WorldWideScience

Sample records for faint host galaxy

  1. Sweating the small stuff: simulating dwarf galaxies, ultra-faint dwarf galaxies, and their own tiny satellites

    Science.gov (United States)

    Wheeler, Coral; Oñorbe, Jose; Bullock, James S.; Boylan-Kolchin, Michael; Elbert, Oliver D.; Garrison-Kimmel, Shea; Hopkins, Philip F.; Kereš, Dušan

    2015-10-01

    We present Feedback in Realistic Environment (FIRE)/GIZMO hydrodynamic zoom-in simulations of isolated dark matter haloes, two each at the mass of classical dwarf galaxies (Mvir ≃ 1010 M⊙) and ultra-faint galaxies (Mvir ≃ 109 M⊙), and with two feedback implementations. The resulting central galaxies lie on an extrapolated abundance matching relation from M⋆ ≃ 106 to 104 M⊙ without a break. Every host is filled with subhaloes, many of which form stars. Each of our dwarfs with M⋆ ≃ 106 M⊙ has 1-2 well-resolved satellites with M⋆ = 3-200 × 103 M⊙. Even our isolated ultra-faint galaxies have star-forming subhaloes. If this is representative, dwarf galaxies throughout the Universe should commonly host tiny satellite galaxies of their own. We combine our results with the Exploring the Local Volume in Simulations (ELVIS) simulations to show that targeting ˜ 50 kpc regions around nearby isolated dwarfs could increase the chances of discovering ultra-faint galaxies by ˜35 per cent compared to random pointings, and specifically identify the region around the Phoenix dwarf galaxy as a good potential target. The well-resolved ultra-faint galaxies in our simulations (M⋆ ≃ 3-30 × 103 M⊙) form within Mpeak ≃ 0.5-3 × 109 M⊙ haloes. Each has a uniformly ancient stellar population ( > 10 Gyr) owing to reionization-related quenching. More massive systems, in contrast, all have late-time star formation. Our results suggest that Mhalo ≃ 5 × 109 M⊙ is a probable dividing line between haloes hosting reionization `fossils' and those hosting dwarfs that can continue to form stars in isolation after reionization.

  2. Globular Clusters for Faint Galaxies

    Science.gov (United States)

    Kohler, Susanna

    2017-07-01

    .The most striking feature of these galaxies, however, is that they are surrounded by a large number of compact objects that appear to be globular clusters. From the observations, Van Dokkum and collaborators estimate that Dragonfly 44 and DFX1 have approximately 74 and 62 globulars, respectively significantly more than the low numbers expected for galaxies of this luminosity.Armed with this knowledge, the authors went back and looked at archival observations of 14 other UDGs also located in the Coma cluster. They found that these smaller and fainter galaxies dont host quite as many globular clusters as Dragonfly 44 and DFX1, but more than half also show significant overdensities of globulars.Main panel: relation between the number of globular clusters and total absolute magnitude for Coma UDGs (solid symbols) compared to normal galaxies (open symbols). Top panel: relation between effective radius and absolute magnitude. The UDGs are significantly larger and have more globular clusters than normal galaxies of the same luminosity. [van Dokkum et al. 2017]Evidence of FailureIn general, UDGs appear to have more globular clusters than other galaxies of the same total luminosity, by a factor of nearly 7. These results are consistent with the scenario in which UDGs are failed galaxies: they likely have the halo mass to have formed a large number of globular clusters, but they were quenched before they formed a disk and bulge. Because star formation never got going in UDGs, they are now much dimmer than other galaxies of the same size.The authors suggest that the next step is to obtain dynamical measurements of the UDGs to determine whether these faint galaxies really do have the halo mass suggested by their large numbers of globulars. Future observations will continue to help us pin down the origin of these dim giants.CitationPieter van Dokkum et al 2017 ApJL 844 L11. doi:10.3847/2041-8213/aa7ca2

  3. Studies of faint field galaxies

    International Nuclear Information System (INIS)

    Ellis, R.S.

    1983-01-01

    Although claims are often made that photometric surveys of faint field galaxies reveal evidence for evolution over recent epochs (z<0.6), it has not yet been possible to select a single evolutionary model from comparisons with the data. Magnitude counts are sensitive to evolution but the data is well-mixed in distance because of the width of the luminosity function (LF). Colours can narrow the possibilities but the effects of redshift and morphology can only be separated using many passbands. In this paper, the author highlights two ways in which one can make further progress in this important subject. First, he discusses results based on the AAT redshift survey which comprises 5 Schmidt fields to J = 16.7 i.e. well beyond local inhomogeneities. Secondly, the difficulties in resolving the many possibilities encountered with faint photometry could be resolved with redshifts. To obtain redshift distributions for faint samples is now feasible via multi-object spectroscopy. At intermediate magnitudes (J=20) such distributions test the faint end of the galaxy LF; at faint magnitudes (J=22) they offer a direct evolutionary test. (Auth.)

  4. The Faint Optical Afterglow and Host Galaxy of GRB 020124: Implications for the Nature of Dark Gamma-Ray Bursts

    Science.gov (United States)

    Berger, E.; Kulkarni, S. R.; Bloom, J. S.; Price, P. A.; Fox, D. W.; Frail, D. A.; Axelrod, T. S.; Chevalier, R. A.; Colbert, E.; Costa, E.; Djorgovski, S. G.; Frontera, F.; Galama, T. J.; Halpern, J. P.; Harrison, F. A.; Holtzman, J.; Hurley, K.; Kimble, R. A.; McCarthy, P. J.; Piro, L.; Reichart, D.; Ricker, G. R.; Sari, R.; Schmidt, B. P.; Wheeler, J. C.; Vanderppek, R.; Yost, S. A.

    2002-12-01

    We present ground-based optical observations of GRB 020124 starting 1.6 hr after the burst, as well as subsequent Very Large Array and Hubble Space Telescope (HST) observations. The optical afterglow of GRB 020124 is one of the faintest afterglows detected to date, and it exhibits a relatively rapid decay, Fν~t-1.60+/-0.04, followed by further steepening. In addition, a weak radio source was found coincident with the optical afterglow. The HST observations reveal that a positionally coincident host galaxy must be the faintest host to date, R>~29.5 mag. The afterglow observations can be explained by several models requiring little or no extinction within the host galaxy, AhostV~0-0.9 mag. These observations have significant implications for the interpretation of the so-called dark bursts (bursts for which no optical afterglow is detected), which are usually attributed to dust extinction within the host galaxy. The faintness and relatively rapid decay of the afterglow of GRB 020124, combined with the low inferred extinction, indicate that some dark bursts are intrinsically dim and not dust obscured. Thus, the diversity in the underlying properties of optical afterglows must be observationally determined before substantive inferences can be drawn from the statistics of dark bursts.

  5. Gamma-Ray Burst Host Galaxies Have "Normal" Luminosities.

    Science.gov (United States)

    Schaefer

    2000-04-10

    The galactic environment of gamma-ray bursts can provide good evidence about the nature of the progenitor system, with two old arguments implying that the burst host galaxies are significantly subluminous. New data and new analysis have now reversed this picture: (1) Even though the first two known host galaxies are indeed greatly subluminous, the next eight hosts have absolute magnitudes typical for a population of field galaxies. A detailed analysis of the 16 known hosts (10 with redshifts) shows them to be consistent with a Schechter luminosity function with R*=-21.8+/-1.0, as expected for normal galaxies. (2) Bright bursts from the Interplanetary Network are typically 18 times brighter than the faint bursts with redshifts; however, the bright bursts do not have galaxies inside their error boxes to limits deeper than expected based on the luminosities for the two samples being identical. A new solution to this dilemma is that a broad burst luminosity function along with a burst number density varying as the star formation rate will require the average luminosity of the bright sample (>6x1058 photons s-1 or>1.7x1052 ergs s-1) to be much greater than the average luminosity of the faint sample ( approximately 1058 photons s-1 or approximately 3x1051 ergs s-1). This places the bright bursts at distances for which host galaxies with a normal luminosity will not violate the observed limits. In conclusion, all current evidence points to gamma-ray burst host galaxies being normal in luminosity.

  6. Faint galaxies - Bounds on the epoch of galaxy formation and the cosmological deceleration parameter

    International Nuclear Information System (INIS)

    Yoshii, Yuzuru; Peterson, B.A.

    1991-01-01

    Models of galaxy luminosity evolution are used to interpret the observed color distributions, redshift distributions, and number counts of faint galaxies. It is found from the color distributions that the redshift corresponding to the epoch of galaxy formation must be greater than three, and that the number counts of faint galaxies, which are sensitive to the slope of the faint end of the luminosity function, are incompatible with q0 = 1/2 and indicate a smaller value. The models assume that the sequence of galaxy types is due to different star-formation rates, that the period of galaxy formation can be characterized by a single epoch, and that after formation, galaxies change in luminosity by star formation and stellar evolution, maintaining a constant comoving space density. 40 refs

  7. HOST GALAXY IDENTIFICATION FOR SUPERNOVA SURVEYS

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Ravi R.; Kuhlmann, Steve; Kovacs, Eve; Spinka, Harold; Kessler, Richard; Goldstein, Daniel A.; Liotine, Camille; Pomian, Katarzyna; D’Andrea, Chris B.; Sullivan, Mark; Carretero, Jorge; Castander, Francisco J.; Nichol, Robert C.; Finley, David A.; Fischer, John A.; Foley, Ryan J.; Kim, Alex G.; Papadopoulos, Andreas; Sako, Masao; Scolnic, Daniel M.; Smith, Mathew; Tucker, Brad E.; Uddin, Syed; Wolf, Rachel C.; Yuan, Fang; Abbott, Tim M. C.; Abdalla, Filipe B.; Benoit-Lévy, Aurélien; Bertin, Emmanuel; Brooks, David; Rosell, Aurelio Carnero; Kind, Matias Carrasco; Cunha, Carlos E.; Costa, Luiz N. da; Desai, Shantanu; Doel, Peter; Eifler, Tim F.; Evrard, August E.; Flaugher, Brenna; Fosalba, Pablo; Gaztañaga, Enrique; Gruen, Daniel; Gruendl, Robert; James, David J.; Kuehn, Kyler; Kuropatkin, Nikolay; Maia, Marcio A. G.; Marshall, Jennifer L.; Miquel, Ramon; Plazas, Andrés A.; Romer, A. Kathy; Sánchez, Eusebio; Schubnell, Michael; Sevilla-Noarbe, Ignacio; Sobreira, Flávia; Suchyta, Eric; Swanson, Molly E. C.; Tarle, Gregory; Walker, Alistair R.; Wester, William

    2016-11-08

    Host galaxy identification is a crucial step for modern supernova (SN) surveys such as the Dark Energy Survey and the Large Synoptic Survey Telescope, which will discover SNe by the thousands. Spectroscopic resources are limited, and so in the absence of real-time SN spectra these surveys must rely on host galaxy spectra to obtain accurate redshifts for the Hubble diagram and to improve photometric classification of SNe. In addition, SN luminosities are known to correlate with host-galaxy properties. Therefore, reliable identification of host galaxies is essential for cosmology and SN science. We simulate SN events and their locations within their host galaxies to develop and test methods for matching SNe to their hosts. We use both real and simulated galaxy catalog data from the Advanced Camera for Surveys General Catalog and MICECATv2.0, respectively. We also incorporate "hostless" SNe residing in undetected faint hosts into our analysis, with an assumed hostless rate of 5%. Our fully automated algorithm is run on catalog data and matches SNe to their hosts with 91% accuracy. We find that including a machine learning component, run after the initial matching algorithm, improves the accuracy (purity) of the matching to 97% with a 2% cost in efficiency (true positive rate). Although the exact results are dependent on the details of the survey and the galaxy catalogs used, the method of identifying host galaxies we outline here can be applied to any transient survey.

  8. HOST GALAXY IDENTIFICATION FOR SUPERNOVA SURVEYS

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Ravi R.; Kuhlmann, Steve; Kovacs, Eve; Spinka, Harold; Liotine, Camille; Pomian, Katarzyna [Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439 (United States); Kessler, Richard; Scolnic, Daniel M. [Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637 (United States); Goldstein, Daniel A. [Department of Astronomy, University of California, Berkeley, 501 Campbell Hall #3411, Berkeley, CA 94720 (United States); D’Andrea, Chris B.; Nichol, Robert C.; Papadopoulos, Andreas [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth, PO1 3FX (United Kingdom); Sullivan, Mark [Department of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom); Carretero, Jorge; Castander, Francisco J. [Institut de Ciències de l’Espai, IEEC-CSIC, Campus UAB, Carrer de Can Magrans, s/n, E-08193 Bellaterra, Barcelona (Spain); Finley, David A. [Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States); Fischer, John A.; Sako, Masao [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Foley, Ryan J. [Department of Astronomy, University of Illinois, 1002 W. Green Street, Urbana, IL 61801 (United States); Kim, Alex G., E-mail: raviryan@gmail.com [Physics Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); and others

    2016-12-01

    Host galaxy identification is a crucial step for modern supernova (SN) surveys such as the Dark Energy Survey and the Large Synoptic Survey Telescope, which will discover SNe by the thousands. Spectroscopic resources are limited, and so in the absence of real-time SN spectra these surveys must rely on host galaxy spectra to obtain accurate redshifts for the Hubble diagram and to improve photometric classification of SNe. In addition, SN luminosities are known to correlate with host-galaxy properties. Therefore, reliable identification of host galaxies is essential for cosmology and SN science. We simulate SN events and their locations within their host galaxies to develop and test methods for matching SNe to their hosts. We use both real and simulated galaxy catalog data from the Advanced Camera for Surveys General Catalog and MICECATv2.0, respectively. We also incorporate “hostless” SNe residing in undetected faint hosts into our analysis, with an assumed hostless rate of 5%. Our fully automated algorithm is run on catalog data and matches SNe to their hosts with 91% accuracy. We find that including a machine learning component, run after the initial matching algorithm, improves the accuracy (purity) of the matching to 97% with a 2% cost in efficiency (true positive rate). Although the exact results are dependent on the details of the survey and the galaxy catalogs used, the method of identifying host galaxies we outline here can be applied to any transient survey.

  9. Counts and colors of faint galaxies

    International Nuclear Information System (INIS)

    Kron, R.G.

    1980-01-01

    The color distribution of faint galaxies is an observational dimension which has not yet been fully exploited, despite the important constraints obtainable for galaxy evolution and cosmology. Number-magnitude counts alone contain very diluted information about the state of things because galaxies from a wide range in redshift contribute to the counts at each magnitude. The most-frequently-seen type of galaxy depends on the luminosity function and the relative proportions of galaxies of different spectral classes. The addition of color as a measured quantity can thus considerably sharpen the interpretation of galaxy counts since the apparent color depends on the redshift and rest-frame spectrum. (Auth.)

  10. On the Dearth of Ultra-faint Extremely Metal-poor Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez Almeida, J.; Filho, M. E.; Vecchia, C. Dalla [Instituto Astrofísica de Canarias, E-38200 La Laguna, Tenerife (Spain); Skillman, E. D., E-mail: jos@iac.es [Minnesota Institute for Astrophysics, School of Physics and Astronomy, University of Minnesota, Minneapolis, MN (United States)

    2017-02-01

    Local extremely metal-poor galaxies (XMPs) are of particular astrophysical interest since they allow us to look into physical processes characteristic of the early universe, from the assembly of galaxy disks to the formation of stars in conditions of low metallicity. Given the luminosity–metallicity relationship, all galaxies fainter than M{sub r} ≃ −13 are expected to be XMPs. Therefore, XMPs should be common in galaxy surveys. However, they are not common, because several observational biases hamper their detection. This work compares the number of faint XMPs in the SDSS-DR7 spectroscopic survey with the expected number, given the known biases and the observed galaxy luminosity function (LF). The faint end of the LF is poorly constrained observationally, but it determines the expected number of XMPs. Surprisingly, the number of observed faint XMPs (∼10) is overpredicted by our calculation, unless the upturn in the faint end of the LF is not present in the model. The lack of an upturn can be naturally understood if most XMPs are central galaxies in their low-mass dark matter halos, which are highly depleted in baryons due to interaction with the cosmic ultraviolet background and to other physical processes. Our result also suggests that the upturn toward low luminosity of the observed galaxy LF is due to satellite galaxies.

  11. Confirmation of Faint Dwarf Galaxies in the M81 Group

    Science.gov (United States)

    Chiboucas, Kristin; Jacobs, Bradley A.; Tully, R. Brent; Karachentsev, Igor D.

    2013-11-01

    We have followed up on the results of a 65 deg2 CFHT/MegaCam imaging survey of the nearby M81 Group searching for faint and ultra-faint dwarf galaxies. The original survey turned up 22 faint candidate dwarf members. Based on two-color HST ACS/WFC and WFPC2 photometry, we now confirm 14 of these as dwarf galaxy members of the group. Distances and stellar population characteristics are discussed for each. To a completeness limit of M_{r^{\\prime }} = -10, we find a galaxy luminosity function slope of -1.27 ± 0.04 for the M81 Group. In this region, there are now 36 M81 Group members known, including 4 blue compact dwarfs; 8 other late types including the interacting giants M81, NGC 3077, and M82; 19 early type dwarfs; and at least 5 potential tidal dwarf galaxies. We find that the dSph galaxies in M81 appear to lie in a flattened distribution, similar to that found for the Milky Way and M31. One of the newly discovered dSph galaxies has properties similar to the ultra-faint dwarfs being found in the Local Group with a size Re ~ 100 pc and total magnitude estimates M_{r^{\\prime }} = -6.8 and MI ~ -9.1.

  12. CONFIRMATION OF FAINT DWARF GALAXIES IN THE M81 GROUP

    Energy Technology Data Exchange (ETDEWEB)

    Chiboucas, Kristin [Gemini Observatory, 670 North A' ohoku Pl, Hilo, HI 96720 (United States); Jacobs, Bradley A.; Tully, R. Brent [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96821 (United States); Karachentsev, Igor D., E-mail: kchibouc@gemini.edu, E-mail: bjacobs@ifa.hawaii.edu, E-mail: tully@ifa.hawaii.edu, E-mail: ikar@luna.sao.ru [Special Astrophysical Observatory (SAO), Russian Academy of Sciences, Nizhnij Arkhyz, Karachai-Cherkessian Republic 369167 (Russian Federation)

    2013-11-01

    We have followed up on the results of a 65 deg{sup 2} CFHT/MegaCam imaging survey of the nearby M81 Group searching for faint and ultra-faint dwarf galaxies. The original survey turned up 22 faint candidate dwarf members. Based on two-color HST ACS/WFC and WFPC2 photometry, we now confirm 14 of these as dwarf galaxy members of the group. Distances and stellar population characteristics are discussed for each. To a completeness limit of M{sub r{sup '}}= -10, we find a galaxy luminosity function slope of –1.27 ± 0.04 for the M81 Group. In this region, there are now 36 M81 Group members known, including 4 blue compact dwarfs; 8 other late types including the interacting giants M81, NGC 3077, and M82; 19 early type dwarfs; and at least 5 potential tidal dwarf galaxies. We find that the dSph galaxies in M81 appear to lie in a flattened distribution, similar to that found for the Milky Way and M31. One of the newly discovered dSph galaxies has properties similar to the ultra-faint dwarfs being found in the Local Group with a size R{sub e} ∼ 100 pc and total magnitude estimates M{sub r{sup '}}= -6.8 and M{sub I} ∼ –9.1.

  13. The Properties of Faint Field Galaxies

    Science.gov (United States)

    Driver, Simon. P.

    1994-12-01

    One of the current drawbacks of Charge Coupled Devices (CCDs) is their restrictive fields of view. The Hitchhiker CCD camera overcomes this limitation by operating in parallel with existing instrumentation and is able to cover a large area as well as large volumes. Hitchhiker is mounted on the 4.2m William Herschel Telescope and has been operating for two years. The first use of the Hitchhiker data set has been to study the general properties of faint galaxies. The observed trend of how the differential numbers of galaxies vary with magnitude agrees extremely well with those of other groups and covers, for the first time, all four major optical bandpasses. This multi-band capability has also allowed the study of how the colors of galaxies change with magnitude and how the correlation of galaxies on the sky varies between the optical bandpasses. A dwarf dominated model has been developed to explain these observations and challenges our knowledge of the space-density of dwarf galaxies. The model demonstrates that a simple upward turn in the luminosity distribution of galaxies, similar to that observed in clusters, would remain undetected by the field surveys yet can explain many of the observations without recourse to non-passive galaxy evolution. The conclusion is that the field luminosity distribution is not constrained at faint absolute magnitudes. A combination of a high density of dwarf galaxies and mild evolution could explain all the observations. Continuing work with HST and the Medium Deep Survey Team now reveals the morphological mix of galaxies down to mI ~ 24.0. The results confirm that ellipticals and early-type spirals are well fitted by standard no-evolution models whilst the late-type spirals can only be fitted by strong evolution and/or a significant turn-up in the local field LF.

  14. Spectroscopy of superluminous supernova host galaxies. A preference of hydrogen-poor events for extreme emission line galaxies

    OpenAIRE

    Leloudas, G.; Schulze, S.; Kruehler, T.; Gorosabel, J.; Christensen, L.; Mehner, A.; Postigo, A. de Ugarte; Amorin, R.; Thoene, C. C.; Anderson, J. P.; Bauer, F. E.; Gallazzi, A.; Helminiak, K. G.; Hjorth, J.; Ibar, E.

    2014-01-01

    Superluminous supernovae (SLSNe) are very bright explosions that were only discovered recently and that show a preference for occurring in faint dwarf galaxies. Understanding why stellar evolution yields different types of stellar explosions in these environments is fundamental in order to both uncover the elusive progenitors of SLSNe and to study star formation in dwarf galaxies. In this paper, we present the first results of our project to study SUperluminous Supernova Host galaxIES, focusi...

  15. Star formation quenching in quasar host galaxies

    Science.gov (United States)

    Carniani, Stefano

    2017-10-01

    Galaxy evolution is likely to be shaped by negative feedback from active galactic nuclei (AGN). In the whole range of redshifts and luminosities studied so far, galaxies hosting an AGN frequently show fast and extended outflows consisting in both ionised and molecular gas. Such outflows could potentially quench the start formation within the host galaxy, but a clear evidence of negative feedback in action is still missing. Hereby I will analyse integral-field spectroscopic data for six quasars at z ˜2.4 obtained with SINFONI in the H- and K-band. All the quasars show [OIII]λ5007 line detection of fast, extended outflows. Also, the high signal-to-noise SINFONI observations allow the identification of faint narrow Hα emission (FWHM anti-correlated with star-formation powered emission, i.e. star formation is suppressed in the area affected by the outflow. Nonetheless as narrow, spatially-extended Hα emission, indicating star formation rates of at least 50 - 100 M⊙/yr, has been detected, either AGN feedback is not affecting the whole host galaxy, or star formation is completely quenched only by several feedback episodes. On the other hand, a positive feedback scenario, supported by narrow emission in Hα extending along the edges of the outflow cone, suggests that galaxy-wide outflows could also have a twofold role in the evolution of the host galaxy. Finally, I will present CO(3-2) ALMA data for three out of the six QSOs observed with SINFONI. Flux maps obtained for the CO(3-2) transition suggest that molecular gas within the host galaxy is swept away by fast winds. A negative-feedback scenario is supported by the inferred molecular gas mass in all three objects, which is significantly below what observed in non-active main-sequence galaxies at high-z.

  16. Star Formation Quenching in Quasar Host Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Carniani, Stefano, E-mail: sc888@mrao.cam.ac.uk [Cavendish Laboratory, University of Cambridge, Cambridge (United Kingdom); Kavli Institute for Cosmology, University of Cambridge, Cambridge (United Kingdom)

    2017-10-16

    Galaxy evolution is likely to be shaped by negative feedback from active galactic nuclei (AGN). In the whole range of redshifts and luminosities studied so far, galaxies hosting an AGN frequently show fast and extended outflows consisting in both ionized and molecular gas. Such outflows could potentially quench the start formation within the host galaxy, but a clear evidence of negative feedback in action is still missing. Hereby I will analyse integral-field spectroscopic data for six quasars at z ~ 2.4 obtained with SINFONI in the H- and K-band. All the quasars show [Oiii]λ5007 line detection of fast, extended outflows. Also, the high signal-to-noise SINFONI observations allow the identification of faint narrow Hα emission (FWHM < 500 km/s), which is spatially extended and associated with star formation in the host galaxy. On paper fast outflows are spatially anti-correlated with star-formation powered emission, i.e., star formation is suppressed in the area affected by the outflow. Nonetheless as narrow, spatially-extended Hα emission, indicating star formation rates of at least 50–100 M{sub ⊙} yr{sup −1}, has been detected, either AGN feedback is not affecting the whole host galaxy, or star formation is completely quenched only by several feedback episodes. On the other hand, a positive feedback scenario, supported by narrow emission in Hα extending along the edges of the outflow cone, suggests that galaxy-wide outflows could also have a twofold role in the evolution of the host galaxy. Finally, I will present CO(3-2) ALMA data for three out of the six QSOs observed with SINFONI. Flux maps obtained for the CO(3-2) transition suggest that molecular gas within the host galaxy is swept away by fast winds. A negative-feedback scenario is supported by the inferred molecular gas mass in all three objects, which is significantly below what observed in non-active main-sequence galaxies at high-z.

  17. Star Formation Quenching in Quasar Host Galaxies

    International Nuclear Information System (INIS)

    Carniani, Stefano

    2017-01-01

    Galaxy evolution is likely to be shaped by negative feedback from active galactic nuclei (AGN). In the whole range of redshifts and luminosities studied so far, galaxies hosting an AGN frequently show fast and extended outflows consisting in both ionized and molecular gas. Such outflows could potentially quench the start formation within the host galaxy, but a clear evidence of negative feedback in action is still missing. Hereby I will analyse integral-field spectroscopic data for six quasars at z ~ 2.4 obtained with SINFONI in the H- and K-band. All the quasars show [Oiii]λ5007 line detection of fast, extended outflows. Also, the high signal-to-noise SINFONI observations allow the identification of faint narrow Hα emission (FWHM < 500 km/s), which is spatially extended and associated with star formation in the host galaxy. On paper fast outflows are spatially anti-correlated with star-formation powered emission, i.e., star formation is suppressed in the area affected by the outflow. Nonetheless as narrow, spatially-extended Hα emission, indicating star formation rates of at least 50–100 M ⊙ yr −1 , has been detected, either AGN feedback is not affecting the whole host galaxy, or star formation is completely quenched only by several feedback episodes. On the other hand, a positive feedback scenario, supported by narrow emission in Hα extending along the edges of the outflow cone, suggests that galaxy-wide outflows could also have a twofold role in the evolution of the host galaxy. Finally, I will present CO(3-2) ALMA data for three out of the six QSOs observed with SINFONI. Flux maps obtained for the CO(3-2) transition suggest that molecular gas within the host galaxy is swept away by fast winds. A negative-feedback scenario is supported by the inferred molecular gas mass in all three objects, which is significantly below what observed in non-active main-sequence galaxies at high-z.

  18. Star Formation Quenching in Quasar Host Galaxies

    Directory of Open Access Journals (Sweden)

    Stefano Carniani

    2017-10-01

    Full Text Available Galaxy evolution is likely to be shaped by negative feedback from active galactic nuclei (AGN. In the whole range of redshifts and luminosities studied so far, galaxies hosting an AGN frequently show fast and extended outflows consisting in both ionized and molecular gas. Such outflows could potentially quench the start formation within the host galaxy, but a clear evidence of negative feedback in action is still missing. Hereby I will analyse integral-field spectroscopic data for six quasars at z ~ 2.4 obtained with SINFONI in the H- and K-band. All the quasars show [Oiii]λ5007 line detection of fast, extended outflows. Also, the high signal-to-noise SINFONI observations allow the identification of faint narrow Hα emission (FWHM < 500 km/s, which is spatially extended and associated with star formation in the host galaxy. On paper fast outflows are spatially anti-correlated with star-formation powered emission, i.e., star formation is suppressed in the area affected by the outflow. Nonetheless as narrow, spatially-extended Hα emission, indicating star formation rates of at least 50–100 M⊙ yr−1, has been detected, either AGN feedback is not affecting the whole host galaxy, or star formation is completely quenched only by several feedback episodes. On the other hand, a positive feedback scenario, supported by narrow emission in Hα extending along the edges of the outflow cone, suggests that galaxy-wide outflows could also have a twofold role in the evolution of the host galaxy. Finally, I will present CO(3-2 ALMA data for three out of the six QSOs observed with SINFONI. Flux maps obtained for the CO(3-2 transition suggest that molecular gas within the host galaxy is swept away by fast winds. A negative-feedback scenario is supported by the inferred molecular gas mass in all three objects, which is significantly below what observed in non-active main-sequence galaxies at high-z.

  19. The faint-end of galaxy luminosity functions at the Epoch of Reionization

    Science.gov (United States)

    Yue, B.; Castellano, M.; Ferrara, A.; Fontana, A.; Merlin, E.; Amorín, R.; Grazian, A.; Mármol-Queralto, E.; Michałowski, M. J.; Mortlock, A.; Paris, D.; Parsa, S.; Pilo, S.; Santini, P.; Di Criscienzo, M.

    2018-05-01

    During the Epoch of Reionization (EoR), feedback effects reduce the efficiency of star formation process in small halos or even fully quench it. The galaxy luminosity function (LF) may then turn over at the faint-end. We analyze the number counts of z > 5 galaxies observed in the fields of four Frontier Fields (FFs) clusters and obtain constraints on the LF faint-end: for the turn-over magnitude at z ~ 6, MUVT >~-13.3 for the circular velocity threshold of quenching star formation process, vc* <~ 47 km s-1. We have not yet found significant evidence of the presence of feedback effects suppressing the star formation in small galaxies.

  20. Galaxy modelling. II. Multi-wavelength faint counts from a semi-analytic model of galaxy formation

    Science.gov (United States)

    Devriendt, J. E. G.; Guiderdoni, B.

    2000-11-01

    This paper predicts self-consistent faint galaxy counts from the UV to the submm wavelength range. The stardust spectral energy distributions described in Devriendt et al. \\citeparyear{DGS99} (Paper I) are embedded within the explicit cosmological framework of a simple semi-analytic model of galaxy formation and evolution. We begin with a description of the non-dissipative and dissipative collapses of primordial perturbations, and plug in standard recipes for star formation, stellar evolution and feedback. We also model the absorption of starlight by dust and its re-processing in the IR and submm. We then build a class of models which capture the luminosity budget of the universe through faint galaxy counts and redshift distributions in the whole wavelength range spanned by our spectra. In contrast with a rather stable behaviour in the optical and even in the far-IR, the submm counts are dramatically sensitive to variations in the cosmological parameters and changes in the star formation history. Faint submm counts are more easily accommodated within an open universe with a low value of Omega_0 , or a flat universe with a non-zero cosmological constant. We confirm the suggestion of Guiderdoni et al. \\citeparyear{GHBM98} that matching the current multi-wavelength data requires a population of heavily-extinguished, massive galaxies with large star formation rates ( ~ 500 M_sun yr-1) at intermediate and high redshift (z >= 1.5). Such a population of objects probably is the consequence of an increase of interaction and merging activity at high redshift, but a realistic quantitative description can only be obtained through more detailed modelling of such processes. This study illustrates the implementation of multi-wavelength spectra into a semi-analytic model. In spite of its simplicity, it already provides fair fits of the current data of faint counts, and a physically motivated way of interpolating and extrapolating these data to other wavelengths and fainter flux

  1. Identification and spectrophotometry of faint southern radio galaxies

    International Nuclear Information System (INIS)

    Spinrad, H.; Kron, R.G.; Hunstead, R.W.

    1980-01-01

    We have observed a mixed sample of southern radio sources, identified on the Palomar sky survey or on previous direct plates taken with medium-aperture reflectors. At CIO we obtained a few deep 4m photographs and SIT spectrophotometry for redshift and continuum-color measurement. Almost all our sources were faint galaxies; the largest redshift measured was for 3C 275, with z=0.480. The ultraviolet continuum of PKS 0400--643, a ''thermal'' galaxy with z=0.476, closely resembles that of 3C 295 and shows some color evolution in U--B compared to nearby giant ellipticals

  2. Demise of faint satellites around isolated early-type galaxies

    Science.gov (United States)

    Park, Changbom; Hwang, Ho Seong; Park, Hyunbae; Lee, Jong Chul

    2018-02-01

    The hierarchical galaxy formation scenario in the Cold Dark Matter cosmology with a non-vanishing cosmological constant Λ and geometrically flat space (ΛCDM) has been very successful in explaining the large-scale distribution of galaxies. However, there have been claims that ΛCDM over-predicts the number of satellite galaxies associated with massive galaxies compared with observations—the missing satellite galaxy problem1-3. Isolated groups of galaxies hosted by passively evolving massive early-type galaxies are ideal laboratories for identifying the missing physics in the current theory4-11. Here, we report—based on a deep spectroscopic survey—that isolated massive and passive early-type galaxies without any signs of recent wet mergers or accretion episodes have almost no satellite galaxies fainter than the r-band absolute magnitude of about Mr = -14. If only early-type satellites are used, the cutoff is at the somewhat brighter magnitude of about Mr = -15. Such a cutoff has not been found in other nearby satellite galaxy systems hosted by late-type galaxies or those with merger features. Various physical properties of satellites depend strongly on the host-centric distance. Our observations indicate that the satellite galaxy luminosity function is largely determined by the interaction of satellites with the environment provided by their host.

  3. Extended Schmidt law holds for faint dwarf irregular galaxies

    Science.gov (United States)

    Roychowdhury, Sambit; Chengalur, Jayaram N.; Shi, Yong

    2017-12-01

    Context. The extended Schmidt law (ESL) is a variant of the Schmidt which relates the surface densities of gas and star formation, with the surface density of stellar mass added as an extra parameter. Although ESL has been shown to be valid for a wide range of galaxy properties, its validity in low-metallicity galaxies has not been comprehensively tested. This is important because metallicity affects the crucial atomic-to-molecular transition step in the process of conversion of gas to stars. Aims: We empirically investigate for the first time whether low metallicity faint dwarf irregular galaxies (dIrrs) from the local universe follow the ESL. Here we consider the "global" law where surface densities are averaged over the galactic discs. dIrrs are unique not only because they are at the lowest end of mass and star formation scales for galaxies, but also because they are metal-poor compared to the general population of galaxies. Methods: Our sample is drawn from the Faint Irregular Galaxy GMRT Survey (FIGGS) which is the largest survey of atomic hydrogen in such galaxies. The gas surface densities are determined using their atomic hydrogen content. The star formation rates are calculated using GALEX far ultraviolet fluxes after correcting for dust extinction, whereas the stellar surface densities are calculated using Spitzer 3.6 μm fluxes. The surface densities are calculated over the stellar discs defined by the 3.6 μm images. Results: We find dIrrs indeed follow the ESL. The mean deviation of the FIGGS galaxies from the relation is 0.01 dex, with a scatter around the relation of less than half that seen in the original relation. In comparison, we also show that the FIGGS galaxies are much more deviant when compared to the "canonical" Kennicutt-Schmidt relation. Conclusions: Our results help strengthen the universality of the ESL, especially for galaxies with low metallicities. We suggest that models of star formation in which feedback from previous generations

  4. Detailed abundances in stars belonging to ultra-faint dwarf spheroidal galaxies

    OpenAIRE

    François, P.; Monaco, L.; Villanova, S.; Catelan, M.; Bonifacio, P.; Bellazzini, M.; Bidin, C. Moni; Marconi, G.; Geisler, D.; Sbordone, L.

    2012-01-01

    We report preliminary results concerning the detailed chemical composition of metal poor stars belonging to close ultra-faint dwarf galaxies (hereafter UfDSphs). The abundances have been determined thanks to spectra obtained with X-Shooter, a high efficiency spectrograph installed on one of the ESO VLT units. The sample of ultra-faint dwarf spheroidal stars have abundance ratios slightly lower to what is measured in field halo star of the same metallicity.We did not find extreme abundances in...

  5. CHEMICAL DIVERSITY IN THE ULTRA-FAINT DWARF GALAXY TUCANA II

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Alexander P.; Frebel, Anna; Ezzeddine, Rana [Department of Physics and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Casey, Andrew R., E-mail: alexji@mit.edu [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA (United Kingdom)

    2016-11-20

    We present the first detailed chemical abundance study of the ultra-faint dwarf galaxy Tucana II, based on high-resolution Magellan/MIKE spectra of four red giant stars. The metallicities of these stars range from [Fe/H] = −3.2 to −2.6, and all stars are low in neutron-capture abundances ([Sr/Fe] and [Ba/Fe] < −1). However, a number of anomalous chemical signatures are present. One star is relatively metal-rich ([Fe/H] = −2.6) and shows [Na, α , Sc/Fe] < 0, suggesting an extended star formation history with contributions from AGB stars and SNe Ia. Two stars with [Fe/H] < −3 are mildly carbon-enhanced ([C/Fe] ∼ 0.7) and may be consistent with enrichment by faint supernovae, if such supernovae can produce neutron-capture elements. A fourth star with [Fe/H] = −3 is carbon-normal, and exhibits distinct light element abundance ratios from the carbon-enhanced stars. This carbon-normal star implies that at least two distinct nucleosynthesis sources, both possibly associated with Population III stars, contributed to the early chemical enrichment of this galaxy. Despite its very low luminosity, Tucana II shows a diversity of chemical signatures that preclude it from being a simple “one-shot” first galaxy yet still provide a window into star and galaxy formation in the early universe.

  6. CHEMICAL DIVERSITY IN THE ULTRA-FAINT DWARF GALAXY TUCANA II

    International Nuclear Information System (INIS)

    Ji, Alexander P.; Frebel, Anna; Ezzeddine, Rana; Casey, Andrew R.

    2016-01-01

    We present the first detailed chemical abundance study of the ultra-faint dwarf galaxy Tucana II, based on high-resolution Magellan/MIKE spectra of four red giant stars. The metallicities of these stars range from [Fe/H] = −3.2 to −2.6, and all stars are low in neutron-capture abundances ([Sr/Fe] and [Ba/Fe] < −1). However, a number of anomalous chemical signatures are present. One star is relatively metal-rich ([Fe/H] = −2.6) and shows [Na, α , Sc/Fe] < 0, suggesting an extended star formation history with contributions from AGB stars and SNe Ia. Two stars with [Fe/H] < −3 are mildly carbon-enhanced ([C/Fe] ∼ 0.7) and may be consistent with enrichment by faint supernovae, if such supernovae can produce neutron-capture elements. A fourth star with [Fe/H] = −3 is carbon-normal, and exhibits distinct light element abundance ratios from the carbon-enhanced stars. This carbon-normal star implies that at least two distinct nucleosynthesis sources, both possibly associated with Population III stars, contributed to the early chemical enrichment of this galaxy. Despite its very low luminosity, Tucana II shows a diversity of chemical signatures that preclude it from being a simple “one-shot” first galaxy yet still provide a window into star and galaxy formation in the early universe.

  7. CONSTRAINTS ON OBSCURED STAR FORMATION IN HOST GALAXIES OF GAMMA-RAY BURSTS

    International Nuclear Information System (INIS)

    Hatsukade, Bunyo; Ohta, Kouji; Hashimoto, Tetsuya; Nakanishi, Kouichiro; Tamura, Yoichi; Kohno, Kotaro

    2012-01-01

    We present the results of the 16 cm wave band continuum observations of four host galaxies of gamma-ray bursts (GRBs) 990705, 021211, 041006, and 051022 using the Australia Telescope Compact Array. Radio emission was not detected in any of the host galaxies. The 2σ upper limits on star formation rates derived from the radio observations of the host galaxies are 23, 45, 27, and 26 M ☉ yr –1 , respectively, which are less than about 10 times those derived from UV/optical observations, suggesting that they have no significant dust-obscured star formation. GRBs 021211 and 051022 are known as the so-called dark GRBs and our results imply that dark GRBs do not always occur in galaxies enshrouded by dust. Because large dust extinction was not observed in the afterglow of GRB 021211, our result suggests the possibility that the cause of the dark GRB is the intrinsic faintness of the optical afterglow. On the other hand, by considering the high column density observed in the afterglow of GRB 051022, the likely cause of the dark GRB is the dust extinction in the line of sight of the GRB.

  8. THE ORIGIN OF THE HEAVIEST METALS IN MOST ULTRA-FAINT DWARF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Roederer, Ian U., E-mail: iur@umich.edu [Department of Astronomy, University of Michigan, 1085 S. University Ave., Ann Arbor, MI 48109 (United States)

    2017-01-20

    The heaviest metals found in stars in most ultra-faint dwarf (UFD) galaxies in the Milky Way halo are generally underabundant by an order of magnitude or more when compared with stars in the halo field. Among the heavy elements produced by n -capture reactions, only Sr and Ba can be detected in red giant stars in most UFD galaxies. This limited chemical information is unable to identify the nucleosynthesis process(es) responsible for producing the heavy elements in UFD galaxies. Similar [Sr/Ba] and [Ba/Fe] ratios are found in three bright halo field stars, BD−18°5550, CS 22185–007, and CS 22891–200. Previous studies of high-quality spectra of these stars report detections of additional n -capture elements, including Eu. The [Eu/Ba] ratios in these stars span +0.41 to +0.86. These ratios and others among elements in the rare Earth domain indicate an r -process origin. These stars have some of the lowest levels of r -process enhancement known, with [Eu/H] spanning −3.95 to −3.32, and they may be considered nearby proxies for faint stars in UFD galaxies. Direct confirmation, however, must await future observations of additional heavy elements in stars in the UFD galaxies themselves.

  9. Automated Morphological Classification in Deep Hubble Space Telescope UBVI Fields: Rapidly and Passively Evolving Faint Galaxy Populations

    Science.gov (United States)

    Odewahn, Stephen C.; Windhorst, Rogier A.; Driver, Simon P.; Keel, William C.

    1996-11-01

    We analyze deep Hubble Space Telescope Wide Field Planetary Camera 2 (WFPC2) images in U, B, V, I using artificial neural network (ANN) classifiers, which are based on galaxy surface brightness and light profile (but not on color nor on scale length, rhl). The ANN distinguishes quite well between E/S0, Sabc, and Sd/Irr+M galaxies (M for merging systems) for BJ ~ 24 mag. The faint blue galaxy counts in the B band are dominated by Sd/Irr+M galaxies and can be explained by a moderately steep local luminosity function (LF) undergoing strong luminosity evolution. We suggest that these faint late-type objects (24 mag <~ BJ <~ 28 mag) are a combination of low-luminosity lower redshift dwarf galaxies, plus compact star-forming galaxies and merging systems at z ~= 1--3, possibly the building blocks of the luminous early-type galaxies seen today.

  10. Star/galaxy separation at faint magnitudes: Application to a simulated Dark Energy Survey

    Energy Technology Data Exchange (ETDEWEB)

    Soumagnac, M.T.; et al.

    2013-06-21

    We address the problem of separating stars from galaxies in future large photometric surveys. We focus our analysis on simulations of the Dark Energy Survey (DES). In the first part of the paper, we derive the science requirements on star/galaxy separation, for measurement of the cosmological parameters with the Gravitational Weak Lensing and Large Scale Structure probes. These requirements are dictated by the need to control both the statistical and systematic errors on the cosmological parameters, and by Point Spread Function calibration. We formulate the requirements in terms of the completeness and purity provided by a given star/galaxy classifier. In order to achieve these requirements at faint magnitudes, we propose a new method for star/galaxy separation in the second part of the paper. We first use Principal Component Analysis to outline the correlations between the objects parameters and extract from it the most relevant information. We then use the reduced set of parameters as input to an Artificial Neural Network. This multi-parameter approach improves upon purely morphometric classifiers (such as the classifier implemented in SExtractor), especially at faint magnitudes: it increases the purity by up to 20% for stars and by up to 12% for galaxies, at i-magnitude fainter than 23.

  11. Star/galaxy separation at faint magnitudes: application to a simulated Dark Energy Survey

    Energy Technology Data Exchange (ETDEWEB)

    Soumagnac, M. T.; Abdalla, F. B.; Lahav, O.; Kirk, D.; Sevilla, I.; Bertin, E.; Rowe, B. T. P.; Annis, J.; Busha, M. T.; Da Costa, L. N.; Frieman, J. A.; Gaztanaga, E.; Jarvis, M.; Lin, H.; Percival, W. J.; Santiago, B. X.; Sabiu, C. G.; Wechsler, R. H.; Wolz, L.; Yanny, B.

    2015-04-14

    We address the problem of separating stars from galaxies in future large photometric surveys. We focus our analysis on simulations of the Dark Energy Survey (DES). In the first part of the paper, we derive the science requirements on star/galaxy separation, for measurement of the cosmological parameters with the gravitational weak lensing and large-scale structure probes. These requirements are dictated by the need to control both the statistical and systematic errors on the cosmological parameters, and by point spread function calibration. We formulate the requirements in terms of the completeness and purity provided by a given star/galaxy classifier. In order to achieve these requirements at faint magnitudes, we propose a new method for star/galaxy separation in the second part of the paper. We first use principal component analysis to outline the correlations between the objects parameters and extract from it the most relevant information. We then use the reduced set of parameters as input to an Artificial Neural Network. This multiparameter approach improves upon purely morphometric classifiers (such as the classifier implemented in SExtractor), especially at faint magnitudes: it increases the purity by up to 20 per cent for stars and by up to 12 per cent for galaxies, at i-magnitude fainter than 23.

  12. GHOSTS I: A new faint very isolated dwarf galaxy at D = 12 ± 2 Mpc

    International Nuclear Information System (INIS)

    Monachesi, Antonela; Bell, Eric F.; Radburn-Smith, David J.; Dalcanton, Julianne J.; De Jong, Roelof S.; Streich, David; Vlajić, Marija; Bailin, Jeremy; Holwerda, Benne W.; Alyson Ford, H.; Zucker, Daniel B.

    2014-01-01

    We report the discovery of a new faint dwarf galaxy, GHOSTS I, using HST/ACS data from one of our GHOSTS (Galaxy Halos, Outer disks, Substructure, Thick disk, and Star clusters) fields. Its detected individual stars populate an approximately 1 mag range of its luminosity function (LF). Using synthetic color-magnitude diagrams (CMDs) to compare with the galaxy's CMD, we find that the colors and magnitudes of GHOSTS I's individual stars are most consistent with being young helium-burning and asymptotic giant branch stars at a distance of ∼12 ± 2 Mpc. Morphologically, GHOSTS I appears to be actively forming stars, so we tentatively classify it as a dwarf irregular (dIrr) galaxy, although future Hubble Space Telescope (HST) observations deep enough to resolve a larger magnitude range in its LF are required to make a more secure classification. GHOSTS I's absolute magnitude is M V ∼−9.85 −0.33 +0.40 , making it one of the least luminous dIrr galaxies known, and its metallicity is lower than [Fe/H] = –1.5 dex. The half-light radius of GHOSTS I is 226 ± 38 pc and its ellipticity is 0.47 ± 0.07, similar to Milky Way and M31 dwarf satellites at comparable luminosity. There are no luminous massive galaxies or galaxy clusters within ∼4 Mpc from GHOSTS I that could be considered as its host, making it a very isolated dwarf galaxy in the local universe.

  13. THE OPTICAL AFTERGLOW AND z = 0.92 EARLY-TYPE HOST GALAXY OF THE SHORT GRB 100117A

    International Nuclear Information System (INIS)

    Fong, W.; Berger, E.; Chornock, R.; Tanvir, N. R.; Levan, A. J.; Fruchter, A. S.; Graham, J. F.; Cucchiara, A.; Fox, D. B.

    2011-01-01

    We present the discovery of the optical afterglow and early-type host galaxy of the short-duration GRB 100117A. The faint afterglow is detected 8.3 hr after the burst with r AB = 25.46 ± 0.20 mag. Follow-up optical and near-infrared observations uncover a coincident compact red galaxy, identified as an early-type galaxy at a spectroscopic redshift of z ∼ 0.915 with a mass of ∼3 x 10 10 M sun , an age of ∼1 Gyr, and a luminosity of L B ≅ 0.5 L * . From a possible weak detection of [O II]λ3727 emission at z = 0.915 we infer an upper bound on the star formation rate of ∼0.1 M sun yr -1 , leading to a specific star formation rate of ∼ -1 . Thus, GRB 100117A is only the second short burst to date with a secure early-type host (the other being GRB 050724 at z = 0.257) and it has one of the highest short gamma-ray burst (GRB) redshifts. The offset between the host center and the burst position, 470 ± 310 pc, is the smallest to date. Combined with the old stellar population age, this indicates that the burst likely originated from a progenitor with no significant kick velocity. However, from the brightness of the optical afterglow we infer a relatively low density of n ∼ 3 x 10 -4 ε -3 e,-1 ε -1.75 B,-1 cm -3 . The combination of an optically faint afterglow and host suggests that previous such events may have been missed, thereby potentially biasing the known short GRB host population against z ∼> 1 early-type hosts.

  14. On the Nature of Ultra-faint Dwarf Galaxy Candidates. II. The Case of Cetus II

    Science.gov (United States)

    Conn, Blair C.; Jerjen, Helmut; Kim, Dongwon; Schirmer, Mischa

    2018-04-01

    We obtained deep Gemini GMOS-S g, r photometry of the ultra-faint dwarf galaxy candidate Cetus II with the aim of providing stronger constraints on its size, luminosity, and stellar population. Cetus II is an important object in the size–luminosity plane, as it occupies the transition zone between dwarf galaxies and star clusters. All known objects smaller than Cetus II (r h ∼ 20 pc) are reported to be star clusters, while most larger objects are likely dwarf galaxies. We found a prominent excess of main-sequence stars in the color–magnitude diagram of Cetus II, best described by a single stellar population with an age of 11.2 Gyr, metallicity of [Fe/H] = ‑1.28 dex, an [α/Fe] = 0.0 dex at a heliocentric distance of 26.3 ± 1.2 kpc. As well as being spatially located within the Sagittarius dwarf tidal stream, these properties are well matched to the Sagittarius galaxy’s Population B stars. Interestingly, like our recent findings on the ultra-faint dwarf galaxy candidate Tucana V, the stellar field in the direction of Cetus II shows no evidence of a concentrated overdensity despite tracing the main sequence for over six magnitudes. These results strongly support the picture that Cetus II is not an ultra-faint stellar system in the Milky Way halo, but made up of stars from the Sagittarius tidal stream.

  15. HOW TO MAKE AN ULTRA-FAINT DWARF SPHEROIDAL GALAXY: TIDAL STIRRING OF DISKY DWARFS WITH SHALLOW DARK MATTER DENSITY PROFILES

    International Nuclear Information System (INIS)

    Łokas, Ewa L.; Kazantzidis, Stelios; Mayer, Lucio

    2012-01-01

    In recent years the Sloan Digital Sky Survey has unraveled a new population of ultra-faint dwarf galaxies (UFDs) whose origin remains a puzzle in the vicinity of the Milky Way (MW). Using a suite of collisionless N-body simulations, we investigate the formation of UFDs in the context of the tidal stirring model for the formation of dwarf spheroidal galaxies in the Local Group (LG). Our simulations are designed to reproduce the tidal interactions between MW-sized host galaxies and rotationally supported dwarfs embedded in 10 9 M ☉ dark matter (DM) halos. We explore a variety of inner density slopes ρ∝r –α for the dwarf DM halos, ranging from core-like (α = 0.2) to cuspy (α = 1), and different dwarf orbital configurations. Our experiments demonstrate that UFDs can be produced via tidal stirring of disky dwarfs on relatively tight orbits, consistent with a redshift of accretion by the host galaxy of z ∼ 1, and with intermediate values for the halo inner density slopes (ρ∝r –0.6 ). The inferred slopes are in excellent agreement with those resulting from both the modeling of the rotation curves of dwarf galaxies and recent cosmological simulations of dwarf galaxy formation. Comparing the properties of observed UFDs with those of their simulated counterparts, we find remarkable similarities in terms of basic observational parameters. We conclude that tidal stirring of rotationally supported dwarfs represents a viable mechanism for the formation of UFDs in the LG environment.

  16. AN EXAMINATION OF THE OPTICAL SUBSTRUCTURE OF GALAXY CLUSTERS HOSTING RADIO SOURCES

    International Nuclear Information System (INIS)

    Wing, Joshua D.; Blanton, Elizabeth L.

    2013-01-01

    Using radio sources from the Faint Images of the Radio Sky at Twenty-cm survey, and optical counterparts in the Sloan Digital Sky Survey, we have identified a large number of galaxy clusters. The radio sources within these clusters are driven by active galactic nuclei, and our cluster samples include clusters with bent, and straight, double-lobed radio sources. We also included a single-radio-component comparison sample. We examine these galaxy clusters for evidence of optical substructure, testing the possibility that bent double-lobed radio sources are formed as a result of large-scale cluster mergers. We use a suite of substructure analysis tools to determine the location and extent of substructure visible in the optical distribution of cluster galaxies, and compare the rates of substructure in clusters with different types of radio sources. We found no preference for significant substructure in clusters hosting bent double-lobed radio sources compared to those with other types of radio sources.

  17. The host galaxy of GRB 990712

    DEFF Research Database (Denmark)

    Christensen, L.; Hjorth, J.; Gorosabel, J.

    2004-01-01

    We present a comprehensive study of the z = 0.43 host galaxy of GRB 990712, involving ground-based photometry, spectroscopy, and HST imaging. The broad-band UBVRIJHKs photometry is used to determine the global spectral energy distribution (SED) of the host galaxy. Comparison with that of known...... galaxy types shows that the host is similar to a moderately kreddened starburst galaxy with a young stellar population. The estimated internal extinction in the host is A(V) = 0.15 +/- 0.1 and the star-formation rate (SFR) from the UV continuum is 1.3 +/- 0.3 M-circle dot yr(-1) (not corrected...... for the effects of extinction). Other galaxy template spectra than starbursts failed to reproduce the observed SED. We also present VLT spectra leading to the detection of Halpha from the GRB host galaxy. A SFR of 2.8 +/- 0.7 M-circle dot yr(-1) is inferred from the Halpha line flux, and the presence of a young...

  18. Chemical Abundance Measurements of Ultra-Faint Dwarf Galaxies Discovered by the Dark Energy Survey

    Science.gov (United States)

    Nagasawa, Daniel; Marshall, Jennifer L.; Simon, Joshua D.; Hansen, Terese; Li, Ting; Bernstein, Rebecca; Balbinot, Eduardo; Drlica-Wagner, Alex; Pace, Andrew; Strigari, Louis; Pellegrino, Craig; DePoy, Darren L.; Suntzeff, Nicholas; Bechtol, Keith; Dark Energy Suvey

    2018-01-01

    We present chemical abundance analysis results derived from high-resolution spectroscopy of ultra-faint dwarfs discovered by the Dark Energy Survey. Ultra-faint dwarf galaxies preserve a fossil record of the chemical abundance patterns imprinted by the first stars in the Universe. High-resolution spectroscopic observations of member stars in several recently discovered Milky Way satellites reveal a range of abundance patterns among ultra-faint dwarfs suggesting that star formation processes in the early Universe were quite diverse. The chemical content provides a glimpse not only of the varied nucleosynthetic processes and chemical history of the dwarfs themselves, but also the environment in which they were formed. We present the chemical abundance analysis of these objects and discuss possible explanations for the observed abundance patterns.

  19. The GOODS UV Legacy Fields: A Full Census of Faint Star-Forming Galaxies at z~0.5-2

    Science.gov (United States)

    Oesch, Pascal

    2014-10-01

    Deep HST imaging has shown that the overall star formation density and UV light density at z>3 is dominated by faint, blue galaxies. Remarkably, very little is known about the equivalent galaxy population at lower redshifts. Understanding how these galaxies evolve across the epoch of peak cosmic star-formation is key to a complete picture of galaxy evolution. While we and others have been making every effort to use existing UV imaging data, a large fraction of the prior data were taken without post-flash and are not photometric. We now propose to obtain a robust legacy dataset for a complete census of faint star-forming galaxies at z~0.5-2, akin to what is achieved at z>3, using the unique capabilities of the WFC3/UVIS camera to obtain very deep UV imaging to 27.5-28.0 mag over the CANDELS Deep fields in GOODS North and South. We directly sample the FUV at z>~0.5 and we make these prime legacy fields for JWST with unique and essential UV/blue HST coverage. Together with the exquisite ancillary multi-wavelength data at high spatial resolution from ACS and WFC3/IR our program will result in accurate photometric redshifts for very faint sources and will enable a wealth of research by the community. This includes tracing the evolution of the FUV luminosity function over the peak of the star formation rate density from z~3 down to z~0.5, measuring the physical properties of sub-L* galaxies, and characterizing resolved stellar populations to decipher the build-up of the Hubble sequence from sub-galactic clumps. The lack of a future UV space telescope makes the acquisition of such legacy data imperative for the JWST era and beyond.

  20. Mass and environment as drivers of galaxy evolution. III. The constancy of the faint-end slope and the merging of galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Ying-jie; Lilly, Simon J.; Carollo, Marcella [Institute of Astronomy, ETH Zurich, 8093 Zurich (Switzerland); Renzini, Alvio [INAF-Osservatorio Astronomico di Padova, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy)

    2014-08-01

    Using our continuity approach, we explore the underlying connections between the evolution of the faint-end slope α{sub s} of the stellar mass function of star-forming galaxies, the logarithmic slope β of the specific star formation rate (sSFR)-mass relation, and the merging of galaxies. We derive analytically the consequences of the observed constancy of α{sub s} since redshifts of at least z ∼ 2. If the logarithmic slope β of the sSFR-mass relation is negative, then the faint-end slope α{sub s} should quickly diverge due to the differential mass increase of galaxies on the star-forming main sequence, and this will also quickly destroy the Schechter form of the mass function. This problem can be solved by removing low-mass galaxies by merging them into more massive galaxies. We quantify this process by introducing the specific merger mass rate (sMMR) as the specific rate of mass added to a given galaxy through mergers. For a modest negative value of β ∼ –0.1, an average sMMR ∼ 0.1 sSFR across the population is required to keep α{sub s} constant with epoch, as observed. This in turn implies a merger rate of ∼0.2 sSFR for major mergers, which is consistent with the available observational estimates. More negative values of β require higher sMMR and higher merger rates, and the steepening of the mass function becomes impossible to control for β < –(α{sub s} + 2). The close link that is required between the in situ sSFR and the sMMR probably arises because both are closely linked to the buildup of dark matter halos. These new findings further develop the formalism for the evolving galaxy population that we introduced earlier and show how striking symmetries in the galaxy population can emerge as the result of deep links between the physical processes involved.

  1. THE AFTERGLOW AND ULIRG HOST GALAXY OF THE DARK SHORT GRB 120804A

    International Nuclear Information System (INIS)

    Berger, E.; Zauderer, B. A.; Margutti, R.; Laskar, T.; Fong, W.; Chornock, R.; Dupuy, T. J.; Levan, A.; Tunnicliffe, R. L.; Mangano, V.; Fox, D. B.; Tanvir, N. R.; Menten, K. M.; Hjorth, J.; Roth, K.

    2013-01-01

    We present the optical discovery and subarcsecond optical and X-ray localization of the afterglow of the short GRB 120804A, as well as optical, near-IR, and radio detections of its host galaxy. X-ray observations with Swift/XRT, Chandra, and XMM-Newton extending to δt ≈ 19 days reveal a single power-law decline. The optical afterglow is faint, and comparison to the X-ray flux indicates that GRB 120804A is ''dark'', with a rest-frame extinction of A host V ≈ 2.5 mag (at z = 1.3). The intrinsic neutral hydrogen column density inferred from the X-ray spectrum, N H, i nt (z = 1.3) ≈ 2 × 10 22 cm –2 , is commensurate with the large extinction. The host galaxy exhibits red optical/near-IR colors. Equally important, JVLA observations at ≈0.9-11 days reveal a constant flux density of F ν (5.8 GHz) = 35 ± 4 μJy and an optically thin spectrum, unprecedented for GRB afterglows, but suggestive instead of emission from the host galaxy. The optical/near-IR and radio fluxes are well fit with the scaled spectral energy distribution of the local ultraluminous infrared galaxy (ULIRG) Arp 220 at z ≈ 1.3, with a resulting star formation rate of x ≈ 300 M ☉ yr –1 . The inferred extinction and small projected offset (2.2 ± 1.2 kpc) are also consistent with the ULIRG scenario, as is the presence of a companion galaxy at the same redshift and with a separation of about 11 kpc. The limits on radio afterglow emission, in conjunction with the observed X-ray and optical emission, require a circumburst density of n ∼ 10 –3 cm –3 , an isotropic-equivalent energy scale of E γ, i so ≈ E K, i so ≈ 7 × 10 51 erg, and a jet opening angle of θ j ∼> 11°. The expected fraction of luminous infrared galaxies in the short GRB host sample is ∼0.01 and ∼0.25 (for pure stellar mass and star formation weighting, respectively). Thus, the observed fraction of two events in about 25 hosts (GRBs 120804A and 100206A) appears to support our previous conclusion that short

  2. Study of GRBs Hosts Galaxies Vicinity Properties

    Science.gov (United States)

    Bernal, S.; Vasquez, N.; Hoyle, F.

    2017-07-01

    The study of GRBs host galaxies and its vicinity could provide constrains on the progenitor and an opportunity to use these violent explosions to characterize the nature of the highredshift universe. Studies of GRB host galaxies reveal a population of starforming galaxies with great diversity, spanning a wide range of masses, star formation rate, and redshifts. In order to study the galactic ambient of GRBs we used the S. Savaglio catalog from 2015 where 245 GRBs are listed with RA-Dec position and z. We choose 22 GRBs Hosts galaxies from Savaglio catalog and SDSS DR12, with z range 0population characteristics. We calculate the volumetric density populatation of glalaxies around the GRB Hosts within a volume of an sphere whit radius of 10 h-1 Mpc and find a low density compared with a typical group of galaxies. In order to know the galaxies stellar formation state, in regions where GRBs are formed, we made an analysis of color index using SDSS data of μ [λ 3543], r[λ 6231] and calculate the indexes μ-r. We find a value μ-r=2.63, it means that the galactic ambient of GRBs Host regions are statistically redder than void and wall regions on a indirect way (Voids:μ-r=2.043; Walls:μ-r=2.162). Futhermore, we used a inverse concentration index analysis, ICI=R50/R90 and find that galaxies in GRBs Hosts vicinity are also of slightly early type than void and wall galaxies. With this work we provide characteristics on the regions for future works related with highredsift universe that using the GRBs.

  3. THE HOST GALAXY OF THE SUPER-LUMINOUS SN 2010gx AND LIMITS ON EXPLOSIVE 56Ni PRODUCTION

    International Nuclear Information System (INIS)

    Chen, Ting-Wan; Smartt, Stephen J.; Kotak, Rubina; McCrum, Matt; Fraser, Morgan; Bresolin, Fabio; Kudritzki, Rolf-Peter; Pastorello, Andrea; Valenti, Stefano

    2013-01-01

    Super-luminous supernovae have a tendency to occur in faint host galaxies which are likely to have low mass and low metallicity. While these extremely luminous explosions have been observed from z = 0.1 to 1.55, the closest explosions allow more detailed investigations of their host galaxies. We present a detailed analysis of the host galaxy of SN 2010gx (z = 0.23), one of the best studied super-luminous type Ic supernovae. The host is a dwarf galaxy (M g = –17.42 ± 0.17) with a high specific star formation rate. It has a remarkably low metallicity of 12 + log (O/H) = 7.5 ± 0.1 dex as determined from the detection of the [O III] λ4363 line. This is the first reliable metallicity determination of a super-luminous stripped-envelope supernova host. We collected deep multi-epoch imaging with Gemini + GMOS between 240 and 560 days after explosion to search for any sign of radioactive 56 Ni, which might provide further insights on the explosion mechanism and the progenitor's nature. We reach griz magnitudes of m AB ∼ 26, but do not detect SN 2010gx at these epochs. The limit implies that any 56 Ni production was similar to or below that of SN 1998bw (a luminous type Ic SN that produced around 0.4 M ☉ of 56 Ni). The low volumetric rates of these supernovae (∼10 –4 of the core-collapse population) could be qualitatively matched if the explosion mechanism requires a combination of low-metallicity (below 0.2 Z ☉ ), high progenitor mass (>60 M ☉ ) and high rotation rate (fastest 10% of rotators).

  4. Ultra faint dwarf galaxies: an arena for testing dark matter versus modified gravity

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Weikang; Ishak, Mustapha, E-mail: wxl123830@utdallas.edu, E-mail: mishak@utdallas.edu [Department of Physics, University of Texas at Dallas, Richardson, TX 75083 (United States)

    2016-10-01

    The scenario consistent with a wealth of observations for the missing mass problem is that of weakly interacting dark matter particles. However, arguments or proposals for a Newtonian or relativistic modified gravity scenario continue to be made. A distinguishing characteristic between the two scenarios is that dark matter particles can produce a gravitational effect, in principle, without the need of baryons while this is not the case for the modified gravity scenario where such an effect must be correlated with the amount of baryonic matter. We consider here ultra-faint dwarf (UFD) galaxies as a promising arena to test the two scenarios based on the above assertion. We compare the correlation of the luminosity with the velocity dispersion between samples of UFD and non-UFD galaxies, finding a significant loss of correlation for UFD galaxies. For example, we find for 28 non-UFD galaxies a strong correlation coefficient of −0.688 which drops to −0.077 for the 23 UFD galaxies. Incoming and future data will determine whether the observed stochasticity for UFD galaxies is physical or due to systematics in the data. Such a loss of correlation (if it is to persist) is possible and consistent with the dark matter scenario for UFD galaxies but would constitute a new challenge for the modified gravity scenario.

  5. Revealing a comet-like shape of the faint periphery of the nearby galaxy M 32

    Science.gov (United States)

    Georgiev, Ts. B.

    2016-02-01

    We performed BVRI photometry of the galaxy M 32 building images and isophote maps in magnitudes and in color indexes. While searching for the faint thick disk of M 32 we apply median filtering with aperture of 7.3 arcmin to detach the residual image of M 32 and its periphery above the surrounding magnitude or color background. The residual images in all photometric systems show that the periphery of M 32 possesses a comet-like shape with a tail oriented to SSE, in a direction opposite to the direction of M 110. The images calibrated in color indexes (b - v) and (b - v)+(r - i) show that the tail is redder than the local median background. The residual images in color indexes show that the red tail broadens and curves in direction towards S and SW. Simultaneously, the brightest part of M 32 occurs bounded from NW-NE-SE sides by a sickle-like formation with a significantly lower red color index. Generally, we do not find a faint thick disk of M 32. However, the comet-like shape on the periphery of M 32, especially as a formation with an increased red color index, provokes involuntarily the impression that the satellite M 32 overtakes the Andromeda galaxy. The redshifts show that the intimacy velocity of M 32 and Andromeda galaxy is about 100 km/s.

  6. THE AFTERGLOW AND ULIRG HOST GALAXY OF THE DARK SHORT GRB 120804A

    Energy Technology Data Exchange (ETDEWEB)

    Berger, E.; Zauderer, B. A.; Margutti, R.; Laskar, T.; Fong, W.; Chornock, R.; Dupuy, T. J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Levan, A.; Tunnicliffe, R. L. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Mangano, V. [INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica, Via U. La Malfa 153, I-90146 Palermo (Italy); Fox, D. B. [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Tanvir, N. R. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Menten, K. M. [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany); Hjorth, J. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen O (Denmark); Roth, K. [Gemini Observatory, 670 North Aohoku Place, Hilo, HI 96720 (United States)

    2013-03-10

    We present the optical discovery and subarcsecond optical and X-ray localization of the afterglow of the short GRB 120804A, as well as optical, near-IR, and radio detections of its host galaxy. X-ray observations with Swift/XRT, Chandra, and XMM-Newton extending to {delta}t Almost-Equal-To 19 days reveal a single power-law decline. The optical afterglow is faint, and comparison to the X-ray flux indicates that GRB 120804A is ''dark'', with a rest-frame extinction of A {sup host}{sub V} Almost-Equal-To 2.5 mag (at z = 1.3). The intrinsic neutral hydrogen column density inferred from the X-ray spectrum, N{sub H,{sub int}}(z = 1.3) Almost-Equal-To 2 Multiplication-Sign 10{sup 22} cm{sup -2}, is commensurate with the large extinction. The host galaxy exhibits red optical/near-IR colors. Equally important, JVLA observations at Almost-Equal-To 0.9-11 days reveal a constant flux density of F{sub {nu}}(5.8 GHz) = 35 {+-} 4 {mu}Jy and an optically thin spectrum, unprecedented for GRB afterglows, but suggestive instead of emission from the host galaxy. The optical/near-IR and radio fluxes are well fit with the scaled spectral energy distribution of the local ultraluminous infrared galaxy (ULIRG) Arp 220 at z Almost-Equal-To 1.3, with a resulting star formation rate of x Almost-Equal-To 300 M{sub Sun} yr{sup -1}. The inferred extinction and small projected offset (2.2 {+-} 1.2 kpc) are also consistent with the ULIRG scenario, as is the presence of a companion galaxy at the same redshift and with a separation of about 11 kpc. The limits on radio afterglow emission, in conjunction with the observed X-ray and optical emission, require a circumburst density of n {approx} 10{sup -3} cm{sup -3}, an isotropic-equivalent energy scale of E{sub {gamma},{sub iso}} Almost-Equal-To E{sub K,{sub iso}} Almost-Equal-To 7 Multiplication-Sign 10{sup 51} erg, and a jet opening angle of {theta}{sub j} {approx}> 11 Degree-Sign . The expected fraction of luminous infrared

  7. Teaching the Thrill of Discovery: Student Exploration of Ultra-Faint Dwarf Galaxies with the NOAO Data Lab

    Science.gov (United States)

    Olsen, Knut; Walker, Constance E.; Smith, Blake; NOAO Data Lab Team

    2018-01-01

    We describe an activity aimed at teaching students how ultra-faint Milky Way dwarf galaxies are typically discovered: through filtering of optical photometric catalogs and cross-examination with deep images. The activity, which was developed as part of the Teen Astronomy Café program (https://teensciencecafe.org/cafes/az-teen-astronomy-cafe-tucson/), uses the NOAO Data Lab (http://datalab.noao.edu) and other professional-grade tools to lead high school students through exploration of the object catalog and images from the Survey of the Magellanic Stellar History (SMASH). The students are taught how to use images and color-magnitude diagrams to analyze and interpret stellar populations of increasing complexity, including those of star clusters and the Magellanic Clouds, and culminating with the discovery of the Hydra II ultra-faint dwarf galaxy. The tools and datasets presented allow the students to explore and discover other known stellar systems, as well as unknown candidate star clusters and dwarf galaxies. The ultimate goal of the activity is to give students insight into the methods of modern astronomical research and to allow them to participate in the thrill of discovery.

  8. Associating Fast Radio Bursts with Their Host Galaxies

    Science.gov (United States)

    Eftekhari, T.; Berger, E.

    2017-11-01

    The first precise localization of a fast radio burst (FRB) sheds light on the nature of these mysterious bursts and the physical mechanisms that power them. Increasing the sample of FRBs with robust host galaxy associations is the key impetus behind ongoing and upcoming searches and facilities. Here, we quantify the robustness of FRB host galaxy associations as a function of localization area and galaxy apparent magnitude. We also explore the use of FRB dispersion measures to constrain the source redshift, thereby reducing the number of candidate hosts. We use these results to demonstrate that even in the absence of a unique association, a constraint can be placed on the maximum luminosity of a host galaxy as a function of localization and dispersion measure (DM). We find that localizations of ≲ 0.5\\text{'}\\text{'} are required for a chance coincidence probability of ≲ 1 % for dwarf galaxies at z≳ 0.1; if some hosts have luminosities of ˜ {L}\\ast , then localizations of up to ≈ 5\\prime\\prime may suffice at z˜ 0.1. Constraints on the redshift from the DM only marginally improve the association probability unless the DM is low, ≲ 400 pc cm-3. This approach also relies on the determination of galaxy redshifts, which is challenging at z≳ 0.5 if the hosts are dwarf galaxies. Finally, interesting limits on the maximum host luminosity require localizations of ≲ 5\\prime\\prime at z≳ 0.1. Even a few such localizations will explain the nature of FRB progenitors, their possible diversity, and their use as cosmological tools.

  9. HUBBLE FRONTIER FIELDS FIRST COMPLETE CLUSTER DATA: FAINT GALAXIES AT z ∼ 5-10 FOR UV LUMINOSITY FUNCTIONS AND COSMIC REIONIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Ishigaki, Masafumi; Ouchi, Masami; Ono, Yoshiaki [Institute for Cosmic Ray Research, The University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Kawamata, Ryota; Shimasaku, Kazuhiro [Department of Astronomy, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Oguri, Masamune, E-mail: ishigaki@icrr.u-tokyo.ac.jp [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2015-01-20

    We present comprehensive analyses of faint dropout galaxies up to z ∼ 10 with the first full-depth data set of the A2744 lensing cluster and parallel fields observed by the Hubble Frontier Fields (HFF) program. We identify 54 dropouts at z ∼ 5-10 in the HFF fields and enlarge the size of the z ∼ 9 galaxy sample obtained to date. Although the number of highly magnified (μ ∼ 10) galaxies is small because of the tiny survey volume of strong lensing, our study reaches the galaxies' intrinsic luminosities comparable to the deepest-field HUDF studies. We derive UV luminosity functions with these faint dropouts, carefully evaluating by intensive simulations the combination of observational incompleteness and lensing effects in the image plane, including magnification, distortion, and multiplication of images, with the evaluation of mass model dependencies. Our results confirm that the faint-end slope, α, is as steep as –2 at z ∼ 6-8 and strengthen the evidence for the rapid decrease of UV luminosity densities, ρ{sub UV}, at z > 8 from the large z ∼ 9 sample. We examine whether the rapid ρ{sub UV} decrease trend can be reconciled with the large Thomson scattering optical depth, τ{sub e}, measured by cosmic microwave background experiments, allowing a large space of free parameters, such as an average ionizing photon escape fraction and a stellar-population-dependent conversion factor. No parameter set can reproduce both the rapid ρ{sub UV} decrease and the large τ {sub e}. It is possible that the ρ{sub UV} decrease moderates at z ≳ 11, that the free parameters significantly evolve toward high z, or that there exist additional sources of reionization such as X-ray binaries and faint active galactic nuclei.

  10. HUBBLE FRONTIER FIELDS FIRST COMPLETE CLUSTER DATA: FAINT GALAXIES AT z ∼ 5-10 FOR UV LUMINOSITY FUNCTIONS AND COSMIC REIONIZATION

    International Nuclear Information System (INIS)

    Ishigaki, Masafumi; Ouchi, Masami; Ono, Yoshiaki; Kawamata, Ryota; Shimasaku, Kazuhiro; Oguri, Masamune

    2015-01-01

    We present comprehensive analyses of faint dropout galaxies up to z ∼ 10 with the first full-depth data set of the A2744 lensing cluster and parallel fields observed by the Hubble Frontier Fields (HFF) program. We identify 54 dropouts at z ∼ 5-10 in the HFF fields and enlarge the size of the z ∼ 9 galaxy sample obtained to date. Although the number of highly magnified (μ ∼ 10) galaxies is small because of the tiny survey volume of strong lensing, our study reaches the galaxies' intrinsic luminosities comparable to the deepest-field HUDF studies. We derive UV luminosity functions with these faint dropouts, carefully evaluating by intensive simulations the combination of observational incompleteness and lensing effects in the image plane, including magnification, distortion, and multiplication of images, with the evaluation of mass model dependencies. Our results confirm that the faint-end slope, α, is as steep as –2 at z ∼ 6-8 and strengthen the evidence for the rapid decrease of UV luminosity densities, ρ UV , at z > 8 from the large z ∼ 9 sample. We examine whether the rapid ρ UV decrease trend can be reconciled with the large Thomson scattering optical depth, τ e , measured by cosmic microwave background experiments, allowing a large space of free parameters, such as an average ionizing photon escape fraction and a stellar-population-dependent conversion factor. No parameter set can reproduce both the rapid ρ UV decrease and the large τ e . It is possible that the ρ UV decrease moderates at z ≳ 11, that the free parameters significantly evolve toward high z, or that there exist additional sources of reionization such as X-ray binaries and faint active galactic nuclei

  11. A tale of two feedbacks: Star formation in the host galaxies of radio AGNs

    Energy Technology Data Exchange (ETDEWEB)

    Karouzos, Marios; Im, Myungshin; Jeon, Yiseul; Kim, Ji Hoon [CEOU-Astronomy Program, Department of Physics and Astronomy, Seoul National University, Gwanak-gu, Seoul (Korea, Republic of); Trichas, Markos [Airbus Defence and Space, Gunnels Wood Road, Stevenage SG1 2AS (United Kingdom); Goto, Tomo [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Malkan, Matt [Division of Astronomy and Astrophysics, 3-714 UCLA, CA 90095-1547 (United States); Ruiz, Angel [Inter-University Centre for Astronomy and Astrophysics (IUCAA), Post Bag 4, Ganeshkhind, 411 007 Pune (India); Lee, Hyung Mok; Kim, Seong Jin [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Gwanak-gu, Seoul (Korea, Republic of); Oi, Nagisa; Matsuhara, Hideo; Takagi, Toshinobu; Murata, K.; Wada, Takehiko; Wada, Kensuke [Institute of Space and Astronautical Science, JAXA, Yoshino-dai 3-1-1, Sagamihara, Kanagawa 229-8510 (Japan); Shim, Hyunjin [Department of Earth Science Education, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Hanami, Hitoshi [Physics Section, Faculty of Humanities, Iwate University, Ueda 3 chome, 18-34 Morioka, Morioka, Iwate 020-8550 (Japan); Serjeant, Stephen; White, Glenn J., E-mail: mkarouzos@astro.snu.ac.kr [Department of Physics and Astronomy, The Open University, Walton Hall, Milton Keynes (United Kingdom); and others

    2014-04-01

    Several lines of argument support the existence of a link between activity at the nuclei of galaxies, in the form of an accreting supermassive black hole, and star formation activity in these galaxies. Radio jets have long been argued to be an ideal mechanism that allows active galactic nuclei (AGNs) to interact with their host galaxies and affect star formation. We use a sample of radio sources in the North Ecliptic Pole (NEP) field to study the nature of this putative link, by means of spectral energy distribution (SED) fitting. We employ the excellent spectral coverage of the AKARI infrared space telescope and the rich ancillary data available in the NEP to build SEDs extending from UV to far-IR wavelengths. We find a significant AGN component in our sample of relatively faint radio sources (host galaxy, independent of the radio luminosity. In contrast, for narrow redshift and AGN luminosity ranges, we find that increasing radio luminosity leads to a decrease in the specific star formation rate. The most radio-loud AGNs are found to lie on the main sequence of star formation for their respective redshifts. For the first time, we potentially see such a two-sided feedback process in the same sample. We discuss the possible suppression of star formation, but not total quenching, in systems with strong radio jets, that supports the maintenance nature of feedback from radio AGN jets.

