WorldWideScience

Sample records for fairbanks fairbanks alaska

  1. Hydrologic information for land-use planning; Fairbanks vicinity, Alaska

    Nelson, Gordon L.

    1978-01-01

    The flood plain on the Chena and Tanana Rivers near Fairbanks, Alaska, has abundant water in rivers and in an unconfined alluvial aquifer. The principal source of ground water is the Tanana River, from which ground water flows northwesterly to the Chena River. Transmissivity of the aquifer commonly exceed 100 ,000 sq ft. The shallow water table (less than 15 ft below land surface), high hydraulic conductivity of the sediments and cold soil give the flood plain a high susceptibility to pollution by onsite sewerage systems. The Environmental Protection Agency recommended maximum concentrations for drinking water may be exceeded in surface water for manganese and bacteria and in ground water for iron, manganese, and bacteria. Residents of the uplands obtain water principally from a widely-distributed fractured schist aquifer. The aquifer is recharged by local infiltration of precipitation and is drained by springs on the lower slopes and by ground-water flow to alluvial aquifers of the valleys. The annual base flow from basins in the uplands ranged from 3,000 to 100,000 gallons per acre; the smallest base flows occur in basins nearest the city of Fairbanks. The thick silt cover and great depth to the water table give much of the uplands a low susceptibility to pollution by onsite sewage disposal. Ground water is locally high in nitrate, arsenic, iron , and manganese. (Woodard-USGS)

  2. Investigation of Soil and Vegetation Characteristics in Discontinuous Permafrost Landscapes Near Fairbanks, Alaska

    2015-08-01

    ER D C TR -1 5- 7 ERDC Center-Directed Research Investigation of Soil and Vegetation Characteristics in Discontinuous Permafrost ...Characteristics in Discontinuous Permafrost Landscapes Near Fairbanks, Alaska Jacob F. Berkowitz U.S. Army Engineer Research and Development Center (ERDC...Washington, DC 20314-1000 Under ERDC Center-Directed Research project “Integrated Technologies for Delineat- ing Permafrost and Ground-State

  3. Results of elemental analyses of water and waterborne sediment samples from the Fairbanks NTMS quadrangle, Alaska

    Sharp, R.R. Jr.; Aamodt, P.L; Hill, D.E.

    1979-04-01

    During the late spring and then again in late summer, 1977, lake and stream water and bottom sediment samples were collected at a nominal density of one location every 16 km 2 from throughout the approximate 16,500-km 2 area of the Fairbanks NTMS quadrangle, Alaska. These samples were collected using standard procedures by investigators from the University of Alaska, Fairbanks, as part of a special Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) study to identify variance in total uranium contents related to natural factors such as seasonal changes, source types, and geologic/geographic environments. Histograms and statistical summaries of total uranium in a number of sample populations presented herein indicate that water samples collected in late summer have a mean uranium content that is slightly higher than the mean for waters collected in the spring. Dilution and/or evaporative concentration are possible causes for this difference. Sediment samples collected from streams and springs have a slightly higher mean uranium content than those collected from lakes, and this is consistent with HSSR data from other Alaskan areas. The Alaskan investigators will complete a detailed analysis of variance study of these data in the near future and a second open-file report will be forthcoming upon its completion

  4. 78 FR 48611 - Approval and Promulgation of State Implementation Plans: Alaska; Fairbanks Carbon Monoxide...

    2013-08-09

    ... ``anonymous access'' system, which means the EPA will not know your identity or contact information unless you... discontinuing the I/M program in Fairbanks as an active control measure in the SIP and shifting it to a...

  5. Full-scale chilled pipeline frost heave testing, Fairbanks, Alaska, USA

    Hazen, B. [Northern Engineering and Scientific, Anchorage, AK (United States); Isaacs, R.M. [RMI Associates, Camano Island, WA (United States); Myrick, J.E. [Myrick International, Tyler, TX (United States)

    2010-07-01

    This paper discussed a chilled pipeline frost-heave testing facility that was developed to simulate and record the rate of frost heave and frost-bulb growth for a buried, chilled pipeline in frost-susceptible soil and to determine the effectiveness of different mitigation techniques. The test facility, which was established near Fairbanks, Alaska, in 1979, has 10 test sections using 1.22-metre-diameter pipe. The testing involved un-insulated, insulated, and insulated with over-excavation and gravel berm configurations as well as the frost heave of the chilled pipeline. The test facility was described in detail. Frost heave and frost-bulb growth measurements from the first 10 months of testing were presented, as these are the first data to enter the public domain. The testing was undertaken to investigate the frost-heave relationships between sections, to better understand frost heave in permafrost, to explore possible mitigation options, and to advance the predicative capabilities of frost heave models. 12 refs., 1 tab., 17 figs.

  6. High-Latitude Wintertime Urban Pollution: Particulate Matter Composition and Temporal Trends in Fairbanks, Alaska

    Simpson, W. R.; Nattinger, K.; Hooper, M.

    2017-12-01

    High latitude cities often experience severe pollution episodes during wintertime exacerbated by thermal inversion trapping of pollutant emissions. Fairbanks, Alaska is an extreme example of this problem, currently being classified by the US Environmental Protection Agency (EPA) as a "serious" non-attainment area for fine particulate matter (PM2.5). For this reason, we have studied the chemical composition of PM2.5 at multiple EPA monitoring sites in the non-attainment area from 2006 to the present. The chemical composition is dominated by organic carbon with lesser amounts of black carbon and inorganic ionic species such as ammonium, sulfate, and nitrate. We find large spatial differences in composition and amount of PM2.5 that indicate a different mix of sources in residential areas as compared to the city center. Specifically, the difference in composition is consistent with increased wood smoke source in the residential areas. The extent to which organic matter could be secondary (formed through conversion of emitted gases) is also an area needing study. Ammonium sulfate is responsible for about a fifth to a quarter of the particles mass during the darkest months, possibly indicating a non-photochemical source of sulfate, but the chemical mechanism for this possible transformation is unclear. Therefore, we quantified the relationship between particulate sulfate concentrations and gas-phase sulfur dioxide concentrations along with particulate metals and inferred particulate acidity with the hopes that these data can assist in elucidation of the mechanism of particulate sulfate formation. We also analyze temporal trends in PM2.5 composition in an attempt to understand how the problem is changing over time and find most trends are small despite regulatory changes. Improving mechanistic understanding of particulate formation under cold and dark conditions could assist in reducing air-quality-related health effects.

  7. Late Quaternary paleoenvironmental records from the Chatanika River valley near Fairbanks (Alaska)

    Schirrmeister, Lutz; Meyer, Hanno; Andreev, Andrei; Wetterich, Sebastian; Kienast, Frank; Bobrov, Anatoly; Fuchs, Margret; Sierralta, Melanie; Herzschuh, Ulrike

    2016-09-01

    Perennially-frozen deposits are considered as excellent paleoenvironmental archives similar to lacustrine, deep marine, and glacier records because of the long-term and good preservation of fossil records under stable permafrost conditions. A permafrost tunnel in the Vault Creek Valley (Chatanika River Valley, near Fairbanks) exposes a sequence of frozen deposits and ground ice that provides a comprehensive set of proxies to reconstruct the late Quaternary environmental history of Interior Alaska. The multi-proxy approach includes different dating techniques (radiocarbon-accelerator mass spectrometry [AMS 14C], optically stimulated luminescence [OSL], thorium/uranium radioisotope disequilibria [230Th/U]), as well as methods of sedimentology, paleoecology, hydrochemistry, and stable isotope geochemistry of ground ice. The studied sequence consists of 36-m-thick late Quaternary deposits above schistose bedrock. Main portions of the sequence accumulated during the early and middle Wisconsin periods. The lowermost unit A consists of about 9-m-thick ice-bonded fluvial gravels with sand and peat lenses. A late Sangamon (MIS 5a) age of unit A is assumed. Spruce forest with birch, larch, and some shrubby alder dominated the vegetation. High presence of Sphagnum spores and Cyperaceae pollen points to mires in the Vault Creek Valley. The overlying unit B consists of 10-m-thick alternating fluvial gravels, loess-like silt, and sand layers, penetrated by small ice wedges. OSL dates support a stadial early Wisconsin (MIS 4) age of unit B. Pollen and plant macrofossil data point to spruce forests with some birch interspersed with wetlands around the site. The following unit C is composed of 15-m-thick ice-rich loess-like and organic-rich silt with fossil bones and large ice wedges. Unit C formed during the interstadial mid-Wisconsin (MIS 3) and stadial late Wisconsin (MIS 2) as indicated by radiocarbon ages. Post-depositional slope processes significantly deformed both, ground

  8. Late Holocene ice wedges near Fairbanks, Alaska, USA: Environmental setting and history of growth

    Hamilton, T.D.; Ager, T.A.; Robinson, S.W.

    1983-01-01

    Test trenches excavated into muskeg near Fairbanks in 1969 exposed a polygonal network of active ice wedges. The wedges occur in peat that has accumulated since about 3500 yr BP and have grown episodically as the permafrost table fluctuated in response to fires, other local site conditions and perhaps regional climatic changes. Radiocarbon dates suggest one or two episodes of ice-wedge growth between about 3500 and 2000 yr BP as woody peat accumulated at the site. Subsequent wedge truncation evidently followed a fire that charred the peat. Younger peat exhibits facies changes between sedge-rich components that filled troughs over the ice wedges and woody bryophytic deposits that formed beyond the troughs. A final episode of wedge development took place within the past few hundred years. Pollen data from the site indicate that boreal forest was present throughout the past 6000 yr, but that it underwent a gradual transition from a predominantly deciduous to a spruce-dominated assemblage. This change may reflect either local site conditions or a more general climatic shift to cooler, moister summers in late Holocene time. The history of ice-wedge growth shows that wedges can form and grow to more than 1 m apparent width under mean annual temperatures that probably are close to those of the Fairbanks area today (-3.5°C) and under vegetation cover similar to that of the interior Alaskan boreal forest. The commonly held belief that ice wedges develop only below mean annual air temperatures of -6 to -8°C in the zone of continuous permafrost is invalid.

  9. Effects of the El Chichon volcanic cloud on solar radiation received at Fairbanks, Alaska

    Wendler, G.

    1984-01-01

    Detailed insolation measurements have been carried out in Fairbanks for the last four years. Beginning on 15 November 1982, these measurements showed substantial changes, believed to be due to the dust cloud of El Chichon. The volcano, situated in Mexico, erupted most intensely on 4 April 1982, putting a large amount of material into the atmosphere. The long traveling time to the North is in line with results found by Rao and Bradley (1983). Compared to clear-day data for previous years, clear days for the time period 15 November 1982-31 May 1983 showed a decrease in the direct beam of 24.8% an increase in the ratio of diffuse to global radiation of 76% and a decrease in the global radiation of about 5%. A decrease in the direct beam, a substantial increase in the diffuse radiation, and a small decrease in the global radiation are typical for increased turbidity of the atmosphere, but the volcanic cloud caused changes greater than those due to ''normal'' turbidity changes

  10. Hazard Analysis and Disaster Preparedness in the Fairbanks North Star Borough, Alaska using Hazard Simulations, GIS, and Network Analysis

    Schaefer, K.; Prakash, A.; Witte, W.

    2011-12-01

    The Fairbanks North Star Borough (FNSB) lies in interior Alaska, an area that is dominated by semiarid, boreal forest climate. FNSB frequently witnesses flooding events, wild land fires, earthquakes, extreme winter storms and other natural and man-made hazards. Being a large 19,065 km2 area, with a population of approximately 97,000 residents, providing emergency services to residents in a timely manner is a challenge. With only four highways going in and out of the borough, and only two of those leading to another city, most residents do not have quick access to a main road. Should a major disaster occur and block one of the two highways, options for evacuating or getting supplies to the area quickly dwindle. We present the design of a Geographic Information System (GIS) and network analysis based decision support tool that we have created for planning and emergency response. This tool will be used by Emergency Service (Fire/EMS), Emergency Management, Hazardous Materials Team, and Law Enforcement Agencies within FNSB to prepare and respond to a variety of potential disasters. The GIS combines available road and address networks from different FNSB agencies with the 2010 census data. We used ESRI's ArcGIS and FEMA's HAZUS-MH software to run multiple disaster scenarios and create several evacuation and response plans. Network analysis resulted in determining response time and classifying the borough by response times to facilitate allocation of emergency resources. The resulting GIS database can be used by any responding agency in FNSB to determine possible evacuation routes, where to open evacuation centers, placement of resources, and emergency response times. We developed a specific emergency response plan for three common scenarios: (i) major wildfire threatening Fairbanks, (ii) a major earthquake, (iii) loss of power during flooding in a flood-prone area. We also combined the network analysis results with high resolution imagery and elevation data to determine

  11. Fairbanks Geothermal Energy Project Final Report

    Karl, Bernie [CHSR,LLC Owner

    2013-05-31

    The primary objective for the Fairbanks Geothermal Energy Project is to provide another source of base-load renewable energy in the Fairbanks North Star Borough (FNSB). To accomplish this, Chena Hot Springs Resort (Chena) drilled a re-injection well to 2700 feet and a production well to 2500 feet. The re-injection well allows a greater flow of water to directly replace the water removed from the warmest fractures in the geothermal reservoir. The new production will provide access to warmer temperature water in greater quantities.

  12. Dust Count Observations March 1933 - August 1933 in College-Fairbanks, AK

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are daily dust count observations taken in College-Fairbanks, Alaska from 23 March 1933 to 29 August 1933. The data are part of a larger collection titled...

  13. How Winter Time Atmospheric Stability Influences PM2.5 Concentration in Different Complex Terrains; Beijing in China vs Fairbanks in Alaska

    Karandana Gamalathge, T. D.; Green, M.

    2017-12-01

    Consequences of air pollution is known to majority of the global population. Small particles or aerosols play a significant role in global climate change, and increasing the number of people suffer from poor health. Specially during winter seasons, people live in valleys or close to mountains experience hazy conditions and severe health problems. As a result, aerosol related research works have gained more attention over the last couple of decades. We considered PM2.5-particulate matter less than 2.5 µm of aerodynamic diameter, to see how PM2.5 varies with different atmospheric conditions during winter seasons over two different regions of the world. We selected five winter seasons from November to February from 2011 to 2015 both in Beijing and in Fairbanks. Both locations can be considered as complex terrains, as those regions are surrounded by or close to mountains. Using University of Wyoming's sounding data, we calculated a parameter called Heat Deficit (HD). Higher HD is associated with less turbulence, thus high PM2.5 concentration. On the other hand, low HD is associated with high turbulence, thus low PM2.5 concentration. So, we considered HD as a measure of stability in the region of interest. Despite geographical differences, Fairbanks was covered by snow every day over the study period while Beijing had almost no snow cover. Analysis was done in two ways, with and without paying attention to precipitation. HD was also evaluated with different levels of PM2.5, set up to multiples of average PM2.5 concentration. This was done to check whether HD correlates well with a particular range of PM2.5. A day of precipitation for Fairbanks was considered to be when the daily snowfall >1 inch, while for Beijing when any type of daily precipitation >0.1 inch. Precipitation for Beijing was rare and only 9 days were met even with the 0.1 inch criteria while Fairbanks had 61 days of exceeding the 1 inch criteria. Results revealed that precipitation doesn't impact the

  14. A Prototype Two-tier Mentoring Program for Undergraduate Summer Interns from Minority-Serving Institutions at the University of Alaska Fairbanks

    Gens, R.; Prakash, A.; Ozbay, G.; Sriharan, S.; Balazs, M. S.; Chittambakkam, A.; Starkenburg, D. P.; Waigl, C.; Cook, S.; Ferguson, A.; Foster, K.; Jones, E.; Kluge, A.; Stilson, K.

    2013-12-01

    The University of Alaska Fairbanks (UAF) is partnering with Delaware State University, Virginia State University, Elizabeth City State University, Bethune-Cookman University, and Morgan State University on a U.S. Department of Agriculture - National Institute for Food and Agriculture funded grant for ';Enhancing Geographic Information System Education and Delivery through Collaboration: Curricula Design, Faculty, Staff, and Student Training and Development, and Extension Services'. As a part of this grant, in summer 2013, UAF hosted a week long workshop followed by an intense two week undergraduate internship program. Six undergraduate students from partnering Universities worked with UAF graduate students as their direct mentors. This cohort of undergraduate mentees and graduate student mentors were in-turn counseled by the two UAF principal investigators who served as ';super-mentors'. The role of each person in the two-tier mentoring system was well defined. The super-mentors ensured that there was consistency in the way the internship was setup and resources were allocated. They also ensured that there were no technical glitches in the research projects and that there was healthy communication and interaction among participants. Mentors worked with the mentees ahead of time in outlining a project that aligned with the mentees research interest, provided basic reading material to the interns to get oriented, prepared the datasets required to start the project, and guided the undergraduates throughout the internship. Undergraduates gained hands-on experience in geospatial data collection and application of tools in their projects related to mapping geomorphology, landcover, geothermal sites, fires, and meteorological conditions. Further, they shared their research results and experiences with a broad university-wide audience at the end of the internship period. All participants met at lunch-time for a daily science talk from external speakers. The program offered

  15. 75 FR 76294 - Radio Broadcasting Services; Fairbanks, AK

    2010-12-08

    ... FEDERAL COMMUNICATIONS COMMISSION 47 CFR Part 73 [DA 10-2211; MB Docket No. 10-81; RM-11600] Radio Broadcasting Services; Fairbanks, AK AGENCY: Federal Communications Commission. ACTION: Final rule. SUMMARY... Subjects in 47 CFR Part 73 Radio, Radio broadcasting. 0 For the reasons discussed in the preamble, the...

  16. Forest science research and scientific communities in Alaska: a history of the origins and evolution of USDA Forest Service research in Juneau, Fairbanks, and Anchorage.

    Max G. Geier

    1998-01-01

    Research interest in the forests of Alaska can be traced from the 1990s back to 1741, when Georg Steller, the surgeon on Vitus Bering's Russian expedition, visited Kayak Island, collected plants, and recorded his observations. Given the scope and scale of potential research needs and relatively high expenses for travel and logistics in Alaska, support for forest...

  17. Proceedings of the Meeting of the Coastal Engineering Research Board (45th) Held in Fairbanks and Homer, Alaska on 14-16 May 1986.

    1986-12-01

    65 THE COASTAL COMMUNITY IN THE STATE OF ALASKA Dr. John B. Olson, DOT and PUBLIC FACILITIES ..................... 69 ST. GEORGE HARBOR LOW...WRSC-D) 0930 - 0945 COFFEE BREAK 0945 - 1030 Continuation of Chief’s Initiatives BG Patrick J. Kelly (DAEN-CWZ) 1030 - 1100 The Coastal Community in...weather permit- ting, they just tell them to slow down till a berth is available. 68 THE COASTAL COMMUNITY IN THE STATE OF ALASKA Dr. John B. Olson Special

  18. Waste Receiving and Processing (WRAP) Facility Weight Scale Analysis Fairbanks Weight Scale Evaluation Results

    JOHNSON, M.D.

    1999-01-01

    Fairbanks Weight Scales are used at the Waste Receiving and Processing (WRAP) facility to determine the weight of waste drums as they are received, processed, and shipped. Due to recent problems, discovered during calibration, the WRAP Engineering Department has completed this document which outlines both the investigation of the infeed conveyor scale failure in September of 1999 and recommendations for calibration procedure modifications designed to correct deficiencies in the current procedures

  19. The multi-filter rotating shadowband radiometer (MFRSR) - precision infrared radiometer (PIR) platform in Fairbanks: Scientific objectives

    Stamnes, K.; Leontieva, E. [Univ. of Alaska, Fairbanks (United States)

    1996-04-01

    The multi-filter rotating shadowband radiometer (MFRSR) and precision infrared radiometer (PIR) have been employed at the Geophysical Institute in Fairbanks to check their performance under arctic conditions. Drawing on the experience of the previous measurements in the Arctic, the PIR was equipped with a ventilator to prevent frost and moisture build-up. We adopted the Solar Infrared Observing Sytem (SIROS) concept from the Southern Great Plains Cloud and Radiation Testbed (CART) to allow implementation of the same data processing software for a set of radiation and meteorological instruments. To validate the level of performance of the whole SIROS prior to its incorporation into the North Slope of Alaska (NSA) Cloud and Radiation Testbed Site instrumental suite for flux radiatin measurements, the comparison between measurements and model predictions will be undertaken to assess the MFRSR-PIR Arctic data quality.

  20. Chena River Lakes Project, Fairbanks, Alaska. Overview of Tanana River Monitoring Research Studies Near Fairbanks, Alaska.

    1984-01-01

    SOILS The regional soil association along both reaches is loamy, consisting of nearly level histic pergelic cryaquepts5 and typic cryofluvents6...are flooded occasionally. The histic pergelic cryaquepts occur in poorly drained, low areas such as meander scars. They have thick surface organic...rHistic pergelic cryaquepts: soils with texture ranging from gravelly sand to clay, color from gray to olive grey, thick organic matter on surface

  1. 75 FR 27977 - FM Table of Allotments, Fairbanks, Alaska

    2010-05-19

    ... company's website, www.bcpiweb.com . This document does not contain proposed information collection... proposes to amend 47 CFR part 73 as follows: PART 73--RADIO BROADCAST SERVICES 1. The authority citation...

  2. Field test for mortality of eel after passage through the newly developed turbine of Pentair Fairbanks Nijhuis and FishFlow Innovations

    Winter, H.V.; Bierman, S.M.; Griffioen, A.B.

    2012-01-01

    Sterfte van vis tijdens het passeren van turbines in waterkrachtcentrales is een wereldwijd probleem, met name voor migrerende vissoorten. In deze studie testen we een nieuw type turbine die is ontwikkeld om visvriendelijk te zijn door Pentair Fairbanks Nijhuis/FishFlow Innovations. In een

  3. NUMERICAL ANALYSIS OF SEVERAL PORT CONFIGURATIONS IN THE FAIRBANKS-MORSE 38D8-1/8 OPPOSED PISTON MARINE ENGINE

    Lamas, M.I.

    2015-03-01

    Full Text Available The aim of the present paper is to analyze several port configurations in the Fairbanks-Morse 38D8-1/8 marine diesel engine. The motivation comes from the high number of intake and exhaust ports which characterizes this engine. The scavenging and trapping efficiency were studied by modifying several parameters related to the ports, such as the inclination, shape, pressure and number. To this end, a numerical model based on the commercial software ANSYS Fluent was employed. Numerical results were validated using experimental measurements performed on a Fairbanks-Morse 38D8-1/8 engine installed on a submarine. The results confirmed that the influence of the port shape is practically negligible; nevertheless, an adequate combination of the inclination, pressure and number of ports can modify the scavenging and trapping efficiency noticeably.

  4. The roundtrip to Fairbanks: the circumpolar health movement comes full circle, part II

    Neil J. Murphy

    2013-08-01

    Full Text Available Objectives . Evaluate the course of the International Union for Circumpolar Health (IUCH and the Proceedings of the International Congress(s on Circumpolar Health (ICCH in the context of the concomitant historical events. Make recommendations for future circumpolar health research. Study design . Medline search and historical archive search of ICCH Proceedings. Methods . Search of all PubMed resources from 1966 concerning the circumpolar health movement. Two University of Alaska, Anchorage Archive Collections were searched: the C. E. Albrecht and Frank Pauls Archive Collections. Results . Fourteen sets of Proceedings manuscripts and one set of Proceedings Abstracts were evaluated. There was a trend towards consistent use of the existing journals with indexing in Index Medicus; shorter intervals between the Congress and Proceedings manuscript publication; and increased online availability of either the Table of Contents or Proceedings citations.Recent additions include online publication of full-length manuscripts and 2 instances of full peer-review evaluations of the Proceedings manuscripts. These trends in Proceedings publication are described within the course of significant events in the circumpolar health movement. During this period, the IUCH funds are at an all-time low and show little promise of increasing, unless significant alternative funds strategies are pursued. Conclusions . The IUCH has matured politically over these years, but some of the same questions persist over the years. There has been a trend towards more rapid dissemination of scientific content, more analytic documentation of epidemiologic study design and trend towards wider dissemination of scientific content through the Internet. Significant progress in each of those areas is still possible and desirable. In the meantime, the IUCH should encourage alternative funding strategies by developing a foundation to support on-going expenses, for example Hildes awards; explore

  5. Air Flow Modeling in the Wind Tunnel of the FHWA Aerodynamics Laboratory at Turner-Fairbank Highway Research Center

    Sitek, M. A. [Argonne National Lab. (ANL), Argonne, IL (United States). Transportation Research and Analysis Computing Center (TRACC) Energy Systems Division; Lottes, S. A. [Argonne National Lab. (ANL), Argonne, IL (United States). Transportation Research and Analysis Computing Center (TRACC) Energy Systems Division; Bojanowski, C. [Argonne National Lab. (ANL), Argonne, IL (United States). Transportation Research and Analysis Computing Center (TRACC) Energy Systems Division

    2017-09-01

    Computational fluid dynamics (CFD) modeling is widely used in industry for design and in the research community to support, compliment, and extend the scope of experimental studies. Analysis of transportation infrastructure using high performance cluster computing with CFD and structural mechanics software is done at the Transportation Research and Analysis Computing Center (TRACC) at Argonne National Laboratory. These resources, available at TRACC, were used to perform advanced three-dimensional computational simulations of the wind tunnel laboratory at the Turner-Fairbank Highway Research Center (TFHRC). The goals were to verify the CFD model of the laboratory wind tunnel and then to use versions of the model to provide the capability to (1) perform larger parametric series of tests than can be easily done in the laboratory with available budget and time, (2) to extend testing to wind speeds that cannot be achieved in the laboratory, and (3) to run types of tests that are very difficult or impossible to run in the laboratory. Modern CFD software has many physics models and domain meshing options. Models, including the choice of turbulence and other physics models and settings, the computational mesh, and the solver settings, need to be validated against measurements to verify that the results are sufficiently accurate for use in engineering applications. The wind tunnel model was built and tested, by comparing to experimental measurements, to provide a valuable tool to perform these types of studies in the future as a complement and extension to TFHRC’s experimental capabilities. Wind tunnel testing at TFHRC is conducted in a subsonic open-jet wind tunnel with a 1.83 m (6 foot) by 1.83 m (6 foot) cross section. A three component dual force-balance system is used to measure forces acting on tested models, and a three degree of freedom suspension system is used for dynamic response tests. Pictures of the room are shown in Figure 1-1 to Figure 1-4. A detailed CAD

  6. Chloroethene Biodegradation Potential, ADOT/PF Peger Road Maintenance Facility, Fairbanks, Alaska

    Bradley, Paul M.; Chapelle, Frances H.

    2004-01-01

    A series of 14C-radiotracer-based microcosm experiments were conducted to assess: 1) the extent, rate and products of microbial dechlorination of trichloroethene (TCE), cis-dichloroethene (cis-DCE) and vinyl chloride (VC) in sediments at the Peger Road site; 2) the effect of three electron donor amendments (molasses, shrimp and crab chitin, and 'Hydrogen Release Compound' (HRC)) on microbial degradation of TCE in three Peger Road sediments; and 3) the potential significance at the site of chloroethene biodegradation processes other than reductive dechlorination. In these experiments, TCE biodegradation yielded the reduced products, DCE and VC, and the oxidation product CO 2. Biodegradation of DCE and VC involved stoichiometric oxidation to CO 2. Both laboratory microcosm study and field redox assessment results indicated that the predominant terminal electron accepting process in Peger Road plume sediments under anoxic conditions was Mn/Fe-reduction. The rates of chloroethene biodegradation observed in Peger Road sediment microcosms under low temperature conditions (4?C) were within the range of those observed in sediments from temperate (20?C) aquifer systems. This result confirmed that biodegradation can be a significant mechanism for in situ contaminant remediation even in cold temperature aquifers. The fact that CO2 was the sole product of cis-DCE and VC biodegradation detected in Peger Road sediments indicated that a natural attenuation assessment based on reduced daughter product accumulation may significantly underestimate the potential for DCE and VC biodegradation at the Peger Road. Neither HRC nor molasses addition stimulated TCE reductive dechlorination. The fact that molasses and HRC amendment did stimulate Mn/Fe-reduction suggests that addition of these electron donors favored microbial Mn/Fe-reduction to the detriment of microbial TCE dechlorinating activity. In contrast, amendment of sediment microcosms with shrimp and crab chitin resulted in the establishment of mixed Mn/Fe-reducing, SO42--reducing and methanogenic conditions and enhanced TCE biodegradation in two of three Peger Road sediment treatments.

  7. Estimating consumer willingness to pay a price premium for Alaska secondary wood products.

    Geoffrey H. Donovan; David L. Nicholls

    2003-01-01

    Dichotomous choice contingent valuation survey techniques were used to estimate mean willingness to pay (WTP) a price premium for made-in-Alaska secondary wood products. Respondents were asked to compare two superficially identical end tables, one made in China and one made in Alaska. The surveys were administered at home shows in Anchorage, Fairbanks, and Sitka in...

  8. Valuing Residential Energy Efficiency in Two Alaska Real Estate Markets: A Hedonic Approach

    Pride, Dominique J.

    Alaska households have high home energy consumption and expenditures. Improving the energy efficiency of the housing stock can reduce home energy consumption, thereby reducing home energy expenditures and CO2 emissions. Improving the energy efficiency of a home may also increase its transaction price if the energy efficiency improvements are capitalized into the value of the home. The relationship between energy efficiency and transaction prices in the Fairbanks and Anchorage, Alaska residential real estate markets is examined. Using a hedonic pricing framework and difference-in-differences analysis, the impact of the Alaska Home Energy Rebate program on the transaction prices of single-family homes in the Fairbanks and Anchorage housing markets from 2008 through 2015 is examined. The results indicate that compared to homes that did not complete the program, homes that completed the program sell for a statistically significant price premium between 15.1% and 15.5% in the Fairbanks market and between 5% and 11% in the Anchorage market. A hedonic pricing framework is used to relate energy efficiency ratings and transaction prices of homes in the Fairbanks and Anchorage residential real estate markets from 2008 through 2015. The results indicate that homes with above-average energy efficiency ratings sell for a statistically significant price premium between 6.9% and 17.5% in the Fairbanks market and between 1.8% and 6.0% in the Anchorage market.

  9. Increasing Insect Reactions in Alaska: Is this Related to Changing Climate?

    Jeffrey Demain; Bradford Gessner; Joseph McLaughlin; Derek Sikes; Timothy Foote

    2008-01-01

    During the summer of 2006, Fairbanks Alaska experienced its first two known cases of fatal anaphylaxis as a result of Hymenoptera stings, presumably from yellowjackets. An increase in insect bites and stings has been observed throughout the state.Has there been an increased incidence of medical visits due to insect bites and stings in Alaska in recent years? We conducted a retrospective review of three independent patient databases in Alaska to identify trends of patients seeking medical care...

  10. Summary of climatic data for the Bonanza Creek Experimental Forest, interior Alaska.

    Richard J. Barney; Erwin R. Berglund

    1973-01-01

    A summary of climatic data during the 1968-71 growing seasons is presented for the subarctic Bonanza Creek Experimental Forest located near Fairbanks, Alaska. Data were obtained from three weather station sites at elevations of 1,650, 1,150, and 550 feet from May until September each year. Data are for relative humidity, rainfall, and maximum, minimum, and mean...

  11. Logistic Requirements and Capabilities for Response to Oil Pollution in Alaska

    1975-03-01

    C-118 (Liftmaster) • C-124 (Globemaster) • C-131 (Cargomaster) • C-130 ( Hercules ) • HH-3 helicopter I Air force planes are stationed at either...St. Marys S - S S - Red Devil S S S Pairbanks Fairbanks Hdqts. P p p p p Big Delta P s S s F Tanacross P p p s p Fort Yukon P p p s - Bettles ...Alaska (1) in 1970: Anchorage Aniak Annette Bethel Big Delta Cold Bay Bettles Cordova Fairbanks Farewell Fort Yukon Galena Gulkana Homer

  12. Rural Alaska Coal Bed Methane: Application of New Technologies to Explore and Produce Energy

    David O. Ogbe; Shirish L. Patil; Doug Reynolds

    2005-06-30

    The Petroleum Development Laboratory, University of Alaska Fairbanks prepared this report. The US Department of Energy NETL sponsored this project through the Arctic Energy Technology Development Laboratory (AETDL) of the University of Alaska Fairbanks. The financial support of the AETDL is gratefully acknowledged. We also acknowledge the co-operation from the other investigators, including James G. Clough of the State of Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys; Art Clark, Charles Barker and Ed Weeks of the USGS; Beth Mclean and Robert Fisk of the Bureau of Land Management. James Ferguson and David Ogbe carried out the pre-drilling economic analysis, and Doug Reynolds conducted post drilling economic analysis. We also acknowledge the support received from Eric Opstad of Elko International, LLC; Anchorage, Alaska who provided a comprehensive AFE (Authorization for Expenditure) for pilot well drilling and completion at Fort Yukon. This report was prepared by David Ogbe, Shirish Patil, Doug Reynolds, and Santanu Khataniar of the University of Alaska Fairbanks, and James Clough of the Alaska Division of Geological and Geophysical Survey. The following research assistants, Kanhaiyalal Patel, Amy Rodman, and Michael Olaniran worked on this project.

  13. Monitoring Start of Season in Alaska

    Robin, J.; Dubayah, R.; Sparrow, E.; Levine, E.

    2006-12-01

    In biomes that have distinct winter seasons, start of spring phenological events, specifically timing of budburst and green-up of leaves, coincides with transpiration. Seasons leave annual signatures that reflect the dynamic nature of the hydrologic cycle and link the different spheres of the Earth system. This paper evaluates whether continuity between AVHRR and MODIS normalized difference vegetation index (NDVI) is achievable for monitoring land surface phenology, specifically start of season (SOS), in Alaska. Additionally, two thresholds, one based on NDVI and the other on accumulated growing degree-days (GDD), are compared to determine which most accurately predicts SOS for Fairbanks. Ratio of maximum greenness at SOS was computed from biweekly AVHRR and MODIS composites for 2001 through 2004 for Anchorage and Fairbanks regions. SOS dates were determined from annual green-up observations made by GLOBE students. Results showed that different processing as well as spectral characteristics of each sensor restrict continuity between the two datasets. MODIS values were consistently higher and had less inter-annual variability during the height of the growing season than corresponding AVHRR values. Furthermore, a threshold of 131-175 accumulated GDD was a better predictor of SOS for Fairbanks than a NDVI threshold applied to AVHRR and MODIS datasets. The NDVI threshold was developed from biweekly AVHRR composites from 1982 through 2004 and corresponding annual green-up observations at University of Alaska-Fairbanks (UAF). The GDD threshold was developed from 20+ years of historic daily mean air temperature data and the same green-up observations. SOS dates computed with the GDD threshold most closely resembled actual green-up dates observed by GLOBE students and UAF researchers. Overall, biweekly composites and effects of clouds, snow, and conifers limit the ability of NDVI to monitor phenological changes in Alaska.

  14. Proceedings of International Conference on the Role of the Polar Regions in Global Change Held in Fairbanks, Alaska on 11-15 June 1990. Volume 2

    1992-03-01

    submitted essays (two alizations from faculty observations of student behaviors students audited ). The means and minimum/maximum during the game and the...being directed towards tions has been carried out to evaluate the sensitivity of the analyses of the present Antarctic precipitation and acca - climate to

  15. Conference Proceedings on Propagation Effects on Military Systems in the High Altitude Region Held in Fairbanks, Alaska on 3-7 June 1985.

    1985-11-01

    LF ionosounder programme for determi- nation of the caracteristics of the lower ionosphere. The transmitter is located at Thule AB, radiating...34soft" target, for example, by a cloud of metallized plastic strips or bands. Their length should be cut to resonance to the tracking radar’s frequency

  16. Tanana River Monitoring and Research Program: Relationships Among Bank Recession, Vegetation, Soils, Sediments and Permafrost on the Tanana River Near Fairbanks, Alaska.

    1984-07-01

    influencing bank erosion along the Tanana River. Soils The regional soil association along both reaches is loamy, consisting of nearly level histic pergelic ...conspicuous. Most areas of this association are flooded occasionally. The histic pergelic cryaquepts occur in poorly drained, low areas such as meander...great depth; usually occupy natural levees. 6Histic pergelic cryaquepts: soils with texture ranging from gravelly sand to clay, color from gray to

  17. Exposure to regular gasoline and ethanol oxyfuel during refueling in Alaska.

    Backer, L C; Egeland, G M; Ashley, D L; Lawryk, N J; Weisel, C P; White, M C; Bundy, T; Shortt, E; Middaugh, J P

    1997-01-01

    Although most people are thought to receive their highest acute exposures to gasoline while refueling, relatively little is actually known about personal, nonoccupational exposures to gasoline during refueling activities. This study was designed to measure exposures associated with the use of an oxygenated fuel under cold conditions in Fairbanks, Alaska. We compared concentrations of gasoline components in the blood and in the personal breathing zone (PBZ) of people who pumped regular unleade...

  18. 75 FR 29582 - Yukon Flats National Wildlife Refuge, Fairbanks, AK

    2010-05-26

    ... from climate change. Fourth, infrastructure associated with access corridors from the proposed exchange... statement (EIS) for a Proposed Land Exchange in the Yukon Flats National Wildlife Refuge (NWR, Refuge). We... this notice, we finalize the EIS process for a Proposed Land Exchange in the Yukon Flats NWR. In...

  19. 75 FR 17763 - Arctic National Wildlife Refuge, Fairbanks, AK

    2010-04-07

    ... diversity, including, but not limited to, the Porcupine caribou herd (including participation in coordinated ecological studies and management of this herd and the Western Arctic caribou herd), polar bears, grizzly...

  20. Differences in human versus lightning fires between urban and rural areas of the boreal forest in interior Alaska

    Calef, Monika; Varvak, Anna; McGuire, A. David

    2017-01-01

    In western North America, the carbon-rich boreal forest is experiencing warmer temperatures, drier conditions and larger and more frequent wildfires. However, the fire regime is also affected by direct human activities through suppression, ignition, and land use changes. Models are important predictive tools for understanding future conditions but they are based on regional generalizations of wildfire behavior and weather that do not adequately account for the complexity of human–fire interactions. To achieve a better understanding of the intensity of human influence on fires in this sparsely populated area and to quantify differences between human and lightning fires, we analyzed fires by both ignition types in regard to human proximity in urban (the Fairbanks subregion) and rural areas of interior Alaska using spatial (Geographic Information Systems) and quantitative analysis methods. We found substantial differences in drivers of wildfire: while increases in fire ignitions and area burned were caused by lightning in rural interior Alaska, in the Fairbanks subregion these increases were due to human fires, especially in the wildland urban interface. Lightning fires are starting earlier and fires are burning longer, which is much more pronounced in the Fairbanks subregion than in rural areas. Human fires differed from lightning fires in several ways: they started closer to settlements and highways, burned for a shorter duration, were concentrated in the Fairbanks subregion, and often occurred outside the brief seasonal window for lightning fires. This study provides important insights that improve our understanding of the direct human influence on recently observed changes in wildfire regime with implications for both fire modeling and fire management.

  1. Differences in Human versus Lightning Fires between Urban and Rural Areas of the Boreal Forest in Interior Alaska

    Monika P. Calef

    2017-11-01

    Full Text Available In western North America, the carbon-rich boreal forest is experiencing warmer temperatures, drier conditions and larger and more frequent wildfires. However, the fire regime is also affected by direct human activities through suppression, ignition, and land use changes. Models are important predictive tools for understanding future conditions but they are based on regional generalizations of wildfire behavior and weather that do not adequately account for the complexity of human–fire interactions. To achieve a better understanding of the intensity of human influence on fires in this sparsely populated area and to quantify differences between human and lightning fires, we analyzed fires by both ignition types in regard to human proximity in urban (the Fairbanks subregion and rural areas of interior Alaska using spatial (Geographic Information Systems and quantitative analysis methods. We found substantial differences in drivers of wildfire: while increases in fire ignitions and area burned were caused by lightning in rural interior Alaska, in the Fairbanks subregion these increases were due to human fires, especially in the wildland urban interface. Lightning fires are starting earlier and fires are burning longer, which is much more pronounced in the Fairbanks subregion than in rural areas. Human fires differed from lightning fires in several ways: they started closer to settlements and highways, burned for a shorter duration, were concentrated in the Fairbanks subregion, and often occurred outside the brief seasonal window for lightning fires. This study provides important insights that improve our understanding of the direct human influence on recently observed changes in wildfire regime with implications for both fire modeling and fire management.

  2. Robotic weather balloon launchers spread in Alaska

    Rosen, Julia

    2018-04-01

    Last week, things began stirring inside the truck-size box that sat among melting piles of snow at the airport in Fairbanks, Alaska. Before long, the roof of the box yawned open and a weather balloon took off into the sunny afternoon, instruments dangling. The entire launch was triggered with the touch of a button, 5 kilometers away at an office of the National Weather Service (NWS). The flight was smooth, just one of hundreds of twice-daily balloon launches around the world that radio back crucial data for weather forecasts. But most of those balloons are launched by people; the robotic launchers, which are rolling out across Alaska, are proving to be controversial. NWS says the autolaunchers will save money and free up staff to work on more pressing matters. But representatives of the employee union question their reliability, and say they will hasten the end of Alaska's remote weather offices, where forecasting duties and hours have already been slashed.

  3. Increasing insect reactions in Alaska: is this related to changing climate?

    Demain, Jeffrey G; Gessner, Bradford D; McLaughlin, Joseph B; Sikes, Derek S; Foote, J Timothy

    2009-01-01

    In 2006, Fairbanks, AK, reported its first cases of fatal anaphylaxis as a result of Hymenoptera stings concurrent with an increase in insect reactions observed throughout the state. This study was designed to determine whether Alaska medical visits for insect reactions have increased. We conducted a retrospective review of three independent patient databases in Alaska to identify trends of patients seeking medical care for adverse reactions after insect-related events. For each database, an insect reaction was defined as a claim for the International Classification of Diseases, Ninth Edition (ICD-9), codes E9053, E906.4, and 989.5. Increases in insect reactions in each region were compared with temperature changes in the same region. Each database revealed a statistically significant trend in patients seeking care for insect reactions. Fairbanks Memorial Hospital Emergency Department reported a fourfold increase in patients in 2006 compared with previous years (1992-2005). The Allergy, Asthma, and Immunology Center of Alaska reported a threefold increase in patients from 1999 to 2002 to 2003 to 2007. A retrospective review of the Alaska Medicaid database from 1999 to 2006 showed increases in medical claims for insect reactions among all regions, with the largest percentage of increases occurring in the most northern areas. Increases in insect reactions in Alaska have occurred after increases in annual and winter temperatures, and these findings may be causally related.

  4. Alaska Synthetic Aperture Radar (SAR) Facility science data processing architecture

    Hilland, Jeffrey E.; Bicknell, Thomas; Miller, Carol L.

    1991-01-01

    The paper describes the architecture of the Alaska SAR Facility (ASF) at Fairbanks, being developed to generate science data products for supporting research in sea ice motion, ice classification, sea-ice-ocean interaction, glacier behavior, ocean waves, and hydrological and geological study areas. Special attention is given to the individual substructures of the ASF: the Receiving Ground Station (RGS), the SAR Processor System, and the Interactive Image Analysis System. The SAR data will be linked to the RGS by the ESA ERS-1 and ERS-2, the Japanese ERS-1, and the Canadian Radarsat.

  5. Earthquake Hazard and Risk in Alaska

    Black Porto, N.; Nyst, M.

    2014-12-01

    Alaska is one of the most seismically active and tectonically diverse regions in the United States. To examine risk, we have updated the seismic hazard model in Alaska. The current RMS Alaska hazard model is based on the 2007 probabilistic seismic hazard maps for Alaska (Wesson et al., 2007; Boyd et al., 2007). The 2015 RMS model will update several key source parameters, including: extending the earthquake catalog, implementing a new set of crustal faults, updating the subduction zone geometry and reoccurrence rate. First, we extend the earthquake catalog to 2013; decluster the catalog, and compute new background rates. We then create a crustal fault model, based on the Alaska 2012 fault and fold database. This new model increased the number of crustal faults from ten in 2007, to 91 faults in the 2015 model. This includes the addition of: the western Denali, Cook Inlet folds near Anchorage, and thrust faults near Fairbanks. Previously the subduction zone was modeled at a uniform depth. In this update, we model the intraslab as a series of deep stepping events. We also use the best available data, such as Slab 1.0, to update the geometry of the subduction zone. The city of Anchorage represents 80% of the risk exposure in Alaska. In the 2007 model, the hazard in Alaska was dominated by the frequent rate of magnitude 7 to 8 events (Gutenberg-Richter distribution), and large magnitude 8+ events had a low reoccurrence rate (Characteristic) and therefore didn't contribute as highly to the overall risk. We will review these reoccurrence rates, and will present the results and impact to Anchorage. We will compare our hazard update to the 2007 USGS hazard map, and discuss the changes and drivers for these changes. Finally, we will examine the impact model changes have on Alaska earthquake risk. Consider risk metrics include average annual loss, an annualized expected loss level used by insurers to determine the costs of earthquake insurance (and premium levels), and the

  6. Science for Alaska: Public Understanding of University Research Priorities

    Campbell, D.

    2015-12-01

    Science for Alaska: Public Understanding of Science D. L. Campbell11University of Alaska Fairbanks, USA Around 200 people brave 40-below-zero temperatures to listen to university researchers and scientists give lectures about their work at an event called the Science for Alaska Lecture Series, hosted by the University of Alaska Fairbanks Geophysical Institute. It is held once a week, for six weeks during the coldest part of a Fairbanks, Alaska, winter. The topics range from space physics to remote sensing. The lectures last for 45 minutes with 15 minutes for audience questions and answers. It has been popular for about 20 years and is one of many public outreach efforts of the institute. The scientists are careful in their preparations for presentations and GI's Public Relations staff chooses the speakers based on topic, diversity and public interest. The staff also considers the speaker's ability to speak to a general audience, based on style, clarity and experience. I conducted a qualitative research project to find out about the people who attended the event, why they attend and what they do with the information they hear about. The participants were volunteers who attended the event and either stayed after the lectures for an interview or signed up to be contacted later. I used used an interview technique with open-ended questions, recorded and transcribed the interview. I identified themes in the interviews, using narrative analysis. Preliminary data show that the lecture series is a form of entertainment for people who are highly educated and work in demanding and stressful jobs. They come with family and friends. Sometimes it's a date with a significant other. Others want to expose their children to science. The findings are in keeping with the current literature that suggests that public events meant to increase public understanding of science instead draws like-minded people. The findings are different from Campbell's hypothesis that attendance was based

  7. Physical trajectory profile data from glider unit_191 deployed by University of Alaska - Fairbanks in the Southern Oceans from 2015-01-05 to 2015-02-26 (NCEI Accession 0145717)

    National Oceanic and Atmospheric Administration, Department of Commerce — The purpose of this glider mission is to do along canyon transects of Palmer Deep within the operating CODAR fields off of Anvers Island. This multi-platform field...

  8. The Alaska Lake Ice and Snow Observatory Network (ALISON): Hands-on Experiential K- 12 Learning in the North

    Morris, K.; Jeffries, M.

