment due to the asymptomatic nature of some infections and a low efficacy rate. Thus, a vaccine would be an ideal way to address this infectious disease threat in the wild. Previous vaccine trials have used a three-dose regimen; however this is very difficult to apply in the field as it would require multiple capture events, which are stressful and invasive processes for the koala. In addition, it requires skilled koala handlers and a significant monetary investment. To overcome these challenges, in this study we utilized a polyphosphazine based poly I:C and a host defense peptide adjuvant combined with recombinant chlamydial major outer membrane protein (rMOMP) antigen to induce long lasting (54 weeks) cellular and humoral immunity in female koalas with a novel single immunizing dose. Immunized koalas produced a strong IgG response in plasma, as well as at mucosal sites. Moreover, they showed high levels of C. pecorum specific neutralizing antibodies in the plasma as well as vaginal and conjunctival secretions. Lastly, Chlamydia-specific lymphocyte proliferation responses were produced against both whole chlamydial elementary bodies and rMOMP protein, over the 12-month period. The results of this study suggest that a single dose rMOMP vaccine incorporating a poly I:C, host defense peptide and polyphosphazine adjuvant is able to stimulate both arms of the immune system in koalas, thereby providing an alternative to antibiotic treatment and/or a three-dose vaccine regime. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Probiotic Lactobacillus rhamnosus GG enhanced Th1 cellular immunity but did not affect antibody responses in a human gut microbiota transplanted neonatal gnotobiotic pig model.

    Directory of Open Access Journals (Sweden)

    Ke Wen

    Full Text Available This study aims to establish a human gut microbiota (HGM transplanted gnotobiotic (Gn pig model of human rotavirus (HRV infection and diarrhea, and to verify the dose-effects of probiotics on HRV vaccine-induced immune responses. Our previous studies using the Gn pig model found that probiotics dose-dependently regulated both T cell and B cell immune responses induced by rotavirus vaccines. We generated the HGM transplanted neonatal Gn pigs through daily feeding of neonatal human fecal suspension to germ-free pigs for 3 days starting at 12 hours after birth. We found that attenuated HRV (AttHRV vaccination conferred similar overall protection against rotavirus diarrhea and virus shedding in Gn pigs and HGM transplanted Gn pigs. HGM promoted the development of the neonatal immune system, as evidenced by the significantly enhanced IFN-γ producing T cell responses and reduction of regulatory T cells and their cytokine production in the AttHRV-vaccinated pigs. The higher dose Lactobacillus rhamnosus GG (LGG feeding (14 doses, up to 109 colony-forming-unit [CFU]/dose effectively increased the LGG counts in the HGM Gn pig intestinal contents and significantly enhanced HRV-specific IFN-γ producing T cell responses to the AttHRV vaccine. Lower dose LGG (9 doses, up to 106 CFU/dose was ineffective. Neither doses of LGG significantly improved the protection rate, HRV-specific IgA and IgG antibody titers in serum, or IgA antibody titers in intestinal contents compared to the AttHRV vaccine alone, suggesting that an even higher dose of LGG is needed to overcome the influence of the microbiota to achieve the immunostimulatory effect in the HGM pigs. This study demonstrated that HGM Gn pig is an applicable animal model for studying immune responses to rotavirus vaccines and can be used for studying interventions (i.e., probiotics and prebiotics that may enhance the immunogenicity and protective efficacy of vaccines through improving the gut microbiota.

  15. Dengue in Vietnamese infants--results of infection-enhancement assays correlate with age-related disease epidemiology, and cellular immune responses correlate with disease severity.

    Science.gov (United States)

    Chau, Tran Nguyen Bich; Quyen, Nguyen Than Ha; Thuy, Tran Thi; Tuan, Nguyen Minh; Hoang, Dang Minh; Dung, Nguyen Thi Phuong; Lien, Le Bich; Quy, Nguyen Thien; Hieu, Nguyen Trong; Hieu, Lu Thi Minh; Hien, Tran Tinh; Hung, Nguyen Thanh; Farrar, Jeremy; Simmons, Cameron P

    2008-08-15

    The pathogenesis of severe dengue is not well understood. Maternally derived subneutralizing levels of dengue virus-reactive IgG are postulated to be a critical risk factor for severe dengue during infancy. In this study, we found that, in healthy Vietnamese infants, there was a strong temporal association between the Fc-dependent, dengue virus infection-enhancing activity of neat plasma and the age-related epidemiology of severe dengue. We then postulated that disease severity in infants with primary infections would be associated with a robust immune response, possibly as a consequence of higher viral burdens in vivo. Accordingly, in infants hospitalized with acute dengue, the activation phenotype of peripheral-blood NK cells and CD8+ and CD4+ T cells correlated with overall disease severity, but HLA-A*1101-restricted NS3(133-142)-specific CD8+ T cells were not measurable until early convalescence. Plasma levels of cytokines/chemokines were generally higher in infants with dengue shock syndrome. Collectively, these data support a model of dengue pathogenesis in infants whereby antibody-dependent enhancement of infection explains the age-related case epidemiology and could account for antigen-driven immune activation and its association with disease severity. These results also highlight potential risks in the use of live attenuated dengue vaccines in infants in countries where dengue is endemic.

  16. Mexican Trypanosoma cruzi T. cruzi I strains with different degrees of virulence induce diverse humoral and cellular immune responses in a murine experimental infection model.

    Science.gov (United States)

    Espinoza, B; Rico, T; Sosa, S; Oaxaca, E; Vizcaino-Castillo, A; Caballero, M L; Martínez, I

    2010-01-01

    It is has been shown that the majority of T. cruzi strains isolated from Mexico belong to the T. cruzi I (TCI). The immune response produced in response to Mexican T. cruzi I strains has not been well characterized. In this study, two Mexican T. cruzi I strains were used to infect Balb/c mice. The Queretaro (TBAR/MX/0000/Queretaro)(Qro) strain resulted in 100% mortality. In contrast, no mortality was observed in mice infected with the Ninoa (MHOM/MX/1994/Ninoa) strain. Both strains produced extended lymphocyte infiltrates in cardiac tissue. Ninoa infection induced a diverse humoral response with a higher variety of immunoglobulin isotypes than were found in Qro-infected mice. Also, a stronger inflammatory TH1 response, represented by IL-12p40, IFNgamma, RANTES, MIG, MIP-1beta, and MCP-1 production was observed in Qro-infected mice when compared with Ninoa-infected mice. We propose that an exacerbated TH1 immune response is a likely cause of pathological damage observed in cardiac tissue and the primary cause of death in Qro-infected mice.

  17. Mexican Trypanosoma cruzi (TCI Strains with Different Degrees of Virulence Induce Diverse Humoral and Cellular Immune Responses in a Murine Experimental Infection Model

    Directory of Open Access Journals (Sweden)

    B. Espinoza

    2010-01-01

    Full Text Available It is has been shown that the majority of T. cruzi strains isolated from Mexico belong to the T. cruzi I (TCI. The immune response produced in response to Mexican T. cruzi I strains has not been well characterized. In this study, two Mexican T. cruzi I strains were used to infect Balb/c mice. The Queretaro (TBAR/MX/0000/Queretaro(Qro strain resulted in 100% mortality. In contrast, no mortality was observed in mice infected with the Ninoa (MHOM/MX/1994/Ninoa strain. Both strains produced extended lymphocyte infiltrates in cardiac tissue. Ninoa infection induced a diverse humoral response with a higher variety of immunoglobulin isotypes than were found in Qro-infected mice. Also, a stronger inflammatory TH1 response, represented by IL-12p40, IFNγ, RANTES, MIG, MIP-1β, and MCP-1 production was observed in Qro-infected mice when compared with Ninoa-infected mice. We propose that an exacerbated TH1 immune response is a likely cause of pathological damage observed in cardiac tissue and the primary cause of death in Qro-infected mice.

  18. Enhanced humoral and Type 1 cellular immune responses with Fluzone adjuvanted with a synthetic TLR4 agonist formulated in an emulsion.

    Science.gov (United States)

    Baldwin, Susan L; Shaverdian, Narek; Goto, Yasuyuki; Duthie, Malcolm S; Raman, Vanitha S; Evers, Tara; Mompoint, Farah; Vedvick, Thomas S; Bertholet, Sylvie; Coler, Rhea N; Reed, Steven G

    2009-10-09

    Impairments in anti-influenza T helper 1 (Th1) responses are associated with greater risk of influenza-related mortality in the elderly. Addition of adjuvants to existing influenza vaccines could improve immune responses in the elderly. In this study, the activity of three adjuvants, an oil-in-water emulsion and a synthetic lipid A adjuvant formulated with or without the emulsion, is compared. Our results show that Fluzone combined with lipid A plus an emulsion effectively leads to greater vaccine-specific IgG2a and IgG titers, enhances hemagglutination-inhibition titers and induces Type 1 cytokine responses (IFN-gamma and IL-2) to each of the Fluzone components.

  19. Induction of specific humoral and cellular immune responses in a mouse model following gene fusion of HSP70C and Hantaan virus Gn and S0.7 in an adenoviral vector.

    Directory of Open Access Journals (Sweden)

    Linfeng Cheng

    Full Text Available Heat shock proteins (HSPs display adjuvant functions when given as fusion proteins to enhance vaccination efficiency. To evaluate enhanced potency of Hantaan virus (HTNV glycoprotein (GP and nucleocapsid protein (NP immunogenicity by heat shock protein 70 (HSP70, a recombinant adenovirus rAd-GnS0.7-pCAG-HSP70C expression vector was developed by genetically linking the HSP70 C-terminal gene (HSP70 359-610 aa, HSP70C to the Gn and 0.7 kb fragment of the NP (aa1-274-S0.7. C57BL/6 mice were immunized with these recombinant adenoviral vectors. A series of immunological assays determined the immunogenicity of the recombinant adenoviral vectors. The results showed that rAd-GnS0.7-pCAG-HSP70C induced a stronger humoral and cellular immune response than other recombinant adenoviruses (rAd-GnS0.7-pCAG and rAd-GnS0.7 and the HFRS vaccine control. Animal protection experiments showed that rAd-GnS0.7-pCAG-HSP70C was effective at protecting C57BL/6 mice from HTNV infection. The results of the immunological experiments showed that HSP70C lead to enhanced vaccine potency, and suggested significant potential in the development of genetically engineered vaccines against HTNV.

  20. Humoral and In Vivo Cellular Immunity against the Raw Insect-Derived Recombinant Leishmania infantum Antigens KMPII, TRYP, LACK, and papLe22 in Dogs from an Endemic Area

    Science.gov (United States)

    Todolí, Felicitat; Solano-Gallego, Laia; de Juan, Rafael; Morell, Pere; del Carmen Núñez, Maria; Lasa, Rodrigo; Gómez-Sebastián, Silvia; Escribano, José M.; Alberola, Jordi; Rodríguez-Cortés, Alhelí

    2010-01-01

    Leishmania infantum causes visceral leishmaniasis, a severe zoonotic and systemic disease that is fatal if left untreated. Identification of the antigens involved in Leishmania-specific protective immune response is a research priority for the development of effective control measures. For this purpose, we evaluated, in 27 dogs from an enzootic zone, specific humoral and cellular immune response by delayed-type hypersensitivity (DTH) skin test both against total L. infantum antigen and the raw Trichoplusia ni insect-derived kinetoplastid membrane protein-11 (rKMPII), tryparedoxin peroxidase (rTRYP), Leishmania homologue of receptors for activated C kinase (rLACK), and 22-kDa potentially aggravating protein of Leishmania (rpapLe22) antigens from this parasite. rTRYP induced the highest number of positive DTH responses (55% of leishmanin skin test [LST]-positive dogs), showing that TRYP antigen is an important T cell immunogen, and it could be a promising vaccine candidate against this disease. When TRYP-DTH and KMPII-DTH tests were evaluated in parallel, 82% of LST-positive dogs were detected, suggesting that both antigens could be considered as components of a standardized DTH immunodiagnostic tool for dogs. PMID:21118936

  1. Increased cellular immune responses and CD4+ T-cell proliferation correlate with reduced plasma viral load in SIV challenged recombinant simian varicella virus - simian immunodeficiency virus (rSVV-SIV vaccinated rhesus macaques

    Directory of Open Access Journals (Sweden)

    Pahar Bapi

    2012-08-01

    Full Text Available Abstract Background An effective AIDS vaccine remains one of the highest priorities in HIV-research. Our recent study showed that vaccination of rhesus macaques with recombinant simian varicella virus (rSVV vector – simian immunodeficiency virus (SIV envelope and gag genes, induced neutralizing antibodies and cellular immune responses to SIV and also significantly reduced plasma viral loads following intravenous pathogenic challenge with SIVMAC251/CX1. Findings The purpose of this study was to define cellular immunological correlates of protection in rSVV-SIV vaccinated and SIV challenged animals. Immunofluorescent staining and multifunctional assessment of SIV-specific T-cell responses were evaluated in both Experimental and Control vaccinated animal groups. Significant increases in the proliferating CD4+ T-cell population and polyfunctional T-cell responses were observed in all Experimental-vaccinated animals compared with the Control-vaccinated animals. Conclusions Increased CD4+ T-cell proliferation was significantly and inversely correlated with plasma viral load. Increased SIV-specific polyfunctional cytokine responses and increased proliferation of CD4+ T-cell may be crucial to control plasma viral loads in vaccinated and SIVMAC251/CX1 challenged macaques.

  2. HIV-1 proteins in infected cells determine the presentation of viral peptides by HLA class I and class II molecules and the nature of the cellular and humoral antiviral immune responses--a review.

    Science.gov (United States)

    Becker, Y

    1994-07-01

    The goals of molecular virology and immunology during the second half of the 20th century have been to provide the conceptual approaches and the tools for the development of safe and efficient virus vaccines for the human population. The success of the vaccination approach to prevent virus epidemics was attributed to the ability of inactivated and live virus vaccines to induce a humoral immune response and to produce antiviral neutralizing antibodies in the vaccinees. The successful development of antiviral vaccines and their application to most of the human population led to a marked decrease in virus epidemics around the globe. Despite this remarkable achievement, the developing epidemics of HIV-caused AIDS (accompanied by activation of latent herpesviruses in AIDS patients), epidemics of Dengue fever, and infections with respiratory syncytial virus may indicate that conventional approaches to the development of virus vaccines that induce antiviral humoral responses may not suffice. This may indicate that virus vaccines that induce a cellular immune response, leading to the destruction of virus-infected cells by CD8+ cytotoxic T cells (CTLs), may be needed. Antiviral CD8+ CTLs are induced by viral peptides presented within the peptide binding grooves of HLA class I molecules present on the surface of infected cells. Studies in the last decade provided an insight into the presentation of viral peptides by HLA class I molecules to CD8+ T cells. These studies are here reviewed, together with a review of the molecular events of virus replication, to obtain an overview of how viral peptides associate with the HLA class I molecules. A similar review is provided on the molecular pathway by which viral proteins, used as subunit vaccines or inactivated virus particles, are taken up by endosomes in the endosome pathway and are processed by proteolytic enzymes into peptides that interact with HLA class II molecules during their transport to the plasma membrane of antigen

  3. Two types of T helper cells in mice: Differences in cellular immune functions and cytokine secretion - selective reduction of one type after total lymphoid irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Bass, H.Z.

    1989-01-01

    As observed from a large panel of mouse T helper clones, there are at least two subsets of CD4{sup +} T cells that both differ in function and demonstrate distinct patterns of cytokine secretion after antigen or mitogen stimulation. Th1 cells synthesize IL-2, INF-{gamma} and lymphotoxin. They produce a DTH reaction in the footpads of naive mice. In addition, Th1 cells are required for the generation of CTL, and they appear to augment IgG2a antibody production. In contrast, by secreting IL-4, IL-5, and IL-6, Th2 cells play an essential role in humoral immunity. TLI consists of high dose, fractionated irradiation delivered selectively to the major lymphoid tissues. Four to six weeks after TLI, the CD4{sup +} cells of the treated mice (counted as a percentage of the total spleen lymphocytes) recover to the similar levels as those in normal BALB/c mice. These CD4{sup +} cells can help normal syngeneic B cells to produce a vigorous antibody response to TNP-KLH in adoptive cell transfer experiments, but the same cells are inactive in the MLR, and they fail to transfer DTH in TNP-KLH primed syngeneic BALB/c mice.

  4. A trifunctional dextran-based nanovaccine targets and activates murine dendritic cells, and induces potent cellular and humoral immune responses in vivo.

    Directory of Open Access Journals (Sweden)

    Limei Shen

    Full Text Available Dendritic cells (DCs constitute an attractive target for specific delivery of nanovaccines for immunotherapeutic applications. Here we tested nano-sized dextran (DEX particles to serve as a DC-addressing nanocarrier platform. Non-functionalized DEX particles had no immunomodulatory effect on bone marrow (BM-derived murine DCs in vitro. However, when adsorbed with ovalbumine (OVA, DEX particles were efficiently engulfed by BM-DCs in a mannose receptor-dependent manner. A DEX-based nanovaccine containing OVA and lipopolysaccharide (LPS as a DC stimulus induced strong OVA peptide-specific CD4(+ and CD8(+ T cell proliferation both in vitro and upon systemic application in mice, as well as a robust OVA-specific humoral immune response (IgG1>IgG2a in vivo. Accordingly, this nanovaccine also raised both a more pronounced delayed-type hypersensitivity response and a stronger induction of cytotoxic CD8(+ T cells than obtained upon administration of OVA and LPS in soluble form. Therefore, DEX-based nanoparticles constitute a potent, versatile and easy to prepare nanovaccine platform for immunotherapeutic approaches.