  12. Spectroscopic confirmation of an ultra-faint galaxy at the epoch of reionization

    Science.gov (United States)

    Hoag, Austin; Bradač, Maruša; Trenti, Michele; Treu, Tommaso; Schmidt, Kasper B.; Huang, Kuang-Han; Lemaux, Brian C.; He, Julie; Bernard, Stephanie R.; Abramson, Louis E.; Mason, Charlotte A.; Morishita, Takahiro; Pentericci, Laura; Schrabback, Tim

    2017-04-01

    Within one billion years of the Big Bang, intergalactic hydrogen was ionized by sources emitting ultraviolet and higher energy photons. This was the final phenomenon to globally affect all the baryons (visible matter) in the Universe. It is referred to as cosmic reionization and is an integral component of cosmology. It is broadly expected that intrinsically faint galaxies were the primary ionizing sources due to their abundance in this epoch1,2. However, at the highest redshifts (z > 7.5 lookback time 13.1 Gyr), all galaxies with spectroscopic confirmations to date are intrinsically bright and, therefore, not necessarily representative of the general population3. Here, we report the unequivocal spectroscopic detection of a low luminosity galaxy at z > 7.5. We detected the Lyman-α emission line at ˜10,504 Å in two separate observations with MOSFIRE4 on the Keck I Telescope and independently with the Hubble Space Telescope's slitless grism spectrograph, implying a source redshift of z = 7.640 ± 0.001. The galaxy is gravitationally magnified by the massive galaxy cluster MACS J1423.8+2404 (z = 0.545), with an estimated intrinsic luminosity of MAB = -19.6 ± 0.2 mag and a stellar mass of M⊙=3.0-0.8+1.5×108 solar masses. Both are an order of magnitude lower than the four other Lyman-α emitters currently known at z > 7.5, making it probably the most distant representative source of reionization found to date.

  13. HOST GALAXIES OF TYPE Ia SUPERNOVAE FROM THE NEARBY SUPERNOVA FACTORY

    International Nuclear Information System (INIS)

    Childress, M.; Aldering, G.; Aragon, C.; Bailey, S.; Fakhouri, H. K.; Hsiao, E. Y.; Kim, A. G.; Loken, S.; Antilogus, P.; Bongard, S.; Canto, A.; Cellier-Holzem, F.; Guy, J.; Baltay, C.; Buton, C.; Kerschhaggl, M.; Kowalski, M.; Chotard, N.; Copin, Y.; Gangler, E.

    2013-01-01

    We present photometric and spectroscopic observations of galaxies hosting Type Ia supernovae (SNe Ia) observed by the Nearby Supernova Factory. Combining Galaxy Evolution Explorer (GALEX) UV data with optical and near-infrared photometry, we employ stellar population synthesis techniques to measure SN Ia host galaxy stellar masses, star formation rates (SFRs), and reddening due to dust. We reinforce the key role of GALEX UV data in deriving accurate estimates of galaxy SFRs and dust extinction. Optical spectra of SN Ia host galaxies are fitted simultaneously for their stellar continua and emission lines fluxes, from which we derive high-precision redshifts, gas-phase metallicities, and Hα-based SFRs. With these data we show that SN Ia host galaxies present tight agreement with the fiducial galaxy mass-metallicity relation from Sloan Digital Sky Survey (SDSS) for stellar masses log(M * /M ☉ ) > 8.5 where the relation is well defined. The star formation activity of SN Ia host galaxies is consistent with a sample of comparable SDSS field galaxies, though this comparison is limited by systematic uncertainties in SFR measurements. Our analysis indicates that SN Ia host galaxies are, on average, typical representatives of normal field galaxies.

  14. Do Low Surface Brightness Galaxies Host Stellar Bars?

    International Nuclear Information System (INIS)

    Cervantes Sodi, Bernardo; Sánchez García, Osbaldo

    2017-01-01

    With the aim of assessing if low surface brightness galaxies host stellar bars and by studying the dependence of the occurrence of bars as a function of surface brightness, we use the Galaxy Zoo 2 data set to construct a large volume-limited sample of galaxies and then segregate these galaxies as having low or high surface brightness in terms of their central surface brightness. We find that the fraction of low surface brightness galaxies hosting strong bars is systematically lower than that found for high surface brightness galaxies. The dependence of the bar fraction on the central surface brightness is mostly driven by a correlation of the surface brightness with the spin and the gas richness of the galaxies, showing only a minor dependence on the surface brightness. We also find that the length of the bars is strongly dependent on the surface brightness, and although some of this dependence is attributed to the gas content, even at a fixed gas-to-stellar mass ratio, high surface brightness galaxies host longer bars than their low surface brightness counterparts, which we attribute to an anticorrelation of the surface brightness with the spin.

  15. Do Low Surface Brightness Galaxies Host Stellar Bars?

    Energy Technology Data Exchange (ETDEWEB)

    Cervantes Sodi, Bernardo; Sánchez García, Osbaldo, E-mail: b.cervantes@irya.unam.mx, E-mail: o.sanchez@irya.unam.mx [Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Campus Morelia, A.P. 3-72, C.P. 58089 Michoacán, México (Mexico)

    2017-09-20

    With the aim of assessing if low surface brightness galaxies host stellar bars and by studying the dependence of the occurrence of bars as a function of surface brightness, we use the Galaxy Zoo 2 data set to construct a large volume-limited sample of galaxies and then segregate these galaxies as having low or high surface brightness in terms of their central surface brightness. We find that the fraction of low surface brightness galaxies hosting strong bars is systematically lower than that found for high surface brightness galaxies. The dependence of the bar fraction on the central surface brightness is mostly driven by a correlation of the surface brightness with the spin and the gas richness of the galaxies, showing only a minor dependence on the surface brightness. We also find that the length of the bars is strongly dependent on the surface brightness, and although some of this dependence is attributed to the gas content, even at a fixed gas-to-stellar mass ratio, high surface brightness galaxies host longer bars than their low surface brightness counterparts, which we attribute to an anticorrelation of the surface brightness with the spin.

  16. Statistical Properties of Gamma-Ray Burst Host Galaxies Jie-Min ...

    Indian Academy of Sciences (India)

    Statistical Properties of Gamma-Ray Burst Host Galaxies. Jie-Min Chen1, Jin Zhang2,3, ... of GRB host galaxies and explore possible correlations between these properties. We also investigate possible cosmic ... hydrogen column density for the GRB host galaxies in our sample. 6.295. The stellar masses are mainly in the ...

  17. The Evolution of the Stellar Hosts of Radio Galaxies

    International Nuclear Information System (INIS)

    Lacy, Mark; Bunker, Andrew J.; Ridgway, Susan E.

    2000-01-01

    We present new near-infrared images of z>0.8 radio galaxies from the flux-limited 7C-iii sample of radio sources for which we have recently obtained almost complete spectroscopic redshifts. The 7C objects have radio luminosities ≅20 times fainter than 3C radio galaxies at a given redshift. The absolute magnitudes of the underlying host galaxies and their scale sizes are only weakly dependent on radio luminosity. Radio galaxy hosts at z∼2 are significantly brighter than the hosts of radio-quiet quasars at similar redshifts and the recent model AGN hosts of Kauffmann and Haehnelt. There is no evidence for strong evolution in scale size, which shows a large scatter at all redshifts. The hosts brighten significantly with redshift, consistent with the passive evolution of a stellar population that formed at z(greater-or-similar sign)3. This scenario is consistent with studies of host galaxy morphology and submillimeter continuum emission, both of which show strong evolution at z(greater-or-similar sign)2.5. The lack of a strong ''redshift cutoff'' in the radio luminosity function to z>4 suggests that the formation epoch of the radio galaxy host population lasts (greater-or-similar sign)1 Gyr, from z(greater-or-similar sign)5 to z∼3. We suggest these facts are best explained by models in which the most massive galaxies and their associated AGN form early because of high baryon densities in the centers of their dark matter haloes. (c) 2000 The American Astronomical Society

  18. A Spatially Resolved Study of the GRB 020903 Host Galaxy

    Science.gov (United States)

    Thorp, Mallory D.; Levesque, Emily M.

    2018-03-01

    GRB 020903 is a long-duration gamma-ray burst with a host galaxy close enough and extended enough for spatially resolved observations, making it one of less than a dozen GRBs where such host studies are possible. GRB 020903 lies in a galaxy host complex that appears to consist of four interacting components. Here we present the results of spatially resolved spectroscopic observations of the GRB 020903 host. By taking observations at two different position angles, we were able to obtain optical spectra (3600–9000 Å) of multiple regions in the galaxy. We confirm redshifts for three regions of the host galaxy that match that of GRB 020903. We measure the metallicity of these regions, and find that the explosion site and the nearby star-forming regions both have comparable subsolar metallicities. We conclude that, in agreement with past spatially resolved studies of GRBs, the GRB explosion site is representative of the host galaxy as a whole rather than localized in a metal-poor region of the galaxy.

  19. THE DISTRIBUTION OF FAINT SATELLITES AROUND CENTRAL GALAXIES IN THE CANADA-FRANCE-HAWAII TELESCOPE LEGACY SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, C. Y.; Jing, Y. P.; Li, Cheng [Key Laboratory for Research in Galaxies and Cosmology of Chinese Academy of Sciences, Shanghai Astronomical Observatory, Nandan Road 80, Shanghai 200030 (China)

    2012-11-20

    We investigate the radial number density profile and the abundance distribution of faint satellites around central galaxies in the low-redshift universe using the Canada-France-Hawaii Telescope (CFHT) Legacy Survey. We consider three samples of central galaxies with magnitudes of M {sub r} = -21, -22, and -23 selected from the Sloan Digital Sky Survey group catalog of Yang et al. The satellite distribution around these central galaxies is obtained by cross-correlating these galaxies with the photometric catalog of the CFHT Legacy Survey. The projected radial number density of the satellites obeys a power-law form with the best-fit logarithmic slope of -1.05, independent of both the central galaxy luminosity and the satellite luminosity. The projected cross-correlation function between central and satellite galaxies exhibits a non-monotonic trend with satellite luminosity. It is most pronounced for central galaxies with M {sub r} = -21, where the decreasing trend of clustering amplitude with satellite luminosity is reversed when satellites are fainter than central galaxies by more than 2 mag. A comparison with the satellite luminosity functions in the Milky Way (MW) and M31 shows that the MW/M31 system has about twice as many satellites as around a typical central galaxy of similar luminosity. The implications for theoretical models are briefly discussed.

  20. Circumnuclear Structures in Megamaser Host Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Pjanka, Patryk; Greene, Jenny E. [Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, NJ 08544 (United States); Seth, Anil C. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Braatz, James A.; Lo, Fred K. Y. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Henkel, Christian [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Läsker, Ronald, E-mail: ppjanka@princeton.edu [Finnish Centre for Astronomy with ESO (FINCA), University of Turku, Väisäläntie 20, FI-21500 Kaarina (Finland)

    2017-08-01

    Using the Hubble Space Telescope , we identify circumnuclear (100–500 pc scale) structures in nine new H{sub 2}O megamaser host galaxies to understand the flow of matter from kpc-scale galactic structures down to the supermassive black holes (SMBHs) at galactic centers. We double the sample analyzed in a similar way by Greene et al. and consider the properties of the combined sample of 18 sources. We find that disk-like structure is virtually ubiquitous when we can resolve <200 pc scales, in support of the notion that non-axisymmetries on these scales are a necessary condition for SMBH fueling. We perform an analysis of the orientation of our identified nuclear regions and compare it with the orientation of megamaser disks and the kpc-scale disks of the hosts. We find marginal evidence that the disk-like nuclear structures show increasing misalignment from the kpc-scale host galaxy disk as the scale of the structure decreases. In turn, we find that the orientation of both the ∼100 pc scale nuclear structures and their host galaxy large-scale disks is consistent with random with respect to the orientation of their respective megamaser disks.

  1. THE CLUSTERING OF ALFALFA GALAXIES: DEPENDENCE ON H I MASS, RELATIONSHIP WITH OPTICAL SAMPLES, AND CLUES OF HOST HALO PROPERTIES

    Energy Technology Data Exchange (ETDEWEB)

    Papastergis, Emmanouil; Giovanelli, Riccardo; Haynes, Martha P.; Jones, Michael G. [Center for Radiophysics and Space Research, Space Sciences Building, Cornell University, Ithaca, NY 14853 (United States); Rodríguez-Puebla, Aldo, E-mail: papastergis@astro.cornell.edu, E-mail: riccardo@astro.cornell.edu, E-mail: haynes@astro.cornell.edu, E-mail: jonesmg@astro.cornell.edu, E-mail: apuebla@astro.unam.mx [Instituto de Astronomía, Universidad Nacional Autónoma de México, A. P. 70-264, 04510 México, D.F. (Mexico)

    2013-10-10

    We use a sample of ≈6000 galaxies detected by the Arecibo Legacy Fast ALFA (ALFALFA) 21 cm survey to measure the clustering properties of H I-selected galaxies. We find no convincing evidence for a dependence of clustering on galactic atomic hydrogen (H I) mass, over the range M{sub H{sub I}} ≈ 10{sup 8.5}-10{sup 10.5} M{sub ☉}. We show that previously reported results of weaker clustering for low H I mass galaxies are probably due to finite-volume effects. In addition, we compare the clustering of ALFALFA galaxies with optically selected samples drawn from the Sloan Digital Sky Survey (SDSS). We find that H I-selected galaxies cluster more weakly than even relatively optically faint galaxies, when no color selection is applied. Conversely, when SDSS galaxies are split based on their color, we find that the correlation function of blue optical galaxies is practically indistinguishable from that of H I-selected galaxies. At the same time, SDSS galaxies with red colors are found to cluster significantly more than H I-selected galaxies, a fact that is evident in both the projected as well as the full two-dimensional correlation function. A cross-correlation analysis further reveals that gas-rich galaxies 'avoid' being located within ≈3 Mpc of optical galaxies with red colors. Next, we consider the clustering properties of halo samples selected from the Bolshoi ΛCDM simulation. A comparison with the clustering of ALFALFA galaxies suggests that galactic H I mass is not tightly related to host halo mass and that a sizable fraction of subhalos do not host H I galaxies. Lastly, we find that we can recover fairly well the correlation function of H I galaxies by just excluding halos with low spin parameter. This finding lends support to the hypothesis that halo spin plays a key role in determining the gas content of galaxies.

  2. Lyman continuum escape fraction of faint galaxies at z 3.3 in the CANDELS/GOODS-North, EGS, and COSMOS fields with LBC

    Science.gov (United States)

    Grazian, A.; Giallongo, E.; Paris, D.; Boutsia, K.; Dickinson, M.; Santini, P.; Windhorst, R. A.; Jansen, R. A.; Cohen, S. H.; Ashcraft, T. A.; Scarlata, C.; Rutkowski, M. J.; Vanzella, E.; Cusano, F.; Cristiani, S.; Giavalisco, M.; Ferguson, H. C.; Koekemoer, A.; Grogin, N. A.; Castellano, M.; Fiore, F.; Fontana, A.; Marchi, F.; Pedichini, F.; Pentericci, L.; Amorín, R.; Barro, G.; Bonchi, A.; Bongiorno, A.; Faber, S. M.; Fumana, M.; Galametz, A.; Guaita, L.; Kocevski, D. D.; Merlin, E.; Nonino, M.; O'Connell, R. W.; Pilo, S.; Ryan, R. E.; Sani, E.; Speziali, R.; Testa, V.; Weiner, B.; Yan, H.

    2017-06-01

    Context. The reionization of the Universe is one of the most important topics of present-day astrophysical research. The most plausible candidates for the reionization process are star-forming galaxies, which according to the predictions of the majority of the theoretical and semi-analytical models should dominate the H I ionizing background at z ≳ 3. Aims: We measure the Lyman continuum escape fraction, which is one of the key parameters used to compute the contribution of star-forming galaxies to the UV background. It provides the ratio between the photons produced at λ ≤ 912 Å rest-frame and those that are able to reach the inter-galactic medium, I.e. that are not absorbed by the neutral hydrogen or by the dust of the galaxy's inter-stellar medium. Methods: We used ultra-deep U-band imaging (U = 30.2 mag at 1σ) from Large Binocular Camera at the Large Binocular Telescope (LBC/LBT) in the CANDELS/GOODS-North field and deep imaging in the COSMOS and EGS fields in order to estimate the Lyman continuum escape fraction of 69 star-forming galaxies with secure spectroscopic redshifts at 3.27 ≤ z ≤ 3.40 to faint magnitude limits (L = 0.2L∗, or equivalently M1500 - 19). The narrow redshift range implies that the LBC U-band filter exclusively samples the λ ≤ 912 Å rest-frame wavelengths. Results: We measured through stacks a stringent upper limit (L∗), while for the faint population (L = 0.2L∗) the limit to the escape fraction is ≲ 10%. We computed the contribution of star-forming galaxies to the observed UV background at z 3 and find that it is not sufficient to keep the Universe ionized at these redshifts unless their escape fraction increases significantly (≥ 10%) at low luminosities (M1500 ≥ - 19). Conclusions: We compare our results on the Lyman continuum escape fraction of high-z galaxies with recent estimates in the literature, and discuss future prospects to shed light on the end of the Dark Ages. In the future, strong gravitational

  3. Hydra II: A Faint and Compact Milky Way Dwarf Galaxy Found in the Survey of the Magellanic Stellar History

    OpenAIRE

    Martin, NF; Nidever, DL; Besla, G; Olsen, K; Walker, AR; Vivas, AK; Gruendl, RA; Kaleida, CC; Muñoz, RR; Blum, RD; Saha, A; Conn, BC; Bell, EF; Chu, YH; Cioni, MRL

    2015-01-01

    © 2015. The American Astronomical Society. All rights reserved.We present the discovery of a new dwarf galaxy, Hydra II, found serendipitously within the data from the ongoing Survey of the Magellanic Stellar History conducted with the Dark Energy Camera on the Blanco 4 m Telescope. The new satellite is compact (rh = 68 ± 11 pc) and faint (MV = -4.8 ± 0.3), but well within the realm of dwarf galaxies. The stellar distribution of Hydra II in the color-magnitude diagram is well-described by a m...

  4. CEMP Stars in the Halo and Their Origin in Ultra-Faint Dwarf Galaxies

    Science.gov (United States)

    Beers, Timothy C.

    2018-06-01

    The very metal-poor (VMP; [Fe/H] 3.0) stars provide a direct view of Galactic chemical and dynamical evolution; detailed spectroscopic studies of these objects are the best way to identify and distinguish between various scenarios for the enrichment of early star-forming gas clouds soon after the Big Bang. It has been recognized that a large fraction of VMP (15-20%) and EMP stars (30-40%) possess significant over-abundances of carbon relative to iron, [C/Fe] > +0.7. This fraction rises to at least 80% for stars with [Fe/H] 3.0 belong to the CEMP-no sub-class, characterized by the lack of strong enhancements in the neutron-capture elements (e.g., [Ba/Fe] < 0.0). The CEMP-no abundance signature is commonly observed among stars ultra-faint dwarf spheroidal galaxies such as SEGUE-1. In addition, kinematic studies of CEMP-no stars strongly suggest an association with the outer-halo population of the Galaxy, which was likely formed from the accretion of low-mass mini-halos. These observations, and other lines of evidence, indicate that the CEMP-no stars of the Milky Way were born in low-mass dwarf galaxies, and later subsumed into the halo.

  5. Distribution function of faint galaxy numbers

    International Nuclear Information System (INIS)

    Fesenko, L.M.

    1981-01-01

    The Lick observatory counts of galaxies are considered. The distribution of number of galaxies in elementary regions (ER) of 1 degx1 deg is investigated. Each field of 6 degx6 deg was treated separately At b>40 deg the probab+lity to observe of n galaxies in ER is an exponential decreasing function of n, if unequality n> were fulfilled. The mean apparent multiplicity of a galaxy (2.8+-0.9) was derived. The galaxy number distribution was simple model for the number of various systems of galaxies. The supperclustering of galaxies was not introduced. Based on that model the approximate expression for galaxy number distribution was considered and was compared with observed distributions. The agreement between these distributions become better with reducing of the interstellar absorption of light

  6. Spectro-photometric study of the GRB 030329 host galaxy

    International Nuclear Information System (INIS)

    Gorosabel, J.; Ramirez, D. Perez

    2005-01-01

    In this study we present optical/near-infrared (NIR) broad band photometry and optical spectroscopic observations of the GRB 030329 host galaxy. The Spectral Energy Distribution (SED) of the host is consistent with a starburst galaxy template with a dominant stellar population age of ∼ 150 Myr and an extinction A ν ∼ 0.6. Analysis of the spectral emission lines shows that the host is likely a low metallicity galaxy. Two independent diagnostics, based on the restframe UV continuum and the [OII] line flux, provide a consistent unextincted star formation rate of SFRN ∼ 0.6 Myr -1 . The low absolute magnitude of the host (M B ∼ -16.5) implies a high specific star formation rate value, SSFR ≅ 34 Myr -1 (L/L) -1

  7. Radio-continuum emission from quasar host galaxies

    International Nuclear Information System (INIS)

    Condon, J. J.; Gower, A. C.; Hutchings, J. B.; Victoria Univ., Canada; Dominion Astrophysical Observatory, Victoria)

    1987-01-01

    Seven low-redshift quasars that are likely to be in spiral galaxies have been observed in a search for radio-continuum emission from the host galaxies of quasars. The properties of the individual quasars are listed, and 1.49 GHz contour maps of the seven quasar fields are presented. Map parameters and radio source parameters are given along with optical images of three of the objects. The results indicate that these quasars probably do reside in spiral galaxies. The radio luminosities, sizes, orientations, and u values all indicate that relativistic beaming alone cannot be used to explain the differences between the present sources and the far stronger radio sources seen in blazars or larger optically selected quasar samples. However, an apparent correlation between the radio luminosity and the ratio of the optical nuclear to host-galaxy luminosity is consistent with some beaming of nuclear radiation. 26 references

  8. Host galaxy spectra and consequences for supernova typing from the SDSS SN survey

    Energy Technology Data Exchange (ETDEWEB)

    Olmstead, Matthew D.; Brown, Peter J.; Brownstein, Joel R.; Dawson, Kyle S. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Sako, Masao; Gupta, Ravi R. [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Bassett, Bruce; Kunz, Martin [African Institute for Mathematical Sciences, 6 Melrose Road, Muizenberg, 7945 (South Africa); Bizyaev, Dmitry; Brinkmann, J.; Brewington, Howard; Ebelke, Garrett L. [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349 (United States); Campbell, Heather [Institute of Astronomy, Madingley Road, Cambridge CB4 0HA (United Kingdom); D' Andrea, Chris B.; Lampeitl, Hubert [Institute of Cosmology and Gravitation, Dennis Sciama Building, University of Portsmouth, Portsmouth, PO1 3FX (United Kingdom); Frieman, Joshua A. [Center for Particle Astrophysics, Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States); Galbany, Lluís [Institut de Física d' Altes Energies, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Barcelona) (Spain); Garnavich, Peter [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Hlozek, Renee [Department of Astrophysics, Peyton Hall, 4 Ivy Lane, Princeton, NJ 08544 (United States); Jha, Saurabh W., E-mail: olmstead@physics.utah.edu [Department of Physics and Astronomy, Rutgers, the State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); and others

    2014-04-01

    We present the spectroscopy from 5254 galaxies that hosted supernovae (SNe) or other transient events in the Sloan Digital Sky Survey II (SDSS-II). Obtained during SDSS-I, SDSS-II, and the Baryon Oscillation Spectroscopic Survey, this sample represents the largest systematic, unbiased, magnitude limited spectroscopic survey of SN host galaxies. Using the host galaxy redshifts, we test the impact of photometric SN classification based on SDSS imaging data with and without using spectroscopic redshifts of the host galaxies. Following our suggested scheme, there are a total of 1166 photometrically classified SNe Ia when using a flat redshift prior and 1126 SNe Ia when the host spectroscopic redshift is assumed. For 1024 (87.8%) candidates classified as likely SNe Ia without redshift information, we find that the classification is unchanged when adding the host galaxy redshift. Using photometry from SDSS imaging data and the host galaxy spectra, we also report host galaxy properties for use in future analysis of SN astrophysics. Finally, we investigate the differences in the interpretation of the light curve properties with and without knowledge of the redshift. Without host galaxy redshifts, we find that SALT2 light curve fits are systematically biased toward lower photometric redshift estimates and redder colors in the limit of low signal-to-noise data. The general improvements in performance of the light curve fitter and the increased diversity of the host galaxy sample highlights the importance of host galaxy spectroscopy for current photometric SN surveys such as the Dark Energy Survey and future surveys such as the Large Synoptic Survey Telescope.

  9. A Search for Faint, Diffuse Halo Emission in Edge-On Galaxies with Spitzer/IRAC

    Science.gov (United States)

    Ashby, Matthew; Arendt, R. G.; Pipher, J. L.; Forrest, W. J.; Marengo, M.; Barmby, P.; Willner, S. P.; Stauffer, J. R.; Fazio, G. G.

    2006-12-01

    We present deep infrared mosaics of the nearby edge-on spiral galaxies NGC 891, 4244, 4565, and 5907. These data were acquired at 3.6, 4.5, 5.8, and 8.0 microns using the Infrared Array Camera aboard Spitzer as part of GTO program number 3. This effort is designed to detect the putative faint, diffuse emission from halos and thick disks of spiral galaxies in the near-mid infrared under the thermally stable, low-background conditions of space. These conditions in combination with the advantageous viewing angles presented by these well-known edge-on spirals provide arguably the best opportunity to characterize the halo/thick disk components of such galaxies in the infrared. In this contribution we describe our observations, data reduction techniques, corrections for artifacts in the data, and the modeling approach we applied to analyze this unique dataset. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech.

  10. Hydra II: A Faint and Compact Milky Way Dwarf Galaxy Found in the Survey of the Magellanic Stellar History

    NARCIS (Netherlands)

    Martin, Nicolas F.; Nidever, David L.; Besla, Gurtina; Olsen, Knut; Walker, Alistair R.; Vivas, A. Katherina; Gruendl, Robert A.; Kaleida, Catherine C.; Muñoz, Ricardo R.; Blum, Robert D.; Saha, Abhijit; Conn, Blair C.; Bell, Eric F.; Chu, You-Hua; Cioni, Maria-Rosa L.; de Boer, Thomas J. L.; Gallart, Carme; Jin, Shoko; Kunder, Andrea; Majewski, Steven R.; Martinez-Delgado, David; Monachesi, Antonela; Monelli, Matteo; Monteagudo, Lara; Noël, Noelia E. D.; Olszewski, Edward W.; Stringfellow, Guy S.; van der Marel, Roeland P.; Zaritsky, Dennis

    We present the discovery of a new dwarf galaxy, Hydra II, found serendipitously within the data from the ongoing Survey of the Magellanic Stellar History conducted with the Dark Energy Camera on the Blanco 4 m Telescope. The new satellite is compact ({{r}h}=68 ± 11 pc) and faint ({{M}V}=-4.8 ± 0.3),

  11. Host galaxies of type ia supernovae from the nearby supernova factory

    Science.gov (United States)

    Childress, Michael Joseph

    Type Ia Supernovae (SNe Ia) are excellent distance indicators, yet the full details of the underlying physical mechanism giving rise to these dramatic stellar deaths remain unclear. As large samples of cosmological SNe Ia continue to be collected, the scatter in brightnesses of these events is equally affected by systematic errors as statistical. Thus we need to understand the physics of SNe Ia better, and in particular we must know more about the progenitors of these SNe so that we can derive better estimates for their true intrinsic brightnesses. The host galaxies of SNe Ia provide important indirect clues as to the nature of SN Ia progenitors. In this Thesis we utilize the host galaxies of SNe Ia discovered by the Nearby Supernova Factory (SNfactory) to pursue several key investigations into the nature of SN Ia progenitors and their effects on SN Ia brightnesses. We first examine the host galaxy of SN 2007if, an important member of the subclass of SNe Ia whose extreme brightnesses indicate a progenitor that exceeded the canonical Chandrasekhar-mass value presumed for normal SNe Ia, and show that the host galaxy of this SN is composed of very young stars and has extremely low metallicity, providing important constraints on progenitor scenarios for this SN. We then utilize the full sample of SNfactory host galaxy masses (measured from photometry) and metallicities (derived from optical spectroscopy) to examine several global properties of SN Ia progenitors: (i) we show that SN Ia hosts show tight agreement with the normal galaxy mass-metallicity relation; (ii) comparing the observed distribution of SN Ia host galaxy masses to a theoretical model that couples galaxy physics to the SN Ia delay time distribution (DTD), we show the power of the SN Ia host mass distribution in constraining the SN Ia DTD; and (iii) we show that the lack of ultra-low metallicities in the SNfactory SN Ia host sample gives provisional support for the theorized low-metallicity inhibition of

  12. Atomic hydrogen properties of active galactic nuclei host galaxies: H I in 16 nuclei of galaxies (NUGA) sources

    International Nuclear Information System (INIS)

    Haan, Sebastian; Schinnerer, Eva; Mundell, Carole G.; García-Burillo, Santiago; Combes, Francoise

    2008-01-01

    We present a comprehensive spectroscopic imaging survey of the distribution and kinematics of atomic hydrogen (H I) in 16 nearby spiral galaxies hosting low luminosity active galactic nuclei (AGN), observed with high spectral and spatial resolution (resolution: ∼20'', ∼5 km s –1 ) using the NRAO Very Large Array (VLA). The sample contains a range of nuclear types ranging from Seyfert to star-forming nuclei, and was originally selected for the NUclei of GAlaxies project (NUGA)—a spectrally and spatially resolved interferometric survey of gas dynamics in nearby galaxies designed to identify the fueling mechanisms of AGN and the relation to host galaxy evolution. Here we investigate the relationship between the H I properties of these galaxies, their environment, their stellar distribution, and their AGN type. The large-scale H I morphology of each galaxy is classified as ringed, spiral, or centrally concentrated; comparison of the resulting morphological classification with the AGN type reveals that ring structures are significantly more common in low-ionization narrow emission-line regions (LINER) than in Seyfert host galaxies, suggesting a time evolution of the AGN activity together with the redistribution of the neutral gas. Dynamically disturbed H I disks are also more prevalent in LINER host galaxies than in Seyfert host galaxies. While several galaxies are surrounded by companions (some with associated H I emission), there is no correlation between the presence of companions and the AGN type (Seyfert/LINER).

  13. THE HOST GALAXIES OF GAMMA-RAY BURSTS. I. INTERSTELLAR MEDIUM PROPERTIES OF TEN NEARBY LONG-DURATION GAMMA-RAY BURST HOSTS

    International Nuclear Information System (INIS)

    Levesque, Emily M.; Kewley, Lisa J.; Berger, Edo; Bagley, Megan M.

    2010-01-01

    We present the first observations from a large-scale survey of nearby (z < 1) long-duration gamma-ray burst (LGRB) host galaxies, which consist of eight rest-frame optical spectra obtained at Keck and Magellan. Along with two host galaxy observations from the literature, we use optical emission-line diagnostics to determine metallicities, ionization parameters, young stellar population ages, and star formation rates. We compare the LGRB host environments to a variety of local and intermediate-redshift galaxy populations, as well as the newest grid of stellar population synthesis and photoionization models generated with the Starburst99/Mappings codes. With these comparisons, we investigate whether the GRB host galaxies are consistent with the properties of the general galaxy population, and therefore whether they may be used as reliable tracers of star formation. Despite the limitations inherent in our small sample, we find strong evidence that LGRB host galaxies generally have low-metallicity interstellar medium (ISM) environments out to z ∼ 1. The ISM properties of our GRB hosts, including metallicity and ionization parameter, are significantly different from the general galaxy population and host galaxies of nearby broad-lined Type Ic supernovae. However, these properties show better agreement with a sample of nearby metal-poor galaxies.

  14. Host Galaxy Spectra and Consequences for SN Typing from the SDSS SN Survey

    Energy Technology Data Exchange (ETDEWEB)

    Olmstead, Matthew D.; Brown, Peter J.; Sako, Masao; Bassett, Bruce; Bizyaev, Dmitry; Brinkmann, J.; Brownstein, Joel R.; Brewington, Howard; Campbell, Heather; D’Andrea, Chris B.; Dawson, Kyle S.; Ebelke, Garrett L.; Frieman, Joshua A.; Galbany, Lluís; Garnavich, Peter; Gupta, Ravi R.; Hlozek, Renee; Jha, Saurabh W.; Kunz, Martin; Lampeitl, Hubert; Malanushenko, Elena; Malanushenko, Viktor; Marriner, John; Miquel, Ramon; Montero-Dorta, Antonio D.; Nichol, Robert C.; Oravetz, Daniel J.; Pan, Kaike; Schneider, Donald P.; Simmons, Audrey E.; Smith, Mathew; Snedden, Stephanie A.

    2014-03-06

    We present the spectroscopy from 5254 galaxies that hosted supernovae (SNe) or other transient events in the Sloan Digital Sky Survey II (SDSS-II). Obtained during SDSS-I, SDSS-II, and the Baryon Oscillation Spectroscopic Survey (BOSS), this sample represents the largest systematic, unbiased, magnitude limited spectroscopic survey of supernova (SN) host galaxies. Using the host galaxy redshifts, we test the impact of photometric SN classification based on SDSS imaging data with and without using spectroscopic redshifts of the host galaxies. Following our suggested scheme, there are a total of 1166 photometrically classified SNe Ia when using a flat redshift prior and 1126 SNe Ia when the host spectroscopic redshift is assumed. For 1024 (87.8%) candidates classified as likely SNe Ia without redshift information, we find that the classification is unchanged when adding the host galaxy redshift. Using photometry from SDSS imaging data and the host galaxy spectra, we also report host galaxy properties for use in future nalysis of SN astrophysics. Finally, we investigate the differences in the interpretation of the light curve properties with and without knowledge of the redshift. When using the SALT2 light curve fitter, we find a 21% increase in the number of fits that converge when using the spectroscopic redshift. Without host galaxy redshifts, we find that SALT2 light curve fits are systematically biased towards lower photometric redshift estimates and redder colors in the limit of low signal-to-noise data. The general improvements in performance of the light curve fitter and the increased diversity of the host galaxy sample highlights the importance of host galaxy spectroscopy for current photometric SN surveys such as the Dark Energy Survey and future surveys such as the Large Synoptic Survey Telescope.

  15. ON THE HOST GALAXY OF GRB 150101B AND THE ASSOCIATED ACTIVE GALACTIC NUCLEUS

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Chen [Department of Physics, Xiamen University, Xiamen (China); Fang, Taotao; Wang, Junfeng; Liu, Tong; Jiang, Xiaochuan, E-mail: fangt@xmu.edu.cn [Department of Astronomy and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen (China)

    2016-06-20

    We present a multi-wavelength analysis of the host galaxy of short-duration gamma-ray burst (GRB) 150101B. Follow-up optical and X-ray observations suggested that the host galaxy, 2MASX J12320498-1056010, likely harbors low-luminosity active galactic nuclei (AGNs). Our modeling of the spectral energy distribution has confirmed the nature of the AGN, making it the first reported GRB host that contains an AGN. We have also found the host galaxy is a massive elliptical galaxy with stellar population of ∼5.7 Gyr, one of the oldest among the short-duration GRB hosts. Our analysis suggests that the host galaxy can be classified as an X-ray bright, optically normal galaxy, and the central AGN is likely dominated by a radiatively inefficient accretion flow. Our work explores an interesting connection that may exist between GRB and AGN activities of the host galaxy, which can help in understanding the host environment of the GRB events and the roles of AGN feedback.

  16. ON THE HOST GALAXY OF GRB 150101B AND THE ASSOCIATED ACTIVE GALACTIC NUCLEUS

    International Nuclear Information System (INIS)

    Xie, Chen; Fang, Taotao; Wang, Junfeng; Liu, Tong; Jiang, Xiaochuan

    2016-01-01

    We present a multi-wavelength analysis of the host galaxy of short-duration gamma-ray burst (GRB) 150101B. Follow-up optical and X-ray observations suggested that the host galaxy, 2MASX J12320498-1056010, likely harbors low-luminosity active galactic nuclei (AGNs). Our modeling of the spectral energy distribution has confirmed the nature of the AGN, making it the first reported GRB host that contains an AGN. We have also found the host galaxy is a massive elliptical galaxy with stellar population of ∼5.7 Gyr, one of the oldest among the short-duration GRB hosts. Our analysis suggests that the host galaxy can be classified as an X-ray bright, optically normal galaxy, and the central AGN is likely dominated by a radiatively inefficient accretion flow. Our work explores an interesting connection that may exist between GRB and AGN activities of the host galaxy, which can help in understanding the host environment of the GRB events and the roles of AGN feedback.

  17. STATISTICS OF SATELLITE GALAXIES AROUND MILKY-WAY-LIKE HOSTS

    International Nuclear Information System (INIS)

    Busha, Michael T.; Wechsler, Risa H.; Behroozi, Peter S.; Gerke, Brian F.; Klypin, Anatoly A.; Primack, Joel R.

    2011-01-01

    We calculate the probability that a Milky-Way (MW)-like halo in the standard cosmological model has the observed number of Magellanic Clouds (MCs). The statistics of the number of MCs in the lambda cold dark matter model are in good agreement with observations of a large sample of Sloan Digital Sky Survey (SDSS) galaxies. Under the subhalo abundance matching assumption of a relationship with small scatter between galaxy r-band luminosities and halo internal velocities v max , we make detailed comparisons to similar measurements using SDSS Data Release 7 data by Liu et al. Models and observational data give very similar probabilities for having zero, one, and two MC-like satellites. In both cases, MW luminosity hosts have just a ∼10% chance of hosting two satellites similar to the MCs. In addition, we present a prediction for the probability for a host galaxy to have N sats satellite galaxies as a function of the magnitudes of both the host and satellite. This probability and its scaling with host properties is significantly different from that of mass-selected objects because of scatter in the mass-luminosity relation and because of variations in the star formation efficiency with halo mass.

  18. A Bayesian approach to multi-messenger astronomy: identification of gravitational-wave host galaxies

    International Nuclear Information System (INIS)

    Fan, XiLong; Messenger, Christopher; Heng, Ik Siong

    2014-01-01

    We present a general framework for incorporating astrophysical information into Bayesian parameter estimation techniques used by gravitational wave data analysis to facilitate multi-messenger astronomy. Since the progenitors of transient gravitational wave events, such as compact binary coalescences, are likely to be associated with a host galaxy, improvements to the source sky location estimates through the use of host galaxy information are explored. To demonstrate how host galaxy properties can be included, we simulate a population of compact binary coalescences and show that for ∼8.5% of simulations within 200 Mpc, the top 10 most likely galaxies account for a ∼50% of the total probability of hosting a gravitational wave source. The true gravitational wave source host galaxy is in the top 10 galaxy candidates ∼10% of the time. Furthermore, we show that by including host galaxy information, a better estimate of the inclination angle of a compact binary gravitational wave source can be obtained. We also demonstrate the flexibility of our method by incorporating the use of either the B or K band into our analysis.

  19. The Faint End of the Lyman Alpha Luminosity Function at 2 < z < 3.8

    Science.gov (United States)

    Devarakonda, Yaswant; Livermore, Rachael; Indahl, Briana; Wold, Isak; Davis, Dustin; Finkelstein, Steven

    2018-01-01

    Most current models predict that our universe is mostly composed of small, dim galaxies. Due to these galaxies being so faint, it is very difficult to study these types of galaxies outside of our local universe. This is particularly an issue for studying how these small galaxies evolved over their lifetimes. With the benefit of gravitational lensing, however, we are able to observe galaxies that are farther and fainter than ever before possible. In this particular study, we focus on Lyman-Alpha emitting galaxies between the redshifts of 2-3.8, so that we may study these galaxies during the epoch of peak star formation in the universe. We use the McDonald Observatory 2.7, Harlan Smith telescope with the VIRUS-P IFU spectrograph to observe several Hubble Frontier Field lensing clusters to spectroscopically discover faint galaxies over this redshift range. In addition to providing insight into the faint-end slope of the Lyman alpha luminosity function, the spectroscopic redshifts will allow us to better constrain the mass models of the foreground clusters, such as Abell 370, so that we may better understand lensing effects for this and future studies.

  20. The hydrogen-poor superluminous supernova iPTF 13ajg and its host galaxy in absorption and emission

    Energy Technology Data Exchange (ETDEWEB)

    Vreeswijk, Paul M.; Gal-Yam, Avishay; De Cia, Annalisa; Rubin, Adam; Yaron, Ofer; Tal, David; Ofek, Eran O. [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 7610001 (Israel); Savaglio, Sandra [Max Planck Institute for Extraterrestrial Physics, D-85748 Garching bei München (Germany); Quimby, Robert M. [Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, The University of Tokyo 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8583 (Japan); Sullivan, Mark [School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom); Cenko, S. Bradley; Filippenko, Alexei V.; Clubb, Kelsey I. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Perley, Daniel A.; Cao, Yi [Astronomy Department, California Institute of Technology, MC 249-17, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Taddia, Francesco; Sollerman, Jesper; Leloudas, Giorgos [Department of Astronomy, The Oskar Klein Center, Stockholm University, AlbaNova 10691 Stockholm (Sweden); Arcavi, Iair [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive, Suite 102, Goleta, CA 93117 (United States); Kasliwal, Mansi M., E-mail: paul.vreeswijk@weizmann.ac.il [The Observatories, Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); and others

    2014-12-10

    We present imaging and spectroscopy of a hydrogen-poor superluminous supernova (SLSN) discovered by the intermediate Palomar Transient Factory, iPTF 13ajg. At a redshift of z = 0.7403, derived from narrow absorption lines, iPTF 13ajg peaked at an absolute magnitude of M {sub u,} {sub AB} = –22.5, one of the most luminous supernovae to date. The observed bolometric peak luminosity of iPTF 13ajg is 3.2 × 10{sup 44} erg s{sup –1}, while the estimated total radiated energy is 1.3 × 10{sup 51} erg. We detect narrow absorption lines of Mg I, Mg II, and Fe II, associated with the cold interstellar medium in the host galaxy, at two different epochs with X-shooter at the Very Large Telescope. From Voigt profile fitting, we derive the column densities log N(Mg I) =11.94 ± 0.06, log N(Mg II) =14.7 ± 0.3, and log N(Fe II) =14.25 ± 0.10. These column densities, as well as the Mg I and Mg II equivalent widths of a sample of hydrogen-poor SLSNe taken from the literature, are at the low end of those derived for gamma-ray bursts (GRBs) whose progenitors are also thought to be massive stars. This suggests that the environments of hydrogen-poor SLSNe and GRBs are different. From the nondetection of Fe II fine-structure absorption lines, we derive a lower limit on the distance between the supernova and the narrow-line absorbing gas of 50 pc. The neutral gas responsible for the absorption in iPTF 13ajg exhibits a single narrow component with a low velocity width, ΔV = 76 km s{sup –1}, indicating a low-mass host galaxy. No host galaxy emission lines are detected, leading to an upper limit on the unobscured star formation rate (SFR) of SFR{sub [O} {sub II]}<0.07M{sub ⊙}yr{sup −1}. Late-time imaging shows the iPTF 13ajg host galaxy to be faint, with g {sub AB} ≈ 27.0 and R {sub AB} ≥ 26.0 mag, corresponding to M {sub B,} {sub Vega} ≳ –17.7 mag.

  1. The Host Galaxies of Type Ia Supernovae Discovered by the Palomar Transient Factory

    Science.gov (United States)

    Pan, Y.-C.; Sullivan, M.; McGuire, K.; Hook, I. M.; Nugent, P. E.; Howell, D. A.; Arcavi, I.; Botyanszki, J.; Cenko, Stephen Bradley; DeRose, J.

    2013-01-01

    We present spectroscopic observations of the host galaxies of 82 low-redshift type Ia supernovae (SNe Ia) discovered by the Palomar Transient Factory (PTF). We determine star-formation rates, gas-phase stellar metallicities, and stellar masses and ages of these objects. As expected, strong correlations between the SN Ia light-curve width (stretch) and the host age mass metallicity are found: fainter, faster-declining events tend to be hosted by older massive metal-rich galaxies. There is some evidence that redder SNe Ia explode in higher metallicity galaxies, but we found no relation between the SN colour and host galaxy extinction based on the Balmer decrement, suggesting that the colour variation of these SNe does not primarily arise from this source. SNe Ia in higher-mass metallicity galaxies also appear brighter after stretch colour corrections than their counterparts in lower mass hosts, and the stronger correlation is with gas-phase metallicity suggesting this may be the more important variable. We also compared the host stellar mass distribution to that in galaxy targeted SN surveys and the high-redshift untargeted Supernova Legacy Survey (SNLS). SNLS has many more low mass galaxies, while the targeted searches have fewer. This can be explained by an evolution in the galaxy stellar mass function, coupled with a SN delay-time distribution proportional to t1. Finally, we found no significant difference in the mass--metallicity relation of our SN Ia hosts compared to field galaxies, suggesting any metallicity effect on the SN Ia rate is small.

  2. Quasar Host Galaxies/Neptune Rotation/Galaxy Building Blocks/Hubble Deep Field/Saturn Storm

    Science.gov (United States)

    2001-01-01

    Computerized animations simulate a quasar erupting in the core of a normal spiral galaxy, the collision of two interacting galaxies, and the evolution of the universe. Hubble Space Telescope (HST) images show six quasars' host galaxies (including spirals, ellipticals, and colliding galaxies) and six clumps of galaxies approximately 11 billion light years away. A false color time lapse movie of Neptune displays the planet's 16-hour rotation, and the evolution of a storm on Saturn is seen though a video of the planet's rotation. A zoom sequence starts with a ground-based image of the constellation Ursa major and ends with the Hubble Deep Field through progressively narrower and deeper views.

  3. A redshift determination of the host galaxy

    Energy Technology Data Exchange (ETDEWEB)

    Urata, Y. [RIKEN, Saitama (Japan); Tokyo Institute of Technology, Tokyo (Japan). Department of Physics; Yoshida, A. [Aoyama Garkuin Univ., Kanagawa (Japan). Department of Physics; Yamada, T. [National Astronomical Observatory, Tokyo (Japan)] (and others)

    2005-07-15

    Using the Suprime-Cam on the Subaru telescope, we carried out deep multi band (V, R, I, z') imaging for the host galaxy of GRB980329, which is one of well studied optically dark gamma- ray bursts. The host galaxy was detected clearly in all bands. Combining these measurements with published near-infrared data, we determined the photometric redshift of the galaxy as z = 3.56 (3.21-3.79 at 90 range). The implied V-band extinction is rather low, typically {approx} 1 mag. At z = 3.56, the isotropic 40-700 keV total energy of GRB980329 is calculated as (2.1 {+-} 0.4) x 10{sup 54} erg. Assuming that this GRB was emitted by a pair of jets with a total energy of 10{sup 51} ergs, their opening angle is calculated as {theta}{sub j} = 2.1. The present results disfavor the high-redshift hypothesis and the high extinction scenario of optically dark bursts.0.

  4. A redshift determination of the host galaxy

    International Nuclear Information System (INIS)

    Urata, Y.

    2005-01-01

    Using the Suprime-Cam on the Subaru telescope, we carried out deep multi band (V, R, I, z') imaging for the host galaxy of GRB980329, which is one of well studied optically dark gamma- ray bursts. The host galaxy was detected clearly in all bands. Combining these measurements with published near-infrared data, we determined the photometric redshift of the galaxy as z = 3.56 (3.21-3.79 at 90 range). The implied V-band extinction is rather low, typically ∼ 1 mag. At z = 3.56, the isotropic 40-700 keV total energy of GRB980329 is calculated as (2.1 ± 0.4) x 10 54 erg. Assuming that this GRB was emitted by a pair of jets with a total energy of 10 51 ergs, their opening angle is calculated as θ j = 2.1. The present results disfavor the high-redshift hypothesis and the high extinction scenario of optically dark bursts

  5. On the Nature of Ultra-faint Dwarf Galaxy Candidates. I. DES1, Eridanus III, and Tucana V

    Science.gov (United States)

    Conn, Blair C.; Jerjen, Helmut; Kim, Dongwon; Schirmer, Mischa

    2018-01-01

    We use deep Gemini/GMOS-S g, r photometry to study the three ultra-faint dwarf galaxy candidates DES1, Eridanus III (Eri III), and Tucana V (Tuc V). Their total luminosities, M V (DES1) = ‑1.42 ± 0.50 and M V (Eri III) = ‑2.07 ± 0.50, and mean metallicities, [{Fe}/{{H}}]=-{2.38}-0.19+0.21 and [{Fe}/{{H}}]=-{2.40}-0.12+0.19, are consistent with them being ultra-faint dwarf galaxies, as they fall just outside the 1σ confidence band of the luminosity–metallicity relation for Milky Way satellite galaxies. However, their positions in the size–luminosity relation suggest that they are star clusters. Interestingly, DES1 and Eri III are at relatively large Galactocentric distances, with DES1 located at {D}{GC}=74+/- 4 {kpc} and Eri III at {D}{GC}=91+/- 4 {kpc}. In projection, both objects are in the tail of gaseous filaments trailing the Magellanic Clouds and have similar 3D separations from the Small Magellanic Cloud (SMC): {{Δ }}{D}{SMC,{DES}1}=31.7 kpc and {{Δ }}{D}{SMC,{Eri}{III}}=41.0 kpc, respectively. It is plausible that these stellar systems are metal-poor SMC satellites. Tuc V represents an interesting phenomenon in its own right. Our deep photometry at the nominal position of Tuc V reveals a low-level excess of stars at various locations across the GMOS field without a well-defined center. An SMC Northern Overdensity–like isochrone would be an adequate match to the Tuc V color–magnitude diagram, and the proximity to the SMC (12.°1 {{Δ }}{D}{SMC,{Tuc}{{V}}}=13 kpc) suggests that Tuc V is either a chance grouping of stars related to the SMC halo or a star cluster in an advanced stage of dissolution.

  6. On the Origin of the Mass-Metallicity Relation for GRB Host Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Kocevski, Daniel; /KIPAC, Menlo Park; West, Andrew A.; /Boston U., Dept. Astron.

    2011-06-02

    We investigate the nature of the mass-metallicity (M-Z) relation for long gamma-ray burst (LGRB) host galaxies. Recent studies suggest that the M-Z relation for local LGRB host galaxies may be systematically offset towards lower metallicities relative to the M-Z relation defined by the general star forming galaxy (SDSS) population. The nature of this offset is consistent with suggestions that low metallicity environments may be required to produce high mass progenitors, although the detection of several GRBs in high-mass, high-metallicity galaxies challenges the notion of a strict metallicity cut-off for host galaxies that are capable of producing GRBs. We show that the nature of this reported offset may be explained by a recently proposed anti-correlation between the star formation rate (SFR) and the metallicity of star forming galaxies. If low metallicity galaxies produce more stars than their equally massive, high-metallicity counterparts, then transient events that closely trace the SFR in a galaxy would be more likely to be found in these low metallicity, low mass galaxies. Therefore, the offset between the GRB and SDSS defined M-Z relations may be the result of the different methods used to select their respective galaxy populations, with GRBs being biased towards low metallicity, high SFR, galaxies. We predict that such an offset should not be expected of transient events that do not closely follow the star formation history of their host galaxies, such as short duration GRBs and SN Ia, but should be evident in core collapse SNe found through upcoming untargeted surveys.

  7. Starburst-driven Superwinds in Quasar Host Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Barthel, Peter; Podigachoski, Pece [Kapteyn Astronomical Institute, University of Groningen, Groningen (Netherlands); Wilkes, Belinda [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Haas, Martin, E-mail: pdb@astro.rug.nl, E-mail: podigachoski@astro.rug.nl [Astronomisches Institut, Ruhr Universität, Bochum (Germany)

    2017-07-01

    During the past five decades astronomers have been puzzled by the presence of strong absorption features including metal lines, observed in the optical and ultraviolet spectra of quasars, signaling inflowing and outflowing gas winds with relative velocities up to several thousands of km s{sup −1}. In particular, the location of these winds—close to the quasar, further out in its host galaxy, or in its direct environment—and the possible impact on their surroundings have been issues of intense discussion and uncertainty. Using our Herschel Space Observatory data, we report a tendency for this so-called associated metal absorption to occur along with prodigious star formation in the quasar host galaxy, indicating that the two phenomena are likely to be interrelated, that the gas winds likely occur on the kiloparsec scale and would then have a strong impact on the interstellar medium of the galaxy. This correlation moreover would imply that the unusually high cold dust luminosities in these quasars are connected with ongoing star formation. Given that we find no correlation with the AGN strength, the wind feedback that we establish in these radio-loud objects is most likely associated with their host star formation rather than with their black hole accretion.

  8. Matching Supernovae to Galaxies

    Science.gov (United States)

    Kohler, Susanna

    2016-12-01

    One of the major challenges for modern supernova surveys is identifying the galaxy that hosted each explosion. Is there an accurate and efficient way to do this that avoids investing significant human resources?Why Identify Hosts?One problem in host galaxy identification. Here, the supernova lies between two galaxies but though the centroid of the galaxy on the right is closer in angular separation, this may be a distant background galaxy that is not actually near the supernova. [Gupta et al. 2016]Supernovae are a critical tool for making cosmological predictions that help us to understand our universe. But supernova cosmology relies on accurately identifying the properties of the supernovae including their redshifts. Since spectroscopic followup of supernova detections often isnt possible, we rely on observations of the supernova host galaxies to obtain redshifts.But how do we identify which galaxy hosted a supernova? This seems like a simple problem, but there are many complicating factors a seemingly nearby galaxy could be a distant background galaxy, for instance, or a supernovas host could be too faint to spot.The authors algorithm takes into account confusion, a measure of how likely the supernova is to be mismatched. In these illustrations of low (left) and high (right) confusion, the supernova is represented by a blue star, and the green circles represent possible host galaxies. [Gupta et al. 2016]Turning to AutomationBefore the era of large supernovae surveys, searching for host galaxies was done primarily by visual inspection. But current projects like the Dark Energy Surveys Supernova Program is finding supernovae by the thousands, and the upcoming Large Synoptic Survey Telescope will likely discover hundreds of thousands. Visual inspection will not be possible in the face of this volume of data so an accurate and efficient automated method is clearly needed!To this end, a team of scientists led by Ravi Gupta (Argonne National Laboratory) has recently

  9. LUMINOUS SATELLITES OF EARLY-TYPE GALAXIES. I. SPATIAL DISTRIBUTION

    International Nuclear Information System (INIS)

    Nierenberg, A. M.; Auger, M. W.; Treu, T.; Marshall, P. J.; Fassnacht, C. D.

    2011-01-01

    We study the spatial distribution of faint satellites of intermediate redshift (0.1 s = 1.7 +0.9 -0.8 ) that is comparable to the number of Milky Way satellites with similar host-satellite contrast. The average projected radial profile of the satellite distribution is isothermal (γ p = -1.0 +0.3 -0.4 ), which is consistent with the observed central mass density profile of massive early-type galaxies. Furthermore, the satellite distribution is highly anisotropic (isotropy is ruled out at a >99.99% confidence level). Defining φ to be the offset between the major axis of the satellite spatial distribution and the major axis of the host light profile, we find a maximum posterior probability of φ = 0 and |φ| less than 42 0 at the 68% confidence level. The alignment of the satellite distribution with the light of the host is consistent with simulations, assuming that light traces mass for the host galaxy as observed for lens galaxies. The anisotropy of the satellite population enhances its ability to produce the flux ratio anomalies observed in gravitationally lensed quasars.

  10. Galaxy luminosity function: evolution at high redshift

    Science.gov (United States)

    Martinet, N.; Durret, F.; Guennou, L.; Adami, C.

    2014-12-01

    There are some disagreements about the abundance of faint galaxies in high redshift clusters. DAFT/FADA (Dark energy American French Team) is a medium redshift (0.4galaxy clusters ideal to tackle these problems. We present cluster galaxy luminosity functions (GLFs) based on photometric redshifts for 30 clusters in B, V, R and I restframe bands. We show that completeness is a key parameter to understand the different observed behaviors when fitting the GLFs. We also investigate the evolution of GLFs with redshift for red and blue galaxy populations separately. We find a drop of the faint end of red GLFs which is more important at higher redshift while the blue GLF faint end remains flat in our redshift range. These results can be interpreted in terms of galaxy quenching. Faint blue galaxies transform into red ones which enrich the red sequence from high to low redshifts in clusters while some blue galaxies are still accreted from the environment, compensating for this evolution so that the global GLF does not seem to evolve.

  11. In Pursuit of the Least Luminous Galaxies

    Directory of Open Access Journals (Sweden)

    Beth Willman

    2010-01-01

    Full Text Available The dwarf galaxy companions to the Milky Way are unique cosmological laboratories. With luminosities as low as 10−7LMW, they inhabit the lowest mass dark matter halos known to host stars and are presently the most direct tracers of the distribution, mass spectrum, and clustering scale of dark matter. Their resolved stellar populations also facilitate detailed studies of their history and mass content. To fully exploit this potential requires a well-defined census of virtually invisible galaxies to the faintest possible limits and to the largest possible distances. I review the past and present impacts of survey astronomy on the census of Milky Way dwarf galaxy companions and discuss the future of finding ultra-faint dwarf galaxies around the Milky Way and beyond in wide-field survey data.

  12. A Hubble Space Telescope imaging study of four FeLoBAL quasar host galaxies

    Science.gov (United States)

    Lawther, D.; Vestergaard, M.; Fan, X.

    2018-04-01

    We study the host galaxies of four Iron Low-Ionization Broad Absorption-line Quasars (FeLoBALs), using Hubble Space Telescope imaging data, investigating the possibility that they represent a transition between an obscured active galactic nucleus (AGN) and an ordinary optical quasar. In this scenario, the FeLoBALs represent the early stage of merger-triggered accretion, in which case their host galaxies are expected to show signs of an ongoing or recent merger. Using PSF subtraction techniques, we decompose the images into host galaxy and AGN components at rest-frame ultraviolet and optical wavelengths. The ultraviolet is sensitive to young stars, while the optical probes stellar mass. In the ultraviolet we image at the BAL absorption trough wavelengths so as to decrease the contrast between the quasar and host galaxy emission. We securely detect an extended source for two of the four FeLoBALs in the rest-frame optical; a third host galaxy is marginally detected. In the rest-frame UV we detect no host emission; this constrains the level of unobscured star formation. Thus, the host galaxies have observed properties that are consistent with those of non-BAL quasars with the same nuclear luminosity, i.e. quiescent or moderately star-forming elliptical galaxies. However, we cannot exclude starbursting hosts that have the stellar UV emission obscured by modest amounts of dust reddening. Thus, our findings also allow the merger-induced young quasar scenario. For three objects, we identify possible close companion galaxies that may be gravitationally interacting with the quasar hosts.

  13. Investigating a population of infrared-bright gamma-ray burst host galaxies

    Science.gov (United States)

    Chrimes, Ashley A.; Stanway, Elizabeth R.; Levan, Andrew J.; Davies, Luke J. M.; Angus, Charlotte R.; Greis, Stephanie M. L.

    2018-04-01

    We identify and explore the properties of an infrared-bright gamma-ray burst (GRB) host population. Candidate hosts are selected by coincidence with sources in WISE, with matching to random coordinates and a false alarm probability analysis showing that the contamination fraction is ˜ 0.5. This methodology has already identified the host galaxy of GRB 080517. We combine survey photometry from Pan-STARRS, SDSS, APASS, 2MASS, GALEX and WISE with our own WHT/ACAM and VLT/X-shooter observations to classify the candidates and identify interlopers. Galaxy SED fitting is performed using MAGPHYS, in addition to stellar template fitting, yielding 13 possible IR-bright hosts. A further 7 candidates are identified from previously published work. We report a candidate host for GRB 061002, previously unidentified as such. The remainder of the galaxies have already been noted as potential hosts. Comparing the IR-bright population properties including redshift z, stellar mass M⋆, star formation rate SFR and V-band attenuation AV to GRB host catalogues in the literature, we find that the infrared-bright population is biased toward low z, high M⋆ and high AV. This naturally arises from their initial selection - local and dusty galaxies are more likely to have the required IR flux to be detected in WISE. We conclude that while IR-bright GRB hosts are not a physically distinct class, they are useful for constraining existing GRB host populations, particularly for long GRBs.

  14. Discovery of a bright quasar without a massive host galaxy.

    Science.gov (United States)

    Magain, Pierre; Letawe, Géraldine; Courbin, Frédéric; Jablonka, Pascale; Jahnke, Knud; Meylan, Georges; Wisotzki, Lutz

    2005-09-15

    A quasar is thought to be powered by the infall of matter onto a supermassive black hole at the centre of a massive galaxy. Because the optical luminosity of quasars exceeds that of their host galaxy, disentangling the two components can be difficult. This led in the 1990s to the controversial claim of the discovery of 'naked' quasars. Since then, the connection between quasars and galaxies has been well established. Here we report the discovery of a quasar lying at the edge of a gas cloud, whose size is comparable to that of a small galaxy, but whose spectrum shows no evidence for stars. The gas in the cloud is excited by the quasar itself. If a host galaxy is present, it is at least six times fainter than would normally be expected for such a bright quasar. The quasar is interacting dynamically with a neighbouring galaxy, whose gas might be feeding the black hole.

  15. SDSS IV MaNGA - Properties of AGN Host Galaxies

    Science.gov (United States)

    Sánchez, S. F.; Avila-Reese, V.; Hernandez-Toledo, H.; Cortes-Suárez, E.; Rodríguez-Puebla, A.; Ibarra-Medel, H.; Cano-Díaz, M.; Barrera-Ballesteros, J. K.; Negrete, C. A.; Calette, A. R.; de Lorenzo-Cáceres, A.; Ortega-Minakata, R. A.; Aquino, E.; Valenzuela, O.; Clemente, J. C.; Storchi-Bergmann, T.; Riffel, R.; Schimoia, J.; Riffel, R. A.; Rembold, S. B.; Brownstein, J. R.; Pan, K.; Yates, R.; Mallmann, N.; Bitsakis, T.

    2018-04-01

    We present the characterization of the main properties of a sample of 98 AGN host galaxies, both type-II and type-I, in comparison with those of ≍2700 non-active galaxies observed by the MaNGA survey. We found that AGN hosts are morphologically early-type or early-spirals. AGN hosts are, on average, more massive, more compact, more centrally peaked and more pressure-supported systems. They are located in the intermediate/transition region between starforming and non-star-forming galaxies (i.e., the so-called green valley). We consider that they are in the process of halting/quenching the star formation. The analysis of the radial distributions of different properties shows that the quenching happens from inside-out involving both a decrease of the effciency of the star formation and a deficit of molecular gas. The data-products of the current analysis are distributed as a Value Added Catalog within the SDSS-DR14.

  16. X-RAY SELECTED AGN HOST GALAXIES ARE SIMILAR TO INACTIVE GALAXIES OUT TO z = 3: RESULTS FROM CANDELS/CDF-S

    International Nuclear Information System (INIS)

    Rosario, D. J.; Wuyts, S.; Nandra, K.; Mozena, M.; Faber, S. M.; Koo, D. C.; Koekemoer, A.; Ferguson, H.; Grogin, N.; McGrath, E.; Hathi, N. P.; Dekel, A.; Donley, J.; Dunlop, J. S.; Giavalisco, M.; Guo, Y.; Kocevski, D. D.; Laird, E.; Rangel, C.; Newman, J.

    2013-01-01

    We use multi-band spatially resolved photometry from the Cosmic Assembly Near-IR Deep Legacy Survey in the 4 Ms Chandra Deep Field-South to explore the nuclear and extended colors, color gradients, and stellar populations of the host galaxies of X-ray selected active galactic nuclei (AGNs) out to z = 3. Based on a study of their central light, we develop X-ray based criteria to exclude objects with strong AGN contamination. We use stellar masses from the FIREWORKS database to understand and account for stellar mass selection effects and carefully study, for the first time, the resolved host galaxy properties of AGNs at z ∼ 2 in their rest-frame optical light without substantial nuclear contamination. AGN hosts span a sizable range of stellar masses, colors, and color gradients at these redshifts. Their colors, color gradients, and stellar population properties are very similar to inactive galaxies of the same stellar mass. At z ∼ 1, we find a slightly narrower range in host colors compared to inactive galaxies, as well as hints of more recent star formation. These differences are weaker or non-existent among AGN hosts at z ∼ 2. We discuss the importance of AGN-driven feedback in the quenching of galaxies at z ∼> 1 and speculate on possible evolution in the relationship between black hole accretion and the host galaxy toward high redshifts.

  17. Galaxy and Mass Assembly (GAMA): small-scale anisotropic galaxy clustering and the pairwise velocity dispersion of galaxies

    Science.gov (United States)

    Loveday, J.; Christodoulou, L.; Norberg, P.; Peacock, J. A.; Baldry, I. K.; Bland-Hawthorn, J.; Brown, M. J. I.; Colless, M.; Driver, S. P.; Holwerda, B. W.; Hopkins, A. M.; Kafle, P. R.; Liske, J.; Lopez-Sanchez, A. R.; Taylor, E. N.

    2018-03-01

    The galaxy pairwise velocity dispersion (PVD) can provide important tests of non-standard gravity and galaxy formation models. We describe measurements of the PVD of galaxies in the Galaxy and Mass Assembly (GAMA) survey as a function of projected separation and galaxy luminosity. Due to the faint magnitude limit (r PVD to smaller scales (r⊥ = 0.01 h - 1 Mpc) than previous work. The measured PVD at projected separations r⊥ ≲ 1 h - 1 Mpc increases near monotonically with increasing luminosity from σ12 ≈ 200 km s - 1 at Mr = -17 mag to σ12 ≈ 600 km s - 1 at Mr ≈ -22 mag. Analysis of the Gonzalez-Perez et al. (2014) GALFORM semi-analytic model yields no such trend of PVD with luminosity: the model overpredicts the PVD for faint galaxies. This is most likely a result of the model placing too many low-luminosity galaxies in massive haloes.

  18. Host Galaxy Properties of the Swift BAT Ultra Hard X-Ray Selected AGN

    Science.gov (United States)

    Koss, Michael; Mushotzky, Richard; Veilleux, Sylvain; Winter, Lisa M.; Baumgartner, Wayne; Tueller, Jack; Gehrels, Neil; Valencic, Lynne

    2011-01-01

    We have assembled the largest sample of ultra hard X-ray selected (14-195 keV) AGN with host galaxy optical data to date, with 185 nearby (zBAT) sample. The BAT AGN host galaxies have intermediate optical colors (u -- r and g -- r) that are bluer than a comparison sample of inactive galaxies and optically selected AGN from the Sloan Digital Sky Survey (SDSS) which are chosen to have the same stellar mass. Based on morphological classifications from the RC3 and the Galaxy Zoo, the bluer colors of BAT AGN are mainly due to a higher fraction of mergers and massive spirals than in the comparison samples. BAT AGN in massive galaxies (log Stellar Mass >10.5) have a 5 to 10 times higher rate of spiral morphologies than in SDSS AGN or inactive galaxies. We also see enhanced far-IR emission in BAT AGN suggestive of higher levels of star formation compared to the comparison samples. BAT AGN are preferentially found in the most massive host galaxies with high concentration indexes indicative of large bulge-to-disk ratios and large supermassive black holes. The narrow-line (NL) BAT AGN have similar intrinsic luminosities as the SDSS NL Seyferts based on measurements of [O III] Lambda 5007. There is also a correlation between the stellar mass and X-ray emission. The BAT AGN in mergers have bluer colors and greater ultra hard X-ray emission compared to the BAT sample as whole. In agreement with the Unified Model of AGN, and the relatively unbiased nature of the BAT sources, the host galaxy colors and morphologies are independent of measures of obscuration such as X-ray column density or Seyfert type. The high fraction of massive spiral galaxies and galaxy mergers in BAT AGN suggest that host galaxy morphology is related to the activation and fueling of local AGN.

  19. Impact of seeing and host galaxy into the analysis of photo-polarimetric microvariability in blazars. Case study of the nearby blazars 1ES 1959+650 and HB89 2201+044

    Science.gov (United States)

    Sosa, M. S.; von Essen, C.; Andruchow, I.; Cellone, S. A.

    2017-11-01

    Blazars, a type of Active Galactic Nuclei, present a particular orientation of their jets close to the line of sight. Their radiation is thus relativistically beamed, giving rise to extreme behaviors, specially strong variability on very short timescales (I.e., microvariability). Here we present simultaneous photometric and polarimetric observations of two relatively nearby blazars, 1ES 1959+650 and HB89 2201+044, that were obtained using the Calar Alto Faint Object Spectrograph mounted at the 2.2 m telescope in Calar Alto, Spain. An outstanding characteristic of these two blazars is the presence of well resolved host galaxies. This particular feature allows us to produce a study of their intrinsic polarization, a measurement of the polarization state of the galactic nucleus unaffected by the host galaxy. To carry out this work, we computed photometric fluxes from which we calculated the degree and orientation of the blazars polarization. Then, we analyzed the depolarizing effect introduced by the host galaxy with the main goal to recover the intrinsic polarization of the galactic nucleus, carefully taking into consideration the spurious polarimetric variability introduced by changes in seeing along the observing nights. We find that the two blazars do not present intra-night photo-polarimetric variability, although we do detect a significant inter-night variability. Comparing polarimetric values before and after accounting for the host galaxies, we observe a significant difference in the polarization degree of about 1% in the case of 1ES 1959+650, and 0.3% in the case of HB89 2201+044, thus evidencing the non-negligible impact introduced by the host galaxies. We note that this host galaxy effect depends on the waveband, and varies with changing seeing conditions, so it should be particularly considered when studying frequency-dependent polarization in blazars. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated

  20. Modeling The GRB Host Galaxy Mass Distribution: Are GRBs Unbiased Tracers of Star Formation?

    Energy Technology Data Exchange (ETDEWEB)

    Kocevski, Daniel; /KIPAC, Menlo Park; West, Andrew A.; /UC, Berkeley, Astron. Dept. /MIT, MKI; Modjaz, Maryam; /UC, Berkeley, Astron. Dept.

    2009-08-03

    We model the mass distribution of long gamma-ray burst (GRB) host galaxies given recent results suggesting that GRBs occur in low metallicity environments. By utilizing measurements of the redshift evolution of the mass-metallicity (M-Z) relationship for galaxies, along with a sharp host metallicity cut-off suggested by Modjaz and collaborators, we estimate an upper limit on the stellar mass of a galaxy that can efficiently produce a GRB as a function of redshift. By employing consistent abundance indicators, we find that sub-solar metallicity cut-offs effectively limit GRBs to low stellar mass spirals and dwarf galaxies at low redshift. At higher redshifts, as the average metallicity of galaxies in the Universe falls, the mass range of galaxies capable of hosting a GRB broadens, with an upper bound approaching the mass of even the largest spiral galaxies. We compare these predicted limits to the growing number of published GRB host masses and find that extremely low metallicity cut-offs of 0.1 to 0.5 Z{sub {circle_dot}} are effectively ruled out by a large number of intermediate mass galaxies at low redshift. A mass function that includes a smooth decrease in the efficiency of producing GRBs in galaxies of metallicity above 12+log(O/H){sub KK04} = 8.7 can, however, accommodate a majority of the measured host galaxy masses. We find that at z {approx} 1, the peak in the observed GRB host mass distribution is inconsistent with the expected peak in the mass of galaxies harboring most of the star formation. This suggests that GRBs are metallicity biased tracers of star formation at low and intermediate redshifts, although our model predicts that this bias should disappear at higher redshifts due to the evolving metallicity content of the universe.

  1. MODELING THE GRB HOST GALAXY MASS DISTRIBUTION: ARE GRBs UNBIASED TRACERS OF STAR FORMATION?

    International Nuclear Information System (INIS)

    Kocevski, Daniel; West, Andrew A.; Modjaz, Maryam

    2009-01-01

    We model the mass distribution of long gamma-ray burst (GRB) host galaxies given recent results suggesting that GRBs occur in low-metallicity environments. By utilizing measurements of the redshift evolution of the mass-metallicity relationship for galaxies, along with a sharp host metallicity cutoff suggested by Modjaz and collaborators, we estimate an upper limit on the stellar mass of a galaxy that can efficiently produce a GRB as a function of redshift. By employing consistent abundance indicators, we find that subsolar metallicity cutoffs effectively limit GRBs to low-stellar mass spirals and dwarf galaxies at low redshift. At higher redshifts, as the average metallicity of galaxies in the Universe falls, the mass range of galaxies capable of hosting a GRB broadens, with an upper bound approaching the mass of even the largest spiral galaxies. We compare these predicted limits to the growing number of published GRB host masses and find that extremely low-metallicity cutoffs of 0.1 to 0.5 Z sun are effectively ruled out by a large number of intermediate mass galaxies at low redshift. A mass function that includes a smooth decrease in the efficiency of producing GRBs in galaxies of metallicity above 12+log(O/H) KK04 = 8.7 can, however, accommodate a majority of the measured host galaxy masses. We find that at z ∼ 1, the peak in the observed GRB host mass distribution is inconsistent with the expected peak in the mass of galaxies harboring most of the star formation. This suggests that GRBs are metallicity-biased tracers of star formation at low and intermediate redshifts, although our model predicts that this bias should disappear at higher redshifts due to the evolving metallicity content of the universe.

  2. The unique structural parameters of the underlying host galaxies in blue compact dwarfs

    International Nuclear Information System (INIS)

    Janowiecki, Steven; Salzer, John J.

    2014-01-01

    The nature of possible evolutionary pathways between various types of dwarf galaxies is still not fully understood. Blue compact dwarf galaxies (BCDs) provide a unique window into dwarf galaxy formation and evolution and are often thought of as an evolutionary stage between different classes of dwarf galaxies. In this study we use deep optical and near-infrared observations of the underlying hosts of BCDs in order to study the structural differences between different types of dwarf galaxies. When compared with dwarf irregular galaxies of similar luminosities, we find that the underlying hosts of BCDs have significantly more concentrated light distributions, with smaller scale lengths and brighter central surface brightnesses. We demonstrate here that the underlying hosts of BCDs are distinct from the broad continuum of typical dwarf irregular galaxies, and that it is unlikely that most dwarf irregular galaxies can transform into a BCD or vice versa. Furthermore, we find that the starburst in a BCD only brightens it on average by ∼0.8 mag (factor of two), in agreement with other studies. It appears that a BCD is a long-lived and distinct type of dwarf galaxy that exhibits an exceptionally concentrated matter distribution. We suggest that it is this compact mass distribution that enables the strong star formation events that characterize this class of dwarf galaxy, that the compactness of the underlying host can be used as a distinguishing parameter between BCDs and other dwarf galaxies, and that it can also be used to identify BCDs which are not currently experiencing an intense starburst event.