    2008-12-01

    The Alaska Lake Ice and Snow Observatory Network (ALISON) was initiated by Martin Jeffries (UAF polar scientist), Delena Norris-Tull (UAF education professor) and Ron Reihl (middle school science teacher, Fairbanks North Star Borough School District). The snow and ice measurement protocols were developed in 1999-2000 at the Poker Flat Research Range (PFRR) by Geophysical Institute, University of Alaska scientists and tested by home school teacher/students in winter 2001-2002 in Fairbanks, AK. The project was launched in 2002 with seven sites around the state (PFRR, Fairbanks, Barrow, Mystic Lake, Nome, Shageluk and Wasilla). The project reached its broadest distribution in 2005-2006 with 22 sites. The schools range from urban (Wasilla) to primarily Alaska native villages (Shageluk). They include public schools, charter schools, home schooled students and parents, informal educators and citizen scientists. The grade levels range from upper elementary to high school. Well over a thousand students have participated in ALISON since its inception. Equipment is provided to the observers at each site. Measurements include ice thickness (with a hot wire ice thickness gauge), snow depth and snow temperature (surface and base). Snow samples are taken and snow density derived. Snow variables are used to calculate the conductive heat flux through the ice and snow cover to the atmosphere. All data are available on the Web site. The students and teachers are scientific partners in the study of lake ice processes, contributing to new scientific knowledge and understanding while also learning science by doing science with familiar and abundant materials. Each autumn, scientists visit each location to work with the teachers and students, helping them to set up the study site, showing them how to make the measurements and enter the data into the computer, and discussing snow, ice and polar environmental change. A number of 'veteran' teachers are now setting up the study sites on

  9. Drilling and Testing the DOI041A Coalbed Methane Well, Fort Yukon, Alaska

    Clark, Arthur; Barker, Charles E.; Weeks, Edwin P.

    2009-01-01

    The need for affordable energy sources is acute in rural communities of Alaska where costly diesel fuel must be delivered by barge or plane for power generation. Additionally, the transport, transfer, and storage of fuel pose great difficulty in these regions. Although small-scale energy development in remote Arctic locations presents unique challenges, identifying and developing economic, local sources of energy remains a high priority for state and local government. Many areas in rural Alaska contain widespread coal resources that may contain significant amounts of coalbed methane (CBM) that, when extracted, could be used for power generation. However, in many of these areas, little is known concerning the properties that control CBM occurrence and production, including coal bed geometry, coalbed gas content and saturation, reservoir permeability and pressure, and water chemistry. Therefore, drilling and testing to collect these data are required to accurately assess the viability of CBM as a potential energy source in most locations. In 2004, the U.S. Geological Survey (USGS) and Bureau of Land Management (BLM), in cooperation with the U.S. Department of Energy (DOE), the Alaska Department of Geological and Geophysical Surveys (DGGS), the University of Alaska Fairbanks (UAF), the Doyon Native Corporation, and the village of Fort Yukon, organized and funded the drilling of a well at Fort Yukon, Alaska to test coal beds for CBM developmental potential. Fort Yukon is a town of about 600 people and is composed mostly of Gwich'in Athabascan Native Americans. It is located near the center of the Yukon Flats Basin, approximately 145 mi northeast of Fairbanks.

  10. Earthquake source studies and seismic imaging in Alaska

    Tape, C.; Silwal, V.

    2015-12-01

    Alaska is one of the world's most seismically and tectonically active regions. Its enhanced seismicity, including slab seismicity down to 180 km, provides opportunities (1) to characterize pervasive crustal faulting and slab deformation through the estimation of moment tensors and (2) to image subsurface structures to help understand the tectonic evolution of Alaska. Most previous studies of earthquakes and seismic imaging in Alaska have emphasized earthquake locations and body-wave travel-time tomography. In the past decade, catalogs of seismic moment tensors have been established, while seismic surface waves, active-source data, and potential field data have been used to improve models of seismic structure. We have developed moment tensor catalogs in the regions of two of the largest sedimentary basins in Alaska: Cook Inlet forearc basin, west of Anchorage, and Nenana basin, west of Fairbanks. Our moment tensor solutions near Nenana basin suggest a transtensional tectonic setting, with the basin developing in a stepover of a left-lateral strike-slip fault system. We explore the effects of seismic wave propagation from point-source and finite-source earthquake models by performing three-dimensional wavefield simulations using seismic velocity models that include major sedimentary basins. We will use our catalog of moment tensors within an adjoint-based, iterative inversion to improve the three-dimensional tomographic model of Alaska.

  11. Survey of Indoor Air Quality in the University of Alaska

    Kotol, Martin; Craven, Colin; Rode, Carsten

    2014-01-01

    problem which is poor indoor air quality (IAQ). During summer 2012 four student homes were built in Fairbanks, Alaska as a part of Sustainable Village project. The aim of this project is to promote sustainable ways of living in the Arctic and to study new technologies and their applicability in the cold......In cold climates living inside the heated space requires considerable amounts of heat. With the intention to decrease the heating demand, people are insulating their homes and make them more air tight. With the natural infiltration being brought close to zero there has been an increase of a new...... north. This paper presents the results of an IAQ survey performed in the homes during two weeks in December 2012. During this survey the air temperature, relative humidity (RH) and CO2 concentration were measured in all occupied bedrooms along with monitoring of the ventilation units. The results have...

  12. Improving Sanitation and Health in Rural Alaska

    Bubenheim, David L.

    2013-01-01

    In rural Alaskan communities personal health is threatened by energy costs and limited access to clean water, wastewater management, and adequate nutrition. Fuel-­-based energy systems are significant factors in determining local accessibility to clean water, sanitation and food. Increasing fuel costs induce a scarcity of access and impact residents' health. The University of Alaska Fairbanks (UAF) School of Natural Resources and Agricultural Sciences (SNRAS), NASA's Ames Research Center, and USDA Agricultural Research Service (ARS) have joined forces to develop high-efficiency, low­-energy consuming techniques for water treatment and food production in rural circumpolar communities. Methods intended for exploration of space and establishment of settlements on the Moon or Mars will ultimately benefit Earth's communities in the circumpolar north. The initial phase of collaboration is completed. Researchers from NASA Ames Research Center and SNRAS, funded by the USDA­-ARS, tested a simple, reliable, low-energy sewage treatment system to recycle wastewater for use in food production and other reuse options in communities. The system extracted up to 70% of the water from sewage and rejected up to 92% of ions in the sewage with no carryover of toxic effects. Biological testing showed that plant growth using recovered water in the nutrient solution was equivalent to that using high-purity distilled water. With successful demonstration that the low energy consuming wastewater treatment system can provide safe water for communities and food production, the team is ready to move forward to a full-scale production testbed. The SNRAS/NASA team (including Alaska students) will design a prototype to match water processing rates and food production to meet rural community sanitation needs and nutritional preferences. This system would be operated in Fairbanks at the University of Alaska through SNRAS. Long­-term performance will be validated and operational needs of the

  13. The lab and the land: overcoming the Arctic in Cold War Alaska.

    Farish, Matthew

    2013-03-01

    The militarization of Alaska during and after World War II created an extraordinary set of new facilities. But it also reshaped the imaginative role of Alaska as a hostile environment, where an antagonistic form of nature could be defeated with the appropriate combination of technology and training. One of the crucial sites for this reformulation was the Arctic Aeromedical Laboratory, based at Ladd Air Force Base in Fairbanks. In the first two decades of the Cold War, its employees conducted numerous experiments on acclimatization and survival. The laboratory is now best known for an infamous set of tests involving the application of radioactive tracers to indigenous Alaskans--experiments publicized by post-Cold War panels established to evaluate the tragic history of atomic-era human subject research. But little else has been written about the laboratory's relationship with the populations and landscapes that it targeted for study. This essay presents the laboratory as critical to Alaska's history and the history of the Cold War sciences. A consideration of the laboratory's various projects also reveals a consistent fascination with race. Alaskan Natives were enrolled in experiments because their bodies were understood to hold clues to the mysteries of northern nature. A scientific solution would aid American military campaigns not only in Alaska, but in cold climates everywhere.

  14. Geochemical evidence for the origin of late Quaternary loess in central Alaska

    Muhs, D.R.; Budahn, J.R.

    2006-01-01

    Loess is extensive in central Alaska, but there are uncertainties about its source and the direction of paleo-winds that deposited it. Both northerly and southerly winds have been inferred. The most likely sources of loess are the Tanana River (south), the Nenana River (southeast), and the Yukon River (north). Late Quaternary loess in central Alaska has immobile trace-element compositions (Cr/Sc, Th/Ta, Th/ Sc, Th/U, Eu/Eu*, GdN/YbN) that indicate derivation mostly from the Tanana River. However, other ratios (As/Sb, Zr/Hf, LaN/YbN) and quantitative modeling indicate that the Yukon River was also a source. During the last glacial period, there may have been a longer residence time of the Siberian and Canadian high-pressure cells, along with a strengthened Aleutian low-pressure cell. This would have generated regional-scale northeasterly winds and explains derivation of loess from the Yukon River. However, superim-posed upon this synoptic-scale circulation, there may have been strong, southerly katabatic winds from expanded glaciers on the northern flank of the Alaska Range. These winds could have provided eolian silt from the Tanana River. Yukon River and Tanana River sediments are highly calcareous, whereas Fairbanks-area loess is not. This suggests that carbonate leaching in loess kept ahead of sedimentation and that late Quaternary loess in central Alaska was deposited relatively slowly. ?? 2006 NRC Canada.

  15. Beverage consumption in an Alaska Native village: a mixed-methods study of behaviour, attitudes and access.

    Elwan, Deena; de Schweinitz, Peter; Wojcicki, Janet M

    2016-01-01

    American Indians/Alaska Natives (AI/AN) have the highest prevalence of obesity for any racial/ethnic group. Previous studies examining risk factors for obesity have identified excessive sugar-sweetened beverage (SSB) and inadequate water consumption as major risk factors for this population group. The historical scarcity of water in rural Alaska may explain consumption patterns including reliance on SSBs and other packaged drinks. Our study was designed to assess SSB, water and other beverage consumption and attitudes towards consumption in Alaska Native children and adults residing in rural Alaska. During summer 2014, 2 focus groups were conducted employing community members in a small rural village more than 200 air miles west of Fairbanks, Alaska. Interviews were completed with shop owners, Early Head Start and Head Start program instructors (n=7). SSB and total beverage intakes were measured using a modified version of the BEVQ-15, (n=69). High rates of SSB consumption (defined as sweetened juice beverages, soda, sweet tea, energy drink or sports drinks) and low rates of water consumption were reported for all age groups in the village. All adolescents and 81% of children reported drinking SSBs at least once per week in the last month, and 48% of adolescents and 29% of younger children reported daily consumption. Fifty-two per cent of adults reported consuming SSBs at least once per week and 20% reported daily consumption. Twenty-five per cent of adolescents reported never drinking water in the past month, and 19% of younger children and 21% of adults did not consume water daily. Alaska Native children and adults living in the Interior Alaska consume high amounts of SSBs including energy drinks and insufficient amounts of water. Interventions targeting beverage consumption are urgently needed for the Alaska Native population in rural Alaska.

  16. Beverage consumption in an Alaska Native village: a mixed-methods study of behaviour, attitudes and access

    Deena Elwan

    2016-02-01

    Full Text Available Background: American Indians/Alaska Natives (AI/AN have the highest prevalence of obesity for any racial/ethnic group. Previous studies examining risk factors for obesity have identified excessive sugar-sweetened beverage (SSB and inadequate water consumption as major risk factors for this population group. The historical scarcity of water in rural Alaska may explain consumption patterns including reliance on SSBs and other packaged drinks. Methods: Our study was designed to assess SSB, water and other beverage consumption and attitudes towards consumption in Alaska Native children and adults residing in rural Alaska. During summer 2014, 2 focus groups were conducted employing community members in a small rural village more than 200 air miles west of Fairbanks, Alaska. Interviews were completed with shop owners, Early Head Start and Head Start program instructors (n=7. SSB and total beverage intakes were measured using a modified version of the BEVQ-15, (n=69. Results: High rates of SSB consumption (defined as sweetened juice beverages, soda, sweet tea, energy drink or sports drinks and low rates of water consumption were reported for all age groups in the village. All adolescents and 81% of children reported drinking SSBs at least once per week in the last month, and 48% of adolescents and 29% of younger children reported daily consumption. Fifty-two per cent of adults reported consuming SSBs at least once per week and 20% reported daily consumption. Twenty-five per cent of adolescents reported never drinking water in the past month, and 19% of younger children and 21% of adults did not consume water daily. Conclusion: Alaska Native children and adults living in the Interior Alaska consume high amounts of SSBs including energy drinks and insufficient amounts of water. Interventions targeting beverage consumption are urgently needed for the Alaska Native population in rural Alaska.

  17. Source evaluation report phase 2 investigation: Limited field investigation. Final report: United States Air Force Environmental Restoration Program, Eielson Air Force Base, Alaska

    1994-10-01

    This report describes the limited field investigation work done to address issues and answer unresolved questions regarding a collection of potential contaminant sources at Eielson Air Force Base (AFB), near Fairbanks, Alaska. These sources were listed in the Eielson AFB Federal Facility Agreement supporting the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) cleanup of the base. The limited field investigation began in 1993 to resolve all remaining technical issues and provide the data and analysis required to evaluate the environmental hazard associated with these sites. The objective of the limited field investigation was to allow the remedial project managers to sort each site into one of three categories: requiring remedial investigation/feasibility study, requiring interim removal action, or requiring no further remedial action.

  18. Use of new and old technologies and methods by the Alaska Volcano Observatory during the 2006 eruption of Augustine Volcano, Alaska

    Murray, T. L.; Nye, C. J.; Eichelberger, J. C.

    2006-12-01

    The recent eruption of Augustine Volcano was the first significant volcanic event in Cook Inlet, Alaska since 1992. In contrast to eruptions at remote Alaskan volcanoes that mainly affect aviation, ash from previous eruptions of Augustine has affected communities surrounding Cook Inlet, home to over half of Alaska's population. The 2006 eruption validated much of AVO's advance preparation, underscored the need to quickly react when a problem or opportunity developed, and once again demonstrated that while technology provides us with wonderful tools, professional relationships, especially during times of crisis, are still important. Long-term multi-parametric instrumental monitoring and background geological and geophysical studies represent the most fundamental aspect of preparing for any eruption. Once significant unrest was detected, AVO augmented the existing real-time network with additional instrumentation including web cameras. GPS and broadband seismometers that recorded data on site were also quickly installed as their data would be crucial for post-eruption research. Prior to 2006, most of most of AVO's eruption response plans and protocols had focused on the threat to aviation rather than ground-based hazards. However, the relationships and protocols developed for the aviation threat were sufficient to be adapted to the ash fall hazard, though it is apparent that more work, both scientific and with response procedures, is needed. Similarly, protocols were quickly developed for warning of a flank- collapse induced tsunami. Information flow within the observatory was greatly facilitated by an internal web site that had been developed and refined specifically for eruption response. Because AVO is a partnership of 3 agencies (U.S. Geological Survey, University of Alaska Fairbanks Geophysical Institute, and the Alaska Division of Geological and Geophysical Surveys) with offices in both Fairbanks and Anchorage, web and internet-facing data servers provided

  19. Summary of 2012 reconnaissance field studies related to the petroleum geology of the Nenana Basin, interior Alaska

    Wartes, Marwan A.; Gillis, Robert J.; Herriott, Trystan M.; Stanley, Richard G.; Helmold, Kenneth P.; Peterson, C. Shaun; Benowitz, Jeffrey A.

    2013-01-01

    The Alaska Division of Geological & Geophysical Surveys (DGGS) recently initiated a multi-year review of the hydrocarbon potential of frontier sedimentary basins in Alaska (Swenson and others, 2012). In collaboration with the Alaska Division of Oil & Gas and the U.S. Geological Survey we conducted reconnaissance field studies in two basins with recognized natural gas potential—the Susitna basin and the Nenana basin (LePain and others, 2012). This paper summarizes our initial work on the Nenana basin; a brief summary of our work in the Susitna basin can be found in Gillis and others (in press). During early May 2012, we conducted ten days of helicopter-supported fieldwork and reconnaissance sampling along the northern Alaska Range foothills and Yukon–Tanana upland near Fairbanks (fig. 1). The goal of this work was to improve our understanding of the geologic development of the Nenana basin and to collect a suite of samples to better evaluate hydrocarbon potential. Most laboratory analyses have not yet been completed, so this preliminary report serves as a summary of field data and sets the framework for future, more comprehensive analysis to be presented in later publications.

  20. HISTORY OF THE LEGENDARY AIRWAY “ALASKA-SIBERIA-FRONT”

    В А Борисов

    2015-12-01

    Full Text Available The article deals with the construction of the Alaskan-Siberian Railway by the USSR during the Second World War and its role in the delivery of aviation equipment from the USA factories in Fairbanks (Alaska for the subsequent ferrying to the Soviet Union. In this regard, the author explores the little known facts of the development of the complex airway “Alaska-Siberia-front”, which played the crucial role in the history of the Great Patriotic War and enabled the Russian and American aviators to hasten the victory over Nazi Germany. The article also reveals the specific decisions of the Party and the Soviet government on coordinating efforts between Great Britain and the United States to supply combat aircraft under the Lend-Lease. On the basis of specific historical facts the author considers selfless and heroic efforts of Soviet pilots, engineers, technicians, junior aviation specialists in the preparation of mobile airfields and sites for aircrafts intermediate landing in the harsh Siberian climate.

  1. Surge dynamics on Bering Glacier, Alaska, in 2008–2011

    M. Braun

    2012-11-01

    Full Text Available A surge cycle of the Bering Glacier system, Alaska, is examined using observations of surface velocity obtained using synthetic aperture radar (SAR offset tracking, and elevation data obtained from the University of Alaska Fairbanks LiDAR altimetry program. After 13 yr of quiescence, the Bering Glacier system began to surge in May 2008 and had two stages of accelerated flow. During the first stage, flow accelerated progressively for at least 10 months and reached peak observed velocities of ~ 7 m d−1. The second stage likely began in 2010. By 2011 velocities exceeded 9 m d−1 or ~ 18 times quiescent velocities. Fast flow continued into July 2011. Surface morphology indicated slowing by fall 2011; however, it is not entirely clear if the surge is yet over. The quiescent phase was characterized by small-scale acceleration events that increased driving stresses up to 70%. When the surge initiated, synchronous acceleration occurred throughout much of the glacier length. Results suggest that downstream propagation of the surge is closely linked to the evolution of the driving stress during the surge, because driving stress appears to be tied to the amount of resistive stress provided by the bed. In contrast, upstream acceleration and upstream surge propagation is not dependent on driving stress evolution.

  2. Agro-climate Projections for a Warming Alaska

    Lader, R.; Walsh, J. E.; Bhatt, U. S.; Bieniek, P.

    2017-12-01

    In the context of greenhouse warming, agro-meteorological indices suggest widespread disruption to current food supply chains during the coming decades. Much of the western United States is projected to have more dry days, and the southern states are likely to experience greater plant heat stress. Considering these difficulties, it could become necessary for more northerly locations, including Alaska, to increase agricultural production to support local communities and offset supply shortages. This study employs multiple dynamically downscaled regional climate model simulations from the CMIP5 to investigate projected changes to agro-climate conditions across Alaska. The metric used here, the start-of-field operations index (SFO), identifies the date during which the sum of daily average temperature, starting from January 1st and excluding negative values, exceeds 200 ˚C. Using the current trajectory of greenhouse radiative forcing, RCP 8.5, this study indicates a doubling to 71,960 km2 of Alaska land area that meets the required thermal accumulation for crop production when comparing a historical period (1981-2010) to the future (2071-2100). The SFO shows a correlation coefficient of 0.91 with the independently produced green-up index for Fairbanks from 1981-2010. Among the land areas that currently reach the necessary thermal accumulation, there is a projected increase in growing season length (63-82 days), earlier date of last spring frost (28-48 days), and later date of first autumn frost (24-47 days) across the five USDA Census of Agriculture areas for Alaska. Both an average statewide decrease of annual frost days (71 fewer), and an increase in days with extreme warmth (28 more) are also projected.

  3. Catalog of earthquake hypocenters at Redoubt Volcano and Mt. Spurr, Alaska: October 12, 1989 - December 31, 1990

    Power, John A.; March, Gail D.; Lahr, John C.; Jolly, Arthur D.; Cruse, Gina R.

    1993-01-01

    The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute of the University of Alaska, Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, began a program of seismic monitoring at potentially active volcanoes in the Cook Inlet region in 1988. Seismic monitoring of this area was previously accomplished by two independent seismic networks operated by the U.S. Geological Survey (Northern Cook Inlet) and the Geophysical Institute (Southern Cook Inlet). In 1989 the AVO seismic program consisted of three small-aperture networks of six, five, and six stations on Mt. Spurr, Redoubt Volcano, and Augustine Volcano respectively. Thirty-five other stations were operated in the Cook Inlet region as part of the AVO program. During 1990 six additional stations were added to the Redoubt network in response to eruptive activity, and three stations were installed at Iliamna Volcano. The principal objectives of the AVO program have been the seismic surveillance of the Cook Inlet volcanoes and the investigation of seismic processes associated with active volcanism.

  4. Variability in the Geographic Distribution of Fires in Interior Alaska Considering Cause, Human Proximity, and Level of Suppression

    Calef, M. P.; Varvak, A.; McGuire, A. D.; Chapin, T.

    2015-12-01

    The boreal forest of Interior Alaska is characterized by frequent extensive wildfires that have been mapped for the past 70 years. Simple predictions based on this record indicate that area burned will increase as a response to climate warming in Alaska. However, two additional factors have affected the area burned in this time record: the Pacific Decadal Oscillation (PDO) switched from cool and moist to warm and dry in the late 1970s and the Alaska Fire Service instituted a fire suppression policy in the late 1980s. Using Geographic Information Systems (GIS) and statistics, this presentation evaluates the variability in area burned and fire ignitions in Interior Alaska in space and time with particular emphasis on the human influence via ignition and suppression. Our analysis shows that while area burned has been increasing by 2.4% per year, the number of lightning ignitions has decreased by 1.9 ignitions per year. Human ignitions account for 50% of all fire ignitions in Interior Alaska and are clearly influenced by human proximity: human fires mostly occur close to settlements, highways and in intense fire suppression zones (which are in turn close to human settlements and roads); fires close to settlements, highways and in intense fire suppression zones burn much shorter than fires further away from this sphere of human influence; and 60% of all human fire ignitions in Interior Alaska are concentrated in the Fairbanks area and thereby strongly influence regional analyses. Fire suppression has effectively reduced area burned since it was implemented but the PDO change has also had some influence. Finally, we found that human fires start earlier in the year and burn for a shorter duration than lightning fires. This study provides insights into the importance of human behavior as well as regional climate patterns as large-scale controls on fires over time and across the Alaskan boreal forest.

  5. Monitoring start of season in Alaska with GLOBE, AVHRR, and MODIS data

    Robin, Jessica; Dubayah, Ralph; Sparrow, Elena; Levine, Elissa

    2008-03-01

    This work evaluates whether continuity between Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index (NDVI) is achievable for monitoring phenological changes in Alaska. This work also evaluates whether NDVI can detect changes in start of the growing season (SOS) in this region. Six quadratic regression models with NDVI as a function of accumulated growing degree days (AGDD) were developed from 2001 through 2004 AVHRR and MODIS NDVI data sets for urban, mixed, and forested land covers. Model parameters determined NDVI values for start of the observational period as well as peak and length of the growing season. NDVI values for start of the growing season were determined from the model equations and field observations of SOS made by GLOBE students and researchers at University of Alaska Fairbanks. AGDD was computed from daily air temperature. AVHRR and MODIS models were significantly different from one another with differences in the start of the observational season as well as start, peak, and length of the growing season. Furthermore, AGDD for SOS was significantly lower during the 1990s than the 1980s. NDVI values at SOS did not detect this change. There are limitations with using NDVI to monitor phenological changes in these regions because of snow, the large extent of conifers, and clouds, which restrict the composite period. In addition, differing processing and spectral characteristics restrict continuity between AVHRR and MODIS NDVI data sets.

  6. Vegetation Change in Interior Alaska Over the Last Four Decades

    Huhman, H.; Dewitz, J.; Cristobal, J.; Prakash, A.

    2017-12-01

    The Arctic has become a generally warmer place over the past decades leading to earlier snowmelt, permafrost degradation and changing plant communities. One area in particular, vegetation change, is responding relatively rapidly to climate change, impacting the surrounding environment with changes to forest fire regime, forest type, forest resiliency, habitat availability for subsistence flora and fauna, hydrology, among others. To quantify changes in vegetation in the interior Alaska boreal forest over the last four decades, this study uses the National Land Cover Database (NLCD) decision-tree based classification methods, using both C5 and ERDAS Imagine software, to classify Landsat Surface Reflectance Images into the following NLCD-consistent vegetation classes: planted, herbaceous, shrubland, and forest (deciduous, evergreen and mixed). The results of this process are a total of four vegetation cover maps, that are freely accessible to the public, one for each decade in the 1980's, 1990's, 2000's, and a current map for 2017. These maps focus on Fairbanks, Alaska and the surrounding area covering approximately 36,140 square miles. The maps are validated with over 4,000 ground truth points collected through organizations such as the Landfire Project and the Long Term Ecological Research Network, as well as vegetation and soil spectra collected from the study area concurrent with the Landsat satellite over-passes with a Spectral Evolution PSR+ 3500 spectro-radiometer (0.35 - 2.5 μm). We anticipate these maps to be viewed by a wide user-community and may aid in preparing the residents of Alaska for changes in their subsistence food sources and will contribute to the scientific community in understanding the variety of changes that can occur in response to changing vegetation.

  7. Satellite monitoring of remote volcanoes improves study efforts in Alaska

    Dean, K.; Servilla, M.; Roach, A.; Foster, B.; Engle, K.

    Satellite monitoring of remote volcanoes is greatly benefitting the Alaska Volcano Observatory (AVO), and last year's eruption of the Okmok Volcano in the Aleutian Islands is a good case in point. The facility was able to issue and refine warnings of the eruption and related activity quickly, something that could not have been done using conventional seismic surveillance techniques, since seismometers have not been installed at these locations.AVO monitors about 100 active volcanoes in the North Pacific (NOPAC) region, but only a handful are observed by costly and logistically complex conventional means. The region is remote and vast, about 5000 × 2500 km, extending from Alaska west to the Kamchatka Peninsula in Russia (Figure 1). Warnings are transmitted to local communities and airlines that might be endangered by eruptions. More than 70,000 passenger and cargo flights fly over the region annually, and airborne volcanic ash is a threat to them. Many remote eruptions have been detected shortly after the initial magmatic activity using satellite data, and eruption clouds have been tracked across air traffic routes. Within minutes after eruptions are detected, information is relayed to government agencies, private companies, and the general public using telephone, fax, and e-mail. Monitoring of volcanoes using satellite image data involves direct reception, real-time monitoring, and data analysis. Two satellite data receiving stations, located at the Geophysical Institute, University of Alaska Fairbanks (UAF), are capable of receiving data from the advanced very high resolution radiometer (AVHRR) on National Oceanic and Atmospheric Administration (NOAA) polar orbiting satellites and from synthetic aperture radar (SAR) equipped satellites.

  8. Canyon Creek: A late Pleistocene vertebrate locality in interior Alaska

    Weber, Florence R.; Hamilton, Thomas D.; Hopkins, David M.; Repenning, Charles A.; Haas, Herbert

    1981-09-01

    The Canyon Creek vertebrate-fossil locality is an extensive road cut near Fairbanks that exposes sediments that range in age from early Wisconsin to late Holocene. Tanana River gravel at the base of the section evidently formed during the Delta Glaciation of the north-central Alaska Range. Younger layers and lenses of fluvial sand are interbedded with arkosic gravel from Canyon Creek that contains tephra as well as fossil bones of an interstadial fauna about 40,000 years old. Solifluction deposits containing ventifacts, wedge casts, and rodent burrows formed during a subsequent period of periglacial activity that took place during the maximum phase of Donnelly Glaciation about 25,000-17,000 years ago. Overlying sheets of eolian sand are separated by a 9500-year-old paleosol that may correlate with a phase of early Holocene spruce expansion through central Alaska. The Pleistocene fauna from Canyon Creek consists of rodents (indicated by burrows), Mammuthus primigenius (woolly mammoth), Equus lambei (Yukon wild ass), Camelops hesternus (western camel), Bison sp. cf. B. crassicornis (large-horned bison), Ovis sp. cf. O. dalli (mountain sheep), Canis sp. cf. C. lupus (wolf), Lepus sp. cf. L. othus or L. arcticus (tundra hare), and Rangifer sp. (caribou). This assemblage suggests an open landscape in which trees and tall shrubs were either absent or confined to sheltered and moist sites. Camelops evidently was present in eastern Beringia during the middle Wisconsin interstadial interval but may have disappeared during the following glacial episode. The stratigraphic section at Canyon Creek appears to demonstrate that the Delta Glaciation of the north-central Alaska Range is at least in part of early Wisconsin age and was separated from the succeeding Donnelly Glaciation by an interstadial rather than interglacial episode.

  9. Traditional Ecological Knowledge of Stem Concepts in Informal and Place-Based Western Educational Systems: Lessons from the North Slope, Alaska

    Nicholas-Figueroa, Linda

    Upon regaining the right to direct education at the local level, the North Slope Borough (NSB) of Alaska incorporated Inupiat educational philosophies into the educational system. The NSB in partnership with the University of Alaska Fairbanks established Ilisagvik College, the only tribal college in Alaska. Ilisagvik College seeks to broaden science, technology, engineering, and mathematical education on the North Slope. Incorporation of place-based and informal lessons with traditional ecological knowledge engages students in education. Ilisagvik hosted a 2-week climate change program from 2012 - 2015 for high school and middle school students that examined climate science and the effects of a warming climate on the local environment from a multitude of perspectives from scientists, Inupiat Elders, and instructor-led field trips. Pre-assessments and post-assessments using the Student Assessment of Learning Gains tool measured students' interests and conceptual understanding. Students developed and enhanced their understanding of science concepts and, at the end of the program, could articulate the impact of climatic changes on their local environment. Similarly, methods to incorporate Indigenous knowledge into research practices have been achieved, such as incorporating field trips and discussion with Elders on the importance of animal migration, whale feeding patterns, and the significance of sea-ice conditions, which are important community concerns.

  10. Automated system for smoke dispersion prediction due to wild fires in Alaska

    Kulchitsky, A.; Stuefer, M.; Higbie, L.; Newby, G.

    2007-12-01

    Community climate models have enabled development of specific environmental forecast systems. The University of Alaska (UAF) smoke group was created to adapt a smoke forecast system to the Alaska region. The US Forest Service (USFS) Missoula Fire Science Lab had developed a smoke forecast system based on the Weather Research and Forecasting (WRF) Model including chemistry (WRF/Chem). Following the successful experience of USFS, which runs their model operationally for the contiguous U.S., we develop a similar system for Alaska in collaboration with scientists from the USFS Missoula Fire Science Lab. Wildfires are a significant source of air pollution in Alaska because the climate and vegetation favor annual summer fires that burn huge areas. Extreme cases occurred in 2004, when an area larger than Maryland (more than 25000~km2) burned. Small smoke particles with a diameter less than 10~μm can penetrate deep into lungs causing health problems. Smoke also creates a severe restriction to air transport and has tremendous economical effect. The smoke dispersion and forecast system for Alaska was developed at the Geophysical Institute (GI) and the Arctic Region Supercomputing Center (ARSC), both at University of Alaska Fairbanks (UAF). They will help the public and plan activities a few days in advance to avoid dangerous smoke exposure. The availability of modern high performance supercomputers at ARSC allows us to create and run high-resolution, WRF-based smoke dispersion forecast for the entire State of Alaska. The core of the system is a Python program that manages the independent pieces. Our adapted Alaska system performs the following steps \\begin{itemize} Calculate the medium-resolution weather forecast using WRF/Met. Adapt the near real-time satellite-derived wildfire location and extent data that are received via direct broadcast from UAF's "Geographic Information Network of Alaska" (GINA) Calculate fuel moisture using WRF forecasts and National Fire Danger

  11. Gummi-Bears On Fire! Bringing Students and Scientists Together at the Alaska Summer Research Academy (ASRA)

    Drake, J.; Schamel, D.; Fisher, P.; Terschak, J. A.; Stelling, P.; Almberg, L.; Phillips, E.; Forner, M.; Gregory, D.

    2002-12-01

    When a gummi-bear is introduced into hot potassium chlorate there is a powerful reaction. This is analogous to the response we have seen to the Alaska Summer Research Academy (ASRA). ASRA is a residential science research camp supported by the College of Science, Engineering and Mathematics at the University of Alaska Fairbanks. The hallmark of ASRA is the opportunity for small groups of 4 or fewer students, ages 10-17, to conduct scientific research and participate in engineering design projects with university faculty and researchers as mentors. Participating scientists, engineers, faculty, graduate students, and K-12 teachers from a variety of disciplines design individual research units and guide the students through designing and constructing a project, collecting data, and synthesizing results. The week-long camp culminates with the students from each project making a formal presentation to the camp and public. In its second year ASRA is already a huge success, quadrupling in size from 21 students in 2001 to 89 students in 2002. Due to a high percentage of returning students, we anticipate there will be a waiting list next year. This presentation contains perspectives from administrators, instructors, staff, and students. Based on our experience we feel there is a large potential demand for education and public outreach (EPO) in university settings. We believe the quality and depth of the ASRA experience directly contributes to the success of a worthwhile EPO program. ASRA will be portrayed as a useful model for EPO at other institutions.

  12. Generating Multispectral VIIRS Imagery in Near Real-Time for Use by the National Weather Service in Alaska

    Broderson, D.; Dierking, C.; Stevens, E.; Heinrichs, T. A.; Cherry, J. E.

    2016-12-01

    The Geographic Information Network of Alaska (GINA) at the University of Alaska Fairbanks (UAF) uses two direct broadcast antennas to receive data from a number of polar-orbiting weather satellites, including the Suomi National Polar Partnership (S-NPP) satellite. GINA uses data from S-NPP's Visible Infrared Imaging Radiometer Suite (VIIRS) to generate a variety of multispectral imagery products developed with the needs of the National Weather Service operational meteorologist in mind. Multispectral products have two primary advantages over single-channel products. First, they can more clearly highlight some terrain and meteorological features which are less evident in the component single channels. Second, multispectral present the information from several bands through just one image, thereby sparing the meteorologist unnecessary time interrogating the component single bands individually. With 22 channels available from the VIIRS instrument, the number of possible multispectral products is theoretically huge. A small number of products will be emphasized in this presentation, with the products chosen based on their proven utility in the forecasting environment. Multispectral products can be generated upstream of the end user or by the end user at their own workstation. The advantage and disadvantages of both approaches will be outlined. Lastly, the technique of improving the appearance of multispectral imagery by correcting for atmospheric reflectance at the shorter wavelengths will be described.

  13. Monkfish (Lophius vomerinus and L. vaillanti) con- stitute a ...

    denise

    Booth 2001), biomass indices obtained from data .... heavy gear and tickler chains deployed. ...... University of Alaska, Fairbanks; Alaska Sea Grant ... In Benguela Trophic Func- ... growth of monkfish Lophius vomerinus in Namibian waters,.

  14. IceBridge UAF Lidar Scanner L1B Geolocated Surface Elevation Triplets

    National Aeronautics and Space Administration — This data set contains contains scanning laser altimetry data points of Alaska Glaciers acquired using the airborne University of Alaska Fairbanks (UAF) Glacier...

  15. Strategic Analysis and Plan for Implementing Telemedicine at Fort Greely

    2003-03-01

    system. Situational Analysis: The Environment ( Macroenvironment ) Alaska now reimburses via Medicaid for teleconsults (S. Ferguson, Personal...referral types allows for steep pricing of services c. Macroenvironmental factors. 1) Fairbanks Memorial Hospital and Interior Alaska Region is

  16. GeoFORCE Alaska: Four-Year Field Program Brings Rural Alaskan High School Students into the STEM Pipeline

    Fowell, S. J.; Rittgers, A.; Stephens, L.; Hutchinson, S.; Peters, H.; Snow, E.; Wartes, D.

    2016-12-01

    GeoFORCE Alaska is a four-year, field-based, summer geoscience program designed to raise graduation rates in rural Alaskan high schools, encourage participants to pursue college degrees, and increase the diversity of Alaska's technical workforce. Residents of predominantly Alaska Native villages holding degrees in science, technology, engineering, or math (STEM) bring valuable perspectives to decisions regarding management of cultural and natural resources. However, between 2010 and 2015 the average dropout rate for students in grades 7-12 was 8.5% per year in the North Slope School District and 7% per year in the Northwest Arctic School District. 2015 graduation rates were 70% and 75%, respectively. Statewide statistics highlight the challenge for Alaska Native students. During the 2014-2015 school year alone 37.6% of Alaska Native students dropped out of Alaskan public schools. At the college level, Alaska Native students are underrepresented in University of Alaska Fairbanks (UAF) science departments. Launched in 2012 by UAF in partnership with the longstanding University of Texas at Austin program, GeoFORCE applies the cohort model, leading the same group of high school students on geological field academies during four consecutive summers. Through a combination of active learning, teamwork, and hands-on projects at spectacular geological locations, students gain academic skills and confidence that facilitate high school and college success. To date, GeoFORCE Alaska has recruited two cohorts. 78% of these students identify as Alaska Native, reflecting community demographics. The inaugural cohort of 18 students from the North Slope Borough completed the Fourth-Year Academy in summer 2015. 94% of these students graduated from high school, at least 72% plan to attend college, and 33% will major in geoscience. A second cohort of 34 rising 9th and 10th graders entered the program in 2016. At the request of corporate sponsors, this cohort was recruited from both the

  17. 75 FR 65377 - Notice of Public Meeting for the National Park Service (NPS) Alaska Region's Subsistence Resource...

    2010-10-22

    ... Interest Lands Conservation Act, Public Law 96-487, to operate in accordance with the provisions of the Federal Advisory Committee Act. Public Availability of Comments: This meeting is open to the public and.... to 5 p.m. at Sophie Station Hotel, 1717 University Avenue, Fairbanks, AK 99709, (907) 479-3650. The...

  18. Task 3.14 - demonstration of technologies for remote power generation in Alaska. Semi-annual report, July 1, 1996--December 31, 1996

    Jones, M.L.

    1998-12-31

    This paper very briefly summarizes progress in the demonstration of a small (up to 6 MWe), environmentally acceptable electric generating system fueled by indigenous fuels and waste materials to serve power distribution systems typical of Alaskan Native communities. Two detailed appendices supplement the report. The project is focused on two primary technologies: (1) atmospheric fluidized bed combustion (AFBC), and (2) coalbed methane and coal-fired diesel technologies. Two sites have been selected as possible locations for an AFBC demonstration, and bid proposals are under review. The transfer of a coal-fired diesel clean coal demonstration project from Maryland to Fairbanks, Alaska was approved, and the environmental assessment has been initiated. Federal support for a fuel cell using coalbed methane is also being pursued. The appendices included in the report provide: (1) the status of the conceptual design study for a 600-kWe coal-fired cogeneration plant in McGrath, Alaska; and (2) a global market assessment of coalbed methane, fluidized-bed combustion, and coal-fired diesel technologies in remote applications.

  19. Forging a new legacy of trust in research with Alaska Native college students using CBPR

    Alaina Ctibor

    2012-09-01

    Full Text Available Objectives. Disparities in the rates of matriculation and graduation are of concern to Alaska Native (AN students and the universities committed to their academic success. Efforts to reduce attrition require a keen understanding of the factors that impact quality of life (QOL at college. Yet, a long-standing legacy of mistrust towards research poses challenges to conducting inquiry among AN students. We introduced a partnership between the University of Alaska Fairbank's Rural Student Services (RSS and the Center for Alaska Native Health Research (CANHR within which we conducted the “What makes life good?” study aimed towards developing a QOL measure for AN students. Equally important was building a legacy of research trust among AN partners. Study design. We describe Phase I of a 2-phase study that employed a sequential mixed methods approach. Discussed are facilitators, challenges and lessons learned while striving to adhere to the principles of community-based participatory research (CBPR. Methods. Phase I included formative focus groups and QOL measurement development. The research involved the interplay among activities that were co-developed with the goal of enhancing trust and research capacity. Emphasis was placed on ensuring that data collection and analyses were student driven. Conclusions. All partners resided at the same university. However, trust and collaboration could not be assumed. Working within a collaborative framework, our partnership achieved the aim of developing a culturally informed QOL measure, while also creating an empowering experience for all partners who became co-investigators in a process that might normally be regarded with mistrust.

  20. Proposed IMS infrastructure improvement project, Seward, Alaska. Final environmental impact statement

    1994-09-01

    This Environmental Impact Statement (EIS) examines a proposal for improvements at the existing University of Alaska, Fairbanks, Institute of Marine Science (IMS), Seward Marine Center. The Exxon Valdez Oil Spill (EVOS) Trustee Council is proposing to improve the existing research infrastructure to enhance the EVOS Trustee Council`s capabilities to study and rehabilitate marine mammals, marine birds, and the ecosystem injured by the Exxon Valdez oil spill. The analysis in this document focuses on the effects associated with construction and operation of the proposed project and its proposed alternatives. The EIS gives a detailed description of all major elements of the proposed project and its alternatives; identifies resources of major concern that were raised during the scoping process; describes the environmental background conditions of those resources; defines and analyzes the potential effects of the proposed project and its alternatives on these conditions; and identifies mitigating measures that are part of the project design as well as those proposed to minimize or reduce the adverse effects. Included in the EIS are written and oral comments received during the public comment period.

  1. Proposed IMS infrastructure improvement project, Seward, Alaska. Final environmental impact statement

    1994-09-01

    This Environmental Impact Statement (EIS) examines a proposal for improvements at the existing University of Alaska, Fairbanks, Institute of Marine Science (IMS), Seward Marine Center. The Exxon Valdez Oil Spill (EVOS) Trustee Council is proposing to improve the existing research infrastructure to enhance the EVOS Trustee Council's capabilities to study and rehabilitate marine mammals, marine birds, and the ecosystem injured by the Exxon Valdez oil spill. The analysis in this document focuses on the effects associated with construction and operation of the proposed project and its proposed alternatives. The EIS gives a detailed description of all major elements of the proposed project and its alternatives; identifies resources of major concern that were raised during the scoping process; describes the environmental background conditions of those resources; defines and analyzes the potential effects of the proposed project and its alternatives on these conditions; and identifies mitigating measures that are part of the project design as well as those proposed to minimize or reduce the adverse effects. Included in the EIS are written and oral comments received during the public comment period

  2. High-resolution records detect human-caused changes to the boreal forest wildfire regime in interior Alaska

    Gaglioti, Benjamin V.; Mann, Daniel H.; Jones, Benjamin M.; Wooller, Matthew J.; Finney, Bruce P.

    2016-01-01

    Stand-replacing wildfires are a keystone disturbance in the boreal forest, and they are becoming more common as the climate warms. Paleo-fire archives from the wildland–urban interface can quantify the prehistoric fire regime and assess how both human land-use and climate change impact ecosystem dynamics. Here, we use a combination of a sedimentary charcoal record preserved in varved lake sediments (annually layered) and fire scars in living trees to document changes in local fire return intervals (FRIs) and regional fire activity over the last 500 years. Ace Lake is within the boreal forest, located near the town of Fairbanks in interior Alaska, which was settled by gold miners in AD 1902. In the 400 years before settlement, fires occurred near the lake on average every 58 years. After settlement, fires became much more frequent (average every 18  years), and background charcoal flux rates rose to four times their preindustrial levels, indicating a region-wide increase in burning. Despite this surge in burning, the preindustrial boreal forest ecosystem and permafrost in the watershed have remained intact. Although fire suppression has reduced charcoal influx since the 1950s, an aging fuel load experiencing increasingly warm summers may pose management problems for this and other boreal sites that have similar land-use and fire histories. The large human-caused fire events that we identify can be used to test how increasingly common megafires may alter ecosystem dynamics in the future.

  3. Evaluation of Unmanned Aircraft System (UAS) to Monitor Forest Health Conditions in Alaska

    Webley, P. W.; Hatfield, M. C.; Heutte, T. M.; Winton, L. M.

    2017-12-01

    US Forest Service Alaska Region Forest Health Protection (FHP) and University of Alaska Fairbanks (UAF), Alaska Center for Unmanned Aircraft Systems Integration (ACUASI) are evaluating the capability of Unmanned Aerial Systems (UAS, "drone" informally) to monitor forest health conditions in Alaska's Interior Region. On July 17-20 2017, FHP and ACUASI deployed two different UAS at permanent forest inventory plots managed by the UAF programs Bonanza Creek Long Term Ecological Research (LTER) and Cooperative Alaska Forest Inventory (CAFI). The purpose of the mission was to explore capabilities of UAS for evaluating aspen tree mortality at inaccessible locations and at a scale and precision not generally achievable with currently used ground- or air-based methods. Drawing from experience gained during the initial 2016 campaign, this year emphasized the efficient use of UAS to accomplish practical field research in a variety of realistic situations. The vehicles selected for this years' effort included the DJI Matrice quadcopter with the Zenmuse-X3 camera to quickly capture initial video of the site and tree conditions; followed by the ING Responder (single rotor electric helicopter based on the Gaui X7 airframe) outfitted with a Nikon D810 camera to collect high-resolution stills suitable for construction of orthomosaic models. A total of 12 flights were conducted over the campaign, with two full days dedicated to the Delta Junction Gerstle River Intermediate (GRI) sites and the remaining day at the Bonanza Creek site. In addition to demonstrating the ability of UAS to operate safely and effectively in various canopy conditions, the effort also validated the ability of teams to deliver UAS and scientific payloads into challenging terrain using all-terrain vehicles (ATV) and foot traffic. Analysis of data from the campaign is underway. Because the permanent plots have been recently evaluated it is known that nearly all aspen mortality is caused by an aggressive canker

  4. Chemical and depth data from the ALPHA HELIX using bottle casts in the Bering Sea from 1987-09-07 to 1988-06-11 (NODC Accession 0000263)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical and depth data were collected from the ALPHA HELIX from September 7, 1987 to June 11, 1988. Data were submitted by the University of Alaska - Fairbanks;...

  5. Temperature and salinity profiles from CTD casts from ALPHA HELIX from NE Pacific (limit-180) from 09 February 1991 to 25 February 1991 (NODC Accession 9100097)

    National Oceanic and Atmospheric Administration, Department of Commerce — CTD data was collected from the R/V ALPHA HELIX from the NE Pacific (limit-180). Data were collected by the University of Alaska - Fairbanks; Institute of Marine...

  6. Temperature profile data from NOAA Ship JOHN N. COBB using CTD casts as part of the larval fish survey from 1991-05-21 to 1991-06-28 (NODC Accession 0000331)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected from NOAA Ship JOHN N. COBB from May 21, 1991 to June 28, 1991. Data were collected by University of Alaska - Fairbanks;...

  7. Degradation and Local Survival of Permafrost Through the Last Interglaciation in Interior Alaska and Yukon Territory

    Reyes, A. V.; Froese, D. G.; Jensen, B. J.