  5. Cellular automata

    CERN Document Server

    Codd, E F

    1968-01-01

    Cellular Automata presents the fundamental principles of homogeneous cellular systems. This book discusses the possibility of biochemical computers with self-reproducing capability.Organized into eight chapters, this book begins with an overview of some theorems dealing with conditions under which universal computation and construction can be exhibited in cellular spaces. This text then presents a design for a machine embedded in a cellular space or a machine that can compute all computable functions and construct a replica of itself in any accessible and sufficiently large region of t

  6. Immunohistochemical study of the cellular immune response in human Pneumocystis carinii pneumonia Estudo imuno-histoquímico da resposta imune celular na pneumonia humana por Pneumocystis carinii

    Directory of Open Access Journals (Sweden)

    Leandro Mantovani de Castro

    2006-02-01

    Full Text Available OBJECTIVES: It has been experimentally demonstrated that host defense against Pneumocystis carinii depends on complex interactions within host immune response, mainly CD4 lymphocytes and alveolar macrophages. Since this is an important agent related to immunodeficiency, our purpose was to characterize the inflammatory immune response in lung from necropsy of AIDS patients. PROCEDURES: Twenty-five necropsies with diagnosis of Pneumocystis carinii pneumonia were selected for immunohistochemical investigation of CD4 and CD8 lymphocytes, macrophages (CD68+, NK cells (CD57+ and cells expressing TNF-alpha. The immunostained cells were quantified and statistically analyzed. RESULTS: All specimens presented a great number of cysts of Pneumocystis carinii in alveoli, as well as septal enlargement with inflammatory infiltrate constituted predominantly by lymphocytes and macrophages. CD4+ T cells were decreased in number, and CD8+ T cells, NK cells and macrophages predominated. Cells expressing TNF-alpha were frequently observed in septal inflammatory infiltrate. CONCLUSIONS: The immunosupression related to AIDS induces a reduction in the number of CD4+ T cells and influences high-level parasitism. The cell components that characterize the inflammatory infiltrate contribute to the severe lung injury of those patients.OBJETIVO: Trabalhos experimentais demonstram que as defesas do hospedeiro frente ao Pneumocystis carinii incluem interações complexas entre as células imunes, principalmente linfócitos TCD4+ e macrófagos alveolares. Sendo esse um agente importante associado às imunodeficiências, nosso objetivo foi caracterizar a resposta inflamatória em pulmão de necrópsias de pacientes com AIDS. MÉTODOS: Foram selecionadas 25 necrópsias com diagnóstico de pneumonia por Pneumocystis carinii para pesquisa imuno-histoquímica de linfócitos TCD4+, TCD8+, macrófagos CD68+, células NK CD57+ e células com expressão de TNF-alfa. As c

  7. Purif ied Protein Fraction of Garlic Extract Modulates Cellular Immune Response against Breast Transplanted Tumors in BALB/c Mice Model

    Directory of Open Access Journals (Sweden)

    Narges Zare Mehrjardi

    2013-01-01

    Full Text Available Objective: Garlic (Allium sativum has anti-inflammatory, anti-mutagenesis, and immunomodulatory properties that modulate anti-tumor immunity and inhibit tumor growth. In this study we have examined the effect of a protein fraction isolated from fresh garlic on anti-tumor response and intra-tumor lymphocyte infiltration.Materials and Methods: In this experimental study a protein fraction was purified from fresh garlic bulbs using ultra-filtration, followed by chromatofocusing, and SDS-PAGE analysis. Anti-tumor activity was assessed by intra-tumor injection of the protein fraction and garlic extract, itself, into groups of 5 mice each. The percentage of peripheral blood and intra-tumor CD4+ and CD8+ cells were assessed by flow cytometry. Unpaired student’s t test using the SPSS program was applied for all statistical analyses.Results: Garlic extract included different type of proteins with different molecular weight. One of protein’s fraction was immunomodeulator and was composed of three single polypeptides, with molecular masses of ~10-13 kDa and different isoelectric points (pI. These molecules augmented the delayed type hypersensitivity (DTH response compared to the control group. Intra-tumor injection of the fraction provoked a significant increase in the CD8+ subpopulation of T-lymphocytes, as well as a decrease in tumor size. The fraction increased peripheral blood CD8+ T-lymphocytes in treated animals.Conclusion: The data confirms that protein fractions purified from fresh garlic bulbs augment CD8+ T-cell infiltration into the tumor site, inhibiting tumor growth more efficiently than garlic extract. These fi ndings provide a basis for further investigations on the purified polypeptide as a useful candidate for immunomodulation and tumor treatment.

  8. Purif ied Protein Fraction of Garlic Extract Modulates Cellular Immune Response against Breast Transplanted Tumors in BALB/c Mice Model

    Science.gov (United States)

    Ebrahimi, Marzieh; Mohammad Hassan, Zuhair; Mostafaie, Ali; Zare Mehrjardi, Narges; Ghazanfari, Tooba

    2013-01-01

    Objective: Garlic (Allium sativum) has anti-inflammatory, anti-mutagenesis, and immunomodulatory properties that modulate anti-tumor immunity and inhibit tumor growth. In this study we have examined the effect of a protein fraction isolated from fresh garlic on anti-tumor response and intra-tumor lymphocyte infiltration. Materials and Methods: In this experimental study a protein fraction was purified from fresh garlic bulbs using ultra-filtration, followed by chromatofocusing, and SDS-PAGE analysis. Anti-tumor activity was assessed by intra-tumor injection of the protein fraction and garlic extract, itself, into groups of 5 mice each. The percentage of peripheral blood and intra-tumor CD4+ and CD8+ cells were assessed by flow cytometry. Unpaired student’s t test using the SPSS program was applied for all statistical analyses. Results: Garlic extract included different type of proteins with different molecular weight. One of protein’s fraction was immunomodeulator and was composed of three single polypeptides, with molecular masses of ~10-13 kDa and different isoelectric points (pI). These molecules augmented the delayed type hypersensitivity (DTH) response compared to the control group. Intra-tumor injection of the fraction provoked a significant increase in the CD8+ subpopulation of T-lymphocytes, as well as a decrease in tumor size. The fraction increased peripheral blood CD8+ T-lymphocytes in treated animals. Conclusion: The data confirms that protein fractions purified from fresh garlic bulbs augment CD8+ T-cell infiltration into the tumor site, inhibiting tumor growth more efficiently than garlic extract. These findings provide a basis for further investigations on the purified polypeptide as a useful candidate for immunomodulation and tumor treatment. PMID:23700562

  9. Medawar's legacy to cellular immunology and clinical transplantation: a commentary on Billingham, Brent and Medawar (1956) 'Quantitative studies on tissue transplantation immunity. III. Actively acquired tolerance'.

    Science.gov (United States)

    Simpson, Elizabeth

    2015-04-19

    'Quantitative studies on tissue transplantation immunity. III. Actively acquired tolerance', published in Philosophical Transactions B in 1956 by Peter Medawar and his colleagues, PhD graduate Leslie Brent and postdoctoral fellow Rupert Billingham, is a full description of the concept of acquired transplantation tolerance. Their 1953 Nature paper (Billingham RE et al. 1953 Nature 172, 603-606. (doi:10.1038/172603a0)) had provided initial evidence with experimental results from a small number of neonatal mice, with mention of similar findings in chicks. The Philosophical Transactions B 1956 paper is clothed with an astonishing amount of further experimental detail. It is written in Peter Medawar's landmark style: witty, perceptive and full of images that can be recalled even when details of the supporting information have faded. Those images are provided not just by a series of 20 colour plates showing skin graft recipient mice, rats, rabbits, chickens and duck, bearing fur or plumage of donor origin, but by his choice of metaphor, simile and analogy to express the questions being addressed and the interpretation of their results, along with those of relevant published data and his prescient ideas of what the results might portend. This work influenced both immunology researchers and clinicians and helped to lay the foundations for successful transplantation programmes. It led to the award of a Nobel prize in 1960 to Medawar, and subsequently to several scientists who advanced these areas. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society.

  10. Treatment of Leishmania (Leishmania) Amazonensis-Infected Mice with a Combination of a Palladacycle Complex and Heat-Killed Propionibacterium acnes Triggers Protective Cellular Immune Responses

    Science.gov (United States)

    Paladi, Carolina S.; da Silva, Danielle A. M.; Motta, Priscila D.; Garcia, Daniel M.; Teixeira, Daniela; Longo-Maugéri, Ieda M.; Katz, Simone; Barbiéri, Clara L.

    2017-01-01

    Palladacycle complex DPPE 1.2 was previously reported to inhibit the in vitro and in vivo infection by Leishmania (Leishmania) amazonensis. The aim of the present study was to compare the effect of DPPE 1.2, in association with heat-killed Propionibacterium acnes, on L. (L.) amazonensis infection in two mouse strains, BALB/c and C57BL/6, and to evaluate the immune responses of the treated animals. Foot lesions of L. (L.) amazonensis-infected mice were injected with DPPE 1.2 alone, or associated with P. acnes as an adjuvant. Analysis of T-cell populations in the treated mice and in untreated controls was performed by FACS. Detection of IFN-γ-secreting lymphocytes was carried out by an ELISPOT assay and active TGF-β was measured by means of a double-sandwich ELISA test. The treatment with DPPE 1.2 resulted in a significant reduction of foot lesion sizes and parasite burdens in both mouse strains, and the lowest parasite burden was found in mice treated with DPPE 1.2 plus P. acnes. Mice treated with DPPE 1.2 alone displayed a significant increase of TCD4+ and TCD8+ lymphocytes and IFN-γ secretion which were significantly higher in animals treated with DPPE 1.2 plus P. acnes. A significant reduction of active TGF-β was observed in mice treated with DPPE 1.2 alone or associated with P. acnes. Moreover, DPPE 1.2 associated to P. acnes was non-toxic to treated animals. The destruction of L. (L.) amazonensis by DPPE 1.2 was followed by host inflammatory responses which were exacerbated when the palladacycle complex was associated with P. acnes. PMID:28321209

  11. Development of a novel, guinea pig-specific IFN-γ ELISPOT assay and characterization of guinea pig cytomegalovirus GP83-specific cellular immune responses following immunization with a modified vaccinia virus Ankara (MVA)-vectored GP83 vaccine.

    Science.gov (United States)

    Gillis, Peter A; Hernandez-Alvarado, Nelmary; Gnanandarajah, Josephine S; Wussow, Felix; Diamond, Don J; Schleiss, Mark R

    2014-06-30

    The guinea pig (Cavia porcellus) provides a useful animal model for studying the pathogenesis of many infectious diseases, and for preclinical evaluation of vaccines. However, guinea pig models are limited by the lack of immunological reagents required for characterization and quantification of antigen-specific T cell responses. To address this deficiency, an enzyme-linked immunospot (ELISPOT) assay for guinea pig interferon (IFN)-γ was developed to measure antigen/epitope-specific T cell responses to guinea pig cytomegalovirus (GPCMV) vaccines. Using splenocytes harvested from animals vaccinated with a modified vaccinia virus Ankara (MVA) vector encoding the GPCMV GP83 (homolog of human CMV pp65 [gpUL83]) protein, we were able to enumerate and map antigen-specific responses, both in vaccinated as well as GPCMV-infected animals, using a panel of GP83-specific peptides. Several potential immunodominant GP83-specific peptides were identified, including one epitope, LGIVHFFDN, that was noted in all guinea pigs that had a detectable CD8+ response to GP83. Development of a guinea pig IFN-γ ELISPOT should be useful in characterization of additional T cell-specific responses to GPCMV, as well as other pathogens. This information in turn can help focus future experimental evaluation of immunization strategies, both for GPCMV as well as for other vaccine-preventable illnesses studied in the guinea pig model.

  12. Cellular Immune Responses to Live Attenuated Japanese Encephalitis (JE Vaccine SA14-14-2 in Adults in a JE/Dengue Co-Endemic Area.

    Directory of Open Access Journals (Sweden)

    Lance Turtle

    2017-01-01

    Full Text Available Japanese encephalitis (JE virus (JEV causes severe epidemic encephalitis across Asia, for which the live attenuated vaccine SA14-14-2 is being used increasingly. JEV is a flavivirus, and is closely related to dengue virus (DENV, which is co-endemic in many parts of Asia, with clinically relevant interactions. There is no information on the human T cell response to SA14-14-2, or whether responses to SA14-14-2 cross-react with DENV. We used live attenuated JE vaccine SA14-14-2 as a model for studying T cell responses to JEV infection in adults, and to determine whether these T cell responses are cross-reactive with DENV, and other flaviviruses.We conducted a single arm, open label clinical trial (registration: clinicaltrials.gov NCT01656200 to study T cell responses to SA14-14-2 in adults in South India, an area endemic for JE and dengue.Ten out of 16 (62.5% participants seroconverted to JEV SA14-14-2, and geometric mean neutralising antibody (NAb titre was 18.5. Proliferation responses were commonly present before vaccination in the absence of NAb, indicating a likely high degree of previous flavivirus exposure. Thirteen of 15 (87% participants made T cell interferon-gamma (IFNγ responses against JEV proteins. In four subjects tested, at least some T cell epitopes mapped cross-reacted with DENV and other flaviviruses.JEV SA14-14-2 was more immunogenic for T cell IFNγ than for NAb in adults in this JE/DENV co-endemic area. The proliferation positive, NAb negative combination may represent a new marker of long term immunity/exposure to JE. T cell responses can cross-react between JE vaccine and DENV in a co-endemic area, illustrating a need for greater knowledge on such responses to inform the development of next-generation vaccines effective against both diseases.clinicaltrials.gov (NCT01656200.

  13. Cellular Immune Responses to Live Attenuated Japanese Encephalitis (JE) Vaccine SA14-14-2 in Adults in a JE/Dengue Co-Endemic Area.

    Science.gov (United States)

    Turtle, Lance; Tatullo, Filippo; Bali, Tanushka; Ravi, Vasanthapuram; Soni, Mohammed; Chan, Sajesh; Chib, Savita; Venkataswamy, Manjunatha M; Fadnis, Prachi; Yaïch, Mansour; Fernandez, Stefan; Klenerman, Paul; Satchidanandam, Vijaya; Solomon, Tom

    2017-01-01

    Japanese encephalitis (JE) virus (JEV) causes severe epidemic encephalitis across Asia, for which the live attenuated vaccine SA14-14-2 is being used increasingly. JEV is a flavivirus, and is closely related to dengue virus (DENV), which is co-endemic in many parts of Asia, with clinically relevant interactions. There is no information on the human T cell response to SA14-14-2, or whether responses to SA14-14-2 cross-react with DENV. We used live attenuated JE vaccine SA14-14-2 as a model for studying T cell responses to JEV infection in adults, and to determine whether these T cell responses are cross-reactive with DENV, and other flaviviruses. We conducted a single arm, open label clinical trial (registration: clinicaltrials.gov NCT01656200) to study T cell responses to SA14-14-2 in adults in South India, an area endemic for JE and dengue. Ten out of 16 (62.5%) participants seroconverted to JEV SA14-14-2, and geometric mean neutralising antibody (NAb) titre was 18.5. Proliferation responses were commonly present before vaccination in the absence of NAb, indicating a likely high degree of previous flavivirus exposure. Thirteen of 15 (87%) participants made T cell interferon-gamma (IFNγ) responses against JEV proteins. In four subjects tested, at least some T cell epitopes mapped cross-reacted with DENV and other flaviviruses. JEV SA14-14-2 was more immunogenic for T cell IFNγ than for NAb in adults in this JE/DENV co-endemic area. The proliferation positive, NAb negative combination may represent a new marker of long term immunity/exposure to JE. T cell responses can cross-react between JE vaccine and DENV in a co-endemic area, illustrating a need for greater knowledge on such responses to inform the development of next-generation vaccines effective against both diseases. clinicaltrials.gov (NCT01656200).

  14. Cellular Immune Responses to Live Attenuated Japanese Encephalitis (JE) Vaccine SA14-14-2 in Adults in a JE/Dengue Co-Endemic Area

    Science.gov (United States)

    Tatullo, Filippo; Bali, Tanushka; Ravi, Vasanthapuram; Soni, Mohammed; Chan, Sajesh; Chib, Savita; Venkataswamy, Manjunatha M.; Fadnis, Prachi; Yaïch, Mansour; Fernandez, Stefan; Klenerman, Paul; Satchidanandam, Vijaya; Solomon, Tom

    2017-01-01

    Background Japanese encephalitis (JE) virus (JEV) causes severe epidemic encephalitis across Asia, for which the live attenuated vaccine SA14-14-2 is being used increasingly. JEV is a flavivirus, and is closely related to dengue virus (DENV), which is co-endemic in many parts of Asia, with clinically relevant interactions. There is no information on the human T cell response to SA14-14-2, or whether responses to SA14-14-2 cross-react with DENV. We used live attenuated JE vaccine SA14-14-2 as a model for studying T cell responses to JEV infection in adults, and to determine whether these T cell responses are cross-reactive with DENV, and other flaviviruses. Methods We conducted a single arm, open label clinical trial (registration: clinicaltrials.gov NCT01656200) to study T cell responses to SA14-14-2 in adults in South India, an area endemic for JE and dengue. Results Ten out of 16 (62.5%) participants seroconverted to JEV SA14-14-2, and geometric mean neutralising antibody (NAb) titre was 18.5. Proliferation responses were commonly present before vaccination in the absence of NAb, indicating a likely high degree of previous flavivirus exposure. Thirteen of 15 (87%) participants made T cell interferon-gamma (IFNγ) responses against JEV proteins. In four subjects tested, at least some T cell epitopes mapped cross-reacted with DENV and other flaviviruses. Conclusions JEV SA14-14-2 was more immunogenic for T cell IFNγ than for NAb in adults in this JE/DENV co-endemic area. The proliferation positive, NAb negative combination may represent a new marker of long term immunity/exposure to JE. T cell responses can cross-react between JE vaccine and DENV in a co-endemic area, illustrating a need for greater knowledge on such responses to inform the development of next-generation vaccines effective against both diseases. Trial Registration clinicaltrials.gov (NCT01656200) PMID:28135273

  15. 幽门螺杆菌感染的消化性溃疡患儿细胞因子的检测%Study on cellular immunity in childhood peptic ulcer disease correlated with helicobacter pylori

    Institute of Scientific and Technical Information of China (English)

    刘文彬; 赵文利; 袁丽; 刘华君

    2012-01-01

    目的 检测76例幽门螺杆菌(HP)感染相关的消化性溃疡外周血白细胞介素2(IL-2)、可溶性白细胞介素2受体(sIL-2R)、白细胞介素6和8(IL-6和IL-8)和T淋巴细胞亚群,探讨其免疫学发病机制.方法 IL-2、sIL-2R、IL-6、IL-8分别采用ELISA、双抗体夹心ELISA.结果 IL-2水平均显著低于对照组,P均<0.01,而CD8+细胞百分率、sIL-2R、IL-6、IL-8水平均显著高于对照组,P均<0.01.结论 HP感染相关的消化性溃疡患儿细胞免疫功能低下且紊乱,该患儿机体的免疫功能障碍在该病的发生中起一定作用.%Objective To examine interleukin-8.6.2(IL-8.6.2) ,serum soluble IL-2 receptor(slL-2R)levels in peripheral blood of 76 childhood peptic ulcer disease correlated with helicobacter pylori(HP)and analyse Its immnological palhogenisis. Methods IL-8,IL-6,IL-2 and sIL-2R were assayed by double antibody sandwich ELISA,ELISA Methods. Results The IL-2 level in the patients were significantly lower(P <0. 01) , respectively, while slL-2R ,IL-6 and IL-8 levels were higher than those in normal controls( P <0. 01). Conclusion Cellular immunity function is low and disorder in childhood peptic ulcer disease correlated with HP and this disorders in cellular immunity function have some effect in its palhogenisis.