  3. The MUSE view of the host galaxy of GRB 100316D

    Science.gov (United States)

    Izzo, L.; Thöne, C. C.; Schulze, S.; Mehner, A.; Flores, H.; Cano, Z.; de Ugarte Postigo, A.; Kann, D. A.; Amorín, R.; Anderson, J. P.; Bauer, F. E.; Bensch, K.; Christensen, L.; Covino, S.; Della Valle, M.; Fynbo, J. P. U.; Jakobsson, P.; Klose, S.; Kuncarayakti, H.; Leloudas, G.; Milvang-Jensen, B.; Møller, P.; Puech, M.; Rossi, A.; Sánchez-Ramírez, R.; Vergani, S. D.

    2017-12-01

    The low distance, z = 0.0591, of GRB 100316D and its association with SN 2010bh represent two important motivations for studying this host galaxy and the GRB's immediate environment with the integral field spectrographs like Very Large Telescope/Multi-Unit Spectroscopic Explorer. Its large field of view allows us to create 2D maps of gas metallicity, ionization level and the star formation rate (SFR) distribution maps, as well as to investigate the presence of possible host companions. The host is a late-type dwarf irregular galaxy with multiple star-forming regions and an extended central region with signatures of on-going shock interactions. The gamma-ray burst (GRB) site is characterized by the lowest metallicity, the highest SFR and the youngest (∼20-30 Myr) stellar population in the galaxy, which suggest a GRB progenitor stellar population with masses up to 20-40 M⊙. We note that the GRB site has an offset of ∼660 pc from the most luminous SF region in the host. The observed SF activity in this galaxy may have been triggered by a relatively recent gravitational encounter between the host and a small undetected (LH α ≤ 1036 erg s-1) companion.

  4. THE EFFECT OF HOST GALAXIES ON TYPE Ia SUPERNOVAE IN THE SDSS-II SUPERNOVA SURVEY

    International Nuclear Information System (INIS)

    Lampeitl, Hubert; Smith, Mathew; Nichol, Robert C.; Bassett, Bruce; Cinabro, David; Dilday, Benjamin; Jha, Saurabh W.; Foley, Ryan J.; Frieman, Joshua A.; Garnavich, Peter M.; Goobar, Ariel; Nordin, Jakob; Im, Myungshin; Marriner, John; Miquel, Ramon; Oestman, Linda; Riess, Adam G.; Sako, Masao; Schneider, Donald P.; Sollerman, Jesper

    2010-01-01

    We present an analysis of the host galaxy dependences of Type Ia Supernovae (SNe Ia) from the full three year sample of the SDSS-II Supernova Survey. We re-discover, to high significance, the strong correlation between host galaxy type and the width of the observed SN light curve, i.e., fainter, quickly declining SNe Ia favor passive host galaxies, while brighter, slowly declining Ia's favor star-forming galaxies. We also find evidence (at between 2σ and 3σ) that SNe Ia are ≅0.1 ± 0.04 mag brighter in passive host galaxies than in star-forming hosts, after the SN Ia light curves have been standardized using the light-curve shape and color variations. This difference in brightness is present in both the SALT2 and MCLS2k2 light-curve fitting methodologies. We see evidence for differences in the SN Ia color relationship between passive and star-forming host galaxies, e.g., for the MLCS2k2 technique, we see that SNe Ia in passive hosts favor a dust law of R V = 1.0 ± 0.2, while SNe Ia in star-forming hosts require R V = 1.8 +0.2 -0.4 . The significance of these trends depends on the range of SN colors considered. We demonstrate that these effects can be parameterized using the stellar mass of the host galaxy (with a confidence of >4σ) and including this extra parameter provides a better statistical fit to our data. Our results suggest that future cosmological analyses of SN Ia samples should include host galaxy information.

  5. The host galaxy and optical light curve of the gamma-ray burst GRB 980703

    DEFF Research Database (Denmark)

    Holland, S.; Fynbo, J.P.U.; Hjorth, J.

    2001-01-01

    We present deep HST/STIS and ground-based photometry of the host galaxy of the gamma-ray burst GRB 980703 taken 17, 551, 710, and 716 days after the burst. We find that the host is a blue, slightly over-luminous galaxy with V-gal = 23.00 +/-0.10, (V - R)(gal) = 0.43 +/-0.13, and a centre...... 980703 with any special features in the host. The host galaxy appears to be a typical example of a compact star forming galaxy similar to those found in the Hubble Deep Field North. The R-band light curve of the optical afterglow associated with this gamma-ray burst is consistent with a single power...

  6. Revisiting The First Galaxies: The effects of Population III stars on their host galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Muratov, Alexander L. [U. Michigan, Dept. Astron.; Gnedin, Oleg Y. [U. Michigan, Dept. Astron.; Gnedin, Nickolay Y. [Chicago U., Astron. Astrophys. Ctr.; Zemp, Marcel [Beijing, KITPC

    2013-07-12

    We revisit the formation and evolution of the first galaxies using new hydrodynamic cosmological simulations with the adaptive refinement tree code. Our simulations feature a recently developed model for H2 formation and dissociation, and a star formation recipe that is based on molecular rather than atomic gas. Here, we develop and implement a recipe for the formation of metal-free Population III (Pop III) stars in galaxy-scale simulations that resolve primordial clouds with sufficiently high density. We base our recipe on the results of prior zoom-in simulations that resolved the protostellar collapse in pre-galactic objects. We find the epoch during which Pop III stars dominated the energy and metal budget of the first galaxies to be short-lived. Galaxies that host Pop III stars do not retain dynamical signatures of their thermal and radiative feedback for more than 108 years after the lives of the stars end in pair-instability supernovae, even when we consider the maximum reasonable efficiency of the feedback. Though metals ejected by the supernovae can travel well beyond the virial radius of the host galaxy, they typically begin to fall back quickly, and do not enrich a large fraction of the intergalactic medium. Galaxies with a total mass in excess of 3 × 106 M re-accrete most of their baryons and transition to metal-enriched Pop II star formation.

  7. THE HOST GALAXY PROPERTIES OF VARIABILITY SELECTED AGN IN THE PAN-STARRS1 MEDIUM DEEP SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Heinis, S.; Gezari, S.; Kumar, S. [Department of Astronomy, University of Maryland, College Park, MD (United States); Burgett, W. S.; Flewelling, H.; Huber, M. E.; Kaiser, N.; Wainscoat, R. J.; Waters, C. [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States)

    2016-07-20

    We study the properties of 975 active galactic nuclei (AGNs) selected by variability in the Pan-STARRS1 Medium deep Survey. Using complementary multi-wavelength data from the ultraviolet to the far-infrared, we use spectral energy distribution fitting to determine the AGN and host properties at z < 1 and compare to a well-matched control sample. We confirm the trend previously observed: that the variability amplitude decreases with AGN luminosity, but we also observe that the slope of this relation steepens with wavelength, resulting in a “redder when brighter” trend at low luminosities. Our results show that AGNs are hosted by more massive hosts than control sample galaxies, while the rest frame dust-corrected NUV r color distribution of AGN hosts is similar to control galaxies. We find a positive correlation between the AGN luminosity and star formation rate (SFR), independent of redshift. AGN hosts populate the entire range of SFRs within and outside of the Main Sequence of star-forming galaxies. Comparing the distribution of AGN hosts and control galaxies, we show that AGN hosts are less likely to be hosted by quiescent galaxies and more likely to be hosted by Main Sequence or starburst galaxies.

  8. Galaxy evolution and large-scale structure in the far-infrared. II. The IRAS faint source survey

    International Nuclear Information System (INIS)

    Lonsdale, C.J.; Hacking, P.B.; Conrow, T.P.; Rowan-Robinson, M.

    1990-01-01

    The new IRAS Faint Source Survey data base is used to confirm the conclusion of Hacking et al. (1987) that the 60 micron source counts fainter than about 0.5 Jy lie in excess of predictions based on nonevolving model populations. The existence of an anisotropy between the northern and southern Galactic caps discovered by Rowan-Robinson et al. (1986) and Needham and Rowan-Robinson (1988) is confirmed, and it is found to extend below their sensitivity limit to about 0.3 Jy in 60 micron flux density. The count anisotropy at f(60) greater than 0.3 can be interpreted reasonably as due to the Local Supercluster; however, no one structure accounting for the fainter anisotropy can be easily identified in either optical or far-IR two-dimensional sky distributions. The far-IR galaxy sky distributions are considerably smoother than distributions from the published optical galaxy catalogs. It is likely that structure of the large size discussed here have been discriminated against in earlier studies due to insufficient volume sampling. 105 refs

  9. Do the enigmatic ``Infrared-Faint Radio Sources'' include pulsars?

    Science.gov (United States)

    Hobbs, George; Middelberg, Enno; Norris, Ray; Keith, Michael; Mao, Minnie; Champion, David

    2009-04-01

    The Australia Telescope Large Area Survey (ATLAS) team have surveyed seven square degrees of sky at 1.4GHz. During processing some unexpected infrared-faint radio sources (IFRS sources) were discovered. The nature of these sources is not understood, but it is possible that some of these sources may be pulsars within our own galaxy. We propose to observe the IFRS sources with steep spectral indices using standard search techniques to determine whether or not they are pulsars. A pulsar detection would 1) remove a subset of the IFRS sources from the ATLAS sample so they would not need to be observed with large optical/IR telescopes to find their hosts and 2) be intrinsically interesting as the pulsar would be a millisecond pulsar and/or have an extreme spatial velocity.

  10. A molecular gas-rich GRB host galaxy at the peak of cosmic star formation

    Science.gov (United States)

    Arabsalmani, M.; Le Floc'h, E.; Dannerbauer, H.; Feruglio, C.; Daddi, E.; Ciesla, L.; Charmandaris, V.; Japelj, J.; Vergani, S. D.; Duc, P.-A.; Basa, S.; Bournaud, F.; Elbaz, D.

    2018-05-01

    We report the detection of the CO(3-2) emission line from the host galaxy of gamma-ray burst (GRB) 080207 at z = 2.086. This is the first detection of molecular gas in emission from a GRB host galaxy beyond redshift 1. We find this galaxy to be rich in molecular gas with a mass of 1.1 × 10^{11} M_{{\\odot }} assuming αCO = 4.36 M_{{\\odot }} (K km s^{-1} pc^2)^{-1}. The molecular gas mass fraction of the galaxy is ˜0.5, typical of star-forming galaxies (SFGs) with similar stellar masses and redshifts. With an SFR_{FIR} of 260 M_{{\\odot }} yr^{-1}, we measure a molecular gas depletion time-scale of 0.43 Gyr, near the peak of the depletion time-scale distribution of SFGs at similar redshifts. Our findings are therefore in contradiction with the proposed molecular gas deficiency in GRB host galaxies. We argue that the reported molecular gas deficiency for GRB hosts could be the artefact of improper comparisons or neglecting the effect of the typical low metallicities of GRB hosts on the CO-to-molecular-gas conversion factor. We also compare the kinematics of the CO(3-2) emission line to that of the H α emission line from the host galaxy. We find the H α emission to have contributions from two separate components, a narrow and a broad one. The narrow component matches the CO emission well in velocity space. The broad component, with a full width at half-maximum of ˜1100 km s^{-1}, is separated by +390 km s^{-1} in velocity space from the narrow component. We speculate this broad component to be associated with a powerful outflow in the host galaxy or in an interacting system.

  11. Detection of Faint BLR Components in the Starburst/Seyfert Galaxy NGC 6221 and Measure of the Central BH Mass

    Energy Technology Data Exchange (ETDEWEB)

    La Franca, Fabio [Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, Roma (Italy); Onori, Francesca [Netherlands Institute for Space Research, SRON, Utrecht (Netherlands); Ricci, Federica; Bianchi, Stefano [Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, Roma (Italy); Marconi, Alessandro [Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze, Sesto Fiorentino (Italy); Sani, Eleonora [European Southern Observatory, Santiago (Chile); Vignali, Cristian, E-mail: lafranca@fis.uniroma3.it [Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna (Italy)

    2016-04-18

    In the last decade, using single epoch virial based techniques in the optical band, it has been possible to measure the central black hole mass on large type 1 Active Galactic Nuclei (AGN) samples. However, these measurements use the width of the broad line region (BLR) as a proxy of the virial velocities and are therefore difficult to be carried out on those obscured (type 2) or low luminosity AGN where the nuclear component does not dominate in the optical. Here we present the optical and near infrared spectrum of the starburst/Seyfert galaxy NGC 6221, observed with X-shooter/VLT. Previous observations of NGC 6221 in the X-ray band shows an absorbed (N{sub H}=8.5±0.4×10{sup 21}cm{sup -2}) spectrum typical of a type 2 AGN with luminosity log(L{sub 14−195}/ergs{sup −1}) = 42.05, while in the optical band its spectrum is typical of a reddened (A{sub V} = 3) starburst. Our deep X-shooter/VLT observations have allowed us to detect faint broad emission in the Hα, HeI, and Paβ lines (FWHM ~1400–2300 km s{sup −1}) confirming previous studies indicating that NGC 6221 is a reddened starbust galaxy which hosts an AGN. We use the measure of the broad components to provide a first estimate of its central black hole mass (M{sub BH}=10{sup 6.6±0.3}M{sub ⊙}, λ{sub Edd} = 0.01−0.03), obtained using recently calibrated virial relations suitable for moderately obscured (N{sub H} < 10{sup 24} cm{sup −2}) AGN.

  12. Foreground effect on the J-factor estimation of ultra-faint dwarf spheroidal galaxies

    Science.gov (United States)

    Ichikawa, Koji; Horigome, Shun-ichi; Ishigaki, Miho N.; Matsumoto, Shigeki; Ibe, Masahiro; Sugai, Hajime; Hayashi, Kohei

    2018-05-01

    Dwarf spheroidal galaxies (dSphs) are promising targets for the gamma-ray dark matter (DM) search. In particular, DM annihilation signal is expected to be strong in some of the recently discovered nearby ultra-faint dSphs, which potentially give stringent constraints on the O(1) TeV WIMP DM. However, various non-negligible systematic uncertainties complicate the estimation of the astrophysical factors relevant for the DM search in these objects. Among them, the effects of foreground stars particularly attract attention because the contamination is unavoidable even for the future kinematical survey. In this article, we assess the effects of the foreground contamination on the astrophysical J-factor estimation by generating mock samples of stars in the four ultra-faint dSphs and using a model of future spectrographs. We investigate various data cuts to optimize the quality of the data and apply a likelihood analysis which takes member and foreground stellar distributions into account. We show that the foreground star contaminations in the signal region (the region of interest) and their statistical uncertainty can be estimated by interpolating the foreground star distribution in the control region where the foreground stars dominate the member stars. Such regions can be secured at future spectroscopic observations utilizing a multiple object spectrograph with a large field of view; e.g. the Prime Focus Spectrograph mounted on Subaru Telescope. The above estimation has several advantages: The data-driven estimation of the contamination makes the analysis of the astrophysical factor stable against the complicated foreground distribution. Besides, foreground contamination effect is considered in the likelihood analysis.

  13. Do Nuclear Star Clusters and Supermassive Black Holes Follow the Same Host-Galaxy Correlations?

    Directory of Open Access Journals (Sweden)

    Peter Erwin

    2012-01-01

    Full Text Available Studies have suggested that there is a strong correlation between the masses of nuclear star clusters (NSCs and their host galaxies, a correlation which is said to be an extension of the well-known correlations between supermassive black holes (SMBHs and their host galaxies. But careful analysis of disk galaxies—including 2D bulge/disk/bar decompositions—shows that while SMBHs correlate with the stellar mass of the bulge component of galaxies, the masses of NSCs correlate much better with the total galaxy stellar mass. In addition, the mass ratio MNSC/M⋆, tot for NSCs in spirals (at least those with Hubble types Sc and later is typically an order of magnitude smaller than the mass ratio MBH/M⋆, bul of SMBHs. The absence of a universal “central massive object” correlation argues against common formation and growth mechanisms for both SMBHs and NSCs. We also discuss evidence for a break in the NSC-host galaxy correlation, galaxies with Hubble types earlier than Sbc appear to host systematically more massive NSCs than do types Sc and later.

  14. A MATURE DUSTY STAR-FORMING GALAXY HOSTING GRB 080607 AT z = 3.036

    International Nuclear Information System (INIS)

    Chen, Hsiao-Wen; Perley, Daniel A.; Cenko, S. Bradley; Bloom, Joshua S.; Wilson, Christine D.; Levan, Andrew J.; Prochaska, Jason X.; Tanvir, Nial R.; Dessauges-Zavadsky, Miroslava; Pettini, Max

    2010-01-01

    We report the discovery of the host galaxy of Swift dark burst GRB 080607 at z GRB = 3.036. GRB 080607 is a unique case of a highly extinguished (A V ∼ 3 mag) afterglow that was yet sufficiently bright for high-quality absorption-line spectroscopy. The host galaxy is clearly resolved in deep Hubble Space Telescope (HST) WF3/IR F160W images and well detected in the Spitzer IRAC 3.5 μm and 4.5 μm channels, while displaying little/no fluxes in deep optical images from Keck and Magellan. The extremely red optical-infrared colors are consistent with the large extinction seen in the afterglow light, suggesting that the large amount of dust and gas surface mass density seen along the afterglow sight line is not merely local but likely reflects the global dust content across the entire host galaxy. Adopting the dust properties and metallicity of the host interstellar medium derived from studies of early-time afterglow light and absorption-line spectroscopy, we perform a stellar population synthesis analysis of the observed spectral energy distribution to constrain the intrinsic luminosity and stellar population of this dark burst host. The host galaxy is best described by an exponentially declining star formation rate of e-folding time τ = 2 Gyr and an age of ∼2 Gyr. We also derive an extinction-corrected star formation rate of SFR ∼ 125 h -2 M sun yr -1 and a total stellar mass of M * ∼ 4 x 10 11 h -2 M sun . Our study provides an example of massive, dusty star-forming galaxies contributing to the γ-ray burst (GRB) host galaxy population, supporting the notion that long-duration GRBs trace the bulk of cosmic star formation.

  15. Discovery of 21 New Changing-look AGNs: Study on Evolution of AGNs and AGN Host Galaxies

    Science.gov (United States)

    Yang, Qian; Wu, Xuebing; Fan, Xiaohui; Jiang, Linhua; McGreer, Ian; Shangguan, Jinyi; Yao, Su; Wang, Bingquan; Joshi, Ravi; Green, Richard F.; Wang, Feige; Feng, Xiaotong; Fu, Yuming; Yang, Jinyi; Liu, Yuanqi

    2018-01-01

    The rare case of changing-look (CL) AGNs, with the appearance or disappearance of broad Balmer emission lines within a few years, challenges our understanding of the AGN unified model. We present a sample of 21 new CL AGNs at 0.08 Survey Explorer (WISE), were detected in 15 CL AGNs during the transition. The optical and mid-infrared variability is not consistent with the scenario of variable obscuration in 10 CL AGNs at higher than 3σ confidence level. We confirm a bluer-when-brighter trend in the optical. However, the mid-infrared colors W1‑W2 become redder when the objects become brighter in the W1 band, possibly due to a stronger hot dust contribution in the W2 band when the AGN activity becomes stronger. The physical mechanism of type transition is important for understanding the evolution of AGNs. The rare CL AGNs provide exceptional cases for the black hole and host stellar velocity dispersion relation studies at higher redshift. The faint state spectrum can be used to obtain the host stellar velocity dispersion without contamination from AGN component, and the bright state spectrum can be used to calculate the black hole mass with broad Balmer emission lines. The images at the non-AGN phase of CL AGNs are useful for studies of AGN host galaxies avoiding contamination from the luminous central engines.

  16. VARIABLE STARS IN THE ULTRA-FAINT DWARF SPHEROIDAL GALAXY URSA MAJOR I

    Energy Technology Data Exchange (ETDEWEB)

    Garofalo, Alessia; Moretti, Maria Ida [Dipartimento di Astronomia, Universita di Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Cusano, Felice; Clementini, Gisella [INAF-Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Ripepi, Vincenzo; Dall' Ora, Massimo; Coppola, Giuseppina; Musella, Ilaria; Marconi, Marcella, E-mail: alessia.garofalo@studio.unibo.it, E-mail: fcusano@na.astro.it, E-mail: gisella.clementini@oabo.inaf.it, E-mail: ripepi@na.astro.it, E-mail: dallora@na.astro.it, E-mail: imoretti@na.astro.it, E-mail: coppola@na.astro.it, E-mail: ilaria@na.astro.it, E-mail: marcella@na.astro.it [INAF-Osservatorio Astronomico di Capodimonte, Salita Moiariello 16, I-80131 Napoli (Italy)

    2013-04-10

    We have performed the first study of the variable star population of Ursa Major I (UMa I), an ultra-faint dwarf satellite recently discovered around the Milky Way (MW) by the Sloan Digital Sky Survey. Combining time series observations in the B and V bands from four different telescopes, we have identified seven RR Lyrae stars in UMa I, of which five are fundamental-mode (RRab) and two are first-overtone pulsators (RRc). Our V, B - V color-magnitude diagram of UMa I reaches V {approx} 23 mag (at a signal-to-noise ratio of {approx}6) and shows features typical of a single old stellar population. The mean pulsation period of the RRab stars (P{sub ab}) = 0.628, {sigma} = 0.071 days (or (P{sub ab}) = 0.599, {sigma} = 0.032 days, if V4, the longest period and brightest variable, is discarded) and the position on the period-amplitude diagram suggest an Oosterhoff-intermediate classification for the galaxy. The RR Lyrae stars trace the galaxy horizontal branch (HB) at an average apparent magnitude of (V(RR)) = 20.43 {+-} 0.02 mag (average on six stars and discarding V4), giving in turn a distance modulus for UMa I of (m - M){sub 0} = 19.94 {+-} 0.13 mag, distance d = 97.3{sup +6.0}{sub -5.7} kpc, in the scale where the distance modulus of the Large Magellanic Cloud is 18.5 {+-} 0.1 mag. Isodensity contours of UMa I red giants and HB stars (including the RR Lyrae stars identified in this study) show that the galaxy has an S-shaped structure, which is likely caused by the tidal interaction with the MW. Photometric metallicities were derived for six of the UMa I RR Lyrae stars from the parameters of the Fourier decomposition of the V-band light curves, leading to an average metal abundance of [Fe/H] = -2.29 dex ({sigma} = 0.06 dex, average on six stars) on the Carretta et al. metallicity scale.

  17. HUBBLE RESIDUALS OF NEARBY TYPE Ia SUPERNOVAE ARE CORRELATED WITH HOST GALAXY MASSES

    International Nuclear Information System (INIS)

    Kelly, Patrick L.; Burke, David L.; Hicken, Malcolm; Mandel, Kaisey S.; Kirshner, Robert P.

    2010-01-01

    From Sloan Digital Sky Survey u'g'r'i'z' imaging, we estimate the stellar masses of the host galaxies of 70 low-redshift Type Ia supernovae (SNe Ia, 0.015 10.8 M sun in a cosmology fit yields 1 + w = 0.22 +0.152 -0.108 , while a combination where the 30 nearby SNe instead have host masses greater than 10 10.8 M sun yields 1 + w = -0.03 +0.217 -0.143 . Progenitor metallicity, stellar population age, and dust extinction correlate with galaxy mass and may be responsible for these systematic effects. Host galaxy measurements will yield improved distances to SNe Ia.

  18. Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQs). III. Star formation properties of the host galaxies at z ≳ 6 studied with ALMA

    Science.gov (United States)

    Izumi, Takuma; Onoue, Masafusa; Shirakata, Hikari; Nagao, Tohru; Kohno, Kotaro; Matsuoka, Yoshiki; Imanishi, Masatoshi; Strauss, Michael A.; Kashikawa, Nobunari; Schulze, Andreas; Silverman, John D.; Fujimoto, Seiji; Harikane, Yuichi; Toba, Yoshiki; Umehata, Hideki; Nakanishi, Kouichiro; Greene, Jenny E.; Tamura, Yoichi; Taniguchi, Akio; Yamaguchi, Yuki; Goto, Tomotsugu; Hashimoto, Yasuhiro; Ikarashi, Soh; Iono, Daisuke; Iwasawa, Kazushi; Lee, Chien-Hsiu; Makiya, Ryu; Minezaki, Takeo; Tang, Ji-Jia

    2018-04-01

    We present our ALMA Cycle 4 measurements of the [C II] emission line and the underlying far-infrared (FIR) continuum emission from four optically low-luminosity (M1450 > -25) quasars at z ≳ 6 discovered by the Subaru Hyper Suprime Cam (HSC) survey. The [C II] line and FIR continuum luminosities lie in the ranges L_[C II] = (3.8-10.2)× 108 L_{⊙} and LFIR = (1.2-2.0) × 1011 L_{⊙}, which are at least one order of magnitude smaller than those of optically-luminous quasars at z ≳ 6. We estimate the star formation rates (SFRs) of our targets as ≃ 23-40 M_{⊙} yr-1. Their line and continuum-emitting regions are marginally resolved, and found to be comparable in size to those of optically-luminous quasars, indicating that their SFR or likely gas mass surface densities (key controlling parameter of mass accretion) are accordingly different. The L_[C II]/L_FIR ratios of the hosts, ≃ (2.2-8.7) × 10-3, are fully consistent with local star-forming galaxies. Using the [C II] dynamics, we derived their dynamical masses within a radius of 1.5-2.5 kpc as ≃ (1.4-8.2) × 1010 M_{⊙}. By interpreting these masses as stellar ones, we suggest that these faint quasar hosts are on or even below the star-forming main sequence at z ˜ 6, i.e., they appear to be transforming into quiescent galaxies. This is in contrast to the optically-luminous quasars at those redshifts, which show starburst-like properties. Finally, we find that the ratios of black hole mass to host galaxy dynamical mass of most of the low-luminosity quasars, including the HSC ones, are consistent with the local value. The mass ratios of the HSC quasars can be reproduced by a semi-analytical model that assumes merger-induced black hole host galaxy evolution.

  19. Spatially-resolved dust properties of the GRB 980425 host galaxy

    DEFF Research Database (Denmark)

    Michałowski, Michał J.; Hunt, L. K.; Palazzi, E.

    2014-01-01

    ), located 800 pc away from the GRB position. The host is characterised by low dust content and high fraction of UV-visible star-formation, similar to other dwarf galaxies. Such galaxies are abundant in the local universe, so it is not surprising to find a GRB in one of them, assuming the correspondence...

  20. Spectroscopic Properties of Star-Forming Host Galaxies and Type Ia Supernova Hubble Residuals in a Nearly Unbiased Sample

    Energy Technology Data Exchange (ETDEWEB)

    D' Andrea, Chris B. [Univ. of Pennsylvania, Philadelphia, PA (United States); et al.

    2011-12-20

    We examine the correlation between supernova host galaxy properties and their residuals on the Hubble diagram. We use supernovae discovered during the Sloan Digital Sky Survey II - Supernova Survey, and focus on objects at a redshift of z < 0.15, where the selection effects of the survey are known to yield a complete Type Ia supernova sample. To minimize the bias in our analysis with respect to measured host-galaxy properties, spectra were obtained for nearly all hosts, spanning a range in magnitude of -23 < M_r < -17. In contrast to previous works that use photometric estimates of host mass as a proxy for global metallicity, we analyze host-galaxy spectra to obtain gas-phase metallicities and star-formation rates from host galaxies with active star formation. From a final sample of ~ 40 emission-line galaxies, we find that light-curve corrected Type Ia supernovae are ~ 0.1 magnitudes brighter in high-metallicity hosts than in low-metallicity hosts. We also find a significant (> 3{\\sigma}) correlation between the Hubble residuals of Type Ia supernovae and the specific star-formation rate of the host galaxy. We comment on the importance of supernova/host-galaxy correlations as a source of systematic bias in future deep supernova surveys.

  1. BOO-1137-AN EXTREMELY METAL-POOR STAR IN THE ULTRA-FAINT DWARF SPHEROIDAL GALAXY BOOeTES I

    International Nuclear Information System (INIS)

    Norris, John E.; Yong, David; Gilmore, Gerard; Wyse, Rosemary F. G.

    2010-01-01

    We present high-resolution (R ∼ 40,000), high-signal-to-noise ratio (20-90) spectra of an extremely metal-poor giant star Boo-1137 in the 'ultra-faint' dwarf spheroidal galaxy (dSph) Booetes I, absolute magnitude M V ∼ -6.3. We derive an iron abundance of [Fe/H] = -3.7, making this the most metal-poor star as yet identified in an ultra-faint dSph. Our derived effective temperature and gravity are consistent with its identification as a red giant in Booetes I. Abundances for a further 15 elements have also been determined. Comparison of the relative abundances, [X/Fe], with those of the extremely metal-poor red giants of the Galactic halo shows that Boo-1137 is 'normal' with respect to C and N, the odd-Z elements Na and Al, the iron-peak elements, and the neutron-capture elements Sr and Ba, in comparison with the bulk of the Milky Way halo population having [Fe/H] ∼<-3.0. The α-elements Mg, Si, Ca, and Ti are all higher by Δ[X/Fe] ∼ 0.2 than the average halo values. Monte Carlo analysis indicates that Δ[α/Fe] values this large are expected with a probability ∼0.02. The elemental abundance pattern in Boo-1137 suggests inhomogeneous chemical evolution, consistent with the wide internal spread in iron abundances we previously reported. The similarity of most of the Boo-1137 relative abundances with respect to halo values, and the fact that the α-elements are all offset by a similar small amount from the halo averages, points to the same underlying galaxy-scale stellar initial mass function, but that Boo-1137 likely originated in a star-forming region where the abundances reflect either poor mixing of supernova (SN) ejecta, or poor sampling of the SN progenitor mass range, or both.

  2. Resolving the host galaxy of a distant blazar with LBT/LUCI 1 + ARGOS

    Science.gov (United States)

    Farina, E. P.; Georgiev, I. Y.; Decarli, R.; Terzić, T.; Busoni, L.; Gässler, W.; Mazzoni, T.; Borelli, J.; Rosensteiner, M.; Ziegleder, J.; Bonaglia, M.; Rabien, S.; Buschkamp, P.; Orban de Xivry, G.; Rahmer, G.; Kulas, M.; Peter, D.

    2018-05-01

    BL Lac objects emitting in the very high energy (VHE) regime are unique tools to peer into the properties of the extragalactic background light (EBL). However, due to the typical absence of features in their spectra, the determination of their redshifts has proven challenging. In this work, we exploit the superb spatial resolution delivered by the new Advanced Rayleigh guided Ground layer adaptive Optics System (ARGOS) at the Large Binocular Telescope to detect the host galaxy of HESS J1943+213, a VHE emitting BL Lac shining through the Galaxy. Deep H-band imaging collected during the ARGOS commissioning allowed us to separate the contribution of the nuclear emission and to unveil the properties of the host galaxy with unprecedented detail. The host galaxy is well fitted by a Sérsic profile with index of n ˜ 2 and total magnitude of HHost ˜ 16.15 mag. Under the assumption that BL Lac host galaxies are standard candles, we infer a redshift of z ˜ 0.21. In the framework of the current model for the EBL, this value is in agreement with the observed dimming of the VHE spectrum due to the annihilation of energetic photons on the EBL

  3. The Hunt for Missing Dwarf Galaxies

    Science.gov (United States)

    Kohler, Susanna

    2015-11-01

    galaxies that resemble the UDGs found in Virgo and Coma clusters, verifying that such objects exist in environments beyond only massive clusters.And at the faint end of the sample, the authors find additional extremely low-surface-brightness dwarfs that are several orders of magnitude fainter even than classical UDGs.The authors describe the properties of these galaxies and compare them to systems like classical UDGs and dwarf spheroidal galaxies in our own Local Cluster. The next step is to determine which of the differences between the sample of NGFS dwarfs and previously known systems are explained by the environmental factors of their host cluster, and which are simply due to sample biases.With much more data from the NGFS still to come, it seems likely that we will soon be able to examine an even larger sample of no-longer-missing dwarfs!CitationRoberto P. Muoz et al 2015 ApJ 813 L15. doi:10.1088/2041-8205/813/1/L15

  4. A statistical study of H i gas in nearby narrow-line AGN-hosting galaxies

    International Nuclear Information System (INIS)

    Zhu, Yi-Nan; Wu, Hong

    2015-01-01

    As a quenching mechanism, active galactic nucleus (AGN) feedback could suppress on going star formation in host galaxies. On the basis of a sample of galaxies selected from the Arecibo Legacy Fast ALFA (ALFALFA) H i survey, the dependence of the H i mass (M H i ), stellar mass (M * ), and H i-to-stellar mass ratio (M H i /M * ) on various tracers of AGN activity are presented and analyzed in this paper. Almost all the AGN hostings in this sample are gas-rich galaxies, and there is not any evidence to indicate that the AGN activity could increase or decrease either M H i or M H i /M * . The position of the cold neutral gas cannot be fixed accurately based only on available H i data, due to the large beam size of ALFALFA survey. In addition, even though AGN hostings are more easily detected by an H i survey compared with absorption line galaxies, these two types of galaxies show similar star formation history. If an AGN hosting would ultimately evolve into an old red galaxy with low cold gas, then when and how the gas has been exhausted must be solved by future hypotheses and observations.

  5. A statistical study of H i gas in nearby narrow-line AGN-hosting galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yi-Nan; Wu, Hong, E-mail: zyn@bao.ac.cn, E-mail: hwu@bao.ac.cn [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2015-01-01

    As a quenching mechanism, active galactic nucleus (AGN) feedback could suppress on going star formation in host galaxies. On the basis of a sample of galaxies selected from the Arecibo Legacy Fast ALFA (ALFALFA) H i survey, the dependence of the H i mass (M{sub H} {sub i}), stellar mass (M{sub *}), and H i-to-stellar mass ratio (M{sub H} {sub i}/M{sub *}) on various tracers of AGN activity are presented and analyzed in this paper. Almost all the AGN hostings in this sample are gas-rich galaxies, and there is not any evidence to indicate that the AGN activity could increase or decrease either M{sub H} {sub i} or M{sub H} {sub i}/M{sub *}. The position of the cold neutral gas cannot be fixed accurately based only on available H i data, due to the large beam size of ALFALFA survey. In addition, even though AGN hostings are more easily detected by an H i survey compared with absorption line galaxies, these two types of galaxies show similar star formation history. If an AGN hosting would ultimately evolve into an old red galaxy with low cold gas, then when and how the gas has been exhausted must be solved by future hypotheses and observations.

  6. A Keck/DEIMOS spectroscopic survey of faint Galactic satellites: searching for the least massive dwarf galaxies

    Science.gov (United States)

    Martin, N. F.; Ibata, R. A.; Chapman, S. C.; Irwin, M.; Lewis, G. F.

    2007-09-01

    We present the results of a spectroscopic survey of the recently discovered faint Milky Way satellites Boötes, Ursa Major I, Ursa Major II and Willman 1 (Wil1). Using the DEep Imaging Multi-Object Spectrograph mounted on the Keck II telescope, we have obtained samples that contain from ~15 to ~85 probable members of these satellites for which we derive radial velocities precise to a few kms-1 down to i ~ 21-22. About half of these stars are observed with a high enough signal-to-noise ratio to estimate their metallicity to within +/-0.2 dex. The characteristics of all the observed stars are made available, along with those of the Canes Venatici I dwarf galaxy that have been analysed in a companion paper. From this data set, we show that Ursa Major II is the only object that does not show a clear radial velocity peak. However, the measured systemic radial velocity (vr = 115 +/- 5kms-1) is in good agreement with simulations in which this object is the progenitor of the recently discovered Orphan Stream. The three other satellites show velocity dispersions that make them highly dark matter dominated systems (under the usual assumptions of symmetry and virial equilibrium). In particular, we show that despite its small size and faintness, the Wil1 object is not a globular cluster given its metallicity scatter over -2.0 systemic velocity of -12.3 +/- 2.3kms-1 which implies a mass-to-light ratio of ~700 and a total mass of ~5 × 105Msolar for this satellite, making it the least massive satellite galaxy known to date. Such a low mass could mean that the 107Msolar limit that had until now never been crossed for Milky Way and Andromeda satellite galaxies may only be an observational limit and that fainter, less massive systems exist within the Local Group. However, more modelling and an extended search for potential extratidal stars are required to rule out the possibility that these systems have not been significantly heated by tidal interaction. The data presented herein

  7. GOING THE DISTANCE: MAPPING HOST GALAXIES OF LIGO AND VIRGO SOURCES IN THREE DIMENSIONS USING LOCAL COSMOGRAPHY AND TARGETED FOLLOW-UP

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Leo P.; Cenko, S. Bradley; Gehrels, Neil; Cannizzo, John [Astroparticle Physics Laboratory, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Chen, Hsin-Yu; Holz, Daniel E.; Farr, Ben [Department of Physics, Enrico Fermi Institute, and Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637 (United States); Farr, Will M.; Veitch, John; Berry, Christopher P. L.; Mandel, Ilya [School of Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT (United Kingdom); Price, Larry R.; Raymond, Vivien [LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States); Kasliwal, Mansi M. [Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Nissanke, Samaya [Institute of Mathematics, Astrophysics and Particle Physics, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands); Coughlin, Michael [Department of Physics and Astronomy, Harvard University, Cambridge, MA 02138 (United States); Urban, Alex L. [Leonard E. Parker Center for Gravitation, Cosmology, and Astrophysics, University of Wisconsin–Milwaukee, Milwaukee, WI 53201 (United States); Vitale, Salvatore; Mohapatra, Satya [LIGO Laboratory, Massachusetts Institute of Technology, 185 Albany Street, Cambridge, MA 02139 (United States); Graff, Philip [Department of Physics, University of Maryland, College Park, MD 20742 (United States)

    2016-09-20

    The Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) discovered gravitational waves (GWs) from a binary black hole merger in 2015 September and may soon observe signals from neutron star mergers. There is considerable interest in searching for their faint and rapidly fading electromagnetic (EM) counterparts, though GW position uncertainties are as coarse as hundreds of square degrees. Because LIGO’s sensitivity to binary neutron stars is limited to the local universe, the area on the sky that must be searched could be reduced by weighting positions by mass, luminosity, or star formation in nearby galaxies. Since GW observations provide information about luminosity distance, combining the reconstructed volume with positions and redshifts of galaxies could reduce the area even more dramatically. A key missing ingredient has been a rapid GW parameter estimation algorithm that reconstructs the full distribution of sky location and distance. We demonstrate the first such algorithm, which takes under a minute, fast enough to enable immediate EM follow-up. By combining the three-dimensional posterior with a galaxy catalog, we can reduce the number of galaxies that could conceivably host the event by a factor of 1.4, the total exposure time for the Swift X-ray Telescope by a factor of 2, the total exposure time for a synoptic optical survey by a factor of 2, and the total exposure time for a narrow-field optical telescope by a factor of 3. This encourages us to suggest a new role for small field of view optical instruments in performing targeted searches of the most massive galaxies within the reconstructed volumes.

  8. GOING THE DISTANCE: MAPPING HOST GALAXIES OF LIGO AND VIRGO SOURCES IN THREE DIMENSIONS USING LOCAL COSMOGRAPHY AND TARGETED FOLLOW-UP

    International Nuclear Information System (INIS)

    Singer, Leo P.; Cenko, S. Bradley; Gehrels, Neil; Cannizzo, John; Chen, Hsin-Yu; Holz, Daniel E.; Farr, Ben; Farr, Will M.; Veitch, John; Berry, Christopher P. L.; Mandel, Ilya; Price, Larry R.; Raymond, Vivien; Kasliwal, Mansi M.; Nissanke, Samaya; Coughlin, Michael; Urban, Alex L.; Vitale, Salvatore; Mohapatra, Satya; Graff, Philip

    2016-01-01

    The Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) discovered gravitational waves (GWs) from a binary black hole merger in 2015 September and may soon observe signals from neutron star mergers. There is considerable interest in searching for their faint and rapidly fading electromagnetic (EM) counterparts, though GW position uncertainties are as coarse as hundreds of square degrees. Because LIGO’s sensitivity to binary neutron stars is limited to the local universe, the area on the sky that must be searched could be reduced by weighting positions by mass, luminosity, or star formation in nearby galaxies. Since GW observations provide information about luminosity distance, combining the reconstructed volume with positions and redshifts of galaxies could reduce the area even more dramatically. A key missing ingredient has been a rapid GW parameter estimation algorithm that reconstructs the full distribution of sky location and distance. We demonstrate the first such algorithm, which takes under a minute, fast enough to enable immediate EM follow-up. By combining the three-dimensional posterior with a galaxy catalog, we can reduce the number of galaxies that could conceivably host the event by a factor of 1.4, the total exposure time for the Swift X-ray Telescope by a factor of 2, the total exposure time for a synoptic optical survey by a factor of 2, and the total exposure time for a narrow-field optical telescope by a factor of 3. This encourages us to suggest a new role for small field of view optical instruments in performing targeted searches of the most massive galaxies within the reconstructed volumes.

  9. The Carnegie-Chicago Hubble Program: Discovery of the Most Distant Ultra-faint Dwarf Galaxy in the Local Universe

    Science.gov (United States)

    Lee, Myung Gyoon; Jang, In Sung; Beaton, Rachael; Seibert, Mark; Bono, Giuseppe; Madore, Barry

    2017-02-01

    Ultra-faint dwarf galaxies (UFDs) are the faintest known galaxies, and due to their incredibly low surface brightness, it is difficult to find them beyond the Local Group. We report a serendipitous discovery of a UFD, Fornax UFD1, in the outskirts of NGC 1316, a giant galaxy in the Fornax cluster. The new galaxy is located at a projected radius of 55 kpc in the south-east of NGC 1316. This UFD is found as a small group of resolved stars in the Hubble Space Telescope images of a halo field of NGC 1316, obtained as part of the Carnegie-Chicago Hubble Program. Resolved stars in this galaxy are consistent with being mostly metal-poor red giant branch (RGB) stars. Applying the tip of the RGB method to the mean magnitude of the two brightest RGB stars, we estimate the distance to this galaxy, 19.0 ± 1.3 Mpc. Fornax UFD1 is probably a member of the Fornax cluster. The color-magnitude diagram of these stars is matched by a 12 Gyr isochrone with low metallicity ([Fe/H] ≈ -2.4). Total magnitude and effective radius of Fornax UFD1 are MV ≈ -7.6 ± 0.2 mag and reff = 146 ± 9 pc, which are similar to those of Virgo UFD1 that was discovered recently in the intracluster field of Virgo by Jang & Lee. Fornax UFD1 is the most distant known UFD that is confirmed by resolved stars. This indicates that UFDs are ubiquitous and that more UFDs remain to be discovered in the Fornax cluster. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs #10505 and #13691.

  10. A direct localization of a fast radio burst and its host.

    Science.gov (United States)

    Chatterjee, S; Law, C J; Wharton, R S; Burke-Spolaor, S; Hessels, J W T; Bower, G C; Cordes, J M; Tendulkar, S P; Bassa, C G; Demorest, P; Butler, B J; Seymour, A; Scholz, P; Abruzzo, M W; Bogdanov, S; Kaspi, V M; Keimpema, A; Lazio, T J W; Marcote, B; McLaughlin, M A; Paragi, Z; Ransom, S M; Rupen, M; Spitler, L G; van Langevelde, H J

    2017-01-04

    Fast radio bursts are astronomical radio flashes of unknown physical nature with durations of milliseconds. Their dispersive arrival times suggest an extragalactic origin and imply radio luminosities that are orders of magnitude larger than those of all known short-duration radio transients. So far all fast radio bursts have been detected with large single-dish telescopes with arcminute localizations, and attempts to identify their counterparts (source or host galaxy) have relied on the contemporaneous variability of field sources or the presence of peculiar field stars or galaxies. These attempts have not resulted in an unambiguous association with a host or multi-wavelength counterpart. Here we report the subarcsecond localization of the fast radio burst FRB 121102, the only known repeating burst source, using high-time-resolution radio interferometric observations that directly image the bursts. Our precise localization reveals that FRB 121102 originates within 100 milliarcseconds of a faint 180-microJansky persistent radio source with a continuum spectrum that is consistent with non-thermal emission, and a faint (twenty-fifth magnitude) optical counterpart. The flux density of the persistent radio source varies by around ten per cent on day timescales, and very long baseline radio interferometry yields an angular size of less than 1.7 milliarcseconds. Our observations are inconsistent with the fast radio burst having a Galactic origin or its source being located within a prominent star-forming galaxy. Instead, the source appears to be co-located with a low-luminosity active galactic nucleus or a previously unknown type of extragalactic source. Localization and identification of a host or counterpart has been essential to understanding the origins and physics of other kinds of transient events, including gamma-ray bursts and tidal disruption events. However, if other fast radio bursts have similarly faint radio and optical counterparts, our findings imply that

  11. The Spectroscopic Properties of Lyα-Emitters at z ˜2.7: Escaping Gas and Photons from Faint Galaxies

    Science.gov (United States)

    Trainor, Ryan F.; Steidel, Charles C.; Strom, Allison L.; Rudie, Gwen C.

    2015-08-01

    We present a spectroscopic survey of 318 faint ({R}˜ 27, L˜ 0.1{L}*), Lyα-emission-selected galaxies (LAEs) in regions centered on the positions of hyperluminous QSOs (HLQSOs) at 2.5\\lt z\\lt 3. A sample of 32 LAEs with rest-frame optical emission line spectra from Keck/Multi-Object Spectrometer For InfraRed Exploration (MOSFIRE) are used to interpret the LAE spectra in the context of their systemic redshifts. The fields are part of the Keck Baryonic Structure Survey, which includes substantial ancillary multi-wavelength imaging from both the ground and space. From a quantitative analysis of the diverse Lyα spectral morphologies, including line widths, asymmetries, and multi-peaked profiles, we find that peak widths and separations are typically smaller than among samples of more luminous continuum-selected galaxies (Lyman-break galaxies and their analogs; LBGs) at similar redshifts. We find tentative evidence for an association between Lyα spectral morphology and external illumination by the nearby HLQSO. Using the MOSFIRE subsample, we find that the peak of the resolved (R ≈ 1300) Lyα line is shifted by +200 km s-1 with respect to systemic across a diverse set of galaxies including both LAEs and LBGs. We also find a small number of objects with significantly blueshifted Lyα emission, a potential indicator of accreting gas. The Lyα-to-Hα line ratios measured for the MOSFIRE subset suggest that the LAEs in this sample have Lyα escape fractions {f}{esc,{Ly}α } ≈ 30%, significantly higher than typical LBG samples. Using redshifts calibrated by our MOSFIRE sample, we construct composite LAE spectra, finding the first evidence for metal-enriched outflows in such intrinsically faint high-redshift galaxies. These outflows have smaller continuum covering fractions ({f}{{c}}≈ 0.3) and velocities ({v}{ave} ≈ 100-200 km s-1, {v}{max} ≈ 500 km s-1) than those associated with typical LBGs, suggesting that the gas covering fraction is a likely driver of

  12. LUMINOSITY FUNCTIONS OF TYPE Ia SUPERNOVAE AND THEIR HOST GALAXIES FROM THE SLOAN DIGITAL SKY SURVEY

    International Nuclear Information System (INIS)

    Yasuda, Naoki; Fukugita, Masataka

    2010-01-01

    The sample of 137 low-redshift type Ia supernovae (SNe Ia) with 0.05 ≤ z ≤ 0.3 obtained from the Sloan Digital Sky Survey (SDSS)-II supernova survey for the southern equatorial stripe of 300 deg 2 is used to derive the luminosity functions (LFs) of SNe Ia and of their host galaxies in the g, r, i passbands. We show that the LF of SNe Ia host galaxies matches well with that of galaxies in the general field, suggesting that the occurrence of SNe Ia does not favor a particular type of galaxy but is predominantly proportional to the luminosity of galaxies. The evidence is weak that the SNe rate varies with the color of host galaxies. The only evidence that points to possible correlation between the SN rate and star formation activity is that the SN rate in late-type galaxies is higher than that in early-type galaxies by 31% ± 35%. In our low-redshift sample, the component of type Ia SN rate that is proportional to star formation activity is not evident in the integrated SN rate, while our observation is compatible with the current two-component models. The sample contains eight SNe Ia whose host galaxies were not identified, but it is shown that their occurrence is consistent with them occurring in low-luminous galaxies beyond the survey. The LF of SNe Ia is approximately Gaussian with the full width at half-maximum being a factor of σ = 0.24 mag or 1.67 in luminosity. The Gaussian distribution becomes tighter if the ratio of extinction to reddening, R V , is lower than the characteristic value for the Milky Way and if luminosity is corrected for the light-curve shape. The average color excess is ∼0.07 mag, which is significantly smaller than reddening expected for field galaxies. This color excess does not vary with the distance of the SNe from the center of the host galaxy to 15 kpc. This suggests that the major part of the color excess appears to be either intrinsic or reddening that arises in the immediate environment of SNe, rather than interstellar

  13. HOST GALAXY PROPERTIES OF THE SWIFT BAT ULTRA HARD X-RAY SELECTED ACTIVE GALACTIC NUCLEUS

    International Nuclear Information System (INIS)

    Koss, Michael; Mushotzky, Richard; Veilleux, Sylvain; Winter, Lisa M.; Baumgartner, Wayne; Tueller, Jack; Gehrels, Neil; Valencic, Lynne

    2011-01-01

    We have assembled the largest sample of ultra hard X-ray selected (14-195 keV) active galactic nucleus (AGN) with host galaxy optical data to date, with 185 nearby (z * >10.5) have a 5-10 times higher rate of spiral morphologies than in SDSS AGNs or inactive galaxies. We also see enhanced far-infrared emission in BAT AGN suggestive of higher levels of star formation compared to the comparison samples. BAT AGNs are preferentially found in the most massive host galaxies with high concentration indexes indicative of large bulge-to-disk ratios and large supermassive black holes. The narrow-line (NL) BAT AGNs have similar intrinsic luminosities as the SDSS NL Seyferts based on measurements of [O III] λ5007. There is also a correlation between the stellar mass and X-ray emission. The BAT AGNs in mergers have bluer colors and greater ultra hard X-ray emission compared to the BAT sample as a whole. In agreement with the unified model of AGNs, and the relatively unbiased nature of the BAT sources, the host galaxy colors and morphologies are independent of measures of obscuration such as X-ray column density or Seyfert type. The high fraction of massive spiral galaxies and galaxy mergers in BAT AGNs suggest that host galaxy morphology is related to the activation and fueling of local AGN.

  14. The metallicity and dust content of a redshift 5 gamma-ray burst host galaxy

    Energy Technology Data Exchange (ETDEWEB)

    Sparre, M.; Krühler, T.; Fynbo, J. P. U.; Watson, D. J.; De Ugarte Postigo, A.; Hjorth, J.; Malesani, D. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, 2100 Copenhagen (Denmark); Hartoog, O. E.; Kaper, L. [Anton Pannekoek Institute for Astronomy, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam (Netherlands); Wiersema, K. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH (United Kingdom); D' Elia, V. [INAF/Rome Astronomical Observatory, via Frascati 33, I-00040 Monteporzio Catone (Roma) (Italy); Zafar, T. [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Afonso, P. M. J. [Physics and Astronomy Department, American River College, 4700 College Oak Drive, Sacramento, CA 95841 (United States); Covino, S. [INAF, Osservatorio Astronomico di Brera, via E. Bianchi 46, I-23807 Merate (Italy); Flores, H. [Laboratoire GEPI, Observatoire de Paris, CNRS-UMR8111, Universite Paris Diderot 5 place Jules Janssen, F-92195 Meudon (France); Goldoni, P. [APC, Astroparticule et Cosmologie, Universite Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris Cité, 10, Rue Alice Domon et Léonie Duquet, F-75205 Paris, Cedex 13 (France); Greiner, J. [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstraße, D-85748 Garching (Germany); Jakobsson, P. [Centre for Astrophysics and Cosmology, Science Institute, University of Iceland, Dunhagi 5, IS-107 Reykjavik (Iceland); Klose, S. [Thüringer Landessternwarte Tautenburg, Sternwarte 5, D-07778 Tautenburg (Germany); Levan, A. J., E-mail: sparre@dark-cosmology.dk [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); and others

    2014-04-20

    Observations of the afterglows of long gamma-ray bursts (GRBs) allow the study of star-forming galaxies across most of cosmic history. Here we present observations of GRB 111008A, from which we can measure metallicity, chemical abundance patterns, dust-to-metals ratio (DTM), and extinction of the GRB host galaxy at z = 5.0. The host absorption system is a damped Lyα absorber with a very large neutral hydrogen column density of log N(H I)/cm{sup −2}=22.30±0.06 and a metallicity of [S/H] = –1.70 ± 0.10. It is the highest-redshift GRB with such a precise metallicity measurement. The presence of fine-structure lines confirms the z = 5.0 system as the GRB host galaxy and makes this the highest redshift where Fe II fine-structure lines have been detected. The afterglow is mildly reddened with A{sub V} = 0.11 ± 0.04 mag, and the host galaxy has a DTM that is consistent with being equal to or lower than typical values in the Local Group.

  15. An intermediate-mass black hole in the darf galaxy Pox 52

    Science.gov (United States)

    Barth, Aaron

    2005-01-01

    Do dwarf elliptical and dwarf spiral galaxies contain central black holes with masses below 106 solar masses? Beyond the Local Group dynamical searches for black holes in this mass range are very difficult but the detection of accretion-powered nuclear activity could be used to infer the presence of a black hole. The nearby dwarf spiral galaxy NGC 4395 hosts a faint Seyfert 1 nucleus with a likely black hole mass in the range 104-105 solar masses and for more than a decade it has been the only known example of a Seyfert 1 nucleus in a dwarf galaxy. I will present new Keck spectra of the dwarf galaxy POX 52 which demonstrate that it has a Seyfert 1 spectrum nearly identical to that of NGC 4395. Its velocity dispersion is 37 km/s suggesting a possible black hole mass of order 105 solar masses. I will discuss the prospects for systematic searches for nuclear activity in dwarf galaxies and the implications for black hole demographics.

  16. An Intermediate-Mass Black Hole in the Dwarf Galaxy Pox 52

    Science.gov (United States)

    Barth, Aaron

    Do dwarf elliptical and dwarf spiral galaxies contain central black holes with masses below 106 solar masses? Beyond the Local Group dynamical searches for black holes in this mass range are very difficult but the detection of accretion-powered nuclear activity could be used to infer the presence of a black hole. The nearby dwarf spiral galaxy NGC 4395 hosts a faint Seyfert 1 nucleus with a likely black hole mass in the range 104-105 solar masses and for more than a decade it has been the only known example of a Seyfert 1 nucleus in a dwarf galaxy. I will present new Keck spectra of the dwarf galaxy POX 52 which demonstrate that it has a Seyfert 1 spectrum nearly identical to that of NGC 4395. Its velocity dispersion is 37 km/s suggesting a possible black hole mass of order 105 solar masses. I will discuss the prospects for systematic searches for nuclear activity in dwarf galaxies and the implications for black hole demographics.

  17. The Swift Gamma-Ray Burst Host Galaxy Legacy Survey. I. Sample Selection and Redshift Distribution

    Science.gov (United States)

    Perley, D. A.; Kruhler, T.; Schulze, S.; Postigo, A. De Ugarte; Hjorth, J.; Berger, E.; Cenko, S. B.; Chary, R.; Cucchiara, A.; Ellis, R.; hide

    2016-01-01

    We introduce the Swift Gamma-Ray Burst Host Galaxy Legacy Survey (SHOALS), a multi-observatory high redshift galaxy survey targeting the largest unbiased sample of long-duration gamma-ray burst (GRB) hosts yet assembled (119 in total). We describe the motivations of the survey and the development of our selection criteria, including an assessment of the impact of various observability metrics on the success rate of afterglow-based redshift measurement. We briefly outline our host galaxy observational program, consisting of deep Spitzer/IRAC imaging of every field supplemented by similarly deep, multicolor optical/near-IR photometry, plus spectroscopy of events without preexisting redshifts. Our optimized selection cuts combined with host galaxy follow-up have so far enabled redshift measurements for 110 targets (92%) and placed upper limits on all but one of the remainder. About 20% of GRBs in the sample are heavily dust obscured, and at most 2% originate from z > 5.5. Using this sample, we estimate the redshift-dependent GRB rate density, showing it to peak at z approx. 2.5 and fall by at least an order of magnitude toward low (z = 0) redshift, while declining more gradually toward high (z approx. 7) redshift. This behavior is consistent with a progenitor whose formation efficiency varies modestly over cosmic history. Our survey will permit the most detailed examination to date of the connection between the GRB host population and general star-forming galaxies, directly measure evolution in the host population over cosmic time and discern its causes, and provide new constraints on the fraction of cosmic star formation occurring in undetectable galaxies at all redshifts.

  18. Formation of galaxies

    International Nuclear Information System (INIS)

    Szalay, A.S.

    1984-12-01

    The present theories of galaxy formation are reviewed. The relation between peculiar velocities and the correlation function of galaxies points to the possibility that galaxies do not form uniformly everywhere. Scale invariant properties of the cluster-cluster correlations are discussed. Comparing the correlation functions in a dimensionless way, galaxies appear to be stronger clustered, in contrast with the comparison of the dimensional amplitudes of the correlation functions. Theoretical implications of several observations as Lyman-α clouds, correlations of faint galaxies are discussed. None of the present theories of galaxy formation can account for all facts in a natural way. 29 references

  19. The Host Galaxy and the Extended Emission-Line Region of the Radio Galaxy 3C 79

    Science.gov (United States)

    Fu, Hai; Stockton, Alan

    2008-04-01

    We present extensive ground-based spectroscopy and HST imaging of 3C 79, an FR II radio galaxy associated with a luminous extended emission-line region (EELR). Surface brightness modeling of an emission-line-free HST R-band image reveals that the host galaxy is a massive elliptical with a compact companion 0.8'' away and 4 mag fainter. The host galaxy spectrum is best described by an intermediate-age (1.3 Gyr) stellar population (4% by mass), superimposed on a 10 Gyr old population and a power law (αλ = - 1.8); the stellar populations are consistent with supersolar metallicities, with the best fit given by the 2.5 Z⊙ models. We derive a dynamical mass of 4 × 1011 M⊙ within the effective radius from the velocity dispersion. The EELR spectra clearly indicate that the EELR is photoionized by the hidden central engine. Photoionization modeling shows evidence that the gas metallicity in both the EELR and the nuclear narrow-line region is mildly subsolar (0.3-0.7 Z⊙), significantly lower than the supersolar metallicities deduced from typical active galactic nuclei in the Sloan Digital Sky Survey. The more luminous filaments in the EELR exhibit a velocity field consistent with a common disk rotation. Fainter clouds, however, show high approaching velocities that are uncoupled from this apparent disk rotation. The striking similarities between this EELR and the EELRs around steep-spectrum radio-loud quasars provide further evidence for the orientation-dependent unification schemes. The metal-poor gas is almost certainly not native to the massive host galaxy. We suggest that the close companion galaxy could be the tidally stripped bulge of a late-type galaxy that is merging with the host galaxy. The interstellar medium of such a galaxy is probably the source for the low-metallicity gas in 3C 79. Based in part on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative

  20. A NEARBY GAMMA-RAY BURST HOST PROTOTYPE FOR z ∼ 7 LYMAN-BREAK GALAXIES: SPITZER-IRS AND X-SHOOTER SPECTROSCOPY OF THE HOST GALAXY OF GRB 031203

    International Nuclear Information System (INIS)

    Watson, D.; French, J.; Hjorth, J.; Malesani, D.; Fynbo, J. P. U.; Castro Cerón, J. M.; Christensen, L.; O'Halloran, B.; Michałowski, M.; Gordon, K. D.; Covino, S.; Reinfrank, R. F.

    2011-01-01

    Gamma-ray burst (GRB) host galaxies have been studied extensively in optical photometry and spectroscopy. Here we present the first mid-infrared spectrum of a GRB host, HG 031203. It is one of the nearest GRB hosts at z = 0.1055, allowing both low- and high-resolution spectroscopy with the Spitzer Infrared Spectrograph (IRS). Medium-resolution UV to K-band spectroscopy with the X-shooter spectrograph on the Very Large Telescope is also presented, along with Spitzer IRAC and MIPS photometry, as well as radio and submillimeter observations. These data allow us to construct a UV to radio spectral energy distribution with almost complete spectroscopic coverage from 0.3 to 35 μm of a GRB host galaxy for the first time, potentially valuable as a template for future model comparisons. The IRS spectra show strong, high-ionization fine structure line emission indicative of a hard radiation field in the galaxy—in particular the [S IV]/[S III] and [Ne III]/[Ne II] ratios—suggestive of strong ongoing star formation and a very young stellar population. The absence of any polycyclic aromatic hydrocarbon emission supports these conclusions, as does the probable hot peak dust temperature, making HG 031203 similar to the prototypical blue compact dwarf galaxy (BCD), II Zw 40. The selection of HG 031203 via the presence of a GRB suggests that it might be a useful analog of very young star-forming galaxies in the early universe, and hints that local BCDs may be used as more reliable analogs of star formation in the early universe than typical local starbursts. We look at the current debate on the ages of the dominant stellar populations in z ∼ 7 and z ∼ 8 galaxies in this context. The nebular line emission is so strong in HG 031203 that at z ∼ 7, it can reproduce the spectral energy distributions of z-band dropout galaxies with elevated IRAC 3.6 and 4.5 μm fluxes without the need to invoke a 4000 Å break. Indeed, photometry of HG 031203 shows elevation of the broadband V

  1. Dwarf Galaxies with Gentle Star Formation and the Counts of Galaxies in the Hubble Deep Field

    OpenAIRE

    Campos, Ana

    1997-01-01

    In this paper the counts and colors of the faint galaxies observed in the Hubble Deep Field are fitted by means of simple luminosity evolution models that incorporate a numerous population of fading dwarfs. The observed color distribution of the very faint galaxies now allows us to put constraints on the star formation history in dwarfs. It is shown that the star-forming activity in these small systems has to proceed in a gentle way, i.e., through episodes where each one lasts much longer tha...

  2. Host galaxy properties of mergers of stellar binary black holes and their implications for advanced LIGO gravitational wave sources

    Science.gov (United States)

    Cao, Liang; Lu, Youjun; Zhao, Yuetong

    2018-03-01

    Understanding the host galaxy properties of stellar binary black hole (SBBH) mergers is important for revealing the origin of the SBBH gravitational wave sources detected by advanced LIGO and helpful for identifying their electromagnetic counterparts. Here, we present a comprehensive analysis of the host galaxy properties of SBBHs by implementing semi-analytical recipes for SBBH formation and merger into cosmological galaxy formation model. If the time delay between SBBH formation and merger ranges from ≲ Gyr to the Hubble time, SBBH mergers at redshift z ≲ 0.3 occur preferentially in big galaxies with stellar mass M* ≳ 2 × 1010 M⊙ and metallicities Z peaking at ˜0.6 Z⊙. However, the host galaxy stellar mass distribution of heavy SBBH mergers (M•• ≳ 50 M⊙) is bimodal with one peak at ˜109 M⊙ and the other peak at ˜2 × 1010 M⊙. The contribution fraction from host galaxies with Z ≲ 0.2 Z⊙ to heavy mergers is much larger than that to less heavy mergers. If SBBHs were formed in the early Universe (e.g. z > 6), their mergers detected at z ≲ 0.3 occur preferentially in even more massive galaxies with M* > 3 × 1010 M⊙ and in galaxies with metallicities mostly ≳ 0.2 Z⊙ and peaking at Z ˜ 0.6 Z⊙, due to later cosmic assembly and enrichment of their host galaxies. SBBH mergers at z ≲ 0.3 mainly occur in spiral galaxies, but the fraction of SBBH mergers that occur in elliptical galaxies can be significant if those SBBHs were formed in the early Universe; and about two-thirds of those mergers occur in the central galaxies of dark matter haloes. We also present results on the host galaxy properties of SBBH mergers at higher redshift.

  3. The Galaxy Hosts And Large-Scale Environments of Short-Hard Gamma-Ray Bursts

    International Nuclear Information System (INIS)

    Prochaska, Jason X.; Bloom, J.S.; Chen, H.-W.; Foley, R.J.; Perley, D.A.; Ramirez-Ruiz, E.; Granot, J.; Lee, W.H.; Pooley, D.; Alatalo, K.; Hurley, K.; Cooper, M.C.; Dupree, A.K.; Gerke, B.F.; Hansen, B.M.S.; Kalirai, J.S.; Newman, J.A.; Rich, R.M.; Richer, H.; Stanford, S.A.; Stern, D.

    2005-01-01

    The rapid succession of discovery of short-duration hard-spectrum GRBs has led to unprecedented insights into the energetics of the explosion and nature of the progenitors. Yet short of the detection of a smoking gun, like a burst of coincident gravitational radiation or a Li-Paczynski mini-supernova, it is unlikely that a definitive claim can be made for the progenitors. As was the case with long-duration soft-spectrum GRBs, however, the expectation is that a systematic study of the hosts and the locations of short GRBs could begin to yield fundamental clues about their nature. We present the first aggregate study of the host galaxies of short-duration hard-spectrum GRBs. In particular, we present the Gemini-North and Keck discovery spectra of the galaxies that hosted three short GRBs and a moderate-resolution (R ∼ 6000) spectrum of a fourth host. We find that these short-hard GRBs originate in a variety of low-redshift (z # circle d ot# yr -1 ) or recent star formation. Two of these galaxies are located within a cluster environment. These observations support an origin from the merger of compact stellar remnants, such as double neutron stars of a neutron star-black hole binary. The fourth event, in contrast, occurred within a dwarf galaxy with a star formation rate exceeding 0.5 M # circle d ot# yr -1 . Therefore, it appears that like supernovae of Type Ia, the progenitors of short-hard bursts are created in all galaxy types, suggesting a corresponding class with a wide distribution of delay times between formation and explosion

  4. The Host Galaxy and Redshift of the Repeating Fast Radio Burst FRB 121102

    International Nuclear Information System (INIS)

    Tendulkar, S. P.; Kaspi, V. M.; Bassa, C. G.; Adams, E. A. K.; Hessels, J. W. T.; Maddox, N.; Cordes, J. M.; Chatterjee, S.; Bower, G. C.; Law, C. J.; Bogdanov, S.; Burke-Spolaor, S.; Butler, B. J.; Demorest, P.; Lazio, T. J. W.; Marcote, B.; Paragi, Z.; McLaughlin, M. A.; Ransom, S. M.; Scholz, P.

    2017-01-01

    The precise localization of the repeating fast radio burst (FRB 121102) has provided the first unambiguous association (chance coincidence probability p ≲ 3 × 10"−"4) of an FRB with an optical and persistent radio counterpart. We report on optical imaging and spectroscopy of the counterpart and find that it is an extended (0.″6–0.″8) object displaying prominent Balmer and [O iii] emission lines. Based on the spectrum and emission line ratios, we classify the counterpart as a low-metallicity, star-forming, m_r_′ = 25.1 AB mag dwarf galaxy at a redshift of z = 0.19273(8), corresponding to a luminosity distance of 972 Mpc. From the angular size, the redshift, and luminosity, we estimate the host galaxy to have a diameter ≲4 kpc and a stellar mass of M _* ∼ (4–7) × 10"7 M _⊙, assuming a mass-to-light ratio between 2 to 3 M _⊙ L _⊙ "−"1. Based on the H α flux, we estimate the star formation rate of the host to be 0.4 M _⊙ yr"−"1 and a substantial host dispersion measure (DM) depth ≲324 pc cm"−"3. The net DM contribution of the host galaxy to FRB 121102 is likely to be lower than this value depending on geometrical factors. We show that the persistent radio source at FRB 121102’s location reported by Marcote et al. is offset from the galaxy’s center of light by ∼200 mas and the host galaxy does not show optical signatures for AGN activity. If FRB 121102 is typical of the wider FRB population and if future interferometric localizations preferentially find them in dwarf galaxies with low metallicities and prominent emission lines, they would share such a preference with long gamma-ray bursts and superluminous supernovae.

  5. Dependence of the clustering properties of galaxies on stellar velocity dispersion in the Main galaxy sample of SDSS DR10

    Science.gov (United States)

    Deng, Xin-Fa; Song, Jun; Chen, Yi-Qing; Jiang, Peng; Ding, Ying-Ping

    2014-08-01

    Using two volume-limited Main galaxy samples of the Sloan Digital Sky Survey Data Release 10 (SDSS DR10), we investigate the dependence of the clustering properties of galaxies on stellar velocity dispersion by cluster analysis. It is found that in the luminous volume-limited Main galaxy sample, except at r=1.2, richer and larger systems can be more easily formed in the large stellar velocity dispersion subsample, while in the faint volume-limited Main galaxy sample, at r≥0.9, an opposite trend is observed. According to statistical analyses of the multiplicity functions, we conclude in two volume-limited Main galaxy samples: small stellar velocity dispersion galaxies preferentially form isolated galaxies, close pairs and small group, while large stellar velocity dispersion galaxies preferentially inhabit the dense groups and clusters. However, we note the difference between two volume-limited Main galaxy samples: in the faint volume-limited Main galaxy sample, at r≥0.9, the small stellar velocity dispersion subsample has a higher proportion of galaxies in superclusters ( n≥200) than the large stellar velocity dispersion subsample.

  6. 3C 220.3: A radio galaxy lensing a submillimeter galaxy

    Energy Technology Data Exchange (ETDEWEB)

    Haas, Martin; Westhues, Christian; Chini, Rolf [Astronomisches Institut, Ruhr Universität, Bochum (Germany); Leipski, Christian; Klaas, Ulrich; Meisenheimer, Klaus [Max-Planck-Institut für Astronomie, Heidelberg (Germany); Barthel, Peter; Koopmans, Léon V. E. [Kapteyn Astronomical Institute, University of Groningen (Netherlands); Wilkes, Belinda J.; Bussmann, R. Shane; Willner, S. P.; Ashby, Matthew L. N.; Kuraszkiewicz, Joanna [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Vegetti, Simona [Max-Planck-Institut für Astrophysik, Garching (Germany); Clements, David L. [Imperial College, London (United Kingdom); Fassnacht, Christopher D. [University of California, Davis, CA (United States); Horesh, Assaf [Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA (United States); Lagattuta, David J. [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn (Australia); Stern, Daniel; Wylezalek, Dominika, E-mail: haas@astro.rub.de [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA (United States)

    2014-07-20

    Herschel Space Observatory photometry and extensive multiwavelength follow-up have revealed that the powerful radio galaxy (PRG) 3C 220.3 at z = 0.685 acts as a gravitational lens for a background submillimeter galaxy (SMG) at z = 2.221. At an observed wavelength of 1 mm, the SMG is lensed into three distinct images. In the observed near infrared, these images are connected by an arc of ∼1''.8 radius forming an Einstein half-ring centered near the radio galaxy. In visible light, only the arc is apparent. 3C 220.3 is the only known instance of strong galaxy-scale lensing by a PRG not located in a galaxy cluster and therefore it offers the potential to probe the dark matter content of the radio galaxy host. Lens modeling rejects a single lens, but two lenses centered on the radio galaxy host A and a companion B, separated by 1''.5, provide a fit consistent with all data and reveal faint candidates for the predicted fourth and fifth images. The model does not require an extended common dark matter halo, consistent with the absence of extended bright X-ray emission on our Chandra image. The projected dark matter fractions within the Einstein radii of A (1''.02) and B (0''.61) are about 0.4 ± 0.3 and 0.55 ± 0.3. The mass to i-band light ratios of A and B, M/L{sub i}∼8±4 M{sub ⊙} L{sub ⊙}{sup −1}, appear comparable to those of radio-quiet lensing galaxies at the same redshift in the CfA-Arizona Space Telescope LEns Survey, Lenses Structure and Dynamics, and Strong Lenses in the Legacy Survey samples. The lensed SMG is extremely bright with observed f(250 μm) = 440 mJy owing to a magnification factor μ ∼ 10. The SMG spectrum shows luminous, narrow C IV λ1549 Å emission, revealing that the SMG houses a hidden quasar in addition to a violent starburst. Multicolor image reconstruction of the SMG indicates a bipolar morphology of the emitted ultraviolet (UV) light suggestive of cones through which UV light escapes a

  7. STAR CLUSTER COMPLEXES AND THE HOST GALAXY IN THREE H II GALAXIES: Mrk 36, UM 408, AND UM 461

    Energy Technology Data Exchange (ETDEWEB)

    Lagos, P. [Centro de Astrofisica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Telles, E. [Observatorio Nacional, Rua Jose Cristino, 77, Rio de Janeiro 20921-400 (Brazil); Nigoche-Netro, A. [Instituto de Astrofisica de Andalucia (IAA), Glorieta de la Astronomia s/n, 18008 Granada (Spain); Carrasco, E. R., E-mail: plagos@astro.up.pt, E-mail: etelles@on.br, E-mail: nigoche@iaa.es, E-mail: rcarrasco@gemini.edu [Gemini Observatory/AURA, Southern Operations Center, Casilla 603, La Serena (Chile)

    2011-11-15

    We present a stellar population study of three H II galaxies (Mrk 36, UM 408, and UM 461) based on the analysis of new ground-based high-resolution near-infrared J, H, and K{sub p} broadband and Br{gamma} narrowband images obtained with Gemini/NIRI. We identify and determine the relative ages and masses of the elementary star clusters and/or star cluster complexes of the starburst regions in each of these galaxies by comparing the colors with evolutionary synthesis models that include the contribution of stellar continuum, nebular continuum, and emission lines. We found that the current star cluster formation efficiency in our sample of low-luminosity H II galaxies is {approx}10%. Therefore, most of the recent star formation is not in massive clusters. Our findings seem to indicate that the star formation mode in our sample of galaxies is clumpy, and that these complexes are formed by a few massive star clusters with masses {approx}>10{sup 4} M{sub Sun }. The age distribution of these star cluster complexes shows that the current burst started recently and likely simultaneously over short timescales in their host galaxies, triggered by some internal mechanism. Finally, the fraction of the total cluster mass with respect to the low surface brightness (or host galaxy) mass, considering our complete range in ages, is less than 1%.

  8. HOST GALAXY PROPERTIES OF THE SUBLUMINOUS GRB 120422A/SN 2012bz

    Energy Technology Data Exchange (ETDEWEB)

    Levesque, Emily M. [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado 389-UCB, Boulder, CO 80309 (United States); Chornock, Ryan; Soderberg, Alicia M.; Berger, Edo; Lunnan, Ragnhild, E-mail: Emily.Levesque@colorado.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2012-10-20

    GRB 120422A is a nearby (z = 0.283) long-duration gamma-ray burst (LGRB) detected by Swift with E {sub {gamma},iso} {approx} 4.5 Multiplication-Sign 10{sup 49} erg. It is also associated with the spectroscopically confirmed broad-lined Type Ic SN 2012bz. These properties establish GRB 120422A/SN 2012bz as the sixth and newest member of the class of subluminous GRBs supernovae (SNe). Observations also show that GRB 120422A/SN 2012bz occurred at an unusually large offset ({approx}8 kpc) from the host galaxy nucleus, setting it apart from other nearby LGRBs and leading to speculation that the host environment may have undergone prior interaction activity. Here, we present spectroscopic observations using the 6.5 m Magellan telescope at Las Campanas. We extract spectra at three specific locations within the GRB/SN host galaxy, including the host nucleus, the explosion site, and the 'bridge' of diffuse emission connecting these two regions. We measure a metallicity of log(O/H) + 12 = 8.3 {+-} 0.1 and a star formation rate (SFR) per unit area of 0.08 M {sub Sun} yr{sup -1} kpc{sup -2} at the host nucleus. At the GRB/SN explosion site we measure a comparable metallicity of log(O/H) + 12 = 8.2 {+-} 0.1 but find a much lower SFR per unit area of 0.01 M {sub Sun} yr{sup -1} kpc{sup -2}. We also compare the host galaxy of this event to the hosts of other LGRBs, including samples of subluminous LGRBs and cosmological LGRBs, and find no systematic metallicity difference between the environments of these different subtypes.

  9. Star formation rate and extinction in faint z ∼ 4 Lyman break galaxies

    Energy Technology Data Exchange (ETDEWEB)

    To, Chun-Hao; Wang, Wei-Hao [Institute of Astronomy and Astrophysics, Academia Sinica, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan (China); Owen, Frazer N. [National Radio Astronomy Observatory, P.O. Box 0, Socorro, NM 87801 (United States)

    2014-09-10

    We present a statistical detection of 1.5 GHz radio continuum emission from a sample of faint z ∼ 4 Lyman break galaxies (LBGs). To constrain their extinction and intrinsic star formation rate (SFR), we combine the latest ultradeep Very Large Array 1.5 GHz radio image and the Hubble Space Telescope Advanced Camera for Surveys (ACS) optical images in the GOODS-N. We select a large sample of 1771 z ∼ 4 LBGs from the ACS catalog using B {sub F435W}-dropout color criteria. Our LBG samples have I {sub F775W} ∼ 25-28 (AB), ∼0-3 mag fainter than M{sub UV}{sup ⋆} at z ∼ 4. In our stacked radio images, we find the LBGs to be point-like under our 2'' angular resolution. We measure their mean 1.5 GHz flux by stacking the measurements on the individual objects. We achieve a statistical detection of S {sub 1.5} {sub GHz} = 0.210 ± 0.075 μJy at ∼3σ for the first time on such a faint LBG population at z ∼ 4. The measurement takes into account the effects of source size and blending of multiple objects. The detection is visually confirmed by stacking the radio images of the LBGs, and the uncertainty is quantified with Monte Carlo simulations on the radio image. The stacked radio flux corresponds to an obscured SFR of 16.0 ± 5.7 M {sub ☉} yr{sup –1}, and implies a rest-frame UV extinction correction factor of 3.8. This extinction correction is in excellent agreement with that derived from the observed UV continuum spectral slope, using the local calibration of Meurer et al. This result supports the use of the local calibration on high-redshift LBGs to derive the extinction correction and SFR, and also disfavors a steep reddening curve such as that of the Small Magellanic Cloud.

