WorldWideScience

Sample records for falciparum malarial infection

  1. Role of the Parasight-F test in the diagnosis of complicated Plasmodium falciparum malarial infection

    Directory of Open Access Journals (Sweden)

    Arora Sandeep

    2003-01-01

    Full Text Available An evaluation was made of the diagnostic efficacy and utility of the Parasight-F test in diagnosing Plasmodium falciparum malaria, compared with conventional microscopy, particularly in severe and complicated cases. This study was designed as a prospective, case control hospital-based study. Febrile patients suspected to be suffering from malaria were selected randomly and were subjected to peripheral smear examinations (thick and thin and Parasight-F tests till the required number of at least 30 cases of P. falciparum infection were identified, including at least 15 complicated cases. In addition 20 cases of P. vivax malarial infection as well as 20 healthy age and sex-matched individuals were taken as two control groups. The outcome measure was the number of cases with positive Parasight-F test results compared with conventional microscopy. Thirty-two patients with P. falciparum malaria were identified, with 15 severe and complicated cases. Peripheral smears were positive in 29 (91% of these, while parasight-F test was positive in 31 out of 32 (97% cases. Parasites were detected only by bone marrow examination in one case. Diagnostic sensitivity and specificity of peripheral smears for detecting falciparum infection were 90.6% and 100% respectively while that of the Parasight-F test were 96.8% and 100%, respectively (P>.05. The Parasight-F test has high sensitivity and specificity in diagnosing P. falciparum malarial infection, comparable to or even higher than microscopy exams, particularly in severe and complicated cases, with additional advantages of speed, simplicity and objectivity.

  2. Crystal Structure of Arginase from Plasmodium falciparum and Implications for l-Arginine Depletion in Malarial Infection

    Energy Technology Data Exchange (ETDEWEB)

    Dowling, Daniel P.; Ilies, Monica; Olszewski, Kellen L.; Portugal, Silvia; Mota, Maria M.; Llinas, Manuel; Christianson, David W. (IMM-Portugal); (UPENN); (Princeton)

    2010-09-03

    The 2.15 {angstrom} resolution crystal structure of arginase from Plasmodium falciparum, the parasite that causes cerebral malaria, is reported in complex with the boronic acid inhibitor 2(S)-amino-6-boronohexanoic acid (ABH) (K{sub d} = 11 {micro}M). This is the first crystal structure of a parasitic arginase. Various protein constructs were explored to identify an optimally active enzyme form for inhibition and structural studies and to probe the structure and function of two polypeptide insertions unique to malarial arginase: a 74-residue low-complexity region contained in loop L2 and an 11-residue segment contained in loop L8. Structural studies indicate that the low-complexity region is largely disordered and is oriented away from the trimer interface; its deletion does not significantly compromise enzyme activity. The loop L8 insertion is located at the trimer interface and makes several intra- and intermolecular interactions important for enzyme function. In addition, we also demonstrate that arg- Plasmodium berghei sporozoites show significantly decreased liver infectivity in vivo. Therefore, inhibition of malarial arginase may serve as a possible candidate for antimalarial therapy against liver-stage infection, and ABH may serve as a lead for the development of inhibitors.

  3. Phase I randomized dose-ascending placebo-controlled trials of ferroquine - a candidate anti-malarial drug - in adults with asymptomatic Plasmodium falciparum infection

    Directory of Open Access Journals (Sweden)

    Ospina Salazar Carmen L

    2011-03-01

    Full Text Available Abstract Background The development and spread of drug resistant Plasmodium falciparum strains is a major concern and novel anti-malarial drugs are, therefore, needed. Ferroquine is a ferrocenic derivative of chloroquine with proven anti-malarial activity against chloroquine-resistant and -sensitive P. falciparum laboratory strains. Methods Adult young male aged 18 to 45 years, asymptomatic carriers of P. falciparum, were included in two-dose escalation, double-blind, randomized, placebo-controlled Phase I trials, a single dose study and a multiple dose study aiming to evaluate oral doses of ferroquine from 400 to 1,600 mg. Results Overall, 54/66 patients (40 and 26 treated in the single and multiple dose studies, respectively experienced at least one adverse event, 15 were under placebo. Adverse events were mainly gastrointestinal symptoms such as abdominal pain (16, diarrhoea (5, nausea (13, and vomiting (9, but also headache (11, and dizziness (5. A few patients had slightly elevated liver parameters (10/66 including two patients under placebo. Moderate changes in QTc and morphological changes in T waves were observed in the course of the study. However, no adverse cardiac effects with clinical relevance were observed. Conclusions These phase I trials showed that clinically, ferroquine was generally well-tolerated up to 1,600 mg as single dose and up to 800 mg as repeated dose in asymptomatic young male with P. falciparum infection. Further clinical development of ferroquine, either alone or in combination with another anti-malarial, is highly warranted and currently underway.

  4. Tetany with Plasmodium falciparum infection.

    Science.gov (United States)

    Singh, P S; Singh, Neha

    2012-07-01

    Plasmodium falciparum is a malarial infection with high morbidity and wide spectrum of atypical presentation. Here we report an unusual presentation of malaria as tetany with alteration in calcium,phosphate and magnesium metabolism Hypocalcaemia in malaria can cause prolonged Q-Tc interval which could be arisk factor for quinine cardiotoxicity and sudden death Hence monitoring of serum calcium in severe malarial infection and cautious use of quinine in such patients is very important in management

  5. ROLE OF HEMATOLOGICAL PARAMETERS AS AN INDICATOR OF ACUTE MALARIAL INFECTION IN UTTARAKHAND STATE OF INDIA

    Directory of Open Access Journals (Sweden)

    Smita Chandra

    2013-01-01

    Thrombocytopenia (8 fl and PDW of 6-10 also show considerable sensitivity for malarial infection. In addition, thrombocytopenia (8 fl was more sensitive for vivax infection while PDW 6-10 was more sensitive for falciparum infection.

  6. The mechanism of erythrocyte invasion by the malarial parasite, Plasmodium falciparum.

    Science.gov (United States)

    Farrow, Rachel E; Green, Judith; Katsimitsoulia, Zoe; Taylor, William R; Holder, Anthony A; Molloy, Justin E

    2011-12-01

    Plasmodium falciparum is the most virulent causative agent of malaria in man accounting for 80% of all malarial infections and 90% of the one million annual deaths attributed to malaria. P. falciparum is a unicellular, Apicomplexan parasite, that spends part of its lifecycle in the mosquito and part in man and it has evolved a special form of motility that enables it to burrow into animal cells, a process termed "host cell invasion". The acute, life threatening, phase of malarial infection arises when the merozoite form of the parasite undergoes multiple cycles of red blood cell invasion and rapid proliferation. Here, we discuss the molecular machinery that enables malarial parasites to invade red blood cells and we focus particularly on the ATP-driven acto-myosin motor that powers invasion.

  7. Platelets kill intraerythrocytic malarial parasites and mediate survival to infection.

    Science.gov (United States)

    McMorran, Brendan J; Marshall, Vikki M; de Graaf, Carolyn; Drysdale, Karen E; Shabbar, Meriam; Smyth, Gordon K; Corbin, Jason E; Alexander, Warren S; Foote, Simon J

    2009-02-01

    Platelets play a critical role in the pathogenesis of malarial infections by encouraging the sequestration of infected red blood cells within the cerebral vasculature. But platelets also have well-established roles in innate protection against microbial infections. We found that purified human platelets killed Plasmodium falciparum parasites cultured in red blood cells. Inhibition of platelet function by aspirin and other platelet inhibitors abrogated the lethal effect human platelets exert on P. falciparum parasites. Likewise, platelet-deficient and aspirin-treated mice were more susceptible to death during erythrocytic infection with Plasmodium chabaudi. Both mouse and human platelets bind malarial-infected red cells and kill the parasite within. These results indicate a protective function for platelets in the early stages of erythrocytic infection distinct from their role in cerebral malaria.

  8. Electrolyte Disturbance and the Type of Malarial Infection

    Directory of Open Access Journals (Sweden)

    Asima RANI

    2015-11-01

    Full Text Available Background: Electrolytes play an important role in the normal functioning of human body. Electrolyte imbalance and mineral disturbances is the common clinical manifestation in several infectious diseases including malaria. Malaria is a mosquito borne serious infectious disease of the world. Plasmodium vivax and P. falciparum are the main agents responsible for malaria in Pakistan. Electrolyte imbalance in malarial infection may lead towards the severity of disease.Methods: The present study analyzed the electrolytes levels (Na, K, Ca and Mg in malarial patients and healthy individuals. Patients were categorized into two groups, P. falciparum and P. vivax, based on causative species of Plasmodium. Study consisted of 173 individuals, out of which 73 were malarial patients and 100 were normal healthy individuals. Results: Concentrations of Na, K, and Ca were low in the blood of malarial patients as compared to healthy individuals (P<0.05. No significant difference for these electrolytes exists between P. falciparum and P. vivax infected groups (P>0.05. The concentration of Mg was changed based on exposure to the type of parasite. In P. falciparum infection, the level of Mg was lower than healthy individuals was (P<0.05. Discordantly, in case of P. vivaxinfection, Mg level was higher than healthy individuals were (P<0.05. No variation was noticed in electrolytes levels due to gender differences (P>0.05.Conclusion: Variation in Mg levels occurs due to exposure of Plasmodium depending on its type. The levels of Na, K and Ca are also changed due to Plasmodium, regardless of its type. Keywords: Malaria, Electrolytes, Plasmodium falciparum, Plasmodium vivax

  9. Electrolyte Disturbance and the Type of Malarial Infection

    OpenAIRE

    Rani, Asima; AKHTAR, Shahnaz; Syed Kashif NAWAZ; Shazia IRFAN; AZAM, Sadia; Arshad, Muhammad

    2015-01-01

    Background: Electrolytes play an important role in the normal functioning of human body. Electrolyte imbalance and mineral disturbances is the common clinical manifestation in several infectious diseases including malaria. Malaria is a mosquito borne serious infectious disease of the world. Plasmodium vivax and P. falciparum are the main agents responsible for malaria in Pakistan. Electrolyte imbalance in malarial infection may lead towards the severity of disease.Methods: The present study a...

  10. Risk of Abnormal Red Blood Cell to Get Malarial Infection

    OpenAIRE

    Viroj Wiwanitkit

    2008-01-01

    Malarial infection in red blood cell disorder is an interesting topic in tropical medicine. In this work, the author proposes a new idea on the physical property of red blood cell and risk for getting malarial infection. The study on scenario of red blood cell disorders is performed. Conclusively, the author found that physical property of red blood cell is an important determinant for getting malarial infection

  11. Survival strategies of the malarial parasite Plasmodium falciparum

    OpenAIRE

    Ramya, TNC; Surolia, Namita; Surolia, Avadhesha

    2002-01-01

    Plasmodium falciparum, the protozoan parasite causing falciparum malaria, is undoubtedly highly versatile when it comes to survival and defence strategies. Strategies adopted by the asexual blood stages of Plasmodium range from unique pathways of nutrient uptake to immune evasion strategies and multiple drug resistance. Studying the survival strategies of Plasmodium could help us envisage strategies of tackling one of the worst scourges of mankind.

  12. Differential Plasmodium falciparum surface antigen expression among children with Malarial Retinopathy

    Science.gov (United States)

    Abdi, Abdirahman I.; Kariuki, Symon M; Muthui, Michelle K.; Kivisi, Cheryl A.; Fegan, Gregory; Gitau, Evelyn; Newton, Charles R; Bull, Peter C.

    2015-01-01

    Retinopathy provides a window into the underlying pathology of life-threatening malarial coma (“cerebral malaria”), allowing differentiation between 1) coma caused by sequestration of Plasmodium falciparum-infected erythrocytes in the brain and 2) coma with other underlying causes. Parasite sequestration in the brain is mediated by PfEMP1; a diverse parasite antigen that is inserted into the surface of infected erythrocytes and adheres to various host receptors. PfEMP1 sub-groups called “DC8” and “DC13” have been proposed to cause brain pathology through interactions with endothelial protein C receptor. To test this we profiled PfEMP1 gene expression in parasites from children with clinically defined cerebral malaria, who either had or did not have accompanying retinopathy. We found no evidence for an elevation of DC8 or DC13 PfEMP1 expression in children with retinopathy. However, the proportional expression of a broad subgroup of PfEMP1 called “group A” was elevated in retinopathy patients suggesting that these variants may play a role in the pathology of cerebral malaria. Interventions targeting group A PfEMP1 may be effective at reducing brain pathology. PMID:26657042

  13. Malarial parasite diversity in chimpanzees: the value of comparative approaches to ascertain the evolution of Plasmodium falciparum antigens.

    Science.gov (United States)

    Pacheco, M Andreína; Cranfield, Michael; Cameron, Kenneth; Escalante, Ananias A

    2013-09-17

    Plasmodium falciparum shares its most recent common ancestor with parasites found in African apes; these species constitute the so-called Laverania clade. In this investigation, the evolutionary history of Plasmodium lineages found in chimpanzees (Pan troglodytes) was explored. Here, the remainders of 74 blood samples collected as part of the chimpanzees' routine health examinations were studied. For all positive samples with parasite lineages belonging to the Laverania clade, the complete mitochondrial genome (mtDNA), the gene encoding dihydrofolate reductase-thymidylate synthase (dhfr-ts), the chloroquine resistance transporter (Pfcrt), the circumsporozoite protein (csp), merozoite surface protein 2 (msp2), and the DBL-1 domain from var2CSA were amplified, cloned, and sequenced. Other Plasmodium species were included in the mtDNA, dhfr-ts, and csp analyses. Phylogenetic and evolutionary genetic analyses were performed, including molecular clock analyses on the mtDNA. Nine chimpanzees were malaria positive (12.2%); four of those infections were identified as P. falciparum, two as a Plasmodium reichenowi-like parasite or Plasmodium sp., one as Plasmodium gaboni, and two as Plasmodium malariae. All P. falciparum isolates were resistant to chloroquine indicating that the chimpanzees acquired such infections from humans in recent times. Such findings, however, are not sufficient for implicating chimpanzees as an animal reservoir for P. falciparum.Timing estimates support that the Laverania clade has co-existed with hominids for a long-period of time. The proposed species P. gaboni, Plasmodium billbrayi, and Plasmodium billcollinsi are monophyletic groups supporting that they are indeed different species.An expanded CSP phylogeny is presented, including all the Laverania species and other malarial parasites. Contrasting with other Plasmodium, the Laverania csp exhibits great conservation at the central tandem repeat region. Msp2 and var2CSA, however, show extended

  14. Novel Inhibitors of Plasmodium falciparum Dihydroorotate Dehydrogenase with Anti-malarial Activity in the Mouse Model

    Energy Technology Data Exchange (ETDEWEB)

    Booker, Michael L.; Bastos, Cecilia M.; Kramer, Martin L.; Barker, Jr., Robert H.; Skerlj, Renato; Sidhu, Amar Bir; Deng, Xiaoyi; Celatka, Cassandra; Cortese, Joseph F.; Guerrero Bravo, Jose E.; Crespo Llado, Keila N.; Serrano, Adelfa E.; Angulo-Barturen, Iñigo; Jiménez-Díaz, María Belén; Viera, Sara; Garuti, Helen; Wittlin, Sergio; Papastogiannidis, Petros; Lin, Jing-wen; Janse, Chris J.; Khan, Shahid M.; Duraisingh, Manoj; Coleman, Bradley; Goldsmith, Elizabeth J.; Phillips, Margaret A.; Munoz, Benito; Wirth, Dyann F.; Klinger, Jeffrey D.; Wiegand, Roger; Sybertz, Edmund (Leiden-MC); (Puerto Rico); (STPHI); (Harvard); (GSK); (Genzyme); (UTSMC)

    2010-11-22

    Plasmodium falciparum, the causative agent of the most deadly form of human malaria, is unable to salvage pyrimidines and must rely on de novo biosynthesis for survival. Dihydroorotate dehydrogenase (DHODH) catalyzes the rate-limiting step in the pyrimidine biosynthetic pathway and represents a potential target for anti-malarial therapy. A high throughput screen and subsequent medicinal chemistry program identified a series of N-alkyl-5-(1H-benzimidazol-1-yl)thiophene-2-carboxamides with low nanomolar in vitro potency against DHODH from P. falciparum, P. vivax, and P. berghei. The compounds were selective for the parasite enzymes over human DHODH, and x-ray structural data on the analog Genz-667348, demonstrated that species selectivity could be attributed to amino acid differences in the inhibitor-binding site. Compounds from this series demonstrated in vitro potency against the 3D7 and Dd2 strains of P. falciparum, good tolerability and oral exposure in the mouse, and ED{sub 50} values in the 4-day murine P. berghei efficacy model of 13-21 mg/kg/day with oral twice-daily dosing. In particular, treatment with Genz-667348 at 100 mg/kg/day resulted in sterile cure. Two recent analogs of Genz-667348 are currently undergoing pilot toxicity testing to determine suitability as clinical development candidates.

  15. The multiplicity of Plasmodium falciparum infections is associated with acquired immunity to asexual blood stage antigens.

    NARCIS (Netherlands)

    Mayengue, P.I.; Luty, A.J.F.; Rogier, C.; Baragatti, M.; Kremsner, P.G.; Ntoumi, F.

    2009-01-01

    We evaluated the relationship between immune response markers and the multiplicity of Plasmodium falciparum infections in order to assess the validity of the latter as an indicator of the acquisition of anti-malarial immunity. Parasite populations present during malaria episodes of 64 Gabonese child

  16. Systems analysis of chaperone networks in the malarial parasite Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Soundara Raghavan Pavithra

    2007-09-01

    Full Text Available Molecular chaperones participate in the maintenance of cellular protein homeostasis, cell growth and differentiation, signal transduction, and development. Although a vast body of information is available regarding individual chaperones, few studies have attempted a systems level analysis of chaperone function. In this paper, we have constructed a chaperone interaction network for the malarial parasite, Plasmodium falciparum. P. falciparum is responsible for several million deaths every year, and understanding the biology of the parasite is a top priority. The parasite regularly experiences heat shock as part of its life cycle, and chaperones have often been implicated in parasite survival and growth. To better understand the participation of chaperones in cellular processes, we created a parasite chaperone network by combining experimental interactome data with in silico analysis. We used interolog mapping to predict protein-protein interactions for parasite chaperones based on the interactions of corresponding human chaperones. This data was then combined with information derived from existing high-throughput yeast two-hybrid assays. Analysis of the network reveals the broad range of functions regulated by chaperones. The network predicts involvement of chaperones in chromatin remodeling, protein trafficking, and cytoadherence. Importantly, it allows us to make predictions regarding the functions of hypothetical proteins based on their interactions. It allows us to make specific predictions about Hsp70-Hsp40 interactions in the parasite and assign functions to members of the Hsp90 and Hsp100 families. Analysis of the network provides a rational basis for the anti-malarial activity of geldanamycin, a well-known Hsp90 inhibitor. Finally, analysis of the network provides a theoretical basis for further experiments designed toward understanding the involvement of this important class of molecules in parasite biology.

  17. Longitudinal in vitro surveillance of Plasmodium falciparum sensitivity to common anti-malarials in Thailand between 1994 and 2010

    Directory of Open Access Journals (Sweden)

    Parker Daniel

    2012-08-01

    Full Text Available Abstract Background Drug and multidrug-resistant Plasmodium falciparum malaria has existed in Thailand for several decades. Furthermore, Thailand serves as a sentinel for drug-resistant malaria within the Greater Mekong sub-region. However, the drug resistance situation is highly dynamic, changing quickly over time. Here parasite in vitro drug sensitivity is reported for artemisinin derivatives, mefloquine, chloroquine and quinine, across Thailand. Methods Blood was drawn from patients infected with P. falciparum in seven sentinel provinces along Thai international borders with Cambodia, Myanmar, Laos, and Malaysia. In vitro parasite sensitivity was tested using the World Health Organization’s microtest (mark III (between 1994 and 2002 and the histidine-rich protein-2 (HRP2-based enzyme-linked immunosorbent assay (in 2010. Following World Health Organization protocol, at least 30 isolates were collected for each province and year represented in this study. Where possible, t-tests were used to test for significant differences. Results There appears to be little variation across study sites with regard to parasite sensitivity to chloroquine. Quinine resistance appears to have been rising prior to 1997, but has subsequently decreased. Mefloquine sensitivity appears high across the provinces, especially along the north-western border with Myanmar and the eastern border with Cambodia. Finally, the data suggest that parasite sensitivity to artemisinin and its derivatives is significantly higher in provinces along the north-western border with Myanmar. Conclusions Parasite sensitivity to anti-malarials in Thailand is highly variable over time and largely mirrors official drug use policy. The findings with regard to reduced sensitivity to artemisinin derivatives are supported by recent reports of reduced parasite clearance associated with artemisinin. This trend is alarming since artemisinin is considered the last defence against malaria. Continued

  18. Crystal structure of the aquaglyceroporin PfAQP from the malarial parasite Plasmodium falciparum

    Science.gov (United States)

    Newby, Zachary E R; O’Connell, Joseph; Robles-Colmenares, Yaneth; Khademi, Shahram; Miercke, Larry J; Stroud, Robert M

    2008-01-01

    The 2.05-Å resolution structure of the aquaglyceroporin from the malarial parasite Plasmodium falciparum (PfAQP), a protein important in the parasite’s life cycle, has been solved. The structure provides key evidence for the basis of water versus glycerol selectivity in aquaporin family members. Unlike its closest homolog of known structure, GlpF, the channel conducts both glycerol and water at high rates, framing the question of what determines high water conductance in aquaporin channels. The universally conserved arginine in the selectivity filter is constrained by only two hydrogen bonds in GlpF, whereas there are three in all water-selective aquaporins and in PfAQP. The decreased cost of dehydrating the triply-satisfied arginine cation may provide the basis for high water conductance. The two Asn-Pro-Ala (NPA) regions of PfAQP, which bear rare substitutions to Asn-Leu-Ala (NLA) and Asn-Pro-Ser (NPS), participate in preserving the orientation of the selectivity filter asparagines in the center of the channel. PMID:18500352

  19. Trafficking of STEVOR to the Maurer's clefts in Plasmodium falciparum -infected erythrocytes

    National Research Council Canada - National Science Library

    Przyborski, Jude M; Miller, Susanne K; Rohrbach, Petra; Pfahler, Judith M; Crabb, Brendan S; Henrich, Philipp P; Lanzer, Michael

    2005-01-01

    The human malarial parasite Plasmodium falciparum exports proteins to destinations within its host erythrocyte, including cytosol, surface and membranous profiles of parasite origin termed Maurer's clefts...

  20. Ex vivo susceptibility of Plasmodium falciparum isolates from Dakar, Senegal, to seven standard anti-malarial drugs

    Directory of Open Access Journals (Sweden)

    Pradines Bruno

    2011-10-01

    Full Text Available Abstract Background As a result of widespread chloroquine and sulphadoxine-pyrimethamine resistance, artemisinin-based combination therapy (ACT (which includes artemether-lumefantrine and artesunate-amodiaquine has been recommended as a first-line anti-malarial regimen in Senegal since 2006. Since then, there have been very few reports on the ex vivo susceptibility of Plasmodium falciparum to anti-malarial drugs. To examine whether parasite susceptibility has been affected by the widespread use of ACT, the ex vivo susceptibility of local isolates was assessed at the military hospital of Dakar. Methods The ex vivo susceptibility of 93 P. falciparum isolates from Dakar was successfully determined using the Plasmodium lactate dehydrogenase (pLDH ELISA for the following drugs: chloroquine (CQ, quinine (QN, mefloquine (MQ, monodesethylamodiaquine (MDAQ, lumefantrine (LMF, dihydroartemisinin (DHA and doxycycline (DOX. Results After transformation of the isolate IC50 in ratio of IC50 according to the susceptibility of the 3D7 reference strain (isolate IC50/3D7 IC50, the prevalence of the in vitro resistant isolates with reduced susceptibility was 50% for MQ, 22% for CQ, 12% for DOX, 6% for both QN and MDAQ and 1% for the drugs LMF and DHA. The highest significant positive correlations were shown between responses to CQ and MDAQ (r = 0.569; P r = 0.511; P r = 0.428; P = 0.0001, LMF and MQ (r = 0.413; P = 0.0002, QN and DHA (r = 0.402; P = 0.0003 and QN and MQ (r = 0.421; P = 0.0001. Conclusions The introduction of ACT in 2002 has not induced a decrease in P. falciparum susceptibility to the drugs DHA, MDAQ and LMF, which are common ACT components. However, the prevalence of P. falciparum isolates with reduced susceptibility has increased for both MQ and DOX. Taken together, these data suggest that intensive surveillance of the P. falciparum in vitro susceptibility to anti-malarial drugs in Senegal is required.

  1. Therapeutic efficacy of artemether-lumefantrine for the treatment of uncomplicated Plasmodium falciparum malaria from three highly malarious states in India.

    Science.gov (United States)

    Bharti, Praveen K; Shukla, Man M; Ringwald, Pascal; Krishna, Sri; Singh, Pushpendra P; Yadav, Ajay; Mishra, Sweta; Gahlot, Usha; Malaiya, Jai P; Kumar, Amit; Prasad, Shambhu; Baghel, Pradeep; Singh, Mohan; Vadadi, Jaiprakash; Singh, Mrigendra P; Bustos, Maria Dorina G; Ortega, Leonard I; Christophel, Eva-Maria; Kashyotia, Sher S; Sonal, Gagan S; Singh, Neeru

    2016-10-13

    Anti-malarial drug resistance continues to be a leading threat to malaria control efforts and calls for continued monitoring of waning efficacy of artemisinin-based combination therapy (ACT). Artesunate + sulfadoxine/pyrimethamine (AS + SP) is used for the treatment of uncomplicated Plasmodium falciparum malaria in India. However, resistance against AS + SP is emerged in northeastern states. Therefore, artemether-lumefantrine (AL) is the recommended first line treatment for falciparum malaria in north eastern states. This study investigates the therapeutic efficacy and safety of AL for the treatment of uncomplicated falciparum malaria in three malaria-endemic states in India. The data generated through this study will benefit the immediate implementation of second-line ACT as and when required. This was a one-arm prospective evaluation of clinical and parasitological responses for uncomplicated falciparum malaria using WHO protocol. Patients diagnosed with uncomplicated mono P. falciparum infection were administered six-dose regimen of AL over 3 days and subsequent follow-up was carried out up to 28 days. Molecular markers msp-1 and msp-2 were used to differentiate recrudescence and re-infection and K13 propeller gene was amplified and sequenced covering the codon 450-680. A total of 402 eligible patients were enrolled in the study from all four sites. Overall, adequate clinical and parasitological response (ACPR) was 98 % without PCR correction and 99 % with PCR correction. At three study sites, ACPR rates were 100 %, while at Bastar, cure rate was 92.5 % on day 28. No early treatment failure was found. The PCR-corrected endpoint finding confirmed that one late clinical failure (LCF) and two late parasitological failures (LPF) were recrudescences. The PCR corrected cure rate was 96.5 %. The mean fever clearance time was 27.2 h ± 8.2 (24-48 h) and the mean parasite clearance time was 30.1 h ± 11.0 (24-72 h). Additionally, no adverse event was

  2. Serum enzymes activities in Plasmodium falciparum infection in Southern Pakistan

    Directory of Open Access Journals (Sweden)

    Koay Yen Chin

    2011-05-01

    Full Text Available Objective: Serum levels of lactate dehydrogenase (LDH,aspartate aminotranferase (AST, alanine aminotransferase(ALT, and alkaline phosphatase (ALP were assessed todetermine the liver functions of patients infected withPlasmodium falciparum. The enzyme activities were assessedin 60 malarial patients and a control group of 44 people.Materials and Methods: The data for the study was collectedfrom the survey conducted from Liaquat University of medicaland health sciences Hospital, Hyderabad, Pakaistan. Sample of60 patients aged between 20 and 50 years were collected. Acontrol group of 44 healthy individual adults was also assessedfor comparative purposes. All the malaria patients who visitedthe OPD during the study period enrolled in the study.Results: The LDH activity in male patients was found to be674.89 ± 33.354 IU/L. This is above the control LDH activity of296.59 ± 14.476 IU/L. Similarly, in female patients, the serumLDH activity of 580.25 ± 24.507 IU/L is over twice the controlfemale serum LDH activity of 302.18 ± 18.082 IU/L. Furtherone-way anova test was performed to find any significance ininfected and control male and female.Conclusion: Hepatic dysfunction was found to be associated toP. falciparum malaria infection.

  3. Schistosoma haematobium and Plasmodium falciparum co-infection with protection against Plasmodium falciparum ma-laria in Nigerian children

    Institute of Scientific and Technical Information of China (English)

    Nmorsi OPG; Isaac C; Ukwandu NCD; Ekundayo AO; Ekozien MI

    2009-01-01

    Objective:Malaria remains the single leading killer of children in sub -Sahara Africa and Schistosomiasis is considered to be second to malaria in global importance.Co -infection of malaria and urinary schistosomiasis has been reported to exacerbate disease morbidity such as anaemia.In different part of the globe,the co -in-fection between malaria and schistosomiasis provides some protections on the infected persons.The protective effect of this co -infection elucidated immunologically using cytokines is lacking in our locality.Methods:U-rine and blood samples obtained from the 160 volunteers were subjected to standard parasitological techniques for diagnosis of urinary schistosomiasis and malaria respectively.Blood samples collected from these volunteers comprising 80 children with schistosomiasis and malaria and the 80 children who had malaria only were subjec-ted to cytokines concentration determination using commercial standard enzyme linked immunosorbent assay kits (Abcam,UK).Results:Eighty participants with co -infection had a mean malarial parasitaemia of 662 ±201.1 μL while the 80 participants with only P.falciparum malaria had a mean malarial parasiteamia of 5943 ±3270.7μL.Also the volunteers had mean haemoglobin of 11.2 g/dL for co -infected individuals and 5.7 g/dL for participants with single infection of malaria.The serum cytokine levels of the children with S. haematobium and P.falciparum and only P.falciparum infection are as follows;interleukin -4 (16.6 pg/mL versus 5.2 pg/mL),IL -5 (501.3 pg/mL versus 357.5 pg/mL);IL -8 (2 550 pg/mL versus 309 pg/mL),IL -10 (273 pg/mL versus 290 pg/mL),TNF -α(25 pg/mL versus 290 pg/mL)and IFN -γ(21.9 pg/mL versus 2.5 pg/mL).The TNF -α/IL -10 ratio is 7 for the children with co -infection while those with only P.falciparum malaria infection had a TNF -α/IL -10 ratio of 0.9.Conclusion:We con-clude that the elevated IL -4,IL -5,IL -8 and IFN -γconcentration induced by schistosomiasis altered the Th1 /Th 2

  4. Genotyping of Plasmodium falciparum using antigenic polymorphic markers and to study anti-malarial drug resistance markers in malaria endemic areas of Bangladesh

    Directory of Open Access Journals (Sweden)

    Akter Jasmin

    2012-11-01

    Full Text Available Abstract Background In the past many regions of Bangladesh were hyperendemic for malaria. Malaria control in the 1960s to 1970s eliminated malaria from the plains but in the Chittagong Hill Tracts remained a difficult to control reservoir. The Chittagong Hill Tracts have areas with between 1 and 10% annual malaria rates, predominately 90-95% Plasmodium falciparum. In Southeast Asia, multiplicity of infection for hypo-endemic regions has been approximately 1.5. Few studies on the genetic diversity of P. falciparum have been performed in Bangladesh. Anderson et al. performed a study in Khagrachari, northern Chittagong Hill Tracts in 2002 on 203 patients and found that parasites had a multiplicity of infection of 1.3 by MSP-1, MSP-2 and GLURP genotyping. A total of 94% of the isolates had the K76T Pfcrt chloroquine resistant genotype, and 70% showed the N86Y Pfmdr1 genotype. Antifolate drug resistant genotypes were high with 99% and 73% of parasites having two or more mutations at the dhfr or dhps loci. Methods Nested and real-time polymerase chain reaction (PCR methods were used to genotype P. falciparum using antigenic polymorphic markers and to study anti-malarial drug resistance markers in malaria endemic areas of Bangladesh. Results The analysis of polymorphic and drug resistant genotype on 33 paired recrudescent infections after drug treatment in the period 2004 to 2008 in the Chittagong Hill Tracts, which is just prior to countrywide provision of artemisinin combination therapy. Overall the multiplicity of infection for MSP-1 was 2.7 with a slightly smaller parasite diversity post-treatment. The 13 monoclonal infections by both GLURP and MSP-1 were evenly divided between pre- and post-treatment. The MSP-1 MAD block was most frequent in 66 of the samples. The prevalence of the K76T PfCRT chloroquine resistant allele was approximately 82% of the samples, while the resistant Pfmdr1 N86Y was present in 33% of the samples. Interestingly, the post

  5. Active case detection, treatment of falciparum malaria with combined chloroquine and sulphadoxine/pyrimethamine and vivax malaria with chloroquine and molecular markers of anti-malarial resistance in the Republic of Vanuatu

    Directory of Open Access Journals (Sweden)

    Rogers William O

    2010-04-01

    Full Text Available Abstract Background Chloroquine-resistant Plasmodium falciparum was first described in the Republic of Vanuatu in the early 1980s. In 1991, the Vanuatu Ministry of Health instituted new treatment guidelines for uncomplicated P. falciparum infection consisting of chloroquine/sulphadoxine-pyrimethamine combination therapy. Chloroquine remains the recommended treatment for Plasmodium vivax. Methods In 2005, cross-sectional blood surveys at 45 sites on Malo Island were conducted and 4,060 adults and children screened for malaria. Of those screened, 203 volunteer study subjects without malaria at the time of screening were followed for 13 weeks to observe peak seasonal incidence of infection. Another 54 subjects with malaria were followed over a 28-day period to determine efficacy of anti-malarial therapy; chloroquine alone for P. vivax and chloroquine/sulphadoxine-pyrimethamine for P. falciparum infections. Results The overall prevalence of parasitaemia by mass blood screening was 6%, equally divided between P. falciparum and P. vivax. Twenty percent and 23% of participants with patent P. vivax and P. falciparum parasitaemia, respectively, were febrile at the time of screening. In the incidence study cohort, after 2,303 person-weeks of follow-up, the incidence density of malaria was 1.3 cases per person-year with P. vivax predominating. Among individuals participating in the clinical trial, the 28-day chloroquine P. vivax cure rate was 100%. The 28-day chloroquine/sulphadoxine-pyrimethamine P. falciparum cure rate was 97%. The single treatment failure, confirmed by merozoite surface protein-2 genotyping, was classified as a day 28 late parasitological treatment failure. All P. falciparum isolates carried the Thr-76 pfcrt mutant allele and the double Asn-108 + Arg-59 dhfr mutant alleles. Dhps mutant alleles were not detected in the study sample. Conclusion Peak seasonal malaria prevalence on Malo Island reached hypoendemic levels during the study

  6. 3D structure and immunogenicity of Plasmodium falciparum sporozoite induced associated protein peptides as components of fully-protective anti-malarial vaccine.

    Science.gov (United States)

    Alba, Martha P; Almonacid, Hannia; Calderón, Dayana; Chacón, Edgar A; Poloche, Luis A; Patarroyo, Manuel A; Patarroyo, Manuel E

    2011-12-16

    SIAP-1 and SIAP-2 are proteins which are implicated in early events involving Plasmodium falciparum infection of the Anopheles mosquito vector and the human host. High affinity HeLa and HepG2 cell binding conserved peptides have been previously identified in these proteins, i.e. SIAP-1 34893 ((421)KVQGLSYLLRRKNGTKHPVY(440)) and SIAP-1 34899 ((541)YVLNSKLLNSRSFDKFKWIQ(560)) and SIAP-2 36879 ((181)LLLYSTNSEDNLDISFGELQ(200)). When amino acid sequences have been properly modified (replacements shown in bold) they have induced high antibody titres against sporozoites in Aotus monkeys (assessed by IFA) and in the corresponding recombinant proteins (determined by ELISA and Western blot). (1)H NMR studies of these conserved native and modified high activity binding peptides (HABPs) revealed that all had α-helical structures in different locations and lengths. Conserved and corresponding modified HABPs displayed different lengths between the residues fitting into MHCII molecule pockets 1-9 and different amino acid orientation based on their different HLA-DRβ1(∗) binding motifs and binding registers, suggesting that such modifications were associated with making them immunogenic. The results suggested that these modified HAPBs could be potential targets for inclusion as components of a fully-effective, minimal sub-unit based, multi-epitope, and multistage anti-malarial vaccine.

  7. Longevity and composition of cellular immune responses following experimental Plasmodium falciparum malaria infection in humans.

    NARCIS (Netherlands)

    Teirlinck, A.C.; McCall, M.B.B.; Roestenberg, M.; Scholzen, A.; Woestenenk, R.M.; Mast, Q. de; Ven, A.J.A.M. van der; Hermsen, C.C.; Luty, A.J.F.; Sauerwein, R.W.

    2011-01-01

    Cellular responses to Plasmodium falciparum parasites, in particular interferon-gamma (IFNgamma) production, play an important role in anti-malarial immunity. However, clinical immunity to malaria develops slowly amongst naturally exposed populations, the dynamics of cellular responses in relation

  8. Plasmodium falciparum infection and age influence parasite growth inhibition mediated by IgG in Beninese infants.

    Science.gov (United States)

    Adamou, Rafiou; Chénou, Francine; Sadissou, Ibrahim; Sonon, Paulin; Dechavanne, Célia; Djilali-Saïah, Abdelkader; Cottrell, Gilles; Le Port, Agnès; Massougbodji, Achille; Remarque, Edmond J; Luty, Adrian J F; Sanni, Ambaliou; Garcia, André; Migot-Nabias, Florence; Milet, Jacqueline; Courtin, David

    2016-07-01

    Antibodies that impede the invasion of Plasmodium falciparum (P. falciparum) merozoites into erythrocytes play a critical role in anti-malarial immunity. The Growth Inhibition Assay (GIA) is an in vitro measure of the functional capacity of such antibodies to limit erythrocyte invasion and/or parasite growth. Up to now, it is unclear whether growth-inhibitory activity correlates with protection from clinical disease and there are inconsistent results from studies performed with GIA. Studies that have focused on the relationship between IgGs and their in vitro parasite Growth Inhibition Activity (GIAc) in infants aged less than two years old are rare. Here, we used clinical and parasitological data to precisely define symptomatic or asymptomatic infection with P. falciparum in groups of infants followed-up actively for 18 months post-natally. We quantified the levels of IgG1 and IgG3 directed to a panel of candidate P. falciparum vaccine antigens (AMA-1, MSP1, 2, 3 and GLURP) using ELISA and the functional activity of IgG was quantified using GIA. Data were then correlated with individuals' infection status. At 18 months of age, infants harbouring infections at the time of blood sampling had an average 19% less GIAc than those not infected (p=0.004, multivariate linear regression). GIAc decreased from 12 to 18 months of age (p=0.003, Wilcoxon matched pairs test). Antibody levels quantified at 18 months in infants were strongly correlated with their exposure to malarial infection, however GIAc was not correlated with malaria infectious status (asymptomatic and symptomatic groups). In conclusion, both infection status at blood draw and age influence parasite growth inhibition mediated by IgG in the GIA. Both factors must be taken into account when correlations between GIAc and anti-malarial protection or vaccine efficacy have to be made.

  9. Prevalence of Plasmodium falciparum infection in pregnant women in Gabon

    Directory of Open Access Journals (Sweden)

    Kendjo Eric

    2003-06-01

    Full Text Available Abstract Background In areas where malaria is endemic, pregnancy is associated with increased susceptibility to malaria. It is generally agreed that this risk ends with delivery and decreases with the number of pregnancies. Our study aimed to demonstrate relationships between malarial parasitaemia and age, gravidity and anaemia in pregnant women in Libreville, the capital city of Gabon. Methods Peripheral blood was collected from 311 primigravidae and women in their second pregnancy. Thick blood smears were checked, as were the results of haemoglobin electrophoresis. We also looked for the presence of anaemia, fever, and checked whether the volunteers had had chemoprophylaxis. The study was performed in Gabon where malaria transmission is intense and perennial. Results A total of 177 women (57% had microscopic parasitaemia; 139 (64%of them were primigravidae, 38 (40% in their second pregnancy and 180 (64% were teenagers. The parasites densities were also higher in primigravidae and teenagers. The prevalence of anaemia was 71% and was associated with microscopic Plasmodium falciparum parasitaemia: women with moderate or severe anaemia had higher parasite prevalences and densities. However, the sickle cell trait, fever and the use of chemoprophylaxis did not have a significant association with the presence of P. falciparum. Conclusions These results suggest that the prevalence of malaria and the prevalence of anaemia, whether associated with malaria or not, are higher in pregnant women in Gabon. Primigravidae and young pregnant women are the most susceptible to infection. It is, therefore, urgent to design an effective regimen of malaria prophylaxis for this high risk population.

  10. Chitinase 3-like 1 is induced by Plasmodium falciparum malaria and predicts outcome of cerebral malaria and severe malarial anaemia in a case-control study of African children.

    Science.gov (United States)

    Erdman, Laura K; Petes, Carlene; Lu, Ziyue; Dhabangi, Aggrey; Musoke, Charles; Cserti-Gazdewich, Christine M; Lee, Chun Geun; Liles, Wayne Conrad; Elias, Jack A; Kain, Kevin C

    2014-07-21

    Severe and fatal malaria are associated with dysregulated host inflammatory responses to infection. Chitinase 3-like 1 (CHI3L1) is a secreted glycoprotein implicated in regulating immune responses. Expression and function of CHI3L1 in malaria infection were investigated. Plasma levels of CHI3L1 were quantified in a case-control study of Ugandan children presenting with Plasmodium falciparum malaria. CHI3L1 levels were compared in children with uncomplicated malaria (UM; n = 53), severe malarial anaemia (SMA; n = 59) and cerebral malaria (CM; n = 44) using the Kruskall Wallis-test, and evaluated for utility in predicting fatal (n = 23) versus non-fatal (n = 80) outcomes in severe disease using the Mann Whitney U test, receiver operating characteristic curves, and combinatorial analysis. Co-culture of P. falciparum with human peripheral blood mononuclear cells and the Plasmodium berghei ANKA experimental model of cerebral malaria were used to examine the role of CHI3L1 in severe malaria. In children presenting with falciparum malaria, CHI3L1 levels were increased in SMA and CM versus UM (p Plasmodium falciparum stimulated CHI3L1 production by human peripheral blood mononuclear cells in vitro. CHI3L1 was increased in plasma and brain tissue in experimental cerebral malaria, but targeted Chi3l1 deletion did not alter cytokine production or survival in this model. These data suggest that plasma CHI3L1 measured at presentation correlates with malaria severity and predicts outcome in paediatric SMA and CM, but do not support a causal role for CHI3L1 in cerebral malaria pathobiology in the model tested.

  11. The dynamics of natural Plasmodium falciparum infections.

    Directory of Open Access Journals (Sweden)

    Ingrid Felger

    Full Text Available BACKGROUND: Natural immunity to Plasmodium falciparum has been widely studied, but its effects on parasite dynamics are poorly understood. Acquisition and clearance rates of untreated infections are key elements of the dynamics of malaria, but estimating these parameters is challenging because of frequent super-infection and imperfect detectability of parasites. Consequently, information on effects of host immune status or age on infection dynamics is fragmentary. METHODS: An age-stratified cohort of 347 individuals from Northern Ghana was sampled six times at 2 month intervals. High-throughput capillary electrophoresis was used to genotype the msp-2 locus of all P. falciparum infections detected by PCR. Force of infection (FOI and duration were estimated for each age group using an immigration-death model that allows for imperfect detection of circulating parasites. RESULTS: Allowing for imperfect detection substantially increased estimates of FOI and duration. Effects of naturally acquired immunity on the FOI and duration would be reflected in age dependence in these indices, but in our cohort data FOI tended to increase with age in children. Persistence of individual parasite clones was characteristic of all age-groups. Duration peaked in 5-9 year old children (average duration 319 days, 95% confidence interval 318;320. CONCLUSIONS: The main age-dependence is on parasite densities, with only small age-variations in the FOI and persistence of infections. This supports the hypothesis that acquired immunity controls transmission mainly by limiting blood-stage parasite densities rather than changing rates of acquisition or clearance of infections.

  12. Artesunate-amodiaquine combination therapy in the absence of malarial parasite infection induces oxidative damage in female rats.

    Science.gov (United States)

    Abolaji, Amos O; Osedeme, Fenose; Olusemire, Oluwatosin

    2014-04-01

    Artesunate-amodiaquine is among the most widely available artemisinin combination therapy used as treatment regimen for uncomplicated Plasmodium falciparum malaria. Our aim was to evaluate clinical routine markers of liver and renal functions, lipid profile levels and lipid peroxidation status in a female mammalian rat model. This was an attempt to simulate a scenario where the drugs are taken without malarial parasite infection, which is a common practice in settings where drug misuse is a common practice. Twenty female Wistar rats were randomly divided into four study groups of five animals each. Group 1 (control) received distilled water, group 2 was exposed to artesunate [2 mg/kg body weight (b.w.)], group 3 was administered with amodiaquine (6.12 mg/kg b.w.) and group 4 was co-administered with artesunate (2 mg/kg b.w.) and amodiaquine (6.12 mg/kg b.w.) for 3 days. At the end of the treatment period, animals were fasted overnight and sacrificed. Markers of liver and renal functions and lipid profile indices were evaluated in the plasma, whereas lipid peroxidation status, GSH concentration and G6PD activity were assessed in the erythrocytes. The results showed that the co-administration of artesunate and amodiaquine altered liver function markers and lipid profile indices. The drugs also induced lipid peroxidation as evidenced by the elevated level of oxidative stress marker malondialdehyde (p < 0.05). We recommend therefore that the drugs should be taken with prescription only with clinical evidence of malarial parasite infection.

  13. Prevalence of molecular markers of anti-malarial drug resistance in Plasmodium vivax and Plasmodium falciparum in two districts of Nepal

    DEFF Research Database (Denmark)

    Ranjitkar, Samir; Schousboe, Mette L; Thomsen, Thomas

    2011-01-01

    ABSTRACT: BACKGROUND: Sulphadoxine-pyrimethamine (SP) and chloroquine (CQ) have been used in treatment of falciparum and vivax malaria in Nepal. Recently, resistance to both drugs have necessitated a change towards artemisinin combination therapy (ACT) against Plasmodium falciparum in highly...... endemic areas. However, SP is still used against P. falciparum infections in low endemic areas while CQ is used in suspected cases in areas with lack of diagnostic facilities. This study examines the prevalence of molecular markers of P. falciparum and Plasmodium vivax CQ and SP resistance to determine...... if high levels of in vivo resistance are reflected at molecular level as well. METHODS: Finger prick blood samples (n=189) were collected from malaria positive patients from two high endemic districts and analysed for single nucleotide polymorphisms (SNPs) in the resistance related genes of P. falciparum...

  14. Mitochondrial genes support a common origin of rodent malaria parasites and Plasmodium falciparum's relatives infecting great apes

    Directory of Open Access Journals (Sweden)

    Blanquart Samuel

    2011-03-01

    Full Text Available Abstract Background Plasmodium falciparum is responsible for the most acute form of human malaria. Most recent studies demonstrate that it belongs to a monophyletic lineage specialized in the infection of great ape hosts. Several other Plasmodium species cause human malaria. They all belong to another distinct lineage of parasites which infect a wider range of primate species. All known mammalian malaria parasites appear to be monophyletic. Their clade includes the two previous distinct lineages of parasites of primates and great apes, one lineage of rodent parasites, and presumably Hepatocystis species. Plasmodium falciparum and great ape parasites are commonly thought to be the sister-group of all other mammal-infecting malaria parasites. However, some studies supported contradictory origins and found parasites of great apes to be closer to those of rodents, or to those of other primates. Results To distinguish between these mutually exclusive hypotheses on the origin of Plasmodium falciparum and its great ape infecting relatives, we performed a comprehensive phylogenetic analysis based on a data set of three mitochondrial genes from 33 to 84 malaria parasites. We showed that malarial mitochondrial genes have evolved slowly and are compositionally homogeneous. We estimated their phylogenetic relationships using Bayesian and maximum-likelihood methods. Inferred trees were checked for their robustness to the (i site selection, (ii assumptions of various probabilistic models, and (iii taxon sampling. Our results robustly support a common ancestry of rodent parasites and Plasmodium falciparum's relatives infecting great apes. Conclusions Our results refute the most common view of the origin of great ape malaria parasites, and instead demonstrate the robustness of a less well-established phylogenetic hypothesis, under which Plasmodium falciparum and its relatives infecting great apes are closely related to rodent parasites. This study sheds light

  15. Peripheral blood cell signatures of Plasmodium falciparum infection during pregnancy

    DEFF Research Database (Denmark)

    Ibitokou, Samad; Oesterholt, Mayke; Brutus, Laurent;

    2012-01-01

    Sequestration of Plasmodium falciparum-infected erythrocytes in placental intervillous spaces causes inflammation and pathology. Knowledge of the profiles of immune cells associated with the physiopathology of pregnancy-associated malaria (PAM) is scarce. We conducted a longitudinal, prospective...

  16. Therapeutic efficacy of artesunate in the treatment of uncomplicated Plasmodium falciparum malaria and anti-malarial, drug-resistance marker polymorphisms in populations near the China-Myanmar border

    Directory of Open Access Journals (Sweden)

    Huang Fang

    2012-08-01

    Full Text Available Abstract Background The aim of this study was to evaluate the clinical outcome after seven-day artesunate monotherapy for uncomplicated Plasmodium falciparum malaria in Yingjiang County along the China-Myanmar border and investigate genetic polymorphisms in the P. falciparum chloroquine-resistance transporter (pfcrt, multidrug resistance 1 (pfmdr1, dihydrofolate reductase (pfdhfr, dihydropteroate synthase (pfdhps and ATPase (pfatp6 genes. Methods Patients ≥ one year of age with fever (axillary temperature ≥37.5°C or history of fever and P. falciparum mono-infection were included. Patients received anti-malarial treatment with artesunate (total dose of 16 mg/kg over seven days by directly observed therapy. After a 28-day follow-up, treatment efficacy and effectiveness were assessed based on clinical and parasitological outcomes. Treatment failure was defined as recrudescence of the original parasite and distinguished with new infection confirmed by PCR. Analysis of gene mutation and amplification were performed by nested polymerase chain reaction. Results Sixty-five patients were enrolled; 10 withdrew from the study, and six were lost to follow-up. All but two patients demonstrated adequate clinical and parasitological response; 12 had detectable parasitaemia on day 3. These two patients were confirmed to be new infection by PCR. The efficacy of artesunate was 95.9%. The pfcrt mutation in codon 76 was found in all isolates (100%, and mutations in codons 71 and 72 were found in 4.8% of parasite isolates. No mutation of pfmdr1 (codons 86 or 1246 was found. Among all samples, 5.1% were wild type for pfdhfr, whereas the other samples had mutations in four codons (51, 59, 108 and 164, and mutations in pfdhps (codons 436, 437, 540 and 581 were found in all isolates. No samples had mutations in pfatp6 codons 623 or 769, but two new mutations (N683K and R756K were found in 4.6% and 9.2% of parasite isolates, respectively. Conclusion Plasmodium

  17. Malaria during pregnancy in a reference centre from the Brazilian Amazon: unexpected increase in the frequency of Plasmodium falciparum infections

    Directory of Open Access Journals (Sweden)

    Martínez-Espinosa Flor Ernestina

    2004-01-01

    Full Text Available Malaria remains globally the most important parasitic disease of man. Data on its deleterious effects during pregnancy have been extensively documented in hyperendemic, holoendemic, and mesoendemic areas from Africa and Asia where Plasmodium falciparum is responsible for almost all infections. However, knowledge about malaria during pregnancy in areas where transmission is unstable and P. vivax is the most prevalent species, such as the Brazilian Amazon, is scarce. Here, we report a preliminary cross sectional descriptive study, carried out at the Fundação de Medicina Tropical do Amazonas, a reference centre for diagnosis and treatment of tropical diseases in the west-Amazon (Manaus, Brazil. A total of 1699 febrile childbearing age women had positive thick blood smears to Plasmodium species, between January and November 1997: 1401 (82.5% were positive for P. vivax , 286 (16.8% for P. falciparum and 12 (0.07% carried mixed infections. From the malarious patients, 195 were pregnant. The ratio of P. falciparum to P. vivax infections in the group of non-pregnant infected women was 1:5.6 while it was 1:2.3 in that of pregnant infected ones. Similar rates or even proportionally more vivax infections during pregnancy were expected to occur, in function of the contraindication of primaquine with the resulting increased P. vivax relapse rates. Such an observation suggests that the mechanism of resistance/susceptibility to infection and/or malaria pathogenesis in pregnant women may differ according to Plasmodium species and that the extensively described increase in the frequencies of malaria infection during pregnancy may be specifically due to P. falciparum infection.

  18. Alpha-tocopherol transfer protein disruption confers resistance to malarial infection in mice

    Directory of Open Access Journals (Sweden)

    Takeya Motohiro

    2010-04-01

    Full Text Available Abstract Background Various factors impact the severity of malaria, including the nutritional status of the host. Vitamin E, an intra and extracellular anti-oxidant, is one such nutrient whose absence was shown previously to negatively affect Plasmodium development. However, mechanisms of this Plasmodium inhibition, in addition to means by which to exploit this finding as a therapeutic strategy, remain unclear. Methods α-TTP knockout mice were infected with Plasmodium berghei NK65 or Plasmodium yoelii XL-17, parasitaemia, survival rate were monitored. In one part of the experiments mice were fed with a supplemented diet of vitamin E and then infected. In addition, parasite DNA damage was monitored by means of comet assay and 8-OHdG test. Moreover, infected mice were treated with chloroquine and parasitaemia and survival rate were monitored. Results Inhibition of α-tocopherol transfer protein (α-TTP, a determinant of vitamin E concentration in circulation, confers resistance to malarial infection as a result of oxidative damage to the parasites. Furthermore, in combination with the anti-malarial drug chloroquine results were even more dramatic. Conclusion Considering that these knockout mice lack observable negative impacts typical of vitamin E deficiency, these results suggest that inhibition of α-TTP activity in the liver may be a useful strategy in the prevention and treatment of malaria infection. Moreover, a combined strategy of α-TTP inhibition and chloroquine treatment might be effective against drug resistant parasites.

  19. High prevalence of pfdhfr-pfdhps triple mutations associated with anti-malarial drugs resistance in Plasmodium falciparum isolates seven years after the adoption of sulfadoxine-pyrimethamine in combination with artesunate as first-line treatment in Iran.

    Science.gov (United States)

    Rouhani, Maryam; Zakeri, Sedigheh; Pirahmadi, Sakineh; Raeisi, Ahmad; Djadid, Navid Dinparast

    2015-04-01

    The spread of anti-malarial drug resistance will challenge any malaria control and elimination strategies, and routine monitoring of resistance-associated molecular markers of commonly used anti-malarial drugs is very important. Therefore, in the present investigation, the extent of mutations/haplotypes in dhfr and dhps genes of Plasmodium falciparum isolates (n=72) was analyzed seven years after the introduction of sulfadoxine-pyrimethamine (SP) plus artesunate (AS) as first-line anti-malarial treatment in Iran using PCR-RFLP methods. The results showed that the majority of the patients (97.2%) carried both 59R and 108N mutations in pure form with wild-type genotype at positions N51 and I164. Additionally, a significant increase (Pdrug for treatment of falciparum patients in these malaria-endemic areas of Iran. However, no quintuple mutations associated with treatment failure were detected. In conclusion, the present results along with in vivo assays suggest that seven years after the adoption of SP-AS as the first-line treatment in Iran, this drug remains efficacious for treatment of uncomplicated falciparum malaria, as a partner drug with AS in these malaria-endemic areas.

  20. Structural dynamics of Casein Kinase I (CKI) from malarial parasite Plasmodium falciparum (Isolate 3D7): Insights from theoretical modelling and molecular simulations.

    Science.gov (United States)

    Dehury, Budheswar; Behera, Santosh Kumar; Mahapatra, Namita

    2017-01-01

    The protein kinases (PKs), belonging to serine/threonine kinase (STKs), are important drug targets for a wide spectrum of diseases in human. Among protein kinases, the Casein Kinases (CKs) are vastly expanded in various organisms, where, the malarial parasite Plasmodium falciparum possesses a single member i.e., PfCKI, which can phosphorylate various proteins in parasite extracts in vitro condition. But, the structure-function relationship of PfCKI and dynamics of ATP binding is yet to be understood. Henceforth, an attempt was made to study the dynamics, stability, and ATP binding mechanisms of PfCKI through computational modelling, docking, molecular dynamics (MD) simulations, and MM/PBSA binding free energy estimation. Bi-lobed catalytic domain of PfCKI shares a high degree of secondary structure topology with CKI domains of rice, human, and mouse indicating co-evolution of these kinases. Molecular docking study revealed that ATP binds to the active site where the glycine-rich ATP-binding motif (G16-X-G18-X-X-G21) along with few conserved residues plays a crucial role maintaining stability of the complex. Structural superposition of PfCKI with close structural homologs depicted that the location and length of important loops are different, indicating the dynamic properties of these loops among CKIs, which is consistent with principal component analysis (PCA). PCA displayed that the overall global motion of ATP-bound form is comparatively higher than that of apo form. The present study provides insights into the structural features of PfCKI, which could contribute towards further understanding of related protein structures, dynamics of catalysis and phosphorylation mechanism in these important STKs from malarial parasite in near future.

  1. Plasmodium falciparum infection causes proinflammatory priming of human TLR responses.

    NARCIS (Netherlands)

    McCall, M.B.B.; Netea, M.G.; Hermsen, C.C.; Jansen, T.; Jacobs, L.; Golenbock, D.; Ven, A.J.A.M. van der; Sauerwein, R.W.

    2007-01-01

    TLRs are a major group of pattern recognition receptors that are crucial in initiating innate immune responses and are capable of recognizing Plasmodium ligands. We have investigated TLR responses during acute experimental P. falciparum (P.f.) infection in 15 malaria-naive volunteers. TLR-4 response

  2. Non-falciparum malaria infections in pregnant women in West Africa

    DEFF Research Database (Denmark)

    Williams, John; Njie, Fanta; Cairns, Matthew

    2016-01-01

    BACKGROUND: Non-Plasmodium falciparum malaria infections are found in many parts of sub-Saharan Africa but little is known about their importance in pregnancy. METHODS: Blood samples were collected at first antenatal clinic attendance from 2526 women enrolled in a trial of intermittent screening...... for a non-falciparum malaria infection were investigated and the influence of these infections on the outcome of pregnancy was determined. RESULTS: P. falciparum infection was detected frequently (overall prevalence by PCR: 38.8 %, [95 % CI 37.0, 40.8]), with a prevalence ranging from 10.8 % in The Gambia...... to 56.1 % in Ghana. Non-falciparum malaria infections were found only rarely (overall prevalence 1.39 % [95 % CI 1.00, 1.92]), ranging from 0.17 % in the Gambia to 3.81 % in Mali. Ten non-falciparum mono-infections and 25 mixed falciparum and non-falciparum infections were found. P. malariae...

  3. Soluble haemoglobin is a marker of recent Plasmodium falciparum infections

    DEFF Research Database (Denmark)

    Jakobsen, P H; Bygbjerg, I C; Theander, T G;

    1997-01-01

    . falciparum malaria compared to the levels during acute disease. Thus, both soluble Hb and haptoglobin appear to be markers of recent P. falciparum infections. Very high levels of CRP protein were measured in some of the malaria patients at the day of treatment while lower levels were recorded 7 and 30 days...... after treatment. Soluble Hb levels were associated with malariometric parameters in a similar fashion to haptoglobin. The new Mab-based assay for measuring soluble Hb in the peripheral blood of malaria patients may be useful for future epidemiological studies of malaria....

  4. Longevity and composition of cellular immune responses following experimental Plasmodium falciparum malaria infection in humans.

    Directory of Open Access Journals (Sweden)

    Anne C Teirlinck

    2011-12-01

    Full Text Available Cellular responses to Plasmodium falciparum parasites, in particular interferon-gamma (IFNγ production, play an important role in anti-malarial immunity. However, clinical immunity to malaria develops slowly amongst naturally exposed populations, the dynamics of cellular responses in relation to exposure are difficult to study and data about the persistence of such responses are controversial. Here we assess the longevity and composition of cellular immune responses following experimental malaria infection in human volunteers. We conducted a longitudinal study of cellular immunological responses to sporozoites (PfSpz and asexual blood-stage (PfRBC malaria parasites in naïve human volunteers undergoing single (n = 5 or multiple (n = 10 experimental P. falciparum infections under highly controlled conditions. IFNγ and interleukin-2 (IL-2 responses following in vitro re-stimulation were measured by flow-cytometry prior to, during and more than one year post infection. We show that cellular responses to both PfSpz and PfRBC are induced and remain almost undiminished up to 14 months after even a single malaria episode. Remarkably, not only 'adaptive' but also 'innate' lymphocyte subsets contribute to the increased IFNγ response, including αβT cells, γδT cells and NK cells. Furthermore, results from depletion and autologous recombination experiments of lymphocyte subsets suggest that immunological memory for PfRBC is carried within both the αβT cells and γδT compartments. Indeed, the majority of cytokine producing T lymphocytes express an CD45RO(+ CD62L(- effector memory (EM phenotype both early and late post infection. Finally, we demonstrate that malaria infection induces and maintains polyfunctional (IFNγ(+IL-2(+ EM responses against both PfRBC and PfSpz, previously found to be associated with protection. These data demonstrate that cellular responses can be readily induced and are long-lived following infection with P

  5. Malaria-filaria coinfection in mice makes malarial disease more severe unless filarial infection achieves patency.

    Science.gov (United States)

    Graham, Andrea L; Lamb, Tracey J; Read, Andrew F; Allen, Judith E

    2005-02-01

    Coinfections are common in natural populations, and the literature suggests that helminth coinfection readily affects how the immune system manages malaria. For example, type 1-dependent control of malaria parasitemia might be impaired by the type 2 milieu of preexisting helminth infection. Alternatively, immunomodulatory effects of helminths might affect the likelihood of malarial immunopathology. Using rodent models of lymphatic filariasis (Litomosoides sigmodontis) and noncerebral malaria (clone AS Plasmodium chabaudi chabaudi), we quantified disease severity, parasitemia, and polyclonal splenic immune responses in BALB/c mice. We found that coinfected mice, particularly those that did not have microfilaremia (Mf(-)), had more severe anemia and loss of body mass than did mice with malaria alone. Even when controlling for parasitemia, malaria was most severe in Mf(-) coinfected mice, and this was associated with increased interferon- gamma responsiveness. Thus, in Mf(-) mice, filariasis upset a delicate immunological balance in malaria infection and exacerbated malaria-induced immunopathology.

  6. Cytoadhesion of Plasmodium falciparum-infected erythrocytes and the infected placenta: a two-way pathway

    OpenAIRE

    Costa, F.T.M.; Avril, M.; Nogueira,P.A.; Gysin, J

    2006-01-01

    Malaria is undoubtedly the world's most devastating parasitic disease, affecting 300 to 500 million people every year. Some cases of Plasmodium falciparum infection progress to the deadly forms of the disease responsible for 1 to 3 million deaths annually. P. falciparum-infected erythrocytes adhere to host receptors in the deep microvasculature of several organs. The cytoadhesion of infected erythrocytes to placental syncytiotrophoblast receptors leads to pregnancy-associated malaria (PAM). T...

  7. Cytoadhesion of Plasmodium falciparum-infected erythrocytes and the infected placenta: a two-way pathway

    OpenAIRE

    Costa,F.T.M.; Avril, M.; Nogueira, P. A; Gysin, J.

    2006-01-01

    Malaria is undoubtedly the world's most devastating parasitic disease, affecting 300 to 500 million people every year. Some cases of Plasmodium falciparum infection progress to the deadly forms of the disease responsible for 1 to 3 million deaths annually. P. falciparum-infected erythrocytes adhere to host receptors in the deep microvasculature of several organs. The cytoadhesion of infected erythrocytes to placental syncytiotrophoblast receptors leads to pregnancy-associated malaria (PAM). T...

  8. High Dietary Folate in Mice Alters Immune Response and Reduces Survival after Malarial Infection.

    Directory of Open Access Journals (Sweden)

    Danielle N Meadows

    Full Text Available Malaria is a significant global health issue, with nearly 200 million cases in 2013 alone. Parasites obtain folate from the host or synthesize it de novo. Folate consumption has increased in many populations, prompting concerns regarding potential deleterious consequences of higher intake. The impact of high dietary folate on the host's immune function and response to malaria has not been examined. Our goal was to determine whether high dietary folate would affect response to malarial infection in a murine model of cerebral malaria. Mice were fed control diets (CD, recommended folate level for rodents or folic acid-supplemented diets (FASD, 10x recommended level for 5 weeks before infection with Plasmodium berghei ANKA. Survival, parasitemia, numbers of immune cells and other infection parameters were assessed. FASD mice had reduced survival (p<0.01, Cox proportional hazards and higher parasitemia (p< 0.01, joint model of parasitemia and survival compared with CD mice. FASD mice had lower numbers of splenocytes, total T cells, and lower numbers of specific T and NK cell sub-populations, compared with CD mice (p<0.05, linear mixed effects. Increased brain TNFα immunoreactive protein (p<0.01, t-test and increased liver Abca1 mRNA (p<0.01, t-test, a modulator of TNFα, were observed in FASD mice; these variables correlated positively (rs = 0.63, p = 0.01. Bcl-xl/Bak mRNA was increased in liver of FASD mice (p<0.01, t-test, suggesting reduced apoptotic potential. We conclude that high dietary folate increases parasite replication, disturbs the immune response and reduces resistance to malaria in mice. These findings have relevance for malaria-endemic regions, when considering anti-folate anti-malarials, food fortification or vitamin supplementation programs.

  9. Optimising Controlled Human Malaria Infection Studies Using Cryopreserved P. falciparum Parasites Administered by Needle and Syringe.

    Directory of Open Access Journals (Sweden)

    Susanne H Sheehy

    Full Text Available Controlled human malaria infection (CHMI studies have become a routine tool to evaluate efficacy of candidate anti-malarial drugs and vaccines. To date, CHMI trials have mostly been conducted using the bite of infected mosquitoes, restricting the number of trial sites that can perform CHMI studies. Aseptic, cryopreserved P. falciparum sporozoites (PfSPZ Challenge provide a potentially more accurate, reproducible and practical alternative, allowing a known number of sporozoites to be administered simply by injection.We sought to assess the infectivity of PfSPZ Challenge administered in different dosing regimens to malaria-naive healthy adults (n = 18. Six participants received 2,500 sporozoites intradermally (ID, six received 2,500 sporozoites intramuscularly (IM and six received 25,000 sporozoites IM.Five out of six participants receiving 2,500 sporozoites ID, 3/6 participants receiving 2,500 sporozoites IM and 6/6 participants receiving 25,000 sporozoites IM were successfully infected. The median time to diagnosis was 13.2, 17.8 and 12.7 days for 2,500 sporozoites ID, 2,500 sporozoites IM and 25,000 sporozoites IM respectively (Kaplan Meier method; p = 0.024 log rank test.2,500 sporozoites ID and 25,000 sporozoites IM have similar infectivities. Given the dose response in infectivity seen with IM administration, further work should evaluate increasing doses of PfSPZ Challenge IM to identify a dosing regimen that reliably infects 100% of participants.ClinicalTrials.gov NCT01465048.

  10. Congenital Plasmodium falciparum infection in neonates in Muheza District, Tanzania

    Directory of Open Access Journals (Sweden)

    Kimera Sharadhuli I

    2008-07-01

    Full Text Available Abstract Background Although recent reports on congenital malaria suggest that the incidence is increasing, it is difficult to determine whether the clinical disease is due to parasites acquired before delivery or as a result of contamination by maternal blood at birth. Understanding of the method of parasite acquisition is important for estimating the time incidence of congenital malaria and design of preventive measures. The aim of this study was to determine whether the first Plasmodium falciparum malaria disease in infants is due to same parasites present on the placenta at birth. Methods Babies born to mothers with P. falciparum parasites on the placenta detected by PCR were followed up to two years and observed for malaria episodes. Paired placental and infant peripheral blood samples at first malaria episode within first three months of life were genotyped (msp2 to determine genetic relatedness. Selected amplifications from nested PCR were sequenced and compared between pairs. Results Eighteen (19.1% out of 95 infants who were followed up developed clinical malaria within the first three months of age. Eight pairs (60% out of 14 pairs of sequenced placental and cord samples were genetically related while six (40% were genetically unrelated. One pair (14.3% out of seven pairs of sequenced placental and infants samples were genetically related. In addition, infants born from primigravidae mothers were more likely to be infected with P. falciparum (P P. falciparum infection earlier than those from secundigravidae and primigravidae mothers (RR = 1.43. Conclusion Plasmodium falciparum malaria parasites present on the placenta as detected by PCR are more likely to result in clinical disease (congenital malaria in the infant during the first three months of life. However, sequencing data seem to question the validity of this likelihood. Therefore, the relationship between placental parasites and first clinical disease need to be confirmed in

  11. Sickle Cell Trait Protects Against Plasmodium falciparum Infection

    Science.gov (United States)

    Billo, Mounkaila A.; Johnson, Eric S.; Doumbia, Seydou O.; Poudiougou, Belco; Sagara, Issaka; Diawara, Sory I.; Diakité, Mahamadou; Diallo, Mouctar; Doumbo, Ogobara K.; Tounkara, Anatole; Rice, Janet; James, Mark A.; Krogstad, Donald J.

    2012-01-01

    Although sickle cell trait protects against severe disease due to Plasmodium falciparum, it has not been clear whether sickle trait also protects against asymptomatic infection (parasitemia). To address this question, the authors identified 171 persistently smear-negative children and 450 asymptomatic persistently smear-positive children in Bancoumana, Mali (June 1996 to June 1998). They then followed both groups for 2 years using a cohort-based strategy. Among the 171 children with persistently negative smears, the median time for conversion to smear-positive was longer for children with sickle trait than for children without (274 vs. 108 days, P sickle trait than for children without (190 vs. 365 days; P = 0.02). These protective effects of sickle trait against asymptomatic P. falciparum infection under conditions of natural transmission were demonstrable using a cohort-based approach but not when the same data were examined using a cross-sectional approach. PMID:23035141

  12. Effects of mefloquine and artesunate mefloquine on the emergence, clearance and sex ratio of Plasmodium falciparum gametocytes in malarious children

    Directory of Open Access Journals (Sweden)

    Happi Christian T

    2009-12-01

    Full Text Available Abstract Background The gametocyte sex ratio of Plasmodium falciparum, defined as the proportion of gametocytes that are male, may influence transmission but little is known of the effects of mefloquine or artesunate-mefloquine on gametocyte sex ratio and on the sex ratio of first appearing gametocytes. Methods 350 children with uncomplicated P. falciparum malaria were enrolled in prospective treatment trial of mefloquine or artesunate-mefloquine between 2007 and 2008. Gametocytaemia was quantified, and gametocytes were sexed by morphological appearance, before and following treatment. The area under curve of gametocyte density versus time (AUCgm was calculated by linear trapezoidal method. Results 91% and 96% of all gametocytes appeared by day 7 and day 14, respectively following treatment. The overall rate of gametocytaemia with both treatments was 31%, and was significantly higher in mefloquine than in artesunate-mefloquine treated children if no gametocyte was present a day after treatment began (25.3% v 12.8%, P = 0.01. Gametocyte clearance was significantly faster with artesunate-mefloquine (1.8 ± 0.22 [sem] v 5.6 ± 0.95 d; P = 0.001. AUCgm was significantly lower in the artesunate mefloquine group (P = 0.008. The pre-treatment sex ratio was male-biased, but post-treatment sex ratio or the sex ratio of first appearing gametocytes, was significantly lower and female-biased two or three days after beginning of treatment in children given artesunate-mefloquine. Conclusion Addition of artesunate to mefloquine significantly modified the emergence, clearance, and densities of gametocytes and has short-lived, but significant, sex ratio modifying effects in children from this endemic area.

  13. Increased pfmdr1 gene copy number and the decline in pfcrt and pfmdr1 resistance alleles in Ghanaian Plasmodium falciparum isolates after the change of anti-malarial drug treatment policy.

    Science.gov (United States)

    Duah, Nancy O; Matrevi, Sena A; de Souza, Dziedzom K; Binnah, Daniel D; Tamakloe, Mary M; Opoku, Vera S; Onwona, Christiana O; Narh, Charles A; Quashie, Neils B; Abuaku, Benjamin; Duplessis, Christopher; Kronmann, Karl C; Koram, Kwadwo A

    2013-10-30

    With the introduction of artemisinin-based combination therapy (ACT) in 2005, monitoring of anti-malarial drug efficacy, which includes the use of molecular tools to detect known genetic markers of parasite resistance, is important for first-hand information on the changes in parasite susceptibility to drugs in Ghana. This study investigated the Plasmodium falciparum multidrug resistance gene (pfmdr1) copy number, mutations and the chloroquine resistance transporter gene (pfcrt) mutations in Ghanaian isolates collected in seven years to detect the trends in prevalence of mutations. Archived filter paper blood blots collected from children aged below five years with uncomplicated malaria in 2003-2010 at sentinel sites were used. Using quantitative real-time polymerase chain reaction (qRT-PCR), 756 samples were assessed for pfmdr1 gene copy number. PCR and restriction fragment length polymorphism (RFLP) were used to detect alleles of pfmdr1 86 in 1,102 samples, pfmdr1 184, 1034, 1042 and 1246 in 832 samples and pfcrt 76 in 1,063 samples. Merozoite surface protein 2 (msp2) genotyping was done to select monoclonal infections for copy number analysis. The percentage of isolates with increased pfmdr1 copy number were 4, 27, 9, and 18% for 2003-04, 2005-06, 2007-08 and 2010, respectively. Significant increasing trends for prevalence of pfmdr1 N86 (×(2) = 96.31, p resistance has been reported. The decreasing trend in the prevalence of chloroquine resistance markers after change of treatment policy presents the possibility for future introduction of chloroquine as prophylaxis for malaria risk groups such as children and pregnant women in Ghana.

  14. Immunological fine structure of the variable and constant regions of a polymorphic malarial surface antigen from Plasmodium falciparum.

    Science.gov (United States)

    Jones, G L; Edmundson, H M; Lord, R; Spencer, L; Mollard, R; Saul, A J

    1991-09-01

    The 51-kDa merozoite surface antigen MSA2 of Plasmodium falciparum shows considerable strain-dependent polymorphism. Although marked sequence variation occurs in the central region of the molecule, the N and C-terminal sequences are highly conserved. A number of monoclonal antibodies directed against MSA2 have been described which inhibit parasite growth in vitro, but these are all directed against variable regions. In an attempt to raise strain independent antibodies we have prepared peptide-diphtheria toxoid (DT) constructs from 36 N-terminal octapeptides spanning the constant region and extending into the variable region of the FCQ/27 PNG variant staggered by one amino acid at either end. Similarly, we prepared 26 C-terminal octapeptides spanning the C-terminal constant region as well as 10 octapeptides from the variable region of the Indochina I variant MSA2. Most of the peptides elicited antipeptide titres in excess of 1/10(4) when administered to mice as peptide-DT adducts emulsified with Freund's complete adjuvant. Only 3 of the 43 N- and C-terminal constant region peptides elicited antibodies which reacted appropriately on immunofluorescence (IFA) or immunoblotting analysis with the intact MSA2 of both strains studied (FCQ/27 and Indochina I), whereas 3 other peptides from the variable region elicited antibodies reactive with the parent MSA2 only. Peptide constructs eliciting antibodies recognising the intact protein corresponded to elements in the cognate sequence of high antigenicity as predicted by the Jameson and Wolf algorithm.

  15. Oxidoreductases in early gestational monkey placenta during maternal malarial infection : histochemical localisation

    Directory of Open Access Journals (Sweden)

    Nishi Saxena , P.S.R. Murthy

    2007-06-01

    Full Text Available Background & objectives: Early gestational malaria is more deleterious than late gestational infection.Still the pathophysiology of maternofoetal organ—the placenta in malaria remains almost unexploredduring early gestation. Present study dealing with oxidoreductases in early gestational placenta duringmaternal malarial infection of Plasmodium cynomolgi bastianellii in rhesus monkeys was anticipatedto provide a better insight into the functional impairment of this organ leading to foetal abnormalities.Methods: Three control and four experimental monkeys (Macaca mulatta were quarantined for onemonth prior to experimentation. Experimental monkeys at 2–2½ months of gestation were inoculatedwith P. cynomolgi bastianellii. On attaining first peak of parasitaemia the placentae were collectedfrom anesthetised animals. The snap-frozen, cryostat sections were subjected to histochemicallocalisation for 3 (or 17 β-hydroxysteroid dehydrogenase (β-HSD [3 (or 17 β-hydroxysteroid:NAD (P+ oxidoreductase, EC 1.1.1.51 hydroxysteroid dehydrogenases] and NADPH-tetrazoliumreductase [NADPH : (acceptor oxidoreductase, EC 1.6.99.1 NADPH-TR]. Comparative microscopyof control and malaria infected placental sections was performed and analysed.Results: A localised decrease in both the enzymes was observed in syncytiotrophoblast layer ofmalaria infected monkey placenta. The areas showing morphological damage of syncytiotrophoblastwere also depicting gross reduction in NADPH-TR activity.Interpretation & conclusion: The altered enzymatic activities [3 (or 17 β-HSD and NADPH-TR] inmalaria infected early gestational monkey placenta have been discussed in the light of placentalfunction. It could be concluded by present studies that these alterations would affect the cellularmetabolism especially steroidogenesis and detoxification process which in turn would affect thenormal development of the foetus as well as maintenance of gestation.