  16. 轮状病毒肠道内外感染患儿细胞免疫功能检测与分析%Analysis of cellular immunity in children with intestinal and extraintestinal rotavirus infection

    Institute of Scientific and Technical Information of China (English)

    薛黎明; 卞新南; 薛雪

    2011-01-01

    目的 探讨轮状病毒肠炎患儿肠道内、外感染时细胞免疫功能的变化.方法 对2009年10月~2010年3月40例因轮状病毒肠道内、外感染住院的患儿,采用流式细胞仪检测外周血淋巴细胞亚群,并与20例正常婴幼儿进行比较.结果 轮状病毒肠炎并发肠道外感染组患儿外周血CD4+、CD4+CD25+T淋巴细胞及CD4+/CD8+比值均增高,而NK细胞下降;轮状病毒肠炎肠道内感染组患儿外周血仅NK细胞下降.轮状病毒肠炎并发肠道外感染组患儿CD3+、CD4+、CD4+CD25+T淋巴细胞、CD19+B淋巴细胞比肠道内感染组组患儿高.结论 轮状病毒肠炎并发肠道外感染组患儿细胞免疫功能明显紊乱,而肠道内感染组未见明显异常.免疫功能紊乱可能与轮状病毒肠道外播散存在一定关系.%Objective To investigate the change of cellular immunity in children with rotavirus enteritis with intestinal and extraintestinal manifestions. Methods The patients with rotavirus enteritis were enrolled between Oct. 2009 and March 2010 for identification T lymphocyte subsets, the total B lymphocytes and the NK cells using flow cytometry. Results CD4+ 、CD4+ CD25 + T lymphocytes and the ratio of CD4 +/CD8 + increased, and the NK cells decreased in children with rotavirus enteritis and extraintestinal manifestions as compared with the controls. In group of rotavirus enteritis and intestinal manifestions, only the NK cells decreased. Compared to the children with rotavirus enteritis and intestinal manifestions, CD3 + , CD4 + , CD4 + CD25 + T lymphocytes CD19+ B lymphocytes were higher in children with rotavirus enteritis and extraintestinal manifestions. Conclusion Cellular immunity in children with rotavirus enteritis and extraintestinal manifestions were obvious disturbance which might be relative to the extraintestinal spreading of rotavirus.

  17. A novel chimeric Hepatitis B virus S/preS1 antigen produced in mammalian and plant cells elicits stronger humoral and cellular immune response than the standard vaccine-constituent, S protein.

    Science.gov (United States)

    Dobrica, Mihaela-Olivia; Lazar, Catalin; Paruch, Lisa; Skomedal, Hanne; Steen, Hege; Haugslien, Sissel; Tucureanu, Catalin; Caras, Iuliana; Onu, Adrian; Ciulean, Sonya; Branzan, Alexandru; Clarke, Jihong Liu; Stavaru, Crina; Branza-Nichita, Norica

    2017-08-01

    Chronic Hepatitis B Virus (HBV) infection leads to severe liver pathogenesis associated with significant morbidity and mortality. As no curable medication is yet available, vaccination remains the most cost-effective approach to limit HBV spreading and control the infection. Although safe and efficient, the standard vaccine based on production of the small (S) envelope protein in yeast fails to elicit an effective immune response in about 10% of vaccinated individuals, which are at risk of infection. One strategy to address this issue is the development of more immunogenic antigens. Here we describe a novel HBV antigen obtained by combining relevant immunogenic determinants of S and large (L) envelope proteins. Our approach was based on the insertion of residues 21-47 of the preS1 domain of the L protein (nomenclature according to genotype D), involved in virus attachment to hepatocytes, within the external antigenic loop of S. The resulting S/preS1(21-47) chimera was successfully produced in HEK293T and Nicotiana benthamiana plants, as a more economical recombinant protein production platform. Comparative biochemical, functional and electron microscopy analysis indicated assembly of the novel antigen into subviral particles in mammalian and plant cells. Importantly, these particles preserve both S- and preS1-specific epitopes and elicit significantly stronger humoral and cellular immune responses than the S protein, in both expression systems used. Our data promote this antigen as a promising vaccine candidate to overcome poor responsiveness to the conventional, S protein-based, HBV vaccine. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. 芪杞参颗粒对小鼠的细胞免疫和体液免疫功能的影响%The Influence of Qiqishen Granules on the Cellular and Humoral Immune Function

    Institute of Scientific and Technical Information of China (English)

    李宏; 戴学文; 房志仲; 高卫真

    2013-01-01

      目的研究芪杞参颗粒对小鼠的细胞免疫和体液免疫功能的影响。方法6周龄昆明种小鼠分空白对照组、芪杞参颗粒高、中、低剂量组,小鼠腹腔注射鸡红细胞混悬液,观察芪杞参颗粒对小鼠腹腔巨噬细胞吞噬功能的影响;制备绵羊红细胞(SRBC),观察血球凝集程度,测定血清溶血素;以靶细胞(YAC-1细胞)与脾细胞(效应细胞)的反应检测芪杞参颗粒对小鼠自然杀伤(NK)细胞活性的影响;采用淋巴细胞转化法观察芪杞参颗粒对细胞免疫的影响;计算小鼠胸腺质量/体质量及脾脏质量/体质量为脏器系数观察芪杞参颗粒对小鼠脏器的影响。结果与对照组比较,芪杞参颗粒显著增加小鼠腹腔巨噬细胞吞噬功能;对小鼠体液免疫功能有一定的增强作用;可增强小鼠NK细胞活性;对刀豆蛋白(Con)A诱导下的小鼠淋巴细胞转化有增强作用;对脏器系数没有显著的影响。结论芪杞参颗粒具有明显的免疫调节作用,预示其有良好的应用前景。%Objective To study the influence of qiqishen granules on the cellular and humoral immune functions in model mice. Methods Six-week-old mice were divided into control group and qiqishen granule (high, medium and low dose) groups. The suspension of chicken red blood cells was injected into the mouse abdominal cavity. The influence of qiq-ishen granules on the phagocytic function of the macrophages in mouse abdominal cavity was observed. The sheep red blood cells (SRBC) were prepared. The blood corpuscle coagulation was observed, and the serum hemolysin was detected. The ac-tivity of the mouse natural killer (NK) cells were detected by the interaction between the target cell (YAC-1) and spleen cell (the response cell). The influence of qiqishen granules on the cellular immunity was detected by the lymphocyte transforming assay. The influence of qiqishen granules on organ/body weight ratio

  19. Induction of Plasmodium falciparum-specific CD4+ T cells and memory B cells in Gabonese children vaccinated with RTS,S/AS01(E and RTS,S/AS02(D.

    Directory of Open Access Journals (Sweden)

    Selidji T Agnandji

    Full Text Available UNLABELLED: The recombinant circumsporozoite protein (CS based vaccine, RTS,S, confers protection against Plasmodium falciparum infection in controlled challenge trials and in field studies. The RTS,S recombinant antigen has been formulated with two adjuvant systems, AS01 and AS02, which have both been shown to induce strong specific antibody responses and CD4 T cell responses in adults. As infants and young children are particularly susceptible to malaria infection and constitute the main target population for a malaria vaccine, we have evaluated the induction of adaptive immune responses in young children living in malaria endemic regions following vaccination with RTS,S/AS01(E and RTS,S/AS02(D. Our data show that a CS-specific memory B cell response is induced one month after the second and third vaccine dose and that CS-specific antibodies and memory B cells persist up to 12 months after the last vaccine injection. Both formulations also induced low but significant amounts of CS-specific IL-2(+ CD4(+ T cells one month after the second and third vaccine dose, upon short-term in vitro stimulation of whole blood cells with peptides covering the entire CS derived sequence in RTS,S. These results provide evidence that both RTS,S/AS01(E and RTS,S/AS02(D induced adaptive immune responses including antibodies, circulating memory B cells and CD4(+ T cells directed against P. falciparum CS protein. TRIAL REGISTRATION: ClinicalTrials.gov NCT00307021.

  20. Induction of Plasmodium falciparum-Specific CD4+ T Cells and Memory B Cells in Gabonese Children Vaccinated with RTS,S/AS01E and RTS,S/AS02D

    Science.gov (United States)

    Agnandji, Selidji T.; Fendel, Rolf; Mestré, Michaël; Janssens, Michel; Vekemans, Johan; Held, Jana; Gnansounou, Ferdinand; Haertle, Sonja; von Glasenapp, Isabel; Oyakhirome, Sunny; Mewono, Ludovic; Moris, Philippe; Lievens, Marc; Demoitie, Marie-Ange; Dubois, Patrice M.; Villafana, Tonya; Jongert, Erik; Olivier, Aurelie; Cohen, Joe; Esen, Meral; Kremsner, Peter G.; Lell, Bertrand; Mordmüller, Benjamin

    2011-01-01

    The recombinant circumsporozoite protein (CS) based vaccine, RTS,S, confers protection against Plasmodium falciparum infection in controlled challenge trials and in field studies. The RTS,S recombinant antigen has been formulated with two adjuvant systems, AS01 and AS02, which have both been shown to induce strong specific antibody responses and CD4 T cell responses in adults. As infants and young children are particularly susceptible to malaria infection and constitute the main target population for a malaria vaccine, we have evaluated the induction of adaptive immune responses in young children living in malaria endemic regions following vaccination with RTS,S/AS01E and RTS,S/AS02D. Our data show that a CS-specific memory B cell response is induced one month after the second and third vaccine dose and that CS-specific antibodies and memory B cells persist up to 12 months after the last vaccine injection. Both formulations also induced low but significant amounts of CS-specific IL-2+ CD4+ T cells one month after the second and third vaccine dose, upon short-term in vitro stimulation of whole blood cells with peptides covering the entire CS derived sequence in RTS,S. These results provide evidence that both RTS,S/AS01E and RTS,S/AS02D induced adaptive immune responses including antibodies, circulating memory B cells and CD4+ T cells directed against P. falciparum CS protein. Trial Registration ClinicalTrials.gov NCT00307021 PMID:21494604

  1. The changes of cellular and humoral immunity of mature yellow catfish, Pseudobagrus fulvidraco Richardson, immunized with formalin-killed Aeromonas sobria%注射菌苗的生殖期黄颡鱼亲鱼的外周血细胞和体液免疫变化

    Institute of Scientific and Technical Information of China (English)

    冯汉茹; 张其中; 罗芬; 朱成科; 鉏超

    2009-01-01

    serum antibody titer gradually increased from day 1 to day 14 and reached the highest value at 14 d, then, slowly decreased from day 14 to day 35, and maintained a higher level between day 14 and day 21 in comparison with the values at other sampling times (Tab. 3). From what has been stated above, the immunized mature yellow catfish were enhanced in their resistant ability against bacterial pathogens by means of increment of non-specific cellular immunity, such as monocyte and neutrophil, during the early period (from day 1 to day 7) post single dose immunization, and of specific cellular and humoral immunity, such as lymphocytes and antibody, from day 7 to day 35 after the immunization. And the higher antibody titer level could last for a week from day 14 to day 21 post the immunization. Therefore, it is suggested that the mature fish should be immunized with single-dose vaccine at day 10 -14 before breeding to enhance the resistant ability of spawn yellow catfish against pathogens, and further to reduce mortality rate of the spawned yellow catfish and their fry caused by infective diseases.%阐明生殖期亲鱼在注射灭活菌苗后的血细胞和体液免疫变化规律,是预防亲鱼产后虚弱患病和仔鱼染病死亡的理论基础.本研究在试验组和对照组黄颡鱼胸鳍基部分别注射0.2mL浓度为1.0×10~8CFU/mL福尔马林灭活温和气单胞菌苗(F-AS)和0.65%灭菌生理盐水,在免疫后第1、2、4、7、14、21、28、35天,从尾静脉采血,测定外周血液血细胞数量及组成比例,血细胞吞噬活性和抗体效价.结果显示:注射菌苗后白细胞数量和淋巴细胞的白细胞分类计数逐渐增加,显著高于对照;中性粒细胞、单核细胞的白细胞分类计数以及吞噬百分比(PP)、吞噬指数(PI)在4~7 d显著高于对照;抗体效价逐渐升高且在第14天达到最高,随后逐渐下降;而红细胞数和血栓细胞的白细胞分类计数逐渐下降,显著低于对照组.结果表明:

  2. Cellular Telephone

    Institute of Scientific and Technical Information of China (English)

    杨周

    1996-01-01

    Cellular phones, used in automobiles, airliners, and passenger trains, are basically low-power radiotelephones. Calls go through radio transmitters that are located within small geographical units called cells. Because each cell’s signals are too weak to interfere with those of other cells operating on the same fre-

  3. 石榴皮乙醇提取物对小鼠细胞免疫功能的影响%Effects of ethanol extraction from pomegranate peel on cellular immune function in mice

    Institute of Scientific and Technical Information of China (English)

    吕琴

    2013-01-01

    Objective: To investigate effcts of pomegranate rind ethanol extract on the function of immune cells. Methods:Established immunosuppressed animal models by intraperitoneal injection of cyclophosphamide, the application of pomegranate peel ethanol extract, pomegranate rind total flavonoids extract on mice immunosuppressive treatment to observe the two extracts murine macrophage phagocytosis, spleen lymphocyte transformation function. Results:Middle-dose group and high-dose group and pomegranate rind of pomegranate peel ethanol extract of total flavonoids extracted group can enhance the phagocytic function of mouse peritoneal macrophages, the high-dose group can enhance mouse spleen lymphocyte transformation function (P<0.01). Conclusion:Pomegranate peel ethanol extract on cellular immune function of immunosuppressed mice has improved to some extent.%  目的:探讨石榴皮乙醇提取物对小鼠细胞免疫功能的影响。方法:通过腹腔注射环磷酰胺建立免疫抑制动物模型,应用石榴皮乙醇提取物、石榴皮总黄酮提取物对免疫抑制的小鼠进行治疗,观察两种提取物对小鼠巨噬细胞吞噬功能、脾淋巴细胞转化功能的影响。结果:石榴皮乙醇提取物中剂量组和高剂量组及石榴皮总黄酮提取物组能增强小鼠腹腔巨噬细胞的吞噬功能,高剂量组能够增强小鼠脾淋巴细胞转化功能(P<0.01)。结论:石榴皮乙醇提取物对免疫抑制小鼠的细胞免疫功能具有一定的提高作用。

  4. 肺心病急性加重期 HPAA 与细胞免疫变化的关系%Relationship between HPAA and cellular immunity in acute exacerbation of chronic cor pulmonale

    Institute of Scientific and Technical Information of China (English)

    李艳华; 张聪敏; 石玉珍; 李宝山

    2001-01-01

    To evaluate the relationship between the levels of hormones of the hypothalamic-pituitary-adrenal axis and the change of the cellular immunity in the patients with cor pulmonal during acute exacerbation. The 36 patients with cor pulmonal were examined.The plasma levels of adrenocorticotrophic hormone (ACTH). β-endorphin (β-EP ) and glucocorticoids ( GC ) and the counts of CD+3、CD+4、CD+8 cells and the CD4CD8 ratio in peripheral blood were analysed during acute exacerbation and stable stage. Result showed that in cases during acute exacerbation stage the levels of ACTH. β-EP and GC increased markedly and the counts of CD+3、CD4+、CD+8 cells and the CD4CD8 ratio decreased remarkable (P<0.01). Linear correlation analyses showed that ACTH, β-EP and GC were inversely correlated with CD+3、CD+4 cells counts and the CD4CD8 ratio respectively during acute exacerbation (P<0.01),The study indicated the presence of disorder of neuro-endocrino-immuno-modulation in the cor pulmonale during acute exacerbation . The significantly increased levels of ACTH, β-EP and GC inhibit cellular immunity .%为了探讨肺心病急性加重期患者下丘脑-垂体-肾上腺皮质轴(HPAA)激素水平与细胞免疫变化的关系,本研究同步检测了36例肺心病患者急性加重期及缓解期血浆促肾上腺激素(ACTH)、β-内啡肽(β-EP)、糖皮质激素(GC)及外周血 T 淋巴细胞亚群的变化,并分析它们之间的相互关系。 结果显示肺心病急性加重期ACTH、β-EP、GC均显著升高,CD3、CD4、CD8及CD4/CD8比值显著下降(P<0.01),相关分析显示ACTH、β-EP、GC分别与CD3、CD4、CD4/CD8呈显著负相关。本研究提示肺心病急性加重期机体内发生了神经内分泌免疫调节紊乱,显著升高的ACTH、β-EP、GC对细胞免疫产生抑制作用。

  5. Detection of cellular immunity in childhood peptic ulcer disease correlated with helicobacter pylori%幽门螺杆菌感染的消化性溃疡患儿细胞因子的检测

    Institute of Scientific and Technical Information of China (English)

    李亚伶; 刘文彬; 文晓芹

    2012-01-01

    Objective To examine cytokines in the immunological pathogenesis of peptic ulcer disease correlated with helicobacter pylori (HP). Methods 76 cases of Helicobacter pylori (HP) infection in children with peptic ulcer disease as a case group and the earlier detection of 50 healthy children as control group. The peripheral blood interleukin 2 (IL-2) , soluble interleukin2 receptor (sIL-2R), interleukin Sand 8(IL-6and IL-8) and T lymphocyte subsets were detected with double antibody sandwich ELISA or ELISA. Results IL-2 levels of the patients were significantly lower than that in control group (P<0. 01), and the percentage of CD8+ cells, sIL-2R, IL-6, IL-8 levels of the patients were significantly higher than tahat in control group (P<0. 01). Conclusion Cellular immunity function is low and disorder in childhood peptic ulcer disease correlated with HP and this disorders in cellular immunity function have some effect in Its pathogenesis.%目的 探讨幽门螺杆菌(HP)感染相关的消化性溃疡细胞因子的免疫学发病机制.方法 将76例幽门螺杆菌(HP)感染相关的消化性溃疡患儿作为病例组,同期检测50例健康小儿作为对照组,通过ELISA、双抗体夹心ELISA的方法,检测76例幽门螺杆菌(HP)感染相关的消化性溃疡患儿外周血白细胞介素2(IL-2)、可溶性白细胞介素2受体(sIL-2R)、白细胞介素6和8(IL-6、IL-8)及T淋巴细胞亚群的含量,以评价幽门螺杆菌(HP)感染与消化性溃疡患儿细胞因子的关系.结果 病例组IL-2水平显著低于对照组(均P<0.01),而CD8+细胞百分率、sIL-2R、IL-6、IL-8水平显著高于对照组(均P<0.01).结论 HP感染相关的消化性溃疡患儿细胞免疫功能低下且紊乱,该患儿机体的免疫功能障碍在该病的发生中起一定作用.