  10. Spatially Resolved Patchy Ly α Emission within the Central Kiloparsec of a Strongly Lensed Quasar Host Galaxy at z = 2.8

    Energy Technology Data Exchange (ETDEWEB)

    Bayliss, Matthew B.; Bordoloi, Rongmon [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Sharon, Keren; Runnoe, Jessie; Johnson, Traci; Paterno-Mahler, Rachel [Department of Astronomy, University of Michigan, 1085 S. University Avenue, Ann Arbor, MI 48109 (United States); Acharyya, Ayan; Bian, Fuyan; Kewley, Lisa [RSAA, Australian National University, Cotter Road, Weston Creek, ACT 2611 (Australia); Gladders, Michael D. [Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637 (United States); Rigby, Jane R. [Astrophysics Science Division, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Dahle, Hakon [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029, Blindern, NO-0315 Oslo (Norway); Florian, Michael, E-mail: mbayliss@mit.edu [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States)

    2017-08-20

    We report the detection of extended Ly α emission from the host galaxy of SDSS J2222+2745, a strongly lensed quasar at z = 2.8. Spectroscopic follow-up clearly reveals extended Ly α in emission between two images of the central active galactic nucleus (AGN). We reconstruct the lensed quasar host galaxy in the source plane by applying a strong lens model to HST imaging and resolve spatial scales as small as ∼200 pc. In the source plane, we recover the host galaxy morphology to within a few hundred parsecs of the central AGN and map the extended Ly α emission to its physical origin on one side of the host galaxy at radii ∼0.5–2 kpc from the central AGN. There are clear morphological differences between the Ly α and rest-frame ultraviolet stellar continuum emission from the quasar host galaxy. Furthermore, the relative velocity profiles of quasar Ly α , host galaxy Ly α , and metal lines in outflowing gas reveal differences in the absorbing material affecting the AGN and host galaxy. These data indicate the presence of patchy local intervening gas in front of the central quasar and its host galaxy. This interpretation is consistent with the central luminous quasar being obscured across a substantial fraction of its surrounding solid angle, resulting in strong anisotropy in the exposure of the host galaxy to ionizing radiation from the AGN. This work demonstrates the power of strong-lensing-assisted studies to probe spatial scales that are currently inaccessible by other means.

  11. Spatially Resolved Patchy Ly α Emission within the Central Kiloparsec of a Strongly Lensed Quasar Host Galaxy at z = 2.8

    International Nuclear Information System (INIS)

    Bayliss, Matthew B.; Bordoloi, Rongmon; Sharon, Keren; Runnoe, Jessie; Johnson, Traci; Paterno-Mahler, Rachel; Acharyya, Ayan; Bian, Fuyan; Kewley, Lisa; Gladders, Michael D.; Rigby, Jane R.; Dahle, Hakon; Florian, Michael

    2017-01-01

    We report the detection of extended Ly α emission from the host galaxy of SDSS J2222+2745, a strongly lensed quasar at z = 2.8. Spectroscopic follow-up clearly reveals extended Ly α in emission between two images of the central active galactic nucleus (AGN). We reconstruct the lensed quasar host galaxy in the source plane by applying a strong lens model to HST imaging and resolve spatial scales as small as ∼200 pc. In the source plane, we recover the host galaxy morphology to within a few hundred parsecs of the central AGN and map the extended Ly α emission to its physical origin on one side of the host galaxy at radii ∼0.5–2 kpc from the central AGN. There are clear morphological differences between the Ly α and rest-frame ultraviolet stellar continuum emission from the quasar host galaxy. Furthermore, the relative velocity profiles of quasar Ly α , host galaxy Ly α , and metal lines in outflowing gas reveal differences in the absorbing material affecting the AGN and host galaxy. These data indicate the presence of patchy local intervening gas in front of the central quasar and its host galaxy. This interpretation is consistent with the central luminous quasar being obscured across a substantial fraction of its surrounding solid angle, resulting in strong anisotropy in the exposure of the host galaxy to ionizing radiation from the AGN. This work demonstrates the power of strong-lensing-assisted studies to probe spatial scales that are currently inaccessible by other means.

  12. Connections between Star Cluster Populations and Their Host Galaxy Nuclear Rings

    Science.gov (United States)

    Ma, Chao; de Grijs, Richard; Ho, Luis C.

    2018-04-01

    Nuclear rings are excellent laboratories for probing diverse phenomena such as the formation and evolution of young massive star clusters and nuclear starbursts, as well as the secular evolution and dynamics of their host galaxies. We have compiled a sample of 17 galaxies with nuclear rings, which are well resolved by high-resolution Hubble and Spitzer Space Telescope imaging. For each nuclear ring, we identified the ring star cluster population, along with their physical properties (ages, masses, and extinction values). We also determined the integrated ring properties, including the average age, total stellar mass, and current star formation rate (SFR). We find that Sb-type galaxies tend to have the highest ring stellar mass fraction with respect to the host galaxy, and this parameter is correlated with the ring’s SFR surface density. The ring SFRs are correlated with their stellar masses, which is reminiscent of the main sequence of star-forming galaxies. There are striking correlations between star-forming properties (i.e., SFR and SFR surface density) and nonaxisymmetric bar parameters, appearing to confirm previous inferences that strongly barred galaxies tend to have lower ring SFRs, although the ring star formation histories turn out to be significantly more complicated. Nuclear rings with higher stellar masses tend to be associated with lower cluster mass fractions, but there is no such relation for the ages of the rings. The two youngest nuclear rings in our sample, NGC 1512 and NGC 4314, which have the most extreme physical properties, represent the young extremity of the nuclear ring age distribution.

  13. Multicolor photometry of the nearby galaxy cluster A119

    International Nuclear Information System (INIS)

    Tian Jintao; Zhou Xu; Jiang Zhaoji; Ma Jun; Wu Zhenyu; Fan Zhou; Zhang Tianmeng; Zou Hu; Yuan Qirong; Wu Jianghua

    2012-01-01

    This paper presents multicolor optical photometry of the nearby galaxy cluster Abell 119 (z = 0.0442) with the Beijing-Arizona-Taiwan-Connecticut system of 15 intermediate bands. Within the BATC field of view of 58' × 58', there are 368 galaxies with known spectroscopic redshifts, including 238 member galaxies (called sample I). Based on the spectral energy distributions of 1376 galaxies brighter than i BATC = 19.5, the photometric redshift technique and the color-magnitude relation of early-type galaxies are applied to select faint member galaxies. As a result, 117 faint galaxies were selected as new member galaxies. Combined with sample I, an enlarged sample (called sample II) of 355 member galaxies is obtained. Spatial distribution and localized velocity structure for two samples demonstrate that A119 is a dynamically complex cluster with at least three prominent substructures in the central region within 1 Mpc. A large velocity dispersion for the central clump indicates a merging along the line of sight. No significant evidence for morphology or luminosity segregations is found in either sample. With the PEGASE evolutionary synthesis model, the environmental effect on the properties of star formation is confirmed. Faint galaxies in the low-density region tend to have longer time scales of star formation, smaller mean stellar ages, and lower metallicities in their interstellar medium, which is in agreement with the context of the hierarchical cosmological scenario. (research papers)

  14. Bar Frequency & Galaxy Host Properties using the Spitzer Survey of Stellar Structure in Galaxies (S4G)

    Science.gov (United States)

    Sheth, Kartik; Mizusawa, T.; Kim, T.; Munoz-Mateos, J.; Regan, M. W.; de Swardt, B.; Gadotti, D.; S4G Team

    2011-01-01

    Using the volume limited sample of 2,331 nearby galaxies from the Spitzer Survey of Stellar Structure in Galaxies (S4G), we have classified the frequency of barred spiral galaxies. The literature abounds with frequency ranges from as low as 20% to as high as 80% but these variations are driven by the quality of the data, the sample size and the methodology of the studies. Using the 3.6 and 4.5 micron IRAC images from S4G, we are able to make a definitive measurement of the local bar fraction as a function of the galaxy host and environment. We present the results from this survey and discuss how the current bar fraction compares to the declining frequency of bars from the present day to z 1.

  15. H α IMAGING OF NEARBY SEYFERT HOST GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Theios, Rachel L.; Malkan, Matthew A. [Department of Physics and Astronomy, University of California, Los Angeles, 430 Portola Plaza, Los Angeles, CA 90095 (United States); Ross, Nathaniel R., E-mail: rtheios@astro.caltech.edu [Raytheon Space and Airborne Systems, 2000 E El Segundo Boulevard, El Segundo, CA 90245 (United States)

    2016-05-01

    We used narrowband (Δ λ = 70 Å) interference filters with the CCD imaging camera on the Nickel 1.0 m telescope at Lick Observatory to observe 31 nearby ( z < 0.03) Seyfert galaxies in the 12 μ m active galaxy sample. We obtained pure emission-line images of each galaxy, which reach down to a flux limit of 7.3 × 10{sup −15} erg cm{sup −2} s{sup −1} arcsec{sup −2}, and corrected these images for [N ii] emission and extinction. We separated the H α emission line of the “nucleus” (central 100–1000 pc) from that of the host galaxy. The extended H α emission is expected to be powered by newly formed hot stars, and indeed correlates well with other indicators of current star formation rates (SFRs) in these galaxies: extended 7.7 μ m polycyclic aromatic hydrocarbon, total far-infrared, and radio luminosity. Relative to what would be expected from recent star formation, there is a 0.8 dex excess of radio emission in our Seyfert galaxies. The H α luminosity we measured in the centers of our galaxies is dominated by the active galactic nucleus (AGN), and is linearly correlated with the hard X-ray luminosity. There is, however, an upward offset of 1 dex in this correlation for the Seyfert 1s, because their nuclear H α emission includes a strong additional contribution from the broad-line region. We found a correlation between SFR and AGN luminosity. In spite of selection effects, we concluded that the absence of bright Seyfert nuclei in galaxies with low SFRs is real, albeit only weakly significant. Finally, we used our measured spatial distributions of H α emission to determine what these Seyfert galaxies would look like when observed through fixed apertures (e.g., a spectroscopic fiber) at high redshifts. We found that although all of these Seyfert galaxies would be detectable emission-line galaxies at any redshift, most of them would appear to be dominated by (>67%) their H ii region emission. Only the most luminous AGNs (log( L {sub Hα}/erg s

  16. Kinematic, Photometric, and Spectroscopic Properties of Faint White Dwarf Stars Discovered in the HALO7D Survey of the Milky Way Galaxy

    Science.gov (United States)

    Harris, Madison; Cunningham, Emily; Guhathakurta, Puragra; Cheshire, Ishani; Gupta, Nandita

    2018-01-01

    White dwarf (WD) stars represent the final phase in the life of solar-mass stars. The extreme low luminosity of WDs means that most detailed measurements of such stars are limited to samples in the immediate neighborhood of the Sun in the thin disk of the Milky Way galaxy. We present spectra, line-of-sight (LOS) velocities, and proper motions (PMs) of a sample of faint (m_V ~ 19.0–24.5) white dwarfs (WDs) from the HALO7D survey. HALO7D is a Keck II/DEIMOS spectroscopic survey of unprecedented depth (8–24 hour integrations) in the CANDELS fields of main sequence turnoff stars in the Milky Way's outer halo. Faint WD stars are rare but useful by-products of this survey. We identify the sample of WDs based on their characteristic broad spectral Balmer absorption features, and present a Bayesian method for measuring their LOS velocities. Using their broadband colors, LOS velocities and PMs measured with the Hubble Space Telescope, we identify candidate halo members among the WDs based on the predicted velocity distributions from the Besançon numerical model of stellar populations in the Milky Way galaxy. The WDs found in the HALO7D survey will yield new insights on the old stellar population associated with the Milky Way's thick disk and halo. Funding for this research was provided by the National Science Foundation and NASA/STScI. NG and IC's participation in this research was under the auspices of the Science Internship Program at the University of California Santa Cruz.

  17. Fainting

    Science.gov (United States)

    ... a medicine you’re taking. Alcohol, cocaine, and marijuana can also cause fainting. More serious causes of fainting include seizures and problems with the heart or with the blood vessels leading to the brain. How is fainting diagnosed? Your doctor will probably ...

  18. THE EVOLUTION OF THE REST-FRAME V-BAND LUMINOSITY FUNCTION FROM z = 4: A CONSTANT FAINT-END SLOPE OVER THE LAST 12 Gyr OF COSMIC HISTORY

    International Nuclear Information System (INIS)

    Marchesini, Danilo; Stefanon, Mauro; Brammer, Gabriel B.; Whitaker, Katherine E.

    2012-01-01

    We present the rest-frame V-band luminosity function (LF) of galaxies at 0.4 ≤ z < 4.0, measured from a near-infrared selected sample constructed from the NMBS, the FIRES, the FIREWORKS, and the ultra-deep NICMOS and WFC3 observations in the HDFN, HUDF, and GOODS-CDFS, all having high-quality optical-to-mid-infrared data. This unique sample combines data from surveys with a large range of depths and areas in a self-consistent way, allowing us to (1) minimize the uncertainties due to cosmic variance; and (2) simultaneously constrain the bright and faint ends with unprecedented accuracy over the targeted redshift range, probing the LF down to 0.1L* at z ∼ 3.9. We find that (1) the faint end is fairly flat and with a constant slope from z = 4, with α = –1.27 ± 0.05; (2) the characteristic magnitude has dimmed by 1.3 mag from z ∼ 3.7 to z = 0.1; (3) the characteristic density has increased by a factor of ∼8 from z ∼ 3.7 to z = 0.1, with 50% of this increase from z ∼ 4 to z ∼ 1.8; and (4) the luminosity density peaks at z ≈ 1-1.5, increasing by a factor of ∼4 from z = 4.0 to z ≈ 1-1.5, and subsequently decreasing by a factor of ∼1.5 by z = 0.1. We find no evidence for a steepening of the faint-end slope with redshift out to z = 4, in contrast with previous observational claims and theoretical predictions. The constant faint-end slope suggests that the efficiency of stellar feedback may evolve with redshift. Alternative interpretations are discussed, such as different masses of the halos hosting faint galaxies at low and high redshifts and/or environmental effects.

  19. The Host Galaxy and Redshift of the Repeating Fast Radio Burst FRB 121102

    Energy Technology Data Exchange (ETDEWEB)

    Tendulkar, S. P.; Kaspi, V. M. [Department of Physics and McGill Space Institute, McGill University, 3600 University Street, Montreal, QC H3A 2T8 (Canada); Bassa, C. G.; Adams, E. A. K.; Hessels, J. W. T.; Maddox, N. [ASTRON, the Netherlands Institute for Radio Astronomy, Postbus 2, NL-7990 AA Dwingeloo (Netherlands); Cordes, J. M.; Chatterjee, S. [Cornell Center for Astrophysics and Planetary Science and Department of Astronomy, Cornell University, Ithaca, NY 14853 (United States); Bower, G. C. [Academia Sinica Institute of Astronomy and Astrophysics, 645 N. A’ohoku Place, Hilo, HI 96720 (United States); Law, C. J. [Department of Astronomy and Radio Astronomy Lab, University of California, Berkeley, CA 94720 (United States); Bogdanov, S. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Burke-Spolaor, S.; Butler, B. J.; Demorest, P. [National Radio Astronomy Observatory, Socorro, NM 87801 (United States); Lazio, T. J. W. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Marcote, B.; Paragi, Z. [Joint Institute for VLBI ERIC, Postbus 2, NL-7990 AA Dwingeloo (Netherlands); McLaughlin, M. A. [Department of Physics and Astronomy, West Virginia University, Morgantown, WV 26506 (United States); Ransom, S. M. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Scholz, P., E-mail: shriharsh@physics.mcgill.ca, E-mail: bassa@astron.nl [National Research Council of Canada, Herzberg Astronomy and Astrophysics, Dominion Radio Astrophysical Observatory, P.O. Box 248, Penticton, BC V2A 6J9 (Canada); and others

    2017-01-10

    The precise localization of the repeating fast radio burst (FRB 121102) has provided the first unambiguous association (chance coincidence probability p ≲ 3 × 10{sup −4}) of an FRB with an optical and persistent radio counterpart. We report on optical imaging and spectroscopy of the counterpart and find that it is an extended (0.″6–0.″8) object displaying prominent Balmer and [O iii] emission lines. Based on the spectrum and emission line ratios, we classify the counterpart as a low-metallicity, star-forming, m{sub r′} = 25.1 AB mag dwarf galaxy at a redshift of z = 0.19273(8), corresponding to a luminosity distance of 972 Mpc. From the angular size, the redshift, and luminosity, we estimate the host galaxy to have a diameter ≲4 kpc and a stellar mass of M {sub *} ∼ (4–7) × 10{sup 7} M {sub ⊙}, assuming a mass-to-light ratio between 2 to 3 M {sub ⊙} L {sub ⊙} {sup −1}. Based on the H α flux, we estimate the star formation rate of the host to be 0.4 M {sub ⊙} yr{sup −1} and a substantial host dispersion measure (DM) depth ≲324 pc cm{sup −3}. The net DM contribution of the host galaxy to FRB 121102 is likely to be lower than this value depending on geometrical factors. We show that the persistent radio source at FRB 121102’s location reported by Marcote et al. is offset from the galaxy’s center of light by ∼200 mas and the host galaxy does not show optical signatures for AGN activity. If FRB 121102 is typical of the wider FRB population and if future interferometric localizations preferentially find them in dwarf galaxies with low metallicities and prominent emission lines, they would share such a preference with long gamma-ray bursts and superluminous supernovae.

  20. SDSS-II SUPERNOVA SURVEY: AN ANALYSIS OF THE LARGEST SAMPLE OF TYPE IA SUPERNOVAE AND CORRELATIONS WITH HOST-GALAXY SPECTRAL PROPERTIES

    International Nuclear Information System (INIS)

    Wolf, Rachel C.; Gupta, Ravi R.; Sako, Masao; Fischer, John A.; March, Marisa C.; Fischer, Johanna-Laina; D’Andrea, Chris B.; Smith, Mathew; Kessler, Rick; Scolnic, Daniel M.; Jha, Saurabh W.; Campbell, Heather; Nichol, Robert C.; Olmstead, Matthew D.; Richmond, Michael; Schneider, Donald P.

    2016-01-01

    Using the largest single-survey sample of Type Ia supernovae (SNe Ia) to date, we study the relationship between properties of SNe Ia and those of their host galaxies, focusing primarily on correlations with Hubble residuals (HRs). Our sample consists of 345 photometrically classified or spectroscopically confirmed SNe Ia discovered as part of the SDSS-II Supernova Survey (SDSS-SNS). This analysis utilizes host-galaxy spectroscopy obtained during the SDSS-I/II spectroscopic survey and from an ancillary program on the SDSS-III Baryon Oscillation Spectroscopic Survey that obtained spectra for nearly all host galaxies of SDSS-II SN candidates. In addition, we use photometric host-galaxy properties from the SDSS-SNS data release such as host stellar mass and star formation rate. We confirm the well-known relation between HR and host-galaxy mass and find a 3.6 σ significance of a nonzero linear slope. We also recover correlations between HR and host-galaxy gas-phase metallicity and specific star formation rate as they are reported in the literature. With our large data set, we examine correlations between HR and multiple host-galaxy properties simultaneously and find no evidence of a significant correlation. We also independently analyze our spectroscopically confirmed and photometrically classified SNe Ia and comment on the significance of similar combined data sets for future surveys.

  1. Deep Ly alpha imaging of two z=2.04 GRB host galaxy fields

    DEFF Research Database (Denmark)

    Fynbo, J.P.U.; Møller, Per; Thomsen, Bente

    2002-01-01

    We report on the results of deep narrow-band Lyalpha and broad-band U and I imaging of the fields of two Gamma-Ray bursts at redshift z = 2.04 (GRB 000301C and GRB 000926). We find that the host galaxy of GRB 000926 is an extended (more than 2 arcsec), strong Lyalpha emitter with a rest-frame equ......We report on the results of deep narrow-band Lyalpha and broad-band U and I imaging of the fields of two Gamma-Ray bursts at redshift z = 2.04 (GRB 000301C and GRB 000926). We find that the host galaxy of GRB 000926 is an extended (more than 2 arcsec), strong Lyalpha emitter with a rest...... - I colour than the eastern component, suggesting the presence of at least some dust. We do not detect the host galaxy of GRB 000301C in neither Lyalpha emission nor in U and I broad-band images. The strongest limit comes from combining the narrow and U-band imaging where we infer a limit of U...

  2. The Post-starburst Evolution of Tidal Disruption Event Host Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    French, K. Decker; Zabludoff, Ann [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Arcavi, Iair [Department of Physics, University of California, Santa Barbara, CA 93106-9530 (United States)

    2017-02-01

    We constrain the recent star formation histories of the host galaxies of eight optical/UV-detected tidal disruption events (TDEs). Six hosts had quick starbursts of <200 Myr duration that ended 10–1000 Myr ago, indicating that TDEs arise at different times in their hosts’ post-starburst evolution. If the disrupted star formed in the burst or before, the post-burst age constrains its mass, generally excluding O, most B, and highly massive A stars. If the starburst arose from a galaxy merger, the time since the starburst began limits the coalescence timescale and thus the merger mass ratio to more equal than 12:1 in most hosts. This uncommon ratio, if also that of the central supermassive black hole (SMBH) binary, disfavors the scenario in which the TDE rate is boosted by the binary but is insensitive to its mass ratio. The stellar mass fraction created in the burst is 0.5%–10% for most hosts, not enough to explain the observed 30–200× boost in TDE rates, suggesting that the host’s core stellar concentration is more important. TDE hosts have stellar masses 10{sup 9.4}–10{sup 10.3} M {sub ☉}, consistent with the Sloan Digital Sky Survey volume-corrected, quiescent Balmer-strong comparison sample and implying SMBH masses of 10{sup 5.5}–10{sup 7.5} M {sub ☉}. Subtracting the host absorption line spectrum, we uncover emission lines; at least five hosts have ionization sources inconsistent with star formation that instead may be related to circumnuclear gas, merger shocks, or post-AGB stars.

  3. A VLT Large Programme to Study Galaxies at z ~ 2: GMASS — the Galaxy Mass Assembly Ultra-deep Spectroscopic Survey

    Science.gov (United States)

    Kurk, Jaron; Cimatti, Andrea; Daddi, Emanuele; Mignoli, Marco; Bolzonella, Micol; Pozzetti, Lucia; Cassata, Paolo; Halliday, Claire; Zamorani, Gianni; Berta, Stefano; Brusa, Marcella; Dickinson, Mark; Franceschini, Alberto; Rodighiero, Guilia; Rosati, Piero; Renzini, Alvio

    2009-03-01

    We report on the motivation, sample selection and first results of our VLT FORS2 Large Programme (173.A-0687), which has obtained the longest targeted spectra of distant galaxies obtained so far with the VLT. These long exposures, up to 77 hours for objects included in three masks, were required to detect spectral features of extremely faint galaxies, such as absorption lines of passive galaxies at z > 1.4, a population that had previously escaped attention due to its faintness in the optical wavelength regime, but which represents a critical phase in the evolution of massive galaxies. The ultra-deep spectroscopy allowed us to estimate the stellar metallicity of star-forming galaxies at z ~ 2, to trace colour bimodality up to z = 2 and to characterise a galaxy cluster progenitor at z = 1.6. The approximately 200 spectra produced by GMASS constitute a lasting legacy, populating the “redshift desert” in GOODS-S.

  4. Dwarf galaxies in the coma cluster: Star formation properties and evolution

    Science.gov (United States)

    Hammer, Derek M.

    The infall regions of galaxy clusters are unique laboratories for studying the impact of environment on galaxy evolution. This intermediate region links the low-density field environment and the dense core of the cluster, and is thought to host recently accreted galaxies whose star formation is being quenched by external processes associated with the cluster. In this dissertation, we measure the star formation properties of galaxies at the infall region of the nearby rich cluster of galaxies, Coma. We rely primarily on Ultraviolet (UV) data owing to its sensitivity to recent star formation and we place more emphasis on the properties of dwarf galaxies. Dwarf galaxies are good tracers of external processes in clusters but their evolution is poorly constrained as they are intrinsically faint and hence more challenging to detect. We make use of deep GALEX far-UV and near-UV observations at the infall region of the Coma cluster. This area of the cluster has supporting photometric coverage at optical and IR wavelengths in addition to optical spectroscopic data that includes deep redshift coverage of dwarf galaxies in Coma. Our GALEX observations were the deepest exposures taken for a local galaxy cluster. The depth of these images required alternative data analysis techniques to overcome systematic effects that limit the default GALEX pipeline analysis. Specifically, we used a deblending method that improved detection efficiency by a factor of ˜2 and allowed reliable photometry a few magnitudes deeper than the pipeline catalog. We performed deep measurements of the total UV galaxy counts in our field that were used to measure the source confusion limit for crowded GALEX fields. The star formation properties of Coma members were studied for galaxies that span from starbursts to passive galaxies. Star-forming galaxies in Coma tend to have lower specific star formation rates, on average, as compared to field galaxies. We show that the majority of these galaxies are likely

  5. Hosts and environments of low luminosity active galaxies in the local universe: The care and feeding of weak AGN

    Science.gov (United States)

    Parejko, John Kenneth

    The observed relationship between the mass of a galaxy's supermassive black hole and the galaxy's bulge mass suggests a relationship between the growth of the galaxy and the growth of its central black hole. When these black holes grow, they release phenomenal amounts of energy into their surroundings, possibly disrupting further growth of the galaxy. The feeding (inflowing matter) and feedback (outflowing energy) of a galaxy's central black hole may be intimately related to the properties of the host's environment, on scales many orders of magnitude beyond the black hole's gravitational influence. While feeding, a massive black hole reveals itself as an Active Galactic Nucleus (AGN), but only a few percent of all galaxies show evidence of an AGN. This thesis focuses on this question: What distinguishes galaxies that are currently hosting actively accreting black holes from those that are not? We use the vast data set provided by the Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7) to study the environments of a well defined sample of AGN hosts. To reduce contamination by galaxies that do not harbor actively accreting black holes, we define a clear, unambiguous sample of local AGN. Using this sample, we search for AGN in merging galaxies and measure the 2-point cross-correlation function of AGN and all galaxies to estimate the environments of AGN hosts compared to non-AGN hosts. We also describe trends in different subsamples of AGN, including luminosity and classification sub-type. Finally, we show how these techniques may be applied to future data sets such as forthcoming SDSS III data and X-ray data from the eROSITA satellite.

  6. PSFGAN: a generative adversarial network system for separating quasar point sources and host galaxy light

    Science.gov (United States)

    Stark, Dominic; Launet, Barthelemy; Schawinski, Kevin; Zhang, Ce; Koss, Michael; Turp, M. Dennis; Sartori, Lia F.; Zhang, Hantian; Chen, Yiru; Weigel, Anna K.

    2018-06-01

    The study of unobscured active galactic nuclei (AGN) and quasars depends on the reliable decomposition of the light from the AGN point source and the extended host galaxy light. The problem is typically approached using parametric fitting routines using separate models for the host galaxy and the point spread function (PSF). We present a new approach using a Generative Adversarial Network (GAN) trained on galaxy images. We test the method using Sloan Digital Sky Survey r-band images with artificial AGN point sources added that are then removed using the GAN and with parametric methods using GALFIT. When the AGN point source is more than twice as bright as the host galaxy, we find that our method, PSFGAN, can recover point source and host galaxy magnitudes with smaller systematic error and a lower average scatter (49 per cent). PSFGAN is more tolerant to poor knowledge of the PSF than parametric methods. Our tests show that PSFGAN is robust against a broadening in the PSF width of ± 50 per cent if it is trained on multiple PSFs. We demonstrate that while a matched training set does improve performance, we can still subtract point sources using a PSFGAN trained on non-astronomical images. While initial training is computationally expensive, evaluating PSFGAN on data is more than 40 times faster than GALFIT fitting two components. Finally, PSFGAN is more robust and easy to use than parametric methods as it requires no input parameters.

  7. PSFGAN: a generative adversarial network system for separating quasar point sources and host galaxy light

    Science.gov (United States)

    Stark, Dominic; Launet, Barthelemy; Schawinski, Kevin; Zhang, Ce; Koss, Michael; Turp, M. Dennis; Sartori, Lia F.; Zhang, Hantian; Chen, Yiru; Weigel, Anna K.

    2018-03-01

    The study of unobscured active galactic nuclei (AGN) and quasars depends on the reliable decomposition of the light from the AGN point source and the extended host galaxy light. The problem is typically approached using parametric fitting routines using separate models for the host galaxy and the point spread function (PSF). We present a new approach using a Generative Adversarial Network (GAN) trained on galaxy images. We test the method using Sloan Digital Sky Survey (SDSS) r-band images with artificial AGN point sources added which are then removed using the GAN and with parametric methods using GALFIT. When the AGN point source PS is more than twice as bright as the host galaxy, we find that our method, PSFGAN, can recover PS and host galaxy magnitudes with smaller systematic error and a lower average scatter (49%). PSFGAN is more tolerant to poor knowledge of the PSF than parametric methods. Our tests show that PSFGAN is robust against a broadening in the PSF width of ±50% if it is trained on multiple PSF's. We demonstrate that while a matched training set does improve performance, we can still subtract point sources using a PSFGAN trained on non-astronomical images. While initial training is computationally expensive, evaluating PSFGAN on data is more than 40 times faster than GALFIT fitting two components. Finally, PSFGAN it is more robust and easy to use than parametric methods as it requires no input parameters.

  8. THE STELLAR INITIAL MASS FUNCTION OF ULTRA-FAINT DWARF GALAXIES: EVIDENCE FOR IMF VARIATIONS WITH GALACTIC ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    Geha, Marla [Astronomy Department, Yale University, New Haven, CT 06520 (United States); Brown, Thomas M.; Tumlinson, Jason; Kalirai, Jason S.; Avila, Roberto J.; Ferguson, Henry C. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Simon, Joshua D. [Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Kirby, Evan N. [Department of Physics and Astronomy, University of California Irvine, 4129 Frederick Reines Hall, Irvine, CA 92697 (United States); VandenBerg, Don A. [Department of Physics and Astronomy, University of Victoria, P.O. Box 3055, Victoria, BC V8W 3P6 (Canada); Munoz, Ricardo R. [Departamento de Astronomia, Universidad de Chile, Casilla 36-D, Santiago (Chile); Guhathakurta, Puragra, E-mail: marla.geha@yale.edu, E-mail: tbrown@stsci.edu, E-mail: tumlinson@stsci.edu [UCO/Lick Observatory and Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2013-07-01

    We present constraints on the stellar initial mass function (IMF) in two ultra-faint dwarf (UFD) galaxies, Hercules and Leo IV, based on deep Hubble Space Telescope Advanced Camera for Surveys imaging. The Hercules and Leo IV galaxies are extremely low luminosity (M{sub V} = -6.2, -5.5), metal-poor (([Fe/H]) = -2.4, -2.5) systems that have old stellar populations (>11 Gyr). Because they have long relaxation times, we can directly measure the low-mass stellar IMF by counting stars below the main-sequence turnoff without correcting for dynamical evolution. Over the stellar mass range probed by our data, 0.52-0.77 M{sub Sun }, the IMF is best fit by a power-law slope of {alpha}= 1.2{sub -0.5}{sup +0.4} for Hercules and {alpha} = 1.3 {+-} 0.8 for Leo IV. For Hercules, the IMF slope is more shallow than a Salpeter ({alpha} = 2.35) IMF at the 5.8{sigma} level, and a Kroupa ({alpha} = 2.3 above 0.5 M{sub Sun }) IMF slope at 5.4{sigma} level. We simultaneously fit for the binary fraction, f{sub binary}, finding f{sub binary}= 0.47{sup +0.16}{sub -0.14} for Hercules, and 0.47{sup +0.37}{sub -0.17} for Leo IV. The UFD binary fractions are consistent with that inferred for Milky Way stars in the same mass range, despite very different metallicities. In contrast, the IMF slopes in the UFDs are shallower than other galactic environments. In the mass range 0.5-0.8 M{sub Sun }, we see a trend across the handful of galaxies with directly measured IMFs such that the power-law slopes become shallower (more bottom-light) with decreasing galactic velocity dispersion and metallicity. This trend is qualitatively consistent with results in elliptical galaxies inferred via indirect methods and is direct evidence for IMF variations with galactic environment.

  9. Primordial black holes as dark matter: constraints from compact ultra-faint dwarfs

    Science.gov (United States)

    Zhu, Qirong; Vasiliev, Eugene; Li, Yuexing; Jing, Yipeng

    2018-05-01

    The ground-breaking detections of gravitational waves from black hole mergers by LIGO have rekindled interest in primordial black holes (PBHs) and the possibility of dark matter being composed of PBHs. It has been suggested that PBHs of tens of solar masses could serve as dark matter candidates. Recent analytical studies demonstrated that compact ultra-faint dwarf galaxies can serve as a sensitive test for the PBH dark matter hypothesis, since stars in such a halo-dominated system would be heated by the more massive PBHs, their present-day distribution can provide strong constraints on PBH mass. In this study, we further explore this scenario with more detailed calculations, using a combination of dynamical simulations and Bayesian inference methods. The joint evolution of stars and PBH dark matter is followed with a Fokker-Planck code PHASEFLOW. We run a large suite of such simulations for different dark matter parameters, then use a Markov chain Monte Carlo approach to constrain the PBH properties with observations of ultra-faint galaxies. We find that two-body relaxation between the stars and PBH drives up the stellar core size, and increases the central stellar velocity dispersion. Using the observed half-light radius and velocity dispersion of stars in the compact ultra-faint dwarf galaxies as joint constraints, we infer that these dwarfs may have a cored dark matter halo with the central density in the range of 1-2 M⊙pc - 3, and that the PBHs may have a mass range of 2-14 M⊙ if they constitute all or a substantial fraction of the dark matter.

  10. The extraordinarily bright optical afterglow of GRB 991208 and its host galaxy

    DEFF Research Database (Denmark)

    Castro-Tirado, A.J.; Sokolov, V.V.; Gorosabel, J.

    2001-01-01

    that GRB 991208 is at 3.7 Gpc (for H-0 = 60 km s(-1) Mpc(-1), Omega (0) = 1 and Lambda (0) = 0), implying an isotropic energy release of 1.15 10(53) erg which may. be relaxed by beaming by a factor >10(2). Precise astrometry indicates that the GRB coincides within 0.2" with the host galaxy, thus supporting...... a massive star origin. The absolute magnitude of the galaxy is M-B = -18.2, well below the knee of the galaxy luminosity function and we derive a star-forming rate of (11.5 +/- 7.1) M-circle dot yr(-1), which is much larger than the present-day rate in our Galaxy. The quasi simultaneous broad...

  11. Host Galaxy Properties and Black Hole Mass of Swift J164449.3+573451 from Multi-wavelength Long-term Monitoring and HST Data

    Science.gov (United States)

    Yoon, Yongmin; Im, Myungshin; Jeon, Yiseul; Lee, Seong-Kook; Choi, Philip; Gehrels, Neil; Pak, Soojong; Sakamoto, Takanori; Urata, Yuji

    2015-07-01

    We study the host galaxy properties of the tidal disruption object Swift J164449.3+573451 using long-term optical to near-infrared (NIR) data. First, we decompose the galaxy surface brightness distribution and analyze the morphology of the host galaxy using high-resolution Hubble Space Telescope WFC3 images. We conclude that the host galaxy is bulge-dominant and well described by a single Sérsic model with Sérsic index n=3.43+/- 0.05. Adding a disk component, the bulge to total host galaxy flux ratio (B/ T) is 0.83 ± 0.03, which still indicates a bulge-dominant galaxy. Second, we estimate multi-band fluxes of the host galaxy through long-term light curves. Our long-term NIR light curves reveal the pure host galaxy fluxes ˜500 days after the burst. We fit spectral energy distribution models to the multi-band fluxes from the optical to NIR of the host galaxy and determine its properties. The stellar mass, the star formation rate, and the age of the stellar population are {log}({M}\\star /{M}⊙ )={9.14}-0.10+0.13, {0.03}-0.03+0.28 {M}⊙ yr-1, and {0.63}-0.43+0.95 Gyr. Finally, we estimate the mass of the central super massive black hole which is responsible for the tidal disruption event. The black hole mass is estimated to be {10}6.7+/- 0.4 {M}⊙ from {M}{BH}-{M}\\star ,{bul} and {M}{BH}-{L}{bul} relations for the K band, although a smaller value of ˜ {10}5 {M}⊙ cannot be excluded convincingly if the host galaxy harbors a pseudobulge.

  12. Resolving the faint end of the satellite luminosity function for the nearest elliptical Centaurus A

    Science.gov (United States)

    Crnojevic, Denija

    2014-10-01

    We request HST/ACS imaging to follow up 15 new faint candidate dwarfs around the nearest elliptical Centaurus A (3.8 Mpc). The dwarfs were found via a systematic ground-based (Magellan/Megacam) survey out to ~150 kpc, designed to directly confront the "missing satellites" problem in a wholly new environment. Current Cold Dark Matter models for structure formation fail to reproduce the shallow slope of the satellite luminosity function in spiral-dominated groups for which dwarfs fainter than M_V<-14 have been surveyed (the Local Group and the nearby, interacting M81 group). Clusters of galaxies show a better agreement with cosmological predictions, suggesting an environmental dependence of the (poorly-understood) physical processes acting on the evolution of low mass galaxies (e.g., reionization). However, the luminosity function completeness for these rich environments quickly drops due to the faintness of the satellites and to the difficult cluster membership determination. We target a yet unexplored "intermediate" environment, a nearby group dominated by an elliptical galaxy, ideal due to its proximity: accurate (10%) distance determinations for its members can be derived from resolved stellar populations. The proposed observations of the candidate dwarfs will confirm their nature, group membership, and constrain their luminosities, metallicities, and star formation histories. We will obtain the first complete census of dwarf satellites of an elliptical down to an unprecedented M_V<-9. Our results will crucially constrain cosmological predictions for the faint end of the satellite luminosity function to achieve a more complete picture of the galaxy formation process.

  13. Accurate shear measurement with faint sources

    International Nuclear Information System (INIS)

    Zhang, Jun; Foucaud, Sebastien; Luo, Wentao

    2015-01-01

    For cosmic shear to become an accurate cosmological probe, systematic errors in the shear measurement method must be unambiguously identified and corrected for. Previous work of this series has demonstrated that cosmic shears can be measured accurately in Fourier space in the presence of background noise and finite pixel size, without assumptions on the morphologies of galaxy and PSF. The remaining major source of error is source Poisson noise, due to the finiteness of source photon number. This problem is particularly important for faint galaxies in space-based weak lensing measurements, and for ground-based images of short exposure times. In this work, we propose a simple and rigorous way of removing the shear bias from the source Poisson noise. Our noise treatment can be generalized for images made of multiple exposures through MultiDrizzle. This is demonstrated with the SDSS and COSMOS/ACS data. With a large ensemble of mock galaxy images of unrestricted morphologies, we show that our shear measurement method can achieve sub-percent level accuracy even for images of signal-to-noise ratio less than 5 in general, making it the most promising technique for cosmic shear measurement in the ongoing and upcoming large scale galaxy surveys

  14. SPITZER ULTRA FAINT SURVEY PROGRAM (SURFS UP). II. IRAC-DETECTED LYMAN-BREAK GALAXIES AT 6 ≲ z ≲ 10 BEHIND STRONG-LENSING CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Kuang-Han; Bradač, Maruša; Hoag, Austin; Cain, Benjamin; Lubin, L. M.; Knight, Robert I. [University of California Davis, 1 Shields Avenue, Davis, CA 95616 (United States); Lemaux, Brian C. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Ryan, R. E. Jr.; Brammer, Gabriel B. [Aix Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326, F-13388 Marseille (France); Castellano, Marco; Amorin, Ricardo; Fontana, Adriano; Merlin, Emiliano [INAF—Osservatorio Astronomico di Roma Via Frascati 33, I-00040 Monte Porzio Catone (Italy); Schmidt, Kasper B. [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Schrabback, Tim [Argelander-Institut für Astronomie, Auf Dem Hügel 71, D-53121 Bonn (Germany); Treu, Tommaso [Department of Physics and Astronomy, UCLA, Los Angeles, CA 90095 (United States); Gonzalez, Anthony H. [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611 (United States); Linden, Anja von der, E-mail: khhuang@ucdavis.edu, E-mail: astrokuang@gmail.com [Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, CA 94305 (United States)

    2016-01-20

    We study the stellar population properties of the IRAC-detected 6 ≲ z ≲ 10 galaxy candidates from the Spitzer UltRa Faint SUrvey Program. Using the Lyman Break selection technique, we find a total of 17 galaxy candidates at 6 ≲ z ≲ 10 from Hubble Space Telescope images (including the full-depth images from the Hubble Frontier Fields program for MACS 1149 and MACS 0717) that have detections at signal-to-noise ratios  ≥ 3 in at least one of the IRAC 3.6 and 4.5 μm channels. According to the best mass models available for the surveyed galaxy clusters, these IRAC-detected galaxy candidates are magnified by factors of ∼1.2–5.5. Due to the magnification of the foreground galaxy clusters, the rest-frame UV absolute magnitudes M{sub 1600} are between −21.2 and −18.9 mag, while their intrinsic stellar masses are between 2 × 10{sup 8}M{sub ⊙} and 2.9 × 10{sup 9}M{sub ⊙}. We identify two Lyα emitters in our sample from the Keck DEIMOS spectra, one at z{sub Lyα} = 6.76 (in RXJ 1347) and one at z{sub Lyα} = 6.32 (in MACS 0454). We find that 4 out of 17 z ≳ 6 galaxy candidates are favored by z ≲ 1 solutions when IRAC fluxes are included in photometric redshift fitting. We also show that IRAC [3.6]–[4.5] color, when combined with photometric redshift, can be used to identify galaxies which likely have strong nebular emission lines or obscured active galactic nucleus contributions within certain redshift windows.

  15. X-ray-bright optically faint active galactic nuclei in the Subaru Hyper Suprime-Cam wide survey

    Science.gov (United States)

    Terashima, Yuichi; Suganuma, Makoto; Akiyama, Masayuki; Greene, Jenny E.; Kawaguchi, Toshihiro; Iwasawa, Kazushi; Nagao, Tohru; Noda, Hirofumi; Toba, Yoshiki; Ueda, Yoshihiro; Yamashita, Takuji

    2018-01-01

    We construct a sample of X-ray-bright optically faint active galactic nuclei by combining Subaru Hyper Suprime-Cam, XMM-Newton, and infrared source catalogs. Fifty-three X-ray sources satisfying i-band magnitude fainter than 23.5 mag and X-ray counts with the EPIC-PN detector larger than 70 are selected from 9.1 deg2, and their spectral energy distributions (SEDs) and X-ray spectra are analyzed. Forty-four objects with an X-ray to i-band flux ratio FX/Fi > 10 are classified as extreme X-ray-to-optical flux sources. Spectral energy distributions of 48 among 53 are represented by templates of type 2 AGNs or star-forming galaxies and show the optical signature of stellar emission from host galaxies in the source rest frame. Infrared/optical SEDs indicate a significant contribution of emission from dust to the infrared fluxes, and that the central AGN is dust obscured. The photometric redshifts determined from the SEDs are in the range of 0.6-2.5. The X-ray spectra are fitted by an absorbed power-law model, and the intrinsic absorption column densities are modest (best-fit log NH = 20.5-23.5 cm-2 in most cases). The absorption-corrected X-ray luminosities are in the range of 6 × 1042-2 × 1045 erg s-1. Twenty objects are classified as type 2 quasars based on X-ray luminsosity and NH. The optical faintness is explained by a combination of redshifts (mostly z > 1.0), strong dust extinction, and in part a large ratio of dust/gas.

  16. Blending bias impacts the host halo masses derived from a cross-correlation analysis of bright submillimetre galaxies

    NARCIS (Netherlands)

    Cowley, William I.; Lacey, Cedric G.; Baugh, Carlton M.; Cole, Shaun; Wilkinson, Aaron

    2017-01-01

    Placing bright submillimetre galaxies (SMGs) within the broader context of galaxy formation and evolution requires accurate measurements of their clustering, which can constrain the masses of their host dark matter haloes. Recent work has shown that the clustering measurements of these galaxies may

  17. THE LOCAL HOSTS OF TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Neill, James D.; Martin, D. Christopher; Barlow, Tom A.; Foster, Karl; Friedman, Peter G.; Morrissey, Patrick; Wyder, Ted K.; Sullivan, Mark; Howell, D. Andrew; Conley, Alex; Seibert, Mark; Madore, Barry F.; Neff, Susan G.; Schiminovich, David; Bianchi, Luciana; Donas, Jose; Milliard, Bruno; Heckman, Timothy M.; Lee, Young-Wook; Rich, R. Michael

    2009-01-01

    We use multi-wavelength, matched aperture, integrated photometry from the Galaxy Evolution Explorer (GALEX), the Sloan Digital Sky Survey, and the RC3 to estimate the physical properties of 166 nearby galaxies hosting 168 well-observed Type Ia supernovae (SNe Ia). The ultraviolet (UV) imaging of local SN Ia hosts from GALEX allows a direct comparison with higher-redshift hosts measured at optical wavelengths that correspond to the rest-frame UV. Our data corroborate well-known features that have been seen in other SN Ia samples. Specifically, hosts with active star formation produce brighter and slower SNe Ia on average, and hosts with luminosity-weighted ages older than 1 Gyr produce on average more faint, fast, and fewer bright, slow SNe Ia than younger hosts. New results include that in our sample, the faintest and fastest SNe Ia occur only in galaxies exceeding a stellar mass threshold of ∼10 10 M sun , leading us to conclude that their progenitors must arise in populations that are older and/or more metal rich than the general SN Ia population. A low host extinction subsample hints at a residual trend in peak luminosity with host age, after correcting for light-curve shape, giving the appearance that older hosts produce less-extincted SNe Ia on average. This has implications for cosmological fitting of SNe Ia, and suggests that host age could be useful as a parameter in the fitting. Converting host mass to metallicity and computing 56 Ni mass from the supernova light curves, we find that our local sample is consistent with a model that predicts a shallow trend between stellar metallicity and the 56 Ni mass that powers the explosion, but we cannot rule out the absence of a trend. We measure a correlation between 56 Ni mass and host age in the local universe that is shallower and not as significant as that seen at higher redshifts. The details of the age- 56 Ni mass correlations at low and higher redshift imply a luminosity-weighted age threshold of ∼3 Gyr

  18. Stellar Photometric Structures of the Host Galaxies of Nearby Type 1 Active Galactic Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Minjin [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of); Ho, Luis C. [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Peng, Chien Y. [Giant Magellan Telescope Corporation, 251 S. Lake Ave., Suite 300, Pasadena, CA 91101 (United States); Barth, Aaron J. [Department of Physics and Astronomy, University of California at Irvine, 4129 Frederick Reines Hall, Irvine, CA 92697-4575 (United States); Im, Myungshin, E-mail: mkim@kasi.re.kr, E-mail: lho.pku@gmail.com, E-mail: peng@gmto.org, E-mail: barth@uci.edu, E-mail: mim@astro.snu.ac.kr [Department of Physics and Astronomy, Frontier Physics Research Division (FPRD), Seoul National University, Seoul (Korea, Republic of)

    2017-10-01

    We present detailed image analysis of rest-frame optical images of 235 low-redshift ( z ≲ 0.35) Type 1 active galactic nuclei (AGNs) observed with the Hubble Space Telescope . The high-resolution images enable us to perform rigorous two-dimensional image modeling to decouple the luminous central point source from the host galaxy, which, when warranted, is further decomposed into its principal structural components (bulge, bar, and disk). In many cases, care must be taken to account for structural complexities such as spiral arms, tidal features, and overlapping or interacting companion galaxies. We employ Fourier modes to characterize the degree of asymmetry of the light distribution of the stars as a quantitative measure of morphological distortion due to interactions or mergers. We examine the dependence of the physical parameters of the host galaxies on the properties of the AGNs, namely, radio-loudness and the width of the broad emission lines. In accordance with previous studies, narrow-line (H β FWHM ≤ 2000 km s{sup −1}) Type 1 AGNs, in contrast to their broad-line (H β FWHM > 2000 km s{sup −1}) counterparts, are preferentially hosted in later-type, lower-luminosity galaxies, which have a higher incidence of pseudo-bulges, are more frequently barred, and are less morphologically disturbed. This suggests that narrow-line Type 1 AGNs experienced a more quiescent evolutionary history driven primarily by internal secular evolution instead of external dynamical perturbations. The fraction of AGN hosts showing merger signatures is larger for more luminous sources. Radio-loud AGNs generally preferentially live in earlier-type (bulge-dominated), more massive hosts, although a minority of them appear to contain a significant disk component. We do not find convincing evidence for enhanced merger signatures in the radio-loud population.

  19. Energy input from quasars regulates the growth and activity of black holes and their host galaxies.

    Science.gov (United States)

    Di Matteo, Tiziana; Springel, Volker; Hernquist, Lars

    2005-02-10

    In the early Universe, while galaxies were still forming, black holes as massive as a billion solar masses powered quasars. Supermassive black holes are found at the centres of most galaxies today, where their masses are related to the velocity dispersions of stars in their host galaxies and hence to the mass of the central bulge of the galaxy. This suggests a link between the growth of the black holes and their host galaxies, which has indeed been assumed for a number of years. But the origin of the observed relation between black hole mass and stellar velocity dispersion, and its connection with the evolution of galaxies, have remained unclear. Here we report simulations that simultaneously follow star formation and the growth of black holes during galaxy-galaxy collisions. We find that, in addition to generating a burst of star formation, a merger leads to strong inflows that feed gas to the supermassive black hole and thereby power the quasar. The energy released by the quasar expels enough gas to quench both star formation and further black hole growth. This determines the lifetime of the quasar phase (approaching 100 million years) and explains the relationship between the black hole mass and the stellar velocity dispersion.

  20. Radio Galaxy Zoo: Machine learning for radio source host galaxy cross-identification

    Science.gov (United States)

    Alger, M. J.; Banfield, J. K.; Ong, C. S.; Rudnick, L.; Wong, O. I.; Wolf, C.; Andernach, H.; Norris, R. P.; Shabala, S. S.

    2018-05-01

    We consider the problem of determining the host galaxies of radio sources by cross-identification. This has traditionally been done manually, which will be intractable for wide-area radio surveys like the Evolutionary Map of the Universe (EMU). Automated cross-identification will be critical for these future surveys, and machine learning may provide the tools to develop such methods. We apply a standard approach from computer vision to cross-identification, introducing one possible way of automating this problem, and explore the pros and cons of this approach. We apply our method to the 1.4 GHz Australian Telescope Large Area Survey (ATLAS) observations of the Chandra Deep Field South (CDFS) and the ESO Large Area ISO Survey South 1 (ELAIS-S1) fields by cross-identifying them with the Spitzer Wide-area Infrared Extragalactic (SWIRE) survey. We train our method with two sets of data: expert cross-identifications of CDFS from the initial ATLAS data release and crowdsourced cross-identifications of CDFS from Radio Galaxy Zoo. We found that a simple strategy of cross-identifying a radio component with the nearest galaxy performs comparably to our more complex methods, though our estimated best-case performance is near 100 per cent. ATLAS contains 87 complex radio sources that have been cross-identified by experts, so there are not enough complex examples to learn how to cross-identify them accurately. Much larger datasets are therefore required for training methods like ours. We also show that training our method on Radio Galaxy Zoo cross-identifications gives comparable results to training on expert cross-identifications, demonstrating the value of crowdsourced training data.

  1. A faint galaxy redshift survey behind massive clusters

    Energy Technology Data Exchange (ETDEWEB)

    Frye, Brenda Louise [Univ. of California, Berkeley, CA (United States)

    1999-05-01

    This thesis is concerned with the gravitational lensing effect by massive galaxy clusters. We have explored a new technique for measuring galaxy masses and for detecting high-z galaxies by their optical colors. A redshift survey has been obtained at the Keck for a magnitude limited sample of objects (I<23) behind three clusters, A1689, A2390, and A2218 within a radius of 0.5M pc. For each cluster we see both a clear trend of increasing flux and redshift towards the center. This behavior is the result of image magnifications, such that at fixed redshift one sees further down the luminosity function. The gradient of this magnification is, unlike measurements of image distortion, sensitive to the mass profile, and found to depart strongly from a pure isothermal halo. We have found that V RI color selection can be used effectively as a discriminant for finding high-z galaxies behind clusters and present five 4.1 < z < 5.1 spectra which are of very high quality due to their high mean magnification of ~20, showing strong, visibly-saturated interstellar metal lines in some cases. We have also investigated the radio ring lens PKS 1830-211, locating the source and multiple images and detected molecular absorption at mm wavelengths. Broad molecular absorption of width 1/40kms is found toward the southwest component only, where surprisingly it does not reach the base of the continuum, which implies incomplete coverage of the SW component by molecular gas, despite the small projected size of the source, less than 1/8h pc at the absorption redshift.

  2. GEMINI SPECTROSCOPY OF THE SHORT-HARD GAMMA-RAY BURST GRB 130603B AFTERGLOW AND HOST GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Cucchiara, A.; Prochaska, J. X.; Werk, J. [Department of Astronomy and Astrophysics, UCO/Lick Observatory, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); Perley, D.; Cao, Y. [Department of Astronomy, California Institute of Technology, MC 249-17, 1200 East California Blvd, Pasadena, CA 91125 (United States); Cenko, S. B. [Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD (United States); Cardwell, A.; Turner, J. [Gemini South Observatory, AURA, Casilla 603, La Serena (Chile); Bloom, J. S. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Cobb, B. E., E-mail: acucchia@ucolick.org [The George Washington University, Washington, DC (United States)

    2013-11-10

    We present early optical photometry and spectroscopy of the afterglow and host galaxy of the bright short-duration gamma-ray burst GRB 130603B discovered by the Swift satellite. Using our Target of Opportunity program on the Gemini South telescope, our prompt optical spectra reveal a strong trace from the afterglow superimposed on continuum and emission lines from the z = 0.3568 ± 0.0005 host galaxy. The combination of a relatively bright optical afterglow (r' = 21.52 at Δt = 8.4 hr), together with an observed offset of 0.''9 from the host nucleus (4.8 kpc projected distance at z = 0.3568), allow us to extract a relatively clean spectrum dominated by afterglow light. Furthermore, the spatially resolved spectrum allows us to constrain the properties of the explosion site directly, and compare these with the host galaxy nucleus, as well as other short-duration GRB host galaxies. We find that while the host is a relatively luminous (L∼0.8 L{sup *}{sub B}), star-forming (SFR = 1.84 M{sub ☉} yr{sup –1}) galaxy with almost solar metallicity, the spectrum of the afterglow exhibits weak Ca II absorption features but negligible emission features. The explosion site therefore lacks evidence of recent star formation, consistent with the relatively long delay time distribution expected in a compact binary merger scenario. The star formation rate (SFR; both in an absolute sense and normalized to the luminosity) and metallicity of the host are both consistent with the known sample of short-duration GRB hosts and with recent results which suggest GRB 130603B emission to be the product of the decay of radioactive species produced during the merging process of a neutron-star-neutron-star binary ({sup k}ilonova{sup )}. Ultimately, the discovery of more events similar to GRB 130603B and their rapid follow-up from 8 m class telescopes will open new opportunities for our understanding of the final stages of compact-objects binary systems and provide crucial

  3. Correlations Between Central Massive Objects And Their Host Galaxies: From Bulgeless Spirals to Ellipticals

    OpenAIRE

    Li, Yuexing; Haiman, Zoltán; Mac Low, Mordecai-Mark

    2006-01-01

    Recent observations by Ferrarese et al. (2006) and Wehner et al. (2006) reveal that a majority of galaxies contain a central massive object (CMO), either a supermassive black hole (SMBH) or a compact stellar nucleus, regardless of the galaxy mass or morphological type, and that there is a tight relation between the masses of CMOs and those of the host galaxies. Several recent studies show that feedback from black holes can successfully explain the $\\msigma$ correlation in massive elliptical g...

  4. DYNAMICAL EVOLUTION OF AGN HOST GALAXIES-GAS IN/OUT-FLOW RATES IN SEVEN NUGA GALAXIES

    International Nuclear Information System (INIS)

    Haan, Sebastian; Schinnerer, Eva; Rix, Hans-Walter; Emsellem, Eric; GarcIa-Burillo, Santiago; Combes, Francoise; Mundell, Carole G.

    2009-01-01

    To examine the role of the host galaxy structure in fueling nuclear activity, we estimated gas flow rates from several kpc down to the inner few 10 pc for seven nearby spiral galaxies, selected from the NUclei of GAlaxies sample. We calculated gravitational torques from near-infrared images and determined gas in/out-flow rates as a function of radius and location within the galactic disks, based on high angular resolution interferometric observations of molecular (CO using Plateau de Bure interferometer) and atomic (H I using the Very Large Array) gas. The results are compared with kinematic evidence for radial gas flows and the dynamical state of the galaxies (via resonances) derived from several different methods. We show that gravitational torques are very efficient at transporting gas from the outer disk all the way into the galaxies centers at ∼100 pc; previously assumed dynamical barriers to gas transport, such as the corotation resonance of stellar bars, seem to be overcome by gravitational torque induced gas flows from other nonaxisymmetric structures. The resulting rates of gas mass inflow range from 0.01 to 50 M sun yr -1 and are larger for the galaxy center than for the outer disk. Our gas flow maps show the action of nested bars within larger bars for three galaxies. Noncircular streaming motions found in the kinematic maps are larger in the center than in the outer disk and appear to correlate only loosely with the in/out-flow rates as a function of radius. We demonstrate that spiral gas disks are very dynamic systems that undergo strong radial evolution on timescales of a few rotation periods (e.g., 5 x 10 8 yrs at a radius of 5 kpc), due to the effectiveness of gravitational torques in redistributing the cold galactic gas.

  5. Complete Element Abundances of Nine Stars in the r-process Galaxy Reticulum II

    Science.gov (United States)

    Ji, Alexander P.; Frebel, Anna; Simon, Joshua D.; Chiti, Anirudh

    2016-10-01

    We present chemical abundances derived from high-resolution Magellan/Magellan Inamori Kyocera Echelle spectra of the nine brightest known red giant members of the ultra-faint dwarf galaxy Reticulum II (Ret II). These stars span the full metallicity range of Ret II (-3.5 contaminated known r-process pattern. The abundances of lighter elements up to the iron peak are otherwise similar to abundances of stars in the halo and in other ultra-faint dwarf galaxies. However, the scatter in abundance ratios is large enough to suggest that inhomogeneous metal mixing is required to explain the chemical evolution of this galaxy. The presence of low amounts of neutron-capture elements in other ultra-faint dwarf galaxies may imply the existence of additional r-process sites besides the source of r-process elements in Ret II. Galaxies like Ret II may be the original birth sites of r-process enhanced stars now found in the halo. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  6. DEEP SPITZER OBSERVATIONS OF INFRARED-FAINT RADIO SOURCES: HIGH-REDSHIFT RADIO-LOUD ACTIVE GALACTIC NUCLEI?

    International Nuclear Information System (INIS)

    Norris, Ray P.; Mao, Minnie; Afonso, Jose; Cava, Antonio; Farrah, Duncan; Oliver, Seb; Huynh, Minh T.; Mauduit, Jean-Christophe; Surace, Jason; Ivison, R. J.; Jarvis, Matt; Lacy, Mark; Maraston, Claudia; Middelberg, Enno; Seymour, Nick

    2011-01-01

    Infrared-faint radio sources (IFRSs) are a rare class of objects which are relatively bright at radio wavelengths but very faint at infrared and optical wavelengths. Here we present sensitive near-infrared observations of a sample of these sources taken as part of the Spitzer Extragalactic Representative Volume Survey. Nearly all the IFRSs are undetected at a level of ∼1 μJy in these new deep observations, and even the detections are consistent with confusion with unrelated galaxies. A stacked image implies that the median flux density is S 3.6μm ∼ 0.2 μJy or less, giving extreme values of the radio-infrared flux density ratio. Comparison of these objects with known classes of object suggests that the majority are probably high-redshift radio-loud galaxies, possibly suffering from significant dust extinction.

  7. Alignment statistics of clusters with their brightest members at bright and faint isophotes

    International Nuclear Information System (INIS)

    Struble, M.F.

    1987-01-01

    For a sample of 21 first-ranked cluster galaxies with published isophotal photometry and position angles of these isophotes, it is found that the major axes of both the bright and faint isophotal contours tend to be aligned within about 30 deg of the major axis of the parent cluster. This supports the hypothesis that first-ranked galaxies are formed already aligned with their parent clusters rather than the hypothesis that only outer envelopes which accreted after formation are aligned with the cluster. 21 references

  8. R-band host galaxy contamination of TeV γ-ray blazar Mrk 501: effects of aperture size and seeing

    Science.gov (United States)

    Feng, Hai-Cheng; Liu, Hong-Tao; Zhao, Ying-He; Bai, Jin-Ming; Wang, Fang; Fan, Xu-Liang

    2018-02-01

    We simulated the R-band contribution of the host galaxy of TeV γ-ray BL Lac object Mrk 501 in different aperture sizes and seeing conditions. An intensive set of observations was acquired with the 1.02 m optical telescope, managed by Yunnan Observatories, from 2010 May 15 to 18. Based on the host subtraction data usually used in the literature, the subtraction of host galaxy contamination results in significant seeing-brightness correlations. These correlations would lead to illusive large amplitude variations at short timescales, which will mask the intrinsic microvariability, thus giving rise to difficulty in detecting the intrinsic microvariability. Both aperture size and seeing condition influence the flux measurements, but the aperture size impacts the result more significantly. Based on the parameters of an elliptical galaxy provided in the literature, we simulated the host contributions of Mrk 501 in different aperture sizes and seeing conditions. Our simulation data of the host galaxy obviously weaken these significant seeing-brightness correlations for the host-subtracted brightness of Mrk 501, and can help us discover the intrinsic short timescale microvariability. The pure nuclear flux is ∼8.0mJy in the R band, i.e., the AGN has a magnitude of R ∼ 13.96 mag.

  9. Lensing of Fast Radio Bursts by Plasma Structures in Host Galaxies

    NARCIS (Netherlands)

    Cordes, J.M.; Wasserman, I.; Hessels, J.W.T.; Lazio, T.J.W.; Chatterjee, S.; Wharton, R.S.

    2017-01-01

    The amplitudes of fast radio bursts (FRBs) can be strongly modulated by plasma lenses in their host galaxies, including that of the repeating FRB 121102 at ∼1 Gpc luminosity distance. Caustics require the lens’ dispersion measure depth ({{DM}}{\\ell }), scale size (a), and distance from the source

  10. Supermassive Black Holes and Their Host Spheroids. I. Disassembling Galaxies

    Science.gov (United States)

    Savorgnan, G. A. D.; Graham, A. W.

    2016-01-01

    Several recent studies have performed galaxy decompositions to investigate correlations between the black hole mass and various properties of the host spheroid, but they have not converged on the same conclusions. This is because their models for the same galaxy were often significantly different and not consistent with each other in terms of fitted components. Using 3.6 μm Spitzer imagery, which is a superb tracer of the stellar mass (superior to the K band), we have performed state-of-the-art multicomponent decompositions for 66 galaxies with directly measured black hole masses. Our sample is the largest to date and, unlike previous studies, contains a large number (17) of spiral galaxies with low black hole masses. We paid careful attention to the image mosaicking, sky subtraction, and masking of contaminating sources. After a scrupulous inspection of the galaxy photometry (through isophotal analysis and unsharp masking) and—for the first time—2D kinematics, we were able to account for spheroids large-scale, intermediate-scale, and nuclear disks bars rings spiral arms halos extended or unresolved nuclear sources; and partially depleted cores. For each individual galaxy, we compared our best-fit model with previous studies, explained the discrepancies, and identified the optimal decomposition. Moreover, we have independently performed one-dimensional (1D) and two-dimensional (2D) decompositions and concluded that, at least when modeling large, nearby galaxies, 1D techniques have more advantages than 2D techniques. Finally, we developed a prescription to estimate the uncertainties on the 1D best-fit parameters for the 66 spheroids that takes into account systematic errors, unlike popular 2D codes that only consider statistical errors.

  11. Possible Correlations between the Emission Properties of SGRBs and Their Offsets from the Host Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shuai; Jin, Zhi-Ping; Li, Xiang; Fan, Yi-Zhong; Wei, Da-Ming [Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing, 210008 (China); Zhang, Fu-Wen, E-mail: jin@pmo.ac.cn, E-mail: yzfan@pmo.ac.cn, E-mail: dmwei@pmo.ac.cn [College of Science, Guilin University of Technology, Guilin 541004 (China)

    2017-07-20

    Short gamma-ray bursts (SGRBs) are widely believed to be from mergers of binary compact objects involving at least one neutron star and hence have a broad range of spatial offsets from their host galaxies. In this work, we search for possible correlations between the emission properties of 18 SGRBs and their offsets from the host galaxies. The SGRBs with and without extended emission do not show significant differences between their offset distributions, in agreement with some previous works. There are, however, possible correlations between the optical and X-ray afterglow emission and the offsets. The underlying physical origins are examined.

  12. Stellar Photometric Structures of the Host Galaxies of Nearby Type 1 Active Galactic Nuclei

    Science.gov (United States)

    Kim, Minjin; Ho, Luis C.; Peng, Chien Y.; Barth, Aaron J.; Im, Myungshin

    2017-10-01

    We present detailed image analysis of rest-frame optical images of 235 low-redshift (z ≲ 0.35) Type 1 active galactic nuclei (AGNs) observed with the Hubble Space Telescope. The high-resolution images enable us to perform rigorous two-dimensional image modeling to decouple the luminous central point source from the host galaxy, which, when warranted, is further decomposed into its principal structural components (bulge, bar, and disk). In many cases, care must be taken to account for structural complexities such as spiral arms, tidal features, and overlapping or interacting companion galaxies. We employ Fourier modes to characterize the degree of asymmetry of the light distribution of the stars as a quantitative measure of morphological distortion due to interactions or mergers. We examine the dependence of the physical parameters of the host galaxies on the properties of the AGNs, namely, radio-loudness and the width of the broad emission lines. In accordance with previous studies, narrow-line (Hβ FWHM ≤ 2000 km s-1) Type 1 AGNs, in contrast to their broad-line (Hβ FWHM > 2000 km s-1) counterparts, are preferentially hosted in later-type, lower-luminosity galaxies, which have a higher incidence of pseudo-bulges, are more frequently barred, and are less morphologically disturbed. This suggests that narrow-line Type 1 AGNs experienced a more quiescent evolutionary history driven primarily by internal secular evolution instead of external dynamical perturbations. The fraction of AGN hosts showing merger signatures is larger for more luminous sources. Radio-loud AGNs generally preferentially live in earlier-type (bulge-dominated), more massive hosts, although a minority of them appear to contain a significant disk component. We do not find convincing evidence for enhanced merger signatures in the radio-loud population. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute

  13. The Masses and Stellar Content of Nuclei in Early-Type Galaxies from Multi-Band Photometry and Spectroscopy

    Science.gov (United States)

    Spengler, Chelsea; Côté, Patrick; Roediger, Joel; Ferrarese, Laura; Sánchez-Janssen, Rubén; Toloba, Elisa; Liu, Yiqing; Guhathakurta, Puragra; Cuillandre, Jean-Charles; Gwyn, Stephen; Zirm, Andrew; Muñoz, Roberto; Puzia, Thomas; Lançon, Ariane; Peng, Eric; Mei, Simona; Powalka, Mathieu

    2018-01-01

    It is now established that most, if not all, massive galaxies host central supermassive black holes (SMBHs), and that these SMBHs are linked to the growth their host galaxies as shown by several scaling relations. Within the last couple of decades, it has become apparent that most lower-mass galaxies without obvious SMBHs nevertheless contain some sort of central massive object in the form of compact stellar nuclei that also follow identical (or similar) scaling relations. These nuclei are challenging to study given their small sizes and relatively faint magnitudes, but understanding their origins and relationship to their hosts is critical to gaining a more complete picture of galaxy evolution. To that end, we highlight selected results from an analysis of 39 nuclei and their early-type hosts in the Virgo Cluster using ten broadband filters: F300W, F475W, F850LP, F160W, u*griz, and Ks. We estimate masses, metallicities and ages using simple stellar population (SSP) models. For 19 nuclei, we compare to SSP parameters derived from Keck and Gemini spectra and find reasonable agreement between the photometric and spectroscopic metallicity: the RMS scatter is 0.3 dex. We reproduce the nucleus-galaxy mass fraction of 0.33 ± 0.08% for galaxy stellar masses 108.4-1010.3 M⊙ with a typical precision of ~35% for the nuclei masses. Based on available model predictions, there is no single preferred formation scenario for nuclei, suggesting that nuclei are formed stochastically through a mix of processes. Nuclei metallicities are statistically identical to those of their hosts, appearing 0.07 ± 0.3 dex more metal-rich on average — although, omitting galaxies with unusual origins (i.e., compact ellipticals), nuclei are 0.20 ± 0.28 dex more metal-rich. We find no clear age difference between nuclei and their galaxies, with nuclei displaying a broad range of ages. Interestingly, we find that the most massive nuclei may be flatter and more closely aligned with the semi

  14. Elemental gas-phase abundances of intermediate redshift type Ia supernova star-forming host galaxies

    Science.gov (United States)

    Moreno-Raya, M. E.; Galbany, L.; López-Sánchez, Á. R.; Mollá, M.; González-Gaitán, S.; Vílchez, J. M.; Carnero, A.

    2018-05-01

    The maximum luminosity of type Ia supernovae (SNe Ia) depends on the oxygen abundance of the regions of the host galaxies, where they explode. This metallicity dependence reduces the dispersion in the Hubble diagram (HD) when included with the traditional two-parameter calibration of SN Ia light-curve parameters and absolute magnitude. In this work, we use empirical calibrations to carefully estimate the oxygen abundance of galaxies hosting SNe Ia from the SDSS-II/SN (Sloan Digital Sky Survey-II Supernova) survey at intermediate redshift by measuring their emission-line intensities. We also derive electronic temperature with the direct method for a small fraction of objects for consistency. We find a trend of decreasing oxygen abundance with increasing redshift for the most massive galaxies. Moreover, we study the dependence of the HD residuals (HR) with galaxy oxygen abundance obtaining a correlation in line with those found in other works. In particular, the HR versus oxygen abundance shows a slope of -0.186 ± 0.123 mag dex-1 (1.52σ) in good agreement with theoretical expectations. This implies smaller distance modulii after corrections for SNe Ia in metal-rich galaxies. Based on our previous results on local SNe Ia, we propose this dependence to be due to the lower luminosity of the SNe Ia produced in more metal-rich environments.

  15. STELLAR ARCHEOLOGY IN THE GALACTIC HALO WITH ULTRA-FAINT DWARFS. VII. HERCULES

    Energy Technology Data Exchange (ETDEWEB)

    Musella, Ilaria; Ripepi, Vincenzo; Marconi, Marcella, E-mail: ilaria@na.astro.it, E-mail: ripepi@na.astro.it, E-mail: marcella@na.astro.it [INAF, Osservatorio Astronomico di Capodimonte, I-8013 Napoli (Italy); and others

    2012-09-10

    We present the first time-series study of the ultra-faint dwarf galaxy Hercules. Using a variety of telescope/instrument facilities we secured about 50 V and 80 B epochs. These data allowed us to detect and characterize 10 pulsating variable stars in Hercules. Our final sample includes six fundamental-mode (ab-type) and three first-overtone (c-type) RR Lyrae stars, and one Anomalous Cepheid. The average period of the ab-type RR Lyrae stars, (P{sub ab}) = 0.68 days ({sigma} = 0.03 days), places Hercules in the Oosterhoff II group, as found for almost the totality of the ultra-faint dwarf galaxies investigated so far for variability. The RR Lyrae stars were used to obtain independent estimates of the metallicity, reddening, and distance to Hercules, for which we find [Fe/H] = -2.30 {+-} 0.15 dex, E(B - V) = 0.09 {+-} 0.02 mag, and (m - M){sub 0} = 20.6 {+-} 0.1 mag, in good agreement with the literature values. We have obtained a V, B - V color-magnitude diagram (CMD) of Hercules that reaches V {approx} 25 mag and extends beyond the galaxy's half-light radius over a total area of 40' Multiplication-Sign 36'. The CMD and the RR Lyrae stars indicate the presence of a population as old and metal-poor as (at least) the Galactic globular cluster M68.

  16. Distant Galaxy Clusters Hosting Extreme Central Galaxies

    Science.gov (United States)

    McDonald, Michael

    2014-09-01

    The recently-discovered Phoenix cluster harbors the most star-forming central cluster galaxy of any cluster in the known Universe, by nearly a factor of 10. This extreme system appears to be fulfilling early cooling flow predictions, although the lack of similar systems makes any interpretation difficult. In an attempt to find other "Phoenix-like" clusters, we have cross-correlated archival all-sky surveys (in which Phoenix was detected) and isolated 4 similarly-extreme systems which are also coincident in position and redshift with an overdensity of red galaxies. We propose here to obtain Chandra observations of these extreme, Phoenix-like systems, in order to confirm them as relaxed, rapidly-cooling galaxy clusters.

  17. First measurement of H I 21 cm emission from a GRB host galaxy indicates a post-merger system

    Science.gov (United States)

    Arabsalmani, Maryam; Roychowdhury, Sambit; Zwaan, Martin A.; Kanekar, Nissim; Michałowski, Michał J.

    2015-11-01

    We report the detection and mapping of atomic hydrogen in H I 21 cm emission from ESO 184-G82, the host galaxy of the gamma-ray burst 980425. This is the first instance where H I in emission has been detected from a galaxy hosting a gamma-ray burst (GRB). ESO 184-G82 is an isolated galaxy and contains a Wolf-Rayet region close to the location of the GRB and the associated supernova, SN 1998bw. This is one of the most luminous H II regions identified in the local Universe, with a very high inferred density of star formation. The H I 21 cm observations reveal a high H I mass for the galaxy, twice as large as the stellar mass. The spatial and velocity distribution of the H I 21 cm emission reveals a disturbed rotating gas disc, which suggests that the galaxy has undergone a recent minor merger that disrupted its rotation. We find that the Wolf-Rayet region and the GRB are both located in the highest H I column density region of the galaxy. We speculate that the merger event has resulted in shock compression of the gas, triggering extreme star formation activity, and resulting in the formation of both the Wolf-Rayet region and the GRB. The high H I column density environment of the GRB is consistent with the high H I column densities seen in absorption in the host galaxies of high-redshift GRBs.

  18. Galaxy number counts: Pt. 2

    International Nuclear Information System (INIS)

    Metcalfe, N.; Shanks, T.; Fong, R.; Jones, L.R.

    1991-01-01

    Using the Prime Focus CCD Camera at the Isaac Newton Telescope we have determined the form of the B and R galaxy number-magnitude count relations in 12 independent fields for 21 m ccd m and 19 m ccd m 5. The average galaxy count relations lie in the middle of the wide range previously encompassed by photographic data. The field-to-field variation of the counts is small enough to define the faint (B m 5) galaxy count to ±10 per cent and this variation is consistent with that expected from galaxy clustering considerations. Our new data confirm that the B, and also the R, galaxy counts show evidence for strong galaxy luminosity evolution, and that the majority of the evolving galaxies are of moderately blue colour. (author)

  19. Black Hole Growth Is Mainly Linked to Host-galaxy Stellar Mass Rather Than Star Formation Rate

    Science.gov (United States)

    Yang, G.; Chen, C.-T. J.; Vito, F.; Brandt, W. N.; Alexander, D. M.; Luo, B.; Sun, M. Y.; Xue, Y. Q.; Bauer, F. E.; Koekemoer, A. M.; Lehmer, B. D.; Liu, T.; Schneider, D. P.; Shemmer, O.; Trump, J. R.; Vignali, C.; Wang, J.-X.