    2006-12-01

    Permafrost in northern North America is warming, and recent modeling efforts have predicted the widespread disappearance of permafrost through much of the northern hemisphere over the next century. However, little is known of the impacts of past sustained warm intervals on permafrost dynamics, antiquity, and distribution due to difficulties in establishing reliable chronologies. Permafrost thus remains the last element of the Arctic cryosphere for which there is poor understanding of its adaptability to past warmer-than-present climate. Here we present observations from three sites in the region of interior Alaska and Yukon Territory that remained ice-free during Plio-Pleistocene glaciations, which collectively demonstrate the variable nature of the response of permafrost to warming during the last interglaciation. Chronology for all sites is based on identification of Old Crow tephra (OCt; 140±10 ka) by glass major element composition. Throughout the study region, OCt is consistently associated with organic-rich sediments that represent the last interglaciation on the basis of pollen, insect, and macrofossil assemblages. At the Palisades site on the Yukon River, 250 km west of Fairbanks, OCt is 1.5-3.5 m below thick (>1m) organic-rich silts and peats that are locally rich in beaver-chewed wood and large wood stumps, some of which are in growth position. In contrast, placer mining at Thistle Creek in central Yukon Territory exposes a dramatic thaw unconformity that is presumably related to local, but incomplete, permafrost degradation during the last interglaciation. In upslope positions at Thistle Creek, OCt is incorporated into a steeply dipping, 30 cm thick, organic-rich silt horizon that truncates at least one intact, relict ice wedge. The steeply dipping organic- rich horizon grades downslope into organic-rich silt with dense accumulations of wood fragments, including tree stems up to 2 m long. Evidence for similar permafrost degradation during the last

  8. Apatite fission-track evidence of widespread Eocene heating and exhumation in the Yukon-Tanana Upland, interior Alaska

    Dusel-Bacon, C.; Murphy, J.M.

    2001-01-01

    We present an apatite fission-track (AFT) study of five plutonic rocks and seven metamorphic rocks across 310 km of the Yukon-Tanana Upland in east-central Alaska. Samples yielding ???40 Ma AFT ages and mean confined track lengths > 14 ??m with low standard deviations cooled rapidly from >120??C to 40 Ma suggest partial annealing and, therefore, lower maximum temperatures (???90-105??C). A few samples with single-grain ages of ???20 Ma apparently remained above ???50??C after initial cooling. Although the present geothermal gradient in the western Yukon-Tanana Upland is ???32??C/km, it could have been as high as 45??C/km during a widespread Eocene intraplate magmatic episode. Prior to rapid exhumation, samples with ???40 Ma AFT ages were >3.8-2.7 km deep and samples with >50 Ma AFT ages were >3.3-2.0 km deep. We calculate a 440-320 m/Ma minimum rate for exhumation of all samples during rapid cooling. Our AFT data, and data from rocks north of Fairbanks and from the Eielson deep test hole, indicate up to 3 km of post-40 Ma vertical displacement along known and inferred northeast-trending high-angle faults. The predominance of 40-50 Ma AFT ages throughout the Yukon-Tanana Upland indicates that, prior to the post-40 Ma relative uplift along some northeast-trending faults, rapid regional cooling and exhumation closely followed the Eocene extensional magmatism. We propose that Eocene magmatism and exhumation were somehow related to plate movements that produced regional-scale oroclinal rotation, northward translation of outboard terranes, major dextral strike-slip faulting, and subduction of an oceanic spreading ridge along the southern margin of Alaska.

  9. Seismic imaging along a 600 km transect of the Alaska Subduction zone (Invited)

    Calkins, J. A.; Abers, G. A.; Freymueller, J. T.; Rondenay, S.; Christensen, D. H.

    2010-12-01

    We present earthquake locations, scattered wavefield migration images, and phase velocity maps from preliminary analysis of combined seismic data from the Broadband Experiment Across the Alaska Range (BEAAR) and Multidisciplinary Observations of Onshore Subduction (MOOS) projects. Together, these PASSCAL broadband arrays sampled a 500+ km transect across a portion of the subduction zone characterized by the Yakutat terrane/Pacific plate boundary in the downgoing plate, and the Denali volcanic gap in the overriding plate. These are the first results from the MOOS experiment, a 34-station array that was deployed from 2006-2008 to fill in the gap between the TACT offshore refraction profile (south and east of the coastline of the Kenai Peninsula), and the BEAAR array (spanning the Alaska Range between Talkeetna and Fairbanks). 2-D images of the upper 150 km of the subduction zone were produced by migrating forward- and back-scattered arrivals in the coda of P waves from large teleseismic earthquakes, highlighting S-velocity perturbations from a smoothly-varying background model. The migration images reveal a shallowly north-dipping low velocity zone that is contiguous near 20 km depth on its updip end with previously obtained images of the subducting plate offshore. The low velocity zone steepens further to the north, and terminates near 120 km beneath the Alaska Range. We interpret this low velocity zone to be the crust of the downgoing plate, and the reduced seismic velocities to be indicative of hydrated gabbroic compositions. Earthquakes located using the temporary arrays and nearby stations of the Alaska Regional Seismic Network correlate spatially with the inferred subducting crust. Cross-sections taken along nearly orthogonal strike lines through the MOOS array reveal that both the dip angle and the thickness of the subducting low velocity zone change abruptly across a roughly NNW-SSE striking line drawn through the eastern Kenai Peninsula, coincident with a

  10. Plant, Microbiome, and Biogeochemistry: Quantifying moss-associated N fixation in Alaska

    Stuart, J.; Mack, M. C.; Holland Moritz, H.; Fierer, N.; McDaniels, S.; Lewis, L.

    2017-12-01

    The future carbon (C) sequestration potential of the Arctic and boreal zones, currently the largest terrestrial C sink globally, is linked to nitrogen (N) cycling and N availability vis-a-vis C accumulation and plant species composition. Pristine environments in Alaska have low anthropogenic N deposition (<1 kg N ha-1 yr-1), and the main source of new N to these ecosystems is through previously overlooked N-fixation from microbial communities on mosses. Despite the importance of moss associated N-fixation, the relationship between moss species, microbial communities, and fixation rates remains ambiguous. In the summer of 2016, the fixation rates of 20 moss species from sites around both Fairbanks and Toolik Lake were quantified using 15N2 incubations. Subsequently, the microbial community and moss genome of the samples were also analyzed by collaborators. The most striking result is that all sampled moss genera fixed N, including well-studied feather mosses such as Hylocomium splendens and Pleurozium schreberi as well as less common but ecologically relevant mosses such as Aulacomnium spp., Dicranum spp., Ptilium crista-castrensis, and Tomentypnum nitens. Across all samples, preliminary fixation rates ranged from 0.004-19.994 µg N g-1 moss d-1. Depending upon percent cover, moss-associated N fixation is the largest input of new N to the ecosystem. Given this, linking variation in N-fixation rates to microbial and moss community structures can be helpful in predicting future trends of C and N cycling in northern latitudes. Vegetation changes, alterations in downstream biogeochemical N processes, and anthropogenic N deposition could all interact with or alter moss associated N-fixation, thereby changing ecosystem N inputs. Further elucidation of the species level signal in N-fixation rates and microbial community will augment our knowledge of N cycling in northern latitudes, both current and future.

  11. Long-term Effects of Nutrient Addition and Phytoremediation on Diesel and Crude Oil Contaminated Soils in subarctic Alaska

    Leewis, Mary-Cathrine; Reynolds, Charles M.; Leigh, Mary Beth

    2014-01-01

    Phytoremediation is a potentially inexpensive method of detoxifying contaminated soils using plants and associated soil microorganisms. The remote locations and cold climate of Alaska provide unique challenges associated with phytoremediation such as finding effective plant species that can achieve successful site clean-up despite the extreme environmental conditions and with minimal site management. A long-term assessment of phytoremediation was performed which capitalized on a study established in Fairbanks in 1995. The original study sought to determine how the introduction of plants (Festuca rubra, Lolium multiflorum), nutrients (fertilizer), or their combination would affect degradation of petroleum hydrocarbon (TPH) contaminated soils (crude oil or diesel) over time. Within the year following initial treatments, the plots subjected to both planting and/or fertilization showed greater overall decreases in TPH concentrations in both the diesel and crude oil contaminated soils relative to untreated plots. We re-examined this field site after 15 years with no active site management to assess the long-term effects of phytoremediation on colonization by native and non-native plants, their rhizosphere microbial communities and on petroleum removal from soil. Native and non-native vegetation had extensively colonized the site, with more abundant vegetation found on the diesel contaminated soils than the more nutrient-poor, more coarse, and acidic crude oil contaminated soils. TPH concentrations achieved regulatory clean up levels in all treatment groups, with lower TPH concentrations correlating with higher amounts of woody vegetation (trees & shrubs). In addition, original treatment type has affected vegetation recruitment to each plot with woody vegetation and more native plants in unfertilized plots. Bacterial community structure also varies according to the originally applied treatments. This study suggests that initial treatment with native tree species in

  12. Earthquake locations determined by the Southern Alaska seismograph network for October 1971 through May 1989

    Fogleman, Kent A.; Lahr, John C.; Stephens, Christopher D.; Page, Robert A.

    1993-01-01

    instrumentation and strengthened antenna systems. The majority of the stations installed since 1980 were operated only temporarily (from one to several years) for special studies in various areas within the network. Due to reduced funding, the network was trimmed substantially in the summer of 1985 with the closure of 15 stations, 13 of which were located in and around the Yakataga seismic gap. To further reduce costs, two telephone circuits were dropped and multiple radio relays were installed in their place. This economy reduced the reliability of these telemetry links. In addition, data collection from the areas around Cordova and Yakutat was compromised by the necessity of relying on triggered event recording using PC-based systems (Rogers, 1993) that were not fully developed and which proved to be less reliable than anticipated.The principal means of recording throughout the time period of this catalog was 20-channel oscillographs on 16-mm film (Teledyne Geotech Develocorder, Model RF400 and 4000D). Initially one Develocorder was operated at the USGS Alaskan headquarters in Anchorage, but in 1972 recording was shifted to the National Oceanic and Atmospheric Administration (NOAA) Palmer Observatory (currently the West Coast and Alaska Tsunami Warning Center). The Develocorders were turned off at the end of May 1989, and after that time recording was done in digital format at the Geophysical Institute of the University of Alaska in Fairbanks (GIUA). Thus, this catalog covers the entire period of film recording.

  13. Alaska Satellite Facility: The Quest to Stay Ahead of the Big Data Wave

    Labelle-Hamer, A. L.; Nicoll, J.; Munk, S.

    2014-12-01

    Big Data is getting bigger. Fast enough is getting faster. The number and type of products produced is growing. The ideas on how to handle the day-to-day management of data and data systems need to scale with the data and the demand. We have seen the effects of rapid growth spurts at the Alaska Satellite Facility (ASF) and anticipate we are not done yet. Looking back, ASF was conceived in 1982 to be a single-purpose imaging radar receiving station supporting a science team focused on geophysical processes. The primary construction at the University of Alaska Fairbanks (UAF) was completed in 1988 and full operational status achieved in 1991. The expected supports were estimated at 10 minutes per day and quickly grew to 70 minutes per day. In 1994, a Memorandum of Agreement (MOA) between NASA and UAF formed the ASF Distributed Active Archive Center (DAAC) complementing, the existing agreement for ASF. The demand for the use of ASF as a receiving station and as a data center grew as fast as, and at times faster, than the capabilities. Looking forward, as demand drives the system larger just adding on more of the same often complicates rather than simplifies the system. A growing percentage of efforts and resources spent on dealing with problems that originate from a legacy system can creep up on an organization. This in turn limits the ability to keep the overall sustaining costs under control and leads to a crisis. Such growth means more-of-the-same philosophy has to shift into change-or-die philosophy in order to boot strap up to the next level. In this talk, we review how ASF has faced this several times in the past as the volume and demand of data grew along with the technology to acquire and disseminate it. We will look at what is coming for ASF as a data center and what we think are the next steps to stay ahead of the Big Data wave.

  14. Landfast sea ice break-out events in the Chukchi Sea: Two case studies illuminating long-term observations at Barrow, Alaska

    Jones, J.; Eicken, H.; Mahoney, A. R.; Mv, R.; Kambhamettu, C.; Fukamachi, Y.; Ohshima, K. I.

    2012-12-01

    Landfast sea ice in northern Alaska is an important coastal feature. It protects coasts from the impacts of storms, acts as a platform for travel and subsistence activities by native communities, and can be an obstacle to near-shore maritime enterprise. These services provided by landfast ice depend upon its presence and extent, as well as the ice cover's capacity to remain stably in place for long periods of time during the ice season. Along the eastern Chukchi coast and specifically at Barrow, Alaska, the near-shore ice conditions are highly dynamic. In recent years, break-outs of the landfast ice have been observed at Barrow, removing larger stretches of previously immobile landfast ice from shore and potentially threatening people and equipment. Indigenous knowledge by local Iñupiaq ice experts extending back several decades indicates that such events were rare or absent until the 1990s. Using imagery from a land-based marine radar, a component of the Barrow Sea Ice Observatory of the University of Alaska Fairbanks, landfast ice formation at Barrow, AK, has been tracked each season since 2005, and a number of break-out events have been identified. A detailed analysis of atmospheric, oceanic and sea ice conditions associated with such events can shed light on local knowledge and understanding of such events, and help develop approaches to predict and respond to break-outs. Here, two break-out events (on February 27, 2009 and March 24, 2010) are the subjects of case studies aimed at determining primary causes of break-outs. The radar imagery is used to track near-shore ice deformation prior to the break-out and to estimate the extent of grounded sea ice ridges. Oceanic and atmospheric data are used to estimate current and wind stress on the landfast ice cover. Sea level measurements provide insight as to whether or not a grounded ridge's keel could be lifted out of its bed, a potential precondition for a break-out to occur. Preliminary results suggest different

  15. The Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) FTS: Results From the 2012/13 Alaska Campaigns

    kurosu, T. P.; Miller, C. E.; Dinardo, S.

    2013-12-01

    The Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) is an aircraft-based Earth Venture 1 mission to study the carbon balance of the Alaskan Arctic ecosystem, with a particular focus on carbon release from melting permafrost. Operating from its base in Fairbanks, AK, the CARVE aircraft covers a range of principle flight paths in the Alaskan interior, the Yukon River valley, and northern Alaska coast around Barrow and Dead Horse. Flight paths are chosen to maximize ecosystem variability and and cover burn-recovery/regrowth sequences. CARVE observations cover the Arctic Spring/Summer/Fall seasons, with multiple flights per season and principle flight paths. Science operations started in 05/2012 and are currently envisaged to continue until 2015. The CARVE suite of instruments includes flask measurements and in situ gas analyzers for CO2, CH4 and CO observations, an active/passive L-band radar for surface conditions (freeze/thaw state), and a three-band polarizing Fourier Transform Spectrometer (FTS) for column measurements of CO2, CH4, CO, and interfering species (e.g., H2O). The FTS covers the spectral regions of 4,200-4,900 cm-1 (CH4, CO), 5,800-6,400 cm-1 (CO2), and 12,900-13,200 cm-1 (O2), with a spectral resolution of 0.2 cm-1. Aircraft-based FTS science observations in Alaska have been performed since 23-05-2012. First-version data products from all CARVE instruments derived from observations during the 2012 campaign were publicly released earlier in 2013. The FTS has performed well during flight conditions, particularly with respect to vibration damping. Outstanding challenges include the need for improved spectral and radiometric calibration, as well as compensating for low signal-to-noise spectra acquired under Alaskan flight conditions. We present results from FTS column observations of CO2, CH4, and CO, observed during the 2012 and 2013 campaigns, including preliminary comparisons of CARVE FTS measurements with satellite observations of CO2

  16. 76 FR 20715 - National Environmental Policy Act; Sounding Rockets Program; Poker Flat Research Range

    2011-04-13

    ...; Sounding Rockets Program; Poker Flat Research Range AGENCY: National Aeronautics and Space Administration... continuing sounding rocket operations at Poker Flat Research Range (PFRR), Alaska. SUMMARY: Pursuant to the... information about NASA's Sounding Rocket Program (SRP) and the University of Alaska-Fairbanks' PFRR may be...

  17. 40 CFR 52.70 - Identification of plan.

    2010-07-01

    ... Hearings, Written Testimony, etc. I-2 Recommendations for attainment/Nonattainment designations II-1 Alaska... for the Fairbanks Municipal Utilities System IV-3 Testing Procedures V-1 Air Quality Data An amended... Control Plan Amendment (which includes Appendix A the Alaska Statutes Title 46, Chapter 14, Article 3...

  18. Interspecific Competition and Trade-offs in Resource Allocation are the Key to Successful Growth of Seedlings of White Spruce (Picea glauca (Moench) Voss) at Subarctic Treelines in Warming Alaska.

    Okano, K.; Bret-Harte, M. S.

    2015-12-01

    Alpine treelines in Alaska have advanced for the past 50 years in response to the recent climate warming. However, further increases in temperatures may cause treeline species drought stress and increase susceptibility to insect outbreaks and fire. Complex factors such as soil conditions and plant species composition also impact the growth of seedlings, which are essential to sustain boreal forests. Our goals were to assess 1) the current optimal elevation for the treeline species Picea glauca (white spruce) seedlings and how it is altered by climate change, and 2) their growth/survival strategies at each environmental site. We studied the growth response of spruce seedlings along an altitudinal gradient at 6 sites, consisting of tundra, forest, or transitional ecotone in Denali National Park and one forest site in Fairbanks, AK. In May 2012, four-month old seedlings were planted with or without naturally occurring plants to compare the presence or absence of the interspecific interaction. Summer temperatures were increased by one small greenhouse per site. Over 2 growing seasons, growth was measured non-destructively, and then the seedlings were harvested. Relative growth rate (RGR) in height was increased significantly as the altitude was increased. Elevated temperature increased height only in seedlings at a high-altitude forest. Seedlings with neighboring plants had a higher RGR in height than seedlings that had neighbors removed, while significantly wider diameters were measured from the seedlings without neighbors. A weak trend of declining diameter width with increasing altitudes was seen. Seedlings that grew taller did not grow their stems wider, indicating trade-offs in resource allocation. None of the altitudinal sites had a clear advantage for the growth of the seedlings. Habitat microclimate and the interaction with other species could be more important than the altitude or temperatures and hence, key to the survival and growth of spruce seedlings in

  19. Microorganisms Trapped Within Permafrost Ice In The Fox Permafrost Tunnel, Alaska

    Katayama, T.; Tanaka, M.; Douglas, T. A.; Cai, Y.; Tomita, F.; Asano, K.; Fukuda, M.

    2008-12-01

    Several different types of massive ice are common in permafrost. Ice wedges are easily recognized by their shape and foliated structure. They grow syngenetically or epigenetically as a result of repeated cycles of frost cracking followed by the infiltration of snow, melt water, soil or other material into the open frost cracks. Material incorporated into ice wedges becomes frozen and preserved. Pool ice, another massive ice type, is formed by the freezing of water resting on top of frozen thermokarst sediment or melting wedges and is not foliated. The Fox Permafrost Tunnel in Fairbanks was excavated within the discontinuous permafrost zone of central Alaska and it contains permafrost, ice wedges, and pool ice preserved at roughly -3°C. We collected samples from five ice wedges and three pool ice structures in the Fox Permafrost Tunnel. If the microorganisms were incorporated into the ice during its formation, a community analysis of the microorganisms could elucidate the environment in which the ice was formed. Organic material from sediments in the tunnel was radiocarbon-dated between 14,000 and 30,000 years BP. However, it is still not clear when the ice wedges were formed or subsequently deformed because they are only partially exposed and their upper surfaces are above the tunnel walls. The objectives of our study were to determine the biogeochemical conditions during massive ice formation and to analyze the microbial community within the ices by incubation-based and DNA-based analyses. The geochemical profile and the PCR-DGGE band patterns of bacteria among five ice wedge and 3 portions of pool ice samples were markedly different. The DGGE band patterns of fungi were simple with a few bands of fungi or yeast. The dominant bands of ice wedge and pool ice samples were affiliated with the genus Geomyces and Doratomyces, respectively. Phylogenetic analysis using rRNA gene ITS regions indicated isolates of Geomyces spp. from different ice wedges were affiliated

  20. Thermokarst in pingos and adjacent collapse scar bogs in interior Alaska

    Douglas, T. A.; Turetsky, M. R.

    2017-12-01

    A region of discontinuous permafrost 50 kilometers southeast of Fairbanks, Alaska exhibits rapid thermokarst and landscape change. The area contains a dozen pingos (hydrolaccoliths), mounds of ice covered by earth material typically 100 meters across and 20 meters above the surrounding ground surface. The pingos have sunken craters in their centers formed through melting and collapse of an inner ice lens core. Adjacent to the pingos are collapse scar bogs in various states of formation and ice wedge terrain undergoing thaw subsidence to polygons and thermokarst mounds (baydzherakhs). With a mean annual temperature of -1 degree C the area contains warm ecosystem-protected permafrost vulnerable to thaw. We analyzed historical imagery to the 1970s to track water features in a subset of pingos. The craters have expanded over the past few decades suggesting melting and collapse of the ice cored center and potential permafrost degradation along pingo margins. Collapse scar bogs in adjacent low-elevation terrain are roughly the same size as the pingos but have little vertical elevation gradient compared to the surrounding terrain. Electrical resistivity tomography (ERT) measurements, high resolution GPS surveys, SIPRE coring, and thaw depth probing were focused along nine 400 meter transects across three of the pingos to identify relationships between geophysical properties, permafrost composition, seasonal thaw, and ecological state. A large ( 40 meters across and 20 meters thick) lens shaped region of thawed permafrost is evident in the ERT results about 10 meters below the ground surface in the center of one pingo we surveyed in detail. This is believed to be the original ice cored region of the pingo that has melted. A thin (1-5 meters thick) layer of permafrost is present above this thawed region while the rampart margins surrounding the pingo are underlain by thick (10-30 m) permafrost. The pingo and thermokarst features reside in a location where rapid permafrost

  1. Preliminary volcano-hazard assessment for the Katmai volcanic cluster, Alaska

    Fierstein, Judy; Hildreth, Wes

    2000-01-01

    The world’s largest volcanic eruption of the 20th century broke out at Novarupta (fig. 1) in June 1912, filling with hot ash what came to be called the Valley of Ten Thousand Smokes and spreading downwind more fallout than all other historical Alaskan eruptions combined. Although almost all the magma vented at Novarupta, most of it had been stored beneath Mount Katmai 10 km away, which collapsed during the eruption. Airborne ash from the 3-day event blanketed all of southern Alaska, and its gritty fallout was reported as far away as Dawson, Ketchikan, and Puget Sound (fig. 21). Volcanic dust and sulfurous aerosol were detected within days over Wisconsin and Virginia; within 2 weeks over California, Europe, and North Africa; and in latter-day ice cores recently drilled on the Greenland ice cap. There were no aircraft in Alaska in 1912—fortunately! Corrosive acid aerosols damage aircraft, and ingestion of volcanic ash can cause abrupt jet-engine failure. Today, more than 200 flights a day transport 20,000 people and a fortune in cargo within range of dozens of restless volcanoes in the North Pacific. Air routes from the Far East to Europe and North America pass over and near Alaska, many flights refueling in Anchorage. Had this been so in 1912, every airport from Dillingham to Dawson and from Fairbanks to Seattle would have been enveloped in ash, leaving pilots no safe option but to turn back or find refuge at an Aleutian airstrip west of the ash cloud. Downwind dust and aerosol could have disrupted air traffic anywhere within a broad swath across Canada and the Midwest, perhaps even to the Atlantic coast. The great eruption of 1912 focused scientific attention on Novarupta, and subsequent research there has taught us much about the processes and hazards associated with such large explosive events (Fierstein and Hildreth, 1992). Moreover, work in the last decade has identified no fewer than 20 discrete volcanic vents within 15 km of Novarupta (Hildreth and others

  2. Geophysical Institute. Biennial report, 1993-1994

    NONE

    1996-01-01

    The 1993-1994 Geophysical Institute Biennial Report was published in November 1995 by the Geophysical Institute of the University of Alaska Fairbanks. It contains an overview of the Geophysical Institute, the Director`s Note, and research presentations concerning the following subjects: Scientific Predictions, Space Physics, Atmospheric Sciences, Snow, Ice and Permafrost, Tectonics and Sedimentation, Seismology, Volcanology, Remote Sensing, and other projects.

  3. Controls on moss evaporation in a boreal black spruce forest

    Heijmans, M.M.P.D.; Arp, W.J.; Chapin, F.S.

    2004-01-01

    [1] Mosses are an important component of the boreal forest, but little is known about their contribution to ecosystem carbon, water, and energy exchange. We studied the role of mosses in boreal forest evapotranspiration by conducting two experiments in a black spruce forest in Fairbanks, Alaska.

  4. Rural Student Vocational Program (RSVP) [and] Housing Guide for Parents and Students [and] Work Supervisor's Guide.

    Rural Student Vocational Program, Wasilla, AK.

    The purpose of the Rural Student Vocational Program (RSVP) is to provide rural high school vocational students with work and other experiences related to their career objective. Students from outlying schools travel to Anchorage, Fairbanks, or Juneau (Alaska) to participate in two weeks of work experience with cooperating agencies and businesses.…

  5. Morchella tomentosa: a unique belowground structure and a new clade of morels

    Franck O.P. Stefani; Serge Sokolski; Trish L. Wurtz; Yves Piché; Richard C. Hamelin; J. André Fortin; Jean A. Bérubé

    2010-01-01

    Mechanisms involved in post-fire morel fructification remain unclear. A new undescribed belowground vegetative structure of Marchella tomentosa in a burned boreal forest was investigated north of Fairbanks, Alaska. The name "radiscisclerotium" is proposed to define this peculiar and elaborate belowground vegetative structure of ...

  6. 77 FR 11154 - Notice of Availability for the Eastern Interior Draft Resource Management Plan/Environmental...

    2012-02-24

    ... BLM will announce future meetings or hearings and any other public participation activities at least..., Attention--Eastern Interior Draft RMP/EIS, Bureau of Land Management, 1150 University Avenue, Fairbanks... interior Alaska and is divided into four geographic areas: The Fortymile, Steese, Upper Black River, and...

  7. "That's a Hard Question": Undergraduate Students Talk about Culture

    Montague-Winebarger, Caitlin N.

    2012-01-01

    In this project I examine the ability of undergraduate students to articulate a working definition of culture and cross-culture. The students were predominately elementary education majors, enrolled in one of two culture-based elective courses at the University of Alaska Fairbanks during the 2010-2011 school year. Through the use of…

  8. Visitor, State of Alaska

    /Fishing License Get a Birth Certificate, Marriage License, etc. Alaska Permanent Fund Dividend Statewide Library Alaska Historical Society Alaska State Museum Sheldon Jackson Museum Industry Facts Agriculture

  9. 2nd International Arctic Ungulate Conference

    Anonymous, A.

    1996-01-01

    The 2nd International Arctic Ungulate Conference was held 13-17 August 1995 on the University of Alaska Fairbanks campus. The Institute of Arctic Biology and the Alaska Cooperative Fish and Wildlife Research Unit were responsible for organizing the conference with assistance from biologists with state and federal agencies and commercial organizations. David R. Klein was chair of the conference organizing committee. Over 200 people attended the conference, coming from 10 different countries. T...

  10. State of Alaska

    Assistance Center Occupations Requiring Licenses Corporations Employer Information Alaska's Job Bank/Alaska Assistance Center Alaska's Job Bank Occupations Requiring Licenses Corporations Unemployment Insurance Tax Child Care Child Protection Denali KidCare Food Stamps Poison Control Seasonal Flu Immunization

  11. CSI : Alaska

    Letwin, S.

    2005-01-01

    This presentation emphasized the need for northern gas supply at a time when conventional natural gas supplies are decreasing and demand is growing. It highlighted the unique qualifications of Enbridge Inc. in creating an infrastructure to move the supply to where it is in most demand. Enbridge has substantial northern experience and has a unique approach for the construction of the Alaskan Gas Pipeline which entails cooperation, stability and innovation (CSI). Enbridge's role in the joint venture with AltaGas and Inuvialuit Petroleum was discussed along with its role in the construction of the first Canadian pipeline in 1985. The 540 mile pipeline was buried in permafrost. A large percentage of Enbridge employees are of indigenous descent. Enbridge recognizes that the amount of capital investment and the associated risk needed for the Alaska Gas Pipeline will necessitate a partnership of producers, pipeline companies, Native organizations, the State of Alaska, market participants and other interested parties. 9 figs

  12. Business, State of Alaska

    Investment Advisors Business Law Charitable Gaming Division of Banking & Securities Laws Relating to Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Government Jobs Federal Jobs Starting a Small Business Living Get a Driver License Get a Hunting

  13. Alaska Community Transit

    Grant Information Human Services Funding 5310 5316 (Repealed) 5317 (Repealed) Alaska Mental Health Trust Department of Transportation & Public Facilities/ Alaska Community Transit Search DOT&PF State of Alaska Photo banner DOT&PF> Program Development > Alaska Community Transit Home About Us

  14. Alaska State Trails Program

    Recreation Search DNR State of Alaska Home Menu Parks Home Alaska State Trails Boating Safety Design and Home / Alaska State Trails Alaska State Trails Program Trails in the Spotlight Glacier Lake and Saddle Trails in Kachemak State Park Glacier Lake A Popular route joins the Saddle and Glacier Lake Trails. The

  15. Effect of latitude on the potential for formation of photochemical smog

    Neiboer, H [Central Laboratorium TNO, Delft, Netherlands; Carter, W P.L.; Lloyd, A C; Pitts, Jr, J N

    1976-01-01

    The effect of latitude on the potential for the formation of photochemical smog has been assessed. Calculations suggest that at the summer solstice, the integrated sunlight intensity at Rotterdam or Fairbanks (Alaska) is very similar to that in Los Angeles. Computations carried out, assuming the same pollutant emission inventory for the three locations, showed that ozone and PAN dosages depend more on the integrated light intensity than on the nature of the light intensity distribution with time. Therefore, if factors such as emissions and meteorological conditions are equal, the potential for significant photochemical smog formation during the summer months is similar for Los Angeles (34/sup 0/N) and northern cities such as Rotterdam (52/sup 0/N) and Nome or Fairbanks, Alaska (65/sup 0/N).

  16. Alaska Child Support Services Division

    Payments Online! The CSSD Business Services Portal offers employers the convenience of paying child support ://my.Alaska.gov. Reporting online will save you time and money! If your business already has a myAlaska account Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska

  17. Proceedings of the 15th International Congress on Circumpolar Health

    incl Table of Contents, Complete Supplement,

    2013-01-01

    Proceedings of the 15th International Congress on Circumpolar Health August 5–10, 2012, Fairbanks, Alaska, USA. This extensive publication includes nearly 100 full length papers, 90 extended abstracts and nearly 100 short abstracts. The full publication is freely available through the journal website.(Published: 5 August 2013)Citation: Int J Circumpolar Health 2013, 72: 22447 - http://dx.doi.org/10.3402/ijch.v72i0.22447

  18. Finalize field testing of cold climate heat pump (CCHP) based on tandem vapor injection compressors

    Shen, Bo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Baxter, Van D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Abdelaziz, Omar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rice, C. Keith [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-03-01

    This report describes the system diagram and control algorithm of a prototype air-source cold climate heat pump (CCHP) using tandem vapor injection (VI) compressors. The prototype was installed in Fairbanks, Alaska and underwent field testing starting in 09/2016. The field testing results of the past six months, including compressor run time fractions, measured COPs and heating capacities, etc., are presented as a function of the ambient temperature. Two lessons learned are also reported.

  19. Alaska Public Offices Commission, Department of Administration, State of

    Visiting Alaska State Employees State of Alaska Department of Administration Alaska Public Offices Commission Alaska Department of Administration, Alaska Public Offices Commission APOC Home Commission Filer ; AO's Contact Us Administration > Alaska Public Offices Commission Alaska Public Offices Commission

  20. Alaska Kids' Corner, State of Alaska

    /Fishing License Get a Birth Certificate, Marriage License, etc. Alaska Permanent Fund Dividend Statewide shocks of wheat represent Alaskan agriculture. The fish and the seals signify the importance of fishing

  1. Alaska Consumer Protection Unit

    Drafting Manual Attorney General Opinions Executive Branch Ethics Criminal Justice Alaska Medicaid Fraud make wise purchasing decisions and avoid becoming victims of consumer fraud. The site also includes

  2. Regulatory Commission of Alaska

    Map Help Regulatory Commission of Alaska Login Forgot Password Arrow Image Forgot password? View Cart login Procedures for Requesting Login For Consumers General Information Telephone Electric Natural Gas

  3. Tourism in rural Alaska

    Katrina Church-Chmielowski

    2007-01-01

    Tourism in rural Alaska is an education curriculum with worldwide relevance. Students have started small businesses, obtained employment in the tourism industry and gotten in touch with their people. The Developing Alaska Rural Tourism collaborative project has resulted in student scholarships, workshops on website development, marketing, small...

  4. Renewable Energy in Alaska

    2013-03-01

    This report examines the opportunities, challenges, and costs associated with renewable energy implementation in Alaska and provides strategies that position Alaska's accumulating knowledge in renewable energy development for export to the rapidly growing energy/electric markets of the developing world.

  5. Alaska Administrative Manual

    Search the Division of Finance site DOF State of Alaska Finance Home Content Area Accounting Charge Cards Division of Finance is to provide accounting, payroll, and travel services for State government Top Department of Administration logo Alaska Department of Administration Division of Finance Search

  6. LearnAlaska Portal

    Search the Division of Finance site DOF State of Alaska Finance Home Content Area Accounting Charge Cards Mission Statement The mission of the Division of Finance is to provide accounting, payroll, and travel Top Department of Administration logo Alaska Department of Administration Division of Finance Search

  7. Alaska Resource Data File, Nabesna quadrangle, Alaska

    Hudson, Travis L.

    2003-01-01

    Descriptions of the mineral occurrences shown on the accompanying figure follow. See U.S. Geological Survey (1996) for a description of the information content of each field in the records. The data presented here are maintained as part of a statewide database on mines, prospects and mineral occurrences throughout Alaska.

  8. Facility Environmental Management System

    Federal Laboratory Consortium — This is the Web site of the Federal Highway Administration's (FHWA's) Turner-Fairbank Highway Research Center (TFHRC) facility Environmental Management System (EMS)....

  9. Phytomass in southeast Alaska.

    Bert R. Mead

    1998-01-01

    Phytomass tables are presented for the southeast Alaska archipelago. Average phytomass for each sampled species of tree, shrub, grass, forb, lichen, and moss in 10 forest and 4 nonforest vegetation types is shown.

  10. Geothermal Technologies Program: Alaska

    2005-02-01

    This fact sheets provides a summary of geothermal potential, issues, and current development in Alaska. This fact sheet was developed as part of DOE's GeoPowering the West initiative, part of the Geothermal Technologies Program.

  11. Employee, State of Alaska

    Business Resources Division of Corporations, Business & Professional Licensing Dept. of Commerce Benefits Resources State Employee Directory State Calendar State Training: LearnAlaska State Travel Manager) Web Mail (Outlook) Login Who to Call Health Insurance Insurance Benefits Health and Optional

  12. A comparison of ultraviolet radiation measured at an arctic and an alpine site

    Ambach, W.; Blumthaler, M.; Wendler, G.

    1991-01-01

    Ultraviolet radiation contributes relatively little energy to the solar spectrum; however, it is very important because it is biologically very active. Measurements were carried out at a high altitude station in Switzerland (jungfraujoch 3576 m), and at a high altitude station in Alaska (Fairbanks 64.82°N) with identical instrumentation. For all season the UV flux for Jungfraujoch was larger than for Fairbanks. In summer the differences between the stations were less pronounced because the lower solar elevation is compensated by a longer day length. In winter the differences are more severe. For both stations the authors find an increased relative intensity of the UV (UV/Global) with increasing cloudiness, while the absolute values decreased with increasing cloudiness. This shows that the clouds absorb more in the near IR than in the UV region of the solar spectrum. For Fairbanks, the UV values in spring were substantially higher (mean value 18%) than for identical solar elevations after summer solstice. Cloudiness could not account for this, because the authors also observed differences for clear sky conditions. A simple model was developed, which took multiple reflections of the highly reflecting snow cover in spring into account, which correctly explained 83% of the observed differences. (author)

  13. Asthma and American Indians/Alaska Natives

    ... Minority Population Profiles > American Indian/Alaska Native > Asthma Asthma and American Indians/Alaska Natives In 2015, 240, ... Native American adults reported that they currently have asthma. American Indian/Alaska Native children are 60% more ...

  14. Current Ethnomusicology in Alaska.

    Johnston, Thomas F.

    The systematic study of Eskimo, Indian, and Aleut musical sound and behavior in Alaska, though conceded to be an important part of white efforts to foster understanding between different cultural groups and to maintain the native cultural heritage, has received little attention from Alaskan educators. Most existing ethnomusical studies lack one or…

  15. Phytomass in southwest Alaska.

    Bert R. Mead

    2000-01-01

    Phytomass tables are presented for southwest Alaska. The methods used to estimate plant weight and occurrence in the river basin are described and discussed. Average weight is shown for each sampled species of tree, shrub, grass, forb, lichen, and moss in 19 forest and 48 nonforest vegetation types. Species frequency of occurrence and species constancy within the type...

  16. EPA Research in Alaska

    EPA’s collaboration with the DEC and the Air Force on PFAS sampling and analytical methods is key to ensuring valid, defensible data are collected on these emerging contaminants that are being found in soil, groundwater and drinking water in Alaska.

  17. Seismology Outreach in Alaska

    Gardine, L.; Tape, C.; West, M. E.

    2014-12-01

    Despite residing in a state with 75% of North American earthquakes and three of the top 15 ever recorded, most Alaskans have limited knowledge about the science of earthquakes. To many, earthquakes are just part of everyday life, and to others, they are barely noticed until a large event happens, and often ignored even then. Alaskans are rugged, resilient people with both strong independence and tight community bonds. Rural villages in Alaska, most of which are inaccessible by road, are underrepresented in outreach efforts. Their remote locations and difficulty of access make outreach fiscally challenging. Teacher retention and small student bodies limit exposure to science and hinder student success in college. The arrival of EarthScope's Transportable Array, the 50th anniversary of the Great Alaska Earthquake, targeted projects with large outreach components, and increased community interest in earthquake knowledge have provided opportunities to spread information across Alaska. We have found that performing hands-on demonstrations, identifying seismological relevance toward career opportunities in Alaska (such as natural resource exploration), and engaging residents through place-based experience have increased the public's interest and awareness of our active home.

  18. The evolving Alaska mapping program.

    Brooks, P.D.; O'Brien, T. J.

    1986-01-01

    This paper describes the development of mapping in Alaska, the current status of the National Mapping Program, and future plans for expanding and improving the mapping coverage. Research projects with Landsat Multispectral Scanner and Return Vidicon imagery and real- and synthetic-aperture radar; image mapping programs; digital mapping; remote sensing projects; the Alaska National Interest Lands Conservation Act; and the Alaska High-Altitude Aerial Photography Program are also discussed.-from Authors

  19. Extreme coal handling

    Bradbury, S; Homleid, D. [Air Control Science Inc. (United States)

    2004-04-01

    Within the journals 'Focus on O & M' is a short article describing modifications to coal handling systems at Eielson Air Force Base near Fairbanks, Alaska, which is supplied with power and heat from a subbituminous coal-fired central plant. Measures to reduce dust include addition of an enclosed recirculation chamber at each transfer point and new chute designs to reduce coal velocity, turbulence, and induced air. The modifications were developed by Air Control Science (ACS). 7 figs., 1 tab.

  20. Radioactive fallout from the Chernobyl nuclear reactor accident

    Beiriger, J.M.; Failor, R.A.; Marsh, K.V.; Shaw, G.E.

    1987-01-01

    Following the accident at the nuclear reactor at Chernobyl, in the Soviet Union on April 26, 1986, we performed a variety of measurements to determine the level of the radioactive fallout on the western United States. We used gamma-spectroscopy to analyze air filters from the areas around Lawrence Livermore National Laboratory (LLNL), California, and Barrow and Fairbanks, Alaska. Milk from California and imported vegetables were also analyzed. The levels of the various fission products detected were far below the maximum permissible concentration levels

  1. John B. "Jack" Townshend (1927-2012)

    Love, Jeffrey J.; Finn, Carol A.

    2012-01-01

    Jack Townshend, geophysicist and dedicated public servant, died on 13 August 2012 in Fairbanks, Alaska. He was 85. Jack's career with the federal government, most of it with the national magnetic observatory program, spanned more than six solar cycles of time, and he retired only days before his death. The duration of Jack's career encompassed an important period in the history of the advancement of our understanding of the Earth. Jack's career of contributions, his life, and his personality are worthy of retrospective celebration.

  2. Alaska's nest egg

    Stauffer, Thomas.

    1997-01-01

    Twenty years ago, the Alaska Permanent Fund was established to receive a substantial share of the state's oil receipts and to invest these monies each year. Four key aspects are unique to Alaska's providential fund among oil-producing states. Firstly a constitutional amendment is needed to touch the assets so the capital is safe from encroachment by the government. Secondly, each Alaskan gets a detailed breakdown of what is invested and what is earned. In the third place, and most importantly, each Alaskan receives an annual dividend from the Fund. Fourthly, the funds have been prudently invested almost entirely outside Alaska rather than in unremunerative vanity infrastructure projects. Now, however, oil production is falling and revenues per barrel from new fields with higher costs are projected to decline as well. Given the budget shortfall, there is now a debate about whether the dividends paid directly to the people, should be shifted, at least in part to the state budget. Although the Fund's capital cannot be touched by the government, the Legislature does have the right to dispose of the income. The arguments in this debate over policy and political philosophy are examined. (UK)

  3. Alaska Department of Health and Social Services

    marijuana means for Alaska and you. Careline: 1-877-266-HELP (4357) Alaska's Tobacco Quitline Learn the Twitter Find us on Facebook Quicklinks Alaska Opioid Policy Task Force "Spice" Synthetic Marijuana Health Information Alaska State Plan for Senior Services, FY 2016-FY 2019 Get health insurance at

  4. Rural Alaska Mentoring Project (RAMP)

    Cash, Terry

    2011-01-01

    For over two years the National Dropout Prevention Center (NDPC) at Clemson University has been supporting the Lower Kuskokwim School District (LKSD) in NW Alaska with their efforts to reduce high school dropout in 23 remote Yup'ik Eskimo villages. The Rural Alaska Mentoring Project (RAMP) provides school-based E-mentoring services to 164…

  5. Alaskan Auroral All-Sky Images on the World Wide Web

    Stenbaek-Nielsen, H. C.

    1997-01-01

    In response to a 1995 NASA SPDS announcement of support for preservation and distribution of important data sets online, the Geophysical Institute, University of Alaska Fairbanks, Alaska, proposed to provide World Wide Web access to the Poker Flat Auroral All-sky Camera images in real time. The Poker auroral all-sky camera is located in the Davis Science Operation Center at Poker Flat Rocket Range about 30 miles north-east of Fairbanks, Alaska, and is connected, through a microwave link, with the Geophysical Institute where we maintain the data base linked to the Web. To protect the low light-level all-sky TV camera from damage due to excessive light, we only operate during the winter season when the moon is down. The camera and data acquisition is now fully computer controlled. Digital images are transmitted each minute to the Web linked data base where the data are available in a number of different presentations: (1) Individual JPEG compressed images (1 minute resolution); (2) Time lapse MPEG movie of the stored images; and (3) A meridional plot of the entire night activity.

  6. Alaska exceptionality hypothesis: Is Alaska wilderness really different?

    Gregory Brown

    2002-01-01

    The common idiom of Alaska as “The Last Frontier” suggests that the relative remoteness and unsettled character of Alaska create a unique Alaskan identity, one that is both a “frontier” and the “last” of its kind. The frontier idiom portrays the place and people of Alaska as exceptional or different from the places and people who reside in the Lower Forty- Eight States...

  7. Engineering Geology | Alaska Division of Geological & Geophysical Surveys

    Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska content Engineering Geology Additional information Engineering Geology Posters and Presentations Alaska Alaska MAPTEACH Tsunami Inundation Mapping Engineering Geology Staff Projects The Engineering Geology

  8. 2005 Alaska Division of Geological & Geophysical Surveys Lidar: Unalakleet, Alaska

    National Oceanic and Atmospheric Administration, Department of Commerce — This report is a summary of a LiDAR data collection over the community of Unalakleet, in the Norton Sound region of Alaska. The original data were collected on...

  9. Long-term bird study records Arctic climate change

    Zielinski, Sarah

    Alaska's summer of 2005 was the second warmest on record there, with a record retreat of arctic pack ice. As Alaskan temperatures gradually increase, artic birds, such as the black guillemots of Cooper Island, near Barrow, Alaska, are experiencing drastic habitat changes. Though these small black and white birds—the subjects of a long-term study of climate change—fared better this year than they have in the recent past (due to local cool conditions), they are nonetheless struggling to adapt as their artic island summer home becomes subarctic.George Divokyan ornithologist at the Institute of Arctic Biology, University of Alaska Fairbanks, discovered the Cooper Island colony of guillemots in the early 1970s and has spent every summer since 1975 there studying these birds. He presented his latest research during a 3 November talk in Washington, D.C.

  10. Investigation of Alaska's uranium potential

    Eakins, G.R.

    1975-01-01

    Of the various geographical regions in Alaska that were examined in an exhaustive literary search for the possibility of uranium--either vein type or sedimentary--six offer encouragement: the Copper River Basin, the alkaline intrusive belt of west-central Alaska and Selawik Basin area, the Seward Peninsula, the Susitna Lowland, the coal-bearing basins of the north flank of the Alaska Range, the Precambrian gneisses of the USGS 1:250,000 Goodnews quadrangle, and Southeastern Alaska, which has the sole operating uranium mine in the state. Other areas that may be favorable for the presence of uranium include the Yukon Flats area, the Cook Inlet Basin, and the Galena Basin

  11. Kevadel Alaska talves / Tiiu Ehrenpreis

    Ehrenpreis, Tiiu

    2007-01-01

    Autori muljeid 22.-25. märtsini Fairbanksis toimunud Alaska Ülikooli ja Ülemaailmse Arktika Uurimise Keskuse (IARC) juhtimisel GLOBE'i programmi uue projekti "Aastaajad ja bioomid" koolitusseminarist

  12. Interior Alaska Bouguer Gravity Anomaly

    National Oceanic and Atmospheric Administration, Department of Commerce — A 1 kilometer Complete Bouguer Anomaly gravity grid of interior Alaska. All grid cells within the rectangular data area (from 61 to 66 degrees North latitude and...

  13. Interior Alaska Bouguer Gravity Anomaly

    National Oceanic and Atmospheric Administration, Department of Commerce — A 1 kilometer Complete Bouguer Anomaly gravity grid of interior Alaska. Only those grid cells within 10 kilometers of a gravity data point have gravity values....

  14. Level III Ecoregions of Alaska

    U.S. Environmental Protection Agency — Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. The ecoregions of Alaska are a...

  15. Alaska Geoid Heights (GEOID96)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' x 4' geoid height grid for Alaska is distributed as a GEOID96 model. The computation used 1.1 million terrestrial and marine gravity data held in the...

  16. Ground Water Atlas of the United States: Segment 13, Alaska, Hawaii, Puerto Rico, and the U.S. Virgin Islands

    Miller, James A.; Whitehead, R.L.; Oki, Delwyn S.; Gingerich, Stephen B.; Olcott, Perry G.