  6. Effects of mild perioperative hypothermia on cellular immune function in patients undergoing surgery for rectal cancer%轻度低温对直肠癌根治术患者细胞免疫功能的影响

    Institute of Scientific and Technical Information of China (English)

    赵敏; 赵光瑜; 戴春宇; 张毅

    2012-01-01

    Objective To investigate the effects of mild pefioperative hypothermia on cellular immune function in patients undergoing surgery for rectal cancer.Methods Fifty ASA Ⅰ or Ⅱ patients aged 30-64 yr undergoing surgery for rectal cancer were randomly divided into 2 groups ( n =25 each):mild hypothermia group and normal body temperature group.Anesthesia was induced with midazolam,fentanyl,etomidate and vecuronium and maintained with propofol,remifentanil and vecuronium.The patients were mechanically ventilated after tracheal intubation.PET CO2 was maintained at 35-45 mm Hg.The venous blood samples were taken from peripheral vein at 1 h before anesthesia (T1 ),at the end of operation (T2),at 24 h after operation (T3),and on 7th day after operation (T4) to measure the serum Th1 and Th2 cytokines levels and Th1/Th2 cytokines balance was observed.Results Compared with the baseline value at T1,the serum Th2 cytokines level was significantly decreased and Th1/Th2 ratio was significantly increased at T4 in normal body temperature group,and the serum Th1 cytokines level and Th1/Th2 ratio were significantly decreased and the serum Th2 cytokines level was significantly increased at T2.3 in mild hypothermia group ( P < 0.05).Compared with normal body temperature group,the serum Th1 cytokines level and Th1/Th2 ratio were significantly decreased and the serum Th2 cytokines level was significantly increased at T2-4 in mild hypothermia group ( P < 0.05).Conclusion Mild perioperative hypothermia can depress cellular immune function in patients undergoing surgery for rectal cancer.%目的 评价轻度低温对直肠癌根治术患者细胞免疫功能的影响.方法 择期拟行直肠癌根治术患者50例,ASA分级Ⅰ或Ⅱ级,年龄30~64岁,采用随机数字表法,将其随机分为轻度低温组和常温组,每组25例.分别于麻醉前1 h(T1)、手术结束时(T2)、术后24 h(T3)及术后第7天(T4)采用流式细胞仪测定血清Th1型、Th2

  7. Modulation of the humoral and cellular immune response in Abeta immunotherapy by the adjuvants monophosphoryl lipid A (MPL), cholera toxin B subunit (CTB) and E. coli enterotoxin LT(R192G).

    Science.gov (United States)

    Maier, Marcel; Seabrook, Timothy J; Lemere, Cynthia A

    2005-10-25

    Abeta vaccination or passive transfer of human-specific anti-Abeta antibodies are approaches under investigation to prevent and/or treat Alzheimer's disease (AD). Successful active Abeta vaccination requires a strong and safe adjuvant to induce anti-Abeta antibody formation. We compared the adjuvants monophosphoryl lipid A (MPL)/trehalose dicorynomycolate (TDM), cholera toxin B subunit (CTB) and Escherichia coli heat-labile enterotoxin LT(R192G) for their ability to induce a humoral and cellular immune reaction, using fibrillar Abeta1-40/42 as a common immunogen in wildtype B6D2F1 mice. Subcutaneous (s.c.) administration with MPL/TDM resulted in anti-Abeta antibodies levels up to four times higher compared to s.c. LT(R192G). Using MPL/TDM, the anti-Abeta antibodies induced were mainly IgG2b, IgG1 and lower levels of IgG2a and IgM, with a moderate splenocyte proliferation and IFN-gamma production in vitro upon stimulation with Abeta1-40/42. LT(R192G), previously shown by us to induce robust titers of anti-Abeta antibodies, generated predominantly IgG2b and IgG1 anti-Abeta antibodies with very low splenocyte proliferation and IFN-gamma production. Weekly intranasal (i.n.) administration over 11 weeks of Abeta40/42 with CTB induced only moderate levels of antibodies. All immunogens generated antibodies that recognized mainly the Abeta1-7 epitope and specifically detected amyloid plaques on AD brain sections. In conclusion, MPL/TDM, in addition to LT(R192G), is an effective adjuvant when combined with Abeta40/42 and may aid in the design of Abeta immunotherapy.

  8. 不同免疫状态对肉仔鸡血液生化指标和细胞免疫应答的影响%Effects of Different Immune Status on Blood Biochemical Parameters and Cellular Immune Response in Broiler Chickens

    Institute of Scientific and Technical Information of China (English)

    冯焱; 杨小军; 王筱霏; 覃定奎; 尹瑞卿; 姚军虎

    2011-01-01

    [目的]研究不同免疫状态对肉仔鸡血液生化指标和细胞免疫应答的影响.[方法]选用健康情况良好1日龄AA肉公鸡180只,随机分为4组,每组5个重复,每重复9只.设定不同免疫应激模型,为无免疫组即对照组(no vaccine,NV),常规免疫组(conventional vaccine,CV),以及在常规免疫基础上注射细菌脂多糖的免疫亢进组(LPS)和环磷酰胺的免疫抑制组(CYP).采用CD3/CD4/CD8三色流式细胞术、MTT法检测肉鸡免疫状态和非免疫状态下外周血中T淋巴细胞及其亚群的变化.[结果]与NV组相比,肉仔鸡的体增重和采食量均显著降低LPS组和CYP组(P<0.05),各处理料重比无显著差异(P>0.05),NV组与CV组生产性能指标无显著差异(P> 0.05),各日龄处理间血清TP、GLU和CHL)含量均无显著差异(P>0.05).第21和35天,LPS组和CYP组血清ALB含量显著低于CV组和NV组(P<0.05);第21天,LPS组血清α-AGP和BUN含量显著低于NV组(P<0.05),CPY和LPS均抑制T、B淋巴细胞增殖,LPS组CD4+/CD8+T细胞百分比显著低于NV组(P<0.05).[结论]未进行免疫肉鸡可维持机体正常的生长性能和细胞免疫稳态,LPS和CYP的刺激可降低肉鸡采食量和体增重;随日龄增加肉鸡对CYP刺激的耐受性有所上升,LPS刺激可增强肉鸡细胞免疫应答反应.%[Objective] This experiment was conducted to determine the effects of different immune statuses on blood biochemical parameters and cellular immune response of broiler chickens. [Method] One hundred and eighty 1 -day-old AA broilers were allocated into four groups. Each treatment had 5 replicate cages of 9 broilers per replicate pen. This study will set different immune stress models, including the control group (no vaccines, NV), conventional vaccines group (CV), immune hyperthyroidism group (LPS) and immune suppression group (CYP). The T lymphocytes and subgroups were isolated from periphery blood from immunized and unvaccinated birds and were

  9. Sistema imunitário: Parte I. Fundamentos da imunidade inata com ênfase nos mecanismos moleculares e celulares da resposta inflamatória Immune system: Part I. Fundamentals of innate immunity with emphasis on molecular and cellular mechanisms of inflammatory response

    Directory of Open Access Journals (Sweden)

    Wilson de Melo Cruvinel

    2010-08-01

    Full Text Available O sistema imunológico é constituído por uma intrincada rede de órgãos, células e moléculas, e tem por finalidade manter a homeostase do organismo, combatendo as agressões em geral. A imunidade inata atua em conjunto com a imunidade adaptativa e caracteriza-se pela rápida resposta à agressão, independentemente de estímulo prévio, sendo a primeira linha de defesa do organismo. Seus mecanismos compreendem barreiras físicas, químicas e biológicas, componentes celulares e moléculas solúveis. A primeira defesa do organismo frente a um dano tecidual envolve diversas etapas intimamente integradas e constituídas pelos diferentes componentes desse sistema. A presente revisão tem como objetivo resgatar os fundamentos dessa resposta, que apresenta elevada complexidade e é constituída por diversos componentes articulados que convergem para a elaboração da resposta imune adaptativa. Destacamos algumas etapas: reconhecimento molecular dos agentes agressores; ativação de vias bioquímicas intracelulares que resultam em modificações vasculares e teciduais; produção de uma miríade de mediadores com efeitos locais e sistêmicos no âmbito da ativação e proliferação celulares, síntese de novos produtos envolvidos na quimioatração e migração de células especializadas na destruição e remoção do agente agressor, e finalmente a recuperação tecidual com o restabelecimento funcional do tecido ou órgão.The immune system consists of an intricate network of organs, cells, and molecules responsible for maintaining the body's homeostasis and responding to aggression in general. Innate immunity operates in conjunction with adaptive immunity and is characterized by rapid response to aggression, regardless of previous stimulus, being the organism first line of defense. Its mechanisms include physical, chemical and biological barriers, cellular components, as well as soluble molecules. The organism first line of defense against

  10. 星状神经节阻滞对糖尿病大鼠细胞免疫功能的影响%Effect of stellate ganglion block on cellular immune function in diabetic rats

    Institute of Scientific and Technical Information of China (English)

    郎海丽; 胡小兰; 陈勇; 周志东; 蔡俊赢; 余树春; 徐国海

    2016-01-01

    目的 评价星状神经节阻滞对糖尿病大鼠细胞免疫功能的影响.方法 健康雄性SD大鼠,3月龄,体重240~ 280 g,采用腹腔注射1%链脲佐菌素60 mg/kg制备糖尿病模型.取糖尿病模型制备成功的大鼠48只,采用随机数字表法分为2组(n=24):糖尿病组(DM组)和星状神经节阻滞组(SGB组);另取健康同龄大鼠24只作为对照组(C组).SGB组于糖尿病模型制备成功1周后行右颈交感干离断术,C组和DM组仅分离右颈交感干.分别于颈交感干离断术前(T0)、术后1、3、7d(T13)时,随机取6只大鼠,采集下腔静脉血样,测定血糖浓度,采用ELISA法检测血浆去甲肾上腺素(NE)浓度,采用FACSCalibur流式细胞仪检测全血T淋巴细胞亚群CD3+、CD4+和CD8+的水平,计算CD4+/CD8+比值;处死前称重,解剖分离胸腺组织称重,计算胸腺指数(胸腺重量÷大鼠体重).结果 与C组比较,DM组和SGB组T0-3时血糖升高,全血CD3+和CD4+的水平、CD4+/CD8+比值和胸腺指数降低(P<0.05),CD8+水平差异无统计学意义(P>0.05),SGB组T1-3时血浆NE浓度降低(P<0.05),DM组血浆NE浓度差异无统计学意义(P>0.05);与DM组比较,SGB组T1-3时血糖及血浆NE浓度降低,全血CD3+和CD4+的水平、CD4+/CD8+比值和胸腺指数升高(P<0.05),CD8+水平差异无统计学意义(P>0.05).结论 星状神经节阻滞可改善糖尿病大鼠细胞免疫功能.%Objective To evaluate the effect of stellate ganglion block (SGB) on cellular immune function in diabetic rats.Methods Healthy male Sprague-Dawley rats,aged 3 months,weighing 240-280 g,were used in this study.Diabetes mellitus was induced by intraperitoneal 1% streptozotocin 60 mg/kg and confirmed by blood glucose ≥ 16.7 mmol/L 3 days later.Forty-eight rats with diabetes mellitus were randomly divided into 2 groups (n=24 each) using a random number table:diabetes mellitus group (group DM) and group SGB.Another 24 healthy rats,aged 3 months,were selected and served as

  11. Changes of cellular immune function with Chaihulongmu decoction in Lewis mice with iumg cancer%柴胡龙牡汤对Lewis肺癌小鼠细胞免疫功能的影响

    Institute of Scientific and Technical Information of China (English)

    潘玉真; 殷东风; 周立江; 朱颖

    2011-01-01

    Objective To study effects of Chaihulongmu decoction on cellular immune function such as T lymphocyte subgroup,NK cell activeness,IL-lO and γ-intefferon of Lewis mice with lung cancer. Methods The cells of Lewis lung cancer were planted in the right axilla of C57BL/6J inbred strain mice subcutaneously. The mice with cancer were randomly divided into model group ( MG), herbal group ( HG), DDP group (DG) and combination group (CG). The tumors were weighed when the mice were sacrificed in each group. Then the inhibition rate of tumor was calculated. The experiment of the lactic dehydrogenase (LDH) releasing was used to detect the activity of NK cell in the mouse spleens. The method of enzyme-linked immuno sorbent assay (ELISA) was used to detect the IL-10, γ-intefferon in the supernatant fluid of spleen. The rates of CD4, CD8 and the ratio of CD4/CD8 were detected by the flow cytometry (FCM) in the way of PE/FITC fluorescent staining in the spleens of mice. Results The inhibited effectiveness of CG was optimal, and the inhibition rate of tumor was 62.4%. There was significant difference comparing to DG and HG( P <0. 01 ). The activity of NK cell in HG was highest,and the difference was obvious comparing to MG, DG and CG( P < 0. 01 ). The content of IFN-γ was 65.78 ± 17. 68 in HG, which was higher than that in DG ( P < 0. 05 ). The content of IL-10 in MG was highest( 153. 30 ± 33. 14).In HG it was lower than MG, DG and CG( P < 0. 05 ). The figure of CD4 ± and the ratio of CD4 ± / CD8 ± in HG were the highest.Comparing to the MG and the DG, the difference was extremely obvious. (P <0.01 ). While the percentage of CD8 ± cell in each post-treatment group had no obvious changes. Conclusion The prescription of Chaihulongmu decoction can inhibit tumor and improve the cellular immune function through raising the level of IFN-γ, reducing the superior expression of IL-10, strengthening the activity of the NK cell, obviously elevating the percentage of the

  12. 骨髓间充质干细胞静脉输注对猕猴细胞免疫功能的影响%Effects on cellular immunity caused by intravenous infusion of allogenic rhesus mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    范传波; 王朝晖; 王磊; 胡锴勋; 刘丽辉; 孙琪云; 边莉; 乌庆超

    2011-01-01

    目的 评价猕猴间充质干细胞( MSC)静脉异体输注后对细胞免疫功能的影响。方法分离培养MSC;不做其他处理,将异体MSC静脉输注给受者猴,通过定期监测外周血象、混合淋巴细胞反应( MLR)、T细胞亚群来判断MSC输注后受者细胞免疫功能的变化。结果成功培养了猕猴的MSC。异体MSC输注后,受者无明显毒性反应、排异表现及血象变化。可以在一定时间内(2周左右)抑制受者T细胞在MLR中的增殖活性,受者猴A2、A3及A4输注MSC的数量分别为4.0×105/kg、1.0×106/kg、2.0×106/kg,在输注后第14天时,MLR的相对反应值(RR)与输注前比较均明显降低,分别从(46.0±2.6)%、( 40.9±2.3)%、(48.3±2.0)%降至(40.4±1.73)%、(33.0±2.1)%、(39.0±1.0)%(F=1O.19,P=0.023;F=2.593,P= 0.013;F= 28.431,P=0.003),输注后第30天时RR均恢复到输注前水平;统计结果显示,抑制程度(△RR)与输注MSC数量呈正相关(F=27.413,P=0.038)。A4是输注MSC数量最多的受者,输注后第14天开始,外周血CD3+、CD3+ CD4+、CD3+CD8+细胞的百分比与输注前相比有所降低,在输注后第30天左右恢复至输注前水平。结论单纯体内输注异体MSC,可以在一定时间内抑制受者T细胞的免疫活性;免疫抑制程度与输注MSC数量呈正相关。MSC特殊的免疫学特性使其具有深远的临床应用价值。%Objective To study the changes of cellular immunity caused by intravenous infusion of allogenic rhesus mesenchymal stem cells (MSCs). Methods MSCs were isolated and cultured. Then the immunomodulatory effects after MSCs infusion were evaluated by means of peripheral blood counts, mixed lymphocyte reaction (MLR) and analysis of lymphocytic subgroup. Results MSCs of rehsus were successfully cultivated. No acute toxicities or GVHD were observed in recipients. No obvious changes of peripheral blood counts were present. Recipients A2, A3, A4 were administered with

  13. The immunity status of demodecosis patients.

    Science.gov (United States)

    Kogan, B G; Koljadenko, V G; Golovtchenko, D Y

    1991-01-01

    49 patients with different clinical types of demodecosis were examined. There was a pronounced decrease in the T-cellular immunity state on the skin. The state of immunity was directly dependent on the degree of clinical manifestation and when the patients contracted the disease, and it correlated with data from the humoral immunity state study (CIC).

  14. Medición de respuesta inmune humoral y celular frente a antígenos de Brucella abortus RB51 en bovinos (Evaluation of Humoral and cellular immune response evaluation against Brucella abortus strain RB51 antigens in bovine

    Directory of Open Access Journals (Sweden)

    N.I. Montaña S.