  16. Volatile organic compounds associated with Plasmodium falciparum infection in vitro.

    Science.gov (United States)

    Correa, Ricardo; Coronado, Lorena M; Garrido, Anette C; Durant-Archibold, Armando A; Spadafora, Carmenza

    2017-05-02

    In order to identify new ways to prevent transmission of vector-borne diseases such as malaria, efforts have been made to understand how insects are attracted to humans. Vector-host interaction studies have shown that several volatile compounds play an important role in attracting mosquitoes to human targets. A headspace solid-phase micro-extraction/gas chromatography-mass spectrometry (HSPME GC-MS) analysis of the volatile organic composition of extracellular vesicles (EVs) and supernatants of ultracentrifugation (SNUs) was carried out in Plasmodium falciparum-infected cultures with high and low parasitemias. A list of 18 volatile organic compounds (VOCs) was obtained from the EVs of both infected and uninfected RBCs with 1,2,3-Propanetriol, diacetate (diacetin) increased in the infected EVs, regardless of the parasitemia of the culture. The supernatant analysis, however, gave off 56 VOCs, with pentane 2,2,4-trimethyl being present in all the SNUs of uninfected erythrocytes but absent from the parasite-infected ones. Standing out in this study was hexanal, a reported insect attractant, which was the only VOC present in all samples from SNUs from infected erythrocytes and absent from uninfected ones, suggesting that it originates during parasite infection. The hexanal compound, reportedly a low-level component found in healthy human samples such as breath and plasma, had not been found in previous analyses of P. falciparum-infected patients or cultures. This compound has been reported as an Anopheles gambiae attractant in plants. While the compound could be produced during infection by the malaria parasite in human erythrocytes, the A. gambiae attraction could be used by the parasite as a strategy for transmission.

  17. Puzzling and ambivalent roles of malarial infections in cancer development and progression.

    Science.gov (United States)

    Faure, Eric

    2016-12-01

    Scientific evidence strongly suggests that parasites are directly or indirectly associated with carcinogenesis in humans. However, studies have also indicated that parasites or their products might confer resistance to tumour growth. Plasmodium protozoa, the causative agents of malaria, exemplify the ambivalent link between parasites and cancer. Positive relationships between malaria and virus-associated cancers are relatively well-documented; for example, malaria can reactivate the Epstein-Barr Virus, which is the known cause of endemic Burkitt lymphoma. Nevertheless, possible anti-tumour properties of malaria have also been reported and, interestingly, this disease has long been thought to be beneficial to patients suffering from cancers. Current knowledge of the potential pro- and anti-cancer roles of malaria suggests that, contrary to other eukaryotic parasites affecting humans, Plasmodium-related cancers are principally lymphoproliferative disorders and attributable to virus reactivation, whereas, similar to other eukaryotic parasites, the anti-tumour effects of malaria are primarily associated with carcinomas and certain sarcomas. Moreover, malarial infection significantly suppresses murine cancer growth by inducing both innate and specific adaptive anti-tumour responses. This review aims to present an update regarding the ambivalent association between malaria and cancer, and further studies may open future pathways to develop novel strategies for anti-cancer therapies.

  18. A longitudinal study on anaemia in children with Plasmodium falciparum infection in the Mount Cameroon region: prevalence, risk factors and perceptions by caregivers

    Science.gov (United States)

    2013-01-01

    Background In heavily endemic malaria areas, it is almost inevitable that malarial infection will be associated with anaemia, although malaria may not be the prime cause of it. Anaemia is a major public health problem in Cameroon. We hypothesized that, factors other than falciparum malaria account for anaemia in the study area. Methods A longitudinal study was conducted among 351 Plasmodium falciparum positive children to determine the prevalence, risk factors and the perception of anaemia by the caregivers in a semi-rural community. The investigative methods included the use of a structured questionnaire, clinical evaluation and laboratory investigations. Results At enrolment the overall prevalence of anaemia as assessed by Hb concentration (Hb anaemia was 6% and 46.2% of the children achieved haematological recovery by day 42. Exploratory multiple linear regression analysis showed the following; parasitaemia density (P 2 days (P anaemia in children with falciparum infection. Approximately 75.5% (265) of the caregivers had some knowledge about anaemia. Conclusion The identified risk factors revealed the important contributors to the pathogenesis of anaemia in the Mount Cameroon region. Control efforts should therefore be directed towards proper health education emphasizing on proper health seeking behaviour and attitudes of the population. PMID:23497273

  19. Immune activation and induction of memory: lessons learned from controlled human malaria infection with Plasmodium falciparum

    NARCIS (Netherlands)

    Scholzen, A.; Sauerwein, R.W.

    2016-01-01

    Controlled human malaria infections (CHMIs) are a powerful tool to assess the efficacy of drugs and/or vaccine candidates, but also to study anti-malarial immune responses at well-defined time points after infection. In this review, we discuss the insights that CHMI trials have provided into early

  20. Malaria's missing number: calculating the human component of R0 by a within-host mechanistic model of Plasmodium falciparum infection and transmission.

    Directory of Open Access Journals (Sweden)

    Geoffrey L Johnston

    2013-04-01

    Full Text Available Human infection by malarial parasites of the genus Plasmodium begins with the bite of an infected Anopheles mosquito. Current estimates place malaria mortality at over 650,000 individuals each year, mostly in African children. Efforts to reduce disease burden can benefit from the development of mathematical models of disease transmission. To date, however, comprehensive modeling of the parameters defining human infectivity to mosquitoes has remained elusive. Here, we describe a mechanistic within-host model of Plasmodium falciparum infection in humans and pathogen transmission to the mosquito vector. Our model incorporates the entire parasite lifecycle, including the intra-erythrocytic asexual forms responsible for disease, the onset of symptoms, the development and maturation of intra-erythrocytic gametocytes that are transmissible to Anopheles mosquitoes, and human-to-mosquito infectivity. These model components were parameterized from malaria therapy data and other studies to simulate individual infections, and the ensemble of outputs was found to reproduce the full range of patient responses to infection. Using this model, we assessed human infectivity over the course of untreated infections and examined the effects in relation to transmission intensity, expressed by the basic reproduction number R0 (defined as the number of secondary cases produced by a single typical infection in a completely susceptible population. Our studies predict that net human-to-mosquito infectivity from a single non-immune individual is on average equal to 32 fully infectious days. This estimate of mean infectivity is equivalent to calculating the human component of malarial R0 . We also predict that mean daily infectivity exceeds five percent for approximately 138 days. The mechanistic framework described herein, made available as stand-alone software, will enable investigators to conduct detailed studies into theories of malaria control, including the effects of

  1. Chondroitin sulfate A-adhering Plasmodium falciparum-infected erythrocytes express functionally important antibody epitopes shared by multiple variants

    DEFF Research Database (Denmark)

    Barfod, Lea; Dobrilovic, Tina; Magistrado, Pamela

    2010-01-01

    Acquired protection from Plasmodium falciparum placental malaria, a major cause of maternal, fetal, and infant morbidity, is mediated by IgG specific for the P. falciparum erythrocyte membrane protein 1 variant VAR2CSA. This protein enables adhesion of P. falciparum-infected erythrocytes to chond......Acquired protection from Plasmodium falciparum placental malaria, a major cause of maternal, fetal, and infant morbidity, is mediated by IgG specific for the P. falciparum erythrocyte membrane protein 1 variant VAR2CSA. This protein enables adhesion of P. falciparum-infected erythrocytes...

  2. Malarial acute kidney injury: Prognostic markers

    Directory of Open Access Journals (Sweden)

    Ruhi Khan

    2013-01-01

    Full Text Available Background: Malaria has protean clinical manifestations and acute kidney injury (AKI is one of its serious and life threatening complications. This study was carried out to describe the clinical characteristics, and factors associated with adverse outcomes, in patients with malarial AKI. Materials and Methods: Data of 100 patients with AKI and smear positive malaria was retrospectively analyzed to evaluate the incidence, clinical profile, outcome and predictors of mortality among all cases presented to us at the Nephrology unit of Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh between November 2010 to October 2011. Results were expressed as mean, standard deviation (SD and range. Results: One hundred (22.1% (68 males, 32 females cases of malaria induced AKI, amongst 452 total cases of AKI, were evaluated. The mean age (± SD was 30 ± 11.23 years. Male to female ratio was 3.3:1. Plasmodium falciparum was reported in 76%, P. vivax in 11%, and both in 13% patients. The mean serum creatinine was 8.7 ± 3.7 mg%, and oligo/anuria was present in 84% of the patients. 78% of the patients required hemodialysis. 67% of the patients recovered completely, 12% did not show full recovery, and 6% developed chronic kidney failure. Mortality occurred in 15% of the patients. Conclusion : Malarial AKI most commonly occurs in patients infected by Plasmodium Falciparum. Falciparum malaria associated with AKI is a life threatening condition. Prolonged disease duration, low hemoglobin, oligo/anuria on admission, hyperbilirubinemia, cerebral malaria, disseminated intravascular coagulation, and high serum creatinine were the main predictors of mortality in our study.

  3. The homeostasis of Plasmodium falciparum-infected red blood cells.

    Directory of Open Access Journals (Sweden)

    Jakob M A Mauritz

    2009-04-01

    Full Text Available The asexual reproduction cycle of Plasmodium falciparum, the parasite responsible for severe malaria, occurs within red blood cells. A merozoite invades a red cell in the circulation, develops and multiplies, and after about 48 hours ruptures the host cell, releasing 15-32 merozoites ready to invade new red blood cells. During this cycle, the parasite increases the host cell permeability so much that when similar permeabilization was simulated on uninfected red cells, lysis occurred before approximately 48 h. So how could infected cells, with a growing parasite inside, prevent lysis before the parasite has completed its developmental cycle? A mathematical model of the homeostasis of infected red cells suggested that it is the wasteful consumption of host cell hemoglobin that prevents early lysis by the progressive reduction in the colloid-osmotic pressure within the host (the colloid-osmotic hypothesis. However, two critical model predictions, that infected cells would swell to near prelytic sphericity and that the hemoglobin concentration would become progressively reduced, remained controversial. In this paper, we are able for the first time to correlate model predictions with recent experimental data in the literature and explore the fine details of the homeostasis of infected red blood cells during five model-defined periods of parasite development. The conclusions suggest that infected red cells do reach proximity to lytic rupture regardless of their actual volume, thus requiring a progressive reduction in their hemoglobin concentration to prevent premature lysis.

  4. Metabolic Host Responses to Malarial Infection during the Intraerythrocytic Developmental Cycle

    Science.gov (United States)

    2016-08-08

    environment [2]. * Correspondence: jaques.reifman.civ@mail.mil Department of Defense Biotechnology High Performance Computing Software Applications...μ and macromolecular syntheses of Plasmodium falciparum during the intraerythrocytic developmental cycle. a Rates for the HB3 ( blue solid curve), 3D7...metabolite of P. falciparum, in which orange, grey, and blue colors represent high, normal, and low production levels, respectively. Based on the time

  5. Parasitic co-infections: does Ascaris lumbricoides protect against Plasmodium falciparum infection?

    Science.gov (United States)

    Brutus, Laurent; Watier, Laurence; Briand, Valérie; Hanitrasoamampionona, Virginie; Razanatsoarilala, Hélène; Cot, Michel

    2006-08-01

    A controlled randomized trial of antihelminthic treatment was undertaken in 1996-1997 in a rural area of Madagascar where populations were simultaneously infected with Ascaris lumbricoides and Plasmodium falciparum. Levamisole was administered bimonthly to 164 subjects, randomized on a family basis, whereas 186 were controls. While levamisole proved to be highly effective in reducing Ascaris egg loads in the treated group (P < 10(-3) at all bimonthly visits), subjects more than 5 years of age, treated with levamisole had a significant increase in their P. falciparum densities compared with controls (P = 0.02), whereas there was no effect of anti-helminthic treatment on children 6 months to 4 years of age. The demonstration of a clear negative interaction between Ascaris infection and malaria parasite density has important implications. Single community therapy programs to deliver treatments against several parasitic infections could avoid an increase of malaria attacks after mass treatment of ascariasis.

  6. Peripheral blood cell signatures of Plasmodium falciparum infection during pregnancy.

    Directory of Open Access Journals (Sweden)

    Samad Ibitokou

    Full Text Available Sequestration of Plasmodium falciparum-infected erythrocytes in placental intervillous spaces causes inflammation and pathology. Knowledge of the profiles of immune cells associated with the physiopathology of pregnancy-associated malaria (PAM is scarce. We conducted a longitudinal, prospective study, both in Benin and Tanzania, including ∼1000 pregnant women in each site with systematic follow-up at scheduled antenatal visits until delivery. We used ex vivo flow cytometry to identify peripheral blood mononuclear cell (PBMC profiles that are associated with PAM and anaemia, determining the phenotypic composition and activation status of PBMC in selected sub-groups with and without PAM both at inclusion and at delivery in a total of 302 women. Both at inclusion and at delivery PAM was associated with significantly increased frequencies both of B cells overall and of activated B cells. Infection-related profiles were otherwise quite distinct at the two different time-points. At inclusion, PAM was associated with anaemia, with an increased frequency of immature monocytes and with a decreased frequency of regulatory T cells (Treg. At delivery, infected women presented with significantly fewer plasmacytoid dendritic cells (DC, more myeloid DC expressing low levels of HLA-DR, and more effector T cells (Teff compared to uninfected women. Independent associations with an increased risk of anaemia were found for altered antigen-presenting cell frequencies at inclusion, but for an increased frequency of Teff at delivery. Our findings emphasize the prominent role played by B cells during PAM whenever it arises during pregnancy, whilst also revealing signature changes in other circulating cell types that, we conclude, primarily reflect the relative duration of the infections. Thus, the acute, recently-acquired infections present at delivery were marked by changes in DC and Teff frequencies, contrasting with infections at inclusion, considered chronic in

  7. Interactive transcriptome analysis of malaria patients and infecting Plasmodium falciparum.

    Science.gov (United States)

    Yamagishi, Junya; Natori, Anna; Tolba, Mohammed E M; Mongan, Arthur E; Sugimoto, Chihiro; Katayama, Toshiaki; Kawashima, Shuichi; Makalowski, Wojciech; Maeda, Ryuichiro; Eshita, Yuki; Tuda, Josef; Suzuki, Yutaka

    2014-09-01

    To understand the molecular mechanisms of parasitism in vivo, it is essential to elucidate how the transcriptomes of the human hosts and the infecting parasites affect one another. Here we report the RNA-seq analysis of 116 Indonesian patients infected with the malaria parasite Plasmodium falciparum (Pf). We extracted RNAs from their peripheral blood as a mixture of host and parasite transcripts and mapped the RNA-seq tags to the human and Pf reference genomes to separate the respective tags. We were thus able to simultaneously analyze expression patterns in both humans and parasites. We identified human and parasite genes and pathways that correlated with various clinical data, which may serve as primary targets for drug developments. Of particular importance, we revealed characteristic expression changes in the human innate immune response pathway genes including TLR2 and TICAM2 that correlated with the severity of the malaria infection. We also found a group of transcription regulatory factors, JUND, for example, and signaling molecules, TNFAIP3, for example, that were strongly correlated in the expression patterns of humans and parasites. We also identified several genetic variations in important anti-malaria drug resistance-related genes. Furthermore, we identified the genetic variations which are potentially associated with severe malaria symptoms both in humans and parasites. The newly generated data should collectively lay a unique foundation for understanding variable behaviors of the field malaria parasites, which are far more complex than those observed under laboratory conditions.

  8. Mapping the genome of Plasmodium falciparum on the drug-like chemical space reveals novel anti-malarial targets and potential drug leads

    DEFF Research Database (Denmark)

    Jensen, Kasper; Plichta, Damian Rafal; Panagiotou, Gianni;

    2012-01-01

    The parasite Plasmodium falciparum is the main agent responsible for malaria. In this study, we exploited a recently published chemical library from GlaxoSmithKline (GSK) that had previously been confirmed to inhibit parasite growth of the wild type (3D7) and the multi-drug resistance (D2d) strains......, in order to uncover the weak links in the proteome of the parasite. We predicted 293 proteins of P. falciparum, including the six out of the seven verified targets for P. falciparum malaria treatment, as targets of 4645 GSK active compounds. Furthermore, we prioritized druggable targets, based on a number...... on integration of available chemical-protein and protein-protein interaction data. Our work suggests that a large number of the P. falciparum proteome is potentially druggable and could therefore serve as novel drug targets in the fight against malaria. At the same time, prioritized compounds from the GSK...

  9. Hepatitis C Virus Infection May Lead to Slower Emergence of P. falciparum in Blood

    Science.gov (United States)

    Ollomo, Benjamin; Mezui-Me-Ndong, Jérome; Noulin, Florian; Lachard, Isabelle; Ndong-Atome, Guy-Roger; Makuwa, Maria; Roques, Pierre; Branger, Michel; Preux, Pierre-Marie; Mazier, Dominique; Bisser, Sylvie

    2011-01-01

    Background Areas endemic for Plasmodium falciparum, hepatitis B virus (HBV) and hepatitis C virus (HCV) overlap in many parts of sub-Saharan Africa. HBV and HCV infections develop in the liver, where takes place the first development stage of P. falciparum before its further spread in blood. The complex mechanisms involved in the development of hepatitis may potentially influence the development of the liver stage of malaria parasites. Understanding the molecular mechanisms of these interactions could provide new pathophysiological insights for treatment strategies in Malaria. Methodology We studied a cohort of 319 individuals living in a village where the three infections are prevalent. The patients were initially given a curative antimalarial treatment and were then monitored for the emergence of asexual P. falciparum forms in blood, fortnightly for one year, by microscopy and polymerase chain reaction. Principal Findings At inclusion, 65 (20.4%) subjects had detectable malaria parasites in blood, 36 (11.3%) were HBV chronic carriers, and 61 (18.9%) were HCV chronic carriers. During follow-up, asexual P. falciparum forms were detected in the blood of 203 patients. The median time to P. falciparum emergence in blood was respectively 140 and 120 days in HBV- and HBV+ individuals, and 135 and 224 days in HCV- and HCV+ individuals. HCV carriage was associated with delayed emergence of asexual P. falciparum forms in blood relative to patients without HCV infection. Conclusions This pilot study represents first tentative evidence of a potential epidemiological interaction between HBV, HCV and P. falciparum infections. Age is an important confounding factor in this setting however multivariate analysis points to an interaction between P. falciparum and HCV at the hepatic level with a slower emergence of P. falciparum in HCV chronic carriers. More in depth analysis are necessary to unravel the basis of hepatic interactions between these two pathogens, which could help in

  10. Hepatitis C virus infection may lead to slower emergence of P. falciparum in blood.

    Directory of Open Access Journals (Sweden)

    Odile Ouwe-Missi-Oukem-Boyer

    Full Text Available BACKGROUND: Areas endemic for Plasmodium falciparum, hepatitis B virus (HBV and hepatitis C virus (HCV overlap in many parts of sub-Saharan Africa. HBV and HCV infections develop in the liver, where takes place the first development stage of P. falciparum before its further spread in blood. The complex mechanisms involved in the development of hepatitis may potentially influence the development of the liver stage of malaria parasites. Understanding the molecular mechanisms of these interactions could provide new pathophysiological insights for treatment strategies in Malaria. METHODOLOGY: We studied a cohort of 319 individuals living in a village where the three infections are prevalent. The patients were initially given a curative antimalarial treatment and were then monitored for the emergence of asexual P. falciparum forms in blood, fortnightly for one year, by microscopy and polymerase chain reaction. PRINCIPAL FINDINGS: At inclusion, 65 (20.4% subjects had detectable malaria parasites in blood, 36 (11.3% were HBV chronic carriers, and 61 (18.9% were HCV chronic carriers. During follow-up, asexual P. falciparum forms were detected in the blood of 203 patients. The median time to P. falciparum emergence in blood was respectively 140 and 120 days in HBV- and HBV+ individuals, and 135 and 224 days in HCV- and HCV+ individuals. HCV carriage was associated with delayed emergence of asexual P. falciparum forms in blood relative to patients without HCV infection. CONCLUSIONS: This pilot study represents first tentative evidence of a potential epidemiological interaction between HBV, HCV and P. falciparum infections. Age is an important confounding factor in this setting however multivariate analysis points to an interaction between P. falciparum and HCV at the hepatic level with a slower emergence of P. falciparum in HCV chronic carriers. More in depth analysis are necessary to unravel the basis of hepatic interactions between these two pathogens

  11. Dynamics of pfcrt alleles CVMNK and CVIET in chloroquine-treated Sudanese patients infected with Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Warhurst David C

    2010-03-01

    Full Text Available Abstract Background Parasite resistance to the anti-malarial drug chloroquine is common in eastern Sudan. Dynamic within-host changes in the relative abundance of both sensitive and resistant Plasmodium falciparum parasites were examined in a cohort of chloroquine-treated patients presenting with uncomplicated falciparum malaria, using a novel allele-specific quantitative approach. Methods Treatment outcomes were determined for 93 patients of all ages in a per protocol cohort using a modified 14-day WHO protocol. Parasite DNA samples at days 0, 1, 2, 3, 7 and 14 following treatment were analysed using real-time quantitative PCR methods that distinguished resistant and sensitive genotypes at amino acids 72 - 76 of the pfcrt locus. Results Chloroquine treatment was not efficacious, and of 93 assessable patients, only 10 individuals (10.7%; 95% C.I. 4.34 - 17.2% enjoyed an adequate clinical and parasitological response. Resistant parasites with the haplotype CVIET at codons 72-76 of the pfcrt locus were dominant in the starting population. Chloroquine sensitive parasites with the haplotype CVMNK were detected in 19 individuals prior to treatment (20.43%; 95% C.I. 5.14 - 18.5%. In these patients, CQ treatment rapidly selected CVIET parasites, and this haplotype overwhelmingly dominated the parasite population in each individual by day 2 after treatment. Conclusions Such rapid intra-host selection of particular genotypes after the introduction of drug will cause frequent misidentification of parasite genotypes present in the starting population. This will have a potentially serious confounding effect on clinical trials which employ PCR-corrected estimates of treatment failure, as resistant parasites below the detection threshold in the pre-treatment sample can be erroneously classified as "new" infections during follow-up, over-estimating drug efficacy.

  12. Biomarkers of Plasmodium falciparum infection during pregnancy in women living in northeastern Tanzania.

    Directory of Open Access Journals (Sweden)

    Stéphanie Boström

    Full Text Available In pregnant women, Plasmodium falciparum infections are an important cause of maternal morbidity as well as fetal and neonatal mortality. Erythrocytes infected by these malaria-causing parasites accumulate through adhesive interactions in placental intervillous spaces, thus evading detection in peripheral blood smears. Sequestered infected erythrocytes induce inflammation, offering the possibility of detecting inflammatory mediators in peripheral blood that could act as biomarkers of placental infection. In a longitudinal, prospective study in Tanzania, we quantified a range of different cytokines, chemokines and angiogenic factors in peripheral plasma samples, taken on multiple sequential occasions during pregnancy up to and including delivery, from P. falciparum-infected women and matched uninfected controls. The results show that during healthy, uninfected pregnancies the levels of most of the panel of molecules we measured were largely unchanged except at delivery. In women with P. falciparum, however, both comparative and longitudinal assessments consistently showed that the levels of IL-10 and IP-10 increased significantly whilst that of RANTES decreased significantly, regardless of gestational age at the time the infection was detected. ROC curve analysis indicated that a combination of increased IL-10 and IP-10 levels and decreased RANTES levels might be predictive of P. falciparum infections. In conclusion, our data suggest that host biomarkers in peripheral blood may represent useful diagnostic markers of P. falciparum infection during pregnancy, but placental histology results would need to be included to verify these findings.

  13. Diagnosis of malarial infection using change in properties of optically trapped red blood cells

    Directory of Open Access Journals (Sweden)

    Apurba Paul

    2017-04-01

    Conclusion: The technique of measuring fc can be used as a screening tool for malaria in patients with fever, since RBCs not carrying the parasite will also show the change due to the bystander effect, irrespective of whether it is caused by P. falciparum or P. vivax.

  14. J-dot targeting of an exported HSP40 in Plasmodium falciparum-infected erythrocytes.

    Science.gov (United States)

    Petersen, Wiebke; Külzer, Simone; Engels, Sonja; Zhang, Qi; Ingmundson, Alyssa; Rug, Melanie; Maier, Alexander G; Przyborski, Jude M

    2016-07-01

    Plasmodium falciparum exports a large number of proteins to its host cell, the mature human erythrocyte, where they are involved in host cell modification. Amongst the proteins trafficked to the host cell, many are heat shock protein (HSP)40 homologues. We previously demonstrated that at least two exported PfHSP40s (referred to as PFE55 and PFA660) localise to mobile structures in the P. falciparum-infected erythrocyte (Kulzer et al., 2010), termed J-dots. The complete molecular content of these structures has not yet been completely resolved, however it is known that they also contain an exported HSP70, PfHSP70x, and are potentially involved in transport of the major cytoadherance ligand, PfEMP1, through the host cell. To understand more about the nature of the association of exported HSP40s with J-dots, here we have studied the signal requirements for recruitment of the proteins to these structures. By expressing various exported GFP chimeras, we can demonstrate that the predicted substrate binding domain is necessary and sufficient for J-dot targeting. This targeting only occurs in human erythrocytes infected with P. falciparum, as it is not conserved when expressing a P. falciparum HSP40 in Plasmodium berghei-infected murine red blood cells, suggesting that J-dots are P. falciparum-specific. This data reveals a new mechanism for targeting of exported proteins to intracellular structures in the P. falciparum-infected erythrocyte.

  15. Cytoadhesion of Plasmodium falciparum-infected erythrocytes and the infected placenta: a two-way pathway.

    Science.gov (United States)

    Costa, F T M; Avril, M; Nogueira, P A; Gysin, J

    2006-12-01

    Malaria is undoubtedly the world's most devastating parasitic disease, affecting 300 to 500 million people every year. Some cases of Plasmodium falciparum infection progress to the deadly forms of the disease responsible for 1 to 3 million deaths annually. P. falciparum-infected erythrocytes adhere to host receptors in the deep microvasculature of several organs. The cytoadhesion of infected erythrocytes to placental syncytiotrophoblast receptors leads to pregnancy-associated malaria (PAM). This specific maternal-fetal syndrome causes maternal anemia, low birth weight and the death of 62,000 to 363,000 infants per year in sub-Saharan Africa, and thus has a poor outcome for both mother and fetus. However, PAM and non-PAM parasites have been shown to differ antigenically and genetically. After multiple pregnancies, women from different geographical areas develop adhesion-blocking antibodies that protect against placental parasitemia and clinical symptoms of PAM. The recent description of a new parasite ligand encoded by the var2CSA gene as the only gene up-regulated in PAM parasites renders the development of an anti-PAM vaccine more feasible. The search for a vaccine to prevent P. falciparum sequestration in the placenta by eliciting adhesion-blocking antibodies and a cellular immune response, and the development of new methods for evaluating such antibodies should be key priorities in mother-child health programs in areas of endemic malaria. This review summarizes the main molecular, immunological and physiopathological aspects of PAM, including findings related to new targets in the P. falciparum var gene family. Finally, we focus on a new methodology for mimicking cytoadhesion under blood flow conditions in human placental tissue.

  16. Cytoadhesion of Plasmodium falciparum-infected erythrocytes and the infected placenta: a two-way pathway

    Directory of Open Access Journals (Sweden)

    F.T.M. Costa

    2006-12-01

    Full Text Available Malaria is undoubtedly the world's most devastating parasitic disease, affecting 300 to 500 million people every year. Some cases of Plasmodium falciparum infection progress to the deadly forms of the disease responsible for 1 to 3 million deaths annually. P. falciparum-infected erythrocytes adhere to host receptors in the deep microvasculature of several organs. The cytoadhesion of infected erythrocytes to placental syncytiotrophoblast receptors leads to pregnancy-associated malaria (PAM. This specific maternal-fetal syndrome causes maternal anemia, low birth weight and the death of 62,000 to 363,000 infants per year in sub-Saharan Africa, and thus has a poor outcome for both mother and fetus. However, PAM and non-PAM parasites have been shown to differ antigenically and genetically. After multiple pregnancies, women from different geographical areas develop adhesion-blocking antibodies that protect against placental parasitemia and clinical symptoms of PAM. The recent description of a new parasite ligand encoded by the var2CSA gene as the only gene up-regulated in PAM parasites renders the development of an anti-PAM vaccine more feasible. The search for a vaccine to prevent P. falciparum sequestration in the placenta by eliciting adhesion-blocking antibodies and a cellular immune response, and the development of new methods for evaluating such antibodies should be key priorities in mother-child health programs in areas of endemic malaria. This review summarizes the main molecular, immunological and physiopathological aspects of PAM, including findings related to new targets in the P. falciparum var gene family. Finally, we focus on a new methodology for mimicking cytoadhesion under blood flow conditions in human placental tissue.

  17. Influence of host iron status on Plasmodium falciparum infection

    Directory of Open Access Journals (Sweden)

    Martha A. Clark

    2014-05-01

    Full Text Available Iron deficiency affects one quarter of the world’s population and causes significant morbidity, including detrimental effects on immune function and cognitive development. Accordingly, the World Health Organization recommends routine iron supplementation in children and adults in areas with high prevalence of iron deficiency. However, a large body of clinical and epidemiological evidence has accumulated which clearly demonstrates that host iron deficiency is protective against falciparum malaria and that host iron supplementation may increase the risk of malaria. Although many effective antimalarial treatments and preventive measures are available, malaria remains a significant public health problem, in part because the mechanisms of malaria pathogenesis remain obscured by the complexities in the relationships between parasite virulence factors, host susceptibility traits, and the immune responses that modulate disease. Here we review (i the clinical and epidemiological data that describes the relationship between host iron status and malaria infection and (ii the progress being made to understand the biological basis for these clinical and epidemiological observations.

  18. Malarial hepatopathy and its outcome in India

    Directory of Open Access Journals (Sweden)

    Rama Prakasha Saya

    2012-01-01

    Full Text Available Background: Jaundice in Plasmodium falciparum malaria is multifactorial and its incidence varies in different regions. It is important to assess the incidence and factors associated with malarial hepatopathy as well as its complications to understand the pattern of disease presentation in order to undertake appropriate interventional measures. There is a paucity of data with regard to malarial hepatopathy and its outcome at the global level. Aim: The study was conducted to assess the pattern, spectrum of biochemical parameters and complications of hepatopathy related to P. falciparum malaria. Materials and Methods: A descriptive study was conducted in a tertiary care hospital attached to a government medical institution in Assam, India. Demographic details of the hundred patients with P. falciparum malaria, their clinical and biochemical parameters, complications and outcome were collected using a prestructured proforma. Data was compared using proportion and Chi Square test. Results: The proportion of those with malarial hepatopathy was 38% and the incidence was more in males and younger age group. The degree of hyperbilirubinemia, complications that include renal failure, shock, acute respiratory distress syndrome, hypoglycemia and mortality were significantly more among patients with hepatopathy (P<0.05. Conclusion: Malarial hepatopathy is associated with a higher incidence of complications like renal failure, shock, acute respiratory distress syndrome and hypoglycemia. Further studies are required to elucidate the factors associated with malarial hepatopathy and to prevent the complications and mortality.

  19. The Severity of Plasmodium falciparum infection is associated with transcript levels of var genes encoding endothelial protein C receptor-binding P. falciparum erythrocyte membrane protein 1

    DEFF Research Database (Denmark)

    Mkumbaye, Sixbert I; Wang, Christian W; Lyimo, Eric

    2017-01-01

    By attaching infected erythrocytes to the vascular lining, Plasmodium falciparum parasites leave blood circulation and avoid splenic clearance. This sequestration is central to pathogenesis. Severe malaria is associated with parasites expressing an antigenically distinct P. falciparum erythrocyte...

  20. Compliance with a three-day course of artesunate-mefloquine combination and baseline anti-malarial treatment in an area of Thailand with highly multidrug resistant falciparum malaria

    Directory of Open Access Journals (Sweden)

    Na-Bangchang Kesara

    2010-02-01

    Full Text Available Abstract Background Artemisinin-based combination therapy (ACT is presently recommended by the World Health Organization as first-line treatment for uncomplicated Plasmodium falciparum malaria in several countries, as a mean of prolonging the effectiveness of first-line malaria treatment regimens. A three-day course of artesunate-mefloquine (4 mg/kg body weight once daily for three consecutive days, plus 15 and 10 mg/kg body weight mefloquine on the first and second days has been adopted by Malaria Control Programme of Thailand as first-line treatment for uncomplicated falciparum malaria all over the country since 2008. The gametocytocydal anti-malarial drug primaquine is administered at the dose of 30 mg (0.6 mg/kg on the last day. The aim of the present study was to assess patient compliance of this combination regimen when applied to field condition. Methods A total of 240 patients (196 males and 44 females who were attending the malaria clinics in Mae-Sot, Tak Province and presenting with symptomatic acute uncomplicated falciparum malaria, with no reappearance of Plasmodium vivax parasitaemia during follow-up were included into the study. The first dose of the treatment was given to the patients under direct supervision. All patients were given the medication for self-treatment at home and were requested to come back for follow-up on day 3 of the initial treatment. Baseline (day 0 and day 3 whole blood mefloquine and plasma primaquine concentrations were determined by high performance liquid chromatography. Results Two patients had recrudescence on days 28 and 35. The Kaplan-Meier estimate of the 42-day efficacy rate of this combination regimen was 99.2% (238/240. Based on whole blood mefloquine and plasma primaquine concentrations on day 3 of the initial treatment, compliance with mefloquine and primaquine in this three-day artesunate-mefloquine combination regimen were 96.3% (207/215, and 98.5% (197/200, respectively. Baseline mefloquine

  1. Plasmodium Falciparum: Adhesion Phenotype of Infected Erythrocytes Using Classical and Mini-Column Cytoadherence Techniques

    Directory of Open Access Journals (Sweden)

    N Kalantari

    2013-03-01

    Full Text Available Background: Cytoadherence of Plasmodium falciparum- infected erythrocytes to host cells is an impor­tant trait for parasite survival and has a major role in pathology of malaria disease. Infections with P. falciparum usually consist of several subpopulations of parasites with different adhesive proper­ties. This study aimed to compare relative sizes of various binding subpopulations of different P. falciparum isolates. It also investigated the adhesive phenotype of a laboratory P. falciparum line, A4, using different binding techniques.Methods: Seven different P. falciparum isolates (ITG, A4, 3D7 and four field isolates were cultivated to late trophozoite and schizont and then cytoadherence to cell differentiation 36 (CD36, intercellu­lar cell adhesion molecule-1 (ICAM-1, and vascular cell adhesion molecule (V-CAM and E-selectin were examined. The relative binding sizes of parasite subpopulations to human receptors were meas­ured by mini-column cytoadherence method. The adhesion phenotype of P. falciparum-A4 line was evaluated by in vitro static, flow-based and mini-column binding assays.Results: The relative binding size of ITG, A4 and 3D7 clones to a column made with CHO/ICAM-1 was 68%, 54% and 0%, respectively. The relative binding sizes of these lines to CHO/CD36 were 59.7%, 28.7% and 0%, respectively. Different field isolates had variable sizes of respective CD36 and ICAM1-binding subpopulations. A4 line had five different subpopulations each with different binding sizes.Conclusion: This study provided further evidence that P. falciparum isolates have different binding subpopulations sizes in an infection. Furthermore, measurement of ICAM-1 or CD36 binding subpopula­tions may practical to study the cytoadherence phenotypes of P. falciparum field isolates at the molecular level.

  2. Soluble products of inflammatory reactions are not induced in children with asymptomatic Plasmodium falciparum infections

    DEFF Research Database (Denmark)

    Jakobsen, P H; McKay, V; N'Jie, R;

    1996-01-01

    A proportion of children with Plasmodium falciparum infection have a high parasitaemia without accompanying fever, indicative of different clinical thresholds of parasitaemia. Higher levels of IL-10, IL-1Ra and sIL-4R but not sIL-2R were found in children with P. falciparum malaria, compared...... with levels in children with asymptomatic P. falciparum infections and in healthy children. Concentrations of IL-10 and IL-1Ra were correlated with levels of parasitaemia, but the association of cytokine levels with disease was independent of the association with parasitaemia. Children may tolerate a high...... parasitaemia by neutralizing the parasite-derived toxins. When studying potential anti-toxic molecules we found that children with symptomatic infections had lower concentrations of a phospholipid-binding molecule, beta 2-glycoprotein I (beta 2-GPI), compared with children with asymptomatic infections...

  3. Two New Plant-Like Pathways Link Hemoglobin Degradation to Lipid Biogenesis in Falciparum Malaria: Novel Targets for Anti-Malarial Chemotherapy

    Science.gov (United States)

    2005-03-01

    important parasitic disease, is caused by intraerythrocytic protozoan parasites of the genus Plasmodium. Plasmodium falciparum is responsible for the most...been proposed to be the primaryM caused by intraerythrocytic protozoan parasites of the route for synthesis of PtdCho in Plasmodium (16, 17); however

  4. Detection of antibodies to variant antigens on Plasmodium falciparum-infected erythrocytes by flow cytometry

    DEFF Research Database (Denmark)

    Staalsoe, T; Giha, H A; Dodoo, D;

    1999-01-01

    BACKGROUND: Naturally induced antibodies binding to surface antigens of Plasmodium falciparum-infected erythrocytes can be detected by direct agglutination of infected erythrocytes or by indirect immunofluorescence on intact, unfixed, infected erythrocytes. Agglutinating antibodies have previously...... been shown to recognise Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1). This protein is inserted by the parasite into the host cell membrane and mediates the adhesion to the venular endothelium of the host organism in vivo. METHODS: Erythrocytes infected at high parasitaemias...... with ethidium-bromide-labelled mature forms of P. falciparum parasites were sequentially exposed to immune plasma, goat anti-human immunoglobulin (Ig) G, and fluorescein-isothiocyanate-conjugated rabbit anti-goat Ig. Plasma antibodies recognising antigens exposed on the surface of parasitised erythrocytes were...

  5. The effect of daily co-trimoxazole prophylaxis on natural development of antibody-mediated immunity against P. falciparum malaria infection in HIV-exposed uninfected Malawian children.

    Science.gov (United States)

    Longwe, Herbert; Jambo, Kondwani C; Phiri, Kamija S; Mbeye, Nyanyiwe; Gondwe, Thandile; Hall, Tom; Tetteh, Kevin K A; Drakeley, Chris; Mandala, Wilson L

    2015-01-01

    Co-trimoxazole prophylaxis, currently recommended in HIV-exposed, uninfected (HEU) children as protection against opportunistic infections, also has some anti-malarial efficacy. We determined whether daily co-trimoxazole prophylaxis affects the natural development of antibody-mediated immunity to blood-stage Plasmodium falciparum malaria infection. Using an enzyme-linked immunosorbent assay, we measured antibodies to 8 Plasmodium falciparum antigens (AMA-1, MSP-119, MSP-3, PfSE, EBA-175RII, GLURP R0, GLURP R2 and CSP) in serum samples from 33 HEU children and 31 HIV-unexposed, uninfected (HUU) children, collected at 6, 12 and 18 months of age. Compared to HIV-uninfected children, HEU children had significantly lower levels of specific IgG against AMA-1 at 6 months (p = 0.001), MSP-119 at 12 months (p = 0.041) and PfSE at 6 months (p = 0.038), 12 months (p = 0.0012) and 18 months (p = 0.0097). No differences in the IgG antibody responses against the rest of the antigens were observed between the two groups at all time points. The breadth of specificity of IgG response was reduced in HEU children compared to HUU children during the follow up period. Co-trimoxazole prophylaxis seems to reduce IgG antibody responses to P. falciparum blood stage antigens, which could be as a result of a reduction in exposure of those children under this regime. Although antibody responses were regarded as markers of exposure in this study, further studies are required to establish whether these responses are correlated in any way to clinical immunity to malaria.

  6. The effect of daily co-trimoxazole prophylaxis on natural development of antibody-mediated immunity against P. falciparum malaria infection in HIV-exposed uninfected Malawian children.

    Directory of Open Access Journals (Sweden)

    Herbert Longwe

    Full Text Available Co-trimoxazole prophylaxis, currently recommended in HIV-exposed, uninfected (HEU children as protection against opportunistic infections, also has some anti-malarial efficacy. We determined whether daily co-trimoxazole prophylaxis affects the natural development of antibody-mediated immunity to blood-stage Plasmodium falciparum malaria infection.Using an enzyme-linked immunosorbent assay, we measured antibodies to 8 Plasmodium falciparum antigens (AMA-1, MSP-119, MSP-3, PfSE, EBA-175RII, GLURP R0, GLURP R2 and CSP in serum samples from 33 HEU children and 31 HIV-unexposed, uninfected (HUU children, collected at 6, 12 and 18 months of age.Compared to HIV-uninfected children, HEU children had significantly lower levels of specific IgG against AMA-1 at 6 months (p = 0.001, MSP-119 at 12 months (p = 0.041 and PfSE at 6 months (p = 0.038, 12 months (p = 0.0012 and 18 months (p = 0.0097. No differences in the IgG antibody responses against the rest of the antigens were observed between the two groups at all time points. The breadth of specificity of IgG response was reduced in HEU children compared to HUU children during the follow up period.Co-trimoxazole prophylaxis seems to reduce IgG antibody responses to P. falciparum blood stage antigens, which could be as a result of a reduction in exposure of those children under this regime. Although antibody responses were regarded as markers of exposure in this study, further studies are required to establish whether these responses are correlated in any way to clinical immunity to malaria.

  7. An automated method for determining the cytoadhesion of Plasmodium falciparum-infected erythrocytes to immobilized cells

    DEFF Research Database (Denmark)

    Hempel, Casper; Boisen, Ida M; Efunshile, Akinwale;

    2015-01-01

    BACKGROUND: Plasmodium falciparum exports antigens to the surface of infected erythrocytes causing cytoadhesion to the host vasculature. This is central in malaria pathogenesis but in vitro studies of cytoadhesion rely mainly on manual counting methods. The current study aimed at developing...... an automated high-throughput method for this purpose utilizing the pseudoperoxidase activity of intra-erythrocytic haemoglobin. METHODS: Chinese hamster ovary (CHO) cells were grown to confluence in chamber slides and microtiter plates. Cytoadhesion of co-cultured P. falciparum, selected for binding to CHO...... using: i) binding of P. falciparum-infected erythrocytes to CHO cells over-expressing chondroitin sulfate A and ii) CHO cells transfected with CD36. Binding of infected erythrocytes including field isolates to primary endothelial cells was also performed. Data was analysed using linear regression...

  8. Modulation of Lipoprotein Cholesterol Levels in Plasmodium berghei Malarial Infection by Crude Aqueous Extract of Ganoderma lucidum

    Directory of Open Access Journals (Sweden)

    Olarewaju M. Oluba

    2012-01-01

    Full Text Available In this study, attempt is made to establish changes in serum and liver lipoprotein cholesterols accompanying Plasmodium berghei malarial infection in mice treated with aqueous extract of Ganoderma lucidum at 100, 250, and 500 mg/kg body weight in comparison with 15 mg/kg chloroquine (CQ. Significant increases in all the lipoprotein fractions were observed in infected untreated mice compared with normal control mice. Treatment with 100 and 250 mg/kg G. lucidum extract produced significant reduction in serum total cholesterol (TC and low-density cholesterol (LDL-C contents compared with 500 mg/kg G. lucidum and CQ. Treatment with CQ, however, produced significant reduction in hepatic TC and LDL-C compared with the extract. A dose-dependent significant increase in serum high-density lipoprotein cholesterol (HDL-C was observed in the G. lucidum treated mice compared with normal control but significantly lower compared with CQ-treated mice. Liver HDL-C level was significantly higher in CQ-treated mice compared with normal control and significantly lower compared with G. lucidum-treated and infected untreated mice. A dose-dependent effect of the extract was observed in both serum and liver very-low density lipoprotein cholesterol (VLDL-C. The implication of these results is discussed with respect to the parasite survival and proliferation in the serum and liver.

  9. Infants' Peripheral Blood Lymphocyte Composition Reflects Both Maternal and Post-Natal Infection with Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Odilon Nouatin

    Full Text Available Maternal parasitoses modulate fetal immune development, manifesting as altered cellular immunological activity in cord blood that may be linked to enhanced susceptibility to infections in early life. Plasmodium falciparum typifies such infections, with distinct placental infection-related changes in cord blood exemplified by expanded populations of parasite antigen-specific regulatory T cells. Here we addressed whether such early-onset cellular immunological alterations persist through infancy. Specifically, in order to assess the potential impacts of P. falciparum infections either during pregnancy or during infancy, we quantified lymphocyte subsets in cord blood and in infants' peripheral blood during the first year of life. The principal age-related changes observed, independent of infection status, concerned decreases in the frequencies of CD4+, NKdim and NKT cells, whilst CD8+, Treg and Teff cells' frequencies increased from birth to 12 months of age. P. falciparum infections present at delivery, but not those earlier in gestation, were associated with increased frequencies of Treg and CD8+ T cells but fewer CD4+ and NKT cells during infancy, thus accentuating the observed age-related patterns. Overall, P. falciparum infections arising during infancy were associated with a reversal of the trends associated with maternal infection i.e. with more CD4+ cells, with fewer Treg and CD8+ cells. We conclude that maternal P. falciparum infection at delivery has significant and, in some cases, year-long effects on the composition of infants' peripheral blood lymphocyte populations. Those effects are superimposed on separate and independent age- as well as infant infection-related alterations that, respectively, either match or run counter to them.

  10. [Erythrocytes infected by Plasmodium falciparum activate human platelets].

    Science.gov (United States)

    Polack, B; Peyron, F; Sheick Zadiuddin, I; Kolodié, L; Ambroise-Thomas, P

    1990-01-01

    Blood platelets are involved in Plasmodium falciparum malaria pathology as shown by thrombocytopenia and increased plasma level of two alpha granule proteins: beta thromboglobulin (beta TG) and platelet factor 4 (PF4). In this study we demonstrate that Plasmodium falciparum parasitized erythrocytes activate directly the secretion of beta TG and PF4 by human platelets. This secretion is related to parasitemia and occurs immediately after contact. Treatment of parasited erythrocytes by trypsin and diffusion chamber experiments suggest that platelet activation is triggered by parasitic substances shed on erythrocyte membrane and released in the culture medium.

  11. Chronic Plasmodium falciparum infections in an area of low intensity malaria transmission in the Sudan

    DEFF Research Database (Denmark)

    Hamad, A A; El Hassan, I M; El Khalifa, A A

    2000-01-01

    Chronic Plasmodium falciparum malaria infections in a Sudanese village, in an area of seasonal and unstable malaria transmission, were monitored and genetically characterized to study the influence of persistent infection on the immunology and epidemiology of low endemicity malaria. During...... the October-December malaria season of 1996, 51 individuals out of a population of 420 had confirmed and treated P. falciparum malaria in the village of Daraweesh in eastern Sudan. In a cross-sectional survey carried out in December 1996, an additional 6 individuals were found to harbour a microscopically...

  12. In vitro and in vivo assessment of the anti-malarial activity of Caesalpinia pluviosa

    Directory of Open Access Journals (Sweden)

    Eberlin Marcos N

    2011-05-01

    Full Text Available Abstract Background To overcome the problem of increasing drug resistance, traditional medicines are an important source for potential new anti-malarials. Caesalpinia pluviosa, commonly named "sibipiruna", originates from Brazil and possess multiple therapeutic properties, including anti-malarial activity. Methods Crude extract (CE was obtained from stem bark by purification using different solvents, resulting in seven fractions. An MTT assay was performed to evaluate cytotoxicity in MCF-7 cells. The CE and its fractions were tested in vitro against chloroquine-sensitive (3D7 and -resistant (S20 strains of Plasmodium falciparum and in vivo in Plasmodium chabaudi-infected mice. In vitro interaction with artesunate and the active C. pluviosa fractions was assessed, and mass spectrometry analyses were conducted. Results At non-toxic concentrations, the 100% ethanolic (F4 and 50% methanolic (F5 fractions possessed significant anti-malarial activity against both 3D7 and S20 strains. Drug interaction assays with artesunate showed a synergistic interaction with the F4. Four days of treatment with this fraction significantly inhibited parasitaemia in mice in a dose-dependent manner. Mass spectrometry analyses revealed the presence of an ion corresponding to m/z 303.0450, suggesting the presence of quercetin. However, a second set of analyses, with a quercetin standard, showed distinct ions of m/z 137 and 153. Conclusions The findings show that the F4 fraction of C. pluviosa exhibits anti-malarial activity in vitro at non-toxic concentrations, which was potentiated in the presence of artesunate. Moreover, this anti-malarial activity was also sustained in vivo after treatment of infected mice. Finally, mass spectrometry analyses suggest that a new compound, most likely an isomer of quercetin, is responsible for the anti-malarial activity of the F4.

  13. Influence of age and previous diet of Anopheles gambiae on the infectivity of natural Plasmodium falciparum gametocytes from human volunteers

    OpenAIRE

    Okech, Bernard A.; Louis C Gouagna; Kabiru, Ephantus W; Beier, John C.; Yan, Guiyun; Githure, John I

    2004-01-01

    The effect of age and dietary factors of Anopheles gambiae (Diptera: Culicidae) on the infectivity of natural Plasmodium falciparum parasites was studied. Mosquitoes of various ages (1–3, 4–7 and 8–11 day old) and those fed blood (either single or double meals) and sugar meals were experimentally co-infected with P. falciparum gametocytes obtained from different naturally infected human volunteers. On day 7, midguts were examined for oocyst infection to determine whether mosquito age or diets...

  14. VAR2CSA expression on the surface of placenta-derived Plasmodium falciparum-infected erythrocytes

    DEFF Research Database (Denmark)

    Magistrado, Pamela; Salanti, Ali; Tuikue Ndam, Nicaise G;

    2008-01-01

    Malaria remains a major threat, in sub-Saharan Africa primarily, and the most deadly infections are those with Plasmodium falciparum. Pregnancy-associated malaria is a clinically important complication of infection; it results from a unique interaction between proteoglycans in the placental inter...... on the surface of infected erythrocytes from placenta. Importantly, this was achieved with cross-reactive antibodies against VAR2CSA....

  15. Aotus infulatus monkey is susceptible to Plasmodium falciparum infection and may constitute an alternative experimental model for malaria

    Directory of Open Access Journals (Sweden)

    Carvalho Leonardo JM

    2000-01-01

    Full Text Available Aotus is one of the WHO-recommended primate models for studies in malaria, and several species can be infected with Plasmodium falciparum or P. vivax. Here we describe the successful infection of the species A. infulatus from eastern Amazon with blood stages of P. falciparum. Both intact and splenectomized animals were susceptible to infection; the intact ones were able to keep parasitemias at lower levels for several days, but developed complications such as severe anemia; splenectomized monkeys developed higher parasitemias but no major complications. We conclude that A. infulatus is susceptible to P. falciparum infection and may represent an alternative model for studies in malaria.

  16. Parasite Sequestration in Plasmodium falciparum Malaria: Spleen and Antibody Modulation of Cytoadherence of Infected Erythrocytes

    Science.gov (United States)

    David, Peter H.; Hommel, Marcel; Miller, Louis H.; Udeinya, Iroka J.; Oligino, Lynette D.

    1983-08-01

    Sequestration, the adherence of infected erythrocytes containing late developmental stages of the parasite (trophozoites and schizonts) to the endothelium of capillaries and venules, is characteristic of Plasmodium falciparum infections. We have studied two host factors, the spleen and antibody, that influence sequestration of P. falciparum in the squirrel monkey. Sequestration of trophozoite/schizont-infected erythrocytes that occurs in intact animals is reduced in splenectomized animals; in vitro, when infected blood is incubated with monolayers of human melanoma cells, trophozoite/schizont-infected erythrocytes from intact animals but not from splenectomized animals bind to the melanoma cells. The switch in cytoadherence characteristics of the infected erythrocytes from nonbinding to binding occurs with a cloned parasite. Immune serum can inhibit and reverse in vitro binding to melanoma cells of infected erythrocytes from intact animals. Similarly, antibody can reverse in vivo sequestration as shown by the appearance of trophozoite/schizont-infected erythrocytes in the peripheral blood of an intact animal after inoculation with immune serum. These results indicate that the spleen modulates the expression of parasite alterations of the infected erythrocyte membrane responsible for sequestration and suggest that the prevention and reversal of sequestration could be one of the effector mechanisms involved in antibody-mediated protection against P. falciparum malaria.

  17. Malaria in pregnancy in rural Mozambique: the role of parity, submicroscopic and multiple Plasmodium falciparum infections.

    Science.gov (United States)

    Saute, Francisco; Menendez, Clara; Mayor, Alfredo; Aponte, John; Gomez-Olive, Xavier; Dgedge, Martinho; Alonso, Pedro

    2002-01-01

    Falciparum malaria affects pregnant women, especially primigravidae, but before malaria control programmes targeted to them can be designed, a description of the frequency and parity pattern of the infection is needed. There is little information on the frequency and effect of submicroscopic malaria infection, as well as on multiplicity of Plasmodium falciparum genotypes in pregnancy. This study aimed to describe the prevalence of malaria parasitaemia and anaemia and their relation to parity and age in pregnant women, during two malaria transmission seasons in a rural area of southern Mozambique. It also tried to assess the frequency and effect on anaemia of submicroscopic and multiple falciparum infections. A total of 686 pregnant women were enrolled in three cross-sectional community-based surveys during different transmission seasons in rural southern Mozambique. In each survey a questionnaire was administered on previous parity history, the gestational age was assessed, the axillary temperature recorded and both haematocrit and malaria parasitaemia were determined. We used polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) analysis to determine submicroscopic and multiple P. falciparum infections in a subsample of women. A total of 156 women (23%) had microscopic parasitaemia, of which 144 (92%) were asexual forms of P. falciparum. The prevalence of clinical malaria was 18 of 534 (3%), that of anaemia, 382 of 649 (59%). In a multivariate analysis age but not parity was associated with an increased risk of microscopic parasitaemia. Anaemia was associated with microscopic P. falciparum parasitaemia. Both malaria parasitaemia and anaemia were more frequent during the rainy season. Although not statistically significant, submicroscopic infections tended to be more frequent among grand-multiparous pregnant women. Subpatent infections were not associated with increased anaemia. Multiplicity of infection was not associated with either

  18. Adhesion of Plasmodium falciparum infected erythrocytes in ex vivo perfused placental tissue

    DEFF Research Database (Denmark)

    Pehrson, Caroline; Mathiesen, Line; Heno, Kristine K;

    2016-01-01

    BACKGROUND: Placental malaria occurs when Plasmodium falciparum infected erythrocytes sequester in the placenta. Placental parasite isolates bind to chondroitin sulphate A (CSA) by expression of VAR2CSA on the surface of infected erythrocytes, but may sequester by other VAR2CSA mediated mechanisms...... placental tissue. RESULTS: The ex vivo placental perfusion model was modified to study adhesion of infected erythrocytes binding to CSA, endothelial protein C receptor (EPCR) or a transgenic parasite where P. falciparum erythrocyte membrane protein 1 expression had been shut down. Infected erythrocytes...... expressing VAR2CSA accumulated in perfused placental tissue whereas the EPCR binding and the transgenic parasite did not. Soluble CSA and antibodies specific against VAR2CSA inhibited binding of infected erythrocytes. CONCLUSION: The ex vivo model provides a novel way of studying receptor-ligand interactions...

  19. Cytoadhesion of Plasmodium falciparum-infected erythrocytes to chondroitin-4-sulfate is cooperative and shear enhanced

    DEFF Research Database (Denmark)

    Rieger, Harden; Yoshikawa, Hiroshi Y; Quadt, Katharina

    2015-01-01

    Infections with the human malaria parasite Plasmodium falciparum during pregnancy can lead to severe complications for both mother and child, resulting from the cytoadhesion of parasitized erythrocytes in the intervillous space of the placenta. Cytoadherence is conferred by the specific interaction...

  20. In vivo switching between variant surface antigens in human Plasmodium falciparum infection

    DEFF Research Database (Denmark)

    Staalsoe, Trine; Hamad, Amel A; Hviid, Lars

    2002-01-01

    A semi-immune individual was retrospectively found to have maintained an apparently monoclonal and genotypically stable asymptomatic infection for months after clinical cure of a Plasmodium falciparum malaria episode. Before the attack, the individual had no antibodies to variant surface antigens...

  1. Anaemia caused by asymptomatic Plasmodium falciparum infection in semi-immune African schoolchildren

    DEFF Research Database (Denmark)

    Kurtzhals, J A; Addae, M M; Akanmori, B D;

    1999-01-01

    A cohort of 250 Ghanaian schoolchildren aged 5-15 years was followed clinically and parasitologically for 4 months in 1997/98 in order to study the effect of asymptomatic Plasmodium falciparum infections on haematological indices and bone-marrow responses. Of the 250 children 65 met the predefine...

  2. Modulation of the cellular immune response during Plasmodium falciparum infections in sickle cell trait individuals

    DEFF Research Database (Denmark)

    Abu-Zeid, Y A; Theander, T G; Abdulhadi, N H

    1992-01-01

    Plasma and peripheral blood mononuclear cells (PBMC) were obtained from P. falciparum-infected individuals with and without the sickle cell trait at diagnosis and 7 days after treatment. HbAA and HbAS patients were compared for levels of plasma soluble IL-2 receptors (IL-2R) and the in vitro...

  3. Asymptomatic falciparum malaria and intestinal helminths co-infection among school children in Osogbo, Nigeria

    Directory of Open Access Journals (Sweden)

    Olusola Ojurongbe

    2011-01-01

    Full Text Available Background: Malaria and intestinal helminths are parasitic diseases causing high morbidity and mortality in most tropical parts of the world, where climatic conditions and sanitation practices favor their prevalence. The aim of this study was to determine the prevalence and possible impact of falciparum malaria and intestinal helminths co-infection among school children in Kajola, Osun state, Nigeria. Methods: Fresh stool and blood samples were collected from 117 primary school children age range 4-15 years. The stool samples were processed using both Kato-Katz and formol-ether concentration techniques and microscopically examined for intestinal parasitic infections. Blood was collected by finger prick to determine malaria parasitemia using thick film method; and packed cell volume (PCV was determined by hematocrit. Univariate analysis and chi-square statistical tests were used to analyze the data. Results: The prevalence of Plasmodium falciparum, intestinal helminth infections, and co-infection of malaria and helminth in the study were 25.6%, 40.2% and 4.3%, respectively. Five species of intestinal helminths were recovered from the stool samples and these were Ascaris lumbricoides (34.2%, hookworm (5.1%, Trichuris trichiura (2.6%, Diphyllobothrium latum (0.9% and Trichostrongylus species (0.9%. For the co-infection of both malaria and intestinal helminths, females (5.9% were more infected than males (2.0% but the difference was not statistically significant (p = 0.3978. Children who were infected with helminths were equally likely to be infected with malaria as children without intestinal helminths [Risk Ratio (RR = 0.7295]. Children with A. lumbricoides (RR = 1.359 were also likely to be infected with P. falciparum as compared with uninfected children. Conclusions: Asymptomatic falciparum malaria and intestinal helminth infections do co-exist without clinical symp-toms in school children in Nigeria.

  4. Cryo scanning electron microscopy of Plasmodium falciparum-infected erythrocytes

    DEFF Research Database (Denmark)

    Hempel, Casper

    2017-01-01

    Plasmodium falciparum invades erythrocytes as an essential part of their life cycle. While living inside erythrocytes, the parasite remodels the cell's intracellular organization as well as its outer surface. Late trophozoite-stage parasites and schizonts introduce numerous small protrusions on t...... microscopy under cryogenic conditions allowing for high resolution and magnification of erythrocytes. This novel technique can be used for precise estimates of knob density and for studies on cytoadhesion....

  5. Investigation of the in vitro gender-specific partitioning of mefloquine in malarial infected red blood cells and plasma.

    Science.gov (United States)

    Seethorn, Nongluk; Wernsdorfer, Walther H; Noedl, Harald; Karbwang, Juntra; Na-Bangchang, Kesara

    2013-10-01

    The investigation of gender-specific partitioning of the antimalarial drug mefloquine to cellular and fluid blood compartments was performed using blood collected from a female and male healthy subject that were infected with Plasmodium falciparum PCM2 clone and spiked with mefloquine (0.25, 1, and 5 μM). Mefloquine concentrations in red cells of both female and male subjects were significantly higher than plasma, which suggests an intensive uptake by red cells. This was supported by a high ratio of mefloquine concentrations in the parasitized and non-parasitized red cells of about 4-fold. Gender-specific partitioning of mefloquine in parasitized blood was seen only in plasma where significantly higher concentrations were observed in female compared with male plasma. Down-adjusting the therapeutic dose of mefloquine in female patients with malaria is not advisable because mefloquine concentrations in the target cellular compartment are similar in both genders.

  6. Effects of sevuparin on rosette formation and cytoadherence of Plasmodium falciparum infected erythrocytes

    Science.gov (United States)

    Saiwaew, Somporn; Sritabal, Juntima; Piaraksa, Nattaporn; Keayarsa, Srisuda; Ruengweerayut, Ronnatrai; Utaisin, Chirapong; Sila, Patima; Niramis, Rangsan; Udomsangpetch, Rachanee; Charunwatthana, Prakaykaew; Pongponratn, Emsri; Pukrittayakamee, Sasithon; Leitgeb, Anna M.; Wahlgren, Mats; Lee, Sue J.; Day, Nicholas P. J.; White, Nicholas J.; Dondorp, Arjen M.; Chotivanich, Kesinee

    2017-01-01

    In severe falciparum malaria cytoadherence of parasitised red blood cells (PRBCs) to vascular endothelium (causing sequestration) and to uninfected red cells (causing rosette formation) contribute to microcirculatory flow obstruction in vital organs. Heparin can reverse the underlying ligand-receptor interactions, but may increase the bleeding risks. As a heparin-derived polysaccharide, sevuparin has been designed to retain anti-adhesive properties, while the antithrombin-binding domains have been eliminated, substantially diminishing its anticoagulant activity. Sevuparin has been evaluated recently in patients with uncomplicated falciparum malaria, and is currently investigated in a clinical trial for sickle cell disease. The effects of sevuparin on rosette formation and cytoadherence of Plasmodium falciparum isolates from Thailand were investigated. Trophozoite stages of P. falciparum-infected RBCs (Pf-iRBCs) were cultured from 49 patients with malaria. Pf-iRBCs were treated with sevuparin at 37°C and assessed in rosetting and in cytoadhesion assays with human dermal microvascular endothelial cells (HDMECs) under static and flow conditions. The proportion of Pf-iRBCs forming rosettes ranged from 6.5% to 26.0% (median = 12.2%). Rosetting was dose dependently disrupted by sevuparin (50% disruption by 250 μg/mL). Overall 57% of P. falciparum isolates bound to HDMECs under static conditions; median (interquartile range) Pf-iRBC binding was 8.5 (3.0–38.0) Pf-iRBCs/1000 HDMECs. Sevuparin in concentrations ≥ 100 μg/mL inhibited cytoadherence. Sevuparin disrupts P. falciparum rosette formation in a dose dependent manner and inhibits cytoadherence to endothelial cells. The data support assessment of sevuparin as an adjunctive treatment to the standard therapy in severe falciparum malaria. PMID:28249043

  7. Diagnosis of Plasmodium falciparum infection in man: detection of parasite antigens by ELISA*

    OpenAIRE

    Mackey, L. J.; McGregor, I. A.; Paounova, N.; Lambert, P. H.

    1982-01-01

    An ELISA method has been developed for the diagnosis of Plasmodium falciparum infection in man. Parasites from in vitro cultures of P. falciparum were used as source of antigen for the solid phase and the source of specific antibody was immune Gambian sera; binding of antibody in antigen-coated wells was registered by means of alkaline phosphatase-conjugated anti-human IgG. Parasites were detected on the basis of inhibition of antibody-binding. The test was applied to the detection of parasit...

  8. Plasmodium falciparum mutant haplotype infection during pregnancy associated with reduced birthweight, Tanzania

    DEFF Research Database (Denmark)

    Minja, Daniel T R; Schmiegelow, Christentze; Mmbando, Bruno;

    2013-01-01

    Intermittent preventive treatment during pregnancy with sulfadoxine-pyrimethamine (IPTp-SP) is a key strategy in the control of pregnancy-associated malaria. However, this strategy is compromised by widespread drug resistance from single-nucleotide polymorphisms in the Plasmodium falciparum...... dihydrofolate reductase and dihydropteroate synthetase genes. During September 2008-October 2010, we monitored a cohort of 924 pregnant women in an area of Tanzania with declining malaria transmission. P. falciparum parasites were genotyped, and the effect of infecting haplotypes on birthweight was assessed...

  9. Overlapping antigenic repertoires of variant antigens expressed on the surface of erythrocytes infected by Plasmodium falciparum

    DEFF Research Database (Denmark)

    Giha, H A; Staalsoe, T; Dodoo, D;

    1999-01-01

    Antibodies against variable antigens expressed on the surface of Plasmodium falciparum-infected erythrocytes are believed to be important for protection against malaria. A target for these antibodies is the P. falciparum erythrocyte membrane protein 1, PfEMP1, which is encoded by around 50 var...... genes and undergoes clonal variation. Using agglutination and mixed agglutination tests and flow cytometry to analyse the recognition of variant antigens on parasitized erythrocytes by plasma antibodies from individuals living in Daraweesh in eastern Sudan, an area of seasonal and unstable malaria...

  10. MicroRNA-regulation of Anopheles gambiae immunity to Plasmodium falciparum infection and midgut microbiota.

    Science.gov (United States)

    Dennison, Nathan J; BenMarzouk-Hidalgo, Omar J; Dimopoulos, George

    2015-03-01

    Invasion of the malaria vector Anopheles gambiae midgut by Plasmodium parasites triggers transcriptional changes of immune genes that mediate the antiparasitic defense. This response is largely regulated by the Toll and Immune deficiency (IMD) pathways. To determine whether A. gambiae microRNAs (miRNAs) are involved in regulating the anti-Plasmodium defense, we showed that suppression of miRNA biogenesis results in increased resistance to Plasmodium falciparum infection. In silico analysis of A. gambiae immune effector genes identified multiple transcripts with miRNA binding sites. A comparative miRNA microarray abundance analysis of P. falciparum infected and naïve mosquito midgut tissues showed elevated abundance of miRNAs aga-miR-989 and aga-miR-305 in infected midguts. Antagomir inhibition of aga-miR-305 increased resistance to P. falciparum infection and suppressed the midgut microbiota. Conversely, treatment of mosquitoes with an artificial aga-miR-305 mimic increased susceptibility to P. falciparum infection and resulted in expansion of midgut microbiota, suggesting that aga-miR-305 acts as a P. falciparum and gut microbiota agonist by negatively regulating the mosquito immune response. In silico prediction of aga-miR-305 target genes identified several anti-Plasmodium effectors. Our study shows that A. gambiae aga-miR-305 regulates the anti-Plasmodium response and midgut microbiota, likely through post-transcriptional modification of immune effector genes.

  11. Spatial variation and socio-economic determinants of Plasmodium falciparum infection in northeastern Tanzania

    DEFF Research Database (Denmark)

    Mmbando, Bruno P; Kamugisha, Mathias L; Lusingu, John P;

    2011-01-01

    the country. This study describes the spatial variation and socio-economic determinants of P. falciparum infection in northeastern Tanzania. METHODS: The study was conducted in 14 villages located in highland, lowland and urban areas of Korogwe district. Four cross-sectional malaria surveys involving...... system (GPS) unit. The effects of risk factors were determined using generalized estimating equation and spatial risk of P. falciparum infection was modelled using a kernel (non-parametric) method. RESULTS: There was a significant spatial variation of P. falciparum infection, and urban areas were...

  12. Mosquito Passage Dramatically Changes var Gene Expression in Controlled Human Plasmodium falciparum Infections.

    Science.gov (United States)

    Bachmann, Anna; Petter, Michaela; Krumkamp, Ralf; Esen, Meral; Held, Jana; Scholz, Judith A M; Li, Tao; Sim, B Kim Lee; Hoffman, Stephen L; Kremsner, Peter G; Mordmüller, Benjamin; Duffy, Michael F; Tannich, Egbert

    2016-04-01

    Virulence of the most deadly malaria parasite Plasmodium falciparum is linked to the variant surface antigen PfEMP1, which is encoded by about 60 var genes per parasite genome. Although the expression of particular variants has been associated with different clinical outcomes, little is known about var gene expression at the onset of infection. By analyzing controlled human malaria infections via quantitative real-time PCR, we show that parasite populations from 18 volunteers expressed virtually identical transcript patterns that were dominated by the subtelomeric var gene group B and, to a lesser extent, group A. Furthermore, major changes in composition and frequency of var gene transcripts were detected between the parental parasite culture that was used to infect mosquitoes and Plasmodia recovered from infected volunteers, suggesting that P. falciparum resets its var gene expression during mosquito passage and starts with the broad expression of a specific subset of var genes when entering the human blood phase.

  13. Clinical indicators for bacterial co-infection in Ghanaian children with P. falciparum infection.

    Directory of Open Access Journals (Sweden)

    Maja Verena Nielsen

    Full Text Available Differentiation of infectious causes in severely ill children is essential but challenging in sub- Saharan Africa. The aim of the study was to determine clinical indicators that are able to identify bacterial co-infections in P. falciparum infected children in rural Ghana. In total, 1,915 severely ill children below the age of 15 years were recruited at Agogo Presbyterian Hospital in Ghana between May 2007 and February 2011. In 771 (40% of the children malaria parasites were detected. This group was analyzed for indicators of bacterial co-infections using bivariate and multivariate regression analyses with 24 socio-economic variables, 16 terms describing medical history and anthropometrical information and 68 variables describing clinical symptoms. The variables were tested for sensitivity, specificity, positive predictive value and negative predictive value. In 46 (6.0% of the children with malaria infection, bacterial co-infection was detected. The most frequent pathogens were non-typhoid salmonellae (45.7%, followed by Streptococcus spp. (13.0%. Coughing, dehydration, splenomegaly, severe anemia and leukocytosis were positively associated with bacteremia. Domestic hygiene and exclusive breastfeeding is negatively associated with bacteremia. In cases of high parasitemia (>10,000/μl, a significant association with bacteremia was found for splenomegaly (OR 8.8; CI 1.6-48.9, dehydration (OR 18.2; CI 2.0-166.0 and coughing (OR 9.0; CI 0.7-118.6. In children with low parasitemia, associations with bacteremia were found for vomiting (OR 4.7; CI 1.4-15.8, severe anemia (OR 3.3; CI 1.0-11.1 and leukocytosis (OR 6.8 CI 1.9-24.2. Clinical signs of impaired microcirculation were negatively associated with bacteremia. Ceftriaxone achieved best coverage of isolated pathogens. The results demonstrate the limitation of clinical symptoms to determine bacterial co-infections in P. falciparum infected children. Best clinical indicators are dependent on the

  14. Immune activation and induction of memory: lessons learned from controlled human malaria infection with Plasmodium falciparum.

    Science.gov (United States)

    Scholzen, Anja; Sauerwein, Robert W

    2016-02-01

    Controlled human malaria infections (CHMIs) are a powerful tool to assess the efficacy of drugs and/or vaccine candidates, but also to study anti-malarial immune responses at well-defined time points after infection. In this review, we discuss the insights that CHMI trials have provided into early immune activation and regulation during acute infection, and the capacity to induce and maintain immunological memory. Importantly, these studies show that a single infection is sufficient to induce long-lasting parasite-specific T- and B-cell memory responses, and suggest that blood-stage induced regulatory responses can limit inflammation both in ongoing and potentially future infections. As future perspective of investigation in CHMIs, we discuss the role of innate cell subsets, the interplay between innate and adaptive immune activation and the potential modulation of these responses after natural pre-exposure.

  15. Detection of Plasmodium falciparum-infected red blood cells by optical stretching

    Science.gov (United States)

    Mauritz, Jakob M. A.; Tiffert, Teresa; Seear, Rachel; Lautenschläger, Franziska; Esposito, Alessandro; Lew, Virgilio L.; Guck, Jochen; Kaminski, Clemens F.

    2010-05-01

    We present the application of a microfluidic optical cell stretcher to measure the elasticity of malaria-infected red blood cells. The measurements confirm an increase in host cell rigidity during the maturation of the parasite Plasmodium falciparum. The device combines the selectivity and sensitivity of single-cell elasticity measurements with a throughput that is higher than conventional single-cell techniques. The method has potential to detect early stages of infection with excellent sensitivity and high speed.

  16. Differential patterns of infection and disease with P. falciparum and P. vivax in young Papua New Guinean children.

    Directory of Open Access Journals (Sweden)

    Enmoore Lin

    Full Text Available BACKGROUND: Where P. vivax and P. falciparum occur in the same population, the peak burden of P. vivax infection and illness is often concentrated in younger age groups. Experiences from malaria therapy patients indicate that immunity is acquired faster to P. vivax than to P. falciparum challenge. There is however little prospective data on the comparative risk of infection and disease from both species in young children living in co-endemic areas. METHODOLOGY/PRINCIPAL FINDINGS: A cohort of 264 Papua New Guinean children aged 1-3 years (at enrolment were actively followed-up for Plasmodium infection and febrile illness for 16 months. Infection status was determined by light microscopy and PCR every 8 weeks and at each febrile episode. A generalised estimating equation (GEE approach was used to analyse both prevalence of infection and incidence of clinical episodes. A more pronounced rise in prevalence of P. falciparum compared to P. vivax infection was evident with increasing age. Although the overall incidence of clinical episodes was comparable (P. falciparum: 2.56, P. vivax 2.46 episodes / child / yr, P. falciparum and P. vivax infectious episodes showed strong but opposing age trends: P. falciparum incidence increased until the age of 30 months with little change thereafter, but incidence of P. vivax decreased significantly with age throughout the entire age range. For P. falciparum, both prevalence and incidence of P. falciparum showed marked seasonality, whereas only P. vivax incidence but not prevalence decreased in the dry season. CONCLUSIONS/SIGNIFICANCE: Under high, perennial exposure, children in PNG begin acquiring significant clinical immunity, characterized by an increasing ability to control parasite densities below the pyrogenic threshold to P. vivax, but not to P. falciparum, in the 2(nd and 3(rd year of life. The ability to relapse from long-lasting liver-stages restricts the seasonal variation in prevalence of P. vivax

  17. Maternal-foetal transfer of Plasmodium falciparum and Plasmodium vivax antibodies in a low transmission setting

    Science.gov (United States)

    Charnaud, Sarah C.; McGready, Rose; Herten-Crabb, Asha; Powell, Rosanna; Guy, Andrew; Langer, Christine; Richards, Jack S.; Gilson, Paul R.; Chotivanich, Kesinee; Tsuboi, Takafumi; Narum, David L.; Pimanpanarak, Mupawjay; Simpson, Julie A.; Beeson, James G.; Nosten, François; Fowkes, Freya J. I.

    2016-01-01

    During pregnancy immunolglobulin G (IgG) antibodies are transferred from mother to neonate across the placenta. Studies in high transmission areas have shown transfer of P. falciparum-specific IgG, but the extent and factors influencing maternal-foetal transfer in low transmission areas co-endemic for both P. falciparum and P. vivax are unknown. Pregnant women were screened weekly for Plasmodium infection. Mother-neonate paired serum samples at delivery were tested for IgG to antigens from P. falciparum, P. vivax and other infectious diseases. Antibodies to malarial and non-malarial antigens were highly correlated between maternal and neonatal samples (median [range] spearman ρ = 0.78 [0.57–0.93]), although Plasmodium spp. antibodies tended to be lower in neonates than mothers. Estimated gestational age at last P. falciparum infection, but not P. vivax infection, was positively associated with antibody levels in the neonate (P. falciparum merozoite, spearman ρ median [range] 0.42 [0.33–0.66], PfVAR2CSA 0.69; P. vivax ρ = 0.19 [0.09–0.3]). Maternal-foetal transfer of anti-malarial IgG to Plasmodium spp. antigens occurs in low transmission settings. P. vivax IgG acquisition is not associated with recent exposure unlike P. falciparum IgG, suggesting a difference in acquisition of antibodies. IgG transfer is greatest in the final weeks of pregnancy which has implications for the timing of future malaria vaccination strategies in pregnant women. PMID:26861682

  18. Plasmodium falciparum: growth response to potassium channel blocking compounds.

    Science.gov (United States)

    Waller, Karena L; Kim, Kami; McDonald, Thomas V

    2008-11-01

    Potassium channels are essential for cell survival and regulate the cell membrane potential and electrochemical gradient. During its lifecycle, Plasmodium falciparum parasites must rapidly adapt to dramatically variant ionic conditions within the mosquito mid-gut, the hepatocyte and red blood cell (RBC) cytosols, and the human circulatory system. To probe the participation of K(+) channels in parasite viability, growth response assays were performed in which asexual stage P. falciparum parasites were cultured in the presence of various Ca(2+)-activated K(+) channel blocking compounds. These data describe the novel anti-malarial effects of bicuculline methiodide and tubocurarine chloride and the novel lack of effect of apamine and verruculogen. Taken together, the data herein imply the presence of K(+) channels, or other parasite-specific targets, in P. falciparum-infected RBCs that are sensitive to blockade with Ca(2+)-activated K(+) channel blocking compounds.

  19. Usefulness of the recombinant liver stage antigen-3 for an early serodiagnosis of Plasmodium falciparum infection.

    Science.gov (United States)

    Lee, Hyeong-Woo; Moon, Sung-Ung; Ryu, Hye-Sun; Kim, Yeon-Joo; Cho, Shin-Hyeong; Chung, Gyung-Tae; Lin, Khin; Na, Byoung-Kuk; Kong, Yoon; Chung, Kyung-Suk; Kim, Tong-Soo

    2006-03-01

    In order to develop tools for an early serodiagnosis of Plasmodium falciparum infection, we evaluated the usefulness of P. falciparum liver stage antigen-3 (LSA-3) as a serodiagnostic antigen. A portion of LSA-3 gene was cloned, and its recombinant protein (rLSA-3) was expressed in Escherichia coli and purified by column chromatography. The purified rLSA-3 and 120 test blood/serum samples collected from inhabitants in malaria-endemic areas of Mandalay, Myanmar were used for this study. In microscopic examinations of blood samples, P. falciparum positive rate was 39.1% (47/120) in thin smear trials, and 33.3% (40/120) in thick smear trials. Although the positive rate associated with the rLSA-3 (30.8%) was lower than that of the blood stage antigens (70.8%), rLSA-3 based enzyme-linked immunosorbent assay could detect 12 seropositive cases (10.0%), in which blood stage antigens were not detected. These results indicate that the LSA-3 is a useful antigen for an early serodiagnosis of P. falciparum infection.

  20. Identification of Selective Inhibitors of the Plasmodium falciparum Hexose Transporter PfHT by Screening Focused Libraries of Anti-Malarial Compounds.