    2017-06-01

    We investigate the dependence of black hole accretion rate (BHAR) on host-galaxy star formation rate (SFR) and stellar mass (M *) in the CANDELS/GOODS-South field in the redshift range of 0.5≤slant zteam through spectral energy distribution fitting. The average BHAR is correlated positively with both SFR and M *, and the BHAR-SFR and BHAR-M * relations can both be described acceptably by linear models with a slope of unity. However, BHAR appears to be correlated more strongly with M * than SFR. This result indicates that M * is the primary host-galaxy property related to supermassive black hole (SMBH) growth, and the apparent BHAR-SFR relation is largely a secondary effect due to the star-forming main sequence. Among our sources, massive galaxies ({M}* ≳ {10}10{M}⊙ ) have significantly higher BHAR/SFR ratios than less massive galaxies, indicating that the former have higher SMBH fueling efficiency and/or higher SMBH occupation fraction than the latter. Our results can naturally explain the observed proportionality between {M}{BH} and M * for local giant ellipticals and suggest that their {M}{BH}/{M}* is higher than that of local star-forming galaxies. Among local star-forming galaxies, massive systems might have higher {M}{BH}/{M}* compared to dwarfs.

  20. SUPERMASSIVE BLACK HOLES AND THEIR HOST SPHEROIDS. I. DISASSEMBLING GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Savorgnan, G. A. D.; Graham, A. W., E-mail: gsavorgn@astro.swin.edu.au [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia)

    2016-01-15

    Several recent studies have performed galaxy decompositions to investigate correlations between the black hole mass and various properties of the host spheroid, but they have not converged on the same conclusions. This is because their models for the same galaxy were often significantly different and not consistent with each other in terms of fitted components. Using 3.6 μm Spitzer imagery, which is a superb tracer of the stellar mass (superior to the K band), we have performed state-of-the-art multicomponent decompositions for 66 galaxies with directly measured black hole masses. Our sample is the largest to date and, unlike previous studies, contains a large number (17) of spiral galaxies with low black hole masses. We paid careful attention to the image mosaicking, sky subtraction, and masking of contaminating sources. After a scrupulous inspection of the galaxy photometry (through isophotal analysis and unsharp masking) and—for the first time—2D kinematics, we were able to account for spheroids; large-scale, intermediate-scale, and nuclear disks; bars; rings; spiral arms; halos; extended or unresolved nuclear sources; and partially depleted cores. For each individual galaxy, we compared our best-fit model with previous studies, explained the discrepancies, and identified the optimal decomposition. Moreover, we have independently performed one-dimensional (1D) and two-dimensional (2D) decompositions and concluded that, at least when modeling large, nearby galaxies, 1D techniques have more advantages than 2D techniques. Finally, we developed a prescription to estimate the uncertainties on the 1D best-fit parameters for the 66 spheroids that takes into account systematic errors, unlike popular 2D codes that only consider statistical errors.

  1. SUPERMASSIVE BLACK HOLES AND THEIR HOST SPHEROIDS. I. DISASSEMBLING GALAXIES

    International Nuclear Information System (INIS)

    Savorgnan, G. A. D.; Graham, A. W.

    2016-01-01

    Several recent studies have performed galaxy decompositions to investigate correlations between the black hole mass and various properties of the host spheroid, but they have not converged on the same conclusions. This is because their models for the same galaxy were often significantly different and not consistent with each other in terms of fitted components. Using 3.6 μm Spitzer imagery, which is a superb tracer of the stellar mass (superior to the K band), we have performed state-of-the-art multicomponent decompositions for 66 galaxies with directly measured black hole masses. Our sample is the largest to date and, unlike previous studies, contains a large number (17) of spiral galaxies with low black hole masses. We paid careful attention to the image mosaicking, sky subtraction, and masking of contaminating sources. After a scrupulous inspection of the galaxy photometry (through isophotal analysis and unsharp masking) and—for the first time—2D kinematics, we were able to account for spheroids; large-scale, intermediate-scale, and nuclear disks; bars; rings; spiral arms; halos; extended or unresolved nuclear sources; and partially depleted cores. For each individual galaxy, we compared our best-fit model with previous studies, explained the discrepancies, and identified the optimal decomposition. Moreover, we have independently performed one-dimensional (1D) and two-dimensional (2D) decompositions and concluded that, at least when modeling large, nearby galaxies, 1D techniques have more advantages than 2D techniques. Finally, we developed a prescription to estimate the uncertainties on the 1D best-fit parameters for the 66 spheroids that takes into account systematic errors, unlike popular 2D codes that only consider statistical errors

  2. OVERDENSITIES OF Y-DROPOUT GALAXIES FROM THE BRIGHTEST-OF-REIONIZING GALAXIES SURVEY: A CANDIDATE PROTOCLUSTER AT REDSHIFT z ≈ 8

    International Nuclear Information System (INIS)

    Trenti, Michele; Shull, J. M.; Bradley, L. D.; Stiavelli, M.; Oesch, P.; Bouwens, R. J.; Muñoz, J. A.; Romano-Diaz, E.; Shlosman, I.; Treu, T.; Carollo, C. M.

    2012-01-01

    Theoretical and numerical modeling of the assembly of dark-matter halos predicts that the most massive and luminous galaxies at high redshift are surrounded by overdensities of fainter companions. We test this prediction with Hubble Space Telescope observations acquired by our Brightest-of-Reionizing Galaxies (BoRG) survey, which identified four very bright z ∼ 8 candidates as Y 098 -dropout sources in four of the 23 non-contiguous Wide Field Camera 3 fields observed. We extend here the search for Y 098 -dropouts to fainter luminosities (M * galaxies with M AB ∼ –20), with detections at ≥5σ confidence (compared to the 8σ confidence threshold adopted earlier) identifying 17 new candidates. We demonstrate that there is a correlation between number counts of faint and bright Y 098 -dropouts at ≥99.84% confidence. Field BoRG58, which contains the best bright z ∼ 8 candidate (M AB = –21.3), has the most significant overdensity of faint Y 098 -dropouts. Four new sources are located within 70'' (corresponding to 3.1 comoving Mpc at z = 8) from the previously known brighter z ∼ 8 candidate. The overdensity of Y 098 -dropouts in this field has a physical origin to very high confidence (p > 99.975%), independent of completeness and contamination rate of the Y 098 -dropout selection. We modeled the overdensity by means of cosmological simulations and estimate that the principal dark-matter halo has mass M h ≈ (4-7) × 10 11 M ☉ (∼5σ density peak) and is surrounded by several M h ≈ 10 11 M ☉ halos which could host the fainter dropouts. In this scenario, we predict that all halos will eventually merge into a M h > 2 × 10 14 M ☉ galaxy cluster by z = 0. Follow-up observations with ground- and space-based telescopes are required to secure the z ∼ 8 nature of the overdensity, discover new members, and measure their precise redshift.

  3. The visibility of high-redshift galaxies

    International Nuclear Information System (INIS)

    Phillipps, S.; Davies, J.I.; Disney, M.J.

    1990-01-01

    The most visible galaxies - that is, those which have the largest apparent sizes and isophotal luminosities when seen at a given distance - are those with a particular observed surface brightness. Extending this argument to high-redshift galaxies, it is clear that this optimum surface brightness moves progressively to brighter intrinsic surface brightnesses, so as to counteract the effect of K-corrections and cosmological dimming. Thus the galaxies appearing in faint surveys will be from a population distinctly different from those 'normal' galaxies observed nearby. Galaxies in deep surveys are more likely to be spirals and to be of high surface brightness. This has very important implications for observational studies of galaxy evolution. (author)

  4. ON THE DISTRIBUTION OF STELLAR MASSES IN GAMMA-RAY BURST HOST GALAXIES

    International Nuclear Information System (INIS)

    Castro Ceron, J. M.; Michalowski, M. J.; Hjorth, J.; Malesani, D.; Watson, D.; Fynbo, J. P. U.; Gorosabel, J.; Morales Calderon, M.

    2010-01-01

    We analyze Spitzer images of 30 long-duration gamma-ray burst (GRB) host galaxies. We estimate their total stellar masses (M * ) based on the rest-frame K-band luminosities (L K rest ) and constrain their star formation rates (SFRs; not corrected for dust extinction) based on the rest-frame UV continua. Further, we compute a mean M * /L K rest = 0.45 M sun /L sun . We find that the hosts are low M * , star-forming systems. The median M * in our sample ((M * ) = 10 9.7 M sun ) is lower than that of 'field' galaxies (e.g., Gemini Deep Deep Survey). The range spanned by M * is 10 7 M sun * 11 M sun , while the range spanned by the dust-uncorrected UV SFR is 10 -2 M sun yr -1 sun yr -1 . There is no evidence for intrinsic evolution in the distribution of M * with redshift. We show that extinction by dust must be present in at least 25% of the GRB hosts in our sample and suggest that this is a way to reconcile our finding of a relatively lower UV-based, specific SFR (φ ≡ SFR/M * ) with previous claims that GRBs have some of the highest φ values. We also examine the effect that the inability to resolve the star-forming regions in the hosts has on φ.

  5. THE SWIFT GRB HOST GALAXY LEGACY SURVEY. II. REST-FRAME NEAR-IR LUMINOSITY DISTRIBUTION AND EVIDENCE FOR A NEAR-SOLAR METALLICITY THRESHOLD

    Energy Technology Data Exchange (ETDEWEB)

    Perley, D. A. [Department of Astronomy, California Institute of Technology, MC 249-17, 1200 East California Blvd., Pasadena, CA 91125 (United States); Tanvir, N. R. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH (United Kingdom); Hjorth, J.; Fynbo, J. P. U.; Krühler, T. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 København Ø (Denmark); Laskar, T.; Berger, E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Chary, R. [US Planck Data Center, MS220-6, Pasadena, CA 91125 (United States); Postigo, A. de Ugarte [Instituto de Astrofísica de Andalucía (IAA-CSIC), Glorieta de la Astronomía s/n, E-18008, Granada (Spain); Levan, A. J. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Michałowski, M. J. [Scottish Universities Physics Alliance, Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh, EH9 3HJ (United Kingdom); Schulze, S., E-mail: dperley@dark-cosmology.dk [Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, 7820436 Macul, Santiago 22 (Chile)

    2016-01-20

    We present rest-frame near-IR (NIR) luminosities and stellar masses for a large and uniformly selected population of gamma-ray burst (GRB) host galaxies using deep Spitzer Space Telescope imaging of 119 targets from the Swift GRB Host Galaxy Legacy Survey spanning 0.03 < z < 6.3, and we determine the effects of galaxy evolution and chemical enrichment on the mass distribution of the GRB host population across cosmic history. We find a rapid increase in the characteristic NIR host luminosity between z ∼ 0.5 and z ∼ 1.5, but little variation between z ∼ 1.5 and z ∼ 5. Dust-obscured GRBs dominate the massive host population but are only rarely seen associated with low-mass hosts, indicating that massive star-forming galaxies are universally and (to some extent) homogeneously dusty at high redshift while low-mass star-forming galaxies retain little dust in their interstellar medium. Comparing our luminosity distributions with field surveys and measurements of the high-z mass–metallicity relation, our results have good consistency with a model in which the GRB rate per unit star formation is constant in galaxies with gas-phase metallicity below approximately the solar value but heavily suppressed in more metal-rich environments. This model also naturally explains the previously reported “excess” in the GRB rate beyond z ≳ 2; metals stifle GRB production in most galaxies at z < 1.5 but have only minor impact at higher redshifts. The metallicity threshold we infer is much higher than predicted by single-star models and favors a binary progenitor. Our observations also constrain the fraction of cosmic star formation in low-mass galaxies undetectable to Spitzer to be small at z < 4.

  6. The evolution of the cluster optical galaxy luminosity function between z = 0.4 and 0.9 in the DAFT/FADA survey

    Science.gov (United States)

    Martinet, Nicolas; Durret, Florence; Guennou, Loïc; Adami, Christophe; Biviano, Andrea; Ulmer, Melville P.; Clowe, Douglas; Halliday, Claire; Ilbert, Olivier; Márquez, Isabel; Schirmer, Mischa

    2015-03-01

    Context. There is some disagreement about the abundance of faint galaxies in high-redshift clusters, with contradictory results in the literature arising from studies of the optical galaxy luminosity function (GLF) for small cluster samples. Aims: We compute GLFs for one of the largest medium-to-high-redshift (0.4 ≤ z DAFT/FADA survey in the B,V,R, and I rest-frame bands. We used photometric redshifts computed from BVRIZJ images to constrain galaxy cluster membership. We carried out a detailed estimate of the completeness of our data. We distinguished the red-sequence and blue galaxies using a V - I versus I colour-magnitude diagram. We studied the evolution of these two populations with redshift. We fitted Schechter functions to our stacked GLFs to determine average cluster characteristics. Results: We find that the shapes of our GLFs are similar for the B,V,R, and I bands with a drop at the red GLF faint ends that is more pronounced at high redshift: αred ~ -0.5 at 0.40 ≤ z 0.1 at 0.65 ≤ z < 0.90. The blue GLFs have a steeper faint end (αblue ~ -1.6) than the red GLFs, which appears to be independent of redshift. For the full cluster sample, blue and red GLFs meet at MV = -20, MR = -20.5, and MI = -20.3. A study of how galaxy types evolve with redshift shows that late-type galaxies appear to become early types between z ~ 0.9 and today. Finally, the faint ends of the red GLFs of more massive clusters appear to be richer than less massive clusters, which is more typical of the lower redshift behaviour. Conclusions: Our results indicate that these clusters form at redshifts higher than z = 0.9 from galaxy structures that already have an established red sequence. Late-type galaxies then appear to evolve into early types, enriching the red sequence between this redshift and today. This effect is consistent with the evolution of the faint-end slope of the red sequence and the galaxy type evolution that we find. Finally, faint galaxies accreted from the field

  7. The Influence of Host Galaxies in Type Ia Supernova Cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Uddin, Syed A. [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing, Jiangshu (China); Mould, Jeremy [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Melbourne, VIC (Australia); Lidman, Chris; Zhang, Bonnie R. [Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO) (Australia); Ruhlmann-Kleider, Vanina, E-mail: saushuvo@gmail.com [CEA, Centre de Saclay, Irfu/SPP, F-91191 Gif-sur-Yvette, Paris (France)

    2017-10-10

    We use a sample of 1338 spectroscopically confirmed and photometrically classified Type Ia supernovae (SNe Ia) sourced from Carnegie Supernova Project, Center for Astrophysics Supernova Survey, Sloan Digital Sky Survey-II, and SuperNova Legacy Survey SN samples to examine the relationships between SNe Ia and the galaxies that host them. Our results provide confirmation with improved statistical significance that SNe Ia, after standardization, are on average more luminous in massive hosts (significance >5 σ ), and decline more rapidly in massive hosts (significance >9 σ ) and in hosts with low specific star formation rates (significance >8 σ ). We study the variation of these relationships with redshift and detect no evolution. We split SNe Ia into pairs of subsets that are based on the properties of the hosts and fit cosmological models to each subset. Including both systematic and statistical uncertainties, we do not find any significant shift in the best-fit cosmological parameters between the subsets. Among different SN Ia subsets, we find that SNe Ia in hosts with high specific star formation rates have the least intrinsic scatter ( σ {sub int} = 0.08 ± 0.01) in luminosity after standardization.

  8. A COMPACT GROUP OF GALAXIES AT Z = 2.48 HOSTING AN AGN-DRIVEN OUTFLOW

    Energy Technology Data Exchange (ETDEWEB)

    Shih, Hsin-Yi [Gemini Observatory, 670 N Aohoku Place, Hilo, HI 96720 (United States); Stockton, Alan, E-mail: jshih@gemini.edu, E-mail: stockton@ifa.hawaii.edu [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States)

    2015-12-10

    We present observations of a remarkable compact group of galaxies at z = 2.48. Four galaxies, all within 40 kpc of each other, surround a powerful high-redshift radio source. This group comprises two compact red passive galaxies and a pair of merging galaxies. One of the red galaxies, with an apparent stellar mass of 3.6 × 10{sup 11}M{sub ⊙} and an effective radius of 470 pc, is one of the most extreme examples of a massive quiescent compact galaxy found so far. One of the pair of merging galaxies hosts the active galactic nucleus (AGN) producing the large powerful radio structure. The merger is massive and enriched, consistent with the mass–metallicity relation expected at this redshift. Close to the merging nuclei, the emission lines exhibit broad and asymmetric profiles that suggest outflows powered either by a very young expanding radio jet or by AGN radiation. At ≳50 kpc from the system, we found a fainter extended-emission region that may be a part of a radio-jet-driven outflow.

  9. The faint radio source population at 15.7 GHz - II. Multi-wavelength properties

    Science.gov (United States)

    Whittam, I. H.; Riley, J. M.; Green, D. A.; Jarvis, M. J.; Vaccari, M.

    2015-11-01

    A complete, flux density limited sample of 96 faint (>0.5 mJy) radio sources is selected from the 10C survey at 15.7 GHz in the Lockman Hole. We have matched this sample to a range of multi-wavelength catalogues, including Spitzer Extragalactic Representative Volume Survey, Spitzer Wide-area Infrared Extragalactic survey, United Kingdom Infrared Telescope Infrared Deep Sky Survey and optical data; multi-wavelength counterparts are found for 80 of the 96 sources and spectroscopic redshifts are available for 24 sources. Photometric redshifts are estimated for the sources with multi-wavelength data available; the median redshift of the sample is 0.91 with an interquartile range of 0.84. Radio-to-optical ratios show that at least 94 per cent of the sample are radio loud, indicating that the 10C sample is dominated by radio galaxies. This is in contrast to samples selected at lower frequencies, where radio-quiet AGN and star-forming galaxies are present in significant numbers at these flux density levels. All six radio-quiet sources have rising radio spectra, suggesting that they are dominated by AGN emission. These results confirm the conclusions of Paper I that the faint, flat-spectrum sources which are found to dominate the 10C sample below ˜1 mJy are the cores of radio galaxies. The properties of the 10C sample are compared to the Square Kilometre Array Design Studies Simulated Skies; a population of low-redshift star-forming galaxies predicted by the simulation is not found in the observed sample.

  10. Infrared-faint radio sources are at high redshifts. Spectroscopic redshift determination of infrared-faint radio sources using the Very Large Telescope

    Science.gov (United States)

    Herzog, A.; Middelberg, E.; Norris, R. P.; Sharp, R.; Spitler, L. R.; Parker, Q. A.

    2014-07-01

    Context. Infrared-faint radio sources (IFRS) are characterised by relatively high radio flux densities and associated faint or even absent infrared and optical counterparts. The resulting extremely high radio-to-infrared flux density ratios up to several thousands were previously known only for high-redshift radio galaxies (HzRGs), suggesting a link between the two classes of object. However, the optical and infrared faintness of IFRS makes their study difficult. Prior to this work, no redshift was known for any IFRS in the Australia Telescope Large Area Survey (ATLAS) fields which would help to put IFRS in the context of other classes of object, especially of HzRGs. Aims: This work aims at measuring the first redshifts of IFRS in the ATLAS fields. Furthermore, we test the hypothesis that IFRS are similar to HzRGs, that they are higher-redshift or dust-obscured versions of these massive galaxies. Methods: A sample of IFRS was spectroscopically observed using the Focal Reducer and Low Dispersion Spectrograph 2 (FORS2) at the Very Large Telescope (VLT). The data were calibrated based on the Image Reduction and Analysis Facility (IRAF) and redshifts extracted from the final spectra, where possible. This information was then used to calculate rest-frame luminosities, and to perform the first spectral energy distribution modelling of IFRS based on redshifts. Results: We found redshifts of 1.84, 2.13, and 2.76, for three IFRS, confirming the suggested high-redshift character of this class of object. These redshifts and the resulting luminosities show IFRS to be similar to HzRGs, supporting our hypothesis. We found further evidence that fainter IFRS are at even higher redshifts. Conclusions: Considering the similarities between IFRS and HzRGs substantiated in this work, the detection of IFRS, which have a significantly higher sky density than HzRGs, increases the number of active galactic nuclei in the early universe and adds to the problems of explaining the formation of

  11. KINEMATICS OF EXTREMELY METAL-POOR GALAXIES: EVIDENCE FOR STELLAR FEEDBACK

    Energy Technology Data Exchange (ETDEWEB)

    Olmo-García, A.; Sánchez Almeida, J.; Muñoz-Tuñón, C.; Filho, M. E. [Instituto Astrofísica de Canarias, E-38200 La Laguna, Tenerife (Spain); Elmegreen, B. G. [IBM Research Division, T. J. Watson Research Center, Yorktown Heights, NY 10598 (United States); Elmegreen, D. M. [Department of Physics and Astronomy, Vassar College, Poughkeepsie, NY 12604 (United States); Pérez-Montero, E. [Instituto de Astrofísica de Andalucía, CSIC, Granada (Spain); Méndez-Abreu, J., E-mail: jos@iac.es [School of Physics and Astronomy, University of St Andrews, St Andrews (United Kingdom)

    2017-01-10

    The extremely metal-poor (XMP) galaxies analyzed in a previous paper have large star-forming regions with a metallicity lower than the rest of the galaxy. Such a chemical inhomogeneity reveals the external origin of the metal-poor gas fueling star formation, possibly indicating accretion from the cosmic web. This paper studies the kinematic properties of the ionized gas in these galaxies. Most XMPs have a rotation velocity around a few tens of km s{sup −1}. The star-forming regions appear to move coherently. The velocity is constant within each region, and the velocity dispersion sometimes increases within the star-forming clump toward the galaxy midpoint, suggesting inspiral motion toward the galaxy center. Other regions present a local maximum in velocity dispersion at their center, suggesting a moderate global expansion. The H α line wings show a number of faint emission features with amplitudes around a few per cent of the main H α component, and wavelength shifts between 100 and 400 km s{sup −1}. The components are often paired, so that red and blue emission features with similar amplitudes and shifts appear simultaneously. Assuming the faint emission to be produced by expanding shell-like structures, the inferred mass loading factor (mass loss rate divided by star formation rate) exceeds 10. Since the expansion velocity far exceeds the rotational and turbulent velocities, the gas may eventually escape from the galaxy disk. The observed motions involve energies consistent with the kinetic energy released by individual core-collapse supernovae. Alternative explanations for the faint emission have been considered and discarded.

  12. Faint (and bright variable stars in the satellites of the Milky Way

    Directory of Open Access Journals (Sweden)

    Vivas A. Katherina

    2017-01-01

    Full Text Available I describe two ongoing projects related with variable stars in the satellites of the MilkyWay. In the first project, we are searching for dwarf Cepheid stars (a.k.a δ Scuti and/or SX Phe in some of the classical dwarf spheroidal galaxies. Our goal is to characterize the population of these variable stars under different environments (age, metallicity in order to study their use as standard candles in systems for which the metallicity is not necessarily known. In the second project we search for RR Lyrae stars in the new ultra-faint satellite galaxies that have been discovered around the Milky Way in recent years.

  13. The host galaxy of a fast radio burst.

    Science.gov (United States)

    Keane, E F; Johnston, S; Bhandari, S; Barr, E; Bhat, N D R; Burgay, M; Caleb, M; Flynn, C; Jameson, A; Kramer, M; Petroff, E; Possenti, A; van Straten, W; Bailes, M; Burke-Spolaor, S; Eatough, R P; Stappers, B W; Totani, T; Honma, M; Furusawa, H; Hattori, T; Morokuma, T; Niino, Y; Sugai, H; Terai, T; Tominaga, N; Yamasaki, S; Yasuda, N; Allen, R; Cooke, J; Jencson, J; Kasliwal, M M; Kaplan, D L; Tingay, S J; Williams, A; Wayth, R; Chandra, P; Perrodin, D; Berezina, M; Mickaliger, M; Bassa, C

    2016-02-25

    In recent years, millisecond-duration radio signals originating in distant galaxies appear to have been discovered in the so-called fast radio bursts. These signals are dispersed according to a precise physical law and this dispersion is a key observable quantity, which, in tandem with a redshift measurement, can be used for fundamental physical investigations. Every fast radio burst has a dispersion measurement, but none before now have had a redshift measurement, because of the difficulty in pinpointing their celestial coordinates. Here we report the discovery of a fast radio burst and the identification of a fading radio transient lasting ~6 days after the event, which we use to identify the host galaxy; we measure the galaxy's redshift to be z = 0.492 ± 0.008. The dispersion measure and redshift, in combination, provide a direct measurement of the cosmic density of ionized baryons in the intergalactic medium of ΩIGM = 4.9 ± 1.3 per cent, in agreement with the expectation from the Wilkinson Microwave Anisotropy Probe, and including all of the so-called 'missing baryons'. The ~6-day radio transient is largely consistent with the radio afterglow of a short γ-ray burst, and its existence and timescale do not support progenitor models such as giant pulses from pulsars, and supernovae. This contrasts with the interpretation of another recently discovered fast radio burst, suggesting that there are at least two classes of bursts.

  14. SHOCKED POSTSTARBUST GALAXY SURVEY. I. CANDIDATE POST-STARBUST GALAXIES WITH EMISSION LINE RATIOS CONSISTENT WITH SHOCKS

    Energy Technology Data Exchange (ETDEWEB)

    Alatalo, Katherine; Rich, Jeffrey A. [Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Cales, Sabrina L. [Yale Center for Astronomy and Astrophysics, Physics Department, Yale University, New Haven, CT 06511 (United States); Appleton, Philip N.; Lanz, Lauranne [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Kewley, Lisa J.; Medling, Anne M. [Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston ACT 2611 (Australia); Lacy, Mark; Nyland, Kristina, E-mail: kalatalo@carnegiescience.edu [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States)

    2016-06-01

    There are many mechanisms by which galaxies can transform from blue, star-forming spirals, to red, quiescent early-type galaxies, but our current census of them does not form a complete picture. Recent observations of nearby case studies have identified a population of galaxies that quench “quietly.” Traditional poststarburst searches seem to catch galaxies only after they have quenched and transformed, and thus miss any objects with additional ionization mechanisms exciting the remaining gas. The Shocked POststarburst Galaxy Survey (SPOGS) aims to identify transforming galaxies, in which the nebular lines are excited via shocks instead of through star formation processes. Utilizing the Oh-Sarzi-Schawinski-Yi (OSSY) measurements on the Sloan Digital Sky Survey Data Release 7 catalog, we applied Balmer absorption and shock boundary criteria to identify 1067 SPOG candidates (SPOGs*) within z = 0.2. SPOGs* represent 0.2% of the OSSY sample galaxies that exceed the continuum signal-to-noise cut (and 0.7% of the emission line galaxy sample). SPOGs* colors suggest that they are in an earlier phase of transition than OSSY galaxies that meet an “E+A” selection. SPOGs* have a 13% 1.4 GHz detection rate from the Faint Images of the Radio Sky at Twenty Centimeters Survey, higher than most other subsamples, and comparable only to low-ionization nuclear emission line region hosts, suggestive of the presence of active galactic nuclei (AGNs). SPOGs* also have stronger Na i D absorption than predicted from the stellar population, suggestive of cool gas being driven out in galactic winds. It appears that SPOGs* represent an earlier phase in galaxy transformation than traditionally selected poststarburst galaxies, and that a large proportion of SPOGs* also have properties consistent with disruption of their interstellar media, a key component to galaxy transformation. It is likely that many of the known pathways to transformation undergo a SPOG phase. Studying this sample of

  15. The blue host galaxy of the red GRB 000418

    DEFF Research Database (Denmark)

    Gorosabel, J.; Klose, S.; Christensen, L.

    2003-01-01

    We report on multi-band (UBVRIZJ(s)K(s)) observations of the host galaxy of the April 18, 2000 gamma-ray burst. The Spectral Energy Distribution (SED) is analysed by fitting empirical and synthetic spectral templates. We find that: (i) the best SED fit is obtained with a starburst template, (ii) ...... structures (like dust lanes, spiral arms or disks). A natural scenario which accounts of all the above results is a nuclear starburst that harbours a young population of stars from which the GRB originated....

  16. Nearby supernova host galaxies from the CALIFA survey. II. Supernova environmental metallicity

    NARCIS (Netherlands)

    Galbany, L.; Stanishev, V.; Mourão, A. M.; Rodrigues, M.; Flores, H.; Walcher, C. J.; Sánchez, S. F.; García-Benito, R.; Mast, D.; Badenes, C.; González Delgado, R. M.; Kehrig, C.; Lyubenova, M.; Marino, R. A.; Mollá, M.; Meidt, S.; Pérez, E.; van de Ven, G.; Vílchez, J. M.

    2016-01-01

    The metallicity of a supernova progenitor, together with its mass, is one of the main parameters that can rule the progenitor's fate. We present the second study of nearby supernova (SN) host galaxies (0.005 ⊙) > 10 dex) by targeted searches. We neither found evidence that the metallicity at the SN

  17. Suzaku Diagnostics of the Energetics in the Lobes of the Giant Radio Galaxy 3C 35

    Science.gov (United States)

    Isobe, Naoki; Seta, Hiromi; Gandhi, Poshak; Tashiro, Makoto S.

    2011-02-01

    The Suzaku observation of a giant radio galaxy 3C 35 revealed faint extended X-ray emission, associated with its radio lobes and/or host galaxy. After careful subtraction of the X-ray and non-X-ray background and contaminating X-ray sources, the X-ray spectrum of the faint emission was reproduced by a sum of the power-law (PL) and soft thermal components. The soft component was attributed to the thermal plasma emission from the host galaxy. The photon index of the PL component, Γ = 1.35+0.56 -0.86 +0.11 -0.10, where the first and second errors represent the statistical and systematic ones, was found to agree with the synchrotron radio index from the lobes, ΓR = 1.7. Thus, the PL component was attributed to the inverse Compton (IC) X-rays from the synchrotron electrons in the lobes. The X-ray flux density at 1 keV was derived as 13.6 ± 5.4+4.0 -3.6 nJy with the photon index fixed at the radio value. The X-ray surface brightness from these lobes (~0.2 nJy arcmin-2) is lowest among the lobes studied through the IC X-ray emission. In combination with the synchrotron radio flux density, 7.5 ± 0.2 Jy at 327.4 MHz, the electron energy density spatially averaged over the lobes was evaluated to be the lowest among those radio galaxies, as u e = (5.8 ± 2.3+1.9 -1.7) × 10-14 erg cm-3 over the electron Lorentz factor of 103-105. The magnetic energy density was calculated as u m = (3.1+2.5 -1.0 +1.4 -0.9) × 10-14 erg cm-3, corresponding to the magnetic field strength of 0.88+0.31 -0.16 +0.19 -0.14 μG. These results suggest that the energetics in the 3C 35 lobes are nearly consistent with equipartition between the electrons and magnetic fields.

  18. The Origin of Faint Tidal Features around Galaxies in the RESOLVE Survey

    Science.gov (United States)

    Hood, Callie E.; Kannappan, Sheila J.; Stark, David V.; Dell’Antonio, Ian P.; Moffett, Amanda J.; Eckert, Kathleen D.; Norris, Mark A.; Hendel, David

    2018-04-01

    We study tidal features around galaxies in the REsolved Spectroscopy Of a Local VolumE (RESOLVE) survey. Our sample consists of 1048 RESOLVE galaxies that overlap with the DECam Legacy Survey, which reaches an r-band 3σ depth of ∼27.9 mag arcsec‑2 for a 100 arcsec2 feature. Images were masked, smoothed, and inspected for tidal features such as streams, shells, or tails/arms. We find tidal features in 17±2% of our galaxies, setting a lower limit on the true frequency. The frequency of tidal features in the gas-poor (gas-to-stellar mass ratio arms from resonant interactions. Similar to tidal features in gas-poor galaxies, tidal features in gas-rich galaxies imply 1.7× closer nearest neighbors in the same group; however, they are associated with diskier morphologies, higher star formation rates, and higher gas content. In addition to interactions with known neighbors, we suggest that tidal features in gas-rich galaxies may arise from accretion of cosmic gas and/or gas-rich satellites below the survey limit.

  19. The host galaxy of the gamma-ray narrow-line Seyfert 1 galaxy 1H 0323+342

    Energy Technology Data Exchange (ETDEWEB)

    León Tavares, J.; Chavushyan, V.; Puerari, I.; Patiño-Alvarez, V.; Carramiñana, A.; Carrasco, L.; Guichard, J.; Olguín-Iglesias, A.; Valdes, J. [Instituto Nacional de Astrofísica Óptica y Electrónica (INAOE), Apartado Postal 51 y 216, 72000 Puebla (Mexico); Kotilainen, J. [Finnish Centre for Astronomy with ESO (FINCA), University of Turku, Väisäläntie 20, FI-21500 Piikkiö (Finland); Añorve, C. [Facultad de Ciencias de la Tierra y del Espacio (FACITE) de la Universidad Autónoma de Sinaloa, Blvd. de la Americas y Av. Universitarios S/N, Ciudad Universitaria, C.P. 80010, Culiacán Sinaloa (Mexico); Cruz-González, I. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Ap. 70-264, 04510 DF (Mexico); Antón, S. [Instituto de Astrofísica de Andalucía-CSIC, E-18008 Granada (Spain); Karhunen, K.; Sanghvi, J., E-mail: leon.tavares@inaoep.mx [Tuorla Observatory, Department of Physics and Astronomy, University of Turku, FI-20100 Turku (Finland)

    2014-11-01

    We present optical and near-infrared (NIR) imaging data of the radio-loud, narrow-line Seyfert 1 galaxy 1H 0323+342, which shows intense and variable gamma-ray activity discovered by the Fermi satellite with the Large Area Telescope. Near-infrared and optical images are used to investigate the structural properties of the host galaxy of 1H 0323+342; this together with optical spectroscopy allows us to examine its black hole mass. Based on two-dimensional (2D) multiwavelength surface-brightness modeling, we find that statistically, the best model fit is a combination of a nuclear component and a Sérsic profile (n ∼ 2.8). However, the presence of a disk component (with a small bulge n ∼ 1.2) also remains a possibility and cannot be ruled out with the present data. Although at first glance a spiral-arm-like structure is revealed in our images, a 2D Fourier analysis of the imagery suggests that this structure corresponds to an asymmetric ring, likely associated with a recent violent dynamical interaction. We discuss our results in the context of relativistic jet production and galaxy evolution.

  20. Type Ia Supernova Properties as a Function of the Distance to the Host Galaxy in the SDSS-II SN Survey

    Energy Technology Data Exchange (ETDEWEB)

    Galbany, Lluis [Institut de Fisica d' Altes Energies (IFAE), Barcelona (Spain); et al.

    2012-08-20

    We use type-Ia supernovae (SNe Ia) discovered by the SDSS-II SN Survey to search for dependencies between SN Ia properties and the projected distance to the host galaxy center, using the distance as a proxy for local galaxy properties (local star-formation rate, local metallicity, etc.). The sample consists of almost 200 spectroscopically or photometrically confirmed SNe Ia at redshifts below 0.25. The sample is split into two groups depending on the morphology of the host galaxy. We fit light-curves using both MLCS2k2 and SALT2, and determine color (AV, c) and light-curve shape (delta, x1) parameters for each SN Ia, as well as its residual in the Hubble diagram. We then correlate these parameters with both the physical and the normalized distances to the center of the host galaxy and look for trends in the mean values and scatters of these parameters with increasing distance. The most significant (at the 4-sigma level) finding is that the average fitted AV from MLCS2k2 and c from SALT2 decrease with the projected distance for SNe Ia in spiral galaxies. We also find indications that SNe in elliptical galaxies tend to have narrower light-curves if they explode at larger distances, although this may be due to selection effects in our sample. We do not find strong correlations between the residuals of the distance moduli with respect to the Hubble flow and the galactocentric distances, which indicates a limited correlation between SN magnitudes after standardization and local host metallicity.

  1. The host of the Type I SLSN 2017egm. A young, sub-solar metallicity environment in a massive spiral galaxy

    Science.gov (United States)

    Izzo, L.; Thöne, C. C.; García-Benito, R.; de Ugarte Postigo, A.; Cano, Z.; Kann, D. A.; Bensch, K.; Della Valle, M.; Galadí-Enríquez, D.; Hedrosa, R. P.

    2018-02-01

    Context. Type I superluminous supernova (SLSN) host galaxies are predominantly low-metallicity, highly star-forming (SF) dwarfs. One of the current key questions is whether Type I SLSNe can only occur in such environments and hosts. Aims: Here we present an integral-field study of the massive, high-metallicity spiral NGC 3191, the host of SN 2017egm, the closest Type I SLSN known to date. We use data from PMAS/CAHA and the public MaNGA survey to shed light on the properties of the SLSN site and the origin of star formation in this non-starburst spiral galaxy. Methods: We map the physical properties of different H II regions throughout the galaxy and characterise their stellar populations using the STARLIGHT fitting code. Kinematical information allows us to study a possible interaction with its neighbouring galaxy as the origin of recent star formation activity which could have caused the SLSN. Results: NGC 3191 shows intense star formation in the western part with three large SF regions of low metallicity. Taking only the properties of emitting gas, the central regions of the host have a higher metallicity, a lower specific star formation rate, and lower ionisation. Modelling the stellar populations gives a different picture: the SLSN region has two dominant stellar populations with different ages, the younger one with an age of 2-10 Myr and lower metallicity, likely the population from which the SN progenitor originated. Emission line kinematics of NGC 3191 show indications of interaction with its neighbour MCG+08-19-017 at 45 kpc, which might be responsible for the recent starburst. In fact, this galaxy pair has hosted a total of four SNe, 1988B (Type Ia), SN 2003ds (Type Ic in MCG+08-19-017), PTF10bgl (Type II), and 2017egm, underlying the enhanced SF in both galaxies due to interaction. Conclusions: Our study shows that care should be taken when interpreting global host and even gas properties without looking at the stellar population history of the region

  2. ACTIVE GALACTIC NUCLEI IN GROUPS AND CLUSTERS OF GALAXIES: DETECTION AND HOST MORPHOLOGY

    International Nuclear Information System (INIS)

    Arnold, Timothy J.; Martini, Paul; Mulchaey, John S.; Berti, Angela; Jeltema, Tesla E.

    2009-01-01

    The incidence and properties of active galactic nuclei (AGNs) in the field, groups, and clusters can provide new information about how these objects are triggered and fueled, similar to how these environments have been employed to study galaxy evolution. We have obtained new XMM-Newton observations of seven X-ray selected groups and poor clusters with 0.02 -1 ). We find that the X-ray selected AGN fraction increases from f A (L X ≥ 10 41 ; M R ≤ M* R + 1) = 0.047 +0.023 -0.016 in clusters to 0.091 +0.049 -0.034 for the groups (85% significance), or a factor of 2, for AGN above an 0.3-8 keV X-ray luminosity of 10 41 ergs -1 hosted by galaxies more luminous than M* R + 1. The trend is similar, although less significant, for a lower-luminosity host threshold of M R = -20 mag. For many of the groups in the sample, we have also identified AGN via standard emission-line diagnostics and find that these AGNs are nearly disjoint from the X-ray selected AGN. Because there are substantial differences in the morphological mix of galaxies between groups and clusters, we have also measured the AGN fraction for early-type galaxies alone to determine if the differences are directly due to environment, or indirectly due to the change in the morphological mix. We find that the AGN fraction in early-type galaxies is also lower in clusters f A,n≥2.5 (L X ≥ 10 41 ; M R ≤ M* R + 1) = 0.048 +0.028 -0.019 compared to 0.119 +0.064 -0.044 for the groups (92% significance), a result consistent with the hypothesis that the change in AGN fraction is directly connected to environment.

  3. Active Galaxy Host Properties from a New H I 21-cm Survey of the Swift BAT-detected AGN

    Science.gov (United States)

    Winter, Lisa M.; George, E. R.; Zauderer, B.; Darling, J.

    2013-01-01

    Many questions remain open on how central supermassive black holes and their host galaxies form and affect each other's evolution. In order to answer these questions, we need to understand the observational properties of a complete sample of active galaxies. To this end, we have been collecting and studying multi-wavelength spectroscopy of a unique sample of active galaxies selected in the very hard X-rays with the Swift Burst Alert Telescope. Here we present an analysis of the 21-cm H I spectra, which we observed with the 100-m Green Bank Telescope in 2012, for a sample of 95 Swift-detected AGN. With this complete sample, we show evidence for differences in the host cold gas mass content between obscured and unobscured AGN.

  4. Is Black Hole Growth a Universal Process? Exploring Selection Effects in Measurements of AGN Accretion Rates and Host Galaxies.

    Science.gov (United States)

    Jones, Mackenzie

    2018-01-01

    At the center of essentially every massive galaxy is a monstrous black hole producing luminous radiation driven by the accretion of gas. By observing these active galactic nuclei (AGN) we may trace the growth of black holes across cosmic time. However, our knowledge of the full underlying AGN population is hindered by complex observational biases. My research aims to untangle these biases by using a novel approach to simulate the impact of selection effects on multiwavelength observations.The most statistically powerful studies of AGN to date come from optical spectroscopic surveys, with some reporting a complex relationship between AGN accretion rates and host galaxy characteristics. However, the optical waveband can be strongly influenced by selection effects and dilution from host galaxy star formation. I have shown that accounting for selection effects, the Eddington ratio distribution for optically-selected AGN is consistent with a broad power-law, as seen in the X-rays (Jones et al. 2016). This suggests that a universal Eddington ratio distribution may be enough to describe the full multiwavelength AGN population.Building on these results, I have expanded a semi-numerical galaxy formation simulation to include this straightforward prescription for AGN accretion and explicitly model selection effects. I have found that a simple model for AGN accretion can broadly reproduce the host galaxies and halos of X-ray AGN, and that different AGN selection techniques yield samples with very different host galaxy properties (Jones et al. 2017). Finally, I will discuss the capabilities of this simulation to build synthetic multiwavelength SEDs in order to explore what AGN populations would be detected with the next generation of observatories. This research is supported by a NASA Jenkins Graduate Fellowship under grant no. NNX15AU32H.

  5. Low-Surface-Brightness Galaxies: Hidden Galaxies Revealed

    Science.gov (United States)

    Bothun, G.; Impey, C.; McGaugh, S.

    1997-07-01

    In twenty years, low surface brightness (LSB) galaxies have evolved from being an idiosyncratic notion to being one of the major baryonic repositories in the Universe. The story of their discovery and the characterization of their properties is told here. Their recovery from the noise of the night sky background is a strong testament to the severity of surface brightness selection effects. LSB galaxies have a number of remarkable properties which distinguish them from the more familiar Hubble Sequence of spirals. The two most important are 1) they evolve at a significantly slower rate and may well experience star formation outside of the molecular cloud environment, 2) they are embedded in dark matter halos which are of lower density and more extended than the halos around high surface brightness (HSB) disk galaxies. Compared to HSB disks, LSB disks are strongly dark matter dominated at all radii and show a systematic increase in $M/L$ with decreasing central surface brightness. In addition, the recognition that large numbers of LSB galaxies actually exist has changed the form of the galaxy luminosity function and has clearly increased the space density of galaxies at z =0. Recent CCD surveys have uncovered a population of red LSB disks that may be related to the excess of faint blue galaxies detected at moderate redshifts. LSB galaxies offer us a new window into galaxy evolution and formation which is every bit as important as those processes which have produced easy to detect galaxies. Indeed, the apparent youth of some LSB galaxies suggest that galaxy formation is a greatly extended process. While the discovery of LSB galaxies have lead to new insights, it remains unwise to presume that we now have a representative sample which encompasses all galaxy types and forms. (SECTION: Invited Review Paper)

  6. ALMA Observations of the Host Galaxy of GRB 090423 at z = 8.23: Deep Limits on Obscured Star Formation 630 Million Years after the Big Bang

    Science.gov (United States)

    Berger, E.; Zauderer, B. A.; Chary, R.-R.; Laskar, T.; Chornock, R.; Tanvir, N. R.; Stanway, E. R.; Levan, A. J.; Levesque, E. M.; Davies, J. E.

    2014-12-01

    We present rest-frame far-infrared (FIR) and optical observations of the host galaxy of GRB 090423 at z = 8.23 from the Atacama Large Millimeter Array (ALMA) and the Spitzer Space Telescope, respectively. The host remains undetected to 3σ limits of F ν(222 GHz) Space Telescope rest-frame ultraviolet (UV) observations is SFRUV ~ 4 (Lyman break galaxies, Lyα emitters, and submillimeter galaxies) and find that our limit on the FIR luminosity is the most constraining to date, although the field galaxies have much larger rest-frame UV/optical luminosities than the host of GRB 090423 by virtue of their selection techniques. We conclude that GRB host galaxies at z >~ 4, especially those with measured interstellar medium metallicities from afterglow spectroscopy, are an attractive sample for future ALMA studies of high redshift obscured star formation.

  7. Empirical Constraints on the Origin of Fast Radio Bursts: Volumetric Rates and Host Galaxy Demographics as a Test of Millisecond Magnetar Connection

    Science.gov (United States)

    Nicholl, M.; Williams, P. K. G.; Berger, E.; Villar, V. A.; Alexander, K. D.; Eftekhari, T.; Metzger, B. D.

    2017-07-01

    The localization of the repeating fast radio burst (FRB) 121102 to a low-metallicity dwarf galaxy at z = 0.193, and its association with a luminous quiescent radio source, suggests the possibility that FRBs originate from magnetars, formed by the unusual supernovae that occur in such galaxies. We investigate this possibility via a comparison of magnetar birth rates, the FRB volumetric rate, and host galaxy demographics. We calculate average volumetric rates of possible millisecond magnetar production channels, such as superluminous supernovae (SLSNe), long and short gamma-ray bursts (GRBs), and general magnetar production via core-collapse supernovae (CCSNe). For each channel, we also explore the expected host galaxy demographics using their known properties. We determine for the first time the number density of FRB emitters (the product of their volumetric birth rate and lifetime), {R}{FRB}τ ≈ {10}4 Gpc-3, assuming that FRBs are predominantly emitted from repetitive sources similar to FRB 121102 and adopting a beaming factor of 0.1. By comparing rates, we find that production via rare channels (SLSNe, GRBs) implies a typical FRB lifetime of ˜30-300 years, in good agreement with other lines of argument. The total energy emitted over this time is consistent with the available energy stored in the magnetic field. On the other hand, any relation to magnetars produced via normal CCSNe leads to a very short lifetime of ˜0.5 years, in conflict with both theory and observation. We demonstrate that due to the diverse host galaxy distributions of the different progenitor channels, many possible sources of FRB birth can be ruled out with ≲ 10 host galaxy identifications. Conversely, targeted searches of galaxies that have previously hosted decades-old SLSNe and GRBs may be a fruitful strategy for discovering new FRBs and related quiescent radio sources, and determining the nature of their progenitors.

  8. CONFIRMATION OF THE COMPACTNESS OF A z = 1.91 QUIESCENT GALAXY WITH HUBBLE SPACE TELESCOPE'S WIDE FIELD CAMERA 3

    International Nuclear Information System (INIS)

    Szomoru, Daniel; Franx, Marijn; Bouwens, Rychard J.; Van Dokkum, Pieter G.; Trenti, Michele; Illingworth, Garth D.; Labbe, Ivo; Oesch, Pascal A.; Carollo, C. Marcella

    2010-01-01

    We present very deep Wide Field Camera 3 (WFC3) photometry of a massive, compact galaxy located in the Hubble Ultra Deep Field. This quiescent galaxy has a spectroscopic redshift z = 1.91 and has been identified as an extremely compact galaxy by Daddi et al. We use new H F160W imaging data obtained with Hubble Space Telescope/WFC3 to measure the deconvolved surface brightness profile to H ∼ 28 mag arcsec -2 . We find that the surface brightness profile is well approximated by an n = 3.7 Sersic profile. Our deconvolved profile is constructed by a new technique which corrects the best-fit Sersic profile with the residual of the fit to the observed image. This allows for galaxy profiles which deviate from a Sersic profile. We determine the effective radius of this galaxy: r e = 0.42 ± 0.14 kpc in the observed H F160W band. We show that this result is robust to deviations from the Sersic model used in the fit. We test the sensitivity of our analysis to faint 'wings' in the profile using simulated galaxy images consisting of a bright compact component and a faint extended component. We find that due to the combination of the WFC3 imaging depth and our method's sensitivity to extended faint emission we can accurately trace the intrinsic surface brightness profile, and that we can therefore confidently rule out the existence of a faint extended envelope around the observed galaxy down to our surface brightness limit. These results confirm that the galaxy lies a factor ∼10 off from the local mass-size relation.

  9. Galaxy Tagging: photometric redshift refinement and group richness enhancement

    Science.gov (United States)

    Kafle, P. R.; Robotham, A. S. G.; Driver, S. P.; Deeley, S.; Norberg, P.; Drinkwater, M. J.; Davies, L. J.

    2018-06-01

    We present a new scheme, galtag, for refining the photometric redshift measurements of faint galaxies by probabilistically tagging them to observed galaxy groups constructed from a brighter, magnitude-limited spectroscopy survey. First, this method is tested on the DESI light-cone data constructed on the GALFORM galaxy formation model to tests its validity. We then apply it to the photometric observations of galaxies in the Kilo-Degree Imaging Survey (KiDS) over a 1 deg2 region centred at 15h. This region contains Galaxy and Mass Assembly (GAMA) deep spectroscopic observations (i-bandhttps://github.com/pkaf/galtag.git.

  10. ON THE RATES OF TYPE Ia SUPERNOVAE IN DWARF AND GIANT HOSTS WITH ROTSE-IIIb

    International Nuclear Information System (INIS)

    Quimby, Robert M.; Yuan Fang; Akerlof, Carl; Wheeler, J. Craig; Warren, Michael S.

    2012-01-01

    We present a sample of 23 spectroscopically confirmed Type Ia supernovae (SNe Ia) that were discovered in the background of galaxy clusters targeted by ROTSE-IIIb and use up to 18 of these to determine the local (z-bar 0.05) volumetric rate. Since our survey is flux limited and thus biased against fainter objects, the pseudo-absolute magnitude distribution (pAMD) of SNe Ia in a given volume is an important concern, especially the relative frequency of high- to low-luminosity SNe Ia. We find that the pAMD derived from the volume-limited Lick Observatory Supernova Search (LOSS) sample is incompatible with the distribution of SNe Ia in a volume-limited (z B > –16) galaxies, whereas only 1 out of 79 nearby SDSS-II SNe Ia have such faint hosts. It is possible that previous works have undercounted either low-luminosity SNe Ia, SNe Ia in low-luminosity hosts, or peculiar SNe Ia (sometimes explicitly), and the total SNe Ia rate may be higher than the canonical value.

  11. Why are classical bulges more common in S0 galaxies than in spiral galaxies?

    Science.gov (United States)

    Mishra, Preetish K.; Wadadekar, Yogesh; Barway, Sudhanshu

    2018-05-01

    In this paper, we try to understand why the classical bulge fraction observed in S0 galaxies is significantly higher than that in spiral galaxies. We carry out a comparative study of the bulge and global properties of a sample of spiral and S0 galaxies in a fixed environment. Our sample is flux limited and contains 262 spiral and 155 S0 galaxies drawn from the Sloan Digital Sky Survey. We have classified bulges into classical and pseudobulge categories based on their position on the Kormendy diagram. Dividing our sample into bins of galaxy stellar mass, we find that the fraction of S0 galaxies hosting a classical bulge is significantly higher than the classical bulge fraction seen in spirals even at fixed stellar mass. We have compared the bulge and the global properties of spirals and S0 galaxies in our sample and find indications that spiral galaxies which host a classical bulge, preferentially get converted into S0 population as compared to pseudobulge hosting spirals. By studying the star formation properties of our galaxies in the NUV - r color-mass diagram, we find that the pseudobulge hosting spirals are mostly star forming while the majority of classical bulge host spirals are in the green valley or in the passive sequence. We suggest that some internal process, such as AGN feedback or morphological quenching due to the massive bulge, quenches these classical bulge hosting spirals and transforms them into S0 galaxies, thus resulting in the observed predominance of the classical bulge in S0 galaxies.

  12. ORBITAL DEPENDENCE OF GALAXY PROPERTIES IN SATELLITE SYSTEMS OF GALAXIES

    International Nuclear Information System (INIS)

    Hwang, Ho Seong; Park, Changbom

    2010-01-01

    We study the dependence of satellite galaxy properties on the distance to the host galaxy and the orbital motion (prograde and retrograde orbits) using the Sloan Digital Sky Survey (SDSS) data. From SDSS Data Release 7, we find 3515 isolated satellite systems of galaxies at z -1 . It is found that the radial distribution of early-type satellites in prograde orbit is strongly concentrated toward the host while that of retrograde ones shows much less concentration. We also find the orbital speed of late-type satellites in prograde orbit increases as the projected distance to the host (R) decreases while the speed decreases for those in retrograde orbit. At R less than 0.1 times the host virial radius (R vir,host ), the orbital speed decreases in both prograde and retrograde orbit cases. Prograde satellites are on average fainter than retrograde satellites for both early and late morphological types. The u - r color becomes redder as R decreases for both prograde and retrograde orbit late-type satellites. The differences between prograde and retrograde orbit satellite galaxies may be attributed to their different origin or the different strength of physical processes that they have experienced through hydrodynamic interactions with their host galaxies.

  13. Overdensities of Y-dropout Galaxies from the Brightest-of-Reionizing Galaxies Survey: A Candidate Protocluster at Redshift z ≈ 8

    Science.gov (United States)

    Trenti, Michele; Bradley, L. D.; Stiavelli, M.; Shull, J. M.; Oesch, P.; Bouwens, R. J.; Muñoz, J. A.; Romano-Diaz, E.; Treu, T.; Shlosman, I.; Carollo, C. M.

    2012-02-01

    Theoretical and numerical modeling of the assembly of dark-matter halos predicts that the most massive and luminous galaxies at high redshift are surrounded by overdensities of fainter companions. We test this prediction with Hubble Space Telescope observations acquired by our Brightest-of-Reionizing Galaxies (BoRG) survey, which identified four very bright z ~ 8 candidates as Y 098-dropout sources in four of the 23 non-contiguous Wide Field Camera 3 fields observed. We extend here the search for Y 098-dropouts to fainter luminosities (M * galaxies with M AB ~ -20), with detections at >=5σ confidence (compared to the 8σ confidence threshold adopted earlier) identifying 17 new candidates. We demonstrate that there is a correlation between number counts of faint and bright Y 098-dropouts at >=99.84% confidence. Field BoRG58, which contains the best bright z ~ 8 candidate (M AB = -21.3), has the most significant overdensity of faint Y 098-dropouts. Four new sources are located within 70'' (corresponding to 3.1 comoving Mpc at z = 8) from the previously known brighter z ~ 8 candidate. The overdensity of Y 098-dropouts in this field has a physical origin to very high confidence (p > 99.975%), independent of completeness and contamination rate of the Y 098-dropout selection. We modeled the overdensity by means of cosmological simulations and estimate that the principal dark-matter halo has mass Mh ≈ (4-7) × 1011 M ⊙ (~5σ density peak) and is surrounded by several Mh ≈ 1011 M ⊙ halos which could host the fainter dropouts. In this scenario, we predict that all halos will eventually merge into a Mh > 2 × 1014 M ⊙ galaxy cluster by z = 0. Follow-up observations with ground- and space-based telescopes are required to secure the z ~ 8 nature of the overdensity, discover new members, and measure their precise redshift. Based on observations made with the NASA/ESA Hubble Space Telescope, which is operated by the Association of Universities for Research in

  14. Interpretation of galaxy counts

    International Nuclear Information System (INIS)

    Tinsely, B.M.

    1980-01-01

    New models are presented for the interpretation of recent counts of galaxies to 24th magnitude, and predictions are shown to 28th magnitude for future comparison with data from the Space Telescope. The results supersede earlier, more schematic models by the author. Tyson and Jarvis found in their counts a ''local'' density enhancement at 17th magnitude, on comparison with the earlier models; the excess is no longer significant when a more realistic mixture of galaxy colors is used. Bruzual and Kron's conclusion that Kron's counts show evidence for evolution at faint magnitudes is confirmed, and it is predicted that some 23d magnitude galaxies have redshifts greater than unity. These may include spheroidal systems, elliptical galaxies, and the bulges of early-type spirals and S0's, seen during their primeval rapid star formation

  15. SUPERNOVA 2003ie WAS LIKELY A FAINT TYPE IIP EVENT

    Energy Technology Data Exchange (ETDEWEB)

    Arcavi, Iair; Gal-Yam, Avishay [Department of Particle Physics and Astrophysics, The Weizmann Institute of Science, Rehovot 76100 (Israel); Sergeev, Sergey G., E-mail: iair.arcavi@weizmann.ac.il [Crimean Astrophysical Observatory, P/O Nauchny, Crimea 98409 (Ukraine)

    2013-04-15

    We present new photometric observations of supernova (SN) 2003ie starting one month before discovery, obtained serendipitously while observing its host galaxy. With only a weak upper limit derived on the mass of its progenitor (<25 M{sub Sun }) from previous pre-explosion studies, this event could be a potential exception to the ''red supergiant (RSG) problem'' (the lack of high-mass RSGs exploding as Type IIP SNe). However, this is true only if SN2003ie was a Type IIP event, something which has never been determined. Using recently derived core-collapse SN light-curve templates, as well as by comparison to other known SNe, we find that SN2003ie was indeed a likely Type IIP event. However, with a plateau magnitude of {approx} - 15.5 mag, it is found to be a member of the faint Type IIP class. Previous members of this class have been shown to arise from relatively low-mass progenitors (<12 M{sub Sun }). It therefore seems unlikely that this SN had a massive RSG progenitor. The use of core-collapse SN light-curve templates is shown to be helpful in classifying SNe with sparse coverage. These templates are likely to become more robust as large homogeneous samples of core-collapse events are collected.

  16. NEW CONSTRAINTS ON THE FAINT END OF THE UV LUMINOSITY FUNCTION AT z ∼ 7-8 USING THE GRAVITATIONAL LENSING OF THE HUBBLE FRONTIER FIELDS CLUSTER A2744

    International Nuclear Information System (INIS)

    Atek, Hakim; Kneib, Jean-Paul; Richard, Johan; Clement, Benjamin; Jauzac, Mathilde; Schaerer, Daniel; Limousin, Marceau; Jullo, Eric; Natarajan, Priyamvada; Egami, Eiichi; Ebeling, Harald

    2015-01-01

    Exploiting the power of gravitational lensing, the Hubble Frontier Fields (HFF) program aims at observing six massive galaxy clusters to explore the distant universe far beyond the limits of blank field surveys. Using the complete Hubble Space Telescope observations of the first HFF cluster A2744, we report the detection of 50 galaxy candidates at z ∼ 7 and eight candidates at z ∼ 8 in a total survey area of 0.96 arcmin 2 in the source plane. Three of these galaxies are multiply imaged by the lensing cluster. Using an updated model of the mass distribution in the cluster we were able to calculate the magnification factor and the effective survey volume for each galaxy in order to compute the ultraviolet galaxy luminosity function (LF) at both redshifts 7 and 8. Our new measurements reliably extend the z ∼ 7 UV LF down to an absolute magnitude of M UV ∼ –15.5. We find a characteristic magnitude of M UV ⋆ =−20.90 −0.73 +0.90  mag and a faint-end slope α=−2.01 −0.28 +0.20 , close to previous determinations in blank fields. We show here for the first time that this slope remains steep down to very faint luminosities of 0.01 L * . Although prone to large uncertainties, our results at z ∼ 8 also seem to confirm a steep faint-end slope below 0.1 L * . The HFF program is therefore providing an extremely efficient way to study the faintest galaxy populations at z > 7 that would otherwise be inaccessible with current instrumentation. The full sample of six galaxy clusters will provide even better constraints on the buildup of galaxies at early epochs and their contribution to cosmic reionization

  17. NEW CONSTRAINTS ON THE FAINT END OF THE UV LUMINOSITY FUNCTION AT z ∼ 7-8 USING THE GRAVITATIONAL LENSING OF THE HUBBLE FRONTIER FIELDS CLUSTER A2744

    Energy Technology Data Exchange (ETDEWEB)

    Atek, Hakim; Kneib, Jean-Paul [Laboratoire d' Astrophysique, Ecole Polytechnique Fédérale de Lausanne, Observatoire de Sauverny, CH-1290 Versoix (Switzerland); Richard, Johan; Clement, Benjamin [CRAL, Observatoire de Lyon, Université Lyon 1, 9 Avenue Ch. André, F-69561 Saint Genis Laval Cedex (France); Jauzac, Mathilde [Institute for Computational Cosmology, Durham University, South Road, Durham DH1 3LE (United Kingdom); Schaerer, Daniel [Observatoire de Genève, Université de Genève, 51 Ch. des Maillettes, 1290 Versoix (Switzerland); Limousin, Marceau; Jullo, Eric [Aix Marseille Université, CNRS, LAM (Laboratoire d' Astrophysique de Marseille) UMR 7326, F-13388 Marseille (France); Natarajan, Priyamvada [Department of Astronomy, Yale University, 260 Whitney Avenue, New Haven, CT 06511 (United States); Egami, Eiichi [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Ebeling, Harald [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States)

    2015-02-10

    Exploiting the power of gravitational lensing, the Hubble Frontier Fields (HFF) program aims at observing six massive galaxy clusters to explore the distant universe far beyond the limits of blank field surveys. Using the complete Hubble Space Telescope observations of the first HFF cluster A2744, we report the detection of 50 galaxy candidates at z ∼ 7 and eight candidates at z ∼ 8 in a total survey area of 0.96 arcmin{sup 2} in the source plane. Three of these galaxies are multiply imaged by the lensing cluster. Using an updated model of the mass distribution in the cluster we were able to calculate the magnification factor and the effective survey volume for each galaxy in order to compute the ultraviolet galaxy luminosity function (LF) at both redshifts 7 and 8. Our new measurements reliably extend the z ∼ 7 UV LF down to an absolute magnitude of M {sub UV} ∼ –15.5. We find a characteristic magnitude of M{sub UV}{sup ⋆}=−20.90{sub −0.73}{sup +0.90} mag and a faint-end slope α=−2.01{sub −0.28}{sup +0.20}, close to previous determinations in blank fields. We show here for the first time that this slope remains steep down to very faint luminosities of 0.01 L {sup *}. Although prone to large uncertainties, our results at z ∼ 8 also seem to confirm a steep faint-end slope below 0.1 L {sup *}. The HFF program is therefore providing an extremely efficient way to study the faintest galaxy populations at z > 7 that would otherwise be inaccessible with current instrumentation. The full sample of six galaxy clusters will provide even better constraints on the buildup of galaxies at early epochs and their contribution to cosmic reionization.

  18. Steep extinction towards GRB 140506A reconciled from host galaxy observations: Evidence that steep reddening laws are local

    Science.gov (United States)

    Heintz, K. E.; Fynbo, J. P. U.; Jakobsson, P.; Krühler, T.; Christensen, L.; Watson, D.; Ledoux, C.; Noterdaeme, P.; Perley, D. A.; Rhodin, H.; Selsing, J.; Schulze, S.; Tanvir, N. R.; Møller, P.; Goldoni, P.; Xu, D.; Milvang-Jensen, B.

    2017-05-01

    We present the spectroscopic and photometric late-time follow-up of the host galaxy of the long-duration Swift γ-ray burst GRB 140506A at z = 0.889. The optical and near-infrared afterglow of this GRB had a peculiar spectral energy distribution (SED) with a strong flux-drop at 8000 Å (4000 Å rest-frame) suggesting an unusually steep extinction curve. By analysing the contribution and physical properties of the host galaxy, we here aim at providing additional information on the properties and origin of this steep, non-standard extinction. We find that the strong flux-drop in the GRB afterglow spectrum at contamination by the host galaxy light at short wavelengths so that the scenario with an extreme 2175 Å extinction bump can be excluded. We localise the GRB to be at a projected distance of approximately 4 kpc from the centre of the host galaxy. Based on emission-line diagnostics of the four detected nebular lines, Hα, Hβ, [O II] and [O III], we find the host to be a modestly star forming (SFR = 1.34 ± 0.04 M⊙ yr-1) and relatively metal poor (Z=0.35+0.15-0.11 Z⊙) galaxy with a large dust content, characterised by a measured visual attenuation of AV = 1.74 ± 0.41 mag. We compare the host to other GRB hosts at similar redshifts and find that it is unexceptional in all its physical properties. We model the extinction curve of the host-corrected afterglow and show that the standard dust properties causing the reddening seen in the Local Group are inadequate in describing the steep drop. We thus conclude that the steep extinction curve seen in the afterglow towards the GRB is of exotic origin and issightline-dependent only, further confirming that this type of reddening is present only at very local scales and that it is solely a consequence of the circumburst environment. Based on observations carried out under programme IDs 095.D-0043(A, C) and 095.A-0045(A) with the X-shooter spectrograph and the FOcal Reducer and low dispersion Spectrograph 2 (FORS2

  19. CHEMICAL ENRICHMENT IN THE FAINTEST GALAXIES: THE CARBON AND IRON ABUNDANCE SPREADS IN THE BOOeTES I DWARF SPHEROIDAL GALAXY AND THE SEGUE 1 SYSTEM

    International Nuclear Information System (INIS)

    Norris, John E.; Yong, David; Wyse, Rosemary F. G.; Gilmore, Gerard; Belokurov, V.; Zucker, Daniel B.; Frebel, Anna; Wilkinson, Mark I.

    2010-01-01

    We present an AAOmega spectroscopic study of red giants in the ultra-faint dwarf galaxy Booetes I (M V ∼ -6) and the Segue 1 system (M V ∼ -1.5), either an extremely low luminosity dwarf galaxy or an unusually extended globular cluster. Both Booetes I and Segue 1 have significant abundance dispersions in iron and carbon. Booetes I has a mean abundance of [Fe/H] = -2.55 ± 0.11 with an [Fe/H] dispersion of σ = 0.37 ± 0.08, and abundance spreads of Δ[Fe/H] = 1.7 and Δ[C/H] = 1.5. Segue 1 has a mean of [Fe/H] = -2.7 ± 0.4 with [Fe/H] dispersion of σ = 0.7 ± 0.3, and abundances spreads of Δ[Fe/H] = 1.6 and Δ[C/H] = 1.2. Moreover, Segue 1 has a radial-velocity member at four half-light radii that is extremely metal-poor and carbon-rich, with [Fe/H] = -3.5, and [C/Fe] = +2.3. Modulo an unlikely non-member contamination, the [Fe/H] abundance dispersion confirms Segue 1 as the least-luminous ultra-faint dwarf galaxy known. For [Fe/H] V = -5. The very low mean iron abundances and the high carbon and iron abundance dispersions in Segue 1 and Booetes I are consistent with highly inhomogeneous chemical evolution starting in near zero-abundance gas. These ultra-faint dwarf galaxies are apparently surviving examples of the very first bound systems.

  20. Optical appearance of distant galaxies

    International Nuclear Information System (INIS)

    Pritchet, C.; Kline, M.I.

    1981-01-01

    We have used the recent evolutionary and K-corrections of Bruzual and Kron to predict the optical appearance of galaxies spanning a wide range of magnitudes and redshifts. It is found that nearly all galaxies with J< or approx. =25 are resolved in 1-arcsec seeing. At fixed apparent magnitude, galaxies with large redshifts are more diffuse in appearance than those at small z. This fact causes the most distant galaxies at any magnitude level to be missed, and, depending on the measurement algorithm employed, may cause the luminosities of detected galaxies to be seriously underestimated. Both of these effects deserve consideration when attempting to interpret number counts of faint galaxies. Observations made with the Space Telescope are expected to resolve nearly all galaxies at J< or approx. =27.5; however, several factors conspire to render Space Telescope observations less effective than certain ground-based CCD observations for the optical detection of distant galaxies. Finally, we note that most of our conclusions are unaffected by changes in the assumed cosmology

  1. ON THE DEPENDENCE OF TYPE Ia SNe LUMINOSITIES ON THE METALLICITY OF THEIR HOST GALAXIES

    International Nuclear Information System (INIS)

    Moreno-Raya, Manuel E.; Mollá, Mercedes; López-Sánchez, Ángel R.; Galbany, Lluís; Vílchez, José Manuel; Rosell, Aurelio Carnero; Domínguez, Inmaculada

    2016-01-01

    The metallicity of the progenitor system producing a type Ia supernova (SN Ia) could play a role in its maximum luminosity, as suggested by theoretical predictions. We present an observational study to investigate if such a relationship exists. Using the 4.2 m William Herschel Telescope (WHT) we have obtained intermediate-resolution spectroscopy data of a sample of 28 local galaxies hosting SNe Ia, for which distances have been derived using methods independent of those based on SN Ia parameters. From the emission lines observed in their optical spectra, we derived the gas-phase oxygen abundance in the region where each SN Ia exploded. Our data show a trend, with an 80% of chance not being due to random fluctuation, between SNe Ia absolute magnitudes and the oxygen abundances of the host galaxies, in the sense that luminosities tend to be higher for galaxies with lower metallicities. This result seems likely to be in agreement with both the theoretically expected behavior and with other observational results. This dependence M B –Z might induce systematic errors when it is not considered when deriving SNe Ia luminosities and then using them to derive cosmological distances

  2. Fitting and Phenomenology in Type IA Supernova Cosmology: Generalized Likelihood Analyses for Multiple Evolving Populations and Observations of Near-Infrared Lightcurves Including Host Galaxy Properties

    Science.gov (United States)

    Ponder, Kara A.

    In the late 1990s, Type Ia supernovae (SNeIa) led to the discovery that the Universe is expanding at an accelerating rate due to dark energy. Since then, many different tracers of acceleration have been used to characterize dark energy, but the source of cosmic acceleration has remained a mystery. To better understand dark energy, future surveys such as the ground-based Large Synoptic Survey Telescope and the space-based Wide-Field Infrared Survey Telescope will collect thousands of SNeIa to use as a primary dark energy probe. These large surveys will be systematics limited, which makes it imperative for our insight regarding systematics to dramatically increase over the next decade for SNeIa to continue to contribute to precision cosmology. I approach this problem by improving statistical methods in the likelihood analysis and collecting near infrared (NIR) SNeIa with their host galaxies to improve the nearby data set and search for additional systematics. Using more statistically robust methods to account for systematics within the likelihood function can increase accuracy in cosmological parameters with a minimal precision loss. Though a sample of at least 10,000 SNeIa is necessary to confirm multiple populations of SNeIa, the bias in cosmology is ˜ 2 sigma with only 2,500 SNeIa. This work focused on an example systematic (host galaxy correlations), but it can be generalized for any systematic that can be represented by a distribution of multiple Gaussians. The SweetSpot survey gathered 114 low-redshift, NIR SNeIa that will act as a crucial anchor sample for the future high redshift surveys. NIR observations are not as affected by dust contamination, which may lead to increased understanding of systematics seen in optical wavelengths. We obtained spatially resolved spectra for 32 SweetSpot host galaxies to test for local host galaxy correlations. For the first time, we probe global host galaxy correlations with NIR brightnesses from the current literature

  3. The Evolution in the Faint-End Slope of the Quasar Luminosity Function

    OpenAIRE

    Hopkins, Philip F.; Hernquist, Lars; Cox, Thomas J.; Di Matteo, Tiziana; Robertson, Brant; Springel, Volker

    2005-01-01

    (Abridged) Based on numerical simulations of galaxy mergers that incorporate black hole (BH) growth, we predict the faint end slope of the quasar luminosity function (QLF) and its evolution with redshift. Our simulations have yielded a new model for quasar lifetimes where the lifetime depends on both the instantaneous and peak quasar luminosities. This motivates a new interpretation of the QLF in which the bright end consists of quasars radiating at nearly their peak luminosities, but the fai...

  4. THE OPTICALLY UNBIASED GRB HOST (TOUGH) SURVEY. III. REDSHIFT DISTRIBUTION

    Energy Technology Data Exchange (ETDEWEB)

    Jakobsson, P.; Chapman, R.; Vreeswijk, P. M. [Centre for Astrophysics and Cosmology, Science Institute, University of Iceland, Dunhagi 5, 107 Reykjavik (Iceland); Hjorth, J.; Malesani, D.; Fynbo, J. P. U.; Milvang-Jensen, B. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, 2100 Copenhagen (Denmark); Tanvir, N. R.; Starling, R. L. C. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Letawe, G. [Departement d' Astrophysique, Geophysique et Oceanographie, ULg, Allee du 6 aout, 17-Bat. B5c B-4000 Liege (Sart-Tilman) (Belgium)

    2012-06-10

    We present 10 new gamma-ray burst (GRB) redshifts and another five redshift limits based on host galaxy spectroscopy obtained as part of a large program conducted at the Very Large Telescope (VLT). The redshifts span the range 0.345 {<=} z {approx}< 2.54. Three of our measurements revise incorrect values from the literature. The homogeneous host sample researched here consists of 69 hosts that originally had a redshift completeness of 55% (with 38 out of 69 hosts having redshifts considered secure). Our project, including VLT/X-shooter observations reported elsewhere, increases this fraction to 77% (53/69), making the survey the most comprehensive in terms of redshift completeness of any sample to the full Swift depth, analyzed to date. We present the cumulative redshift distribution and derive a conservative, yet small, associated uncertainty. We constrain the fraction of Swift GRBs at high redshift to a maximum of 14% (5%) for z > 6 (z > 7). The mean redshift of the host sample is assessed to be (z) {approx}> 2.2, with the 10 new redshifts reducing it significantly. Using this more complete sample, we confirm previous findings that the GRB rate at high redshift (z {approx}> 3) appears to be in excess of predictions based on assumptions that it should follow conventional determinations of the star formation history of the universe, combined with an estimate of its likely metallicity dependence. This suggests that either star formation at high redshifts has been significantly underestimated, for example, due to a dominant contribution from faint, undetected galaxies, or that GRB production is enhanced in the conditions of early star formation, beyond that usually ascribed to lower metallicity.

  5. SDSS-IV MaNGA: faint quenched galaxies - I. Sample selection and evidence for environmental quenching

    Science.gov (United States)

    Penny, Samantha J.; Masters, Karen L.; Weijmans, Anne-Marie; Westfall, Kyle B.; Bershady, Matthew A.; Bundy, Kevin; Drory, Niv; Falcón-Barroso, Jesús; Law, David; Nichol, Robert C.; Thomas, Daniel; Bizyaev, Dmitry; Brownstein, Joel R.; Freischlad, Gordon; Gaulme, Patrick; Grabowski, Katie; Kinemuchi, Karen; Malanushenko, Elena; Malanushenko, Viktor; Oravetz, Daniel; Roman-Lopes, Alexandre; Pan, Kaike; Simmons, Audrey; Wake, David A.

    2016-11-01

    Using kinematic maps from the Sloan Digital Sky Survey (SDSS) Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, we reveal that the majority of low-mass quenched galaxies exhibit coherent rotation in their stellar kinematics. Our sample includes all 39 quenched low-mass galaxies observed in the first year of MaNGA. The galaxies are selected with Mr > -19.1, stellar masses 109 M⊙ 1.9. They lie on the size-magnitude and σ-luminosity relations for previously studied dwarf galaxies. Just six (15 ± 5.7 per cent) are found to have rotation speeds ve, rot 5 × 1010 M⊙), supporting the hypothesis that galaxy-galaxy or galaxy-group interactions quench star formation in low-mass galaxies. The local bright galaxy density for our sample is ρproj = 8.2 ± 2.0 Mpc-2, compared to ρproj = 2.1 ± 0.4 Mpc-2 for a star-forming comparison sample, confirming that the quenched low-mass galaxies are preferentially found in higher density environments.

  6. The metallicity and dust content of a redshift 5 gamma-ray burst host galaxy

    DEFF Research Database (Denmark)

    Sparre, M.; Hartoog, O. E.; Krühler, T.

    2014-01-01

    Observations of the afterglows of long gamma-ray bursts (GRBs) allow the study of star-forming galaxies across most of cosmic history. Here we present observations of GRB 111008A from which we can measure metallicity, chemical abundance patterns, dust-to-metals ratio and extinction of the GRB host...

  7. Distance and Properties of NGC 4993 as the Host Galaxy of the Gravitational-wave Source GW170817

    Science.gov (United States)

    Im, Myungshin; Yoon, Yongmin; Lee, Seong-Kook J.; Lee, Hyung Mok; Kim, Joonho; Lee, Chung-Uk; Kim, Seung-Lee; Troja, Eleonora; Choi, Changsu; Lim, Gu; Ko, Jongwan; Shim, Hyunjin

    2017-11-01

    Recently, the optical counterpart of the gravitational-wave source GW170817 has been identified in the NGC 4993 galaxy. Together with evidence from observations in electromagnetic waves, the event has been suggested as a result of a merger of two neutron stars (NSs). We analyze the multi-wavelength data to characterize the host galaxy property and its distance to examine if the properties of NGC 4993 are consistent with this picture. Our analysis shows that NGC 4993 is a bulge-dominated galaxy with {r}{eff}˜ 2{--}3 {kpc} and a Sérsic index of n=3{--}4 for the bulge component. The spectral energy distribution from 0.15 to 24 μm indicates that this galaxy has no significant ongoing star formation, a mean stellar mass of (0.3{--}1.2)× {10}11 {M}⊙ , a mean stellar age greater than ˜3 Gyr, and a metallicity of about 20%-100% of solar abundance. Optical images reveal dust lanes and extended features that suggest a past merging activity. Overall, NGC 4993 has characteristics of normal, but slightly disturbed elliptical galaxies. Furthermore, we derive the distance to NGC 4993 with the fundamental plane relation using 17 parameter sets of 7 different filters and the central stellar velocity dispersion from the literature, finding an angular diameter distance of 37.7 ± 8.7 Mpc. NGC 4993 is similar to some host galaxies of short gamma-ray bursts (GRBs) but much different from those of long GRBs, supporting the picture of GW170817 as a result of the merger of two NSs.