    1998-01-01

    strain B. abortus 2308. 30 days after challenge the protection level was evaluated. The humoral immune response was evaluated using conventional Rose Bengal agglutination test, complement fixation test, radial immunodiffusion as well as ELISA, western blot and dot blot assays at days 0, 8, 15, 30, 60 and 90. Additionally, the specific IgG2 isotype response was determined by double sandwich ELISA. To evaluate cellular immune responses, lymphocyte proliferation was measured by timidine incorporation and expressed as stimulation index (S.I., IFN-? activity by ELISA and CD4/CD8 ratio by fluorocitometry. Animals vaccinated with live strains presented 100% protection against challenge, while a 66% protection was observed in those vaccinated with purified antigens. The diagnostic advantage of B. abortus strain RB51 was evidenced by the lack of humoral immune responses against sLPS in all vaccinated groups except for the strain 19 group. No significant differences (p0.05 were detected in any of the groups by lymphoproliferation when stimulated in vitro with purified OMP-II, O-chain or sLPS. When crude soluble RB51 protein was used, S.I. turned significant (p<0.05 and indicated a better response induced by the live vaccines. IFN-?-ELISA tests with stimulated tissue cultures performed better when measured 72 hour after antigen exposure. In reference to the experimental groups, higher levels were detected in the groups immunised with live vaccine, mainly strain 19. When CD4/CD8 ratio were considered the values were constant during the observation and no differences were observed. The results confirm that B. abortus strain RB51 induced level of protection similar to strain 19, and had the advantage of differential diagnosis. Purified antigens OMP-II and OMP-II-O-chain, induced a lower level of protection but they performed similar to replicating vaccines indicating the immunodominance of OMP-II, but suggesting the need of multiple doses to reach the same level of protection. It is

  15. Immune rejection and cellular immune regulatory effects on the heterogeneous and allogeneic mesenchymal stem cells%异种及同种异体间充质干细胞免疫排斥及细胞免疫调节作用研究

    Institute of Scientific and Technical Information of China (English)

    赵娜; 吴洁; 李宏玲; 李聪; 吴奇峰; 王海兰

    2015-01-01

    Objective To investigate the immune rejection of heterogeneous and allogeneic mesenchymal stem cell ( MSC) transplantation in vivo and cellular immunoregulation effects of MSC on T lymphocyte in vitro.Methods Human umbilical cord mesenchymal stem cell (hUC-MSC) and mouse bone marrow mesenchymal stem cell (mBM-MSC) were isolated and purified, and their surface markers were identified by flow cytometry .Experiment in vivo:20 specific pathogen free healthy female BALB/C mice were randomly divided into 4 groups: hUC-MSC grafted group , mBM-MSC grafted group , solvent control group and blank control group , with 5 mice in each group.About 2 ×106 MSC were intravenously injected through caudal vein into the two grafted groups on day 1, 4 and 15.The solvent control group was injected with the same volume of 0.90%( mass fraction ) sodium chloride solution at the same time points .The blank control group was not treated .The acute immune rejection reactions were observed after 15 days of treatment .Experiment in vitro:mouse na?ve T cells and activated T cells were isolated .Na?ve T cells or activated T cells were divided into control group , hUC-MSC group and mBM-MSC group.MSC were co-cultured with T cells in hUC-MSC group and mBM-MSC group, while the control group was cultured without MSC.Effects of MSC on cytokines secretion , activation markers and proliferations of T cells were measured .Results No significant acute immune rejection was observed after hUC-MSC and mBM-MSC grafted repeatedly in mice .For na?ve T cells in vitro experiment , the interleukin-2 ( IL-2 ) and interferon-γ( IFN-γ) levels in T cells culture supernate , the expression levels of differentiation antigen CD 69, CD25 and CD71 of T cells activation markers at early , medium and late stage, as well as the proliferation rate all showed no significant difference (P>0.05) in the hUC-MSC and mBM-MSC groups, comparing to the control group .In the in vitro experiment for activated T cells , the IL-2 and IFN

  16. Effects of intrathecal tramadol on cellular immune functions in rats%鞘内注射曲马多对大鼠细胞免疫功能的影响

    Institute of Scientific and Technical Information of China (English)

    邹望远; 郭曲练; 王锷; 蔡进; 刘瑶

    2008-01-01

    tramadol infusion 5 % formalin 50 μl was injected subcutaneously into the plantar surface of the left hlndpaw. The number of flinches, lickings and total time of licking were recorded for 60 min. Pain intensity scores (PIS) (0 = no pain, 3 = severe pain) were recorded to assess the antinociceptive effects of IT tramadol. The animals were killed after evaluation of pain intensity. Body weight and spleen weight were measured. Spleen index (spleen weight/body weight) was calculated. T-lymphocyte function was evaluated based on Concanavalin A (ConA)-induced splenocyte proliferation. A modified lactic acid dehydrogeuase (LDH) release assay was used to assess NK cell activity. Results The PISs were significantly lower in group T1, T2 and T3 than in control group. The spleen index and spleenocyte proliferation induced by ConA were significantly suppressed in group T1, but there was no significant difference between control group and group T2 and T3. There was no significant difference in NK cell activity between the control group and the 3 tramadol groups. Conclusion IT tramadol has significant antinociceptive effect. Tramadol 50μg/h IT infusion can suppress cellular immune function.

  17. Activation of cellular immunity and marked inhibition of liver cancer in a mouse model following gene therapy and tumor expression of GM-SCF, IL-21, and Rae-1.

    Science.gov (United States)

    Cheng, Mingrong; Zhi, Kangkang; Gao, Xiaoyan; He, Bing; Li, Yingchun; Han, Jiang; Zhang, Zhiping; Wu, Yan

    2013-12-18

    Cancer is both a systemic and a genetic disease. The pathogenesis of cancer might be related to dampened immunity. Host immunity recognizes nascent malignant cells - a process referred to as immune surveillance. Augmenting immune surveillance and suppressing immune escape are crucial in tumor immunotherapy. A recombinant plasmid capable of co-expressing granulocyte-macrophage colony- stimulating factor (GM-SCF), interleukin-21 (IL-21), and retinoic acid early transcription factor-1 (Rae-1) was constructed, and its effects determined in a mouse model of subcutaneous liver cancer. Serum specimens were assayed for IL-2 and INF-γ by ELISA. Liver cancer specimens were isolated for Rae-1 expression by RT-PCR and Western blot, and splenocytes were analyzed by flow cytometry. The recombinant plasmid inhibited the growth of liver cancer and prolonged survival of tumor-loaded mice. Activation of host immunity might have contributed to this effect by promoting increased numbers and cytotoxicity of natural killer (NK) cells and cytotoxic T lymphocytes (CTL) following expression of GM-SCF, IL-21, and Rae-1. By contrast, the frequency of regulatory T cells was decreased, Consequently, activated CTL and NK cells enhanced their secretion of INF-γ, which promoted cytotoxicity of NK cells and CTL. Moreover, active CTL showed dramatic secretion of IL-2, which stimulates CTL. The recombinant expression plasmid also augmented Rae-1 expression by liver cancer cells. Rae-1 receptor expressing CTL and NK cells removed liver cancer. The recombinant expression plasmid inhibited liver cancer by a mechanism that involved activation of cell-mediated immunity and Rae-1 in liver cancer.

  18. Adoptive cellular therapy of cancer: exploring innate and adaptive cellular crosstalk to improve anti-tumor efficacy.

    Science.gov (United States)

    Payne, Kyle K; Bear, Harry D; Manjili, Masoud H

    2014-08-01

    The mammalian immune system has evolved to produce multi-tiered responses consisting of both innate and adaptive immune cells collaborating to elicit a functional response to a pathogen or neoplasm. Immune cells possess a shared ancestry, suggestive of a degree of coevolution that has resulted in optimal functionality as an orchestrated and highly collaborative unit. Therefore, the development of therapeutic modalities that harness the immune system should consider the crosstalk between cells of the innate and adaptive immune systems in order to elicit the most effective response. In this review, the authors will discuss the success achieved using adoptive cellular therapy in the treatment of cancer, recent trends that focus on purified T cells, T cells with genetically modified T-cell receptors and T cells modified to express chimeric antigen receptors, as well as the use of unfractionated immune cell reprogramming to achieve optimal cellular crosstalk upon infusion for adoptive cellular therapy.

  19. Polymer nanomicelles for efficient mucus delivery and antigen-specific high mucosal immunity.

    Science.gov (United States)

    Noh, Young-Woock; Hong, Ji Hyun; Shim, Sang-Mu; Park, Hye Sun; Bae, Hee Ho; Ryu, Eun Kyoung; Hwang, Jung Hwan; Lee, Chul-Ho; Cho, Seong Hun; Sung, Moon-Hee; Poo, Haryoung; Lim, Yong Taik

    2013-07-22

    Micelles for mucosal immunity: A mucosal vaccine system based on γ-PGA nanomicelles and viral antigens was synthesized. The intranasal administration of the vaccine system induces a high immune response both in the humoral and cellular immunity (see picture).

  20. The role of complement receptor type 1 (CR1, CD35) in determining the cellular distribution of opsonized immune complexes between whole blood cells: kinetic analysis of the buffering capacity of erythrocytes

    DEFF Research Database (Denmark)

    Nielsen, C H; Matthiesen, S H; Lyng, I;

    1997-01-01

    Erythrocytes (E) express complement receptor, type 1 (CR1, CD35), by which they bind opsonized immune complexes (IC) in competition with leucocytes expressing higher numbers of CR1 as well as other complement- and Fc-receptors. This may prevent inappropriate activation of phagocytic cells. We...

  1. Immune Aspects of Female Infertility

    Directory of Open Access Journals (Sweden)

    Andrea Brazdova

    2016-05-01

    Full Text Available Immune infertility, in terms of reproductive failure, has become a serious health issue involving approximately 1 out of 5 couples at reproductive age. Semen that is defined as a complex fluid containing sperm, cellular vesicles and other cells and components, could sensitize the female genital tract. The immune rejection of male semen in the female reproductive tract is explained as the failure of natural tolerance leading to local and/or systemic immune response. Present active immune mechanism may induce high levels of anti-seminal/sperm antibodies. It has already been proven that iso-immunization is associated with infertility. Comprehensive studies with regards to the identification of antibody-targets and the determination of specific antibody class contribute to the development of effective immuno-therapy and, on the other hand, potential immuno-contraception, and then of course to complex patient diagnosis. This review summarizes the aspects of female immune infertility.

  2. MF59- and Al(OH3-adjuvanted Staphylococcus aureus (4C-Staph vaccines induce sustained protective humoral and cellular immune responses, with a critical role for effector CD4 T cells at low antibody titers.

    Directory of Open Access Journals (Sweden)

    Elisabetta eMonaci

    2015-09-01

    Full Text Available Staphylococcus aureus (S. aureus is an important opportunistic pathogen that may cause invasive life-threatening infections like sepsis and pneumonia. Due to increasing antibiotic-resistance, the development of an effective vaccine against S. aureus is needed. Although a correlate of protection against staphylococcal diseases is not yet established, several findings suggest that both antibodies and CD4 T cells might contribute to optimal immunity. In this study, we show that adjuvanting a multivalent vaccine (4C-Staph with MF59, an oil-in-water emulsion licensed in human vaccines, further potentiated antigen-specific IgG titers and CD4 T cell responses compared to alum and conferred protection in the peritonitis model of S. aureus infection. Moreover, we showed that MF59- and alum-adjuvanted 4C-Staph vaccines induced persistent antigen-specific humoral and T cell responses, and protected mice from infection up to 4 months after immunization. Furthermore, 4C-Staph formulated with MF59 was used to investigate which immune compartment is involved in vaccine-induced protection. Using CD4 T cell-depleted mice or B cell deficient mice, we demonstrated that both T and B cell responses contributed to 4C-Staph vaccine-mediated protective immunity. However, the role of CD4 T cells seemed more evident in the presence of low antibody responses. This study provides preclinical data further supporting the use of the adjuvanted 4C-Staph vaccines against S. aureus diseases, and provides critical insights on the correlates of protective immunity necessary to combat this pathogen.

  3. Immune response

    Science.gov (United States)

    ... and tetanus antitoxin are examples of passive immunization. BLOOD COMPONENTS The immune system includes certain types of white ... lymphocytes develop, they normally learn to tell the difference between your own body tissues and substances that ...

  4. The influence of the immunopotentiation's parenteral nutrition to parenteral nutrition the immuneenhancement the state of cellular immunity of liver cancer patients after the operation%免疫强化胃肠外营养对肝癌术后患者机体细胞免疫状态的影响

    Institute of Scientific and Technical Information of China (English)

    秦锴; 聂双发

    2011-01-01

    Objective To explore the effect of the immune nutrition enhanced parenteral nutrition (PN) to the cellular immune function of the liver cancer patients after the operation. Methods The cases included in the study were randomly divided into four groups. Those in the first group were only given PN, group's Ⅱ patients were given PN with arginine,group Ⅲ 's cases were given PN with glutamine,group Ⅳ was treated with PN containing arginine and glutamine. The levels of CD3+ , CD4+ and CD8+ in peripheral blood were detected before and after the surgery. Results The levels of CD3+ ,CD4+ in the liver cancer group were significantly higher than those of the control group,CD8+ level was lower than the control group. Statistical analysis showed they had a statistically significance(P<0.05);the level of cellular immunity in group Ⅱ , Ⅲ and Ⅳ was higher than that of group after the operation,and the level of cellular immunity of group Ⅳ was significantly higher than the group Ⅰ , Ⅱ and Ⅲ ,all of which showed statistical significance(P<0.05). Conclusion The immune nutrition enhance gastrointestinal nutrition can effectively improve the body's immune level, which has better effect when combined with arginine and glutamine than a single immune agent.%目的 探讨添加免疫营养强化剂的胃肠外营养(PN)对肝癌术后患者细胞免疫功能的影响.方法 将纳入研究的对象随机分为4组,Ⅰ组单给予PN,Ⅱ组给予含有精氨酸的PN,Ⅲ组给予含有谷氨酰胺的PN,Ⅳ组给予含有精氨酸和谷氨酰胺的PN,检测手术前、后各组患者外周血中CD3+、CD4+、CD8+水平变化.另外选取20例行开腹胆囊切除的患者,测定其入院淋巴细胞免疫功能水平作为正常参照组(对照组).结果 肝癌患者CD3+、CD4+的水平明显低于对照组,CD8+水平高于对照组,差异有统计学意义(P<0.05);Ⅱ、Ⅲ、Ⅳ组术后细胞免疫水平高于Ⅰ组,Ⅳ组术后细胞免疫水平明显高

  5. Safety and persistence of the humoral and cellular immune responses induced by 2 doses of an AS03-adjuvanted A(H1N1)pdm09 pandemic influenza vaccine administered to infants, children and adolescents: Two open, uncontrolled studies.

    Science.gov (United States)

    Garcia-Sicilia, José; Arístegui, Javier; Omeñaca, Félix; Carmona, Alfonso; Tejedor, Juan C; Merino, José M; García-Corbeira, Pilar; Walravens, Karl; Bambure, Vinod; Moris, Philippe; Caplanusi, Adrian; Gillard, Paul; Dieussaert, Ilse

    2015-01-01

    In children, 2 AS03-adjuvanted A(H1N1)pdm09 vaccine doses given 21 days apart were previously shown to induce a high humoral immune response and to have an acceptable safety profile up to 42 days following the first vaccination. Here, we analyzed the persistence data from 2 open-label studies, which assessed the safety, and humoral and cell-mediated immune responses induced by 2 doses of this vaccine. The first study was a phase II, randomized trial conducted in 104 children aged 6-35 months vaccinated with the A(H1N1)pdm09 vaccine containing 1.9 µg haemagglutinin antigen (HA) and AS03B (5.93 mg tocopherol) and the second study, a phase III, non-randomized trial conducted in 210 children and adolescents aged 3-17 years vaccinated with the A(H1N1)pdm09 vaccine containing 3.75 µg HA and AS03A (11.86 mg tocopherol). Approximately one year after the first dose, all children with available data were seropositive for haemagglutinin inhibition and neutralising antibody titres, but a decline in geometric mean antibody titres was noted. The vaccine induced a cell-mediated immune response in terms of antigen-specific CD4(+) T-cells, which persisted up to one year post-vaccination. The vaccine did not raise any safety concern, though these trials were not designed to detect rare events. In conclusion, 2 doses of the AS03-adjuvanted A(H1N1)pdm09 vaccine at 2 different dosages had a clinically acceptable safety profile, and induced high and persistent humoral and cell-mediated immune responses in children aged 6-35 months and 3-17 years. These studies have been registered at www.clinicaltrials.gov NCT00971321 and NCT00964158.

  6. Cellular immune responses of a Senegalese community recently exposed to Schistosoma mansoni: correlations of infection level with age and inflammatory cytokine production by soluble egg antigen-specific cells.

    Science.gov (United States)

    Marguerite, M; Gallissot, M C; Diagne, M; Moreau, C; Diakkhate, M M; Roberts, M; Remoue, F; Thiam, A; Decam, C; Rogerie, F; Cottrez, F; Neyrinck, J L; Butterworth, A E; Sturrock, R F; Piau, J P; Daff, B; Niang, M; Wolowczuk, I; Riveau, G; Auriault, C; Capron, A

    1999-08-01

    A recently reported epidemic of Schistosoma mansoni infection in Senegal provided an opportunity to study the dynamics of the development of immunity to human schistosomiasis. We report here on the cell-mediated immune response in a population of 99 females and 95 males, with particular emphasis on the relationship between intensity of infection and age. We found that the intensity of infection correlated negatively with age in females but not in males. In men and women, both Th1- and Th2-type cytokines were detected upon in vitro stimulation of PBMCs with soluble egg antigen (SEA) or soluble adult worm antigens (SWAP). In the female group, SEA-induced PBMC proliferation was associated with the production of IFN-gamma, IL-2 and IL-5, all of which correlated negatively with intensity of infection. Most cytokine production correlated positively with age. Spontaneous production of TNF-alpha, IL-6 and IL-10 was higher in the infected population than in an uninfected control group. Our results suggest that immunity to infection could be more pronounced in the female population and associated with a Th0/1 + 2 pattern of cytokine secretion mediated by soluble egg antigen (SEA).