    Directory of Open Access Journals (Sweden)

    Diana Ortiz

    Full Text Available Development of resistance against current antimalarial drugs necessitates the search for novel drugs that interact with different targets and have distinct mechanisms of action. Malaria parasites depend upon high levels of glucose uptake followed by inefficient metabolic utilization via the glycolytic pathway, and the Plasmodium falciparum hexose transporter PfHT, which mediates uptake of glucose, has thus been recognized as a promising drug target. This transporter is highly divergent from mammalian hexose transporters, and it appears to be a permease that is essential for parasite viability in intra-erythrocytic, mosquito, and liver stages of the parasite life cycle. An assay was developed that is appropriate for high throughput screening against PfHT based upon heterologous expression of PfHT in Leishmania mexicana parasites that are null mutants for their endogenous hexose transporters. Screening of two focused libraries of antimalarial compounds identified two such compounds that are high potency selective inhibitors of PfHT compared to human GLUT1. Additionally, 7 other compounds were identified that are lower potency and lower specificity PfHT inhibitors but might nonetheless serve as starting points for identification of analogs with more selective properties. These results further support the potential of PfHT as a novel drug target.

  1. Molecular Aspects of Plasmodium falciparum Infection during Pregnancy

    Directory of Open Access Journals (Sweden)

    Nicaise Tuikue Ndam

    2007-01-01

    Full Text Available Cytoadherence of Plasmodium-falciparum-parasitized red blood cells (PRBCs to host receptors is the key phenomenon in the pathological process of the malaria disease. Some of these interactions can originate poor outcomes responsible for 1 to 3 million annual deaths mostly occurring among children in sub-Saharan Africa. Pregnancy-associated malaria (PAM represents an important exception of the disease occurring at adulthood in malaria endemic settings. Consequences of this are shared between the mother (maternal anemia and the baby (low birth weight and infant mortality. Demonstrating that parasites causing PAM express specific variant surface antigens (VSAPAM, including the P. falciparum erythrocyte membrane protein 1 (PfEMP1 variant VAR2CSA, that are targets for protective immunity has strengthened the possibility for the development of PAM-specific vaccine. In this paper, we review the molecular basis of malaria pathogenesis attributable to the erythrocyte stages of the parasites, and findings supporting potential anti-PAM vaccine components evidenced in PAM.

  2. Early gametocytes of the malaria parasite Plasmodium falciparum specifically remodel the adhesive properties of infected erythrocyte surface

    DEFF Research Database (Denmark)

    Tibúrcio, Marta; Silvestrini, Francesco; Bertuccini, Lucia

    2013-01-01

    In Plasmodium falciparum infections the parasite transmission stages, the gametocytes, mature in 10 days sequestered in internal organs. Recent studies suggest that cell mechanical properties rather than adhesive interactions play a role in sequestration during gametocyte maturation. It remains i...

  3. Chemokines responses to Plasmodium falciparum malaria and co-infections among rural Cameroonians.

    Science.gov (United States)

    Che, Jane Nchangnwi; Nmorsi, Onyebiguwa Patrick Goddey; Nkot, Baleguel Pierre; Isaac, Clement; Okonkwo, Browne Chukwudi

    2015-04-01

    Malaria remains the major cause of disease morbidity and mortality in sub-Saharan Africa with complex immune responses associated with disease outcomes. Symptoms associated with severe malaria have generally shown chemokine upregulation but little is known of responses to uncomplicated malaria. Eight villages in central Cameroon of 1045 volunteers were screened. Among these, malaria-positive individuals with some healthy controls were selected for chemokine analysis using Enzyme-Linked Immunosorbent Assay (ELISA) kits. Depressed serum levels of CXCL5 and raised CCL28 were observed in malarial positives when compared with healthy controls. The mean concentration of CXCL11 was higher in symptomatic than asymptomatic group, while CCL28 was lower in symptomatic individuals. Lower chemokine levels were associated with symptoms of uncomplicated malaria except for CXCL11 which was upregulated among fever-positive group. The mean CXCL5 level was higher in malaria sole infection than co-infections with HIV and Loa loa. Also, there was a raised mean level of malaria+HIV co-infection for CXCL9. This study hypothesises a situation where depressed chemokines in the face of clinical presentations could indicate an attempt by the immune system in preventing a progression process from uncomplicated to complicated outcomes with CXCL11 being identified as possible biomarker for malarial fever.

  4. The density of knobs on Plasmodium falciparum-infected erythrocytes depends on developmental age and varies among isolates

    DEFF Research Database (Denmark)

    Quadt, Katharina A; Barfod, Lea; Andersen, Daniel;

    2012-01-01

    BACKGROUND: The virulence of Plasmodium falciparum malaria is related to the parasite's ability to evade host immunity through clonal antigenic variation and tissue-specific adhesion of infected erythrocytes (IEs). The P. falciparum erythrocyte membrane protein 1 (PfEMP1) family expressed on dome....... Therefore, the aim of this study was to provide detailed information on isolate- and time-dependent differences in knob size and density. METHODOLOGY/PRINCIPAL FINDINGS: We used atomic force microscopy to characterize knobs on the surface of P. falciparum-infected erythrocytes. Fourteen ex vivo isolates...

  5. Early Transcriptional Responses of HepG2-A 16 Liver Cells to Infection by Plasmodium falciparum Sporozoites

    Science.gov (United States)

    2011-07-29

    286, ’JC 30, pp Early Transcriptional Responses of HepG2-A 16 Liver Cells to Infection by Plasmodium falciparum Sporozoites*[i] Received for...7500 and󈧏Sun BioMedical Technologies Inc., Ridgecrest, California 93555 Invasion of hepatocytes by Plasmodium sporozoites depos- ited by Anopheles...expression profiling of human HepG2-A16liver cells infected with Plasmodium falciparum sporozoites to understand the host early cellular events and

  6. Development of a TaqMan Allelic Discrimination Assay for detection of Single Nucleotides Polymorphisms associated with anti-malarial drug resistance

    Directory of Open Access Journals (Sweden)

    Kamau Edwin

    2012-01-01

    Full Text Available Abstract Background Anti-malarial drug resistance poses a threat to current global efforts towards control and elimination of malaria. Several methods are used in monitoring anti-malarial drug resistance. Molecular markers such as single nucleotide polymorphism (SNP for example are increasingly being used to identify genetic mutations related to anti-malarial drug resistance. Several methods are currently being used in analysis of SNP associated with anti-malarial drug resistance and although each one of these methods has unique strengths and shortcoming, there is still need to improve and/or develop new methods that will close the gap found in the current methods. Methods TaqMan Allelic Discrimination assays for detection of SNPs associated with anti-malarial drug resistance were designed for analysis on Applied Biosystems PCR platform. These assays were designed by submitting SNP sequences associated with anti-malarial drug resistance to Applied Biosystems website. Eleven SNPs associated with resistance to anti-malarial drugs were selected and tested. The performance of each SNP assay was tested by creating plasmid DNAs carrying codons of interests and analysing them for analysis. To test the sensitivity and specificity of each SNP assay, 12 clinical samples were sequenced at codons of interest and used in the analysis. Plasmid DNAs were used to establish the Limit of Detection (LoD for each assay. Results Data from genetic profiles of the Plasmodium falciparum laboratory strains and sequence data from 12 clinical samples was used as the reference method with which the performance of the SNP assays were compared to. The sensitivity and specificity of each SNP assay was establish at 100%. LoD for each assay was established at 2 GE, equivalent to less than 1 parasite/μL. SNP assays performed well in detecting mixed infection and analysis of clinical samples. Conclusion TaqMan Allelic Discrimination assay provides a good alternative tool in

  7. Cryo scanning electron microscopy of Plasmodium falciparum-infected erythrocytes.

    Science.gov (United States)

    Hempel, Casper

    2017-07-01

    Plasmodium falciparum invades erythrocytes as an essential part of their life cycle. While living inside erythrocytes, the parasite remodels the cell's intracellular organization as well as its outer surface. Late trophozoite-stage parasites and schizonts introduce numerous small protrusions on the erythrocyte surface, called knobs. Current methods for studying these knobs include atomic force microscopy and electron microscopy. Standard electron microscopy methods rely on chemical fixation and dehydration modifying cell size. Here, a novel method is presented using rapid freezing and scanning electron microscopy under cryogenic conditions allowing for high resolution and magnification of erythrocytes. This novel technique can be used for precise estimates of knob density and for studies on cytoadhesion. © 2017 APMIS. Published by John Wiley & Sons Ltd.

  8. Resistance and Susceptibility to Malarial Infection: A Host De¬fense Strategy against Malaria

    Directory of Open Access Journals (Sweden)

    Hanaa BAKIR

    2015-12-01

    Full Text Available Background: In an effort to understand what limits the virulence of malaria para­sites in relation to the host genetic and immunogenic background, we investi­gated the possibility that the parasite and host genotype crossover interac­tions constrain virulence.Methods: Two groups of mice from different genotypes were used (C57BL/6 (B6 and DBA/2 mice. The mice were infected with a virulent parasite line Plasmo­dium yoelii17XL (P. yoelii17XL. Parasitemia, hematocrit value and lympho­cytes yielded by livers and spleens were evaluated. Fluorescence Activated Cell Sorting (FACS analysis illustrated phenotypic characterization of lymphocytes.Results: Infection with P. yoelii17XL did not result in thedeath of DBA/2 mice. In contrast,B6 mice developed significantly high parasitemia and succumbed to death. Using (FACS analysis, DBA/2 mice were found to experience a marked expansion of interleukin (IL-2Rb+ CD3int cells and gd T cells in the liver, espe­cially in the recovery phase. The expansion of unconventional T cells (i.e. B220+ T cells was also marked in DBA/2 mice.Conclusion: The outcome of murine malaria infections depends on the dynamic interplay between the immune-mediator and the genotype of the host.

  9. Anti-malarial activities of Andrographis paniculata and Hedyotis corymbosa extracts and their combination with curcumin

    Directory of Open Access Journals (Sweden)

    Swain Bijay K

    2009-02-01

    Full Text Available Abstract Background Herbal extracts of Andrographis paniculata (AP and Hedyotis corymbosa (HC are known as hepato-protective and fever-reducing drugs since ancient time and they have been used regularly by the people in the south Asian sub-continent. Methanolic extracts of these two plants were tested in vitro on choloroquine sensitive (MRC-pf-20 and resistant (MRC-pf-303 strains of Plasmodium falciparum for their anti-malarial activity. Methods Growth inhibition was determined using different concentrations of these plant extracts on synchronized P. falciparum cultures at the ring stage. The interactions between these two plant extracts and individually with curcumin were studied in vitro. The performance of these two herbal extracts in isolation and combination were further evaluated in vivo on Balb/c mice infected with Plasmodium berghei ANKA and their efficacy was compared with that of curcumin. The in vivo toxicity of the plant derived compounds as well as their parasite stage-specificity was studied. Results The 50% inhibitory concentration (IC50 of AP (7.2 μg/ml was found better than HC (10.8 μg/ml. Combination of these two herbal drugs showed substantial enhancement in their anti-malarial activity. Combinatorial effect of each of these with curcumin also revealed anti-malarial effect. Additive interaction between the plant extracts (AP + HC and their individual synergism with curcumin (AP+CUR, HC+CUR were evident from this study. Increased in vivo potency was also observed with the combination of plant extracts over the individual extracts and curcumin. Both the plant extracts were found to inhibit the ring stage of the parasite and did not show any in vivo toxicity, whether used in isolation or in combination. Conclusion Both these two plant extracts in combination with curcumin could be an effective, alternative source of herbal anti-malarial drugs.

  10. Theoretical models for near forward light scattering by a Plasmodium falciparum infected red blood cell

    Science.gov (United States)

    Sharma, S. K.

    2012-12-01

    A number of experimental elastic light scattering studies have been performed in the past few years with the aim of developing automated in vivo tools for differentiating a healthy red blood cell from a Plasmodium falciparum infected cell. This paper examines some theoretical aspects of the problem. An attempt has been made to simulate the scattering patterns of healthy as well as infected individual red blood cells. Two models, namely, a homogeneous sphere model and a coated sphere model have been considered. The scattering patterns predicted by these models are examined. A possible method for discriminating infected red blood cells from healthy ones has been suggested.

  11. Impaired renal function in owl monkeys (Aotus nancymai infected with Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    R. E. Weller

    1992-01-01

    Full Text Available Impaired renal function was observed in sixteen Aotus nancymai 25 and 3 months following infection with the Uganda Palo Alto strain of Plasmodium falciparum. Decrease were noted in the clearance of endogenous creatinine, creatinine excretion, and urine volume while increases were observed in serum urea nitrogen, urine protein, urine potassium, fractional excretion of phosphorus and potassium, and activities of urinary enzymes. The results were suggestive of glomerulonephropathy and chronic renal disease.

  12. Submicroscopic Plasmodium falciparum Infections Are Associated With Maternal Anemia, Premature Births, and Low Birth Weight.

    Science.gov (United States)

    Cottrell, Gilles; Moussiliou, Azizath; Luty, Adrian J F; Cot, Michel; Fievet, Nadine; Massougbodji, Achille; Deloron, Philippe; Tuikue Ndam, Nicaise

    2015-05-15

    Molecular, as opposed to microscopic, detection measures the real prevalence of Plasmodium falciparum infections. Such occult infections are common during pregnancy but their impact on pregnancy outcomes is unclear. We performed a longitudinal study to describe that impact. In a cohort of 1037 Beninese pregnant women, we used ultrasound to accurately estimate gestational ages. Infection with P. falciparum, hemoglobin concentration, use of intermittent preventive treatment during pregnancy (IPTp) for malaria, and other parameters were recorded during pregnancy. Using multivariate analyses, we evaluated the impact of submicroscopic infections on maternal anemia, premature birth, and low birth weight. At inclusion, polymerase chain reaction (PCR) and microscopy detected infection in 40% and 16% of women, respectively. The proportion infected declined markedly after 2 doses of IPTp but rebounded to 34% (by PCR) at delivery. Submicroscopic infections during pregnancy were associated with lower mean hemoglobin irrespective of gravidity, and with increased anemia risk in primigravidae (odds ratio [OR], 2.23; 95% confidence interval [CI], .98-5.07). Prospectively, submicroscopic infections at inclusion were associated with significantly increased risks of low birth weight in primigravidae (OR, 6.09; 95% CI, 1.16-31.95) and premature births in multigravidae (OR, 2.25; 95% CI, 1.13-4.46). In this detailed longitudinal study, we document the deleterious impact of submicroscopic P. falciparum parasitemia during pregnancy on multiple pregnancy outcomes. Parasitemia occurs frequently during pregnancy, but routine microscopic and rapid diagnostic tests fail to detect the vast majority of episodes. Our findings imply caution in any revision of the current strategies for prevention of pregnancy-associated malaria. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e

  13. Influences of intermittent preventive treatment and persistent multiclonal Plasmodium falciparum infections on clinical malaria risk.

    Directory of Open Access Journals (Sweden)

    Anne Liljander

    Full Text Available BACKGROUND: Intermittent preventive treatment (IPT of malaria involves administration of curative doses of antimalarials at specified time points to vulnerable populations in endemic areas, regardless whether a subject is known to be infected. The effect of this new intervention on the development and maintenance of protective immunity needs further understanding. We have investigated how seasonal IPT affects the genetic diversity of Plasmodium falciparum infections and the risk of subsequent clinical malaria. MATERIAL AND METHODS: The study included 2227 Ghanaian children (3-59 months who were given sulphadoxine-pyrimethamine (SP bimonthly, artesunate plus amodiaquine (AS+AQ monthly or bimonthly, or placebo monthly for six months spanning the malaria transmission season. Blood samples collected at three post-interventional surveys were analysed by genotyping of the polymorphic merozoite surface protein 2 gene. Malaria morbidity and anaemia was monitored during 12 months follow-up. RESULTS: Monthly IPT with AS+AQ resulted in a marked reduction in number of concurrent clones and only children parasite negative just after the intervention period developed clinical malaria during follow-up. In the placebo group, children without parasites as well as those infected with ≥2 clones had a reduced risk of subsequent malaria. The bimonthly SP or AS+AQ groups had similar number of clones as placebo after intervention; however, diversity and parasite negativity did not predict the risk of malaria. An interaction effect showed that multiclonal infections were only associated with protection in children without intermittent treatment. CONCLUSION: Molecular typing revealed effects of the intervention not detected by ordinary microscopy. Effective seasonal IPT temporarily reduced the prevalence and genetic diversity of P. falciparum infections. The reduced risk of malaria in children with multiclonal infections only seen in untreated children suggests that

  14. Analysis of Breath Specimens for Biomarkers of Plasmodium falciparum Infection.

    Science.gov (United States)

    Berna, Amalia Z; McCarthy, James S; Wang, Rosalind X; Saliba, Kevin J; Bravo, Florence G; Cassells, Julie; Padovan, Benjamin; Trowell, Stephen C

    2015-10-01

    Currently, the majority of diagnoses of malaria rely on a combination of the patient's clinical presentation and the visualization of parasites on a stained blood film. Breath offers an attractive alternative to blood as the basis for simple, noninvasive diagnosis of infectious diseases. In this study, breath samples were collected from individuals during controlled malaria to determine whether specific malaria-associated volatiles could be detected in breath. We identified 9 compounds whose concentrations varied significantly over the course of malaria: carbon dioxide, isoprene, acetone, benzene, cyclohexanone, and 4 thioethers. The latter group, consisting of allyl methyl sulfide, 1-methylthio-propane, (Z)-1-methylthio-1-propene, and (E)-1-methylthio-1-propene, had not previously been associated with any disease or condition. Before the availability of antimalarial drug treatment, there was evidence of concurrent 48-hour cyclical changes in the levels of both thioethers and parasitemia. When thioether concentrations were subjected to a phase shift of 24 hours, a direct correlation between the parasitemia and volatile levels was revealed. Volatile levels declined monotonically approximately 6.5 hours after initial drug treatment, correlating with clearance of parasitemia. No thioethers were detected in in vitro cultures of Plasmodium falciparum. The metabolic origin of the thioethers is not known, but results suggest that interplay between host and parasite metabolic pathways is involved in the production of these thioethers.

  15. Associations between a+-thalassemia and Plasmodium falciparum malarial infection in northeastern Tanzania

    DEFF Research Database (Denmark)

    Enevold, Anders; Alifrangis, Michael; Sanchez, Juan J

    2007-01-01

    BACKGROUND: The 2 most common hemoglobinopathies, sickle cell trait and alpha (+)-thalassemia, confer partial resistance to fatal forms of malaria, but the molecular basis for this protection is still not understood. Examination of the relationship between these traits and malaria transmission......) to 45%-55% in low-altitude villages (sickle...... cell trait was lower than that of alpha (+)-thalassemia (range, 0%-14%) and was significantly associated with village altitude only (P=.011). STR allele frequencies were similar in all villages. CONCLUSIONS: In this malaria-endemic region of Tanzania, alpha (+)-thalassemia is common and clearly...

  16. Type I Interferons Regulate Immune Responses in Humans with Blood-Stage Plasmodium falciparum Infection

    Science.gov (United States)

    Montes de Oca, Marcela; Kumar, Rajiv; de Labastida Rivera, Fabian; Amante, Fiona H.; Sheel, Meru; Faleiro, Rebecca J.; Bunn, Patrick T.; Best, Shannon E.; Beattie, Lynette; Ng, Susanna S.; Edwards, Chelsea L.; Boyle, Glen M.; Price, Ric N.; Anstey, Nicholas M.; Loughland, Jessica R.; Burel, Julie; Doolan, Denise L.; Haque, Ashraful; McCarthy, James S.; Engwerda, Christian R.

    2016-01-01

    Summary The development of immunoregulatory networks is important to prevent disease. However, these same networks allow pathogens to persist and reduce vaccine efficacy. Here, we identify type I interferons (IFNs) as important regulators in developing anti-parasitic immunity in healthy volunteers infected for the first time with Plasmodium falciparum. Type I IFNs suppressed innate immune cell function and parasitic-specific CD4+ T cell IFNγ production, and they promoted the development of parasitic-specific IL-10-producing Th1 (Tr1) cells. Type I IFN-dependent, parasite-specific IL-10 production was also observed in P. falciparum malaria patients in the field following chemoprophylaxis. Parasite-induced IL-10 suppressed inflammatory cytokine production, and IL-10 levels after drug treatment were positively associated with parasite burdens before anti-parasitic drug administration. These findings have important implications for understanding the development of host immune responses following blood-stage P. falciparum infection, and they identify type I IFNs and related signaling pathways as potential targets for therapies or vaccine efficacy improvement. PMID:27705789

  17. Bone marrow suppression and severe anaemia associated with persistent Plasmodium falciparum infection in African children with microscopically undetectable parasitaemia

    DEFF Research Database (Denmark)

    Helleberg, Marie; Goka, Bamenla Q; Akanmori, Bartholomew D

    2005-01-01

    BACKGROUND: Severe anaemia can develop in the aftermath of Plasmodium falciparum malaria because of protracted bone marrow suppression, possibly due to residual subpatent parasites. MATERIALS AND METHODS: Blood was collected from patients with recent malaria and negative malaria microscopy....... Detection of the Plasmodium antigens, lactate dehydrogenase (Optimal), aldolase and histidine rich protein 2 (Now malaria) were used to differentiate between patients with (1) no malaria, (2) recent cleared malaria, (3) persistent P. falciparum infection. Red cell distribution width (RDW), plasma levels...

  18. Analysis of Plasmodium falciparum diversity in natural infections by deep sequencing

    Science.gov (United States)

    Manske, Magnus; Miotto, Olivo; Campino, Susana; Auburn, Sarah; Almagro-Garcia, Jacob; Maslen, Gareth; O’Brien, Jack; Djimde, Abdoulaye; Doumbo, Ogobara; Zongo, Issaka; Ouedraogo, Jean-Bosco; Michon, Pascal; Mueller, Ivo; Siba, Peter; Nzila, Alexis; Borrmann, Steffen; Kiara, Steven M.; Marsh, Kevin; Jiang, Hongying; Su, Xin-Zhuan; Amaratunga, Chanaki; Fairhurst, Rick; Socheat, Duong; Nosten, Francois; Imwong, Mallika; White, Nicholas J.; Sanders, Mandy; Anastasi, Elisa; Alcock, Dan; Drury, Eleanor; Oyola, Samuel; Quail, Michael A.; Turner, Daniel J.; Rubio, Valentin Ruano; Jyothi, Dushyanth; Amenga-Etego, Lucas; Hubbart, Christina; Jeffreys, Anna; Rowlands, Kate; Sutherland, Colin; Roper, Cally; Mangano, Valentina; Modiano, David; Tan, John C.; Ferdig, Michael T.; Amambua-Ngwa, Alfred; Conway, David J.; Takala-Harrison, Shannon; Plowe, Christopher V.; Rayner, Julian C.; Rockett, Kirk A.; Clark, Taane G.; Newbold, Chris I.; Berriman, Matthew; MacInnis, Bronwyn; Kwiatkowski, Dominic P.

    2013-01-01

    Malaria elimination strategies require surveillance of the parasite population for genetic changes that demand a public health response, such as new forms of drug resistance. 1,2 Here we describe methods for large-scale analysis of genetic variation in Plasmodium falciparum by deep sequencing of parasite DNA obtained from the blood of patients with malaria, either directly or after short term culture. Analysis of 86,158 exonic SNPs that passed genotyping quality control in 227 samples from Africa, Asia and Oceania provides genome-wide estimates of allele frequency distribution, population structure and linkage disequilibrium. By comparing the genetic diversity of individual infections with that of the local parasite population, we derive a metric of within-host diversity that is related to the level of inbreeding in the population. An open-access web application has been established for exploration of regional differences in allele frequency and of highly differentiated loci in the P. falciparum genome. PMID:22722859

  19. Global mass spectrometry based metabolomics profiling of erythrocytes infected with Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Theodore R Sana

    Full Text Available Malaria is a global infectious disease that threatens the lives of millions of people. Transcriptomics, proteomics and functional genomics studies, as well as sequencing of the Plasmodium falciparum and Homo sapiens genomes, have shed new light on this host-parasite relationship. Recent advances in accurate mass measurement mass spectrometry, sophisticated data analysis software, and availability of biological pathway databases, have converged to facilitate our global, untargeted biochemical profiling study of in vitro P. falciparum-infected (IRBC and uninfected (NRBC erythrocytes. In order to expand the number of detectable metabolites, several key analytical steps in our workflows were optimized. Untargeted and targeted data mining resulted in detection of over one thousand features or chemical entities. Untargeted features were annotated via matching to the METLIN metabolite database. For targeted data mining, we queried the data using a compound database derived from a metabolic reconstruction of the P. falciparum genome. In total, over one hundred and fifty differential annotated metabolites were observed. To corroborate the representation of known biochemical pathways from our data, an inferential pathway analysis strategy was used to map annotated metabolites onto the BioCyc pathway collection. This hypothesis-generating approach resulted in over-representation of many metabolites onto several IRBC pathways, most prominently glycolysis. In addition, components of the "branched" TCA cycle, partial urea cycle, and nucleotide, amino acid, chorismate, sphingolipid and fatty acid metabolism were found to be altered in IRBCs. Interestingly, we detected and confirmed elevated levels for cyclic ADP ribose and phosphoribosyl AMP in IRBCs, a novel observation. These metabolites may play a role in regulating the release of intracellular Ca(2+ during P. falciparum infection. Our results support a strategy of global metabolite profiling by untargeted

  20. Genetic diversity and complexity of Plasmodium falciparum infections in Lagos, Nigeria

    Institute of Scientific and Technical Information of China (English)

    Muyiwa K Oyebola; Emmanuel T Idowu; Yetunde A Olukosi; Bamidele A Iwalokun; Chimere O Agomo; Olusola O Ajibaye; Monday Tola; Adetoro O Otubanjo

    2014-01-01

    Objective: To analyse the genetic diversity of Plasmodium falciparum (P. falciparum) usingmsp-1 and msp-2 as antigenic markers. Methods: Parasite DNA was extracted from 100 blood samples collected from P. falciparum-positive patients confirmed by microscopy, and followed by PCR-genotyping targeting the msp-1 (block2) and msp-2 (block 3) allelic families.Results:observed. Results revealed that K1 (60/100) was the most predominant genotype of msp-1 allelic family followed by the genotypes of MAD20 (50/100) and R033 (45/100). In the msp-2 locus, FC27 genotype (62/100) showed higher frequency than 3D7 genotype (55/100). The allelic families were detected either alone or in combination with other families. However, no R033/MAD20 combination was observed. Multiplicity of infection (MOI) with msp-1 was higher in the locality of Ikorodu (1.50) than in Lekki (1.39). However, MOI with msp-2 was lower in the locality of Ikorodu (1.14) than in Lekki (1.76). There was no significant difference in the mean MOI between the two study areas (P=0.427). All the families of msp-1 (K1, MAD20 and R033) and msp-2 (FC27 and 3D7) locus were Conclusions: The observation of limited diversity of malaria parasites may imply that the use of antigenic markers as genotyping tools for distinguishing recrudescence and re-infections with P. falciparum during drug trials is subjective.

  1. Alterations in cytokines and haematological parameters during the acute and convalescent phases of Plasmodium falciparum and Plasmodium vivax infections

    Directory of Open Access Journals (Sweden)

    Rodrigo Nunes Rodrigues-da-Silva

    2014-04-01

    Full Text Available Haematological and cytokine alterations in malaria are a broad and controversial subject in the literature. However, few studies have simultaneously evaluated various cytokines in a single patient group during the acute and convalescent phases of infection. The aim of this study was to sequentially characterise alterations in haematological patters and circulating plasma cytokine and chemokine levels in patients infected with Plasmodium vivax or Plasmodium falciparum from a Brazilian endemic area during the acute and convalescent phases of infection. During the acute phase, thrombocytopaenia, eosinopaenia, lymphopaenia and an increased number of band cells were observed in the majority of the patients. During the convalescent phase, the haematologic parameters returned to normal. During the acute phase, P. vivax and P. falciparum patients had significantly higher interleukin (IL-6, IL-8, IL-17, interferon-γ, tumour necrosis factor (TNF-α, macrophage inflammatory protein-1β and granulocyte-colony stimulating factor levels than controls and maintained high levels during the convalescent phase. IL-10 was detected at high concentrations during the acute phase, but returned to normal levels during the convalescent phase. Plasma IL-10 concentration was positively correlated with parasitaemia in P. vivax and P. falciparum-infected patients. The same was true for the TNF-α concentration in P. falciparum-infected patients. Finally, the haematological and cytokine profiles were similar between uncomplicated P. falciparum and P. vivax infections.

  2. Diagnosis of Plasmodium falciparum infection in man: detection of parasite antigens by ELISA*

    Science.gov (United States)

    Mackey, L. J.; McGregor, I. A.; Paounova, N.; Lambert, P. H.

    1982-01-01

    An ELISA method has been developed for the diagnosis of Plasmodium falciparum infection in man. Parasites from in vitro cultures of P. falciparum were used as source of antigen for the solid phase and the source of specific antibody was immune Gambian sera; binding of antibody in antigen-coated wells was registered by means of alkaline phosphatase-conjugated anti-human IgG. Parasites were detected on the basis of inhibition of antibody-binding. The test was applied to the detection of parasites in human red blood cells (RBC) from in vitro cultures of P. falciparum and in RBC from infected Gambians; RBC from 100 Geneva blood donors served as normal, uninfected controls. In titration experiments, the degree of antibody-binding inhibition correlated with the number of parasites in the test RBC. Parasites were detected at a level of 8 parasites/106 RBC. Samples of RBC were tested from 126 Gambians with microscopically proven infection; significant antibody-binding inhibition was found in 86% of these cases, where parasitaemia ranged from 10 to 125 000/μl of blood. The presence of high-titre antibody in the test preparations was found to reduce the sensitivity of parasite detection in infected RBC from in vitro cultures mixed with equal volumes of different antibody-containing sera. The sensitivity was restored in most cases by recovering the RBC by centrifugation before testing. In a preliminary experiment, there was no significant difference in antibody-binding inhibition using fresh infected RBC and RBC dried on filter-paper and recovered by elution, although there was greater variation in the latter samples. PMID:7044589

  3. Diagnosis of Plasmodium falciparum infection in man: detection of parasite antigens by ELISA.

    Science.gov (United States)

    Mackey, L J; McGregor, I A; Paounova, N; Lambert, P H

    1982-01-01

    An ELISA method has been developed for the diagnosis of Plasmodium falciparum infection in man. Parasites from in vitro cultures of P. falciparum were used as source of antigen for the solid phase and the source of specific antibody was immune Gambian sera; binding of antibody in antigen-coated wells was registered by means of alkaline phosphatase-conjugated anti-human IgG. Parasites were detected on the basis of inhibition of antibody-binding. The test was applied to the detection of parasites in human red blood cells (RBC) from in vitro cultures of P. falciparum and in RBC from infected Gambians; RBC from 100 Geneva blood donors served as normal, uninfected controls. In titration experiments, the degree of antibody-binding inhibition correlated with the number of parasites in the test RBC. Parasites were detected at a level of 8 parasites/10(6) RBC. Samples of RBC were tested from 126 Gambians with microscopically proven infection; significant antibody-binding inhibition was found in 86% of these cases, where parasitaemia ranged from 10 to 125 000/mul of blood. The presence of high-titre antibody in the test preparations was found to reduce the sensitivity of parasite detection in infected RBC from in vitro cultures mixed with equal volumes of different antibody-containing sera. The sensitivity was restored in most cases by recovering the RBC by centrifugation before testing. In a preliminary experiment, there was no significant difference in antibody-binding inhibition using fresh infected RBC and RBC dried on filter-paper and recovered by elution, although there was greater variation in the latter samples.

  4. Identification of Novel Membrane Structures in Plasmodium falciparum Infected Erythrocytes

    Directory of Open Access Journals (Sweden)

    Clavijo Carlos A

    1998-01-01

    Full Text Available Little is known about the molecular mechanisms underlying the release of merozoites from malaria infected erythrocytes. In this study membranous structures present in the culture medium at the time of merozoite release have been characterized. Biochemical and ultrastructural evidence indicate that membranous structures consist of the infected erythrocyte membrane, the parasitophorous vacuolar membrane and a residual body containing electron dense material. These are subcellular compartments expected in a structure that arises as a consequence of merozoite release from the infected cell. Ultrastructural studies show that a novel structure extends from the former parasite compartment to the surface membrane. Since these membrane modifications are detected only after merozoites have been released from the infected erythrocyte, it is proposed that they might play a role in the release of merozoites from the host cell

  5. Refractory pancytopenia and megaloblastic anemia due to falciparum malaria.

    Science.gov (United States)

    Aggarwal, Varun; Maheshwari, Anu; Rath, Bimbadhar; Kumar, Praveen; Basu, Srikanta

    2011-08-01

    Anemia is a common complication in malarial infection. Direct destruction and ineffective erythropoesis does not adequately explain the cause of anemia in malaria. We present a case with refractory megaloblastic anemia with asymptomatic falciparum malaria. We hypothesize that promoter variants in the inducible nitric oxide synthase gene might be the cause of severe refractory megaloblastic anemia and pancytopenia in our patient. Malaria should always be kept in mind as a cause of anemia especially in endemic areas even if the child is asymptomatic or there is no demonstrable parasite on routine smear examination.

  6. Role of serum lactate and malarial retinopathy in prognosis and outcome of falciparum and vivax cerebral Malaria: A prospective cohort study in adult assamese tribes

    Directory of Open Access Journals (Sweden)

    Kaustubh Suresh Chaudhari

    2016-01-01

    Full Text Available Introduction: There is no comprehensive data or studies relating to clinical presentation and prognosis of cerebral malaria (CM in the tribal settlements of Assam. High rates of transmission and deaths from complicated malaria guided us to conduct a prospective observational cohort study to evaluate the factors associated with poor outcome and prognosis in patients of CM. Materials and Methods: We admitted 112 patients to the Bandarpara and Damodarpur Tribal Health Centers (THCs between 2011 and 2013 with a strict diagnosis of CM. We assessed the role of clinical, fundoscopy and laboratory findings (mainly lactic acid in the immediate outcome in terms of death and recovery, duration of hospitalization, neurocognitive impairment, cranial nerve palsies and focal neurological deficit. Results: The case fatality rate of CM was 33.03% and the prevalence of residual neurological sequelae at discharge was 16.07%. These are significantly higher than the previous studies. The mortality rate and neurological complications rate in patients with retinal whitening was 38.46% and 23.07%, with vessel changes was 25% and 18.75%, with retinal hemorrhage was 55.55% and 11.11% and with hyperlactatemia was 53.85% and 18.46%, respectively. Three patients of papilledema alone died. Conclusion: Our study suggests a strong correlation between hyperlactatemia, retinal changes (whitening, vessel changes and hemorrhage and depth and duration of coma with longer duration of hospitalization, increased mortality, neurological sequelae and death. Plasmodium vivax mono-infection as a cause of CM has been confirmed. Prognostic evaluation of CM is useful for judicious allocation of resources in the THC.

  7. Field performance of malaria rapid diagnostic test for the detection of Plasmodium falciparum infection in Odisha State, India

    Directory of Open Access Journals (Sweden)

    S S Sahu

    2015-01-01

    Full Text Available Background & objectives: Rapid diagnostic tests (RDTs have become an essential surveillance tool in the malaria control programme in India. The current study aimed to assess the performance of ParaHIT-f, a rapid test in diagnosis of Plasmodium falciparum infection through detecting its specific antigen, histidine rich protein 2 (PfHRP-2, in Odisha State, India. Methods: The study was undertaken in eight falciparum malaria endemic southern districts of Odisha State. Febrile patients included through active case detection, were diagnosed by Accredited Social Health Activists (ASHAs for P. falciparum infection using the RDT, ParaHIT-f. The performance of ParaHIT-f was evaluated using microscopy as the gold standard. Results: A total of 1030 febrile patients were screened by both microscopy and the RDT for P. falciparum infection. The sensitivity of ParaHIT-f was 63.6% (95% CI: 56.0-70.6 and specificity was 98.9% (95% CI: 97.9-99.5, with positive and negative predictive values (PPV and NPV of 92.6% (95% CI: 86.0-96.3 and 93.0% (95% CI: 91.0-94.5, respectively. When related to parasitaemia, the RDT sensitivity was 47.8% at the low parasitaemia of 4 to 40 parasites/µl of blood. Interpretation & conclusions: The results showed that the performance of the RDT, ParaHIT-f, was not as sensitive as microscopy in detecting true falciparum infections; a high specificity presented a low frequency of false-positive RDT results. t0 he sensitivity of ParaHIT-f was around 60 per cent. It is, therefore, essential to improve the efficiency (sensitivity of the kit so that the true falciparum infections will not be missed especially in areas where P. falciparum has been the predominant species causing cerebral malaria.

  8. Interleukin-10 regulates hepcidin in Plasmodium falciparum malaria

    KAUST Repository

    Huang, Honglei

    2014-02-10

    Background: Acute malarial anemia remains a major public health problem. Hepcidin, the major hormone controlling the availability of iron, is raised during acute and asymptomatic parasitemia. Understanding the role and mechanism of raised hepcidin and so reduced iron availability during infection is critical to establish evidence-based guidelines for management of malaria anemia. Our recent clinical evidence suggests a potential role of IL-10 in the regulation of hepcidin in patients with acute P. falciparum malaria. Methods: We have measured secretion of hepcidin by primary macrophages and the hepatoma cell line HepG2 stimulated with IL-10, IL-6 and Plasmodium falciparum-infected erythrocytes. Findings: We have observed that IL-10 and IL-6 production increased in primary macrophages when these cells were co-cultured with Plasmodium falciparum-infected erythrocytes. We found that IL-10 induced hepcidin secretion in primary macrophages in a dose-dependent manner but not in HepG2 cells. These effects were mediated through signal transducer and activator of transcription (STAT) 3-phosphorylation and completely abrogated by a specific STAT3 inhibitor. Conclusion: IL-10 can directly regulate hepcidin in primary macrophages but not in HepG2 cells. This effect can be modulated by Plasmodium falciparum. The results are consistent with a role for IL-10 in modulating iron metabolism during acute phase of infection. 2014 Huang et al.

  9. Sustained activation of Akt elicits mitochondrial dysfunction to block Plasmodium falciparum infection in the mosquito host.

    Directory of Open Access Journals (Sweden)

    Shirley Luckhart

    2013-02-01

    Full Text Available The overexpression of activated, myristoylated Akt in the midgut of female transgenic Anopheles stephensi results in resistance to infection with the human malaria parasite Plasmodium falciparum but also decreased lifespan. In the present study, the understanding of mitochondria-dependent midgut homeostasis has been expanded to explain this apparent paradox in an insect of major medical importance. Given that Akt signaling is essential for cell growth and survival, we hypothesized that sustained Akt activation in the mosquito midgut would alter the balance of critical pathways that control mitochondrial dynamics to enhance parasite killing at some cost to survivorship. Toxic reactive oxygen and nitrogen species (RNOS rise to high levels in the midgut after blood feeding, due to a combination of high NO production and a decline in FOXO-dependent antioxidants. Despite an apparent increase in mitochondrial biogenesis in young females (3 d, energy deficiencies were apparent as decreased oxidative phosphorylation and increased [AMP]/[ATP] ratios. In addition, mitochondrial mass was lower and accompanied by the presence of stalled autophagosomes in the posterior midgut, a critical site for blood digestion and stem cell-mediated epithelial maintenance and repair, and by functional degradation of the epithelial barrier. By 18 d, the age at which An. stephensi would transmit P. falciparum to human hosts, mitochondrial dysfunction coupled to Akt-mediated repression of autophagy/mitophagy was more evident and midgut epithelial structure was markedly compromised. Inhibition of RNOS by co-feeding of the nitric-oxide synthase inhibitor L-NAME at infection abrogated Akt-dependent killing of P. falciparum that begins within 18 h of infection in 3-5 d old mosquitoes. Hence, Akt-induced changes in mitochondrial dynamics perturb midgut homeostasis to enhance parasite resistance and decrease mosquito infective lifespan. Further, quality control of mitochondrial

  10. Sustained activation of Akt elicits mitochondrial dysfunction to block Plasmodium falciparum infection in the mosquito host.

    Science.gov (United States)

    Luckhart, Shirley; Giulivi, Cecilia; Drexler, Anna L; Antonova-Koch, Yevgeniya; Sakaguchi, Danielle; Napoli, Eleonora; Wong, Sarah; Price, Mark S; Eigenheer, Richard; Phinney, Brett S; Pakpour, Nazzy; Pietri, Jose E; Cheung, Kong; Georgis, Martha; Riehle, Michael

    2013-02-01

    The overexpression of activated, myristoylated Akt in the midgut of female transgenic Anopheles stephensi results in resistance to infection with the human malaria parasite Plasmodium falciparum but also decreased lifespan. In the present study, the understanding of mitochondria-dependent midgut homeostasis has been expanded to explain this apparent paradox in an insect of major medical importance. Given that Akt signaling is essential for cell growth and survival, we hypothesized that sustained Akt activation in the mosquito midgut would alter the balance of critical pathways that control mitochondrial dynamics to enhance parasite killing at some cost to survivorship. Toxic reactive oxygen and nitrogen species (RNOS) rise to high levels in the midgut after blood feeding, due to a combination of high NO production and a decline in FOXO-dependent antioxidants. Despite an apparent increase in mitochondrial biogenesis in young females (3 d), energy deficiencies were apparent as decreased oxidative phosphorylation and increased [AMP]/[ATP] ratios. In addition, mitochondrial mass was lower and accompanied by the presence of stalled autophagosomes in the posterior midgut, a critical site for blood digestion and stem cell-mediated epithelial maintenance and repair, and by functional degradation of the epithelial barrier. By 18 d, the age at which An. stephensi would transmit P. falciparum to human hosts, mitochondrial dysfunction coupled to Akt-mediated repression of autophagy/mitophagy was more evident and midgut epithelial structure was markedly compromised. Inhibition of RNOS by co-feeding of the nitric-oxide synthase inhibitor L-NAME at infection abrogated Akt-dependent killing of P. falciparum that begins within 18 h of infection in 3-5 d old mosquitoes. Hence, Akt-induced changes in mitochondrial dynamics perturb midgut homeostasis to enhance parasite resistance and decrease mosquito infective lifespan. Further, quality control of mitochondrial function in the

  11. Comparison of Plasmodium falciparum infections in Panamanian and Colombian owl monkeys.

    Science.gov (United States)

    Rossan, R N; Harper, J S; Davidson, D E; Escajadillo, A; Christensen, H A

    1985-11-01

    Parameters of blood-induced infections of the Vietnam Oak Knoll, Vietnam Smith, and Uganda Palo Alto strains of Plasmodium falciparum studied in 395 Panamanian owl monkeys in this laboratory between 1976-1984 were compared with those reported from another laboratory for 665 Colombian owl monkeys, studied between 1968-1975, and, at the time, designated Aotus trivirgatus griseimembra. The virulence of these strains was less in Panamanian than in Colombian owl monkeys, as indicated by lower mortality rates of the Panamanian monkeys during the first 30 days of patency. Maximum parasitemias of the Vietnam Smith and Uganda Palo Alto strain, in Panamanian owl monkeys dying during the first 15 days of patent infection, were significantly higher than in Colombian owl monkeys. Panamanian owl monkeys that survived the primary attack had significantly higher maximum parasitemias than the surviving Colombian owl monkeys. Peak parasitemias were attained significantly earlier after patency in Panamanian than in Colombian owl monkeys, irrespective of the strain of P. falciparum. More Panamanian than Colombian owl monkeys evidenced self-limited infection after the primary attack of either the Vietnam Smith or Uganda Palo Alto strain. The duration of the primary attacks and recrudescences were significantly shorter in Panamanian than in Colombian owl monkeys. Mean peak parasitemias during recrudescence were usually higher in Panamanian owl monkeys than in Colombian monkeys. Differences of infection parameters were probably attributable, in part, to geographical origin of the two monkey hosts and parasite strains.

  12. Exported Epoxide Hydrolases Modulate Erythrocyte Vasoactive Lipids during Plasmodium falciparum Infection

    Directory of Open Access Journals (Sweden)

    Natalie J. Spillman

    2016-10-01

    Full Text Available Erythrocytes are reservoirs of important epoxide-containing lipid signaling molecules, including epoxyeicosatrienoic acids (EETs. EETs function as vasodilators and anti-inflammatory modulators in the bloodstream. Bioactive EETs are hydrolyzed to less active diols (dihydroxyeicosatrienoic acids by epoxide hydrolases (EHs. The malaria parasite Plasmodium falciparum infects host red blood cells (RBCs and exports hundreds of proteins into the RBC compartment. In this study, we show that two parasite epoxide hydrolases, P. falciparum epoxide hydrolases 1 (PfEH1 and 2 (PfEH2, both with noncanonical serine nucleophiles, are exported to the periphery of infected RBCs. PfEH1 and PfEH2 were successfully expressed in Escherichia coli, and they hydrolyzed physiologically relevant erythrocyte EETs. Mutations in active site residues of PfEH1 ablated the ability of the enzyme to hydrolyze an epoxide substrate. Overexpression of PfEH1 or PfEH2 in parasite-infected RBCs resulted in a significant alteration in the epoxide fatty acids stored in RBC phospholipids. We hypothesize that the parasite disruption of epoxide-containing signaling lipids leads to perturbed vascular function, creating favorable conditions for binding and sequestration of infected RBCs to the microvascular endothelium.

  13. Optimization and inhibition of the adherent ability of Plasmodium falciparum-infected erythrocytes

    Directory of Open Access Journals (Sweden)

    Heidi Smith

    1992-01-01

    Full Text Available The vast majority of the 1-2 million malaria associated deaths that occur each year are due to anemia and cerebral malaria (the attachment of erythrocytes containing mature forms of Plasmodium falciparum to the endothelial cells that line the vascular beds of the brain. A "model" system"for the study of cerebral malaria employs amelanotic melanoma cells as the "target"cells in an vitro cytoadherence assay. Using this model system we determined that the optimum pH for adherence is 6.6 to 6.8, that high concentrations of Ca²* (50mM result in increased levels of binding, and that the type of buffer used influences adherence (Bis Tris > MOPS > HEPES > PIPES. We also observed that the ability of infected erythrocytes to cytoadhere varied from (erythrocyte donor to donor. We have produced murine monoclonal antibodies against P. falciparum-infected red cells which recognized modified forms of human band 3; these inhibit the adherence of infected erythrocytes to melanoma cells in a doso responsive fashion. Antimalarials (chloroquine, quinacrine, mefloquine, artemisinin, on the other hand, affected adherence in an indirect fashion i.e. since cytoadherence is due, in part to the presence of knobs on the surface of the infected erythrocyte, and knob formation is dependent on intracellular parasite growth, when plasmodial development is inhibited so is knob production, and consequently adherence is ablated.

  14. Induction of Haemolysis and DNA Fragmentation in a Normal and Malarial-Infected Blood by Commonly - used Antimalarial Drugs in the North-Western Region of Nigeria.

    Science.gov (United States)

    Muhammad, Aliyu; Ibrahim, Mohammed Auwal; Erukainure, Ochuko Lucky; Habila, Nathan; Idowu, Aimola Asegame; Ndidi, Uche Samuel; Malami, Ibrahim; Zailani, Halliru; Kudan, Zeenat Bello; Muhammad, Bilal Abdullahi

    2016-01-01

    Antimalarial drugs are medicines that are used to prevent or treat malaria effectively at different stages in the life cycle of the malarial parasites. In spite of this, a good number of these drugs have the potential to cause harm when they are misused or abused. This study was undertaken to evaluate the effects of commonly-used antimalarial drugs in the North Western region of Nigeria on haemolysis and DNA fragmentation in the blood of normal and malarial infected humans ex vivo. The drugs used were artemisinine, artesunate, chloroquine, coartem and quinine (0.5-8.0 mg/ml). Haemolysis, haemoglobin status and DNA fragmentations were assayed for using standard procedures. It was observed that all the drugs induced a remarkable dose-dependent haemolysis with more pronounced effects on apparently healthy humans. There was a significant (P DNA fragmentation when compared with control. Commonly-used antimalarial drugs induced haemolysis and altered haemoglobin status which may spontaneously increases the cellular iron levels; a substrate for Fenton and Haber Weiss reactions, and eventually induces DNA fragmentation. Hence, adequate care should be taken during prescription with total avoidance for self medications and/or drugs abuse as a result of their adverse effects within the red blood cells and its immediate microenvironment.

  15. Relevant assay to study the adhesion of Plasmodium falciparum-infected erythrocytes to the placental epithelium.

    Directory of Open Access Journals (Sweden)

    Philippe Boeuf

    Full Text Available In placental malaria, Plasmodium falciparum-infected erythrocytes adhere to the apical plasma membrane of the placental epithelium, triggering an impairment of placental function detrimental to the fetus. The design of anti-adhesion intervention strategies requires a detailed understanding of the mechanisms involved. However, most adhesion assays lack in vivo relevance and are hardly quantitative. Here, we describe a flow cytometry-based adhesion assay that is fully relevant by using apical epithelial plasma membrane vesicles as the adhesion matrix, and being applicable to infected erythrocytes directly isolated from patients. Adhesion is measured both as the percentage of pathogens bound to epithelial membrane vesicles as well as the mean number of vesicles bound per infected erythrocytes. We show that adhesins alternative to those currently identified could be involved. This demonstrates the power of this assay to advance our understanding of epithelial adhesion of infected erythrocytes and in the design of intervention strategies.

  16. Biomarkers of Plasmodium falciparum infection during pregnancy in women living in northeastern Tanzania

    DEFF Research Database (Denmark)

    Boström, Stéphanie; Ibitokou, Samad; Oesterholt, Mayke

    2012-01-01

    In pregnant women, Plasmodium falciparum infections are an important cause of maternal morbidity as well as fetal and neonatal mortality. Erythrocytes infected by these malaria-causing parasites accumulate through adhesive interactions in placental intervillous spaces, thus evading detection in p...

  17. Identification of phosphorylated proteins in erythrocytes infected by the human malaria parasite Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Xia Dong

    2009-05-01

    Full Text Available Abstract Background Previous comparative proteomic analysis on Plasmodium falciparum isolates of different adhesion properties suggested that protein phosphorylation varies between isolates with different cytoadherence properties. But the extent and dynamic changes in phosphorylation have not been systematically studied. As a baseline for these future studies, this paper examined changes in the phosphoproteome of parasitized red blood cells (pRBC. Methods Metabolic labelling with [35S] methionine on pRBC and 2D gel electrophoresis (2-DE has previously been used to show the expression of parasite proteins and changes in protein iso-electric point (PI. 2-DE of different parasite strains was combined with immunoblotting using monoclonal antibodies specifically to phosphorylated serine/threonine and tyrosine, to obtain the phosphorylation profiles throughout the erythrocytic lifecycle. Affinity chromatography was used to purify/enrich phosphorylated proteins and these proteins from mature trophozoite stages which were identified using high-accuracy mass spectrometry and MASCOT search. Results 2D-immunoblots showed that P. falciparum infection greatly increased phosphorylation of a set of proteins in pRBC, the dominant size classes for phosphorylated tyrosine proteins were 95, 60, 50 and 30 kDa and for phosphorylated serine/threonine were 120, 95, 60, 50, 43, 40 and 30 kDa. The most abundant molecules from 2D-gel mapping of phosphorylated proteins in ItG infected RBCs were identified by MALDI-TOF. A proteomic overview of phosphorylated proteins in pRBC was achieved by using complementary phosphorylated protein enrichment techniques combined with nano-flow LC/MS/MS analysis and MASCOT MS/MS ions search with phosphorylation as variable modifications. The definite phosphoproteins of pRBC are reported and discussed. Conclusion Protein phosphorylation is a major process in P. falciparum-parasitized erythrocytes. Preliminary screens identified 170 P

  18. [Plasmodium falciparum and Salmonella Typhi co-infection: a case report].

    Science.gov (United States)

    Sümer, Sua; Ural, Gaye; Ural, Onur

    2014-01-01

    Malaria and salmonella infections are endemic especially in developing countries, however malaria and salmonella co-infection is a rare entity with high mortality. The basic mechanism in developing salmonella co-infection is the impaired mobilization of granulocytes through heme and heme oxygenase which are released from haemoglobin due to the breakdown of erythrocytes during malaria infection. Thus, a malaria infected person becomes more susceptible to develop infection with Salmonella spp. In this report a case with Plasmodium falciparum and Salmonella Typhi co-infection was presented. A 23-year-old male patient was admitted to hospital with the complaints of diarrhea, nausea, vomiting, abdominal pain, fatigue and fever. Laboratory findings yielded decreased number of platelets and increased ALT, AST and CRP levels. Since he had a history of working in Pakistan, malaria infection was considered in differential diagnosis, and the diagnosis was confirmed by the detection of P.falciparum trophozoites in the thick and thin blood smears. As he came from a region with chloroquine-resistant Plasmodium, quinine (3 x 650 mg) and doxycycline (2 x 100 mg/day) were started for the treatment. No erythrocytes, parasite eggs or fungal elements were seen at the stool microscopy of the patient who had diarrhoea during admission. No pathogenic microorganism growth was detected in his stool culture. The patient's blood cultures were also taken in febrile periods starting from the time of his hospitalization. A bacterial growth was observed in his blood cultures, and the isolate was identified as S. Typhi. Thus, the patient was diagnosed with P.falciparum and Salmonella Typhi coinfection. Ceftriaxone (1 x 2 g/day, 14 days) was added to the therapy according to the results of antibiotic susceptibility test. With the combined therapy (quinine, doxycycline, ceftriaxone) the fever was taken under control, his general condition improved and laboratory findings turned to normal values

  19. Spatial Effects on the Multiplicity of Plasmodium falciparum Infections

    Science.gov (United States)

    Karl, Stephan; White, Michael T.; Milne, George J.; Gurarie, David; Hay, Simon I.; Barry, Alyssa E.; Felger, Ingrid; Mueller, Ivo

    2016-01-01

    As malaria is being pushed back on many frontiers and global case numbers are declining, accurate measurement and prediction of transmission becomes increasingly difficult. Low transmission settings are characterised by high levels of spatial heterogeneity, which stands in stark contrast to the widely used assumption of spatially homogeneous transmission used in mathematical transmission models for malaria. In the present study an individual-based mathematical malaria transmission model that incorporates multiple parasite clones, variable human exposure and duration of infection, limited mosquito flight distance and most importantly geographically heterogeneous human and mosquito population densities was used to illustrate the differences between homogeneous and heterogeneous transmission assumptions when aiming to predict surrogate indicators of transmission intensity such as population parasite prevalence or multiplicity of infection (MOI). In traditionally highly malaria endemic regions where most of the population harbours malaria parasites, humans are often infected with multiple parasite clones. However, studies have shown also in areas with low overall parasite prevalence, infection with multiple parasite clones is a common occurrence. Mathematical models assuming homogeneous transmission between humans and mosquitoes cannot explain these observations. Heterogeneity of transmission can arise from many factors including acquired immunity, body size and occupational exposure. In this study, we show that spatial heterogeneity has a profound effect on predictions of MOI and parasite prevalence. We illustrate, that models assuming homogeneous transmission underestimate average MOI in low transmission settings when compared to field data and that spatially heterogeneous models predict stable transmission at much lower overall parasite prevalence. Therefore it is very important that models used to guide malaria surveillance and control strategies in low

  20. Cell-mediated immunity to Plasmodium falciparum infection: evidence against the involvement of cytotoxic lymphocytes

    DEFF Research Database (Denmark)

    Theander, T G; Andersen, B J; Pedersen, B K;

    1988-01-01

    by either SPag or PPD in the presence of immune serum. Studies on subpopulations of PBMC indicated that the inhibitory cells resided among the adherent cell fraction. Furthermore we tested PBMC for cytotoxic activity against P. falciparum-infected autologous or heterologous erythrocytes. Experiments were...... done both in the absence and the presence of immune serum. Neither fresh PBMC nor PBMC activated by SPag or PPD for 7 days prior to assay were cytotoxic, indicating that cytotoxic T cells, natural killer (NK) cells, and K cells did not possess cytotoxic activity directed against parasitized...

  1. Plasmodium falciparum-like parasites infecting wild apes in southern Cameroon do not represent a recurrent source of human malaria.

    Science.gov (United States)

    Sundararaman, Sesh A; Liu, Weimin; Keele, Brandon F; Learn, Gerald H; Bittinger, Kyle; Mouacha, Fatima; Ahuka-Mundeke, Steve; Manske, Magnus; Sherrill-Mix, Scott; Li, Yingying; Malenke, Jordan A; Delaporte, Eric; Laurent, Christian; Mpoudi Ngole, Eitel; Kwiatkowski, Dominic P; Shaw, George M; Rayner, Julian C; Peeters, Martine; Sharp, Paul M; Bushman, Frederic D; Hahn, Beatrice H

    2013-04-23

    Wild-living chimpanzees and gorillas harbor a multitude of Plasmodium species, including six of the subgenus Laverania, one of which served as the progenitor of Plasmodium falciparum. Despite the magnitude of this reservoir, it is unknown whether apes represent a source of human infections. Here, we used Plasmodium species-specific PCR, single-genome amplification, and 454 sequencing to screen humans from remote areas of southern Cameroon for ape Laverania infections. Among 1,402 blood samples, we found 1,000 to be Plasmodium mitochondrial DNA (mtDNA) positive, all of which contained human parasites as determined by sequencing and/or restriction enzyme digestion. To exclude low-abundance infections, we subjected 514 of these samples to 454 sequencing, targeting a region of the mtDNA genome that distinguishes ape from human Laverania species. Using algorithms specifically developed to differentiate rare Plasmodium variants from 454-sequencing error, we identified single and mixed-species infections with P. falciparum, Plasmodium malariae, and/or Plasmodium ovale. However, none of the human samples contained ape Laverania parasites, including the gorilla precursor of P. falciparum. To characterize further the diversity of P. falciparum in Cameroon, we used single-genome amplification to amplify 3.4-kb mtDNA fragments from 229 infected humans. Phylogenetic analysis identified 62 new variants, all of which clustered with extant P. falciparum, providing further evidence that P. falciparum emerged following a single gorilla-to-human transmission. Thus, unlike Plasmodium knowlesi-infected macaques in southeast Asia, African apes harboring Laverania parasites do not seem to serve as a recurrent source of human malaria, a finding of import to ongoing control and eradication measures.

  2. Pharmacophore model for pentamidine analogs active against Plasmodium falciparum.

    Science.gov (United States)

    Athri, Prashanth; Wenzler, Tanja; Tidwell, Richard; Bakunova, Svetlana M; Wilson, W David

    2010-12-01

    Pentamidine and its analogs constitute a class of compounds that are known to be active against Plasmodium falciparum, which causes the most dangerous malarial infection. Malaria is a widespread disease known to affect hundreds of millions of people and presents a perceivable threat of spreading. Hence, there is a need for well-defined scaffolds that lead to new, effective treatment. Here we present a pentamidine-based pharmacophore constructed using GALAHAD that would aid targeted synthesis of leads with enhanced properties, as well as the development of lead scaffolds. The study was supported by high-quality biological in vitro data of 22 compounds against the P. falciparum strains NF54 and K1. The model established reveals the importance of hydrophobic phenyl rings with polar oxygen and amidine substituents and the hydrophobic linking chain for the activity against malaria.

  3. Host iron status and iron supplementation mediate susceptibility to erythrocytic stage Plasmodium falciparum.

    Science.gov (United States)

    Clark, Martha A; Goheen, Morgan M; Fulford, Anthony; Prentice, Andrew M; Elnagheeb, Marwa A; Patel, Jaymin; Fisher, Nancy; Taylor, Steve M; Kasthuri, Raj S; Cerami, Carla

    2014-07-25

    Iron deficiency and malaria have similar global distributions, and frequently co-exist in pregnant women and young children. Where both conditions are prevalent, iron supplementation is complicated by observations that iron deficiency anaemia protects against falciparum malaria, and that iron supplements increase susceptibility to clinically significant malaria, but the mechanisms remain obscure. Here, using an in vitro parasite culture system with erythrocytes from iron-deficient and replete human donors, we demonstrate that Plasmodium falciparum infects iron-deficient erythrocytes less efficiently. In addition, owing to merozoite preference for young erythrocytes, iron supplementation of iron-deficient individuals reverses the protective effects of iron deficiency. Our results provide experimental validation of field observations reporting protective effects of iron deficiency and harmful effects of iron administration on human malaria susceptibility. Because recovery from anaemia requires transient reticulocytosis, our findings imply that in malarious regions iron supplementation should be accompanied by effective measures to prevent falciparum malaria.

  4. Evasion of immunity to Plasmodium falciparum malaria by IgM masking of protective IgG epitopes in infected erythrocyte surface-exposed PfEMP1

    DEFF Research Database (Denmark)

    Barfod, Lea; Dalgaard, Michael B; Pleman, Suzan T

    2011-01-01

    Plasmodium falciparum malaria is a major cause of mortality and severe morbidity. Its virulence is related to the parasite's ability to evade host immunity through clonal antigenic variation and tissue-specific adhesion of infected erythrocytes (IEs). The P. falciparum erythrocyte membrane protein...... epitopes not prone to IgM masking are likely to be particularly important targets of acquired protective immunity to P. falciparum malaria....

  5. Plasmodium falciparum-infected erythrocyte knob density is linked to the PfEMP1 variant expressed

    DEFF Research Database (Denmark)

    Subramani, Ramesh; Quadt, Katharina; Jeppesen, Anine Engholm

    2015-01-01

    regardless of the PfEMP1 expressed. Our study documents for the first time that knob density is related to the PfEMP1 variant expressed. This may reflect topological requirements to ensure optimal adhesive properties of the IEs. IMPORTANCE: Infections with Plasmodium falciparum malaria parasites are still...... responsible for many deaths, especially among children and pregnant women. New interventions are needed to reduce severe illness and deaths caused by this malaria parasite. Thus, a better understanding of the mechanisms behind the pathogenesis is essential. A main reason why Plasmodium falciparum malaria......UNLABELLED: Members of the clonally variant Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family mediate adhesion of infected erythrocytes (IEs) to vascular receptors. PfEMP1 expression is normally confined to nanoscale knob protrusions on the IE surface membrane. To investigate...

  6. Plasmodium falciparum-Infected Erythrocyte Knob Density Is Linked to the PfEMP1 Variant Expressed

    DEFF Research Database (Denmark)

    Subramani, Ramesh; Quadt, Katharina; Jeppesen, Anine Engholm;

    2015-01-01

    UNLABELLED: Members of the clonally variant Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family mediate adhesion of infected erythrocytes (IEs) to vascular receptors. PfEMP1 expression is normally confined to nanoscale knob protrusions on the IE surface membrane. To investigate...... regardless of the PfEMP1 expressed. Our study documents for the first time that knob density is related to the PfEMP1 variant expressed. This may reflect topological requirements to ensure optimal adhesive properties of the IEs. IMPORTANCE: Infections with Plasmodium falciparum malaria parasites are still...... responsible for many deaths, especially among children and pregnant women. New interventions are needed to reduce severe illness and deaths caused by this malaria parasite. Thus, a better understanding of the mechanisms behind the pathogenesis is essential. A main reason why Plasmodium falciparum malaria...

  7. Pro-inflammatory cytokines profiles in Nigerian pregnant women infected withPlasmodium falciparum malaria

    Institute of Scientific and Technical Information of China (English)

    Nmorsi OPG; Isaac C; Ohaneme BA; Obiazi HAK

    2010-01-01

    Objective:To investigate the pro-inflammatory cytokines profiles in in Nigerian pregnant women infected withPlasmodium falciparum (P. falciparum) malaria.Methods: Peripheral, and placental blood samples were collected from96 consenting volunteers comprising76 P. falciparium infected pregnant women and 20 healthy uninfected pregnant women in Ekpoma, Nigeria, and subjected to ELISA for cytokines evaluation.Results: Increased serum concentrations of interferon-gamma(IFN-γ) was observed in infected pregnant women than their uninfected counterparts[(31.2±20.9)pg/mL vs (1.8±0.9) pg/mL] and these differences were statistically significant(″2= 26.18,P0.05). The interleukin-6 (IL-6) was significantly elevated in infected pregnant women (81.0±26.1 pg/mL) than in the uninfected pregnant women [(25.0±5.0) pg/mL](″2 = 29.58,P<0.05). In all, mean cytokines concentration of IL-6, IL-12 andIFN-γ in the placental blood from infected pregnant women were (53.5±23.4) pg/mL, (8.7±6.9) pg/mL and(16.4±4.0) pg/mL, respectively. The multigravidae had a higher haemoglobin level of 10.2 g/dL and birth weight of3 000 g than the primigrivadae with lower haemoglobin level of7.5g/dL and birth weight of2 430 g. Conclusions: The elevatedIFN-γamong the malarous pregnant women implicates it as the major cytokine mediator in the host responses to systematicP. falciparummalaria in our locality.

  8. Assessing parasite clearance during uncomplicated Plasmodium falciparum infection treated with artesunate monotherapy in Suriname

    Directory of Open Access Journals (Sweden)

    Vreden SGS

    2016-11-01

    Full Text Available Stephen GS Vreden,1 Rakesh D Bansie,2 Jeetendra K Jitan,3 Malti R Adhin4 1Foundation for Scientific Research Suriname (SWOS, 2Department of Internal Medicine, Academic Hospital Paramaribo, 3Department of Public Health, Ministry of Health, 4Department of Biochemistry, Anton de Kom University of Suriname, Paramaribo, Suriname Background: Artemisinin resistance in Plasmodium falciparum is suspected when the day 3 parasitemia is >10% when treated with artemisinin-based combination therapy or if >10% of patients treated with artemisinin-based combination therapy or artesunate monotherapy harbored parasites with half-lives ≥5 hours. Hence, a single-arm prospective efficacy trial was conducted in Suriname for uncomplicated P. falciparum infection treated with artesunate-based monotherapy for 3 days assessing day 3 parasitemia, treatment outcome after 28 days, and parasite half-life. Methods: The study was conducted in Paramaribo, the capital of Suriname, from July 2013 until July 2014. Patients with uncomplicated Plasmodium falciparum infection were included and received artesunate mono-therapy for three days. Day 3 parasitaemia, treatment outcome after 28 days and parasite half-life were determined. The latter was assessed with the parasite clearance estimator from the WorldWide Antimalarial Resistance Network (WWARN. Results: Thirty-nine patients were included from July 2013 until July 2014. The day 3 parasitemia was 10%. Eight patients (20.5% could be followed up until day 28 and showed adequate clinical and parasitological response. Parasite half-life could only be determined from ten data series (25.7%. The median parasite half-life was 5.16 hours, and seven of these data series had a half-life ≥5 hours, still comprising 17.9% of the total data series. Conclusion: The low follow-up rate and the limited analyzable data series preclude clear conclusions about the efficacy of artesunate monotherapy in Suriname and the parasite half

  9. Non-falciparum malaria in Dakar: a confirmed case of Plasmodium ovale wallikeri infection.

    Science.gov (United States)

    Diallo, Mamadou A; Badiane, Aida S; Diongue, Khadim; Deme, Awa; Lucchi, Naomi W; Gaye, Marie; Ndiaye, Tolla; Ndiaye, Mouhamadou; Sene, Louise K; Diop, Abdoulaye; Gaye, Amy; Ndiaye, Yaye D; Samb, Diama; Yade, Mamadou S; Ndir, Omar; Udhayakumar, Venkatachalam; Ndiaye, Daouda

    2016-08-24

    Plasmodium ovale is rarely described in Senegal. A case of clinical malaria due to P. ovale wallikeri in West Central of Senegal is reported. A 34-year-old male baker in Dakar, with no significant previous medical history, was admitted to a health clinic with fever and vomiting. Fever had been lasting for 4 days with peaks every 48 h. As monospecific Plasmodium falciparum HRP-2 RDT was negative, he was treated with antibiotics. However, owing to persisting symptoms, he was referred to the emergency unit of the Youssou Mbargane Diop Hospital, Dakar, Senegal. Clinical examination found impaired general condition. All other physical examinations were normal. Laboratory tests showed anaemia (haemoglobin 11.4 g/dl), severe thrombocytopaenia (platelets 30 × 10(9)/mm(3)), leukopenia (3650/mm(3)), lymphocytopenia (650/mm(3)). Renal function was normal as indicated by creatininaemia and uraemia (11 mg/l and 0.25 g/l, respectively) and liver enzymes were slightly elevated (aspartate aminotransferase 77 UI/l and alanine aminotransferase 82 UI/l). Blood smear evaluations in Parasitology Laboratory of Aristide Le Dantec Hospital showed malaria parasites of the species P. ovale with a 0.08 % parasitaemia. Molecular confirmation was done by real time PCR targeting the 18S rRNA gene. The P. ovale infection was further analysed to species level targeting the potra gene and was identified as P. ovale wallikeri. According to the hospital's malaria treatment guidelines for severe malaria, treatment consisted of intravenous quinine at hour 0 (start of treatment) and 24 h after initial treatment, followed by artemether-lumefantrine 24 h later. A negative microscopy was noted on day 3 post-treatment and the patient reported no further symptoms. Malaria due to non-falciparum species is probably underestimated in Senegal. RDTs specific to non-falciparum species and/or pan specific RDTs should be included as tools of diagnosis to fight against malaria in Senegal. In addition

  10. Antibody recognition of Plasmodium falciparum infected red blood cells by symptomatic and asymptomatic individuals in the Brazilian Amazon

    Science.gov (United States)

    Fratus, Alessandra Sampaio Bassi; Cabral, Fernanda Janku; Fotoran, Wesley Luzetti; Medeiros, Márcia Melo; Carlos, Bianca Cechetto; Martha, Rosimeire dalla; da Silva, Luiz Hildebrando Pereira; Lopes, Stefanie Costa Pinto; Costa, Fabio Trindade Maranhão; Wunderlich, Gerhard

    2014-01-01

    In the Amazon Region, there is a virtual absence of severe malaria and few fatal cases of naturally occurring Plasmodium falciparum infections; this presents an intriguing and underexplored area of research. In addition to the rapid access of infected persons to effective treatment, one cause of this phenomenon might be the recognition of cytoadherent variant proteins on the infected red blood cell (IRBC) surface, including the var gene encoded P. falciparum erythrocyte membrane protein 1. In order to establish a link between cytoadherence, IRBC surface antibody recognition and the presence or absence of malaria symptoms, we phenotype-selected four Amazonian P. falciparum isolates and the laboratory strain 3D7 for their cytoadherence to CD36 and ICAM1 expressed on CHO cells. We then mapped the dominantly expressed var transcripts and tested whether antibodies from symptomatic or asymptomatic infections showed a differential recognition of the IRBC surface. As controls, the 3D7 lineages expressing severe disease-associated phenotypes were used. We showed that there was no profound difference between the frequency and intensity of antibody recognition of the IRBC-exposed P. falciparum proteins in symptomatic vs. asymptomatic infections. The 3D7 lineages, which expressed severe malaria-associated phenotypes, were strongly recognised by most, but not all plasmas, meaning that the recognition of these phenotypes is frequent in asymptomatic carriers, but is not necessarily a prerequisite to staying free of symptoms. PMID:25099336

  11. Expression of cleaved caspase-3 in renal tubular cells in Plasmodium falciparum malaria patients.

    Science.gov (United States)

    Wichapoon, Benjamas; Punsawad, Chuchard; Viriyavejakul, Parnpen

    2017-01-01

    In Plasmodium falciparum malaria, the clinical manifestation of acute kidney injury (AKI) is commonly associated with acute tubular necrosis (ATN) in the kidney tissues. Renal tubular cells often exhibit various degrees of cloudy swelling, cell degeneration, and frank necrosis. To study individual cell death, this study evaluates the degree of renal tubular necrosis in association with apoptosis in malarial kidneys. Kidney tissues from P. falciparum malaria with AKI (10 cases), and without AKI (10 cases) were evaluated for tubular pathology. Normal kidney tissues from 10 cases served as controls. Tubular necrosis was assessed quantitatively in kidney tissues infected with P. falciparum malaria, based on histopathological evaluation. In addition, the occurrence of apoptosis was investigated using cleaved caspase-3 marker. Correlation between tubular necrosis and apoptosis was analyzed. Tubular necrosis was found to be highest in P. falciparum malaria patients with AKI (36.44% ± 3.21), compared to non-AKI (15.88% ± 1.63) and control groups (2.58% ± 0.39) (all p < 0.001). In the AKI group, the distal tubules showed a significantly higher degree of tubular necrosis than the proximal tubules (p = 0.021) and collecting tubules (p = 0.033). Tubular necrosis was significantly correlated with the level of serum creatinine (r = 0.596, p = 0.006), and the occurrence of apoptosis (r = 0.681, p = 0.001). In malarial AKI, the process of apoptosis occurs in ATN. © 2016 Asian Pacific Society of Nephrology.

  12. Loss of Humoral and Cellular Immunity to Invasive Nontyphoidal Salmonella during Current or Convalescent Plasmodium falciparum Infection in Malawian Children.

    Science.gov (United States)

    Nyirenda, Tonney S; Nyirenda, James T; Tembo, Dumizulu L; Storm, Janet; Dube, Queen; Msefula, Chisomo L; Jambo, Kondwani C; Mwandumba, Henry C; Heyderman, Robert S; Gordon, Melita A; Mandala, Wilson L

    2017-07-01

    Invasive nontyphoidal Salmonella (iNTS) infections are commonly associated with Plasmodium falciparum infections, but the immunologic basis for this linkage is poorly understood. We hypothesized that P. falciparum infection compromises the humoral and cellular immunity of the host to NTS, which increases the susceptibility of the host to iNTS infection. We prospectively recruited children aged between 6 and 60 months at a Community Health Centre in Blantyre, Malawi, and allocated them to the following groups; febrile with uncomplicated malaria, febrile malaria negative, and nonfebrile malaria negative. Levels of Salmonella enterica serovar Typhimurium-specific serum bactericidal activity (SBA) and whole-blood bactericidal activity (WBBA), complement C3 deposition, and neutrophil respiratory burst activity (NRBA) were measured. Levels of SBA with respect to S Typhimurium were reduced in febrile P. falciparum-infected children (median, -0.20 log10 [interquartile range {IQR}, -1.85, 0.32]) compared to nonfebrile malaria-negative children (median, -1.42 log10 [IQR, -2.0, -0.47], P = 0.052). In relation to SBA, C3 deposition on S Typhimurium was significantly reduced in febrile P. falciparum-infected children (median, 7.5% [IQR, 4.1, 15.0]) compared to nonfebrile malaria-negative children (median, 29% [IQR, 11.8, 48.0], P = 0.048). WBBA with respect to S Typhimurium was significantly reduced in febrile P. falciparum-infected children (median, 0.25 log10 [IQR, -0.73, 1.13], P = 0.0001) compared to nonfebrile malaria-negative children (median, -1.0 log10 [IQR, -1.68, -0.16]). In relation to WBBA, S Typhimurium-specific NRBA was reduced in febrile P. falciparum-infected children (median, 8.8% [IQR, 3.7, 20], P = 0.0001) compared to nonfebrile malaria-negative children (median, 40.5% [IQR, 33, 65.8]). P. falciparum infection impairs humoral and cellular immunity to S Typhimurium in children during malaria episodes, which may explain the increased risk of iNTS observed in

  13. Griseofulvin impairs intraerythrocytic growth of Plasmodium falciparum through ferrochelatase inhibition but lacks activity in an experimental human infection study

    Science.gov (United States)

    Smith, Clare M.; Jerkovic, Ante; Truong, Thy Thuc; Foote, Simon J.; McCarthy, James S.; McMorran, Brendan J.

    2017-01-01

    Griseofulvin, an orally active antifungal drug used to treat dermatophyte infections, has a secondary effect of inducing cytochrome P450-mediated production of N-methyl protoporphyrin IX (N-MPP). N-MPP is a potent competitive inhibitor of the heme biosynthetic-enzyme ferrochelatase, and inhibits the growth of cultured erythrocyte stage Plasmodium falciparum. Novel drugs against Plasmodium are needed to achieve malaria elimination. Thus, we investigated whether griseofulvin shows anti-plasmodial activity. We observed that the intraerythrocytic growth of P. falciparum is inhibited in red blood cells pretreated with griseofulvin in vitro. Treatment with 100 μM griseofulvin was sufficient to prevent parasite growth and induce the production of N-MPP. Inclusion of the ferrochelatase substrate PPIX blocked the inhibitory activity of griseofulvin, suggesting that griseofulvin exerts its activity through the N-MPP-dependent inhibition of ferrochelatase. In an ex-vivo study, red blood cells from griseofulvin-treated subjects were refractory to the growth of cultured P. falciparum. However, in a clinical trial griseofulvin failed to show either therapeutic or prophylactic effect in subjects infected with blood stage P. falciparum. Although the development of griseofulvin as an antimalarial is not warranted, it represents a novel inhibitor of P. falciparum growth and acts via the N-MPP-dependent inhibition of ferrochelatase. PMID:28176804

  14. Impact of Plasmodium falciparum infection on haematological parameters in children living in Western Kenya

    Directory of Open Access Journals (Sweden)

    Hongo Gordon

    2010-12-01

    Full Text Available Abstract Background Malaria is the commonest cause of childhood morbidity in Western Kenya with varied heamatological consequences. The t study sought to elucidate the haemotological changes in children infected with malaria and their impact on improved diagnosis and therapy of childhood malaria. Methods Haematological parameters in 961 children, including 523 malaria-infected and 438 non-malaria infected, living in Kisumu West District, an area of malaria holoendemic transmission in Western Kenya were evaluated. Results The following parameters were significantly lower in malaria-infected children; platelets, lymphocytes, eosinophils, red blood cell count and haemoglobin (Hb, while absolute monocyte and neutrophil counts, and mean platelet volume (MPV were higher in comparison to non-malaria infected children. Children with platelet counts of Conclusion Children infected with Plasmodium falciparum malaria exhibited important changes in some haematological parameters with low platelet count and haemoglobin concentration being the two most important predictors of malaria infection in children in our study area. When used in combination with other clinical and microscopy, these parameters could improve malaria diagnosis in sub-patent cases.

  15. Quantitative non-invasive intracellular imaging of Plasmodium falciparum infected human erythrocytes

    Science.gov (United States)

    Edward, Kert; Farahi, Faramarz

    2014-05-01

    Malaria is a virulent pathological condition which results in over a million annual deaths. The parasitic agent Plasmodium falciparum has been extensively studied in connection with this epidemic but much remains unknown about its development inside the red blood cell host. Optical and fluorescence imaging are among the two most common procedures for investigating infected erythrocytes but both require the introduction of exogenous contrast agents. In this letter, we present a procedure for the non-invasive in situ imaging of malaria infected red blood cells. The procedure is based on the utilization of simultaneously acquired quantitative phase and independent topography data to extract intracellular information. Our method allows for the identification of the developmental stages of the parasite and facilitates in situ analysis of the morphological changes associated with the progression of this disease. This information may assist in the development of efficacious treatment therapies for this condition.