    1997-01-01

    Alaska is the largest State in the Nation and has an area of about 586,400 square miles, or about one-fifth the area of the conterminous United States. The State is geologically and topographically diverse and is characterized by wild, scenic beauty. Alaska contains abundant natural resources, including ground water and surface water of chemical quality that is generally suitable for most uses.The central part of Alaska is drained by the Yukon River and its tributaries, the largest of which are the Porcupine, the Tanana, and the Koyukuk Rivers. The Yukon River originates in northwestern Canada and, like the Kuskokwim River, which drains a large part of southwestern Alaska , discharges into the Bering Sea. The Noatak River in northwestern Alaska discharges into the Chukchi Sea. Major rivers in southern Alaska include the Susitna and the Matanuska Rivers, which discharge into Cook Inlet, and the Copper River, which discharges into the Gulf of Alaska . North of the Brooks Range, the Colville and the Sagavanirktok Rivers and numerous smaller streams discharge into the Arctic Ocean.In 1990, Alaska had a population of about 552,000 and, thus , is one of the least populated States in the Nation. Most of the population is concentrated in the cities of Anchorage, Fairbanks, and Juneau, all of which are located in lowland areas. The mountains, the frozen Arctic desert, the interior plateaus, and the areas covered with glaciers lack major population centers. Large parts of Alaska are uninhabited and much of the State is public land. Ground-water development has not occurred over most of these remote areas.The Hawaiian islands are the exposed parts of the Hawaiian Ridge, which is a large volcanic mountain range on the sea floor. Most of the Hawaiian Ridge is below sea level (fig. 31) . The State of Hawaii consists of a group of 132 islands, reefs, and shoals that extend for more than 1 ,500 miles from southeast to northwest across the central Pacific Ocean between about 155

  17. Rural Alaska Science and Mathematics Network

    Brunk, Blanche R

    2005-01-01

    ...), are awarded to Alaska Native students. Academic preparation, lack of exposure to science careers in rural Alaska, and little connection between western science and Native traditional life have combined to impede Native students' interest...

  18. Life cycle costs for Alaska bridges.

    2014-08-01

    A study was implemented to assist the Alaska Department of Transportation and Public Facilities (ADOT&PF) with life cycle costs for : the Alaska Highway Bridge Inventory. The study consisted of two parts. Part 1 involved working with regional offices...

  19. Research Experience for Undergraduates: Understanding the Arctic as a System

    Alexeev, V. A.; Walsh, J. E.; Arp, C. D.; Hock, R.; Euskirchen, E. S.; Kaden, U.; Polyakov, I.; Romanovsky, V. E.; Trainor, S.

    2017-12-01

    Today, more than ever, an integrated cross-disciplinary approach is necessary to understand and explain changes in the Arctic and the implications of those changes. Responding to needs in innovative research and education for understanding high-latitude rapid climate change, scientists at the International Arctic research Center of the University of Alaska Fairbanks (UAF) established a new REU (=Research Experience for Undergraduates) NSF-funded site, aiming to attract more undergraduates to arctic sciences. The science focus of this program, building upon the research strengths of UAF, is on understanding the Arctic as a system with emphasis on its physical component. The goals, which were to disseminate new knowledge at the frontiers of polar science and to ignite the enthusiasm of the undergraduates about the Arctic, are pursued by involving undergraduate students in research and educational projects with their mentors using the available diverse on-campus capabilities. IARC hosted the first group of eight students this past summer, focusing on a variety of different disciplines of the Arctic System Science. Students visited research sites around Fairbanks and in remote parts of Alaska (Toolik Lake Field Station, Gulkana glacier, Bonanza Creek, Poker Flats, the CRREL Permafrost Tunnel and others) to see and experience first-hand how the arctic science is done. Each student worked on a research project guided by an experienced instructor. The summer program culminated with a workshop that consisted of reports from the students about their experiences and the results of their projects.

  20. Publications - Geospatial Data | Alaska Division of Geological &

    from rocks collected in the Richardson mining district, Big Delta Quadrangle, Alaska: Alaska Division Island 2009 topography: Alaska Division of Geological & Geophysical Surveys Miscellaneous Publication , Geologic map of portions of the Livengood B-3, B-4, C-3, and C-4 quadrangles, Tolovana mining district

  1. Harvesting morels after wildfire in Alaska.

    Tricia L. Wurtz; Amy L. Wiita; Nancy S. Weber; David Pilz

    2005-01-01

    Morels are edible, choice wild mushrooms that sometimes fruit prolifically in the years immediately after an area has been burned by wildfire. Wildfires are common in interior Alaska; an average of 708,700 acres burned each year in interior Alaska between 1961 and 2000, and in major fire years, over 2 million acres burned. We discuss Alaska's boreal forest...

  2. Alaska Dental Health Aide Program.

    Shoffstall-Cone, Sarah; Williard, Mary

    2013-01-01

    In 1999, An Oral Health Survey of American Indian and Alaska Native (AI/AN) Dental Patients found that 79% of 2- to 5-year-olds had a history of tooth decay. The Alaska Native Tribal Health Consortium in collaboration with Alaska's Tribal Health Organizations (THO) developed a new and diverse dental workforce model to address AI/AN oral health disparities. This paper describes the workforce model and some experience to date of the Dental Health Aide (DHA) Initiative that was introduced under the federally sanctioned Community Health Aide Program in Alaska. These new dental team members work with THO dentists and hygienists to provide education, prevention and basic restorative services in a culturally appropriate manner. The DHA Initiative introduced 4 new dental provider types to Alaska: the Primary Dental Health Aide, the Expanded Function Dental Health Aide, the Dental Health Aide Hygienist and the Dental Health Aide Therapist. The scope of practice between the 4 different DHA providers varies vastly along with the required training and education requirements. DHAs are certified, not licensed, providers. Recertification occurs every 2 years and requires the completion of 24 hours of continuing education and continual competency evaluation. Dental Health Aides provide evidence-based prevention programs and dental care that improve access to oral health care and help address well-documented oral health disparities.

  3. Tularemia in Alaska, 1938 - 2010

    Hansen Cristina M

    2011-11-01

    Full Text Available Abstract Tularemia is a serious, potentially life threatening zoonotic disease. The causative agent, Francisella tularensis, is ubiquitous in the Northern hemisphere, including Alaska, where it was first isolated from a rabbit tick (Haemophysalis leporis-palustris in 1938. Since then, F. tularensis has been isolated from wildlife and humans throughout the state. Serologic surveys have found measurable antibodies with prevalence ranging from F. tularensis isolates from Alaska were analyzed using canonical SNPs and a multi-locus variable-number tandem repeats (VNTR analysis (MLVA system. The results show that both F. t. tularensis and F. t. holarctica are present in Alaska and that subtype A.I, the most virulent type, is responsible for most recently reported human clinical cases in the state.

  4. Alaska volcanoes guidebook for teachers

    Adleman, Jennifer N.

    2011-01-01

    Alaska’s volcanoes, like its abundant glaciers, charismatic wildlife, and wild expanses inspire and ignite scientific curiosity and generate an ever-growing source of questions for students in Alaska and throughout the world. Alaska is home to more than 140 volcanoes, which have been active over the last 2 million years. About 90 of these volcanoes have been active within the last 10,000 years and more than 50 of these have been active since about 1700. The volcanoes in Alaska make up well over three-quarters of volcanoes in the United States that have erupted in the last 200 years. In fact, Alaska’s volcanoes erupt so frequently that it is almost guaranteed that an Alaskan will experience a volcanic eruption in his or her lifetime, and it is likely they will experience more than one. It is hard to imagine a better place for students to explore active volcanism and to understand volcanic hazards, phenomena, and global impacts. Previously developed teachers’ guidebooks with an emphasis on the volcanoes in Hawaii Volcanoes National Park (Mattox, 1994) and Mount Rainier National Park in the Cascade Range (Driedger and others, 2005) provide place-based resources and activities for use in other volcanic regions in the United States. Along the lines of this tradition, this guidebook serves to provide locally relevant and useful resources and activities for the exploration of numerous and truly unique volcanic landscapes in Alaska. This guidebook provides supplemental teaching materials to be used by Alaskan students who will be inspired to become educated and prepared for inevitable future volcanic activity in Alaska. The lessons and activities in this guidebook are meant to supplement and enhance existing science content already being taught in grade levels 6–12. Correlations with Alaska State Science Standards and Grade Level Expectations adopted by the Alaska State Department of Education and Early Development (2006) for grades six through eleven are listed at

  5. Coordination and Convening of the 2016 Arctic Science Summit Week

    Hinzman, Larry D. [Univ. of Alaska, Fairbanks, AK (United States)

    2016-11-13

    The Arctic Science Summit Week, Arctic Observing Summit, Arctic Council Senior Arctic Officials, Model Arctic Council, and International Arctic Assembly were convened on the campus of the University of Alaska Fairbanks with great productivity and satisfaction of the participants. We were pleased to welcome over 1000 participants from 30 different nations and over 130 different institutions. The organization and execution of these meetings was extensive and complex involving more than 250 coordinators, volunteers and contributors from across Alaska. The participants were enthusiastic in their praise of the content and accomplishments of the meeting, but they were equally happy about the genuine welcome offered to our guests by the people of Alaska. Hosting a complex event such as this summit required an army of supporting services and we were blessed to have volunteers from Fairbanks, North Pole, Anchorage and other communities throughout Alaska helping us meet these needs. This truly was an event hosted by the people of Alaska. The significance of these events cannot be overstated. The US and global communities are finally coming to the realization of the important role that the Arctic plays in international politics, economics, and science. The Arctic has experienced tremendous changes in recent years, offering new opportunities that may be addressed through international collaborations, and serious challenges that must be addressed through active investment, adaptation and national and international coordination. Over 10% of the meeting participants were indigenous peoples, from indigenous organizations or hailed from small remote communities. This is still lower than we had hoped, but it is greater participation than similar meetings have experienced in the past. It is through such engagement that we can attack problems related to the changing environment, stagnant economies, and social ills.

  6. Alaska Resource Data File, McCarthy quadrangle, Alaska

    Hudson, Travis L.

    2003-01-01

    Descriptions of the mineral occurrences shown on the accompanying figure follow. See U.S. Geological Survey (1996) for a description of the information content of each field in the records. The data presented here are maintained as part of a statewide database on mines, prospects and mineral occurrences throughout Alaska.

  7. Geologic framework of the Alaska Peninsula, southwest Alaska, and the Alaska Peninsula terrane

    Wilson, Frederic H.; Detterman, Robert L.; DuBois, Gregory D.

    2015-01-01

    The Alaska Peninsula is composed of the late Paleozoic to Quaternary sedimentary, igneous, and minor metamorphic rocks that record the history of a number of magmatic arcs. These magmatic arcs include an unnamed Late Triassic(?) and Early Jurassic island arc, the early Cenozoic Meshik arc, and the late Cenozoic Aleutian arc. Also found on the Alaska Peninsula is one of the most complete nonmetamorphosed, fossiliferous, marine Jurassic sedimentary sections known. As much as 8,500 m of section of Mesozoic sedimentary rocks record the growth and erosion of the Early Jurassic island arc.

  8. Infant Mortality and American Indians/Alaska Natives

    ... American Indian/Alaska Native > Infant Health & Mortality Infant Mortality and American Indians/Alaska Natives American Indian/Alaska ... as compared to non-Hispanic white mothers. Infant Mortality Rate: Infant mortality rate per 1,000 live ...

  9. Tuberculosis among Children in Alaska.

    Gessner, Bradford D.

    1997-01-01

    The incidence of tuberculosis among Alaskan children under 15 was more than twice the national rate, with Alaska Native children showing a much higher incidence. Children with household exposure to adults with active tuberculosis had a high risk of infection. About 22 percent of pediatric tuberculosis cases were identified through school…

  10. Alaska Dental Health Aide Program

    Sarah Shoffstall-Cone

    2013-08-01

    Full Text Available Background. In 1999, An Oral Health Survey of American Indian and Alaska Native (AI/AN Dental Patients found that 79% of 2- to 5-year-olds had a history of tooth decay. The Alaska Native Tribal Health Consortium in collaboration with Alaska’s Tribal Health Organizations (THO developed a new and diverse dental workforce model to address AI/AN oral health disparities. Objectives. This paper describes the workforce model and some experience to date of the Dental Health Aide (DHA Initiative that was introduced under the federally sanctioned Community Health Aide Program in Alaska. These new dental team members work with THO dentists and hygienists to provide education, prevention and basic restorative services in a culturally appropriate manner. Results. The DHA Initiative introduced 4 new dental provider types to Alaska: the Primary Dental Health Aide, the Expanded Function Dental Health Aide, the Dental Health Aide Hygienist and the Dental Health Aide Therapist. The scope of practice between the 4 different DHA providers varies vastly along with the required training and education requirements. DHAs are certified, not licensed, providers. Recertification occurs every 2 years and requires the completion of 24 hours of continuing education and continual competency evaluation. Conclusions. Dental Health Aides provide evidence-based prevention programs and dental care that improve access to oral health care and help address well-documented oral health disparities.

  11. Red alder potential in Alaska

    Allen Brackley; David Nicholls; Mike Hannan

    2010-01-01

    Over the past several decades, red alder has established itself as a commercially important species in the Pacific Northwest. Once considered a weed species, red alder now commands respect within many markets, including furniture, architectural millwork, and other secondary manufactured products. Although red alder's natural range extends to southeast Alaska, an...

  12. Alaska's indigenous muskoxen: a history

    Peter C. Lent

    1998-03-01

    Full Text Available Muskoxen (Ovibos moschatus were widespread in northern and interior Alaska in the late Pleistocene but were never a dominant component of large mammal faunas. After the end of the Pleistocene they were even less common. Most skeletal finds have come from the Arctic Coastal Plain and the foothills of the Brooks Range. Archaeological evidence, mainly from the Point Barrow area, suggests that humans sporadically hunted small numbers of muskoxen over about 1500 years from early Birnirk culture to nineteenth century Thule culture. Skeletal remains found near Kivalina represent the most southerly Holocene record for muskoxen in Alaska. Claims that muskoxen survived into the early nineteenth century farther south in the Selawik - Buckland River region are not substantiated. Remains of muskox found by Beechey's party in Eschscholtz Bay in 1826 were almost certainly of Pleistocene age, not recent. Neither the introduction of firearms nor overwintering whalers played a significant role in the extinction of Alaska's muskoxen. Inuit hunters apparently killed the last muskoxen in northwestern Alaska in the late 1850s. Several accounts suggest that remnant herds survived in the eastern Brooks Range into the 1890s. However, there is no physical evidence or independent confirmation of these reports. Oral traditions regarding muskoxen survived among the Nunamiut and the Chandalar Kutchin. With human help, muskoxen have successfully recolonized their former range from the Seward Peninsula north, across the Arctic Slope and east into the northern Yukon Territory.

  13. Home Page, Alaska Department of Labor and Workforce Development

    Employment and Training Services Alaska Labor Relations Agency Labor Standards and Safety Vocational Rehabilitation Workers' Compensation Of Interest Alaska's Job Bank Job Fairs, Recruitments, and Workshops Finding

  14. Permafrost degradation in West Greenland

    Foged, Niels Nielsen; Ingeman-Nielsen, Thomas

    2012-01-01

    Important aspects of civil engineering in West Greenland relate to the presence of permafrost and mapping of the annual and future changes in the active layer due to the ongoing climatically changes in the Arctic. The Arctic Technology Centre (ARTEK) has worked more than 10 years on this topic...... and the first author has been involved since 1970 in engineering geology, geotechnical engineering and permafrost related studies for foundation construction and infrastructures in towns and communities mainly in West Greenland. We have since 2006 together with the Danish Meteorological Institute, Greenland...... Survey (ASIAQ) and the University of Alaska Fairbanks carried out the US NSF funded project ARC-0612533: Recent and future permafrost variability, retreat and degradation in Greenland and Alaska: An integrated approach. This contribution will present data and observations from the towns Ilulissat...

  15. Adding Vectors across the North: Development of Laboratory Component of Distance Education Physics Course

    Spencer, V. K.; Solie, D. J.

    2010-12-01

    Bush Physics for the 21st Century (BP21) is a distance education physics course offered through the Interior Aleutians Campus of the University of Alaska Fairbanks. It provides an opportunity for rural Alaskan high school and community college students, many of whom have no other access to advanced science courses, to earn university science credit. The curriculum is mathematically rigorous and includes a laboratory component to prepare students who wish to pursue science and technology careers. The laboratory component has been developed during the past 3 years. Students learn lab safety, basic laboratory technique, experiment components and group collaboration. Experiments have place-based themes and involve skills that translate to rural Alaska when possible. Preliminary data on the general effectiveness of the labs have been analyzed and used to improve the course.

  16. Alaska's renewable energy potential.

    2009-02-01

    This paper delivers a brief survey of renewable energy technologies applicable to Alaska's climate, latitude, geography, and geology. We first identify Alaska's natural renewable energy resources and which renewable energy technologies would be most productive. e survey the current state of renewable energy technologies and research efforts within the U.S. and, where appropriate, internationally. We also present information on the current state of Alaska's renewable energy assets, incentives, and commercial enterprises. Finally, we escribe places where research efforts at Sandia National Laboratories could assist the state of Alaska with its renewable energy technology investment efforts.

  17. 1964 Great Alaska Earthquake: a photographic tour of Anchorage, Alaska

    Thoms, Evan E.; Haeussler, Peter J.; Anderson, Rebecca D.; McGimsey, Robert G.

    2014-01-01

    On March 27, 1964, at 5:36 p.m., a magnitude 9.2 earthquake, the largest recorded earthquake in U.S. history, struck southcentral Alaska (fig. 1). The Great Alaska Earthquake (also known as the Good Friday Earthquake) occurred at a pivotal time in the history of earth science, and helped lead to the acceptance of plate tectonic theory (Cox, 1973; Brocher and others, 2014). All large subduction zone earthquakes are understood through insights learned from the 1964 event, and observations and interpretations of the earthquake have influenced the design of infrastructure and seismic monitoring systems now in place. The earthquake caused extensive damage across the State, and triggered local tsunamis that devastated the Alaskan towns of Whittier, Valdez, and Seward. In Anchorage, the main cause of damage was ground shaking, which lasted approximately 4.5 minutes. Many buildings could not withstand this motion and were damaged or collapsed even though their foundations remained intact. More significantly, ground shaking triggered a number of landslides along coastal and drainage valley bluffs underlain by the Bootlegger Cove Formation, a composite of facies containing variably mixed gravel, sand, silt, and clay which were deposited over much of upper Cook Inlet during the Late Pleistocene (Ulery and others, 1983). Cyclic (or strain) softening of the more sensitive clay facies caused overlying blocks of soil to slide sideways along surfaces dipping by only a few degrees. This guide is the document version of an interactive web map that was created as part of the commemoration events for the 50th anniversary of the 1964 Great Alaska Earthquake. It is accessible at the U.S. Geological Survey (USGS) Alaska Science Center website: http://alaska.usgs.gov/announcements/news/1964Earthquake/. The website features a map display with suggested tour stops in Anchorage, historical photographs taken shortly after the earthquake, repeat photography of selected sites, scanned documents

  18. Technical publications catalog : October 2007-September 2008

    2009-01-01

    This is a comprehensive listing of Turner-Fairbank Highway Research Center research documents published from October 2007 through September 2008, and includes listings of fact sheets, flyers, product briefs, reports, summaries, and TechBriefs.

  19. Fiscal years 2007 and 2008 : representative examples of completed RD&T projects and activities

    2009-06-01

    The tables in this document correspond to major offices and initiatives at the Federal Highway Administration's Office of Research, Development, and Technology (RD&T), located at the Turner-Fairbank Highway Research Center. The tables provide represe...

  20. FHWA research and technology evaluation program summary report spring 2016

    2016-08-01

    This report summarizes the 16 evaluations being conducted by the Volpe National Transportation Systems Center on behalf of FHWAs Research and Technology Program. The FHWA R&T Program furthers the Turner-Fairbank Highway Research Centers goal of...

  1. Organizational and operational models for certificate management entities as part of the connected vehicle program : revised working paper (task 2).

    1997-01-01

    This report summarizes the efforts performed under subtasks D&E of the ATIS Communications Technology Alternatives Task for the FHWA Turner Fairbank Highway Research Center. Tasks D & E were to facilitate further examination of wireless communication...

  2. Economic growth and change in southeast Alaska.

    Rhonda Mazza

    2004-01-01

    This report focuses on economic trends since the 1970s in rural southeast Alaska. These trends are compared with those in the Nation and in nonmetropolitan areas of the country to determine the extent to which the economy in rural southeast Alaska is affected by regional activity and by larger market forces. Many of the economic changes occurring in rural southeast...

  3. The State of Alaska Agency Directory

    Administrative Services Division of Banking and Securities Division of Community & Regional Affairs Division Services Public Notices Alaska Communities Resident Working Finding Work in Alaska Private Industry Jobs Development Environmental Conservation Fish and Game Governor's Office Health and Social Services Labor and

  4. Alaska Plant Materials Center | Division of Agriculture

    Management Plan for Alaska, 2005 2017 AK Potato Seed Certification Handbook Tobacco Rattle Virus in Peonies Virus and Thrips Vectors Resources Pacific Northwest Plant Disease Management Handbook Pacific Northwest Potato Production Disease Risk Monitoring Publications and Reports Late Blight Management Plan for Alaska

  5. Nontimber forest product opportunities in Alaska.

    David Pilz; Susan J. Alexander; Jerry Smith; Robert Schroeder; Jim. Freed

    2006-01-01

    Nontimber forest products from southern Alaska (also called special forest products) have been used for millennia as resources vital to the livelihoods and culture of Alaska Natives and, more recently, as subsistence resources for the welfare of all citizens. Many of these products are now being sold, and Alaskans seek additional income opportunities through...

  6. Potential for forest products in interior Alaska.

    George R. Sampson; Willem W.S. van Hees; Theodore S. Setzer; Richard C. Smith

    1988-01-01

    Future opportunities for producing Alaska forest products were examined from the perspective of timber supply as reported in timber inventory reports and past studies of forest products industry potential. The best prospects for increasing industrial production of forest products in interior Alaska are for softwood lumber. Current softwood lumber production in the...

  7. Administrative Services Division - Alaska Department of Law

    accounting practices and procedures. JoAnn Pelayo Finance Officer Email: joann.pelayo@alaska.gov Tel: (907 @alaska.gov Tel: (907) 465-3674 Fiscal and Accounting Provide centralized fiscal and accounting functions for , inter-departmental payments for core services, payroll accounting adjustments and oversight, and grant

  8. Alaska Village Electric Load Calculator

    Devine, M.; Baring-Gould, E. I.

    2004-10-01

    As part of designing a village electric power system, the present and future electric loads must be defined, including both seasonal and daily usage patterns. However, in many cases, detailed electric load information is not readily available. NREL developed the Alaska Village Electric Load Calculator to help estimate the electricity requirements in a village given basic information about the types of facilities located within the community. The purpose of this report is to explain how the load calculator was developed and to provide instructions on its use so that organizations can then use this model to calculate expected electrical energy usage.

  9. Optimizing the use of biosurfactants to remove diesel contamination in porous media

    Cote, A.L.; Tumeo, M.A.

    1995-01-01

    It has been demonstrated that biosurfactants can be used to successfully enhance the removal of hydrocarbon contamination from soils. The Environmental Technology Laboratory (ETL) at the University of Alaska Fairbanks is currently involved in a multiyear study of surfactant usage in oil spill remediation in cold climates. Funding for this work is provided by the National Science Foundation, Petroleum Environmental Services, Inc., the Alaska Department of Conservation, and the University of Alaska Fairbanks. In the Summer of 1993, researchers from ETL successfully used a biologically derived surfactant to remove weathered crude oil contamination remaining from the Exxon Valdez oil spill. This same technology may be applicable to other hydrocarbon-contaminated sites. Subsequent laboratory studies are being performed using soil columns to quantify the interaction between surfactant usage and soil characteristics. Specifically, the amount of surfactant applied, the method of application, the level of diesel contamination, and the type of soil matrix are being investigated. Diesel fuel has been chosen as a common type of hydrocarbon contamination. Adsorption of the surfactant on particle surfaces within the soil matrix can increase the cost of surfactant application and potentially diminish oil recovery. Four soil types are being used in these studies; a well-sorted, medium-grained sand; a moderately-sorted gravel, a volcanically-derived soil and a silt representative of tundra conditions. All of these soils are frequently encountered in oil spill remediation. This paper focuses on the relationships being identified between the level of contamination, soil matrix type, and the effectiveness of contaminant removal by biologically-derived surfactants

  10. Building University Capacity to Visualize Solutions to Complex Problems in the Arctic

    Broderson, D.; Veazey, P.; Raymond, V. L.; Kowalski, K.; Prakash, A.; Signor, B.

    2016-12-01

    Rapidly changing environments are creating complex problems across the globe, which are particular magnified in the Arctic. These worldwide challenges can best be addressed through diverse and interdisciplinary research teams. It is incumbent on such teams to promote co-production of knowledge and data-driven decision-making by identifying effective methods to communicate their findings and to engage with the public. Decision Theater North (DTN) is a new semi-immersive visualization system that provides a space for teams to collaborate and develop solutions to complex problems, relying on diverse sets of skills and knowledge. It provides a venue to synthesize the talents of scientists, who gather information (data); modelers, who create models of complex systems; artists, who develop visualizations; communicators, who connect and bridge populations; and policymakers, who can use the visualizations to develop sustainable solutions to pressing problems. The mission of Decision Theater North is to provide a cutting-edge visual environment to facilitate dialogue and decision-making by stakeholders including government, industry, communities and academia. We achieve this mission by adopting a multi-faceted approach reflected in the theater's design, technology, networking capabilities, user support, community relationship building, and strategic partnerships. DTN is a joint project of Alaska's National Science Foundation Experimental Program to Stimulate Competitive Research (NSF EPSCoR) and the University of Alaska Fairbanks (UAF), who have brought the facility up to full operational status and are now expanding its development space to support larger team science efforts. Based in Fairbanks, Alaska, DTN is uniquely poised to address changes taking place in the Arctic and subarctic, and is connected with a larger network of decision theaters that include the Arizona State University Decision Theater Network and the McCain Institute in Washington, DC.

  11. Sitka, Alaska 9 arc-second DEM

    National Oceanic and Atmospheric Administration, Department of Commerce — The Sitka, Alaska Elevation Grid provides bathymetric data in ASCII raster format of 9 arc-second resolution in geographic coordinates. This grid is strictly for...

  12. North Slope, Alaska ESI: FISH (Fish Polygons)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for marine, estuarine, anadromous, and freshwater fish species for the North Slope of Alaska. Vector...

  13. Homer, Alaska 8 arc-second DEM

    National Oceanic and Atmospheric Administration, Department of Commerce — The 8-second Homer Alaska Elevation Grid provides bathymetric data in ASCII raster format of 8-second resolution in geographic coordinates. This grid is strictly for...

  14. Western Alaska ESI: FISHL (Fish Lines)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for anadromous fish species in Western Alaska. Vector lines in this data set represent species occurrences...

  15. Gravity Data for Southwestern Alaska #2

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (1294 records) were compiled by the Alaska Geological Survey and the U.S. Geological Survey, Menlo Park, California. This data base was...

  16. Prince William Sound, Alaska ESI: HYDRO (Hydrology)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set comprises the Environmental Sensitivity Index (ESI) data for Prince William Sound, Alaska. ESI data characterize estuarine environments and wildlife by...

  17. Southeast Alaska ESI: SOCECON (Socioeconomic Resource Points)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains human-use resource data for airports, aquaculture sites, boat ramps, marinas, heliports, and log storage areas in Southeast Alaska. Vector...

  18. Alaska North-South Deflections (DEFLEC96)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' x 4' surface deflection of the vertical grid for Alaska is the DEFLEC96 model. The computation used about 1.1 million terrestrial and marine gravity data...

  19. Klawock Lagoon, Alaska Benthic Habitats 2011 Geoform

    National Oceanic and Atmospheric Administration, Department of Commerce — The Klawock River on Alaska's Prince of Wales Island drains a 29,061 acre watershed with 132 miles of streambed habitat supporting seven salmon and trout species....

  20. Klawock Lagoon, Alaska Benthic Habitats 2011 Substrate

    National Oceanic and Atmospheric Administration, Department of Commerce — The Klawock River on Alaska's Prince of Wales Island drains a 29,061 acre watershed with 132 miles of streambed habitat supporting seven salmon and trout species....

  1. Alaska Steller Sea Lion Food Habits Data

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains food habits samples, usually scats, collected opportunistically on Steller sea lion rookeries and haulouts in Alaska from 1985 to present....

  2. Alaska Steller Sea Lion Pup Count Database

    National Oceanic and Atmospheric Administration, Department of Commerce — This database contains counts of Steller sea lion pups on rookeries in Alaska made between 1961 and 2015. Pup counts are conducted in late June-July. Pups are...

  3. Western Alaska ESI: LAKES (Lake Polygons)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector polygons representing lakes and land masses used in the creation of the Environmental Sensitivity Index (ESI) for Western Alaska. The...

  4. North Slope, Alaska ESI: BIRDS (Bird Polygons)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for diving birds, gulls and terns, seabirds, shorebirds, and waterfowl for the North Slope of Alaska....

  5. Alaska East-West Deflections (DEFLEC96)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' x 4' surface deflection of the vertical grid for Alaska is the DEFLEC96 model. The computation used about 1.1 millionterrestrial and marine gravity data held...

  6. Alaska1(ak1_wpn) Gravity Data

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (10,578 records) were compiled by the U.S. Geological Survey and the State of Alaska Division of Geological & Geophysical Surveys. This...

  7. ANWR and Alaska Peninsula Gravity Data

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (1252 records) were compiled by the U.S. Geological Survey and the State of Alaska Division of Geological & Geophysical Surveys. This...

  8. Prince William Sound, Alaska ESI: INVERT (Invertebrates)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set comprises the Environmental Sensitivity Index (ESI) data for Prince William Sound, Alaska. ESI data characterize estuarine environments and wildlife by...

  9. Klawock Lagoon, Alaska Benthic Habitats 2011 Geodatabase

    National Oceanic and Atmospheric Administration, Department of Commerce — The Klawock River on Alaska's Prince of Wales Island drains a 29,061 acre watershed with 132 miles of streambed habitat supporting seven salmon and trout species....

  10. Central Gulf of Alaska Rockfish Permit Program

    National Oceanic and Atmospheric Administration, Department of Commerce — The North Pacific Fishery Management Council adopted the Central Gulf of Alaska Rockfish Program (Rockfish Program) on June 14, 2010, to replace the expiring Pilot...

  11. Southeast Alaska ESI: BIRDS (Bird Polygons)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains biological resource data for waterfowl in Southeast Alaska. Vector polygons in this data set represent locations of foraging and rafting...

  12. Seldovia, Alaska 3 arc-second DEM

    National Oceanic and Atmospheric Administration, Department of Commerce — The 3-second Seldovia Alaska Elevation Grid provides bathymetric data in ASCII raster format of 3-second resolution in geographic coordinates. This grid is strictly...

  13. Sitka, Alaska 1 arc-second DEM

    National Oceanic and Atmospheric Administration, Department of Commerce — The Sitka, Alaska Elevation Grid provides bathymetric data in ASCII raster format of 1 arc-second resolution in geographic coordinates. This grid is strictly for...

  14. Sitka, Alaska 3 arc-second DEM

    National Oceanic and Atmospheric Administration, Department of Commerce — The Sitka, Alaska Elevation Grid provides bathymetric data in ASCII raster format of 3 arc-second resolution in geographic coordinates. This grid is strictly for...

  15. 2 minute Southcentral Alaska Elevation Grid

    National Oceanic and Atmospheric Administration, Department of Commerce — The 2-minute Southcentral Alaska Elevation Grid provides bathymetric data in ASCII raster format of 2-minute resolution in geographic coordinates. This grid is...

  16. Seward, Alaska 3 arc-second DEM

    National Oceanic and Atmospheric Administration, Department of Commerce — The 3 arc-second Seward Alaska Elevation Grid provides bathymetric data in ASCII raster format of 2.67-second resolution in geographic coordinates. This grid is...

  17. Southeast Alaska ESI: MGT (Management Area Polygons)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains management area data for National Parks, Wildlife Refuges, and areas designated as Critical Habitat in Southeast Alaska. Vector polygons in...

  18. Seldovia, Alaska 1 arc-second DEM

    National Oceanic and Atmospheric Administration, Department of Commerce — The Seldovia, Alaska Elevation Grid provides bathymetric data in ASCII raster format of 1 arc-second resolution in geographic coordinates. This grid is strictly for...

  19. Kodiak, Alaska 3 arc-second DEM

    National Oceanic and Atmospheric Administration, Department of Commerce — The 3-second Kodiak Alaska Elevation Grid provides bathymetric data in ASCII raster format of 2.67-second resolution in geographic coordinates. This grid is strictly...

  20. Avian Habitat Data; Seward Peninsula, Alaska, 2012

    Department of the Interior — This data product contains avian habitat data collected on the Seward Peninsula, Alaska, USA, during 21 May – 10 June 2012. We conducted replicated 10-min surveys...

  1. Klawock Lagoon, Alaska Benthic Habitats 2011 Biotic

    National Oceanic and Atmospheric Administration, Department of Commerce — The Klawock River on Alaska's Prince of Wales Island drains a 29,061 acre watershed with 132 miles of streambed habitat supporting seven salmon and trout species....

  2. Civil Division - Alaska Department of Law

    Attorney General Opinions Executive Branch Ethics Criminal Justice Alaska Medicaid Fraud Control Anchorage department and other agencies on the management, retention, communication, and disclosure of information matters. In addition, the legislative liaison coordinates responses to media requests. Natural Resources

  3. Southeast Alaska ESI: FISHPT (Fish Points)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains biological resource data for anadromous fish streams in Southeast Alaska. Vector points in this data set represent locations of fish streams....

  4. Prince William Sound, Alaska ESI: INDEX

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set comprises the Environmental Sensitivity Index (ESI) data for Prince William Sound, Alaska. ESI data characterize estuarine environments and wildlife by...

  5. Western Alaska ESI: FISH (Fish Polygons)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for marine, estuarine, and anadromous fish species in Western Alaska. Vector polygons in this data set...

  6. North Slope, Alaska ESI: FACILITY (Facility Points)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains data for oil field facilities for the North Slope of Alaska. Vector points in this data set represent oil field facility locations. This data...

  7. Southeast Alaska ESI: NESTS (Nest Points)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains biological resource data for alcids, shorebirds, waterfowl, diving birds, pelagic birds, gulls, and terns in Southeast Alaska. Points in this...

  8. Southeast Alaska ESI: FISH (Fish Polygons)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains biological resource data for estuarine, benthic, and pelagic fish in Southeast Alaska. Vector polygons in this data set represent locations of...

  9. 14 CFR 99.45 - Alaska ADIZ.

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Alaska ADIZ. 99.45 Section 99.45 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC... Zones § 99.45 Alaska ADIZ. The area is bounded by a line from 54°00′N; 136°00′W; 56°57′N; 144°00′W; 57...

  10. Crustal Structure beneath Alaska from Receiver Functions

    Zhang, Y.; Li, A.

    2017-12-01

    The crustal structure in Alaska has not been well resolved due to the remote nature of much of the state. The USArray Transportable Array (TA), which is operating in Alaska and northwestern Canada, significantly increases the coverage of broadband seismic stations in the region and allows for a more comprehensive study of the crust. We have analyzed P-receiver functions from earthquake data recorded by 76 stations of the TA and AK networks. Both common conversion point (CCP) and H-K methods are used to estimate the mean crustal thickness. The results from the CCP stacking method show that the Denali fault marks a sharp transition from thick crust in the south to thin crust in the north. The thickest crust up to 52 km is located in the St. Elias Range, which has been formed by oblique collision between the Yakutat microplate and North America. A thick crust of 48 km is also observed beneath the eastern Alaska Range. These observations suggest that high topography in Alaska is largely compensated by the thick crust root. The Moho depth ranges from 28 km to 35 km beneath the northern lowlands and increases to 40-45 km under the Books Range. The preliminary crustal thickness from the H-K method generally agrees with that from the CCP stacking with thicker crust beneath high mountain ranges and thinner crust beneath lowlands and basins. However, the offshore part is not well constrained due to the limited coverage of stations. The mean Vp/Vs ratio is around 1.7 in the Yukon-Tanana terrane and central-northern Alaska. The ratio is about 1.9 in central and southern Alaska with higher values at the Alaska Range, Wrangell Mountains, and St. Elias Range. Further data analyses are needed for obtaining more details of the crustal structure in Alaska to decipher the origin and development of different tectonic terranes.

  11. Reconnaissance for radioactive deposits in Alaska, 1953

    Matzko, John J.; Bates, Robert G.

    1955-01-01

    During the summer of 1953 the areas investigated for radioactive deposits in Alaska were on Nikolai Creek near Tyonek and on Likes Creek near Seward in south-central Alaska where carnotite-type minerals had been reported; in the headwaters of the Peace River in the eastern part of the Seward Peninsula and at Gold Bench on the South Fork of the Koyukuk River in east-central Alaska, where uranothorianite occurs in places associated with base metal sulfides and hematite; in the vicinity of Port Malmesbury in southeastern Alaska to check a reported occurrence of pitchblende; and, in the Miller House-Circle Hot Springs area of east-central Alaska where geochemical studies were made. No significant lode deposits of radioactive materials were found. However, the placer uranothorianite in the headwaters of the Peace River yet remains as an important lead to bedrock radioactive source materials in Alaska. Tundra cover prevents satisfactory radiometric reconnaissance of the area, and methods of geochemical prospecting such as soil and vegetation sampling may ultimately prove more fruitful in the search for the uranothorianite-sulfide lode source than geophysical methods.

  12. Systems Performance Analyses of Alaska Wind-Diesel Projects; Kotzebue, Alaska (Fact Sheet)

    Baring-Gould, I.

    2009-04-01

    This fact sheet summarizes a systems performance analysis of the wind-diesel project in Kotzebue, Alaska. Data provided for this project include wind turbine output, average wind speed, average net capacity factor, and optimal net capacity factor based on Alaska Energy Authority wind data, estimated fuel savings, and wind system availability.

  13. 75 FR 3888 - Migratory Bird Subsistence Harvest in Alaska; Harvest Regulations for Migratory Birds in Alaska...

    2010-01-25

    ...-0082; 91200-1231-9BPP-L2] RIN 1018-AW67 Migratory Bird Subsistence Harvest in Alaska; Harvest Regulations for Migratory Birds in Alaska During the 2010 Season AGENCY: Fish and Wildlife Service, Interior... Service, are reopening the public comment period on our proposed rule to establish migratory bird...

  14. 78 FR 75321 - Migratory Bird Subsistence Harvest in Alaska; Harvest Regulations for Migratory Birds in Alaska...

    2013-12-11

    ... the taking of migratory birds and the collection of their eggs, by the indigenous inhabitants of the... particular land ownership, but applies to the harvesting of migratory bird resources throughout Alaska. A... ensure an effective and meaningful role for Alaska's indigenous inhabitants in the conservation of...

  15. 76 FR 17353 - Migratory Bird Subsistence Harvest in Alaska; Harvest Regulations for Migratory Birds in Alaska...

    2011-03-29

    ... the collection of their eggs, by the indigenous inhabitants of the State of Alaska, shall be permitted... implications. This rule is not specific to particular land ownership, but applies to the harvesting of... the creation of management bodies to ensure an effective and meaningful role for Alaska's indigenous...

  16. Alaska Native Languages: Past, Present, and Future. Alaska Native Language Center Research Papers No. 4.

    Krauss, Michael E.

    Three papers (1978-80) written for the non-linguistic public about Alaska Native languages are combined here. The first is an introduction to the prehistory, history, present status, and future prospects of all Alaska Native languages, both Eskimo-Aleut and Athabaskan Indian. The second and third, presented as appendixes to the first, deal in…

  17. 76 FR 303 - Alaska: Adequacy of Alaska's Municipal Solid Waste Landfill Permit Program

    2011-01-04

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Parts 239 and 258 [EPA-EPA-R10-RCRA-2010-0953; FRL-9247-5] Alaska: Adequacy of Alaska's Municipal Solid Waste Landfill Permit Program AGENCY: Environmental... modification of its approved Municipal Solid Waste Landfill (MSWLF) permit program. On March 22, 2004, EPA...

  18. 76 FR 270 - Alaska: Adequacy of Alaska Municipal Solid Waste Landfill Permit Program

    2011-01-04

    ...] Alaska: Adequacy of Alaska Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection... approved Municipal Solid Waste Landfill (MSWLF) permit program. The approved modification allows the State..., EPA issued a final rule (69 FR 13242) amending the Municipal Solid Waste Landfill (MSWLF) criteria in...

  19. Dictionary of Alaska place names

    Orth, Donald J.

    1971-01-01

    This work is an alphabetical list of the geographic names that are now applied and have been applied to places and features of the Alaska landscape. Principal names, compiled from modem maps and charts and printed in boldface type, generally reflect present-day local usage. They conform to the principles of the U.S. Board on Geographic Names for establishing standard names for use on Government maps and in other Government publications. Each name entry gives the present-day spelling along with variant spellings and names; identifies the feature named; presents the origin and history of the name; and, where possible, gives the meaning of an Eskimo, Aleut, Indian, or foreign name. Variant, obsolete, and doubtful names are alphabetically listed and are cross referenced, where necessary, to the principal entries.

  20. Authropogenic Warming in North Alaska?.

    Michaels, Patrick J.; Sappington, David E.; Stooksbury, David E.

    1988-09-01

    Using permafrost boreholes, Lachenbruch and Marshall recently reported evidence for a 2°-4°C warming in North Alaska occurring at some undetermined time during the last century. Popular accounts suggest their findings are evidence for anthropogenic warming caused by trace gases. Analyses of North Alaskan 1000-500 mb thickness onwards back to 1948 indicate that the warming was prior to that date. Relatively sparse thermometric data for the early twentieth century from Jones et al. are too noisy to support any trend since the data record begins in 1910, or to apply to any subperiod of climatic significance. Any warming detected from the permafrost record therefore occurred before the major emissions of thermally active trace gases.

  1. Aviation and Airports, Transportation & Public Facilities, State of Alaska

    State Employees Alaska Department of Transportation & Public Facilities header image Alaska Department of Transportation & Public Facilities / Aviation and Airports Search DOT&PF State of pages view official DOT&PF Flickr pages Department of Transportation & Public Facilities PO Box

  2. Alaska Native Villages and Rural Communities Water Grant Program

    Significant human health and water quality problems exist in Alaska Native Village and other rural communities in the state due to lack of sanitation. To address these issues, EPA created the Alaska Rural and Native Villages Grant Program.

  3. Glaciers of North America - Glaciers of Alaska

    Molnia, Bruce F.

    2008-01-01

    Glaciers cover about 75,000 km2 of Alaska, about 5 percent of the State. The glaciers are situated on 11 mountain ranges, 1 large island, an island chain, and 1 archipelago and range in elevation from more than 6,000 m to below sea level. Alaska's glaciers extend geographically from the far southeast at lat 55 deg 19'N., long 130 deg 05'W., about 100 kilometers east of Ketchikan, to the far southwest at Kiska Island at lat 52 deg 05'N., long 177 deg 35'E., in the Aleutian Islands, and as far north as lat 69 deg 20'N., long 143 deg 45'W., in the Brooks Range. During the 'Little Ice Age', Alaska's glaciers expanded significantly. The total area and volume of glaciers in Alaska continue to decrease, as they have been doing since the 18th century. Of the 153 1:250,000-scale topographic maps that cover the State of Alaska, 63 sheets show glaciers. Although the number of extant glaciers has never been systematically counted and is thus unknown, the total probably is greater than 100,000. Only about 600 glaciers (about 1 percent) have been officially named by the U.S. Board on Geographic Names (BGN). There are about 60 active and former tidewater glaciers in Alaska. Within the glacierized mountain ranges of southeastern Alaska and western Canada, 205 glaciers (75 percent in Alaska) have a history of surging. In the same region, at least 53 present and 7 former large ice-dammed lakes have produced jokulhlaups (glacier-outburst floods). Ice-capped volcanoes on mainland Alaska and in the Aleutian Islands have a potential for jokulhlaups caused by subglacier volcanic and geothermal activity. Because of the size of the area covered by glaciers and the lack of large-scale maps of the glacierized areas, satellite imagery and other satellite remote-sensing data are the only practical means of monitoring regional changes in the area and volume of Alaska's glaciers in response to short- and long-term changes in the maritime and continental climates of the State. A review of the

  4. Alaska

    Chapin, F. Stuart; Trainor, Sarah F.; Cochran, Patricia; Huntington, Henry; Markon, Carl J.; McCammon, Molly; McGuire, A. David; Serreze, Mark; Melillo, J.M.; Richmond, Terese; Yohe, G.W.

    2014-01-01

    Key Messages Arctic summer sea ice is receding faster than previously projected and is expected to virtually disappear before mid-century. This is altering marine ecosystems and leading to greater ship access, offshore development opportunity, and increased community vulnerability to coastal erosion.

  5. Northern gas : Arctic Canada and Alaska

    Constantin, D.

    2005-01-01

    This paper discusses supply challenges in relation to Northern gas availability in Arctic Canada and Alaska. A background of BP Canada Energy Company was provided. It was suggested that gas from traditional North American basins would not meet demand, and that incremental sources of supply would be needed. A map of traditional and non-tradition supply sources was presented along with details of supply and infrastructure investment requirements from 2003-2025. The roles of producers, local distribution companies, pipelines and policy makers in infrastructure development were examined. Potential resources in Alaska and the Mackenzie Delta were discussed, along with details of the Mackenzie Valley Pipeline project and exploration activities. Alaska's North Slope gas resource was reviewed. Several large projects devolving from the Alaska Gas Pipeline represent an anticipated total investment of $20 billion. Various regulatory and economic conditions necessary for the successful completion of the project include the Alaska Fiscal Contract; Alaska gas provisions in the Federal Energy Bill; details of the Canadian regulatory process; and cost reductions and market outlooks. It was concluded that the Alaska Gas Pipeline would provide thousands of jobs and provide stability of long-term gas prices as well as meeting North America's energy needs. In addition, the pipeline would provide $16 billion in Canadian government revenues and $40 billion in US government revenues. The pipeline would provide 4.5 billion cubic feet per day of clean energy, with half the carbon dioxide emissions of coal. It would also provide hundreds of billions of dollars in consumer savings. tabs, figs

  6. 24 CFR 598.515 - Alaska and Hawaii.

    2010-04-01

    ... 24 Housing and Urban Development 3 2010-04-01 2010-04-01 false Alaska and Hawaii. 598.515 Section 598.515 Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued....515 Alaska and Hawaii. A nominated area in Alaska or Hawaii is deemed to satisfy the criteria of...

  7. 33 CFR 110.233 - Prince William Sound, Alaska.

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Prince William Sound, Alaska. 110... ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.233 Prince William Sound, Alaska. (a) The anchorage grounds. In Prince William Sound, Alaska, beginning at a point at latitude 60°40′00″ N., longitude 146°40...

  8. Wilderness insights From Alaska: Past, present, and future

    Deborah L. Williams

    2007-01-01

    For many reasons, a significant percentage of Alaska’s wildlands have been successfully protected. The passage of the Alaska National Interest Lands Conservation Act (ANILCA), in particular, represents one of the greatest land protection measures in human history. Numerous important factors have contributed to Alaska’s conservation successes, and many of these factors...