  7. Progress on cellular immune function after the cryosurgical treatment of various cancers%冷冻消融治疗恶性肿瘤后机体细胞免疫功能变化的研究进展

    Institute of Scientific and Technical Information of China (English)

    王志利; 张跃伟

    2012-01-01

    Cryoablation is currently applied in a variety of malignancies, including liver cancer, lung cancer, prostate cancer and kidney cancer, etc. Being different from surgical resection, cryoablation of malignant tumor destroys the tumor, while tumor necrosis fragments retain in the body, which can stimulate the body's immune system to induce anti-tumor immune response. The influence of on the body's immune system caused by cryoablation of malignant tumors were reviewed in this article.%冷冻消融术适用于各种恶性肿瘤,包括肝癌、肺癌、前列腺癌、肾癌等,冷冻消融术治疗恶性肿瘤与外科手术切除不同,冷冻消融在破坏肿瘤组织的同时,坏死肿瘤碎片存留在体内,可刺激机体免疫系统诱导抗肿瘤免疫反应.本文就冷冻消融治疗恶性肿瘤后对机体细胞免疫功能的影响进行综述.

  8. Recent progress in the understanding of host immunity to avian coccidiosis: IL-17 family cytokines as the sentinels on the intestinal mucosa

    Science.gov (United States)

    The molecular and cellular mechanisms leading to immune protection against Eimeria avian coccidiosis are complex and include multiple aspects of innate and adaptive immunities. Innate immunity is mediated by various subpopulations of immune cells that recognize pathogen associated molecular patterns...

  9. How specific is the immune response to malaria in adults living in endemic areas?

    Directory of Open Access Journals (Sweden)

    B.A. Mannan, K. Patel, I. Malhotra, B. Ravindran & Shobhona Sharma

    2003-09-01

    Full Text Available It is documented that people living in malaria endemic areas acquire immunity against malaria afterrepeated infections. Studies involving passive transfer of IgG from immune adults to the nonimmunesubjects have shown that circulating antibodies play an important role, and that immuneadults possess protective antibodies, which susceptible malaria patients do not. Through a differentialimmunoscreen, we have identified several novel cDNA clones, which react exclusively andyet extensively with immune sera samples. Specific antisera raised against the immunoclones inhibitthe growth of parasites in culture. The clones studied so far turn out to be novel conserved Plasmodiumgenes. In order to study the response of sera of adults from malaria endemic areas of Indiaand Africa to these immunogens, we carried out ELISA assays using these immunopeptides, otherP. falciparum specific antigens, peptides, antigens from other infections such as mycobacterial infectionsand other proteins such as BSA. Children from the same areas and normal healthy urbanpeople showed very little activity to each of these categories. A large percentage of adults from endemicareas responded positively to all the malarial immunogens tested. However, the same personsalso showed high response to other antigens and proteins as well. The implications of theseresults are reported in this paper.

  10. The protection effect of garlic on biological membrane and on cellular immunity in workers exposed to coke oven volatiles%大蒜对锅炉工生物膜和细胞免疫的保护作用

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@ The workers exposed to coke oven volatile are the risk population of occupational lung cancer than genera population. Polycyclic aromatic hydrocarbons (PAHs),a component of coke oven volatile (COE), are the species considered to be the responsible for this high risk of occupational lung cancer. One of most important mechanism of occupational lung cancer induced by PAHs is believed to be due to the accumulation of free radicals associated with COV and subsequent biological member injury caused by free radical reaction as well as decrease in cell immunity. Garlic is the consumed vegetable with a variety of medical functions.

  11. Safety and persistence of the humoral and cellular immune responses induced by 2 doses of an AS03-adjuvanted A(H1N1)pdm09 pandemic influenza vaccine administered to infants, children and adolescents: Two open, uncontrolled studies

    Science.gov (United States)

    Garcia-Sicilia, José; Arístegui, Javier; Omeñaca, Félix; Carmona, Alfonso; Tejedor, Juan C; Merino, José M; García-Corbeira, Pilar; Walravens, Karl; Bambure, Vinod; Moris, Philippe; Caplanusi, Adrian; Gillard, Paul; Dieussaert, Ilse

    2015-01-01

    In children, 2 AS03-adjuvanted A(H1N1)pdm09 vaccine doses given 21 days apart were previously shown to induce a high humoral immune response and to have an acceptable safety profile up to 42 days following the first vaccination. Here, we analyzed the persistence data from 2 open-label studies, which assessed the safety, and humoral and cell-mediated immune responses induced by 2 doses of this vaccine. The first study was a phase II, randomized trial conducted in 104 children aged 6–35 months vaccinated with the A(H1N1)pdm09 vaccine containing 1.9 µg haemagglutinin antigen (HA) and AS03B (5.93 mg tocopherol) and the second study, a phase III, non-randomized trial conducted in 210 children and adolescents aged 3–17 years vaccinated with the A(H1N1)pdm09 vaccine containing 3.75 µg HA and AS03A (11.86 mg tocopherol). Approximately one year after the first dose, all children with available data were seropositive for haemagglutinin inhibition and neutralising antibody titres, but a decline in geometric mean antibody titres was noted. The vaccine induced a cell-mediated immune response in terms of antigen-specific CD4+ T-cells, which persisted up to one year post-vaccination. The vaccine did not raise any safety concern, though these trials were not designed to detect rare events. In conclusion, 2 doses of the AS03-adjuvanted A(H1N1)pdm09 vaccine at 2 different dosages had a clinically acceptable safety profile, and induced high and persistent humoral and cell-mediated immune responses in children aged 6–35 months and 3–17 years. These studies have been registered at www.clinicaltrials.gov NCT00971321 and NCT00964158. PMID:26176592

  12. Candidate immune biomarkers for radioimmunotherapy.

    Science.gov (United States)

    Levy, Antonin; Nigro, Giulia; Sansonetti, Philippe J; Deutsch, Eric

    2017-08-01

    Newly available immune checkpoint blockers (ICBs), capable to revert tumor immune tolerance, are revolutionizing the anticancer armamentarium. Recent evidence also established that ionizing radiation (IR) could produce antitumor immune responses, and may as well synergize with ICBs. Multiple radioimmunotherapy combinations are thenceforth currently assessed in early clinical trials. Past examples have highlighted the need for treatment personalization, and there is an unmet need to decipher immunological biomarkers that could allow selecting patients who could benefit from these promising but expensive associations. Recent studies have identified potential predictive and prognostic immune assays at the cellular (tumor microenvironment composition), genomic (mutational/neoantigen load), and peripheral blood levels. Within this review, we collected the available evidence regarding potential personalized immune biomarker-directed radiation therapy strategies that might be used for patient selection in the era of radioimmunotherapy. Copyright © 2017. Published by Elsevier B.V.

  13. Preconceptual administration of an alphavirus replicon UL83 (pp65 homolog) vaccine induces humoral and cellular immunity and improves pregnancy outcome in the guinea pig model of congenital cytomegalovirus infection.

    Science.gov (United States)

    Schleiss, Mark R; Lacayo, Juan C; Belkaid, Yasmine; McGregor, Alistair; Stroup, Greg; Rayner, Jon; Alterson, Kimberly; Chulay, Jeffrey D; Smith, Jonathan F

    2007-03-15

    Development of a vaccine against congenital cytomegalovirus (CMV) infection is a major public health priority. We report the use of a propagation-defective, single-cycle, RNA replicon vector system, derived from an attenuated strain of the alphavirus Venezuelan equine encephalitis virus, to produce virus-like replicon particles (VRPs) expressing GP83, the guinea pig CMV (GPCMV) homolog of the human CMV pp65 phosphoprotein. Vaccination with VRP-GP83 induced antibodies and CD4(+) and CD8(+) T cell responses in GPCMV-seronegative female guinea pigs. Guinea pigs immunized with VRP-GP83 vaccine or with a VRP vaccine expressing influenza hemagglutinin (VRP-HA) were bred for pregnancy and subsequent GPCMV challenge during the early third trimester. Dams vaccinated with VRP-GP83 had improved pregnancy outcomes, compared with dams vaccinated with the VRP-HA control. For VRP-GP83-vaccinated dams, there were 28 live pups and 4 dead pups (13% mortality) among 10 evaluable litters, compared with 9 live pups and 12 dead pups (57% mortality) among 8 evaluable litters in the VRP-HA-vaccinated group (P<.001, Fisher's exact test). Improved pregnancy outcome was accompanied by reductions in maternal blood viral load, measured by real-time polymerase chain reaction. These results indicate that cell-mediated immune responses directed against a CMV matrix protein can protect against congenital CMV infection and disease.

  14. Mechanisms regulating skin immunity and inflammation.

    Science.gov (United States)

    Pasparakis, Manolis; Haase, Ingo; Nestle, Frank O

    2014-05-01

    Immune responses in the skin are important for host defence against pathogenic microorganisms. However, dysregulated immune reactions can cause chronic inflammatory skin diseases. Extensive crosstalk between the different cellular and microbial components of the skin regulates local immune responses to ensure efficient host defence, to maintain and restore homeostasis, and to prevent chronic disease. In this Review, we discuss recent findings that highlight the complex regulatory networks that control skin immunity, and we provide new paradigms for the mechanisms that regulate skin immune responses in host defence and in chronic inflammation.

  15. HIF transcription factors, inflammation, and immunity.

    Science.gov (United States)

    Palazon, Asis; Goldrath, Ananda W; Nizet, Victor; Johnson, Randall S

    2014-10-16

    The hypoxic response in cells and tissues is mediated by the family of hypoxia-inducible factor (HIF) transcription factors; these play an integral role in the metabolic changes that drive cellular adaptation to low oxygen availability. HIF expression and stabilization in immune cells can be triggered by hypoxia, but also by other factors associated with pathological stress: e.g., inflammation, infectious microorganisms, and cancer. HIF induces a number of aspects of host immune function, from boosting phagocyte microbicidal capacity to driving T cell differentiation and cytotoxic activity. Cellular metabolism is emerging as a key regulator of immunity, and it constitutes another layer of fine-tuned immune control by HIF that can dictate myeloid cell and lymphocyte development, fate, and function. Here we discuss how oxygen sensing in the immune microenvironment shapes immunological response and examine how HIF and the hypoxia pathway control innate and adaptive immunity.

  16. Dendritic cells in peripheral tolerance and immunity

    DEFF Research Database (Denmark)

    Gad, Monika; Claesson, Mogens Helweg; Pedersen, Anders Elm

    2003-01-01

    Dendritic cells capable of influencing immunity exist as functionally distinct subsets, T cell-tolerizing and T cell-immunizing subsets. The present paper reviews how these subsets of DCs develop, differentiate and function in vivo and in vitro at the cellular and molecular level. In particular...

  17. Cellular automata modelling of SEIRS

    Institute of Scientific and Technical Information of China (English)

    Liu Quan-Xing; Jin Zhen

    2005-01-01

    In this paper the SEIRS epidemic spread is analysed, and a two-dimensional probability cellular automata model for SEIRS is presented. Each cellular automation cell represents a part of the population that may be found in one of five states of individuals: susceptible, exposed (or latency), infected, immunized (or recovered) and death. Here studied are the effects of two cases on the epidemic spread. i.e. the effects of non-segregation and segregation on the latency and the infected of population. The conclusion is reached that the epidemic will persist in the case of non-segregation but it will decrease in the case of segregation. The proposed model can serve as a basis for the development of algorithms to simulate real epidemics based on real data. Last we find the density series of the exposed and the infected will fluctuate near a positive equilibrium point, when the constant for the immunized is less than its corresponding constant τ0. Our theoretical results are verified by numerical simulations.

  18. Brain immune interactions and air pollution: macrophage inhibitory factor (MIF), prion cellular protein (PrPC), Interleukin-6 (IL-6), interleukin 1 receptor antagonist (IL-1Ra), and interleukin-2 (IL-2) in cerebrospinal fluid and MIF in serum differentiate urban children exposed to severe vs. low air pollution

    Science.gov (United States)

    Calderón-Garcidueñas, Lilian; Cross, Janet V.; Franco-Lira, Maricela; Aragón-Flores, Mariana; Kavanaugh, Michael; Torres-Jardón, Ricardo; Chao, Chih-kai; Thompson, Charles; Chang, Jing; Zhu, Hongtu; D'Angiulli, Amedeo

    2013-01-01

    Mexico City Metropolitan Area children chronically exposed to high concentrations of air pollutants exhibit an early brain imbalance in genes involved in oxidative stress, inflammation, innate and adaptive immune responses along with accumulation of misfolded proteins observed in the early stages of Alzheimer and Parkinson's diseases. A complex modulation of serum cytokines and chemokines influences children's brain structural and gray/white matter volumetric responses to air pollution. The search for biomarkers associating systemic and CNS inflammation to brain growth and cognitive deficits in the short term and neurodegeneration in the long-term is our principal aim. We explored and compared a profile of cytokines, chemokines (Multiplexing LASER Bead Technology) and Cellular prion protein (PrPC) in normal cerebro-spinal-fluid (CSF) of urban children with high vs. low air pollution exposures. PrPC and macrophage inhibitory factor (MIF) were also measured in serum. Samples from 139 children ages 11.91 ± 4.2 years were measured. Highly exposed children exhibited significant increases in CSF MIF (p = 0.002), IL6 (p = 0.006), IL1ra (p = 0.014), IL-2 (p = 0.04), and PrPC (p = 0.039) vs. controls. MIF serum concentrations were higher in exposed children (p = 0.009). Our results suggest CSF as a MIF, IL6, IL1Ra, IL-2, and PrPC compartment that can possibly differentiate air pollution exposures in children. MIF, a key neuro-immune mediator, is a potential biomarker bridge to identify children with CNS inflammation. Fine tuning of immune-to-brain communication is crucial to neural networks appropriate functioning, thus the short and long term effects of systemic inflammation and dysregulated neural immune responses are of deep concern for millions of exposed children. Defining the linkage and the health consequences of the brain / immune system interactions in the developing brain chronically exposed to air pollutants ought to be of pressing importance for public health

  19. Brain immune interactions and air pollution: macrophage inhibitory factor (MIF), prion cellular protein (PrP(C)), Interleukin-6 (IL-6), interleukin 1 receptor antagonist (IL-1Ra), and interleukin-2 (IL-2) in cerebrospinal fluid and MIF in serum differentiate urban children exposed to severe vs. low air pollution.

    Science.gov (United States)

    Calderón-Garcidueñas, Lilian; Cross, Janet V; Franco-Lira, Maricela; Aragón-Flores, Mariana; Kavanaugh, Michael; Torres-Jardón, Ricardo; Chao, Chih-Kai; Thompson, Charles; Chang, Jing; Zhu, Hongtu; D'Angiulli, Amedeo

    2013-01-01

    Mexico City Metropolitan Area children chronically exposed to high concentrations of air pollutants exhibit an early brain imbalance in genes involved in oxidative stress, inflammation, innate and adaptive immune responses along with accumulation of misfolded proteins observed in the early stages of Alzheimer and Parkinson's diseases. A complex modulation of serum cytokines and chemokines influences children's brain structural and gray/white matter volumetric responses to air pollution. The search for biomarkers associating systemic and CNS inflammation to brain growth and cognitive deficits in the short term and neurodegeneration in the long-term is our principal aim. We explored and compared a profile of cytokines, chemokines (Multiplexing LASER Bead Technology) and Cellular prion protein (PrP(C)) in normal cerebro-spinal-fluid (CSF) of urban children with high vs. low air pollution exposures. PrP(C) and macrophage inhibitory factor (MIF) were also measured in serum. Samples from 139 children ages 11.91 ± 4.2 years were measured. Highly exposed children exhibited significant increases in CSF MIF (p = 0.002), IL6 (p = 0.006), IL1ra (p = 0.014), IL-2 (p = 0.04), and PrP(C) (p = 0.039) vs. controls. MIF serum concentrations were higher in exposed children (p = 0.009). Our results suggest CSF as a MIF, IL6, IL1Ra, IL-2, and PrP(C) compartment that can possibly differentiate air pollution exposures in children. MIF, a key neuro-immune mediator, is a potential biomarker bridge to identify children with CNS inflammation. Fine tuning of immune-to-brain communication is crucial to neural networks appropriate functioning, thus the short and long term effects of systemic inflammation and dysregulated neural immune responses are of deep concern for millions of exposed children. Defining the linkage and the health consequences of the brain / immune system interactions in the developing brain chronically exposed to air pollutants ought to be of pressing importance for public

  20. Brain immune interactions and air pollution: Macrophage inhibitory factor (MIF, Prion cellular protein (PrPC, Interleukin-6 (IL-6, Interleukin 1 receptor antagonist (IL-1Ra, and Interleukin-2 (IL-2 in cerebrospinal fluid and MIF in serum differentiate urban children exposed to severe versus low air pollution.

    Directory of Open Access Journals (Sweden)

    Lilian eCalderon-Garciduenas

    2013-10-01

    Full Text Available Mexico City Metropolitan Area children chronically exposed to high concentrations of air pollutants exhibit an early brain imbalance in genes involved in oxidative stress, inflammation, innate and adaptive immune responses along with accumulation of misfolded proteins observed in the early stages of Alzheimer and Parkinson’s diseases. A complex modulation of serum cytokines and chemokines influences children’s brain structural and gray/white matter volumetric responses to air pollution. The search for biomarkers associating systemic and CNS inflammation to brain growth and cognitive deficits in the short term and neurodegeneration in the long-term is our principal aim. We explored and compared a profile of cytokines, chemokines (Multiplexing LASER Bead Technology and Cellular prion protein (PrPC in normal cerebro-spinal-fluid (CSF of urban children with high versus low air pollution exposures. PrPC and macrophage inhibitory factor (MIF were also measured in serum. Samples from 139 children ages 11.91±4.2 y were measured. Highly exposed children exhibited significant increases in CSF MIF (p=0.002, IL6 (p=0.006, IL1ra (p=0.014, IL-2 (p=0.04, and PrPC (p=0.039 v controls. MIF serum concentrations were higher in exposed children (p=0.009. Our results suggest CSF as a MIF, IL6, IL1Ra, IL-2, and PrPC compartment that can possibly differentiate air pollution exposures in children. MIF, a key neuro-immune mediator, is a potential biomarker bridge to identify children with CNS inflammation. Fine tuning of immune-to-brain communication is crucial to neural networks appropriate functioning, thus the short and long term effects of systemic inflammation and dysregulated neural immune responses are of deep concern for millions of exposed children. Defining the linkage and the health consequences of the brain/ immune system interactions in the developing brain chronically exposed to air pollutants ought to be of pressing importance for public health.