  16. Potential impact of host immunity on malaria treatment outcome in Tanzanian children infected with Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Theander Thor G

    2007-11-01

    Full Text Available Abstract Background In malaria endemic areas children may recover from malaria after chemotherapy in spite of harbouring genotypically drug-resistant Plasmodium falciparum. This phenomenon suggests that there is a synergy between drug treatment and acquired immunity. This hypothesis was examined in an area of moderately intense transmission of P. falciparum in Tanzania during a drug trail with sulphadoxine-pyrimethamine (SP or amodiaquine (AQ. Methods One hundred children with uncomplicated malaria were treated with either SP or AQ and followed for 28 days. Mutations in parasite genes related to SP and AQ-resistance as well as human sickle cell trait and alpha-thalassaemia were determined using PCR and sequence-specific oligonucleotide probes and enzyme-linked immunosorbent assay (SSOP-ELISA, and IgG antibody responses to a panel of P. falciparum antigens were assessed and related to treatment outcome. Results Parasitological or clinical treatment failure (TF was observed in 68% and 38% of children receiving SP or AQ, respectively. In those with adequate clinical and parasitological response (ACPR compared to children with TF, and for both treatment regimens, prevalence and levels of anti-Glutamate-rich Protein (GLURP-specific IgG antibodies were significantly higher (P Conclusion These findings suggest that GLURP-specific IgG antibodies in this setting contribute to clearance of drug-resistant infections and support the hypothesis that acquired immunity enhances the clinical efficacy of drug therapy. The results should be confirmed in larger scale with greater sample size and with variation in transmission intensity.

  17. FRET imaging of hemoglobin concentration in Plasmodium falciparum-infected red cells.

    Directory of Open Access Journals (Sweden)

    Alessandro Esposito

    Full Text Available BACKGROUND: During its intraerythrocytic asexual reproduction cycle Plasmodium falciparum consumes up to 80% of the host cell hemoglobin, in large excess over its metabolic needs. A model of the homeostasis of falciparum-infected red blood cells suggested an explanation based on the need to reduce the colloid-osmotic pressure within the host cell to prevent its premature lysis. Critical for this hypothesis was that the hemoglobin concentration within the host cell be progressively reduced from the trophozoite stage onwards. METHODOLOGY/PRINCIPAL FINDINGS: The experiments reported here were designed to test this hypothesis by direct measurements of the hemoglobin concentration in live, infected red cells. We developed a novel, non-invasive method to quantify the hemoglobin concentration in single cells, based on Förster resonance energy transfer between hemoglobin molecules and the fluorophore calcein. Fluorescence lifetime imaging allowed the quantitative mapping of the hemoglobin concentration within the cells. The average fluorescence lifetimes of uninfected cohorts was 270+/-30 ps (mean+/-SD; N = 45. In the cytoplasm of infected cells the fluorescence lifetime of calcein ranged from 290+/-20 ps for cells with ring stage parasites to 590+/-13 ps and 1050+/-60 ps for cells with young trophozoites and late stage trophozoite/early schizonts, respectively. This was equivalent to reductions in hemoglobin concentration spanning the range from 7.3 to 2.3 mM, in line with the model predictions. An unexpected ancillary finding was the existence of a microdomain under the host cell membrane with reduced calcein quenching by hemoglobin in cells with mature trophozoite stage parasites. CONCLUSIONS/SIGNIFICANCE: The results support the predictions of the colloid-osmotic hypothesis and provide a better understanding of the homeostasis of malaria-infected red cells. In addition, they revealed the existence of a distinct peripheral microdomain in the host

  18. Anti-CD81 but not anti-SR-BI blocks Plasmodium falciparum liver infection in a humanized mouse model

    NARCIS (Netherlands)

    Foquet, L.; Hermsen, C.C.; Verhoye, L.; Gemert, G.J.A. van; Cortese, R.; Nicosia, A.; Sauerwein, R.W.; Leroux-Roels, G.; Meuleman, P.

    2015-01-01

    OBJECTIVES: Plasmodium falciparum sporozoites, deposited in the skin by infected Anopheles mosquitoes taking a blood meal, cross the endothelium of skin capillaries and travel to the liver where they traverse Kupffer cells and hepatocytes to finally invade a small number of the latter. In

  19. Dual fluorescence labeling of surface-exposed and internal proteins in erythrocytes infected with the malaria parasite Plasmodium falciparum

    DEFF Research Database (Denmark)

    Bengtsson, Dominique C; Sowa, Kordai M P; Arnot, David E

    2008-01-01

    There is a need for improved methods for in situ localization of surface proteins on Plasmodium falciparum-infected erythrocytes to help understand how these antigens are trafficked to, and positioned within, the host cell membrane. This protocol for confocal immunofluorescence microscopy combines...

  20. Review of pyronaridine anti-malarial properties and product characteristics

    Directory of Open Access Journals (Sweden)

    Croft Simon L

    2012-08-01

    Full Text Available Abstract Pyronaridine was synthesized in 1970 at the Institute of Chinese Parasitic Disease and has been used in China for over 30 years for the treatment of malaria. Pyronaridine has high potency against Plasmodium falciparum, including chloroquine-resistant strains. Studies in various animal models have shown pyronaridine to be effective against strains resistant to other anti-malarials, including chloroquine. Resistance to pyronaridine appears to emerge slowly and is further retarded when pyronaridine is used in combination with other anti-malarials, in particular, artesunate. Pyronaridine toxicity is generally less than that of chloroquine, though evidence of embryotoxicity in rodents suggests use with caution in pregnancy. Clinical pharmacokinetic data for pyronaridine indicates an elimination T1/2 of 13.2 and 9.6 days, respectively, in adults and children with acute uncomplicated falciparum and vivax malaria in artemisinin-combination therapy. Clinical data for mono or combined pyronaridine therapy show excellent anti-malarial effects against P. falciparum and studies of combination therapy also show promise against Plasmodium vivax. Pyronaridine has been developed as a fixed dose combination therapy, in a 3:1 ratio, with artesunate for the treatment of acute uncomplicated P. falciparum malaria and blood stage P. vivax malaria with the name of Pyramax® and has received Positive Opinion by European Medicines Agency under the Article 58 procedure.

  1. Plasma cytokines, chemokines and cellular immune responses in pre-school Nigerian children infected with Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Noone Cariosa

    2013-01-01

    Full Text Available Abstract Background Malaria is a major cause of morbidity and mortality worldwide with over one million deaths annually, particularly in children under five years. This study was the first to examine plasma cytokines, chemokines and cellular immune responses in pre-school Nigerian children infected with Plasmodium falciparum from four semi-urban villages near Ile-Ife, Osun State, Nigeria. Methods Blood was obtained from 231 children (aged 39–73 months who were classified according to mean P. falciparum density per μl of blood (uninfected (n = 89, low density (10,000, n = 22. IL-12p70, IL-10, Nitric oxide, IFN-γ, TNF, IL-17, IL-4 and TGF-β, C-C chemokine RANTES, MMP-8 and TIMP-1 were measured in plasma. Peripheral blood mononuclear cells were obtained and examined markers of innate immune cells (CD14, CD36, CD56, CD54, CD11c AND HLA-DR. T-cell sub-populations (CD4, CD3 and γδTCR were intracellularly stained for IL-10, IFN-γ and TNF following polyclonal stimulation or stimulated with malaria parasites. Ascaris lumbricoides was endemic in these villages and all data were analysed taking into account the potential impact of bystander helminth infection. All data were analysed using SPSS 15 for windows and in all tests, p Results The level of P. falciparum parasitaemia was positively associated with plasma IL-10 and negatively associated with IL-12p70. The percentage of monocytes was significantly decreased in malaria-infected individuals while malaria parasitaemia was positively associated with increasing percentages of CD54+, CD11c+ and CD56+ cell populations. No association was observed in cytokine expression in mitogen-activated T-cell populations between groups and no malaria specific immune responses were detected. Although A. lumbricoides is endemic in these villages, an analysis of the data showed no impact of this helminth infection on P. falciparum parasitaemia or on immune responses associated with P. falciparum infection

  2. P. falciparum and P. vivax Epitope-Focused VLPs Elicit Sterile Immunity to Blood Stage Infections.

    Directory of Open Access Journals (Sweden)

    David C Whitacre

    Full Text Available In order to design P. falciparum preerythrocytic vaccine candidates, a library of circumsporozoite (CS T and B cell epitopes displayed on the woodchuck hepatitis virus core antigen (WHcAg VLP platform was produced. To test the protective efficacy of the WHcAg-CS VLPs, hybrid CS P. berghei/P. falciparum (Pb/Pf sporozoites were used to challenge immunized mice. VLPs carrying 1 or 2 different CS repeat B cell epitopes and 3 VLPs carrying different CS non-repeat B cell epitopes elicited high levels of anti-insert antibodies (Abs. Whereas, VLPs carrying CS repeat B cell epitopes conferred 98% protection of the liver against a 10,000 Pb/Pf sporozoite challenge, VLPs carrying the CS non-repeat B cell eptiopes were minimally-to-non-protective. One-to-three CS-specific CD4/CD8 T cell sites were also fused to VLPs, which primed CS-specific as well as WHcAg-specific T cells. However, a VLP carrying only the 3 T cell domains failed to protect against a sporozoite challenge, indicating a requirement for anti-CS repeat Abs. A VLP carrying 2 CS repeat B cell epitopes and 3 CS T cell sites in alum adjuvant elicited high titer anti-CS Abs (endpoint dilution titer >1x10(6 and provided 80-100% protection against blood stage malaria. Using a similar strategy, VLPs were constructed carrying P. vivax CS repeat B cell epitopes (WHc-Pv-78, which elicited high levels of anti-CS Abs and conferred 99% protection of the liver against a 10,000 Pb/Pv sporozoite challenge and elicited sterile immunity to blood stage infection. These results indicate that immunization with epitope-focused VLPs carrying selected B and T cell epitopes from the P. falciparum and P. vivax CS proteins can elicit sterile immunity against blood stage malaria. Hybrid WHcAg-CS VLPs could provide the basis for a bivalent P. falciparum/P. vivax malaria vaccine.

  3. Mannose-binding lectin is a disease modifier in clinical malaria and may function as opsonin for Plasmodium falciparum-infected erythrocytes

    DEFF Research Database (Denmark)

    Garred, Peter; Nielsen, Morten A; Kurtzhals, Jørgen

    2003-01-01

    associated with the occurrence and outcome parameters of Plasmodium falciparum malaria and asked whether MBL may function as an opsonin for P. falciparum. No difference in MBL genotype frequency was observed between infected and noninfected children or between children with cerebral malaria and/or severe...

  4. Evidence of non-Plasmodium falciparum malaria infection in Kédougou, Sénégal.

    Science.gov (United States)

    Daniels, Rachel F; Deme, Awa Bineta; Gomis, Jules F; Dieye, Baba; Durfee, Katelyn; Thwing, Julie I; Fall, Fatou B; Ba, Mady; Ndiop, Medoune; Badiane, Aida S; Ndiaye, Yaye Die; Wirth, Dyann F; Volkman, Sarah K; Ndiaye, Daouda

    2017-01-03

    Expanded malaria control efforts in Sénégal have resulted in increased use of rapid diagnostic tests (RDT) to identify the primary disease-causing Plasmodium species, Plasmodium falciparum. However, the type of RDT utilized in Sénégal does not detect other malaria-causing species such as Plasmodium ovale spp., Plasmodium malariae, or Plasmodium vivax. Consequently, there is a lack of information about the frequency and types of malaria infections occurring in Sénégal. This study set out to better determine whether species other than P. falciparum were evident among patients evaluated for possible malaria infection in Kédougou, Sénégal. Real-time polymerase chain reaction speciation assays for P. vivax, P. ovale spp., and P. malariae were developed and validated by sequencing and DNA extracted from 475 Plasmodium falciparum-specific HRP2-based RDT collected between 2013 and 2014 from a facility-based sample of symptomatic patients from two health clinics in Kédougou, a hyper-endemic region in southeastern Sénégal, were analysed. Plasmodium malariae (n = 3) and P. ovale wallikeri (n = 2) were observed as co-infections with P. falciparum among patients with positive RDT results (n = 187), including one patient positive for all three species. Among 288 negative RDT samples, samples positive for P. falciparum (n = 24), P. ovale curtisi (n = 3), P. ovale wallikeri (n = 1), and P. malariae (n = 3) were identified, corresponding to a non-falciparum positivity rate of 2.5%. These findings emphasize the limitations of the RDT used for malaria diagnosis and demonstrate that non-P. falciparum malaria infections occur in Sénégal. Current RDT used for routine clinical diagnosis do not necessarily provide an accurate reflection of malaria transmission in Kédougou, Sénégal, and more sensitive and specific methods are required for diagnosis and patient care, as well as surveillance and elimination activities. These findings have implications for other

  5. Analysis of Plasmodium falciparum diversity in natural infections by deep sequencing.

    Science.gov (United States)

    Manske, Magnus; Miotto, Olivo; Campino, Susana; Auburn, Sarah; Almagro-Garcia, Jacob; Maslen, Gareth; O'Brien, Jack; Djimde, Abdoulaye; Doumbo, Ogobara; Zongo, Issaka; Ouedraogo, Jean-Bosco; Michon, Pascal; Mueller, Ivo; Siba, Peter; Nzila, Alexis; Borrmann, Steffen; Kiara, Steven M; Marsh, Kevin; Jiang, Hongying; Su, Xin-Zhuan; Amaratunga, Chanaki; Fairhurst, Rick; Socheat, Duong; Nosten, Francois; Imwong, Mallika; White, Nicholas J; Sanders, Mandy; Anastasi, Elisa; Alcock, Dan; Drury, Eleanor; Oyola, Samuel; Quail, Michael A; Turner, Daniel J; Ruano-Rubio, Valentin; Jyothi, Dushyanth; Amenga-Etego, Lucas; Hubbart, Christina; Jeffreys, Anna; Rowlands, Kate; Sutherland, Colin; Roper, Cally; Mangano, Valentina; Modiano, David; Tan, John C; Ferdig, Michael T; Amambua-Ngwa, Alfred; Conway, David J; Takala-Harrison, Shannon; Plowe, Christopher V; Rayner, Julian C; Rockett, Kirk A; Clark, Taane G; Newbold, Chris I; Berriman, Matthew; MacInnis, Bronwyn; Kwiatkowski, Dominic P

    2012-07-19

    Malaria elimination strategies require surveillance of the parasite population for genetic changes that demand a public health response, such as new forms of drug resistance. Here we describe methods for the large-scale analysis of genetic variation in Plasmodium falciparum by deep sequencing of parasite DNA obtained from the blood of patients with malaria, either directly or after short-term culture. Analysis of 86,158 exonic single nucleotide polymorphisms that passed genotyping quality control in 227 samples from Africa, Asia and Oceania provides genome-wide estimates of allele frequency distribution, population structure and linkage disequilibrium. By comparing the genetic diversity of individual infections with that of the local parasite population, we derive a metric of within-host diversity that is related to the level of inbreeding in the population. An open-access web application has been established for the exploration of regional differences in allele frequency and of highly differentiated loci in the P. falciparum genome.

  6. Polymorphism of Plasmodium Falciparum Dihydrofolate Reductase and Dihydropteroate Synthase Genes among Pregnant Women with Falciparum Malaria in Banjar District, South Kalimantan Province, Indonesia

    Directory of Open Access Journals (Sweden)

    Sukmawati Basuki

    2012-12-01

    Full Text Available Pregnant women are highly vulnerable to malaria infection in its endemic areas, particularly infection by Plasmodium falciparum that can cause premature, low birth weight, severe anemia in pregnant women, and death. Sulfadoxine-pyrimethamine (SP for Intermittent Preventive Treatment for pregnant (IPTp is used for malaria control in pregnancy recommended by the World Health Organization that has already been implemented in Africa. The P. falciparum resistance to SP has been reported in several malarial endemic areas, and mutations in the genes of Plasmodium falciparum Dihydrofolate Reductase (Pfdhfr and Dihydropteroate Synthase (Pfdhps are shown to be associated with parasite resistance to SP treatment. Genetic analysis of Pfdhfr and Pfdhps genes in pregnant women infected with P. falciparum has not yet been examined in Indonesia. The cross-sectional study was conducted at two subdistricts, Sungai Pinang and Peramasan, in Banjar district of South Kalimantan Province, where 127 pregnant women were recruited from 2008 to April 2010. Two important mutations in Pfdhfr gene (amino acid positions at N51 and S108 and three in Pfdhps gene (A437, K540 and A581 were analyzed by nested PCR-RFLP method. All of the seven pregnant women samples infected with P. falciparum presented PfDHFR 108N and PfDHPS 437G mutations. One of the samples had the additional mutation at PfDHPS 540, in which Lys is substituted by Glu. These results suggested that P. falciparum might present only some resistance to SP at Sungai Pinang and Peramasan subdistricts, Banjar District, South Kalimantan province, Indonesia. Although there were limited number of samples, this study showed only few mutations of Pfdhfr and Pfdhps genes in P. falciparum at Banjar district, South Kalimantan Province, that suggests SP might be effective for IPTp in this area. Thus, further analysis of the other mutation sites in Pfdhfr and Pfdhps genes and in vivo efficacy study of SP with more sufficient

  7. Odours of Plasmodium falciparum-infected participants influence mosquito-host interactions.

    Science.gov (United States)

    de Boer, Jetske G; Robinson, Ailie; Powers, Stephen J; Burgers, Saskia L G E; Caulfield, John C; Birkett, Michael A; Smallegange, Renate C; van Genderen, Perry J J; Bousema, Teun; Sauerwein, Robert W; Pickett, John A; Takken, Willem; Logan, James G

    2017-08-24

    Malaria parasites are thought to influence mosquito attraction to human hosts, a phenomenon that may enhance parasite transmission. This is likely mediated by alterations in host odour because of its importance in mosquito host-searching behaviour. Here, we report that the human skin odour profile is affected by malaria infection. We compared the chemical composition and attractiveness to Anopheles coluzzii mosquitoes of skin odours from participants that were infected by Controlled Human Malaria Infection with Plasmodium falciparum. Skin odour composition differed between parasitologically negative and positive samples, with positive samples collected on average two days after parasites emerged from the liver into the blood, being associated with low densities of asexual parasites and the absence of gametocytes. We found a significant reduction in mosquito attraction to skin odour during infection for one experiment, but not in a second experiment, possibly due to differences in parasite strain. However, it does raise the possibility that infection can affect mosquito behaviour. Indeed, several volatile compounds were identified that can influence mosquito behaviour, including 2- and 3-methylbutanal, 3-hydroxy-2-butanone, and 6-methyl-5-hepten-2-one. To better understand the impact of our findings on Plasmodium transmission, controlled studies are needed in participants with gametocytes and higher parasite densities.

  8. Effects ofPlasmodium falciparum-infected erythrocytes on matrix metalloproteinase-9 regulation in human microvascular endothelial cells

    Institute of Scientific and Technical Information of China (English)

    Sarah D Alessandro; Nicoletta Basilico; Mauro Prato

    2013-01-01

    Objective:To investigate the regulation of matrix metalloproteinases(MMPs) and tissue inhibitors of metalloproteinases(TIMPs) in human microvascular endothelium(HMEC-1) exposed to erythrocytes infected by different strains ofPlasmodium falciparum (P. falciparum).Methods:HMEC-1 cells were co-incubated for72 h with erythrocytes infected by late stage trophozoite of D10(chloroquine-sensitive) orW2(chloroquine-resistant)P. falciparum strains.Cell supernatants were then collected and the levels of pro- or active gelatinasesMMP-9 andMMP-2 were evaluated by gelatin zymography and densitometry.The release of pro-MMP-9,MMP-3,MMP-1 andTIMP-1 proteins was analyzed by western blotting and densitometry.Results:Infected erythrocytes inducedde novo proMMP-9 andMMP-9 release.Neither basal levels of proMMP-2 were altered, nor activeMMP-2 was found.MMP-3 andMMP-1 secretion was significantly enhanced, whereas basalTIMP-1 was unaffected.All effects were similar for both strains. Conclusions:P. falciparum parasites, either chloroquine-sensitive or -resistant, induce the release of activeMMP-9 protein from human microvascular endothelium, by impairing balances between proMMP-9 and its inhibitor, and by enhancing the levels of its activators.This work provides new evidence onMMP involvement in malaria, pointing atMMP-9 as a possible target in adjuvant therapy.

  9. Spatiotemporal dynamics and demographic profiles of imported Plasmodium falciparum and Plasmodium vivax infections in Ontario, Canada (1990-2009.

    Directory of Open Access Journals (Sweden)

    Mark P Nelder

    Full Text Available We examined malaria cases reported to Ontario's public health surveillance systems from 1990 through 2009 to determine how temporal scale (longitudinal, seasonal, spatial scale (provincial, health unit, and demography (gender, age contribute to Plasmodium infection in Ontario travellers. Our retrospective study included 4,551 confirmed cases of imported malaria reported throughout Ontario, with additional analysis at the local health unit level (i.e., Ottawa, Peel, and Toronto. During the 20-year period, Plasmodium vivax accounted for 50.6% of all cases, P. falciparum (38.6%, Plasmodium sp. (6.0%, P. ovale (3.1%, and P. malariae (1.8%. During the first ten years of the study (1990-1999, P. vivax (64% of all cases was the dominant agent, followed by P. falciparum (28%; however, during the second ten years (2000-2009 the situation reversed and P. falciparum (55% dominated, followed by P. vivax (30%. The prevalence of P. falciparum and P. vivax cases varied spatially (e.g., P. falciparum more prevalent in Toronto, P. vivax more prevalent in Peel, temporally (e.g. P. falciparum incidence increased during the 20-year study, and demographically (e.g. preponderance of male cases. Infection rates per 100,000 international travellers were estimated: rates of infection were 2× higher in males compared to females; rates associated with travel to Africa were 37× higher compared to travel to Asia and 126× higher compared to travel to the Americas; rates of infection were 2.3-3.5× higher in June and July compared to October through March; and rates of infection were highest in those 65-69 years old. Where exposure country was reported, 71% of P. falciparum cases reported exposure in Ghana or Nigeria and 63% of P. vivax cases reported exposure in India. Our study provides insights toward improving pre-travel programs for Ontarians visiting malaria-endemic regions and underscores the changing epidemiology of imported malaria in the province.

  10. Complement activation in Ghanaian children with severe Plasmodium falciparum malaria

    Directory of Open Access Journals (Sweden)

    Ofori Michael F

    2007-12-01

    Full Text Available Abstract Background Severe anaemia (SA, intravascular haemolysis (IVH and respiratory distress (RD are severe forms of Plasmodium falciparum malaria, with RD reported to be of prognostic importance in African children with malarial anaemia. Complement factors have been implicated in the mechanism leading to excess anaemia in acute P. falciparum infection. Methods The direct Coombs test (DCT and flow cytometry were used to investigate the mean levels of RBC-bound complement fragments (C3d and C3bαβ and the regulatory proteins [complement receptor 1 (CD35 and decay accelerating factor (CD55] in children with discrete clinical forms of P. falciparum malaria. The relationship between the findings and clinical parameters including coma, haemoglobin (Hb levels and RD were investigated. Results Of the 484 samples tested, 131(27% were positive in DCT, out of which 115/131 (87.8% were positive for C3d alone while 16/131 (12.2% were positive for either IgG alone or both. 67.4% of the study population were below 5 years of age and DCT positivity was more common in this age group relative to children who were 5 years or older (Odds ratio, OR = 3.8; 95%CI, 2.2–6.7, p Conclusion These results suggest that complement activation contributed to anaemia in acute childhood P. falciparum malaria, possibly through induction of erythrophagocytosis and haemolysis. In contrast to other studies, this study did not find association between levels of the complement regulatory proteins, CD35 and CD55 and malarial anaemia. These findings suggest that complement activation could also be involved in the pathogenesis of RD but larger studies are needed to confirm this finding.

  11. The malarial drug target Plasmodium falciparum 1-deoxy-D-xylulose-5-phosphate reductoisomerase (PfDXR): development of a 3-D model for identification of novel, structural and functional features and for inhibitor screening.

    Science.gov (United States)

    Goble, Jessica L; Adendorff, Matthew R; de Beer, Tjaart A P; Stephens, Linda L; Blatch, Gregory L

    2010-01-01

    A three-dimensional model of the malarial drug target protein PfDXR was generated, and validated using structure-checking programs and protein docking studies. Structural and functional features unique to PfDXR were identified using the model and comparative sequence analyses with apicomplexan and non-apicomplexan DXR proteins. Furthermore, we have used the model to develop an efficient approach to screen for potential tool compounds for use in the rational design of novel DXR inhibitors.

  12. Regulation of extracellular ATP in human erythrocytes infected with Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Cora Lilia Alvarez

    Full Text Available In human erythrocytes (h-RBCs various stimuli induce increases in [cAMP] that trigger ATP release. The resulting pattern of extracellular ATP accumulation (ATPe kinetics depends on both ATP release and ATPe degradation by ectoATPase activity. In this study we evaluated ATPe kinetics from primary cultures of h-RBCs infected with P. falciparum at various stages of infection (ring, trophozoite and schizont stages. A "3V" mixture containing isoproterenol (β-adrenergic agonist, forskolin (adenylate kinase activator and papaverine (phosphodiesterase inhibitor was used to induce cAMP-dependent ATP release. ATPe kinetics of r-RBCs (ring-infected RBCs, t-RBCs (trophozoite-infected RBCs and s-RBCs (schizont-infected RBCs showed [ATPe] to peak acutely to a maximum value followed by a slower time dependent decrease. In all intraerythrocytic stages, values of ΔATP1 (difference between [ATPe] measured 1 min post-stimulus and basal [ATPe] increased nonlinearly with parasitemia (from 2 to 12.5%. Under 3V exposure, t-RBCs at parasitemia 94% (t94-RBCs showed 3.8-fold higher ΔATP1 values than in h-RBCs, indicative of upregulated ATP release. Pre-exposure to either 100 µM carbenoxolone, 100 nM mefloquine or 100 µM NPPB reduced ΔATP1 to 83-87% for h-RBCs and 63-74% for t94-RBCs. EctoATPase activity, assayed at both low nM concentrations (300-900 nM and 500 µM exogenous ATPe concentrations increased approx. 400-fold in t94-RBCs, as compared to h-RBCs, while intracellular ATP concentrations of t94-RBCs were 65% that of h-RBCs. In t94-RBCs, production of nitric oxide (NO was approx. 7-fold higher than in h-RBCs, and was partially inhibited by L-NAME pre-treatment. In media with L-NAME, ΔATP1 values were 2.7-times higher in h-RBCs and 4.2-times higher in t94-RBCs, than without L-NAME. Results suggest that P. falciparum infection of h-RBCs strongly activates ATP release via Pannexin 1 in these cells. Several processes partially counteracted ATPe accumulation: an

  13. Competition between Plasmodium falciparum strains in clinical infections during in vitro culture adaptation.

    Science.gov (United States)

    Chen, Kexuan; Sun, Ling; Lin, Yingxue; Fan, Qi; Zhao, Zhenjun; Hao, Mingming; Feng, Guohua; Wu, Yanrui; Cui, Liwang; Yang, Zhaoqing

    2014-06-01

    We evaluated the dynamics of parasite populations during in vitro culture adaptation in 15 mixed Plasmodium falciparum infections, which were collected from a hypoendemic area near the China-Myanmar border. Allele types at the msp1 block 2 in the initial clinical samples and during subsequent culture were quantified weekly using a quantitative PCR method. All mixed infections carried two allele types based on the msp1 genotyping result. We also genotyped several polymorphic sites in the dhfr, dhps and mdr1 genes on day 0 and day 28, which showed that most of the common sites analyzed were monomorphic. Two of the three clinical samples mixed at dhps 581 remained stable while one changed to wild-type during the culture. During in vitro culture, we observed a gradual loss of parasite populations with 10 of the 15 mixed infections becoming monoclonal by day 28 based on the msp1 allele type. In most cases, the more abundant msp1 allele types in the clinical blood samples at the beginning of culture became the sole or predominant allele types on day 28. These results suggest that some parasites may have growth advantages and the loss of parasite populations during culture adaptation of mixed infections may lead to biased results when comparing the phenotypes such as drug sensitivity of the culture-adapted parasites.

  14. Dynamics in the cytoadherence phenotypes of Plasmodium falciparum infected erythrocytes isolated during pregnancy.

    Directory of Open Access Journals (Sweden)

    Justin Doritchamou

    Full Text Available Pregnant women become susceptible to malaria infection despite their acquired immunity to this disease from childhood. The placental sequestration of Plasmodium falciparum infected erythrocytes (IE is the major feature of malaria during pregnancy, due to ability of these parasites to bind chondroitin sulfate A (CSA in the placenta through the VAR2CSA protein that parasites express on the surface of IE. We collected parasites at different times of pregnancy and investigated the adhesion pattern of freshly collected isolates on the three well described host receptors (CSPG, CD36 and ICAM-1. Var genes transcription profile and VAR2CSA surface-expression were assessed in these isolates. Although adhesion of IE to CD36 and ICAM-1 was observed in some isolates, CSA-adhesion was the predominant binding feature in all isolates analyzed. Co-existence in the peripheral blood of several adhesion phenotypes in early pregnancy isolates was observed, a diversity that gradually tightens with gestational age in favour of the CSA-adhesion phenotype. Infections occurring in primigravidae were often by parasites that adhered more to CSA than those from multigravidae. Data from this study further emphasize the specificity of CSA adhesion and VAR2CSA expression by parasites responsible for pregnancy malaria, while drawing attention to the phenotypic complexity of infections occurring early in pregnancy as well as in multigravidae.

  15. The density of knobs on Plasmodium falciparum-infected erythrocytes depends on developmental age and varies among isolates.

    Directory of Open Access Journals (Sweden)

    Katharina A Quadt

    Full Text Available BACKGROUND: The virulence of Plasmodium falciparum malaria is related to the parasite's ability to evade host immunity through clonal antigenic variation and tissue-specific adhesion of infected erythrocytes (IEs. The P. falciparum erythrocyte membrane protein 1 (PfEMP1 family expressed on dome-shaped protrusions called knobs on the IE surface is central to both. Differences in receptor specificity and affinity of expressed PfEMP1 are important for IE adhesiveness, but it is not known whether differences in the number and size of the knobs on which the PfEMP1 proteins are expressed also play a role. Therefore, the aim of this study was to provide detailed information on isolate- and time-dependent differences in knob size and density. METHODOLOGY/PRINCIPAL FINDINGS: We used atomic force microscopy to characterize knobs on the surface of P. falciparum-infected erythrocytes. Fourteen ex vivo isolates from Ghanaian children with malaria and 10 P. falciparum isolates selected in vitro for expression of a particular PfEMP1 protein (VAR2CSA were examined. Knob density increased from ∼20 h to ∼35 h post-invasion, with significant variation among isolates. The knob density ex vivo, which was about five-fold higher than following long-term in vitro culture, started to decline within a few months of culture. Although knob diameter and height varied among isolates, we did not observe significant time-dependent variation in these dimensions. CONCLUSIONS/SIGNIFICANCE: The density of knobs on the P. falciparum-IE surface depends on time since invasion, but is also determined by the infecting isolate in a time-independent manner. This is the first study to quantitatively evaluate knob densities and dimensions on different P. falciparum isolates, to examine ex vivo isolates from humans, and to compare ex vivo and long-term in vitro-cultured isolates. Our findings contribute to the understanding of the interaction between P. falciparum parasites and the

  16. Cord blood dendritic cell subsets in African newborns exposed to Plasmodium falciparum in utero.

    Science.gov (United States)

    Breitling, Lutz P; Fendel, Rolf; Mordmueller, Benjamin; Adegnika, Ayola A; Kremsner, Peter G; Luty, Adrian J F

    2006-10-01

    Placental Plasmodium falciparum infection affects birth outcomes and sensitizes fetal lymphocytes to parasite antigens. We assessed the influence of maternal P. falciparum infection on fetal myeloid dendritic cells (mDC) and plasmacytoid dendritic cells (pDC), analyzing the cord blood of offspring of Gabonese mothers with different infection histories. Cord blood from newborns of mothers with malarial infection at delivery had significantly more mDC than that from nonexposed newborns (P = 0.028) but mDC and pDC HLA-DR expression was unrelated to maternal infection history. Independently of these findings, cord blood mDC and pDC numbers declined significantly as a function of increasing maternal age (P = 0.029 and P = 0.033, respectively). The inducible antigen-specific interleukin-10-producing regulatory-type T-cell population that we have previously detected in cord blood of newborns with prolonged in utero exposure to P. falciparum may directly reflect the altered DC numbers in such neonates, while the maintenance of cord blood DC HLA-DR expression contrasts with that of DC from P. falciparum malaria patients.

  17. Acquisition and decay of antibodies to pregnancy-associated variant antigens on the surface of Plasmodium falciparum-infected erythrocytes that protect against placental parasitemia

    DEFF Research Database (Denmark)

    Staalsoe, T; Megnekou, R; Fievét, N

    2001-01-01

    Otherwise clinically immune women in areas endemic for malaria are highly susceptible to Plasmodium falciparum malaria during their first pregnancy. Pregnancy-associated malaria (PAM) is characterized by placental accumulation of infected erythrocytes that adhere to chondroitin sulfate A (CSA...

  18. Maternally transmitted antibodies to pregnancy-associated variant antigens on the surface of erythrocytes infected with Plasmodium falciparum: relation to child susceptibility to malaria

    DEFF Research Database (Denmark)

    Cot, Michel; Le Hesran, Jean Yves; Staalsoe, Trine;

    2003-01-01

    The consequences of pregnancy-associated malaria on a child's health have been poorly investigated. Malarial infection of the placenta seems to result in a higher susceptibility of children to the parasite during their first year of life. In 1993-1995, the authors investigated the role of antibod...

  19. A framework for assessing the risk of resistance for anti-malarials in development

    Directory of Open Access Journals (Sweden)

    Ding Xavier C

    2012-08-01

    Full Text Available Abstract Resistance is a constant challenge for anti-infective drug development. Since they kill sensitive organisms, anti-infective agents are bound to exert an evolutionary pressure toward the emergence and spread of resistance mechanisms, if such resistance can arise by stochastic mutation events. New classes of medicines under development must be designed or selected to stay ahead in this vicious circle of resistance control. This involves both circumventing existing resistance mechanisms and selecting molecules which are resilient against the development and spread of resistance. Cell-based screening methods have led to a renaissance of new classes of anti-malarial medicines, offering us the potential to select and modify molecules based on their resistance potential. To that end, a standardized in vitro methodology to assess quantitatively these characteristics in Plasmodium falciparum during the early phases of the drug development process has been developed and is presented here. It allows the identification of anti-malarial compounds with overt resistance risks and the prioritization of the most robust ones. The integration of this strategy in later stages of development, registration, and deployment is also discussed.

  20. The Plasmodium falciparum var gene transcription strategy at the onset of blood stage infection in a human volunteer

    DEFF Research Database (Denmark)

    Wang, Christian W; Hermsen, Cornelus C; Sauerwein, Robert W;

    2009-01-01

    The var genes encode a family of adhesion receptor proteins, Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), which profoundly influence malaria pathogenesis. Only a single var gene is transcribed and one PfEMP1 expressed per P.falciparum parasite. Here we present the in vivo...... transcript distribution of var genes in a P. falciparum-infected non-immune individual and show that the initial expression of PfEMP1 is based on a strategy that allows all or most variants of PfEMP1s to be expressed by the parasite population at the onset of the blood stage infection....

  1. A kinetic fluorescence assay reveals unusual features of Ca++ uptake in Plasmodium falciparum-infected erythrocytes

    Science.gov (United States)

    2014-01-01

    Background To facilitate development within erythrocytes, malaria parasites increase their host cell uptake of diverse solutes including Ca++. The mechanism and molecular basis of increased Ca++ permeability remains less well studied than that of other solutes. Methods Based on an appropriate Ca++ affinity and its greater brightness than related fluorophores, Fluo-8 was selected and used to develop a robust fluorescence-based assay for Ca++ uptake by human erythrocytes infected with Plasmodium falciparum. Results Both uninfected and infected cells exhibited a large Ca++-dependent fluorescence signal after loading with the Fluo-8 dye. Probenecid, an inhibitor of erythrocyte organic anion transporters, abolished the fluorescence signal in uninfected cells; in infected cells, this agent increased fluorescence via mechanisms that depend on parasite genotype. Kinetic fluorescence measurements in 384-well microplates revealed that the infected cell Ca++ uptake is not mediated by the plasmodial surface anion channel (PSAC), a parasite nutrient channel at the host membrane; it also appears to be distinct from mammalian Ca++ channels. Imaging studies confirmed a low intracellular Ca++ in uninfected cells and higher levels in both the host and parasite compartments of infected cells. Parasite growth inhibition studies revealed a conserved requirement for extracellular Ca++. Conclusions Nondestructive loading of Fluo-8 into human erythrocytes permits measurement of Ca++ uptake kinetics. The greater Ca++ permeability of cells infected with malaria parasites is apparent when probenecid is used to inhibit Fluo-8 efflux at the host membrane. This permeability is mediated by a distinct pathway and may be essential for intracellular parasite development. The miniaturized assay presented here should help clarify the precise transport mechanism and may identify inhibitors suitable for antimalarial drug development. PMID:24885754

  2. Effect of acute Plasmodium falciparum malaria on reactivation and shedding of the eight human herpes viruses.

    Directory of Open Access Journals (Sweden)

    Arnaud Chêne

    Full Text Available Human herpes viruses (HHVs are widely distributed pathogens. In immuno-competent individuals their clinical outcomes are generally benign but in immuno-compromised hosts, primary infection or extensive viral reactivation can lead to critical diseases. Plasmodium falciparum malaria profoundly affects the host immune system. In this retrospective study, we evaluated the direct effect of acute P. falciparum infection on reactivation and shedding of all known human herpes viruses (HSV-1, HSV-2, VZV, EBV, CMV, HHV-6, HHV-7, HHV-8. We monitored their presence by real time PCR in plasma and saliva of Ugandan children with malaria at the day of admission to the hospital (day-0 and 14 days later (after treatment, or in children with mild infections unrelated to malaria. For each child screened in this study, at least one type of HHV was detected in the saliva. HHV-7 and HHV-6 were detected in more than 70% of the samples and CMV in approximately half. HSV-1, HSV-2, VZV and HHV-8 were detected at lower frequency. During salivary shedding the highest mean viral load was observed for HSV-1 followed by EBV, HHV-7, HHV-6, CMV and HHV-8. After anti-malarial treatment the salivary HSV-1 levels were profoundly diminished or totally cleared. Similarly, four children with malaria had high levels of circulating EBV at day-0, levels that were cleared after anti-malarial treatment confirming the association between P. falciparum infection and EBV reactivation. This study shows that acute P. falciparum infection can contribute to EBV reactivation in the blood and HSV-1 reactivation in the oral cavity. Taken together our results call for further studies investigating the potential clinical implications of HHVs reactivation in children suffering from malaria.

  3. Cytokine Profiles in Malawian Children Presenting with Uncomplicated Malaria, Severe Malarial Anemia, and Cerebral Malaria.

    Science.gov (United States)

    Mandala, Wilson L; Msefula, Chisomo L; Gondwe, Esther N; Drayson, Mark T; Molyneux, Malcolm E; MacLennan, Calman A

    2017-04-01

    Proinflammatory cytokines are involved in clearance of Plasmodium falciparum, and very high levels of these cytokines have been implicated in the pathogenesis of severe malaria. In order to determine how cytokines vary with disease severity and syndrome, we enrolled Malawian children presenting with cerebral malaria (CM), severe malarial anemia (SMA), and uncomplicated malaria (UCM) and healthy controls. We analyzed serum cytokine concentrations in acute infection and in convalescence. With the exception of interleukin 5 (IL-5), cytokine concentrations were highest in acute CM, followed by SMA, and were only mildly elevated in UCM. Cytokine concentrations had fallen to control levels when remeasured at 1 month of convalescence in all three clinical malaria groups. Ratios of IL-10 to tumor necrosis factor alpha (TNF-α) and of IL-10 to IL-6 followed a similar pattern. Children presenting with acute CM had significantly higher concentrations of TNF-α (P Mandala et al.

  4. Cytochrome b gene quantitative PCR for diagnosing Plasmodium falciparum infection in travelers.

    Science.gov (United States)

    Farrugia, Cécile; Cabaret, Odile; Botterel, Françoise; Bories, Christian; Foulet, Françoise; Costa, Jean-Marc; Bretagne, Stéphane

    2011-06-01

    A cytochrome b (cytb) gene quantitative PCR (qPCR) assay was developed to diagnose malaria in travelers. First, manual and automated DNA extractions were compared and automated DNA extraction of 400 μl of blood was found to be more efficient. Sensitivity was estimated using the WHO international standard for Plasmodium falciparum DNA and compared to that of a previously published qPCR targeting the 18S rRNA coding gene (18S qPCR). The limit of detection of the cytb qPCR assay was 20 DNA copies (i.e., 1 parasite equivalent) per 400 μl of extracted whole blood and was comparable for the two qPCR assays. Both qPCR assays were used on blood samples from 265 consecutive patients seen for suspicion of malaria. There were no microscopy-positive and qPCR-negative samples. Positive cytb qPCR results were observed for 51 samples, and all but 1 were also 18S qPCR positive. Eight (16%) of these 51 samples were negative by microscopic examination. The 8 cytb qPCR-positive and microscopy-negative samples were from African patients, 3 of whom had received antimalarial drugs. Three non-P. falciparum infections were correctly identified using an additional qPCR assay. The absence of PCR inhibitors was tested for by the use of an internal control of mouse DNA to allow reliable quantification of circulating DNA. The high analytical sensitivity of both qPCR assays combined with automated DNA extraction supports its use as a laboratory tool for diagnosis and parasitemia determination in emergencies. Whether to treat qPCR-positive and microscopy-negative patients remains to be determined.

  5. Does the Use of Dihydroartemisinin-Piperaquine in Treating Patients with Uncomplicated falciparum Malaria Reduce the Risk for Recurrent New falciparum Infection More Than Artemether-Lumefantrine?

    Directory of Open Access Journals (Sweden)

    Wisdom Akpaloo

    2014-01-01

    Full Text Available Malaria contributes significantly to the global disease burden. The World Health Organization recommended the use of artemisinin-based combination therapies (ACTs for treatment of uncomplicated falciparum malaria a decade ago in response to problems of drug resistance. This review compared two of the ACTs—Dihydroartemisinin-Piperaquine (DP and Artemether-Lumefantrine (AL to provide evidence which one has the ability to offer superior posttreatment prophylaxis at 28 and 42 days posttreatment. Four databases (MEDLINE, EMBASE, Cochrane Database and Global Health were searched on June 2, 2013 and a total of seven randomized controlled trials conducted in sub-Sahara Africa were included. Results involving 2, 340 participants indicates that reduction in risk for recurrent new falciparum infections (RNIs was 79% at day 28 in favour of DP [RR, 0.21; 95% CI: 0.14 to 0.32, P<0.001], and at day 42 was 44% favouring DP [RR, 0.56; 95% CI: 0.34 to 0.90; P=0.02]. No significant difference was seen in treatment failure rates between the two drugs at days 28 and 42. It is concluded that use of DP offers superior posttreatment prophylaxis compared to AL in the study areas. Hence DP can help reduce malaria cases in such areas more than AL.

  6. Plasmodium falciparum multiple infections in Mozambique, its relation to other malariological indices and to prospective risk of malaria morbidity.

    Science.gov (United States)

    Mayor, Alfredo; Saute, Francisco; Aponte, John J; Almeda, Jesús; Gómez-Olivé, F Xavier; Dgedge, Martinho; Alonso, Pedro L

    2003-01-01

    We describe the frequency of Plasmodium falciparum clones infecting individuals living in a rural area of southern Mozambique and analyse the relationship between multiplicity of infection, age and other malariometric indices, including prospective risk of clinical malaria. The genotyping was based on the use of restriction fragment length polymorphism-polymerase chain reaction (RFLP-PCR) analysis of P. falciparum merozoite surface protein 2 (msp2). We analysed 826 samples collected during five cross-sectional surveys from residents of Manhiça ranging in age from 4 months to 83 years. We also determined the multiplicity of infection in samples obtained from 6-month-old infants (n = 79) and children <10 years (n = 158) who were then treated and followed prospectively for 1 year or 75 weeks, respectively. Multiplicity of infection did not vary significantly during the first year of life, but increased thereafter, and decreased during adulthood to the levels found in infants. With increasing multiplicity of infection, there was a statistically significant decrease in the risk of submicroscopic infections. There was also a significant correlation between multiplicity of infection and parasite density in infants, children <4 years of age and adults, suggesting that high densities increase the probability of discriminating more clones in complex infections. We found that the relationship between multiple infections and malaria morbidity is age-dependent. In infants, the risk of subsequent episodes of clinical malaria was related to the parasite density but not to baseline multiplicity of infection. In older children, however, the more clones a child carried, the more likely they were to have a clinical malaria episode, and this was true after adjusting for parasite densities. This change in the association between multiplicity and risk of clinical malaria may indicate a shift in the host response to P. falciparum.

  7. Clustered local transmission and asymptomatic Plasmodium falciparum and Plasmodium vivax malaria infections in a recently emerged, hypoendemic Peruvian Amazon community

    Directory of Open Access Journals (Sweden)

    Alvarez Eugenia

    2005-06-01

    Full Text Available Abstract Background There is a low incidence of malaria in Iquitos, Peru, suburbs detected by passive case-detection. This low incidence might be attributable to infections clustered in some households/regions and/or undetected asymptomatic infections. Methods Passive case-detection (PCD during the malaria season (February-July and an active case-detection (ACD community-wide survey (March surveyed 1,907 persons. Each month, April-July, 100-metre at-risk zones were defined by location of Plasmodium falciparum infections in the previous month. Longitudinal ACD and PCD (ACP+PCD occurred within at-risk zones, where 137 houses (573 persons were randomly selected as sentinels, each with one month of weekly active sampling. Entomological captures were conducted in the sentinel houses. Results The PCD incidence was 0.03 P. falciparum and 0.22 Plasmodium vivax infections/person/malaria-season. However, the ACD+PCD prevalence was 0.13 and 0.39, respectively. One explanation for this 4.33 and 1.77-fold increase, respectively, was infection clustering within at-risk zones and contiguous households. Clustering makes PCD, generalized to the entire population, artificially low. Another attributable-factor was that only 41% and 24% of the P. falciparum and P. vivax infections were associated with fever and 80% of the asymptomatic infections had low-density or absent parasitaemias the following week. After accounting for asymptomatic infections, a 2.6-fold increase in ACD+PCD versus PCD was attributable to clustered transmission in at-risk zones. Conclusion Even in low transmission, there are frequent highly-clustered asymptomatic infections, making PCD an inadequate measure of incidence. These findings support a strategy of concentrating ACD and insecticide campaigns in houses adjacent to houses were malaria was detected one month prior.

  8. Associations between Red Cell Polymorphisms and Plasmodium falciparum Infection in the Middle Belt of Ghana

    Science.gov (United States)

    Amoako, Nicholas; Asante, Kwaku Poku; Adjei, George; Awandare, Gordon A.; Bimi, Langbong; Owusu-Agyei, Seth

    2014-01-01

    Background Red blood cell (RBC) polymorphisms are common in malaria endemic regions and are known to protect against severe forms of the disease. Therefore, it is important to screen for these polymorphisms in drugs or vaccines efficacy trials. This study was undertaken to evaluate associations between clinical malaria and RBC polymorphisms to assess biological interactions that may be necessary for consideration when designing clinical trials. Method In a cross-sectional study of 341 febrile children less than five years of age, associations between clinical malaria and common RBC polymorphisms including the sickle cell gene and G6PD deficiency was evaluated between November 2008 and June 2009 in the middle belt of Ghana, Kintampo. G6PD deficiency was determined by quantitative methods whiles haemoglobin variants were determined by haemoglobin titan gel electrophoresis. Blood smears were stained with Giemsa and parasite densities were determined microscopically. Results The prevalence of clinical malarial among the enrolled children was 31.9%. The frequency of G6PD deficiency was 19.0% and that for the haemoglobin variants were 74.7%, 14.7%, 9.1%, 0.9% respectively for HbAA, HbAC, HbAS and HbSS. In Multivariate regression analysis, children with the HbAS genotype had 79% lower risk of malaria infection compared to those with the HbAA genotypes (OR = 0.21, 95% CI: 0.06–0.73, p = 0.01). HbAC genotype was not significantly associated with malaria infection relative to the HbAA genotype (OR = 0.70, 95% CI: 0.35–1.42, p = 0.33). G6PD deficient subgroup had a marginally increased risk of malaria infection compared to the G6PD normal subgroup (OR = 1.76, 95% CI: 0.98–3.16, p = 0.06). Conclusion These results confirm previous findings showing a protective effect of sickle cell trait on clinical malaria infection. However, G6PD deficiency was associated with a marginal increase in susceptibility to clinical malaria compared to children without

  9. Plasmodium falciparum is dependent on de novo myo-inositol biosynthesis for assembly of GPI glycolipids and infectivity.

    Science.gov (United States)

    Macrae, James I; Lopaticki, Sash; Maier, Alexander G; Rupasinghe, Thusitha; Nahid, Amsha; Cowman, Alan F; McConville, Malcolm J

    2014-02-01

    Intra-erythrocytic stages of the malaria parasite, Plasmodium falciparum, are thought to be dependent on de novo synthesis of phosphatidylinositol, as red blood cells (RBC) lack the capacity to synthesize this phospholipid. The myo-inositol headgroup of PI can either be synthesized de novo or scavenged from the RBC. An untargeted metabolite profiling of P. falciparum infected RBC showed that trophozoite and schizont stages accumulate high levels of myo-inositol-3-phosphate, indicating increased de novo biosynthesis of myo-inositol from glucose 6-phosphate. Metabolic labelling studies with (13) C-U-glucose in the presence and absence of exogenous inositol confirmed that de novo myo-inositol synthesis occurs in parallel with myo-inositol salvage pathways. Unexpectedly, while both endogenous and scavenged myo-inositol was used to synthesize bulk PI, only de novo-synthesized myo-inositol was incorporated into GPI glycolipids. Moreover, gene disruption studies suggested that the INO1 gene, encoding myo-inositol 3-phosphate synthase, is essential in asexual parasite stages. Together these findings suggest that P. falciparum asexual stages are critically dependent on de novo myo-inositol biosynthesis for assembly of a sub-pool of PI species and GPI biosynthesis. These findings highlight unexpected complexity in phospholipid biosynthesis in P. falciparum and a lack of redundancy in some nutrient salvage versus endogenous biosynthesis pathways.

  10. Total and functional parasite specific IgE responses in Plasmodium falciparum-infected patients exhibiting different clinical status

    Directory of Open Access Journals (Sweden)

    Cazenave Pierre-André

    2007-01-01

    Full Text Available Abstract Background There is an increase of serum levels of IgE during Plasmodium falciparum infections in individuals living in endemic areas. These IgEs either protect against malaria or increase malaria pathogenesis. To get an insight into the exact role played by IgE in the outcome of P. falciparum infection, total IgE levels and functional anti-parasite IgE response were studied in children and adults, from two different endemic areas Gabon and India, exhibiting either uncomplicated malaria, severe non cerebral malaria or cerebral malaria, in comparison with control individuals. Methodology and results Blood samples were collected from controls and P. falciparum-infected patients before treatment on the day of hospitalization (day 0 in India and, in addition, on days 7 and 30 after treatment in Gabon. Total IgE levels were determined by ELISA and functional P. falciparum-specific IgE were estimated using a mast cell line RBL-2H3 transfected with a human Fcε RI α-chain that triggers degranulation upon human IgE cross-linking. Mann Whitney and Kruskall Wallis tests were used to compare groups and the Spearman test was used for correlations. Total IgE levels were confirmed to increase upon infection and differ with level of transmission and age but were not directly related to the disease phenotype. All studied groups exhibited functional parasite-specific IgEs able to induce mast cell degranulation in vitro in the presence of P. falciparum antigens. Plasma IgE levels correlated with those of IL-10 in uncomplicated malaria patients from Gabon. In Indian patients, plasma IFN-γ , TNF and IL-10 levels were significantly correlated with IgE concentrations in all groups. Conclusion Circulating levels of total IgE do not appear to correlate with protection or pathology, or with anti-inflammatory cytokine pattern bias during malaria. On the contrary, the P. falciparum-specific IgE response seems to contribute to the control of parasites, since

  11. Increase of a Calcium Independent Transglutaminase Activity in the Erythrocyte during the Infection with Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Wasserman Moisés

    1999-01-01

    Full Text Available We have studied the activity of a calcium dependent transglutaminase (EC 2.3.2.13 during the growth of the parasite Plasmodium falciparum inside the infected human erythrocyte. There is only one detectable transglutaminase in the two-cell-system, and its origin is erythrocytic. No activity was detected in preparations of the parasite devoid of erythrocyte cytoplasm. The Michaelis Menten constants (Km of the enzyme for the substrates N'N'dimethylcaseine and putrescine were undistinguishable whether the cell extracts used in their determination were obtained from normal or from infected red cells. The total activity of transglutaminase in stringently synchronized cultures, measured at 0.5mM Ca2+, decreased with the maturation of the parasite. However, a fraction which became irreversibly activated and independent of calcium concentration was detected. The proportion of this fraction grew with maturation; it represented only 20% of the activity in 20 hr-old-trophozoites while in 48-hr-schizonts it was more than 85% of the total activity. The activation of this fraction of transglutaminase did not depend on an increase in the erythrocyte cytoplasmic calcium, since most of the calcium was shown to be located in the parasite.

  12. Characterisation of the opposing effects of G6PD deficiency on cerebral malaria and severe malarial anaemia

    Science.gov (United States)

    Clarke, Geraldine M; Rockett, Kirk; Kivinen, Katja; Hubbart, Christina; Jeffreys, Anna E; Rowlands, Kate; Jallow, Muminatou; Conway, David J; Bojang, Kalifa A; Pinder, Margaret; Usen, Stanley; Sisay-Joof, Fatoumatta; Sirugo, Giorgio; Toure, Ousmane; Thera, Mahamadou A; Konate, Salimata; Sissoko, Sibiry; Niangaly, Amadou; Poudiougou, Belco; Mangano, Valentina D; Bougouma, Edith C; Sirima, Sodiomon B; Modiano, David; Amenga-Etego, Lucas N; Ghansah, Anita; Koram, Kwadwo A; Wilson, Michael D; Enimil, Anthony; Evans, Jennifer; Amodu, Olukemi K; Olaniyan, Subulade; Apinjoh, Tobias; Mugri, Regina; Ndi, Andre; Ndila, Carolyne M; Uyoga, Sophie; Macharia, Alexander; Peshu, Norbert; Williams, Thomas N; Manjurano, Alphaxard; Sepúlveda, Nuno; Clark, Taane G; Riley, Eleanor; Drakeley, Chris; Reyburn, Hugh; Nyirongo, Vysaul; Kachala, David; Molyneux, Malcolm; Dunstan, Sarah J; Phu, Nguyen Hoan; Quyen, Nguyen Ngoc; Thai, Cao Quang; Hien, Tran Tinh; Manning, Laurens; Laman, Moses; Siba, Peter; Karunajeewa, Harin; Allen, Steve; Allen, Angela; Davis, Timothy ME; Michon, Pascal; Mueller, Ivo; Molloy, Síle F; Campino, Susana; Kerasidou, Angeliki; Cornelius, Victoria J; Hart, Lee; Shah, Shivang S; Band, Gavin; Spencer, Chris CA; Agbenyega, Tsiri; Achidi, Eric; Doumbo, Ogobara K; Farrar, Jeremy; Marsh, Kevin; Taylor, Terrie; Kwiatkowski, Dominic P

    2017-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is believed to confer protection against Plasmodium falciparum malaria, but the precise nature of the protective effect has proved difficult to define as G6PD deficiency has multiple allelic variants with different effects in males and females, and it has heterogeneous effects on the clinical outcome of P. falciparum infection. Here we report an analysis of multiple allelic forms of G6PD deficiency in a large multi-centre case-control study of severe malaria, using the WHO classification of G6PD mutations to estimate each individual’s level of enzyme activity from their genotype. Aggregated across all genotypes, we find that increasing levels of G6PD deficiency are associated with decreasing risk of cerebral malaria, but with increased risk of severe malarial anaemia. Models of balancing selection based on these findings indicate that an evolutionary trade-off between different clinical outcomes of P. falciparum infection could have been a major cause of the high levels of G6PD polymorphism seen in human populations. DOI: http://dx.doi.org/10.7554/eLife.15085.001 PMID:28067620

  13. Plasmodium falciparum malaria challenge by the bite of aseptic Anopheles stephensi mosquitoes: results of a randomized infectivity trial.

    Directory of Open Access Journals (Sweden)

    Kirsten E Lyke

    Full Text Available BACKGROUND: Experimental infection of malaria-naïve volunteers by the bite of Plasmodium falciparum-infected mosquitoes is a preferred means to test the protective effect of malaria vaccines and drugs. The standard model relies on the bite of five infected mosquitoes to induce malaria. We examined the efficacy of malaria transmission using mosquitoes raised aseptically in compliance with current Good Manufacturing Practices (cGMPs. METHODS AND FINDINGS: Eighteen adults aged 18-40 years were randomized to receive 1, 3 or 5 bites of Anopheles stephensi mosquitoes infected with the chloroquine-sensitive NF54 strain of P. falciparum. Seventeen participants developed malaria; fourteen occurring on Day 11. The mean prepatent period was 10.9 days (9-12 days. The geometric mean parasitemia was 15.7 parasites/µL (range: 4-70 by microscopy. Polymerase chain reaction (PCR detected parasites 3.1 (range: 0-4 days prior to microscopy. The geometric mean sporozoite load was 16,753 sporozoites per infected mosquito (range: 1,000-57,500. A 1-bite participant withdrew from the study on Day 13 post-challenge and was PCR and smear negative. CONCLUSIONS: The use of aseptic, cGMP-compliant P. falciparum-infected mosquitoes is safe, is associated with a precise prepatent period compared to the standard model and appears more efficient than the standard approach, as it led to infection in 100% (6/6 of volunteers exposed to three mosquito bites and 83% (5/6 of volunteers exposed to one mosquito bite. TRIAL REGISTRATION: ClinicalTrials.gov NCT00744133.

  14. Understanding malarial toxins.

    Science.gov (United States)

    Starkl Renar, Katarina; Iskra, Jernej; Križaj, Igor

    2016-09-01

    Recognized since antiquity, malaria is one of the most infamous and widespread infectious diseases in humans and, although the death rate during the last century has been diminishing, it still accounts for more than a half million deaths annually. It is caused by the Plasmodium parasite and typical symptoms include fever, shivering, headache, diaphoresis and nausea, all resulting from an excessive inflammatory response induced by malarial toxins released into the victim's bloodstream. These toxins are hemozoin and glycosylphosphatidylinositols. The former is the final product of the parasite's detoxification of haeme, a by-product of haemoglobin catabolism, while the latter anchor proteins to the Plasmodium cell surface or occur as free molecules. Currently, only two groups of antimalarial toxin drugs exist on the market, quinolines and artemisinins. As we describe, they both target biosynthesis of hemozoin. Other substances, currently in various phases of clinical trials, are directed towards biosynthesis of glycosylphosphatidylinositol, formation of hemozoin, or attenuation of the inflammatory response of the patient. Among the innovative approaches to alleviating the effects of malarial toxins, is the development of antimalarial toxin vaccines. In this review the most important lessons learned from the use of treatments directed against the action of malarial toxins in antimalarial therapy are emphasized and the most relevant and promising directions for future research in obtaining novel antimalarial agents acting on malarial toxins are discussed.

  15. Unlike the synchronous Plasmodium falciparum and P. chabaudi infection, the P. berghei and P. yoelii asynchronous infections are not affected by melatonin

    Directory of Open Access Journals (Sweden)

    Piero Bagnaresi

    2009-04-01

    Full Text Available Piero Bagnaresi1, Eduardo Alves1, Henrique Borges da Silva1, Sabrina Epiphanio2, Maria M Mota2, Célia RS Garcia11Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil; 2Unidade de Malária, Instituto de Medicina Molecular, Universidade de Lisboa, Lisboa, PortugalAbstract: We have previously reported that Plasmodium chabaudi and P. falciparum sense the hormone melatonin and this could be responsible for the synchrony of malaria infection. In P. chabaudi and P. falciparum, melatonin induces calcium release from internal stores, and this response is abolished by U73122, a phospholipase C inhibitor, and luzindole, a melatoninreceptor competitive antagonist. Here we show that, in vitro, melatonin is not able to modulate cell cycle, nor to elicit an elevation in intracellular calcium concentration of the intraerythrocytic forms of P. berghei or P. yoelii, two rodent parasites that show an asynchrononous development in vivo. Interestingly, melatonin and its receptor do not seem to play a role during hepatic infection by P. berghei sporozoites either. These data strengthen the hypothesis that hostderived melatonin does not synchronize malaria infection caused by P. berghei and P. yoelii. Moreover, these data explain why infections by these parasites are asynchronous, contrary to what is observed in P. falciparum and P. chabaudi infections.Keywords: malaria, calcium, melatonin, cell cycle, rhythm, sporozoite

  16. HIV-1 inhibits phagocytosis and inflammatory cytokine responses of human monocyte-derived macrophages to P. falciparum infected erythrocytes.

    Directory of Open Access Journals (Sweden)

    Louise E Ludlow

    Full Text Available HIV-1 infection increases the risk and severity of malaria by poorly defined mechanisms. We investigated the effect of HIV-1(Ba-L infection of monocyte-derived macrophages (MDM on phagocytosis of opsonised P. falciparum infected erythrocytes (IE and subsequent proinflammatory cytokine secretion. Compared to mock-infected MDM, HIV-1 infection significantly inhibited phagocytosis of IE (median (IQR (10 (0-28 versus (34 (27-108; IE internalised/100 MDM; p = 0.001 and decreased secretion of IL-6 (1,116 (352-3,387 versus 1,552 (889-6,331; pg/mL; p = 0.0078 and IL-1β (16 (7-21 versus 33 (27-65; pg/mL; p = 0.0078. Thus inadequate phagocytosis and cytokine production may contribute to impaired control of malaria in HIV-1 infected individuals.

  17. Bone marrow suppression and severe anaemia associated with persistent Plasmodium falciparum infection in African children with microscopically undetectable parasitaemia

    Directory of Open Access Journals (Sweden)

    Rodriques Onike

    2005-12-01

    Full Text Available Abstract Background Severe anaemia can develop in the aftermath of Plasmodium falciparum malaria because of protracted bone marrow suppression, possibly due to residual subpatent parasites. Materials and methods Blood was collected from patients with recent malaria and negative malaria microscopy. Detection of the Plasmodium antigens, lactate dehydrogenase (Optimal®, aldolase and histidine rich protein 2 (Now malaria® were used to differentiate between patients with (1 no malaria, (2 recent cleared malaria, (3 persistent P. falciparum infection. Red cell distribution width (RDW, plasma levels of soluble transferrin receptor (sTfR and erythropoietin (EPO were measured as markers of erythropoiesis. Interleukin (IL 10 and tumour necrosis factor (TNFα were used as inflammation markers. Results EPO was correlated with haemoglobin, irrespective of malaria (R = -0.36, P P. falciparum infection, but not recent malaria without residual parasites, was associated with bone marrow suppression i.e., low RDW (P Conclusion In the treatment of malaria, complete eradication of parasites may prevent subsequent development of anaemia. Severely anaemic children may benefit from antimalarial treatment if antigen tests are positive, even when no parasites can be demonstrated by microscopy.

  18. Changes in Plasmodium falciparum gametocytaemia in children with chloroquine-sensitive asexual infections

    Directory of Open Access Journals (Sweden)

    Sowunmi A.

    2003-12-01

    Full Text Available A non-compartmental pharmacokinetic model was used to describe the changes in gametocytaemia in nine children with chloroquine-sensitive Plasmodium falciparum malaria in whom asexual parasitaemia cleared within 72 h of chloroquine treatment. Peak gametocytaemia was 74 ± 19.9 (se, range 24-198, géométrie mean 58 sf (sexual forms/ul. Time to peak gametocytaemia was 43.2 ± 14.4, range 0-120 h. Following peak gametocytaemia, gametocytes persisted in blood for a period of 168-504 h. The décline from peak gametocytaemia was exponential with a half-life of gametocytaemia of 43.2 ± 20.4, range 1 3.1-206 h. The mean pre-treatment sex ratio was male-biased and remained so til! complete elimination of gametocytaemia. Peak microgametocytaemia, area under the curve of microgametocytaemia versus time, and the half-life of microgametocytaemia were significantly higher than those of macrogametocytaemia. The volume of blood completely cleared of macrogametocytaemia per unit time was significantly higher than that of microgametocytaemia. Macrogametocytes are cleared from the circulation faster than microgametocytes but chloroquine treatment of chloroquine-sensitive infections has little or no significant effect on gametocyte sex ratios in this group of children.

  19. Hemoglobin S and C affect protein export in Plasmodium falciparum-infected erythrocytes

    Directory of Open Access Journals (Sweden)

    Nicole Kilian

    2015-02-01

    Full Text Available Malaria is a potentially deadly disease. However, not every infected person develops severe symptoms. Some people are protected by naturally occurring mechanisms that frequently involve inheritable modifications in their hemoglobin. The best studied protective hemoglobins are the sickle cell hemoglobin (HbS and hemoglobin C (HbC which both result from a single amino acid substitution in β-globin: glutamic acid at position 6 is replaced by valine or lysine, respectively. How these hemoglobinopathies protect from severe malaria is only partly understood. Models currently proposed in the literature include reduced disease-mediating cytoadherence of parasitized hemoglobinopathic erythrocytes, impaired intraerythrocytic development of the parasite, dampened inflammatory responses, or a combination thereof. Using a conditional protein export system and tightly synchronized Plasmodium falciparum cultures, we now show that export of parasite-encoded proteins across the parasitophorous vacuolar membrane is delayed, slower, and reduced in amount in hemoglobinopathic erythrocytes as compared to parasitized wild type red blood cells. Impaired protein export affects proteins targeted to the host cell cytoplasm, Maurer's clefts, and the host cell plasma membrane. Impaired protein export into the host cell compartment provides a mechanistic explanation for the reduced cytoadherence phenotype associated with parasitized hemoglobinopathic erythrocytes.

  20. Quantitative Imaging of Human Red Blood Cells Infected with Plasmodium falciparum

    Science.gov (United States)

    Esposito, Alessandro; Choimet, Jean-Baptiste; Skepper, Jeremy N.; Mauritz, Jakob M.A.; Lew, Virgilio L.; Kaminski, Clemens F.; Tiffert, Teresa

    2010-01-01

    During its 48 h asexual reproduction cycle, the malaria parasite Plasmodium falciparum ingests and digests hemoglobin in excess of its metabolic requirements and causes major changes in the homeostasis of the host red blood cell (RBC). A numerical model suggested that this puzzling excess consumption of hemoglobin is necessary for the parasite to reduce the colloidosmotic pressure within the host RBC, thus preventing lysis before completion of its reproduction cycle. However, the validity of the colloidosmotic hypothesis appeared to be compromised by initial conflicts between model volume predictions and experimental observations. Here, we investigated volume and membrane area changes in infected RBCs (IRBCs) using fluorescence confocal microscopy on calcein-loaded RBCs. Substantial effort was devoted to developing and testing a new threshold-independent algorithm for the precise estimation of cell volumes and surface areas to overcome the shortfalls of traditional methods. We confirm that the volume of IRBCs remains almost constant during parasite maturation, suggesting that the reported increase in IRBCs' osmotic fragility results from a reduction in surface area and increased lytic propensity on volume expansion. These results support the general validity of the colloidosmotic hypothesis, settle the IRBC volume debate, and help to constrain the range of parameter values in the numerical model. PMID:20682274

  1. Population Genetics of GYPB and Association Study between GYPB*S/s Polymorphism and Susceptibility to P. falciparum Infection in the Brazilian Amazon

    Science.gov (United States)

    Amaral, Daphne R. T.; Costa, Daiane C.; Furlani, Natália G.; Zuccherato, Luciana W.; Machado, Moara; Reid, Marion E.; Zalis, Mariano G.; Rossit, Andréa R.; Santos, Sidney E. B.; Machado, Ricardo L.; Lustigman, Sara

    2011-01-01

    Background Merozoites of Plasmodium falciparum invade through several pathways using different RBC receptors. Field isolates appear to use a greater variability of these receptors than laboratory isolates. Brazilian field isolates were shown to mostly utilize glycophorin A-independent invasion pathways via glycophorin B (GPB) and/or other receptors. The Brazilian population exhibits extensive polymorphism in blood group antigens, however, no studies have been done to relate the prevalence of the antigens that function as receptors for P. falciparum and the ability of the parasite to invade. Our study aimed to establish whether variation in the GYPB*S/s alleles influences susceptibility to infection with P. falciparum in the admixed population of Brazil. Methods Two groups of Brazilian Amazonians from Porto Velho were studied: P. falciparum infected individuals (cases); and uninfected individuals who were born and/or have lived in the same endemic region for over ten years, were exposed to infection but have not had malaria over the study period (controls). The GPB Ss phenotype and GYPB*S/s alleles were determined by standard methods. Sixty two Ancestry Informative Markers were genotyped on each individual to estimate admixture and control its potential effect on the association between frequency of GYPB*S and malaria infection. Results GYPB*S is associated with host susceptibility to infection with P. falciparum; GYPB*S/GYPB*S and GYPB*S/GYPB*s were significantly more prevalent in the in the P. falciparum infected individuals than in the controls (69.87% vs. 49.75%; P<0.02). Moreover, population genetics tests applied on the GYPB exon sequencing data suggest that natural selection shaped the observed pattern of nucleotide diversity. Conclusion Epidemiological and evolutionary approaches suggest an important role for the GPB receptor in RBC invasion by P. falciparum in Brazilian Amazons. Moreover, an increased susceptibility to infection by this parasite is

  2. Population genetics of GYPB and association study between GYPB*S/s polymorphism and susceptibility to P. falciparum infection in the Brazilian Amazon.

    Directory of Open Access Journals (Sweden)

    Eduardo Tarazona-Santos

    Full Text Available BACKGROUND: Merozoites of Plasmodium falciparum invade through several pathways using different RBC receptors. Field isolates appear to use a greater variability of these receptors than laboratory isolates. Brazilian field isolates were shown to mostly utilize glycophorin A-independent invasion pathways via glycophorin B (GPB and/or other receptors. The Brazilian population exhibits extensive polymorphism in blood group antigens, however, no studies have been done to relate the prevalence of the antigens that function as receptors for P. falciparum and the ability of the parasite to invade. Our study aimed to establish whether variation in the GYPB*S/s alleles influences susceptibility to infection with P. falciparum in the admixed population of Brazil. METHODS: Two groups of Brazilian Amazonians from Porto Velho were studied: P. falciparum infected individuals (cases; and uninfected individuals who were born and/or have lived in the same endemic region for over ten years, were exposed to infection but have not had malaria over the study period (controls. The GPB Ss phenotype and GYPB*S/s alleles were determined by standard methods. Sixty two Ancestry Informative Markers were genotyped on each individual to estimate admixture and control its potential effect on the association between frequency of GYPB*S and malaria infection. RESULTS: GYPB*S is associated with host susceptibility to infection with P. falciparum; GYPB*S/GYPB*S and GYPB*S/GYPB*s were significantly more prevalent in the in the P. falciparum infected individuals than in the controls (69.87% vs. 49.75%; P<0.02. Moreover, population genetics tests applied on the GYPB exon sequencing data suggest that natural selection shaped the observed pattern of nucleotide diversity. CONCLUSION: Epidemiological and evolutionary approaches suggest an important role for the GPB receptor in RBC invasion by P. falciparum in Brazilian Amazons. Moreover, an increased susceptibility to infection by this

  3. Anti-malarial activity of leaf-extract of hydrangea macrophylla, a common Japanese plant.

    Directory of Open Access Journals (Sweden)

    Kamei K

    2000-10-01

    Full Text Available To find a new anti-malarial medicine derived from natural resources, we examined the leaves of 13 common Japanese plants in vitro. Among them, a leaf-extract of Hydrangea macrophylla, a common Japanese flower, inhibited the parasitic growth of Plasmodium falciparum. The IC50 of Hydrangea macrophylla leaf extract to Plasmodium falciparum was 0.18 microg/ml. The IC50 to NIH 3T3-3 cells, from a normal mouse cell line, was 7.2 microg/ml. Thus, selective toxicity was 40. For the in vivo test, we inoculated Plasmodium berghei, a rodent malaria parasite, to ddY mice and administered the leaf-extract of Hydrangea macrophylla (3.6 mg/0.2 ml orally 3 times a day for 3 days. Malaria parasites did not appear in the blood of in the treated mice, but they did appear in the control group on day 3 or 4 after inoculation with the parasites. When leaf extract was administered to 5 mice 2 times a day for 3 days, malaria parasites did not appear in 4 of the mice but did appear in 1 mouse. In addition, the leaf-extract was administered orally 3 times a day for 3 days to Plasmodium berghei infected mice with a parasitemia of 2.7%. In the latter group, malaria parasites disappeared on day 3 after initiating the treatment, but they appeared again after day 5 or 6. Although we could not cure the mice entirely, we confirmed that the Hydrangea macrophylla leaf extract did contain an anti-malarial substance that can be administered orally.

  4. Predicting mosquito infection from Plasmodium falciparum gametocyte density and estimating the reservoir of infection

    NARCIS (Netherlands)

    Churcher, T.S.; Bousema, Jan Teun; Walker, M.; Drakeley, C.; Schneider, P.; Ouedraogo, A.L.; Basanez, M.G.

    2013-01-01

    Transmission reduction is a key component of global efforts to control and eliminate malaria; yet, it is unclear how the density of transmission stages (gametocytes) influences infection (proportion of mosquitoes infected). Human to mosquito transmission was assessed using 171 direct mosquito

  5. Genetically attenuated, P36p-deficient malarial sporozoites induce protective immunity and apoptosis of infected liver cells.

    NARCIS (Netherlands)

    Dijk, M.R. van; Douradinha, B.; Franke-Fayard, B.; Heussler, V.; Dooren, M.W. van; Schaijk, B.C.L. van; Gemert, G.J.A. van; Sauerwein, R.W.; Mota, M.M.; Waters, A.P.; Janse, C.J.

    2005-01-01

    Immunization with Plasmodium sporozoites that have been attenuated by gamma-irradiation or specific genetic modification can induce protective immunity against subsequent malaria infection. The mechanism of protection is only known for radiation-attenuated sporozoites, involving cell-mediated and hu

  6. Intravenous ferric carboxymaltose accelerates erythropoietic recovery from experimental malarial anemia

    DEFF Research Database (Denmark)

    Maretty, Lasse; Sharp, Rebecca Emilie; Andersson, Mikael

    2012-01-01

    Iron restriction has been proposed as a cause of erythropoietic suppression in malarial anemia; however, the role of iron in malaria remains controversial, because it may increase parasitemia. To investigate the role of iron-restricted erythropoiesis, A/J mice were infected with Plasmodium chabaudi...... use of iron therapy in malaria and show the need for trials of intravenous ferric carboxymaltose as an adjunctive treatment for severe malarial anemia....

  7. Plasmodium falciparum var genes expressed in children with severe malaria encode CIDRα1 domains

    DEFF Research Database (Denmark)

    Jespersen, Jakob S.; Wang, Christian W.; Mkumbaye, Sixbert I.;

    2016-01-01

    Most severe Plasmodium falciparum infections are experienced by young children. Severe symptoms are precipitated by vascular sequestration of parasites expressing a particular subset of the polymorphic P. falciparum erythrocyte membrane protein 1 (PfEMP1) adhesion molecules. Parasites binding human...... endothelial protein C receptor (EPCR) through the CIDRα1 domain of certain PfEMP1 were recently associated with severe malaria in children. However, it has remained unclear to which extend the EPCR-binding CIDRα1 domains epitomize PfEMP1 expressed in severe malaria. Here, we characterized the near full......-length transcripts dominating the var transcriptome in children with severe malaria and found that the only common feature of the encoded PfEMP1 was CIDRα1 domains. Such genes were highly and dominantly expressed in both children with severe malarial anaemia and cerebral malaria. These observations support...

  8. Sulfadoxine-pyrimethamine impairs Plasmodium falciparum gametocyte infectivity and Anopheles mosquito survival.

    Science.gov (United States)

    Kone, Aminatou; van de Vegte-Bolmer, Marga; Siebelink-Stoter, Rianne; van Gemert, Geert-Jan; Dara, Antoine; Niangaly, Hamidou; Luty, Adrian; Doumbo, Ogobara K; Sauerwein, Robert; Djimde, Abdoulaye A

    2010-08-15

    Sulfadoxine-pyrimethamine (SP) is currently the drug of choice for intermittent preventive treatment of Plasmodium falciparum both in pregnancy and infancy. A prolonged parasite clearance time conferred by dhfr and dhps mutations is believed to be responsible for increased gametocyte prevalence in SP treated individuals. However, using a direct feeding assay in Mali, we showed that gametocytes present in peripheral venous blood post-SP treatment had reduced infectivity for Anopheles gambiae sensu stricto (ss) mosquitoes. We investigated the potential mechanisms involved in the dhfr and dhps quintuple mutant NF-135 and the single dhps 437 mutant NF-54. Concentrations of sulfadoxine (S) and pyrimethamine (P) equivalent to the serum levels of the respective drugs on day 3 (S=61 microg/ml, P=154.7 ng/ml) day 7 (S=33.8 microg/ml, P=66.6 ng/ml) and day 14 (S=14.2 microg/ml, P=15.7 ng/ml) post-SP treatment were used to study the effect on gametocytogenesis, gametocyte maturation and infectivity to Anopheles stephensi mosquitoes fed through an artificial membrane. The drugs readily induced gametocytogenesis in the mutant NF-135 strain but effectively killed the wild-type NF-54. However, both drugs impaired gametocyte maturation yielding odd-shaped non-exflagellating mature gametocytes. The concomitant ingestion of both S and P together with gametocytemic blood-meal significantly reduced the prevalence of oocyst positivity as well as oocyst density when compared to controls (Pmosquito survival by up to 65% (Pmosquito survival. Copyright 2010. Published by Elsevier Ltd.