  8. OVERDENSITIES OF Y-DROPOUT GALAXIES FROM THE BRIGHTEST-OF-REIONIZING GALAXIES SURVEY: A CANDIDATE PROTOCLUSTER AT REDSHIFT z Almost-Equal-To 8

    Energy Technology Data Exchange (ETDEWEB)

    Trenti, Michele; Shull, J. M. [CASA, Department of Astrophysical and Planetary Science, University of Colorado, Center for Astrophysics and Space Astronomy, 389-UCB, Boulder, CO 80309 (United States); Bradley, L. D.; Stiavelli, M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Oesch, P.; Bouwens, R. J. [Astronomy and Astrophysics Department, University of California, Santa Cruz, CA 95064 (United States); Munoz, J. A. [Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA 90095 (United States); Romano-Diaz, E.; Shlosman, I. [Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506-0055 (United States); Treu, T. [Department of Physics, University of California, Santa Barbara, CA 93106-9530 (United States); Carollo, C. M., E-mail: trenti@colorado.edu [Institute of Astronomy, ETH Zurich, CH-8093 Zurich (Switzerland)

    2012-02-10

    Theoretical and numerical modeling of the assembly of dark-matter halos predicts that the most massive and luminous galaxies at high redshift are surrounded by overdensities of fainter companions. We test this prediction with Hubble Space Telescope observations acquired by our Brightest-of-Reionizing Galaxies (BoRG) survey, which identified four very bright z {approx} 8 candidates as Y{sub 098}-dropout sources in four of the 23 non-contiguous Wide Field Camera 3 fields observed. We extend here the search for Y{sub 098}-dropouts to fainter luminosities (M{sub *} galaxies with M{sub AB} {approx} -20), with detections at {>=}5{sigma} confidence (compared to the 8{sigma} confidence threshold adopted earlier) identifying 17 new candidates. We demonstrate that there is a correlation between number counts of faint and bright Y{sub 098}-dropouts at {>=}99.84% confidence. Field BoRG58, which contains the best bright z {approx} 8 candidate (M{sub AB} = -21.3), has the most significant overdensity of faint Y{sub 098}-dropouts. Four new sources are located within 70'' (corresponding to 3.1 comoving Mpc at z = 8) from the previously known brighter z {approx} 8 candidate. The overdensity of Y{sub 098}-dropouts in this field has a physical origin to very high confidence (p > 99.975%), independent of completeness and contamination rate of the Y{sub 098}-dropout selection. We modeled the overdensity by means of cosmological simulations and estimate that the principal dark-matter halo has mass M{sub h} Almost-Equal-To (4-7) Multiplication-Sign 10{sup 11} M{sub Sun} ({approx}5{sigma} density peak) and is surrounded by several M{sub h} Almost-Equal-To 10{sup 11} M{sub Sun} halos which could host the fainter dropouts. In this scenario, we predict that all halos will eventually merge into a M{sub h} > 2 Multiplication-Sign 10{sup 14} M{sub Sun} galaxy cluster by z = 0. Follow-up observations with ground- and space-based telescopes are required to secure the z {approx} 8 nature

  9. VizieR Online Data Catalog: Host galaxies of Superluminous Supernovae (Angus+, 2016)

    Science.gov (United States)

    Angus, C. R.; Levan, A. J.; Perley, D. A.; Tanvir, N. R.; Lyman, J. D.; Stanway, E. R.; Fruchter, A. S.

    2016-11-01

    Here we use nIR and rest-frame UV observations of a sample of 21 SLSN host galaxies, within a redshift range of 0.019 SCP 06F6). This HST sample (programme GO-13025; PI: Levan) comprised 21 targets, based on the sample of Neill et al. (2011ApJ...727...15N), supplemented with luminous SNe from the literature (up to 2012 Jan). (6 data files).

  10. Reconciling Dwarf Galaxies with ΛCDM Cosmology: Simulating A Realistic Population of Satellites Around a Milky Way-Mass Galaxy

    OpenAIRE

    Wetzel, Andrew R.; Hopkins, Philip F.; Kim, Ji-Hoon; Faucher-Giguère, Claude-André; Kereš, Dušan; Quataert, Eliot

    2016-01-01

    � 2016. The American Astronomical Society. All rights reserved. Low-mass "dwarf" galaxies represent the most significant challenges to the cold dark matter (CDM) model of cosmological structure formation. Because these faint galaxies are (best) observed within the Local Group (LG) of the Milky Way (MW) and Andromeda (M31), understanding their formation in such an environment is critical. We present first results from the Latte Project: the Milky Way on Feedback in Realistic Environments (FI...

  11. Ultra-faint ultraviolet galaxies at z ∼ 2 behind the lensing cluster A1689: The luminosity function, dust extinction, and star formation rate density

    Energy Technology Data Exchange (ETDEWEB)

    Alavi, Anahita; Siana, Brian; Freeman, William R.; Dominguez, Alberto [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States); Richard, Johan [Centre de Recherche Astrophysique de Lyon, Université Lyon 1, 9 Avenue Charles André, F-69561 Saint Genis Laval Cedex (France); Stark, Daniel P.; Robertson, Brant [Department of Astronomy, Steward Observatory, University of Arizona, 933 North Cherry Avenue, Rm N204, Tucson, AZ 85721 (United States); Scarlata, Claudia [Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, MN 55455 (United States); Teplitz, Harry I.; Rafelski, Marc [Infrared Processing and Analysis Center, Caltech, Pasadena, CA 91125 (United States); Kewley, Lisa, E-mail: anahita.alavi@email.ucr.edu [Research School of Astronomy and Astrophysics, The Australian National University, Cotter Road, Weston Creek, ACT 2611 (Australia)

    2014-01-10

    We have obtained deep ultraviolet imaging of the lensing cluster A1689 with the WFC3/UVIS camera onboard the Hubble Space Telescope in the F275W (30 orbits) and F336W (4 orbits) filters. These images are used to identify z ∼ 2 star-forming galaxies via their Lyman break, in the same manner that galaxies are typically selected at z ≥ 3. Because of the unprecedented depth of the images and the large magnification provided by the lensing cluster, we detect galaxies 100× fainter than previous surveys at this redshift. After removing all multiple images, we have 58 galaxies in our sample in the range –19.5 < M {sub 1500} < –13 AB mag. Because the mass distribution of A1689 is well constrained, we are able to calculate the intrinsic sensitivity of the observations as a function of source plane position, allowing for accurate determinations of effective volume as a function of luminosity. We fit the faint-end slope of the luminosity function to be α = –1.74 ± 0.08, which is consistent with the values obtained for 2.5 < z < 6. Notably, there is no turnover in the luminosity function down to M {sub 1500} = –13 AB mag. We fit the UV spectral slopes with photometry from existing Hubble optical imaging. The observed trend of increasingly redder slopes with luminosity at higher redshifts is observed in our sample, but with redder slopes at all luminosities and average reddening of (E(B – V)) = 0.15 mag. We assume the stars in these galaxies are metal poor (0.2 Z {sub ☉}) compared to their brighter counterparts (Z {sub ☉}), resulting in bluer assumed intrinsic UV slopes and larger derived values for dust extinction. The total UV luminosity density at z ∼ 2 is 4.31{sub −0.60}{sup +0.68}×10{sup 26} erg s{sup –1} Hz{sup –1} Mpc{sup –3}, more than 70% of which is emitted by galaxies in the luminosity range of our sample. Finally, we determine the global star formation rate density from UV-selected galaxies at z ∼ 2 (assuming a constant dust

  12. The Radius-Luminosity Relationship for Active Galactic Nuclei: The Effect of Host-Galaxy Starlight on Luminosity Measurements. II. The Full Sample of Reverberation-Mapped AGNs

    DEFF Research Database (Denmark)

    Bentz, Misty C.; Peterson, Bradley M.; Netzer, Hagai

    2009-01-01

    We present high-resolution Hubble Space Telescope images of all 35 active galactic nuclei (AGNs) with optical reverberation-mapping results, which we have modeled to create a nucleus-free image of each AGN host galaxy. From the nucleus-free images, we determine the host-galaxy contribution to gro...

  13. Measuring size evolution of distant, faint galaxies in the radio regime

    Science.gov (United States)

    Lindroos, L.; Knudsen, K. K.; Stanley, F.; Muxlow, T. W. B.; Beswick, R. J.; Conway, J.; Radcliffe, J. F.; Wrigley, N.

    2018-05-01

    We measure the evolution of sizes for star-forming galaxies as seen in 1.4 GHz continuum radio for z = 0-3. The measurements are based on combined VLA+MERLIN data of the Hubble Deep Field, and using a uv-stacking algorithm combined with model fitting to estimate the average sizes of galaxies. A sample of ˜1000 star-forming galaxies is selected from optical and near-infrared catalogues, with stellar masses M⊙ ≈ 1010-1011 M⊙ and photometric redshifts 0-3. The median sizes are parametrized for stellar mass M* = 5 × 1010 M⊙ as R_e = A× {}(H(z)/H(1.5))^{α _z}. We find that the median radio sizes evolve towards larger sizes at later times with αz = -1.1 ± 0.6, and A (the median size at z ≈ 1.5) is found to be 0.26^'' ± 0.07^'' or 2.3±0.6 kpc. The measured radio sizes are typically a factor of 2 smaller than those measure in the optical, and are also smaller than the typical H α sizes in the literature. This indicates that star formation, as traced by the radio continuum, is typically concentrated towards the centre of galaxies, for the sampled redshift range. Furthermore, the discrepancy of measured sizes from different tracers of star formation, indicates the need for models of size evolution to adopt a multiwavelength approach in the measurement of the sizes star-forming regions.

  14. EmpiriciSN: Re-sampling Observed Supernova/Host Galaxy Populations Using an XD Gaussian Mixture Model

    Science.gov (United States)

    Holoien, Thomas W.-S.; Marshall, Philip J.; Wechsler, Risa H.

    2017-06-01

    We describe two new open-source tools written in Python for performing extreme deconvolution Gaussian mixture modeling (XDGMM) and using a conditioned model to re-sample observed supernova and host galaxy populations. XDGMM is new program that uses Gaussian mixtures to perform density estimation of noisy data using extreme deconvolution (XD) algorithms. Additionally, it has functionality not available in other XD tools. It allows the user to select between the AstroML and Bovy et al. fitting methods and is compatible with scikit-learn machine learning algorithms. Most crucially, it allows the user to condition a model based on the known values of a subset of parameters. This gives the user the ability to produce a tool that can predict unknown parameters based on a model that is conditioned on known values of other parameters. EmpiriciSN is an exemplary application of this functionality, which can be used to fit an XDGMM model to observed supernova/host data sets and predict likely supernova parameters using a model conditioned on observed host properties. It is primarily intended to simulate realistic supernovae for LSST data simulations based on empirical galaxy properties.

  15. EmpiriciSN: Re-sampling Observed Supernova/Host Galaxy Populations Using an XD Gaussian Mixture Model

    Energy Technology Data Exchange (ETDEWEB)

    Holoien, Thomas W.-S.; /Ohio State U., Dept. Astron. /Ohio State U., CCAPP /KIPAC, Menlo Park /SLAC; Marshall, Philip J.; Wechsler, Risa H.; /KIPAC, Menlo Park /SLAC

    2017-05-11

    We describe two new open-source tools written in Python for performing extreme deconvolution Gaussian mixture modeling (XDGMM) and using a conditioned model to re-sample observed supernova and host galaxy populations. XDGMM is new program that uses Gaussian mixtures to perform density estimation of noisy data using extreme deconvolution (XD) algorithms. Additionally, it has functionality not available in other XD tools. It allows the user to select between the AstroML and Bovy et al. fitting methods and is compatible with scikit-learn machine learning algorithms. Most crucially, it allows the user to condition a model based on the known values of a subset of parameters. This gives the user the ability to produce a tool that can predict unknown parameters based on a model that is conditioned on known values of other parameters. EmpiriciSN is an exemplary application of this functionality, which can be used to fit an XDGMM model to observed supernova/host data sets and predict likely supernova parameters using a model conditioned on observed host properties. It is primarily intended to simulate realistic supernovae for LSST data simulations based on empirical galaxy properties.

  16. The Evolution of the Faint End of the UV Luminosity Function during the Peak Epoch of Star Formation (1 < z < 3)

    Science.gov (United States)

    Alavi, Anahita; Siana, Brian; Richard, Johan; Rafelski, Marc; Jauzac, Mathilde; Limousin, Marceau; Freeman, William R.; Scarlata, Claudia; Robertson, Brant; Stark, Daniel P.; Teplitz, Harry I.; Desai, Vandana

    2016-11-01

    We present a robust measurement of the rest-frame UV luminosity function (LF) and its evolution during the peak epoch of cosmic star formation at 1\\lt z\\lt 3. We use our deep near-ultraviolet imaging from WFC3/UVIS on the Hubble Space Telescope and existing Advanced Camera for Surveys (ACS)/WFC and WFC3/IR imaging of three lensing galaxy clusters, Abell 2744 and MACS J0717 from the Hubble Frontier Field survey and Abell 1689. Combining deep UV imaging and high magnification from strong gravitational lensing, we use photometric redshifts to identify 780 ultra-faint galaxies with {M}{UV}\\lt -12.5 AB mag at 1\\lt z\\lt 3. From these samples, we identified five new, faint, multiply imaged systems in A1689. We run a Monte Carlo simulation to estimate the completeness correction and effective volume for each cluster using the latest published lensing models. We compute the rest-frame UV LF and find the best-fit faint-end slopes of α =-1.56+/- 0.04, α =-1.72+/- 0.04, and α =-1.94+/- 0.06 at 1.0\\lt z\\lt 1.6, 1.6\\lt z\\lt 2.2, and 2.2\\lt z\\lt 3.0, respectively. Our results demonstrate that the UV LF becomes steeper from z˜ 1.3 to z˜ 2.6 with no sign of a turnover down to {M}{UV}=-14 AB mag. We further derive the UV LFs using the Lyman break “dropout” selection and confirm the robustness of our conclusions against different selection methodologies. Because the sample sizes are so large and extend to such faint luminosities, the statistical uncertainties are quite small, and systematic uncertainties (due to the assumed size distribution, for example) likely dominate. If we restrict our analysis to galaxies and volumes above \\gt 50 % completeness in order to minimize these systematics, we still find that the faint-end slope is steep and getting steeper with redshift, though with slightly shallower (less negative) values (α =-1.55+/- 0.06, -1.69 ± 0.07, and -1.79 ± 0.08 for z˜ 1.3, 1.9, and 2.6, respectively). Finally, we conclude that the faint star

  17. Detection of Lyman/alpha emission from a DLA galaxy

    DEFF Research Database (Denmark)

    Moller, P.; Fynbo, Johan Peter Uldall; Fall, S.M

    2004-01-01

    HIGH-REDSHIFT; BREAK GALAXIES; STARFORMATION; DISK GALAXIES; METAL ENRICHMENT; HOST GALAXY; ABSORPTION; ABSORBER; SYSTEMS; SPECTROSCOPY......HIGH-REDSHIFT; BREAK GALAXIES; STARFORMATION; DISK GALAXIES; METAL ENRICHMENT; HOST GALAXY; ABSORPTION; ABSORBER; SYSTEMS; SPECTROSCOPY...

  18. A Polarimetric Search for Hidden Quasars in Three Radio-selected Ultraluminous Infrared Galaxies

    International Nuclear Information System (INIS)

    Tran, H.D.; Brotherton, M.S.; Stanford, S.A.; Breugel, W. van; Dey, A.; Stern, D.; Antonucci, R.

    1999-01-01

    We have carried out a spectropolarimetric search for hidden broad-line quasars in three ultraluminous infrared galaxies (ULIRGs) discovered in the positional correlations between sources detected in deep radio surveys and the IRAS Faint Source Catalog. Only the high-ionization Seyfert 2 galaxy TF J1736+1122 is highly polarized, displaying a broad-line spectrum visible in polarized light. The other two objects, TF J1020+6436 and FF J1614+3234, display spectra dominated by a population of young (A type) stars similar to those of open-quotes E+Aclose quotes galaxies. They are unpolarized, showing no sign of hidden broad-line regions. The presence of young starburst components in all three galaxies indicates that the ULIRG phenomenon encompasses both active galactic nuclei (AGNs) and starburst activity, but the most energetic ULIRGs do not necessarily harbor open-quotes buried quasars.close quotes We find that a luminous infrared galaxy is most likely to host an obscured quasar if it exhibits a high-ionization ([O iii] λ5007/Hβ approx-gt 5) spectrum typical of a 'classic' Seyfert 2 galaxy with little or no Balmer absorption lines, is 'ultraluminous' (L IR approx-gt 10 12 L circle-dot ), and has a 'warm' IR color (f 25 /f 60 approx-gt 0.25). The detection of hidden quasars in this group but not in the low-ionization, starburst-dominated ULIRGs (classified as LINERs or H ii galaxies) may indicate an evolutionary connection, with the latter being found in younger systems. copyright copyright 1999. The American Astronomical Society

  19. Observations of faint comets at McDonald Observatory: 1978-1980

    Science.gov (United States)

    Barker, E. S.; Cochran, A. L.; Rybski, P. M.

    1981-01-01

    Modern observational techniques, developed for spectroscopy and photometry of faint galaxies and quasars, successfully applied to faint comets on the 2.7 m telescope. The periodic comets Van Biesbrock, Ashbrook-Jackson, Schwassmann-Wachmann 1, Tempel 2, Encke, Forbes, Brooks 2, Stephan-Oterma and the new comets Bradfield (19791), Bowell (1980b), Chernis-Petrauskas (1980k) were observed. The comets ranged in magnitude from 10th to 20th magnitude. For comets fainter than 19th magnitude, reflectance spectra at 100A resolution and area photometry were obtained. On comets of 17th or 18th magnitude, spectrometric scans (6A resolution) of the nucleus or inner coma region. On those comets which are brighter than 16th magnitude spatial spectrophotometric (6A resolution) studies of the inner and extended comae were done. An extensive spatial study of the comae of P/Encke and P/Stephen-Oterma, correlated with heliocentric distance is taking place. The observing process used is described and examples of the results obtained to date are discussed.

  20. High-energy neutrinos from FR0 radio galaxies?

    Science.gov (United States)

    Tavecchio, F.; Righi, C.; Capetti, A.; Grandi, P.; Ghisellini, G.

    2018-04-01

    The sources responsible for the emission of high-energy (≳100 TeV) neutrinos detected by IceCube are still unknown. Among the possible candidates, active galactic nuclei with relativistic jets are often examined, since the outflowing plasma seems to offer the ideal environment to accelerate the required parent high-energy cosmic rays. The non-detection of single-point sources or - almost equivalently - the absence, in the IceCube events, of multiplets originating from the same sky position - constrains the cosmic density and the neutrino output of these sources, pointing to a numerous population of faint sources. Here we explore the possibility that FR0 radio galaxies, the population of compact sources recently identified in large radio and optical surveys and representing the bulk of radio-loud AGN population, can represent suitable candidates for neutrino emission. Modelling the spectral energy distribution of an FR0 radio galaxy recently associated with a γ-ray source detected by the Large Area Telescope onboard Fermi, we derive the physical parameters of its jet, in particular the power carried by it. We consider the possible mechanisms of neutrino production, concluding that pγ reactions in the jet between protons and ambient radiation is too inefficient to sustain the required output. We propose an alternative scenario, in which protons, accelerated in the jet, escape from it and diffuse in the host galaxy, producing neutrinos as a result of pp scattering with the interstellar gas, in strict analogy with the processes taking place in star-forming galaxies.

  1. GALAXY EVOLUTION. An over-massive black hole in a typical star-forming galaxy, 2 billion years after the Big Bang.

    Science.gov (United States)

    Trakhtenbrot, Benny; Urry, C Megan; Civano, Francesca; Rosario, David J; Elvis, Martin; Schawinski, Kevin; Suh, Hyewon; Bongiorno, Angela; Simmons, Brooke D

    2015-07-10

    Supermassive black holes (SMBHs) and their host galaxies are generally thought to coevolve, so that the SMBH achieves up to about 0.2 to 0.5% of the host galaxy mass in the present day. The radiation emitted from the growing SMBH is expected to affect star formation throughout the host galaxy. The relevance of this scenario at early cosmic epochs is not yet established. We present spectroscopic observations of a galaxy at redshift z = 3.328, which hosts an actively accreting, extremely massive BH, in its final stages of growth. The SMBH mass is roughly one-tenth the mass of the entire host galaxy, suggesting that it has grown much more efficiently than the host, contrary to models of synchronized coevolution. The host galaxy is forming stars at an intense rate, despite the presence of a SMBH-driven gas outflow. Copyright © 2015, American Association for the Advancement of Science.

  2. Strong bimodality in the host halo mass of central galaxies from galaxy-galaxy lensing

    Science.gov (United States)

    Mandelbaum, Rachel; Wang, Wenting; Zu, Ying; White, Simon; Henriques, Bruno; More, Surhud

    2016-04-01

    We use galaxy-galaxy lensing to study the dark matter haloes surrounding a sample of locally brightest galaxies (LBGs) selected from the Sloan Digital Sky Survey. We measure mean halo mass as a function of the stellar mass and colour of the central galaxy. Mock catalogues constructed from semi-analytic galaxy formation simulations demonstrate that most LBGs are the central objects of their haloes, greatly reducing interpretation uncertainties due to satellite contributions to the lensing signal. Over the full stellar mass range, 10.3 10.7. Tests using the mock catalogues and on the data themselves clarify the effects of LBG selection and show that it cannot artificially induce a systematic dependence of halo mass on LBG colour. The bimodality in halo mass at fixed stellar mass is reproduced by the astrophysical model underlying our mock catalogue, but the sign of the effect is inconsistent with recent, nearly parameter-free age-matching models. The sign and magnitude of the effect can, however, be reproduced by halo occupation distribution models with a simple (few-parameter) prescription for type dependence.

  3. Outskirts of galaxies

    CERN Document Server

    Lee, Janice; Paz, Armando

    2017-01-01

    This book consists of invited reviews written by world-renowned experts on the subject of the outskirts of galaxies, an upcoming field which has been understudied so far. These regions are faint and hard to observe, yet hide a tremendous amount of information on the origin and early evolution of galaxies. They thus allow astronomers to address some of the most topical problems, such as gaseous and satellite accretion, radial migration, and merging. The book is published in conjunction with the celebration of the end of the four-year DAGAL project, an EU-funded initial training network, and with a major international conference on the topic held in March 2016 in Toledo. It thus reflects not only the views of the experts, but also the scientific discussions and progress achieved during the project and the meeting. The reviews in the book describe the most modern observations of the outer regions of our own Galaxy, and of galaxies in the local and high-redshift Universe. They tackle disks, haloes, streams, and a...

  4. CHANDRA OBSERVATIONS OF GALAXY ZOO MERGERS: FREQUENCY OF BINARY ACTIVE NUCLEI IN MASSIVE MERGERS

    Energy Technology Data Exchange (ETDEWEB)

    Teng, Stacy H. [Observational Cosmology Laboratory, NASA/GSFC, Greenbelt, MD 20771 (United States); Schawinski, Kevin; Urry, C. Megan; Bonning, Erin W. [Department of Physics, Yale University, New Haven, CT 06511 (United States); Darg, Dan W.; Kaviraj, Sugata; Lintott, Chris J. [Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Oh, Kyuseok [Department of Astronomy, Yonsei University, Seoul 120-749 (Korea, Republic of); Cardamone, Carolin N. [Harriet W. Sheridan Center for Teaching and Learning, Brown University, P.O. Box 1912, Providence, RI 02912 (United States); Keel, William C. [Department of Physics and Astronomy, 206 Gallalee Hall, 514 University Boulevard, University of Alabama, Tuscaloosa, AL 35487-034 (United States); Simmons, Brooke D. [Yale Center for Astronomy and Astrophysics, Yale University, P.O. Box 208121, New Haven, CT 06520 (United States); Treister, Ezequiel, E-mail: stacy.h.teng@nasa.gov [Departamento de Astronomia, Universidad de Concepcion, Casilla 160-C, Concepcion (Chile)

    2012-07-10

    We present the results from a Chandra pilot study of 12 massive galaxy mergers selected from Galaxy Zoo. The sample includes major mergers down to a host galaxy mass of 10{sup 11} M{sub Sun} that already have optical active galactic nucleus (AGN) signatures in at least one of the progenitors. We find that the coincidences of optically selected active nuclei with mildly obscured (N{sub H} {approx}< 1.1 Multiplication-Sign 10{sup 22} cm{sup -2}) X-ray nuclei are relatively common (8/12), but the detections are too faint (<40 counts per nucleus; f{sub 2-10keV} {approx}< 1.2 Multiplication-Sign 10{sup -13} erg s{sup -1} cm{sup -2}) to reliably separate starburst and nuclear activity as the origin of the X-ray emission. Only one merger is found to have confirmed binary X-ray nuclei, though the X-ray emission from its southern nucleus could be due solely to star formation. Thus, the occurrences of binary AGNs in these mergers are rare (0%-8%), unless most merger-induced active nuclei are very heavily obscured or Compton thick.

  5. Carbon-enhanced metal-poor stars in dwarf galaxies

    OpenAIRE

    Salvadori, Stefania; Skuladottir, Asa; Tolstoy, Eline

    2015-01-01

    We investigate the frequency and origin of carbon-enhanced metal-poor (CEMP) stars in Local Group dwarf galaxies by means of a statistical, data-calibrated cosmological model for the hierarchical build-up of the Milky Way and its dwarf satellites. The model self-consistently explains the variation with dwarf galaxy luminosity of the observed: i) frequency and [Fe/H] range of CEMP stars; ii) metallicity distribution functions; iii) star formation histories. We show that if primordial faint sup...

  6. CHARACTERIZING THE STAR FORMATION OF THE LOW-MASS SHIELD GALAXIES FROM HUBBLE SPACE TELESCOPE IMAGING

    Energy Technology Data Exchange (ETDEWEB)

    McQuinn, Kristen B. W.; Skillman, Evan D.; Simones, Jacob E. [Minnesota Institute for Astrophysics, School of Physics and Astronomy, University of Minnesota, 116 Church Street, S.E., Minneapolis, MN 55455 (United States); Cannon, John M. [Department of Physics and Astronomy, Macalester College, 1600 Grand Avenue, Saint Paul, MN 55105 (United States); Dolphin, Andrew E. [Raytheon Company, 1151 E. Hermans Road, Tucson, AZ 85756 (United States); Haynes, Martha P.; Giovanelli, Riccardo [Center for Radiophysics and Space Research, Space Sciences Building, Cornell University, Ithaca, NY 14853 (United States); Salzer, John J. [Department of Astronomy, Indiana University, 727 East 3rd Street, Bloomington, IN 47405 (United States); Adams, Elizabeth A. K. [Netherlands Institute for Radio Astronomy (ASTRON), Postbus 2, 7900 AA Dwingeloo (Netherlands); Elson, Ed C. [Astrophysics, Cosmology and Gravity Centre (ACGC), Department of Astronomy, University of Cape Town, Private Bag X3, Rondebosch 7701 (South Africa); Ott, Jürgen, E-mail: kmcquinn@astro.umn.edu [National Radio Astronomy Observatory, P.O. Box O, 1003 Lopezville Road, Socorro, NM 87801 (United States)

    2015-03-20

    The Survey of Hi in Extremely Low-mass Dwarfs is an on-going multi-wavelength program to characterize the gas, star formation, and evolution in gas-rich, very low-mass galaxies that populate the faint end of the galaxy luminosity function. The galaxies were selected from the first ∼10% of the Hi Arecibo Legacy Fast ALFA survey based on their low Hi mass and low baryonic mass. Here, we measure the star formation properties from optically resolved stellar populations for 12 galaxies using a color–magnitude diagram fitting technique. We derive lifetime average star formation rates (SFRs), recent SFRs, stellar masses, and gas fractions. Overall, the recent SFRs are comparable to the lifetime SFRs with mean birthrate parameter of 1.4, with a surprisingly narrow standard deviation of 0.7. Two galaxies are classified as dwarf transition galaxies (dTrans). These dTrans systems have star formation and gas properties consistent with the rest of the sample, in agreement with previous results that some dTrans galaxies may simply be low-luminosity dwarf irregulars. We do not find a correlation between the recent star formation activity and the distance to the nearest neighboring galaxy, suggesting that the star formation process is not driven by gravitational interactions, but regulated internally. Further, we find a broadening in the star formation and gas properties (i.e., specific SFRs, stellar masses, and gas fractions) compared to the generally tight correlation found in more massive galaxies. Overall, the star formation and gas properties indicate these very low-mass galaxies host a fluctuating, non-deterministic, and inefficient star formation process.

  7. Galaxy And Mass Assembly (GAMA): gas fuelling of spiral galaxies in the local Universe II. - direct measurement of the dependencies on redshift and host halo mass of stellar mass growth in central disc galaxies

    Science.gov (United States)

    Grootes, M. W.; Dvornik, A.; Laureijs, R. J.; Tuffs, R. J.; Popescu, C. C.; Robotham, A. S. G.; Liske, J.; Brown, M. J. I.; Holwerda, B. W.; Wang, L.

    2018-06-01

    We present a detailed analysis of the specific star formation rate-stellar mass (sSFR-M*) of z ≤ 0.13 disc central galaxies using a morphologically selected mass-complete sample (M* ≥ 109.5 M⊙). Considering samples of grouped and ungrouped galaxies, we find the sSFR-M* relations of disc-dominated central galaxies to have no detectable dependence on host dark-matter halo (DMH) mass, even where weak-lensing measurements indicate a difference in halo mass of a factor ≳ 5. We further detect a gradual evolution of the sSFR-M* relation of non-grouped (field) central disc galaxies with redshift, even over a Δz ≈ 0.04 (≈5 × 108 yr) interval, while the scatter remains constant. This evolution is consistent with extrapolation of the `main sequence of star-forming-galaxies' from previous literature that uses larger redshift baselines and coarser sampling. Taken together, our results present new constraints on the paradigm under which the SFR of galaxies is determined by a self-regulated balance between gas inflows and outflows, and consumption of gas by star formation in discs, with the inflow being determined by the product of the cosmological accretion rate and a fuelling efficiency - \\dot{M}_{b,halo}ζ. In particular, maintaining the paradigm requires \\dot{M}_{b,halo}ζ to be independent of the mass Mhalo of the host DMH. Furthermore, it requires the fuelling efficiency ζ to have a strong redshift dependence (∝(1 + z)2.7 for M* = 1010.3 M⊙ over z = 0-0.13), even though no morphological transformation to spheroids can be invoked to explain this in our disc-dominated sample. The physical mechanisms capable of giving rise to such dependencies of ζ on Mhalo and z for discs are unclear.

  8. Spectroscopy of superluminous supernova host galaxies

    DEFF Research Database (Denmark)

    Leloudas, G.; Kruehler, T.; Schulze, S

    2015-01-01

    -poor) often (~50% in our sample) occur in a class of galaxies that is known as Extreme Emission Line Galaxies (EELGs). The probability of this happening by chance is negligible and we therefore conclude that the extreme environmental conditions and the SLSN phenomenon are related. In contrast, SLSNe...

  9. Feedback in low-mass galaxies in the early Universe.

    Science.gov (United States)

    Erb, Dawn K

    2015-07-09

    The formation, evolution and death of massive stars release large quantities of energy and momentum into the gas surrounding the sites of star formation. This process, generically termed 'feedback', inhibits further star formation either by removing gas from the galaxy, or by heating it to temperatures that are too high to form new stars. Observations reveal feedback in the form of galactic-scale outflows of gas in galaxies with high rates of star formation, especially in the early Universe. Feedback in faint, low-mass galaxies probably facilitated the escape of ionizing radiation from galaxies when the Universe was about 500 million years old, so that the hydrogen between galaxies changed from neutral to ionized-the last major phase transition in the Universe.

  10. SMM J04135+10277: A CANDIDATE EARLY-STAGE ''WET-DRY'' MERGER OF TWO MASSIVE GALAXIES AT z = 2.8

    Energy Technology Data Exchange (ETDEWEB)

    Riechers, Dominik A., E-mail: dr@astro.cornell.edu [Astronomy Department, California Institute of Technology, MC 249-17, 1200 East California Boulevard, Pasadena, CA 91125 (United States)

    2013-03-10

    We report interferometric imaging of CO(J = 3{yields}2) emission toward the z = 2.846 submillimeter-selected galaxy SMM J04135+10277, using the Combined Array for Research in Millimeter-wave Astronomy (CARMA). SMM J04135+10277 was previously thought to be a gas-rich, submillimeter-selected quasar, with the highest molecular gas mass among high-z quasars reported in the literature. Our maps at {approx}6 Multiplication-Sign improved linear resolution relative to earlier observations spatially resolve the emission on {approx}1.''7 scales, corresponding to a (lensing-corrected) source radius of {approx}5.2 kpc. They also reveal that the molecular gas reservoir, and thus, likely the submillimeter emission, is not associated with the host galaxy of the quasar, but with an optically faint gas-rich galaxy at 5.''2, or 41.5 kpc projected distance from the active galactic nucleus (AGN). The obscured gas-rich galaxy has a dynamical mass of M{sub dyn} sin{sup 2} i = 5.6 Multiplication-Sign 10{sup 11} M{sub Sun }, corresponding to a gas mass fraction of {approx_equal}21%. Assuming a typical M{sub BH}/M{sub *} ratio for z {approx}> 2 quasars, the two galaxies in this system have an approximate mass ratio of {approx}1.9. Our findings suggest that this quasar-starburst galaxy pair could represent an early stage of a rare major, gas-rich/gas-poor ({sup w}et-dry{sup )} merger of two massive galaxies at z = 2.8, rather than a single, gas-rich AGN host galaxy. Such systems could play an important role in the early buildup of present-day massive galaxies through a submillimeter-luminous starburst phase, and may remain hidden in larger numbers among rest-frame far-infrared-selected quasar samples at low and high redshift.

  11. Ultra-faint dwarfs: The living fossils of the first galaxies

    NARCIS (Netherlands)

    Salvadori, Stefania

    The nature of the faintest dwarf galaxies and their connection with the recently discovered very metal-poor Damped Lyα Absorption systems (DLAs) is investigate in the context of the Milky Way formation. By using a cosmological model I will discuss the theoretical implications of the observed

  12. ALMA observations of the host galaxy of GRB 090423 at z = 8.23: deep limits on obscured star formation 630 million years after the big bang

    Energy Technology Data Exchange (ETDEWEB)

    Berger, E.; Zauderer, B. A.; Chary, R.-R.; Laskar, T.; Chornock, R.; Davies, J. E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Tanvir, N. R. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Stanway, E. R.; Levan, A. J. [Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL (United Kingdom); Levesque, E. M. [CASA, University of Colorado UCB 389, Boulder, CO 80309 (United States)

    2014-12-01

    We present rest-frame far-infrared (FIR) and optical observations of the host galaxy of GRB 090423 at z = 8.23 from the Atacama Large Millimeter Array (ALMA) and the Spitzer Space Telescope, respectively. The host remains undetected to 3σ limits of F {sub ν}(222 GHz) ≲ 33 μJy and F {sub ν}(3.6 μm) ≲ 81 nJy. The FIR limit is about 20 times fainter than the luminosity of the local ULIRG Arp 220 and comparable to the local starburst M 82. Comparing this with model spectral energy distributions, we place a limit on the infrared (IR) luminosity of L {sub IR}(8-1000 μm) ≲ 3 × 10{sup 10} L {sub ☉}, corresponding to a limit on the obscured star formation rate of SFR{sub IR}≲5 M {sub ☉} yr{sup –1}. For comparison, the limit on the unobscured star formation rate from Hubble Space Telescope rest-frame ultraviolet (UV) observations is SFR{sub UV} ≲ 1 M {sub ☉} yr{sup –1}. We also place a limit on the host galaxy stellar mass of M {sub *} ≲ 5 × 10{sup 7} M {sub ☉} (for a stellar population age of 100 Myr and constant star formation rate). Finally, we compare our millimeter observations to those of field galaxies at z ≳ 4 (Lyman break galaxies, Lyα emitters, and submillimeter galaxies) and find that our limit on the FIR luminosity is the most constraining to date, although the field galaxies have much larger rest-frame UV/optical luminosities than the host of GRB 090423 by virtue of their selection techniques. We conclude that GRB host galaxies at z ≳ 4, especially those with measured interstellar medium metallicities from afterglow spectroscopy, are an attractive sample for future ALMA studies of high redshift obscured star formation.

  13. A STEEP FAINT-END SLOPE OF THE UV LUMINOSITY FUNCTION AT z ∼ 2-3: IMPLICATIONS FOR THE GLOBAL STELLAR MASS DENSITY AND STAR FORMATION IN LOW-MASS HALOS

    International Nuclear Information System (INIS)

    Reddy, Naveen A.; Steidel, Charles C.

    2009-01-01

    We use the deep ground-based optical photometry of the Lyman Break Galaxy (LBG) Survey to derive robust measurements of the faint-end slope (α) of the UV luminosity function (LF) at redshifts 1.9 ≤ z ≤ 3.4. Our sample includes >2000 spectroscopic redshifts and ∼31000 LBGs in 31 spatially independent fields over a total area of 3261 arcmin 2 . These data allow us to select galaxies to 0.07L* and 0.10L* at z ∼ 2 and z ∼ 3, respectively. A maximum-likelihood analysis indicates steep values of α(z = 2) = -1.73 ± 0.07 and α(z = 3) = -1.73 ± 0.13. This result is robust to luminosity-dependent systematics in the Lyα equivalent width and reddening distributions, and is similar to the steep values advocated at z ∼> 4, and implies that ∼93% of the unobscured UV luminosity density at z ∼ 2-3 arises from sub-L* galaxies. With a realistic luminosity-dependent reddening distribution, faint to moderately luminous galaxies account for ∼>70% and ∼>25% of the bolometric luminosity density and present-day stellar mass density, respectively, when integrated over 1.9 ≤ z 2 contrasts with the shallower slope inferred locally, suggesting that the evolution in the faint-end slope may be dictated simply by the availability of low-mass halos capable of supporting star formation at z ∼< 2.

  14. Hubble Space Telescope, Faint Object Camera

    Science.gov (United States)

    1981-01-01

    This drawing illustrates Hubble Space Telescope's (HST's), Faint Object Camera (FOC). The FOC reflects light down one of two optical pathways. The light enters a detector after passing through filters or through devices that can block out light from bright objects. Light from bright objects is blocked out to enable the FOC to see background images. The detector intensifies the image, then records it much like a television camera. For faint objects, images can be built up over long exposure times. The total image is translated into digital data, transmitted to Earth, and then reconstructed. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.

  15. Understanding the faint red galaxy population using large-scale clustering measurements from SDSS DR7

    OpenAIRE

    Ross, Ashley; Tojeiro, Rita; Percival, Will

    2011-01-01

    We use data from the SDSS to investigate the evolution of the large-scale galaxy bias as a function of luminosity for red galaxies. We carefully consider correlation functions of galaxies selected from both photometric and spectroscopic data, and cross-correlations between them, to obtain multiple measurements of the large-scale bias. We find, for our most robust analyses, a strong increase in bias with luminosity for the most luminous galaxies, an intermediate regime where bias does not evol...

  16. Possible correlations between gamma-ray burst and its host galaxy offset

    Science.gov (United States)

    Wang, Fei-Fei; Zou, Yuan-Chuan; Liu, Yu; Liao, Bin; Moharana, Reetanjali

    2018-06-01

    We collected the information of 304 gamma-ray bursts (GRBs) from the literature, and analyzed the correlations among the host galaxy offsets (the distance from the site of the GRB to the center of its host galaxy), T90,i (the duration T90 in rest-frame), TR45,i (the duration TR45 in rest-frame), Eγ,iso (the isotropic equivalent energy), Lγ,iso (=Eγ,iso /T90,i, the isotropic equivalent luminosity) and Lpk (peak luminosity). We found that T90,i, TR45,i, Eγ,iso, Lpk have negative correlation with offset, which is consistent with origin of short GRBs (SGRBs) and long GRBs (LGRBs). On separate analysis, we found similar results for log ⁡Eγ,iso - log ⁡ (offset) and log ⁡Lpk - log ⁡ (offset) relations in case of SGRBs only, while no obvious relation for LGRBs. There is no correlations between offset and Lγ,iso. We also put the special GRB 170817A and GRB 060218A on the plots. The two GRBs both have low luminosity and small offset. In the log ⁡ (offset) - log ⁡T90,i plot, we found GRB 170817A locates in between the two regions of SGRBs and LGRBs and it is the outlier in the offset -Eγ,iso, offset -Lγ,iso and offset -Lpk plots. Together with GRB 060218A being an outlier in all plots, it indicates the speciality of GRBs 170817A and 060218A, and might imply more subgroups of the GRB samples.

  17. Understanding r-process nucleosynthesis with dwarf galaxies

    Science.gov (United States)

    Ji, Alexander P.

    2018-06-01

    The Milky Way's faintest dwarf galaxy satellites each sample short, independent bursts of star formation from the first 1-2 Gyr of the universe. Their simple formation history makes them ideal systems to understand how rare events like neutron star mergers contribute to early enrichment of r-process elements. I will focus on the ultra-faint galaxy Reticulum II, which experienced a single prolific r-process event that left ~80% of its stars extremely enriched in r-process elements. I will present abundances of ~40 elements derived from the highest signal-to-noise high-resolution spectrum ever taken for an ultra-faint dwarf galaxy star. Precise measurements of elements from all three r-process peaks reaffirm the universal nature of the r-process abundance pattern from Ba to Ir. The first r-process peak is significantly lower than solar but matches other r-process enhanced stars. This constrains the neutron-richness of r-process ejecta in neutron star mergers. The radioactive element thorium is detected with a somewhat low abundance. Naive application of currently predicted initial production ratios could imply an age >20 Gyr, but more likely indicates that the initial production ratios require revision. The abundance of lighter elements up to Zn are consistent with extremely metal-poor Milky Way halo stars. These elements may eventually provide a way to test for other hypothesized r-process sites, but only after a more detailed understanding of the chemical evolution in this galaxy. Reticulum II provides a clean view of early r-process enrichment that can be used to understand the increasing number of r-process measurements in other dwarf galaxies.

  18. New insights into the X-ray properties of nearby barred spiral galaxy NGC 1672

    Science.gov (United States)

    Jenkins, L. P.; Brnadt, W. N.; Colbert, E. J. M.; Levan, A. J.; Roberts, T. P.; Ward, M. J.; Zezas, A.

    2008-02-01

    We present some preliminary results from new Chandra and XMM-Newton X-ray observations of the nearby barred spiral galaxy NGC1672. It shows dramatic nuclear and extra-nuclear star formation activity, including starburst regions located near each end of its strong bar, both of which host ultraluminous X-ray sources (ULXs). With the new high-spatial-resolution Chandra imaging, we show for the first time that NGC1672 possesses a faint ($L(X)~10^39 erg/s), hard central X-ray source surrounded by an X-ray bright circumnuclear starburst ring that dominates the X-ray emission in the region. The central source may represent low-level AGN activity, or alternatively the emission from X-ray binaries associated with star-formation in the nucleus.

  19. Selection effects in the bivariate brightness distribution for spiral galaxies

    International Nuclear Information System (INIS)

    Phillipps, S.; Disney, M.

    1986-01-01

    The joint distribution of total luminosity and characteristic surface brightness (the bivariate brightness distribution) is investigated for a complete sample of spiral galaxies in the Virgo cluster. The influence of selection and physical limits of various kinds on the apparent distribution are detailed. While the distribution of surface brightness for bright galaxies may be genuinely fairly narrow, faint galaxies exist right across the (quite small) range of accessible surface brightnesses so no statement can be made about the true extent of the distribution. The lack of high surface brightness bright galaxies in the Virgo sample relative to an overall RC2 sample (mostly field galaxies) supports the contention that the star-formation rate is reduced in the inner region of the cluster for environmental reasons. (author)

  20. WISE Discovery of Hyper Luminous Galaxies at z=2-4 and Their Implications for Galaxy and AGN Evolution

    Science.gov (United States)

    Tsai, Chao Wei; Eisenhardt, Peter; Wu, Jingwen; Bridge, Carrie; Assef, Roberto; Benford, Dominic; Blain, Andrew; Cutri, Roc; Griffith, Robert L.; Jarrett, Thomas; hide

    2014-01-01

    On behalf of the WISE Science team, we present the discovery of a class of distant dust-enshrouded galaxies with extremely high luminosity. These galaxies are selected to have extreme red colors in the mid-IR using NASA's Wide-field Infrared Survey Explorer (WISE). They are faint in the optical and near-IR, predominantly at zeta = 2-4, and with IR luminosity > 10(exp 13) Solar Luminosity, making them Hyper-Luminous Infrared Galaxies (HyLIRGs). SEDs incorporating the WISE, Spitzer, and Herschel PACS and SPIRE photometry indicate hot dust dominates the bolometric luminosity, presumably powered by AGN. Preliminary multi-wavelength follow-up suggests that they are different from normal populations in the local M-sigma relation. Their low source density implies that these objects are either intrinsically rare, or a short-lived phase in a more numerous population. If the latter is the case, these hot, dust-enshrouded galaxies may be an early stage in the interplay between AGN and galaxies.

  1. Spatially Resolved MaNGA Observations of the Host Galaxy of Superluminous Supernova 2017egm

    Science.gov (United States)

    Chen, Ting-Wan; Schady, Patricia; Xiao, Lin; Eldridge, J. J.; Schweyer, Tassilo; Lee, Chien-Hsiu; Yu, Po-Chieh; Smartt, Stephen J.; Inserra, Cosimo

    2017-11-01

    Superluminous supernovae (SLSNe) are found predominantly in dwarf galaxies, indicating that their progenitors have a low metallicity. However, the most nearby SLSN to date, SN 2017egm, occurred in the spiral galaxy NGC 3191, which has a relatively high stellar mass and correspondingly high metallicity. In this Letter, we present detailed analysis of the nearby environment of SN 2017egm using MaNGA IFU data, which provides spectral data on kiloparsec scales. From the velocity map we find no evidence that SN 2017egm occurred within some intervening satellite galaxy, and at the SN position most metallicity diagnostics yield a solar and above solar metallicity (12+{log}({{O}}/{{H}})∼ 8.8{--}9.1). Additionally, we measure a small Hα equivalent width (EW) at the SN position of just 34 Å, which is one of the lowest EWs measured at any SLSN or gamma-ray burst position, and indicative of the progenitor star being comparatively old. We also compare the observed properties of NGC 3191 with other SLSN host galaxies. The solar-metallicity environment at the position of SN 2017egm presents a challenge to our theoretical understanding, and our spatially resolved spectral analysis provides further constraints on the progenitors of SLSNe.

  2. Fast-Growing SMBHs in Fast-Growing Galaxies, at High Redshifts: The Role of Major Mergers As Revealed by ALMA

    Energy Technology Data Exchange (ETDEWEB)

    Trakhtenbrot, Benny [Department of Physics, ETH Zurich, Zurich (Switzerland); Lira, Paulina [Departamento de Astronomia, Universidad de Chile, Santiago (Chile); Netzer, Hagai [Raymond and Beverly Sackler Faculty of Exact Sciences, School of Physics and Astronomy and the Wise Observatory, Tel-Aviv University, Tel-Aviv (Israel); Cicone, Claudia [Department of Physics, ETH Zurich, Zurich (Switzerland); INAF-Osservatorio Astronomico di Brera, Milan (Italy); Maiolino, Roberto [Cavendish Laboratory, University of Cambridge, Cambridge (United Kingdom); Kavli Institute for Cosmology, University of Cambridge, Cambridge (United Kingdom); Shemmer, Ohad, E-mail: benny.trakhtenbrot@phys.ethz.ch [Department of Physics, University of North Texas, Denton, TX (United States)

    2017-11-30

    We present a long-term, multi-wavelength project to understand the epoch of fastest growth of the most massive black holes by using a sample of 40 luminous quasars at z ≃ 4.8. These quasars have rather uniform properties, with typical accretion rates and black hole masses of L/L{sub Edd} ≃ 0.7 and M{sub BH} ≃ 10{sup 9}M{sub ⊙}. The sample consists of “FIR-bright” sources with a previous Herschel/SPIRE detection, suggesting SFR > 1,000 M{sub ⊙} yr−1, as well as of “FIR-faint” sources for which Herschel stacking analysis implies a typical SFR of ~400 M{sub ⊙} yr−1. Six of the quasars have been observed by ALMA in [C ii] λ157.74μm line emission and adjacent rest-frame 150μm continuum, to study the dusty cold ISM. ALMA detected companion, spectroscopically confirmed sub-mm galaxies (SMGs) for three sources—one FIR-bright and two FIR-faint. The companions are separated by ~14–45 kpc from the quasar hosts, and we interpret them as major galaxy interactions. Our ALMA data therefore clearly support the idea that major mergers may be important drivers for rapid, early SMBH growth. However, the fact that not all high-SFR quasar hosts are accompanied by interacting SMGs, and their ordered gas kinematics observed by ALMA, suggest that other processes may be fueling these systems. Our analysis thus demonstrates the diversity of host galaxy properties and gas accretion mechanisms associated with early and rapid SMBH growth.

  3. Fast-Growing SMBHs in Fast-Growing Galaxies, at High Redshifts: The Role of Major Mergers As Revealed by ALMA

    International Nuclear Information System (INIS)

    Trakhtenbrot, Benny; Lira, Paulina; Netzer, Hagai; Cicone, Claudia; Maiolino, Roberto; Shemmer, Ohad

    2017-01-01

    We present a long-term, multi-wavelength project to understand the epoch of fastest growth of the most massive black holes by using a sample of 40 luminous quasars at z ≃ 4.8. These quasars have rather uniform properties, with typical accretion rates and black hole masses of L/L Edd ≃ 0.7 and M BH ≃ 10 9 M ⊙ . The sample consists of “FIR-bright” sources with a previous Herschel/SPIRE detection, suggesting SFR > 1,000 M ⊙ yr−1, as well as of “FIR-faint” sources for which Herschel stacking analysis implies a typical SFR of ~400 M ⊙ yr−1. Six of the quasars have been observed by ALMA in [C ii] λ157.74μm line emission and adjacent rest-frame 150μm continuum, to study the dusty cold ISM. ALMA detected companion, spectroscopically confirmed sub-mm galaxies (SMGs) for three sources—one FIR-bright and two FIR-faint. The companions are separated by ~14–45 kpc from the quasar hosts, and we interpret them as major galaxy interactions. Our ALMA data therefore clearly support the idea that major mergers may be important drivers for rapid, early SMBH growth. However, the fact that not all high-SFR quasar hosts are accompanied by interacting SMGs, and their ordered gas kinematics observed by ALMA, suggest that other processes may be fueling these systems. Our analysis thus demonstrates the diversity of host galaxy properties and gas accretion mechanisms associated with early and rapid SMBH growth.

  4. Triangulum II: Possibly a Very Dense Ultra-faint Dwarf Galaxy

    Science.gov (United States)

    Kirby, Evan N.; Cohen, Judith G.; Simon, Joshua D.; Guhathakurta, Puragra

    2015-11-01

    Laevens et al. recently discovered Triangulum II (Tri II), a satellite of the Milky Way. Its Galactocentric distance is 36 kpc, and its luminosity is only 450 {L}⊙ . Using Keck/DEIMOS, we measured the radial velocities of six member stars within 1.‧2 of the center of Tri II, and we found a velocity dispersion of {σ }v={5.1}-1.4+4.0 {km} {{{s}}}-1. We also measured the metallicities of three stars and found a range of 0.8 dex in [Fe/H]. The velocity and metallicity dispersions identify Tri II as a dark matter-dominated galaxy. The galaxy is moving very quickly toward the Galactic center ({v}{{GSR}}=-262 {km} {{{s}}}-1). Although it might be in the process of being tidally disrupted as it approaches pericenter, there is no strong evidence for disruption in our data set. The ellipticity is low, and the mean velocity, =-382.1+/- 2.9 {km} {{{s}}}-1, rules out an association with the Triangulum-Andromeda substructure or the Pan-Andromeda Archaeological Survey stellar stream. If Tri II is in dynamical equilibrium, then it would have a mass-to-light ratio of {3600}-2100+3500 {M}⊙ {L}⊙ -1, the highest of any non-disrupting galaxy (those for which dynamical mass estimates are reliable). The density within the 3D half-light radius would be {4.8}-3.5+8.1 {M}⊙ {{{pc}}}-3, even higher than Segue 1. Hence, Tri II is an excellent candidate for the indirect detection of dark matter annihilation. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  5. CONNECTING GRBs AND ULIRGs: A SENSITIVE, UNBIASED SURVEY FOR RADIO EMISSION FROM GAMMA-RAY BURST HOST GALAXIES AT 0 < z < 2.5

    Energy Technology Data Exchange (ETDEWEB)

    Perley, D. A. [Department of Astronomy, California Institute of Technology, MC 249-17, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Perley, R. A. [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States); Hjorth, J.; Malesani, D. [Dark Cosmology Centre, Niels Bohr Institute, DK-2100 Copenhagen (Denmark); Michałowski, M. J. [Scottish Universities Physics Alliance, Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh, EH9 3HJ (United Kingdom); Cenko, S. B. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Jakobsson, P. [Centre for Astrophysics and Cosmology, Science Institute, University of Iceland, Dunhagi 5, 107 Reykjavík (Iceland); Krühler, T. [European Southern Observatory, Alonso de Córdova 3107, Vitacura, Casilla 19001, Santiago 19 (Chile); Levan, A. J. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Tanvir, N. R., E-mail: dperley@astro.caltech.edu [Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH (United Kingdom)

    2015-03-10

    Luminous infrared galaxies and submillimeter galaxies contribute significantly to stellar mass assembly and provide an important test of the connection between the gamma-ray burst (GRB) rate and that of overall cosmic star formation. We present sensitive 3 GHz radio observations using the Karl G. Jansky Very Large Array of 32 uniformly selected GRB host galaxies spanning a redshift range from 0 < z < 2.5, providing the first fully dust- and sample-unbiased measurement of the fraction of GRBs originating from the universe's most bolometrically luminous galaxies. Four galaxies are detected, with inferred radio star formation rates (SFRs) ranging between 50 and 300 M {sub ☉} yr{sup –1}. Three of the four detections correspond to events consistent with being optically obscured 'dark' bursts. Our overall detection fraction implies that between 9% and 23% of GRBs between 0.5 < z < 2.5 occur in galaxies with S {sub 3GHz} > 10 μJy, corresponding to SFR > 50 M {sub ☉} yr{sup –1} at z ∼ 1 or >250 M {sub ☉} yr{sup –1} at z ∼ 2. Similar galaxies contribute approximately 10%-30% of all cosmic star formation, so our results are consistent with a GRB rate that is not strongly biased with respect to the total SFR of a galaxy. However, all four radio-detected hosts have stellar masses significantly lower than IR/submillimeter-selected field galaxies of similar luminosities. We suggest that the GRB rate may be suppressed in metal-rich environments but independently enhanced in intense starbursts, producing a strong efficiency dependence on mass but little net dependence on bulk galaxy SFR.

  6. Infrared and radio emission from S0 galaxies

    International Nuclear Information System (INIS)

    Bally, J.; Thronson, H.A. Jr.

    1989-01-01

    Far-IR data are presented on 74 early-type S0 galaxies that were selected on the basis of the availability of radio-continuum measurements. Most of the galaxies are detected at IR wavelengths with IRAS, indicating the presence of a cold interstellar medium (ISM) in these galaxies. The mass of gas in these systems is estimated to lie in the range of 10 to the 7th to 10 to the 10th solar. The most massive ISM in some S0s approaches that found in some spirals. The brighter IR-emitting galaxies all lie close to a relationship established for gas-rich spiral galaxies. None of these galaxies have large ratio fluxes, suggesting that strong nuclear radio sources or extended radio lobes and jets are absent or suppressed. Strong radio emission is found among those galaxies that are either faint or not detected at IR wavelengths. The absence of an ISM suggests that these galaxies are of an earlier type that those that have large IR fluxes. 38 references

  7. Spitzer ultra faint survey program (surfs up). I. An overview

    Energy Technology Data Exchange (ETDEWEB)

    Bradač, Maruša; Huang, Kuang-Han; Cain, Benjamin; Hall, Nicholas; Lubin, Lori [Department of Physics, University of California, Davis, CA 95616 (United States); Ryan, Russell; Casertano, Stefano [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Lemaux, Brian C. [Aix Marseille Université, CNRS, LAM (Laboratoire d' Astrophysique de Marseille) UMR 7326, F-13388 Marseille (France); Schrabback, Tim; Hildebrandt, Hendrik [Argelander-Institut für Astronomie, Auf Dem Hügel 71, D-53121 Bonn (Germany); Gonzalez, Anthony H. [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611 (United States); Allen, Steve; Von der Linden, Anja [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 382 Via Pueblo Mall, Stanford, CA 94305-4060 (United States); Gladders, Mike [The University of Chicago, The Kavli Institute for Cosmological Physics, 933 East 56th Street, Chicago, IL 60637 (United States); Hinz, Joannah; Zaritsky, Dennis [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Treu, Tommaso, E-mail: marusa@physics.ucdavis.edu [Department of Physics, University of California, Santa Barbara, CA 93106 (United States)

    2014-04-20

    Spitzer UltRa Faint SUrvey Program is a joint Spitzer and Hubble Space Telescope Exploration Science program using 10 galaxy clusters as cosmic telescopes to study z ≳ 7 galaxies at intrinsically lower luminosities, enabled by gravitational lensing, than blank field surveys of the same exposure time. Our main goal is to measure stellar masses and ages of these galaxies, which are the most likely sources of the ionizing photons that drive reionization. Accurate knowledge of the star formation density and star formation history at this epoch is necessary to determine whether these galaxies indeed reionized the universe. Determination of the stellar masses and ages requires measuring rest-frame optical light, which only Spitzer can probe for sources at z ≳ 7, for a large enough sample of typical galaxies. Our program consists of 550 hr of Spitzer/IRAC imaging covering 10 galaxy clusters with very well-known mass distributions, making them extremely precise cosmic telescopes. We combine our data with archival observations to obtain mosaics with ∼30 hr exposure time in both 3.6 μm and 4.5 μm in the central 4' × 4' field and ∼15 hr in the flanking fields. This results in 3σ sensitivity limits of ∼26.6 and ∼26.2 AB magnitudes for the central field in the IRAC 3.6 and 4.5 μm bands, respectively. To illustrate the survey strategy and characteristics we introduce the sample, present the details of the data reduction and demonstrate that these data are sufficient for in-depth studies of z ≳ 7 sources (using a z = 9.5 galaxy behind MACS J1149.5+2223 as an example). For the first cluster of the survey (the Bullet Cluster) we have released all high-level data mosaics and IRAC empirical point-spread function models. In the future we plan to release these data products for the entire survey.

  8. The radio properties of infrared-faint radio sources

    Science.gov (United States)

    Middelberg, E.; Norris, R. P.; Hales, C. A.; Seymour, N.; Johnston-Hollitt, M.; Huynh, M. T.; Lenc, E.; Mao, M. Y.

    2011-02-01

    Context. Infrared-faint radio sources (IFRS) are objects that have flux densities of several mJy at 1.4 GHz, but that are invisible at 3.6 μm when using sensitive Spitzer observations with μJy sensitivities. Their nature is unclear and difficult to investigate since they are only visible in the radio. Aims: High-resolution radio images and comprehensive spectral coverage can yield constraints on the emission mechanisms of IFRS and can give hints to similarities with known objects. Methods: We imaged a sample of 17 IFRS at 4.8 GHz and 8.6 GHz with the Australia Telescope Compact Array to determine the structures on arcsecond scales. We added radio data from other observing projects and from the literature to obtain broad-band radio spectra. Results: We find that the sources in our sample are either resolved out at the higher frequencies or are compact at resolutions of a few arcsec, which implies that they are smaller than a typical galaxy. The spectra of IFRS are remarkably steep, with a median spectral index of -1.4 and a prominent lack of spectral indices larger than -0.7. We also find that, given the IR non-detections, the ratio of 1.4 GHz flux density to 3.6 μm flux density is very high, and this puts them into the same regime as high-redshift radio galaxies. Conclusions: The evidence that IFRS are predominantly high-redshift sources driven by active galactic nuclei (AGN) is strong, even though not all IFRS may be caused by the same phenomenon. Compared to the rare and painstakingly collected high-redshift radio galaxies, IFRS appear to be much more abundant, but less luminous, AGN-driven galaxies at similar cosmological distances.

  9. Planck early results. XVI. The Planck view of nearby galaxies

    DEFF Research Database (Denmark)

    Lähteenmäki, A.; Poutanen, T.; Natoli, P.

    2011-01-01

    they have been observed. We here present the first results on the properties of nearby galaxies using these data. We match the ERCSC catalogue to IRAS-detected galaxies in the Imperial IRAS Faint Source Redshift Catalogue (IIFSCz), so that we can measure the spectral energy distributions (SEDs......) of these objects from 60 to 850μm. This produces a list of 1717 galaxies with reliable associations between Planck and IRAS, from which we select a subset of 468 for SED studies, namely those with strong detections in the three highest frequency Planck bands and no evidence of cirrus contamination. The SEDs...

  10. Black hole growth and starburst activity at z = 0.6-4 in the Chandra Deep Field South. Host galaxies properties of obscured AGN

    Science.gov (United States)

    Brusa, M.; Fiore, F.; Santini, P.; Grazian, A.; Comastri, A.; Zamorani, G.; Hasinger, G.; Merloni, A.; Civano, F.; Fontana, A.; Mainieri, V.

    2009-12-01

    Aims: The co-evolution of host galaxies and the active black holes which reside in their centre is one of the most important topics in modern observational cosmology. Here we present a study of the properties of obscured active galactic nuclei (AGN) detected in the CDFS 1 Ms observation and their host galaxies. Methods: We limited the analysis to the MUSIC area, for which deep K-band observations obtained with ISAAC@VLT are available, ensuring accurate identifications of the counterparts of the X-ray sources as well as reliable determination of photometric redshifts and galaxy parameters, such as stellar masses and star formation rates. In particular, we: 1) refined the X-ray/infrared/optical association of 179 sources in the MUSIC area detected in the Chandra observation; 2) studied the host galaxies observed and rest frame colors and properties. Results: We found that X-ray selected (LX ⪆ 1042 erg s-1) AGN show Spitzer colors consistent with both AGN and starburst dominated infrared continuum; the latter would not have been selected as AGN from infrared diagnostics. The host galaxies of X-ray selected obscured AGN are all massive (Mast > 1010 M_⊙) and, in 50% of the cases, are also actively forming stars (1/SSFR mass up to a value of 30% at z > 1 and Mast > 3 × 1011 M_⊙, a fraction significantly higher than in the local Universe for AGN of similar luminosities. Tables [see full textsee full textsee full text] and [see full textsee full textsee full text] are only available in electronic form at http://www.aanda.org

  11. KECK/LRIS SPECTROSCOPIC CONFIRMATION OF COMA CLUSTER DWARF GALAXY MEMBERSHIP ASSIGNMENTS

    International Nuclear Information System (INIS)

    Chiboucas, Kristin; Tully, R. Brent; Marzke, Ronald O.; Trentham, Neil; Ferguson, Henry C.; Hammer, Derek; Carter, David; Khosroshahi, Habib

    2010-01-01

    Keck/LRIS multi-object spectroscopy has been carried out on 140 of some of the lowest and highest surface brightness faint (19 < R < 22) dwarf galaxy candidates in the core region of the Coma Cluster. These spectra are used to measure redshifts and establish membership for these faint dwarf populations. The primary goal of the low surface brightness sample is to test our ability to use morphological and surface brightness criteria to distinguish between Coma Cluster members and background galaxies using high resolution Hubble Space Telescope/Advanced Camera for Surveys images. Candidates were rated as expected members, uncertain, or expected background. From 93 spectra, 51 dwarf galaxy members and 20 background galaxies are identified. Our morphological membership estimation success rate is ∼100% for objects expected to be members and better than ∼90% for galaxies expected to be in the background. We confirm that low surface brightness is a very good indicator of cluster membership. High surface brightness galaxies are almost always background with confusion arising only from the cases of the rare compact elliptical (cE) galaxies. The more problematic cases occur at intermediate surface brightness. Many of these galaxies are given uncertain membership ratings, and these were found to be members about half of the time. Including color information will improve membership determination but will fail for some of the same objects that are already misidentified when using only surface brightness and morphology criteria. cE galaxies with B-V colors ∼0.2 mag redward of the red sequence in particular require spectroscopic follow up. In a sample of 47 high surface brightness, ultracompact dwarf candidates, 19 objects have redshifts which place them in the Coma Cluster, while another 6 have questionable redshift measurements but may also prove to be members. Redshift measurements are presented and the use of indirect means for establishing cluster membership is

  12. On the mass-metallicity relation, velocity dispersion and gravitational well depth of GRB host galaxies

    DEFF Research Database (Denmark)

    Arabsalmani, Maryam; Møller, Palle; Fynbo, Johan P. U.

    2015-01-01

    -DLA samples and compare the measured stellar masses for the four hosts where stellar masses have been determined from SED fits. We find excellent agreement and conclude that, on basis of all available data and tests, long duration GRB-DLA hosts and intervening QSO-DLAs are consistent with being drawn from...... away from the metallicity in the centre of the galaxy, second the path of the sightline through different parts of the potential well of the dark matter halo will cause different velocity fields to be sampled. We report evidence suggesting that this second effect may have been detected....

  13. Feedback by Massive Black Holes in Gas-rich Dwarf Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Silk, Joseph [Institut d’Astrophysique, UMR 7095 CNRS, Université Pierre et Marie Curie, 98bis Blvd Arago, F-75014 Paris (France); AIM-Paris-Saclay, CEA/DSM/IRFU, CNRS, Univ Paris 7, F-91191, Gif-sur-Yvette (France); Department of Physics and Astronomy, The Johns Hopkins University, Homewood Campus, Baltimore, MD 21218 (United States); Beecroft Institute of Particle Astrophysics and Cosmology, Department of Physics, University of Oxford, Oxford OX1 3RH (United Kingdom)

    2017-04-10

    Could there be intermediate-mass black holes in essentially all old dwarf galaxies? I argue that current observations of active galactic nuclei in dwarfs allow such a radical hypothesis that provides early feedback during the epoch of galaxy formation and potentially provides a unifying explanation for many, if not all, of the dwarf galaxy anomalies, such as the abundance, core-cusp, “too-big-to-fail,” ultra-faint, and baryon-fraction issues. I describe the supporting arguments, which are largely circumstantial, and discuss a number of tests. There is no strong motivation for modifying the nature of cold dark matter in order to explain any of the dwarf galaxy “problems.”.

  14. The intrinsic shape of galaxies in SDSS/Galaxy Zoo

    Science.gov (United States)

    Rodríguez, Silvio; Padilla, Nelson D.

    2013-09-01

    By modelling the axis ratio distribution of Sloan Digital Sky Survey (SDSS) Data Release 8 galaxies, we find the intrinsic 3D shapes of spirals and ellipticals. We use morphological information from the Galaxy Zoo project and assume a non-parametric distribution intrinsic of shapes, while taking into account dust extinction. We measure the dust extinction of the full sample of spiral galaxies and find a smaller value than previous estimations, with an edge-on extinction of E_0 = 0.284^{+0.015}_{-0.026} in the SDSS r band. We also find that the distribution of minor to major axis ratio has a mean value of 0.267 ± 0.009, slightly larger than previous estimates mainly due to the lower extinction used; the same affects the circularity of galactic discs, which are found to be less round in shape than in previous studies, with a mean ellipticity of 0.215 ± 0.013. For elliptical galaxies, we find that the minor to major axis ratio, with a mean value of 0.584 ± 0.006, is larger than previous estimations due to the removal of spiral interlopers present in samples with morphological information from photometric profiles. These interlopers are removed when selecting ellipticals using Galaxy Zoo data. We find that the intrinsic shapes of galaxies and their dust extinction vary with absolute magnitude, colour and physical size. We find that bright elliptical galaxies are more spherical than faint ones, a trend that is also present with galaxy size, and that there is no dependence of elliptical galaxy shape with colour. For spiral galaxies, we find that the reddest ones have higher dust extinction as expected, due to the fact that this reddening is mainly due to dust. We also find that the thickness of discs increases with luminosity and size, and that brighter, smaller and redder galaxies have less round discs.

  15. Fainting

    Science.gov (United States)

    ... go to the ER. When Desiree asked her school nurse about it the next day, she said Desiree probably fainted because she stayed in the whirlpool too long or the temperature was set too high, affecting her blood pressure. ...

  16. New Members in the Galaxy Group Around Giant Radio Galaxy DA 240

    Science.gov (United States)

    Chen, Ru-Rong; Peng, Bo; Strom, Richard

    2018-05-01

    With new spectroscopic observations of group candidates around the giant radio galaxy DA 240, we have identified five new group members, increasing the number to twenty-five. While all the new members are located some distance from the host galaxy, two of them lie in one of the radio lobes, and the rest are found at a distance from the radio components. The new group members reinforce our earlier conclusion that the distribution of the DA 240 group with respect to the radio lobes is unusual among giant radio galaxy host environments.

  17. Halo models of HI selected galaxies

    Science.gov (United States)

    Paul, Niladri; Choudhury, Tirthankar Roy; Paranjape, Aseem

    2018-06-01

    Modelling the distribution of neutral hydrogen (HI) in dark matter halos is important for studying galaxy evolution in the cosmological context. We use a novel approach to infer the HI-dark matter connection at the massive end (m_H{I} > 10^{9.8} M_{⊙}) from radio HI emission surveys, using optical properties of low-redshift galaxies as an intermediary. In particular, we use a previously calibrated optical HOD describing the luminosity- and colour-dependent clustering of SDSS galaxies and describe the HI content using a statistical scaling relation between the optical properties and HI mass. This allows us to compute the abundance and clustering properties of HI-selected galaxies and compare with data from the ALFALFA survey. We apply an MCMC-based statistical analysis to constrain the free parameters related to the scaling relation. The resulting best-fit scaling relation identifies massive HI galaxies primarily with optically faint blue centrals, consistent with expectations from galaxy formation models. We compare the Hi-stellar mass relation predicted by our model with independent observations from matched Hi-optical galaxy samples, finding reasonable agreement. As a further application, we make some preliminary forecasts for future observations of HI and optical galaxies in the expected overlap volume of SKA and Euclid/LSST.

  18. The Host Galaxy and Central Engine of the Dwarf Active Galactic Nucleus POX 52

    Science.gov (United States)

    Thornton, Carol E.; Barth, Aaron J.; Ho, Luis C.; Rutledge, Robert E.; Greene, Jenny E.

    2008-10-01

    We present new multiwavelength observations of the dwarf Seyfert 1 galaxy POX 52 in order to investigate the properties of the host galaxy and the active nucleus and to examine the mass of its black hole, previously estimated to be ~105 M⊙. HST ACS HRC images show that the host galaxy has a dwarf elliptical morphology (MI = - 18.4 mag, Sérsic index n = 4.3) with no detected disk component or spiral structure, confirming previous results from ground-based imaging. X-ray observations from both Chandra and XMM-Newton show strong (factor of 2) variability over timescales as short as 500 s, as well as a dramatic decrease in the absorbing column density over a 9 month period. We attribute this change to a partial covering absorber, with a 94% covering fraction and NH = 58+ 8.4-9.2 × 1021 cm -2, that moved out of the line of sight in between the XMM-Newton and Chandra observations. Combining these data with observations from the VLA, Spitzer, and archival data from 2MASS and GALEX, we examine the SED of the active nucleus. Its shape is broadly similar to typical radio-quiet quasar SEDs, despite the very low bolometric luminosity of Lbol = 1.3 × 1043 ergs s-1. Finally, we compare black hole mass estimators, including methods based on X-ray variability, and optical scaling relations using the broad Hβ line width and AGN continuum luminosity, finding a range of black hole mass from all methods to be MBH = (2.2-4.2) × 105 M⊙, with an Eddington ratio of Lbol/LEdd ≈ 0.2-0.5.

  19. Gas inflow and outflow in an interacting high-redshift galaxy. The remarkable host environment of GRB 080810 at z = 3.35

    Science.gov (United States)

    Wiseman, P.; Perley, D. A.; Schady, P.; Prochaska, J. X.; de Ugarte Postigo, A.; Krühler, T.; Yates, R. M.; Greiner, J.

    2017-11-01

    We reveal multiple components of an interacting galaxy system at z ≈ 3.35 through a detailed analysis of the exquisite high-resolution Keck/HIRES spectrum of the afterglow of a gamma-ray burst (GRB). Through Voigt-profile fitting of absorption lines from the Lyman series, we constrain the neutral hydrogen column density to NH I ≤ 1018.35 cm-2 for the densest of four distinct systems at the host redshift of GRB 080810, which is among the lowest NH I ever observed in a GRB host, even though the line of sight passes within a projected 5 kpc of the galaxy centres. By detailed analysis of the corresponding metal absorption lines, we derive chemical, ionic, and kinematic properties of the individual absorbing systems, and thus build a picture of the host as a whole. Striking differences between the systems imply that the line of sight passes through several phases of gas: the star-forming regions of the GRB host; enriched material in the form of a galactic outflow; the hot and ionised halo of a second interacting galaxy falling towards the host at a line-of-sight velocity of 700 km s-1; and a cool metal-poor cloud that may represent one of the best candidates yet for the inflow of metal-poor gas from the intergalactic medium. The reduced spectrum is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/607/A107

  20. THE ROLE OF RADIATION PRESSURE IN THE NARROW LINE REGIONS OF SEYFERT HOST GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Davies, Rebecca L.; Dopita, Michael A.; Kewley, Lisa; Groves, Brent; Sutherland, Ralph; Hampton, Elise J.; Banfield, Julie [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Shastri, Prajval; Kharb, Preeti; Bhatt, Harish [Indian Institute of Astrophysics, Sarjapur Road, Bengaluru 560034 (India); Scharwächter, Julia [LERMA, Observatoire de Paris, PSL, CNRS, Sorbonne Universités, UPMC, F-75014 Paris (France); Jin, Chichuan [Max-Planck-Institut für Extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching (Germany); Zaw, Ingyin [New York University (Abu Dhabi), 70 Washington Square S, New York, NY 10012 (United States); James, Bethan [Institute of Astronomy, Cambridge University, Madingley Road, Cambridge CB3 0HA (United Kingdom); Juneau, Stéphanie [CEA-Saclay, DSM/IRFU/SAp, F-91191 Gif-sur-Yvette (France); Srivastava, Shweta, E-mail: Rebecca.Davies@anu.edu.au [Astronomy and Astrophysics Division, Physical Research Laboratory, Ahmedabad 380009 (India)

    2016-06-10

    We investigate the relative significance of radiation pressure and gas pressure in the extended narrow line regions (ENLRs) of four Seyfert galaxies from the integral field Siding Spring Southern Seyfert Spectroscopic Snapshot Survey (S7). We demonstrate that there exist two distinct types of starburst-active galactic nucleus (AGN) mixing curves on standard emission line diagnostic diagrams, which reflect the balance between gas pressure and radiation pressure in the ENLR. In two of the galaxies the ENLR is radiation pressure dominated throughout and the ionization parameter remains constant (log U ∼ 0). In the other two galaxies radiation pressure is initially important, but gas pressure becomes dominant as the ionization parameter in the ENLR decreases from log U ∼ 0 to −3.2 ≲ log U ≲ −3.4. Where radiation pressure is dominant, the AGN regulates the density of the interstellar medium on kiloparsec scales and may therefore have a direct impact on star formation activity and/or the incidence of outflows in the host galaxy to scales far beyond the zone of influence of the black hole. We find that both radiation pressure dominated and gas pressure dominated ENLRs are dynamically active with evidence for outflows, indicating that radiation pressure may be an important source of AGN feedback even when it is not dominant over the entire ENLR.

  1. Polar ring galaxies in the Galaxy Zoo

    Science.gov (United States)

    Finkelman, Ido; Funes, José G.; Brosch, Noah

    2012-05-01

    We report observations of 16 candidate polar-ring galaxies (PRGs) identified by the Galaxy Zoo project in the Sloan Digital Sky Survey (SDSS) data base. Deep images of five galaxies are available in the SDSS Stripe82 data base, while to reach similar depth we observed the remaining galaxies with the 1.8-m Vatican Advanced Technology Telescope. We derive integrated magnitudes and u-r colours for the host and ring components and show continuum-subtracted Hα+[N II] images for seven objects. We present a basic morphological and environmental analysis of the galaxies and discuss their properties in comparison with other types of early-type galaxies. Follow-up photometric and spectroscopic observations will allow a kinematic confirmation of the nature of these systems and a more detailed analysis of their stellar populations.