  9. Reality Investing | Alaska Division of Retirement and Benefits

    Skip to main content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Comp All Other Programs Features Empower Retirement Account Info Online myRnB Member Services Seminars Benefits > Reality Investing Online Counselor Scheduler Empower Retirement Account Info Online myRnB

  10. 77 FR 4578 - Alaska Region's Subsistence Resource Commission (SRC) Program

    2012-01-30

    ... DEPARTMENT OF THE INTERIOR National Park Service [NPS-AKR-ANIA; 9924-PYS] Alaska Region's... public meeting for the National Park Service (NPS) Alaska Region's Subsistence Resource Commission (SRC..., Alaska Region. [FR Doc. 2012-1860 Filed 1-27-12; 8:45 am] BILLING CODE 4310-HE-P ...

  11. 77 FR 4579 - Alaska Region's Subsistence Resource Commission (SRC) Program

    2012-01-30

    ... DEPARTMENT OF THE INTERIOR National Park Service [NPS-AKR-DENA; 9924-PYS] Alaska Region's... public meeting for the National Park Service (NPS) Alaska Region's Subsistence Resource Commission (SRC..., Associate Regional Director, Resources and Subsistence, Alaska Region. [FR Doc. 2012-1877 Filed 1-27-12; 8...

  12. 77 FR 4581 - Alaska Region's Subsistence Resource Commission (SRC) Program

    2012-01-30

    ... DEPARTMENT OF THE INTERIOR National Park Service [NPS-AKR-LACL; 9924-PYS] Alaska Region's... public meeting for the National Park Service (NPS) Alaska Region's Subsistence Resource Commission (SRC... Meeting Debora R. Cooper, Associate Regional Director, Resources and Subsistence, Alaska Region. [FR Doc...

  13. U.S. Geological Survey experience with the residual absolutes method

    E. W. Worthington

    2017-10-01

    Full Text Available The U.S. Geological Survey (USGS Geomagnetism Program has developed and tested the residual method of absolutes, with the assistance of the Danish Technical University's (DTU Geomagnetism Program. Three years of testing were performed at College Magnetic Observatory (CMO, Fairbanks, Alaska, to compare the residual method with the null method. Results show that the two methods compare very well with each other and both sets of baseline data were used to process the 2015 definitive data. The residual method will be implemented at the other USGS high-latitude geomagnetic observatories in the summer of 2017 and 2018.

  14. The National Energy Technology Laboratory Annual Site Environmental Report for Calendar Year 2002

    National Energy Technology Laboratory

    2003-01-01

    This Site Environmental Report was prepared by the Environmental, Safety, and Health Division at the National Energy Technology Laboratory (NETL) for the U.S. Department of Energy. The purpose of this report is to inform the public and Department of Energy stakeholders of the environmental conditions at NETL sites in Morgantown (MGN), West Virginia, Pittsburgh (PGH), Pennsylvania, Tulsa, Oklahoma, and Fairbanks, Alaska. This report contains the most accurate information that could be collected during the period between January 1, 2002, and December 31, 2002. As stated in DOE Orders 450.1 and 231.1, the purpose of the report is to: (1) Characterize site environmental management performance. (2) Confirm compliance with environmental standards and requirements. (3) Highlight significant facility programs and efforts

  15. Permafrost Active Layer Seismic Interferometry Experiment (PALSIE).

    Abbott, Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Knox, Hunter Anne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); James, Stephanie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lee, Rebekah [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cole, Chris [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    We present findings from a novel field experiment conducted at Poker Flat Research Range in Fairbanks, Alaska that was designed to monitor changes in active layer thickness in real time. Results are derived primarily from seismic data streaming from seven Nanometric Trillium Posthole seismometers directly buried in the upper section of the permafrost. The data were evaluated using two analysis methods: Horizontal to Vertical Spectral Ratio (HVSR) and ambient noise seismic interferometry. Results from the HVSR conclusively illustrated the method's effectiveness at determining the active layer's thickness with a single station. Investigations with the multi-station method (ambient noise seismic interferometry) are continuing at the University of Florida and have not yet conclusively determined active layer thickness changes. Further work continues with the Bureau of Land Management (BLM) to determine if the ground based measurements can constrain satellite imagery, which provide measurements on a much larger spatial scale.

  16. International conference on the role of the polar regions in global change: Proceedings. Volume 2

    Weller, G.; Wilson, C.L.; Severin, B.A.B. [eds.

    1991-12-01

    The International Conference on the Role of the Polar Regions in Global Change took place on the campus of the University of Alaska Fairbanks on June 11--15, 1990. The goal of the conference was to define and summarize the state of knowledge on the role of the polar regions in global change, and to identify gaps in knowledge. To this purpose experts in a wide variety of relevant disciplines were invited to present papers and hold panel discussions. While there are numerous conferences on global change, this conference dealt specifically with the polar regions which occupy key positions in the global system. These two volumes of conference proceedings include papers on (1) detection and monitoring of change; (2) climate variability and climate forcing; (3) ocean, sea ice, and atmosphere interactions and processes; and (4) effects on biota and biological feedbacks; (5) ice sheet, glacier and permafrost responses and feedbacks, (6) paleoenvironmental studies; and, (7) aerosol and trace gases.

  17. The National Energy Technology Laboratory Annual Site Environmental Report for Calendar Year 2002

    National Energy Technology Laboratory

    2003-10-30

    This Site Environmental Report was prepared by the Environmental, Safety, and Health Division at the National Energy Technology Laboratory (NETL) for the U.S. Department of Energy. The purpose of this report is to inform the public and Department of Energy stakeholders of the environmental conditions at NETL sites in Morgantown (MGN), West Virginia, Pittsburgh (PGH), Pennsylvania, Tulsa, Oklahoma, and Fairbanks, Alaska. This report contains the most accurate information that could be collected during the period between January 1, 2002, and December 31, 2002. As stated in DOE Orders 450.1 and 231.1, the purpose of the report is to: (1) Characterize site environmental management performance. (2) Confirm compliance with environmental standards and requirements. (3) Highlight significant facility programs and efforts.

  18. International conference on the role of the polar regions in global change: Proceedings. Volume 1

    Weller, G.; Wilson, C.L.; Severin, B.A.B. [eds.

    1991-12-01

    The International Conference on the Role of the Polar Regions in Global Change took place on the campus of the University of Alaska Fairbanks on June 11--15, 1990. The goal of the conference was to define and summarize the state of knowledge on the role of the polar regions in global change, and to identify gaps in knowledge. To this purpose experts in a wide variety of relevant disciplines were invited to present papers and hold panel discussions. While there are numerous conferences on global change, this conference dealt specifically with polar regions which occupy key positions in the global system. These two volumes of conference proceedings include papers on (1) detection and monitoring of change; (2) climate variability and climate forcing; (3) ocean, sea ice, and atmosphere interactions and processes; (4) effects on biota and biological feedbacks; (5) ice sheet, glacier and permafrost responses and feedbacks; (6) paleoenvironmental studies; and, (7) aerosols and trace gases.

  19. 78 FR 4435 - BLM Director's Response to the Alaska Governor's Appeal of the BLM Alaska State Director's...

    2013-01-22

    ... Bureau of Land Management (BLM) is publishing this notice to explain why the BLM Director is rejecting... Director's Response to the Alaska Governor's Appeal of the BLM Alaska State Director's Governor's... the BLM Alaska State Director. The State Director determined the Governor's Finding was outside the...

  20. Offshore Wind Energy Resource Assessment for Alaska

    Doubrawa Moreira, Paula [National Renewable Energy Lab. (NREL), Golden, CO (United States); Scott, George N. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Musial, Walter D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kilcher, Levi F. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Draxl, Caroline [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lantz, Eric J. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2018-01-02

    This report quantifies Alaska's offshore wind resource capacity while focusing on its unique nature. It is a supplement to the existing U.S. Offshore Wind Resource Assessment, which evaluated the offshore wind resource for all other U.S. states. Together, these reports provide the foundation for the nation's offshore wind value proposition. Both studies were developed by the National Renewable Energy Laboratory. The analysis presented herein represents the first quantitative evidence of the offshore wind energy potential of Alaska. The technical offshore wind resource area in Alaska is larger than the technical offshore resource area of all other coastal U.S. states combined. Despite the abundant wind resource available, significant challenges inhibit large-scale offshore wind deployment in Alaska, such as the remoteness of the resource, its distance from load centers, and the wealth of land available for onshore wind development. Throughout this report, the energy landscape of Alaska is reviewed and a resource assessment analysis is performed in terms of gross and technical offshore capacity and energy potential.

  1. 2014 volcanic activity in Alaska: Summary of events and response of the Alaska Volcano Observatory

    Cameron, Cheryl E.; Dixon, James P.; Neal, Christina A.; Waythomas, Christopher F.; Schaefer, Janet R.; McGimsey, Robert G.

    2017-09-07

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest or suspected unrest, and seismic events at 18 volcanic centers in Alaska during 2014. The most notable volcanic activity consisted of intermittent ash eruptions from long-active Cleveland and Shishaldin Volcanoes in the Aleutian Islands, and two eruptive episodes at Pavlof Volcano on the Alaska Peninsula. Semisopochnoi and Akutan volcanoes had seismic swarms, both likely the result of magmatic intrusion. The AVO also installed seismometers and infrasound instruments at Mount Cleveland during 2014.

  2. Project Aether Aurora: STEM outreach near the arctic circle

    Longmier, B. W.; Bering, E. A.

    2012-12-01

    Project Aether is a program designed to immerse high-school through graduate students to field research in some of the fields of STEM. The program leaders launch high altitude weather balloons in collaboration with schools and students to teach physics concepts, experimental research skills, and to make space exploration accessible to students. A weather balloon lifts a specially designed payload package that is composed of HD cameras, GPS tracking devices, and other science equipment. The payload is constructed and attached to the balloon by the students with low-cost materials. The balloon and payload are launched with FAA clearance from a site chosen based on wind patterns and predicted landing locations. The balloon ascends over 2 hours to a maximum altitude of 100,000 feet where it bursts and allows the payload to slowly descend using a built-in parachute. The balloon's location is monitored during its flight by GPS-satellite relay. Most of the science and video data are recorded on SD cards using an Arduino digitizer. The payload is located using the GPS device. The science data are recovered from the payload and shared with the students. In April 2012, Project Aether leaders conducted a field campaign near Fairbanks Alaska, sending several student-built experiments to an altitude of 30km, underneath several strong auroral displays. Auroral physics experiments that can be done on ultra small balloons (5 cubic meters) include electric field and magnetic fluctuation observations, full spectrum and narrow band optical imaging, GPS monitoring of the total electron content of the ionosphere, x-ray detection and infrared and UV spectroscopy. The actual undergraduate student experiments will be reviewed and some data presented.; Balloon deployment underneath aurora, Fairbanks Alaska, 2012.

  3. Engaging new generation of Arctic researchers: 14 years and counting

    Alexeev, V. A.; Walsh, J. E.; Hock, R.; Loucks, D. J.; Kaden, U.

    2016-12-01

    Today, more than ever, an integrated cross-disciplinary approach is necessary to explain changes in the Arctic and understand their implications for the human environment. Advanced training and active involvement of early-career scientists is an important component of this cross-disciplinary approach. This effort led by the International Arctic Research Center at the University of Alaska Fairbanks (UAF) started in 2003. The NSF supported project that started in 2013 conducted four summer schools (one per year) focused on four themes in four different Arctic locations. It provided the participants with an interdisciplinary perspective on Arctic change and its impacts on diverse sectors of the North. It is linked to other ongoing long-term observational and educational programs (e.g. NABOS, Nansen and Amundsen Basins Observational System; LTER, Long Term Environmental Research) and targets young scientists by using the interdisciplinary and place-based setting to broaden their perspective on Arctic change and to enhance their communication skills. Each course for 15-25 people consisted of classroom and hands-on components and work with a multidisciplinary group of mentors on projects devoted to themes exemplified by the location. A specialist from the School of Education at UAF evaluated student's progress during the summer schools. Additionally, an anthropologist attended the 2016 summer school to study how students learn to build and assess models, as well as examine students' and instructors' attitudes toward science communication, which provided additional feedback about learning and teaching in these settings. Lessons learned during the 14 years of conducting summer schools, methods of attracting in-kind support and approaches to teaching students are prominently featured in this study. Activities during the two most recent schools, one conducted at the Toolik Lake Field Station on the Alaskan North Slope and another at the International Arctic Research Center

  4. Amchitka, Alaska Site Fact Sheet

    2011-01-01

    Amchitka Island is near the western end of the Aleutian Island chain and is the largest island in the Rat Island Group that is located about 1,340 miles west-southwest of Anchorage, Alaska, and 870 miles east of the Kamchatka Peninsula in eastern Russia. The island is 42 miles long and 1 to 4 miles wide, with an area of approximately 74,240 acres. Elevations range from sea level to more than 1,100 feet above sea level. The coastline is rugged; sea cliffs and grassy slopes surround nearly the entire island. Vegetation on the island is low-growing, meadow-like tundra grasses at lower elevations. No trees grow on Amchitka. The lowest elevations are on the eastern third of the island and are characterized by numerous shallow lakes and heavily vegetated drainages. The central portion of the island has higher elevations and fewer lakes. The westernmost 3 miles of the island contains a windswept rocky plateau with sparse vegetation

  5. Alaska, Gulf spills share similarities

    Usher, D.

    1991-01-01

    The accidental Exxon Valdez oil spill in Alaska and the deliberate dumping of crude oil into the Persian Gulf as a tactic of war contain both glaring differences and surprising similarities. Public reaction and public response was much greater to the Exxon Valdez spill in pristine Prince William Sound than to the war-related tragedy in the Persian Gulf. More than 12,000 workers helped in the Alaskan cleanup; only 350 have been involved in Kuwait. But in both instances, environmental damages appear to be less than anticipated. Natures highly effective self-cleansing action is primarily responsible for minimizing the damages. One positive action growing out of the two incidents is increased international cooperation and participation in oil-spill clean-up efforts. In 1990, in the aftermath of the Exxon Valdez spill, 94 nations signed an international accord on cooperation in future spills. The spills can be historic environmental landmarks leading to creation of more sophisticated response systems worldwide

  6. Consumer willingness to pay a price premium for standing-dead Alaska yellow-cedar.

    Geoffrey H. Donovan

    2004-01-01

    Alaska yellow-cedar has declined in Southeast Alaska over the past 100 years, resulting in half a million acres of dead or dying trees. The natural decay resistance of Alaska yellow-cedar means that many of these trees are still merchantable. However, the topography of Southeast Alaska is such that selectively harvesting Alaska yellow-cedar may often require helicopter...

  7. 2012 Alaska Division of Geological and Geophysical Surveys (DGGS) Lidar: Whittier, Alaska

    National Oceanic and Atmospheric Administration, Department of Commerce — In support of geologic mapping and hazards evaluation in and near Whittier, Alaska, the Division of Geological and Geophysical Surveys (DGGS) acquired, and is making...

  8. Digital Shaded-Relief Image of Alaska

    Riehle, J.R.; Fleming, Michael D.; Molnia, B.F.; Dover, J.H.; Kelley, J.S.; Miller, M.L.; Nokleberg, W.J.; Plafker, George; Till, A.B.

    1997-01-01

    Introduction One of the most spectacular physiographic images of the conterminous United States, and the first to have been produced digitally, is that by Thelin and Pike (USGS I-2206, 1991). The image is remarkable for its crispness of detail and for the natural appearance of the artificial land surface. Our goal has been to produce a shaded-relief image of Alaska that has the same look and feel as the Thelin and Pike image. The Alaskan image could have been produced at the same scale as its lower 48 counterpart (1:3,500,000). But by insetting the Aleutian Islands into the Gulf of Alaska, we were able to print the Alaska map at a larger scale (1:2,500,000) and about the same physical size as the Thelin and Pike image. Benefits of the 1:2,500,000 scale are (1) greater resolution of topographic features and (2) ease of reference to the U.S. Geological Survey (USGS) (1987) Alaska Map E and the statewide geologic map (Beikman, 1980), which are both 1:2,500,000 scale. Manually drawn, shaded-relief images of Alaska's land surface have long been available (for example, Department of the Interior, 1909; Raisz, 1948). The topography depicted on these early maps is mainly schematic. Maps showing topographic contours were first available for the entire State in 1953 (USGS, 1:250,000) (J.H. Wittmann, USGS, written commun., 1996). The Alaska Map E was initially released in 1954 in both planimetric (revised in 1973 and 1987) and shaded-relief versions (revised in 1973, 1987, and 1996); topography depicted on the shaded-relief version is based on the 1:250,000-scale USGS topographic maps. Alaska Map E was later modified to include hypsometric tinting by Raven Maps and Images (1989, revised 1993) as copyrighted versions. Other shaded-relief images were produced for The National Geographic Magazine (LaGorce, 1956; 1:3,000,000) or drawn by Harrison (1970; 1:7,500,000) for The National Atlas of the United States. Recently, the State of Alaska digitally produced a shaded-relief image

  9. Deep-seated gravitational slope deformations near the Trans-Alaska Pipeline, east-central Alaska Range, Alaska, USA

    Newman, S. D.; Clague, J. J.; Rabus, B.; Stead, D.

    2013-12-01

    Multiple, active, deep-seated gravitational slope deformations (DSGSD) are present near the Trans-Alaska Pipeline and Richardson Highway in the east-central Alaska Range, Alaska, USA. We documented spatial and temporal variations in rates of surface movement of the DSGSDs between 2003 and 2011 using RADARSAT-1 and RADARSAT-2 D-InSAR images. Deformation rates exceed 10 cm/month over very large areas (>1 km2) of many rock slopes. Recent climatic change and strong seismic shaking, especially during the 2002 M 7.9 Denali Fault earthquake, appear to have exacerbated slope deformation. We also mapped DSGSD geological and morphological characteristics using field- and GIS-based methods, and constructed a conceptual 2D distinct-element numerical model of one of the DSGSDs. Preliminary results indicate that large-scale buckling or kink-band slumping may be occurring. The DSGSDs are capable of generating long-runout landslides that might impact the Trans-Alaska Pipeline and Richardson Highway. They could also block tributary valleys, thereby impounding lakes that might drain suddenly. Wrapped 24-day RADARSAT-2 descending spotlight interferogram showing deformation north of Fels Glacier. The interferogram is partially transparent and is overlaid on a 2009 WorldView-1 panchromatic image. Acquisition interval: August 2 - August 26, 2011. UTM Zone 6N.

  10. Successful aging through the eyes of Alaska Natives: exploring generational differences among Alaska Natives.

    Lewis, Jordan P

    2010-12-01

    There is very little research on Alaska Native (AN) elders and how they subjectively define a successful older age. The lack of a culturally-specific definition often results in the use of a generic definition that portrays Alaska Native elders as aging less successfully than their White counterparts. However, there is a very limited understanding of a diverse array of successful aging experiences across generations. This research explores the concept of successful aging from an Alaska Native perspective, or what it means to age well in Alaska Native communities. An adapted Explanatory Model (EM) approach was used to gain a sense of the beliefs about aging from Alaska Natives. Research findings indicate that aging successfully is based on local understandings about personal responsibility and making the conscious decision to live a clean and healthy life, abstaining from drugs and alcohol. The findings also indicate that poor aging is often characterized by a lack of personal responsibility, or not being active, not being able to handle alcohol, and giving up on oneself. Most participants stated that elder status is not determined by reaching a certain age (e.g., 65), but instead is designated when an individual has demonstrated wisdom because of the experiences he or she has gained throughout life. This research seeks to inform future studies on rural aging that prioritizes the perspectives of elders to impact positively on the delivery of health care services and programs in rural Alaska.

  11. USGS US topo maps for Alaska

    Anderson, Becci; Fuller, Tracy

    2014-01-01

    In July 2013, the USGS National Geospatial Program began producing new topographic maps for Alaska, providing a new map series for the state known as US Topo. Prior to the start of US Topo map production in Alaska, the most detailed statewide USGS topographic maps were 15-minute 1:63,360-scale maps, with their original production often dating back nearly fifty years. The new 7.5-minute digital maps are created at 1:25,000 map scale, and show greatly increased topographic detail when compared to the older maps. The map scale and data specifications were selected based on significant outreach to various map user groups in Alaska. This multi-year mapping initiative will vastly enhance the base topographic maps for Alaska and is possible because of improvements to key digital map datasets in the state. The new maps and data are beneficial in high priority applications such as safety, planning, research and resource management. New mapping will support science applications throughout the state and provide updated maps for parks, recreation lands and villages.

  12. 76 FR 3156 - Alaska Native Claims Selection

    2011-01-19

    ... located in: Seward Meridian, Alaska T. 26 N., R. 47 W., Sec. 3, those lands formerly within mining claim... claim recordation AA- 32365. Containing approximately 155 acres. T. 27 N., R. 47 W., Sec. 34, those... e-mail at ak[email protected] , or by telecommunication device (TTD) through the Federal...

  13. 75 FR 13297 - Alaska Native Claims Selection

    2010-03-19

    ... for 118.47 acres, located southeast of the Native village of Hughes, Alaska. Notice of the decision...: The Bureau of Land Management by phone at 907-271-5960, or by e-mail at ak[email protected]ak.blm.gov...

  14. Alaska Terrain Corrected Free Air Anomalies (96)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' x 4' gravity anomaly grid for Alaska is NOT the input data set used in development of the GEOID96 model. This gravity grid models the 1.1 million terrestrial...

  15. Alaska midgrade logs: supply and offshore demand.

    Donald F. Flora; Wendy J. McGinnis

    1989-01-01

    The outlook for shipments and prices of export logs from Alaska differs significantly by grade (quality class). For the majority lying in the middle of the value range, the trend of prices is projected to increase $200 per thousand board feet, or about 55 percent, by 2000. Shipments are expected to rise about 30 percent by 1995 and then subside about 10 percent. These...

  16. Kids Count Alaska Data Book: 1996.

    Alaska Univ., Anchorage. Inst. of Social and Economic Research.

    This statistical report examines findings on 15 indicators of children's well-being in Alaska: (1) percent of births with low birth weight; (2) infant mortality rate; (3) child poverty rate; (4) children in single parent families; (5) births to teenagers age 15 to 17; (6) teen (age 16 to 19) high school dropout rate; (7) teens not in school and…

  17. Discovering Alaska's Salmon: A Children's Activity Book.

    Devaney, Laurel

    This children's activity book helps students discover Alaska's salmon. Information is provided about salmon and where they live. The salmon life cycle and food chains are also discussed. Different kinds of salmon such as Chum Salmon, Chinook Salmon, Coho Salmon, Sockeye Salmon, and Pink Salmon are introduced, and various activities on salmon are…

  18. University of Alaska 1997 Facilities Inventory.

    Alaska Univ., Fairbanks. Statewide Office of Institutional Research.

    This facilities inventory report presents a comprehensive listing of physical assets owned and operated by the University of Alaska and includes, for each asset, data on average age, weighted average age, gross square footage, original total project funding, and the asset's plant investment value adjusted to the current year. Facilities are listed…

  19. Northern gas: Williams petrochemical feasibility study

    Chappell, D. [Williams Energy Canada, Calgary, AB (Canada)

    2002-07-01

    Williams Energy is a company that is involved in the following fields: gas pipelines, exploration and production, midstream, refining, petrochemical, power, and marketing and trading. The author provides an overview of the global and Canadian infrastructure before proceeding to discuss Arctic gas, which is viewed by Williams Energy as necessary. It favors the Alaska Highway route with a consortium for project development. Williams performed a petrochemical study to determine the feasibility of a petrochemical complex utilizing natural gas liquid from an Arctic gas pipeline. The scope of the study encompassed facilities (extraction plant, cracker, polyolefins plant), size (world scale, approximately 2 billion pounds per year), and location (Fairbanks or Alberta). The study led to the following findings: (1) review of several scenarios for both locations, (2) complex to produce two grades of polyethylene, (3) feedstock cost favors Alaska, (4) construction costs lower in Alberta, (5) and the primary market for the Alaska complex would be northeast Asia, while the primary market for the Alberta location would be the United States. It was determined that both options would be viable, however Alberta was favored due to the polyethylene forecast. The challenges still being faced by Williams include low frac spread, market inefficiencies, empress volumes, carbon dioxide, and fuel and electricity cost. Each of these challenges is discussed separately. The author concludes by indicating that incremental ethane is available, carbon dioxide issues need resolution, and Alberta and Alaska are attractive for Arctic ethane petrochemical production. figs.

  20. Tundra Rehabilitation in Alaska's Arctic

    Lynn, L. A.

    2012-12-01

    Oil exploration in Alaska's Arctic has been conducted for more than 40 years, resulting in over 3,640 ha of gravel fill placed for roads, pads, and airstrips to support the industry. Likewise, tundra disturbance from burying power lines and by tundra vehicle travel are also common. Rehabilitation of disturbed sites began around 2002, with well over 150 ha that has been previously treated or is currently being rehabilitated. Two primary goals of rehabilitation efforts have been 1) revegetation by indigenous species, and 2) limiting thermokarst. Early efforts were concerned that removing gravel and having exposed bare ground would lead to extensive subsidence and eolian erosion. Native grass cultivars (e.g. Poa glauca, Arctagrostis latifolia, and Festuca rubra) were seeded to create vegetation cover quickly with the expectation that these grasses would survive only temporarily. The root masses and leaf litter were also expected to trap indigenous seed to enhance natural recolonization by indigenous plants. Due to the remote location of these sites, many of which are only accessible by helicopter, most are visited only two to three times following cultivation treatments, providing a limited data pool. At many sites, the total live seeded grass cover declined about 15% over the first 5¬-6 years (from around 30% to 15% cover), while total live indigenous vascular cover increased from no or trace cover to an average of 10% cover in that time. Cover of indigenous vascular plants at sites that were not seeded with native grass cultivars averaged just less than 10% after 10 years, showing no appreciable difference between the two approaches. Final surface elevations at the sites affect local hydrology and soil moisture. Other factors that influence the success of vegetation cover are proximity to the Arctic coast (salt effects), depth of remaining gravel, and changes in characteristics of the near-surface soil. Further development of rehabilitation techniques and the

  1. Fiscal Year 1988 program report: Alaska Water Research Center

    Kane, D.L.

    1990-01-01

    The contents of this study includes: water problems and issues of Alaska; program goals and priorities; research project synopses are: radium levels in, and removal from, ground waters of interior alaska; assessment of stream-flow sediment transport for engineering projects; productivity within deep glacial gravels under subarctic Alaska rivers; nitrogen-cycle dynamics in a subarctic lake; and the use of peat mounds for treatment of household waste water

  2. Geothermal energy in Alaska: site data base and development status

    Markle, D.

    1979-04-01

    The following are presented: the history of geothermal energy in Alaska; a history of Alaska land ownership; legal and institutional barriers; and economics. Development, the socio-economic and physical data concerning geothermal energy are documented by regions. The six regions presented are those of the present Alaska State Planning Activities and those of the Federal Land Use Commission. Site data summaries of the one hundred and four separate geothermal spring locations are presented by these regions. (MHR)

  3. Environmental Impact Statement for the Modernization and Enhancement of Ranges, Airspace, and Training Areas in the Joint Pacific Alaska Range Complex in Alaska. Volume 2 - Appendices A through L

    2013-06-01

    Spenard Road, Anchorage, Alaska. Tuesday , January 18, 2011:6:30-8:30 p.m., Caribou Hotel, Mile 186.5 Grand Highway, Glenallen, Alaska. Wednesday...Highway, Healy, Alaska. Tuesday , january 25, 2011:6:30-8:30 p.m., Swiss Alaska Inn, 22056 South F Street, Talkeetna, Alaska. Wednesday, january...Board of Fisheries Mel Morris , Board Member, Alaska Board of Fisheries Mike Smith, Board Member, Alaska Board of Fisheries Cliff Judkins, Chair

  4. Alaska Highway bibliography, 3rd edition

    Prange, Laurie

    Since the early 20th century various schemes were considered for the construction of roads, trails or railways 71 to link the Yukon, northern British Columbia and Alaska to the “outside.” These schemes were motivated by economic interests, including mining, lumber and tourism concerns. During...... the 1920s and 1930s a small but vocal group of “builders” began to campaign for a highway, either a coastal or inland route, to improve the northwest’s economic base. With the impending threat of war in the late 1930s, there was an increasing awareness by the American and Canadian governments...... increasing military needs. The unexpected bombing of Pearl Harbour in December 1941 stimulated interest in the construction of the Alaska Highway by the American government. The U.S. Army Corps of Engineers selected a route based on the location of the NWSR airfields and the military needs for an alternative...

  5. The Alaska North Slope spill analysis

    Pearson, Leslie; Robertson, Tim L.; DeCola, Elise; Rosen, Ira

    2011-01-01

    This paper reports Alaska North Slope crude oil spills, provides information to help operators identify risks and presents recommendations for future risk reduction and mitigation measures that may reduce the frequency and severity of future spills from piping infrastructure integrity loss. The North Slope spills analysis project was conducted during 2010 by compiling available spill data, and analyzing the cause of past spills in wells and associated piping, flowlines, process centers with their associated piping and above ground storage tanks, and crude oil transmission pipelines. An expert panel, established to provide independent review of this analysis and the presented data, identified seven recommendations on measures, programs, and practices to monitor and address common causes of failures while considering information provided from regulators and operators. These recommendations must be evaluated by the State of Alaska which will consider implementation options to move forward. Based on the study observations, future analyses may show changes to some of the observed trends.

  6. Environmental Audit of the Alaska Power Administration

    1992-10-01

    This report documents the results of the Comprehensive Baseline Environmental Audit of the Alaska Power Administration (APA) headquartered in Juneau, Alaska. This Audit was conducted by the US Department of Energy's (DOE's) Office of Environmental Audit (EH-24) from August 24 to December 8, 1992. The scope of the Audit was comprehensive, covering all environmental programs and activities with the exception of those relating to the National Environmental Policy Act (NEPA). Specifically considered was the compliance status of APA regarding Federal, state, and local statutes and regulations, DOE Orders and Directives, and best management practices. The technical disciplines addressed by the Audit were: air, surface water/drinking water, groundwater, waste management, toxic and chemical materials, quality assurance, inactive waste sites, and environmental management. Due to the nature of the activities carried out at the two Federal hydroelectric projects operated by APA, the area of radiation was not investigated during the Audit

  7. Southwest Alaska Regional Geothermal Energy Projec

    Holdmann, Gwen [Univ. of Alaska, Fairbanks, AK (United States)

    2015-04-30

    Drilling and temperature logging campaigns between the late 1970's and early 1980’s measured temperatures at Pilgrim Hot Springs in excess of 90°C. Between 2010 and 2014 the University of Alaska used a variety of methods including geophysical surveys, remote sensing techniques, heat budget modeling, and additional drilling to better understand the resource and estimate the available geothermal energy.

  8. 76 FR 16804 - Alaska Native Claims Selection

    2011-03-25

    ... DEPARTMENT OF THE INTERIOR Bureau of Land Management [AA-8102-05, AA-8102-08, AA-8102-10, AA-8102-25, AA-8102-28, AA-8102- 37, AA-8102-47; LLAK965000-L14100000-KC0000-P] Alaska Native Claims... phone at 907-271-5960, by e-mail at ak[email protected] , or by telecommunication device (TTD...

  9. Wildlife disease and environmental health in Alaska

    Van Hemert, Caroline; Pearce, John; Oakley, Karen; Whalen, Mary

    2013-01-01

    Environmental health is defined by connections between the physical environment, ecological health, and human health. Current research within the U.S. Geological Survey (USGS) recognizes the importance of this integrated research philosophy, which includes study of disease and pollutants as they pertain to wildlife and humans. Due to its key geographic location and significant wildlife resources, Alaska is a critical area for future study of environmental health.

  10. Bedrock geologic map of the northern Alaska Peninsula area, southwestern Alaska

    Wilson, Frederic H.; Blodgett, Robert B.; Blome, Charles D.; Mohadjer, Solmaz; Preller, Cindi C.; Klimasauskas, Edward P.; Gamble, Bruce M.; Coonrad, Warren L.

    2017-03-03

    The northern Alaska Peninsula is a region of transition from the classic magmatic arc geology of the Alaska Peninsula to a Proterozoic and early Paleozoic carbonate platform and then to the poorly understood, tectonically complex sedimentary basins of southwestern Alaska. Physiographically, the region ranges from the high glaciated mountains of the Alaska-Aleutian Range to the coastal lowlands of Cook Inlet on the east and Bristol Bay on the southwest. The lower Ahklun Mountains and finger lakes on the west side of the map area show strong effects from glaciation. Structurally, a number of major faults cut the map area. Most important of these are the Bruin Bay Fault that parallels the coast of Cook Inlet, the Lake Clark Fault that cuts diagonally northeast to southwest across the eastern part of the map area, and the presently active Holitna Fault to the northwest that cuts surficial deposits.Distinctive rock packages assigned to three provinces are overlain by younger sedimentary rocks and intruded by widely dispersed latest Cretaceous and (or) early Tertiary granitic rocks. Much of the east half of the map area lies in the Alaska-Aleutian Range province; the Jurassic to Tertiary Alaska-Aleutian Range batholith and derivative Jurassic sedimentary rocks form the core of this province, which is intruded and overlain by the Aleutian magmatic arc. The Lime Hills province, the carbonate platform, occurs in the north-central part of the map area. The Paleozoic and Mesozoic Ahklun Mountains province in the western part of the map area includes abundant chert, argillite, and graywacke and lesser limestone, basalt, and tectonic mélange. The Kuskokwim Group, an Upper Cretaceous turbidite sequence, is extensively exposed and bounds all three provinces in the west-central part of the map area.

  11. A global change policy for Alaska

    Cole, H.

    1993-01-01

    The Alaska Science and Engineering Advisory Committee attempted to formulate a suitable state policy for global climate change. The main elements and rationale for this policy are described, along with lessons learned from the Montreal protocol on global ozone and the policy itself. A discussion of issues relating to public presentation and reaction to a climate change policy indicates that elements necessary for a strategy presenting a case for global change needs to be credible, simple, and unambiguous, with risks clearly defined. Society and business must see themselves as stakeholders in the issue, and policies must be formulated accordingly. The Montreal protocol provides an example of success in advanced planning on a major global issue. The six main components of the Alaskan policy relate to fossil fuel production and marketing, the economic mix of energy production for in-state use, the efficiency and effectiveness of energy end-use services, the impact of climatic change on Alaska as a geographic unit, Alaska as a high-latitude site for climate change monitoring and analysis, and Alaskan participation with other countries in research and policy development. 7 refs

  12. Bears and pipeline construction in Alaska

    Follmann, E.H.; Hechtel, J.L. (Univ. of Alaska Fairbanks, AK (USA))

    1990-06-01

    Serious problems were encountered with bears during construction of the 1274-km trans-Alaska oil pipeline between Prudhoe Bay and Valdez. This multi-billion-dollar project traversed both black bear (Ursus americanus Pallas) and grizzly bear (U. arctos L.) habitat throughtout its entire length. Plans for dealing with anticipated problems with bears were often inadequate. Most (71%) problems occurred north of the Yukon River in a previously roadless wilderness where inadequate refuse disposal and widespread animal feeding created dangerous situations. Of the 192 officially reported bear problems associated with the Trans-Alaska Pipeline System (TAPS) (1971-1979), about 65% involved the presence of bears in camps or dumps, 13% the feeding of bears on garbage or handouts, 10% property damage or economic loss, 7% bears under and in buildings, and only 5% charges by bears. Remarkably, no bear-related injuries were reported, suggesting that bears became accustomed to people and did not regard them as a threat. Following construction of the TAPS there have been proposals for pipelines to transport natural gas from Prudhoe Bay to southern and Pacific-rim markets. Based on past experience, some animal control measures were developed during the planning phase for the authorized gas pipeline route in Alaska. Fences installed around 100-person survey camps were found to be effective in deterring bears in two traditionally troublesome areas. 16 refs., 7 figs., 1 tab.

  13. Sustainable Energy Solutions for Rural Alaska

    Allen, Riley [Regulatory Assistance Project, Montpelier, VT (United States); Brutkoski, Donna [Regulatory Assistance Project, Montpelier, VT (United States); Farnsworth, David [Regulatory Assistance Project, Montpelier, VT (United States); Larsen, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-04-22

    The state of Alaska recognizes the challenges these rural communities face and provides financial support via the Power Cost Equalization (PCE) program. The PCE subsidizes the electricity prices paid by customers of these high-cost utilities. The PCE program is designed to spread the benefits of Alaska’s natural resources more evenly throughout the state. Yet even with this subsidy, electricity is still much more expensive for these rural customers. And beyond the PCE, other forms of assistance to rural utilities are becoming scarce given the state’s current fiscal environment. Nearly 90 percent of Alaska’s unrestricted budget funds in recent years have been tied to oil royalties—a sector experiencing significant declines in production and oil prices. Consequently, as Alaska looks to tighten budgets, the challenge of lowering rural utility costs, while encouraging self-sufficiency, has become more urgent.This study examines reliability, capital and strategic planning, management, workforce development, governance, financial performance and system efficiency in the various communities visited by the research team. Using those attributes, a tier system was developed to categorize rural Alaska utilities into Leading and Innovating Systems (Tier I), Advanced Diesel Systems (Tier II), Basic Systems (Tier III), and Underperforming Systems (Tier IV). The tier approach is not meant to label specific utilities, but rather to provide a general set of benchmarks and guideposts for improvement.

  14. Triggered tremor sweet spots in Alaska

    Gomberg, Joan; Prejean, Stephanie

    2013-01-01

    To better understand what controls fault slip along plate boundaries, we have exploited the abundance of seismic and geodetic data available from the richly varied tectonic environments composing Alaska. A search for tremor triggered by 11 large earthquakes throughout all of seismically monitored Alaska reveals two tremor “sweet spots”—regions where large-amplitude seismic waves repeatedly triggered tremor between 2006 and 2012. The two sweet spots locate in very different tectonic environments—one just trenchward and between the Aleutian islands of Unalaska and Akutan and the other in central mainland Alaska. The Unalaska/Akutan spot corroborates previous evidence that the region is ripe for tremor, perhaps because it is located where plate-interface frictional properties transition between stick-slip and stably sliding in both the dip direction and laterally. The mainland sweet spot coincides with a region of complex and uncertain plate interactions, and where no slow slip events or major crustal faults have been noted previously. Analyses showed that larger triggering wave amplitudes, and perhaps lower frequencies (tremor. However, neither the maximum amplitude in the time domain or in a particular frequency band, nor the geometric relationship of the wavefield to the tremor source faults alone ensures a high probability of triggering. Triggered tremor at the two sweet spots also does not occur during slow slip events visually detectable in GPS data, although slow slip below the detection threshold may have facilitated tremor triggering.

  15. Bryophytes from Tuxedni Wilderness area, Alaska

    Schofield, W.B.; Talbot, S. S.; Talbot, S.L.

    2002-01-01

    The bryoflora of two small maritime islands, Chisik and Duck Island (2,302 ha), comprising Tuxedni Wilderness in western lower Cook Inlet, Alaska, was examined to determine species composition in an area where no previous collections had been reported. The field study was conducted from sites selected to represent the totality of environmental variation within Tuxedni Wilderness. Data were analyzed using published reports to compare the bryophyte distribution patterns at three levels, the Northern Hemisphere, North America, and Alaska. A total of 286 bryophytes were identified: 230 mosses and 56 liverworts. Bryum miniatum, Dichodontium olympicum, and Orthotrichum pollens are new to Alaska. The annotated list of species for Tuxedni Wilderness expands the known range for many species and fills distribution gaps within Hulte??n's Central Pacific Coast district. Compared with bryophyte distribution in the Northern Hemisphere, the bryoflora of Tuxedni Wilderness primarily includes taxa of boreal (61%), montane (13%), temperate (11%), arctic-alpine (7%), cosmopolitan (7%), distribution; 4% of the total moss flora are North America endemics. A brief summary of the botanical exploration of the general area is provided, as is a description of the bryophytes present in the vegetation and habitat types of Chisik and Duck Islands.

  16. The geochemical atlas of Alaska, 2016

    Lee, Gregory K.; Yager, Douglas B.; Mauk, Jeffrey L.; Granitto, Matthew; Denning, Paul; Wang, Bronwen; Werdon, Melanie B.

    2016-06-21

    A rich legacy of geochemical data produced since the early 1960s covers the great expanse of Alaska; careful treatment of such data may provide significant and revealing geochemical maps that may be used for landscape geochemistry, mineral resource exploration, and geoenvironmental investigations over large areas. To maximize the spatial density and extent of data coverage for statewide mapping of element distributions, we compiled and integrated analyses of more than 175,000 sediment and soil samples from three major, separate sources: the U.S. Geological Survey, the National Uranium Resource Evaluation program, and the Alaska Division of Geological & Geophysical Surveys geochemical databases. Various types of heterogeneity and deficiencies in these data presented major challenges to our development of coherently integrated datasets for modeling and mapping of element distributions. Researchers from many different organizations and disparate scientific studies collected samples that were analyzed using highly variable methods throughout a time period of more than 50 years, during which many changes in analytical techniques were developed and applied. Despite these challenges, the U.S. Geological Survey has produced a new systematically integrated compilation of sediment and soil geochemical data with an average sample site density of approximately 1 locality per 10 square kilometers (km2) for the entire State of Alaska, although density varies considerably among different areas. From that compilation, we have modeled and mapped the distributions of 68 elements, thus creating an updated geochemical atlas for the State.

  17. 47 CFR 80.705 - Hours of service of Alaska-public fixed stations.

    2010-10-01

    ... SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Alaska Fixed Stations § 80.705 Hours of service of Alaska-public fixed stations. Each Alaska-public fixed station whose hours of service are not... 47 Telecommunication 5 2010-10-01 2010-10-01 false Hours of service of Alaska-public fixed...

  18. 76 FR 32142 - Proposed Information Collection; Comment Request; Alaska Saltwater Sportfishing Economic Survey

    2011-06-03

    ... marine sport species in Alaska (e.g., lingcod and rockfish). The data collected from the survey will be... a survey to collect data for conducting economic analyses of marine sport fishing in Alaska. This... management of the Pacific halibut sport fishery off Alaska, while the State of Alaska manages the salmon...

  19. 75 FR 62460 - Revocation and Establishment of Class E Airspace; Northeast Alaska, AK

    2010-10-12

    ...-0445; Airspace Docket No. 10-AAL-13] Revocation and Establishment of Class E Airspace; Northeast Alaska... removes redundant Class E airspace in Northeast Alaska and establishes Class E airspace near Eagle, Alaska... proposed rulemaking in the Federal Register to remove some Class E airspace in Northeast Alaska and...

  20. Demography of Dall's sheep in northwestern Alaska

    Kleckner, Christopher; Udevitz, Mark S.; Adams, Layne G.; Shults, Brad S.

    2003-01-01

    Dall’s sheep in northwestern Alaska declined in the early 1990s following the severe 1989-90 and 1990-91 winters. In the Baird Mountains of Noatak National Preserve, estimates of adult sheep declined by 50% from 800 in 1989 to under 400 in 1991. Population counts remained low throughout 1991 to 1996, reaching a minimum of 244 adult sheep in 1996. Few lambs were observed during annual midsummer aerial surveys in 1991 to 1994. We suspect that these declines resulted from a combination of poorer nutritional condition and increased vulnerability of sheep to predation resulting from severe winter conditions.As a result of these declines, both subsistence and sport hunting seasons were closed by emergency order in 1991, resulting in substantial management controversy. The affected publics, although willing to accept the closures, questioned the validity of the sheep survey data and strongly emphasized their interest in restoring harvests as soon as populations increased sufficiently. In 1995 the Northwest Arctic Regional Advisory Council, the local advisory committee for the Federal Subsistence Board, passed a motion supporting efforts to initiate research on sheep populations in the region to better understand the factors limiting sheep populations and to evaluate sheep survey methodologies.Currently estimates of Dall’s sheep population size and composition in the western Brooks Range are based on intensive fixed-wing aerial surveys conducted annually since 1986 in areas including the Baird Mountains. The annual variation in recent Baird Mountains aerial counts cannot be explained with reasonable assumptions about reproduction and survival, suggesting that there is some variability in the proportion of the population observed each year or that a substantial number of sheep move during the survey. Prior to our research, no attempt had been made to estimate visibility bias or precision for these surveys.Our understanding of Dall’s sheep population biology comes

  1. Alaska Seismic Network Upgrade and Expansion

    Sandru, J. M.; Hansen, R. A.; Estes, S. A.; Fowler, M.

    2009-12-01

    AEIC (Alaska Earthquake Information Center) has begun the task of upgrading the older regional seismic monitoring sites that have been in place for a number of years. Many of the original sites (some dating to the 1960's) are still single component analog technology. This was a very reasonable and ultra low power reliable system for its day. However with the advanced needs of today's research community, AEIC has begun upgrading to Broadband and Strong Motion Seismometers, 24 bit digitizers and high-speed two-way communications, while still trying to maintain the utmost reliability and maintaining low power consumption. Many sites have been upgraded or will be upgraded from single component to triaxial broad bands and triaxial accerometers. This provided much greater dynamic range over the older antiquated technology. The challenge is compounded by rapidly changing digital technology. Digitizersand data communications based on analog phone lines utilizing 9600 baud modems and RS232 are becoming increasingly difficult to maintain and increasingly expensive compared to current methods that use Ethernet, TCP/IP and UDP connections. Gaining a reliable Internet connection can be as easy as calling up an ISP and having a DSL connection installed or may require installing our own satellite uplink, where other options don't exist. LANs are accomplished with a variety of communications devices such as spread spectrum 900 MHz radios or VHF radios for long troublesome shots. WANs are accomplished with a much wider variety of equipment. Traditional analog phone lines are being used in some instances, however 56K lines are much more desirable. Cellular data links have become a convenient option in semiurban environments where digital cellular coverage is available. Alaska is slightly behind the curve on cellular technology due to its low population density and vast unpopulated areas but has emerged into this new technology in the last few years. Partnerships with organizations

  2. Alaska oil and gas: Energy wealth or vanishing opportunity

    Thomas, C.P.; Doughty, T.C.; Faulder, D.D.; Harrison, W.E.; Irving, J.S.; Jamison, H.C.; White, G.J.

    1991-01-01

    The purpose of the study was to systematically identify and review (a) the known and undiscovered reserves and resources of arctic Alaska, (b) the economic factors controlling development, (c) the risks and environmental considerations involved in development, and (d) the impacts of a temporary shutdown of the Alaska North Slope Oil Delivery System (ANSODS). 119 refs., 45 figs., 41 tabs.

  3. Downed woody material in southeast Alaska forest stands.

    Frederic R. Larson

    1992-01-01

    Data collected in conjunction with the multiresource inventory of southeast Alaska in 1985-86 included downed wood along 234 transects at 60 locations. Transects occurred in 11 forest types and 19 plant associations within the entire southeastern Alaska archipelago. Downed wood weights in forest types ranged from 1232 kilograms per hectare (0.6 ton per acre) in muskeg...

  4. 75 FR 8396 - Izembek National Wildlife Refuge, Cold Bay, Alaska

    2010-02-24

    ...] Izembek National Wildlife Refuge, Cold Bay, Alaska AGENCY: U.S. Fish and Wildlife Service, Interior..., we will hold public scoping meetings in King Cove, Cold Bay, Sand Point, and Nelson Lagoon in Alaska... Aleutian arc chain of volcanoes. Landforms include mountains, active volcanoes, U-shaped valleys, glacial...