  9. The Plasmodium falciparum STEVOR multigene family mediates antigenic variation of the infected erythrocyte.

    Directory of Open Access Journals (Sweden)

    Makhtar Niang

    2009-02-01

    Full Text Available Modifications of the Plasmodium falciparum-infected red blood cell (iRBC surface have been linked to parasite-associated pathology. Such modifications enable the parasite to establish long-lasting chronic infection by evading antibody mediate immune recognition and splenic clearance. With the exception of the well-demonstrated roles of var-encoded PfEMP1 in virulence and immune evasion, the biological significance of other variant surface antigens (rif and stevor is largely unknown. While PfEMP1 and RIFIN have been located on the iRBC surface, recent studies have located STEVOR at the iRBC membrane where it may be exposed on the erythrocyte surface. To investigate the role of STEVOR in more detail, we have developed antibodies against two putative STEVOR proteins and used a combination of indirect immunofluorescence assays (IFA, live IFA, flow cytometry, as well as agglutination assays, which enable us to demonstrate that STEVOR is clonally variant at the surface of schizont stage parasites. Crucially, expression of different STEVOR on the surface of the iRBC changes the antigenic property of the parasite. Taken together, our data for the first time demonstrate that STEVOR plays a role in creating antigenic diversity of schizont stage parasites, thereby adding additional complexity to the immunogenic properties of the iRBC. Furthermore, it clearly demonstrates that to obtain a complete understanding of how parasite-induced pathology is linked to variation on the surface of the iRBC, focusing the interactions of multiple multigene families needs to be considered.

  10. Successful human infection with P. falciparum using three aseptic Anopheles stephensi mosquitoes: a new model for controlled human malaria infection.

    Directory of Open Access Journals (Sweden)

    Matthew B Laurens

    Full Text Available Controlled human malaria infection (CHMI is a powerful method for assessing the efficacy of anti-malaria vaccines and drugs targeting pre-erythrocytic and erythrocytic stages of the parasite. CHMI has heretofore required the bites of 5 Plasmodium falciparum (Pf sporozoite (SPZ-infected mosquitoes to reliably induce Pf malaria. We reported that CHMI using the bites of 3 PfSPZ-infected mosquitoes reared aseptically in compliance with current good manufacturing practices (cGMP was successful in 6 participants. Here, we report results from a subsequent CHMI study using 3 PfSPZ-infected mosquitoes reared aseptically to validate the initial clinical trial. We also compare results of safety, tolerability, and transmission dynamics in participants undergoing CHMI using 3 PfSPZ-infected mosquitoes reared aseptically to published studies of CHMI using 5 mosquitoes. Nineteen adults aged 18-40 years were bitten by 3 Anopheles stephensi mosquitoes infected with the chloroquine-sensitive NF54 strain of Pf. All 19 participants developed malaria (100%; 12 of 19 (63% on Day 11. The mean pre-patent period was 258.3 hours (range 210.5-333.8. The geometric mean parasitemia at first diagnosis by microscopy was 9.5 parasites/µL (range 2-44. Quantitative polymerase chain reaction (qPCR detected parasites an average of 79.8 hours (range 43.8-116.7 before microscopy. The mosquitoes had a geometric mean of 37,894 PfSPZ/mosquito (range 3,500-152,200. Exposure to the bites of 3 aseptically-raised, PfSPZ-infected mosquitoes is a safe, effective procedure for CHMI in malaria-naïve adults. The aseptic model should be considered as a new standard for CHMI trials in non-endemic areas. Microscopy is the gold standard used for the diagnosis of Pf malaria after CHMI, but qPCR identifies parasites earlier. If qPCR continues to be shown to be highly specific, and can be made to be practical, rapid, and standardized, it should be considered as an alternative for diagnosis

  11. Demonstration of specific binding of heparin to Plasmodium falciparum-infected vs. non-infected red blood cells by single-molecule force spectroscopy

    Science.gov (United States)

    Valle-Delgado, Juan José; Urbán, Patricia; Fernàndez-Busquets, Xavier

    2013-04-01

    Glycosaminoglycans (GAGs) play an important role in the sequestration of Plasmodium falciparum-infected red blood cells (pRBCs) in the microvascular endothelium of different tissues, as well as in the formation of small clusters (rosettes) between infected and non-infected red blood cells (RBCs). Both sequestration and rosetting have been recognized as characteristic events in severe malaria. Here we have used heparin and pRBCs infected by the 3D7 strain of P. falciparum as a model to study GAG-pRBC interactions. Fluorescence microscopy and fluorescence-assisted cell sorting assays have shown that exogenously added heparin has binding specificity for pRBCs (preferentially for those infected with late forms of the parasite) vs. RBCs. Heparin-pRBC adhesion has been probed by single-molecule force spectroscopy, obtaining an average binding force ranging between 28 and 46 pN depending on the loading rate. No significant binding of heparin to non-infected RBCs has been observed in control experiments. This work represents the first approach to quantitatively evaluate GAG-pRBC molecular interactions at the individual molecule level.Glycosaminoglycans (GAGs) play an important role in the sequestration of Plasmodium falciparum-infected red blood cells (pRBCs) in the microvascular endothelium of different tissues, as well as in the formation of small clusters (rosettes) between infected and non-infected red blood cells (RBCs). Both sequestration and rosetting have been recognized as characteristic events in severe malaria. Here we have used heparin and pRBCs infected by the 3D7 strain of P. falciparum as a model to study GAG-pRBC interactions. Fluorescence microscopy and fluorescence-assisted cell sorting assays have shown that exogenously added heparin has binding specificity for pRBCs (preferentially for those infected with late forms of the parasite) vs. RBCs. Heparin-pRBC adhesion has been probed by single-molecule force spectroscopy, obtaining an average binding force

  12. Impact of child malnutrition on the specific anti-Plasmodium falciparum antibody response

    Directory of Open Access Journals (Sweden)

    Fillol Florie

    2009-06-01

    Full Text Available Abstract Background In sub-Saharan Africa, preschool children represent the population most vulnerable to malaria and malnutrition. It is widely recognized that malnutrition compromises the immune function, resulting in higher risk of infection. However, very few studies have investigated the relationship between malaria, malnutrition and specific immunity. In the present study, the anti-Plasmodium falciparum IgG antibody (Ab response was evaluated in children according to the type of malnutrition. Methods Anthropometric assessment and blood sample collection were carried out during a cross-sectional survey including rural Senegalese preschool children. This cross-sectional survey was conducted in July 2003 at the onset of the rainy season. Malnutrition was defined as stunting (height-for-age P. falciparum whole extracts (schizont antigens was assessed by ELISA in sera of the included children. Results Both the prevalence of anti-malarial immune responders and specific IgG Ab levels were significantly lower in malnourished children than in controls. Depending on the type of malnutrition, wasted children and stunted children presented a lower specific IgG Ab response than their respective controls, but this difference was significant only in stunted children (P = 0.026. This down-regulation of the specific Ab response seemed to be explained by severely stunted children (HAZ ≤ -2.5 compared to their controls (P = 0.03, while no significant difference was observed in mildly stunted children (-2.5 P. falciparum Ab response appeared to be independent of the intensity of infection. Conclusion Child malnutrition, and particularly stunting, may down-regulate the anti-P. falciparum Ab response, both in terms of prevalence of immune responders and specific IgG Ab levels. This study provides further evidence for the influence of malnutrition on the specific anti-malarial immune response and points to the importance of taking into account child

  13. Recruitment of Factor H as a Novel Complement Evasion Strategy for Blood-Stage Plasmodium falciparum Infection.

    Science.gov (United States)

    Kennedy, Alexander T; Schmidt, Christoph Q; Thompson, Jennifer K; Weiss, Greta E; Taechalertpaisarn, Tana; Gilson, Paul R; Barlow, Paul N; Crabb, Brendan S; Cowman, Alan F; Tham, Wai-Hong

    2016-02-01

    The human complement system is the frontline defense mechanism against invading pathogens. The coexistence of humans and microbes throughout evolution has produced ingenious molecular mechanisms by which microorganisms escape complement attack. A common evasion strategy used by diverse pathogens is the hijacking of soluble human complement regulators to their surfaces to afford protection from complement activation. One such host regulator is factor H (FH), which acts as a negative regulator of complement to protect host tissues from aberrant complement activation. In this report, we show that Plasmodium falciparum merozoites, the invasive form of the malaria parasites, actively recruit FH and its alternative spliced form FH-like protein 1 when exposed to human serum. We have mapped the binding site in FH that recognizes merozoites and identified Pf92, a member of the six-cysteine family of Plasmodium surface proteins, as its direct interaction partner. When bound to merozoites, FH retains cofactor activity, a key function that allows it to downregulate the alternative pathway of complement. In P. falciparum parasites that lack Pf92, we observed changes in the pattern of C3b cleavage that are consistent with decreased regulation of complement activation. These results also show that recruitment of FH affords P. falciparum merozoites protection from complement-mediated lysis. Our study provides new insights on mechanisms of immune evasion of malaria parasites and highlights the important function of surface coat proteins in the interplay between complement regulation and successful infection of the host.

  14. Differential evolution of anti-VAR2CSA- IgG3 in primigravidae and multigravidae pregnant women infected by Plasmodium falciparum

    DEFF Research Database (Denmark)

    Guitard, Juliette; Cottrell, Gilles; Magnouha, Nellie Moulopo

    2008-01-01

    BACKGROUND: Pregnant women develop protective anti-VSA IgG1 and IgG3 when infected by Plasmodium falciparum. The major target of IgG from serum of infected pregnant women is VAR2CSA. METHODS: In this study, ELISA was used to compare the level of VAR2CSA DBL5epsilon- specific IgG subclasses...

  15. Cells and mediators of inflammation (C-reactive protein, nitric oxide, platelets and neutrophils) in the acute and convalescent phases of uncomplicated Plasmodium vivax and Plasmodium falciparum infection.

    Science.gov (United States)

    Lima-Junior, Josué da Costa; Rodrigues-da-Silva, Rodrigo Nunes; Pereira, Virgínia Araújo; Storer, Fábio Luiz; Perce-da-Silva, Daiana de Souza; Fabrino, Daniela Leite; Santos, Fátima; Banic, Dalma Maria; Oliveira-Ferreira, Joseli de

    2012-12-01

    The haematological changes and release of soluble mediators, particularly C-reactive protein (CRP) and nitric oxide (NO), during uncomplicated malaria have not been well studied, especially in Brazilian areas in which the disease is endemic. Therefore, the present study examined these factors in acute (day 0) and convalescent phase (day 15) patients infected with Plasmodium falciparum and Plasmodium vivax malaria in the Brazilian Amazon. Haematologic parameters were measured using automated cell counting, CRP levels were measured with ELISA and NO plasma levels were measured by the Griess reaction. Our data indicate that individuals with uncomplicated P. vivax and P. falciparum infection presented similar inflammatory profiles with respect to white blood cells, with high band cell production and a considerable degree of thrombocytopaenia during the acute phase of infection. Higher CRP levels were detected in acute P. vivax infection than in acute P. falciparum infection, while higher NO was detected in patients with acute and convalescent P. falciparum infections. Although changes in these mediators cannot predict malaria infection, the haematological aspects associated with malaria infection, especially the roles of platelets and band cells, need to be investigated further.

  16. Mechanisms of immune protection in the asexual blood stage infection by Plasmodium falciparum: analysis by in vitro and ex-vivo assays

    Directory of Open Access Journals (Sweden)

    Jurg Gysin

    1992-01-01

    Full Text Available Mechanisms of immune protection against the asexual blood stage infection by Plasmodium falciparum are reviewed. Recent studies of two independent lines of research developed at the Institute Pasteur, in humans and primate infections clearly indicate an obligatory interaction of antibodies and effector cells to express the anti-parasitic effect.

  17. Health implications of chronic hepatosplenomegaly in Kenyan school-aged children chronically exposed to malarial infections and Schistosoma mansoni

    DEFF Research Database (Denmark)

    Wilson, Shona; Vennervald, Birgitte J; Kadzo, Hilda

    2010-01-01

    Hepatosplenomegaly among school-aged children in sub-Saharan Africa is highly prevalent. Two of the more common aetiological agents of hepatosplenomegaly, namely chronic exposure to malaria and Schistosoma mansoni infection, can result in similar clinical presentation, with the liver and spleen...... investigated in a study area where children were chronically exposed to malaria throughout while S. mansoni transmission was geographically restricted. Hepatosplenomegaly was associated with increased portal vein diameters, with enlargement of the spleen rather than the liver being more closely associated...... with hepatosplenomegaly. Children who presented with hepatosplenomegaly had the lowest height-for-age Z-scores. This study shows that hepatosplenomegaly associated with chronic exposure to malaria and schistosomiasis is not a benign symptom amongst school-aged children but has potential long-term health consequences....

  18. The detergent solubility properties of a malarial (Plasmodium knowlesi) variant antigen expressed on the surface of infected erythrocytes.

    Science.gov (United States)

    Howard, R J; Barnwell, J W

    1984-01-01

    Four detergents have been compared for identification of the Plasmodium knowlesi variant antigen on infected erythrocytes by immunoprecipitation analysis. Erythrocytes infected with late trophozoite and schizont forms of cloned asexual parasites were labeled by lactoperoxidase-catalyzed radioiodination and extracted either with the anionic detergents sodium dodecyl sulfate (SDS) or cholate, the neutral detergent Triton X-100, or the zwitterion 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonate (CHAPS). After addition of Triton X-100 to SDS and cholate extracts, parallel immunoprecipitations of the four extracts were performed using rhesus monkey antisera of defined agglutinability. Identical results were obtained with clone Pk1(A+), which has 125I-variant antigens of Mr 210,000 and 190,000, and with clone Pk1(B+)1+, which has variant antigens of Mr 200,000-205,000. SDS yielded maximal levels of immunoprecipitated 125I-variant antigens. Variant-specific immunoprecipitation was detected in some experiments with Triton X-100 and cholic acid but with significantly lower recovery than with SDS. CHAPS extraction did not yield the variant antigens on immunoprecipitation. The variant antigens could also be identified in Triton X-100-insoluble material by subsequent extraction with SDS, indicating that failure to recover these proteins in the Triton X-100-soluble fraction is due to failure of this detergent to extract the variant antigens rather than to degradation during extraction. We suggest that the 125I-variant antigens either have a structure that renders them intrinsically insoluble in Triton X-100, cholate, or CHAPS, or that they are associated in some way with host cell membrane components that also resist solubilization by these detergents.

  19. In silico and in vivo anti-malarial studies of 18β glycyrrhetinic acid from Glycyrrhiza glabra.

    Science.gov (United States)

    Kalani, Komal; Agarwal, Jyoti; Alam, Sarfaraz; Khan, Feroz; Pal, Anirban; Srivastava, Santosh Kumar

    2013-01-01

    Malaria is one of the most prevailing fatal diseases causing between 1.2 and 2.7 million deaths all over the world each year. Further, development of resistance against the frontline anti-malarial drugs has created an alarming situation, which requires intensive drug discovery to develop new, more effective, affordable and accessible anti-malarial agents possessing novel modes of action. Over the past few years triterpenoids from higher plants have shown a wide range of anti-malarial activities. As a part of our drug discovery program for anti-malarial agents from Indian medicinal plants, roots of Glycyrrhizaglabra were chemically investigated, which resulted in the isolation and characterization of 18β-glycyrrhetinic acid (GA) as a major constituent. The in vitro studies against P. falciparum showed significant (IC50 1.69 µg/ml) anti-malarial potential for GA. Similarly, the molecular docking studies showed adequate docking (LibDock) score of 71.18 for GA and 131.15 for standard anti-malarial drug chloroquine. Further, in silico pharmacokinetic and drug-likeness studies showed that GA possesses drug-like properties. Finally, in vivo evaluation showed a dose dependent anti-malarial activity ranging from 68-100% at doses of 62.5-250 mg/kg on day 8. To the best of our knowledge this is the first ever report on the anti-malarial potential of GA. Further work on optimization of the anti-malarial lead is under progress.

  20. Haemolytic anaemia in an HIV-infected patient with severe falciparum malaria after treatment with oral artemether-lumefantrine

    Directory of Open Access Journals (Sweden)

    Corpolongo Angela

    2012-03-01

    Full Text Available Abstract Intravenous (i.v. artesunate is now the recommended first-line treatment of severe falciparum malaria in adults and children by WHO guidelines. Nevertheless, several cases of haemolytic anaemia due to i.v. artesunate treatment have been reported. This paper describes the case of an HIV-infected patient with severe falciparum malaria who was diagnosed with haemolytic anaemia after treatment with oral artemether-lumefantrine. The patient presented with fever, headache, and arthromyalgia after returning from Central African Republic where he had been working. The blood examination revealed acute renal failure, thrombocytopaenia and hypoxia. Blood for malaria parasites indicated hyperparasitaemia (6% and Plasmodium falciparum infection was confirmed by nested-PCR. Severe malaria according to the laboratory WHO criteria was diagnosed. A treatment with quinine and doxycycline for the first 12 hours was initially administered, followed by arthemeter/lumefantrine (Riamet® for a further three days. At day 10, a diagnosis of severe haemolytic anaemia was made (Hb 6.9 g/dl, LDH 2071 U/l. Hereditary and autoimmune disorders and other infections were excluded through bone marrow aspiration, total body TC scan and a wide panel of molecular and serologic assays. The patient was treated by transfusion of six units of packed blood red cell. He was discharged after complete remission at day 25. At present, the patient is in a good clinical condition and there is no evidence of haemolytic anaemia recurrence. This is the first report of haemolytic anaemia probably associated with oral artemether/lumefantrine. Further research is warranted to better define the adverse events occurring during combination therapy with artemisinin derivatives.

  1. Confirmation of the protective effect of Ascaris lumbricoides on Plasmodium falciparum infection: results of a randomized trial in Madagascar.

    Science.gov (United States)

    Brutus, Laurent; Watier, Laurence; Hanitrasoamampionona, Virginie; Razanatsoarilala, Hélène; Cot, Michel

    2007-12-01

    A controlled randomized trial of anti-helminthic treatment was undertaken in 1996-1997 in a rural area of Madagascar where populations were simultaneously infected with Ascaris lumbricoides, Plasmodium falciparum, and Schistosoma mansoni. Levamisole was administered bimonthly to 107 subjects, whereas 105 were controls. Levamisole was highly effective in reducing Ascaris egg loads in the treated group (P 15 years of age. This study confirms the results of a randomized trial, which showed a negative interaction in those > 5 years of age between Ascaris and malaria parasite density in another Malagasy population, submitted to a higher malaria transmission.

  2. Plasmodium falciparum malaria associated with ABO blood ...

    African Journals Online (AJOL)

    Plasmodium falciparum malaria associated with ABO blood phenotypes and ... out to investigate the relationship between blood group types and P. falciparum ... of long lasting treated (LLT) mosquito bed nets and the prevalence of infection.

  3. The pathogenesis of Plasmodium falciparum malaria in humans: insights from splenic physiology

    Science.gov (United States)

    Safeukui, Innocent; Deplaine, Guillaume; Brousse, Valentine; Prendki, Virginie; Thellier, Marc; Turner, Gareth D.; Mercereau-Puijalon, Odile

    2011-01-01

    Clinical manifestations of Plasmodium falciparum infection are induced by the asexual stages of the parasite that develop inside red blood cells (RBCs). Because splenic microcirculatory beds filter out altered RBCs, the spleen can innately clear subpopulations of infected or uninfected RBC modified during falciparum malaria. The spleen appears more protective against severe manifestations of malaria in naïve than in immune subjects. The spleen-specific pitting function accounts for a large fraction of parasite clearance in artemisinin-treated patients. RBC loss contributes to malarial anemia, a clinical form associated with subacute progression, frequent splenomegaly, and relatively low parasitemia. Stringent splenic clearance of ring-infected RBCs and uninfected, but parasite-altered, RBCs, may altogether exacerbate anemia and reduce the risks of severe complications associated with high parasite loads, such as cerebral malaria. The age of the patient directly influences the risk of severe manifestations. We hypothesize that coevolution resulting in increased splenic clearance of P. falciparum–altered RBCs in children favors the survival of the host and, ultimately, sustained parasite transmission. This analysis of the RBC–spleen dynamic interactions during P falciparum infection reflects both data and hypotheses, and provides a framework on which a more complete immunologic understanding of malaria pathogenesis may be elaborated. PMID:20852127

  4. Temperature shift and host cell contact up-regulate sporozoite expression of Plasmodium falciparum genes involved in hepatocyte infection.

    Directory of Open Access Journals (Sweden)

    Anthony Siau

    Full Text Available Plasmodium sporozoites are deposited in the skin by Anopheles mosquitoes. They then find their way to the liver, where they specifically invade hepatocytes in which they develop to yield merozoites infective to red blood cells. Relatively little is known of the molecular interactions during these initial obligatory phases of the infection. Recent data suggested that many of the inoculated sporozoites invade hepatocytes an hour or more after the infective bite. We hypothesised that this pre-invasive period in the mammalian host prepares sporozoites for successful hepatocyte infection. Therefore, the genes whose expression becomes modified prior to hepatocyte invasion would be those likely to code for proteins implicated in the subsequent events of invasion and development. We have used P. falciparum sporozoites and their natural host cells, primary human hepatocytes, in in vitro co-culture system as a model for the pre-invasive period. We first established that under co-culture conditions, sporozoites maintain infectivity for an hour or more, in contrast to a drastic loss in infectivity when hepatocytes were not included. Thus, a differential transcriptome of salivary gland sporozoites versus sporozoites co-cultured with hepatocytes was established using a pan-genomic P. falciparum microarray. The expression of 532 genes was found to have been up-regulated following co-culture. A fifth of these genes had no orthologues in the genomes of Plasmodium species used in rodent models of malaria. Quantitative RT-PCR analysis of a selection of 21 genes confirmed the reliability of the microarray data. Time-course analysis further indicated two patterns of up-regulation following sporozoite co-culture, one transient and the other sustained, suggesting roles in hepatocyte invasion and liver stage development, respectively. This was supported by functional studies of four hitherto uncharacterized proteins of which two were shown to be sporozoite surface

  5. Comparative haematological parameters of HbAA and HbAS genotype children infected with Plasmodium falciparum malaria in Yemen.

    Science.gov (United States)

    Albiti, Anisa H; Nsiah, Kwabena

    2014-04-01

    Sickle haemoglobin (HbS) is known to offer considerable protection against falciparum malaria. However, the mechanism of protection is not yet completely understood. In this study, we investigate how the presence of the sickle cell trait affects the haematological profile of AS persons with malaria, in comparison with similarly infected persons with HbAA. This study is based on the hypothesis that the sickle cell trait plays a protective role against malaria. Children from an endemic malaria transmission area in Yemen were enrolled in this study. Hematological parameters were estimated using manual methods, the percentage of parasite density on stained thin smear was calculated, haemoglobin genotypes were determined on paper electrophoresis, ferritin was measured using enzyme-linked immunosorbent assay, serum iron and TIBC were assayed using spectrophotometer, transferrin saturation index was calculated by dividing serum iron by TIBC and expressing the result as a percentage. Haematological parameters were compared in HbAA- and HbAS-infected children. Falciparum malaria parasitaemia was confirmed in the blood smears of 62 children, 44 (55.7%) of AA and 18 (37.5%) AS, so there was higher prevalence in HbAA children (P = 0.047). Parasite density was lower in HbAS- than HbAA-infected children (P = 0.003). Anaemia was prominent in malaria-infected children, with high proportions of moderate and severe forms in HbAA (P = 0.001). The mean levels of haemoglobin, packed cell volume, reticulocyte count, platelets count, lymphocytes, eosinophils, and serum iron were significantly lower while total leukocytes, immature granulocytes, monocytes, erythrocyte sedimentation rate, transferrin saturation, and serum ferritin were significantly higher in HbAA-infected children than HbAS-infected children. Infection with Plasmodium falciparum malaria caused more significant haematological alterations of HbAA children than HbAS. This study supports the observation that sickle cell trait

  6. The SLC4A1 gene is under differential selective pressure in primates infected by Plasmodium falciparum and related parasites.

    Science.gov (United States)

    Steiper, Michael E; Walsh, Fiona; Zichello, Julia M

    2012-07-01

    Malaria is a disease caused by Plasmodium parasites and is responsible for high mortality in humans. This disease is caused by four different species of Plasmodium though the main source of mortality is Plasmodium falciparum. Humans have a number of genetic adaptations that act to combat Plasmodium. One adaptation is a deletion in the SLC4A1 gene that leads to Southeast Asian ovalocytosis (SAO). There is evidence that SAO erythrocytes are resistant to multiple Plasmodium species. Here we analyze SLC4A1 in 23 primates and mammals to test for differential selective pressures among different primate lineages. Because primates are infected with both human Plasmodium parasites and their relatives, this analysis can be used to test which human Plasmodium parasite is the likely target of SAO. A significantly different pattern of molecular evolution was found in humans and African apes, species that are infected by P. falciparum and its relatives. This effect was restricted to the cytosolic domain of the SLC4A1 gene. The evidence is consistent with a different selective regime operating on this gene domain in humans and African apes, when compared to other primates and mammals. Alternatively, this pattern is consistent with a relaxation of selection or weak adaptive evolution operating on a small number of amino acids. The adaptive interpretation of the results is consistent with the SAO allele of the SLC4A1 gene interacting with P. falciparum in humans, rather than other Plasmodium parasites. However, additional investigation of the relationship between SLC4A1 variants and Plasmodium in humans and African apes is required to test whether the different selective regime in humans and African apes is due to natural selection or relaxed constraint. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. The spatial-temporal clustering of Plasmodium falciparum infection over eleven years in Gezira State, The Sudan

    Directory of Open Access Journals (Sweden)

    Snow Robert W

    2010-06-01

    Full Text Available Abstract Background Malaria infection and disease exhibit microgeographic heterogeneity which if predictable could have implications for designing small-area intervention. Here, the space-time clustering of Plasmodium falciparum infections using data from repeat cross-sectional surveys in Gezira State, a low transmission area in northern Sudan, is investigated. Methods Data from cross-sectional surveys undertaken in January each year from 1999-2009 in 88 villages in the Gezira state were assembled. During each survey, about a 100 children between the ages two to ten years were sampled to examine the presence of P. falciparum parasites. In 2009, all the villages were mapped using global positioning systems. Cluster level data were analysed for spatial-only and space-time clustering using the Bernoulli model and the significance of clusters were tested using the Kulldorff scan statistic. Results Over the study period, 96,022 malaria slide examinations were undertaken and the P. falciparum prevalence was 8.6% in 1999 and by 2009 this had reduced to 1.6%. The cluster analysis showed the presence of one significant spatial-only cluster in each survey year and one significant space-time cluster over the whole study period. The primary spatial-only clusters in 10/11 years were either contained within or overlapped with the primary space-time cluster. Conclusion The results of the study confirm the generally low malaria transmission in the state of Gezira and the presence of spatial and space-time clusters concentrated around a specific area in the south of the state. Improved surveillance data that allows for the analysis of seasonality, age and other risk factors need to be collected to design effective small area interventions as Gezira state targets malaria elimination.

  8. Sulfadoxine-pyrimethamine impairs Plasmodium falciparum gametocyte infectivity and Anopheles mosquito survival.

    NARCIS (Netherlands)

    Kone, A.; Vegte-Bolmer, M.G. van de; Siebelink-Stoter, R.; Gemert, G.J.A. van; Dara, A.; Niangaly, H.; Luty, A.J.F.; Doumbo, O.K.; Sauerwein, R.W.; Djimde, A.A.

    2010-01-01

    Sulfadoxine-pyrimethamine (SP) is currently the drug of choice for intermittent preventive treatment of Plasmodium falciparum both in pregnancy and infancy. A prolonged parasite clearance time conferred by dhfr and dhps mutations is believed to be responsible for increased gametocyte prevalence in

  9. Observations on the periodicity of Plasmodium falciparum gametocytes in natural human infections

    DEFF Research Database (Denmark)

    Magesa, S M; Mdira, Y K; Akida, J A

    2000-01-01

    The circadian periodicity of Plasmodium falciparum gametocytes in peripheral blood was analysed in a group of children from an holoendemic community of north-eastern Tanzania. No periodicity was observed with asexual stage parasites. Gametocytes were shown to display a diurnal subperiodic pattern...

  10. Non-falciparum malaria infections in pregnant women in West Africa

    DEFF Research Database (Denmark)

    Williams, John; Njie, Fanta; Cairns, Matthew;

    2016-01-01

    and treatment of malaria in pregnancy (ISTp) versus intermittent preventive treatment (IPTp) conducted in Burkina Faso, The Gambia, Ghana and Mali. DNA was extracted from blood spots and tested for P. falciparum, Plasmodium vivax, Plasmodium malariae and Plasmodium ovale using a nested PCR test. Risk factors...

  11. Nonimmune immunoglobulin binding and multiple adhesion characterize Plasmodium falciparum-infected erythrocytes of placental origin

    DEFF Research Database (Denmark)

    Rasti, Niloofar; Namusoke, Fatuma; Chêne, Arnaud;

    2006-01-01

    . A P. falciparum erythrocyte membrane protein 1 variant, VAR2CSA, and the placental receptor chondroitin sulfate A (CSA) are currently the focus of PAM research. A role for immunoglobulins (IgG and IgM) from normal human serum and hyaluronic acid as additional receptors in placental sequestration have...

  12. Distinct patterns of blood-stage parasite antigens detected by plasma IgG subclasses from individuals with different level of exposure to Plasmodium falciparum infections

    DEFF Research Database (Denmark)

    Olesen, Cathrine Holm; Brahimi, Karima; Vandahl, Brian;

    2010-01-01

    ABSTRACT: BACKGROUND: In endemic regions naturally acquired immunity against Plasmodium falciparum develops as a function of age and exposure to parasite infections and is known to be mediated by IgG. The targets of protective antibodies remain to be fully defined. Several immunoepidemiological...... then gradually develop into protective response dominated by cytophilic IgG1 and IgG3 antibodies. METHODS: Naturally occurring IgG antibodies against P. falciparum blood-stage antigens were analysed from plasma samples collected from four groups of individuals differing in age and level of exposure to P....... falciparum infections. Western Blot profiling of blood-stage parasite antigens displaying reactivity with individual plasma samples in terms of their subclass specificities was conducted. Parasite antigens detected by IgG were grouped based on their apparent molecular sizes resolved by SDS-PAGE as high...

  13. Two-Color Flow Cytometric Analysis of Intraerythrocytic Malaria Parasite DNA and Surface Membrane-Associated Antigen in Erythrocytes Infected with Plasmodium falciparum

    Science.gov (United States)

    1993-01-01

    Infected erythrocytes were fixea with 0.025% glutaraidehyde, followed by treatment with 1%saponiu to gain acceiss to intramembranous components and...Antigen in Erythrocytes Infected With Plasmodium falciparum 1 Kovit Pattanapanyasat,2 Rachanee Udomsangpetch, and H. Kyle Webster The Thalassemia Center...glutaral- izonts. Simultaneous measurement of dehyde followed by treatment with 1% parasite DNA and antigen in the infected saponin to gain access to

  14. Plasmodium falciparum var genes expressed in children with severe malaria encode CIDRα1 domains

    DEFF Research Database (Denmark)

    Jespersen, Jakob S.; Wang, Christian W.; Mkumbaye, Sixbert I.;

    2016-01-01

    Most severe Plasmodium falciparum infections are experienced by young children. Severe symptoms are precipitated by vascular sequestration of parasites expressing a particular subset of the polymorphic P. falciparum erythrocyte membrane protein 1 (PfEMP1) adhesion molecules. Parasites binding human...... endothelial protein C receptor (EPCR) through the CIDRα1 domain of certain PfEMP1 were recently associated with severe malaria in children. However, it has remained unclear to which extend the EPCR-binding CIDRα1 domains epitomize PfEMP1 expressed in severe malaria. Here, we characterized the near full......-length transcripts dominating the var transcriptome in children with severe malaria and found that the only common feature of the encoded PfEMP1 was CIDRα1 domains. Such genes were highly and dominantly expressed in both children with severe malarial anaemia and cerebral malaria. These observations support...

  15. Anti-malarial effect of semi-synthetic drug amitozyn.

    Science.gov (United States)

    Tcherniuk, Sergey O; Chesnokova, Olga; Oleinikov, Irina V; Potopalsky, Anatoly I; Oleinikov, Andrew V

    2015-10-29

    Malaria caused by Plasmodium falciparum is the most virulent form of malaria, leading to approximately a half million deaths per year. Chemotherapy continues to be a key approach in malaria prevention and treatment. Due to widespread parasite drug resistance, identification and development of new anti-malarial compounds remains an important task of malarial parasitology. The semi-synthetic drug amitozyn, obtained through alkylation of major celandine (Chelidonium majus) alkaloids with N,N'N'-triethylenethiophosphoramide (ThioTEPA), is a widely used Eastern European folk medicine for the treatment of various tumours. However, its anti-malarial effect has never been studied. The anti-malarial effects of amitozyn alone and in combination with chloroquine, pyrimethamine and artemisinin on the blood stages of P. falciparum were analysed. The cytostatic effects of amitozyn on parasites and various cancerous and non-cancerous human cells were compared and their toxic effects on unparasitized human red blood cells were analysed. Obtained results demonstrate that amitozyn effectively inhibits the growth of blood-stage parasites with IC50 9.6 ± 2, 11.3 ± 2.8 and 10.8 ± 1.8 μg/mL using CS2, 3G8 and NF54 parasite lines, respectively. The median IC50 for 14 tested human cell lines was 33-152 μg/mL. Treatment of uninfected red blood cells with a high dose of amitozyn (500 μg/mL) did not change cell morphology, demonstrating its non-toxicity for erythrocytes. The synergistic impact of the amitozyn/chloroquine combination was observed at growth inhibition levels of 10-80 %, while demonstrating a nearly additive effect at a growth inhibition level of 90 %. The combination of amitozyn with pyrimethamine has a synergistic effect at growth inhibition levels of 10-70 % and a nearly additive effect at a growth inhibition level of 90 %. The synergistic anti-malarial effect of the amitozyn/artemisinin combination was observed at growth inhibition levels of 10-40 % and a nearly

  16. Characterization of recombinant malarial RecQ DNA helicase.

    Science.gov (United States)

    Suntornthiticharoen, Pattra; Srila, Witsanu; Chavalitshewinkoon-Petmitr, Porntip; Limudomporn, Paviga; Yamabhai, Montarop

    2014-08-01

    RecQ DNA gene of multi-drug resistant Plasmodium falciparum K1 (PfRecQ1) was cloned, and the recombinant C-terminal-decahistidine-tagged PfRecQ1 was expressed in Escherichia coli. The purified enzyme could efficiently unwind partial duplex DNA substrate in a 3' to 5' direction. The malarial RecQ1 could not unwind substrates with both 5' and 3' overhangs, those with a 5' overhang, or blunt-ended DNA duplexes. Unwinding of DNA helicase activity was driven by the hydrolysis of ATP. The drug inhibitory effects of six compounds indicated that only doxorubicin and daunorubicin could inhibit the unwinding activity.

  17. Modulation of Whole-Cell Currents in Plasmodium Falciparum-Infected Human Red Blood Cells by Holding Potential and Serum

    Science.gov (United States)

    Staines, Henry M; Powell, Trevor; Clive Ellory, J; Egée, Stéphane; Lapaix, Franck; Decherf, Gaëtan; Thomas, Serge L Y; Duranton, Christophe; Lang, Florian; Huber, Stephan M

    2003-01-01

    Recent electrophysiological studies have identified novel ion channel activity in the host plasma membrane of Plasmodium falciparum-infected human red blood cells (RBCs). However, conflicting data have been published with regard to the characteristics of induced channel activity measured in the whole-cell configuration of the patch-clamp technique. In an effort to establish the reasons for these discrepancies, we demonstrate here two factors that have been found to modulate whole-cell recordings in malaria-infected RBCs. Firstly, negative holding potentials reduced inward currents (i.e. at negative potentials), although this result was highly complex. Secondly, the addition of human serum increased outward currents (i.e. at positive potentials) by approximately 4-fold and inward currents by approximately 2-fold. These two effects may help to resolve the conflicting data in the literature, although further investigation is required to understand the underlying mechanisms and their physiological relevance in detail. PMID:12937282

  18. Using CF11 cellulose columns to inexpensively and effectively remove human DNA from Plasmodium falciparum-infected whole blood samples

    Directory of Open Access Journals (Sweden)

    Venkatesan Meera

    2012-02-01

    Full Text Available Abstract Background Genome and transcriptome studies of Plasmodium nucleic acids obtained from parasitized whole blood are greatly improved by depletion of human DNA or enrichment of parasite DNA prior to next-generation sequencing and microarray hybridization. The most effective method currently used is a two-step procedure to deplete leukocytes: centrifugation using density gradient media followed by filtration through expensive, commercially available columns. This method is not easily implemented in field studies that collect hundreds of samples and simultaneously process samples for multiple laboratory analyses. Inexpensive syringes, hand-packed with CF11 cellulose powder, were recently shown to improve ex vivo cultivation of Plasmodium vivax obtained from parasitized whole blood. This study was undertaken to determine whether CF11 columns could be adapted to isolate Plasmodium falciparum DNA from parasitized whole blood and achieve current quantity and purity requirements for Illumina sequencing. Methods The CF11 procedure was compared with the current two-step standard of leukocyte depletion using parasitized red blood cells cultured in vitro and parasitized blood obtained ex vivo from Cambodian patients with malaria. Procedural variations in centrifugation and column size were tested, along with a range of blood volumes and parasite densities. Results CF11 filtration reliably produces 500 nanograms of DNA with less than 50% human DNA contamination, which is comparable to that obtained by the two-step method and falls within the current quality control requirements for Illumina sequencing. In addition, a centrifuge-free version of the CF11 filtration method to isolate P. falciparum DNA at remote and minimally equipped field sites in malaria-endemic areas was validated. Conclusions CF11 filtration is a cost-effective, scalable, one-step approach to remove human DNA from P. falciparum-infected whole blood samples.

  19. Molecular identification of falciparum malaria and human tuberculosis co-infections in mummies from the Fayum depression (Lower Egypt.

    Directory of Open Access Journals (Sweden)

    Albert Lalremruata

    Full Text Available Due to the presence of the lake Quarun and to the particular nature of its irrigation system, it has been speculated that the Fayum, a large depression 80 kilometers south-west of modern Cairo, was exposed to the hazards of malaria in historic times. Similarly, it has been speculated that, in the same area, also human tuberculosis might have been far more widespread in the antiquity than in its recent past. If these hypotheses were confirmed, it would imply that frequent cases of co-infection between the two pathogens might have occurred in ancient populations. To substantiate those speculations, molecular analyses were carried out on sixteen mummified heads recovered from the necropolis of Abusir el Meleq (Fayum dating from the 3(rd Intermediate Period (1064-656 BC to the Roman Period (30 BC-300 AD. Soft tissue biopsies were used for DNA extractions and PCR amplifications using well-suited protocols. A partial 196-bp fragment of Plasmodium falciparum apical membrane antigen 1 gene and a 123-bp fragment of the Mycobacterium tuberculosis complex insertion sequence IS6110 were amplified and sequenced in six and five of the sixteen specimens, respectively. A 100% concordance rates between our sequences and those of P. falciparum and M. tuberculosis complex ones were obtained. Lastly, concomitant PCR amplification of P. falciparum and M. tuberculosis complex DNA specific fragments was obtained in four mummies, three of which are (14C dated to the Late and Graeco-Roman Periods. Our data confirm that the hydrography of Fayum was extremely conducive to the spread of malaria. They also support the notion that the agricultural boom and dense crowding occurred in this region, especially under the Ptolemies, highly increased the probability for the manifestation and spread of tuberculosis. Here we extend back-wards to ca. 800 BC new evidence for malaria tropica and human tuberculosis co-occurrence in ancient Lower Egypt.

  20. Treatment of severe falciparum malaria: quinine versus artesunate

    Directory of Open Access Journals (Sweden)

    Dipesh Patel

    2013-02-01

    Full Text Available Background: Malaria is the most important disease of human being. More than 40% of the world’s population is considered to be at risk of exposure of this disease. Malaria infection has been increasing over recent years due to combination of factors including increasing resistance of malarial parasite. Most of the strains of P. falciparum are now resistance to conventional drugs like chloroquine in many areas. The objective of this study was to compare the efficacy and safety of quinine and artesunate in treatment of P. falciparum malaria. Methods: This is hospital based prospective study, conducted amongst 35 randomly selected patients of severe P. falciparum malaria. Patients with any contraindications of either drug were excluded to avoid bias. Standard statistical tests were applied for qualitative as well as quantitative data. Results: As per the study end point results of difference of mortality in patients receiving either drug was not significant (p > 0.75, but difference in clinical parameters like fever clearance time (p <0.01, parasite clearance time (p < 0.001 and coma resolution time (p < 0.001 were significant among patients receiving artesunate. There were no any significant differences in adverse effects of both the drugs. Mortality was same in both arms taking either drug. Conclusions: Artesunate is as good as quinine in mortality aspect but artesunate is superior in fever clearance time (FCT & parasite clearance time (PCT. Coma resolution time is faster with quinine as compared to artesunate. There are no significant adverse effects of either drug. So artesunate is equivalent or superior for treatment for severe falciparum malaria. [Int J Basic Clin Pharmacol 2013; 2(1.000: 30-36

  1. High Rates of Asymptomatic, Sub-microscopic Plasmodium vivax Infection and Disappearing Plasmodium falciparum Malaria in an Area of Low Transmission in Solomon Islands.

    Science.gov (United States)

    Waltmann, Andreea; Darcy, Andrew W; Harris, Ivor; Koepfli, Cristian; Lodo, John; Vahi, Ventis; Piziki, David; Shanks, G Dennis; Barry, Alyssa E; Whittaker, Maxine; Kazura, James W; Mueller, Ivo

    2015-05-01

    Solomon Islands is intensifying national efforts to achieve malaria elimination. A long history of indoor spraying with residual insecticides, combined recently with distribution of long lasting insecticidal nets and artemether-lumefantrine therapy, has been implemented in Solomon Islands. The impact of these interventions on local endemicity of Plasmodium spp. is unknown. In 2012, a cross-sectional survey of 3501 residents of all ages was conducted in Ngella, Central Islands Province, Solomon Islands. Prevalence of Plasmodium falciparum, P. vivax, P. ovale and P. malariae was assessed by quantitative PCR (qPCR) and light microscopy (LM). Presence of gametocytes was determined by reverse transcription quantitative PCR (RT-qPCR). By qPCR, 468 Plasmodium spp. infections were detected (prevalence = 13.4%; 463 P. vivax, five mixed P. falciparum/P. vivax, no P. ovale or P. malariae) versus 130 by LM (prevalence = 3.7%; 126 P. vivax, three P. falciparum and one P. falciparum/P. vivax). The prevalence of P. vivax infection varied significantly among villages (range 3.0-38.5%, p<0.001) and across age groups (5.3-25.9%, p<0.001). Of 468 P. vivax infections, 72.9% were sub-microscopic, 84.5% afebrile and 60.0% were both sub-microscopic and afebrile. Local residency, low education level of the household head and living in a household with at least one other P. vivax infected individual increased the risk of P. vivax infection. Overall, 23.5% of P. vivax infections had concurrent gametocytaemia. Of all P. vivax positive samples, 29.2% were polyclonal by MS16 and msp1F3 genotyping. All five P. falciparum infections were detected in residents of the same village, carried the same msp2 allele and four were positive for P. falciparum gametocytes. P. vivax infection remains endemic in Ngella, with the majority of cases afebrile and below the detection limit of LM. P. falciparum has nearly disappeared, but the risk of re-introductions and outbreaks due to travel to nearby islands

  2. Distinction of Plasmodium falciparum recrudescence and re-infection by MSP2 genotyping: A caution about unstandardized classification criteria

    Directory of Open Access Journals (Sweden)

    Thuma Philip E

    2008-09-01

    Full Text Available Abstract Background Plasmodium falciparum genotyping with molecular polymorphic markers is widely employed to distinguish recrudescence from re-infection in antimalarial drug efficacy monitoring programmes. However, limitations occur on agarose gel DNA measurements used to resolve the polymorphisms. Without empirical data, the current distinction of pre- and post-treatment bands, as persistent or new infection, is subjective and often varying by author. This study measures empirical tolerance limits for classifying different-sized bands as same or different alleles during MSP2 genotyping. Methods P. falciparum field samples from 161 volunteers were genotyped by nested PCR using polymorphic MSP2 family-specific primers. Data were analysed to determine variability of band size measurements between identical MSP2 alleles randomized into different agarose lanes. Results The mean (95% CI paired difference in band size between identical alleles was 9.8 bp (1.48 – 18.16 bp, p = 0.022 for 3D7/IC and 2.54 (-3.04 – 8.05 bp, p = 0.362 for FC27. Based on these findings, pre- and post-treatment samples with 3D7/IC alleles showing less than 18 bp difference corresponded to recrudescence, with 95% confidence, while greater difference indicated new infection. FC27 allele differences were much narrower. For both 3D7/IC and FC27 amplicon, allele detection sensitivity was significantly higher with 13 μl compared to 20 μl or 30 μl lane loading volumes. Conclusion During MSP genotyping, it is useful to standardize classifications against measurement of background variability on identical alleles, in order to obtain reliable findings. It is critical to use a fixed optimal lane loading volume for constant allele patency, to avoid the disappearance or false appearance of new infection.

  3. Surface co-expression of two different PfEMP1 antigens on single Plasmodium falciparum-infected erythrocytes facilitates binding to ICAM1 and PECAM1

    DEFF Research Database (Denmark)

    Joergensen, Louise; Bengtsson, Dominique C; Bengtsson, Anja;

    2010-01-01

    The Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) antigens play a major role in cytoadhesion of infected erythrocytes (IE), antigenic variation, and immunity to malaria. The current consensus on control of variant surface antigen expression is that only one PfEMP1 encoded by one var...

  4. Plasmodium falciparum secretome in erythrocyte and beyond

    Directory of Open Access Journals (Sweden)

    Rani eSoni

    2016-02-01

    Full Text Available Plasmodium falciparum is the causative agent of deadly malaria disease. It is an intracellular eukaryote and completes its multi-stage life cycle spanning the two hosts viz, mosquito and human. In order to habituate within host environment, parasite conform several strategies to evade host immune responses such as surface antigen polymorphism or modulation of host immune system and it is mediated by secretion of proteins from parasite to the host erythrocyte and beyond, collectively known as, malaria secretome. In this review, we will discuss about the deployment of parasitic secretory protein in mechanism implicated for immune evasion, protein trafficking, providing virulence, changing permeability and cyto-adherence of infected erythrocyte. We will be covering the possibilities of developing malaria secretome as a drug/vaccine target. This gathered information will be worthwhile in depicting a well-organized picture for host-pathogen interplay during the malaria infection and may also provide some clues for development of novel anti-malarial therapies.

  5. Relationship between immunoglobulin isotype response to Plasmodium falciparum blood stage antigens and parasitological indexes as well as splenomegaly in sympatric ethnic groups living in Mali.

    Science.gov (United States)

    Vafa, Manijeh; Israelsson, Elisabeth; Maiga, Bakary; Dolo, Amagana; Doumbo, Ogobara K; Troye-Blomberg, Marita

    2009-01-01

    This study aimed to assess correlations between anti-malarial antibody levels and differences in malariometric characteristics, seen between two sympatric ethnic groups, the Fulani and the Dogon, living in Mali. Plasma levels of anti-malarial IgE, IgG, IgG1-4 and total IgE were determined in asymptomatic individuals, of the above mentioned groups, and were correlated to malariometric indexes. Significantly higher levels of anti-malarial IgE, IgG, IgG1-3 and total IgE were detected in the Fulani individuals as compared to the Dogon. No difference in plasma levels of malaria specific IgG4 was noted between the two groups. Within the Fulani, an increase in total IgE levels was associated with the presence of infection. As the IgG4 level increased, the number of clones decreased in the Fulani individuals. A positive correlation between elevated levels of anti-malarial IgG and IgG3 and splenomegaly was noted only within the Fulani group. No other correlations between antibody levels and parasite prevalence, clone numbers or spleen rates were observed in any of the communities. These results suggest that the magnitude of antibody response against Plasmodium falciparum may not be as important as it is believed to be. Instead, the fine specificity or function of the response might be more critical in protection against malaria disease.

  6. Antibodies to variable Plasmodium falciparum-infected erythrocyte surface antigens are associated with protection from novel malaria infections

    DEFF Research Database (Denmark)

    Giha, H A; Staalsoe, T; Dodoo, D

    2000-01-01

    is maintained at low densities. Here, we test the hypothesis that the presence or absence of antibodies against variant antigens on the surface of P. falciparum-infected erythrocytes protect individuals against some infectious challenges and render them susceptible to others. Plasma collected in Daraweesh...... susceptible and protected individuals. Together, the results indicate that pre-existing anti-PfEMP1 antibodies can reduce the risk of contracting clinical malaria when challenged by novel parasite clones expressing homologous, but not heterologous variable surface antigens. The results also confirm...

  7. The effects of hemoglobin genotype and ABO blood group on the formation of rosettes by Plasmodium falciparum-infected red blood cells.

    Science.gov (United States)

    Udomsangpetch, R; Todd, J; Carlson, J; Greenwood, B M

    1993-02-01

    The mechanisms by which the hemoglobin genotype AS protect against severe malaria are not fully understood. We have investigated the possibility that protection might be achieved through an inability of red blood cells (RBC) with the AS genotype to form rosettes with RBC infected by Plasmodium falciparum. No evidence was obtained to support this hypothesis because RBC with the AS genotype formed rosettes with wild isolates of P. falciparum as readily as RBC with the AA genotype. However, the previous finding that parasitized RBC form rosettes more readily with RBC belonging to group A or B than with RBC belonging to group O was confirmed even in fresh clinical isolates.

  8. Epidemiology and Infectivity of Plasmodium falciparum and Plasmodium vivax Gametocytes in Relation to Malaria Control and Elimination

    Science.gov (United States)

    Bousema, Teun; Drakeley, Chris

    2011-01-01

    Summary: Malaria remains a major cause of morbidity and mortality in the tropics, with Plasmodium falciparum responsible for the majority of the disease burden and P. vivax being the geographically most widely distributed cause of malaria. Gametocytes are the sexual-stage parasites that infect Anopheles mosquitoes and mediate the onward transmission of the disease. Gametocytes are poorly studied despite this crucial role, but with a recent resurgence of interest in malaria elimination, the study of gametocytes is in vogue. This review highlights the current state of knowledge with regard to the development and longevity of P. falciparum and P. vivax gametocytes in the human host and the factors influencing their distribution within endemic populations. The evidence for immune responses, antimalarial drugs, and drug resistance influencing infectiousness to mosquitoes is reviewed. We discuss how the application of molecular techniques has led to the identification of submicroscopic gametocyte carriage and to a reassessment of the human infectious reservoir. These components are drawn together to show how control measures that aim to reduce malaria transmission, such as mass drug administration and a transmission-blocking vaccine, might better be deployed. PMID:21482730

  9. Plasmodium falciparum-infected erythrocyte knob density is linked to the PfEMP1 variant expressed

    DEFF Research Database (Denmark)

    Subramani, Ramesh; Quadt, Katharina; Jeppesen, Anine Engholm;

    2015-01-01

    UNLABELLED: Members of the clonally variant Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family mediate adhesion of infected erythrocytes (IEs) to vascular receptors. PfEMP1 expression is normally confined to nanoscale knob protrusions on the IE surface membrane. To investigate...... the relationship between the densities of these IE surface knobs and the PfEMP1 variant expressed, we used specific antibody panning to generate three sublines of the P. falciparum clone IT4, which expresses the PfEMP1 variants IT4VAR04, IT4VAR32b, and IT4VAR60. The knob density in each subline was then determined...... by atomic force microscopy (AFM) and scanning electron microscopy (SEM) and compared to PfEMP1 and knob-associated histidine-rich protein (KAHRP) expression. Selection for uniform expression of IT4VAR04 produced little change in knob density, compared to unselected IEs. In contrast, selection for IT4VAR32b...

  10. Malarial anemia and STAT6

    OpenAIRE

    Robson, Kathryn J.H.; Weatherall, David J

    2009-01-01

    Understanding the mechanisms behind malarial anemia should lead to new approaches to the management and treatment of children. In this perspective article Drs. Robson and Weatherall examine the pathophysiology of this condition. See related article on page 195.

  11. Expression of inducible nitric oxide synthase, caspase-3 and production of reactive oxygen intermediate on endothelial cells culture (HUVECs treated with P. falciparum infected erythrocytes and tumour necrosis factor-α

    Directory of Open Access Journals (Sweden)

    Loeki E. Fitri

    2006-09-01

    Full Text Available Cytoadherence of P. falciparum infected erythrocytes on endothelial cells is a key factor in development of severe malaria. This process may associated with the activation of local immune that was enhanced by tumour necrosis factor-α (TNF-α. This study was conducted to see the influence of P.falciparum infected erythrocytes cytoadherence and TNF-α treatment in inducing endothelial cells activation in vitro. inducible nitric oxide synthase (iNOS and caspase-3 expression, also reactive oxygen intermediate (ROI production were used as parameters. An Experimental laboratory study had been done to observe endothelial cells activation (HUVECs after treatment with TNF-α for 20 hours or P. falciparum infected erythrocytes for 1 hour or both of them. Normal endothelial cells culture had been used as a control. Using immunocytochemistry local immune activation of endothelial cells was determined by iNOS and caspase-3 expression. Nitro Blue Tetrazolium reduction-assay was conducted to see the ROI production semi quantitatively. inducible nitric oxide synthase expression only found on endothelial cells culture treated with P. falciparum infected erythrocytes or both P. falciparum infected erythrocytes and TNF-α. Caspase-3 expression found slightly on normal endothelial cells culture. This expression increased significantly on endothelial cells culture treated with both P.falciparum infected erythrocytes and TNF-α (p=0.000. The normal endothelial cells release low level of ROI in the presence of non-specific trigger, PMA. In the presence of P. falciparum infected erythrocytes or TNF-α or both of them, some cells showed medium to high levels of ROI. Cytoadherence of P. falciparum infected erythrocytes and TNF α treatment on endothelial cells can induce activation of local immune marked by increase inducible nitric oxide synthase and release of free radicals that cause cell damage. (Med J Indones 2006; 15:151-6 Keywords: P.falciparum ,HUVECs, TNF-α, i

  12. STUDY OF CLINICAL, HAEMATOLOGICAL AND HEPATIC MANIFESTATIONS IN PATIENTS WITH FALCIPARUM MALARIA

    Directory of Open Access Journals (Sweden)

    Balaraj

    2014-05-01

    Full Text Available OBJECTIVE: Malarial infection is a major health problem in many parts of India. Several factors have been attributed to increased morbidity and mortality in malaria with altered hematological and hepatic parameters playing an important role. Our aim is to study the clinical, hematological and hepatic manifestations in patients with falciparum malaria. METHODS: This observational study was conducted from November 2012 to October 2013 at Kempegowda Institute of Medical Science and Research Hospital Bangalore. 75 patients of falciparum malaria confirmed by PS, MPQBC positive for Plasmodium falciparum or both falciparum and vivax were included in the study. All patients underwent detailed clinical history, thorough physical examination and investigated with hematological and hepatic parameters. This was followed by monitoring the outcome of the patients with respect to morbidity and mortality. Data was analyzed with descriptive statistical tools. RESULT: Of the 75 patients fever was present in all cases. Pallor (62% was the most common sign followed by splenomegaly (58% and icterus (48%. Anemia (60% was the most common complication, followed by jaundice (44%, cerebral malaria (40%, ARF (25%, ARDS (12%. 12 patients had severe anemia (Hb% <6 gm %. Severe thrombocytopenia (<50, 000 mm3 was seen in 5% of the patients. PT and APTT were increased in 23% and 12% of the cases respectively. 2 patients in the study expired. CONCLUSION: Clinical manifestations of plasmodium falciparum infection ranged from only fever to severe complications including cerebral malaria, acute renal failure, acute hemolytic crisis and hepatic dysfunction. Acute onset fever and splenomegaly were most common clinical manifestations found. Severe Anemia and jaundice are poor prognostic factor and has adverse outcome. Thrombocytopenia increased PT; aPTT does not have any correlation to mortality

  13. IgG reactivities against recombinant Rhoptry-Associated Protein-1 (rRAP-1) are associated with mixed Plasmodium infections and protection against disease in Tanzanian children

    DEFF Research Database (Denmark)

    Alifrangis, M; Lemnge, M M; Moon, R;

    1999-01-01

    -Associated Protein-1 (rRAP-1). The data were related to the prevalence of malarial disease and single P. falciparum or mixed Plasmodium infections. Fever (> or = 37.5 degrees C) in combination with parasite densities > 5000/microliter were used to distinguish between children with asymptomatic malaria infections......A cross-sectional sero-epidemiological study was performed in Magoda, Tanzania, an area where malaria is holoendemic. Blood samples were collected from children (1-4 years) and tested for IgG antibody reactivity against 2 recombinant protein fragments of Plasmodium falciparum Rhoptry...... and those with acute clinical disease. Furthermore, C-reactive protein (CRP) was applied as a surrogate marker of malaria morbidity. The prevalence of Plasmodium infections was 96.0%. Eleven children were defined as clinical malaria cases, all with single P. falciparum infections. The density of P...

  14. Antibodies from malaria-exposed pregnant women recognize trypsin resistant epitopes on the surface of Plasmodium falciparum-infected erythrocytes selected for adhesion to chondroitin sulphate A

    Directory of Open Access Journals (Sweden)

    Staalsoe Trine

    2004-09-01

    Full Text Available Abstract Background The ability of Plasmodium falciparum-infected erythrocytes to adhere to the microvasculature endothelium is thought to play a causal role in malaria pathogenesis. Cytoadhesion to endothelial receptors is generally found to be highly sensitive to trypsinization of the infected erythrocyte surface. However, several studies have found that parasite adhesion to placental receptors can be markedly less sensitive to trypsin. This study investigates whether chondroitin sulphate A (CSA binding parasites express trypsin-resistant variant surface antigens (VSA that bind female-specific antibodies induced as a result of pregnancy associated malaria (PAM. Methods Fluorescence activated cell sorting (FACS was used to measure the levels of adult Scottish and Ghanaian male, and Ghanaian pregnant female plasma immunoglobulin G (IgG that bind to the surface of infected erythrocytes. P. falciparum clone FCR3 cultures were used to assay surface IgG binding before and after selection of the parasite for adhesion to CSA. The effect of proteolytic digestion of parasite erythrocyte surface antigens on surface IgG binding and adhesion to CSA and hyaluronic acid (HA was also studied. Results P. falciparum infected erythrocytes selected for adhesion to CSA were found to express trypsin-resistant VSA that are the target of naturally acquired antibodies from pregnant women living in a malaria endemic region of Ghana. However in vitro adhesion to CSA and HA was relatively trypsin sensitive. An improved labelling technique for the detection of VSA expressed by CSA binding isolates has also been described. Conclusion The VSA expressed by CSA binding P. falciparum isolates are currently considered potential targets for a vaccine against PAM. This study identifies discordance between the trypsin sensitivity of CSA binding and surface recognition of CSA selected parasites by serum IgG from malaria exposed pregnant women. Thus, the complete molecular

  15. Gene-gene interaction and functional impact of polymorphisms on innate immune genes in controlling Plasmodium falciparum blood infection level.

    Directory of Open Access Journals (Sweden)

    Madhumita Basu

    Full Text Available Genetic variations in toll-like receptors and cytokine genes of the innate immune pathways have been implicated in controlling parasite growth and the pathogenesis of Plasmodium falciparum mediated malaria. We previously published genetic association of TLR4 non-synonymous and TNF-α promoter polymorphisms with P.falciparum blood infection level and here we extend the study considerably by (i investigating genetic dependence of parasite-load on interleukin-12B polymorphisms, (ii reconstructing gene-gene interactions among candidate TLRs and cytokine loci, (iii exploring genetic and functional impact of epistatic models and (iv providing mechanistic insights into functionality of disease-associated regulatory polymorphisms. Our data revealed that carriage of AA (P = 0.0001 and AC (P = 0.01 genotypes of IL12B 3'UTR polymorphism was associated with a significant increase of mean log-parasitemia relative to rare homozygous genotype CC. Presence of IL12B+1188 polymorphism in five of six multifactor models reinforced its strong genetic impact on malaria phenotype. Elevation of genetic risk in two-component models compared to the corresponding single locus and reduction of IL12B (2.2 fold and lymphotoxin-α (1.7 fold expressions in patients'peripheral-blood-mononuclear-cells under TLR4Thr399Ile risk genotype background substantiated the role of Multifactor Dimensionality Reduction derived models. Marked reduction of promoter activity of TNF-α risk haplotype (C-C-G-G compared to wild-type haplotype (T-C-G-G with (84% and without (78% LPS stimulation and the loss of binding of transcription factors detected in-silico supported a causal role of TNF-1031. Significantly lower expression of IL12B+1188 AA (5 fold and AC (9 fold genotypes compared to CC and under-representation (P = 0.0048 of allele A in transcripts of patients' PBMCs suggested an Allele-Expression-Imbalance. Allele (A+1188C dependent differential stability (2 fold of IL12B-transcripts upon

  16. Genetic diversity and population structure of Plasmodium falciparum in Thailand, a low transmission country

    Directory of Open Access Journals (Sweden)

    Sitthi-amorn Chitr

    2009-07-01

    Full Text Available Abstract Background The population structure of the causative agents of human malaria, Plasmodium sp., including the most serious agent Plasmodium falciparum, depends on the local epidemiological and demographic situations, such as the incidence of infected people, the vector transmission intensity and migration of inhabitants (i.e. exchange between sites. Analysing the structure of P. falciparum populations at a large scale, such as continents, or with markers that are subject to non-neutral selection, can lead to a masking and misunderstanding of the effective process of transmission. Thus, knowledge of the genetic structure and organization of P. falciparum populations in a particular area with neutral genetic markers is needed to understand which epidemiological factors should be targeted for disease control. Limited reports are available on the population genetic diversity and structure of P. falciparum in Thailand, and this is of particular concern at the Thai-Myanmar and Thai-Cambodian borders, where there is a reported high resistance to anti-malarial drugs, for example mefloquine, with little understanding of its potential gene flow. Methods The diversity and genetic differentiation of P. falciparum populations were analysed using 12 polymorphic apparently neutral microsatellite loci distributed on eight of the 14 different chromosomes. Samples were collected from seven provinces in the western, eastern and southern parts of Thailand. Results A strong difference in the nuclear genetic structure was observed between most of the assayed populations. The genetic diversity was comparable to the intermediate level observed in low P. falciparum transmission areas (average HS = 0.65 ± 0.17, where the lowest is observed in South America and the highest in Africa. However, uniquely the Yala province, had only a single multilocus genotype present in all samples, leading to a strong geographic differentiation when compared to the other Thai

  17. Ticket to ride: export of proteins to the Plasmodium falciparum-infected erythrocyte.

    Science.gov (United States)

    Przyborski, Jude M; Nyboer, Britta; Lanzer, Michael

    2016-07-01

    The malaria parasite Plasmodium falciparum exports numerous proteins to its chosen host cell, the mature human erythrocyte. Many of these proteins are important for parasite survival. To reach the host cell, parasites must cross multiple membrane barriers and then furthermore be targeted to their correct sub-cellular localisation. This novel transport pathway has received much research attention in the past decades, especially as many of the mechanisms are expected to be parasite-specific and thus potential targets for drug development. In this article we summarize some of the most recent advances in this field, and highlight areas in which further research is needed.

  18. Detection of a substantial number of sub-microscopic Plasmodium falciparum infections by polymerase chain reaction: a potential threat to malaria control and diagnosis in Ethiopia

    Science.gov (United States)

    2013-01-01

    Background Prompt and effective malaria diagnosis not only alleviates individual suffering, but also decreases malaria transmission at the community level. The commonly used diagnostic methods, microscopy and rapid diagnostic tests, are usually insensitive at very low-density parasitaemia. Molecular techniques, on the other hand, allow the detection of low-level, sub-microscopic parasitaemia. This study aimed to explore the presence of sub-microscopic Plasmodium falciparum infections using polymerase chain reaction (PCR). The PCR-based parasite prevalence was compared against microscopy and rapid diagnostic test (RDT). Methods This study used 1,453 blood samples collected from clinical patients and sub-clinical subjects to determine the prevalence of sub-microscopic P. falciparum carriages. Subsets of RDT and microscopy negative blood samples were tested by PCR while all RDT and microscopically confirmed P. falciparum-infected samples were subjected to PCR. Finger-prick blood samples spotted on filter paper were used for parasite genomic DNA extraction. Results The prevalence of sub-microscopic P. falciparum carriage was 19.2% (77/400) (95% CI = 15. 4–23.1). Microscopy-based prevalence of P. falciparum infection was 3.7% (54/1,453) while the prevalence was 6.9% (100/1,453) using RDT alone. Using microscopy and PCR, the estimated parasite prevalence was 20.6% if PCR were performed in 1,453 blood samples. The prevalence was estimated to be 22.7% if RDT and PCR were used. Of 54 microscopically confirmed P. falciparum-infected subjects, PCR detected 90.7% (49/54). Out of 100 RDT-confirmed P. falciparum infections; PCR detected 80.0% (80/100). The sensitivity of PCR relative to microscopy and RDT was, therefore, 90.7% and 80%, respectively. The sensitivity of microscopy and RDT relative to PCR was 16.5 (49/299) and 24.2% (80/330), respectively. The overall PCR-based prevalence of P. falciparum infection was 5.6- and 3.3 fold higher than that determined by

  19. Invasion of erythrocytes in vitro by Plasmodium falciparum can be inhibited by monoclonal antibody directed against an S antigen.

    Science.gov (United States)

    Saul, A; Cooper, J; Ingram, L; Anders, R F; Brown, G V

    1985-11-01

    A monoclonal antibody has been produced which binds to the heat stable S antigen present in the FCQ-27/PNG isolate of Plasmodium falciparum. This monoclonal antibody also inhibits the invasion in vitro of erythrocytes by malarial merozoites thus demonstrating that the S antigens of Plasmodium falciparum may be a target of protective immune responses.

  20. Genetic diversity of Plasmodium falciparum isolates from naturally infected children in north-central Nigeria using the merozoite surface protein-2 as molecular marker

    Institute of Scientific and Technical Information of China (English)

    Segun Isaac Oyedeji; Henrietta Oluwatoyin Awobode; Chiaka Anumudu; Jrgen Kun

    2013-01-01

    Objective:To characterize the genetic diversity of Plasmodium falciparum (P. falciparum) field isolates in children from Lafia, North-central Nigeria, using the highly polymorphic P. falciparum merozoite surface protein 2 (MSP-2) gene as molecular marker. Methods: Three hundred and twenty children were enrolled into the study between 2005 and 2006. These included 140 children who presented with uncomplicated malaria at the Dalhatu Araf Specialist Hospital, Lafia and another 180 children from the study area with asymptomatic infection. DNA was extracted from blood spot on filter paper and MSP-2 genes were genotyped using allele-specific nested PCR in order to analyze the genetic diversity of parasite isolates. Results:A total of 31 and 34 distinct MSP-2 alleles were identified in the asymptomatic and uncomplicated malaria groups respectively. No difference was found between the multiplicity of infection in the asymptomatic group and that of the uncomplicated malaria group (P>0.05). However, isolates of the FC27 allele type were dominant in the asymptomatic group whereas isolates of the 3D7 allele type were dominant in the uncomplicated malaria group. Conclusions: This study showed a high genetic diversity of P. falciparum isolates in North-central Nigeria and is comparable to reports from similar areas with high malaria transmission intensity.

  1. Detection of very low level Plasmodium falciparum infections using the nested polymerase chain reaction and a reassessment of the epidemiology of unstable malaria in Sudan

    DEFF Research Database (Denmark)

    Roper, C; Elhassan, I M; Hviid, L;

    1996-01-01

    We have used the nested polymerase chain reaction (PCR) to assay for low level Plasmodium falciparum infections that were below the threshold of detection of blood film examination. This revealed a substantial group of asymptomatic, submicroscopically patent infections within the population...... of a Sudanese village present throughout the year although clinical malaria episodes were almost entirely confined to the transmission season. In our September, January, April, and June surveys, the PCR-detected prevalences were 13%, 19%, 24%, and 19%, respectively. These figures reveal a much higher prevalence...... of dry season infection than previous microscopic surveys have indicated. Furthermore, 20% of a cohort of 79 individuals were healthy throughout the September to November transmission season but were PCR-positive for P. falciparum in a least one of a series of samples taken in the ensuing months. Levels...

  2. Declining responsiveness of Plasmodium falciparum infections to artemisinin-based combination treatments on the Kenyan coast.

    Directory of Open Access Journals (Sweden)

    Steffen Borrmann

    Full Text Available BACKGROUND: The emergence of artemisinin-resistant P. falciparum malaria in South-East Asia highlights the need for continued global surveillance of the efficacy of artemisinin-based combination therapies. METHODS: On the Kenyan coast we studied the treatment responses in 474 children 6-59 months old with uncomplicated P. falciparum malaria in a randomized controlled trial of dihydroartemisinin-piperaquine vs. artemether-lumefantrine from 2005 to 2008. (ISRCTN88705995. RESULTS: The proportion of patients with residual parasitemia on day 1 rose from 55% in 2005-2006 to 87% in 2007-2008 (odds ratio, 5.4, 95%CI, 2.7-11.1; P37.5°C, 2.8, 1.9-4.1; P<0.001. Neither in vitro sensitivity of parasites to DHA nor levels of antibodies against parasite extract accounted for parasite clearance rates or changes thereof. CONCLUSIONS: The significant, albeit small, decline through time of parasitological response rates to treatment with ACTs may be due to the emergence of parasites with reduced drug sensitivity, to the coincident reduction in population-level clinical immunity, or both. Maintaining the efficacy of artemisinin-based therapy in Africa would benefit from a better understanding of the mechanisms underlying reduced parasite clearance rates. TRIAL REGISTRATION: Controlled-Trials.com ISRCTN88705995.

  3. Natural products as starting points for future anti-malarial therapies: going back to our roots?

    Directory of Open Access Journals (Sweden)

    Wells Timothy NC

    2011-03-01

    Full Text Available Abstract Background The discovery and development of new anti-malarials are at a crossroads. Fixed dose artemisinin combination therapy is now being used to treat a hundred million children each year, with a cost as low as 30 cents per child, with cure rates of over 95%. However, as with all anti-infective strategies, this triumph brings with it the seeds of its own downfall, the emergence of resistance. It takes ten years to develop a new medicine. New classes of medicines to combat malaria, as a result of infection by Plasmodium falciparum and Plasmodium vivax are urgently needed. Results Natural product scaffolds have been the basis of the majority of current anti-malarial medicines. Molecules such as quinine, lapachol and artemisinin were originally isolated from herbal medicinal products. After improvement with medicinal chemistry and formulation technologies, and combination with other active ingredients, they now make up the current armamentarium of medicines. In recent years advances in screening technologies have allowed testing of millions of compounds from pharmaceutical diversity for anti-malarial activity in cellular assays. These initiatives have resulted in thousands of new sub-micromolar active compounds – starting points for new drug discovery programmes. Against this backdrop, the paucity of potent natural products identified has been disappointing. Now is a good time to reflect on the current approach to screening herbal medicinal products and suggest revisions. Nearly sixty years ago, the Chinese doctor Chen Guofu, suggested natural products should be approached by dao-xing-ni-shi or ‘acting in the reversed order’, starting with observational clinical studies. Natural products based on herbal remedies are in use in the community, and have the potential unique advantage that clinical observational data exist, or can be generated. The first step should be the confirmation and definition of the clinical activity of herbal

  4. A nanovector with complete discrimination for targeted delivery to Plasmodium falciparum-infected versus non-infected red blood cells in vitro.

    Science.gov (United States)

    Urbán, Patricia; Estelrich, Joan; Cortés, Alfred; Fernàndez-Busquets, Xavier

    2011-04-30

    Current administration methods of antimalarial drugs deliver the free compound in the blood stream, where it can be unspecifically taken up by all cells, and not only by Plasmodium-infected red blood cells (pRBCs). Nanosized carriers have been receiving special attention with the aim of minimizing the side effects of malaria therapy by increasing drug bioavailability and selectivity. Liposome encapsulation has been assayed for the delivery of compounds against murine malaria, but there is a lack of cellular studies on the performance of targeted liposomes in specific cell recognition and on the efficacy of cargo delivery, and very little data on liposome-driven antimalarial drug targeting to human-infecting parasites. We have used fluorescence microscopy to assess in vitro the efficiency of liposomal nanocarriers for the targeted delivery of their contents to pRBCs. 200-nm liposomes loaded with quantum dots were covalently functionalized with oriented, specific half-antibodies against P. falciparum late form-infected pRBCs. In less than 90min, liposomes dock to pRBC plasma membranes and release their cargo to the cell. 100.0% of late form-containing pRBCs and 0.0% of non-infected RBCs in P. falciparum cultures are recognized and permeated by the content of targeted immunoliposomes. Liposomes not functionalized with antibodies are also specifically directed to pRBCs, although with less affinity than immunoliposomes. In preliminary assays, the antimalarial drug chloroquine at a concentration of 2nM, ≥10 times below its IC(50) in solution, cleared 26.7±1.8% of pRBCs when delivered inside targeted immunoliposomes.

  5. An exported kinase (FIKK4.2) that mediates virulence-associated changes in Plasmodium falciparum-infected red blood cells.

    Science.gov (United States)

    Kats, Lev M; Fernandez, Kate M; Glenister, Fiona K; Herrmann, Susann; Buckingham, Donna W; Siddiqui, Ghizal; Sharma, Laveena; Bamert, Rebecca; Lucet, Isabelle; Guillotte, Micheline; Mercereau-Puijalon, Odile; Cooke, Brian M

    2014-04-01

    Alteration of the adhesive and mechanical properties of red blood cells caused by infection with the malaria parasite Plasmodium falciparum underpin both its survival and extreme pathogenicity. A unique family of parasite putative exported kinases, collectively called FIKK (Phenylalanine (F) - Isoleucine (I) - Lysine (K) - Lysine (K)), has recently been implicated in these pathophysiological processes, however, their precise function in P. falciparum-infected red blood cells or their likely role in malaria pathogenesis remain unknown. Here, for the first time, we demonstrate that one member of the FIKK family, FIKK4.2, can function as an active kinase and is localised in a novel and distinct compartment of the parasite-infected red blood cell which we have called K-dots. Notably, targeted disruption of the gene encoding FIKK4.2 (fikk4.2) dramatically alters the parasite's ability to modify and remodel the red blood cells in which it multiplies. Specifically, red blood cells infected with fikk4.2 knockout parasites were significantly less rigid and less adhesive when compared with red blood cells infected with normal parasites from which the transgenic clones had been derived, despite expressing similar levels of the major cytoadhesion ligand, PfEMP1, on the red blood cell surface. Notably, these changes were accompanied by dramatically altered knob-structures on infected red blood cells that play a key role in cytoadhesion which is responsible for much of the pathogenesis associated with falciparum malaria. Taken together, our data identifies FIKK4.2 as an important kinase in the pathogenesis of P. falciparum malaria and strengthens the attractiveness of FIKK kinases as targets for the development of novel next-generation anti-malaria drugs.

  6. A kinetic fluorescence assay reveals unusual features of Ca⁺⁺ uptake in Plasmodium falciparum-infected erythrocytes.

    Science.gov (United States)

    Zipprer, Elizabeth M; Neggers, McKinzie; Kushwaha, Ambuj; Rayavara, Kempaiah; Desai, Sanjay A

    2014-05-18

    To facilitate development within erythrocytes, malaria parasites increase their host cell uptake of diverse solutes including Ca++. The mechanism and molecular basis of increased Ca++ permeability remains less well studied than that of other solutes. Based on an appropriate Ca++ affinity and its greater brightness than related fluorophores, Fluo-8 was selected and used to develop a robust fluorescence-based assay for Ca++ uptake by human erythrocytes infected with Plasmodium falciparum. Both uninfected and infected cells exhibited a large Ca++-dependent fluorescence signal after loading with the Fluo-8 dye. Probenecid, an inhibitor of erythrocyte organic anion transporters, abolished the fluorescence signal in uninfected cells; in infected cells, this agent increased fluorescence via mechanisms that depend on parasite genotype. Kinetic fluorescence measurements in 384-well microplates revealed that the infected cell Ca++ uptake is not mediated by the plasmodial surface anion channel (PSAC), a parasite nutrient channel at the host membrane; it also appears to be distinct from mammalian Ca++ channels. Imaging studies confirmed a low intracellular Ca++ in uninfected cells and higher levels in both the host and parasite compartments of infected cells. Parasite growth inhibition studies revealed a conserved requirement for extracellular Ca++. Nondestructive loading of Fluo-8 into human erythrocytes permits measurement of Ca++ uptake kinetics. The greater Ca++ permeability of cells infected with malaria parasites is apparent when probenecid is used to inhibit Fluo-8 efflux at the host membrane. This permeability is mediated by a distinct pathway and may be essential for intracellular parasite development. The miniaturized assay presented here should help clarify the precise transport mechanism and may identify inhibitors suitable for antimalarial drug development.

  7. Humoral and cellular immunity to Plasmodium falciparum merozoite surface protein 1 and protection from infection with blood-stage parasites.

    Science.gov (United States)

    Moormann, Ann M; Sumba, Peter Odada; Chelimo, Kiprotich; Fang, Hua; Tisch, Daniel J; Dent, Arlene E; John, Chandy C; Long, Carole A; Vulule, John; Kazura, James W

    2013-07-01

     Acquired immunity to malaria develops with increasing age and repeated infections. Understanding immune correlates of protection from malaria would facilitate vaccine development and identification of biomarkers that reflect changes in susceptibility resulting from ongoing malaria control efforts.  The relationship between immunoglobulin G (IgG) antibody and both interferon γ (IFN-γ) and interleukin 10 (IL-10) responses to the 42-kD C-terminal fragment of Plasmodium falciparum merozoite surface protein 1 (MSP142) and the risk of (re)infection were examined following drug-mediated clearance of parasitemia in 94 adults and 95 children in an area of holoendemicity of western Kenya.  Positive IFN-γ enzyme-linked immunosorbent assay (ELISA) and enzyme-linked immunosorbent spot assay (ELISPOT) responses to MSP142 3D7 were associated with delayed time to (re)infection, whereas high-titer IgG antibodies to MSP142 3D7 or FVO alleles were not independently predictive of the risk of (re)infection. When IFN-γ and IL-10 responses were both present, the protective effect of IFN-γ was abrogated. A Cox proportional hazard model including IFN-γ, IL-10, MSP142 3D7 IgG antibody responses, hemoglobin S genotype, age, and infection status at baseline showed that the time to blood-stage infection correlated positively with IFN-γ responses and negatively with IL-10 responses, younger age, and asymptomatic parasitemia.  Evaluating combined allele-specific cellular and humoral immunity elicited by malaria provides a more informative measure of protection relative to evaluation of either measure alone.