  1. Immune System

    NARCIS (Netherlands)

    Kuper, C.F.; Ruehl-Fehlert, C.; Elmore, S.A.; Parker, G.A.

    2013-01-01

    Cells of the immune system are found in every organ, from the classic lymphoid organs to tissues such as liver, mucosae, and omental adipose tissue. Toxicity to the immune system may be from a direct or indirect injury to lymphoid organs. The morphological responses range from lymphocyte depletion t

  2. Immune System

    Science.gov (United States)

    A properly functioning immune system is essential to good health. It defends the body against infectious agents and in some cases tumor cells. Individuals with immune deficiencies resulting from genetic defects, diseases (e.g., AIDS, leukemia), or drug therapies are more suscepti...

  3. Flat Cellular (UMTS) Networks

    NARCIS (Netherlands)

    Bosch, H.G.P.; Samuel, L.G.; Mullender, S.J.; Polakos, P.; Rittenhouse, G.

    2007-01-01

    Traditionally, cellular systems have been built in a hierarchical manner: many specialized cellular access network elements that collectively form a hierarchical cellular system. When 2G and later 3G systems were designed there was a good reason to make system hierarchical: from a cost-perspective i

  4. 重组乙型肝炎疫苗和乙型肝炎表面抗原诱导细胞免疫应答%Cellular immune responses of recombinant hepatitis B(rHB)vaccine and HBsAg derived from Hansenular polymorpha cells

    Institute of Scientific and Technical Information of China (English)

    胡忠玉; 庄辉; 何鹏; 张瑞; 方鑫; 朱凤才; 邱少辉; 李河民; 汪华; 梁争论

    2008-01-01

    (ELISPOT)methods after stimulation in vitro with HBsAg MHC class Ⅰ peptide S28-39,respectively.At serial time points.the immunized mice were detected for IFN-γ by ELISPOT as above and for the lymphocytotoxicity test(CTL)by specific lysis assay.The levels of IFN-γ,IL-2,IL-5 and anti-HBs in mice induced by rHB vaccine were detected after single or three doses.Four adults were vaccinated with rHB vaccine according to 0,1 and 2 month schedule.The peripheral blood mononuclear cells(PBMCs)were collected at the 3,8,21,34 and 65 days after the first dose.The CD8+T cells with high purity obtained by sorting from PBMcs were stimulated with rHBsAg or HBsAg peptides.The SFC of IFN-γ,IL-2 and IL-4 of CD4+ and CD8+ T cells were determined by ELISPOT.Results The cytokine of IFN-γ became detectable on day 7 and its peak value appeared on day 14 by ELISPOT.The CTL was detected on day 7 and the maximum lysis of CTL appeared on day 28.The cellular immune response of IFN-γ of MNCs were significantly correlated with the doses vaccinated from 1 μg to 8 μg(Υpositive rates=0.951,Ppositive rates=0.049<0.05;rSFC=0.996,PSFC=0.000<0.05).IFN-γSFC of CD8+T cells were significantly associated with the doses from 1 μg to 4 μg(Υ=0.999,P=0.025<0.05).The HBsAg specific cellular immune and humoral responses of mice immunized with three doses were significantly higher than that with a single dose(P<0.05).The characteristics of IFN-γ,IL-2 and IL-4 of CD4+ and CD8+ T cells were variable between individuals immunized with the same rHB vaccine.The level of IL-2 and IL-4 of responders were significantly related to the titer of anti-HBs.Conclusion Data from this study showed the kinesis of cellular immunity in mice and adults vaccinated with rHBsAg or rHB vaccine respectively.and the characteristics of cellular immune response in adults induced by the vaccine.Our data provided the basis of standardizing the analysis of cellular immune response to rHB vaccine.

  5. Lymphoma: Immune Evasion Strategies

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, Ranjan; Hammerich, Linda; Peng, Paul [Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 (United States); Brown, Brian [Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 (United States); Merad, Miriam [Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 (United States); Brody, Joshua D., E-mail: joshua.brody@mssm.edu [Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 (United States)

    2015-04-30

    While the cellular origin of lymphoma is often characterized by chromosomal translocations and other genetic aberrations, its growth and development into a malignant neoplasm is highly dependent upon its ability to escape natural host defenses. Neoplastic cells interact with a variety of non-malignant cells in the tumor milieu to create an immunosuppressive microenvironment. The resulting functional impairment and dysregulation of tumor-associated immune cells not only allows for passive growth of the malignancy but may even provide active growth signals upon which the tumor subsequently becomes dependent. In the past decade, the success of immune checkpoint blockade and adoptive cell transfer for relapsed or refractory lymphomas has validated immunotherapy as a possible treatment cornerstone. Here, we review the mechanisms by which lymphomas have been found to evade and even reprogram the immune system, including alterations in surface molecules, recruitment of immunosuppressive subpopulations, and secretion of anti-inflammatory factors. A fundamental understanding of the immune evasion strategies utilized by lymphomas may lead to better prognostic markers and guide the development of targeted interventions that are both safer and more effective than current standards of care.

  6. HIV prevalence and cellular immune function analysis among drug addicts in certain area%某地区吸毒者HIV感染状况调查及细胞免疫功能分析

    Institute of Scientific and Technical Information of China (English)

    张丽; 曾汝良

    2012-01-01

    Objective To investigate the prevalence of human immunodeficiency virus(HIV) and immune function among drug addicts in this area. Methods 4 827 cases of drug addicts were surveyed, and detected for anti-HIV antibody and subgroups of T lymphocyte. Results The positive rate of anti-HIV antibody was 1. 28% (62/4 827). Most HIV-positive drug addicts were from other regions[75. 81% (47/62)] , injection drug users[80. 65% (50/62)] , with a history of drug abuse for more than three to five years and at the age of nineteen to less than thirty-five years old. The amount of CD3 +CD4+ T lymphocyte and ratio of CD4+/ CD8+ were both lower than healthy subjects(P5~10)年[67.74%(42/62)]、年龄范围为(19~<35)岁[69.35%(43/62)].HIV阳性者CD3+CD4+T淋巴细胞数及CD4+/CD8+比值均低于健康者(P<0.05).结论 该地区HIV感染吸毒者存在低龄化和地域外来化趋势,需加强相关管理措施,重视健康教育.

  7. Sex hormones and the immune response in humans

    NARCIS (Netherlands)

    Bouman, Annechien; Heineman, Maas Jan; Faas, Marijke M.

    2005-01-01

    In addition to their effects on sexual differentiation and reproduction, sex hormones appear to influence the immune system. This results in a sexual dimorphism in the immune response in humans: for instance, females produce more vigorous cellular and more vigorous humoral immune reactions, are more

  8. Toxicology and cellular effect of manufactured nanomaterials

    Science.gov (United States)

    Chen, Fanqing

    2014-07-22

    The increasing use of nanotechnology in consumer products and medical applications underlies the importance of understanding its potential toxic effects to people and the environment. Herein are described methods and assays to predict and evaluate the cellular effects of nanomaterial exposure. Exposing cells to nanomaterials at cytotoxic doses induces cell cycle arrest and increases apoptosis/necrosis, activates genes involved in cellular transport, metabolism, cell cycle regulation, and stress response. Certain nanomaterials induce genes indicative of a strong immune and inflammatory response within skin fibroblasts. Furthermore, the described multiwall carbon nanoonions (MWCNOs) can be used as a therapeutic in the treatment of cancer due to its cytotoxicity.

  9. Humoral and cellular autoimmunity in women with recurrent pregnancy losses and repeated implantation failures: A possible role of vitamin D.

    Science.gov (United States)

    Kwak-Kim, Joanne; Skariah, Annie; Wu, Li; Salazar, Dinorah; Sung, Nayoung; Ota, Kuniaki

    2016-10-01

    Women with recurrent pregnancy losses (RPL) and repeated implantation failures (RIF) have auto- and cellular immune abnormalities. Approximately, 20% of women with RPL have autoimmune abnormalities, particularly antiphospholipid antibodies (APA). In addition, these women have a higher prevalence of antinuclear antibody, anti-thyroperoxidase and anti-thyroglobulin antibodies, and other non-organ-specific autoantibodies. In women with RPL, the presence of autoimmunity is often associated with cellular immune abnormalities, such as increased NK cell levels and Th1/Th2 cell ratios. Vitamin D (VD) plays a major role in regulation of auto- and cellular immune abnormalities. VD deficiency is prevalent in women with RPL, and women with VD deficiency have increased auto- and cellular immune abnormalities as compared with women with normal VD levels. VD has immune regulatory effects on various immune effectors including T, B and NK cells. Potential therapeutic application of VD for RPL and RIF with auto- and cellular immune abnormalities should be explored.

  10. 尖锐湿疣患者HPV感染类型和细胞免疫功能的分析%Analysis of HPV Infection Types and Cellular Immune Function in Patients With Condyloma

    Institute of Scientific and Technical Information of China (English)

    马晓慧

    2015-01-01

    Objective To investigate condyloma acuminatum (common sexually transmitted disease, CA ) in patients with human papilloma virus ( human papillomavirus, HPV ) genotype infection status and the characteristics of distribution and HPV subtypes, and peripheral blood T lymphocyte subsets and NK cell expression and clinical treatment of ca provide experimental basis.Methods According to the inclusion criteria, the choice of 81 cases of diagnosed patients with Ca, before treatment take rash dander by polymerase chain reaction ( PCR ) method for detection of HPV subtype; in treatment and followed up for 3 months to cut-off point of blood by lfow cytometry analysis of lymphocyte immune function and with the normal population control groups were compared.Results 40 cases ( 49.38% ) were infected by single subtype and 41 cases ( 50.62%) were mixed subtype. Infection in patients with peripheral blood T cells and normal control group comparison, the percentage of CD 4+ cells decreased, P<0.05, had difference statistically significance, CD 8+ cell percentage increased,P<0.05, had difference statistically significance, ratio of CD 4+/CD 8+decreased,P<0.05, had difference statistically significance. Conclusion HPV subtype mixed infection and immune cell function anomaly is prompted condyloma acuminatum patients Infected with human papilloma virus is an important factor.%目的:研究尖锐湿疣(Condyloma Acuminatum,CA)患者感染的人乳头瘤病毒(Human Papilomavirus,HPV)基因型的状况和分布特点,以及HPV亚型和外周血T淋巴细胞亚群和NK细胞的表达情况,分析尖锐湿疣患者感染人乳头瘤病毒亚型与细胞免疫功能的关联性,为临床治疗CA提供实验依据。方法根据纳入标准,选择81例明确诊断CA患者,治疗前取患者皮疹皮屑通过聚合酶链式反应(PCR)方法检测HPV亚型;在治疗和随访3个月的截止点采血,应用流式细胞仪分析淋巴细胞免疫功能,并与

  11. Immunization Coverage

    Science.gov (United States)

    ... Brazil, the Democratic Republic of the Congo, Ethiopia, India, Indonesia, Iraq, Nigeria, Pakistan and South Africa. Monitoring ... information on vaccines and immunization You are here: Media centre Fact sheets Quick Links Sitemap Home Health ...

  12. 人博卡病毒VP2病毒样颗粒诱导特异性细胞免疫反应的研究%Enzyme-linked immunospot test detected specific cellular immune response induced by human Bocavirus VP2 virus-like particles

    Institute of Scientific and Technical Information of China (English)

    邓中华; 谢志萍; 姚立红; 谢乐云; 李金松; 张兵; 段招军; 曹友德

    2013-01-01

    Objective To discuss the enzyme linked immune spot test (ELISPOT) detected the cellular immune response induced by human Bocavirus(HBoV) VP2 virus-like particles(VLPs).Methods After immunized by HBoV VP2 VLPs,the specific cellular immune response in mice were detected by ELISPOT assay,observe the ELISPOT results at the conditions of different polypeptide stimulate,different cell culture time,different cell concentration and different specific stimulus peptide concentration,then screening the right ELISPOT experimental conditions and establish the ELISPOT method.Results The spots induced by HBoV1 VLPs immunized mice spleen lymphocytes stimulate with polypeptide P3 (GYIPIENEL) and P5 (LYQMPFFLL)were 233 spots/10(6) cells and 157 spots/10(6) cells,spots induced by HBoV2 VLPs immunized mice spleen lymphocytes stimulate with polypeptide P8 (GYIPVIHEL)were 113 spots/10(6) cells; 24 hours is the best time for culture,at this time HBoV1 and HBoV2 groups specificity secretion IFN-gamma ratio were 232 spots/10(6) cells and 119/10(6) cells; Best concentration of mice spleen lymphocyte is 5 × 10(5),right now HBoV1 and HBoV2 group specificity secretion IFN-gamma ratio were 232 spots/10(6) cells and 108/10(6) cells; Best concentration of polypeptides is 10 μg/ml,HBoV1 and HBoV2 group specificity secretion IFN-gamma ratio were 233 spots/10(6) cells and 96/10(6) cells.Conclusions HBoV1 and HBoV2 specificT-cell epitope in BABL/c mice were P3,P5 (HBoV1)and P8 (HBoV2).The best experiment condition were:cell cultivated for 24 h,cells concentration for 5 × 10(5) cells/well,stimulating polyperides concentration for 10 μg/ml,it can use to study the cellular immune induced by HBoV in mice.%目的 探讨酶联免疫斑点试验(ELISPOT)检测人博卡病毒(HBoV) VP2病毒样颗粒(VLPs)诱导特异性细胞免疫反应的最佳条件.方法 HBoV VP2 VLPs免疫小鼠后,用ELISPOT方法检测小鼠的特异性细胞免疫反应,观察不同多肽刺激、不同细胞培养时间、不

  13. Innate immune recognition of hepatitis B virus

    Institute of Scientific and Technical Information of China (English)

    Hong-Yan; Liu; Xiao-Yong; Zhang

    2015-01-01

    Hepatitis B virus(HBV) is a hepatotropic DNA virus and its infection results in acute or chronic hepatitis. It is reported that the host innate immune system contributes to viral control and liver pathology, while whether and how HBV can trigger the components of innate immunity remains controversial. In recent years, the data accumulated from HBV-infected patients, cellular and animal models have challenged the concept of a stealth virus for HBV infection. This editorial focuses on the current findings about the innate immune recognition to HBV. Such evaluation could help us to understand HBV immunopathogenesis and develop novel immune therapeutic strategies to combat HBV infection.

  14. Influence of infection of Mycobacterium tuberculosis in peripheral blood mononuclear cells on the function of cellular immunity%结核杆菌感染外周血单个核细胞对细胞免疫功能的影响

    Institute of Scientific and Technical Information of China (English)

    王健; 赵尔君; 孙琳; 吴传良; 段建明

    2001-01-01

    Objective:To investigate the influence of Mycobacteriumtuberculosis(Mtb) infection in peripheral blood mononuclear cells(PBMC) on the function of cellular immunity and its effects on the transformation of tuberculosis.Methods:The Mtb DNA in PBMC was detected by polymerase chain reaction(PCR),and phenotypes of T cell subsets and the expressing level of membrane interleukin-2 receptor(mIL-2R) with or without PHA inducement were detected by biotin-streptavidin(BSA) technique.Results:Both the proportion of T cell subsets and the level of mIL-2R were decreased in patients with tuberculosis than those in normal controls(P<0.05~P<0.01).While the proportion of CD3+ and CD4+ cells in PBMC,the ratio of CD4+/CD8+ cells,and the level of mIL-2R in PBMC were significantly lower in Mtb-DNA(+) group than those in Mtb-DNA(-) group(P<0.01),the proportion of CD8+ cells in PBMC was higher in Mtb-DNA(+) group than that in Mtb-DNA(-) group(P<0.05).Conclusions:The results in this study showed that the cellular immunity was obviously lower in patients with tuberculosis.The disorder of cellular immunity in patients with tuberculosis was further aggravated and the level of mIL-2R was restrained by infection of Mtb in PBMC.%目的:探讨结核杆菌感染外周血单个核细胞(PBMC)对细胞免疫功能的影响及在结核病转归中的作用。方法:用PCR检测结核病患者PBMC中结核杆菌DNA(TB-DNA),用生物素-链霉亲和素(BSA)系统同步检测其T细胞亚群及经植物血凝素(PHA)诱导前后膜白介素-2受体(mIL-2R)水平。结果:结核病患者T细胞亚群及mIL-2R水平与对照组相比均显著降低(P<0.05~P<0.01)。其中PBMC内TB-DNA(+)组与TB-DNA(-)组相比,CD3+、CD4+百分率及CD4+/CD8+比值降低,CD8+百分率增高(P<0.05);PHA诱导前后mIL-2R水平较对照组相比均低下,差异均有显著性(P<0.01)。结论:结核病患者体内细胞免疫功能低下,结核杆菌感染PBMC后可加重患者细胞

  15. Mucosal Vaccination Overcomes the Barrier to Recombinant Vaccinia Immunization Caused by Preexisting Poxvirus Immunity

    Science.gov (United States)

    Belyakov, Igor M.; Moss, Bernard; Strober, Warren; Berzofsky, Jay A.

    1999-04-01

    Overcoming preexisting immunity to vaccinia virus in the adult population is a key requirement for development of otherwise potent recombinant vaccinia vaccines. Based on our observation that s.c. immunization with vaccinia induces cellular and antibody immunity to vaccinia only in systemic lymphoid tissue and not in mucosal sites, we hypothesized that the mucosal immune system remains naive to vaccinia and therefore amenable to immunization with recombinant vaccinia vectors despite earlier vaccinia exposure. We show that mucosal immunization of vaccinia-immune BALB/c mice with recombinant vaccinia expressing HIV gp160 induced specific serum antibody and strong HIV-specific cytotoxic T lymphocyte responses. These responses occurred not only in mucosal but also in systemic lymphoid tissue, whereas systemic immunization was ineffective under these circumstances. In this context, intrarectal immunization was more effective than intranasal immunization. Boosting with a second dose of recombinant vaccinia was also more effective via the mucosal route. The systemic HIV-specific cytotoxic T lymphocyte response was enhanced by coadministration of IL-12 at the mucosal site. These results also demonstrate the independent compartmentalization of the mucosal versus systemic immune systems and the asymmetric trafficking of lymphocytes between them. This approach to circumvent previous vaccinia immunity may be useful for induction of protective immunity against infectious diseases and cancer in the sizable populations with preexisting immunity to vaccinia from smallpox vaccination.