  5. Tradeoffs and interdependence in the Alaska cant and log markets.

    Donald Flora; Una Woller; Michael. Neergaard

    1990-01-01

    During the 1980s, log exports from Alaska have risen while cant (lumber) exports have declined. Eight explanations for the difference between cant and log market behavior are explored. It seems that declining demand for wood products in Japan and a surge of private-sector log harvests in Alaska are enough to account for the apparent substitution of logs for cants. It...

  6. Resilience of Athabascan subsistence systems to interior Alaska's changing climate

    Gary P. Kofinas; F. Stuart Chapin; Shauna BurnSilver; Jennifer I. Schmidt; Nancy L. Fresco; Knut Kielland; Stephanie Martin; Anna Springsteen; T. Scott Rupp

    2010-01-01

    Subsistence harvesting and wild food production by Athabascan peoples is part of an integrated social-ecological system of interior Alaska. We describe effects of recent trends and future climate change projections on the boreal ecosystem of interior Alaska and relate changes in ecosystem services to Athabascan subsistence. We focus primarily on moose, a keystone...

  7. Developing a mariculture business in Alaska: information and resources.

    RaLonde, Ray; Paust, Brian

    1993-01-01

    This booklet provides information needed to start a mariculture business in Alaska, including agency resources and lists of publications. Everything you need to know about permits, planning, and financing is presented in an easy to follow layout. From preliminary steps to marketable product, this booklet will help the aquaculturist with all species farmed in Alaska, including oysters, mussels, scallops, clams, and seaweed. (41pp.)

  8. NSF-supported education/outreach program takes young researchers to the Arctic

    Alexeev, V. A.; Walsh, J. E.; Hock, R.; Kaden, U.; Euskirchen, E. S.; Kholodov, A. L.; Bret-Harte, M. S.; Sparrow, E. B.

    2015-12-01

    Today, more than ever, an integrated cross-disciplinary approach is necessary to explain changes in the Arctic and understand their implications for the human environment. Advanced training and active involvement of early-career scientists is an important component of this cross-disciplinary approach. This effort led by the International Arctic Research Center at the University of Alaska Fairbanks (UAF) started in 2003. The newly supported project in 2013 is planning four summer schools (one per year) focused on four themes in four different Arctic locations. It provides the participants with an interdisciplinary perspective on Arctic change and its impacts on diverse sectors of the North. It is linked to other ongoing long-term observational and educational programs (e.g. NABOS, Nansen and Amundsen Basins Observational System; LTER, Long Term Environmental Research) and targets young scientists by using the interdisciplinary and place-based setting to broaden their perspective on Arctic change and to enhance their communication skills. Each course for 15-20 people consists of classroom and hands-on components and work with a multidisciplinary group of mentors on projects devoted to themes exemplified by the location. A specialist from the School of Education at UAF evaluates student's progress during the summer schools. Lessons learned during the 12 years of conducting summer schools, methods of attracting in-kind support and approaches to teaching students are prominently featured in this study. Activities during the most recent school, conducted in Fairbanks and LTER Toolik Lake Field Station in 2015 are the focus of this presentation.

  9. Satellite Sounder Data Assimilation for Improving Alaska Region Weather Forecast

    Zhu, Jiang; Stevens, E.; Zavodsky, B. T.; Zhang, X.; Heinrichs, T.; Broderson, D.

    2014-01-01

    Data assimilation has been demonstrated very useful in improving both global and regional numerical weather prediction. Alaska has very coarser surface observation sites. On the other hand, it gets much more satellite overpass than lower 48 states. How to utilize satellite data to improve numerical prediction is one of hot topics among weather forecast community in Alaska. The Geographic Information Network of Alaska (GINA) at University of Alaska is conducting study on satellite data assimilation for WRF model. AIRS/CRIS sounder profile data are used to assimilate the initial condition for the customized regional WRF model (GINA-WRF model). Normalized standard deviation, RMSE, and correlation statistic analysis methods are applied to analyze one case of 48 hours forecasts and one month of 24-hour forecasts in order to evaluate the improvement of regional numerical model from Data assimilation. The final goal of the research is to provide improved real-time short-time forecast for Alaska regions.

  10. 76 FR 78642 - TransCanada Alaska Company, LLC; Notice of Public Scoping Meetings for the Planned Alaska...

    2011-12-19

    ... Project (APP). The APP is a planned natural gas pipeline system that would transport gas produced on the Alaska North Slope to the Alaska-Canada border to connect with a pipeline system in Canada for onward..., 2051 Barter Avenue Kaktovik, AK. Dated: December 9, 2011. Kimberly D. Bose, Secretary. [FR Doc. 2011...

  11. 78 FR 11988 - Migratory Bird Subsistence Harvest in Alaska; Harvest Regulations for Migratory Birds in Alaska...

    2013-02-21

    ..., accomplishments since the Migratory Bird Treaties with Canada and Mexico were amended, and a history, was... purposes during the spring and summer months. The Canada and Mexico migratory bird treaties were amended...-0066; FF09M21200-123-FXMB1231099BPP0L2] RIN 1018-AY70 Migratory Bird Subsistence Harvest in Alaska...

  12. 75 FR 18764 - Migratory Bird Subsistence Harvest in Alaska; Harvest Regulations for Migratory Birds in Alaska...

    2010-04-13

    ... rulemaking, accomplishments since the Migratory Bird Treaties with Canada and Mexico were amended, and a... the spring and summer months. The Canada and Mexico migratory bird treaties were recently amended for... rural Alaska. The amendments to the Migratory Bird Treaties with Canada and Mexico recognize the...

  13. Natality and calf mortality of the Northern Alaska Peninsula and Southern Alaska Peninsula caribou herds

    Richard A. Sellers

    2003-04-01

    Full Text Available We studied natality in the Northern Alaska Peninsula (NAP and Southern Alaska Peninsula (SAP caribou (Rangifer tarandus granti herds during 1996-1999, and mortality and weights of calves during 1998 and 1999- Natality was lower in the NAP than the SAP primarily because most 3-year-old females did not produce calves in the NAP Patterns of calf mortality in the NAP and SAP differed from those in Interior Alaska primarily because neonatal (i.e., during the first 2 weeks of life mortality was relatively low, but mortality continued to be significant through August in both herds, and aggregate annual mortality was extreme (86% in the NAP Predators probably killed more neonatal calves in the SAP, primarily because a wolf den (Canis lupus was located on the calving area. Despite the relatively high density of brown bears (Ursus arctos and bald eagles (Haliaeetus leucocephalus, these predators killed surprisingly few calves. Golden eagles (Aquila chrysaetos were uncommon on the Alaska Peninsula. At least 2 calves apparently died from pneu¬monia in the range of the NAP but none were suspected to have died from disease in the range of the SAP. Heavy scav¬enging by bald eagles complicated determining cause of death of calves in both the NAP and SAP.

  14. 77 FR 17353 - Migratory Bird Subsistence Harvest in Alaska; Harvest Regulations for Migratory Birds in Alaska...

    2012-03-26

    ... was that the Kodiak Island representative expressed concerns that he was not familiar with the AMBCC process and was not familiar with the history of the regional regulations. The Kodiak Archipelago... ensure an effective and meaningful role for Alaska's indigenous inhabitants in [[Page 17358

  15. Evaluation of Forest Health Conditions using Unmanned Aircraft Systems (UAS)

    Hatfield, M. C.; Heutte, T. M.

    2016-12-01

    US Forest Service Alaska Region Forest Health Protection (FHP) and University of Alaska Fairbanks, Alaska Center for Unmanned Aircraft Systems Integration (ACUASI) are evaluating capability of Unmanned Aerial Systems (UAS) to monitor forest health conditions in Alaska's Interior Region. In July 2016, the team deployed UAS at locations in the Tanana Valley near Fairbanks in order to familiarize FHP staff with capabilities of UAS for evaluating insect and disease damage. While many potential uses of UAS to evaluate and monitor forest health can be envisioned, this project focused on use of a small UAS for rapid assessment of insect and disease damage. Traditional ground-based methods are limited by distance from ground to canopy and inaccessibility of forest stands due to terrain conditions. Observation from fixed-wing aircraft provide a broad overview of conditions but are limited by minimum safe flying altitude (500' AGL) and aircraft speed ( 100 mph). UAS may provide a crucial bridge to fill in gaps between ground and airborne methods, and offer significant cost savings and greater flexibility over helicopter-based observations. Previous uses of UAS for forest health monitoring are limited - this project focuses on optimizing choice of vehicle, sensors, resolution and area scanned from different altitudes, and use of visual spectrum vs NIR image collection. The vehicle selected was the ACUASI Ptarmigan, a small hexacopter (based on DJI S800 airframe and 3DR autopilot) capable of carrying a 1.5 kg payload for 15 min for close-range environmental monitoring missions. Sites were chosen for conditions favorable to UAS operation and presence of forest insect and disease agents including spruce broom rust, aspen leaf miner, birch leaf roller, and willow leafblotch miner. A total of 29 flights were conducted with 9000+ images collected. Mission variables included camera height, UAS speed, and medium- (Sony NEX-7) vs low-resolution (GoPro Hero) cameras. Invaluable

  16. Project chariot remediation - the use of DOE's observational approach for environmental restoration with elements of the new DOE safer approach

    Hopkins, A.; Stewart, C.; Cabble, K.

    1994-01-01

    The primary purpose of Project Chariot was to investigate the technical problems and assess the effect of the proposed harbor excavation using nuclear explosives in Alaska. However, no nuclear devices were brought to the Project Chariot site. Between 1959 and 1961 various environmental tests were conducted. During the course of these environmental studies, the U.S. Geological Survey (USGS) granted the use of up to 5 curies of radioactive material at the Chariot site in Cape Thompson, Alaska; however only 26 millicuries were ever actually used. The tests were conducted in 12 test plots which were later gathered together and were mixed with in situ-soils generating approximately 1,600 cubic feet of soil. This area was then covered with four feet of clean soil, creating a mound. In 1962, the site was abandoned. A researcher at the University of Alaska at Fairbanks obtained in formation regarding the tests conducted and the materials left at the Project Chariot site. In response to concerns raised through the publication of this information, it was decided by the Department of Energy (DOE) that total remediation of the mound be completed within the year. During the summer of 1993, IT Corporation carried out the assessment and remediation of the Project Chariot site using a streamlined approach to waste site decision making called the Observational Approach (OA), and added elements of the new DOE Streamlined Approach for Environmental Restoration (SAFER). This remediation and remediation approach is described

  17. The planned Alaska SAR Facility - An overview

    Carsey, Frank; Weeks, Wilford

    1987-01-01

    The Alaska SAR Facility (ASF) is described in an overview fashion. The facility consists of three major components, a Receiving Ground System, a SAR Processing System and an Analysis and Archiving System; the ASF Program also has a Science Working Team and the requisite management and operations systems. The ASF is now an approved and fully funded activity; detailed requirements and science background are presented for the facility to be implemented for data from the European ERS-1, the Japanese ERS-1 and Radarsat.

  18. Alaska's rare earth deposits and resource potential

    Barker, James C.; Van Gosen, Bradley S.

    2012-01-01

    Alaska’s known mineral endowment includes some of the largest and highest grade deposits of various metals, including gold, copper and zinc. Recently, Alaska has also been active in the worldwide search for sources of rare earth elements (REE) to replace exports now being limitedby China. Driven by limited supply of the rare earths, combined with their increasing use in new ‘green’ energy, lighting, transportation, and many other technological applications, the rare earth metals neodymium, europium and, in particular, the heavy rare earth elements terbium, dysprosium and yttrium are forecast to soon be in critical short supply (U.S. Department of Energy, 2010).

  19. Surface-water investigations at Barrow, Alaska

    Jones, Stanley H.

    1972-01-01

    The U.S. Public Health Service is currently developing plans for a long-term water supply and sewage treatment system for the village of Barrow, Alaska. To assist in planning, the U.S. Geological Survey was requested to initiate a cooperative streamflow data-collection program with the U.S. Public Health Service in June 1972 to determine the availability of surface water and the areal distribution of runoff in the Barrow area. This basic-data report summarizes the streamflow data collected from June 1 through July 10, 1972, at three gaging stations in the Barrow area (fig. 1) and discusses the future data-collection program.

  20. A Decade of Shear-Wave Splitting Observations in Alaska

    Bellesiles, A. K.; Christensen, D. H.; Abers, G. A.; Hansen, R. A.; Pavlis, G. L.; Song, X.

    2010-12-01

    Over the last decade four PASSCAL experiments have been conducted in different regions of Alaska. ARCTIC, BEAAR and MOOS form a north-south transect across the state, from the Arctic Ocean to Price Williams Sound, while the STEEP experiment is currently deployed to the east of that line in the St Elias Mountains of Southeastern Alaska. Shear-wave splitting observations from these networks in addition to several permanent stations of the Alaska Earthquake Information Center were determined in an attempt to understand mantle flow under Alaska in a variety of different geologic settings. Results show two dominant splitting patterns in Alaska, separated by the subducted Pacific Plate. North of the subducted Pacific Plate fast directions are parallel to the trench (along strike of the subducted Pacific Plate) indicating large scale mantle flow in the northeast-southwest direction with higher anisotropy (splitting times) within the mantle wedge. Within or below the Pacific Plate fast directions are normal to the trench in the direction of Pacific Plate convergence. In addition to these two prominent splitting patterns there are several regions that do not match either of these trends. These more complex regions which include the results from STEEP could be due to several factors including effects from the edge of the Pacific Plate. The increase of station coverage that Earthscope will bring to Alaska will aid in developing a more complete model for anisotropy and mantle flow in Alaska.

  1. Reconnecting Alaska: Mexican Movements and the Last Frontier

    Sara V. Komarnisky

    2012-06-01

    Full Text Available This paper discusses the initial findings of on-going research with Mexican migrants and immigrants to Alaska. The paper outlines the historical and on-going connections between Alaska and Mexico and explores how and why those connections have been obscured or ignored. Powerful imaginaries are associated with places: Alaska, and 'the north' more generally, and Latin America, and Mexico specifically. My research shows how interesting things happen when they are brought together through movement. People from Acuitzio del Canje, Michoacán began travelling to Alaska (Anchorage, and elsewhere to work in the 1950s, and movement between Mexico and Alaska has continued across generations since then. Today, many Acuitzences who live in Anchorage maintain a close relationship with friends and family members in Acuitzio, and travel back and forth regularly. However, this movement is obscured by ideological work that makes Alaska seem separate, isolated, wild, and a place where Mexicans are not imagined to be. Mexican movements into Alaska over time disrupt this vision, showing how Alaska is connected to multiple other geographies, and making the US-Mexico border a salient reference point in everyday life in Anchorage. When the South moves into the North, it can make us think about both 'Alaska' and 'Mexico' in different ways. When the US-Mexico border is relocated to Anchorage, if only for a moment, it can elicit a reaction of humour or surprise. Why is that? And what does this have to do with how people actually live in an interconnected place?

  2. Financing Opportunities for Renewable Energy Development in Alaska

    Ardani, K.; Hillman, D.; Busche, S.

    2013-04-01

    This technical report provides an overview of existing and potential financing structures for renewable energy project development in Alaska with a focus on four primary sources of project funding: government financed or supported (the most commonly used structure in Alaska today), developer equity capital, commercial debt, and third-party tax-equity investment. While privately funded options currently have limited application in Alaska, their implementation is theoretically possible based on successful execution in similar circumstances elsewhere. This report concludes that while tax status is a key consideration in determining appropriate financing structure, there are opportunities for both taxable and tax-exempt entities to participate in renewable energy project development.

  3. Stable Isotope Mapping of Alaskan Grasses and Marijuana

    Booth, A. L.; Wooller, M. J.

    2008-12-01

    The spatial variation of isotope signatures in organic material is a useful forensic tool, particularly when applied to the task of tracking the production and distribution of plant-derived illicit drugs. In order to identify the likely grow-locations of drugs such as marijuana from unknown locations (i.e., confiscated during trafficking), base isotope maps are needed that include measurements of plants from known grow-locations. This task is logistically challenging in remote, large regions such as Alaska. We are therefore investigating the potential of supplementing our base (marijuana) isotope maps with data derived from other plants from known locations and with greater spatial coverage in Alaska. These currently include >150 samples of modern C3 grasses (Poaceae) as well as marijuana samples (n = 18) from known grow-locations across the state. We conducted oxygen, carbon and nitrogen stable isotope analyses of marijuana and grasses (Poaceae). Poaceae samples were obtained from the University of Alaska Fairbanks (UAF) Museum of the North herbarium collection, originally collected by field botanists from around Alaska. Results indicate that the oxygen isotopic composition of these grasses range from 10‰ to 30‰, and broadly mirror the spatial pattern of water isotopes in Alaska. Our marijuana samples were confiscated around the state of Alaska and supplied to us by the UAF Police Department. δ13C, δ15N and δ18O values exhibit geographic patterns similar to the modern grasses, but carbon and nitrogen isotopes of some marijuana plants appear to be influenced by additional factors related to indoor growing conditions (supplementary CO2 sources and the application of organic fertilizer). As well as providing a potential forensic resource, our Poaceae isotope maps could serve additional value by providing resources for studying ecosystem nutrient cycling, for tracing natural ecological processes (i.e., animal migration and food web dynamics) and providing

  4. Biogeochemistry of a treeline watershed, northwestern Alaska.

    Stottlemyer, R

    2001-01-01

    Since 1950, mean annual temperatures in northwestern Alaska have increased. Change in forest floor and soil temperature or moisture could alter N mineralization rates, production of dissolved organic carbon (DOC) and organic nitrogen (DON), and their export to the aquatic ecosystem. In 1990, we began study of nutrient cycles in the 800-ha Asik watershed, located at treeline in the Noatak National Preserve, northwestern Alaska. This paper summarizes relationships between topographic aspect, soil temperature and moisture, inorganic and organic N pools, C pools, CO2 efflux, growing season net N mineralization rates, and stream water chemistry. Forest floor (O2) C/N ratios, C pools, temperature, and moisture were greater on south aspects. More rapid melt of the soil active layer (zone of annual freeze-thaw) and permafrost accounted for the higher moisture. The O2 C and N content were correlated with moisture, inorganic N pools, CO2 efflux, and inversely with temperature. Inorganic N pools were correlated with temperature and CO2 efflux. Net N mineralization rates were positive in early summer, and correlated with O2 moisture, temperature, and C and N pools. Net nitrification rates were inversely correlated with moisture, total C and N. The CO2 efflux increased with temperature and moisture, and was greater on south aspects. Stream ion concentrations declined and DOC increased with discharge. Stream inorganic nitrogen (DIN) output exceeded input by 70%. Alpine stream water nitrate (NO3-) and DOC concentrations indicated substantial contributions to the watershed DIN and DOC budgets.

  5. Occupational safety and health training in Alaska.

    Hild, C M

    1992-01-01

    We have eleven years of experience delivering a wide variety of worker education programs in cross-cultural settings to reduce the levels of occupational fatalities and injuries in Alaska. We published an instructional manual and informational poster for workers, on Alaska's "Right-To-Know" law regarding chemical and physical hazards. The "Job Hazard Recognition Program" curriculum for high school students has received national acclaim for being proactive in dealing with worker safety education before the student becomes a member of the work force. Adult educational programs and materials have been designed to include less lecture and formal presentation, and more practical "hands on" and on-the-job experience for specific trades and hazards. New industry specific manuals deal with hazardous waste reduction as a method to reduce harm to the employee. Difficulty in getting instructors and training equipment to rural locations is dealt with by becoming creative in scheduling classes, using locally available equipment, and finding regional contacts who support the overall program. Alternative approaches to funding sources include building on regional long-term plans and establishing complementary program objectives.

  6. Global change and its implications for Alaska

    Weller, G.

    1993-01-01

    In the 1980s versions of climate models, the Arctic and Antarctic regions were considered crucial in understanding and predicting climate change, and there is also agreement that climate change will have large impacts in the Arctic since the climate signal is amplified at high latitudes. The earlier climate change scenarios are re-examined for the case of Alaska, in light of more recent information. Observational evidence in the Arctic over the last few decades agrees well with predictions of a current global climate model, including temperature increase over land masses of up to 1 degree C per decade in winter, with smaller changes in summer. Other indirect evidence of a warmer Arctic climate includes receding glaciers and warmer permafrost temperatures. It is predicted that after the CO 2 content of the atmosphere doubles, winter temperatures in Alaska will increase 6-8 degree C. In much of the interior, mean annual temperature will rise above freezing, leading to disappearance of discontinuous permafrost. The growing season would be lengthened by about three weeks, vegetation types and the abundance and distribution of mammals will change, and there will be less sea ice along coastal areas. Impacts on human activities will be both adverse and favorable; for example, in the petroleum industry, maintenance of pipelines and roads will be more difficult but offshore exploration and marine supply operations will be made easier. 6 refs., 3 tabs

  7. Lidar data for the community of Golovin, Alaska

    National Oceanic and Atmospheric Administration, Department of Commerce — This publication presents lidar data collected over the community of Golovin, on the southern coast of the Seward Peninsula in western Alaska (fig. 1). The original...

  8. AFSC/REFM: Atka mackerel Tagging Studies, Aleutian Islands, Alaska

    National Oceanic and Atmospheric Administration, Department of Commerce — From 1999-2015, approximately 130,000 Atka mackerel have been tagged and released in the Aleutian Islands, Alaska, specifically at Seguam Pass, Tanaga Pass, Amchitka...

  9. Western Alaska ESI: M_MAMMAL (Marine Mammal Polygons)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for seals, whales, dolphins, walruses, and Steller sea lions in Western Alaska. Vector polygons in this...

  10. Sitka, Alaska Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Sitka, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is...

  11. 78 FR 15669 - Marine Mammals: Alaska Harbor Seal Habitats

    2013-03-12

    .... 2007; Womble et al. 2010). Vessel-based tourism in Alaska has been increasing rapidly over the last few... collaboration with the Yakutat Tlingit Tribe and Northwest Cruise Ship Association examined the effects of...

  12. North Slope, Alaska ESI: T_MAMMAL (Terrestrial Mammal Polygons)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for brown bears, caribou, and muskoxen for the North Slope, Alaska. Vector polygons in this data set...

  13. North Slope, Alaska ESI: M_MAMMAL (Marine Mammal Polygons)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for whales, seals, walruses, and polar bears for the North Slope of Alaska. Vector polygons in this data...

  14. AFSC/REFM: Alaska groundfish AGEDATA database,1982 to present

    National Oceanic and Atmospheric Administration, Department of Commerce — The AFSC AGEDATA database is a collection of historic and ongoing fish ageing efforts by the Alaska Fisheries Science Center's Age and Growth Program from 1982 to...

  15. Cook Inlet and Kenai Peninsula, Alaska ESI: VOLCANOS (Volcano Points)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains the locations of volcanos in Cook Inlet and Kenai Peninsula, Alaska. Vector points in the data set represent the location of the volcanos....

  16. AFSC/NMML: Southeast Alaska Cetacean Vessel Surveys, 1991 - 2012

    National Oceanic and Atmospheric Administration, Department of Commerce — In 1991, NMML initiated cetacean studies with vessel coverage throughout inland waters of Southeast Alaska. Between 1991 and 1993, line-transect methodology was used...

  17. Southeast Alaska ESI: T_MAMMAL (Terrestrial Mammal Polygons)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains biological resource data for brown bears in Southeast Alaska. Vector polygons in this data set represent locations of bear concentrations....

  18. Shemya, Alaska Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Shemya, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is...

  19. Northern fur seal pup weights, Pribilof Islands, Alaska, 1957-present

    National Oceanic and Atmospheric Administration, Department of Commerce — This database contains northern fur seal pup mass and length data by date, island, rookery and sex on the Pribilof Islands, Alaska, collected between 1957-2012. Mass...

  20. Alaska Steller sea lion Count Database (Non-pups)

    National Oceanic and Atmospheric Administration, Department of Commerce — This database contains counts of adult and juvenile (non-pup) Steller sea lions on rookeries and haulouts in Alaska made between 1904 and 2015. Non-pup counts have...

  1. Alaska Phocid Argos Telemetry Archive (2004-2013)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Polar Ecosystems Program conducts research and monitoring on phocid seals in the East Bering Sea, West Bering Sea, Gulf of Alaska, Beaufort Sea, and Chukchi Sea...

  2. Kodiak, Alaska Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Kodiak, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is...

  3. 24 arc-second Kenai Peninsula Bororugh Alaska Elevation Grid

    National Oceanic and Atmospheric Administration, Department of Commerce — The 24 arc-second Kenai Peninsula Bororugh Alaska Elevation Grid provides bathymetric data in ASCII raster format of 24 second resolution in geographic coordinates....

  4. Sand Point, Alaska Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Sand Point, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  5. Radionuclide Site Survey Report Salchaket (Eielson), Alaska (RN-76)

    Walker, Frank

    1999-01-01

    The purpose of this report is to validate that the Eielson, Alaska, site will fulfill treaty requirements as set forth by the Preparatory Commission for the Comprehensive Test Ban Treaty Organization...

  6. Gravity Data for Southwestern Alaska (1294 records compiled)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (1294 records) were compiled by the Alaska Geological Survey and the U.S. Geological Survey, Menlo Park, California. This data base was...

  7. Alaska Gravity Data per 2 x 4 min Cell (96)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' x 4' gravity density grid for Alaska displays the distribution of about 1.1 million terrestrial and marine gravity data held in the National Geodetic Survey...

  8. Cordova, Alaska Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Cordova, Alaska Forecast Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  9. Unalaska, Alaska Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Unalaska, Alaska Forecast Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  10. Cook Inlet and Kenai Peninsula, Alaska ESI: INVERT (Invertebrate Polygons)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains biological resource data for razor clams in Cook Inlet and Kenai Peninsula, Alaska. Vector polygons in this data set represent locations of...

  11. Seward, Alaska Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Seward, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is...

  12. Adak, Alaska Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Adak, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  13. Cook Inlet and Kenai Peninsula, Alaska ESI: FISH (Fish Polygons)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains biological resource data for herring spawning areas in Cook Inlet and Kenai Peninsula, Alaska. Vector polygons in this data set represent...

  14. Cook Inlet and Kenai Peninsula, Alaska ESI: FISHL (Fish Lines)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains biological resource data for anadromous fish streams in Cook Inlet and Kenai Peninsula, Alaska. Vector lines in this data set represent...

  15. Southeast Alaska ESI: M_MAMPT (Marine Mammal Points)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains biological resource data for seals and sea lions in Southeast Alaska. Points in this data set represent locations of haulout and rookery...

  16. Homer, Alaska Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Homer, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is...

  17. AFSC/ABL: Ocean Acidification in Southeast Alaska

    National Oceanic and Atmospheric Administration, Department of Commerce — This database contains information from one primary project a Southeast Alaska (SEAK) environmental monitoring study. It also includes support analyses for Kodiak...

  18. Nikolski, Alaska Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Nikolski, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  19. Soda Creek springs - metamorphic waters in the eastern Alaska Range

    Richter, D.H.; Donaldson, D.E.; Lamarre, R.A.

    1973-01-01

    The Soda Creek springs are a group of small, cold mineral springs on the southern flank of the eastern Alaska Range. The spring waters contain anomalous concentrations of carbon dioxide, sodium, chlorine, sulfate, boron, and ammonia and are actively precipitating deposits of calcite and aragonite. Sparingly present in these deposits are mixed-layer illite-montmorillonite clays and zeolite minerals. Low-temperaturemetamorphic reactions in subjacent marine sedimentary rocks of Jurassic and Cretaceous age may have produced the fluids and silicate minerals. With only a few exceptions, cool bicarbonate-rich springs in Alaska are concentrated south of the Denali fault system in south-central Alaska, southeastern Alaska, and along the Kaltag-Tintina fault system. These areas are characterized by active or recently activetectonism, major faults and folds, and an abundance of marine sedimentary rocks.

  20. AFSC/REFM: Alaska Saltwater Sport Fishing Charter Business Survey

    National Oceanic and Atmospheric Administration, Department of Commerce — The purpose of this project was to collect cost, earning, and employment information from the Alaska saltwater sport fishing charter business sector during the...

  1. Western Alaska ESI: SOCECON (Socioeconomic Resource Points and Lines)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains human-use resource data for airports, mining sites, area boundaries, and scenic rivers in Western Alaska. Vector points and lines in this data...

  2. Prince William Sound, Alaska ESI: NESTS (Bird Nests)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set comprises the Environmental Sensitivity Index (ESI) data for Prince William Sound, Alaska. ESI data characterize estuarine environments and wildlife by...

  3. Prince William Sound, Alaska ESI: FISH (Fish Polygons)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set comprises the Environmental Sensitivity Index (ESI) data for Prince William Sound, Alaska. ESI data characterize estuarine environments and wildlife by...

  4. Geothermal energy in Alaska: site data base and development status

    Markle, D.R.

    1979-04-01

    The various factors affecting geothermal resource development are summarized for Alaska including: resource data base, geological description, reservoir characteristics, environmental character, base and development status, institutional factors, economics, population and market, and development potential. (MHR)

  5. Port Alexander, Alaska Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Port Alexander, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  6. Elfin Cove, Alaska Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Elfin Cove, Alaska Forecast Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  7. Winter banding of passerines on the Alaska Peninsula

    Department of the Interior — Between February 1969 and May 1973, bait traps were operated during winter at Cold Bay (55° 12' N, 162° 43' W), Alaska, headquarters of the Izembek National Wildlife...

  8. 76 FR 11978 - Proposed Amendment of Federal Airways; Alaska

    2011-03-04

    ... Federal airways in Alaska. Due to construction of wind turbines on Fire Island, AK, the Anchorage VOR is... to assign the use of the airspace necessary to ensure the safety of aircraft and the efficient use of...

  9. Bringing It All Together: The Southeast Alaska Music Festival.

    Howey, Brad

    2003-01-01

    Describes the Southeast Alaska Music Festival discussing topics such as the role of the host school, the communities and schools within the region, and scoring procedures at the Festival. Includes a festival schedule. (CMK)

  10. Chignik, Alaska Tsunami Forecast Grids for MOST Model

    National Oceanic and Atmospheric Administration, Department of Commerce — The Chignik, Alaska Forecast Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  11. The geophysical character of southern Alaska - Implications for crustal evolution

    Saltus, R.W.; Hudson, T.L.; Wilson, Frederic H.

    2007-01-01

    The southern Alaska continental margin has undergone a long and complicated history of plate convergence, subduction, accretion, and margin-parallel displacements. The crustal character of this continental margin is discernible through combined analysis of aeromagnetic and gravity data with key constraints from previous seismic interpretation. Regional magnetic data are particularly useful in defining broad geophysical domains. One of these domains, the south Alaska magnetic high, is the focus of this study. It is an intense and continuous magnetic high up to 200 km wide and ∼1500 km long extending from the Canadian border in the Wrangell Mountains west and southwest through Cook Inlet to the Bering Sea shelf. Crustal thickness beneath the south Alaska magnetic high is commonly 40–50 km. Gravity analysis indicates that the south Alaska magnetic high crust is dense. The south Alaska magnetic high spatially coincides with the Peninsular and Wrangellia terranes. The thick, dense, and magnetic character of this domain requires significant amounts of mafic rocks at intermediate to deep crustal levels. In Wrangellia these mafic rocks are likely to have been emplaced during Middle and (or) Late Triassic Nikolai Greenstone volcanism. In the Peninsular terrane, the most extensive period of mafic magmatism now known was associated with the Early Jurassic Talkeetna Formation volcanic arc. Thus the thick, dense, and magnetic character of the south Alaska magnetic high crust apparently developed as the response to mafic magmatism in both extensional (Wrangellia) and subduction-related arc (Peninsular terrane) settings. The south Alaska magnetic high is therefore a composite crustal feature. At least in Wrangellia, the crust was probably of average thickness (30 km) or greater prior to Triassic mafic magmatism. Up to 20 km (40%) of its present thickness may be due to the addition of Triassic mafic magmas. Throughout the south Alaska magnetic high, significant crustal growth

  12. Population dynamics of caribou herds in southwestern Alaska

    Patrick Valkenburg

    2003-04-01

    Full Text Available The five naturally occurring and one transplanted caribou (Rangifer tarandus granti herd in southwestern Alaska composed about 20% of Alaska's caribou population in 2001. All five of the naturally occurring herds fluctuated considerably in size between the late 1800s and 2001 and for some herds the data provide an indication of long-term periodic (40-50 year fluctuations. At the present time, the Unimak (UCH and Southern Alaska Peninsula (SAP are recovering from population declines, the Northern Alaska Peninsula Herd (NAP appears to be nearing the end of a protracted decline, and the Mulchatna Herd (MCH appears to now be declining after 20 years of rapid growth. The remaining naturally occurring herd (Kilbuck has virtually disappeared. Nutrition had a significant effect on the size of 4-month-old and 10-month-old calves in the NAP and the Nushagak Peninsula Herd (NPCH and probably also on population growth in at least 4 (SAP, NAP, NPCH, and MCH of the six caribou herds in southwestern Alaska. Predation does not appear to be sufficient to keep caribou herds in southwestern Alaska from expanding, probably because rabies is endemic in red foxes (Vulpes vulpes and is periodically transferred to wolves (Canis lupus and other canids. However, we found evidence that pneumonia and hoof rot may result in significant mortality of caribou in southwestern Alaska, whereas there is no evidence that disease is important in the dynamics of Interior herds. Cooperative conservation programs, such as the Kilbuck Caribou Management Plan, can be successful in restraining traditional harvest and promoting growth in caribou herds. In southwestern Alaska we also found evidence that small caribou herds can be swamped and assimilated by large herds, and fidelity to traditional calving areas can be lost.

  13. Shear-wave splitting observations of mantle anisotropy beneath Alaska

    Bellesiles, A. K.; Christensen, D. H.; Entwistle, E.; Litherland, M.; Abers, G. A.; Song, X.

    2009-12-01

    Observations of seismic anisotropy were obtained from three different PASSCAL broadband experiments throughout Alaska, using shear-wave splitting from teleseismic SKS phases. The MOOS (Multidisciplinary Observations Of Subduction), BEAAR (Broadband Experiment Across the Alaska Range), and ARCTIC (Alaska Receiving Cross-Transects for the Inner Core) networks were used along with selected permanent broadband stations operated by AEIC (Alaska Earthquake Information Center) to produce seismic anisotropy results for the state of Alaska along a north south transect from the active subduction zone in the south, through continental Alaska, to the passive margin in the north. The BEAAR network is in-between the ARCTIC and MOOS networks above the subducting Pacific Plate and mantle wedge and shows a tight ~90 degree rotation of anisotropy above the 70km contour of the subducting plate. The southern stations in BEAAR yield anisotropy results that are subparallel to the Pacific Plate motion as it subducts under North America. These stations have an average fast direction of -45 degrees and 1.03 seconds of delay on average. The MOOS network in south central Alaska yielded similar results with an average fast direction of -30 degrees and delay times of .9 seconds. In the north portion of the BEAAR network the anisotropy is along strike of the subduction zone and has an average fast direction of 27 degrees with an average delay time of 1.4 seconds, although the delay times above the mantle wedge range from 1 to 2.5 seconds and are directly correlated to the length of ray path in the mantle wedge. This general trend NE/SW is seen in the ARCTIC stations to the north although the furthest north stations are oriented more NNE compared to those in BEAAR. The average fast direction for the ARCTIC network is 40 degrees with an average delay time of 1.05 seconds. These results show two distinct orientations of anisotropy in Alaska separated by the subducting Pacific Plate.

  14. The 2014 eruptions of Pavlof Volcano, Alaska

    Waythomas, Christopher F.; Haney, Matthew M.; Wallace, Kristi; Cameron, Cheryl E.; Schneider, David J.

    2017-12-22

    Pavlof Volcano is one of the most frequently active volcanoes in the Aleutian Island arc, having erupted more than 40 times since observations were first recorded in the early 1800s . The volcano is located on the Alaska Peninsula (lat 55.4173° N, long 161.8937° W), near Izembek National Wildlife Refuge. The towns and villages closest to the volcano are Cold Bay, Nelson Lagoon, Sand Point, and King Cove, which are all within 90 kilometers (km) of the volcano (fig. 1). Pavlof is a symmetrically shaped stratocone that is 2,518 meters (m) high, and has about 2,300 m of relief. The volcano supports a cover of glacial ice and perennial snow roughly 2 to 4 cubic kilometers (km3) in volume, which is mantled by variable amounts of tephra fall, rockfall debris, and pyroclastic-flow deposits produced during historical eruptions. Typical Pavlof eruptions are characterized by moderate amounts of ash emission, lava fountaining, spatter-fed lava flows, explosions, and the accumulation of unstable mounds of spatter on the upper flanks of the volcano. The accumulation and subsequent collapse of spatter piles on the upper flanks of the volcano creates hot granular avalanches, which erode and melt snow and ice, and thereby generate watery debris-flow and hyperconcentrated-flow lahars. Seismic instruments were first installed on Pavlof Volcano in the early 1970s, and since then eruptive episodes have been better characterized and specific processes have been documented with greater certainty. The application of remote sensing techniques, including the use of infrasound data, has also aided the study of more recent eruptions. Although Pavlof Volcano is located in a remote part of Alaska, it is visible from Cold Bay, Sand Point, and Nelson Lagoon, making distal observations of eruptive activity possible, weather permitting. A busy air-travel corridor that is utilized by a numerous transcontinental and regional air carriers passes near Pavlof Volcano. The frequency of air travel

  15. Engaging Elements of Cancer-Related Digital Stories in Alaska

    Cueva, Melany; Kuhnley, Regina; Revels, Laura; Schoenberg, Nancy E.; Lanier, Anne; Dignan, Mark

    2015-01-01

    The tradition of storytelling is an integral part of Alaska Native cultures that continues to be a way of passing on knowledge. Using a story-based approach to share cancer education is grounded in Alaska Native traditions and people’s experiences and has the potential to positively impact cancer knowledge, understandings, and wellness choices. Community health workers (CHWs) in Alaska created a personal digital story as part of a 5-day, in-person cancer education course. To identify engaging elements of digital stories among Alaska Native people, one focus group was held in each of three different Alaska communities with a total of 29 adult participants. After viewing CHWs’ digital stories created during CHW cancer education courses, focus group participants commented verbally and in writing about cultural relevance, engaging elements, information learned, and intent to change health behavior. Digital stories were described by Alaska focus group participants as being culturally respectful, informational, inspiring, and motivational. Viewers shared that they liked digital stories because they were short (only 2–3 min); nondirective and not preachy; emotional, told as a personal story and not just facts and figures; and relevant, using photos that showed Alaskan places and people. PMID:25865400

  16. Exploring Alaska's Seamounts on RV Atlantis in North Pacific Ocean and Gulf of Alaska between 20040730 and 20040823

    National Oceanic and Atmospheric Administration, Department of Commerce — Five seamounts (Denson, Dickins, Pratt, Welker and Giacomini) in the Gulf of Alaska that had not previously been observed by manned submersible or ROV were...

  17. 75 FR 38452 - Fisheries of the Exclusive Economic Zone Off Alaska; Central Gulf of Alaska License Limitation...

    2010-07-02

    ... for the Southeast Outside District (SEO), Central Gulf of Alaska which includes the West Yakutat...). This proposed action does not include modifications to SEO endorsed licenses because fishing in this...

  18. Geologic map of Saint Lawrence Island, Alaska

    Patton, William W.; Wilson, Frederic H.; Taylor, Theresa A.

    2011-01-01

    Saint Lawrence Island is located in the northern Bering Sea, 190 km southwest of the tip of the Seward Peninsula, Alaska, and 75 km southeast of the Chukotsk Peninsula, Russia (see index map, map sheet). It lies on a broad, shallow-water continental shelf that extends from western Alaska to northeastern Russia. The island is situated on a northwest-trending structural uplift exposing rocks as old as Paleozoic above sea level. The submerged shelf between the Seward Peninsula and Saint Lawrence Island is covered mainly with Cenozoic deposits (Dundo and Egiazarov, 1982). Northeast of the island, the shelf is underlain by a large structural depression, the Norton Basin, which contains as much as 6.5 km of Cenozoic strata (Grim and McManus, 1970; Fisher and others, 1982). Sparse test-well data indicate that the Cenozoic strata are underlain by Paleozoic and Proterozoic rocks, similar to those exposed on the Seward Peninsula (Turner and others, 1983). Saint Lawrence Island is 160 km long in an east-west direction and from 15 km to 55 km wide in a north-south direction. The east end of the island consists largely of a wave-cut platform, which has been elevated as much as 30 m above sea level. Isolated upland areas composed largely of granitic plutons rise as much as 550 m above the wave-cut platform. The central part of the island is dominated by the Kookooligit Mountains, a large Quaternary shield volcano that extends over an area of 850 km2 and rises to an elevation of 630 m. The west end of the island is composed of the Poovoot Range, a group of barren, rubble-covered hills as high as 450 m that extend from Boxer Bay on the southwest coast to Taphook Mountain on the north coast. The Poovoot Range is flanked on the southeast by the Putgut Plateau, a nearly flat, lake-dotted plain that stands 30?60 m above sea level. The west end of the island is marked by uplands underlain by the Sevuokuk pluton (unit Kg), a long narrow granite body that extends from Gambell on the

  19. Southwest Alaska Regional Geothermal Energy Project

    Holdmann, Gwen [Univ. of Alaska, Fairbanks, AK (United States)

    2015-04-30

    The village of Elim, Alaska is 96 miles west of Nome, on the Seward Peninsula. The Darby Mountains north of the village are rich with hydrothermal systems associated with the Darby granitic pluton(s). In addition to the hot springs that have been recorded and studied over the last 100 years, additional hot springs exist. They are known through a rich oral history of the region, though they are not labeled on geothermal maps. This research primarily focused on Kwiniuk Hot Springs, Clear Creek Hot Springs and Molly’s Hot Springs. The highest recorded surface temperatures of these resources exist at Clear Creek Hot Springs (67°C). Repeated water sampling of the resources shows that maximum temperatures at all of the systems are below boiling.

  20. Long-term Effects of Hydrologic Manipulations on Pore Water Dissolved Organic Carbon in an Alaskan Rich Fen

    Rupp, D.; Kane, E. S.; Keller, J.; Turetsky, M. R.; Meingast, K. M.

    2016-12-01

    Boreal peatlands are experiencing rapid changes due to temperature and precipitation regime shifts in northern latitudes. In areas near Fairbanks, Alaska, thawing permafrost due to climatic changes alters peatland hydrology and thus the biogeochemical cycles within. Pore water chemistry reflects the biological and chemical processes occurring in boreal wetlands. The characterization of dissolved organic carbon (DOC) within pore water offers clues into the nature of microbially-driven biogeochemical shifts due to changing hydrology. There is mounting evidence that organic substances play an important role in oxidation-reduction (redox) reactivity of peat at northern latitudes, which is closely linked to carbon cycling. However, the redox dynamics of DOC are complex and have not been examined in depth in boreal peatlands. Here, we examine changes in organic substances and their influences on redox activity at the Alaska Peatland Experiment (APEX) site near Fairbanks, Alaska, where water table manipulation treatments have been in place since 2005 (control, raised water table, and lowered water table). With time, the altered hydrology has led to a shift in the plant community to favor sedge species in the raised water table treatment and more shrubs and non-aerenchymous plants in the lowered water table treatment. The litter from different plant functional types alters the character of the dissolved organic carbon, with more recalcitrant material containing lignin in the lowered water table plot due to the greater abundance of shrubs. A greater fraction of labile DOC in the raised treatment plot likely results from more easily decomposed sedge litter, root exudates at depth, and more frequently waterlogged conditions, which are antagonistic to aerobic microbial decomposition. We hypothesize that a greater fraction of phenolic carbon compounds supports higher redox activity. However, we note that not all "phenolic" compounds, as assayed by spectrophotometry, have the

  1. AFSC/REFM: Community Profiles for North Pacific Fisheries, Alaska 2011

    National Oceanic and Atmospheric Administration, Department of Commerce — In 2005, the Alaska Fisheries Science Center (AFSC) compiled baseline socioeconomic information about 136 Alaska communities most involved in commercial fisheries....

  2. Remediating and Monitoring White Phosphorus Contamination at Eagle River Flats (Operable Unit C), Fort Richardson, Alaska

    Walsh, M. E; Racine, C. H; Collins, C. M; Walsh, M. R; Bailey, R. N

    2001-01-01

    .... Army Engineer District, Alaska, and U.S. Army Alaska, Public Works, describing the results of research, monitoring, and remediation efforts addressing the white phosphorus contamination in Eagle River Flats, an 865-ha estuarine salt marsh...

  3. 76 FR 3120 - Native American and Alaska Native Children in School Program; Office of English Language...

    2011-01-19

    ... DEPARTMENT OF EDUCATION Native American and Alaska Native Children in School Program; Office of English Language Acquisition, Language Enhancement, and Academic Achievement for Limited English Proficient Students; Overview Information; Native American and Alaska Native Children in School Program...

  4. 77 FR 11564 - Draft Policy on Consultation With Alaska Native Claims Settlement Act Corporations

    2012-02-27

    ... Claims Settlement Act Corporations AGENCY: Office of the Secretary, Interior. ACTION: Notice of... draft policy on consultation with Alaska Native Claims Settlement Act corporations. DATES: Submit...-199, this consultation policy also applies to corporations established under the Alaska Native Claims...

  5. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Alaska

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Alaska. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in Alaska.

  6. Alaska Steller Sea Lion and Northern Fur Seal Argos Telemetry Data Archive

    National Oceanic and Atmospheric Administration, Department of Commerce — The Alaska Ecosystems Program of the NOAA Alaska Fisheries Science Center National Marine Mammal Laboratory conducts research and monitoring on Steller sea lions and...

  7. Enhancing Cancer Education through the Arts: Building Connections with Alaska Native People, Cultures and Communities

    Cueva, Melany; Kuhnley, Regina; Cueva, Katie

    2012-01-01

    Building upon the dynamic traditions of Alaska Native people, which include the arts as a viable way of knowing, the expressive arts were woven into a five-day cancer education course for Alaska village-based Community Health Workers (CHWs). Cancer is the leading cause of mortality for Alaska Native people. Course learning modalities included…

  8. Institutional innovation in less than ideal conditions: management of commons by an Alaska Native village corporation

    Dixie Dayo; Gary Kofinas

    2010-01-01

    Alaska Natives have experienced less than ideal conditions for engaging in management of their homeland commons. During the first 100 years after the Treaty of Cession of 1867, Alaska Natives received limited recognition by the United States. The Alaska Native Claims Settlement Act of 1971 (ANCSA) was signed into law by President Richard Nixon after tedious...

  9. Timber products output and timber harvests in Alaska: projections for 1992-2010.

    D.J. Brooks; R.W. Haynes

    1994-01-01

    Projections of Alaska timber products output, the derived demand for raw material, and timber harvest by owner are developed from a trend-based analysis. By using a spread-sheet model, material flows in the Alaska forest sectorare fully accounted for. Demand for Alaska national forest timber is projected and depends on product output and harvest by other owners. Key...

  10. Fire history and fire management implications in the Yukon Flats National Wildlife Refuge, interior Alaska

    S. A. Drury; P. J. Grissom

    2008-01-01

    We conducted this investigation in response to criticisms that the current Alaska Interagency Fire Management Plans are allowing too much of the landscape in interior Alaska to burn annually. To address this issue, we analyzed fire history patterns within the Yukon Flats National Wildlife Refuge, interior Alaska. We dated 40 fires on 27 landscape points within the...