  8. Transgenic mosquitoes expressing a phospholipase A(2 gene have a fitness advantage when fed Plasmodium falciparum-infected blood.

    Directory of Open Access Journals (Sweden)

    Ryan C Smith

    Full Text Available BACKGROUND: Genetically modified mosquitoes have been proposed as an alternative strategy to reduce the heavy burden of malaria. In recent years, several proof-of-principle experiments have been performed that validate the idea that mosquitoes can be genetically modified to become refractory to malaria parasite development. RESULTS: We have created two transgenic lines of Anophelesstephensi, a natural vector of Plasmodium falciparum, which constitutively secrete a catalytically inactive phospholipase A2 (mPLA2 into the midgut lumen to interfere with Plasmodium ookinete invasion. Our experiments show that both transgenic lines expressing mPLA2 significantly impair the development of rodent malaria parasites, but only one line impairs the development of human malaria parasites. In addition, when fed on malaria-infected blood, mosquitoes from both transgenic lines are more fecund than non-transgenic mosquitoes. Consistent with these observations, cage experiments with mixed populations of transgenic and non-transgenic mosquitoes show that the percentage of transgenic mosquitoes increases when maintained on Plasmodium-infected blood. CONCLUSIONS: Our results suggest that the expression of an anti-Plasmodium effector gene gives transgenic mosquitoes a fitness advantage when fed malaria-infected blood. These findings have important implications for future applications of transgenic mosquito technology in malaria control.

  9. Haptoglobin phenotype prevalence and cytokine profiles during Plasmodium falciparum infection in Dogon and Fulani ethnic groups living in Mali.

    Science.gov (United States)

    Perdijk, Olaf; Arama, Charles; Giusti, Pablo; Maiga, Bakary; Troye-Blomberg, Marita; Dolo, Amagana; Doumbo, Ogobara; Persson, Jan-Olov; Boström, Stéphanie

    2013-11-25

    The Fulani are known to have a lower parasitaemia and less clinical episodes of malaria as compared to the Dogon sympatric ethnic group, living in Mali. Higher circulating malaria-specific antibody titers and increased pro-inflammatory cytokine levels have been shown in Fulani individuals. Several studies have tried to link haptoglobin (Hp) phenotypes with susceptibility to malaria, but without consensus. This study investigated the role of Hp phenotypes and cytokine levels in Dogon and Fulani during asymptomatic Plasmodium falciparum infection. Two different cohorts were combined in this study: a 2008 cohort with 77 children aged between two and ten years and a 2001 cohort, with 82 children and adults, aged between 11 and 68 years. Hp phenotypes in plasma were measured by Western Blot. Circulating levels of sCD163, IL-6, IL-10, IFN-γ and TNF were measured by ELISA. Multiple regression analysis was performed to associate Hp phenotypes with cytokine profiles. In addition, in vitro stimulation of peripheral blood mononuclear cells (PBMCs) with Hp:Hb complexes was performed and cytokine release in corresponding supernatants were measured using cytometric bead array. The results revealed a higher Hp2-2 phenotype prevalence in the Fulani. The Hp2-2 phenotype was associated with a higher susceptibility to P. falciparum infection in Dogon, but not in Fulani. In concordance with previous studies, Fulani showed increased inflammatory mediators (IL-6, IFN-γ) and additionally also increased sCD163 levels compared to Dogon, irrespective of infection. Furthermore, infected individuals showed elevated sCD163 levels compared to uninfected individuals, in both Fulani and Dogon. Multiple regression analysis revealed that the Hp1-1 phenotype was associated with higher levels of TNF and IFN-γ, as compared to the Hp2-2 phenotype. In vitro stimulation of PBMCs with Hb:Hp1-1 complexes resulted in a pro-inflammatory cytokine profile, whilst stimulation with Hb:Hp2-2 complexes showed

  10. Cellular responses to modified Plasmodium falciparum MSP119 antigens in individuals previously exposed to natural malaria infection

    Directory of Open Access Journals (Sweden)

    Awobode Henrietta O

    2009-11-01

    Full Text Available Abstract Background MSP1 processing-inhibitory antibodies bind to epitopes on the 19 kDa C-terminal region of the Plasmodium falciparum merozoite surface protein 1 (MSP119, inhibiting erythrocyte invasion. Blocking antibodies also bind to this antigen but prevent inhibitory antibodies binding, allowing invasion to proceed. Recombinant MSP119 had been modified previously to allow inhibitory but not blocking antibodies to continue to bind. Immunization with these modified proteins, therefore, has the potential to induce more effective protective antibodies. However, it was unclear whether the modification of MSP119 would affect critical T-cell responses to epitopes in this antigen. Methods The cellular responses to wild-type MSP119 and a panel of modified MSP119 antigens were measured using an in-vitro assay for two groups of individuals: the first were malaria-naïve and the second had been naturally exposed to Plasmodium falciparum infection. The cellular responses to the modified proteins were examined using cells from malaria-exposed infants and adults. Results Interestingly, stimulation indices (SI for responses induced by some of the modified proteins were at least two-fold higher than those elicited by the wild-type MSP119. A protein with four amino acid substitutions (Glu27→Tyr, Leu31→Arg, Tyr34→Ser and Glu43→Leu had the highest stimulation index (SI up to 360 and induced large responses in 64% of the samples that had significant cellular responses to the modified proteins. Conclusion This study suggests that specific MSP119 variants that have been engineered to improve their antigenicity for inhibitory antibodies, retain T-cell epitopes and the ability to induce cellular responses. These proteins are candidates for the development of MSP1-based malaria vaccines.

  11. Plasmodium falciparum infection rates for some Anopheles spp. from Guinea-Bissau, West Africa [v1; ref status: indexed, http://f1000r.es/4in

    Directory of Open Access Journals (Sweden)

    Michelle R. Sanford

    2014-10-01

    Full Text Available Presence of Plasmodium falciparum circumsporozoite protein (CSP was detected by enzyme linked immunosorbent assay (ELISA in a sample of Anopheles gambiae s.s., A. melas and A. pharoensis collected in Guinea-Bissau during October and November 2009. The percentage of P. falciparum infected samples (10.2% overall was comparable to earlier studies from other sites in Guinea-Bissau (9.6-12.4%. The majority of the specimens collected were identified as A. gambiae which had an individual infection rate of 12.6 % across collection sites. A small number of specimens of A. coluzzii, A. coluzzii x A. gambiae hybrids, A. melas and A. pharoensis were collected and had infection rates of 4.3%, 4.1%, 11.1% and 33.3% respectively. Despite being present in low numbers in indoor collections, the exophilic feeding behaviors of A. melas (N=18 and A. pharoensis (N=6 and high infection rates observed in this survey suggest falciparum-malaria transmission potential outside of the protection of bed nets.

  12. Prevalence of resistance associated polymorphisms in Plasmodium falciparum field isolates from southern Pakistan

    Directory of Open Access Journals (Sweden)

    Beg Mohammad A

    2011-01-01

    Full Text Available Abstract Background Scarce data are available on Plasmodium falciparum anti-malarial drug resistance in Pakistan. The aim of this study was, therefore, to determine the prevalence of P. falciparum resistance associated polymorphisms in field isolates from southern Pakistan. Methods Blood samples from 244 patients with blood-slide confirmed P. falciparum mono-infections were collected between 2005-2007. Single nucleotide polymorphisms in the P. falciparum chloroquine resistance transporter (pfcrt K76T, multi drug resistance (pfmdr1 N86Y, dihydrofolate reductase (pfdhfr A16V, N51I, C59R, S108N, I164L and dihydropteroate synthetase (pfdhps A436S, G437A and E540K genes and pfmdr1 gene copy numbers were determined using PCR based methods. Results The prevalence of pfcrt 76T and pfmdr1 86Y was 93% and 57%, respectively. The prevalence of pfdhfr double mutations 59R + 108N/51R + 108N was 92%. The pfdhfr triple mutation (51I, 59R, 108N occurred in 3% of samples. The pfdhfr (51I, 59R, 108N and pfdhps (437G, 540E quintuple mutation was found in one isolate. Pfdhps 437G was observed in 51% and 540E in 1% of the isolates. One isolate had two pfmdr1 copies and carried the pfmdr1 86Y and pfcrt 76T alleles. Conclusions The results indicate high prevalence of in vivo resistance to chloroquine, whereas high grade resistance to sulphadoxine-pyrimethamine does not appear to be widespread among P. falciparum in southern Pakistan.

  13. MAAP: malarial adhesins and adhesin-like proteins predictor.

    Science.gov (United States)

    Ansari, Faraz Alam; Kumar, Naveen; Bala Subramanyam, Mekapati; Gnanamani, Muthiah; Ramachandran, Srinivasan

    2008-02-15

    sequence in any of the six models. The results of MAAP runs on complete proteomes of Plasmodium species revealed that in Plasmodium falciparum at P(maap) scores above 0.0, we observed a sensitivity of 100% with two false positives. In P. vivax and P. yoelii an optimal threshold P(maap) score of 0.7 was optimal with very few false positives (upto 5). Several new predictions were obtained. This list includes hypothetical protein PF14_0040, interspersed repeat antigen, STEVOR, liver stage antigen, SURFIN, RIFIN, stevor (3D7-stevorT3-2), mature parasite-infected erythrocyte surface antigen or P. falciparum erythrocyte membrane protein 2, merozoite surface protein 6 in P. falciparum, circumsporozoite proteins, microneme protein-1, Vir18, Vir12-like, Vir12, Vir18-like, Vir18-related and Vir4 in P. vivax, circumsporozoite protein/thrombospondin related anonymous proteins, 28 kDa ookinete surface protein, yir1, and yir4 of P. yoelii. Among these, a few proteins identified by MAAP were matched with those identified by other groups using different experimental and theoretical strategies. Most other interspersed repeat proteins in Plasmodium species had lower P(maap) scores. These new predictions could serve as new leads for further experimental characterization (MAAP webserver: http://maap.igib.res.in).

  14. Characterization of a Plasmodium falciparum macrophage-migration inhibitory factor homologue.

    Science.gov (United States)

    Cordery, Damien V; Kishore, Uday; Kyes, Sue; Shafi, Mohammed J; Watkins, Katherine R; Williams, Thomas N; Marsh, Kevin; Urban, Britta C

    2007-03-15

    Macrophage-migration inhibitory factor (MIF), one of the first cytokines described, has a broad range of proinflammatory properties. The genome sequencing project of Plasmodium falciparum identified a parasite homologue of MIF. The protein is expressed during the asexual blood stages of the parasite life cycle that cause malarial disease. The identification of a parasite homologue of MIF raised the question of whether it affects monocyte function in a manner similar to its human counterpart. Recombinant P. falciparum MIF (PfMIF) was generated and used in vitro to assess its influence on monocyte function. Antibodies generated against PfMIF were used to determine the expression profile and localization of the protein in blood-stage parasites. Antibody responses to PfMIF were determined in Kenyan children with acute malaria and in control subjects. PfMIF protein was expressed in asexual blood-stage parasites, localized to the Maurer's cleft. In vitro treatment of monocytes with PfMIF inhibited random migration and reduced the surface expression of Toll-like receptor (TLR) 2, TLR4, and CD86. These results indicate that PfMIF is released during blood-stage malaria and potentially modulates the function of monocytes during acute P. falciparum infection.

  15. Acute Kidney Injury in Children with Plasmodium falciparum Malaria: Determinants for Mortality.

    Science.gov (United States)

    Prasad, Rajniti; Mishra, Om P

    2016-01-01

    ♦ Acute kidney injury (AKI) in P. falciparum malaria infection is an important morbidity in children. The purpose of the present study was done to observe the renal involvement, associated morbidities and outcome. ♦ Out of 156 patients with severe P. falciparum malaria, diagnosed on the basis of compatible clinical presentations and positive malarial parasites in the peripheral blood smear and/or histidine rich protein 2 antigen, 31 had AKI at presentation and were analyzed. ♦ Of 31 (19.9%) patients with AKI, 4 were classified at risk, 11 injury, and 16 failure stage, as per pRIFLE criteria (pediatric version of RIFLE [R = risk, I = injury, F = failure, L = loss E = end-stage kidney disease]). Mean age of children with AKI was 7.7 ± 3.2 years. A significantly higher proportion of patients with AKI had hypoglycemia (41.9%), pulmonary edema (32.2%), and disseminated intravascular coagulation (DIC) (29.0%) compared to those without AKI (18.4%, 4.8%, and 3.2%, respectively). Twelve patients (38.7%) required peritoneal dialysis (PD), 8 (25.8%) died, and all were in failure stage. The non-survivors had significantly higher blood urea (p = 0.005) and serum creatinine levels (p = 0.042), lower glomerular filtration rate (p falciparum malaria is one of the severe systemic complications. Duration of illness and presence of comorbidities adversely affected the outcome. Copyright © 2016 International Society for Peritoneal Dialysis.

  16. Antibodies against PfEMP1, RIFIN, MSP3 and GLURP are acquired during controlled Plasmodium falciparum malaria infections in naïve volunteers

    DEFF Research Database (Denmark)

    Turner, Louise; Wang, Christian W; Lavstsen, Thomas;

    2011-01-01

    Antibodies to polymorphic antigens expressed during the parasites erythrocytic stages are important mediators of protective immunity against P. falciparum malaria. Therefore, polymorphic blood stage antigens like MSP3, EBA-175 and GLURP and variant surface antigens PfEMP1 and RIFIN are considered...... antigens, PfEMP1 and RIFIN as well as MSP3 and GLURP, are acquired during a single short low density P. falciparum infection in non-immune individuals including strain transcendent PfEMP1 immune responses. These data indicate that the immunogenicity of the variant surface antigens is similar to the less...... diverse merozoite antigens. The acquisition of a broad and strain transcendent repertoire of PfEMP1 antibodies may reflect a parasite strategy of expressing most or all PfEMP1 variants at liver release optimizing the likelihood of survival and establishment of chronic infections in the new host....

  17. Antibody responses to a novel Plasmodium falciparum merozoite surface protein vaccine correlate with protection against experimental malaria infection in Aotus monkeys.

    Science.gov (United States)

    Cavanagh, David R; Kocken, Clemens H M; White, John H; Cowan, Graeme J M; Samuel, Kay; Dubbeld, Martin A; Voorberg-van der Wel, Annemarie; Thomas, Alan W; McBride, Jana S; Arnot, David E

    2014-01-01

    The Block 2 region of the merozoite surface protein-1 (MSP-1) of Plasmodium falciparum has been identified as a target of protective immunity by a combination of seroepidemiology and parasite population genetics. Immunogenicity studies in small animals and Aotus monkeys were used to determine the efficacy of recombinant antigens derived from this region of MSP-1 as a potential vaccine antigen. Aotus lemurinus griseimembra monkeys were immunized three times with a recombinant antigen derived from the Block 2 region of MSP-1 of the monkey-adapted challenge strain, FVO of Plasmodium falciparum, using an adjuvant suitable for use in humans. Immunofluorescent antibody assays (IFA) against erythrocytes infected with P. falciparum using sera from the immunized monkeys showed that the MSP-1 Block 2 antigen induced significant antibody responses to whole malaria parasites. MSP-1 Block 2 antigen-specific enzyme-linked immunosorbent assays (ELISA) showed no significant differences in antibody titers between immunized animals. Immunized animals were challenged with the virulent P. falciparum FVO isolate and monitored for 21 days. Two out of four immunized animals were able to control their parasitaemia during the follow-up period, whereas two out of two controls developed fulminating parasitemia. Parasite-specific serum antibody titers measured by IFA were four-fold higher in protected animals than in unprotected animals. In addition, peptide-based epitope mapping of serum antibodies from immunized Aotus showed distinct differences in epitope specificities between protected and unprotected animals.

  18. Asymptomatic infection in individuals from the municipality of Barcelos (Brazilian Amazon is not associated with the anti-Plasmodium falciparum glycosylphosphatidylinositol antibody response

    Directory of Open Access Journals (Sweden)

    Larissa Rodrigues Gomes

    2013-09-01

    Full Text Available Anti-glycosylphosphatidylinositol (GPI antibodies (Abs may reflect and mediate, at least partially, anti-disease immunity in malaria by neutralising the toxic effect of parasitic GPI. Thus, we assessed the anti-GPI Ab response in asymptomatic individuals living in an area of the Brazilian Amazon that has a high level of malaria transmission. For comparative purposes, we also investigated the Ab response to a crude extract prepared from Plasmodium falciparum, the merozoite surface protein (MSP3 antigen of P. falciparum and the MSP 1 antigen of Plasmodium vivax (PvMSP1-19 in these individuals and in Angolan patients with acute malaria. Our data suggest that the Ab response against P. falciparum GPI is not associated with P. falciparum asymptomatic infection in individuals who have been chronically exposed to malaria in the Brazilian Amazon. However, this Ab response could be related to ongoing parasitaemia (as was previously shown in the Angolan patients. In addition, our data show that PvMSP1-19may be a good marker antigen to reflect previous exposure to Plasmodium in areas that have a high transmission rate of P. vivax.

  19. Pathological rupture of malarial spleen.

    Directory of Open Access Journals (Sweden)

    Mokashi A

    1992-07-01

    Full Text Available Two cases of spontaneous rupture of malarial spleen are reported here. One of them was a male who was on chloroquine for an acute attack of malaria. While on therapy, he complained of pain in left hypochondrium followed by palpitations. The other patient was a female who was admitted for continuous dull aching pain and fever. In both the patients, exploratory laparotomy revealed an enlarged spleen with tear. Splenectomy was performed. Histopathological examination revealed dilated congested sinusoid with follicular atrophy, and RBCs with malarial parasites. The post-operative course was smooth in both patients.

  20. Use of self-assembling GFP to determine protein topology and compartmentalisation in the Plasmodium falciparum-infected erythrocyte.

    Science.gov (United States)

    Külzer, Simone; Petersen, Wiebke; Baser, Avni; Mandel, Katharina; Przyborski, Jude M

    2013-02-01

    In recent years, and largely supported by the increasing use of transfection technology, much research attention has been given to protein trafficking in the Plasmodium falciparum infected red blood cell. By expression of fluorescent reporter proteins, much information has been gained on both the signals and mechanisms directing proteins to their correct sub-cellular localisation within the parasite and infected host cell. Generally however, verification of the observed fluorescent phenotype is carried out using more traditional techniques such as co-immunofluorescence, protease protection, and cell fractionation followed by Western blot. Here we apply a self-assembling split GFP (saGFP) system and show that this can be used to determine both membrane topology and compartmentalisation using transfection technology alone. As an example, we verify the topology of an ER membrane protein, hDer1-1, and of an exported parasite Hsp40 co-chaperone, PFE55. Additionally, we can demonstrate that this system has the potential to be applied to analysis of organellar proteins.

  1. Thermodynamic concepts in the study of microbial populations: age structure in Plasmodium falciparum infected red blood cells.

    Directory of Open Access Journals (Sweden)

    Jordi Ferrer

    Full Text Available Variability is a hallmark of microbial systems. On the one hand, microbes are subject to environmental heterogeneity and undergo changeable conditions in their immediate surroundings. On the other hand, microbial populations exhibit high cellular diversity. The relation between microbial diversity and variability of population dynamics is difficult to assess. This connection can be quantitatively studied from a perspective that combines in silico models and thermodynamic methods and interpretations. The infection process of Plasmodium falciparum parasitizing human red blood cells under laboratory cultivation conditions is used to illustrate the potential of Individual-based models in the context of predictive microbiology and parasitology. Experimental data from several in vitro cultures are compared to the outcome of an individual-based model and analysed from a thermodynamic perspective. This approach allows distinguishing between intrinsic and external constraints that give rise to the diversity in the infection forms, and it provides a criterion to quantitatively define transient and stationary regimes in the culture. Increasing the ability of models to discriminate between different states of microbial populations enhances their predictive capability which finally leads to a better the control over culture systems. The strategy here presented is of general application and it can substantially improve modelling of other types of microbial communities.

  2. Thermodynamic concepts in the study of microbial populations: age structure in Plasmodium falciparum infected red blood cells.

    Science.gov (United States)

    Ferrer, Jordi; Prats, Clara; López, Daniel; Vidal-Mas, Jaume; Gargallo-Viola, Domingo; Guglietta, Antonio; Giró, Antoni

    2011-01-01

    Variability is a hallmark of microbial systems. On the one hand, microbes are subject to environmental heterogeneity and undergo changeable conditions in their immediate surroundings. On the other hand, microbial populations exhibit high cellular diversity. The relation between microbial diversity and variability of population dynamics is difficult to assess. This connection can be quantitatively studied from a perspective that combines in silico models and thermodynamic methods and interpretations. The infection process of Plasmodium falciparum parasitizing human red blood cells under laboratory cultivation conditions is used to illustrate the potential of Individual-based models in the context of predictive microbiology and parasitology. Experimental data from several in vitro cultures are compared to the outcome of an individual-based model and analysed from a thermodynamic perspective. This approach allows distinguishing between intrinsic and external constraints that give rise to the diversity in the infection forms, and it provides a criterion to quantitatively define transient and stationary regimes in the culture. Increasing the ability of models to discriminate between different states of microbial populations enhances their predictive capability which finally leads to a better the control over culture systems. The strategy here presented is of general application and it can substantially improve modelling of other types of microbial communities.

  3. Stages of in vitro phagocytosis of Plasmodium falciparum-infected erythrocytes by human monocytes Estágios da fagocitose in vitro por monócitos humanos de eritrócitos infectados por Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Maria Imaculada Muniz-Junqueira

    2009-04-01

    Full Text Available Monocytes/macrophages play a critical role in the defense mechanisms against malaria parasites, and are the main cells responsible for the elimination of malaria parasites from the blood circulation. We carried out a microscope-aided evaluation of the stages of in vitro phagocytosis of Plasmodium falciparum-infected erythrocytes, by human monocytes. These cells were obtained from healthy adult individuals by means of centrifugation through a cushion of Percoll density medium and were incubated with erythrocytes infected with Plasmodium falciparum that had previously been incubated with a pool of anti-plasmodial immune serum. We described the stages of phagocytosis, starting from adherence of infected erythrocytes to the phagocyte membrane and ending with their destruction within the phagolisosomes of the monocytes. We observed that the different erythrocytic forms of the parasite were ingested by monocytes, and that the process of phagocytosis may be completed in around 30 minutes. Furthermore, we showed that phagocytosis may occur continuously, such that different phases of the process were observed in the same phagocyte.Monócitos/macrófagos desempenham uma função crítica nos mecanismos de defesa antiplasmódio e constituem as principais células responsáveis pela eliminação das formas eritrocitárias do plasmódio da circulação sangüínea. Realizamos uma avaliação microscópica dos estágios da fagocitose in vitro de eritrócitos infectados por Plasmodium falciparum por monócitos humanos. Essas células foram obtidas de indivíduos adultos sadios por centrifugação em Percoll e incubadas com eritrócitos infectados por Plasmodium falciparum previamente incubados com um pool de soro imune contra plasmódio. Descrevemos os estágios da fagocitose, desde a aderência dos eritrócitos infectados até sua destruição nos fagolisossomas dos monócitos. Observou-se que eritrócitos infectados por todos os diferentes est

  4. Malaria immunoepidemiology in low transmission: correlation of infecting genotype and immune response to domains of Plasmodium falciparum merozoite surface protein 3.

    Science.gov (United States)

    Jordan, Stephen J; Oliveira, Ana L; Hernandez, Jean N; Oster, Robert A; Chattopadhyay, Debasish; Branch, OraLee H; Rayner, Julian C

    2011-05-01

    Malaria caused by Plasmodium falciparum is a major cause of global infant mortality, and no effective vaccine currently exists. Multiple potential vaccine targets have been identified, and immunoepidemiology studies have played a major part in assessing those candidates. When such studies are carried out in high-transmission settings, individuals are often superinfected with complex mixtures of genetically distinct P. falciparum types, making it impossible to directly correlate the genotype of the infecting antigen with the antibody response. In contrast, in regions of low transmission P. falciparum infections are often genetically simple, and direct comparison of infecting genotype and antigen-specific immune responses is possible. As a test of the utility of this approach, responses against several domains and allelic variants of the vaccine candidate P. falciparum merozoite surface protein 3 (PfMSP3) were tested in serum samples collected near Iquitos, Peru. Antibodies recognizing both the conserved C-terminal and the more variable N-terminal domain were identified, but anti-N-terminal responses were more prevalent, of higher titers, and primarily of cytophilic subclasses. Comparing antibody responses to different PfMSP3 variants with the PfMSP3 genotype present at the time of infection showed that anti-N-terminal responses were largely allele class specific, but there was some evidence for responses that cross-reacted across allele classes. Evidence for cross-reactive responses was much stronger when variants within one allele class were tested, which has implications for the rational development of genotype-transcending PfMSP3-based vaccines.

  5. Helminth Infection and Eosinophilia and the Risk of Plasmodium falciparum Malaria in 1- to 6-Year-Old Children in a Malaria Endemic Area

    Science.gov (United States)

    Bejon, Philip; Mwangi, Tabitha W.; Lowe, Brett; Peshu, Norbert; Hill, Adrian V. S.; Marsh, Kevin

    2008-01-01

    Background Helminth infection is common in malaria endemic areas, and an interaction between the two would be of considerable public health importance. Animal models suggest that helminth infections may increase susceptibility to malaria, but epidemiological data has been limited and contradictory. Methodology/Principal Findings In a vaccine trial, we studied 387 one- to six-year-old children for the effect of helminth infections on febrile Plasmodium falciparum malaria episodes. Gastrointestinal helminth infection and eosinophilia were prevalent (25% and 50% respectively), but did not influence susceptibility to malaria. Hazard ratios were 1 for gastrointestinal helminth infection (95% CI 0.6–1.6) and 0.85 and 0.85 for mild and marked eosinophilia, respectively (95% CI 0.56–1.76 and 0.69–1.96). Incident rate ratios for multiple episodes were 0.83 for gastro-intestinal helminth infection (95% CI 0.5–1.33) and 0.86 and 0.98 for mild and marked eosinophilia (95% CI 0.5–1.4 and 0.6–1.5). Conclusions/Significance There was no evidence that infection with gastrointestinal helminths or urinary schistosomiasis increased susceptibility to Plasmodium falciparum malaria in this study. Larger studies including populations with a greater prevalence of helminth infection should be undertaken. PMID:18265875

  6. Co-infection of Long-Term Carriers of Plasmodium falciparum with Schistosoma haematobium Enhances Protection from Febrile Malaria: A Prospective Cohort Study in Mali

    Science.gov (United States)

    Sangala, Jules; Li, Shanping; Doumtabe, Didier; Kone, Younoussou; Traoré, Abdrahamane; Bathily, Aboudramane; Sogoba, Nafomon; Coulibaly, Michel E.; Huang, Chiung-Yu; Ongoiba, Aissata; Kayentao, Kassoum; Diallo, Mouctar; Dramane, Zongo; Nutman, Thomas B.; Crompton, Peter D.; Doumbo, Ogobara; Traore, Boubacar

    2014-01-01

    Background Malaria and schistosomiasis often overlap in tropical and subtropical countries and impose tremendous disease burdens; however, the extent to which schistosomiasis modifies the risk of febrile malaria remains unclear. Methods We evaluated the effect of baseline S. haematobium mono-infection, baseline P. falciparum mono-infection, and co-infection with both parasites on the risk of febrile malaria in a prospective cohort study of 616 children and adults living in Kalifabougou, Mali. Individuals with S. haematobium were treated with praziquantel within 6 weeks of enrollment. Malaria episodes were detected by weekly physical examination and self-referral for 7 months. The primary outcome was time to first or only malaria episode defined as fever (≥37.5°C) and parasitemia (≥2500 asexual parasites/µl). Secondary definitions of malaria using different parasite densities were also explored. Results After adjusting for age, anemia status, sickle cell trait, distance from home to river, residence within a cluster of high S. haematobium transmission, and housing type, baseline P. falciparum mono-infection (n = 254) and co-infection (n = 39) were significantly associated with protection from febrile malaria by Cox regression (hazard ratios 0.71 and 0.44; P = 0.01 and 0.02; reference group: uninfected at baseline). Baseline S. haematobium mono-infection (n = 23) did not associate with malaria protection in the adjusted analysis, but this may be due to lack of statistical power. Anemia significantly interacted with co-infection (P = 0.009), and the malaria-protective effect of co-infection was strongest in non-anemic individuals. Co-infection was an independent negative predictor of lower parasite density at the first febrile malaria episode. Conclusions Co-infection with S. haematobium and P. falciparum is significantly associated with reduced risk of febrile malaria in long-term asymptomatic carriers of P. falciparum. Future studies are

  7. A Field-Tailored Reverse Transcription Loop-Mediated Isothermal Assay for High Sensitivity Detection of Plasmodium falciparum Infections

    Science.gov (United States)

    Kemleu, Sylvie; Guelig, Dylan; Eboumbou Moukoko, Carole; Essangui, Estelle; Diesburg, Steven; Mouliom, Abas; Melingui, Bernard; Manga, Jeanne; Donkeu, Christiane; Epote, Annie; Texier, Gaëtan; LaBarre, Paul; Burton, Robert

    2016-01-01

    Highly sensitive and field deployable molecular diagnostic tools are critically needed for detecting submicroscopic, yet transmissible levels of malaria parasites prevalent in malaria endemic countries worldwide. A reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed and evaluated in comparison with thick blood smear microscopy, an antigen-based rapid diagnostic test (RDT), and an in-house RT-PCR targeting the same RT-LAMP transcript. The optimized assay detected Plasmodium falciparum infections in as little as 0.25ng of total parasite RNA, and exhibited a detection limit of 0.08 parasites/ μL when tested directly on infected whole blood lysates, or ~0.0008 parasites/ μL when using RNA extracts. Assay positivity was observed as early as eight minutes from initiation of the RT-LAMP and in most cases the reaction was complete before twenty minutes. Clinical evaluation of the assay on 132 suspected malaria cases resulted in a positivity rate of 90% for RT-LAMP using extracted RNA, and 85% when using whole blood lysates. The positivity rates were 70% for P. falciparum-specific RDT, 83% for RT-PCR, and 74% for thick blood smear microscopy (Mean parasite density = 36,986 parasites/ μL). Concordance rates between the developed RT-LAMP and comparator tests were greater than 75%, the lowest being with light microscopy (78%, McNemar’s test: P = 0.0002), and the highest was with RT-PCR (87%, McNemar’s test: P = 0.0523). Compared to reference RT-PCR, assay sensitivity was 90% for RT-LAMP on whole blood, and 96% for RT-LAMP using corresponding RNA extracts. Electricity-free heaters were further developed and evaluated in comparison with a battery-operated isothermal amplification machine for use with the developed test in resource-limited settings. Taken together, the data highlight the benefits of targeting high abundant RNA transcripts in molecular diagnosis, as well as the potential usefulness of the developed RT-LAMP-assay in

  8. In silico and in vivo anti-malarial studies of 18β glycyrrhetinic acid from Glycyrrhiza glabra.

    Directory of Open Access Journals (Sweden)

    Komal Kalani

    Full Text Available Malaria is one of the most prevailing fatal diseases causing between 1.2 and 2.7 million deaths all over the world each year. Further, development of resistance against the frontline anti-malarial drugs has created an alarming situation, which requires intensive drug discovery to develop new, more effective, affordable and accessible anti-malarial agents possessing novel modes of action. Over the past few years triterpenoids from higher plants have shown a wide range of anti-malarial activities. As a part of our drug discovery program for anti-malarial agents from Indian medicinal plants, roots of Glycyrrhizaglabra were chemically investigated, which resulted in the isolation and characterization of 18β-glycyrrhetinic acid (GA as a major constituent. The in vitro studies against P. falciparum showed significant (IC50 1.69 µg/ml anti-malarial potential for GA. Similarly, the molecular docking studies showed adequate docking (LibDock score of 71.18 for GA and 131.15 for standard anti-malarial drug chloroquine. Further, in silico pharmacokinetic and drug-likeness studies showed that GA possesses drug-like properties. Finally, in vivo evaluation showed a dose dependent anti-malarial activity ranging from 68-100% at doses of 62.5-250 mg/kg on day 8. To the best of our knowledge this is the first ever report on the anti-malarial potential of GA. Further work on optimization of the anti-malarial lead is under progress.

  9. Plasmodium falciparum gametocyte sex ratios in children with acute, symptomatic, uncomplicated infections treated with amodiaquine

    Directory of Open Access Journals (Sweden)

    Gbotosho Grace O

    2008-09-01

    Full Text Available Abstract Background Amodiaquine is frequently used as a partner drug in combination therapy or in some setting as monotherapy, but little is known about its effects on gametocyte production and sex ratio and its potential influence on transmission in Africa. The effects of amodiaquine on sexual stage parasites and gametocyte sex ratio, and the factors associated with a male-biased sex ratio were evaluated in 612 children with uncomplicated Plasmodium falciparum malaria who were treated with amodiaquine during the period 2000 – 2006 in an endemic area. Methods Clinical, parasitological and laboratory parameters were evaluated before treatment and during follow-up for 28–42 days, and according to standard methods. Gametocyte sex ratio was defined as the proportion of peripheral gametocytes that are male. Results Clinical recovery from illness occurred in all children. Gametocytaemia was detected in 66 patients (11% before treatment and in another 56 patients (9% after treatment. Gametocyte densities were significantly higher by days 3–7 following treatment compared with pre-treatment (P 20,000/μL, gametocytaemia Conclusion Amodiaquine may significantly increase gametocyte carriage, density and sex ratio, and may potentially influence transmission. It is possible that anaemia could have contributed to the increased sex ratio. These findings may have implications for malaria control efforts in Africa.

  10. Measles vaccine coverage and immune response in children of Caiabi and Metuktire Indian tribes living in malarial endemic area: Parque indígena do Xingu, Central Brazil.

    Science.gov (United States)

    Spindel, R; Baruzzi, R G; Souza, V A; Ferreira, A W; Avila, S L

    2001-07-01

    Measles vaccination efficiency was evaluated in children from two Indian tribes - Caiabi and Metuktire - living in the Amazon region, in the Parque Indigena do Xingu (PIX). The population sample, selected at random, made up 37 Caiabi and 28 Metuktire children, aged from 20-75 months (40%). For operational and epidemiological reasons, measles vaccine is given from 6 months of age. The average age of children when they received the vaccine was 11.5 months for the first dose and 20 months for the second. The search for IgG antibodies against measles virus and Plasmodium falciparum was made through immunofluorescence assay (IFA). Measles vaccine coverage has reached 60% at 12 months of age and 92% at 18 months, whereas post-vaccine serum conversion was 95% in Caiabi children (geometric mean of titres (GMT) 126) and 89% in Metuktire (GMT 109). The difference in GMT is not statistically significant. Seventy-three per cent of Caiabi children (GMT 101) and 100% of Metuktire children (GMT135) were plasmodium antibody positive, showing they had been exposed to malarial infection. Despite the differences detected, the immune response to measles vaccine was satisfactory in both groups, with a positive percentage consistent with that achieved in non-malarial areas in Americas. The results show the efficiency of a vaccination programme in an indigenous area despite the difficulties in reaching the villages and maintaining the cold chain, and also despite the malaria endemicity.

  11. Infants' Peripheral Blood Lymphocyte Composition Reflects Both Maternal and Post-Natal Infection with Plasmodium falciparum

    National Research Council Canada - National Science Library

    Nouatin, Odilon; Gbédandé, Komi; Ibitokou, Samad; Vianou, Bertin; Houngbegnon, Parfait; Ezinmegnon, Sem; Borgella, Sophie; Akplogan, Carine; Cottrell, Gilles; Varani, Stefania; Massougbodji, Achille; Moutairou, Kabirou; Troye-Blomberg, Marita; Deloron, Philippe; Luty, Adrian J F; Fievet, Nadine

    2015-01-01

    Maternal parasitoses modulate fetal immune development, manifesting as altered cellular immunological activity in cord blood that may be linked to enhanced susceptibility to infections in early life...

  12. Multiplicity of Plasmodium falciparum infection in asymptomatic children in Senegal: relation to transmission, age and erythrocyte variants

    Directory of Open Access Journals (Sweden)

    Anchang Judith

    2008-01-01

    Full Text Available Abstract Background Individuals living in malaria endemic areas generally harbour multiple parasite strains. Multiplicity of infection (MOI can be an indicator of immune status. However, whether this is good or bad for the development of immunity to malaria, is still a matter of debate. This study aimed to examine the MOI in asymptomatic children between two and ten years of age and to relate it to erythrocyte variants, clinical attacks, transmission levels and other parasitological indexes. Methods Study took place in Niakhar area in Senegal, where malaria is mesoendemic and seasonal. Three hundred and seventy two asymptomatic children were included. Sickle-cell trait, G6PD deficiency (A- and Santamaria and α+-thalassaemia (-α3.7 type were determined using PCR. Multiplicity of Plasmodium falciparum infection, i.e. number of concurrent clones, was defined by PCR-based genotyping of the merozoite surface protein-2 (msp2, before and at the end of the malaria transmission season. The χ2-test, ANOVA, multivariate linear regression and logistic regression statistical tests were used for data analysis. Results MOI was significantly higher at the end of transmission season. The majority of PCR positive subjects had multiple infections at both time points (64% before and 87% after the transmission season. MOI did not increase in α-thalassaemic and G6PD mutated children. The ABO system and HbAS did not affect MOI at any time points. No association between MOI and clinical attack was observed. MOI did not vary over age at any time points. There was a significant correlation between MOI and parasite density, as the higher parasite counts increases the probability of having multiple infections. Conclusion Taken together our data revealed that α-thalassaemia may have a role in protection against certain parasite strains. The protection against the increase in MOI after the transmission season conferred by G6PD deficiency is probably due to clearance of

  13. Pf155/RESA protein influences the dynamic microcirculatory behavior of ring-stage Plasmodium falciparum infected red blood cells

    Science.gov (United States)

    Diez-Silva, Monica; Park, Yongkeun; Huang, Sha; Bow, Hansen; Mercereau-Puijalon, Odile; Deplaine, Guillaume; Lavazec, Catherine; Perrot, Sylvie; Bonnefoy, Serge; Feld, Michael S.; Han, Jongyoon; Dao, Ming; Suresh, Subra

    2012-08-01

    Proteins exported by Plasmodium falciparum to the red blood cell (RBC) membrane modify the structural properties of the parasitized RBC (Pf-RBC). Although quasi-static single cell assays show reduced ring-stage Pf-RBCs deformability, the parameters influencing their microcirculatory behavior remain unexplored. Here, we study the dynamic properties of ring-stage Pf-RBCs and the role of the parasite protein Pf155/Ring-Infected Erythrocyte Surface Antigen (RESA). Diffraction phase microscopy revealed RESA-driven decreased Pf-RBCs membrane fluctuations. Microfluidic experiments showed a RESA-dependent reduction in the Pf-RBCs transit velocity, which was potentiated at febrile temperature. In a microspheres filtration system, incubation at febrile temperature impaired traversal of RESA-expressing Pf-RBCs. These results show that RESA influences ring-stage Pf-RBCs microcirculation, an effect that is fever-enhanced. This is the first identification of a parasite factor influencing the dynamic circulation of young asexual Pf-RBCs in physiologically relevant conditions, offering novel possibilities for interventions to reduce parasite survival and pathogenesis in its human host.

  14. Tetracysteine-based fluorescent tags to study protein localization and trafficking in Plasmodium falciparum-infected erythrocytes.

    Directory of Open Access Journals (Sweden)

    Georgeta Crivat

    Full Text Available Plasmodium falciparum (Pf malaria parasites remodel host erythrocytes by placing membranous structures in the host cell cytoplasm and inserting proteins into the surrounding erythrocyte membranes. Dynamic imaging techniques with high spatial and temporal resolutions are required to study the trafficking pathways of proteins and the time courses of their delivery to the host erythrocyte membrane.Using a tetracysteine (TC motif tag and TC-binding biarsenical fluorophores (BAFs including fluorescein arsenical hairpin (FlAsH and resorufin arsenical hairpin (ReAsH, we detected knob-associated histidine-rich protein (KAHRP constructs in Pf-parasitized erythrocytes and compared their fluorescence signals to those of GFP (green fluorescent protein-tagged KAHRP. Rigorous treatment with BAL (2, 3 dimercaptopropanol; British anti-Lewisite was required to reduce high background due to nonspecific BAF interactions with endogenous cysteine-rich proteins. After this background reduction, similar patterns of fluorescence were obtained from the TC- and GFP-tagged proteins. The fluorescence from FlAsH and ReAsH-labeled protein bleached at faster rates than the fluorescence from GFP-labeled protein.While TC/BAF labeling to Pf-infected erythrocytes is presently limited by high background signals, it may offer a useful complement or alternative to GFP labeling methods. Our observations are in agreement with the currently-accepted model of KAHRP movement through the cytoplasm, including transient association of KAHRP with Maurer's clefts before its incorporation into knobs in the host erythrocyte membrane.

  15. Computational and experimental analysis identified 6-diazo-5-oxonorleucine as a potential agent for treating infection by Plasmodium falciparum.

    Science.gov (United States)

    Plaimas, Kitiporn; Wang, Yulin; Rotimi, Solomon O; Olasehinde, Grace; Fatumo, Segun; Lanzer, Michael; Adebiyi, Ezekiel; König, Rainer

    2013-12-01

    Plasmodium falciparum (PF) is the most severe malaria parasite. It is developing resistance quickly to existing drugs making it indispensable to discover new drugs. Effective drugs have been discovered targeting metabolic enzymes of the parasite. In order to predict new drug targets, computational methods can be used employing database information of metabolism. Using this data, we performed recently a computational network analysis of metabolism of PF. We analyzed the topology of the network to find reactions which are sensitive against perturbations, i.e., when a single enzyme is blocked by drugs. We now used a refined network comprising also the host enzymes which led to a refined set of the five targets glutamyl-tRNA (gln) amidotransferase, hydroxyethylthiazole kinase, deoxyribose-phophate aldolase, pseudouridylate synthase, and deoxyhypusine synthase. It was shown elsewhere that glutamyl-tRNA (gln) amidotransferase of other microorganisms can be inhibited by 6-diazo-5-oxonorleucine. Performing a half maximal inhibitory concentration (IC50) assay, we showed, that 6-diazo-5-oxonorleucine is also severely affecting viability of PF in blood plasma of the human host. We confirmed this by an in vivo study observing Plasmodium berghei infected mice.

  16. Spontaneous Subdural Empyema Following a High-Parasitemia Falciparum Infection in a 58-Year-Old Female From a Malaria-Endemic Region

    Directory of Open Access Journals (Sweden)

    Pedro Pallangyo MD, MPH

    2016-08-01

    Full Text Available Malaria remains a significant public health problem of the tropical world. Falciparum malaria is most prevalent in the sub-Saharan African region, which harbors about 90% of all malaria cases and fatalities globally. Infection by the falciparum species often manifests with a spectrum of multi-organ complications (eg, cerebral malaria, some of which are life-threatening. Spontaneous subdural empyema is a very rare complication of cerebral malaria that portends a very poor prognosis unless diagnosed and treated promptly. We report a case of spontaneous subdural empyema in a 58-year-old woman from Tanzania who presented with high-grade fever, decreased urine output, and altered sensorium.

  17. Acquisition of Antibodies against Plasmodium falciparum Merozoites and Malaria Immunity in Young Children and the Influence of Age, Force of Infection, and Magnitude of Response

    Science.gov (United States)

    Stanisic, Danielle I.; Fowkes, Freya J. I.; Koinari, Melanie; Javati, Sarah; Lin, Enmoore; Kiniboro, Benson; Richards, Jack S.; Robinson, Leanne J.; Schofield, Louis; Kazura, James W.; King, Christopher L.; Zimmerman, Peter; Felger, Ingrid; Siba, Peter M.

    2014-01-01

    Individuals in areas of Plasmodium falciparum endemicity develop immunity to malaria after repeated exposure. Knowledge of the acquisition and nature of protective immune responses to P. falciparum is presently limited, particularly for young children. We examined antibodies (IgM, IgG, and IgG subclasses) to merozoite antigens and their relationship to the prospective risk of malaria in children 1 to 4 years of age in a region of malaria endemicity in Papua New Guinea. IgG, IgG1, and IgG3 responses generally increased with age, were higher in children with active infection, and reflected geographic heterogeneity in malaria transmission. Antigenic properties, rather than host factors, appeared to be the main determinant of the type of IgG subclass produced. High antibody levels were not associated with protection from malaria; in contrast, they were typically associated with an increased risk of malaria. Adjustment for malaria exposure, using a novel molecular measure of the force of infection by P. falciparum, accounted for much of the increased risk, suggesting that the antibodies were markers of higher exposure to P. falciparum. Comparisons between antibodies in this cohort of young children and in a longitudinal cohort of older children suggested that the lack of protective association was explained by lower antibody levels among young children and that there is a threshold level of antibodies required for protection from malaria. Our results suggest that in populations with low immunity, such as young children, antibodies to merozoite antigens may act as biomarkers of malaria exposure and that, with increasing exposure and responses of higher magnitude, antibodies may act as biomarkers of protective immunity. PMID:25422270

  18. Severe Plasmodium falciparum malaria is associated with circulating ultra-large von Willebrand multimers and ADAMTS13 inhibition.

    LENUS (Irish Health Repository)

    Larkin, Deirdre

    2009-03-01

    Plasmodium falciparum infection results in adhesion of infected erythrocytes to blood vessel endothelium, and acute endothelial cell activation, together with sequestration of platelets and leucocytes. We have previously shown that patients with severe infection or fulminant cerebral malaria have significantly increased circulatory levels of the adhesive glycoprotein von Willebrand factor (VWF) and its propeptide, both of which are indices of endothelial cell activation. In this prospective study of patients from Ghana with severe (n = 20) and cerebral (n = 13) P. falciparum malaria, we demonstrate that increased plasma VWF antigen (VWF:Ag) level is associated with disproportionately increased VWF function. VWF collagen binding (VWF:CB) was significantly increased in patients with cerebral malaria and severe malaria (medians 7.6 and 7.0 IU\\/ml versus 1.9 IU\\/ml; p<0.005). This increased VWF:CB correlated with the presence of abnormal ultra-large VWF multimers in patient rather than control plasmas. Concomitant with the increase in VWF:Ag and VWF:CB was a significant persistent reduction in the activity of the VWF-specific cleaving protease ADAMTS13 (approximately 55% of normal; p<0.005). Mixing studies were performed using P. falciparum patient plasma and normal pooled plasma, in the presence or absence of exogenous recombinant ADAMTS13. These studies demonstrated that in malarial plasma, ADAMTS13 function was persistently inhibited in a time-dependent manner. Furthermore, this inhibitory effect was not associated with the presence of known inhibitors of ADAMTS13 enzymatic function (interleukin-6, free haemoglobin, factor VIII or thrombospondin-1). These novel findings suggest that severe P. falciparum infection is associated with acute endothelial cell activation, abnormal circulating ULVWF multimers, and a significant reduction in plasma ADAMTS13 function which is mediated at least in part by an unidentified inhibitor.

  19. Severe Plasmodium falciparum malaria is associated with circulating ultra-large von Willebrand multimers and ADAMTS13 inhibition.

    Directory of Open Access Journals (Sweden)

    Deirdre Larkin

    2009-03-01

    Full Text Available Plasmodium falciparum infection results in adhesion of infected erythrocytes to blood vessel endothelium, and acute endothelial cell activation, together with sequestration of platelets and leucocytes. We have previously shown that patients with severe infection or fulminant cerebral malaria have significantly increased circulatory levels of the adhesive glycoprotein von Willebrand factor (VWF and its propeptide, both of which are indices of endothelial cell activation. In this prospective study of patients from Ghana with severe (n = 20 and cerebral (n = 13 P. falciparum malaria, we demonstrate that increased plasma VWF antigen (VWF:Ag level is associated with disproportionately increased VWF function. VWF collagen binding (VWF:CB was significantly increased in patients with cerebral malaria and severe malaria (medians 7.6 and 7.0 IU/ml versus 1.9 IU/ml; p<0.005. This increased VWF:CB correlated with the presence of abnormal ultra-large VWF multimers in patient rather than control plasmas. Concomitant with the increase in VWF:Ag and VWF:CB was a significant persistent reduction in the activity of the VWF-specific cleaving protease ADAMTS13 (approximately 55% of normal; p<0.005. Mixing studies were performed using P. falciparum patient plasma and normal pooled plasma, in the presence or absence of exogenous recombinant ADAMTS13. These studies demonstrated that in malarial plasma, ADAMTS13 function was persistently inhibited in a time-dependent manner. Furthermore, this inhibitory effect was not associated with the presence of known inhibitors of ADAMTS13 enzymatic function (interleukin-6, free haemoglobin, factor VIII or thrombospondin-1. These novel findings suggest that severe P. falciparum infection is associated with acute endothelial cell activation, abnormal circulating ULVWF multimers, and a significant reduction in plasma ADAMTS13 function which is mediated at least in part by an unidentified inhibitor.

  20. The malarial impact on the nutritional status of Amazonian adult subjects Impacto da malaria no estado nutricional de doentes adultos da Amazônia

    Directory of Open Access Journals (Sweden)

    Paulo C. M. Pereira

    1995-02-01

    Full Text Available The anthropometric (body weight, height, upper arm circumference, triceps and subescapular skinfolds; Quetelet index and arm muscle circunference and blood biochemistry (proteins and lipids parameters were evaluated in 93 males and 27 females, 17-72 years old voluntaries living in the malarial endemic area of Humaita city (southwest Amazon. According to their malarial history they were assembled in four different groups: G1-controls without malarial history (n:30; G2 - controls with malarial history but without actual manifestation of the disease (n:40; G3 - patients with Plasmodium vivax (n:19 and G4 - patients with Plasmodium falciparum (n:31. The malarial status was stablished by clinical and laboratory findings. The overall data of anthropometry and blood biochemistry discriminated the groups differently. The anthropometric data were low sensitive and contrasted only the two extremes (G1>G4 whereas the biochemistry differentiated two big groups, the healthy (G1+G2 and the patients (G3+G4. The nutritional status of the P. falciparum patients was highly depressed for most of the studied indices but none was sensitive enough to differentiate this group from the P. vivax group (G3. On the other hand the two healthy groups could be differentiated through the levels of ceruloplasmin (G1G2. Thus it seems that the malaria-malnourishment state exists and the results could be framed either as a consequence of nutrient sink and/or the infection stress both motivated by the parasite.A avaliação antropométrica (pêso, altura, circunferência branquial, prega cutânea tricipital, prega cutânea subescapular, índice de Quetelet e circunferência muscular do braço e bioquímica (proteínas e lipides foi realizado em 120 indivíduos (93 masculinos e 27 do sexo feminino, de 17 a 72 anos de idade, moradores de área endêmica de malária (Humaitá -AM. De acordo com a história da doença (malária eles foram divididos em 4 grupos: G1 - controle (n = 30

  1. Infecção tripla por Trypanosoma cruzi, Plasmodium vivax e P. falciparum: relato de caso Triple infection by Trypanosoma cruzi, Plasmodium vivax and P. falciparum: case report

    Directory of Open Access Journals (Sweden)

    Andrea Silvestre Lobão Costa

    2012-12-01

    Full Text Available O presente registro acerca da identificação de infecção aguda de dois plasmódios e um Trypanosoma constitui evento raro. Pré-escolar, sexo feminino, 5 anos de idade, apresentou síndrome febril; foi submetida a exame de gota espessa no qual foram identificadas formas assexuadas e sexuadas de Plasmodium vivax e P. falciparum, respectivamente, além de tripomastigotas sanguíneos de Trypanosoma cruzi. No peridomicílio, foram encontrados insetos da espécie Rhodnius sp. Os autores reforçam a importância dos estudos dos ciclos peridomiciliares de T. cruzi em ambientes silvestres na Amazônia e discutem a importância da estratégia de vigilância continuada de Trypanosomas spp. nos exames de gota espessa.This report describes a rare case of acute infection caused by two Plasmodia and one Trypanosoma. 5 year-old female patient attending kindergarten presented persistent fever syndrome. She was submitted to thick smear exam, in which asexual and sexual forms of Plasmodium vivax and P. falciparum were detected, respectively, as well as trypomastigotes of Trypanosoma cruzi. Rhodnius sp. triatomines were found in the vicinity. The authors reinforce the importance of investigating the domiciliary cycles of T. cruzi in the Amazon region. Moreover, we discuss the importance of continuous monitoring of Trypanosomas spp. in thick smear exams.

  2. A nuclear targeting system in Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Kochakarn Theerarat

    2010-05-01

    Full Text Available Abstract Background The distinct differences in gene control mechanisms acting in the nucleus between Plasmodium falciparum and the human host could lead to new potential drug targets for anti-malarial development. New molecular toolkits are required for dissecting molecular machineries in the P. falciparum nucleus. One valuable tool commonly used in model organisms is protein targeting to specific sub-cellular locations. Targeting proteins to specified locations allows labeling of organelles for microscopy, or testing of how the protein of interest modulates organelle function. In recent years, this approach has been developed for various malaria organelles, such as the mitochondrion and the apicoplast. A tool for targeting a protein of choice to the P. falciparum nucleus using an exogenous nuclear localization sequence is reported here. Methods To develop a nuclear targeting system, a putative nuclear localization sequence was fused with green fluorescent protein (GFP. The nuclear localization sequence from the yeast transcription factor Gal4 was chosen because of its well-defined nuclear localization signal. A series of truncated Gal4 constructs was also created to narrow down the nuclear localization sequence necessary for P. falciparum nuclear import. Transfected parasites were analysed by fluorescent and laser-scanning confocal microscopy. Results The nuclear localization sequence of Gal4 is functional in P. falciparum. It effectively transported GFP into the nucleus, and the first 74 amino acid residues were sufficient for nuclear localization. Conclusions The Gal4 fusion technique enables specific transport of a protein of choice into the P. falciparum nucleus, and thus provides a tool for labeling nuclei without using DNA-staining dyes. The finding also indicates similarities between the nuclear transport mechanisms of yeast and P. falciparum. Since the nuclear transport system has been thoroughly studied in yeast, this could give clues

  3. A survey of malaria and some arboviral infections among suspected febrile patients visiting a health centre in Simawa, Ogun State, Nigeria.

    Science.gov (United States)

    Ayorinde, Adenola F; Oyeyiga, Ayorinde M; Nosegbe, Nwakaego O; Folarin, Onikepe A

    2016-01-01

    Most febrile patients are often misdiagnosed with malaria due to similar symptoms, such as fever shared by malaria and certain arboviral infections. This study surveyed the incidence of malaria, chikungunya and dengue infections among a number of suspected febrile patients visiting Simawa Health Centre, Ogun State, Nigeria. Venous blood samples were obtained from 60 febrile patients (age 3-70 years) visiting the centre between April and May 2014. The rapid diagnostic test (RDT) was used to detect the presence of chikungunya (CHK) antibodies (IgM), dengue (DEN) virus and antibodies (NS1, IgM and IgG) and malaria parasites (Plasmodium falciparum and Plasmodium vivax). Malarial confirmatory tests were by microscopy and nested polymerase chain reaction (PCR) using the polymorphic region of Glutamate-Rich Protein (GLURP) gene. The complexity of P. falciparum infection in the community also determined by the use of nested PCR. These three mosquito-borne infections were observed in 63% (38) of the patients. The prevalence of CHK, DEN and malarial infections singularly were 11%, 0% and 63%, respectively, whereas malaria with either CHK or DEN infections were 24% (9) and 3% (1), respectively. No subjects were positive for CHK and DEN co-infection. Malarial microscopic confirmation was in 94% (32) of the malaria RDT-positive samples, 50% (17) were successfully analysed by nested PCR and the mean multiplicity of infection was 1.6 (1-3 clones). One patient sample harboured both P. falciparum and P. vivax. The study reports the presence of some arboviral infections having similar symptoms with malaria at Simawa, Ogun State. The proper diagnosis of infectious diseases is important for controlling them.

  4. Antibodies from malaria-exposed pregnant women recognize trypsin resistant epitopes on the surface of Plasmodium falciparum-infected erythrocytes selected for adhesion to chondroitin sulphate A

    DEFF Research Database (Denmark)

    Sharling, Lisa; Enevold, Anders; Sowa, Kordai M P;

    2004-01-01

    BACKGROUND: The ability of Plasmodium falciparum-infected erythrocytes to adhere to the microvasculature endothelium is thought to play a causal role in malaria pathogenesis. Cytoadhesion to endothelial receptors is generally found to be highly sensitive to trypsinization of the infected erythroc......BACKGROUND: The ability of Plasmodium falciparum-infected erythrocytes to adhere to the microvasculature endothelium is thought to play a causal role in malaria pathogenesis. Cytoadhesion to endothelial receptors is generally found to be highly sensitive to trypsinization of the infected...... erythrocyte surface. However, several studies have found that parasite adhesion to placental receptors can be markedly less sensitive to trypsin. This study investigates whether chondroitin sulphate A (CSA) binding parasites express trypsin-resistant variant surface antigens (VSA) that bind female......-specific antibodies induced as a result of pregnancy associated malaria (PAM). METHODS: Fluorescence activated cell sorting (FACS) was used to measure the levels of adult Scottish and Ghanaian male, and Ghanaian pregnant female plasma immunoglobulin G (IgG) that bind to the surface of infected erythrocytes. P...

  5. Surveillance of the efficacy of artemether-lumefantrine and artesunate-amodiaquine for the treatment of uncomplicated Plasmodium falciparum among children under five in Togo, 2005-2009

    Directory of Open Access Journals (Sweden)

    Dorkenoo Monique A

    2012-10-01

    Full Text Available Abstract Background Malaria remains a major public health problem in Togo. The national malaria control programme in Togo changed the anti-malarial treatment policy from monotherapy to artemisinin combination therapy in 2004. This study reports the results of therapeutic efficacy studies conducted on artemether-lumefantrine and artesunate-amodiaquine for the treatment of uncomplicated Plasmodium falciparum malaria in Togo, between 2005 and 2009. Methods Children between 6 and 59 months of age, who were symptomatically infected with P. falciparum, were treated with either artemether-lumefantrine or artesunate-amodiaquine. The primary end-point was the 28-day cure rate, PCR-corrected for reinfection and recrudescence. Studies were conducted according to the standardized WHO protocol for the assessment of the efficacy of anti-malarial treatment. Differences between categorical data were compared using the chi-square test or the Fisher’s exact test where cell counts were ≤ 5. Differences in continuous data were compared using a t-test. Results A total of 16 studies were conducted in five sentinel sites, with 459, 505 and 332 children included in 2005, 2007 and 2009, respectively. The PCR-corrected 28-day cure rates using the per-protocol analysis were between 96%-100% for artemether-lumefantrine and 94%-100% for artesunate-amodiaquine. Conclusions Both formulations of artemisinin-based combination therapy were effective over time and no severe adverse events related to the treatment were reported during the studies.

  6. Seasonal variation in agglutination of Plasmodium falciparum-infected erythrocytes

    DEFF Research Database (Denmark)

    Giha, H A; Theander, T G; Staalsø, T;

    1998-01-01

    place in the absence of disease, presumably as a consequence of subclinical infection. This is the first demonstration of marked seasonal fluctuations in the capacity of individuals' sera to agglutinate parasitized red blood cells. Possible explanations for this effect include a decrease in the levels...... malaria infection samples taken from five of the cohort members. Our data show that the capacity of donor plasma samples to agglutinate parasitized cells depended largely on the time of sampling relative to the transmission season, at least within this epidemiologic setting. Thus, although less than half...

  7. A PfRH5-Based Vaccine Is Efficacious against Heterologous Strain Blood-Stage Plasmodium falciparum Infection in Aotus Monkeys

    Science.gov (United States)

    Douglas, Alexander D.; Baldeviano, G. Christian; Lucas, Carmen M.; Lugo-Roman, Luis A.; Crosnier, Cécile; Bartholdson, S. Josefin; Diouf, Ababacar; Miura, Kazutoyo; Lambert, Lynn E.; Ventocilla, Julio A.; Leiva, Karina P.; Milne, Kathryn H.; Illingworth, Joseph J.; Spencer, Alexandra J.; Hjerrild, Kathryn A.; Alanine, Daniel G.W.; Turner, Alison V.; Moorhead, Jeromy T.; Edgel, Kimberly A.; Wu, Yimin; Long, Carole A.; Wright, Gavin J.; Lescano, Andrés G.; Draper, Simon J.

    2015-01-01

    Summary Antigenic diversity has posed a critical barrier to vaccine development against the pathogenic blood-stage infection of the human malaria parasite Plasmodium falciparum. To date, only strain-specific protection has been reported by trials of such vaccines in nonhuman primates. We recently showed that P. falciparum reticulocyte binding protein homolog 5 (PfRH5), a merozoite adhesin required for erythrocyte invasion, is highly susceptible to vaccine-inducible strain-transcending parasite-neutralizing antibody. In vivo efficacy of PfRH5-based vaccines has not previously been evaluated. Here, we demonstrate that PfRH5-based vaccines can protect Aotus monkeys against a virulent vaccine-heterologous P. falciparum challenge and show that such protection can be achieved by a human-compatible vaccine formulation. Protection was associated with anti-PfRH5 antibody concentration and in vitro parasite-neutralizing activity, supporting the use of this in vitro assay to predict the in vivo efficacy of future vaccine candidates. These data suggest that PfRH5-based vaccines have potential to achieve strain-transcending efficacy in humans. PMID:25590760

  8. Alterations in early cytokine-mediated immune responses to Plasmodium falciparum infection in Tanzanian children with mineral element deficiencies: a cross-sectional survey

    Directory of Open Access Journals (Sweden)

    Jeurink Prescilla V

    2010-05-01

    Full Text Available Abstract Background Deficiencies in vitamins and mineral elements are important causes of morbidity in developing countries, possibly because they lead to defective immune responses to infection. The aim of the study was to assess the effects of mineral element deficiencies on early innate cytokine responses to Plasmodium falciparum malaria. Methods Peripheral blood mononuclear cells from 304 Tanzanian children aged 6-72 months were stimulated with P. falciparum-parasitized erythrocytes obtained from in vitro cultures. Results The results showed a significant increase by 74% in geometric mean of TNF production in malaria-infected individuals with zinc deficiency (11% to 240%; 95% CI. Iron deficiency anaemia was associated with increased TNF production in infected individuals and overall with increased IL-10 production, while magnesium deficiency induced increased production of IL-10 by 46% (13% to 144% in uninfected donors. All donors showed a response towards IL-1β production, drawing special attention for its possible protective role in early innate immune responses to malaria. Conclusions In view of these results, the findings show plasticity in cytokine profiles of mononuclear cells reacting to malaria infection under conditions of different micronutrient deficiencies. These findings lay the foundations for future inclusion of a combination of precisely selected set of micronutrients rather than single nutrients as part of malaria vaccine intervention programmes in endemic countries.

  9. A single point in protein trafficking by Plasmodium falciparum determines the expression of major antigens on the surface of infected erythrocytes targeted by human antibodies.

    Science.gov (United States)

    Chan, Jo-Anne; Howell, Katherine B; Langer, Christine; Maier, Alexander G; Hasang, Wina; Rogerson, Stephen J; Petter, Michaela; Chesson, Joanne; Stanisic, Danielle I; Duffy, Michael F; Cooke, Brian M; Siba, Peter M; Mueller, Ivo; Bull, Peter C; Marsh, Kevin; Fowkes, Freya J I; Beeson, James G

    2016-11-01

    Antibodies to blood-stage antigens of Plasmodium falciparum play a pivotal role in human immunity to malaria. During parasite development, multiple proteins are trafficked from the intracellular parasite to the surface of P. falciparum-infected erythrocytes (IEs). However, the relative importance of different proteins as targets of acquired antibodies, and key pathways involved in trafficking major antigens remain to be clearly defined. We quantified antibodies to surface antigens among children, adults, and pregnant women from different malaria-exposed regions. We quantified the importance of antigens as antibody targets using genetically engineered P. falciparum with modified surface antigen expression. Genetic deletion of the trafficking protein skeleton-binding protein-1 (SBP1), which is involved in trafficking the surface antigen PfEMP1, led to a dramatic reduction in antibody recognition of IEs and the ability of human antibodies to promote opsonic phagocytosis of IEs, a key mechanism of parasite clearance. The great majority of antibody epitopes on the IE surface were SBP1-dependent. This was demonstrated using parasite isolates with different genetic or phenotypic backgrounds, and among antibodies from children, adults, and pregnant women in different populations. Comparisons of antibody reactivity to parasite isolates with SBP1 deletion or inhibited PfEMP1 expression suggest that PfEMP1 is the dominant target of acquired human antibodies, and that other P. falciparum IE surface proteins are minor targets. These results establish SBP1 as part of a critical pathway for the trafficking of major surface antigens targeted by human immunity, and have key implications for vaccine development, and quantifying immunity in populations.

  10. Incidence of human malaria infection in northern hilly region of Balochistan, adjoining with NWFP, Pakistan: district Zhob.

    Science.gov (United States)

    Yasinzai, Mohammad Iqbal; Kakarsulemankhel, Juma Khan

    2008-06-15

    This study was conducted to investigate the incidence of malarial infections in human population in 37 localities of district Zhob, Balochistan, Pakistan. Malarial parasites were identified in the blood slides of suspected patients of the disease from July, 2004 to June, 2006 and encompassed 7748 subjects. Out of 7748 suspected cases of malaria, 3240 (41.8%) were found to be positive for malarial parasite in blood smear slides. Out of positive cases, 1681 (51.8%) were identified as Plasmodium vivax infection and 1559 (48.1%) cases with P. falciparum. However, seasonal variation was also noted with the highest (85.4%: 141/165) infection of P. vivax in March and lowest (18.6%: 59/316) in October while infection of P. falciparum was highest (81.3%: 257/316) in October and lowest (14.5%: 24/165) in March. Infection with P. vivax in male was 75.7% (125/165) in March and in female 26.3% (58/220) in May whereas infection of P. falciparum in male was 61.5% (245/398) in July and in female was 20.5% (65/316) in October. These results are compared with those of other studies done in Pakistan. Cases of P. malariae and P. ovale were not found in the present study. In conclusion it can be pointed out that the high incidence rate of P. vivax (51.8%:1681/3240) in Zhob district poses a significant health hazard because it may also lead to cerebral malaria as it was suggested by previous workers.

  11. Surface area loss and increased sphericity account for the splenic entrapment of subpopulations of Plasmodium falciparum ring-infected erythrocytes.

    Directory of Open Access Journals (Sweden)

    Innocent Safeukui

    Full Text Available Ex vivo perfusion of human spleens revealed innate retention of numerous cultured Plasmodium falciparum ring-infected red blood cells (ring-iRBCs. Ring-iRBC retention was confirmed by a microsphiltration device, a microbead-based technology that mimics the mechanical filtering function of the human spleen. However, the cellular alterations underpinning this retention remain unclear. Here, we use ImageStream technology to analyze infected RBCs' morphology and cell dimensions before and after fractionation with microsphiltration. Compared to fresh normal RBCs, the mean cell membrane surface area loss of trophozoite-iRBCs, ring-iRBCs and uninfected co-cultured RBCs (uRBCs was 14.2% (range: 8.3-21.9%, 9.6% (7.3-12.2% and 3.7% (0-8.4, respectively. Microsphilters retained 100%, ∼50% and 4% of trophozoite-iRBCs, ring-iRBCs and uRBCs, respectively. Retained ring-iRBCs display reduced surface area values (estimated mean, range: 17%, 15-18%, similar to the previously shown threshold of surface-deficient RBCs retention in the human spleen (surface area loss: >18%. By contrast, ring-iRBCs that successfully traversed microsphilters had minimal surface area loss and normal sphericity, suggesting that these parameters are determinants of their retention. To confirm this hypothesis, fresh normal RBCs were exposed to lysophosphatidylcholine to induce a controlled loss of surface area. This resulted in a dose-dependent retention in microsphilters, with complete retention occurring for RBCs displaying >14% surface area loss. Taken together, these data demonstrate that surface area loss and resultant increased sphericity drive ring-iRBC retention in microsphilters, and contribute to splenic entrapment of a subpopulation of ring-iRBCs. These findings trigger more interest in malaria research fields, including modeling of infection kinetics, estimation of parasite load, and analysis of risk factors for severe clinical forms. The determination of the threshold of

  12. Relationships between maternal malaria and malarial immune responses in mothers and neonates

    DEFF Research Database (Denmark)

    Rasheed, F N; Bulmer, J N; De Francisco, A

    1995-01-01

    and schizonts (190L and 190N) were higher in neonates than mothers. There was no clear relationship between maternal malaria and neonatal mean lymphoproliferation to malarial antigens, although fewer neonates responded when mothers were actively infected. Matched maternal and neonatal lymphoproliferation...... responses did not correlate. However, first born neonatal lymphoproliferation to PPD and malarial antigens appeared lower than other neonates, in agreement with lower lymphoproliferation in primigravidae compared with multigravidae. Also in common with mothers, autologous plasma suppressed neonatal...... lymphoproliferation to PPD and malarial antigens, suggesting common immunoregulation. Higher cortisol or other circulating factors in first pregnancies may be implicated. The relevance of cell-mediated malarial immune responses detected at birth remains to be established....

  13. Evaluating Controlled Human Malaria Infection in Kenyan Adults with Varying Degrees of Prior Exposure to Plasmodium falciparum using sporozoites administered by intramuscular injection

    Directory of Open Access Journals (Sweden)

    Susanne Helena Hodgson

    2014-12-01

    Full Text Available Background: Controlled human malaria infection (CHMI studies are a vital tool to accelerate vaccine and drug development. As CHMI trials are performed in a controlled environment, they allow unprecedented, detailed evaluation of parasite growth dynamics (PGD and immunological responses. However, CHMI studies have not been routinely performed in malaria-endemic countries or used to investigate mechanisms of naturally-acquired immunity (NAI to Plasmodium falciparum. Methods: We conducted an open-label, randomized CHMI pilot-study using aseptic, cryopreserved P. falciparum sporozoites (PfSPZ Challenge to evaluate safety, infectivity and PGD in Kenyan adults with low to moderate prior exposure to P. falciparum (Pan African Clinical Trial Registry: PACTR20121100033272. Results: All participants developed blood-stage infection confirmed by qPCR. However one volunteer (110 remained asymptomatic and blood-film negative until day 21 post-injection of PfSPZ Challenge. This volunteer had a reduced parasite multiplication rate (PMR (1.3 in comparison to the other 27 volunteers (median 11.1. A significant correlation was seen between PMR and screening anti-schizont ELISA OD (p=0.044, R=-0.384 but not when volunteer 110 was excluded from the analysis (p=0.112, R=-0.313. Conclusions: PfSPZ Challenge is safe and infectious in malaria-endemic populations and could be used to assess the efficacy of malaria vaccines and drugs in African populations. Whilst our findings are limited by sample size, our pilot study has demonstrated for the first time that NAI may impact on PMR post-CHMI in a detectable fashion, an important finding that should be evaluated in further CHMI studies.

  14. Investigation of volatile organic biomarkers derived from Plasmodium falciparum in vitro

    Directory of Open Access Journals (Sweden)

    Wong Rina PM

    2012-09-01

    Full Text Available Abstract Background There remains a need for techniques that improve the sensitive detection of viable Plasmodium falciparum as part of diagnosis and therapeutic monitoring in clinical studies and usual-care management of malaria infections. A non-invasive breath test based on P. falciparum-associated specific volatile organic compounds (VOCs could fill this gap and provide insights into parasite metabolism and pathogenicity. The aim of this study was to determine whether VOCs are present in the headspace above in vitro P. falciparum cultures. Methods A novel, custom-designed apparatus was developed to enable efficient headspace sampling of infected and non-infected cultures. Conditions were optimized to support cultures of high parasitaemia (>20% to improve the potential detection of parasite-specific VOCs. A number of techniques for VOC analysis were investigated including solid phase micro-extraction using two different polarity fibres, and purge and trap/thermal desorption, each coupled to gas chromatography–mass spectrometry. Each experiment and analysis method was performed at least on two occasions. VOCs were identified by comparing their mass spectra against commercial mass spectral libraries. Results No unique malarial-specific VOCs could be detected relative to those in the control red blood cell cultures. This could reflect sequestration of VOCs into cell membranes and/or culture media but solvent extractions of supernatants and cell lysates using hexane, dichloromethane and ethyl acetate also showed no obvious difference compared to control non-parasitized cultures. Conclusions Future in vivo studies analysing the breath of patients with severe malaria who are harbouring a parasite biomass that is significantly greater than achievable in vitro may yet reveal specific clinically-useful volatile chemical biomarkers.

  15. The antibody response to Plasmodium falciparum Merozoite Surface Protein 4: comparative assessment of specificity and growth inhibitory antibody activity to infection-acquired and immunization-induced epitopes

    Directory of Open Access Journals (Sweden)

    Black Casilda G

    2011-09-01

    Full Text Available Abstract Background Malaria remains a global public health challenge. It is widely believed that an effective vaccine against malaria will need to incorporate multiple antigens from the various stages of the parasite's complex life cycle. Plasmodium falciparum Merozoite Surface Protein 4 (MSP4 is a vaccine candidate that has been selected for development for inclusion in an asexual stage subunit vaccine against malaria. Methods Nine monoclonal antibodies (Mabs were produced against Escherichia coli-expressed recombinant MSP4 protein and characterized. These Mabs were used to develop an MSP4-specific competition ELISA to test the binding specificity of antibodies present in sera from naturally P. falciparum-infected individuals from a malaria endemic region of Vietnam. The Mabs were also tested for their capacity to induce P. falciparum growth inhibition in vitro and compared against polyclonal rabbit serum raised against recombinant MSP4 Results All Mabs reacted with native parasite protein and collectively recognized at least six epitopes. Four of these Mabs recognize reduction-sensitive epitopes within the epidermal growth factor-like domain found near the C-terminus of MSP4. These sera were shown to contain antibodies capable of inhibiting the binding of the six Mabs indicating infection-acquired responses to the six different epitopes of MSP4. All of the six epitopes were readily recognized by human immune sera. Competition ELISA titres varied from 20 to 640, reflecting heterogeneity in the intensity of the humoral response against the protein among different individuals. The IgG responses during acute and convalescent phases of infection were higher to epitopes in the central region than to other parts of MSP4. Immunization with full length MSP4 in Freund's adjuvant induced rabbit polyclonal antisera able to inhibit parasite growth in vitro in a manner proportionate to the antibody titre. By contrast, polyclonal antisera raised to

  16. Malarial Infection of Female BWF1 Lupus Mice Alters the Redox State in Kidney and Liver Tissues and Confers Protection against Lupus Nephritis

    Directory of Open Access Journals (Sweden)

    Saleh Al-Quraishy

    2013-01-01

    Full Text Available Systemic lupus erythematosus (SLE is a prototypic autoimmune disease characterized by an imbalanced redox state and increased apoptosis. Tropical infections, particularly malaria, may confer protection against SLE. Oxidative stress is a hallmark of SLE. We have measured changes in the levels of nitric oxide (NO, hydrogen peroxide (H2O2, malondialdehyde (MDA, and reduced glutathione (GSH in both kidney and liver tissues of female BWF1 lupus mice, an experimental model of SLE, after infection with either live or gamma-irradiated malaria. We observed a decrease in NO, H2O2, and MDA levels in kidney tissues after infection of lupus mice with live malaria. Similarly, the levels of NO and H2O2 were significantly decreased in the liver tissues of lupus mice after infection with live malaria. Conversely, GSH levels were obviously increased in both kidney and liver tissues after infection of lupus mice with either live or gamma-irradiated malaria. Liver and kidney functions were significantly altered after infection of lupus mice with live malaria. We further investigated the ultrastructural changes and detected the number of apoptotic cells in kidney and liver tissues in situ by electron microscopy and TUNEL assays. Our data reveal that infection of lupus mice with malaria confers protection against lupus nephritis.

  17. X-Ray Microanalysis Investigation of the Changes in Na, K, and Hemoglobin Concentration in Plasmodium falciparum-Infected Red Blood Cells

    Science.gov (United States)

    Mauritz, Jakob M.A.; Seear, Rachel; Esposito, Alessandro; Kaminski, Clemens F.; Skepper, Jeremy N.; Warley, Alice; Lew, Virgilio L.; Tiffert, Teresa

    2011-01-01

    Plasmodium falciparum is responsible for severe malaria. During the ∼48 h duration of its asexual reproduction cycle in human red blood cells, the parasite causes profound alterations in the homeostasis of the host red cell, with reversal of the normal Na and K gradients across the host cell membrane, and a drastic fall in hemoglobin content. A question critical to our understanding of how the host cell retains its integrity for the duration of the cycle had been previously addressed by modeling the homeostasis of infected cells. The model predicted a critical contribution of excess hemoglobin consumption to cell integrity (the colloidosmotic hypothesis). Here we tested this prediction with the use of electron-probe x-ray microanalysis to measure the stage-related changes in Na, K, and Fe contents in single infected red cells and in uninfected controls. The results document a decrease in Fe signal with increased Na/K ratio. Interpreted in terms of concentrations, the results point to a sustained fall in host cell hemoglobin concentration with parasite maturation, supporting a colloidosmotic role of excess hemoglobin digestion. The results also provide, for the first time to our knowledge, comprehensive maps of the elemental distributions of Na, K, and Fe in falciparum-infected red blood cells. PMID:21402025

  18. Placental Malaria in Colombia: Histopathologic Findings in Plasmodium vivax and P. falciparum Infections

    Science.gov (United States)

    Carmona-Fonseca, Jaime; Arango, Eliana; Maestre, Amanda

    2013-01-01

    Studies on gestational malaria and placental malaria have been scarce in malaria-endemic areas of the Western Hemisphere. To describe the histopathology of placental malaria in Colombia, a longitudinal descriptive study was conducted. In this study, 179 placentas were studied by histologic analysis (112 with gestational malaria and 67 negative for malaria). Placental malaria was confirmed in 22.35%, 50.0% had previous infections, and 47.5% had acute infections. Typical malaria-associated changes were observed in 37%. The most common changes were villitis, intervillitis, deciduitis, increased fibrin deposition, increased syncytial knots, mononuclear (monocytes/macrophages and lymphocytes), polymorphonuclear cell infiltration, and trophozoites in fetal erythrocytes. No association was found between type of placental changes observed and histopathologic classification of placental malaria. The findings are consistent with those reported for placental malaria in other regions. Plasmodium vivax was the main parasite responsible for placental and gestational malaria, but its role in the pathogenesis of placental malaria was not conclusive. PMID:23546807

  19. Morbidity and mortality associated with Plasmodium vivax and Plasmodium falciparum infection in a tertiary care kidney hospital

    Directory of Open Access Journals (Sweden)

    Salman Imtiaz

    2015-01-01

    Full Text Available Malaria is a disease of tropical regions and both types of plasmodia, i.e. Plasmodium falciparum and Plasmodium vivax, cause significant morbidity and mortality. P. vivax was thought to be benign and cause less morbidity and mortality. Many reports showed the devastating effect of vivax malaria too. We compared the clinical symptoms, laboratory markers, treatment and outcome of both the plasmodia. This is a retrospective analysis of 95 patients admitted to The Kidney Center, Karachi in a duration of 15 years (1997-2012; 45 patients with falciparum malaria and 50 patients with vivax malaria, and compared the clinical presentation, laboratory workup, treatment and outcome in both groups. The two groups constitute a mixed population of diabetes, chronic kidney disease (CKD and hemodialysis patients. Both plasmodia have an equal clinical impact in terms of fever and rigors, anorexia, nausea, feeling of dyspnea, change in the mental status, changes in the urine color, diarrhea, volume depletion and pedal edema. However, patients with falciparum had significantly more vomiting (P = 0.02, oliguria (P = 0.003 and jaundice (P = 0.003. Laboratory parameters also showed a severe impact of falciparum, as there was more severe anemia and kidney and liver dysfunction. More patients were treated with dialysis and blood transfusion in the falciparum group. The outcome in the two groups was not significantly different in terms of death and days of hospitalization. Falciparum malaria has a higher clinical impact than the vivax malaria, but vivax is not as benign as it was once thought to be. It also has devastating effects on vulnerable populations like patients with CKD and diabetes.