  2. A dichotomy in satellite quenching around L* galaxies

    Science.gov (United States)

    Phillips, John I.; Wheeler, Coral; Boylan-Kolchin, Michael; Bullock, James S.; Cooper, Michael C.; Tollerud, Erik J.

    2014-01-01

    We examine the star formation properties of bright (˜0.1 L*) satellites around isolated ˜L* hosts in the local Universe using spectroscopically confirmed systems in the Sloan Digital Sky Survey Data Release 7. Our selection method is carefully designed with the aid of N-body simulations to avoid groups and clusters. We find that satellites are significantly more likely to be quenched than a stellar mass-matched sample of isolated galaxies. Remarkably, this quenching occurs only for satellites of hosts that are themselves quenched: while star formation is unaffected in the satellites of star-forming hosts, satellites around quiescent hosts are more than twice as likely to be quenched than stellar-mass-matched field samples. One implication of this is that whatever shuts down star formation in isolated, passive L* galaxies also play at least an indirect role in quenching star formation in their bright satellites. The previously reported tendency for `galactic conformity' in colour/morphology may be a by-product of this host-specific quenching dichotomy. The Sérsic indices of quenched satellites are statistically identical to those of field galaxies with the same specific star formation rates, suggesting that environmental and secular quenching give rise to the same morphological structure. By studying the distribution of pairwise velocities between the hosts and satellites, we find dynamical evidence that passive host galaxies reside in dark matter haloes that are ˜45 per cent more massive than those of star-forming host galaxies of the same stellar mass. We emphasize that even around passive hosts, the mere fact that galaxies become satellites does not typically result in star formation quenching: we find that only ˜30 per cent of ˜0.1L* galaxies that fall in from the field are quenched around passive hosts, compared with ˜0 per cent around star-forming hosts.

  3. The galaxy-subhalo connection in low-redshift galaxy clusters from weak gravitational lensing

    Science.gov (United States)

    Sifón, Cristóbal; Herbonnet, Ricardo; Hoekstra, Henk; van der Burg, Remco F. J.; Viola, Massimo

    2018-07-01

    We measure the gravitational lensing signal around satellite galaxies in a sample of galaxy clusters at z measurements of faint, background sources in the vicinity of bright satellite galaxies. We find a small but significant bias, as light from the lenses makes the shapes of background galaxies appear radially aligned with the lens. We account for this bias by applying a correction that depends on both lens size and magnitude. We also correct for contamination of the source sample by cluster members. We use a physically motivated definition of subhalo mass, namely the mass bound to the subhalo, mbg, similar to definitions used by common subhalo finders in numerical simulations. Binning the satellites by stellar mass we provide a direct measurement of the subhalo-to-stellar-mass relation, log mbg/M⊙ = (11.54 ± 0.05) + (0.95 ± 0.10)log [m⋆/(2 × 1010 M⊙)]. This best-fitting relation implies that, at a stellar mass m⋆ ˜ 3 × 1010 M⊙, subhalo masses are roughly 50 per cent of those of central galaxies, and this fraction decreases at higher stellar masses. We find some evidence for a sharp change in the total-to-stellar mass ratio around the clusters' scale radius, which could be interpreted as galaxies within the scale radius having suffered more strongly from tidal stripping, but remain cautious regarding this interpretation.

  4. A Compact Group of Galaxies at z = 2.48 Hosting an AGN-driven Outflow

    Science.gov (United States)

    Shih, Hsin-Yi; Stockton, Alan

    2015-12-01

    We present observations of a remarkable compact group of galaxies at z = 2.48. Four galaxies, all within 40 kpc of each other, surround a powerful high-redshift radio source. This group comprises two compact red passive galaxies and a pair of merging galaxies. One of the red galaxies, with an apparent stellar mass of 3.6 × 1011M⊙ and an effective radius of 470 pc, is one of the most extreme examples of a massive quiescent compact galaxy found so far. One of the pair of merging galaxies hosts the active galactic nucleus (AGN) producing the large powerful radio structure. The merger is massive and enriched, consistent with the mass-metallicity relation expected at this redshift. Close to the merging nuclei, the emission lines exhibit broad and asymmetric profiles that suggest outflows powered either by a very young expanding radio jet or by AGN radiation. At ≳50 kpc from the system, we found a fainter extended-emission region that may be a part of a radio-jet-driven outflow. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. The work is also based, in part, on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan, and on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil), and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina).

  5. The afterglow and elliptical host galaxy of the short gamma-ray burst GRB 050724.

    Science.gov (United States)

    Berger, E; Price, P A; Cenko, S B; Gal-Yam, A; Soderberg, A M; Kasliwal, M; Leonard, D C; Cameron, P B; Frail, D A; Kulkarni, S R; Murphy, D C; Krzeminski, W; Piran, T; Lee, B L; Roth, K C; Moon, D-S; Fox, D B; Harrison, F A; Persson, S E; Schmidt, B P; Penprase, B E; Rich, J; Peterson, B A; Cowie, L L

    2005-12-15

    Despite a rich phenomenology, gamma-ray bursts (GRBs) are divided into two classes based on their duration and spectral hardness--the long-soft and the short-hard bursts. The discovery of afterglow emission from long GRBs was a watershed event, pinpointing their origin to star-forming galaxies, and hence the death of massive stars, and indicating an energy release of about 10(51) erg. While theoretical arguments suggest that short GRBs are produced in the coalescence of binary compact objects (neutron stars or black holes), the progenitors, energetics and environments of these events remain elusive despite recent localizations. Here we report the discovery of the first radio afterglow from the short burst GRB 050724, which unambiguously associates it with an elliptical galaxy at a redshift z = 0.257. We show that the burst is powered by the same relativistic fireball mechanism as long GRBs, with the ejecta possibly collimated in jets, but that the total energy release is 10-1,000 times smaller. More importantly, the nature of the host galaxy demonstrates that short GRBs arise from an old (> 1 Gyr) stellar population, strengthening earlier suggestions and providing support for coalescing compact object binaries as the progenitors.

  6. SPECTROSCOPIC CONFIRMATION OF THREE z-DROPOUT GALAXIES AT z = 6.844-7.213: DEMOGRAPHICS OF Lyα EMISSION IN z ∼ 7 GALAXIES

    International Nuclear Information System (INIS)

    Ono, Yoshiaki; Shimasaku, Kazuhiro; Nakajima, Kimihiko; Ouchi, Masami; Mobasher, Bahram; Nayyeri, Hooshang; Dickinson, Mark; Kartaltepe, Jeyhan S.; Penner, Kyle; Weiner, Benjamin J.; Stern, Daniel; Kashikawa, Nobunari; Spinrad, Hyron

    2012-01-01

    We present the results of our ultra-deep Keck/DEIMOS spectroscopy of z-dropout galaxies in the Subaru Deep Field and Great Observatories Origins Deep Survey's northern field. For 3 out of 11 objects, we detect an emission line at ∼1 μm with a signal-to-noise ratio of ∼10. The lines show asymmetric profiles with high weighted skewness values, consistent with being Lyα, yielding redshifts of z = 7.213, 6.965, and 6.844. Specifically, we confirm the z = 7.213 object in two independent DEIMOS runs with different spectroscopic configurations. The z = 6.965 object is a known Lyα emitter, IOK-1, for which our improved spectrum at a higher resolution yields a robust skewness measurement. The three z-dropouts have Lyα fluxes of 3 × 10 –17 erg s –1 cm –2 and rest-frame equivalent widths EW Lyα 0 = 33-43 Å. Based on the largest spectroscopic sample of 43 z-dropouts, which is the combination of our and previous data, we find that the fraction of Lyα-emitting galaxies (EW Lyα 0 > 25 Å) is low at z ∼ 7; 17% ± 10% and 24% ± 12% for bright (M UV ≅ –21) and faint (M UV ≅ –19.5) galaxies, respectively. The fractions of Lyα-emitting galaxies drop from z ∼ 6 to 7 and the amplitude of the drop is larger for faint galaxies than for bright galaxies. These two pieces of evidence would indicate that the neutral hydrogen fraction of the intergalactic medium increases from z ∼ 6 to 7 and that the reionization proceeds from high- to low-density environments, as suggested by an inside-out reionization model.

  7. SPECTROSCOPIC CONFIRMATION OF THREE z-DROPOUT GALAXIES AT z = 6.844-7.213: DEMOGRAPHICS OF Ly{alpha} EMISSION IN z {approx} 7 GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Yoshiaki; Shimasaku, Kazuhiro; Nakajima, Kimihiko, E-mail: ono@astron.s.u-tokyo.ac.jp [Department of Astronomy, Graduate School of Science, University of Tokyo, Tokyo 113-0033 (Japan); Ouchi, Masami [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa 277-8582 (Japan); Mobasher, Bahram; Nayyeri, Hooshang [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States); Dickinson, Mark; Kartaltepe, Jeyhan S. [National Optical Astronomical Observatories, Tucson, AZ 85719 (United States); Penner, Kyle [Department of Astronomy, University of Arizona, Tucson, AZ 85721 (United States); Weiner, Benjamin J. [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Kashikawa, Nobunari [Optical and Infrared Astronomy Division, National Astronomical Observatory of Japan, Tokyo 181-8588 (Japan); Spinrad, Hyron [Department of Astronomy, University of California, Berkeley, CA 94720 (United States)

    2012-01-10

    We present the results of our ultra-deep Keck/DEIMOS spectroscopy of z-dropout galaxies in the Subaru Deep Field and Great Observatories Origins Deep Survey's northern field. For 3 out of 11 objects, we detect an emission line at {approx}1 {mu}m with a signal-to-noise ratio of {approx}10. The lines show asymmetric profiles with high weighted skewness values, consistent with being Ly{alpha}, yielding redshifts of z = 7.213, 6.965, and 6.844. Specifically, we confirm the z = 7.213 object in two independent DEIMOS runs with different spectroscopic configurations. The z = 6.965 object is a known Ly{alpha} emitter, IOK-1, for which our improved spectrum at a higher resolution yields a robust skewness measurement. The three z-dropouts have Ly{alpha} fluxes of 3 Multiplication-Sign 10{sup -17} erg s{sup -1} cm{sup -2} and rest-frame equivalent widths EW{sup Ly{alpha}}{sub 0} = 33-43 A. Based on the largest spectroscopic sample of 43 z-dropouts, which is the combination of our and previous data, we find that the fraction of Ly{alpha}-emitting galaxies (EW{sup Ly{alpha}}{sub 0} > 25 A) is low at z {approx} 7; 17% {+-} 10% and 24% {+-} 12% for bright (M{sub UV} {approx_equal} -21) and faint (M{sub UV} {approx_equal} -19.5) galaxies, respectively. The fractions of Ly{alpha}-emitting galaxies drop from z {approx} 6 to 7 and the amplitude of the drop is larger for faint galaxies than for bright galaxies. These two pieces of evidence would indicate that the neutral hydrogen fraction of the intergalactic medium increases from z {approx} 6 to 7 and that the reionization proceeds from high- to low-density environments, as suggested by an inside-out reionization model.

  8. An Unusual Transient in the Extremely Metal-Poor Galaxy SDSS J094332.35+332657.6 (Leoncino Dwarf)

    Science.gov (United States)

    Filho, Mercedes E.; Sánchez Almeida, J.

    2018-05-01

    We have serendipitously discovered that Leoncino Dwarf, an ultra-faint, low-metallicity record-holder dwarf galaxy, may have hosted a transient source, and possibly exhibited a change in morphology, a shift in the center of brightness, and peak variability of the main (host) source in images taken approximately 40 yr apart; it is highly likely that these phenomena are related. Scenarios involving a Solar System object, a stellar cluster, dust enshrouding, and accretion variability have been considered, and discarded, as the origin of the transient. Although a combination of time-varying strong and weak lensing effects, induced by an intermediate mass black hole (104 - 5 × 105 M⊙) moving within the Milky Way halo (0.1 - 4 kpc), can conceivably explain all of the observed variable galaxy properties, it is statistically highly unlikely according to current theoretical predictions, and, therefore, also discarded. A cataclysmic event such as a supernova/hypernova could have occurred, as long as the event was observed towards the later/late-stage descent of the light curve, but this scenario fails to explain the absence of a post-explosion source and/or host HII region in recent optical images. An episode related to the giant eruption of a luminous blue variable star, a stellar merger or a nova, observed at, or near, peak magnitude may explain the transient source and possibly the change in morphology/center of brightness, but can not justify the main source peak variability, unless stellar variability is evoked.

  9. ON THE POPULATION OF H-I DWARF GALAXIES

    NARCIS (Netherlands)

    WEINBERG, DH; SZOMORU, A; GUHATHAKURTA, P; VANGORKOM, JH

    1991-01-01

    We report results from a 21 cm survey of fields in the Perseus-Pisces supercluster and a foreground void, which was designed to find gas-rich dwarf galaxies or optically faint H I clouds with masses M(HI) greater-than-or-similar-to 10(8) M.. We detected 16 objects in the supercluster, nine of them

  10. Type Ia supernova Hubble residuals and host-galaxy properties

    International Nuclear Information System (INIS)

    Kim, A. G.; Aldering, G.; Aragon, C.; Bailey, S.; Fakhouri, H. K.; Antilogus, P.; Bongard, S.; Canto, A.; Cellier-Holzem, F.; Fleury, M.; Guy, J.; Baltay, C.; Buton, C.; Feindt, U.; Greskovic, P.; Kowalski, M.; Childress, M.; Chotard, N.; Copin, Y.; Gangler, E.

    2014-01-01

    Kim et al. introduced a new methodology for determining peak-brightness absolute magnitudes of type Ia supernovae from multi-band light curves. We examine the relation between their parameterization of light curves and Hubble residuals, based on photometry synthesized from the Nearby Supernova Factory spectrophotometric time series, with global host-galaxy properties. The K13 Hubble residual step with host mass is 0.013 ± 0.031 mag for a supernova subsample with data coverage corresponding to the K13 training; at <<1σ, the step is not significant and lower than previous measurements. Relaxing the data coverage requirement of the Hubble residual step with the host mass is 0.045 ± 0.026 mag for the larger sample; a calculation using the modes of the distributions, less sensitive to outliers, yields a step of 0.019 mag. The analysis of this article uses K13 inferred luminosities, as distinguished from previous works that use magnitude corrections as a function of SALT2 color and stretch parameters: steps at >2σ significance are found in SALT2 Hubble residuals in samples split by the values of their K13 x(1) and x(2) light-curve parameters. x(1) affects the light-curve width and color around peak (similar to the Δm 15 and stretch parameters), and x(2) affects colors, the near-UV light-curve width, and the light-curve decline 20-30 days after peak brightness. The novel light-curve analysis, increased parameter set, and magnitude corrections of K13 may be capturing features of SN Ia diversity arising from progenitor stellar evolution.

  11. Retainment of r-process material in dwarf galaxies

    Science.gov (United States)

    Beniamini, Paz; Dvorkin, Irina; Silk, Joe

    2018-04-01

    The synthesis of r-process elements is known to involve extremely energetic explosions. At the same time, recent observations find significant r-process enrichment even in extremely small ultra-faint dwarf (UFD) galaxies. This raises the question of retainment of those elements within their hosts. We estimate the retainment fraction and find that it is large ˜0.9, unless the r-process event is very energetic (≳ 1052erg) and / or the host has lost a large fraction of its gas prior to the event. We estimate the r-process mass per event and rate as implied by abundances in UFDs, taking into account imperfect retainment and different models of UFD evolution. The results are consistent with previous estimates (Beniamini et al. 2016b) and with the constraints from the recently detected macronova accompanying a neutron star merger (GW170817). We also estimate the distribution of abundances predicted by these models. We find that ˜0.07 of UFDs should have r-process enrichment. The results are consistent with both the mean values and the fluctuations of [Eu/Fe] in galactic metal poor stars, supporting the possibility that UFDs are the main 'building blocks' of the galactic halo population.

  12. The AGN Luminosity Fraction in Galaxy Mergers

    Science.gov (United States)

    Dietrich, Jeremy; Weiner, Aaron; Ashby, Matthew; Martinez-Galarza, Juan Rafael; Smith, Howard Alan

    2017-01-01

    Galaxy mergers are key events in galaxy evolution, generally triggering massive starbursts and AGNs. However, in these chaotic systems, it is not yet known what fraction each of these two mechanisms contributes to the total luminosity. Here we measure and model spectral energy distributions (SEDs) using the Code for Investigating Galaxy Emission (CIGALE) in up to 33 broad bands from the UV to the far-IR for 23 IR-luminous galaxies to estimate the fraction of the bolometric IR luminosity that can be attributed to the AGN. The galaxies are split nearly evenly into two subsamples: late-stage mergers, found in the IRAS Revised Bright Galaxy Sample or Faint Source Catalog, and early-stage mergers found in the Spitzer Interacting Galaxy Sample. We find that the AGN contribution to the total IR luminosity varies greatly from system to system, from 0% up to ~90%, but is substantially greater in the later-stage and brighter mergers. This is consistent with what is known about galaxy evolution and the triggering of AGNs.The SAO REU program is funded in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851, and by the Smithsonian Institution.

  13. Black hole variability and the star formation-active galactic nucleus connection: Do all star-forming galaxies host an active galactic nucleus?

    International Nuclear Information System (INIS)

    Hickox, Ryan C.; Chen, Chien-Ting J.; Civano, Francesca M.; Hainline, Kevin N.; Mullaney, James R.; Alexander, David M.; Goulding, Andy D.

    2014-01-01

    We investigate the effect of active galactic nucleus (AGN) variability on the observed connection between star formation and black hole accretion in extragalactic surveys. Recent studies have reported relatively weak correlations between observed AGN luminosities and the properties of AGN hosts, which has been interpreted to imply that there is no direct connection between AGN activity and star formation. However, AGNs may be expected to vary significantly on a wide range of timescales (from hours to Myr) that are far shorter than the typical timescale for star formation (≳100 Myr). This variability can have important consequences for observed correlations. We present a simple model in which all star-forming galaxies host an AGN when averaged over ∼100 Myr timescales, with long-term average AGN accretion rates that are perfectly correlated with the star formation rate (SFR). We show that reasonable prescriptions for AGN variability reproduce the observed weak correlations between SFR and L AGN in typical AGN host galaxies, as well as the general trends in the observed AGN luminosity functions, merger fractions, and measurements of the average AGN luminosity as a function of SFR. These results imply that there may be a tight connection between AGN activity and SFR over galaxy evolution timescales, and that the apparent similarities in rest-frame colors, merger rates, and clustering of AGNs compared to 'inactive' galaxies may be due primarily to AGN variability. The results provide motivation for future deep, wide extragalactic surveys that can measure the distribution of AGN accretion rates as a function of SFR.

  14. Driving the growth of the earliest supermassive black holes with major mergers of host galaxies

    International Nuclear Information System (INIS)

    Tanaka, Takamitsu L

    2014-01-01

    The formation mechanism of supermassive black holes (SMBHs) in general, and of ∼10 9  m ⊙ SMBHs observed as luminous quasars at redshifts z>6 in particular, remains an open fundamental question. The presence of such massive BHs at such early times, when the Universe was less than a billion years old, implies that they grew via either super-Eddington accretion, or nearly uninterrupted gas accretion near the Eddington limit; the latter, at first glance, is at odds with empirical trends at lower redshifts, where quasar episodes associated with rapid BH growth are rare and brief. In this work, I examine whether and to what extent the growth of the z>6 quasar SMBHs can be explained within the standard quasar paradigm, in which major mergers of host galaxies trigger episodes of rapid gas accretion below or near the Eddington limit. Using a suite of Monte Carlo merger tree simulations of the assembly histories of 40 likely z>6 quasar host halos, I investigate (i) their growth and major merger rates out to z∼40, and (ii) how long the feeding episodes induced by host mergers must last in order to explain the observed z≳6 quasar population without super-Eddington accretion. The halo major merger rate scales roughly as ∝ (1+z) 5/2 , consistent with cosmological simulations at lower redshifts, with quasar hosts typically experiencing ≳10 major mergers between 15>z>6 (≈650 Myr), compared to ∼1 for typical massive galaxies at 3>z>0 (≈11 Gyr). The high rate of major mergers allows for nearly continuous SMBH growth if (for example) a merger triggers feeding for a duration comparable to the halo dynamical time. These findings suggest that the growth mechanisms of the earliest quasar SMBHs need not have been drastically different from their counterparts at lower redshifts. (paper)

  15. ULTRA-FAINT DWARF GALAXIES AS A TEST OF EARLY ENRICHMENT AND METALLICITY-DEPENDENT STAR FORMATION

    International Nuclear Information System (INIS)

    Tassis, Konstantinos; Gnedin, Nickolay Y.; Kravtsov, Andrey V.

    2012-01-01

    The close relation of star formation with molecular gas indicated by observations and assumed in recent models implies that the efficiency with which galaxies convert their gas into stars depends on gas metallicity. This is because abundance of molecular hydrogen is sensitive to abundance of dust, which catalyzes formation of H 2 and helps to shield it from dissociating radiation. In this study, we point out that in the absence of significant pre-enrichment by Population III stars forming out of zero metallicity gas, such H 2 -based star formation is expected to leave an imprint in the form of bi-modality in the metallicity distribution among dwarf galaxies and in the metallicity distribution of stars within individual galaxies. The bi-modality arises because when gas metallicity (and dust abundance) is low, formation of molecular gas is inefficient, the gas consumption timescale is long, and star formation and metal enrichment proceed slowly. When metallicity reaches a critical threshold value star formation and enrichment accelerate, which leads to rapid increase in both stellar mass and metallicity of galaxies. We demonstrate this process both using a simple analytical model and full cosmological simulations. In contrast, the observed metallicity distributions of dwarf galaxies or stars within them are not bi-modal. We argue that this discrepancy points to substantial early stochastic pre-enrichment by Population III stars to levels Z ∼ 10 –2 Z ☉ in dense, star-forming regions of early galaxies.

  16. FIRST OBSERVATIONAL SUPPORT FOR OVERLAPPING REIONIZED BUBBLES GENERATED BY A GALAXY OVERDENSITY

    Energy Technology Data Exchange (ETDEWEB)

    Castellano, M.; Pentericci, L.; Fontana, A.; Merlin, E.; Grazian, A.; Pilo, S.; Amorin, R.; Giallongo, E.; Guaita, L.; Paris, D. [INAF—Osservatorio Astronomico di Roma, Via Frascati 33, I-00040 Monte Porzio Catone (RM) (Italy); Dayal, P. [Institute for Computational Cosmology, Department of Physics, University of Durham, South Road, Durham DH1 3LE (United Kingdom); Hutter, A. [Swinburne University of Technology, Hawthorn, VIC 3122 (Australia); Brammer, G.; Koekemoer, A. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Cristiani, S. [INAF—Osservatorio Astronomico di Trieste, Via G. B. Tiepolo 11, I-34143 Trieste (Italy); Dickinson, M. [National Optical Astronomy Observatories, Tucson, AZ 85719 (United States); Ferrara, A.; Gallerani, S. [Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa (Italy); Giavalisco, M. [Astronomy Department, University of Massachusetts, Amherst, MA 01003 (United States); Maiolino, R., E-mail: marco.castellano@oa-roma.inaf.it [Cavendish Laboratory, University of Cambridge, 19 J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); and others

    2016-02-10

    We present an analysis of deep Hubble Space Telescope (HST) multi-band imaging of the BDF field specifically designed to identify faint companions around two of the few Lyα emitting galaxies spectroscopically confirmed at z ∼ 7. Although separated by only 4.4 proper Mpc these galaxies cannot generate H ii regions large enough to explain the visibility of their Lyα lines, thus requiring a population of fainter ionizing sources in their vicinity. We use deep HST and VLT-Hawk-I data to select z ∼ 7 Lyman break galaxies around the emitters. We select six new robust z ∼ 7 LBGs at Y ∼ 26.5–27.5 whose average spectral energy distribution is consistent with the objects being at the redshift of the close-by Lyα emitters. The resulting number density of z ∼ 7 LBGs in the BDF field is a factor of approximately three to four higher than expected in random pointings of the same size. We compare these findings with cosmological hydrodynamic plus radiative transfer simulations of a universe with a half neutral IGM: we find that indeed Lyα emitter pairs are only found in completely ionized regions characterized by significant LBG overdensities. Our findings match the theoretical prediction that the first ionization fronts are generated within significant galaxy overdensities and support a scenario where faint, “normal” star-forming galaxies are responsible for reionization.

  17. A redshift survey of very faint (B <= 22.5) field galaxies, radio sources, and quasars

    International Nuclear Information System (INIS)

    Koo, D.C.

    1983-01-01

    As part of a three year program to study the evolution of quasars, radio sources and galaxies, a 10 night redshift survey has been carried out. A few preliminary results are presented (a magnitude-redshift plot of 54 galaxies). (Auth.)

  18. DISCOVERY OF A PSEUDOBULGE GALAXY LAUNCHING POWERFUL RELATIVISTIC JETS

    Energy Technology Data Exchange (ETDEWEB)

    Kotilainen, Jari K.; Olguín-Iglesias, Alejandro [Finnish Centre for Astronomy with ESO (FINCA), University of Turku, Väisäläntie 20, FI-21500 Piikkiö (Finland); León-Tavares, Jonathan; Baes, Maarten [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281-S9, B-9000 Gent (Belgium); Anórve, Christopher [Facultad de Ciencias de la Tierra y del Espacio de la Universidad Autónoma de Sinaloa, Blvd. de la Americas y Av. Universitarios S/N, Ciudad Universitaria, C.P. 80010, Culiacán Sinaloa, México (Mexico); Chavushyan, Vahram; Carrasco, Luis, E-mail: jarkot@utu.fi [Instituto Nacional de Astrofísica Óptica y Electrónica (INAOE), Apartado Postal 51 y 216, 72000 Puebla (Mexico)

    2016-12-01

    Supermassive black holes launching plasma jets at close to the speed of light, producing gamma-rays, have ubiquitously been found to be hosted by massive elliptical galaxies. Since elliptical galaxies are generally believed to be built through galaxy mergers, active galactic nuclei (AGN) launching relativistic jets are associated with the latest stages of galaxy evolution. We have discovered a pseudobulge morphology in the host galaxy of the gamma-ray AGN PKS 2004-447. This is the first gamma-ray emitter radio-loud AGN found to have been launched from a system where both the black hole and host galaxy have been actively growing via secular processes. This is evidence of an alternative black hole–galaxy co-evolutionary path to develop powerful relativistic jets, which is not merger driven.

  19. ALMA DETECTION OF THE VIBRATIONALLY EXCITED HCN J = 4-3 EMISSION LINE IN THE AGN-HOSTING LUMINOUS INFRARED GALAXY IRAS 20551–4250

    Energy Technology Data Exchange (ETDEWEB)

    Imanishi, Masatoshi [Subaru Telescope, 650 North A' ohoku Place, Hilo, Hawaii, 96720 (United States); Nakanishi, Kouichiro, E-mail: masa.imanishi@nao.ac.jp [Joint ALMA Observatory, Alonso de Córdova 3107, Vitacura 763-0355, Santiago de Chile (Chile)

    2013-10-01

    We present results from our ALMA Cycle 0 observations, at the frequencies around the HCN, HCO{sup +}, and HNC J = 4-3 transition lines, of the luminous infrared galaxy IRAS 20551–4250 at z = 0.043, which is known to host an energetically important obscured active galactic nucleus (AGN). In addition to the targeted HCN, HCO{sup +}, and HNC J = 4-3 emission lines, two additional strong emission lines are seen, which we attribute to H{sub 2}S and CH{sub 3}CN(+CCH). The HCN-to-HCO{sup +} J = 4-3 flux ratio (∼0.7) is higher than in the other starburst-dominated galaxy (∼0.2) observed in our ALMA Cycle 0 program. We tentatively (∼5σ) detected the vibrationally excited (v {sub 2} = 1) HCN J = 4-3 (l = 1f) emission line, which is important for testing an infrared radiative pumping scenario for HCN. This is the second detection of this molecular transition in external galaxies. The most likely reason for this detection is not only the high flux of this emission line, but also the small molecular line widths observed in this galaxy, suggesting that vibrational excitation of HCN may be relatively common in AGN-hosting galaxies.

  20. Galaxy Formation

    DEFF Research Database (Denmark)

    Sparre, Martin

    Galaxy formation is an enormously complex discipline due to the many physical processes that play a role in shaping galaxies. The objective of this thesis is to study galaxy formation with two different approaches: First, numerical simulations are used to study the structure of dark matter and how...... galaxies form stars throughout the history of the Universe, and secondly it is shown that observations of gamma-ray bursts (GRBs) can be used to probe galaxies with active star formation in the early Universe. A conclusion from the hydrodynamical simulations is that the galaxies from the stateof...... is important, since it helps constraining chemical evolution models at high redshift. A new project studying how the population of galaxies hosting GRBs relate to other galaxy population is outlined in the conclusion of this thesis. The core of this project will be to quantify how the stellar mass function...

  1. SUPPRESSION OF STAR FORMATION IN THE HOSTS OF LOW-EXCITATION RADIO GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Pace, Cameron; Salim, Samir, E-mail: cameronpace@suu.edu, E-mail: salims@indiana.edu [Indiana University, Department of Astronomy, Swain Hall West 319, Bloomington, IN 47405-7105 (United States)

    2016-02-10

    The feedback from radio-loud active galactic nuclei (R-AGNs) may help maintain low star-formation (SF) rates in their early-type hosts, but the observational evidence for this mechanism has been inconclusive. We study systematic differences of aggregate spectral energy distributions (SEDs) of various subsets of ∼4000 low-redshift R-AGNs from Best and Heckman with respect to (currently) inactive control samples selected to have matching redshift, stellar mass, population age, axis ratio, and environment. Aggregate SEDs, ranging from the ultraviolet (UV) through mid-infrared (mid-IR, 22 μm), were constructed using a Bayesian method that eliminates biases from non-detections in Galaxy Evolution Explorer and Wide-field Infrared Survey Explorer. We study rare high-excitation sources separately from low-excitation ones, which we split by environment and host properties. We find that both the UV and mid-IR emission of non-cluster R-AGNs (80% of sample) are suppressed by ∼0.2 dex relative to that of the control group, especially for moderately massive galaxies (log M{sub *} ≲ 11). The difference disappears for high-mass R-AGNs and for R-AGNs in clusters, where other, non-AGN quenching/maintenance mechanisms may dominate, or where the suppression of SF due to AGNs may persist between active phases of the central engine, perhaps because of the presence of a hot gaseous halo storing AGN energy. High-excitation (high accretion rate) sources, which make up 2% of the R-AGN sample, do not show any evidence of SF suppression (their UV is the same as in controls), but they exhibit a strong mid-IR excess due to AGN dust heating.

  2. CLASH: EXTREME EMISSION-LINE GALAXIES AND THEIR IMPLICATION ON SELECTION OF HIGH-REDSHIFT GALAXIES

    International Nuclear Information System (INIS)

    Huang, Xingxing; Wang, Junxian; Shu, Xinwen; Zheng, Wei; Ford, Holland; Lemze, Doron; Moustakas, John; Van der Wel, Arjen; Zitrin, Adi; Frye, Brenda L.; Postman, Marc; Bradley, Larry; Coe, Dan; Bartelmann, Matthias; Benítez, Narciso; Broadhurst, Tom; Donahue, Megan; Infante, Leopoldo

    2015-01-01

    We utilize the Cluster Lensing And Supernova survey with Hubble observations of 25 clusters to search for extreme emission-line galaxies (EELGs). The selections are carried out in two central bands: F105W (Y 105 ) and F125W (J 125 ), as the flux of the central bands could be enhanced by the presence of [O III] λλ4959, 5007 at redshifts of ∼0.93-1.14 and 1.57-1.79, respectively. The multiband observations help to constrain the equivalent widths (EWs) of emission lines. Thanks to cluster lensing, we are able to identify 52 candidates down to an intrinsic limiting magnitude of 28.5 and to a rest-frame [O III] λλ4959, 5007 EW of ≅ 3700 Å. Our samples include a number of EELGs at lower luminosities that are missed in other surveys, and the extremely high EW can only be found in such faint galaxies. These EELGs can mimic a dropout feature similar to that of high-redshift galaxies and contaminate the color-color selection of high-redshift galaxies when the signal-to-noise ratio is limited or the band coverage is incomplete

  3. CLASH: EXTREME EMISSION-LINE GALAXIES AND THEIR IMPLICATION ON SELECTION OF HIGH-REDSHIFT GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xingxing; Wang, Junxian; Shu, Xinwen [CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zheng, Wei; Ford, Holland; Lemze, Doron [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Moustakas, John [Department of Physics and Astronomy, Siena College, 515 Loudon Road, Loudonville, NY 12211 (United States); Van der Wel, Arjen [Max-Planck Institute for Astronomy, Königstuhl 17, D-69117, Heidelberg (Germany); Zitrin, Adi [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, MS 249-17, Pasadena, CA 91125 (United States); Frye, Brenda L. [Steward Observatory/Department of Astronomy, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721-0065 (United States); Postman, Marc; Bradley, Larry; Coe, Dan [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21208 (United States); Bartelmann, Matthias [Leiden Observatory, Leiden University, P. O. Box 9513, 2300 RA Leiden (Netherlands); Benítez, Narciso [Instituto de Astrofísica de Andalucía (CSIC), C/Camino Bajo de Huétor 24, Granada E-18008 (Spain); Broadhurst, Tom [Department of Theoretical Physics, University of Basque Country UPV/EHU E-Bilbao (Spain); Donahue, Megan [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Infante, Leopoldo, E-mail: hxx@mail.ustc.edu.cn [Departamento de Astronoía y Astrofísica, Pontificia Universidad Católica de Chile, V. Mackenna 4860 Santiago 22 (Chile); and others

    2015-03-01

    We utilize the Cluster Lensing And Supernova survey with Hubble observations of 25 clusters to search for extreme emission-line galaxies (EELGs). The selections are carried out in two central bands: F105W (Y {sub 105}) and F125W (J {sub 125}), as the flux of the central bands could be enhanced by the presence of [O III] λλ4959, 5007 at redshifts of ∼0.93-1.14 and 1.57-1.79, respectively. The multiband observations help to constrain the equivalent widths (EWs) of emission lines. Thanks to cluster lensing, we are able to identify 52 candidates down to an intrinsic limiting magnitude of 28.5 and to a rest-frame [O III] λλ4959, 5007 EW of ≅ 3700 Å. Our samples include a number of EELGs at lower luminosities that are missed in other surveys, and the extremely high EW can only be found in such faint galaxies. These EELGs can mimic a dropout feature similar to that of high-redshift galaxies and contaminate the color-color selection of high-redshift galaxies when the signal-to-noise ratio is limited or the band coverage is incomplete.

  4. DWARF GALAXIES AND THE COSMIC WEB

    International Nuclear Information System (INIS)

    Benítez-Llambay, Alejandro; Abadi, Mario G.; Navarro, Julio F.; Gottlöber, Stefan; Steinmetz, Matthias; Yepes, Gustavo; Hoffman, Yehuda

    2013-01-01

    We use a cosmological simulation of the formation of the Local Group of Galaxies to identify a mechanism that enables the removal of baryons from low-mass halos without appealing to feedback or reionization. As the Local Group forms, matter bound to it develops a network of filaments and pancakes. This moving web of gas and dark matter drifts and sweeps a large volume, overtaking many halos in the process. The dark matter content of these halos is unaffected but their gas can be efficiently removed by ram pressure. The loss of gas is especially pronounced in low-mass halos due to their lower binding energy and has a dramatic effect on the star formation history of affected systems. This 'cosmic web stripping' may help to explain the scarcity of dwarf galaxies compared with the numerous low-mass halos expected in ΛCDM and the large diversity of star formation histories and morphologies characteristic of faint galaxies. Although our results are based on a single high-resolution simulation, it is likely that the hydrodynamical interaction of dwarf galaxies with the cosmic web is a crucial ingredient so far missing from galaxy formation models.

  5. Dwarf Galaxies and the Cosmic Web

    Science.gov (United States)

    Benítez-Llambay, Alejandro; Navarro, Julio F.; Abadi, Mario G.; Gottlöber, Stefan; Yepes, Gustavo; Hoffman, Yehuda; Steinmetz, Matthias

    2013-02-01

    We use a cosmological simulation of the formation of the Local Group of Galaxies to identify a mechanism that enables the removal of baryons from low-mass halos without appealing to feedback or reionization. As the Local Group forms, matter bound to it develops a network of filaments and pancakes. This moving web of gas and dark matter drifts and sweeps a large volume, overtaking many halos in the process. The dark matter content of these halos is unaffected but their gas can be efficiently removed by ram pressure. The loss of gas is especially pronounced in low-mass halos due to their lower binding energy and has a dramatic effect on the star formation history of affected systems. This "cosmic web stripping" may help to explain the scarcity of dwarf galaxies compared with the numerous low-mass halos expected in ΛCDM and the large diversity of star formation histories and morphologies characteristic of faint galaxies. Although our results are based on a single high-resolution simulation, it is likely that the hydrodynamical interaction of dwarf galaxies with the cosmic web is a crucial ingredient so far missing from galaxy formation models.

  6. DWARF GALAXIES AND THE COSMIC WEB

    Energy Technology Data Exchange (ETDEWEB)

    Benitez-Llambay, Alejandro; Abadi, Mario G. [Observatorio Astronomico, Universidad Nacional de Cordoba, Cordoba X5000BGR (Argentina); Navarro, Julio F. [Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2 (Canada); Gottloeber, Stefan; Steinmetz, Matthias [Leibniz Institute for Astrophysics, An der Sternwarte 16, D-14482 Potsdam (Germany); Yepes, Gustavo [Departamento de Fisica Teorica, Universidad Autonoma de Madrid, E-28049 Madrid (Spain); Hoffman, Yehuda [Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem 91904 (Israel)

    2013-02-01

    We use a cosmological simulation of the formation of the Local Group of Galaxies to identify a mechanism that enables the removal of baryons from low-mass halos without appealing to feedback or reionization. As the Local Group forms, matter bound to it develops a network of filaments and pancakes. This moving web of gas and dark matter drifts and sweeps a large volume, overtaking many halos in the process. The dark matter content of these halos is unaffected but their gas can be efficiently removed by ram pressure. The loss of gas is especially pronounced in low-mass halos due to their lower binding energy and has a dramatic effect on the star formation history of affected systems. This 'cosmic web stripping' may help to explain the scarcity of dwarf galaxies compared with the numerous low-mass halos expected in {Lambda}CDM and the large diversity of star formation histories and morphologies characteristic of faint galaxies. Although our results are based on a single high-resolution simulation, it is likely that the hydrodynamical interaction of dwarf galaxies with the cosmic web is a crucial ingredient so far missing from galaxy formation models.

  7. A tidal disruption event in a nearby galaxy hosting an intermediate mass black hole

    Energy Technology Data Exchange (ETDEWEB)

    Donato, D.; Troja, E. [CRESST and Astroparticle Physics Laboratory NASA/GSFC, Greenbelt, MD 20771 (United States); Cenko, S. B.; Fox, O. [Astrophysics Science Division, NASA/GSFC, Mail Code 661, Greenbelt, MD 20771 (United States); Covino, S. [INAF, Osservatorio Astronomico di Brera, via E. Bianchi 46, I-23807 Merate (Italy); Pursimo, T. [Nordic Optical Telescope, Apartado 474, E-38700 Santa Cruz de La Palma (Spain); Cheung, C. C. [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States); Kutyrev, A. [Observational Cosmology Laboratory, NASA/GSFC, 8800 Greenbelt Road, Greenbelt, MD 20771-2400 (United States); Campana, S.; Fugazza, D. [Joint Space Science Institute, University of Maryland, College Park, MD 20742 (United States); Landt, H. [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Butler, N. R., E-mail: davide.donato-1@nasa.gov [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States)

    2014-02-01

    We report the serendipitous discovery of a bright point source flare in the Abell cluster A1795 with archival EUVE and Chandra observations. Assuming the EUVE emission is associated with the Chandra source, the X-ray 0.5-7 keV flux declined by a factor of ∼2300 over a time span of 6 yr, following a power-law decay with index ∼2.44 ± 0.40. The Chandra data alone vary by a factor of ∼20. The spectrum is well fit by a blackbody with a constant temperature of kT ∼ 0.09 keV (∼10{sup 6} K). The flare is spatially coincident with the nuclear region of a faint, inactive galaxy with a photometric redshift consistent at the 1σ level with the cluster (z = 0.062476). We argue that these properties are indicative of a tidal disruption of a star by a black hole (BH) with log (M {sub BH}/M {sub ☉}) ∼ 5.5 ± 0.5. If so, such a discovery indicates that tidal disruption flares may be used to probe BHs in the intermediate mass range, which are very difficult to study by other means.

  8. A tidal disruption event in a nearby galaxy hosting an intermediate mass black hole

    International Nuclear Information System (INIS)

    Donato, D.; Troja, E.; Cenko, S. B.; Fox, O.; Covino, S.; Pursimo, T.; Cheung, C. C.; Kutyrev, A.; Campana, S.; Fugazza, D.; Landt, H.; Butler, N. R.

    2014-01-01

    We report the serendipitous discovery of a bright point source flare in the Abell cluster A1795 with archival EUVE and Chandra observations. Assuming the EUVE emission is associated with the Chandra source, the X-ray 0.5-7 keV flux declined by a factor of ∼2300 over a time span of 6 yr, following a power-law decay with index ∼2.44 ± 0.40. The Chandra data alone vary by a factor of ∼20. The spectrum is well fit by a blackbody with a constant temperature of kT ∼ 0.09 keV (∼10 6 K). The flare is spatially coincident with the nuclear region of a faint, inactive galaxy with a photometric redshift consistent at the 1σ level with the cluster (z = 0.062476). We argue that these properties are indicative of a tidal disruption of a star by a black hole (BH) with log (M BH /M ☉ ) ∼ 5.5 ± 0.5. If so, such a discovery indicates that tidal disruption flares may be used to probe BHs in the intermediate mass range, which are very difficult to study by other means.

  9. Syncope (Fainting)

    Science.gov (United States)

    ... for Heart.org CPR & ECC for Heart.org Shop for Heart.org Causes for Heart.org Advocate ... loss of consciousness usually related to insufficient blood flow to the brain. It’s also called fainting or " ...

  10. The search for faint radio supernova remnants in the outer Galaxy: five new discoveries

    Science.gov (United States)

    Gerbrandt, Stephanie; Foster, Tyler J.; Kothes, Roland; Geisbüsch, Jörn; Tung, Albert

    2014-06-01

    Context. High resolution and sensitivity large-scale radio surveys of the Milky Way are critical in the discovery of very low surface brightness supernova remnants (SNRs), which may constitute a significant portion of the Galactic SNRs still unaccounted for (ostensibly the "missing SNR problem"). Aims: The overall purpose here is to present the results of a systematic, deep data-mining of the Canadian Galactic plane Survey (CGPS) for faint, extended non-thermal and polarized emission structures that are likely the shells of uncatalogued SNRs. Methods: We examine 5 × 5 degree mosaics from the entire 1420 MHz continuum and polarization dataset of the CGPS after removing unresolved "point" sources and subsequently smoothing them. Newly revealed extended emission objects are compared to similarly prepared CGPS 408 MHz continuum mosaics, as well as to source-removed mosaics from various existing radio surveys at 4.8 GHz, 2.7 GHz, and 327 MHz, to identify candidates with non-thermal emission characteristics. We integrate flux densities at each frequency to characterise the radio spectra behaviour of these candidates. We further look for mid- and high-frequency (1420 MHz, 4.8 GHz) ordered polarized emission from the limb brightened "shell"-like continuum features that the candidates sport. Finally, we use IR and optical maps to provide additional backing evidence. Results: Here we present evidence that five new objects, identified as filling all or some of the criteria above, are strong candidates for new SNRs. These five are designated by their Galactic coordinate names G108.5+11.0, G128.5+2.6, G149.5+3.2, G150.8+3.8, and G160.1-1.1. The radio spectrum of each is presented, highlighting their steepness, which is characteristic of synchrotron radiation. CGPS 1420 MHz polarization data and 4.8 GHz polarization data also provide evidence that these objects are newly discovered SNRs. These discoveries represent a significant increase in the number of SNRs known in the outer

  11. CORRELATION ANALYSIS OF A LARGE SAMPLE OF NARROW-LINE SEYFERT 1 GALAXIES: LINKING CENTRAL ENGINE AND HOST PROPERTIES

    International Nuclear Information System (INIS)

    Xu Dawei; Komossa, S.; Wang Jing; Yuan Weimin; Zhou Hongyan; Lu Honglin; Li Cheng; Grupe, Dirk

    2012-01-01

    We present a statistical study of a large, homogeneously analyzed sample of narrow-line Seyfert 1 (NLS1) galaxies, accompanied by a comparison sample of broad-line Seyfert 1 (BLS1) galaxies. Optical emission-line and continuum properties are subjected to correlation analyses, in order to identify the main drivers of the correlation space of active galactic nuclei (AGNs), and of NLS1 galaxies in particular. For the first time, we have established the density of the narrow-line region as a key parameter in Eigenvector 1 space, as important as the Eddington ratio L/L Edd . This is important because it links the properties of the central engine with the properties of the host galaxy, i.e., the interstellar medium (ISM). We also confirm previously found correlations involving the line width of Hβ and the strength of the Fe II and [O III] λ5007 emission lines, and we confirm the important role played by L/L Edd in driving the properties of NLS1 galaxies. A spatial correlation analysis shows that large-scale environments of the BLS1 and NLS1 galaxies of our sample are similar. If mergers are rare in our sample, accretion-driven winds, on the one hand, or bar-driven inflows, on the other hand, may account for the strong dependence of Eigenvector 1 on ISM density.

  12. NO CORRELATION BETWEEN HOST GALAXY METALLICITY AND GAMMA-RAY ENERGY RELEASE FOR LONG-DURATION GAMMA-RAY BURSTS

    International Nuclear Information System (INIS)

    Levesque, Emily M.; Kewley, Lisa J.; Soderberg, Alicia M.; Berger, Edo

    2010-01-01

    We compare the redshifts, host galaxy metallicities, and isotropic (E γ,iso ) and beaming-corrected (E γ ) gamma-ray energy release of 16 long-duration gamma-ray bursts (LGRBs) at z γ,iso , or E γ . These results are at odds with previous theoretical and observational predictions of an inverse correlation between gamma-ray energy release and host metallicity, as well as the standard predictions of metallicity-driven wind effects in stellar evolutionary models. We consider the implications that these results have for LGRB progenitor scenarios, and discuss our current understanding of the role that metallicity plays in the production of LGRBs.

  13. Formation of a Quasar Host Galaxy through a Wet Merger 1.4 Billion Years after the Big Bang

    Science.gov (United States)

    Riechers, Dominik A.; Walter, Fabian; Carilli, Christopher L.; Bertoldi, Frank; Momjian, Emmanuel

    2008-10-01

    We present high-resolution Very Large Array imaging of the molecular gas in the host galaxy of the high-redshift quasar BRI 1335-0417 (z = 4.41). Our CO(J = 2→ 1) observations have a linear resolution of 0.15' ' (1.0 kpc) and resolve the molecular gas emission both spatially and in velocity. The molecular gas in BRI 1335-0417 is extended on scales of 5 kpc, and shows a complex structure. At least three distinct components encompassing about two-thirds of the total molecular mass of 9.2 × 1010 M⊙ are identified in velocity space, which are embedded in a structure that harbors about one-third of the total molecular mass in the system. The brightest CO(J = 2→ 1) line emission region has a peak brightness temperature of 61 ± 9 K within 1 kpc diameter, which is comparable to the kinetic gas temperature as predicted from the CO line excitation. This is also comparable to the gas temperatures found in the central regions of nearby ultraluminous infrared galaxies, which are however much more compact than 1 kpc. The spatial and velocity structure of the molecular reservoir in BRI 1335-0417 is inconsistent with a simple gravitationally bound disk, but resembles a merging system. Our observations are consistent with a major, gas-rich ("wet") merger that both feeds an accreting supermassive black hole (causing the bright quasar activity), and fuels a massive starburst that builds up the stellar bulge in this galaxy. Our study of this z > 4 quasar host galaxy may thus be the most direct observational evidence that wet mergers at high redshift are related to AGN activity.

  14. Cosmic Star Formation History and Evolution of the Galaxy UV Luminosity Function for z < 1

    Science.gov (United States)

    Zhang, Keming; Schiminovich, David

    2018-01-01

    We present the latest constraints on the evolution of the far-ultraviolet luminosity function of galaxies (1500 Å, UVLF hereafter) for 0 NSA, GAMA, VIPERS, and COSMOS photo-z. Our final sample consists of ~170000 galaxies, which represents the largest sample used in such studies. By integrating wide NSA and GAMA data and deep VIPERS and COSMOS photo-z data, we have been able to constrain both the bright end and the faint end of the luminosity function with high accuracy over the entire redshift range. We fit a Schechter function to our measurements of the UVLF, both to parameterize its evolution, and to integrate for SFR densities. From z~1 to z~0, the characteristic absolute magnitude of the UVLF increases linearly by ~1.5 magnitudes, while the faint end slope remains shallow (alpha < 1.5). However, the Schechter function fit exhibits an excess of galaxies at the bright end, which is accounted for by contributions from AGN. We also describe our methodology, which can be applied more generally to any combination of wide-shallow and deep-narrow surveys.

  15. HI-OBSERVATIONS OF GALAXIES IN THE ZONE OF AVOIDANCE IN PUPPIS

    NARCIS (Netherlands)

    KRAANKORTEWEG, RC; HUCHTMEIER, WK

    1992-01-01

    76 apparently faint galaxies in the galactic plane in Puppis (1 almost-equal-to 245-degrees, Absolute value of b <+/- 8-degrees) were observed with the 100 m radio telescope in Effelsberg. The detection rate is quite high (38 certain, 1 confused and 4 possible detections). It depends neither on

  16. Spectroscopic Confirmation of Three z-dropout Galaxies at z = 6.844-7.213: Demographics of Lyα Emission in z ~ 7 Galaxies

    Science.gov (United States)

    Ono, Yoshiaki; Ouchi, Masami; Mobasher, Bahram; Dickinson, Mark; Penner, Kyle; Shimasaku, Kazuhiro; Weiner, Benjamin J.; Kartaltepe, Jeyhan S.; Nakajima, Kimihiko; Nayyeri, Hooshang; Stern, Daniel; Kashikawa, Nobunari; Spinrad, Hyron

    2012-01-01

    We present the results of our ultra-deep Keck/DEIMOS spectroscopy of z-dropout galaxies in the Subaru Deep Field and Great Observatories Origins Deep Survey's northern field. For 3 out of 11 objects, we detect an emission line at ~1 μm with a signal-to-noise ratio of ~10. The lines show asymmetric profiles with high weighted skewness values, consistent with being Lyα, yielding redshifts of z = 7.213, 6.965, and 6.844. Specifically, we confirm the z = 7.213 object in two independent DEIMOS runs with different spectroscopic configurations. The z = 6.965 object is a known Lyα emitter, IOK-1, for which our improved spectrum at a higher resolution yields a robust skewness measurement. The three z-dropouts have Lyα fluxes of 3 × 10-17 erg s-1 cm-2 and rest-frame equivalent widths EWLyα 0 = 33-43 Å. Based on the largest spectroscopic sample of 43 z-dropouts, which is the combination of our and previous data, we find that the fraction of Lyα-emitting galaxies (EWLyα 0 > 25 Å) is low at z ~ 7; 17% ± 10% and 24% ± 12% for bright (M UV ~= -21) and faint (M UV ~= -19.5) galaxies, respectively. The fractions of Lyα-emitting galaxies drop from z ~ 6 to 7 and the amplitude of the drop is larger for faint galaxies than for bright galaxies. These two pieces of evidence would indicate that the neutral hydrogen fraction of the intergalactic medium increases from z ~ 6 to 7 and that the reionization proceeds from high- to low-density environments, as suggested by an inside-out reionization model. Based on data obtained with the Subaru Telescope and the W. M. Keck Observatory. The Subaru Telescope is operated by the National Astronomical Observatory of Japan. The W. M. Keck Observatory is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration.

  17. THE WHIQII SURVEY: METALLICITIES AND SPECTROSCOPIC PROPERTIES OF LUMINOUS COMPACT BLUE GALAXIES

    International Nuclear Information System (INIS)

    Tollerud, Erik J.; Barton, Elizabeth J.; Cooke, Jeff; Van Zee, Liese

    2010-01-01

    As part of the WIYN High Image Quality Indiana-Irvine (WHIQII) survey, we present 123 spectra of faint emission-line galaxies, selected to focus on intermediate redshift (0.4 ∼ 23 -O 32 plane that differs from luminous local galaxies and is more consistent with dwarf irregulars at the present epoch, suggesting that cosmic 'downsizing' is observable in even the most fundamental parameters that describe star formation. These properties for our sample are also generally consistent with lying between local galaxies and those at high redshift, as expected by this scenario. Surprisingly, our sample exhibits no detectable correlation between compactness and metallicity, strongly suggesting that at these epochs of rapid star formation, the morphology of compact star-forming galaxies is largely transient.

  18. Co-evolution of Massive Black Holes and Their Host Galaxies

    Science.gov (United States)

    Chen, Y. M.

    2010-07-01

    A scenario of co-evolution of supermassive black holes (SMBHs) and galaxies has been clearly conducted by the important evidence from observational results of quasar host galaxies and the relation between spheroid and SMBH mass. There are a plenty of unresolved problems and questions, some being basic, to be addressed in this scenario. The main goal of the present thesis is focusing on the mysterious scenario including growth of primordial black holes, cosmological evolution of spins and duty cycle of SMBHs, and interaction between the SMBH activity and star formation in galaxies from low to high redshifts. We review the main progress of this field over the past decade since the discovery of Magorrian relation and present comments on some questions in light of our view of points. The key questions to be addressed in this thesis work are: (1) how does the fast growth of primordial black holes influence their evolution? (2) what is the equation to describe the co-evolution of SMBHs and galaxies? (3) what is the mechanism to control the co-evolution? (4) how to transport the fueling gas from kpc scale to the center? It has been suggested that fast growth of primordial black holes via super-Eddington accretion is a promising way to form SMBHs in high redshift universe. Neutrino cooling has been employed and expedites the growth. We consider the Compton heating of the surroundings of the primordial black holes. We find that the realistic accretion rate is only a few percent of the Eddington rate, and the accretion is episodic. It implies that the fast growth via super-Eddington is not feasible. These conclusions have been confirmed by the detailed numerical simulations of Milosavljevic et al. (2008). The difficulties of the fast growth via accretion of baryon particles make the formation of SMBHs elusive in high redshift universe. We developed a new formulation to calculate the duty cycle of SMBHs based on the Soltan argument. We show it can be expressed by the mass

  19. ACCOUNTING FOR COSMIC VARIANCE IN STUDIES OF GRAVITATIONALLY LENSED HIGH-REDSHIFT GALAXIES IN THE HUBBLE FRONTIER FIELD CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Brant E.; Stark, Dan P. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Ellis, Richard S. [Department of Astronomy, California Institute of Technology, MS 249-17, Pasadena, CA 91125 (United States); Dunlop, James S.; McLure, Ross J.; McLeod, Derek, E-mail: brant@email.arizona.edu [Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh EH9 3HJ (United Kingdom)

    2014-12-01

    Strong gravitational lensing provides a powerful means for studying faint galaxies in the distant universe. By magnifying the apparent brightness of background sources, massive clusters enable the detection of galaxies fainter than the usual sensitivity limit for blank fields. However, this gain in effective sensitivity comes at the cost of a reduced survey volume and, in this Letter, we demonstrate that there is an associated increase in the cosmic variance uncertainty. As an example, we show that the cosmic variance uncertainty of the high-redshift population viewed through the Hubble Space Telescope Frontier Field cluster Abell 2744 increases from ∼35% at redshift z ∼ 7 to ≳ 65% at z ∼ 10. Previous studies of high-redshift galaxies identified in the Frontier Fields have underestimated the cosmic variance uncertainty that will affect the ultimate constraints on both the faint-end slope of the high-redshift luminosity function and the cosmic star formation rate density, key goals of the Frontier Field program.

  20. ACCOUNTING FOR COSMIC VARIANCE IN STUDIES OF GRAVITATIONALLY LENSED HIGH-REDSHIFT GALAXIES IN THE HUBBLE FRONTIER FIELD CLUSTERS

    International Nuclear Information System (INIS)

    Robertson, Brant E.; Stark, Dan P.; Ellis, Richard S.; Dunlop, James S.; McLure, Ross J.; McLeod, Derek

    2014-01-01

    Strong gravitational lensing provides a powerful means for studying faint galaxies in the distant universe. By magnifying the apparent brightness of background sources, massive clusters enable the detection of galaxies fainter than the usual sensitivity limit for blank fields. However, this gain in effective sensitivity comes at the cost of a reduced survey volume and, in this Letter, we demonstrate that there is an associated increase in the cosmic variance uncertainty. As an example, we show that the cosmic variance uncertainty of the high-redshift population viewed through the Hubble Space Telescope Frontier Field cluster Abell 2744 increases from ∼35% at redshift z ∼ 7 to ≳ 65% at z ∼ 10. Previous studies of high-redshift galaxies identified in the Frontier Fields have underestimated the cosmic variance uncertainty that will affect the ultimate constraints on both the faint-end slope of the high-redshift luminosity function and the cosmic star formation rate density, key goals of the Frontier Field program

  1. Accounting for Cosmic Variance in Studies of Gravitationally Lensed High-redshift Galaxies in the Hubble Frontier Field Clusters

    Science.gov (United States)

    Robertson, Brant E.; Ellis, Richard S.; Dunlop, James S.; McLure, Ross J.; Stark, Dan P.; McLeod, Derek

    2014-12-01

    Strong gravitational lensing provides a powerful means for studying faint galaxies in the distant universe. By magnifying the apparent brightness of background sources, massive clusters enable the detection of galaxies fainter than the usual sensitivity limit for blank fields. However, this gain in effective sensitivity comes at the cost of a reduced survey volume and, in this Letter, we demonstrate that there is an associated increase in the cosmic variance uncertainty. As an example, we show that the cosmic variance uncertainty of the high-redshift population viewed through the Hubble Space Telescope Frontier Field cluster Abell 2744 increases from ~35% at redshift z ~ 7 to >~ 65% at z ~ 10. Previous studies of high-redshift galaxies identified in the Frontier Fields have underestimated the cosmic variance uncertainty that will affect the ultimate constraints on both the faint-end slope of the high-redshift luminosity function and the cosmic star formation rate density, key goals of the Frontier Field program.

  2. Clearing the Cosmic Fog - The Most Distant Galaxy Ever Measured

    Science.gov (United States)

    2010-10-01

    A European team of astronomers using ESO's Very Large Telescope (VLT) has measured the distance to the most remote galaxy so far. By carefully analysing the very faint glow of the galaxy they have found that they are seeing it when the Universe was only about 600 million years old (a redshift of 8.6). These are the first confirmed observations of a galaxy whose light is clearing the opaque hydrogen fog that filled the cosmos at this early time. The results were presented at an online press conference with the scientists on 19 October 2010, and will appear in the 21 October issue of the journal Nature. "Using the ESO Very Large Telescope we have confirmed that a galaxy spotted earlier using Hubble is the most remote object identified so far in the Universe" [1], says Matt Lehnert (Observatoire de Paris) who is lead author of the paper reporting the results. "The power of the VLT and its SINFONI spectrograph allows us to actually measure the distance to this very faint galaxy and we find that we are seeing it when the Universe was less than 600 million years old." Studying these first galaxies is extremely difficult. By the time that their initially brilliant light gets to Earth they appear very faint and small. Furthermore, this dim light falls mostly in the infrared part of the spectrum because its wavelength has been stretched by the expansion of the Universe - an effect known as redshift. To make matters worse, at this early time, less than a billion years after the Big Bang, the Universe was not fully transparent and much of it was filled with a hydrogen fog that absorbed the fierce ultraviolet light from young galaxies. The period when the fog was still being cleared by this ultraviolet light is known as the era of reionisation [2]. Despite these challenges the new Wide Field Camera 3 on the NASA/ESA Hubble Space Telescope discovered several robust candidate objects in 2009 [3] that were thought to be galaxies shining in the era of reionisation. Confirming the

  3. Finding charts for southern IRAS galaxies

    International Nuclear Information System (INIS)

    Sutherland, W.J.; Maddox, S.J.; Saunders, W.

    1991-01-01

    Using the APM Galaxy Survey, we have generated a collection of finding charts for 4614 sources with non-stellar colours in the IRAS Faint Source Catalogue south of δ= -17.5 o . Over 90 per cent of the sources are reliably identified with an optical object, and we provide 1-arcsec positions and B J magnitudes for these. We will provide paper copies of the charts on request, at a small charge to cover photocopying costs. (author)

  4. Star formation in active galaxies and quasars

    International Nuclear Information System (INIS)

    Heckman, T.M.

    1987-01-01

    I review the observational evidence for a causal or statistical link between star formation and active galactic nuclei. The chief difficulty is in quantitatively ascertaining the star formation rate in active galaxies: most of the readily observable manifestations of star formation superficially resemble those of an active nucleus. Careful multi-wavelength spatially-resolved observations demonstrate that many Seyfert galaxies are undergoing star formation. Our survey of CO emission from Seyferts (interpreted in conjunction IRAS data) suggests that type 2 Seyferts have unusually high rates of star formation, but type 1 Seyferts do not. Recent work also suggests that many powerful radio galaxies may be actively forming stars: radio galaxies with strong emission-lines often have blue colors and strong far-infrared emission. Determining the star formation rate in the host galaxies of quasars is especially difficult. Multi-color imaging and long-slit spectroscopy suggests that many of the host galaxies of radio-loud quasars are blue and a cold interstellar medium has been detected in some quasar hosts

  5. Lyman Break Galaxies in the Hubble Ultra Deep Field through Deep U-Band Imaging

    Science.gov (United States)

    Rafelski, Marc; Wolfe, A. M.; Cooke, J.; Chen, H. W.; Armandroff, T. E.; Wirth, G. D.

    2009-12-01

    We introduce an extremely deep U-band image taken of the Hubble Ultra Deep Field (HUDF), with a one sigma depth of 30.7 mag arcsec-2 and a detection limiting magnitude of 28 mag arcsec-2. The observations were carried out on the Keck I telescope using the LRIS-B detector. The U-band image substantially improves the accuracy of photometric redshift measurements of faint galaxies in the HUDF at z=[2.5,3.5]. The U-band for these galaxies is attenuated by lyman limit absorption, allowing for more reliable selections of candidate Lyman Break Galaxies (LBGs) than from photometric redshifts without U-band. We present a reliable sample of 300 LBGs at z=[2.5,3.5] in the HUDF. Accurate redshifts of faint galaxies at z=[2.5,3.5] are needed to obtain empirical constraints on the star formation efficiency of neutral gas at high redshift. Wolfe & Chen (2006) showed that the star formation rate (SFR) density in damped Ly-alpha absorption systems (DLAs) at z=[2.5,3.5] is significantly lower than predicted by the Kennicutt-Schmidt law for nearby galaxies. One caveat to this result that we wish to test is whether LBGs are embedded in DLAs. If in-situ star formation is occurring in DLAs, we would see it as extended low surface brightness emission around LBGs. We shall use the more accurate photometric redshifts to create a sample of LBGs around which we will look for extended emission in the more sensitive and higher resolution HUDF images. The absence of extended emission would put limits on the SFR density of DLAs associated with LBGs at high redshift. On the other hand, detection of faint emission on scales large compared to the bright LBG cores would indicate the presence of in situ star formation in those DLAs. Such gas would presumably fuel the higher star formation rates present in the LBG cores.

  6. Star Formation in the Central Regions of Galaxies

    Science.gov (United States)

    Tsai, Mengchun

    2015-08-01

    The galactic central region connects the galactic nucleus to the host galaxy. If the central black hole co-evolved with the host galaxies, there should be some evidence left in the central region. We use the environmental properties in the central regions such as star-forming activity, stellar population and molecular abundance to figure out a possible scenario of the evolution of galaxies. In this thesis at first we investigated the properties of the central regions in the host galaxies of active and normal galaxies. We used radio emission around the nuclei of the host galaxies to represent activity of active galactic nuclei (AGNs), and used infrared ray (IR) emission to represent the star-forming activity and stellar population of the host galaxies. We determined that active galaxies have higher stellar masses (SMs) within the central kiloparsec radius than normal galaxies do independent of the Hubble types of the host galaxies; but both active and normal galaxies exhibit similar specific star formation rates (SSFRs). We also discovered that certain AGNs exhibit substantial inner stellar structures in the IR images; most of the AGNs with inner structures are Seyferts, whereas only a few LINERs exhibit inner structures. We note that the AGNs with inner structures show a positive correlation between the radio activity of the AGNs and the SFRs of the host galaxies, but the sources without inner structures show a negative correlation between the radio power and the SFRs. These results might be explained with a scenario of starburst-AGN evolution. In this scenario, AGN activities are triggered following a nuclear starburst; during the evolution, AGN activities are accompanied by SF activity in the inner regions of the host galaxies; at the final stage of the evolution, the AGNs might transform into LINERs, exhibiting weak SF activity in the central regions of the host galaxies. For further investigation about the inner structure, we choose the most nearby and luminous

  7. Clustering of galaxies near damped Lyman-alpha systems with (z) = 2.6

    Science.gov (United States)

    Wolfe, A. M

    1993-01-01

    The galaxy two-point correlation function, xi, at (z) = 2.6 is determined by comparing the number of Ly-alpha-emitting galaxies in narrowband CCD fields selected for the presence of damped L-alpha absorption to their number in randomly selected control fields. Comparisons between the presented determination of (xi), a density-weighted volume average of xi, and model predictions for (xi) at large redshifts show that models in which the clustering pattern is fixed in proper coordinates are highly unlikely, while better agreement is obtained if the clustering pattern is fixed in comoving coordinates. Therefore, clustering of Ly-alpha-emitting galaxies around damped Ly-alpha systems at large redshifts is strong. It is concluded that the faint blue galaxies are drawn from a parent population different from normal galaxies, the presumed offspring of damped Ly-alpha systems.

  8. THE STAR FORMATION AND NUCLEAR ACCRETION HISTORIES OF NORMAL GALAXIES IN THE AGES SURVEY

    International Nuclear Information System (INIS)

    Watson, Casey R.; Kochanek, Christopher S.; Forman, William R.; Hickox, Ryan C.; Jones, Christine J.; Kenter, Almus T.; Murray, Steve S.; Vikhlinin, Alexey; Fazio, Giovani G.; Green, Paul J.; Brown, Michael J. I.; Brand, Kate; Dey, Arjun; Jannuzi, Buell T.; Rieke, Marcia; Eisenstein, Daniel J.; McNamara, Brian R.; Shields, Joseph C.

    2009-01-01

    We combine IR, optical, and X-ray data from the overlapping, 9.3 deg 2 NOAO Deep Wide-Field Survey, AGN and Galaxy Evolution Survey (AGES), and XBooetes Survey to measure the X-ray evolution of 6146 normal galaxies as a function of absolute optical luminosity, redshift, and spectral type over the largely unexplored redshift range 0.1 ∼ 3±1 , in agreement with the trends found for samples of bright, individually detectable starburst galaxies and AGN. Our work also corroborates the results of many previous stacking analyses of faint source populations, with improved statistics.

  9. THE BRIGHTEST OF REIONIZING GALAXIES SURVEY: CONSTRAINTS ON THE BRIGHT END OF THE z ∼ 8 LUMINOSITY FUNCTION

    International Nuclear Information System (INIS)

    Bradley, L. D.; Stiavelli, M.; Pirzkal, N.; Trenti, M.; Oesch, P. A.; Treu, T.; Bouwens, R. J.; Shull, J. M.; Holwerda, B. W.

    2012-01-01

    We report the discovery of 33 Lyman-break galaxy candidates at z ∼ 8 detected in Hubble Space Telescope Wide Field Camera 3 (WFC3) imaging as part of the Brightest of Reionizing Galaxies (BoRG) pure-parallel survey. The ongoing BoRG survey currently has the largest area (274 arcmin 2 ) with Y 098 (or Y 105 ), J 125 , and H 160 band coverage needed to search for z ∼ 8 galaxies, about three times the current CANDELS area, and slightly larger than what will be the final CANDELS wide component with Y 105 data (required to select z ∼ 8 sources). Our sample of 33 relatively bright Y 098 -dropout galaxies have J 125 -band magnitudes between 25.5 and 27.4 mag. This is the largest sample of bright (J 125 ∼ * (L/L * ) α e -( L /L * ) , without evidence for an excess of sources at the bright end. At 68% confidence, for h = 0.7 we derive φ * = (4.3 +3.5 –2.1 ) × 10 –4 Mpc –3 , M * = –20.26 +0.29 –0.34 , and a very steep faint-end slope α = –1.98 +0.23 –0.22 . While the best-fit parameters still have a strong degeneracy, especially between φ * and M * , our improved coverage at the bright end has reduced the uncertainty of the faint-end power-law slope at z ∼ 8 compared to the best previous determination at ±0.4. With a future expansion of the BoRG survey, combined with planned ultradeep WFC3/IR observations, it will be possible to further reduce this uncertainty and clearly demonstrate the steepening of the faint-end slope compared to measurements at lower redshift, thereby confirming the key role played by small galaxies in the reionization of the universe.

  10. Direct imaging of haloes and truncations in face-on nearby galaxies

    NARCIS (Netherlands)

    Knapen, J. H.; Peters, S. P. C.; van der Kruit, P. C.; Trujillo, I.; Fliri, J.; Cisternas, M.; Kelvin, L. S.; Bragaglia, A.; Arnaboldi, M.; Rejkuba, M.; Romano, D.

    2016-01-01

    We use ultra-deep imaging from the IAC Stripe 82 Legacy Project to study the surface photometry of 22 nearby, face-on to moderately inclined spiral galaxies. The reprocessed and co-added SDSS/Stripe 82 imaging allows us to probe down to 29-30 r'-mag/arcsec2 and thus reach into the very faint

  11. RELICS: A Candidate Galaxy Arc at z~10 and Other Brightly Lensed z>6 Galaxies

    Science.gov (United States)

    Salmon, Brett; Coe, Dan; Bradley, Larry; Bradac, Marusa; Huang, Kuang-Han; Oesch, Pascal; Brammer, Gabriel; Stark, Daniel P.; Sharon, Keren; Trenti, Michele; Avila, Roberto J.; Ogaz, Sara; Acebron, Ana; Andrade-Santos, Felipe; Carrasco, Daniela; Cerny, Catherine; Cibirka, Nathália; Dawson, William; Frye, Brenda; Hoag, Austin; Jones, Christine; Mainali, Ramesh; Ouchi, Masami; Paterno-Mahler, Rachel; Rodney, Steven; Umetsu, Keiichi; Zitrin, Adi; RELICS

    2018-01-01

    Massive foreground galaxy clusters magnify and distort the light of objects behind them, permitting a view into both the extremely distant and intrinsically faint galaxy populations. We present here some of the most brightly lensed z>6 galaxy candidates known from the Reionization Lensing Cluster Survey (RELICS) and the discovery of a particularly fortuitous z~10 galaxy candidate which has been arced by the effects of strong gravitational lensing. The z~10 candidate has a lensed H-band magnitude of 25.8 AB mag and a high lensing magnification (~4-7). The inferred upper limits on the stellar mass (log [M_star /M_Sun]=9.5) and star formation rate (log [SFR/(M_Sun/yr)]=1.5) indicate that this candidate is a typical star-forming galaxy on the z>6 SFR-M_star relation. We rule out the only low-z solution as unphysical based on the required stellar mass, dust attenuation, size, and [OIII] EW needed for a z~2 SED to match the data. Finally, we reconstruct the source-plane image and estimate the candidate's physical size at z~10, finding a half-light radius of r_e 9 candidates. While the James Webb Space Telescope will detect z>10 with ease, this rare candidate offers the potential for unprecedented spatial resolution less than 500 Myr after the Big Bang.

  12. The Large Area Radio Galaxy Evolution Spectroscopic Survey (LARGESS): survey design, data catalogue and GAMA/WiggleZ spectroscopy

    Science.gov (United States)

    Ching, John H. Y.; Sadler, Elaine M.; Croom, Scott M.; Johnston, Helen M.; Pracy, Michael B.; Couch, Warrick J.; Hopkins, A. M.; Jurek, Russell J.; Pimbblet, K. A.

    2017-01-01

    We present the Large Area Radio Galaxy Evolution Spectroscopic Survey (LARGESS), a spectroscopic catalogue of radio sources designed to include the full range of radio AGN populations out to redshift z ˜ 0.8. The catalogue covers ˜800 deg2 of sky, and provides optical identifications for 19 179 radio sources from the 1.4 GHz Faint Images of the Radio Sky at Twenty-cm (FIRST) survey down to an optical magnitude limit of Imod point-like objects are included, and no colour cuts are applied. In collaboration with the WiggleZ and Galaxy And Mass Assembly (GAMA) spectroscopic survey teams, we have obtained new spectra for over 5000 objects in the LARGESS sample. Combining these new spectra with data from earlier surveys provides spectroscopic data for 12 329 radio sources in the survey area, of which 10 856 have reliable redshifts. 85 per cent of the LARGESS spectroscopic sample are radio AGN (median redshift z = 0.44), and 15 per cent are nearby star-forming galaxies (median z = 0.08). Low-excitation radio galaxies (LERGs) comprise the majority (83 per cent) of LARGESS radio AGN at z < 0.8, with 12 per cent being high-excitation radio galaxies (HERGs) and 5 per cent radio-loud QSOs. Unlike the more homogeneous LERG and QSO sub-populations, HERGs are a heterogeneous class of objects with relatively blue optical colours and a wide dispersion in mid-infrared colours. This is consistent with a picture in which most HERGs are hosted by galaxies with recent or ongoing star formation as well as a classical accretion disc.

  13. Luminosity function for planetary nebulae and the number of planetary nebulae in local group galaxies

    International Nuclear Information System (INIS)

    Jacoby, G.H.

    1980-01-01

    Identifications of 19 and 34 faint planetary nebulae have been made in the central regions of the SMC and LMC, respectively, using on-line/off-line filter photography at [O III] and Hα. The previously known brighter planetary nebulae in these fields, eight in both the SMC and the LMC, were also identified. On the basis of the ratio of the numbers of faint to bright planetary nebulae in these fields and the numbers of bright planetary nebulae in the surrounding fields, the total numbers of planetary nebulae in the SMC and LMC are estimated to be 285 +- 78 and 996 +- 253, respectively. Corrections have been applied to account for omissions due to crowding confusion in previous surveys, spatial and detectability incompleteness, and obscuration by dust.Equatorial coordinates and finding charts are presented for all the identified planetary nebulae. The coordinates have uncertainties smaller than 0.''6 relative to nearby bright stars, thereby allowing acquisition of the planetary nebulae by bling offsetting.Monochromatic fluxes are derived photographically and used to determine the luminosity function for Magellanic Cloud planetary nebulae as faint as 6 mag below the brightest. The luminosity function is used to estimate the total numbers of planetary nebulae in eight Local Group galaxies in which only bright planetary nebulae have been identified. The dervied luminosity specific number of planetary nebulae per unit luminosity is nearly constant for all eight galaxies, having a value of 6.1 x 10 -7 planetary nebulae L -1 /sub sun/. The mass specific number, based on the three galaxies with well-determined masses, is 2.1 x 10 -7 planetary nebulae M -1 /sub sun/. With estimates for the luminosity and mass of our Galaxy, its total number of planetary nebulae is calculated to be 10,000 +- 4000, in support of the Cudworth distance scale

  14. A Tidal Disruption Event in a Nearby Galaxy Hosting an Intermediate Mass Black Hole

    Science.gov (United States)

    Donato, D; Cenko, S. B.; Covino, S.; Troja, E.; Pursimo, T.; Cheung, C. C.; Fox, O.; Kutyrev, A.; Campana, S.; Fugazza, D.; hide

    2014-01-01

    We report the serendipitous discovery of a bright point source flare in the Abell cluster A1795 with archival EUVE and Chandra observations. Assuming the EUVE emission is associated with the Chandra source, the X-ray 0.5-7 kiloelectronvolt flux declined by a factor of approximately 2300 over a time span of 6 years, following a power-law decay with index approximately equal to 2.44 plus or minus 0.40. The Chandra data alone vary by a factor of approximately 20. The spectrum is well fit by a blackbody with a constant temperature of kiloteslas approximately equal to 0.09 kiloelectronvolts (approximately equal to 10 (sup 6) Kelvin). The flare is spatially coincident with the nuclear region of a faint, inactive galaxy with a photometric redshift consistent at the 1 sigma level with the cluster (redshift = 0.062476).We argue that these properties are indicative of a tidal disruption of a star by a black hole (BH) with log(M (sub BH) / M (sub 1 solar mass)) approximately equal to 5.5 plus or minus 0.5. If so, such a discovery indicates that tidal disruption flares may be used to probe BHs in the intermediate mass range, which are very difficult to study by other means.