  11. Wood energy for residential heating in Alaska: current conditions, attitudes, and expected use

    David L. Nicholls; Allen M. Brackley; Valerie. Barber

    2010-01-01

    This study considered three aspects of residential wood energy use in Alaska: current conditions and fuel consumption, knowledge and attitudes, and future use and conditions. We found that heating oil was the primary fuel for home heating in southeast and interior Alaska, whereas natural gas was used most often in south-central Alaska (Anchorage). Firewood heating...

  12. 77 FR 41754 - Fishing Capacity Reduction Program for the Southeast Alaska Purse Seine Salmon Fishery

    2012-07-16

    ... Capacity Reduction Program for the Southeast Alaska Purse Seine Salmon Fishery AGENCY: National Marine... program in the Southeast Alaska purse seine salmon fishery. NMFS conducted a referendum to approve the..., Chief, Financial Services Division, NMFS, Attn: SE Alaska Purse Seine Salmon Buyback, 1315 East-West...

  13. 78 FR 33810 - Fishing Capacity Reduction Program for the Southeast Alaska Purse Seine Salmon Fishery

    2013-06-05

    ... Capacity Reduction Program for the Southeast Alaska Purse Seine Salmon Fishery AGENCY: National Marine... reduction loan for the fishing capacity reduction program in the Southeast Alaska purse seine salmon fishery... July 22, 2012. Since then, all harvesters of Southeast Alaska purse seine salmon must pay the fee and...

  14. 77 FR 26744 - Fishing Capacity Reduction Program for the Southeast Alaska Purse Seine Salmon Fishery

    2012-05-07

    ... Capacity Reduction Program for the Southeast Alaska Purse Seine Salmon Fishery AGENCY: National Marine... of reduction payment tender of Southeast Alaska purse seine salmon permits. SUMMARY: The National... Southeast Alaska purse seine salmon fishery. The program authorizes NMFS to make payments to permit holders...

  15. 77 FR 12568 - Fishing Capacity Reduction Program for the Southeast Alaska Purse Seine Salmon Fishery

    2012-03-01

    ... Capacity Reduction Program for the Southeast Alaska Purse Seine Salmon Fishery AGENCY: National Marine... Salmon Fishery. NMFS will hold a series of public meetings with Southeast Alaska purse seine salmon... to Paul Marx, Chief, Financial Services Division, NMFS, Attn: SE Alaska Purse Seine Salmon Buyback...

  16. 76 FR 58263 - Kenai Pipe Line Company; Tesoro Alaska Company; Tesoro Logistics Operations, LLC; Notice of...

    2011-09-20

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. OR11-21-000] Kenai Pipe Line Company; Tesoro Alaska Company; Tesoro Logistics Operations, LLC; Notice of Request for Jurisdictional..., 2011, Kenai Pipe Line Company (KPL), Tesoro Alaska Company (Tesoro Alaska), and Tesoro Logistics, LLC...

  17. 7 CFR 318.13-21 - Avocados from Hawaii to Alaska.

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Avocados from Hawaii to Alaska. 318.13-21 Section 318... Articles From Hawaii and the Territories § 318.13-21 Avocados from Hawaii to Alaska. Avocados may be moved... marking requirements. The avocados may be moved interstate for distribution in Alaska only, the boxes of...

  18. 76 FR 41763 - Proposed Information Collection; Comment Request; Alaska Region Logbook Family of Forms

    2011-07-15

    ... Collection; Comment Request; Alaska Region Logbook Family of Forms AGENCY: National Oceanic and Atmospheric... (NMFS) Alaska Region manages the United States (U.S.) groundfish fisheries of the Exclusive Economic.... NMFS Alaska Region requests information from participating groundfish participants. This information...

  19. 25 CFR 142.8 - Is economy of operation a requirement for the Alaska Resupply Operation?

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Is economy of operation a requirement for the Alaska... FINANCIAL ACTIVITIES ALASKA RESUPPLY OPERATION § 142.8 Is economy of operation a requirement for the Alaska..., or cooperative arrangements. Whenever possible joint arrangements for economy will be entered into...

  20. Paleoseismic study of the Cathedral Rapids fault in the northern Alaska Range near Tok, Alaska

    Koehler, R. D.; Farrell, R.; Carver, G. A.

    2010-12-01

    The Cathedral Rapids fault extends ~40 km between the Tok and Robertson River valleys and is the easternmost fault in a series of active south-dipping imbricate thrust faults which bound the northern flank of the Alaska Range. Collectively, these faults accommodate a component of convergence transferred north of the Denali fault and related to the westward (counterclockwise) rotation of the Wrangell Block driven by relative Pacific/North American plate motion along the eastern Aleutian subduction zone and Fairweather fault system. To the west, the system has been defined as the Northern Foothills Fold and Thrust Belt (NFFTB), a 50-km-wide zone of east-west trending thrust faults that displace Quaternary deposits and have accommodated ~3 mm/yr of shortening since latest Pliocene time (Bemis, 2004). Over the last several years, the eastward extension of the NFFTB between Delta Junction and the Canadian border has been studied by the Alaska Division of Geological & Geophysical Surveys to better characterize faults that may affect engineering design of the proposed Alaska-Canada natural gas pipeline and other infrastructure. We summarize herein reconnaissance field observations along the western part of the Cathedral Rapids fault. The western part of the Cathedral Rapids fault extends 21 km from Sheep Creek to Moon Lake and is characterized by three roughly parallel sinuous traces that offset glacial deposits of the Illinoian to early Wisconsinan Delta glaciations and the late Wisconsinan Donnelly glaciation, as well as, Holocene alluvial deposits. The northern trace of the fault is characterized by an oversteepened, beveled, ~2.5-m-high scarp that obliquely cuts a Holocene alluvial fan and projects into the rangefront. Previous paleoseismic studies along the eastern part of the Cathedral Rapids fault and Dot “T” Johnson fault indicate multiple latest Pleistocene and Holocene earthquakes associated with anticlinal folding and thrust faulting (Carver et al., 2010

  1. Hydrological Modeling in Alaska with WRF-Hydro

    Elmer, N. J.; Zavodsky, B.; Molthan, A.

    2017-12-01

    The operational National Water Model (NWM), implemented in August 2016, is an instantiation of the Weather Research and Forecasting hydrological extension package (WRF-Hydro). Currently, the NWM only covers the contiguous United States, but will be expanded to include an Alaska domain in the future. It is well known that Alaska presents several hydrological modeling challenges, including unique arctic/sub-arctic hydrological processes not observed elsewhere in the United States and a severe lack of in-situ observations for model initialization. This project sets up an experimental version of WRF-Hydro in Alaska mimicking the NWM to gauge the ability of WRF-Hydro to represent hydrological processes in Alaska and identify model calibration challenges. Recent and upcoming launches of hydrology-focused NASA satellite missions such as the Soil Moisture Active Passive (SMAP) and Surface Water Ocean Topography (SWOT) expand the spatial and temporal coverage of observations in Alaska, so this study also lays the groundwork for assimilating these NASA datasets into WRF-Hydro in the future.

  2. Sobriety and alcohol use among rural Alaska Native elders

    Monica C. Skewes

    2016-02-01

    Full Text Available Background: Although notable health disparities related to alcohol use persist among Alaska Native people living in rural communities, there is a paucity of research examining drinking behaviour in particular segments of this population, including elders. One explanation for this is the distrust of behavioural health research in general and alcohol research in particular following the legacy of the Barrow Alcohol Study, still regarded as a notable example of ethics violations in cross-cultural research. Objective: The present study reports findings from one of the first research studies asking directly about alcohol abuse among rural Alaska Natives (AN since the study in Barrow took place in 1979. Design: We report findings regarding self-reported alcohol use included in an elder needs assessment conducted with 134 Alaska Native elders from 5 rural villages off the road system in Alaska. Data were collected in partnership between academic researchers and community members in accordance with the principles of Community-Based Participatory Research. Results: Findings showed very high rates of sobriety and low rates of alcohol use, contradicting stereotypes of widespread alcohol abuse among AN. Possible explanations and future research directions are discussed. Conclusions: This research represents one step forward in mending academic–community relationships in rural Alaska to further research on alcohol use and related health disparities.

  3. On the Precipitation and Precipitation Change in Alaska

    Gerd Wendler

    2017-12-01

    Full Text Available Alaska observes very large differences in precipitation throughout the state; southeast Alaska experiences consistently wet conditions, while northern Arctic Alaska observes very dry conditions. The maximum mean annual precipitation of 5727 mm is observed in the southeastern panhandle at Little Port Arthur, while the minimum of 92 mm occurs on the North Slope at Kuparuk. Besides explaining these large differences due to geographic and orographic location, we discuss the changes in precipitation with time. Analyzing the 18 first-order National Weather Service stations, we found that the total average precipitation in the state increased by 17% over the last 67 years. The observed changes in precipitation are furthermore discussed as a function of the observed temperature increase of 2.1 °C, the mean temperature change of the 18 stations over the same period. This observed warming of Alaska is about three times the magnitude of the mean global warming and allows the air to hold more water vapor. Furthermore, we discuss the effect of the Pacific Decadal Oscillation (PDO, which has a strong influence on both the temperature and precipitation in Alaska.

  4. Local sources of pollution and their impacts in Alaska (Invited)

    Molders, N.

    2013-12-01

    The movie 'Into the Wilde' evoke the impression of the last frontier in a great wide and pristine land. With over half a million people living in Alaska an area as larger as the distance from the US West to the East Coast, this idea comes naturally. The three major cities are the main emission source in an otherwise relative clean atmosphere. On the North Slope oil drilling and production is the main anthropogenic emission sources. Along Alaska's coasts ship traffic including cruises is another anthropogenic emission source that is expected to increase as sea-ice recedes. In summer, wildfires in Alaska, Canada and/or Siberia may cause poor air quality. In winter inversions may lead poor air quality and in spring. In spring, aged polluted air is often advected into Alaska. These different emission sources yield quite different atmospheric composition and air quality impacts. While this may make understanding Alaska's atmospheric composition at-large a challenging task, it also provides great opportunities to examine impacts without co-founders. The talk will give a review of the performed research, and insight into the challenges.

  5. NASA SPoRT JPSS PG Activities in Alaska

    Berndt, Emily; Molthan, Andrew; Fuell, Kevin; McGrath, Kevin; Smith, Matt; LaFontaine, Frank; Leroy, Anita; White, Kris

    2018-01-01

    SPoRT (NASA's Short-term Prediction Research and Transition Center) has collaboratively worked with Alaska WFOs (Weather Forecast Offices) to introduce RGB (Red/Green/Blue false color image) imagery to prepare for NOAA-20 (National Oceanic and Atmospheric Administration, JPSS (Joint Polar Satellite System) series-20 satellite) VIIRS (Visible Infrared Imaging Radiometer Suite) and improve forecasting aviation-related hazards. Last R2O/O2R (Research-to-Operations/Operations-to-Research) steps include incorporating NOAA-20 VIIRS in RGB suite and fully transitioning client-side RGB processing to GINA (Geographic Information Network of Alaska) and Alaska Region. Alaska Region WFOs have been part of the successful R2O/O2R story to assess the use of NESDIS (National Environmental Satellite, Data, and Information Service) Snowfall Rate product in operations. SPoRT introduced passive microwave rain rate and IMERG (Integrated Multi-satellitE Retrievals for GPM (Global Precipitation Measurement)) (IMERG) to Alaska WFOs for use in radar-void areas and assessing flooding potential. SPoRT has been part of the multi-organization collaborative effort to introduce Gridded NUCAPS (NOAA Unique CrIS/ATMS (Crosstrack Infrared Sounder/Advanced Technology Microwave Sounder) Processing System) to the Anchorage CWSU (Center Weather Service Unit) to assess Cold Air Aloft events, [and as part of NOAA's PG (Product Generation) effort].

  6. An International Polar Year Adventure in the Arctic

    Wartes, D.

    2008-12-01

    RAHI, the Rural Alaska Honors Institute at the University of Alaska Fairbanks began in 1983 after a series of meetings between the Alaska Federation of Natives and the University of Alaska, to discuss the retention rates of Alaska Native and rural students. RAHI is a six-week college-preparatory summer bridge program on the University of Alaska Fairbanks campus for Alaska Native and rural high school juniors and seniors. The program's student body is approximately 94 percent Alaska Native. RAHI students take classes that earn them seven to ten college credits, thus giving them a head start on college. Courses include: writing, study skills, desk top publishing, Alaska Native dance or swimming, and a choice of biochemistry, math, business, or engineering. A program of rigorous academic activity combines with social, cultural, and recreational activities to make up the RAHI program of early preparation for college. Students are purposely stretched beyond their comfort levels academically and socially to prepare for the big step from home or village to a large culturally western urban campus. They are treated as honors students and are expected to meet all rigorous academic and social standards set by the program. All of this effort and activity support the principal goal of RAHI: promoting academic success for rural students in college. Over 26 years, 1,200 students have attended the program. Sixty percent of RAHI's alumni have entered four-year academic programs. Over 245 have earned a bachelor's degree, thirty-one have earned master's degrees, and seven have graduated with professional degrees (J.D., Pharm., or M.D.), along with 156 associate degrees and certificates. In looking at the RAHI cohort, removing those students who have not been in college long enough to obtain a degree, 27.3 percent of RAHI alums have received a bachelor's degree. An April 2006 report by the American Institutes for Research through the National Science Foundation found that: Rural

  7. Exotic Members of Southern Alaska's Jurassic Arc

    Todd, E.; Jones, J. V., III; Karl, S. M.; Box, S.; Haeussler, P. J.

    2017-12-01

    The Jurassic Talkeetna arc and contemporaneous plutonic rocks of the Alaska-Aleutian Range batholith (ARB) are key components of the Peninsular terrane of southern Alaska. The Talkeetna arc, considered to be a type example of an intra-oceanic arc, was progressively accreted to northwestern North America in the Jurassic to Late Cretaceous, together with associated components of the Wrangellia Composite terrane. Older Paleozoic and Mesozoic rock successions closely associated with the ARB suggest that at least part of the Peninsular terrane might be an overlap succession built on pre-existing crust, possibly correlative with the Wrangellia terrane to the east. However, the relationship between the Talkeetna arc, ARB, and any pre-existing crust remains incompletely understood. Field investigations focused on the petrogenesis of the ARB near Lake Clark National Park show that Jurassic to Late Cretaceous plutonic rocks commonly host a diverse range of mineralogically distinct xenolith inclusions, ranging in size from several cm to hundreds of meters. The modal fraction of these inclusions ranges from 50% in some outcrops. They are generally mafic in composition and, with few exceptions, are more mafic than host plutonic rocks, although they are observed as both igneous (e.g., gabbro cumulate, diorite porphyry) and metamorphic types (e.g., amphibolite, gneiss and quartzite). Inclusion shapes range from angular to rounded with sharp to diffuse boundaries and, in some instances, are found as planar, compositionally distinct bands or screens containing high-temperature ductile shear fabrics. Other planar bands are more segmented, consistent with lower-temperature brittle behavior. Comparison of age, geochemical fractionation trends, and isotope systematics between the inclusions and host plutons provides a critical test of whether they are co-genetic with host plutons. Where they are related, mafic inclusions provide clues about magmatic evolution and fractionation history

  8. The species velocity of trees in Alaska

    Morrison, B. D.; Napier, J.; de Lafontaine, G.; Heath, K.; Li, B.; Hu, F.; Greenberg, J. A.

    2017-12-01

    Anthropogenic climate change has motivated interest in the paleo record to enhance our knowledge about past vegetation responses to climate change and help understand potential responses in the future. Additionally, polar regions currently experience the most rapid rates of climate change globally, prompting concern over changes in the ecological composition of high latitude ecosystems. Recent analyses have attempted to construct methods to estimate a species' ability to track climate change by computing climate velocity; a measure of the rate of climate displacement across a landscape which may indicate the speed an organism must migrate to keep pace with climate change. However, a challenge to using climate velocity in understanding range shifts is a lack of species-specificity in the velocity calculations: climate velocity does not actually use any species data in its analysis. To solve the shortcomings of climate velocity in estimating species displacement rates, we computed the "species velocity" of white spruce, green and grey alder populations across the state of Alaska from the Last Glacial Maximum (LGM) to today. Species velocity represents the rate and direction a species is required to migrate to keep pace with a changing climate following the LGM. We used a species distribution model to determine past and present white spruce and alder distributions using statistically downscaled climate data at 60m. Species velocity was then derived from the change in species distribution per year by the change in distribution over Alaska (km/yr). High velocities indicate locations where the species environmental envelope is changing drastically and must disperse rapidly to survive climate change. As a result, high velocity regions are more vulnerable to distribution shifts and higher risk of local extinction. Conversely, low species velocities indicate locations where the local climate envelope is shifting relatively slowly, reducing the stress to disperse quickly

  9. The Sea Ice for Walrus Outlook: A collaboration between scientific and Indigenous communities to support safety and food security in a changing Arctic

    Sheffield Guy, L.; Wiggins, H. V.; Schreck, M. B.; Metcalf, V. K.

    2017-12-01

    The Sea Ice for Walrus Outlook (SIWO) provides Alaskan Native subsistence walrus hunters and Bering Strait coastal communities with weekly reports on spring sea ice and weather conditions to promote hunter safety, food security, and preservation of cultural heritage. These reports integrate scientific and Indigenous knowledge into a co-produced tool that is used by both local and scientific communities. SIWO is a team effort led by the Arctic Research Consortium of the U.S. (ARCUS, with funding from NSF Arctic Sciences Section), with the Eskimo Walrus Commission, National Weather Service - Alaska Sea Ice Program, University of Alaska Fairbanks - International Arctic Research Center, and local observers. For each weekly outlook, the National Weather Service provides location-specific weather and sea ice forecasts and regional satellite imagery. Local observations of sea ice, weather, and hunting conditions are provided by observers from five Alaskan communities in the Bering Strait region: Wales, Shishmaref, Nome, Gambell, and Savoonga. These observations typically include a written description of conditions accompanied by photographs of sea ice or subsistence activities. Outlooks are easily accessible and provide a platform for sharing of knowledge among hunters in neighboring communities. The opportunity to contribute is open, and Indigenous language and terms are encouraged. These observations from local hunters and community members also provide a valuable tool for validation of weather forecasts, satellite products, and other information for scientists. This presentation will discuss the process, products, and mutually beneficial outcomes of the Sea Ice for Walrus Outlook.

  10. Core Angular Momentum and the IERS Sub-Centers Activity for Monitoring Global Geophysical Fluids. Part 1; Core Angular Momentum and Earth Rotation

    Song, Xia-Dong; Chao, Benjamin (Technical Monitor)

    1999-01-01

    The part of the grant was to use recordings of seismic waves travelling through the earth's core (PKP waves) to study the inner core rotation and constraints on possible density anomalies in the fluid core. The shapes and relative arrival times of such waves associated with a common source were used to reduce the uncertainties in source location and excitation and the effect of unknown mantle structure. The major effort of the project is to assemble historical seismograms with long observing base lines. We have found original paper records of SSI earthquakes at COL between 1951 and 1966 in a warehouse of the U.S. Geological Survey office in Golden, Colorado, extending the previous measurements at COL by Song and Richards [1996] further back 15 years. Also in Alaska, the University of Alaska, Fairbanks Geophysical Institute (UAFGI) has been operating the Alaskan Seismic Network with over 100 stations since the late 1960s. Virtually complete archives of seismograms are still available at UAFGI. Unfortunately, most of the archives are in microchip form (develocorders), for which the use of waveforms is impossible. Paper seismograms (helicorders) are available for a limited number of stations, and digital recordings of analog signals started around 1989. Of the paper records obtained, stations at Gilmore Dome (GLM, very close to COL), Yukon (FYU), McKinley (MCK), and Sheep Creek Mountain (SCM) have the most complete continuous recordings.

  11. CADASTRAL AUDIT AND ASSESSMENTS USING UNMANNED AERIAL SYSTEMS

    K. Cunningham

    2012-09-01

    Full Text Available Ground surveys and remote sensing are integral to establishing fair and equitable property valuations necessary for real property taxation. The International Association of Assessing Officers (IAAO has embraced aerial and street-view imaging as part of its standards related to property tax assessments and audits. New technologies, including unmanned aerial systems (UAS paired with imaging sensors, will become more common as local governments work to ensure their cadastre and tax rolls are both accurate and complete. Trends in mapping technology have seen an evolution in platforms from large, expensive manned aircraft to very small, inexpensive UAS. Traditional methods of photogrammetry have also given way to new equipment and sensors: digital cameras, infrared imagers, light detection and ranging (LiDAR laser scanners, and now synthetic aperture radar (SAR. At the University of Alaska Fairbanks (UAF, we work extensively with unmanned aerial systems equipped with each of these newer sensors. UAF has significant experience flying unmanned systems in the US National Airspace, having begun in 1969 with scientific rockets and expanded to unmanned aircraft in 2003. Ongoing field experience allows UAF to partner effectively with outside organizations to test and develop leading-edge research in UAS and remote sensing. This presentation will discuss our research related to various sensors and payloads for mapping. We will also share our experience with UAS and optical systems for creating some of the first cadastral surveys in rural Alaska.

  12. 2nd International Arctic Ungulate Conference

    A. Anonymous

    1996-01-01

    Full Text Available The 2nd International Arctic Ungulate Conference was held 13-17 August 1995 on the University of Alaska Fairbanks campus. The Institute of Arctic Biology and the Alaska Cooperative Fish and Wildlife Research Unit were responsible for organizing the conference with assistance from biologists with state and federal agencies and commercial organizations. David R. Klein was chair of the conference organizing committee. Over 200 people attended the conference, coming from 10 different countries. The United States, Canada, and Norway had the largest representation. The conference included invited lectures; panel discussions, and about 125 contributed papers. There were five technical sessions on Physiology and Body Condition; Habitat Relationships; Population Dynamics and Management; Behavior, Genetics and Evolution; and Reindeer and Muskox Husbandry. Three panel sessions discussed Comparative caribou management strategies; Management of introduced, reestablished, and expanding muskox populations; and Health risks in translocation of arctic ungulates. Invited lectures focused on the physiology and population dynamics of arctic ungulates; contaminants in food chains of arctic ungulates and lessons learned from the Chernobyl accident; and ecosystem level relationships of the Porcupine Caribou Herd.

  13. Altered Perspectives: Immersive Environments

    Shipman, J. S.; Webley, P. W.

    2016-12-01

    Immersive environments provide an exciting experiential technology to visualize the natural world. Given the increasing accessibility of 360o cameras and virtual reality headsets we are now able to visualize artistic principles and scientific concepts in a fully immersive environment. The technology has become popular for photographers as well as designers, industry, educational groups, and museums. Here we show a sci-art perspective on the use of optics and light in the capture and manipulation of 360o images and video of geologic phenomena and cultural heritage sites in Alaska, England, and France. Additionally, we will generate intentionally altered perspectives to lend a surrealistic quality to the landscapes. Locations include the Catacombs of Paris, the Palace of Versailles, and the Northern Lights over Fairbanks, Alaska. Some 360o view cameras now use small portable dual lens technology extending beyond the 180o fish eye lens previously used, providing better coverage and image quality. Virtual reality headsets range in level of sophistication and cost, with the most affordable versions using smart phones and Google Cardboard viewers. The equipment used in this presentation includes a Ricoh Theta S spherical imaging camera. Here we will demonstrate the use of 360o imaging with attendees being able to be part of the immersive environment and experience our locations as if they were visiting themselves.

  14. Tanadgusix Foundation Hydrogen / Plug In Electric Vehicle Project

    Miller, Martin [TDX Power Inc., Anchorage, AK (United States)

    2013-09-27

    TDX Foundation undertook this project in an effort to evaluate alternative transportation options and their application in the community of Saint Paul, Alaska an isolated island community in the Bering Sea. Both hydrogen and electric vehicle technology was evaluated for technical and economic feasibility. Hydrogen technology was found to be cost prohibitive. TDX demonstrated the implementation of various types of electric vehicles on St. Paul Island, including side-by-side all terrain vehicles, a Chevrolet Volt (sedan), and a Ford Transit Connect (small van). Results show that electric vehicles are a promising solution for transportation needs on St. Paul Island. Limited battery range and high charging time requirements result in decreased usability, even on a small, isolated island. These limitations were minimized by the installation of enhanced charging stations for the car and van. In collaboration with the University of Alaska Fairbanks (UAF), TDX was able to identify suitable technologies and demonstrate their applicability in the rural Alaskan environment. TDX and UAF partnered to engage and educate the entire community of Saint Paul – fom school children to elders – through presentation of research, findings, demonstrations, first hand operation of alternative fuel vehicles.

  15. The pipe dream of gold in Alaska; La quimera del oro en Alaska

    Lovins, Amory B; Lovins, L Hunter [Rocky Mountain Institute (United States)

    2001-10-01

    Since 1973, the Alaska's politicians have been used all the crude oil price rises in order to put pressure in favour of the Artic National Wildlife Refuge's perforations. However, without taking into account the environment-friendly issues, the refuge's crude oil is unnecessary and quiet unsafe, besides, isn't economic-friendly and becomes a distraction to the real energy discussion. The solutions aimed to the market point to increase the efficiency; therefore, they can assure a safety and environment-friendly energy supply at very less cost. [Spanish] Desde 1973, los politicos de Alaska se han valido de todas las alzas en los precios del petroleo para presionar a favor de las perforaciones en el Refugio Nacional de Vida Silvestre del Artico. Pero incluso si se dejan de lado las cuestiones ambientales, el petroleo del refugio es innecesario, poco seguro, economicamente riesgoso e implica una distraccion del verdadero debate energetico. Las soluciones orientadas al mercado que apuntan a aumentar la eficiencia pueden garantizar un suministro de energia seguro y limpio a un costo mucho menor.

  16. Ichthyophonus in sport-caught groundfishes from southcentral Alaska.

    Harris, Bradley P; Webster, Sarah R; Wolf, Nathan; Gregg, Jacob L; Hershberger, Paul K

    2018-05-07

    This report of Ichthyophonus in common sport-caught fishes throughout the marine waters of southcentral Alaska represents the first documentation of natural Ichthyophonus infections in lingcod Ophiodon elongates and yelloweye rockfish Sebastes ruberrimus. In addition, the known geographic range of Ichthyophonus in black rockfish S. melanops has been expanded northward to include southcentral Alaska. Among all species surveyed, the infection prevalence was highest (35%, n = 334) in Pacific halibut Hippoglossus stenolepis. There were no gross indications of high-level infections or clinically diseased individuals. These results support the hypothesis that under typical conditions Ichthyophonus can occur at high infection prevalence accompanied with low-level infection among a variety of fishes throughout the eastern North Pacific Ocean, including southcentral Alaska.

  17. Ichthyophonus in sport-caught groundfishes from southcentral Alaska

    Harris, Bradley P.; Webster, Sarah R.; Wolf, Nathan; Gregg, Jacob L.; Hershberger, Paul

    2018-01-01

    This report of Ichthyophonus in common sport-caught fishes throughout the marine waters of southcentral Alaska represents the first documentation of natural Ichthyophonus infections in lingcod Ophiodon elongates and yelloweye rockfish Sebastes ruberrimus. In addition, the known geographic range of Ichthyophonus in black rockfish S. melanops has been expanded northward to include southcentral Alaska. Among all species surveyed, the infection prevalence was highest (35%, n = 334) in Pacific halibut Hippoglossus stenolepis. There were no gross indications of high-level infections or clinically diseased individuals. These results support the hypothesis that under typical conditions Ichthyophonus can occur at high infection prevalence accompanied with low-level infection among a variety of fishes throughout the eastern North Pacific Ocean, including southcentral Alaska.

  18. Black brant from Alaska staging and wintering in Japan

    Derksen, Dirk V.; Bollinger, K.S.; Ward, David H.; Sedinger, J.S.; Miyabayashi, Y.

    1996-01-01

    Black brant (Branta bernicla nigricans) nest in colonies in arctic Canada, Alaska, and Russia (Derksen and Ward 1993, Sedinger et al. 1993). Virtually the entire population stages in fall at Izembek Lagoon near the tip of the Alaska Peninsula (Bellrose 1976) before southward migration (Dau 1992) to winter habitats in British Columbia, Washington, Oregon, California, and Baja California (Subcommittee on Black Brant 1992). A small number of black brant winter in Japan, Korea, and China (Owen 1980). In Japan 3,000–5,000 brant of unknown origin stop over in fall, and a declining population (in the northern islands (Brazil 1991, Miyabayashi et al. 1994). Here, we report sightings of brant in Japan that were marked in Alaska and propose a migration route based on historical and recent observations and weather patterns.

  19. Cambrian trilobites with Siberian affinities, southwestern Alaska

    Palmer, A.R.; Egbert, R.M.; Sullivan, R.; Knoth, J.S.

    1985-02-01

    Cambrian trilobites occur in two levels (about 7 m apart) in the core of a large, complex anticlinal structure in the area between the Taylor Mountains and the Hoholitna River in southwestern Alaska. The lower collection contains Erbia, Macannaia (a species close to Soviet forms described as Pagetia ferox Lermontova), two species of Kootenia (including one perhaps cospecific with forms from the central Brooks range), and several species of ptychoparioid trilobites. It is clear that biogeographic affinities are with the transitional facies of the eastern Siberian platform and the south Siberian foldbelt. In Soviet terms, the age of the collection falls in a disputed interval called latest Early Cambrian (Tojonian) by some authors, and earliest Middle Cambrian (Amgan) by others. In North American terms, Macannaia is known only from early Middle Cambrian beds. The younger collection contains abundant agnostids, a variety of conocoryphids, Paradoxides, and several species of ptychoparioid trilobites. This is an assemblage of undoubted late Middle Cambrian age, comparable to faunas described from the Maya State of the Siberian platform and the Paradoxides paradoxissimus Stage of the Baltic region. Both faunas are from ocean-facing or outer shelf environments. None of the key non-agnostid or non-pagetiid elements have been seen previously in deposits of Cambrian North America.

  20. A new tectonic model for southern Alaska

    Reeder, J. W.

    2013-12-01

    S Alaska consists of a complex tectonic boundary that is gradational from subduction of Pacific Plate (PAC) beneath N American Plate (NA) in the W to a transform fault between these two plates in the SE. Adding complexity, the Yakutat Plate (YAK) is in between. The YAK is exposed in NE Gulf of Alaska and has been well mapped (Plafker, 1987). It is bound by the NA to the E at the Fairweather fault and by the PAC to the S. Relative to NA, YAK is moving 47 mm/yr N30°W and PAC is moving 51 mm/yr N20°W (Fletcher & Freymueller, 2003). The YAK and deeper PAC extend NW beneath the NA as flat slabs (Brocher et al., 1994). They subduct to the W and NW in Cook Inlet region (Ratchkovsky et al., 1997), resulting in the Cook Inlet volcanic arc. They also subduct farther NNW toward the Denali volcanic gap and fault. The subducted part of the YAK is split by a transform fault exposed at Montana Creek (MC) at 62°06'N to 62°10'N at 150°W. It extends S60°W toward the most N Cook Inlet volcano, Hayes, and extends N60°E beyond Talkeetna Mts. Right-lateral WSW motion and thick fault gauge have been documented by McGee (1978) on MC and a S60°W fault scarp cutting Quaternary deposits has been mapped (Reed & Nelson, 1980). Fuis et al. (2008) seismically recognized 110 km of missing YAP NW of Talkeetna Mts, which he thought was due to a 'tear' in the YAK to the far S. Nikoli Greenstone has been found in the Talkeetna Mts just S of this transform (Schmidt, 2003) that is 70 km SW of any other mapped Nikoli. This fault offset is also shown by 7.8 km/sec Vp depth contours, which represent the YAK (Eberhart-Phillips et al., 2006), as 110 km at N60°W. Based on magnetic data (Csejtey & Griscom, 1978; Saltus et al., 2007), the fault is regionally recognized as a 10× km zone on the WSW margin of the large S Alaska magnetic high. The fault zone has narrow WSW magnetic highs and depressions. This fault is also recognized on digital relief (Riehle et al., 1996); but, another pronounced N60

  1. Receiver Function Imaging of Mantle Transition Zone Discontinuities Beneath Alaska

    Dahm, Haider Hassan Faraj

    Subduction of tectonic plates is one of the most important tectonic processes, yet many aspects of subduction zone geodynamics remain unsolved and poorly understood, such as the depth extent of the subducted slab and its geometry. The Alaska subduction zone, which is associated with the subduction of the Pacific Plate beneath the North America plate, has a complex tectonic setting and carries a series of subduction episodes, and represents an excellent target to study such plate tectonic processes. Previous seismological studies in Alaska have proposed different depth estimations and geometry for the subducted slab. The Mantle transition zone discontinuities of the 410km and the 660 km provide independent constraints on the depth extent of the subducted slabs. We conducted a receiver function study to map the topography of the 410 km and the 660 km discontinuities beneath Alaska and its adjacent areas by taking advantage of the teleseismic data from the new USArray deployment in Alaska and northwestern Canada. Stacking over 75,000 high-quality radial receiver functions recorded in Alaska with more than 40 years of recording period, the topographies of the 410 km and 660 km are mapped. The depths of both d410 and d660 show systematic spatial variations, the mean depth of d410 and d660 are within 6 km and 6 km from the global average, respectively. The mean MTZ thickness of the entire study area is within -2 km from the global average of 250 km, suggesting normal MTZ conditions on average. Central and south-central Alaska are characterized by a larger than normal MTZ thickness, suggesting that the subducting Pacific slab is thermally interacted with the MTZ. This study shows that lateral upper mantle velocity variations contribute the bulk of the observed apparent undulations of the MTZ discontinuities.

  2. The Alaska earthquake, March 27, 1964: effects on communities

    Hansen, Wallace R.; Kachadoorian, Reuben; Coulter, Henry W.; Migliaccio, Ralph R.; Waller, Roger M.; Stanley, Kirk W.; Lemke, Richard W.; Plafker, George; Eckel, Edwin B.; Mayo, Lawrence R.

    1969-01-01

    This is the second in a series of six reports that the U.S. Geological Survey published on the results of a comprehensive geologic study that began, as a reconnaissance survey, within 24 hours after the March 27, 1964, Magnitude 9.2 Great Alaska Earthquake and extended, as detailed investigations, through several field seasons. The 1964 Great Alaska earthquake was the largest earthquake in the U.S. since 1700. Professional Paper 542, in 7 parts, describes the effects of the earthquake on Alaskan communities.

  3. Renewable energy and sustainable communities: Alaska's wind generator experience†

    R. Steven Konkel

    2013-08-01

    Full Text Available Background . In 1984, the Alaska Department of Commerce and Economic Development (DCED issued the State's first inventory/economic assessment of wind generators, documenting installed wind generator capacity and the economics of replacing diesel-fuel-generated electricity. Alaska's wind generation capacity had grown from hundreds of installed kilowatts to over 15.3 megawatts (MW by January 2012. Method . This article reviews data and conclusions presented in “Alaska's Wind Energy Systems; Inventory and Economic Assessment” (1. (Alaska Department of Commerce and Economic Development, S. Konkel, 1984. It provides a foundation and baseline for understanding the development of this renewable energy source. Results . Today's technologies have evolved at an astonishing pace; a typical generator in an Alaska wind farm now is likely rated at 1.5-MW capacity, compared to the single-kilowatt (kW machines present in 1984. Installed capacity has mushroomed, illustrated by Unalakleet's 600-kW wind farm dwarfing the original three 10-kW machines included in the 1984 inventory. Kodiak Electric had three 1.5-MW turbines installed at Pillar Mountain in 2009, with three additional turbines of 4.5-MW capacity installed in 2012. Utilities now actively plan for wind generation and compete for state funding. Discussion . State of Alaska energy policy provides the context for energy project decision-making. Substantial renewable energy fund (REF awards – $202,000,000 to date for 227 REF projects in the first 5 cycles of funding – along with numerous energy conservation programs – are now in place. Increasing investment in wind is driven by multiple factors. Stakeholders have interests both in public policy and meeting private investment objectives. Wind generator investors should consider project economics and potential impacts of energy decisions on human health. Specifically this article considers: a. changing environmental conditions in remote Alaska

  4. Checklist of beetles (Coleoptera of Canada and Alaska. Second edition

    Yves Bousquet

    2013-12-01

    Full Text Available All 8237 species-group taxa of Coleoptera known to occur in Canada and Alaska are recorded by province/territory or state, along with their author(s and year of publication, in a classification framework. Only presence of taxa in each Canadian province or territory and Alaska is noted. Labrador is considered a distinct geographical entity. Adventive and Holarctic species-group taxa are indicated. References to pertinent identification keys are given under the corresponding supraspecific taxa in the data archive.

  5. A survey of radioactive fallout data in Alaska

    DePhillips, M.P.

    1995-01-01

    Considerable attention has been directed by the scientific community to assessing the levels and fate of radionuclides in Arctic ecosystems. The following text and tables present available data and discussion of radionuclide fallout in Alaska. A literature search of 23 on-line databases (Table 1) using Alaska, Strontium (Sr), Cesium (Cs), Plutonium (Pu) and Radionuclide as constraint terms responded with 177 possible citations. After eliminating duplicate citations, 31 articles were available: 17 were relevant to the subject matter; the remainder addressed geologic issues. All of the cited literature addressed 137 Cs, 90 Sr and 239,240 Pu as a result of radionuclide fallout from nuclear testing or accidental release

  6. Renewable energy and sustainable communities: Alaska's wind generator experience.

    Konkel, R Steven

    2013-01-01

    In 1984, the Alaska Department of Commerce and Economic Development (DCED) issued the State's first inventory/economic assessment of wind generators, documenting installed wind generator capacity and the economics of replacing diesel-fuel-generated electricity. Alaska's wind generation capacity had grown from hundreds of installed kilowatts to over 15.3 megawatts (MW) by January 2012. This article reviews data and conclusions presented in "Alaska's Wind Energy Systems; Inventory and Economic Assessment" (1). (Alaska Department of Commerce and Economic Development, S. Konkel, 1984). It provides a foundation and baseline for understanding the development of this renewable energy source. Today's technologies have evolved at an astonishing pace; a typical generator in an Alaska wind farm now is likely rated at 1.5-MW capacity, compared to the single-kilowatt (kW) machines present in 1984. Installed capacity has mushroomed, illustrated by Unalakleet's 600-kW wind farm dwarfing the original three 10-kW machines included in the 1984 inventory. Kodiak Electric had three 1.5-MW turbines installed at Pillar Mountain in 2009, with three additional turbines of 4.5-MW capacity installed in 2012. Utilities now actively plan for wind generation and compete for state funding. State of Alaska energy policy provides the context for energy project decision-making. Substantial renewable energy fund (REF) awards--$202,000,000 to date for 227 REF projects in the first 5 cycles of funding--along with numerous energy conservation programs--are now in place. Increasing investment in wind is driven by multiple factors. Stakeholders have interests both in public policy and meeting private investment objectives. Wind generator investors should consider project economics and potential impacts of energy decisions on human health. Specifically this article considers: changing environmental conditions in remote Alaska villages, impacts associated with climate change on human health, progress in

  7. Renewable energy and sustainable communities: Alaska's wind generator experience†

    Konkel, R. Steven

    2013-01-01

    Background In 1984, the Alaska Department of Commerce and Economic Development (DCED) issued the State's first inventory/economic assessment of wind generators, documenting installed wind generator capacity and the economics of replacing diesel-fuel-generated electricity. Alaska's wind generation capacity had grown from hundreds of installed kilowatts to over 15.3 megawatts (MW) by January 2012. Method This article reviews data and conclusions presented in “Alaska's Wind Energy Systems; Inventory and Economic Assessment” (1). (Alaska Department of Commerce and Economic Development, S. Konkel, 1984). It provides a foundation and baseline for understanding the development of this renewable energy source. Results Today's technologies have evolved at an astonishing pace; a typical generator in an Alaska wind farm now is likely rated at 1.5-MW capacity, compared to the single-kilowatt (kW) machines present in 1984. Installed capacity has mushroomed, illustrated by Unalakleet's 600-kW wind farm dwarfing the original three 10-kW machines included in the 1984 inventory. Kodiak Electric had three 1.5-MW turbines installed at Pillar Mountain in 2009, with three additional turbines of 4.5-MW capacity installed in 2012. Utilities now actively plan for wind generation and compete for state funding. Discussion State of Alaska energy policy provides the context for energy project decision-making. Substantial renewable energy fund (REF) awards – $202,000,000 to date for 227 REF projects in the first 5 cycles of funding – along with numerous energy conservation programs – are now in place. Increasing investment in wind is driven by multiple factors. Stakeholders have interests both in public policy and meeting private investment objectives. Wind generator investors should consider project economics and potential impacts of energy decisions on human health. Specifically this article considers:changing environmental conditions in remote Alaska villages,impacts associated

  8. Shelf break circulation in the Northern Gulf of Alaska

    Niebauer, H.J.; Roberts, J.; Royer, T.C.

    1981-05-20

    Current observations from a mooring on the continental shelf near the shelf break in the Gulf of Alaska, with supporting hydrographic and metorological data, are discussed for the period 1976 to March 1977. The described features suggest strong influence by the cyclonic Alaska Gyre for the periods April--June 1976 and October 1976 to March 1977. From July--September 1976 there is evidence of current veering and rotation. It is hypothesized that these current fluctuations are eddies which are important in mixing processes across the shelf.

  9. The Alaska earthquake, March 27, 1964: effects on hydrologic regimen

    Waller, Roger M.; Coble, R.W.; Post, Austin; McGarr, Arthur; Vorhis, Robert C.

    1966-01-01

    This is the fourth in a series of six reports that the U.S. Geological Survey published on the results of a comprehensive geologic study that began, as a reconnaissance survey, within 24 hours after the March 27, 1964, Magnitude 9.2 Great Alaska Earthquake and extended, as detailed investigations, through several field seasons. The 1964 Great Alaska earthquake was the largest earthquake in the U.S. since 1700. Professional Paper 544, in 5 parts, describes the effects on hydrologic regimen.

  10. Late Quaternary record of pteropod preservation from the Andaman Sea

    Sijinkumar, A.V.; Nath, B.N.; Guptha, M.V.S.

    , temperature and one atmosphere total pressure. American Journal of Science 283, 780-799. Naqvi, W.A., Charles, C.D., Fairbanks, R.G., 1994. Carbon and oxygen isotopic records of benthic foraminifera from the Northeast Indian Ocean: implications on glacial...

  11. Timing and preservation mechanism of deglacial pteropod spike from the Andaman Sea, northeastern Indian Ocean

    Sijinkumar, A.V.; Nath, B.N.; Gupta, M.V.S.; Rao, B.R.

    system in the Arabian Sea. Deep-Sea Research II 45, 2225-2252. Milliman, J. S. & Meade, R. H. 1983: World-wide delivery of river sediment to the oceans. Journal of Geology 91, 1-21. Naqvi, W. A., Charles, C. D. & Fairbanks, R. G. 1994: Carbon...

  12. New England Wind Forum: A Wind Powering America Project, Volume 1, Issue 4 -- May 2008 (Newsletter)

    Grace, R. C.; Gifford, J.

    2008-05-01

    The New England Wind Forum electronic newsletter summarizes the latest news in wind energy development activity, markets, education, and policy in the New England region. It also features an interview with a key figure influencing New England's wind energy development. Volume 1, Issue 4 features an interview with Brian Fairbank, president and CEO of Jiminy Peak Mountain Resort.

  13. 75 FR 58350 - Meeting

    2010-09-24

    ... UNITED STATES ARCTIC RESEARCH COMMISSION Meeting Notice is hereby given that the U.S. Arctic Research Commission will hold its 94th meeting in Fairbanks, AK, on October 6-8, 2010. The business session... approval of the agenda. (2) Approval of the minutes from the 93rd meeting. (3) Commissioners and staff...

  14. 76 FR 67229 - Governors' Designees Receiving Advance Notification of Transportation of Certain Shipments of...

    2011-10-31

    ... of Transportation of Certain Shipments of Nuclear Waste and Spent Fuel On January 6, 1982 (47 FR 596 and 47 FR 600), the U.S. Nuclear Regulatory Commission (NRC) published in the Federal Register final... Avenue, Fairbanks, AK 99709, (907) 451-2172, 24 hours: (907) 457- 1421, Cell: (907) 347-7779, (907) 451...

  15. North Atlantic climatic changes reflected in the Late Quaternary foraminiferal abundance record of the Andaman Sea, north-eastern Indian Ocean

    Sijinkumar, A.V.; Nath, B.N.; Clemens, S.

    –2151. Milliman, J.S., Meade, R.H., 1983. World-wide delivery of river sediment to the oceans. J. Geol. 91, 1–21. Naqvi, W.A., Charles, C.D., Fairbanks, R.G., 1994. Carbon and oxygen isotopic records of Rashid, H., Flower, B.P., Poore, R.Z., Quinn, T.M., 2007. A...

  16. 75 FR 29296 - Proposed Flood Elevation Determinations

    2010-05-25

    ... Tanana An area north of the Tanana +431 +432 Fairbanks-North Star River and Chena River. River levee and... of Old Airport Road and Mitchell Expressway to the west. An area north of the Tanana None +446 River...)....... Approximately 460 feet None +1004 Unincorporated Areas upstream of West Charles of Fayette County. Street. City...

  17. A BASIC HINDI READER.

    HARRIS, RICHARD M.; SHARMA, RAMA NATH

    THIS TEXT WAS DESIGNED TO MEET THE SPECIFIC NEEDS OF FIRST-YEAR STUDENTS OF HINDI WITH A KNOWLEDGE OF HINDI VOCABULARY AND STRUCTURE EQUIVALENT TO THAT PRESENTED IN THE FIRST SEVEN LESSONS OF TWO WIDELY USED ELEMENTARY HINDI TEXTS, "SPOKEN AND WRITTEN HINDI" BY FAIRBANKS AND MISRA, AND "CONVERSATIONAL HINDI-URDU" BY GUMPERZ AND…

  18. Development of ambient PM 2.5 management strategies.

    2009-10-01

    "Using analyzed and modeled field data on air quality and meteorology, researchers identified major contributors of fine particulate matter (PM2.5) in Fairbanks. This : project was an effort to help the city meet U.S. Environmental Protection Agency ...

  19. Becoming Something Different: Learning from Esme

    Fairbanks, Colleen M.; Crooks, Penny Mason; Ariail, Mary

    2011-01-01

    In this article, Fairbanks, Crooks, and Ariail followed Esme Martinez, a Spanish-speaking Latina, from the sixth grade to the eleventh grade, focusing on her perspectives of schooling and her shifting identities related to home, school, friendships, and future. Drawing on the construct of artifacts, a sociohistorical concept that understands…

  20. Alaskan Native High School Dropouts: A Report Prepared for Project ANNA.

    Jacobson, Desa

    Presented is a summary of the Alaskan Native high school dropouts. The data collected on 180 Native Alaskan high school dropouts was taken from the regional dormitories at Nome, Kodiak, Bethel and Boarding Home programs in Anchorage, Tok, Fairbanks, Dillingham, and Ketchikan. Students who terminated for academic reasons, failed to attend school,…

  1. The Triassic upwelling system of Arctic Alaska

    Yurchenko, I.; Graham, S. A.