  20. Vessel discoloration detection in malarial retinopathy

    Science.gov (United States)

    Agurto, C.; Nemeth, S.; Barriga, S.; Soliz, P.; MacCormick, I.; Taylor, T.; Harding, S.; Lewallen, S.; Joshi, V.

    2016-03-01

    Cerebral malaria (CM) is a life-threatening clinical syndrome associated with malarial infection. It affects approximately 200 million people, mostly sub-Saharan African children under five years of age. Malarial retinopathy (MR) is a condition in which lesions such as whitening and vessel discoloration that are highly specific to CM appear in the retina. Other unrelated diseases can present with symptoms similar to CM, therefore the exact nature of the clinical symptoms must be ascertained in order to avoid misdiagnosis, which can lead to inappropriate treatment and, potentially, death. In this paper we outline the first system to detect the presence of discolored vessels associated with MR as a means to improve the CM diagnosis. We modified and improved our previous vessel segmentation algorithm by incorporating the `a' channel of the CIELab color space and noise reduction. We then divided the segmented vasculature into vessel segments and extracted features at the wall and in the centerline of the segment. Finally, we used a regression classifier to sort the segments into discolored and not-discolored vessel classes. By counting the abnormal vessel segments in each image, we were able to divide the analyzed images into two groups: normal and presence of vessel discoloration due to MR. We achieved an accuracy of 85% with sensitivity of 94% and specificity of 67%. In clinical practice, this algorithm would be combined with other MR retinal pathology detection algorithms. Therefore, a high specificity can be achieved. By choosing a different operating point in the ROC curve, our system achieved sensitivity of 67% with specificity of 100%.

  1. Antioxidant vitamin levels among preschool children with uncomplicated Plasmodium falciparum malaria in Sokoto, Nigeria

    Directory of Open Access Journals (Sweden)

    Aghedo FI

    2013-07-01

    Full Text Available Festus I Aghedo,1 Resqua A Shehu,2 Rabiu A Umar,2 Mohammed N Jiya,3 Osaro Erhabor4 1Department of Haematology, Usmanu Danfodiyo University Teaching Hospital, Sokoto, Nigeria; 2Department of Biochemistry, Usmanu Danfodiyo University, Sokoto, Nigeria; 3Department of Paediatrics, College of Health Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria; 4Department of Haematology, Faculty of Medical Laboratory Science, Usmanu Danfodiyo University, Sokoto, Nigeria Objective: To assess antioxidant vitamin levels among preschool children with plasmodium malarial infection. Methods: We assessed antioxidant vitamin levels by using a standard procedure in 130 malaria-parasitized preschool children. Packed cell volume and parasite density were also evaluated. Forty healthy age- and gender-matched nonparasitized children were included as controls. Results: Plasmodium falciparum was the causative species in all subjects. The mean malaria parasitemia was 4529.45 ± 1237.5/µL. The mean antioxidant concentrations for vitamins A, C, and E among plasmodium-parasitized subjects were 33.15 ± 1.79 µg/dL, 0.51 ± 0.02 mg/dL, and 0.61 ± 0.02 mg/dL, respectively. The mean concentrations of vitamins A, C, and E among the non-malaria-parasitized controls were 69.72 ± 1.71 µg/dL, 1.25 ± 0.04 mg/dL, and 1.31 ± 0.04 mg/dL respectively. We observed that the mean antioxidant concentrations of vitamins A, C, and E were significantly lower among plasmodium-parasitized subjects compared with non-parasitized controls (P = 0.01. Malaria parasitemia correlated negatively with antioxidant concentrations and packed cell volume (r = -0.736 and -0.723, P = 0.001. We observed that the higher the level of parasitemia, the lower the antioxidant concentration. Conclusion: Our study has shown that the antioxidant levels in plasmodium-parasitized children in the North-West of Nigeria are low and that the more severe the malarial infection, the lower the antioxidant level and the

  2. Functional promoter haplotypes of interleukin-18 condition susceptibility to severe malarial anemia and childhood mortality.

    Science.gov (United States)

    Anyona, Samuel B; Kempaiah, Prakasha; Raballah, Evans; Ouma, Collins; Were, Tom; Davenport, Gregory C; Konah, Stephen N; Vulule, John M; Hittner, James B; Gichuki, Charity W; Ong'echa, John M; Perkins, Douglas J

    2011-12-01

    Severe malarial anemia (SMA) is a leading cause of morbidity and mortality in children residing in regions where Plasmodium falciparum transmission is holoendemic. Although largely unexplored in children with SMA, interleukin-18 (IL-18) is important for regulating innate and acquired immunity in inflammatory and infectious diseases. As such, we selected two functional single-nucleotide polymorphisms (SNPs) in the IL-18 promoter (-137G→C [rs187238] and -607C→A [rs1946518]) whose haplotypes encompass significant genetic variation due to the presence of strong linkage disequilibrium among these variants. The relationship between the genotypes/haplotypes, SMA (hemoglobin [Hb], sickle cell trait, glucose-6-phosphate dehydrogenase (G6PD) deficiency, HIV-1, and bacteremia revealed that carriage of the -607AA genotype was associated with protection against SMA (odds ratio [OR] = 0.440 [95% confidence interval {CI} = 0.21 to 0.90], P = 0.031) in children with acute infection. In contrast, carriers of the -137G/-607C (GC) haplotype had increased susceptibility to SMA (OR = 2.050 [95% CI = 1.04 to 4.05], P = 0.039). Measurement of IL-18 gene expression in peripheral blood leukocytes demonstrated that elevated IL-18 transcripts were associated with reduced hemoglobin concentrations (ρ = -0.293, P = 0.010) and that carriers of the "susceptible" GC haplotype had elevated IL-18 transcripts (P = 0.026). Longitudinal investigation of clinical outcomes over a 3-year follow-up period revealed that carriers of the rare CC haplotype (∼1% frequency) had 5.76 times higher mortality than noncarriers (P = 0.001). Results presented here demonstrate that IL-18 promoter haplotypes that condition elevated IL-18 gene products during acute infection are associated with increased risk of SMA. Furthermore, carriage of the rare CC haplotype significantly increases the risk of childhood mortality.

  3. Case management of malaria fever in Cambodia: results from national anti-malarial outlet and household surveys

    Directory of Open Access Journals (Sweden)

    Littrell Megan

    2011-10-01

    Full Text Available Abstract Background Continued progress towards global reduction in morbidity and mortality due to malaria requires scale-up of effective case management with artemisinin-combination therapy (ACT. The first case of artemisinin resistance in Plasmodium falciparum was documented in western Cambodia. Spread of artemisinin resistance would threaten recent gains in global malaria control. As such, the anti-malarial market and malaria case management practices in Cambodia have global significance. Methods Nationally-representative household and outlet surveys were conducted in 2009 among areas in Cambodia with malaria risk. An anti-malarial audit was conducted among all public and private outlets with the potential to sell anti-malarials. Indicators on availability, price and relative volumes sold/distributed were calculated across types of anti-malarials and outlets. The household survey collected information about management of recent "malaria fevers." Case management in the public versus private sector, and anti-malarial treatment based on malaria diagnostic testing were examined. Results Most public outlets (85% and nearly half of private pharmacies, clinics and drug stores stock ACT. Oral artemisinin monotherapy was found in pharmacies/clinics (9%, drug stores (14%, mobile providers (4% and grocery stores (2%. Among total anti-malarial volumes sold/distributed nationally, 6% are artemisinin monotherapies and 72% are ACT. Only 45% of people with recent "malaria fever" reportedly receive a diagnostic test, and the most common treatment acquired is a drug cocktail containing no identifiable anti-malarial. A self-reported positive diagnostic test, particularly when received in the public sector, improves likelihood of receiving anti-malarial treatment. Nonetheless, anti-malarial treatment of reportedly positive cases is low among people who seek treatment exclusively in the public (61% and private (42% sectors. Conclusions While data on the anti-malarial

  4. Crystallization and preliminary X-ray diffraction of malate dehydrogenase from Plasmodium falciparum

    NARCIS (Netherlands)

    Wrenger, Carsten; Mueller, Ingrid B.; Butzloff, Sabine; Jordanova, Rositsa; Lunev, Sergey; Groves, Matthew R.

    2012-01-01

    The expression, purification, crystallization and preliminary X-ray diffraction characterization of malate dehydrogenase (MDH) from the malarial parasite Plasmodium falciparum (PfMDH) are reported. In order to gain a deeper understanding of the function and role of PfMDH, the protein was purified to

  5. Development of vaccines against Plasmodium falciparum malaria: taking lessons from naturally acquired protective immunity

    DEFF Research Database (Denmark)

    Hviid, Lars

    2007-01-01

    The acquisition of substantial anti-malarial protection in people naturally exposed to P. falciparum is often cited as evidence that malaria vaccines can be developed, but is rarely used to guide the development. We are pursuing the development of vaccines based on antigens and immune responses...

  6. A sensitive, specific and reproducible real-time polymerase chain reaction method for detection of Plasmodium vivax and Plasmodium falciparum infection in field-collected anophelines.

    Science.gov (United States)

    Bickersmith, Sara A; Lainhart, William; Moreno, Marta; Chu, Virginia M; Vinetz, Joseph M; Conn, Jan E

    2015-06-01

    We describe a simple method for detection of Plasmodium vivax and Plasmodium falciparum infection in anophelines using a triplex TaqMan real-time polymerase chain reaction (PCR) assay (18S rRNA). We tested the assay on Anopheles darlingi and Anopheles stephensi colony mosquitoes fed with Plasmodium-infected blood meals and in duplicate on field collected An. darlingi. We compared the real-time PCR results of colony-infected and field collected An. darlingi, separately, to a conventional PCR method. We determined that a cytochrome b-PCR method was only 3.33% as sensitive and 93.38% as specific as our real-time PCR assay with field-collected samples. We demonstrate that this assay is sensitive, specific and reproducible.

  7. Substandard anti-malarial drugs in Burkina Faso

    Directory of Open Access Journals (Sweden)

    Sie Ali

    2008-05-01

    Full Text Available Abstract Background There is concern about an increasing infiltration of markets by substandard and fake medications against life-threatening diseases in developing countries. This is particularly worrying with regard to the increasing resistance development of Plasmodium falciparum against affordable anti-malarial medications, which has led to a change to more expensive drugs in most endemic countries. Methods A representative sample of modern anti-malarial medications from licensed (public and private pharmacies, community health workers and illicit (market and street vendors, shops sources has been collected in the Nouna Health District in north-western Burkina Faso in 2006. All drugs were tested for their quality with the standard procedures of the German Pharma Health Fund-Minilab. Detected low standard drugs were re-tested with European Pharmacopoeia 2.9.1 standards for disintegration and ultraviolet-visible spectroscopy at the laboratory of the Heidelberg University for confirmation. Results Overall, 86 anti-malarial drug samples were collected, of which 77 samples have been included in the final analysis. The sample consisted of 39/77 (50% chloroquine, 10/77 (13% pyrimethamine-sulphadoxine, 9/77 (12% quinine, 6/77 (8% amodiaquine, 9/77 (12% artesunate, and 4/77 (5% artemether-lumefantrine. 32/77 (42% drug samples were found to be of poor quality, of which 28 samples failed the visual inspection, nine samples had substandard concentrations of the active ingredient, four samples showed poor disintegration, and one sample contained non of the stated active ingredient. The licensed and the illicit market contributed 5/47 (10.6% and 27/30 (90.0% samples of substandard drugs respectively. Conclusion These findings provide further evidence for the wide-spread existence of substandard anti-malarial medications in Africa and call for strengthening of the regulatory and quality control capacity of affected countries, particularly in view of the

  8. Hemolysis is associated with low reticulocyte production index and predicts blood transfusion in severe malarial anemia.

    Directory of Open Access Journals (Sweden)

    Rolf Fendel

    Full Text Available BACKGROUND: Falciparum Malaria, an infectious disease caused by the apicomplexan parasite Plasmodium falciparum, is among the leading causes of death and morbidity attributable to infectious diseases worldwide. In Gabon, Central Africa, one out of four inpatients have severe malarial anemia (SMA, a life-threatening complication if left untreated. Emerging drug resistant parasites might aggravate the situation. This case control study investigates biomarkers of enhanced hemolysis in hospitalized children with either SMA or mild malaria (MM. METHODS AND FINDINGS: Ninety-one children were included, thereof 39 SMA patients. Strict inclusion criteria were chosen to exclude other causes of anemia. At diagnosis, erythrophagocytosis (a direct marker for extravascular hemolysis, EVH was enhanced in SMA compared to MM patients (5.0 arbitrary units (AU (interquartile range (IR: 2.2-9.6 vs. 2.1 AU (IR: 1.3-3.9, p<0.01. Furthermore, indirect markers for EVH, (i.e. serum neopterin levels, spleen size enlargement and monocyte pigment were significantly increased in SMA patients. Markers for erythrocyte ageing, such as CD35 (complement receptor 1, CD55 (decay acceleration factor and phosphatidylserine exposure (annexin-V-binding were investigated by flow cytometry. In SMA patients, levels of CD35 and CD55 on the red blood cell surface were decreased and erythrocyte removal markers were increased when compared to MM or reconvalescent patients. Additionally, intravascular hemolysis (IVH was quantified using several indirect markers (LDH, alpha-HBDH, haptoglobin and hemopexin, which all showed elevated IVH in SMA. The presence of both IVH and EVH predicted the need for blood transfusion during antimalarial treatment (odds ratio 61.5, 95% confidence interval (CI: 8.9-427. Interestingly, this subpopulation is characterized by a significantly lowered reticulocyte production index (RPI, p<0.05. CONCLUSIONS: Our results show the multifactorial pathophysiology of SMA

  9. Access to artesunate-amodiaquine, quinine and other anti-malarials: policy and markets in Burundi

    Directory of Open Access Journals (Sweden)

    Dismas Baza

    2011-02-01

    Full Text Available Abstract Background Malaria is the leading cause of morbidity and mortality in post-conflict Burundi. To counter the increasing challenge of anti-malarial drug resistance and improve highly effective treatment Burundi adopted artesunate-amodiaquine (AS-AQ as first-line treatment for uncomplicated Plasmodium falciparum malaria and oral quinine as second-line treatment in its national treatment policy in 2003. Uptake of this policy in the public, private and non-governmental (NGO retail market sectors of Burundi is relatively unknown. This study was conducted to evaluate access to national policy recommended anti-malarials. Methods Adapting a standardized methodology developed by Health Action International/World Health Organization (HAI/WHO, a cross-sectional survey of 70 (24 public, 36 private, and 10 NGO medicine outlets was conducted in three regions of Burundi, representing different levels of transmission of malaria. The availability on day of the survey, the median prices, and affordability (in terms of number of days' wages to purchase treatment of AS-AQ, quinine and other anti-malarials were calculated. Results Anti-malarials were stocked in all outlets surveyed. AS-AQ was available in 87.5%, 33.3%, and 90% of public, private, and NGO retail outlets, respectively. Quinine was the most common anti-malarial found in all outlet types. Non-policy recommended anti-malarials were mainly found in the private outlets (38.9% compared to public (4.2% and NGO (0% outlets. The median price of a course of AS-AQ was US$0.16 (200 Burundi Francs, FBu for the public and NGO markets, and 3.5-fold higher in the private sector (US$0.56 or 700 FBu. Quinine tablets were similarly priced in the public (US$1.53 or 1,892.50 FBu, private and NGO sectors (both US$1.61 or 2,000 FBu. Non-policy anti-malarials were priced 50-fold higher than the price of AS-AQ in the public sector. A course of AS-AQ was affordable at 0.4 of a day's wage in the public and NGO sectors

  10. Clinical profile of Plasmodium falciparum and Plasmodium vivax infections in low and unstable malaria transmission settings of Colombia

    DEFF Research Database (Denmark)

    Arévalo-Herrera, Myriam; Lopez-Perez, Mary; Medina, Luz

    2015-01-01

    by fever, chills, headache, sweating, myalgia/arthralgia and parasitaemia ≤ 20,000 parasites/μL. Fever, tachycardia, pallor and abdominal pain on palpation were more frequent in P. falciparum patients, whereas mild hepatomegaly and splenomegaly were mostly observed with P. vivax. Non-severe anaemia (Hb 7...

  11. Serum levels of soluble urokinase plasminogen activator receptor is associated with parasitemia in children with acute Plasmodium falciparum malaria infection

    DEFF Research Database (Denmark)

    Perch, M; Kofoed, Pe; Fischer, Torge

    2004-01-01

    days after treatment. Children younger than 6 years who presented with fever or other symptoms compatible with malaria were enrolled. Blood films and samples were collected on day 0 and day 7. Twenty-five children were allocated to each of three groups according to the amount of Plasmodium falciparum...

  12. Baculovirus-expressed constructs induce immunoglobulin G that recognizes VAR2CSA on Plasmodium falciparum-infected erythrocytes

    DEFF Research Database (Denmark)

    Barfod, Lea; Nielsen, Morten A; Turner, Louise

    2006-01-01

    We raised specific antisera against recombinant VAR2CSA domains produced in Escherichia coli and in insect cells. All were reactive in enzyme-linked immunosorbent assay, but only insect cell-derived constructs induced immunoglobulin G (IgG) that was reactive with native VAR2CSA on the surface of ......-associated Plasmodium falciparum malaria....

  13. Potential impact of host immunity on malaria treatment outcome in Tanzanian children infected with Plasmodium falciparum

    DEFF Research Database (Denmark)

    Enevold, Anders; Nkya, Watoky M M M; Theisen, Michael

    2007-01-01

    -resistance as well as human sickle cell trait and alpha-thalassaemia were determined using PCR and sequence-specific oligonucleotide probes and enzyme-linked immunosorbent assay (SSOP-ELISA), and IgG antibody responses to a panel of P. falciparum antigens were assessed and related to treatment outcome. RESULTS...

  14. Survey of Plasmodium falciparum multidrug resistance-1 and chloroquine resistance transporter alleles in Haiti.

    Science.gov (United States)

    Elbadry, Maha A; Existe, Alexandre; Victor, Yves S; Memnon, Gladys; Fukuda, Mark; Dame, John B; Yowell, Charles A; Okech, Bernard A

    2013-11-19

    In Haiti where chloroquine (CQ) is widely used for malaria treatment, reports of resistance are scarce. However, recent identification of CQ resistance genotypes in one site is suggestive of an emerging problem. Additional studies are needed to evaluate genetic mutations associated with CQ resistance, especially in the Plasmodium falciparum multi-drug resistance-1 gene (pfmdr1) while expanding the already available information on P. falciparum CQ transporter gene (pfcrt) in Haiti. Blood samples were collected on Whatman filter cards (FTA) from eight clinics spread across Haiti. Following the confirmation of P. falciparum in the samples, PCR protocols were used to amplify regions of pfmdr1and pfcrt codons of interest, (86, 184, 1034, 1042, and 1246) and (72-76), respectively. Sequencing and site-specific restriction enzyme digestions were used to analyse these DNA fragments for the presence of single nucleotide polymorphisms (SNPs) known to confer resistance to anti-malarial drugs. P. falciparum infection was confirmed in160 samples by amplifying a segment of the P. falciparum 18S small subunit ribosomal RNA gene (pfssurrna). The sequence of pfmdr1 in 54 of these samples was determined between codons 86,184 codons 1034, 1042 and 1246. No sequence differences from that of the NF54 clone 3D7 were found among the 54 samples except at codon 184, where a non-silent mutation was found in all samples predicted to alter the amino acid sequence replacing tyrosine with phenylalanine (Y184F). This altered sequence was also confirmed by restriction enzyme digestion. The sequence of pfmdr1 at codons 86, 184, 1034 and 1042 encoded the NFSN haplotype. The sequence of pfcrt codons 72-76 from 79 samples was determined and found to encode CVMNK, consistent with a CQ sensitive genotype. The presence of the Y184F mutation in pfmdr1 of P. falciparum parasites in Haiti may have implications for resistance to antimalarial drugs. The absence of mutation in pfcrt at codon 76 among 79

  15. FcγRIIa (CD32 polymorphism and anti-malarial IgG subclass pattern among Fulani and sympatric ethnic groups living in eastern Sudan

    Directory of Open Access Journals (Sweden)

    Balogun Halima A

    2009-03-01

    Full Text Available Abstract Background A SNP at position 131, in the FcγRIIa gene, affects the binding of the different IgG subclasses and may influence the clinical variation seen in patients with falciparum malaria. This study confirms and extends previous findings, analysing the FcγRIIa (CD32 polymorphism in relation to the IgG subclass distribution seen among two sympatric tribes living in eastern Sudan, characterized by marked differences in susceptibility to Plasmodium falciparum malaria. Methods Two hundred and fifty Fulani subjects living in an area of meso-endemic P. falciparum malaria infection were genotyped for the FcγRIIa-131 polymorphism. For comparison, 101 non-Fulani donors – (Masaleit, Hausa and Four – living in the same study area, were genotyped. The levels of plasma antibodies (IgG and subclasses to four malaria antigens (AMA-1, MSP 2 – 3D7 & FC27, Pf332-C231 were measured using indirect enzyme-linked immunosorbent assays. Results The FcγRIIa-H/H131 genotype was found to be significantly more prevalent in the Fulani as compared to the non-Fulani ethnic groups (36.0% for Fulani versus 17.8% for non-Fulani, adjusted OR 3.10, 95% CI 1.61–5.97, P value Conclusion The FcγRIIa-H/H131 genotype and H131 allele is at higher frequency in the Fulani ethnic group. The H/H131 genotype was consistently associated with higher levels of anti-malarial IgG2 and IgG3 antibodies, while the R/R131 genotype was associated with higher levels of IgG1 antibodies.

  16. A pilot randomised trial of induced blood-stage Plasmodium falciparum infections in healthy volunteers for testing efficacy of new antimalarial drugs.

    Directory of Open Access Journals (Sweden)

    James S McCarthy

    Full Text Available BACKGROUND: Critical to the development of new drugs for treatment of malaria is the capacity to safely evaluate their activity in human subjects. The approach that has been most commonly used is testing in subjects with natural malaria infection, a methodology that may expose symptomatic subjects to the risk of ineffective treatment. Here we describe the development and pilot testing of a system to undertake experimental infection using blood stage Plasmodium falciparum parasites (BSP. The objectives of the study were to assess the feasibility and safety of induced BSP infection as a method for assessment of efficacy of new drug candidates for the treatment of P. falciparum infection. METHODS AND FINDINGS: A prospective, unblinded, Phase IIa trial was undertaken in 19 healthy, malaria-naïve, male adult volunteers who were infected with BSP and followed with careful clinical and laboratory observation, including a sensitive, quantitative malaria PCR assay. Volunteers were randomly allocated to treatment with either of two licensed antimalarial drug combinations, artemether-lumefantrine (A/L or atovaquone-proguanil (A/P. In the first cohort (n = 6 where volunteers received ∼360 BSP, none reached the target parasitemia of 1,000 before the day designated for antimalarial treatment (day 6. In the second and third cohorts, 13 volunteers received 1,800 BSP, with all reaching the target parasitemia before receiving treatment (A/L, n = 6; A/P, n = 7 The study demonstrated safety in the 19 volunteers tested, and a significant difference in the clearance kinetics of parasitemia between the drugs in the 13 evaluable subjects, with mean parasite reduction ratios of 759 for A/L and 17 for A/P (95% CI 120-4786 and 7-40 respectively; p<0.01. CONCLUSIONS: This system offers a flexible and safe approach to testing the in vivo activity of novel antimalarials. TRIAL REGISTRATION: ClinicalTrials.gov NCT01055002.

  17. Opsonising antibodies to P. falciparum merozoites associated with immunity to clinical malaria.

    Directory of Open Access Journals (Sweden)

    Danika L Hill

    Full Text Available Naturally acquired humoral immunity to the malarial parasite Plasmodium falciparum can protect against disease, although the precise mechanisms remain unclear. Although antibody levels can be measured by ELISA, few studies have investigated functional antibody assays in relation to clinical outcomes. In this study we applied a recently developed functional assay of antibody-mediated opsonisation of merozoites, to plasma samples from a longitudinal cohort study conducted in a malaria endemic region of Papua New Guinea (PNG. Phagocytic activity was quantified by flow cytometry using a standardized and high-throughput protocol, and was subsequently evaluated for association with protection from clinical malaria and high-density parasitemia. Opsonising antibody responses were found to: i increase with age, ii be enhanced by concurrent infection, and iii correlate with protection from clinical episodes and high-density parasitemia. Stronger protective associations were observed in individuals with no detectable parasitemia at baseline. This study presents the first evidence for merozoite phagocytosis as a correlate of acquired immunity and clinical protection against P. falciparum malaria.

  18. Efficacy of integrated school based de-worming and prompt malaria treatment on helminths -Plasmodium falciparum co-infections: A 33 months follow up study

    Directory of Open Access Journals (Sweden)

    Chadukura Vivian

    2011-06-01

    Full Text Available Abstract Background The geographical congruency in distribution of helminths and Plasmodium falciparum makes polyparasitism a common phenomenon in Sub Saharan Africa. The devastating effects of helminths-Plasmodium co-infections on primary school health have raised global interest for integrated control. However little is known on the feasibility, timing and efficacy of integrated helminths-Plasmodium control strategies. A study was conducted in Zimbabwe to evaluate the efficacy of repeated combined school based antihelminthic and prompt malaria treatment. Methods A cohort of primary schoolchildren (5-17 years received combined Praziquantel, albendazole treatment at baseline, and again during 6, 12 and 33 months follow up surveys and sustained prompt malaria treatment. Sustained prompt malaria treatment was carried out throughout the study period. Children's infection status with helminths, Plasmodium and helminths-Plasmodium co-infections was determined by parasitological examinations at baseline and at each treatment point. The prevalence of S. haematobium, S. mansoni, STH, malaria, helminths-Plasmodium co-infections and helminths infection intensities before and after treatment were analysed. Results Longitudinal data showed that two rounds of combined Praziquantel and albendazole treatment for schistosomiasis and STHs at 6 monthly intervals and sustained prompt malaria treatment significantly reduced the overall prevalence of S. haematobium, S. mansoni, hookworms and P. falciparum infection in primary schoolchildren by 73.5%, 70.8%, 67.3% and 58.8% respectively (p P. f + schistosomes, and P. f + STHs + schistosomes co-infections were reduced by 68.0%, 84.2%, and 90.7%, respectively. The absence of anti-helminthic treatment between the 12 mth and 33 mth follow-up surveys resulted in the sharp increase in STHs + schistosomes co-infection from 3.3% at 12 months follow up survey to 10.7%, slightly more than the baseline level (10.3% while other

  19. In Silico and In Vivo Anti-Malarial Studies of 18β Glycyrrhetinic Acid from Glycyrrhiza glabra

    Science.gov (United States)

    Kalani, Komal; Agarwal, Jyoti; Alam, Sarfaraz; Khan, Feroz; Pal, Anirban; Srivastava, Santosh Kumar

    2013-01-01

    Malaria is one of the most prevailing fatal diseases causing between 1.2 and 2.7 million deaths all over the world each year. Further, development of resistance against the frontline anti-malarial drugs has created an alarming situation, which requires intensive drug discovery to develop new, more effective, affordable and accessible anti-malarial agents possessing novel modes of action. Over the past few years triterpenoids from higher plants have shown a wide range of anti-malarial activities. As a part of our drug discovery program for anti-malarial agents from Indian medicinal plants, roots of Glycyrrhizaglabra were chemically investigated, which resulted in the isolation and characterization of 18β-glycyrrhetinic acid (GA) as a major constituent. The in vitro studies against P. falciparum showed significant (IC50 1.69µg/ml) anti-malarial potential for GA. Similarly, the molecular docking studies showed adequate docking (LibDock) score of 71.18 for GA and 131.15 for standard anti-malarial drug chloroquine. Further, in silico pharmacokinetic and drug-likeness studies showed that GA possesses drug-like properties. Finally, in vivo evaluation showed a dose dependent anti-malarial activity ranging from 68–100% at doses of 62.5–250mg/kg on day 8. To the best of our knowledge this is the first ever report on the anti-malarial potential of GA. Further work on optimization of the anti-malarial lead is under progress. PMID:24086367

  20. Efficacy of artesunate-amodiaquine for the treatment of acute uncomplicated falciparum malaria in southern Mauritania.

    Science.gov (United States)

    Ouldabdallahi, Mohamed; Alew, Ismail; Salem, Mohamed Salem Ould Ahmedou; Dit Dialaw Ba, Mamadou; Boukhary, Ali Ould Mohamed Salem; Khairy, Mohamed Lemine Ould; Aziz, Mohamed Boubacar Abdel; Ringwald, Pascal; Basco, Leonardo K; Niang, Saidou Doro; Lebatt, Sid Mohamed

    2014-12-16

    A regular evaluation of therapeutic efficacy in sentinel sites and a system of surveillance are required to establish treatment guidelines and adapt national anti-malarial drug policy to the rapidly changing epidemiology of drug-resistant malaria. The current anti-malarial treatment guideline in Mauritania, officially recommended since 2006, is based on artemisinin-based combination therapy. The aim of the present study was to evaluate clinical efficacy and tolerance of artesunate-amodiaquine, the first-line treatment for acute uncomplicated malaria, in Mauritanian paediatric and adult patients to validate its continued use in the country. Plasmodium falciparum-infected symptomatic patients aged > six months were enrolled in Kobeni and Timbedra in southern Mauritania in September to October 2013. Co-formulated artesunate-amodiaquine was administered at the recommended dose over three days. Patients were followed until day 28. Parasitological and clinical response was classified according to the standard 2009 World Health Organization protocol. A total of 130 patients (65 in Kobeni and 65 in Timbedra) were enrolled in the study. Seventeen patients (13.1%) were either excluded (before PCR correction) or lost to follow-up. Based on the per protocol analysis, artesunate-amodiaquine efficacy (i.e., the proportion of adequate clinical and parasitological response) was 96.6% in Kobeni and 98.2% in Timbedra before PCR correction. Late clinical failure was observed in two patients in Kobeni and one patient in Timbedra. After PCR correction, the efficacy rate in the two study sites was 98.2%. On day 3, all patients were afebrile and had negative smears. Treatment was well tolerated. Artesunate-amodiaquine is well tolerated and highly efficacious for the treatment of uncomplicated P. falciparum malaria. In the majority of patients, fever and parasitaemia were rapidly cleared before day 3. The results support the national anti-malarial drug guideline for a continued use of

  1. Distinct patterns of cytokine regulation in discrete clinical forms of Plasmodium falciparum malaria

    DEFF Research Database (Denmark)

    Akanmori, B D; Kurtzhals, J A; Goka, B Q;

    2000-01-01

    The pathogenesis of two of the most severe complications of Plasmodium falciparum malaria, cerebral malaria (CM) and severe malarial anaemia (SA) both appear to involve dysregulation of the immune system. We have measured plasma levels of TNF and its two receptors in Ghanaian children with strictly...... defined cerebral malaria (CM), severe malarial anaemia (SA), or uncomplicated malaria (UM) in two independent studies in an area of seasonal, hyperendemic transmission of P. falciparum. Levels of TNF, soluble TNF receptor 1 (sTNF-R1) and 2 (sTNF-R2) were found to be significantly higher in CM than...... in the other clinical categories of P. falciparum malaria patients. Levels of both receptors depended on clinical category, whereas only sTNF-R1 levels were significantly dependent on parasitemia. Detailed analysis of the interrelationship between these variables resolved this pattern further, and identified...

  2. Poor quality vital anti-malarials in Africa - an urgent neglected public health priority

    Directory of Open Access Journals (Sweden)

    Newton Paul N

    2011-12-01

    Full Text Available Abstract Background Plasmodium falciparum malaria remains a major public health problem. A vital component of malaria control rests on the availability of good quality artemisinin-derivative based combination therapy (ACT at the correct dose. However, there are increasing reports of poor quality anti-malarials in Africa. Methods Seven collections of artemisinin derivative monotherapies, ACT and halofantrine anti-malarials of suspicious quality were collected in 2002/10 in eleven African countries and in Asia en route to Africa. Packaging, chemical composition (high performance liquid chromatography, direct ionization mass spectrometry, X-ray diffractometry, stable isotope analysis and botanical investigations were performed. Results Counterfeit artesunate containing chloroquine, counterfeit dihydroartemisinin (DHA containing paracetamol (acetaminophen, counterfeit DHA-piperaquine containing sildenafil, counterfeit artemether-lumefantrine containing pyrimethamine, counterfeit halofantrine containing artemisinin, and substandard/counterfeit or degraded artesunate and artesunate+amodiaquine in eight countries are described. Pollen analysis was consistent with manufacture of counterfeits in eastern Asia. These data do not allow estimation of the frequency of poor quality anti-malarials in Africa. Conclusions Criminals are producing diverse harmful anti-malarial counterfeits with important public health consequences. The presence of artesunate monotherapy, substandard and/or degraded and counterfeit medicines containing sub-therapeutic amounts of unexpected anti-malarials will engender drug resistance. With the threatening spread of artemisinin resistance to Africa, much greater investment is required to ensure the quality of ACTs and removal of artemisinin monotherapies. The International Health Regulations may need to be invoked to counter these serious public health problems.

  3. Increased microerythrocyte count in homozygous alpha(+-thalassaemia contributes to protection against severe malarial anaemia.

    Directory of Open Access Journals (Sweden)

    Freya J I Fowkes

    2008-03-01

    Full Text Available The heritable haemoglobinopathy alpha(+-thalassaemia is caused by the reduced synthesis of alpha-globin chains that form part of normal adult haemoglobin (Hb. Individuals homozygous for alpha(+-thalassaemia have microcytosis and an increased erythrocyte count. Alpha(+-thalassaemia homozygosity confers considerable protection against severe malaria, including severe malarial anaemia (SMA (Hb concentration 1.1 x 10(12/l as a result of the reduced mean cell Hb in homozygous alpha(+-thalassaemia. In addition, children homozygous for alpha(+-thalassaemia require a 10% greater reduction in erythrocyte count than children of normal genotype (p = 0.02 for Hb concentration to fall to 50 g/l, the cutoff for SMA. We estimated that the haematological profile in children homozygous for alpha(+-thalassaemia reduces the risk of SMA during acute malaria compared to children of normal genotype (relative risk 0.52; 95% confidence interval [CI] 0.24-1.12, p = 0.09.The increased erythrocyte count and microcytosis in children homozygous for alpha(+-thalassaemia may contribute substantially to their protection against SMA. A lower concentration of Hb per erythrocyte and a larger population of erythrocytes may be a biologically advantageous strategy against the significant reduction in erythrocyte count that occurs during acute infection with the malaria parasite Plasmodium falciparum. This haematological profile may reduce the risk of anaemia by other Plasmodium species, as well as other causes of anaemia. Other host polymorphisms that induce an increased erythrocyte count and microcytosis may confer a similar advantage.

  4. The SLC4A1 gene is under differential selective pressure in primates infected by Plasmodium falciparum and related parasites

    OpenAIRE

    Steiper, Michael E.; Walsh, Fiona; Zichello, Julia M.

    2012-01-01

    Malaria is a disease caused by Plasmodium parasites and is responsible for high mortality in humans. This disease is caused by four different species of Plasmodium though the main source of mortality is Plasmodium falciparum. Humans have a number of genetic adaptations that act to combat Plasmodium. One adaptation is a deletion in the SLC4A1 gene that leads to Southeast Asian ovalocytosis (SAO). There is evidence that SAO erythrocytes are resistant to multiple Plasmodium species. Here we anal...

  5. Mast cells and histamine alter intestinal permeability during malaria parasite infection.

    Science.gov (United States)

    Potts, Rashaun A; Tiffany, Caitlin M; Pakpour, Nazzy; Lokken, Kristen L; Tiffany, Connor R; Cheung, Kong; Tsolis, Renée M; Luckhart, Shirley

    2016-03-01

    Co-infections with malaria and non-typhoidal Salmonella serotypes (NTS) can present as life-threatening bacteremia, in contrast to self-resolving NTS diarrhea in healthy individuals. In previous work with our mouse model of malaria/NTS co-infection, we showed increased gut mastocytosis and increased ileal and plasma histamine levels that were temporally associated with increased gut permeability and bacterial translocation. Here, we report that gut mastocytosis and elevated plasma histamine are also associated with malaria in an animal model of falciparum malaria, suggesting a broader host distribution of this biology. In support of mast cell function in this phenotype, malaria/NTS co-infection in mast cell-deficient mice was associated with a reduction in gut permeability and bacteremia. Further, antihistamine treatment reduced bacterial translocation and gut permeability in mice with malaria, suggesting a contribution of mast cell-derived histamine to GI pathology and enhanced risk of bacteremia during malaria/NTS co-infection.

  6. Ribosomal protein P2 localizes to the parasite zoite-surface and is a target for invasion inhibitory antibodies in Toxoplasma gondii and Plasmodium falciparum.

    Science.gov (United States)

    Sudarsan, Rajagopal; Chopra, Reshma Korde; Khan, Mudassar Ali; Sharma, Shobhona

    2015-02-01

    In the malarial parasite Plasmodium falciparum, the conserved ribosomal stalk protein P2 (PfP2) exhibits extra-ribosomal stage-specific oligomerization and trafficking to the host red cell membrane. Antibodies directed against PfP2 arrested cell division. We sought to examine whether P2 from a closely related Apicomplexan parasite, Toxoplasma gondii, exhibits similar properties in terms of its oligomeric status as well as such unique host-cell localization. Circular dichroism spectroscopy of recombinant P2 from T. gondii (TgP2) showed a structure similar to that of PfP2, but unlike PfP2, which forms SDS- and DTT-resistant oligomers, TgP2 exhibited only a weak SDS-resistant dimerization. Also, unlike PfP2 localization to the infected erythrocyte surface, TgP2 did not localize to the host membrane in T. gondii infected human foreskin fibroblast cells. However, P2 protein was detected on the free tachyzoite surface, corroborated by localization of epitope-tagged P2 transfected in T. gondii. The presence of P2 on the surface of P. falciparum merozoites was also observed, and specific antibodies raised against the P2 protein blocked both T. gondii and P. falciparum zoite invasion of the host cells. Thus, although certain moonlighting functions of the acidic ribosomal protein P2 are different amongst P. falciparum and T. gondii, the P2 protein localizes to the surface of the invasive zoite form, and appears to constitute a potential target for host cell invasion inhibition in both the Apicomplexan infections.

  7. Population Dynamics and Plasmodium falciparum (Haemosporida: Plasmodiidae) Infectivity Rates for the Malaria Vector Anopheles arabiensis (Diptera: Culicidae) at Mamfene, KwaZulu-Natal, South Africa.

    Science.gov (United States)

    Dandalo, Leonard C; Brooke, Basil D; Munhenga, Givemore; Lobb, Leanne N; Zikhali, Jabulani; Ngxongo, Sifiso P; Zikhali, Phineas M; Msimang, Sipho; Wood, Oliver R; Mofokeng, Mohlominyana; Misiani, Eunice; Chirwa, Tobias; Koekemoer, Lizette L

    2017-09-06

    Anopheles arabiensis (Patton; Diptera: Culicidae) is a major malaria vector in the southern African region. In South Africa, effective control of this species using indoor-based interventions is reduced owing to its tendency to rest outdoors. As South Africa moves towards malaria elimination there is a need for complementary vector control strategies. One of the methods under consideration is the use of the sterile insect technique (SIT). Key to the successful implementation of an SIT programme is prior knowledge of the size and spatial distribution of the target population. Understanding mosquito population dynamics for both males and females is critical for efficient programme implementation. It is thus necessary to use outdoor-based population monitoring tools capable of sampling both sexes of the target population. In this project mosquito surveillance and evaluation of tools capable of collecting both genders were carried out at Mamfene in northern KwaZulu-Natal Province, South Africa, during the period January 2014 to December 2015. Outdoor- and indoor-resting Anopheles mosquitoes were sampled in three sections of Mamfene over the 2-yr sampling period using modified plastic buckets, clay pots and window exit traps. Morphological and molecular techniques were used for species identifications of all samples. Wild-caught adult females were tested for Plasmodium falciparum (Welch; Haemosporida: Plasmodiidae) infectivity. Out of 1,705 mosquitoes collected, 1,259 (73.8%) and 255 (15%) were identified as members of either the Anopheles gambiae complex or Anopheles funestus group respectively. An. arabiensis was the most abundant species contributing 78.8% of identified specimens. Mosquito density was highest in summer and lowest during winter. Clay pots yielded 16.3 mosquitoes per trap compared to 10.5 for modified plastic buckets over the 2-yr sampling period. P. falciparum infection rates for An. arabiensis were 0.7% and 0.5% for 2014 and 2015, respectively

  8. Molecular markers of anti-malarial drug resistance in Lahj Governorate, Yemen: baseline data and implications

    Directory of Open Access Journals (Sweden)

    Chance Michael L

    2011-08-01

    Full Text Available Abstract Background This is an investigation of anti-malarial molecular markers coupled with a therapeutic efficacy test of chloroquine (CQ against falciparum malaria in an area of unstable malaria in Lahj Governorate, Yemen. The study was aimed at assessment of therapeutic response to CQ and elucidation of baseline information on molecular markers for Plasmodium falciparum resistance against CQ and sulphadoxine/pyrimethamine (SP. Methods Between 2002 and 2003 the field test was conducted according to the standard WHO protocol to evaluate the therapeutic efficacy of CQ in 124 patients with falciparum malaria in an endemic area in Lahj Governorate in Yemen. Blood samples collected during this study were analysed for P. falciparum chloroquine resistance transporter gene (pfcrt-76 polymorphisms, mutation pfcrt-S163R and the antifolate resistance-associated mutations dihydrofolate reductase (dhfr-C59R and dihydropteroate synthase (dhps-K540E. Direct DNA sequencing of the pfcrt gene from three representative field samples was carried out after DNA amplification of the 13 exons of the pfcrt gene. Results Treatment failure was detected in 61% of the 122 cases that completed the 14-day follow-up. The prevalence of mutant pfcrt T76 was 98% in 112 amplified pre-treatment samples. The presence of pfcrt T76 was poorly predictive of in vivo CQ resistance (PPV = 61.8%, 95% CI = 52.7-70.9. The prevalence of dhfr Arg-59 mutation in 99 amplified samples was 5%, while the dhps Glu-540 was not detected in any of 119 amplified samples. Sequencing the pfcrt gene confirmed that Yemeni CQ resistant P. falciparum carry the old world (Asian and African CQ resistant haplotype CVIETSESI at positions 72,73,74,75,76,220,271, 326 and 371. Conclusion This is the first study to report baseline information on the characteristics and implications of anti-malarial drug resistance markers in Yemen. It is also the first report of the haplotype associated with CQR P. falciparum

  9. Complement activation in Ghanaian children with severe Plasmodium falciparum malaria

    DEFF Research Database (Denmark)

    Helegbe, Gideon K; Goka, Bamenla Q; Kurtzhals, Jørgen

    2007-01-01

    BACKGROUND: Severe anaemia (SA), intravascular haemolysis (IVH) and respiratory distress (RD) are severe forms of Plasmodium falciparum malaria, with RD reported to be of prognostic importance in African children with malarial anaemia. Complement factors have been implicated in the mechanism......55)] in children with discrete clinical forms of P. falciparum malaria. The relationship between the findings and clinical parameters including coma, haemoglobin (Hb) levels and RD were investigated. RESULTS: Of the 484 samples tested, 131(27%) were positive in DCT, out of which 115/131 (87.8%) were...... falciparum malaria, possibly through induction of erythrophagocytosis and haemolysis. In contrast to other studies, this study did not find association between levels of the complement...

  10. Targeted disruption of a ring-infected erythrocyte surface antigen (RESA)-like export protein gene in Plasmodium falciparum confers stable chondroitin 4-sulfate cytoadherence capacity

    DEFF Research Database (Denmark)

    Goel, Suchi; Muthusamy, Arivalagan; Miao, Jun

    2014-01-01

    . In this study, microarray transcriptome analysis showed that the absence of a gene cluster, comprising kahrp, pfemp3, and four other genes, results in the loss of parasitized erythrocytes adhering to chondroitin 4-sulfate (C4S). The role of one of these genes, PF3D7_0201600/PFB0080c, which encodes PHISTb......The Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family proteins mediate the adherence of infected erythrocytes to microvascular endothelia of various organs, including the placenta, thereby contributing to cerebral, placental, and other severe malaria pathogenesis. Several...... that the loss of PFB0080c markedly compromises the var gene switching process, leading to a marked reduction in the switching rate and additional PfEMP1 expression by a minor population of parasites. PFB0080c interacts with VAR2CSA and modulates knob-associated Hsp40 expression. Thus, PFB0080c may regulate VAR2...

  11. Diversity of Plasmodium falciparum clones infecting children living in a holoendemic area in north-eastern Tanzania

    DEFF Research Database (Denmark)

    Magesa, S M; Mdira, K Y; Babiker, H A;

    2002-01-01

    of 34 initially asymptomatic parasitaemic children aged 1-5 years were followed daily for 31 days. Clinical examinations were made each day for signs and symptoms of clinical malaria, followed by parasitological investigation. Nineteen children developed symptoms suggestive of clinical malaria during...... this period. Daily blood parasite samples from 13 children who developed clinical malaria symptoms and 7 who remained asymptomatic were genotyped by PCR-amplification of the polymorphic regions of the merozoite surface proteins 1 and 2 (MSP1 and MSP2) and the glutamate rich protein (GLURP) genes. Infections......The diversity of Plasmodium falciparum clones and their role in progression from asymptomatic to symptomatic condition in children have been investigated. Attempts to identify whether particular parasite genotypes were associated with the development of clinical symptoms have been made. A cohort...

  12. Host-seeking behaviors of mosquitoes experimentally infected with sympatric field isolates of the human malaria parasite Plasmodium falciparum: no evidence for host manipulation

    Directory of Open Access Journals (Sweden)

    Amélie eVantaux

    2015-08-01

    Full Text Available Previous studies have shown that Plasmodium parasites can manipulate mosquito feeding behaviours such as motivation and avidity to feed on vertebrate hosts, in ways that increase the probability of parasite transmission. These studies, however, have been mainly carried out on non-natural and/or laboratory based model systems and hence may not reflect what occurs in the field. We now need to move closer to the natural setting, if we are to fully capture the ecological and evolutionary consequences of these parasite-induced behavioral changes. As part of this effort, we conducted a series of experiments to investigate the long and short-range behavioural responses to human stimuli in the mosquito Anopheles coluzzii during different stages of infection with sympatric field isolates of the human malaria parasite Plasmodium falciparum in Burkina Faso. First, we used a dual-port olfactometer designed to take advantage of the whole body odor to gauge mosquito long-range host-seeking behaviors. Second, we used a locomotor activity monitor system to assess mosquito short-range behaviors. Compared to control uninfected mosquitoes, P. falciparum infection had no significant effect neither on long-range nor on short-range behaviors both at the immature and mature stages. This study, using a natural mosquito-malaria parasite association, indicates that manipulation of vector behavior may not be a general phenomenon. We speculate that the observed contrasting phenotypes with model systems might result from coevolution of the human parasite and its natural vector. Future experiments, using other sympatric malaria mosquito populations or species are required to test this hypothesis. In conclusion, our results highlight the importance of following up discoveries in laboratory model systems with studies on natural parasite–mosquito interactions to accurately predict the epidemiological, ecological and evolutionary consequences of parasite manipulation of vector

  13. Plasmodium falciparum msp1, msp2 and glurp allele frequency and diversity in sub-Saharan Africa

    Directory of Open Access Journals (Sweden)

    Snounou Georges

    2011-04-01

    Full Text Available Abstract Background The efficacy of anti-malarial drugs is assessed over a period of 28-63 days (depending on the drugs' residence time following initiation of treatment in order to capture late failures. However, prolonged follow-up increases the likelihood of new infections depending on transmission intensity. Therefore, molecular genotyping of highly polymorphic regions of Plasmodium falciparum msp1, msp2 and glurp loci is usually carried out to distinguish recrudescence (true failures from new infections. This tool has now been adopted as an integral part of anti-malarial efficacy studies and clinical trials. However, there are concerns over its utility and reliability because conclusions drawn from molecular typing depend on the genetic profile of the respective parasite populations, but this profile is not systematically documented in most endemic areas. This study presents the genetic diversity of P. falciparum msp1, msp2 and glurp markers in selected sub-Saharan Africa countries with varying levels of endemicity namely Malawi, Tanzania, Uganda, Burkina Faso and São Tomé. Methods A total 780 baseline (Day 0 blood samples from children less than seven years, recruited in a randomized controlled clinical trials done between 1996 and 2000 were genotyped. DNA was extracted; allelic frequency and diversity were investigated by PCR followed by capillary electrophoresis for msp2 and fragment sizing by a digitalized gel imager for msp1 and glurp. Results and Conclusion Plasmodium falciparum msp1, msp2 and glurp markers were highly polymorphic with low allele frequencies. A total of 17 msp1 genotypes [eight MAD20-, one RO33- and eight K1-types]; 116 msp2 genotypes [83 3D7 and 33 FC27- types] and 14 glurp genotypes were recorded. All five sites recorded very high expected heterozygosity (HE values (0.68 - 0.99. HE was highest in msp2 locus (HE = 0.99, and lowest for msp1 (HE = 0.68 (P msp1, msp2 and glurp in malaria clinical trials in sub

  14. Computational insights into the suicide inhibition of Plasmodium falciparum Fk506-binding protein 35.

    Science.gov (United States)

    MacDonald, Corey A; Boyd, Russell J

    2015-08-15

    Malaria is a parasite affecting millions of people worldwide. With the risk of malarial resistance reaching catastrophic levels, novel methods into the inhibition of this disease need to be prioritized. The exploitation of active site differences between parasitic and human peptidyl-prolyl cis/trans isomerases can be used for suicide inhibition, effectively poisoning the parasite without affecting the patient. This method of inhibition was explored using Plasmodium falciparum and Homo sapiens Fk506-binding proteins as templates for quantum mechanics/molecular mechanics calculations. Modification of the natural substrate has shown suicide inhibition is a valid approach for novel anti-malarials with little risk for parasitic resistance.

  15. Genome wide linkage study, using a 250K SNP map, of Plasmodium falciparum infection and mild malaria attack in a Senegalese population.

    Directory of Open Access Journals (Sweden)

    Jacqueline Milet

    Full Text Available Multiple factors are involved in the variability of host's response to P. falciparum infection, like the intensity and seasonality of malaria transmission, the virulence of parasite and host characteristics like age or genetic make-up. Although admitted nowadays, the involvement of host genetic factors remains unclear. Discordant results exist, even concerning the best-known malaria resistance genes that determine the structure or function of red blood cells. Here we report on a genome-wide linkage and association study for P. falciparum infection intensity and mild malaria attack among a Senegalese population of children and young adults from 2 to 18 years old. A high density single nucleotide polymorphisms (SNP genome scan (Affimetrix GeneChip Human Mapping 250K-nsp was performed for 626 individuals: i.e. 249 parents and 377 children out of the 504 ones included in the follow-up. The population belongs to a unique ethnic group and was closely followed-up during 3 years. Genome-wide linkage analyses were performed on four clinical and parasitological phenotypes and association analyses using the family based association tests (FBAT method were carried out in regions previously linked to malaria phenotypes in literature and in the regions for which we identified a linkage peak. Analyses revealed three strongly suggestive evidences for linkage: between mild malaria attack and both the 6p25.1 and the 12q22 regions (empirical p-value=5x10(-5 and 9x10(-5 respectively, and between the 20p11q11 region and the prevalence of parasite density in asymptomatic children (empirical p-value=1.5x10(-4. Family based association analysis pointed out one significant association between the intensity of plasmodial infection and a polymorphism located in ARHGAP26 gene in the 5q31-q33 region (p-value=3.7x10(-5. This study identified three candidate regions, two of them containing genes that could point out new pathways implicated in the response to malaria infection

  16. Changes in the levels of cytokines, chemokines and malaria-specific antibodies in response to Plasmodium falciparum infection in children living in sympatry in Mali

    Directory of Open Access Journals (Sweden)

    Boström Stéphanie

    2012-04-01

    Full Text Available Abstract Background The Fulani are known to be less susceptible to Plasmodium falciparum malaria as reflected by lower parasitaemia and fewer clinical symptoms than other sympatric ethnic groups. So far most studies in these groups have been performed on adults, which is why little is known about these responses in children. This study was designed to provide more information on this gap. Methods Circulating inflammatory factors and antibody levels in children from the Fulani and Dogon ethnic groups were measured. The inflammatory cytokines; interleukin (IL-1beta, IL-6, IL-8, IL-10, IL-12p70, tumor necrosis factor (TNF and the chemokines; regulated on activation normal T cell expressed and secreted (RANTES, monokine-induced by IFN-gamma (MIG, monocyte chemotactic protein (MCP-1 and IFN-gamma-inducible protein (IP-10 were measured by cytometric bead arrays. The levels of interferon (IFN-alpha, IFN-gamma and malaria-specific antibodies; immunoglobulin (Ig G, IgM and IgG subclasses (IgG1-IgG4 were measured by ELISA. Results The results revealed that the Fulani children had higher levels of all tested cytokines compared to the Dogon, in particular IFN-gamma, a cytokine known to be involved in parasite clearance. Out of all the tested chemokines, only MCP-1 was increased in the Fulani compared to the Dogon. When dividing the children into infected and uninfected individuals, infected Dogon had significantly lower levels of RANTES compared to their uninfected peers, and significantly higher levels of MIG and IP-10 as well as MCP-1, although the latter did not reach statistical significance. In contrast, such patterns were not seen in the infected Fulani children and their chemokine levels remained unchanged upon infection compared to uninfected counterparts. Furthermore, the Fulani also had higher titres of malaria-specific IgG and IgM as well as IgG1-3 subclasses compared to the Dogon. Conclusions Taken together, this study demonstrates, in

  17. Changes in the levels of cytokines, chemokines and malaria-specific antibodies in response to Plasmodium falciparum infection in children living in sympatry in Mali.

    Science.gov (United States)

    Boström, Stéphanie; Giusti, Pablo; Arama, Charles; Persson, Jan-Olov; Dara, Victor; Traore, Boubacar; Dolo, Amagana; Doumbo, Ogobara; Troye-Blomberg, Marita

    2012-04-05

    The Fulani are known to be less susceptible to Plasmodium falciparum malaria as reflected by lower parasitaemia and fewer clinical symptoms than other sympatric ethnic groups. So far most studies in these groups have been performed on adults, which is why little is known about these responses in children. This study was designed to provide more information on this gap. Circulating inflammatory factors and antibody levels in children from the Fulani and Dogon ethnic groups were measured. The inflammatory cytokines; interleukin (IL)-1beta, IL-6, IL-8, IL-10, IL-12p70, tumor necrosis factor (TNF) and the chemokines; regulated on activation normal T cell expressed and secreted (RANTES), monokine-induced by IFN-gamma (MIG), monocyte chemotactic protein (MCP)-1 and IFN-gamma-inducible protein (IP)-10 were measured by cytometric bead arrays. The levels of interferon (IFN)-alpha, IFN-gamma and malaria-specific antibodies; immunoglobulin (Ig) G, IgM and IgG subclasses (IgG1-IgG4) were measured by ELISA. The results revealed that the Fulani children had higher levels of all tested cytokines compared to the Dogon, in particular IFN-gamma, a cytokine known to be involved in parasite clearance. Out of all the tested chemokines, only MCP-1 was increased in the Fulani compared to the Dogon. When dividing the children into infected and uninfected individuals, infected Dogon had significantly lower levels of RANTES compared to their uninfected peers, and significantly higher levels of MIG and IP-10 as well as MCP-1, although the latter did not reach statistical significance. In contrast, such patterns were not seen in the infected Fulani children and their chemokine levels remained unchanged upon infection compared to uninfected counterparts. Furthermore, the Fulani also had higher titres of malaria-specific IgG and IgM as well as IgG1-3 subclasses compared to the Dogon. Taken together, this study demonstrates, in accordance with previous work, that Fulani children mount a stronger

  18. Changing trends in prevalence of different Plasmodium species with dominance of Plasmodium falciparum malaria infection in Aligarh (India).

    Science.gov (United States)

    Khan, Haris M; Shujatullah, Fatima; Ashfaq, Mohammad; Raza, Adil

    2011-01-01

    To determine the prevalence of malaria in Aligarh and analyze species dominance in different years over a decade. Diagnosis of malaria was done using microscopy as gold standard, rapid antigen detection assays and quantitative buffy coat (QBC) assays. Giemsa stained blood smear examination was done, thick and thin films were examined for presence of different Plasmodium spp. Rapid antigen detection assays employing detection of HRP-2 and parasite lactate dehydrogenase antigen (pLDH) by immunochromatography was done in patients whose blood smear found to be negative by conventional Giemsa slide examination. QBC was done in cases where there is strong clinical suspicion of malaria with blood smear negative, in patients with chronic malaria, splenomegaly, or in those patients who had inadequate treatment and for post-treatment follow up. Plasmodium vivax and Plasmodium falciparum were only species detected in our hospital. Overall prevalence of malaria in Aligarh was found to be 8.8%. The maximum prevalence of 20.1% was observed in year 2008 and lowest 2.3% in 2002. High prevalence of malaria is observed in this part of country with dominance of both species particularly Plasmodium falciparum should be monitored and factors accounting for occurrence should be studied to employ effective control measures. Copyright © 2011 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  19. Longitudinal study of Plasmodium falciparum infection and immune responses in infants with or without the sickle cell trait.

    Science.gov (United States)

    Le Hesran, J Y; Personne, I; Personne, P; Fievet, N; Dubois, B; Beyemé, M; Boudin, C; Cot, M; Deloron, P

    1999-08-01

    Individuals may be homozygous (SS) or heterozygous (AS) sickle cell gene carriers or have normal adult haemoglobin (AA). Haemoglobin S could have a protective role against malaria but evidence is sparse and the operating mechanisms are poorly known. We followed two cohorts of children. The first was enrolled at birth (156 newborn babies) and the second at 24-36 months old (84 children). Both cohorts were followed for 30 months; monthly for parasitological data and half yearly for immunological data. In the first cohort, 22%, and in the second 13% of children were AS. Whatever their age parasite prevalence rates were similar in AA and AS individuals. Mean parasite densities increased less rapidly with age in AS than in AA children, and were significantly lower in AS than in AA children >48 months old. The AA children tended to be more often admitted to hospital than AS children (22% versus 11%, NS). Both anti-Plasmodium falciparum and anti-Pfl55/RESA antibody rates increased more rapidly in AA than in AS children. Conversely, the prevalence rate of cellular responders to the Pfl55/RESA antigen was similar in AA and AS children during the first 2 years of life, then it was higher in AS than in AA children. Sickle cell trait related antimalarial protection varies with age. The role of the modifications of the specific immune response to P. falciparum in explaining the protection of AS children against malaria is discussed.

  20. Changing trends in prevalence of different Plasmodium species with dominance of Plasmodium falciparum malaria infection in Aligarh (India)

    Institute of Scientific and Technical Information of China (English)

    Haris M Khan; Fatima Shujatullah; Mohammad Ashfaq; Adil Raza

    2011-01-01

    Objective: To determine the prevalence of malaria in Aligarh and analyze species dominance in different years over a decade. Methods: Diagnosis of malaria was done using microscopy as gold standard, rapid antigen detection assays and quantitative buffy coat (QBC) assays. Giemsa stained blood smear examination was done, thick and thin films were examined for presence of different Plasmodium spp. Rapid antigen detection assays employing detection of HRP-2 and parasite lactate dehydrogenase antigen (pLDH) by immunochromatography was done in patients whose blood smear found to be negative by conventional Giemsa slide examination. QBC was done in cases where there is strong clinical suspicion of malaria with blood smear negative, in patients with chronic malaria, splenomegaly, or in those patients who had inadequate treatment and for post-treatment follow up. Results: Plasmodium vivax and Plasmodium falciparum were only species detected in our hospital. Overall prevalence of malaria in Aligarh was found to be 8.8%. The maximum prevalence of 20.1% was observed in year 2008 and lowest 2.3% in 2002.Conclusions:High prevalence of malaria is observed in this part of country with dominance of both species particularly Plasmodium falciparum should be monitored and factors accounting for occurrence should be studied to employ effective control measures.

  1. Malarial anemia leads to adequately increased erythropoiesis in asymptomatic Kenyan children

    NARCIS (Netherlands)

    Verhoef, H.; West, C.E.; Kraaijenhagen, R.; Nzyuko, S.M.; King, R.; Mbandi, M.M.; Laatum, van S.; Hogervorst, R.; Schep, C.; Kok, F.J.

    2002-01-01

    Malarial anemia is associated with a shift in iron distribution from functional to storage compartments. This suggests a relative deficit in erythropoietin production or action similar to that observed in other infections. Our study in Kenyan children with asymptomatic malaria aimed at investigating

  2. Malarial anemia leads to adequately increased erythropoiesis in asymptomatic Kenyan children

    NARCIS (Netherlands)

    Verhoef, H.; West, C.E.; Kraaijenhagen, R.; Nzyuko, S.M.; King, R.; Mbandi, M.M.; Laatum, van S.; Hogervorst, R.; Schep, C.; Kok, F.J.

    2002-01-01

    Malarial anemia is associated with a shift in iron distribution from functional to storage compartments. This suggests a relative deficit in erythropoietin production or action similar to that observed in other infections. Our study in Kenyan children with asymptomatic malaria aimed at investigating

  3. Evaluation of a rapid whole blood immunochromatographic assay for the diagnosis of Plasmodium falciparum and Plasmodium vivax malaria.

    Science.gov (United States)

    Fernando, S D; Karunaweera, N D; Fernando, W P

    2004-03-01

    Microscopic examination of blood smears is the 'gold standard' for malaria diagnosis, but is labour intensive and requires skilled operators. Plasmodium vivax malaria accounts for up to 70% of infections in Sri Lanka. The objective of this study was to determine the effectiveness of an immunochromatographic test which can detect both the species of Plasmodium, P. vivax and P. falciparum, present in Sri Lanka. Prospective study from May 2001 to March 2002. All persons above 5 years of age who presented to the Malaria Research Station, Kataragama or the Anti-malaria Clinic, Kurunegala, with a history of fever were recruited to the study. Thick and thin blood smears were examined for malarial parasites. The rapid diagnostic test (RDT), ICT Malaria P.f/P.v (AMRAD ICT, Australia) was performed simultaneously by an independent investigator. The severity of clinical disease of all patients was evaluated. The study sample comprised 328 individuals of whom 126 (38%) were infected, 102 with P. vivax (31.1%) and 24 with P. falciparum (7.3%). The RDT was found to be highly sensitive (100%) and specific (100%) for the diagnosis of P. falciparum when compared with field microscopy. The sensitivity for the diagnosis of P. vivax malaria was only 70%. When P. vivax parasitaemia was greater than 5000 parasites/microL the RDT was 96.2% sensitive. A significant association was noted between the band intensity on the dipstick and both peripheral blood parasitaemia (p ICT Malaria P.f/P.v test can be used in Sri Lanka in the absence of microscopists.

  4. Blood shizonticidal activities of phenazines and naphthoquinoidal compounds against Plasmodium falciparum in vitro and in mice malaria studies

    Directory of Open Access Journals (Sweden)

    Nicolli Bellotti de Souza

    2014-08-01

    Full Text Available Due to the recent advances of atovaquone, a naphthoquinone, through clinical trials as treatment for malarial infection, 19 quinone derivatives with previously reported structures were also evaluated for blood schizonticide activity against the malaria parasite Plasmodium falciparum. These compounds include 2-hydroxy-3-methylamino naphthoquinones (2-9, lapachol (10, nor-lapachol (11, iso-lapachol (12, phthiocol (13 and phenazines (12-20. Their cytotoxicities were also evaluated against human hepatoma and normal monkey kidney cell lines. Compounds 2 and 5 showed the highest activity against P. falciparum chloroquine-resistant blood-stage parasites (clone W2, indicated by their low inhibitory concentration for 50% (IC50 of parasite growth. The therapeutic potential of the active compounds was evaluated according to the selectivity index, which is a ratio of the cytotoxicity minimum lethal dose which eliminates 50% of cells and the in vitro IC50. Naphthoquinones 2 and 5, with activities similar to the reference antimalarial chloroquine, were also active against malaria in mice and suppressed parasitaemia by more than 60% in contrast to compound 11 which was inactive. Based on their in vitro and in vivo activities, compounds 2 and 5 are considered promising molecules for antimalarial treatment and warrant further study.

  5. Spleen enlargement and genetic diversity of Plasmodium falciparum infection in two ethnic groups with different malaria susceptibility in Mali, West Africa.

    Science.gov (United States)

    Bereczky, S; Dolo, A; Maiga, B; Hayano, M; Granath, F; Montgomery, S M; Daou, M; Arama, C; Troye-Blomberg, M; Doumbo, O K; Färnert, A

    2006-03-01

    The high resistance to malaria in the nomadic Fulani population needs further understanding. The ability to cope with multiclonal Plasmodium falciparum infections was assessed in a cross-sectional survey in the Fulani and the Dogon, their sympatric ethnic group in Mali. The Fulani had lower parasite prevalence and densities and more prominent spleen enlargement. Spleen rates in children aged 2-9 years were 75% in the Fulani and 44% in the Dogon (PDogon and Fulani, respectively. Spleen rate increased with parasite prevalence, density and number of co-infecting clones in asymptomatic Dogon. Moreover, splenomegaly was increased in individuals with clinical malaria in the Dogon, odds ratio 3.67 (95% CI 1.65-8.15, P=0.003), but not found in the Fulani, 1.36 (95% CI 0.53-3.48, P=0.633). The more susceptible Dogon population thus appear to respond with pronounced spleen enlargement to asymptomatic multiclonal infections and acute disease whereas the Fulani have generally enlarged spleens already functional for protection. The results emphasize the importance of spleen function in protective immunity to the polymorphic malaria parasite.

  6. The effect of three-monthly albendazole treatment on malarial parasitemia and allergy: a household-based cluster-randomized, double-blind, placebo-controlled trial

    NARCIS (Netherlands)

    Wiria, A.E.; Hamid, F.; Wammes, L.J.; Kaisar, M.M.; May, L.; Prasetyani, M.A.; Wahyuni, S.; Djuardi, Y.; Ariawan, I.; Wibowo, H.; Lell, B.; Sauerwein, R.; Brice, G.T.; Sutanto, I.; Lieshout, L. van; Craen, A.J. de; Ree, R. van; Verweij, J.J.; Tsonaka, R.; Houwing-Duistermaat, J.J.; Luty, A.J.F.; Sartono, E.; Supali, T.; Yazdanbakhsh, M.

    2013-01-01

    BACKGROUND: Helminth infections are proposed to have immunomodulatory activities affecting health outcomes either detrimentally or beneficially. We evaluated the effects of albendazole treatment, every three months for 21 months, on STH, malarial parasitemia and allergy. METHODS AND FINDINGS: A hous

  7. The Prevalence of α-Thalassemia and Its Relation to Plasmodium falciparum Infection in Patients Presenting to Clinics in Two Distinct Ecological Zones in Ghana.

    Science.gov (United States)

    Ghartey-Kwansah, George; Boampong, Johnson N; Aboagye, Benjamin; Afoakwah, Richmond; Ameyaw, Elvis O; Quashie, Neils B

    2016-01-01

    Thalassemia and sickle cell disease constitute the most monogenic hemoglobin (Hb) disorders worldwide. Clinical symptoms of α(+)-thalassemia (α(+)-thal) are related to inadequate Hb production and accumulation of β- and/or γ-globin subunits. The association of thalassemia with malaria remains contentious, though from its distribution it appears to have offered some protection against the disease. Data on the prevalence of thalassemia in Ghana and its link with malaria is scanty and restricted. It was an objective of this cross-sectional study to determine the prevalence of thalassemia in areas representing two of Ghana's distinct ecological zones. The relationship between thalassemia and Plasmodium falciparium (P. falciparum) infection was also ascertained. Overall, 277 patients presenting to health facilities in the study areas were recruited to participate. Tests were carried out to determine the presence of α(+)-thal, sickle cell and malaria parasites in the blood samples of participants. The outcome of this study showed an α(+)-thal frequency of 19.9% for heterozygotes (-α/αα) and 6.8% for homozygotes (-α/-α). Plasmodium falciparum was detected in 17.7% of the overall study population and 14.9% in those with α(+)-thal. No association was observed between those with α(+)-thal and the study sites (p > 0.05). A test of the Hardy-Weinberg law yielded no significant difference (p Ghana with no bias to the ecological zones. Although the prevalence and parasite density were relatively low in those with the disorder, no association was found between them.

  8. A method for visualizing surface-exposed and internal PfEMP1 adhesion antigens in Plasmodium falciparum infected erythrocytes

    DEFF Research Database (Denmark)

    Bengtsson, Dominique; Sowa, Kordai M; Salanti, Ali;

    2008-01-01

    BACKGROUND: The insertion of parasite antigens into the host erythrocyte membrane and the structure and distribution of Plasmodium falciparum adhesion receptors on that membrane are poorly understood. Laser scanning confocal microscopy (LSCM) and a novel labelling and fixation method have been used...... to obtain high resolution immuno-fluorescent images of erythrocyte surface PfEMP1 and internal antigens which allow analysis of the accumulation of PfEMP1 on the erythrocyte membrane during asexual development. METHODS: A novel staining technique has been developed which permits distinction between...... erythrocyte surface PfEMP1 and intracellular PfEMP1, in parasites whose nuclear material is exceptionally well resolved. Primary antibody detection by fluorescence is carried out on the live parasitized erythrocyte. The surface labelled cells are then fixed using paraformaldehyde and permeabilized with a non...

  9. Plasmodium falciparum infection rates for some Anopheles spp. from Guinea-Bissau, West Africa [v2; ref status: indexed, http://f1000r.es/4n3

    Directory of Open Access Journals (Sweden)

    Michelle R. Sanford

    2014-11-01

    Full Text Available Presence of Plasmodium falciparum circumsporozoite protein (CSP was detected by enzyme linked immunosorbent assay (ELISA in a sample of Anopheles gambiae s.s., A. melas and A. pharoensis collected in Guinea-Bissau during October and November 2009. The percentage of P. falciparum infected samples (10.2% overall; confidence interval (CI: 7.45-13.6% was comparable to earlier studies from other sites in Guinea-Bissau (9.6-12.4%. The majority of the specimens collected were identified as A. gambiae which had an individual infection rate of 12.6 % (CI: 8.88-17.6 across collection sites. A small number of specimens of A. coluzzii, A. coluzzii x A. gambiae hybrids, A. melas and A. pharoensis were collected and had infection rates of 4.3% (CI:0.98-12.4, 4.1% (CI:0.35-14.5, 11.1% (CI:1.86-34.1 and 33.3% (CI:9.25-70.4 respectively. Despite being present in low numbers in indoor collections, the exophilic feeding behaviors of A. melas (N=18 and A. pharoensis (N=6 and high infection rates observed in this survey suggest falciparum-malaria transmission potential outside of the protection of bed nets.

  10. IL4 gene polymorphism and previous malaria experiences manipulate anti-Plasmodium falciparum antibody isotype profiles in complicated and uncomplicated malaria

    Directory of Open Access Journals (Sweden)

    Kalambaheti Thareerat

    2009-12-01

    regulation of anti-malarial antibody isotype profiles in primary and secondary malaria infection and, therefore, could play an important role in alteration of malaria severity.

  11. Heterologous Protection against Malaria after Immunization with Plasmodium falciparum Sporozoites

    NARCIS (Netherlands)

    Schats, R.; Bijker, E.M.; Gemert, G.J.A. van; Graumans, W.; Vegte-Bolmer, M. van de; Lieshout, L. van; Haks, M.C.; Hermsen, C.C.; Scholzen, A.; Visser, L.G.; Sauerwein, R.W.

    2015-01-01

    BACKGROUND: Sterile protection in >90% of volunteers against homologous Plasmodium falciparum infection has been achieved only using the controlled human malaria infection (CHMI) model. This efficient model involves whole parasite immunizations under chloroquine prophylaxis (CPS-immunization),

  12. Automated detection of retinal whitening in malarial retinopathy

    Science.gov (United States)

    Joshi, V.; Agurto, C.; Barriga, S.; Nemeth, S.; Soliz, P.; MacCormick, I.; Taylor, T.; Lewallen, S.; Harding, S.

    2016-03-01

    Cerebral malaria (CM) is a severe neurological complication associated with malarial infection. Malaria affects approximately 200 million people worldwide, and claims 600,000 lives annually, 75% of whom are African children under five years of age. Because most of these mortalities are caused by the high incidence of CM misdiagnosis, there is a need for an accurate diagnostic to confirm the presence of CM. The retinal lesions associated with malarial retinopathy (MR) such as retinal whitening, vessel discoloration, and hemorrhages, are highly specific to CM, and their detection can improve the accuracy of CM diagnosis. This paper will focus on development of an automated method for the detection of retinal whitening which is a unique sign of MR that manifests due to retinal ischemia resulting from CM. We propose to detect the whitening region in retinal color images based on multiple color and textural features. First, we preprocess the image using color and textural features of the CMYK and CIE-XYZ color spaces to minimize camera reflex. Next, we utilize color features of the HSL, CMYK, and CIE-XYZ channels, along with the structural features of difference of Gaussians. A watershed segmentation algorithm is used to assign each image region a probability of being inside the whitening, based on extracted features. The algorithm was applied to a dataset of 54 images (40 with whitening and 14 controls) that resulted in an image-based (binary) classification with an AUC of 0.80. This provides 88% sensitivity at a specificity of 65%. For a clinical application that requires a high specificity setting, the algorithm can be tuned to a specificity of 89% at a sensitivity of 82%. This is the first published method for retinal whitening detection and combining it with the detection methods for vessel discoloration and hemorrhages can further improve the detection accuracy for malarial retinopathy.

  13. Hemolytic and antimalarial effects of tight-binding glyoxalase 1 inhibitors on the host-parasite unit of erythrocytes infected with Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Cletus A. Wezena

    2016-08-01

    Full Text Available Glyoxalases prevent the formation of advanced glycation end products by converting glycolysis-derived methylglyoxal to d-lactate with the help of glutathione. Vander Jagt and colleagues previously showed that erythrocytes release about thirty times more d-lactate after infection with the human malaria parasite Plasmodium falciparum. Functional glyoxalases in the host-parasite unit might therefore be crucial for parasite survival. Here, we determined the antimalarial and hemolytic activity of two tight-binding glyoxalase inhibitors using infected and uninfected erythrocytes. In addition, we synthesized and analyzed a set of diester derivates of both tight-binding inhibitors resulting in up to threefold lower IC50 values and an altered methemoglobin formation and hemolytic activity depending on the type of ester. Inhibitor treatments of uninfected erythrocytes revealed an extremely slow inactivation of the host cell glyoxalase, irrespective of inhibitor modifications, and a potential dispensability of the host cell enzyme for parasite survival. Our study highlights the benefits and drawbacks of different esterifications of glutathione-derived inhibitors and demonstrates the suitability of glyoxalase inhibitors as a tool for deciphering the relevance and mode of action of different glyoxalase systems in a host-parasite unit.