  16. Desarrollo de vacunas contra el virus de la inmunodeficiencia humana tipo 1: Relevancia de la inmunidad celular contra subtipos Development of vaccines for HIV-1: Relevance of subtype-specific cellular immunity

    Directory of Open Access Journals (Sweden)

    Ana María Rodríguez

    2010-12-01

    , while in Argentina it is estimated that 120 000 persons have been infected. One of the challenges to address and ultimately overcome when developing a vaccine is the high variability of HIV-1. The M group, responsible for the pandemic, is divided into 10 subtypes and several sub-subtypes, in addition to the 48 circulating recombinant forms (CRF and over one hundred unique recombinant forms (URF. The HIV epidemic in Argentina is as complex as in the rest of the world, characterized by the high prevalence of infections caused by subtype B and BF variants. Despite the wide range of publications focused on the immune response against HIV as well as to vaccine development, how to overcome variability on vaccine antigen selection is still unclear. Studies performed in our laboratory showed the impact of the immunogenicity of BF recombinant variants, both in humans and in animal models. These results are of great concern in vaccine development for our region.

  17. MAP Kinases in Immune Responses

    Institute of Scientific and Technical Information of China (English)

    YongliangZhang; ChenDong

    2005-01-01

    MAP kinases are evolutionarily conserved signaling regulators from budding yeast to mammals and play essential roles in both innate and adaptive immune responses. There are three main families of MAPKs in mammals. Each of them has its own activators, inactivators, substrates and scaffolds, which altogether form a fine signaling network in response to different extracellular or intracellular stimulation. In this review, we summarize recent advances in understanding of the regulation of MAP kinases and the roles of MAP kinases in innate and adaptive immune responses. Cellular & Molecular Immunology. 2005;2(1):20-27.

  18. Candida Immunity

    Directory of Open Access Journals (Sweden)

    Julian R. Naglik

    2014-01-01

    Full Text Available The human pathogenic fungus Candida albicans is the predominant cause of both superficial and invasive forms of candidiasis. C. albicans primarily infects immunocompromised individuals as a result of either immunodeficiency or intervention therapy, which highlights the importance of host immune defences in preventing fungal infections. The host defence system utilises a vast communication network of cells, proteins, and chemical signals distributed in blood and tissues, which constitute innate and adaptive immunity. Over the last decade the identity of many key molecules mediating host defence against C. albicans has been identified. This review will discuss how the host recognises this fungus, the events induced by fungal cells, and the host innate and adaptive immune defences that ultimately resolve C. albicans infections during health.

  19. Alarmins, inflammasomes and immunity

    Directory of Open Access Journals (Sweden)

    Najwane Saïd-Sadier

    2012-12-01

    Full Text Available The elaboration of an effective immune response against pathogenic microbes such as viruses, intracellular bacteria or protozoan parasites relies on the recognition of microbial products called pathogen-associated molecular patterns (PAMPs by pattern recognition receptors (PRRs such as Toll-like receptors (TLRs. Ligation of the PRRs leads to synthesis and secretion of pro-inflammatory cytokines and chemokines. Infected cells and other stressed cells also release host-cell derived molecules, called damage-associated molecular patterns (DAMPs, danger signals, or alarmins, which are generic markers for damage. DAMPs are recognized by specific receptors on both immune and nonimmune cells, which, depending on the target cell and the cellular context, can lead to cell differentiation or cell death, and either inflammation or inhibition of inflammation. Recent research has revealed that DAMPs and PAMPs synergize to permit secretion of pro-inflammatory cytokines such as interleukin-1β (IL-1β: PAMPs stimulate synthesis of pro-IL-1β, but not its secretion; while DAMPs can stimulate assembly of an inflammasome containing, usually, a Nod-like receptor (NLR member, and activation of the protease caspase-1, which cleaves pro-IL-1β into IL-1β, allowing its secretion. Other NLR members do not participate in formation of inflammasomes but play other essential roles in regulation of the innate immune response.

  20. Reversible quantum cellular automata

    CERN Document Server

    Schumacher, B

    2004-01-01

    We define quantum cellular automata as infinite quantum lattice systems with discrete time dynamics, such that the time step commutes with lattice translations and has strictly finite propagation speed. In contrast to earlier definitions this allows us to give an explicit characterization of all local rules generating such automata. The same local rules also generate the global time step for automata with periodic boundary conditions. Our main structure theorem asserts that any quantum cellular automaton is structurally reversible, i.e., that it can be obtained by applying two blockwise unitary operations in a generalized Margolus partitioning scheme. This implies that, in contrast to the classical case, the inverse of a nearest neighbor quantum cellular automaton is again a nearest neighbor automaton. We present several construction methods for quantum cellular automata, based on unitaries commuting with their translates, on the quantization of (arbitrary) reversible classical cellular automata, on quantum c...

  1. Lymphocyte GH-axis hormones in immunity.

    Science.gov (United States)

    Weigent, Douglas A

    2013-01-01

    The production and utilization of common ligands and their receptors by cells of the immune and neuroendocrine systems constitutes a biochemical information circuit between and within the immune and neuroendocrine systems. The sharing of ligands and receptors allows the immune system to serve as the sixth sense notifying the nervous system of the presence of foreign entities. Within this framework, it is also clear that immune cell functions can be altered by neuroendocrine hormones and that cells of the immune system have the ability to produce neuroendocrine hormones. This review summarizes a part of this knowledge with particular emphasis on growth hormone (GH). The past two decades have uncovered a lot of detail about the actions of GH, acting through its receptor, at the molecular and cellular level and its influence on the immune system. The production and action of immune cell-derived GH is less well developed although its important role in immunity is also slowly emerging. Here we discuss the production of GH, GH-releasing hormone (GHRH) and insulin-like growth factor-1 (IGF-1) and their cognate receptors on cells of the immune system and their influence via endocrine/autocrine/paracrine and intracrine pathways on immune function. The intracellular mechanisms of action of immune cell-derived GH are still largely unexplored, and it is anticipated that further work in this particular area will establish an important role for this source of GH in normal physiology and in pathologic situations.

  2. 维生素D治疗对2型糖尿病合并呼吸道感染患者细胞免疫功能的影响研究%Influence of Vitamin D Therapy on Cellular Immune Function of Type 2 Diabetes Mellitus Patients Complicated with Respiratory Tract Infection

    Institute of Scientific and Technical Information of China (English)

    么焕新; 柴颖; 张永敬

    2015-01-01

    Objective To investigate the influence of vitamin D therapy on cellular immune function of type 2 diabetes mellitus patients complicated with respiratory tract infection. Methods A total of 60 type 2 diabetes mellitus patients complicated with respiratory tract infection were selected in Xiehe Hospital of Tangshan from January to March in 2013,and they were randomly divided into control group and observation group,each of 30 cases. Both groups given routine treatment,and control group given extra placebo, while observation group given extra calcitriol soft capsules;both groups treated for 4 weeks. Before and after treatment,bone metabolic markers including serum levels of calcium,phosphorus,alkaline phosphatase and 25 hydroxy vitamin D3 , index of cellular immunity including CD3+, CD4+, CD8+ percentage and CD4+ /CD8+ ratio were compared between the two groups. Results No significant differences of bone metabolic markers including serum levels of calcium,phosphorus,alkaline phosphatase and 25 hydroxy vitamin D3 or index of cellular immunity including CD3+, CD4+, CD8+ percentage and CD4+ /CD8+ ratio was found between the two groups before treatment(P﹥0. 05);after treatment,serum levels of calcium and 25 hydroxy vitamin D3 ,CD3+ percentage and CD4+ /CD8+ ratio of observation group were higher than those of control group(P﹤0. 05),but no significant differences of serum phosphorus and alkaline phosphatase levels or CD4+,CD8+percentage was found between the two groups ( P﹥0. 05 ). Conclusion Vitamin D therapy can improve the cellular immune function of type 2 diabetes mellitus patients complicated with respiratory tract infection,and is safe.%目的:探讨维生素D治疗对2型糖尿病合并呼吸道感染患者细胞免疫功能的影响。方法选取唐山市协和医院2013年1—3月收治的2型糖尿病合并呼吸道感染患者60例,随机分为对照组和观察组,每组30例。对照组患者在常规治疗基础上给予安慰剂,观察组

  3. Cardiac allograft immune activation: current perspectives

    Directory of Open Access Journals (Sweden)

    Chang D

    2014-12-01

    Full Text Available David Chang, Jon Kobashigawa Cedars-Sinai Heart Institute, Los Angeles, CA, USA Abstract: Heart transplant remains the most durable option for end-stage heart disease. Cardiac allograft immune activation and heart transplant rejection remain among the main complications limiting graft and recipient survival. Mediators of the immune system can cause different forms of rejection post-heart transplant. Types of heart transplant rejection include hyperacute rejection, cellular rejection, antibody-mediated rejection, and chronic rejection. In this review, we will summarize the innate and adaptive immune responses which influence the post-heart transplant recipient. Different forms of rejection and their clinical presentation, detection, and immune monitoring will be discussed. Treatment of heart transplant rejection will be examined. We will discuss potential treatment strategies for preventing rejection post-transplant in immunologically high-risk patients with antibody sensitization. Keywords: heart transplant, innate immunity, adaptive immunity, rejection, immunosuppression

  4. Metal-Based Nanoparticles and the Immune System: Activation, Inflammation, and Potential Applications.

    Science.gov (United States)

    Luo, Yueh-Hsia; Chang, Louis W; Lin, Pinpin

    2015-01-01

    Nanomaterials, including metal-based nanoparticles, are used for various biological and medical applications. However, metals affect immune functions in many animal species including humans. Different physical and chemical properties induce different cellular responses, such as cellular uptake and intracellular biodistribution, leading to the different immune responses. The goals of this review are to summarize and discuss the innate and adaptive immune responses triggered by metal-based nanoparticles in a variety of immune system models.

  5. A preliminary study to evaluate the immune responses induced by immunization of dogs with inactivated Ehrlichia canis organisms

    Directory of Open Access Journals (Sweden)

    Sunita Mahan

    2005-09-01

    Full Text Available Ehrlichia canis is an intracellular pathogen that causes canine monocytic ehrlichiosis. Although the role of antibody responses cannot be discounted, control of this intracellular pathogen is expected to be by cell mediated immune responses. The immune responses in dogs immunized with inactivated E. canis organisms in combination with Quil A were evaluated. Immunization provoked strong humoral and cellular immune responses, which were demonstrable by Western blotting and lymphocyte proliferation assays. By Western blotting antibodies to several immunodominant E. canis proteins were detected in serum from immunized dogs and antibody titres increased after each immunization. The complement of immunogenic proteins recognized by the antisera were similar to those recognized in serum from infected dogs. Upon challenge with live E. canis, rapid anamnestic humoral responses were detected in the serum of immunized dogs and primary antibody responses were detected in the serum from control dogs. Following immunization, a lymphocyte proliferative response (cellular immunity was detected in peripheral blood mononuclear cells (PBMNs of immunized dogs upon stimulation with E. canis antigens. These responses were absent from non-immunized control dogs until after infection with live E. canis, when antigen specific-lymphocyte proliferation responses were also detected in the PBMNs of the control dogs. It can be thus concluded that immunization against canine monocytic ehrlichiosis may be feasible. However, the immunization regimen needs to be optimized and a detailed investigation needs to be done to determine if this regimen can prevent development of acute and chronic disease.

  6. Seasonal changes in human immune responses to malaria

    DEFF Research Database (Denmark)

    Hviid, L; Theander, T G

    1993-01-01

    Cellular as well as humorol immune responses to malaria antigens fluctuate in time in individuals living in molono-endemic areas, particularly where malaria transmission is seasonal. The most pronounced changes are seen in association with clinical attacks, but osymptomatic infection can also lead...... to apparent immune depression. However, recent data have shown that seasonal variation in cellular immune responses may occur even in the absence of detectable porositaemia. Here, Lars Hviid and Thor G. Theonder review the seasonal variation in human immune responses to malaria, and discuss its possible...

  7. Mucosal immunity and the microbiome.

    Science.gov (United States)

    Neish, Andrew S

    2014-01-01

    By definition, the mucosal immune system is responsible for interfacing with the outside world, specifically responding to external threats, of which pathogenic microbes represent a primary challenge. However, it has become apparent that the human host possesses a numerically vast and taxonomically diverse resident microbiota, predominantly in the gut, and also in the airway, genitourinary tract, and skin. The microbiota is generally considered symbiotic, and has been implicated in the regulation of cellular growth, restitution after injury, maintenance of barrier function, and importantly, in the induction, development, and modulation of immune responses. The mucosal immune system uses diverse mechanisms that protect the host from overt pathogens, but necessarily has coevolved to monitor, nurture, and exploit the normal microbiota. As a whole, mucosal immunity encompasses adaptive immune regulation that can involve systemic processes, local tissue-based innate and inflammatory events, intrinsic defenses, and highly conserved cell autonomous cytoprotective responses. Interestingly, specific taxa within the normal microbiota have been implicated in roles shaping specific adaptive, innate, and cell autonomous responses. Taken together, the normal microbiota exerts profound effects on the mucosal immune system, and likely plays key roles in human physiology and disease.

  8. Immunizations: Active vs. Passive

    Science.gov (United States)

    ... Prevention > Immunizations > Immunizations: Active vs. Passive Safety & Prevention Listen Español Text Size Email Print Share Immunizations: Active vs. Passive Page Content Article Body Pediatricians can ...

  9. Heterogeneous cellular networks

    CERN Document Server

    Hu, Rose Qingyang

    2013-01-01

    A timely publication providing coverage of radio resource management, mobility management and standardization in heterogeneous cellular networks The topic of heterogeneous cellular networks has gained momentum in industry and the research community, attracting the attention of standardization bodies such as 3GPP LTE and IEEE 802.16j, whose objectives are looking into increasing the capacity and coverage of the cellular networks. This book focuses on recent progresses,  covering the related topics including scenarios of heterogeneous network deployment, interference management i

  10. Immune response to fungal infections.

    Science.gov (United States)

    Blanco, Jose L; Garcia, Marta E

    2008-09-15

    The immune mechanisms of defence against fungal infections are numerous, and range from protective mechanisms that were present early in evolution (innate immunity) to sophisticated adaptive mechanisms that are induced specifically during infection and disease (adaptive immunity). The first-line innate mechanism is the presence of physical barriers in the form of skin and mucous membranes, which is complemented by cell membranes, cellular receptors and humoral factors. There has been a debate about the relative contribution of humoral and cellular immunity to host defence against fungal infections. For a long time it was considered that cell-mediated immunity (CMI) was important, but humoral immunity had little or no role. However, it is accepted now that CMI is the main mechanism of defence, but that certain types of antibody response are protective. In general, Th1-type CMI is required for clearance of a fungal infection, while Th2 immunity usually results in susceptibility to infection. Aspergillosis, which is a disease caused by the fungus Aspergillus, has been the subject of many studies, including details of the immune response. Attempts to relate aspergillosis to some form of immunosuppression in animals, as is the case with humans, have not been successful to date. The defence against Aspergillus is based on recognition of the pathogen, a rapidly deployed and highly effective innate effector phase, and a delayed but robust adaptive effector phase. Candida albicans, part of the normal microbial flora associated with mucous surfaces, can be present as congenital candidiasis or as acquired defects of cell-mediated immunity. Resistance to this yeast is associated with Th1 CMI, whereas Th2 immunity is associated with susceptibility to systemic infection. Dermatophytes produce skin alterations in humans and other animals, and the essential role of the CMI response is to destroy the fungi and produce an immunoprotective status against re-infection. The resolution

  11. Research advances in cellular immunotherapy for primary hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    ZHANG Ye

    2014-09-01

    Full Text Available The present therapy for primary hepatocellular carcinoma (HCC consists of surgery as well as local radiotherapy and chemotherapy. However, the majority of patients are susceptible to recurrence after comprehensive treatment, and the overall treatment outcome is not ideal due to the lack of effective drugs and strategies. Increasing evidence has demonstrated that the immune system is closely related to the development, progression, metastasis, and recurrence of HCC. Thus, immune therapy, especially cellular immunotherapy, could regulate immune function and induce specific antitumor immunity to achieve the goal of controlling HCC and reducing its recurrence and metastasis, which has become an essential part in the comprehensive treatment of HCC. The findings in preclinical and clinical studies on cellular immunotherapy for HCC data are reviewed, and the current problems are discussed.

  12. Dynamic Metabolism in Immune Response

    Science.gov (United States)

    Al-Hommrani, Mazen; Chakraborty, Paramita; Chatterjee, Shilpak; Mehrotra, Shikhar

    2016-01-01

    Cell, the basic unit of life depends for its survival on nutrients and thereby energy to perform its physiological function. Cells of lymphoid and myeloid origin are key in evoking an immune response against “self” or “non-self” antigens. The thymus derived lymphoid cells called T cells are a heterogenous group with distinct phenotypic and molecular signatures that have been shown to respond against an infection (bacterial, viral, protozoan) or cancer. Recent studies have unearthed the key differences in energy metabolism between the various T cell subsets, natural killer cells, dendritic cells, macrophages and myeloid derived suppressor cells. While a number of groups are dwelling into the nuances of the metabolism and its role in immune response at various strata, this review focuses on dynamic state of metabolism that is operational within various cellular compartments that interact to mount an effective immune response to alleviate disease state.

  13. Homeostatic Immunity and the Microbiota.

    Science.gov (United States)

    Belkaid, Yasmine; Harrison, Oliver J

    2017-04-18

    The microbiota plays a fundamental role in the induction, education, and function of the host immune system. In return, the host immune system has evolved multiple means by which to maintain its symbiotic relationship with the microbiota. The maintenance of this dialogue allows the induction of protective responses to pathogens and the utilization of regulatory pathways involved in the sustained tolerance to innocuous antigens. The ability of microbes to set the immunological tone of tissues, both locally and systemically, requires tonic sensing of microbes and complex feedback loops between innate and adaptive components of the immune system. Here we review the dominant cellular mediators of these interactions and discuss emerging themes associated with our current understanding of the homeostatic immunological dialogue between the host and its microbiota. Published by Elsevier Inc.