    2017-12-01

    The Middle to Upper Triassic Shublik Formation of Arctic Alaska is a laterally and vertically heterogeneous rock unit that has been analyzed both in outcrop and in the subsurface. The Shublik Formation sediments are distinguished by a characteristic set of lithologies that include glauconitic, phosphatic, organic-rich, and cherty facies consistent with a coastal upwelling zone deposition interpretation. It is often recognized by abundance of impressions and shells of distinctive Triassic bivalves. To understand main controls on lithofacies distributions, this study reviews and refines lithologic and paleoenvironmental interpretations of the Shublik Formation, and incorporates the newly acquired detailed geochemical analyses of two complete Shublik cores. This work focuses on organic geochemistry (analyses of biomarkers and diamondoids), chemostratigraphy (hand-held XRF), and iron speciation analysis to reconstruct paleoproductivity and redox conditions. Based on the available evidence, during Shublik deposition, an upwelling-influenced open shelf resulted in high nutrient supply that stimulated algal blooms leading to high net organic productivity, reduced water transparency, oxygen deficiency, and water column stratification. Evidence of such eutrophic conditions is indicated by the lack of photic benthic organisms, bioturbation and trace fossils, and dominance of the monospecific light-independent epibenthic bivalves. The flat, subcircular, thin shells of these carbonate-secreting organisms allowed them to adapt to dysoxic conditions, and float on soft, soupy, muddy substrate. The distinctive clay- and organic-rich facies with abundant bivalves occurred on the mid to outer stable broad shelf, and were deposited when organic productivity at times overlapped with periods of increased siliciclastic input controlled by sea level and changes in local sediment dispersal systems, and therefore are more spatially and temporally localized than the widespread clay

  2. Cancer survival among Alaska Native people.

    Nash, Sarah H; Meisner, Angela L W; Zimpelman, Garrett L; Barry, Marc; Wiggins, Charles L

    2018-03-26

    Recent cancer survival trends among American Indian and Alaska Native (AN) people are not well understood; survival has not been reported among AN people since 2001. This study examined cause-specific survival among AN cancer patients for lung, colorectal, female breast, prostate, and kidney cancers. It evaluated whether survival differed between cancers diagnosed in 1992-2002 (the earlier period) and cancers diagnosed in 2003-2013 (the later period) and by the age at diagnosis (<65 vs ≥65 years), stage at diagnosis (local or regional/distant/unknown), and sex. Kaplan-Meier and Cox proportional hazards models were used to estimate univariate and multivariate-adjusted cause-specific survival for each cancer. An improvement was observed in 5-year survival over time from lung cancer (hazard ratio [HR] for the later period vs the earlier period, 0.83; 95% confidence interval [CI], 0.72-0.97), and a marginally nonsignificant improvement was observed for colorectal cancer (HR, 0.81; 95% CI, 0.66-1.01). Site-specific differences in survival were observed by age and stage at diagnosis. This study presents the first data on cancer survival among AN people in almost 2 decades. During this time, AN people have experienced improvements in survival from lung and colorectal cancers. The reasons for these improvements may include increased access to care (including screening) as well as improvements in treatment. Improving cancer survival should be a priority for reducing the burden of cancer among AN people and eliminating cancer disparities. Cancer 2018. © 2018 American Cancer Society. © 2018 American Cancer Society.

  3. Spatial Variation of Slip Behavior Beneath the Alaska Peninsula Along Alaska-Aleutian Subduction Zone

    Li, Shanshan; Freymueller, Jeffrey T.

    2018-04-01

    We resurveyed preexisting campaign Global Positioning System (GPS) sites and estimated a highly precise GPS velocity field for the Alaska Peninsula. We use the TDEFNODE software to model the slip deficit distribution using the new GPS velocities. We find systematic misfits to the vertical velocities from the optimal model that fits the horizontal velocities well, which cannot be explained by altering the slip distribution, so we use only the horizontal velocities in the study. Locations of three boundaries that mark significant along-strike change in the locking distribution are identified. The Kodiak segment is strongly locked, the Semidi segment is intermediate, the Shumagin segment is weakly locked, and the Sanak segment is dominantly creeping. We suggest that a change in preexisting plate fabric orientation on the downgoing plate has an important control on the along-strike variation in the megathrust locking distribution and subduction seismicity.

  4. Measuring fuel moisture content in Alaska: standard methods and procedures.

    Rodney A. Norum; Melanie. Miller

    1984-01-01

    Methods and procedures are given for collecting and processing living and dead plant materials for the purpose of determining their water content. Wild-land fuels in Alaska are emphasized, but the methodology is applicable elsewhere. Guides are given for determining the number of samples needed to attain a chosen precision. Detailed procedures are presented for...

  5. Native Cultures and Language: Challenges for Land Managers in Alaska

    Thomas J. Gallagher

    1992-01-01

    Many of the Aleuts, Inuits, and Indians of Alaska continue to live a traditional lifestyle. Eighty-eight percent of the land they use for subsistence activities, however, is managed by federal or state agencies. Clear communication across cultures is essential if Native people are to be represented in agency land management decisions. Problems in communication relate...

  6. Environmental assessment: Kotzebue Wind Installation Project, Kotzebue, Alaska

    1998-05-01

    The DOE is proposing to provide financial assistance to the Kotzebue Electric Association to expand its existing wind installation near Kotzebue, Alaska. Like many rural Alaska towns, Kotzebue uses diesel-powered generators to produce its electricity, the high cost of which is currently subsidized by the Alaska State government. In an effort to provide a cost effective and clean source of electricity, reduce dependence on diesel fuel, and reduce air pollutants, the DOE is proposing to fund an experimental wind installation to test commercially available wind turbines under Arctic conditions. The results would provide valuable information to other Alaska communities experiencing similar dependence on diesel-powered generators. The environmental assessment for the proposed wind installation assessed impacts to biological resources, land use, electromagnetic interference, coastal zone, air quality, cultural resources, and noise. It was determined that the project does not constitute a major Federal action significantly affecting the quality of the human environment. Therefore, the preparation of an environmental impact statement is not required, and DOE has issued a Finding of No Significant Impact

  7. Synoptic-scale fire weather conditions in Alaska

    Hayasaka, Hiroshi; Tanaka, Hiroshi L.; Bieniek, Peter A.

    2016-09-01

    Recent concurrent widespread fires in Alaska are evaluated to assess their associated synoptic-scale weather conditions. Several periods of high fire activity from 2003 to 2015 were identified using Moderate Resolution Imaging Spectroradiometer (MODIS) hotspot data by considering the number of daily hotspots and their continuity. Fire weather conditions during the top six periods of high fire activity in the fire years of 2004, 2005, 2009, and 2015 were analyzed using upper level (500 hPa) and near surface level (1000 hPa) atmospheric reanalysis data. The top four fire-periods occurred under similar unique high-pressure fire weather conditions related to Rossby wave breaking (RWB). Following the ignition of wildfires, fire weather conditions related to RWB events typically result in two hotspot peaks occurring before and after high-pressure systems move from south to north across Alaska. A ridge in the Gulf of Alaska resulted in southwesterly wind during the first hotspot peak. After the high-pressure system moved north under RWB conditions, the Beaufort Sea High developed and resulted in relatively strong easterly wind in Interior Alaska and a second (largest) hotspot peak during each fire period. Low-pressure-related fire weather conditions occurring under cyclogenesis in the Arctic also resulted in high fire activity under southwesterly wind with a single large hot-spot peak.

  8. A scoping review of traditional food security in Alaska.

    Walch, Amanda; Bersamin, Andrea; Loring, Philip; Johnson, Rhonda; Tholl, Melissa

    2018-12-01

    Food insecurity is a public health concern. Food security includes the pillars of food access, availability and utilisation. For some indigenous peoples, this may also include traditional foods. To conduct a scoping review on traditional foods and food security in Alaska. Google Scholar and the High North Research Documents were used to search for relevant primary research using the following terms: "traditional foods", "food security", "access", "availability", "utilisation", "Alaska", "Alaska Native" and "indigenous". Twenty four articles from Google Scholar and four articles from the High North Research Documents were selected. The articles revealed three types of research approaches, those that quantified traditional food intake (n=18), those that quantified food security (n=2), and qualitative articles that addressed at least one pillar of food security (n=8). Limited primary research is available on food security in Alaskan. Few studies directly measure food security while most provide a review of food security factors. Research investigating dietary intake of traditional foods is more prevalent, though many differences exist among participant age groups and geographical areas. Future research should include direct measurements of traditional food intake and food security to provide a more complete picture of traditional food security in Alaska.

  9. Modeling Alaska boreal forests with a controlled trend surface approach

    Mo Zhou; Jingjing Liang

    2012-01-01

    An approach of Controlled Trend Surface was proposed to simultaneously take into consideration large-scale spatial trends and nonspatial effects. A geospatial model of the Alaska boreal forest was developed from 446 permanent sample plots, which addressed large-scale spatial trends in recruitment, diameter growth, and mortality. The model was tested on two sets of...

  10. Digital Learning Compass: Distance Education State Almanac 2017. Alaska

    Seaman, Julia E.; Seaman, Jeff

    2017-01-01

    This brief report uses data collected under the U.S. Department of Education's National Center for Educational Statistics (NCES) Integrated Postsecondary Education Data System (IPEDS) Fall Enrollment survey to highlight distance education data in the state of Alaska. The sample for this analysis is comprised of all active, degree-granting…

  11. Climate change and health effects in Northwest Alaska

    Michael Brubaker

    2011-10-01

    Full Text Available This article provides examples of adverse health effects, including weather-related injury, food insecurity, mental health issues, and water infrastructure damage, and the responses to these effects that are currently being applied in two Northwest Alaska communities.In Northwest Alaska, warming is resulting in a broad range of unusual weather and environmental conditions, including delayed freeze-up, earlier breakup, storm surge, coastal erosion, and thawing permafrost. These are just some of the climate impacts that are driving concerns about weather-related injury, the spread of disease, mental health issues, infrastructure damage, and food and water security. Local leaders are challenged to identify appropriate adaptation strategies to address climate impacts and related health effects.The tribal health system is combining local observations, traditional knowledge, and western science to perform community-specific climate change health impact assessments. Local leaders are applying this information to develop adaptation responses.The Alaska Native Tribal Health Consortium will describe relationships between climate impacts and health effects and provide examples of community-scaled adaptation actions currently being applied in Northwest Alaska.Climate change is increasing vulnerability to injury, disease, mental stress, food insecurity, and water insecurity. Northwest communities are applying adaptation approaches that are both specific and appropriate.The health impact assessment process is effective in raising awareness, encouraging discussion, engaging partners, and implementing adaptation planning. With community-specific information, local leaders are applying health protective adaptation measures.

  12. Regional biomass stores and dynamics in forests of coastal Alaska

    Mikhaill A. Yatskov; Mark E. Harmon; Olga N. Krankina; Tara M. Barrett; Kevin R. Dobelbower; Andrew N. Gray; Becky Fasth; Lori Trummer; Toni L. Hoyman; Chana M. Dudoit

    2015-01-01

    Coastal Alaska is a vast forested region (6.2 million ha) with the potential to store large amounts of carbon in live and dead biomass thus influencing continental and global carbon dynamics. The main objectives of this study were to assess regional biomass stores, examine the biomass partitioning between live and dead pools, and evaluate the effect of disturbance on...

  13. Economics of wild salmon ecosystems: Bristol Bay, Alaska

    John W. Duffield; Christopher J. Neher; David A. Patterson; Oliver S. Goldsmith

    2007-01-01

    This paper provides an estimate of the economic value of wild salmon ecosystems in the major watershed of Bristol Bay, Alaska. The analysis utilizes both regional economic and social benefit-cost accounting frameworks. Key sectors analyzed include subsistence, commercial fishing, sport fishing, hunting, and nonconsumptive wildlife viewing and tourism. The mixed cash-...

  14. Environmental assessment: Kotzebue Wind Installation Project, Kotzebue, Alaska

    NONE

    1998-05-01

    The DOE is proposing to provide financial assistance to the Kotzebue Electric Association to expand its existing wind installation near Kotzebue, Alaska. Like many rural Alaska towns, Kotzebue uses diesel-powered generators to produce its electricity, the high cost of which is currently subsidized by the Alaska State government. In an effort to provide a cost effective and clean source of electricity, reduce dependence on diesel fuel, and reduce air pollutants, the DOE is proposing to fund an experimental wind installation to test commercially available wind turbines under Arctic conditions. The results would provide valuable information to other Alaska communities experiencing similar dependence on diesel-powered generators. The environmental assessment for the proposed wind installation assessed impacts to biological resources, land use, electromagnetic interference, coastal zone, air quality, cultural resources, and noise. It was determined that the project does not constitute a major Federal action significantly affecting the quality of the human environment. Therefore, the preparation of an environmental impact statement is not required, and DOE has issued a Finding of No Significant Impact.

  15. Current Conditions in American Indian and Alaska Native Communities.

    Szasz, Margaret Connell

    The school experience of American Indian and Alaska Native children hinges on the context in which their schooling takes place. This context includes the health and well-being of their families, communities, and governments, as well as the relationship between Native and non-Native people. Many Native children are in desperate straits because of…

  16. Staff - Kenneth R. Papp | Alaska Division of Geological & Geophysical

    Surveys Home About Us Director's Office Alaska Statutes Annual Reports Employment Staff Directory and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a Facebook DGGS News Natural Resources Geological & Geophysical Surveys Staff - Kenneth R. Papp main

  17. Edge-glued panels from Alaska hardwoods: retail manager perspectives

    David Nicholls; Matthew Bumgardner; Valerie Barber

    2010-01-01

    In Alaska, red alder (Alnus rubra Bong.) and paper birch (Betula papyrifera Marsh.) are both lesser-known hardwoods grown, harvested, and manufactured into appearance products, with potential for increased utilization. The production of edgeglued panels from red alder and paper birch offers one expansion opportunity for wood...

  18. Estimating wildfire response costs in Alaska's changing climate

    Climate change is altering wildfire activity across Alaska, with increased area burned projected for the future. Changes in wildfire are expected to affect the need for management and suppression resources, however the potential economic implications of these needs have not been ...

  19. Modeling population dynamics and woody biomass of Alaska coastal forest

    Randy L. Peterson; Jingjing Liang; Tara M. Barrett

    2014-01-01

    Alaska coastal forest, 6.2 million ha in size, has been managed in the past mainly through clearcutting. Declining harvest and dwindling commercial forest resources over the past 2 decades have led to increased interest in management of young-growth stands and utilization of woody biomass for bioenergy. However, existing models to support these new management systems...

  20. Changing Forest Disturbance Regimes and Risk Perceptions in Homer, Alaska

    Courtney G. F1int

    2007-01-01

    Forest disturbances caused by insects can lead to other disturbances, risks, and changes across landscapes. Evaluating the human dimensions of such disturbances furthers understanding of integrated changes in natural and social systems. This article examines the effects of changing forest disturbance regimes on local risk perceptions and attitudes in Homer, Alaska....

  1. Alaska's timber harvest and forest products industry, 2005

    Jeff M. Halbrook; Todd A. Morgan; Jason P. Brandt; Charles E. Keegan; Thale Dillon; Tara M. Barrett

    2009-01-01

    This report traces the flow of timber harvested in Alaska during calendar year 2005, describes the composition and operations of the state's primary forest products industry, and quantifies volumes and uses of wood fiber. Historical wood products industry changes are discussed, as well as trends in timber harvest, production, and sales of primary wood products....

  2. Alcohol Problems in Alaska Natives: Lessons from the Inuit

    Seale, J. Paul; Shellenberger, Sylvia; Spence, John

    2006-01-01

    In this Alaska Native study, cultural "insiders" analyzed problems associated with increased alcohol availability, factors which have reduced alcohol-related problems, and ideas for improving treatment in an Inuit community. Participants described frequent bingeing, blackouts, family violence, suicide, loss of child custody, and feelings…

  3. The forest ecosystem of southeast Alaska: 5. Soil mass movement.

    Douglas N. Swanston

    1974-01-01

    Research in southeast Alaska has identified soil mass movement as the dominant erosion process, with debris avalanches and debris flows the most frequent events on characteristically steep, forested slopes. Periodically high soil water levels and steep slopes are controlling factors. Bedrock structure and the rooting characteristics of trees and other vegetation exert...

  4. Mitochondrial DNA phylogeography of least cisco Coregonus sardinella in Alaska.

    Padula, V M; Causey, D; López, J A

    2017-03-01

    This study presents the first detailed analysis of the mitochondrial DNA diversity of least cisco Coregonus sardinella in Alaska using a 678 bp segment of the control region (D-loop) of the mitochondrial genome. Findings suggest that the history of C. sardinella in Alaska differs from that of other species of Coregonus present in the state and surrounding regions. The examined populations of C. sardinella are genetically diverse across Alaska. Sixty-eight distinct mitochondrial haplotypes were identified among 305 individuals sampled from nine locations. The haplotype minimum spanning network and phylogeny showed a modest level of geographic segregation among haplotypes, suggesting high levels of on-going or recent connectivity among distant populations. Observed Φ ST values and the results of homogeneity and AMOVAs indicate incipient genetic differentiation between aggregations in three broad regional groups. Sites north of the Brooks Range formed one group, sites in the Yukon and Selawik Rivers formed a second group and sites south of the Yukon drainage formed the third group. Overall, the sequence data showed that a large proportion of mtDNA genetic variation in C. sardinella is shared across Alaska, but this variation is not homogeneously distributed across all regions and for all haplotype groups. © 2017 The Fisheries Society of the British Isles.

  5. Application of geotechnical data to resource planning in southeast Alaska.

    W.L. Schroeder; D.N. Swanston

    1987-01-01

    Recent quantification of engineering properties and index values of dominant soil types in the Alexander Archipelago, southeast Alaska, have revealed consistent diagnostic characteristics useful to evaluating landslide risk and subgrade material stability before timber harvesting and low-volume road construction. Shear strength data are summarized and grouped by Soil...

  6. The forest ecosystem of southeast Alaska: 8. Water.

    Donald C. Schmiege; Austin E. Helmers; Daniel M. Bishop

    1974-01-01

    One of the most striking characteristics of southeast Alaska is the abundance of water. Large glaciers, icefields, and thousands of streams result from heavy precipitation throughout the year. Published and unpublished data on water regimen, temperature, sedimentation, and chemistry are combined. These serve as a basis for understanding how this valuable resource may...

  7. EarthScope Transportable Array Siting Outreach Activities in Alaska and Western Canada

    Dorr, P. M.; Gardine, L.; Tape, C.; McQuillan, P.; Cubley, J. F.; Samolczyk, M. A.; Taber, J.; West, M. E.; Busby, R.

    2015-12-01

    The EarthScope Transportable Array is deploying about 260 stations in Alaska and western Canada. IRIS and EarthScope are partnering with the Alaska Earthquake Center, part of the University of Alaska's Geophysical Institute, and Yukon College to spread awareness of earthquakes in Alaska and western Canada and the benefits of the Transportable Array for people living in these regions. We provide an update of ongoing education and outreach activities in Alaska and Canada as well as continued efforts to publicize the Transportable Array in the Lower 48. Nearly all parts of Alaska and portions of western Canada are tectonically active. The tectonic and seismic variability of Alaska, in particular, requires focused attention at the regional level, and the remoteness and inaccessibility of most Alaskan and western Canadian villages and towns often makes frequent visits difficult. When a community is accessible, every opportunity to engage the residents is made. Booths at state fairs and large cultural gatherings, such as the annual convention of the Alaska Federation of Natives, are excellent venues to distribute earthquake information and to demonstrate a wide variety of educational products and web-based applications related to seismology and the Transportable Array that residents can use in their own communities. Meetings and interviews with Alaska Native Elders and tribal councils discussing past earthquakes has led to a better understanding of how Alaskans view and understand earthquakes. Region-specific publications have been developed to tie in a sense of place for residents of Alaska and the Yukon. The Alaska content for IRIS's Active Earth Monitor emphasizes the widespread tectonic and seismic features and offers not just Alaska residents, but anyone interested in Alaska, a glimpse into what is going on beneath their feet. The concerted efforts of the outreach team will have lasting effects on Alaskan and Canadian understanding of the seismic hazard and

  8. Spatiotemporal remote sensing of ecosystem change and causation across Alaska.

    Pastick, Neal J; Jorgenson, M Torre; Goetz, Scott J; Jones, Benjamin M; Wylie, Bruce K; Minsley, Burke J; Genet, Hélène; Knight, Joseph F; Swanson, David K; Jorgenson, Janet C

    2018-05-28

    Contemporary climate change in Alaska has resulted in amplified rates of press and pulse disturbances that drive ecosystem change with significant consequences for socio-environmental systems. Despite the vulnerability of Arctic and boreal landscapes to change, little has been done to characterize landscape change and associated drivers across northern high-latitude ecosystems. Here we characterize the historical sensitivity of Alaska's ecosystems to environmental change and anthropogenic disturbances using expert knowledge, remote sensing data, and spatiotemporal analyses and modeling. Time-series analysis of moderate-and high-resolution imagery was used to characterize land- and water-surface dynamics across Alaska. Some 430,000 interpretations of ecological and geomorphological change were made using historical air photos and satellite imagery, and corroborate land-surface greening, browning, and wetness/moisture trend parameters derived from peak-growing season Landsat imagery acquired from 1984 to 2015. The time series of change metrics, together with climatic data and maps of landscape characteristics, were incorporated into a modeling framework for mapping and understanding of drivers of change throughout Alaska. According to our analysis, approximately 13% (~174,000 ± 8700 km 2 ) of Alaska has experienced directional change in the last 32 years (±95% confidence intervals). At the ecoregions level, substantial increases in remotely sensed vegetation productivity were most pronounced in western and northern foothills of Alaska, which is explained by vegetation growth associated with increasing air temperatures. Significant browning trends were largely the result of recent wildfires in interior Alaska, but browning trends are also driven by increases in evaporative demand and surface-water gains that have predominately occurred over warming permafrost landscapes. Increased rates of photosynthetic activity are associated with stabilization and recovery

  9. On the climate and climate change of Sitka, Southeast Alaska

    Wendler, Gerd; Galloway, Kevin; Stuefer, Martin

    2016-10-01

    Sitka, located in southeastern coastal Alaska, is the only meteorological station in Alaska and northern coastal British Columbia, with a long climatological record, going back to the first half of the nineteenth century. Sitka was the capital of Alaska, when it was part of the Russian Empire, to which Alaska belonged until 1867, when the American government purchased it. In 1827, the Russian established an observatory on Baranof Island, Sitka Harbor, which made 17-hourly observations, later extended to 19 and thereafter to all hours of the day. When analyzing the data, the 12-day time difference between the Russian (Julian) calendar, at which the observations were made, and ours (Gregorian) has to be considered. The climate of Sitka is maritime, with relative warm winter temperatures—there is no month with a mean temperature below freezing—and moderately warm summer temperatures with 4 months above the 10 °C level and plentiful precipitation all-year long. It is the warmest zone of Alaska. Even though there is a substantial break in observations in the late nineteenth century, these are the only observation, which started so early in the nineteenth century. Systematic US-based observations commenced much later normally in connection with the gold rush, whaling in Northern Alaska, and the fur trade, predominantly along the Yukon River. During the 186 years of observations from 1827 to 2013, the best linear fit gave a temperature increase of 1.56 °C for the whole period or 0.86 °C per century, somewhat lower than expected for the relatively high latitudes. The increase was nonlinear, with several multi-decadal variations. However, when comparing the first normal (1831-1860) to the last normal (1981-2010) and assuming a linear trend, a higher value of 1.06 °C per century was calculated. The discrepancy might be explained by nonlinearity and the fact that during the late nineteenth and early twentieth centuries, observations were sporadic. Furthermore, the

  10. 76 FR 15826 - Fisheries of the Exclusive Economic Zone Off Alaska; Gulf of Alaska License Limitation Program

    2011-03-22

    ... Islands (AI); Southeast Outside District (SEO); Central Gulf of Alaska (CG), which includes the West... LLP licenses could resume fishing under the licenses in the future and thereby adversely affect active... BS or AI regulatory areas because a Pacific cod endorsement requirement has already been established...

  11. 75 FR 43118 - Fisheries of the Exclusive Economic Zone Off Alaska; Gulf of Alaska License Limitation Program

    2010-07-23

    ...: The Bering Sea (BS), Aleutian Islands (AI); Southeast Outside District (SEO); Central Gulf of Alaska... holders of latent fixed-gear endorsed LLP licenses could resume fishing under the licenses in the future... how fishery effort may shift in the future, but a large number of latent LLP licenses do exist, and...

  12. 75 FR 11749 - Fisheries of the Exclusive Economic Zone Off Alaska; Gulf of Alaska; Final 2010 and 2011 Harvest...

    2010-03-12

    ...: Effective at 1200 hrs, Alaska local time (A.l.t.), March 12, 2010, through 2400 hrs, A.l.t., December 31...). The apportionment of TAC amounts among gear types, processing sectors, and seasons is discussed below... data reflecting catch-per-unit-effort provides rational input for stock distribution assessments. NMFS...

  13. 75 FR 76352 - Fisheries of the Exclusive Economic Zone Off Alaska; Gulf of Alaska; Proposed 2011 and 2012...

    2010-12-08

    ... season (July 1-September 1) deep-water category halibut PSC apportionment. At this time, this amount is... through a single source such as the Alaska Fisheries Information Network. The development of this data... information is currently available and will be incorporated into the final 2010 SAFE report, the development...

  14. Blood politics, ethnic identity, and racial misclassification among American Indians and Alaska Natives.

    Haozous, Emily A; Strickland, Carolyn J; Palacios, Janelle F; Solomon, Teshia G Arambula

    2014-01-01

    Misclassification of race in medical and mortality records has long been documented as an issue in American Indian/Alaska Native data. Yet, little has been shared in a cohesive narrative which outlines why misclassification of American Indian/Alaska Native identity occurs. The purpose of this paper is to provide a summary of the current state of the science in racial misclassification among American Indians and Alaska Natives. We also provide a historical context on the importance of this problem and describe the ongoing political processes that both affect racial misclassification and contribute to the context of American Indian and Alaska Native identity.

  15. Pre-ABoVE: Arctic Alaska Vegetation, Geobotanical, Physiographic Data, 1993-2005

    National Aeronautics and Space Administration — This data set provides the spatial distributions of vegetation types, geobotanical characteristics, and physiographic features for the Arctic tundra region of Alaska...

  16. Geomorphic consequences of volcanic eruptions in Alaska: A review

    Waythomas, Christopher F.

    2015-01-01

    Eruptions of Alaska volcanoes have significant and sometimes profound geomorphic consequences on surrounding landscapes and ecosystems. The effects of eruptions on the landscape can range from complete burial of surface vegetation and preexisting topography to subtle, short-term perturbations of geomorphic and ecological systems. In some cases, an eruption will allow for new landscapes to form in response to the accumulation and erosion of recently deposited volcaniclastic material. In other cases, the geomorphic response to a major eruptive event may set in motion a series of landscape changes that could take centuries to millennia to be realized. The effects of volcanic eruptions on the landscape and how these effects influence surface processes has not been a specific focus of most studies concerned with the physical volcanology of Alaska volcanoes. Thus, what is needed is a review of eruptive activity in Alaska in the context of how this activity influences the geomorphology of affected areas. To illustrate the relationship between geomorphology and volcanic activity in Alaska, several eruptions and their geomorphic impacts will be reviewed. These eruptions include the 1912 Novarupta–Katmai eruption, the 1989–1990 and 2009 eruptions of Redoubt volcano, the 2008 eruption of Kasatochi volcano, and the recent historical eruptions of Pavlof volcano. The geomorphic consequences of eruptive activity associated with these eruptions are described, and where possible, information about surface processes, rates of landscape change, and the temporal and spatial scale of impacts are discussed.A common feature of volcanoes in Alaska is their extensive cover of glacier ice, seasonal snow, or both. As a result, the generation of meltwater and a variety of sediment–water mass flows, including debris-flow lahars, hyperconcentrated-flow lahars, and sediment-laden water floods, are typical outcomes of most types of eruptive activity. Occasionally, such flows can be quite

  17. 75 FR 48298 - Groundfish Fisheries of the Exclusive Economic Zone Off Alaska; Bering Sea/Aleutian Islands Crab...

    2010-08-10

    ... exclusion memorandum may be obtained from the Alaska Region website at http://alaskafisheries.noaa.gov... 680-SHELLFISH FISHERIES OF THE EXCLUSIVE ECONOMIC ZONE OFF ALASKA 1. The authority citation for part...

  18. Changes in forest productivity across Alaska consistent with biome shift.

    Beck, Pieter S A; Juday, Glenn P; Alix, Claire; Barber, Valerie A; Winslow, Stephen E; Sousa, Emily E; Heiser, Patricia; Herriges, James D; Goetz, Scott J

    2011-04-01

    Global vegetation models predict that boreal forests are particularly sensitive to a biome shift during the 21st century. This shift would manifest itself first at the biome's margins, with evergreen forest expanding into current tundra while being replaced by grasslands or temperate forest at the biome's southern edge. We evaluated changes in forest productivity since 1982 across boreal Alaska by linking satellite estimates of primary productivity and a large tree-ring data set. Trends in both records show consistent growth increases at the boreal-tundra ecotones that contrast with drought-induced productivity declines throughout interior Alaska. These patterns support the hypothesized effects of an initiating biome shift. Ultimately, tree dispersal rates, habitat availability and the rate of future climate change, and how it changes disturbance regimes, are expected to determine where the boreal biome will undergo a gradual geographic range shift, and where a more rapid decline. © 2011 Blackwell Publishing Ltd/CNRS.

  19. Subsurface temperatures and geothermal gradients on the North Slope, Alaska

    Collett, Timothy S.; Bird, Kenneth J.; Magoon, Leslie B.

    1989-01-01

    Geothermal gradients as interpreted from a series of high-resolution stabilized well-bore-temperature surveys from 46 North Slope, Alaska, wells vary laterally and vertically throughout the near-surface sediment (0-2,000 m). The data from these surveys have been used in conjunction with depths of ice-bearing permafrost, as interpreted from 102 well logs, to project geothermal gradients within and below the ice-bearing permafrost sequence. The geothermal gradients calculated from the projected temperature profiles are similar to the geothermal gradients measured in the temperature surveys. Measured and projected geothermal gradients in the ice-bearing permafrost sequence range from 1.5??C/100m in the Prudhoe Bay area to 5.1??C/100m in the National Petroleum Reserve in Alaska (NPRA).

  20. Surficial geologic map of the Dillingham quadrangle, southwestern Alaska

    Wilson, Frederic H.

    2018-05-14

    The geologic map of the Dillingham quadrangle in southwestern Alaska shows surficial unconsolidated deposits, many of which are alluvial or glacial in nature. The map area, part of Alaska that was largely not glaciated during the late Wisconsin glaciation, has a long history reflecting local and more distant glaciations. Late Wisconsin glacial deposits have limited extent in the eastern part of the quadrangle, but are quite extensive in the western part of the quadrangle. This map and accompanying digital files are the result of the interpretation of black and white aerial photographs from the 1950s as well as more modern imagery. Limited new field mapping in the area was conducted as part of a bedrock mapping project in the northeastern part of the quadrangle; however, extensive aerial photographic interpretation represents the bulk of the mapping effort.

  1. Global climate model performance over Alaska and Greenland

    Walsh, John E.; Chapman, William L.; Romanovsky, Vladimir

    2008-01-01

    The performance of a set of 15 global climate models used in the Coupled Model Intercomparison Project is evaluated for Alaska and Greenland, and compared with the performance over broader pan-Arctic and Northern Hemisphere extratropical domains. Root-mean-square errors relative to the 1958...... to narrowing the uncertainty and obtaining more robust estimates of future climate change in regions such as Alaska, Greenland, and the broader Arctic....... of the models are generally much larger than the biases of the composite output, indicating that the systematic errors differ considerably among the models. There is a tendency for the models with smaller errors to simulate a larger greenhouse warming over the Arctic, as well as larger increases of Arctic...

  2. Numerical modeling of the 1964 Alaska tsunami in western Passage Canal and Whittier, Alaska

    D. J. Nicolsky

    2010-12-01

    Full Text Available A numerical model of the wave dynamics in Passage Canal, Alaska during the Mw 9.2 megathrust earthquake is presented. During the earthquake, several types of waves were identified at the city of Whittier, located at the head of Passage Canal. The first wave is thought to have been a seiche, while the other two waves were probably triggered by submarine landslides. We model the seiche wave, landslide-generated tsunami, and tectonic tsunami in Passage Canal and compute inundation by each type of wave during the 1964 event. Modeled results are compared with eyewitness reports and an observed inundation line. Results of the numerical experiments let us identify where the submarine landslides might have occurred during the 1964 event. We identify regions at the head and along the northern shore of Passage Canal, where landslides triggered a wave that caused most of the damage in Whittier. An explanation of the fact that the 1964 tectonic tsunami in Whittier was unnoticed is presented as well. The simulated inundation by the seiche, landslide-generated tsunami, and tectonic tsunami can help to mitigate tsunami hazards and prepare Whittier for a potential tsunami.

  3. Updating the USGS seismic hazard maps for Alaska

    Mueller, Charles; Briggs, Richard; Wesson, Robert L.; Petersen, Mark D.

    2015-01-01

    The U.S. Geological Survey makes probabilistic seismic hazard maps and engineering design maps for building codes, emergency planning, risk management, and many other applications. The methodology considers all known earthquake sources with their associated magnitude and rate distributions. Specific faults can be modeled if slip-rate or recurrence information is available. Otherwise, areal sources are developed from earthquake catalogs or GPS data. Sources are combined with ground-motion estimates to compute the hazard. The current maps for Alaska were developed in 2007, and included modeled sources for the Alaska-Aleutian megathrust, a few crustal faults, and areal seismicity sources. The megathrust was modeled as a segmented dipping plane with segmentation largely derived from the slip patches of past earthquakes. Some megathrust deformation is aseismic, so recurrence was estimated from seismic history rather than plate rates. Crustal faults included the Fairweather-Queen Charlotte system, the Denali–Totschunda system, the Castle Mountain fault, two faults on Kodiak Island, and the Transition fault, with recurrence estimated from geologic data. Areal seismicity sources were developed for Benioff-zone earthquakes and for crustal earthquakes not associated with modeled faults. We review the current state of knowledge in Alaska from a seismic-hazard perspective, in anticipation of future updates of the maps. Updated source models will consider revised seismicity catalogs, new information on crustal faults, new GPS data, and new thinking on megathrust recurrence, segmentation, and geometry. Revised ground-motion models will provide up-to-date shaking estimates for crustal earthquakes and subduction earthquakes in Alaska.

  4. Ocean acidification risk assessment for Alaska's fishery sector

    Mathis, J. T.; Cooley, S. R.; Lucey, N.; Colt, S.; Ekstrom, J.; Hurst, T.; Hauri, C.; Evans, W.; Cross, J. N.; Feely, R. A.

    2015-08-01

    The highly productive fisheries of Alaska are located in seas projected to experience strong global change, including rapid transitions in temperature and ocean acidification-driven changes in pH and other chemical parameters. Many of the marine organisms that are most intensely affected by ocean acidification (OA) contribute substantially to the state's commercial fisheries and traditional subsistence way of life. Prior studies of OA's potential impacts on human communities have focused only on possible direct economic losses from specific scenarios of human dependence on commercial harvests and damages to marine species. However, other economic and social impacts, such as changes in food security or livelihoods, are also likely to result from climate change. This study evaluates patterns of dependence on marine resources within Alaska that could be negatively impacted by OA and current community characteristics to assess the potential risk to the fishery sector from OA. Here, we used a risk assessment framework based on one developed by the Intergovernmental Panel on Climate Change to analyze earth-system global ocean model hindcasts and projections of ocean chemistry, fisheries harvest data, and demographic information. The fisheries examined were: shellfish, salmon and other finfish. The final index incorporates all of these data to compare overall risk among Alaska's federally designated census areas. The analysis showed that regions in southeast and southwest Alaska that are highly reliant on fishery harvests and have relatively lower incomes and employment alternatives likely face the highest risk from OA. Although this study is an intermediate step toward our full understanding, the results presented here show that OA merits consideration in policy planning, as it may represent another challenge to Alaskan communities, some of which are already under acute socio-economic strains.

  5. Timber resource statistics for the Yakataga inventory unit, Alaska, 1976.

    Willem W.S. van Hees

    1985-01-01

    Statistics on forest area, total gross and net timber volumes, and annual net growth and mortality are presented from the 1976 timber inventory of the Yakataga unit, Alaska. Timberland area is estimated at 209.3 thousand acres (84.7 thousand ha), net growing stock volume at 917.1 million cubic feet (26.0 million m3), and annual net growth and...

  6. Database for volcanic processes and geology of Augustine Volcano, Alaska

    McIntire, Jacqueline; Ramsey, David W.; Thoms, Evan; Waitt, Richard B.; Beget, James E.

    2012-01-01

    Augustine Island (volcano) in lower Cook Inlet, Alaska, has erupted repeatedly in late-Holocene and historical times. Eruptions typically beget high-energy volcanic processes. Most notable are bouldery debris avalanches containing immense angular clasts shed from summit domes. Coarse deposits of these avalanches form much of Augustine's lower flanks. This geologic map at 1:25,000 scale depicts these deposits, these processes.

  7. ALASKA OIL AND GAS EXPLORATION, DEVELOPMENT, AND PERMITTING PROJECT

    Richard McMahon; Robert Crandall; Chas Dense; Sean Weems

    2003-11-19

    This is the second technical report, covering the period from April 1, 2003 through September 30, 2003. This project brings together three parts of the oil exploration, development, and permitting process to form the foundation for a more fully integrated information technology infrastructure for the State of Alaska. The geo-technical component is a shared effort between the State Department of Administration and the US Department of Energy. The Alaska Oil and Gas Conservation Commission is rapidly converting high volumes of paper documents and geo-technical information to formats suitable for search and retrieval over the Internet. The permitting component is under the lead of the DNR Office of Project Management and Permitting. A web-based system will enable the public and other review participants to track permit status, submit and view comments, and obtain important project information on-line. By automating several functions of the current manual process, permit applications will be completed more quickly and accurately, and agencies will be able to complete reviews with fewer delays. Structural changes are taking place in terms of organization, statutory authority, and regulatory requirements. Geographic Information Systems are a central component to the organization of information, and the delivery of on-line services. Progress has been made to deploy the foundation system for the shared GIS based on open GIS protocols to the extent feasible. Alaska has nearly one-quarter of the nation's supply of crude oil, at least five billion barrels of proven reserves. The American Association of Petroleum Geologists report that the 1995 National Assessment identified the North Slope as having 7.4 billion barrels of technically recoverable oil and over 63 trillion cubic feet of natural gas. From these reserves, Alaska produces roughly one-fifth of the nation's daily crude oil production, or approximately one million barrels per day from over 1,800 active wells.

  8. Vegetation and Environmental Gradients of the Prudhoe Bay Region, Alaska,

    1985-09-01

    Agricultural Experiment Station, Palmer Research Cen- ter, University of Alaska, analyzed the soil nutrients. Tom Boldin , technician at the I University of...misidentified of the extract utilized the Technicon Autoanalyzer taxa. Most of these have been noted in the anno- industrial method No. 94-70W...orthophosphate in tated checklist of plants (Appendix A). water and wastewater). Nitrogen was analyzed with an extracting solution of 2N HCI and utilized

  9. DOE/NREL supported wind energy activities in Alaska

    Drouilhet, S.

    1997-12-01

    This paper describes three wind energy projects implemented in Alaska. The first, a sustainable technology energy partnerships (STEP) wind energy deployment project in Kotzebue will install 6 AOC 15/50 wind turbines and connect to the existing village diesel grid, consisting of approximately 1 MW average load. It seeks to develop solutions to the problems of arctic wind energy installations (transport, foundations, erection, operation, and maintenance), to establish a wind turbine test site, and to establish the Kotzebue Electric Association as a training and deployment center for wind/diesel technology in rural Alaska. The second project, a large village medium-penetration wind/diesel system, also in Kotzebue, will install a 1-2 MW windfarm, which will supplement the AOC turbines of the STEP project. The program will investigate the impact of medium penetration wind energy on power quality and system stability. The third project, the Alaska high-penetration wind/diesel village power pilot project in Wales will install a high penetration (80-100%) wind/diesel system in a remote Alaskan village. The system will include about 180 kW installed wind capacity, meeting an average village load of about 60 kW. This program will provide a model for high penetration wind retrofits to village diesel power systems and build the capability in Alaska to operate, maintain, and replicate wind/diesel technology. The program will also address problems of: effective use of excess wind energy; reliable diesel-off operation; and the role of energy storage.

  10. Reclamation challenges at Usibelli Coal Mine in Healy, Alaska

    Jackson, L.P.

    1998-01-01

    Successful reclamation in the Interior of Alaska requires planning in order to avoid major setbacks. Usibelli Coal Mine is located at a North Latitude of approximately 64 degrees. Temperature extremes in the Interior of Alaska range from a high of 90 degrees Fahrenheit to a low of minus 60 degrees Fahrenheit. The challenges in this sub-arctic climate are many. Several unique reclamation challenges are present due to the cold climate. Discontinuous permafrost is prevalent on north facing slopes. This presents stability problems if placed in inappropriate locations. Very detailed planning is required to assure that no stability problems occur. The construction of drainage channels in ice-rich permafrost areas also requires extra care to assure that water flows along the surface rather than down into the spoil. Mineral topsoil is often not present on the areas to be mined. Often non-salvageable organic permafrost soils are present. These require special handling and must be isolated to avoid stability problems. Since the ground is frozen for 7--8 months a year the reestablishment of vegetation requires a very aggressive planting schedule. Grass seed is applied by fixed wing aircraft and shrubs are planted from locally collected seed. By planning properly prior to mining successful reclamation can take place in the Interior of Alaska

  11. Annualized TASAR Benefit Estimate for Alaska Airlines Operations

    Henderson, Jeffrey

    2015-01-01

    The Traffic Aware Strategic Aircrew Request (TASAR) concept offers onboard automation for the purpose of advising the pilot of traffic compatible trajectory changes that would be beneficial to the flight. A fast-time simulation study was conducted to assess the benefits of TASAR to Alaska Airlines. The simulation compares historical trajectories without TASAR to trajectories developed with TASAR and evaluated by controllers against their objectives. It was estimated that between 8,000 and 12,000 gallons of fuel and 900 to 1,300 minutes could be saved annually per aircraft. These savings were applied fleet-wide to produce an estimated annual cost savings to Alaska Airlines in excess of $5 million due to fuel, maintenance, and depreciation cost savings. Switching to a more wind-optimal trajectory was found to be the use case that generated the highest benefits out of the three TASAR use cases analyzed. Alaska TASAR requests peaked at four to eight requests per hour in high-altitude Seattle center sectors south of Seattle-Tacoma airport.

  12. "Atmospheric Radiation Measurement (ARM) Research Facility at Oliktok Point Alaska"

    Helsel, F.; Ivey, M.; Hardesty, J.; Roesler, E. L.; Dexheimer, D.

    2017-12-01

    Scientific Infrastructure To Support Atmospheric Science, Aerosol Science and UAS's for The Department Of Energy's Atmospheric Radiation Measurement Programs At The Mobile Facility 3 Located At Oliktok Point, Alaska.The Atmospheric Radiation Measurement (ARM) Program's Mobile Facility 3 (AMF3) located at Oliktok Point, Alaska is a U.S. Department of Energy (DOE) site designed to collect data and help determine the impact that clouds and aerosols have on solar radiation. AMF3 provides a scientific infrastructure to support instruments and collect arctic data for the international arctic research community. The infrastructure at AMF3/Oliktok is designed to be mobile and it may be relocated in the future to support other ARM science missions. AMF3's present base line instruments include: scanning precipitation Radars, cloud Radar, Raman Lidar, Eddy correlation flux systems, Ceilometer, Balloon sounding system, Atmospheric Emitted Radiance Interferometer (AERI), Micro-pulse Lidar (MPL) Along with all the standard metrological measurements. In addition AMF3 provides aerosol measurements with a Mobile Aerosol Observing System (MAOS). Ground support for Unmanned Aerial Systems (UAS) and tethered balloon flights. Data from these instruments and systems are placed in the ARM data archives and are available to the international research community. This poster will discuss what instruments and systems are at the ARM Research Facility at Oliktok Point Alaska.

  13. Future Land Use Planning Alternatives for Alaska: One of a Series of Articles on the Native Land Claims.

    Parker, Walter B.

    As one in a series of eight articles written by different professionals concerned with Alaska Native land claims, this article focuses on land use planning alternatives after December of 1976 when the configuration of Alaska lands will have been largely finalized under the Alaska Native Claims Settlement Act of 1972. While this particular booklet…

  14. 41 CFR 302-3.216 - When must I begin my first tour renewal travel from Alaska or Hawaii?

    2010-07-01

    ... first tour renewal travel from Alaska or Hawaii? 302-3.216 Section 302-3.216 Public Contracts and... must I begin my first tour renewal travel from Alaska or Hawaii? You must begin your first tour renewal travel within 5 years of your first consecutive tours in either Alaska or Hawaii. ...

  15. Domestic market opportunities for Alaska lumber-species preferences by secondary wood products manufacturers in the continental United States.

    Joseph Roos; David L. Nicholls

    2006-01-01

    New equipment, technology, and marketing efforts have allowed Alaska’s wood products producers to consider opportunities previously unavailable to them. Until recently, the primary product produced by Alaska firms was rough, unseasoned lumber sold primarily within local markets. Given the purchase and installation of new drying and planing equipment, Alaska producers...

  16. 76 FR 3044 - Fisheries of the Exclusive Economic Zone Off Alaska; Sculpins, Sharks, Squid, and Octopus in the...

    2011-01-19

    ..., Squid, and Octopus in the Gulf of Alaska AGENCY: National Marine Fisheries Service (NMFS), National... prohibiting directed fishing for sculpins, sharks, squid, and octopus in the Gulf of Alaska (GOA). This action..., and octopus in the GOA. DATES: Effective 1200 hrs, Alaska local time (A.l.t.), January 13, 2011...

  17. 77 FR 67580 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Cod by Vessels Using Jig Gear in the...

    2012-11-13

    ... Vessels Using Jig Gear in the Central Regulatory Area of the Gulf of Alaska AGENCY: National Marine... vessels using jig gear in the Central Regulatory Area of the Gulf of Alaska (GOA). This action is... gear in the Central Regulatory Area of the GOA. DATES: Effective 1200 hrs, Alaska local time (A.l.t...

  18. 77 FR 65640 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Cod by Vessels Using Pot Gear in the...

    2012-10-30

    ... Vessels Using Pot Gear in the Central Regulatory Area of the Gulf of Alaska AGENCY: National Marine... vessels using pot gear in the Central Regulatory Area of the Gulf of Alaska (GOA). This action is... gear in the Central Regulatory Area of the GOA. DATES: Effective 1200 hrs, Alaska local time (A.l.t...

  19. 78 FR 7280 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Cod by Vessels Using Pot Gear in the...

    2013-02-01

    ... Vessels Using Pot Gear in the Western Regulatory Area of the Gulf of Alaska AGENCY: National Marine... using pot gear in the Western Regulatory Area of the Gulf of Alaska (GOA). This action is necessary to... vessels using pot gear in the Western Regulatory Area of the GOA. DATES: Effective 1200 hrs, Alaska local...

  20. 78 FR 10102 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Cod by Vessels Using Pot Gear in the...

    2013-02-13

    ... Vessels Using Pot Gear in the Central Regulatory Area of the Gulf of Alaska AGENCY: National Marine... gear in the Central Regulatory Area of the Gulf of Alaska (GOA). This action is necessary to prevent... pot gear in the Central Regulatory Area of the GOA. DATES: Effective 1200 hours, Alaska local time (A...