  14. Access to Artemisinin-Combination Therapy (ACT) and other Anti-Malarials: National Policy and Markets in Sierra Leone

    Science.gov (United States)

    Amuasi, John H.; Diap, Graciela; Nguah, Samuel Blay; Karikari, Patrick; Boakye, Isaac; Jambai, Amara; Lahai, Wani Kumba; Louie, Karly S.; Kiechel, Jean-Rene

    2012-01-01

    Malaria remains the leading burden of disease in post-conflict Sierra Leone. To overcome the challenge of anti-malarial drug resistance and improve effective treatment, Sierra Leone adopted artemisinin-combination therapy artesunate-amodiaquine (AS+AQ) as first-line treatment for uncomplicated P. falciparum malaria. Other national policy anti-malarials include artemether-lumefantrine (AL) as an alternative to AS+AQ, quinine and artemether for treatment of complicated malaria; and sulphadoxine-pyrimethamine (SP) for intermittent preventive treatment (IPTp). This study was conducted to evaluate access to national policy recommended anti-malarials. A cross-sectional survey of 127 medicine outlets (public, private and NGO) was conducted in urban and rural areas. The availability on the day of the survey, median prices, and affordability policy and available non-policy anti-malarials were calculated. Anti-malarials were stocked in 79% of all outlets surveyed. AS+AQ was widely available in public medicine outlets; AL was only available in the private and NGO sectors. Quinine was available in nearly two-thirds of public and NGO outlets and over one-third of private outlets. SP was widely available in all outlets. Non-policy anti-malarials were predominantly available in the private outlets. AS+AQ in the public sector was widely offered for free. Among the anti-malarials sold at a cost, the same median price of a course of AS+AQ (US$1.56), quinine tablets (US$0.63), were found in both the public and private sectors. Quinine injection had a median cost of US$0.31 in the public sector and US$0.47 in the private sector, while SP had a median cost of US$0.31 in the public sector compared to US$ 0.63 in the private sector. Non-policy anti-malarials were more affordable than first-line AS+AQ in all sectors. A course of AS+AQ was affordable at nearly two days’ worth of wages in both the public and private sectors. PMID:23133522

  15. Differences in anti-malarial activity of 4-aminoalcohol quinoline enantiomers and investigation of the presumed underlying mechanism of action

    Directory of Open Access Journals (Sweden)

    Mullié Catherine

    2012-03-01

    Full Text Available Abstract Background A better anti-malarial efficiency and lower neurotoxicity have been reported for mefloquine (MQ (+- enantiomer. However, the importance of stereoselectivity remains poorly understood as the anti-malarial activity of pure enantiomer MQ analogues has never been described. Building on these observations, a series of enantiopure 4-aminoalcohol quinoline derivatives has previously been synthesized to optimize the efficiency and reduce possible adverse effects. Their in vitro activity on Plasmodium falciparum W2 and 3D7 strains is reported here along with their inhibition of β-haematin formation and peroxidative degradation of haemin, two possible mechanisms of action of anti-malarial drugs. Results The (S-enantiomers of this series of 4-aminoalcohol quinoline derivatives were found to be at least as effective as both chloroquine (CQ and MQ. The derivative with a 5-carbon side-chain length was the more efficient on both P. falciparum strains. (R -enantiomers displayed an activity decreased by 2 to 15-fold as compared to their (S counterparts. The inhibition of β-haematin formation was significantly stronger with all tested compounds than with MQ, irrespective of the stereochemistry. Similarly, the inhibition of haemin peroxidation was significantly higher for both (S and (R-enantiomers of derivatives with a side-chain length of five or six carbons than for MQ and CQ. Conclusions The prominence of stereochemistry in the anti-malarial activity of 4-aminoalcohol quinoline derivatives is confirmed. The inhibition of β-haematin formation and haemin peroxidation can be put forward as presumed mechanisms of action but do not account for the stereoselectivity of action witnessed in vitro.

  16. Targeting a Novel Plasmodium falciparum Purine Recycling Pathway with Specific Immucillins

    Energy Technology Data Exchange (ETDEWEB)

    Ting, L; Shi, W; Lewandowicz, A; Singh, V; Mwakingwe, A; Birck, M R; Taylor Ringia, E A; Bench, G; Madrid, D C; Tyler, P C; Evans, G B; Furneaux, R H; Schramm, V L; Kim, K

    2004-05-19

    Plasmodium falciparum is unable to synthesize purine bases and relies upon purine salvage and purine recycling to meet its purine needs. We report that purines formed as products of the polyamine pathway are recycled in a novel pathway in which 5'-methylthioinosine is generated by adenosine deaminase. The action of P. falciparum purine nucleoside phosphorylase is a convergent step of purine salvage, converting both 5'-methylthioinosine and inosine to hypoxanthine. We used accelerator mass spectrometry to verify that 5'-methylthioinosine is an active nucleic acid precursor in P. falciparum. Prior studies have shown that inhibitors of purine salvage enzymes kill malaria, but potent malaria-specific inhibitors of these enzymes have not previously been described. 5'-methylthio-Immucillin-H, a transition state analogue inhibitor that is selective for malarial over human purine nucleoside phosphorylase, kills P. falciparum in culture. Immucillins are currently in clinical trials for other indications and may have application as antimalarials.

  17. Prescription pattern of anti-malarial drugs in a tertiary care hospital

    Institute of Scientific and Technical Information of China (English)

    Santoshkumar R Jeevangi; Manjunath S; Sharanabasappa M Awanti

    2010-01-01

    Objective:To evaluate the prescribing pattern of anti malarial drugs in a tertiary care hospital. Methods:A prospective cross-sectional study was conducted for 6 months of patients visiting in Basaveshwar Teaching and General Hospital, Gulbarga. Data were analyzed for various drug use indicators. Results: A total of 212 prescriptions were collected, with 136 (64.15%) male and 76 (35.85%) female. There were 128 (60.37%) Plasmodium vivax cases and 84 (39.63%) Plasmodium falciparum cases. All Plasmodium vivax cases were treated with chloroquine alone and among these 16 (12.5%) recieved radical treatment with primaquine along with chloroquine. Among 84 patients with Pasmodium falciparum, 40 patients received single drug such as quinine/mefloquinine/artesunate/arteether. Another 44 patients received multidrug regime like, quinine+artesunate (54.54%), quinine+mefloquine (27.27%) and quinine+arteether (18.18%). Chloroquine was not administered to any of the patients with Plasmodium falciparum malaria. The most common adverse effects with chloroquine were anorexia, nausea, vomiting and tinnitus in 9.37%of the cases. With quinine it was nausea and vomiting in 17.64%, tinnitus in 11.76%and hypoglycemia in 2.1%of cases. Conclusions: Our study found the perennial favorites like chloroquine for Plasmodium vivax and quinine for Plasmodium falciparum were the most effective drug. In the severe Plasmodium falciparum cases the artesunate derivatives and combination of artesunate with quinine/mefloquine were most effective with fewer incidences of side effects.

  18. A comparative, randomized clinical trial of artemisinin/naphtoquine twice daily one day versus artemether/lumefantrine six doses regimen in children and adults with uncomplicated falciparum malaria in Côte d'Ivoire

    Directory of Open Access Journals (Sweden)

    Toure Walamtchin

    2009-07-01

    Full Text Available Abstract Background Drug resistance in Plasmodium falciparum poses a major threat to malaria control. Combination anti-malarial therapy, including artemisinins, has been advocated to improve efficacy and limit the spread of resistance. The fixed combination of oral artemether-lumefantrine (AL is highly effective and well-tolerated. Artemisinin/naphtoquine (AN is a fixed-dose ACT that has recently become available in Africa. The objectives of the study were to compare the efficacy and safety of AN and AL for the treatment of uncomplicated falciparum malaria in a high transmission-intensity site in Ivory Coast. Methods We enrolled 122 participants aged 6 months or more with uncomplicated falciparum malaria. Participants were randomized to receive either artemisinin/naphtoquine or artemether/lumefantrine with variable dose according to their weight. Primary endpoints were the risks of treatment failure within 28 days, either unadjusted or adjusted by genotyping to distinguish recrudescence from new infection. Results Among 125 participants enrolled, 123 (98.4% completed follow-up. Clinical evaluation of the 123 participants showed that cumulative PCR-uncorrected cure rate on day 28 was 100% for artemisinin/naphtoquine and 98.4% for artemether/lumefantrine. Both artemisinin-based combinations effected rapid fever and parasite clearance. Interpretation These data suggest that Arco® could prove to be suitable for use as combination antimalarial therapy. Meanwhile, pharmacokinetic studies and further efficacy assessment should be conducted before its widespread use can be supported.

  19. Subclinical Plasmodium falciparum infections act as year-round reservoir for malaria in the hypoendemic Chittagong Hill districts of Bangladesh

    Directory of Open Access Journals (Sweden)

    Kerry L. Shannon

    2016-08-01

    Conclusions: Hypoendemic subclinical malaria infections were associated with a number of household and demographic factors, similar to symptomatic cases. Unlike clinical symptomatic malaria, which is highly seasonal, these actively detected infections were present year-round, made up the vast majority of infections at any given time, and likely acted as reservoirs for continued transmission.

  20. Predicting functional residues in Plasmodium falciparum plasmepsins by combining sequence and structural analysis with molecular dynamics simulations.

    Science.gov (United States)

    Valiente, Pedro A; Batista, Paulo R; Pupo, Amaury; Pons, Tirso; Valencia, Alfonso; Pascutti, Pedro G

    2008-11-01

    Plasmepsins are aspartic proteases involved in the initial steps of the hemoglobin degradation pathway, a critical stage in the Plasmodium falciparum life cycle during human infection. Thus, they are attractive targets for novel therapeutic compounds to treat malaria, which remains one of the world's biggest health problems. The three-dimensional structures available for P. falciparum plasmepsins II and IV make structure-based drug design of antimalarial compounds that focus on inhibiting plasmepsins possible. However, the structural flexibility of the plasmepsin active site cavity combined with insufficient knowledge of the functional residues and of those determining the specificity of parasitic enzymes is a drawback when designing specific inhibitors. In this study, we have combined a sequence and structural analysis with molecular dynamics simulations to predict the functional residues in P. falciparum plasmepsins. The careful analysis of X-ray structures and 3D models carried out here suggests that residues Y17, V105, T108, L191, L242, Q275, and T298 are important for plasmepsin function. These seven amino acids are conserved across the malarial strains but not in human aspartic proteases. Residues V105 and T108 are localized in a flap of an interior pocket and they only establish contacts with a specific non-peptide achiral inhibitor. We also observed a rapid conformational change in the L3 region of plasmepsins that closes the active site of the enzyme, which explains earlier experimental findings. These results shed light on the role of V105 and T108 residues in plasmepsin specificities, and they should be useful in structure-based design of novel, selective inhibitors that may serve as antimalarial drugs.

  1. Haptoglobin 1-1 is associated with susceptibility to severe Plasmodium falciparum malaria

    DEFF Research Database (Denmark)

    Quaye, I K; Ekuban, F A; Goka, B Q

    2000-01-01

    The haptoglobin (Hp) phenotypes were determined by polyacrylamide-gel electrophoresis in plasma samples obtained in 1997 from 113 Plasmodium falciparum malaria patients (aged 1-12 years) with strictly defined cerebral malaria, severe malarial anaemia, or uncomplicated malaria and 42 age...... the reverse was seen with respect to Hp2-1 and Hp2-2. Our data suggest that the Hp1-1 phenotype is associated with susceptibility to P. falciparum malaria in general, and to the development of severe disease in particular....

  2. Assessment of exposure to Plasmodium falciparum transmission in a low endemicity area by using multiplex fluorescent microsphere-based serological assays

    Directory of Open Access Journals (Sweden)

    Sarr Jean

    2011-11-01

    Full Text Available Abstract Background The evaluation of malaria transmission intensity is a crucial indicator for estimating the burden of malarial disease. In this respect, entomological and parasitological methods present limitations, especially in low transmission areas. The present study used a sensitive multiplex assay to assess the exposure to Plasmodium falciparum infection in children living in an area of low endemicity. In three Senegalese villages, specific antibody (IgG responses to 13 pre-erythrocytic P. falciparum peptides derived from Lsa1, Lsa3, Glurp, Salsa, Trap, Starp, Csp and Pf11.1 proteins were simultaneously evaluated before (June, at the peak (September and after (December the period of malaria transmission, in children aged from 1 to 8 years. Results Compared to other antigens, a high percentage of seropositivity and specific antibody levels were detected with Glurp, Salsa1, Lsa3NR2, and Lsa1J antigens. The seropositivity increased with age for all tested antigens. Specific IgG levels to Glurp, Salsa1, Lsa3NR2, and Lsa1J were significantly higher in P. falciparum infected children compared to non-infected and this increase is significantly correlated with parasite density. Conclusion The multiplex assay represents a useful technology for a serological assessment of rapid variations in malaria transmission intensity, especially in a context of low parasite rates. The use of such combined serological markers (i.e. Glurp, Lsa1, Lsa3, and Salsa could offer the opportunity to examine these variations over time, and to evaluate the efficacy of integrated malaria control strategies.

  3. Transportproteiner som drug-targets hos Plasmodium falciparum. Nye perspektiver i behandlingen af malaria

    DEFF Research Database (Denmark)

    Ellekvist, Peter; Colding, Hanne

    2006-01-01

    The malaria parasite, Plasmodium falciparum, infects and replicates in human erythrocytes. Through the use of substrate-specific transport proteins, P. falciparum takes up nutrients from the erythrocyte's cytoplasm. The sequencing and publishing of the P. falciparum genome have made it possible...

  4. Impact of schistosome infection on Plasmodium falciparum Malariometric indices and immune correlates in school age children in Burma Valley, Zimbabwe.

    Directory of Open Access Journals (Sweden)

    Davison T Sangweme

    Full Text Available A group of children aged 6-17 years was recruited and followed up for 12 months to study the impact of schistosome infection on malaria parasite prevalence, density, distribution and anemia. Levels of cytokines, malaria specific antibodies in plasma and parasite growth inhibition capacities were assessed. Baseline results suggested an increased prevalence of malaria parasites in children co-infected with schistosomiasis (31% compared to children infected with malaria only (25% (p = 0.064. Moreover, children co-infected with schistosomes and malaria had higher sexual stage geometric mean malaria parasite density (189 gametocytes/µl than children infected with malaria only (73/µl gametocytes (p = 0.043. In addition, a larger percentage of co-infected children (57% had gametocytes as observed by microscopy compared to the malaria only infected children (36% (p = 0.06. There was no difference between the two groups in terms of the prevalence of anemia, which was approximately 64% in both groups (p = 0.9. Plasma from malaria-infected children exhibited higher malaria antibody activity compared to the controls (p = 0.001 but was not different between malaria and schistosome plus malaria infected groups (p = 0.44 and malaria parasite growth inhibition activity at baseline was higher in the malaria-only infected group of children than in the co-infected group though not reaching statistical significance (p = 0.5. Higher prevalence and higher mean gametocyte density in the peripheral blood may have implications in malaria transmission dynamics during co-infection with helminths.

  5. Infants' Peripheral Blood Lymphocyte Composition Reflects Both Maternal and Post-Natal Infection with Plasmodium falciparum: e0139606

    National Research Council Canada - National Science Library

    Odilon Nouatin; Komi Gbédandé; Samad Ibitokou; Bertin Vianou; Parfait Houngbegnon; Sem Ezinmegnon; Sophie Borgella; Carine Akplogan; Gilles Cottrell; Stefania Varani; Achille Massougbodji; Kabirou Moutairou; Marita Troye-Blomberg; Philippe Deloron; Adrian J F Luty

    2015-01-01

      Maternal parasitoses modulate fetal immune development, manifesting as altered cellular immunological activity in cord blood that may be linked to enhanced susceptibility to infections in early life...

  6. Mosquito Vectors and the Globalization of Plasmodium falciparum Malaria.

    Science.gov (United States)

    Molina-Cruz, Alvaro; Zilversmit, Martine M; Neafsey, Daniel E; Hartl, Daniel L; Barillas-Mury, Carolina

    2016-11-23

    Plasmodium falciparum malaria remains a devastating public health problem. Recent discoveries have shed light on the origin and evolution of Plasmodium parasites and their interactions with their vertebrate and mosquito hosts. P. falciparum malaria originated in Africa from a single horizontal transfer between an infected gorilla and a human, and became global as the result of human migration. Today, P. falciparum malaria is transmitted worldwide by more than 70 different anopheline mosquito species. Recent studies indicate that the mosquito immune system can be a barrier to malaria transmission and that the P. falciparum Pfs47 gene allows the parasite to evade mosquito immune detection. Here, we review the origin and globalization of P. falciparum and integrate this history with analysis of the biology, evolution, and dispersal of the main mosquito vectors. This new perspective broadens our understanding of P. falciparum population structure and the dispersal of important parasite genetic traits.

  7. Acute kidney injury in imported Plasmodium falciparum malaria

    NARCIS (Netherlands)

    L.C. Koopmans (Liese); M.E. van Wolfswinkel (Marlies); D.A. Hesselink (Dennis); E.J. Hoorn (Ewout); R. Koelewijn (Rob); J.J. van Hellemond (Jaap); P.J.J. van Genderen (Perry)

    2015-01-01

    textabstractBackground: Acute kidney injury (AKI) is a known complication of malaria, and is reported to occur in up to 40 % of adult patients with a severe Plasmodium falciparum infection in endemic regions. To gain insight in the incidence and risk factors of AKI in imported P. falciparum malaria,

  8. Acute kidney injury in imported Plasmodium falciparum malaria

    NARCIS (Netherlands)

    L.C. Koopmans, L.C. (Liese); M.E. van Wolfswinkel (Marlies); D.A. Hesselink (Dennis); E.J. Hoorn (Ewout); R. Koelewijn (Rob); J.J. van Hellemond (Jaap); P.J. van Genderen (P.)

    2015-01-01

    textabstractBackground: Acute kidney injury (AKI) is a known complication of malaria, and is reported to occur in up to 40 % of adult patients with a severe Plasmodium falciparum infection in endemic regions. To gain insight in the incidence and risk factors of AKI in imported P. falciparum malaria,

  9. Effect of nutrient deficiencies on in vitro Th1 and Th2 cytokine response of peripheral blood mononuclear cells to Plasmodium falciparum infection

    Directory of Open Access Journals (Sweden)

    McCall Matthew

    2010-06-01

    Full Text Available Abstract Background An appropriate balance between pro-inflammatory and anti-inflammatory cytokines that mediate innate and adaptive immune responses is required for effective protection against human malaria and to avoid immunopathology. In malaria endemic countries, this immunological balance may be influenced by micronutrient deficiencies. Methods Peripheral blood mononuclear cells from Tanzanian preschool children were stimulated in vitro with Plasmodium falciparum-parasitized red blood cells to determine T-cell responses to malaria under different conditions of nutrient deficiencies and malaria status. Results The data obtained indicate that zinc deficiency is associated with an increase in TNF response by 37%; 95% CI: 14% to 118% and IFN-γ response by 74%; 95% CI: 24% to 297%. Magnesium deficiency, on the other hand, was associated with an increase in production of IL-13 by 80%; 95% CI: 31% to 371% and a reduction in IFN-γ production. These results reflect a shift in cytokine profile to a more type I cytokine profile and cell-cell mediated responses in zinc deficiency and a type II response in magnesium deficiency. The data also reveal a non-specific decrease in cytokine production in children due to iron deficiency anaemia that is largely associated with malaria infection status. Conclusions The pathological sequels of malaria potentially depend more on the balance between type I and type II cytokine responses than on absolute suppression of these cytokines and this balance may be influenced by a combination of micronutrient deficiencies and malaria status.

  10. Epidemiological models for the spread of anti-malarial resistance

    Directory of Open Access Journals (Sweden)

    Antia R

    2003-02-01

    Full Text Available Abstract Background The spread of drug resistance is making malaria control increasingly difficult. Mathematical models for the transmission dynamics of drug sensitive and resistant strains can be a useful tool to help to understand the factors that influence the spread of drug resistance, and they can therefore help in the design of rational strategies for the control of drug resistance. Methods We present an epidemiological framework to investigate the spread of anti-malarial resistance. Several mathematical models, based on the familiar Macdonald-Ross model of malaria transmission, enable us to examine the processes and parameters that are critical in determining the spread of resistance. Results In our simplest model, resistance does not spread if the fraction of infected individuals treated is less than a threshold value; if drug treatment exceeds this threshold, resistance will eventually become fixed in the population. The threshold value is determined only by the rates of infection and the infectious periods of resistant and sensitive parasites in untreated and treated hosts, whereas the intensity of transmission has no influence on the threshold value. In more complex models, where hosts can be infected by multiple parasite strains or where treatment varies spatially, resistance is generally not fixed, but rather some level of sensitivity is often maintained in the population. Conclusions The models developed in this paper are a first step in understanding the epidemiology of anti-malarial resistance and evaluating strategies to reduce the spread of resistance. However, specific recommendations for the management of resistance need to wait until we have more data on the critical parameters underlying the spread of resistance: drug use, spatial variability of treatment and parasite migration among areas, and perhaps most importantly, cost of resistance.

  11. T cell subtypes and reciprocal inflammatory mediator expression differentiate P. falciparum memory recall responses in asymptomatic and symptomatic malaria patients in southeastern Haiti

    Science.gov (United States)

    Campo, Joseph J.; Cicéron, Micheline; Raccurt, Christian P.; Beau De Rochars, Valery E. M.

    2017-01-01

    Asymptomatic Plasmodium falciparum infection is responsible for maintaining malarial disease within human populations in low transmission countries such as Haiti. Investigating differential host immune responses to the parasite as a potential underlying mechanism could help provide insight into this highly complex phenomenon and possibly identify asymptomatic individuals. We performed a cross-sectional analysis of individuals who were diagnosed with malaria in Sud-Est, Haiti by comparing the cellular and humoral responses of both symptomatic and asymptomatic subjects. Plasma samples were analyzed with a P. falciparum protein microarray, which demonstrated serologic reactivity to 3,877 P. falciparum proteins of known serologic reactivity; however, no antigen-antibody reactions delineating asymptomatics from symptomatics were identified. In contrast, differences in cellular responses were observed. Flow cytometric analysis of patient peripheral blood mononuclear cells co-cultured with P. falciparum infected erythrocytes demonstrated a statistically significant increase in the proportion of T regulatory cells (CD4+ CD25+ CD127-), and increases in unique populations of both NKT-like cells (CD3+ CD8+ CD56+) and CD8mid T cells in asymptomatics compared to symptomatics. Also, CD38+/HLA-DR+ expression on γδ T cells, CD8mid (CD56-) T cells, and CD8mid CD56+ NKT-like cells decreased upon exposure to infected erythrocytes in both groups. Cytometric bead analysis of the co-culture supernatants demonstrated an upregulation of monocyte-activating chemokines/cytokines in asymptomatics, while immunomodulatory soluble factors were elevated in symptomatics. Principal component analysis of these expression values revealed a distinct clustering of individual responses within their respective phenotypic groups. This is the first comprehensive investigation of immune responses to P. falciparum in Haiti, and describes unique cell-mediated immune repertoires that delineate individuals

  12. Common variation in the ABO glycosyltransferase is associated with susceptibility to severe Plasmodium falciparum malaria

    Science.gov (United States)

    Fry, Andrew E.; Griffiths, Michael J.; Auburn, Sarah; Diakite, Mahamadou; Forton, Julian T.; Green, Angela; Richardson, Anna; Wilson, Jonathan; Jallow, Muminatou; Sisay-Joof, Fatou; Pinder, Margaret; Peshu, Norbert; Williams, Thomas N.; Marsh, Kevin; Molyneux, Malcolm E.; Taylor, Terrie E.; Rockett, Kirk A.; Kwiatkowski, Dominic P.

    2009-01-01

    There is growing epidemiological and molecular evidence that ABO blood group affects host susceptibility to severe Plasmodium falciparum infection. The high frequency of common ABO alleles means that even modest differences in susceptibility could have a significant impact on the health of people living in malaria endemic regions. We performed an association study, the first to utilize key molecular genetic variation underlying the ABO system, genotyping >9000 individuals across 3 African populations. Using population- and family-based tests we demonstrated that alleles producing functional ABO enzymes are associated with greater risk of severe malaria phenotypes (particularly malarial anemia) in comparison with the frameshift deletion underlying blood group O: Case-control allelic odds ratio (OR) 1.2, 95% confidence interval (CI) 1.09 – 1.32, P=0.0003; Family-studies allelic OR 1.19, CI 1.08 – 1.32, P=0.001; Pooled across all studies allelic OR 1.18, CI 1.11 - 1.26, P=2×10−7. Analyzing the family trios we found suggestive evidence of a parent-of-origin effect at the ABO locus. Non-O haplotypes inherited from mothers, but not fathers, are significantly associated with severe malaria (likelihood ratio test of Weinberg, P=0.046). Finally we used HapMap data to demonstrate a region of low FST (−0.001) between the three main HapMap population groups across the ABO locus, an outlier in the empirical distribution of FST across chromosome 9 (~99.5 – 99.9th centile). This low FST region may be a signal of longstanding balancing selection at the ABO locus, caused by multiple infectious pathogens including P. falciparum. PMID:18003641

  13. Hyperparasitaemia and low dosing are an important source of anti-malarial drug resistance

    Directory of Open Access Journals (Sweden)

    Lee Sue J

    2009-11-01

    Full Text Available Abstract Background Preventing the emergence of anti-malarial drug resistance is critical for the success of current malaria elimination efforts. Prevention strategies have focused predominantly on qualitative factors, such as choice of drugs, use of combinations and deployment of multiple first-line treatments. The importance of anti-malarial treatment dosing has been underappreciated. Treatment recommendations are often for the lowest doses that produce "satisfactory" results. Methods The probability of de-novo resistant malaria parasites surviving and transmitting depends on the relationship between their degree of resistance and the blood concentration profiles of the anti-malarial drug to which they are exposed. The conditions required for the in-vivo selection of de-novo emergent resistant malaria parasites were examined and relative probabilities assessed. Results Recrudescence is essential for the transmission of de-novo resistance. For rapidly eliminated anti-malarials high-grade resistance can arise from a single drug exposure, but low-grade resistance can arise only from repeated inadequate treatments. Resistance to artemisinins is, therefore, unlikely to emerge with single drug exposures. Hyperparasitaemic patients are an important source of de-novo anti-malarial drug resistance. Their parasite populations are larger, their control of the infection insufficient, and their rates of recrudescence following anti-malarial treatment are high. As use of substandard drugs, poor adherence, unusual pharmacokinetics, and inadequate immune responses are host characteristics, likely to pertain to each recurrence of infection, a small subgroup of patients provides the particular circumstances conducive to de-novo resistance selection and transmission. Conclusion Current dosing recommendations provide a resistance selection opportunity in those patients with low drug levels and high parasite burdens (often children or pregnant women. Patients with

  14. A longitudinal study on anaemia in children with Plasmodium falciparum infection in the Mount Cameroon region: prevalence, risk factors and perceptions by caregivers

    National Research Council Canada - National Science Library

    Sumbele, Irene Ule Ngole; Samje, Moses; Nkuo-Akenji, Theresa

    2013-01-01

    .... A longitudinal study was conducted among 351 Plasmodium falciparum positive children to determine the prevalence, risk factors and the perception of anaemia by the caregivers in a semi-rural community...

  15. Tropical infections in the ICU.

    Science.gov (United States)

    Kothari, Vatsal M; Karnad, Dilip R; Bichile, Lata S

    2006-04-01

    Certain arthropod-borne infections are common in tropical regions because of favorable climatic conditions. Water-borne infections like leptospirosis are common due to contamination of water especially during the monsoon floods. Infections like malaria, leptospirosis, dengue fever and typhus sometimes cause life threatening organ dysfunction and have several overlapping features. Most patients present with classicial clinical syndromes: fever and thrombocytopenia are common in dengue, malaria and leptospirosis; coagulopathy is frequent in leptospirosis and viral hepatitis. Hepatorenal syndrome is seen in leptospirosis, falciparum malaria and scrub typhus. The pulmonary renal syndrome is caused by falciparium malaria, leptospirosis, Hantavirus infection and scrub typhus. Fever with altered mental status is produced by bacterial meningitis, Japanese B encephalitis, cerebral malarial, typhoid encephalopathy and fulminant hepatic failure due to viral hepatitis. Subtle differences in features of the organ failure exist among these infections. The diagnosis in some of these diseases is made by demonstration of antibodies in serum, and these may be negative in the first week of the illness. Hence empiric therapy for more than one disorder may be justified in a small proportion of cases. In addition to specific anti-infective therapy, management of organ dysfunction includes use of mechanical ventilation, vasopressor drugs, continuous renal replacement therapy and blood products. Timely transfer of these patients to well-equipped ICUs with experience in managing these cases can considerably decrease mortality and morbidity.

  16. The antiplasmodium effects of a traditional South American remedy: Zanthoxylum chiloperone var. angustifolium against chloroquine resistant and chloroquine sensitive strains of Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Gerardo Cebrian-Torrejon

    2011-08-01

    Full Text Available Zanthoxylum chiloperone var. angustifolium Engl., Rutaceae, is used in traditional medicine to treat fungal and protozoal infections in the central area of South America. Considering the increasing resistance of Plasmodium falciparum in malarial ridden areas, we explored the anti-plasmodial effects of three compounds isolated from Z. chiloperone. The pyranocoumarin transavicennol and the canthinone alkaloids, canthin-6-one and 5-methoxycanthin-6-one, were found to have IC50 on chloroquine/mefloquine resistant and sensitive strains of P. falciparum of 0.5-2.7, 2.0-5.3 and 5.1-10.4 ƒÊg/mL, respectively. Moreover, the formation of heme adducts by these compounds is described by a novel alternative method based on MS-CID methods. The alkylamide sanshool was also identified, for first time in this plant, in the dichloromethanic and ethanolic extracts and the extracts were found to be notably non-toxic and displayed good anti-plasmodial effects.

  17. Safety and comparability of controlled human Plasmodium falciparum infection by mosquito bite in malaria-naive subjects at a new facility for sporozoite challenge.

    Directory of Open Access Journals (Sweden)

    Angela K Talley

    Full Text Available Controlled human malaria infection (CHMI studies which recapitulate mosquito-borne infection are a critical tool to identify protective vaccine and drug candidates for advancement to field trials. In partnership with the Walter Reed Army Institute of Research, the CHMI model was established at the Seattle Biomedical Research Institute's Malaria Clinical Trials Center (MCTC. Activities and reagents at both centers were aligned to ensure comparability and continued safety of the model. To demonstrate successful implementation, CHMI was performed in six healthy malaria-naïve volunteers.All volunteers received NF54 strain Plasmodium falciparum by the bite of five infected Anopheles stephensi mosquitoes under controlled conditions and were monitored for signs and symptoms of malaria and for parasitemia by peripheral blood smear. Subjects were treated upon diagnosis with chloroquine by directly observed therapy. Immunological (T cell and antibody and molecular diagnostic (real-time quantitative reverse transcriptase polymerase chain reaction [qRT-PCR] assessments were also performed.All six volunteers developed patent parasitemia and clinical malaria. No serious adverse events occurred during the study period or for six months post-infection. The mean prepatent period was 11.2 days (range 9-14 days, and geometric mean parasitemia upon diagnosis was 10.8 parasites/µL (range 2-69 by microscopy. qRT-PCR detected parasites an average of 3.7 days (range 2-4 days earlier than blood smears. All volunteers developed antibodies to the blood-stage antigen merozoite surface protein 1 (MSP-1, which persisted up to six months. Humoral and cellular responses to pre-erythrocytic antigens circumsporozoite protein (CSP and liver-stage antigen 1 (LSA-1 were limited.The CHMI model was safe, well tolerated and characterized by consistent prepatent periods, pre-symptomatic diagnosis in 3/6 subjects and adverse event profiles as reported at established centers. The MCTC

  18. Several human cyclin-dependent kinase inhibitors, structurally related to roscovitine, are new anti-malarial agents.

    Science.gov (United States)

    Houzé, Sandrine; Hoang, Nha-Thu; Lozach, Olivier; Le Bras, Jacques; Meijer, Laurent; Galons, Hervé; Demange, Luc

    2014-09-23

    In Africa, malaria kills one child each minute. It is also responsible for about one million deaths worldwide each year. Plasmodium falciparum, is the protozoan responsible for the most lethal form of the disease, with resistance developing against the available anti-malarial drugs. Among newly proposed anti-malaria targets, are the P. falciparum cyclin-dependent kinases (PfCDKs). There are involved in different stages of the protozoan growth and development but share high sequence homology with human cyclin-dependent kinases (CDKs). We previously reported the synthesis of CDKs inhibitors that are structurally-related to (R)-roscovitine, a 2,6,9-trisubstituted purine, and they showed activity against neuronal diseases and cancers. In this report, we describe the synthesis and the characterization of new CDK inhibitors, active in reducing the in vitro growth of P. falciparum (3D7 and 7G8 strains). Six compounds are more potent inhibitors than roscovitine, and three exhibited IC50 values close to 1 µM for both 3D7 and 7G8 strains. Although, such molecules do inhibit P. falciparum growth, they require further studies to improve their selectivity for PfCDKs.

  19. Several Human Cyclin-Dependent Kinase Inhibitors, Structurally Related to Roscovitine, As New Anti-Malarial Agents

    Directory of Open Access Journals (Sweden)

    Sandrine Houzé

    2014-09-01

    Full Text Available In Africa, malaria kills one child each minute. It is also responsible for about one million deaths worldwide each year. Plasmodium falciparum, is the protozoan responsible for the most lethal form of the disease, with resistance developing against the available anti-malarial drugs. Among newly proposed anti-malaria targets, are the P. falciparum cyclin-dependent kinases (PfCDKs. There are involved in different stages of the protozoan growth and development but share high sequence homology with human cyclin-dependent kinases (CDKs. We previously reported the synthesis of CDKs inhibitors that are structurally-related to (R-roscovitine, a 2,6,9-trisubstituted purine, and they showed activity against neuronal diseases and cancers. In this report, we describe the synthesis and the characterization of new CDK inhibitors, active in reducing the in vitro growth of P. falciparum (3D7 and 7G8 strains. Six compounds are more potent inhibitors than roscovitine, and three exhibited IC50 values close to 1 µM for both 3D7 and 7G8 strains. Although, such molecules do inhibit P. falciparum growth, they require further studies to improve their selectivity for PfCDKs.

  20. Malarial parasites decrease reproductive success: an experimental study in a passerine bird.

    Science.gov (United States)

    Marzal, Alfonso; de Lope, Florentino; Navarro, Carlos; Møller, Anders Pape

    2005-02-01

    Malarial parasites are supposed to have strong negative fitness consequences for their hosts, but relatively little evidence supports this claim due to the difficulty of experimentally testing this. We experimentally reduced levels of infection with the blood parasite Haemoproteus prognei in its host the house martin Delichon urbica, by randomly treating adults with primaquine or a control treatment. Treated birds had significantly fewer parasites than controls. The primaquine treatment increased clutch size by 18%; hatching was 39% higher and fledging 42% higher. There were no effects of treatment on quality of offspring, measured in terms of tarsus length, body mass, haematocrit or T-cell-mediated immune response. These findings demonstrate that malarial parasites can have dramatic effects on clutch size and other demographic variables, potentially influencing the evolution of clutch size, but also the population dynamics of heavily infected populations of birds.

  1. In silico analysis reveals the anti-malarial potential of quinolinyl chalcone derivatives.

    Science.gov (United States)

    Thillainayagam, Mahalakshmi; Pandian, Lavanya; Murugan, Kumar Kalavathy; Vijayaparthasarathi, Vijayakumar; Sundaramoorthy, Sarveswari; Anbarasu, Anand; Ramaiah, Sudha

    2015-01-01

    In this study, the correlation between chemical structures and various parameters such as steric effects and electrostatic interactions to the inhibitory activities of quinolinyl chalcone derivatives is derived to identify the key structural elements required in the rational design of potent and novel anti-malarial compounds. The molecular docking simulations and Comparative Molecular Field Analysis (CoMFA) are carried out on 38 chalcones derivatives using Plasmodium falciparum lactate dehydrogenase (PfLDH) as potential target. Surflex-dock is used to determine the probable binding conformations of all the compounds at the active site of pfLDH and to identify the hydrogen bonding interactions which could be used to alter the inhibitory activities. The CoMFA model has provided statistically significant results with the cross-validated correlation coefficient (q(2)) of .850 and the non-cross-validated correlation coefficient (r(2)) of .912. Standard error of estimation (SEE) is .280 and the optimum number of component is five. The predictive ability of the resultant model is evaluated using a test set comprising of 13 molecules and the predicted r(2) value is .885. The results provide valuable insight for optimization of quinolinyl chalcone derivatives for better anti-malarial therapy.

  2. In vitro and in vivo anti-malarial activity of Boerhavia elegans and Solanum surattense

    Directory of Open Access Journals (Sweden)

    Khodakarim Nastaran

    2010-05-01

    Full Text Available Abstract Background There is an urgent need to identify new anti-malarial drug targets for both prophylaxis and chemotherapy, due to the increasing problem of drug resistance to malaria parasites. In the present study, the aim was to discover novel, effective plant-based extracts for the activity against malaria. Methods Ten plants found in Iran were selected by ethnobotanical survey of medicinal plants. The crude ethanolic extracts were tested for in vitro anti-plasmodial activity against two strains of Plasmodium falciparum: K1 (chloroquine-resistant strain and CY27 (chloroquine-sensitive strain, using the parasite lactate dehydrogenase (pLDH assay. The anti-plasmodial activity of the extracts was also assessed in the 4-day suppressive anti-malarial assay in mice inoculated with Plasmodium berghei (ANKA strain. Crude ethanolic extracts showed good anti-plasmodial activity were further fractionated by partitioning in water and dichloromethane. Results Of 10 plant species assayed, three species: Boerhavia elegans (Choisy, Solanum surattense (Burm.f. and Prosopis juliflora (Sw. showed promising anti-plasmodial activity in vitro (IC50 ≤ 50 μg/ml and in vivo with no toxicity. The dichloromethane fraction of three extracts revealed stronger anti-plasmodial activity than the total extracts. Conclusion Anti-plasmodial activities of extracts of B. elegans and S. surattense are reported for the first time.

  3. Unnatural amino acids increase activity and specificity of synthetic substrates for human and malarial cathepsin C.

    Science.gov (United States)

    Poreba, Marcin; Mihelic, Marko; Krai, Priscilla; Rajkovic, Jelena; Krezel, Artur; Pawelczak, Malgorzata; Klemba, Michael; Turk, Dusan; Turk, Boris; Latajka, Rafal; Drag, Marcin

    2014-04-01

    Mammalian cathepsin C is primarily responsible for the removal of N-terminal dipeptides and activation of several serine proteases in inflammatory or immune cells, while its malarial parasite ortholog dipeptidyl aminopeptidase 1 plays a crucial role in catabolizing the hemoglobin of its host erythrocyte. In this report, we describe the systematic substrate specificity analysis of three cathepsin C orthologs from Homo sapiens (human), Bos taurus (bovine) and Plasmodium falciparum (malaria parasite). Here, we present a new approach with a tailored fluorogenic substrate library designed and synthesized to probe the S1 and S2 pocket preferences of these enzymes with both natural and a broad range of unnatural amino acids. Our approach identified very efficiently hydrolyzed substrates containing unnatural amino acids, which resulted in the design of significantly better substrates than those previously known. Additionally, in this study significant differences in terms of the structures of optimal substrates for human and malarial orthologs are important from the therapeutic point of view. These data can be also used for the design of specific inhibitors or activity-based probes.

  4. Temperature shift and host cell contact up-regulate sporozoite expression of Plasmodium falciparum genes involved in hepatocyte infection.

    NARCIS (Netherlands)

    Siau, A.; Silvie, O.; Franetich, J.F.; Yalaoui, S.; Marinach, C.; Hannoun, L.; Gemert, G.J.A. van; Luty, A.J.F.; Bischoff, E.; David, P.H.; Snounou, G.; Vaquero, C.; Froissard, P.; Mazier, D.

    2008-01-01

    Plasmodium sporozoites are deposited in the skin by Anopheles mosquitoes. They then find their way to the liver, where they specifically invade hepatocytes in which they develop to yield merozoites infective to red blood cells. Relatively little is known of the molecular interactions during these

  5. Adhesion of Plasmodium falciparum infected erythrocytes in ex vivo perfused placental tissue

    DEFF Research Database (Denmark)

    Pehrson, Caroline; Mathiesen, Line; Heno, Kristine K;

    2016-01-01

    expressing VAR2CSA accumulated in perfused placental tissue whereas the EPCR binding and the transgenic parasite did not. Soluble CSA and antibodies specific against VAR2CSA inhibited binding of infected erythrocytes. CONCLUSION: The ex vivo model provides a novel way of studying receptor-ligand interactions...

  6. Helminth infection impairs the immunogenicity of a Plasmodium falciparum DNA vaccine, but not irradiated sporozoites, in mice

    Science.gov (United States)

    Development of an effective vaccine against malaria remains a priority. However, a significant number of individuals living in tropical areas are also likely to be co-infected with helminths, which are known to adversely affect immune responses to a number of different existing vaccines. Here we com...

  7. Effects of age, hemoglobin type and parasite strain on IgG recognition of Plasmodium falciparum-infected erythrocytes in Malian children.

    Directory of Open Access Journals (Sweden)

    Amir E Zeituni

    Full Text Available BACKGROUND: Naturally-acquired antibody responses to antigens on the surface of Plasmodium falciparum-infected red blood cells (iRBCs have been implicated in antimalarial immunity. To profile the development of this immunity, we have been studying a cohort of Malian children living in an area with intense seasonal malaria transmission. METHODOLOGY/PRINCIPAL FINDINGS: We collected plasma from a sub-cohort of 176 Malian children aged 3-11 years, before (May and after (December the 2009 transmission season. To measure the effect of hemoglobin (Hb type on antibody responses, we enrolled age-matched HbAA, HbAS and HbAC children. To quantify antibody recognition of iRBCs, we designed a high-throughput flow cytometry assay to rapidly test numerous plasma samples against multiple parasite strains. We evaluated antibody reactivity of each plasma sample to 3 laboratory-adapted parasite lines (FCR3, D10, PC26 and 4 short-term-cultured parasite isolates (2 Malian and 2 Cambodian. 97% of children recognized ≥1 parasite strain and the proportion of IgG responders increased significantly during the transmission season for most parasite strains. Both strain-specific and strain-transcending IgG responses were detected, and varied by age, Hb type and parasite strain. In addition, the breadth of IgG responses to parasite strains increased with age in HbAA, but not in HbAS or HbAC, children. CONCLUSIONS/SIGNIFICANCE: Our assay detects both strain-specific and strain-transcending IgG responses to iRBCs. The magnitude and breadth of these responses varied not only by age, but also by Hb type and parasite strain used. These findings indicate that studies of acquired humoral immunity should account for Hb type and test large numbers of diverse parasite strains.

  8. A cross strain Plasmodium falciparum microarray optimized for the transcriptome analysis of Plasmodium falciparum patient derived isolates

    KAUST Repository

    Subudhi, Amit Kumar

    2016-07-20

    Malarial parasite P. falciparum, an apicomplexan protozoan has a 23.3 MB nuclear genome and encodes ~ 5600 transcripts. The genetic diversity of the parasite within and across geographical zones is a challenge to gene expression studies which are essential for understanding of disease process, outcome and developing markers for diagnostics and prognostics. Here, we describe the strategy involved in designing a custom P. falciparum 15K array using the Agilent platform and Genotypic\\'s Right Design methodology to study the transcriptome of Indian field isolates for which genome sequence information is limited. The array contains probes representing genome sequences of two distinct geographical isolates (i.e. 3D7 and HB3) and sub-telomeric var gene sequences of a third isolate (IT4) known to adhere in culture condition. Probes in the array have been selected based on their efficiency to detect transcripts through a 244K array experimentation. Array performance for the 15K array, was evaluated and validated using RNA materials from P. falciparum clinical isolates. A large percentage (91%) of the represented transcripts was detected from Indian P. falciparum patient isolates. Replicated probes and multiple probes representing the same gene showed perfect correlation between them suggesting good probe performance. Additional transcripts could be detected due to inclusion of unique probes representing HB3 strain transcripts. Variant surface antigen (VSA) transcripts were detected by optimized probes representing the VSA genes of three geographically distinct strains. The 15K cross strain P. falciparum array has shown good efficiency in detecting transcripts from P. falciparum parasite samples isolated from patients. The low parasite loads and presence of host RNA makes arrays a preferred platform for gene expression studies over RNA-Seq.

  9. Distribution of malarial parasites: effect of gender of construction workers.

    Science.gov (United States)

    Venugopalan, P P; Shenoy, D U; Kamath, A; Rajeev, A

    1997-03-01

    The city of Mangalore in South India was having increasing number of malaria cases from 1990. Concerned over the import of cases through migrant construction workers, a screening was done among them using clinical and parasitological methods. This demonstrated 6.28% slide positivity rate with statistically insignificant difference in prevalence of infection between males and females. There were many asymptomatic individuals reporting positive only on peripheral smear examination. Yet, clinical symptoms like fever were found to have good predictive value on logistic regression. It was more so with the P. falciparum which is a relatively new entrant to Mangalore.

  10. Pseudomonas aeruginosa septicaemia in a patient with severe Plasmodium falciparum

    DEFF Research Database (Denmark)

    Kharazmi, A; Høiby, N; Theander, T G

    1987-01-01

    presented with severe form of malaria, progressing rapidly into coma and died within a short time. P. aeruginosa was isolated from his blood taken on the day of admission. His neutrophils were all occupied by P. falciparum. The unusual combination of severe falciparum malaria infection and P. aeruginosa......This report describes a Danish patient with severe Plasmodium falciparum infection and Pseudomonas aeruginosa septicaemia. The patient had been sailing along the coast of West Africa for ten years without taking any antimalaria prophylaxis and without any apparent previous history of malaria. He...

  11. Serine Proteases of Malaria Parasite Plasmodium falciparum: Potential as Antimalarial Drug Targets

    Directory of Open Access Journals (Sweden)

    Asrar Alam

    2014-01-01

    Full Text Available Malaria is a major global parasitic disease and a cause of enormous mortality and morbidity. Widespread drug resistance against currently available antimalarials warrants the identification of novel drug targets and development of new drugs. Malarial proteases are a group of molecules that serve as potential drug targets because of their essentiality for parasite life cycle stages and feasibility of designing specific inhibitors against them. Proteases belonging to various mechanistic classes are found in P. falciparum, of which serine proteases are of particular interest due to their involvement in parasite-specific processes of egress and invasion. In P. falciparum, a number of serine proteases belonging to chymotrypsin, subtilisin, and rhomboid clans are found. This review focuses on the potential of P. falciparum serine proteases as antimalarial drug targets.

  12. A review of malarial retinopathy in severe malaria

    Directory of Open Access Journals (Sweden)

    H. L. Sithole

    2011-12-01

    Full Text Available The ocular manifestations of severe malaria in patients with cerebral malaria (CM include retinal whitening, vessel discolouration, retinal haemorrhages and papilloedema. A large prospective study of Malawian children with CM found that the severity of retinal signs, including the number of retinal haemorrhages, was related to the outcome and length of coma in survivors of malaria. In a smaller number of Kenyan children with cerebral malaria, retinal haemorrhages were associated with deep coma and severe anaemia. A study on the effect of malarial retinopathy on vision found no detectable effect on visual acuity (VA but where malaria isaggravated by failure to receive treatment this may possibly affect VA. The failure to receive treatment may be directly linked to the socio-economic status (SES of those affected and this may occur in the KwaZulu-Natal, Mpumalanga and Limpopo provinces of South Africa where malaria is endemic. This suggests the need for effective health education and health promotion amongst those affected by malaria especially in severely affected provinces of South Africa. Also, in view of the direct ocular consequences of severe malaria, optometrists should engage communities in health education and health promotion. This is particularly relevant because in some communities, a large majority of those suffering from malarial infections do not visit formal health facilities for treatment. In so doing, optometrists in South Africa will be contributing positively to the Millennium Development Goals which seek, amongst others, to reduce unwarranted sources of morbidity worldwide. (S Afr Optom 2011 70(3 129-135 

  13. Parasite-specific lactate dehydrogenase for the diagnosis of Plasmodium falciparum infection in an endemic area in west Uganda.

    Science.gov (United States)

    Jelinek, T; Kilian, A H; Henk, M; Mughusu, E B; Nothdurft, H D; Löscher, T; Knobloch, J; Van Sonnenburg, F

    1996-04-01

    The measurement of parasite lactate dehydrogenase (pLDH) has been presented as an easy and rapid method for the diagnosis of malaria in humans. In order to evaluate the sensitivity and specificity of such a test we examined blood samples from 429 Ugandan patients. While pLDH activity was significantly linked to parasitaemia, sensitivity and specificity were found to be rather low at 58.8 and 62.2% respectively. The positive and negative predictive values failed to meet necessary standards. We conclude that the methods of measurement of pLDH activity in malaria infection, although potentially useful for the fast diagnosis of malaria, need to be improved to be of true value in endemic areas.

  14. Association of CD40L gene polymorphism with severe Plasmodium falciparum malaria in Indian population.

    Science.gov (United States)

    Purohit, Prasanta; Mohanty, Pradeep Kumar; Patel, Siris; Das, Padmalaya; Das, Kishalaya; Panigrahi, Jogeswar

    2017-01-01

    Many host genetic factors are associated with the disease severity and fatal outcome of falciparum malaria. CD40L gene has been found to be one of the most important factors associated with malaria in African countries. This study was aimed to investigate the possible association of CD40L gene polymorphism in severe falciparum malaria in Indian adults. One hundred fifteen adult cases with severe falciparum malaria were included in the study. Two single- nucleotide polymorphisms (SNPs) of CD40L gene, CD40L-726(C/T) and CD40L+220(C/T) were investigated, and the possible association with different clinical sub-phenotypes of severe falciparum malaria were analyzed. Statistically no significant difference was observed in the incidence of CD40L-726C between the patients and control group. The incidence of CD40L+220C allele was found to be significantly higher (OR, 2.25; p = 0.03) in male patients compared to controls but no significant difference was observed in females. Haplotype data showed the susceptibility of -726T/+220C haplotype to severe malaria whereas -726C/+220T was associated with protection against severe malaria. CD40L+220C allele was associated with severe malarial anaemia in males (χ2 = 6.60; p = 0.01). CD40L gene polymorphism was found to be associated with severe falciparum malaria in Indian population especially in severe malarial anaemia. CD40L may be considered as a factor of immunity in understanding the pathophysiology of falciparum malaria.

  15. The use of mosquito nets and the prevalence of Plasmodium falciparum infection in rural South Central Somalia.

    Directory of Open Access Journals (Sweden)

    Abdisalan M Noor

    Full Text Available BACKGROUND: There have been resurgent efforts in Africa to estimate the public health impact of malaria control interventions such as insecticide treated nets (ITNs following substantial investments in scaling-up coverage in the last five years. Little is known, however, on the effectiveness of ITN in areas of Africa that support low transmission. This hinders the accurate estimation of impact of ITN use on disease burden and its cost-effectiveness in low transmission settings. METHODS AND PRINCIPAL FINDINGS: Using a stratified two-stage cluster sample design, four cross-sectional studies were undertaken between March-June 2007 across three livelihood groups in an area of low intensity malaria transmission in South Central Somalia. Information on bed net use; age; and sex of all participants were recorded. A finger prick blood sample was taken from participants to examine for parasitaemia. Mantel-Haenzel methods were used to measure the effect of net use on parasitaemia adjusting for livelihood; age; and sex. A total of 10,587 individuals of all ages were seen of which 10,359 provided full information. Overall net use and parasite prevalence were 12.4% and 15.7% respectively. Age-specific protective effectiveness (PE of bed net ranged from 39% among <5 years to 72% among 5-14 years old. Overall PE of bed nets was 54% (95% confidence interval 44%-63% after adjusting for livelihood; sex; and age. CONCLUSIONS AND SIGNIFICANCE: Bed nets confer high protection against parasite infection in South Central Somalia. In such areas where baseline transmission is low, however, the absolute reductions in parasitaemia due to wide-scale net use will be relatively small raising questions on the cost-effectiveness of covering millions of people living in such settings in Africa with nets. Further understanding of the progress of disease upon infection against the cost of averting its consequent burden in low transmission areas of Africa is therefore required.

  16. K13 mutations and pfmdr1 copy number variation in Plasmodium falciparum malaria in Myanmar.

    Science.gov (United States)

    Win, Aye A; Imwong, Mallika; Kyaw, Myat P; Woodrow, Charles J; Chotivanich, Kesinee; Hanboonkunupakarn, Borimas; Pukrittayakamee, Sasithon

    2016-02-24

    Artemisinin-based combination therapy has been first-line treatment for falciparum malaria in Myanmar since 2005. The wide extent of artemisinin resistance in the Greater Mekong sub-region and the presence of mefloquine resistance at the Myanmar-Thailand border raise concerns over resistance patterns in Myanmar. The availability of molecular markers for resistance to both drugs enables assessment even in remote malaria-endemic areas. A total of 250 dried blood spot samples collected from patients with Plasmodium falciparum malarial infection in five malaria-endemic areas across Myanmar were analysed for kelch 13 sequence (k13) and pfmdr1 copy number variation. K13 mutations in the region corresponding to amino acids 210-726 (including the propeller region of the protein) were detected by nested PCR amplification and sequencing, and pfmdr1 copy number variation by real-time PCR. In two sites, a sub-set of patients were prospectively followed up for assessment of day-3 parasite clearance rates after a standard course of artemether-lumefantrine. K13 mutations and pfmdr1 amplification were successfully analysed in 206 and 218 samples, respectively. Sixty-nine isolates (33.5 %) had mutations within the k13 propeller region with 53 of these (76.8 %) having mutations already known to be associated with artemisinin resistance. F446I (32 isolates) and P574L (15 isolates) were the most common examples. K13 mutation was less common in sites in western border regions (29 of 155 isolates) compared to samples from the east and north (40 of 51 isolates; p < 0.0001). The overall proportion of parasites with multiple pfmdr1 copies (greater than 1.5) was 5.5 %. Seven samples showed both k13 mutation and multiple copies of pfmdr1. Only one of 36 patients followed up after artemether-lumefantrine treatment still had parasites at day 3; molecular analysis indicated wild-type k13 and single copy pfmdr1. The proportion of P. falciparum isolates with mutations in the propeller region of k

  17. Genetic diversity of Plasmodium falciparum and distribution of drug resistance haplotypes in Yemen

    Science.gov (United States)

    2013-01-01

    Background Despite evident success of malaria control in many sites in the Arabian Peninsula, malaria remains endemic in a few spots, in Yemen and south-west of Saudi Arabia. In addition to local transmission, imported malaria sustains an extra source of parasites that can challenge the strengths of local control strategies. This study examined the genetic diversity of Plasmodium falciparum in Yemen and mutations of drug resistant genes, to elucidate parasite structure and distribution of drug resistance genotypes in the region. Methods Five polymorphic loci (MSP-2, Pfg377 and three microsatellites on chromosome 8) not involved in anti-malarial drug resistance, and four drug resistant genes (pfcrt, pfmdr1, dhfr and dhps) were genotyped in 108 P. falciparum isolates collected in three sites in Yemen: Dhamar, Hodeidah and Taiz. Results High diversity was seen in non-drug genes, pfg377 (He = 0.66), msp-2 (He = 0.80) and three microsatellites on chr 8, 7.7 kb (He = 0.88), 4.3 kb (He = 0.77) and 0.8 kb (He = 0.71). There was a high level of mixed-genotype infections (57%), with an average 1.8 genotypes per patient. No linkage disequilibrium was seen between drug resistant genes and the non-drug markers (p < 0.05). Genetic differentiation between populations was low (most pair-wise FST values <0.03), indicating extensive gene flow between the parasites in the three sites. There was a high prevalence of mutations in pfmdr1, pfcrt and dhfr; with four mutant pfmdr1 genotypes (NFCDD[57%], NFSND[21%], YFCDD[13%] and YFSND[8% ]), two mutant pfcrt genotypes (CVIET[89%] and SVMNT[4%]) and one mutant dhfr genotype (ICNI[53.7%]). However, no dhps mutations were detected. Conclusion The high diversity of P. falciparum in Yemen is indicative of a large parasite reservoir, which represents a challenge to control efforts. The presence of two distinct pfcrt genotype, CVIET and SVMNT, suggests that chloroquine resistance can possibly be related to a migratory

  18. A slot blot immunoassay for quantitative detection of Plasmodium falciparum circumsporozoite protein in mosquito midgut oocyst.

    Directory of Open Access Journals (Sweden)

    Sanjai Kumar

    Full Text Available There is still a need for sensitive and reproducible immunoassays for quantitative detection of malarial antigens in preclinical and clinical phases of vaccine development and in epidemiology and surveillance studies, particularly in the vector host. Here we report the results of sensitivity and reproducibility studies for a research-grade, quantitative enhanced chemiluminescent-based slot blot assay (ECL-SB for detection of both recombinant Plasmodium falciparum circumsporozoite protein (rPfCSP and native PfCSP from Oocysts (Pf Oocyst developing in the midguts of Anopheles stephensi mosquitoes. The ECL-SB detects as little as 1.25 pg of rPfCSP (linear range of quantitation 2.5-20 pg; R2 = 0.9505. We also find the earliest detectable expression of native PfCSP in Pf Oocyst by ECL-SB occurs on day 7 post feeding with infected blood meal. The ECL-SB was able to detect approximately as few as 0.5 day 8 Pf Oocysts (linear quantitation range 1-4, R2 = 0.9795 and determined that one Pf Oocyst expressed approximately 2.0 pg (0.5-3 pg of native PfCSP, suggesting a similar range of detection for recombinant and native forms of Pf CSP. The ECL-SB is highly reproducible; the Coefficient of Variation (CV for inter-assay variability for rPf CSP and native PfCSP were 1.74% and 1.32%, respectively. The CVs for intra-assay variability performed on three days for rPf CSP were 2.41%, 0.82% and 2% and for native Pf CSP 1.52%, 0.57%, and 1.86%, respectively. In addition, the ECL-SB was comparable to microscopy in determining the P. falciparum prevalence in mosquito populations that distinctly contained either high and low midgut Pf Oocyst burden. In whole mosquito samples, estimations of positivity for P. falciparum in the high and low burden groups were 83.3% and 23.3% by ECL-SB and 85.7% and 27.6% by microscopy. Based on its performance characteristics, ECL-SB could be valuable in vaccine development and to measure the parasite prevalence in mosquitoes

  19. Involvement of β-defensin 130 (DEFB130) in the macrophage microbicidal mechanisms for killing Plasmodium falciparum

    Science.gov (United States)

    Terkawi, Mohamad Alaa; Takano, Ryo; Furukawa, Atsushi; Murakoshi, Fumi; Kato, Kentaro

    2017-01-01

    Understanding the molecular defense mechanism of macrophages and identifying their effector molecules against malarial parasites may provide important clues for the discovery of new therapies. To analyze the immunological responses of malarial parasite-induced macrophages, we used DNA microarray technology to examine the gene profile of differentiated macrophages phagocytizing Plasmodium falciparum-parasitized erythrocytes (iRBC). The transcriptional gene profile of macrophages in response to iRBCs represented 168 down-regulated genes, which were mainly involved in the cellular immune response, and 216 upregulated genes, which were involved in cellular proteolysis, growth, and adhesion. Importantly, the specific upregulation of β-defensin 130 (DEFB130) in these macrophages suggested a possible role for DEFB130 in malarial parasite elimination. Differentiated macrophages phagocytizing iRBCs exhibited an increase in intracellular DEFB130 levels and DEFB130 appeared to accumulate at the site of iRBC engulfment. Transfection of esiRNA-mediated knockdown of DEFB130 into macrophages resulted in a remarkable reduction in their antiplasmodial activity in vitro. Furthermore, DEFB130 synthetic peptide exhibited a modest toxic effect on P. falciparum in vitro and P. yoelii in vivo, unlike scrambled DEFB130 peptide, which showed no antiplasmodial activity. Together, these results suggest that DEFB130 might be one of the macrophage effector molecules for eliminating malarial parasites. Our data broaden our knowledge of the immunological response of macrophages to iRBCs and shed light on a new target for therapeutic intervention. PMID:28181499

  20. CoMFA, CoMSIA, and docking studies on thiolactone-class of potent anti-malarials: identification of essential structural features modulating anti-malarial activity.

    Science.gov (United States)

    Roy, Kuldeep K; Bhunia, Shome S; Saxena, Anil K

    2011-09-01

    The integrated ligand- and structure-based drug design techniques have been applied on a homogeneous dataset of thiolactone-class of potent anti-malarials, to explore the essential structural features for the inhibition of Plasmodium falciparum. Developed CoMFA (q(2) = 0.716) and CoMSIA (q(2) = 0.632) models well explained structure-activity variation in both the training (CoMFA R(2) = 0.948 & CoMSIA R(2) = 0.849) and test set (CoMFA R(2) (pred) = 0.789 & CoMSIA R(2) (pred) = 0.733) compounds. The docking and scoring of the most active compound 10 into the active site of high-resolution (2.35 Å) structure of FabB-TLM binary complex (PDB-ID: 1FJ4) indicated that thiolactone core of this compound forms bifurcated H-bonding with two catalytic residues His298 and His333, and its saturated decyl side group is stabilized by hydrophobic interactions with the residues of a small hydrophobic groove, illustrating that the active site architecture, including two catalytic histidines and a small hydrophobic groove, is vital for protein-ligand interaction. In particular, the length and flexibility of the side group attached to the position 5 of thiolactone have been observed to play a significant role in the interaction with FabB enzyme. These results present scope for rational design of thiolactone-class of compounds that could furnish improved anti-malarial activity.

  1. Recent progress in the development of anti-malarial quinolones.

    Science.gov (United States)

    Beteck, Richard M; Smit, Frans J; Haynes, Richard K; N'Da, David D

    2014-08-30

    Available anti-malarial tools have over the ten-year period prior to 2012 dramatically reduced the number of fatalities due to malaria from one million to less than six-hundred and thirty thousand. Although fewer people now die from malaria, emerging resistance to the first-line anti-malarial drugs, namely artemisinins in combination with quinolines and arylmethanols, necessitates the urgent development of new anti-malarial drugs to curb the disease. The quinolones are a promising class of compounds, with some demonstrating potent in vitro activity against the malaria parasite. This review summarizes the progress made in the development of potential anti-malarial quinolones since 2008. The efficacy of these compounds against both asexual blood stages and other stages of the malaria parasite, the nature of putative targets, and a comparison of these properties with anti-malarial drugs currently in clinical use, are discussed.

  2. Force Spectroscopy of the Plasmodium falciparum Vaccine Candidate Circumsporozoite Protein Suggests a Mechanically Pliable Repeat Region.

    Science.gov (United States)

    Patra, Aditya Prasad; Sharma, Shobhona; Ainavarapu, Sri Rama Koti

    2017-02-10

    The most effective vaccine candidate of malaria is based on the Plasmodium falciparum circumsporozoite protein (CSP), a major surface protein implicated in the structural strength, motility, and immune evasion properties of the infective sporozoites. It is suspected that reversible conformational changes of CSP are required for infection of the mammalian host, but the detailed structure and dynamic properties of CSP remain incompletely understood, limiting our understanding of its function in the infection. Here, we report the structural and mechanical properties of the CSP studied using single-molecule force spectroscopy on several constructs, one including the central region of CSP, which is rich in NANP amino acid repeats (CSPrep), and a second consisting of a near full-length sequence without the signal and anchor hydrophobic domains (CSPΔHP). Our results show that the CSPrep is heterogeneous, with 40% of molecules requiring virtually no mechanical force to unfold (<10 piconewtons (pN)), suggesting that these molecules are mechanically compliant and perhaps act as entropic springs, whereas the remaining 60% are partially structured with low mechanical resistance (∼70 pN). CSPΔHP having multiple force peaks suggests specifically folded domains, with two major populations possibly indicating the open and collapsed forms. Our findings suggest that the overall low mechanical resistance of the repeat region, exposed on the outer surface of the sporozoites, combined with the flexible full-length conformations of CSP, may provide the sporozoites not only with immune evasion properties, but also with lubricating capacity required during its navigation through the mosquito and vertebrate host tissues. We anticipate that these findings would further assist in the design and development of future malarial vaccines. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Infections with Plasmodium falciparum during pregnancy affect VAR2CSA DBL-5 domain-specific T cell cytokine responses

    DEFF Research Database (Denmark)

    Gbédandé, Komi; Cottrell, Gilles; Vianou, Bertin;

    2016-01-01

    BACKGROUND: Current knowledge of human immunological responses to pregnancy-associated malaria-specific Plasmodium falciparum protein VAR2CSA concerns almost exclusively B cell-driven antibody-mediated activity. Knowledge of VAR2CSA-specific T cell-mediated activity is minimal by comparison, with...

  4. Similar efficacy and tolerability of double-dose chloroquine and artemether-lumefantrine for treatment of Plasmodium falciparum infection in Guinea-Bissau: a randomized trial

    DEFF Research Database (Denmark)

    Ursing, Johan; Kofoed, Poul-Erik; Rodrigues, Amabelia

    2011-01-01

    In 2008, Guinea-Bissau introduced artemether-lumefantrine for treatment of uncomplicated malaria. Previously, 3 times the standard dose of chloroquine, that was probably efficacious against Plasmodium falciparum with the resistance-associated chloroquine-resistance transporter (pfcrt) 76T allele...

  5. Licochalcone A, a new antimalarial agent, inhibits in vitro growth of the human malaria parasite Plasmodium falciparum and protects mice from em>P. yoelii infection

    DEFF Research Database (Denmark)

    Chen, M; Theander, T G; Christensen, S B;

    1994-01-01

    Licochalcone A, isolated from Chinese licorice roots, inhibited the in vitro growth of both chloroquine-susceptible (3D7) and chloroquine-resistant (Dd2) Plasmodium falciparum strains in a [3H]hypoxanthine uptake assay. The growth inhibition of the chloroquine-resistant strain by licochalcone A w...

  6. Antibodies against PfEMP1, RIFIN, MSP3 and GLURP Are Acquired during Controlled Plasmodium falciparum Malaria Infections in Naive Volunteers.

    NARCIS (Netherlands)

    Turner, L.; Wang, C.W.; Lavstsen, T.; Mwakalinga, S.B.; Sauerwein, R.W.; Hermsen, C.C.; Theander, T.G.

    2011-01-01

    Antibodies to polymorphic antigens expressed during the parasites erythrocytic stages are important mediators of protective immunity against P. falciparum malaria. Therefore, polymorphic blood stage antigens like MSP3, EBA-175 and GLURP and variant surface antigens PfEMP1 and RIFIN are considered

  7. Infections with Plasmodium falciparum during pregnancy affect VAR2CSA DBL-5 domain-specific T cell cytokine responses

    DEFF Research Database (Denmark)

    Gbédandé, Komi; Cottrell, Gilles; Vianou, Bertin

    2016-01-01

    BACKGROUND: Current knowledge of human immunological responses to pregnancy-associated malaria-specific Plasmodium falciparum protein VAR2CSA concerns almost exclusively B cell-driven antibody-mediated activity. Knowledge of VAR2CSA-specific T cell-mediated activity is minimal by comparison, with...

  8. A prospective study from south India to compare the severity of malaria caused by Plasmodium vivax, P. falciparum and dual infection

    Directory of Open Access Journals (Sweden)

    Shubhanker Mitra

    2015-01-01

    Interpretation & conclusion: This cross-sectional comparative study clearly demonstrates that clinical features, complications and case-fatality rates in vivax malaria can be as severe as in falciparum malaria. Hence, vivax malaria could not be considered benign; and appropriate preventive strategies along with antimalarial therapies should be adopted for control and elimination of this disease.

  9. Age-Stratified Profiles of Serum IL-6, IL-10, and TNF-α Cytokines Among Kenyan Children with Schistosoma haematobium, Plasmodium falciparum, and Other Chronic Parasitic Co-Infections.

    Science.gov (United States)

    Bustinduy, Amaya L; Sutherland, Laura J; Chang-Cojulun, Alicia; Malhotra, Indu; DuVall, Adam S; Fairley, Jessica K; Mungai, Peter L; Muchiri, Eric M; Mutuku, Francis M; Kitron, Uriel; King, Charles H

    2015-05-01

    In a study of children having polyparasitic infections in a Schistosoma haematobium-endemic area, we examined the hypothesis that S. haematobium-positive children, compared with S. haematobium-negative children (anti-soluble worm antigen preparation [SWAP] negative and egg negative) have increased systemic production of pro-inflammatory cytokines (interleukin [IL]-6, tumor necrosis factor [TNF]-α) and decreased down-regulatory IL-10. A total of 804 children, 2-19 years of age, were surveyed between July and December 2009 and tested for S. haematobium, Plasmodium falciparum, filariasis, and soil-transmitted helminth infections. Plasma levels of IL-6, TNF-α, and IL-10 were compared for S. haematobium-positive and S. haematobium-negative children, adjusting for malaria, filaria, and hookworm co-infections, and for nutritional status, age group, sex, and geographic location. IL-10 was significantly elevated among children infected with S. haematobium, showing bimodal peaks in 7-8 and 13-14 years age groups. IL-10 was also higher among children who were acutely malnourished, whereas IL-10 levels were lower in the presence of S. haematobium-filaria co-infection. After adjustment for co-factors, IL-6 was significantly elevated among children of 5-6 years and among those with P. falciparum infection. Lower levels of IL-6 were found in malaria-hookworm co-infection. High levels of TNF-α were found in children aged 11-12 years regardless of infection status. In addition, village of residence was a strong predictor of IL-6 and IL-10 plasma levels. In adolescent children infected with S. haematobium, there is an associated elevation in circulating IL-10 that may reduce the risk of later morbidity. Although we did not find a direct link between S. haematobium infection and circulating pro-inflammatory IL-6 and TNF-α levels, future T-cell stimulation studies may provide more conclusive linkages between infection and cytokine responses in settings that are endemic for

  10. Efficacy of OZ439 (artefenomel) against early Plasmodium falciparum blood-stage malaria infection in healthy volunteers

    Science.gov (United States)

    McCarthy, James S.; Baker, Mark; O'Rourke, Peter; Marquart, Louise; Griffin, Paul; Hooft van Huijsduijnen, Rob; Möhrle, Jörg J.

    2016-01-01

    Objectives OZ439, or artefenomel, is an investigational synthetic ozonide antimalarial with similar potency, but a significantly improved pharmacokinetic profile, compared with artemisinins. We wished to measure key pharmacokinetic and pharmacodynamic parameters and the pharmacokinetic/pharmacodynamic relationship of artefenomel in humans to guide the drug's further development as combination therapy in patients. Patients and methods We tested artefenomel in the human induced blood-stage malaria (IBSM) model. Plasmodium infection was monitored by quantitative PCR (qPCR) and upon reaching 1000 parasites/mL single doses of 100, 200 and 500 mg of artefenomel were administered orally with evaluation of drug exposure and parasitaemia until rescue treatment after 16 days or earlier, if required. Results A single 100 mg dose had only a transient effect, while the 200 mg dose resulted in a significant reduction in parasitaemia before early recrudescence. At the highest (500 mg) dose, initial clearance of parasites below the limit of detection of qPCR was observed, with a 48 h parasite reduction ratio (PRR48) >10 000 and a parasite clearance half-life of 3.6 h (95% CI 3.4–3.8 h). However, at this dose, recrudescence was seen in four of eight subjects 6–10 days after treatment. Pharmacokinetic/pharmacodynamic modelling predicted an MIC of 4.1 ng/mL. Conclusions These results confirm the antimalarial potential of artefenomel for use in a single-exposure combination therapy. The observations from this study support and will assist further clinical development of artefenomel. PMID:27272721

  11. Host candidate gene polymorphisms and clearance of drug-resistant Plasmodium falciparum parasites

    Directory of Open Access Journals (Sweden)

    Rockett Kirk

    2011-08-01

    Full Text Available Abstract Background Resistance to anti-malarial drugs is a widespread problem for control programmes for this devastating disease. Molecular tests are available for many anti-malarial drugs and are useful tools for the surveillance of drug resistance. However, the correlation of treatment outcome and molecular tests with particular parasite markers is not perfect, due in part to individuals who are able to clear genotypically drug-resistant parasites. This study aimed to identify molecular markers in the human genome that correlate with the clearance of malaria parasites after drug treatment, despite the drug resistance profile of the protozoan as predicted by molecular approaches. Methods 3721 samples from five African countries, which were known to contain genotypically drug resistant parasites, were analysed. These parasites were collected from patients who subsequently failed to clear their infection following drug treatment, as expected, but also from patients who successfully cleared their infections with drug-resistant parasites. 67 human polymorphisms (SNPs on 17 chromosomes were analysed using Sequenom's mass spectrometry iPLEX gold platform, to identify regions of the human genome, which contribute to enhanced clearance of drug resistant parasites. Results An analysis of all data from the five countries revealed significant associations between the phenotype of ability to clear drug-resistant Plasmodium falciparum infection and human immune response loci common to all populations. Overall, three SNPs showed a significant association with clearance of drug-resistant parasites with odds ratios of 0.76 for SNP rs2706384 (95% CI 0.71-0.92, P = 0.005, 0.66 for SNP rs1805015 (95% CI 0.45-0.97, P = 0.03, and 0.67 for SNP rs1128127 (95% CI 0.45-0.99, P = 0.05, after adjustment for possible confounding factors. The first two SNPs (rs2706384 and rs1805015 are within loci involved in pro-inflammatory (interferon-gamma and anti-inflammatory (IL-4

  12. The effect of mimicking febrile temperature and drug stress on malarial development

    Directory of Open Access Journals (Sweden)

    Adisakwattana Poom

    2009-06-01

    Full Text Available Abstract Background Malaria remains one of the most important tropical diseases of human with 1–2 million deaths annually especially caused by P. falciparum. During malarial life cycle, they exposed to many environmentally stresses including wide temperature fluctuation and pharmacological active molecules. These trigger malarial evolutionarily adaptive responses. The effect of febrile temperature on malarial growth, development and drug susceptibility by mimicking patient in treatment failure before and after drug uptake was examined. Methods Sensitivities of P. falciparum to antimalarial drug (chloroquine, mefloquine, quinine and artesunate were investigated based on the incorporation of [3H] hypoxanthine into parasite nucleic acids or radioisotopic technique. The number of parasites was examined under microscope following Giemsa staining and the parasite development at the end of each phase was counted and comparison of parasite number was made. The proteome was separated, blotted and hybridized with anti-Hsp70s primary antibody. The hybridized proteins were separately digested with trypsin and identified by MALDI-TOF peptide mass fingerprint. Results The results show that febrile temperature is capable of markedly inhibiting the growth of field isolate P. falciparum but not to K1 and 3D7 standard strains. K1 and 3D7 grown under heat shock developed greater and the reinfection rate was increased up to 2-folds when compared to that of non-heat shock group. The IC50 value of K1 toward chloroquine, mefloquine and quinine under heat shock was higher than that of K1 under non-heat shock which is opposite to that of 3D7. Heat shock caused death in field isolated parasite. It was also found that the febrile temperature coped with chloroquine uptake had no effect to the development, drug sensitivity and the parasite number of K1 strain. In the opposite way, heat shock and chloroquine shows extremely effect toward 3D7 and field isolate PF91 as shown

  13. Anti-malarial efficacy of pyronaridine and artesunate in combination in vitro and in vivo.

    Science.gov (United States)

    Vivas, Livia; Rattray, Lauren; Stewart, Lindsay; Bongard, Emily; Robinson, Brian L; Peters, Wallace; Croft, Simon L

    2008-03-01

    Pyronaridine is a Mannich base anti-malarial with demonstrated efficacy against drug resistant Plasmodium falciparum, P. vivax, P. ovale and P. malariae. However, resistance to pyronaridine can develop quickly when it is used alone but can be considerably delayed when it is administered with artesunate in rodent malaria models. The aim of this study was to evaluate the efficacy of pyronaridine in combination with artesunate against P. falciparum in vitro and in rodent malaria models in vivo to support its clinical application. Pyronaridine showed consistently high levels of in vitro activity against a panel of six P. falciparum drug-sensitive and resistant strains (Geometric Mean IC50=2.24 nM, 95% CI=1.20-3.27). In vitro interactions between pyronaridine and artesunate showed a slight antagonistic trend, but in vivo compared to pyronaridine and artesunate administered alone, the 3:1 ratio of the combination, reduced the ED90 of artesunate by approximately 15.6-fold in a pyronaridine-resistant P. berghei line and by approximately 200-fold in an artesunate-resistant line of P. berghei. Complete cure rates were achieved with doses of the combination above or equal to 8 mg/kg per day against P. chabaudi AS. These results indicate that the combination had an enhanced effect over monotherapy and lower daily doses of artesunate could be used to obtain a curative effect. The data suggest that the combination of pyronaridine and artesunate should have potential in areas of multi-drug resistant malaria.

  14. Operational strategies of anti-malarial drug campaigns for malaria elimination in Zambia's southern province: a simulation study.

    Science.gov (United States)

    Stuckey, Erin M; Miller, John M; Littrell, Megan; Chitnis, Nakul; Steketee, Rick

    2016-03-09

    Malaria elimination requires reducing both the potential of mosquitoes to transmit parasites to humans and humans to transmit parasites to mosquitoes. To achieve this goal in Southern province, Zambia a mass test and treat (MTAT) campaign was conducted from 2011-2013 to complement high coverage of long-lasting insecticide-treated nets (LLIN). To identify factors likely to increase campaign effectiveness, a modelling approach was applied to investigate the simulated effect of alternative operational strategies for parasite clearance in southern province. OpenMalaria, a discrete-time, individual-based stochastic model of malaria, was parameterized for the study area to simulate anti-malarial drug administration for interruption of transmission. Simulations were run for scenarios with a range of artemisinin-combination therapies, proportion of the population reached by the campaign, targeted age groups, time between campaign rounds, Plasmodium falciparum test protocols, and the addition of drugs aimed at preventing onward transmission. A sensitivity analysis was conducted to assess uncertainty of simulation results. Scenarios were evaluated based on the reduction in all-age parasite prevalence during the peak transmission month one year following the campaign, compared to the currently-implemented strategy of MTAT 19 % population coverage at pilot and 40 % coverage during the first year of implementation in the presence of 56 % LLIN use and 18 % indoor residual spray coverage. Simulation results suggest the most important determinant of success in reducing prevalence is the population coverage achieved in the campaign, which would require more than 1 year of campaign implementation for elimination. The inclusion of single low-dose primaquine, which acts as a gametocytocide, or ivermectin, which acts as an endectocide, to the drug regimen did not further reduce parasite prevalence one year following the campaign compared to the currently-implemented strategy

  15. Cord blood dendritic cell subsets in African newborns exposed to Plasmodium falciparum in utero.

    NARCIS (Netherlands)

    Breitling, L.P.; Fendel, R.; Mordmueller, B.; Adegnika, A.A.; Kremsner, P.G.; Luty, A.J.F.

    2006-01-01

    Placental Plasmodium falciparum infection affects birth outcomes and sensitizes fetal lymphocytes to parasite antigens. We assessed the influence of maternal P. falciparum infection on fetal myeloid dendritic cells (mDC) and plasmacytoid dendritic cells (pDC), analyzing the cord blood of offspring o

  16. The role of Plasmodium falciparum food vacuole plasmepsins.

    Science.gov (United States)

    Liu, Jun; Gluzman, Ilya Y; Drew, Mark E; Goldberg, Daniel E

    2005-01-14

    Plasmepsins (PMs) are thought to have an important function in hemoglobin degradation in the malarial parasite Plasmodium falciparum and have generated interest as antimalarial drug targets. Four paralogous plasmepsins reside in the food vacuole of P. falciparum. Targeted gene disruption by double crossover homologous recombination has been employed to study food vacuole plasmepsin function in cultured parasites. Parasite clones with deletions in each of the individual PM I, PM II, and HAP genes as well as clones with a double PM IV/PM I disruption have been generated. All of these clones lack the corresponding