  15. On the distortion of properties of galaxy cluster

    International Nuclear Information System (INIS)

    Fesenko, B.I.

    1979-01-01

    The supposition is substantiated that most of Abell clusters with population of 50 and more members are false clusters. Some of them may contain, as peculiar nuclei, the real clusters with the number of members from ten to 25 within the range of apparent magnitudes from m 3 to m 3 +2, where m 3 is an apparent magnitude of the galaxy which is third in brightness. The rest members of false clusters are galaxies of front and rare backgrounds. The algorithm for galaxy cluster discrimination used by Abell is shown to promote selection of the real clusters with rho < approximately 25 in which region the number of the background galaxies is considerably increased as compared to other regions of the sky. A systematic and substantial underestimation of the role of such galaxies destorts the results of the cluster structures and dynamics analysis. False clusters are surprisingly well camouflaged as real clusters: when passing to more faint galaxies, the number of the seeming members grows faster than in the ambient field; the difference in angular diameters of false clusters distinctly reflects the difference in average distances of these galaxies; dispersion in velocity of false cluster members comparatively slightly depends on the average distance to an observer, and absolute magnitudes of the brightnesses of galaxies have small dispersion, as in real clusters

  16. EXPLORING THE INTERSTELLAR MEDIA OF OPTICALLY COMPACT DWARF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Most, Hans P.; Cannon, John M.; Engstrom, Eric; Fliss, Palmer [Department of Physics and Astronomy, Macalester College, 1600 Grand Avenue, Saint Paul, MN 55105 (United States); Salzer, John J. [Department of Astronomy, Indiana University, 727 East Third Street, Bloomington, IN 47405 (United States); Rosenberg, Jessica L., E-mail: hmost@macalester.edu, E-mail: jcannon@macalester.edu, E-mail: slaz@astro.indiana.edu, E-mail: jrosenb4@gmu.edu [School of Physics, Astronomy, and Computational Science, George Mason University, Fairfax, VA 22030 (United States)

    2013-06-15

    We present new Very Large Array H I spectral line, archival Sloan Digital Sky Survey, and archival Spitzer Space Telescope imaging of eight star-forming blue compact dwarf galaxies that were selected to be optically compact (optical radii <1 kpc). These systems have faint blue absolute magnitudes (M{sub B} {approx}> -17), ongoing star formation (based on emission-line selection by the H{alpha} or [O III] lines), and are nearby (mean velocity = 3315 km s{sup -1} {approx_equal} 45 Mpc). One galaxy in the sample, ADBS 113845+2008, is found to have an H I halo that extends 58 r-band scale lengths from its stellar body. In contrast, the rest of the sample galaxies have H I radii to optical-scale-length ratios ranging from 9.3 to 26. The size of the H I disk in the 'giant disk' dwarf galaxy ADBS 113845+2008 appears to be unusual as compared with similarly compact stellar populations.

  17. Unveiling the Low Surface Brightness Stellar Peripheries of Galaxies

    Science.gov (United States)

    Ferguson, Annette M. N.

    2018-01-01

    The low surface brightness peripheral regions of galaxies contain a gold mine of information about how minor mergers and accretions have influenced their evolution over cosmic time. Enormous stellar envelopes and copious amounts of faint tidal debris are natural outcomes of the hierarchical assembly process and the search for and study of these features, albeit highly challenging, offers the potential for unrivalled insight into the mechanisms of galaxy growth. Over the last two decades, there has been burgeoning interest in probing galaxy outskirts using resolved stellar populations. Wide-field surveys have uncovered vast tidal debris features and new populations of very remote globular clusters, while deep Hubble Space Telescope photometry has provided exquisite star formation histories back to the earliest epochs. I will highlight some recent results from studies within and beyond the Local Group and conclude by briefly discussing the great potential of future facilities, such as JWST, Euclid, LSST and WFIRST, for major breakthroughs in low surface brightness galaxy periphery science.

  18. SHINING LIGHT ON MERGING GALAXIES. I. THE ONGOING MERGER OF A QUASAR WITH A 'GREEN VALLEY' GALAXY

    International Nuclear Information System (INIS)

    Da Silva, Robert L.; Xavier Prochaska, J.; Rosario, David; Tumlinson, Jason; Tripp, Todd M.

    2011-01-01

    Serendipitous observations of a pair z = 0.37 interacting galaxies (one hosting a quasar) show a massive gaseous bridge of material connecting the two objects. This bridge is photoionized by the quasar (QSO), revealing gas along the entire projected 38 h -1 70 kpc sightline connecting the two galaxies. The emission lines that result give an unprecedented opportunity to study the merger process at this redshift. We determine the kinematics, ionization parameter (log U ∼ -2.5 ± 0.03), column density (N H,perpendicular ∼ 10 21 cm -2 ), metallicity ([M/H] ∼ - 0.20 ± 0.15), and mass (∼10 8 M sun ) of the gaseous bridge. We simultaneously constrain properties of the QSO host (M DM > 8.8 x 10 11 M sun ) and its companion galaxy (M DM > 2.1 x 10 11 M sun ; M * ∼ 2 x 10 10 M sun ; stellar burst age = 300-800 Myr; SFR ∼6 M sun yr -1 ; and metallicity 12 + log (O/H) = 8.64 ± 0.2). The general properties of this system match the standard paradigm of a galaxy-galaxy merger caught between first and second passages while one of the galaxies hosts an active quasar. The companion galaxy lies in the so-called green valley, with a stellar population consistent with a recent starburst triggered during the first passage of the merger and has no discernible active galactic nucleus activity. In addition to providing case studies of quasars associated with galaxy mergers, quasar/galaxy pairs with QSO-photoionized tidal bridges such as this one offer unique insights into the galaxy properties while also distinguishing an important and inadequately understood phase of galaxy evolution.

  19. EXPLORING THE z = 3-4 MASSIVE GALAXY POPULATION WITH ZFOURGE: THE PREVALENCE OF DUSTY AND QUIESCENT GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Spitler, Lee R.; Rees, Glen [Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109 (Australia); Straatman, Caroline M. S.; Labbé, Ivo [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Glazebrook, Karl; Kacprzak, Glenn G.; Nanayakkara, Themiya [Centre for Astrophysics and Supercomputing, Swinburne University, Hawthorn, VIC 3122 (Australia); Tran, Kim-Vy H.; Papovich, Casey; Kawinwanichakij, Lalitwadee; Mehrtens, Nicola; Tilvi, Vithal; Tomczak, Adam R. [George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Quadri, Ryan F.; Persson, S. Eric; Kelson, Daniel D.; McCarthy, Patrick J.; Monson, Andrew J. [Carnegie Observatories, Pasadena, CA 91101 (United States); Van Dokkum, Pieter [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); Allen, Rebecca, E-mail: lee.spitler@mq.edu.au [Australian Astronomical Observatory, P.O. Box 296 Epping, NSW 1710 (Australia)

    2014-06-01

    Our understanding of the redshift z > 3 galaxy population relies largely on samples selected using the popular ''dropout'' technique, typically consisting of UV-bright galaxies with blue colors and prominent Lyman breaks. As it is currently unknown if these galaxies are representative of the massive galaxy population, we here use the FOURSTAR Galaxy Evolution (ZFOURGE) survey to create a stellar mass-limited sample at z = 3-4. Uniquely, ZFOURGE uses deep near-infrared medium-bandwidth filters to derive accurate photometric redshifts and stellar population properties. The mass-complete sample consists of 57 galaxies with log M >10.6, reaching below M {sup *} at z = 3-4. On average, the massive z = 3-4 galaxies are extremely faint in the observed optical with median R{sub tot}{sup AB}=27.48±0.41 (rest-frame M {sub 1700} = –18.05 ± 0.37). They lie far below the UV luminosity-stellar mass relation for Lyman break galaxies and are about ∼100 × fainter at the same mass. The massive galaxies are red (R – K {sub s} {sub AB} = 3.9 ± 0.2; rest-frame UV-slope β = –0.2 ± 0.3) likely from dust or old stellar ages. We classify the galaxy spectral energy distributions by their rest-frame U–V and V–J colors and find a diverse population: 46{sub −6−17}{sup +6+10}% of the massive galaxies are quiescent, 40{sub −6−5}{sup +6+7}% are dusty star-forming galaxies, and only 14{sub −3−4}{sup +3+10}% resemble luminous blue star-forming Lyman break galaxies. This study clearly demonstrates an inherent diversity among massive galaxies at higher redshift than previously known. Furthermore, we uncover a reservoir of dusty star-forming galaxies with 4 × lower specific star-formation rates compared to submillimeter-selected starbursts at z > 3. With 5 × higher numbers, the dusty galaxies may represent a more typical mode of star formation compared to submillimeter-bright starbursts.

  20. The Carnegie Supernova Project I. Methods to estimate host-galaxy reddening of stripped-envelope supernovae

    Science.gov (United States)

    Stritzinger, M. D.; Taddia, F.; Burns, C. R.; Phillips, M. M.; Bersten, M.; Contreras, C.; Folatelli, G.; Holmbo, S.; Hsiao, E. Y.; Hoeflich, P.; Leloudas, G.; Morrell, N.; Sollerman, J.; Suntzeff, N. B.

    2018-02-01

    We aim to improve upon contemporary methods to estimate host-galaxy reddening of stripped-envelope (SE) supernovae (SNe). To this end the Carnegie Supernova Project (CSP-I) SE SN photometry data release, consisting of nearly three dozen objects, is used to identify a minimally reddened sub-sample for each traditionally defined spectroscopic sub-type (i.e., SNe IIb, SNe Ib, SNe Ic). Inspection of the optical and near-infrared (NIR) colors and color evolution of the minimally reddened sub-samples reveals a high degree of homogeneity, particularly between 0 d to +20 d relative to B-band maximum. This motivated the construction of intrinsic color-curve templates, which when compared to the colors of reddened SE SNe, yields an entire suite of optical and NIR color excess measurements. Comparison of optical/optical vs. optical/NIR color excess measurements indicates the majority of the CSP-I SE SNe suffer relatively low amounts of reddening (i.e., E(B-V)host 0.20 mag) objects with the Fitzpatrick (1999, PASP, 111, 63) reddening law model provides robust estimates of the host visual-extinction AVhost and RVhost. In the case of the SE SNe with relatively low amounts of reddening, a preferred value of RVhost is adopted for each sub-type, resulting in estimates of AVhost through Fitzpatrick (1999) reddening law model fits to the observed color excess measurements. Our analysis suggests SE SNe reside in galaxies characterized by a range of dust properties. We also find evidence that SNe Ic are more likely to occur in regions characterized by larger RVhost values compared to SNe IIb/Ib and they also tend to suffer more extinction. The later finding is consistent with work in the literature suggesting SNe Ic tend to occur in regions of on-going star formation. Based on observations collected at Las Campanas Observatory.

  1. INSPIRALLING SUPERMASSIVE BLACK HOLES: A NEW SIGNPOST FOR GALAXY MERGERS

    International Nuclear Information System (INIS)

    Comerford, Julia M.; Gerke, Brian F.; Newman, Jeffrey A.; Davis, Marc; Yan, Renbin; Cooper, Michael C.; Coil, Alison L.; Faber, S. M.; Koo, David C.; Rosario, D. J.; Dutton, Aaron A.

    2009-01-01

    We present a new technique for observationally identifying galaxy mergers spectroscopically rather than through host galaxy imaging. Our technique exploits the dynamics of supermassive black holes (SMBHs) powering active galactic nuclei (AGNs) in merger-remnant galaxies. Because structure in the universe is built up through galaxy mergers and nearly all galaxies host a central SMBH, some galaxies should possess two SMBHs near their centers as the result of a recent merger. These SMBHs spiral to the center of the resultant merger-remnant galaxy, and one or both of the SMBHs may power AGNs. Using the DEEP2 Galaxy Redshift Survey, we have examined 1881 red galaxies, of which 91 exhibit [O III] and Hβ emission lines indicative of Seyfert 2 activity. Of these, 32 AGNs have [O III] emission-line redshifts significantly different from the redshifts of the host galaxies' stars, corresponding to velocity offsets of ∼50 km s -1 to ∼300 km s -1 . Two of these AGNs exhibit double-peaked [O III] emission lines, while the remaining 30 AGNs each exhibit a single set of velocity-offset [O III] emission lines. After exploring a variety of physical models for these velocity offsets, we argue that the most likely explanation is inspiralling SMBHs in merger-remnant galaxies. Based on this interpretation, we find that roughly half of the red galaxies hosting AGNs are also merger remnants, which implies that mergers may trigger AGN activity in red galaxies. The AGN velocity offsets we find imply a merger fraction of ∼30% and a merger rate of ∼3 mergers Gyr -1 for red galaxies at redshifts 0.34 < z < 0.82.

  2. Effects of Galaxy collisions on the structure and evolution of Galaxy clusters. I. Mass and luminosity functions and background light

    International Nuclear Information System (INIS)

    Miller, G.E.; Department of Astronomy, University of Texas at Austin)

    1983-01-01

    The role of galaxy collisions in controlling the form of the galaxy mass and luminosity functions and in creating a diffuse background light is investigated by means of a direct computer simulation. Galaxy collisions are treated in a realistic manner, including both galaxy mergers and tidal encounters. A large number of theoretical studies of a galaxy collisions were consulted to formulate the basic input physics of collision cross sections. Despite this large number of studies, there remains considerable uncertainty in the effects of a collision on a galaxy due mainly to our lack of knowledge of the orbital distribution of matter in galaxies. To improve this situation, some methods of semiempirical calibration are suggested: for example, a survey of background light in clusters of different richness and morphological classes. If real galaxies are represented by galaxy models where the bulk of the matter is on radial, rather than circular, orbits, then tidal collisions are more damaging and there are a number of interesting effects: Repeated tidal encounters lead to galaxy mass and luminosity functions which are largely independent of model parameters and the initial galaxy mass function. It appears unlikely that the form of the average present-day luminosity function characteristic of both field and cluster galaxies is due to collisions, but certain observed deviations from the average found by Heiligman and Turner and by Dressler may be a signature of collisions, in particular a flat faint-end slope. The amount of luminous matter stripped from the galaxies in the simulations agrees with the amount of diffuse background light seen in the Coma Cluster

  3. A peculiar distribution of radial velocities of faint radio-galaxies with 13.0<=msub(corr)<=15.5

    International Nuclear Information System (INIS)

    Karoji, H.; Nottale, L.; Vigier, J.-P.

    1976-01-01

    A sample of 41 radio-galaxies with 13.0<=msub(corr)<=15.5 has been analyzed to test the angular redshift anisotropy discovered on Sc I galaxies by Rubin, Rubin and Ford (1973). The sample does not present their anisotropy but contains an even more curious distribution of radial velocities which suggests that the Rubin-Ford effect results from an anomalous redshift of light when it travels through clusters of galaxies. (Auth.)

  4. Hubble Space Telescope Observations of the Afterglow, Supernova and Host Galaxy Associated with the Extremely Bright GRB 130427A

    Science.gov (United States)

    Levan, A.J.; Tanvir, N. R.; Fruchter, A. S.; Hjorth, J.; Pian, E.; Mazzali, P.; Hounsell, R. A.; Perley, D. A.; Cano, Z.; Graham, J.; hide

    2014-01-01

    We present Hubble Space Telescope (HST) observations of the exceptionally bright and luminous Swift gamma-ray burst, GRB 130427A. At z=0.34 this burst affords an excellent opportunity to study the supernova and host galaxy associated with an intrinsically extremely luminous burst (E(sub iso) greater than 10(exp 54) erg): more luminous than any previous GRB with a spectroscopically associated supernova. We use the combination of the image quality, UV capability and and invariant PSF of HST to provide the best possible separation of the afterglow, host and supernova contributions to the observed light approximately 17 rest-frame days after the burst utilising a host subtraction spectrum obtained 1 year later. Advanced Camera for Surveys (ACS) grism observations show that the associated supernova, SN 2013cq, has an overall spectral shape and luminosity similar to SN 1998bw (with a photospheric velocity, vph approximately 15,000 kilometers per second). The positions of the bluer features are better matched by the higher velocity SN 2010bh (vph approximately 30,000 kilometers per second), but SN 2010bh (vph approximately 30,000 kilometers per second but this SN is significantly fainter, and fails to reproduce the overall spectral shape, perhaps indicative of velocity structure in the ejecta. We find that the burst originated approximately 4 kpc from the nucleus of a moderately star forming (1 Solar Mass yr(exp-1)), possibly interacting disc galaxy. The absolute magnitude, physical size and morphology of this galaxy, as well as the location of the GRB within it are also strikingly similar to those of GRB980425SN 1998bw. The similarity of supernovae and environment from both the most luminous and least luminous GRBs suggests broadly similar progenitor stars can create GRBs across six orders of magnitude in isotropic energy.

  5. Hubble space telescope observations of the afterglow, supernova, and host galaxy associated with the extremely bright GRB 130427A

    Energy Technology Data Exchange (ETDEWEB)

    Levan, A. J. [Department of Physics, University of Warwick, Coventry, CV4 7AL (United Kingdom); Tanvir, N. R.; Wiersema, K. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH (United Kingdom); Fruchter, A. S.; Hounsell, R. A.; Graham, J. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Hjorth, J.; Fynbo, J. P. U. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Pian, E. [INAF, Trieste Astronomical Observatory, via G.B. Tiepolo 11, I-34143 Trieste (Italy); Mazzali, P. [Astrophysics Research Institute, Liverpool John Moores University, IC2 Liverpool Science Park 146 Brownlow Hill, Liverpool L3 5RF (United Kingdom); Perley, D. A. [Department of Astronomy, California Institute of Technology, MC 249-17, 1200 East California Blvd., Pasadena, CA 91125 (United States); Cano, Z. [Centre for Astrophysics and Cosmology, Science Institute, University of Iceland, Dunhagi 5, 107 Reykjavik (Iceland); Cenko, S. B. [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Kouveliotou, C. [Science and Technology Office, ZP12, NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Pe' er, A. [Department of Physics, University College Cork, Cork (Ireland); Misra, K., E-mail: a.j.levan@warwick.ac.uk [Aryabhatta Research Institute of Observational Sciences, Manora Peak, Nainital-263 002 (India)

    2014-09-10

    We present Hubble Space Telescope (HST) observations of the exceptionally bright and luminous Swift gamma-ray burst (GRB), GRB 130427A. At z = 0.34, this burst affords an excellent opportunity to study the supernova (SN) and host galaxy associated with an intrinsically extremely luminous burst (E {sub iso} > 10{sup 54} erg): more luminous than any previous GRB with a spectroscopically associated SN. We use the combination of the image quality, UV capability, and invariant point-spread function of HST to provide the best possible separation of the afterglow, host, and SN contributions to the observed light ∼17 rest-frame days after the burst, utilizing a host subtraction spectrum obtained one year later. Advanced Camera for Surveys grism observations show that the associated SN, SN 2013cq, has an overall spectral shape and luminosity similar to SN 1998bw (with a photospheric velocity, v {sub ph} ∼ 15, 000 km s{sup –1}). The positions of the bluer features are better matched by the higher velocity SN 2010bh (v {sub ph} ∼ 30, 000 km s{sup –1}), but this SN is significantly fainter and fails to reproduce the overall spectral shape, perhaps indicative of velocity structure in the ejecta. We find that the burst originated ∼4 kpc from the nucleus of a moderately star forming (1 M {sub ☉} yr{sup –1}), possibly interacting disk galaxy. The absolute magnitude, physical size, and morphology of this galaxy, as well as the location of the GRB within it, are also strikingly similar to those of GRB 980425/SN 1998bw. The similarity of the SNe and environment from both the most luminous and least luminous GRBs suggests that broadly similar progenitor stars can create GRBs across six orders of magnitude in isotropic energy.

  6. PS1-10bzj: A FAST, HYDROGEN-POOR SUPERLUMINOUS SUPERNOVA IN A METAL-POOR HOST GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Lunnan, R.; Chornock, R.; Berger, E.; Milisavljevic, D.; Drout, M.; Sanders, N. E.; Challis, P. M.; Czekala, I.; Foley, R. J.; Fong, W.; Kirshner, R. P.; Leibler, C.; Marion, G. H.; Narayan, G. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Huber, M. E. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); McCrum, M.; Smartt, S. J. [Astrophysics Research Centre, School of Mathematics and Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Rest, A. [Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218 (United States); Roth, K. C. [Gemini Observatory, 670 N. Aohoku Place, Hilo, HI 96720 (United States); Scolnic, D., E-mail: rlunnan@cfa.harvard.edu [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); and others

    2013-07-10

    We present observations and analysis of PS1-10bzj, a superluminous supernova (SLSN) discovered in the Pan-STARRS Medium Deep Survey at a redshift z = 0.650. Spectroscopically, PS1-10bzj is similar to the hydrogen-poor SLSNe 2005ap and SCP 06F6, though with a steeper rise and lower peak luminosity (M{sub bol} {approx_equal} -21.4 mag) than previous events. We construct a bolometric light curve, and show that while PS1-10bzj's energetics were less extreme than previous events, its luminosity still cannot be explained by radioactive nickel decay alone. We explore both a magnetar spin-down and circumstellar interaction scenario and find that either can fit the data. PS1-10bzj is located in the Extended Chandra Deep Field South and the host galaxy is imaged in a number of surveys, including with the Hubble Space Telescope. The host is a compact dwarf galaxy (M{sub B} Almost-Equal-To -18 mag, diameter {approx}< 800 pc), with a low stellar mass (M{sub *} Almost-Equal-To 2.4 Multiplication-Sign 10{sup 7} M{sub Sun }), young stellar population ({tau}{sub *} Almost-Equal-To 5 Myr), and a star formation rate of {approx}2-3 M{sub Sun} yr{sup -1}. The specific star formation rate is the highest seen in an SLSN host so far ({approx}100 Gyr{sup -1}). We detect the [O III] {lambda}4363 line, and find a low metallicity: 12 + (O/H) = 7.8 {+-} 0.2 ({approx_equal} 0.1 Z{sub Sun }). Together, this indicates that at least some of the progenitors of SLSNe come from young, low-metallicity populations.

  7. THE ROLE OF STAR FORMATION AND AN AGN IN DUST HEATING OF z = 0.3–2.8 GALAXIES. I. EVOLUTION WITH REDSHIFT AND LUMINOSITY

    Energy Technology Data Exchange (ETDEWEB)

    Kirkpatrick, Allison; Pope, Alexandra [Department of Astronomy, University of Massachusetts, Amherst, MA 01002 (United States); Sajina, Anna; Roebuck, Eric [Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States); Yan, Lin [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Armus, Lee [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); Díaz-Santos, Tanio [Núcleo de Astronomía de la Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército Libertador 441, Santiago (Chile); Stierwalt, Sabrina, E-mail: kirkpatr@astro.umass.edu [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States)

    2015-11-20

    We characterize infrared spectral energy distributions of 343 (ultra)luminous infrared galaxies from z = 0.3–2.8. We diagnose the presence of an active galactic nucleus (AGN) by decomposing individual Spitzer mid-IR spectroscopy into emission from star formation and an AGN-powered continuum; we classify sources as star-forming galaxies (SFGs), AGNs, or composites. Composites comprise 30% of our sample and are prevalent at faint and bright S{sub 24}, making them an important source of IR AGN emission. We combine spectroscopy with multiwavelength photometry, including Herschel imaging, to create three libraries of publicly available templates (2–1000 μm). We fit the far-IR emission using a two-temperature modified blackbody to measure cold and warm dust temperatures (T{sub c} and T{sub w}). We find that T{sub c} does not depend on mid-IR classification, while T{sub w} shows a notable increase as the AGN grows more luminous. We measure a quadratic relationship between mid-IR AGN emission and total AGN contribution to L{sub IR}. AGNs, composites, and SFGs separate in S{sub 8}/S{sub 3.6} and S{sub 250}/S{sub 24}, providing a useful diagnostic for estimating relative amounts of these sources. We estimate that >40% of IR-selected samples host an AGN, even at faint selection thresholds (S{sub 24} > 100 μJy). Our decomposition technique and color diagnostics are relevant given upcoming observations with the James Webb Space Telescope.

  8. The Cluster Lens SDSS 1004+4112: Constraining World Models With its Multiply-Imaged Quasar and Galaxies

    Science.gov (United States)

    Kochanek, C.

    2005-07-01

    We will use deep ACS imaging of the giant {15 arcsec} four-image z_s=1.734 lensed quasar SDSS 1004+4112, and its z_l=0.68 lensing galaxy cluster, to identify many additional multiply-imaged background galaxies. Combining the existing single orbit ACS I-band image with ground based data, we have definitely identified two multiply imaged galaxies with estimated redshifts of 2.6 and 4.3, about 15 probable images of background galaxies, and a point source in the core of the central cD galaxy, which is likely to be the faint, fifth image of the quasar. The new data will provide accurate photometric redshifts, confirm that the candidate fifth image has the same spectral energy distribution as the other quasar images, allow secure identification of additional multiply-lensed galaxies for improving the mass model, and permit identification of faint cluster members. Due to the high lens redshift and the broad redshift distribution of the lensed background sources, we should be able to use the source-redshift scaling of the Einstein radius that depends on {d_ls/d_os}, to derive a direct, geometric estimate of Omega_Lambda. The deeper images will also allow a weak lensing analysis to extend the mass distribution to larger radii. Unlike any other cluster lenses, the time delay between the lensed quasar images {already measured for the A-B images, and measurable for the others over the next few years}, breaks the so-called kappa-degeneracies that complicate weak-lensing analyses.

  9. Flames High Resolution Spectroscopy of RGB Stars in the Carina Dwarf Spheroidal Galaxy

    NARCIS (Netherlands)

    Lemasle, B.; Hill, V.; Tolstoy, E.; Venn, K.; Koleva, M; Prugniel, P; Vauglin,

    Carina is a small and faint classical dwarf spheroidal galaxy in the halo of the Milky Way with a highly episodic star formation history (e.g., Hurley-Keller et al. 1998). Using VLT/FLAMES in high resolution mode, we significantly increase the sample of stars with abundance determinations in Carina,

  10. THE RADIUS-LUMINOSITY RELATIONSHIP FOR ACTIVE GALACTIC NUCLEI: THE EFFECT OF HOST-GALAXY STARLIGHT ON LUMINOSITY MEASUREMENTS. II. THE FULL SAMPLE OF REVERBERATION-MAPPED AGNs

    International Nuclear Information System (INIS)

    Bentz, Misty C.; Peterson, Bradley M.; Pogge, Richard W.; Netzer, Hagai; Vestergaard, Marianne

    2009-01-01

    We present high-resolution Hubble Space Telescope images of all 35 active galactic nuclei (AGNs) with optical reverberation-mapping results, which we have modeled to create a nucleus-free image of each AGN host galaxy. From the nucleus-free images, we determine the host-galaxy contribution to ground-based spectroscopic luminosity measurements at 5100 A. After correcting the luminosities of the AGNs for the contribution from starlight, we re-examine the Hβ R BLR -L relationship. Our best fit for the relationship gives a power-law slope of 0.52 with a range of 0.45-0.59 allowed by the uncertainties. This is consistent with our previous findings, and thus still consistent with the naive assumption that all AGNs are simply luminosity-scaled versions of each other. We discuss various consistency checks relating to the galaxy modeling and starlight contributions, as well as possible systematic errors in the current set of reverberation measurements from which we determine the form of the R BLR -L relationship.

  11. CANDELS: THE CONTRIBUTION OF THE OBSERVED GALAXY POPULATION TO COSMIC REIONIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Finkelstein, Steven L.; Pawlik, Andreas H. [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States); Papovich, Casey [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Ryan, Russell E.; Ferguson, Henry C.; Koekemoer, Anton M.; Grogin, Norman A. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Dickinson, Mark [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Finlator, Kristian [Physics Department, University of California, Santa Barbara, CA 93106 (United States); Giavalisco, Mauro [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Cooray, Asantha [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Dunlop, James S. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh (United Kingdom); Faber, Sandy M.; Kocevski, Dale D. [University of California Observatories/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States); Newman, Jeffrey A., E-mail: stevenf@astro.as.utexas.edu [Department of Physics and Astronomy and Pitt-PACC, University of Pittsburgh, Pittsburgh, PA 15260 (United States)

    2012-10-20

    We present measurements of the specific ultraviolet luminosity density from a sample of 483 galaxies at 6 {approx}< z {approx}< 8. These galaxies were selected from new deep near-infrared Hubble Space Telescope imaging from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey, Hubble UltraDeep Field 2009, and Wide Field Camera 3 Early Release Science programs. We investigate the contribution to reionization from galaxies that we observe directly, thus sidestepping the uncertainties inherent in complementary studies that have invoked assumptions regarding the intrinsic shape or the faint-end cutoff of the galaxy ultraviolet (UV) luminosity function. Due to our larger survey volume, wider wavelength coverage, and updated assumptions about the clumping of gas in the intergalactic medium (IGM), we find that the observable population of galaxies can sustain a fully reionized IGM at z = 6, if the average ionizing photon escape fraction (f {sub esc}) is {approx}30%. Our result contrasts with a number of previous studies that have measured UV luminosity densities at these redshifts that vary by a factor of five, with many concluding that galaxies could not complete reionization by z = 6 unless a large population of galaxies fainter than the detection limit were invoked, or extremely high values of f {sub esc} were present. The specific UV luminosity density from our observed galaxy samples at z = 7 and 8 is not sufficient to maintain a fully reionized IGM unless f {sub esc} > 50%. We examine the contribution from galaxies in different luminosity ranges and find that the sub-L* galaxies we detect are stronger contributors to the ionizing photon budget than the L > L* population, unless f {sub esc} is luminosity dependent. Combining our observations with constraints on the emission rate of ionizing photons from Ly{alpha} forest observations at z = 6, we find that we can constrain f {sub esc} < 34% (2{sigma}) if the observed galaxies are the only contributors to

  12. The Co-evolution of QSOs and Galaxies

    Science.gov (United States)

    Coziol, R.; Torres-Papaqui, J. P.; Andernach, H.

    2015-07-01

    Using two large samples of QSOs detected in the mid-infrared (MIR) with WISE, we find that the change of W2-W3 colors with redshift suggests that star formation in their host galaxies increases by a factor of 3 from z = 0 to 2.7, then stays constant up to z = 4, and decreases above z=4. This behavior is slightly different from the best fits for the star formation history of field galaxies as deduced from the Optical-UV and IR, but is consistent with what is observed for sub-mm galaxies at high z. Our results constitute the clearest evidence, so far, that QSO host galaxies form their stars before field galaxies, and are in good agreement with the hierarchical biased structure formation paradigm.

  13. Dual Active Galactic Nuclei in Nearby Galaxies

    Science.gov (United States)

    Das, Mousumi; Rubinur, Khatun; Karb, Preeti; Varghese, Ashlin; Novakkuni, Navyasree; James, Atul

    2018-04-01

    Galaxy mergers play a crucial role in the formation of massive galaxies and the buildup of their bulges. An important aspect of the merging process is the in-spiral of the supermassive black-holes (SMBHs) to the centre of the merger remnant and the eventual formation of a SMBH binary. If both the SMBHs are accreting they will form a dual or binary active galactic nucleus (DAGN). The final merger remnant is usually very bright and shows enhanced star formation. In this paper we summarise the current sample of DAGN from previous studies and describe methods that can be used to identify strong DAGN candidates from optical and spectroscopic surveys. These methods depend on the Doppler separation of the double peaked AGN emission lines, the nuclear velocity dispersion of the galaxies and their optical/UV colours. We describe two high resolution, radio observations of DAGN candidates that have been selected based on their double peaked optical emission lines (DPAGN). We also examine whether DAGN host galaxies have higher star formation rates (SFRs) compared to merging galaxies that do not appear to have DAGN. We find that the SFR is not higher for DAGN host galaxies. This suggests that the SFRs in DAGN host galaxies is due to the merging process itself and not related to the presence of two AGN in the system.

  14. Are Ultra-faint Galaxies at z = 6-8 Responsible for Cosmic Reionization? Combined Constraints from the Hubble Frontier Fields Clusters and Parallels

    Science.gov (United States)

    Atek, Hakim; Richard, Johan; Jauzac, Mathilde; Kneib, Jean-Paul; Natarajan, Priyamvada; Limousin, Marceau; Schaerer, Daniel; Jullo, Eric; Ebeling, Harald; Egami, Eiichi; Clement, Benjamin

    2015-11-01

    We use deep Hubble Space Telescope imaging of the Frontier Fields to accurately measure the galaxy rest-frame ultraviolet luminosity function (UV LF) in the redshift range z ˜ 6-8. We combine observations in three lensing clusters, A2744, MACS 0416, and MACS 0717, and their associated parallel fields to select high-redshift dropout candidates. We use the latest lensing models to estimate the flux magnification and the effective survey volume in combination with completeness simulations performed in the source plane. We report the detection of 227 galaxy candidates at z = 6-7 and 25 candidates at z ˜ 8. While the total survey area is about 4 arcmin2 in each parallel field, it drops to about 0.6-1 arcmin2 in the cluster core fields because of the strong lensing. We compute the UV LF at z ˜ 7 using the combined galaxy sample and perform Monte Carlo simulations to determine the best-fit Schechter parameters. We are able to reliably constrain the LF down to an absolute magnitude of MUV = -15.25, which corresponds to 0.005 L⋆. More importantly, we find that the faint-end slope remains steep down to this magnitude limit with α =-{2.04}-0.17+0.13. We find a characteristic magnitude of {M}\\star =-{20.89}-0.72+0.60 and log(ϕ⋆) = -{3.54}-0.45+0.48. Our results confirm the most recent results in deep blank fields but extend the LF measurements more than two magnitudes deeper. The UV LF at z ˜ 8 is not very well constrained below MUV = -18 owing to the small number statistics and incompleteness uncertainties. To assess the contribution of galaxies to cosmic reionization, we derive the UV luminosity density at z ˜ 7 by integrating the UV LF down to an observational limit of MUV = -15. We show that our determination of log(ρUV) = 26.2 ± 0.13 (erg s-1 Hz-1 Mpc-3) can be sufficient to maintain reionization with an escape fraction of ionizing radiation of fesc = 10%-15%. Future Hubble Frontier Fields observations will certainly improve the constraints on the UV LF at

  15. ALIGNMENTS OF GROUP GALAXIES WITH NEIGHBORING GROUPS

    International Nuclear Information System (INIS)

    Wang Yougang; Chen Xuelei; Park, Changbom; Yang Xiaohu; Choi, Yun-Young

    2009-01-01

    Using a sample of galaxy groups found in the Sloan Digital Sky Survey Data Release 4, we measure the following four types of alignment signals: (1) the alignment between the distributions of the satellites of each group relative to the direction of the nearest neighbor group (NNG); (2) the alignment between the major axis direction of the central galaxy of the host group (HG) and the direction of the NNG; (3) the alignment between the major axes of the central galaxies of the HG and the NNG; and (4) the alignment between the major axes of the satellites of the HG and the direction of the NNG. We find strong signal of alignment between the satellite distribution and the orientation of central galaxy relative to the direction of the NNG, even when the NNG is located beyond 3r vir of the host group. The major axis of the central galaxy of the HG is aligned with the direction of the NNG. The alignment signals are more prominent for groups that are more massive and with early-type central galaxies. We also find that there is a preference for the two major axes of the central galaxies of the HG and NNG to be parallel for the system with both early central galaxies, however, not for the systems with both late-type central galaxies. For the orientation of satellite galaxies, we do not find any significant alignment signals relative to the direction of the NNG. From these four types of alignment measurements, we conclude that the large-scale environment traced by the nearby group affects primarily the shape of the host dark matter halo, and hence also affects the distribution of satellite galaxies and the orientation of central galaxies. In addition, the NNG directly affects the distribution of the satellite galaxies by inducing asymmetric alignment signals, and the NNG at very small separation may also contribute a second-order impact on the orientation of the central galaxy in the HG.

  16. Spitzer Observations of GRB Hosts: A Legacy Approach

    Science.gov (United States)

    Perley, Daniel; Tanvir, Nial; Hjorth, Jens; Berger, Edo; Laskar, Tanmoy; Michalowski, Michal; Chary, Ranga-Ram; Fynbo, Johan; Levan, Andrew

    2012-09-01

    The host galaxies of long-duration GRBs are drawn from uniquely broad range of luminosities and redshifts. Thus they offer the possibility of studying the evolution of star-forming galaxies without the limitations of other luminosity-selected samples, which typically are increasingly biased towards the most massive systems at higher redshift. However, reaping the full benefits of this potential requires careful attention to the selection biases affecting host identification. To this end, we propose observations of a Legacy sample of 70 GRB host galaxies (an additional 70 have already been observed by Spitzer), in order to constrain the mass and luminosity function in GRB-selected galaxies at high redshift, including its dependence on redshift and on properties of the afterglow. Crucially, and unlike previous Spitzer surveys, this sample is carefully designed to be uniform and free of optical selection biases that have caused previous surveys to systematically under-represent the role of luminous, massive hosts. We also propose to extend to larger, more powerfully constraining samples the study of two science areas where Spitzer observations have recently shown spectacular success: the hosts of dust-obscured GRBs (which promise to further our understanding of the connection between GRBs and star-formation in the most luminous galaxies), and the evolution of the mass-metallicity relation at z>2 (for which GRB host observations provide particularly powerful constraints on high-z chemical evolution).

  17. Tidal stripping and the structure of dwarf galaxies in the Local Group

    Science.gov (United States)

    Fattahi, Azadeh; Navarro, Julio F.; Frenk, Carlos S.; Oman, Kyle A.; Sawala, Till; Schaller, Matthieu

    2018-05-01

    The shallow faint-end slope of the galaxy mass function is usually reproduced in Λ cold dark matter (ΛCDM) galaxy formation models by assuming that the fraction of baryons that turn into stars drops steeply with decreasing halo mass and essentially vanishes in haloes with maximum circular velocities Vmax value, unless they are small enough to probe only the rising part of the halo circular velocity curve (i.e. half-mass radii, r1/2 ≪ 1 kpc). Many dwarfs have properties in disagreement with this prediction: they are large enough to probe their halo Vmax but their characteristic velocities are well below 20 km s-1. These `cold faint giants' (an extreme example is the recently discovered Crater 2 Milky Way satellite) can only be reconciled with our ΛCDM models if they are the remnants of once massive objects heavily affected by tidal stripping. We examine this possibility using the APOSTLE cosmological hydrodynamical simulations of the Local Group. Assuming that low-velocity-dispersion satellites have been affected by stripping, we infer their progenitor masses, radii, and velocity dispersions, and find them in remarkable agreement with those of isolated dwarfs. Tidal stripping also explains the large scatter in the mass discrepancy-acceleration relation in the dwarf galaxy regime: tides remove preferentially dark matter from satellite galaxies, lowering their accelerations below the amin ˜ 10-11 m s-2 minimum expected for isolated dwarfs. In many cases, the resulting velocity dispersions are inconsistent with the predictions from Modified Newtonian Dynamics, a result that poses a possibly insurmountable challenge to that scenario.

  18. Hydrodynamic effects of nuclear active galaxy winds on host galaxies

    International Nuclear Information System (INIS)

    Schiano, A.V.R.

    1984-01-01

    In order to test the hypothesized existence of a powerful, thermal wind in active galactic nuclei, the hydrodynamic effects of such a wind on a model galactic interstellar medium (ISM) are investigated. The properties of several model ISMs are derived from observations of the Milky Way's ISM and those of nearby spiral and elliptical galaxies. The propagation of the wind into the low density gas component of the ISM is studied using the Kompaneets approximation of a strong explosion in an exponential atmosphere. Flattened gas distributions are shown to experience blow-out of wind gas along the symmetry axis. Next, the interaction of dense, interstellar clouds with the wind is investigated. The stability and mass loss of clouds in the wind are studied and it is proposed that clouds survive the encounter with the wind over large timescales. It is proposed that the narrow emission line regions (NELR) of active galaxies are the result of the interaction of active nuclei photons and a thermal wind on large, interstellar clouds

  19. The formation of Dwarf Spheroidal galaxies by the dissolving star cluster model.

    Science.gov (United States)

    Alarcon, Alex; Theory and Star Formation Group

    2018-01-01

    Dwarf spheroidal (dSph) galaxies are regarded as key object in the formation of larger galaxies and are believed to be the most dark matter dominated systems known. There are several model that attempt to explain their formation, but they have problems to model the formation of isolated dSph. Here we will explain a possible formation scenario in which star clusters form in the dark matter halo of a dSph. these cluster suffer from low star formation efficiency and dissolve while orbiting inside the halo. Thereby they build the faint luminous components that we observe in dSph galaxies. Here we will show the main results of this simulations and how they would be corroborated using observational data.

  20. The First Galaxies and the Likely Discovery of Their Fossils in the Local Group

    Directory of Open Access Journals (Sweden)

    Massimo Ricotti

    2010-01-01

    Full Text Available The lower bound for the mass of a galaxy is unknown, as are the typical luminosity of the smallest galaxies and their numbers. The answers depend on the extent to which star formation in the first population of small mass halos may be suppressed by radiative feedback loops. If early populations of dwarf galaxies did form in significant number before reionization, their “fossils” should be found today in the Local Group. This paper reviews our ongoing efforts to simulate and identify fossil dwarfs in the Local Group. It is widely believed that reionization stopped star formation in fossil dwarfs. However, here we dispute this idea and discuss a physical mechanism whereby recent episodes of star formation would be produced in some fossil dwarfs that, hence, may characterized by a bimodal star formation history. The same mechanism could turn dark halos that failed to form stars before reionization into gas-rich “dark galaxies”. We believe that current observational data supports the thesis that a fraction of the new ultra-faint dwarfs discovered in the Local Group are fossil dwarfs and we predict the existence of a population of ultra-faint dwarfs with lower surface brightness than currently observed.

  1. PEARS Emission Line Galaxies

    Science.gov (United States)

    Pirzkal, Nor; Rothberg, Barry; Ly, Chun; Rhoads, James E.; Malhotra, Sangeeta; Grogin, Norman A.; Dahlen, Tomas; Meurer, Gerhardt R.; Walsh, Jeremy; Hathi, Nimish P.; hide

    2012-01-01

    We present a full analysis of the Probing Evolution And Reionization Spectroscopically (PEARS) slitless grism spectroscopic data obtained vl'ith the Advanced Camera for Surveys on HST. PEARS covers fields within both the Great Observatories Origins Deep Survey (GOODS) North and South fields, making it ideal as a random surveY of galaxies, as well as the availability of a wide variety of ancillary observations to support the spectroscopic results. Using the PEARS data we are able to identify star forming galaxies within the redshift volume 0 galaxies down to a limiting flux of approx 10 - 18 erg/s/sq cm . The ELRs have also been compared to the properties of the host galaxy, including morphology, luminosity, and mass. From this analysis we find three key results: 1) The computed line luminosities show evidence of a flattening in the luminosity function with increasing redshift; 2) The star forming systems show evidence of disturbed morphologies, with star formation occurring predominantly within one effective (half-light) radius. However, the morphologies show no correlation with host stellar mass; and 3) The number density of star forming galaxies with M(*) >= 10(exp 9) Solar M decreases by an order of magnitude at z<=0.5 relative to the number at 0.5 < z < 0.9 in support of the argument for galaxy downsizing.

  2. The Galaxy Evolution Probe

    Science.gov (United States)

    Glenn, Jason; Galaxy Evolution Probe Team

    2018-01-01

    The Galaxy Evolution Probe (GEP) is a concept for a far-infrared observatory to survey large regions of sky for star-forming galaxies from z = 0 to beyond z = 3. Our knowledge of galaxy formation is incomplete and requires uniform surveys over a large range of redshifts and environments to accurately describe mass assembly, star formation, supermassive black hole growth, interactions between these processes, and what led to their decline from z ~ 2 to the present day. Infrared observations are sensitive to dusty, star-forming galaxies, which have bright polycyclic aromatic hydrocarbon (PAH) emission features and warm dust continuum in the rest-frame mid infrared and cooler thermal dust emission in the far infrared. Unlike previous far-infrared continuum surveys, the GEP will measure photometric redshifts commensurate with galaxy detections from PAH emission and Si absorption features, without the need for obtaining spectroscopic redshifts of faint counterparts at other wavelengths.The GEP design includes a 2 m diameter telescope actively cooled to 4 K and two instruments: (1) An imager covering 10 to 300 um with 25 spectral resolution R ~ 8 bands (with lower R at the longest wavelengths) to detect star-forming galaxies and measure their redshifts photometrically. (2) A 23 – 190 um, R ~ 250 dispersive spectrometer for redshift confirmation and identification of obscured AGN using atomic fine-structure lines. Lines including [Ne V], [O IV], [O III], [O I], and [C II] will probe gas physical conditions, radiation field hardness, and metallicity. Notionally, the GEP will have a two-year mission: galaxy surveys with photometric redshifts in the first year and a second year devoted to follow-up spectroscopy. A comprehensive picture of star formation in galaxies over the last 10 billion years will be assembled from cosmologically relevant volumes, spanning environments from field galaxies and groups, to protoclusters, to dense galaxy clusters.Commissioned by NASA, the

  3. VLBI observations of Infrared-Faint Radio Sources

    Science.gov (United States)

    Middelberg, Enno; Phillips, Chris; Norris, Ray; Tingay, Steven

    2006-10-01

    We propose to observe a small sample of radio sources from the ATLAS project (ATLAS = Australia Telescope Large Area Survey) with the LBA, to determine their compactness and map their structures. The sample consists of three radio sources with no counterpart in the co-located SWIRE survey (3.6 um to 160 um), carried out with the Spitzer Space Telescope. This rare class of sources, dubbed Infrared-Faint Radio Sources, or IFRS, is inconsistent with current galaxy evolution models. VLBI observations are an essential way to obtain further clues on what these objects are and why they are hidden from infrared observations: we will map their structure to test whether they resemble core-jet or double-lobed morphologies, and we will measure the flux densities on long baselines, to determine their compactness. Previous snapshot-style LBA observations of two other IFRS yielded no detections, hence we propose to use disk-based recording with 512 Mbps where possible, for highest sensitivity. With the observations proposed here, we will increase the number of VLBI-observed IFRS from two to five, soon allowing us to draw general conclusions about this intriguing new class of objects.

  4. The evolution of the intergalactic medium and the origin of the galaxy luminosity function

    Science.gov (United States)

    Valls-Gabaud, David; Blanchard, Alain; Mamon, Gary

    1993-01-01

    The coupling of the Press and Schechter prescription with the CDM scenario and the Hoyle-Rees-Ostriker cooling criterion leads to a galaxy formation scenario in which galaxies are overproduced by a large factor. Although star formation might be suppressed in the smaller halos, a large amount of energy per galactic mass is needed to account for the present number density of galaxies. The evolution of the intergalactic medium (IGM) provides a simple criterion to prevent galaxy formation without requiring feedback, since halos with small virial temperatures are not able to retain the infalling hot gas of the IGM. If the ionizing background has decreased since z is approximately 1 - 2, then this criterion explains the slope of the luminosity function at the faint end. In addition, this scenario predicts two populations of dwarf galaxies, well differentiated in age, gas content, stellar populations, and clustering properties, which can be identified with dE and dIm galaxies.

  5. The shape of velocity dispersion profiles and the dynamical state of galaxy clusters

    Science.gov (United States)

    Costa, A. P.; Ribeiro, A. L. B.; de Carvalho, R. R.

    2018-01-01

    Motivated by the existence of the relationship between the dynamical state of clusters and the shape of the velocity dispersion profiles (VDPs), we study the VDPs for Gaussian (G) and non-Gaussian (NG) systems for a subsample of clusters from the Yang catalogue. The groups cover a redshift interval of 0.03 ≤ z ≤ 0.1 with halo mass ≥1014 M⊙. We use a robust statistical method, Hellinger Distance, to classify the dynamical state of the systems according to their velocity distribution. The stacked VDP of each class, G and NG, is then determined using either Bright or Faint galaxies. The stacked VDP for G groups displays a central peak followed by a monotonically decreasing trend which indicates a predominance of radial orbits, with the Bright stacked VDP showing lower velocity dispersions in all radii. The distinct features we find in NG systems are manifested not only by the characteristic shape of VDP, with a depression in the central region, but also by a possible higher infall rate associated with galaxies in the Faint stacked VDP.

  6. Lost but not forgotten: intracluster light in galaxy groups and clusters

    Science.gov (United States)

    DeMaio, Tahlia; Gonzalez, Anthony H.; Zabludoff, Ann; Zaritsky, Dennis; Connor, Thomas; Donahue, Megan; Mulchaey, John S.

    2018-03-01

    With Hubble Space Telescope imaging, we investigate the progenitor population and formation mechanisms of the intracluster light (ICL) for 23 galaxy groups and clusters at 0.29 ≤ z ≤ 0.89. The colour gradients of the BCG+ICL become bluer with increasing radius out to 53-100 kpc for all but one system, suggesting that violent relaxation after major mergers with the BCG cannot be the dominant source of ICL. The BCG+ICL luminosities and stellar masses are too large for the ICL stars to come from the dissolution of dwarf galaxies alone, given the observed evolution of the faint end of the cluster galaxy luminosity function, implying instead that the ICL grows from the stripping of more massive galaxies. Using the colours of cluster members from the CLASH high-mass sample, we place conservative lower limits on the luminosities of galaxies from which the ICL at r originate via stripping. We find that the ICL at 100 kpc has a colour similar to a 1010.0 M⊙ galaxy and that 75 per cent of the total BCG+ICL luminosity at r originating in galaxies with L > 0.2 L* (log(M★ [M⊙])>10.4), assuming conservatively that these galaxies are completely disrupted. We conclude that the tidal stripping of massive galaxies is the likely source of the intracluster light from 10 to 100 kpc for galaxy groups and clusters.

  7. Star Formation in low mass galaxies

    Science.gov (United States)

    Mehta, Vihang

    2018-01-01

    Our current hierarchical view of the universe asserts that the large galaxies we see today grew via mergers of numerous smaller galaxies. As evidenced by recent literature, the collective impact of these low mass galaxies on the universe is more substantial than previously thought. Studying the growth and evolution of these low mass galaxies is critical to our understanding of the universe as a whole. Star formation is one of the most important ongoing processes in galaxies. Forming stars is fundamental to the growth of a galaxy. One of the main goals of my thesis is to analyze the star formation in these low mass galaxies at different redshifts.Using the Hubble UltraViolet Ultra Deep Field (UVUDF), I investigate the star formation in galaxies at the peak of the cosmic star formation history using the ultraviolet (UV) light as a star formation indicator. Particularly, I measure the UV luminosity function (LF) to probe the volume-averaged star formation properties of galaxies at these redshifts. The depth of the UVUDF is ideal for a direct measurement of the faint end slope of the UV LF. This redshift range also provides a unique opportunity to directly compare UV to the "gold standard" of star formation indicators, namely the Hα nebular emission line. A joint analysis of the UV and Hα LFs suggests that, on average, the star formation histories in low mass galaxies (~109 M⊙) are more bursty compared to their higher mass counterparts at these redshifts.Complementary to the analysis of the average star formation properties of the bulk galaxy population, I investigate the details of star formation in some very bursty galaxies at lower redshifts selected from Spitzer Large Area Survey with Hyper-Suprime Cam (SPLASH). Using a broadband color-excess selection technique, I identify a sample of low redshift galaxies with bright nebular emission lines in the Subaru-XMM Deep Field (SXDF) from the SPLASH-SXDF catalog. These galaxies are highly star forming and have

  8. AGN feedback in galaxy formation

    CERN Document Server

    Antonuccio-Delogu, Vincenzo

    2010-01-01

    During the past decade, convincing evidence has been accumulated concerning the effect of active galactic nuclei (AGN) activity on the internal and external environment of their host galaxies. Featuring contributions from well-respected researchers in the field, and bringing together work by specialists in both galaxy formation and AGN, this volume addresses a number of key questions about AGN feedback in the context of galaxy formation. The topics covered include downsizing and star-formation time scales in massive elliptical galaxies, the connection between the epochs of supermassive black h

  9. PISCO: The PMAS/PPak Integral-field Supernova Hosts Compilation

    Science.gov (United States)

    Galbany, L.; Anderson, J. P.; Sánchez, S. F.; Kuncarayakti, H.; Pedraz, S.; González-Gaitán, S.; Stanishev, V.; Domínguez, I.; Moreno-Raya, M. E.; Wood-Vasey, W. M.; Mourão, A. M.; Ponder, K. A.; Badenes, C.; Mollá, M.; López-Sánchez, A. R.; Rosales-Ortega, F. F.; Vílchez, J. M.; García-Benito, R.; Marino, R. A.

    2018-03-01

    We present the PMAS/PPak Integral-field Supernova hosts COmpilation (PISCO), which comprises integral field spectroscopy (IFS) of 232 supernova (SN) host galaxies that hosted 272 SNe, observed over several semesters with the 3.5 m telescope at the Calar Alto Observatory (CAHA). PISCO is the largest collection of SN host galaxies observed with wide-field IFS, totaling 466,347 individual spectra covering a typical spatial resolution of ∼380 pc. Focused studies regarding specific SN Ia-related topics will be published elsewhere; this paper aims to present the properties of the SN environments, using stellar population (SP) synthesis, and the gas-phase interstellar medium, providing additional results separating stripped-envelope SNe into their subtypes. With 11,270 H II regions detected in all galaxies, we present for the first time a statistical analysis of H II regions, which puts H II regions that have hosted SNe in context with all other star-forming clumps within their galaxies. SNe Ic are associated with environments that are more metal-rich and have higher EW(Hα) and higher star formation rate within their host galaxies than the mean of all H II regions detected within each host. This in contrast to SNe IIb, which occur in environments that are very different compared to other core-collapse SNe types. We find two clear components of young and old SPs at SNe IIn locations. We find that SNe II fast decliners tend to explode at locations where the ΣSFR is more intense. Finally, we outline how a future dedicated IFS survey of galaxies in parallel to an untargeted SN search would overcome the biases in current environmental studies.

  10. DETERMINING TYPE Ia SUPERNOVA HOST GALAXY EXTINCTION PROBABILITIES AND A STATISTICAL APPROACH TO ESTIMATING THE ABSORPTION-TO-REDDENING RATIO R{sub V}

    Energy Technology Data Exchange (ETDEWEB)

    Cikota, Aleksandar [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching b. München (Germany); Deustua, Susana [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Marleau, Francine, E-mail: acikota@eso.org [Institute for Astro- and Particle Physics, University of Innsbruck, Technikerstrasse 25/8, A-6020 Innsbruck (Austria)

    2016-03-10

    We investigate limits on the extinction values of Type Ia supernovae (SNe Ia) to statistically determine the most probable color excess, E(B – V), with galactocentric distance, and use these statistics to determine the absorption-to-reddening ratio, R{sub V}, for dust in the host galaxies. We determined pixel-based dust mass surface density maps for 59 galaxies from the Key Insight on Nearby Galaxies: a Far-infrared Survey with Herschel (KINGFISH). We use SN Ia spectral templates to develop a Monte Carlo simulation of color excess E(B – V) with R{sub V} = 3.1 and investigate the color excess probabilities E(B – V) with projected radial galaxy center distance. Additionally, we tested our model using observed spectra of SN 1989B, SN 2002bo, and SN 2006X, which occurred in three KINGFISH galaxies. Finally, we determined the most probable reddening for Sa–Sap, Sab–Sbp, Sbc–Scp, Scd–Sdm, S0, and irregular galaxy classes as a function of R/R{sub 25}. We find that the largest expected reddening probabilities are in Sab–Sb and Sbc–Sc galaxies, while S0 and irregular galaxies are very dust poor. We present a new approach for determining the absorption-to-reddening ratio R{sub V} using color excess probability functions and find values of R{sub V} = 2.71 ± 1.58 for 21 SNe Ia observed in Sab–Sbp galaxies, and R{sub V} = 1.70 ± 0.38, for 34 SNe Ia observed in Sbc–Scp galaxies.

  11. Spatial distribution of dust in galaxies from the Integral field unit data

    Science.gov (United States)

    Zafar, Tayyaba; Sophie Dubber, Andrew Hopkins

    2018-01-01

    An important characteristic of the dust is it can be used as a tracer of stars (and gas) and tell us about the composition of galaxies. Sub-mm and infrared studies can accurately determine the total dust mass and its spatial distribution in massive, bright galaxies. However, faint and distant galaxies are hampered by resolution to dust spatial dust distribution. In the era of integral-field spectrographs (IFS), Balmer decrement is a useful quantity to infer the spatial extent of the dust in distant and low-mass galaxies. We conducted a study to estimate the spatial distribution of dust using the Sydney-Australian Astronomical Observatory (AAO) Multi-object Integral field spectrograph (SAMI) galaxies. Our methodology is unique to exploit the potential of IFS and using the spatial and spectral information together to study dust in galaxies of various morphological types. The spatial extent and content of dust are compared with the star-formation rate, reddening, and inclination of galaxies. We find a right correlation of dust spatial extent with the star-formation rate. The results also indicate a decrease in dust extent radius from Late Spirals to Early Spirals.

  12. Do Typical Galaxies in Adolescence Already Host Growing Black Holes?

    Science.gov (United States)

    Trump, Jonathan

    2012-10-01

    This archival grism proposal achieves a 100-fold gain in high-quality {5+sigma} information for discovering which properties of adolescent {0.7linked to AGN activity. We propose to analyze 147 WFC3 G141 and 111 ACS 800L pointings of 2-orbit grism data in the CANDELS fields, for a sample of 3000 galaxies reaching SFR 5 Msun/yr and stellar masses of log{M*/Msun} 9 at z 1.5. We will leverage spatially-resolved line ratios to uniquely distinguish a nuclear AGN from extended low-metallicity or shocked gas. Compared to our 30-galaxy published sample that hints at AGNs in low-mass z 2 galaxies {Trump et al. 2011}, this 3000 galaxy sample enables a 100-fold gain in divisions by galaxy morphology, SFR, and stellar mass to discover which galaxy properties correlate most with rapid SMBH growth. We will stack the deep {0.8-4 Ms} Chandra data available in these fields as an independent check of the grism AGN/SF diagnostics. The unique ancillary data in these fields also include ACS+WFC3 imaging for morphologies, deep multiwavelength data for well-sampled SEDs and stellar masses, and previous optical {and future near-IR} spectroscopy to supplement the G141 coverage. Based on discussions with the GOODS-N and 3D-HST teams, our proposed AGN science does not overlap with their proposed or funded science goals. As a value-added product for the community we will release, via the public Rainbow-CANDELS database server, an atlas of spatial maps of emission lines and line ratios {and associated errors} for the entire sample of 3000 galaxies.

  13. Early Gas Stripping as the Origin of the Darkest Galaxies in the Universe

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Lucio; /Zurich, ETH /Zurich U.; Kazantzidis, Stelios; /KIPAC, Menlo Park /KICP, Chicago; Mastropietro, Chiara; /Munich U. Observ.; Wadsley, James; /McMaster U.

    2007-02-28

    The known galaxies most dominated by dark matter (Draco, Ursa Minor and Andromeda IX) are satellites of the Milky Way and the Andromeda galaxies. They are members of a class of faint galaxies, devoid of gas, known as dwarf spheroidals, and have by far the highest ratio of dark to luminous matter. None of the models proposed to unravel their origin can simultaneously explain their exceptional dark matter content and their proximity to a much larger galaxy. Here we report simulations showing that the progenitors of these galaxies were probably gas-dominated dwarf galaxies that became satellites of a larger galaxy earlier than the other dwarf spheroidals. We find that a combination of tidal shocks and ram pressure swept away the entire gas content of such progenitors about ten billion years ago because heating by the cosmic ultraviolet background kept the gas loosely bound: a tiny stellar component embedded in a relatively massive dark halo survived until today. All luminous galaxies should be surrounded by a few extremely dark-matter-dominated dwarf spheroidal satellites, and these should have the shortest orbital periods among dwarf spheroidals because they were accreted early.

  14. Supermassive Black Holes and Their Host Galaxies. I. Bulge Luminosities from Dedicated Near-infrared Data

    Science.gov (United States)

    Läsker, Ronald; Ferrarese, Laura; van de Ven, Glenn

    2014-01-01

    In an effort to secure, refine, and supplement the relation between central supermassive black hole masses, M •, and the bulge luminosities of their host galaxies, L bul, we obtained deep, high spatial resolution K-band images of 35 nearby galaxies with securely measured M •, using the wide-field WIRCam imager at the Canada-France-Hawaii-Telescope. A dedicated data reduction and sky subtraction strategy was adopted to estimate the brightness and structure of the sky, a critical step when tracing the light distribution of extended objects in the near-infrared. From the final image product, bulge and total magnitudes were extracted via two-dimensional profile fitting. As a first order approximation, all galaxies were modeled using a simple Sérsic-bulge+exponential-disk decomposition. However, we found that such models did not adequately describe the structure that we observed in a large fraction of our sample galaxies which often include cores, bars, nuclei, inner disks, spiral arms, rings, and envelopes. In such cases, we adopted profile modifications and/or more complex models with additional components. The derived bulge magnitudes are very sensitive to the details and number of components used in the models, although total magnitudes remain almost unaffected. Usually, but not always, the luminosities and sizes of the bulges are overestimated when a simple bulge+disk decomposition is adopted in lieu of a more complex model. Furthermore, we found that some spheroids are not well fit when the ellipticity of the Sérsic model is held fixed. This paper presents the details of the image processing and analysis, while we discuss how model-induced biases and systematics in bulge magnitudes impact the M •-L bul relation in a companion paper.

  15. Properties of DRGs, LBGs, and BzK Galaxies in the GOODS South Field

    Science.gov (United States)

    Grazian, A.; Salimbeni, S.; Pentericci, L.; Fontana, A.; Santini, P.; Giallongo, E.; de Santis, C.; Gallozzi, S.; Nonino, M.; Cristiani, S.; Vanzella, E.

    2007-12-01

    We use the GOODS-MUSIC catalog with multi-wavelength coverage extending from the U band to the Spitzer 8 μm band, and spectroscopic or accurate photometric redshifts to select samples of BM/BX/LBGs, DRGs, and BzK galaxies. We discuss the overlap and the limitations of these selection criteria, which can be overcome with a criterion based on physical parameters (age and star formation timescale). We show that the BzK-PE criterion is not optimal for selecting early type galaxies at the faint end. We also find that LBGs and DRGs contribute almost equally to the global Stellar Mass Density (SMD) at z≥ 2 and in general that star forming galaxies form a substantial fraction of the universal SMD.

  16. CHANDRA X-RAY AND HUBBLE SPACE TELESCOPE IMAGING OF OPTICALLY SELECTED KILOPARSEC-SCALE BINARY ACTIVE GALACTIC NUCLEI. II. HOST GALAXY MORPHOLOGY AND AGN ACTIVITY

    International Nuclear Information System (INIS)

    Shangguan, Jinyi; Ho, Luis C.; Liu, Xin; Shen, Yue; Peng, Chien Y.; Greene, Jenny E.; Strauss, Michael A.

    2016-01-01

    Binary active galactic nuclei (AGNs) provide clues to how gas-rich mergers trigger and fuel AGNs and how supermassive black hole (SMBH) pairs evolve in a gas-rich environment. While significant effort has been invested in their identification, the detailed properties of binary AGNs and their host galaxies are still poorly constrained. In a companion paper, we examined the nature of ionizing sources in the double nuclei of four kiloparsec-scale binary AGNs with redshifts between 0.1 and 0.2. Here, we present their host galaxy morphology based on F336W ( U -band) and F105W ( Y -band) images taken by the Wide Field Camera 3 on board the Hubble Space Telescope . Our targets have double-peaked narrow emission lines and were confirmed to host binary AGNs with follow-up observations. We find that kiloparsec-scale binary AGNs occur in galaxy mergers with diverse morphological types. There are three major mergers with intermediate morphologies and a minor merger with a dominant disk component. We estimate the masses of the SMBHs from their host bulge stellar masses and obtain Eddington ratios for each AGN. Compared with a representative control sample drawn at the same redshift and stellar mass, the AGN luminosities and Eddington ratios of our binary AGNs are similar to those of single AGNs. The U − Y color maps indicate that clumpy star-forming regions could significantly affect the X-ray detection of binary AGNs, e.g., the hardness ratio. Considering the weak X-ray emission in AGNs triggered in merger systems, we suggest that samples of X-ray-selected AGNs may be biased against gas-rich mergers.

  17. Starbursts and IRAS galaxies

    International Nuclear Information System (INIS)

    Belfort, P.

    1987-01-01

    Several observational hints suggest that most of the IRAS galaxies are undergoing bursts of star formation. A simple photometric model of starburst galaxy was developed in order to check whether starburst events are really able to account for the far-infrared and optical properties of all the IRAS galaxies with HII region-like spectra. FIR activities up to a few hundred are actually easily reached with rather small bursts in red host-galaxies, and L IR /L B , EW(Hα) and U-B) versus (B-V) diagrams can be used to estimate burst strength and extinction. But more observations are required to conclude about the most extreme cases. Four typical infrared-selected IRAS galaxies are presented and their burst strength and extinction estimated

  18. KILOPARSEC-SCALE RADIO STRUCTURES IN NARROW-LINE SEYFERT 1 GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Doi, Akihiro; Kino, Motoki [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuou-ku, Sagamihara, Kanagawa 252-5210 (Japan); Nagira, Hiroshi [Graduate School of Science and Engineering, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, Yamaguchi 753-8512 (Japan); Kawakatu, Nozomu [Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571 (Japan); Nagai, Hiroshi [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Asada, Keiichi, E-mail: akihiro.doi@vsop.isas.jaxa.jp [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 10617, Taiwan (China)

    2012-11-20

    We report the finding of kiloparsec (kpc)-scale radio structures in three radio-loud narrow-line Seyfert 1 (NLS1) galaxies from the Faint Images of the Radio Sky at Twenty-centimeters of the Very Large Array, which increases the number of known radio-loud NLS1s with kpc-scale structures to six, including two {gamma}-ray-emitting NLS1s (PMN J0948+0022 and 1H 0323+342) detected by the Fermi Gamma-ray Space Telescope. The detection rate of extended radio emissions in NLS1s is lower than that in broad-line active galactic nuclei (AGNs) with a statistical significance. We found both core-dominated (blazar-like) and lobe-dominated (radio-galaxy-like) radio structures in these six NLS1s, which can be understood in the framework of the unified scheme of radio-loud AGNs that considers radio galaxies as non-beamed parent populations of blazars. Five of the six NLS1s have (1) extended radio luminosities suggesting jet kinetic powers of {approx}> 10{sup 44} erg s{sup -1}, which is sufficient to make jets escape from hosts' dense environments; (2) black holes of {approx}> 10{sup 7} M {sub Sun }, which can generate the necessary jet powers from near-Eddington mass accretion; and (3) two-sided radio structures at kpc scales, requiring expansion rates of {approx}0.01c-0.3c and kinematic ages of {approx}> 10{sup 7} years. On the other hand, most typical NLS1s would be driven by black holes of {approx}< 10{sup 7} M {sub Sun} in a limited lifetime of {approx}10{sup 7} years. Hence, the kpc-scale radio structures may originate in a small window of opportunity during the final stage of the NLS1 phase just before growing into broad-line AGNs.

  19. Seeing Baby Dwarf Galaxies

    Science.gov (United States)

    2009-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] [figure removed for brevity, see original site] Visible/DSS Click on image for larger version Ultraviolet/GALEX Click on image for larger version Poster Version Click on image for larger version The unique ultraviolet vision of NASA's Galaxy Evolution Explorer reveals, for the first time, dwarf galaxies forming out of nothing more than pristine gas likely leftover from the early universe. Dwarf galaxies are relatively small collections of stars that often orbit around larger galaxies like our Milky Way. The forming dwarf galaxies shine in the far ultraviolet spectrum, rendered as blue in the call-out on the right hand side of this image. Near ultraviolet light, also obtained by the Galaxy Evolution Explorer, is displayed in green, and visible light from the blue part of the spectrum here is represented by red. The clumps (in circles) are distinctively blue, indicating they are primarily detected in far ultraviolet light. The faint blue overlay traces the outline of the Leo Ring, a huge cloud of hydrogen and helium that orbits around two massive galaxies in the constellation Leo (left panel). The cloud is thought likely to be a primordial object, an ancient remnant of material that has remained relatively unchanged since the very earliest days of the universe. Identified about 25 years ago by radio waves, the ring cannot be seen in visible light. Only a portion of the Leo Ring has been imaged in the ultraviolet, but this section contains the telltale ultraviolet signature of recent massive star formation within this ring of pristine gas. Astronomers have previously only seen dwarf galaxies form out of gas that has already been cycled through a galaxy and enriched with metals elements heavier than helium produced as stars evolve. The visible data come from the Digitized Sky Survey of the Space Telescope Science Institute in Baltimore, Md. The Leo Ring visible image (left

  20. A MINUET OF GALAXIES

    Science.gov (United States)

    2002-01-01

    This troupe of four galaxies, known as Hickson Compact Group 87 (HCG 87), is performing an intricate dance orchestrated by the mutual gravitational forces acting between them. The dance is a slow, graceful minuet, occurring over a time span of hundreds of millions of years. The Wide Field and Planetary Camera 2 on NASA's Hubble Space Telescope (HST) provides a striking improvement in resolution over previous ground-based imaging. In particular, this image reveals complex details in the dust lanes of the group's largest galaxy member (HCG 87a), which is actually disk-shaped, but tilted so that we see it nearly edge-on. Both 87a and its elliptically shaped nearest neighbor (87b) have active galactic nuclei which are believed to harbor black holes that are consuming gas. A third group member, the nearby spiral galaxy 87c, may be undergoing a burst of active star formation. Gas flows within galaxies can be intensified by the gravitational tidal forces between interacting galaxies. So interactions can provide fresh fuel for both active nuclei and starburst phenomena. These three galaxies are so close to each other that gravitational forces disrupt their structure and alter their evolution. From the analysis of its spectra, the small spiral near the center of the group could either be a fourth member or perhaps an unrelated background object. The HST image was made by combining images taken in four different color filters in order to create a three-color picture. Regions of active star formation are blue (hot stars) and also pinkish if hot hydrogen gas is present. The complex dark bands across the large edge-on disk galaxy are due to interstellar dust silhouetted against the galaxy's background starlight. A faint tidal bridge of stars can be seen between the edge-on and elliptical galaxies. HCG 87 was selected for Hubble imaging by members of the public who visited the Hubble Heritage website (http://heritage.stsci.edu) during the month of May and registered their votes

  1. Satellite dwarf galaxies in a hierarchical universe: the prevalence of dwarf-dwarf major mergers

    International Nuclear Information System (INIS)

    Deason, Alis; Wetzel, Andrew; Garrison-Kimmel, Shea

    2014-01-01

    Mergers are a common phenomenon in hierarchical structure formation, especially for massive galaxies and clusters, but their importance for dwarf galaxies in the Local Group remains poorly understood. We investigate the frequency of major mergers between dwarf galaxies in the Local Group using the ELVIS suite of cosmological zoom-in dissipationless simulations of Milky Way- and M31-like host halos. We find that ∼10% of satellite dwarf galaxies with M star > 10 6 M ☉ that are within the host virial radius experienced a major merger of stellar mass ratio closer than 0.1 since z = 1, with a lower fraction for lower mass dwarf galaxies. Recent merger remnants are biased toward larger radial distance and more recent virial infall times, because most recent mergers occurred shortly before crossing within the virial radius of the host halo. Satellite-satellite mergers also occur within the host halo after virial infall, catalyzed by the large fraction of dwarf galaxies that fell in as part of a group. The merger fraction doubles for dwarf galaxies outside of the host virial radius, so the most distant dwarf galaxies in the Local Group are the most likely to have experienced a recent major merger. We discuss the implications of these results on observable dwarf merger remnants, their star formation histories, the gas content of mergers, and massive black holes in dwarf galaxies.

  2. Accounting for Cosmic Variance in Studies of Gravitationally Lensed High-redshift Galaxies in the Hubble Frontier Field Clusters

    OpenAIRE

    Robertson, Brant E.; Ellis, Richard S.; Dunlop, James S.; McLure, Ross J.; Stark, Dan P.; McLeod, Derek

    2014-01-01

    Strong gravitational lensing provides a powerful means for studying faint galaxies in the distant universe. By magnifying the apparent brightness of background sources, massive clusters enable the detection of galaxies fainter than the usual sensitivity limit for blank fields. However, this gain in effective sensitivity comes at the cost of a reduced survey volume and, in this Letter, we demonstrate that there is an associated increase in the cosmic variance uncertainty. As an example, we sho...

  3. Looking for Galaxies in All the Right Places: A Search for Stellar Populations in ALFALFA’s Ultra-compact High Velocity Clouds

    Science.gov (United States)

    Janesh, William; Rhode, Katherine L.; Salzer, John J.; Janowiecki, Steven; Adams, Elizabeth; Haynes, Martha P.; Giovanelli, Riccardo; Cannon, John M.

    2018-01-01

    Nearby gas-rich dwarf galaxies are excellent laboratories for investigating the baryonic feedback processes that govern star formation and galaxy evolution in galaxies at the extreme end of the mass function. Detecting and studying such objects may help resolve the well-known tension between cosmological model predictions for low-mass dark matter halos and observations. The ALFALFA neutral hydrogen (Hi) survey has detected a sample of isolated ultra-compact high-velocity Hi clouds (UCHVCs) with kinematic properties that make them likely members of the Local Volume, but that have no optical counterparts in existing optical surveys. This UCHVC sample possesses Hi properties (at 1 Mpc, Hi masses of ~105-106 M⊙, Hi diameters of ~2-3 kpc, and dynamical masses of ~107-108 M⊙) similar to other known ultra-faint dwarf galaxies like Leo T. Following the discovery of Leo P, an extremely metal-poor, gas-rich star-forming dwarf galaxy associated with an ALFALFA UCHVC, we have initiated a campaign to obtain deep optical imaging of 56 UCHVCs using the wide field-of-view, high-resolution ODI camera on the WIYN 3.5-m telescope. Here we present a brief overview of our campaign to search for resolved stellar populations associated with the UCHVCs in our optical images, and initial results from our survey.After creating a stellar catalog from the pipeline-reduced and stacked ODI g- and i-band images, we apply a color-magnitude filter tuned for old, metal-poor stellar populations to select red giant branch stars at distances between 250 kpc and 2 Mpc. The spatial distribution of the stars selected by the filter is then smoothed, and overdensities in the fields are identified. Of the 22 targets analyzed to date, seven have associated stellar populations detected at a high confidence (92% to 99.9% significance). The detected objects have a range of distances (from 350 kpc to 1.6 Mpc) and have optical properties similar to those of ultra-faint dwarf galaxies. These objects have

  4. Clustering of galaxies around gamma-ray burst sight-lines

    DEFF Research Database (Denmark)

    Sudilovsky, V.; Greiner, J.; Rau, A.

    2013-01-01

    -lines, as strong MgII tends to trace these sources. In this work, we test this expectation by calculating the two point angular correlation function of galaxies within 120'' (~470 h Kpc470h71-1Kpc at z ~ 0.4) of GRB afterglows. We compare the gamma-ray burst optical and near-infrared detector (GROND) GRB afterglow.......3. This result is contrary to the expectations from the MgII excess derived from GRB afterglow spectroscopy, although many confirmed galaxy counterparts to MgII absorbers may be too faint to detect in our sample-especially those at z > 1. We note that the addition of higher sensitivity Spitzer/IRAC or HST/WFC3......There is evidence of an overdensity of strong intervening MgII absorption line systems distributed along the lines of sight toward gamma-ray burst (GRB) afterglows relative to quasar sight-lines. If this excess is real, one should also expect an overdensity of field galaxies around GRB sight...

  5. THE ASSEMBLY OF GALAXY CLUSTERS

    International Nuclear Information System (INIS)

    Berrier, Joel C.; Stewart, Kyle R.; Bullock, James S.; Purcell, Chris W.; Barton, Elizabeth J.; Wechsler, Risa H.

    2009-01-01

    We study the formation of 53 galaxy cluster-size dark matter halos (M = 10 14.0-14.76 M sun ) formed within a pair of cosmological Λ cold dark matter N-body simulations, and track the accretion histories of cluster subhalos with masses large enough to host ∼0.3 L * galaxies. By associating subhalos with cluster galaxies, we find the majority of galaxies in clusters experience no 'preprocessing' in the group environment prior to their accretion into the cluster. On average, 70% of cluster galaxies fall into the cluster potential directly from the field, with no luminous companions in their host halos at the time of accretion; less than 12% are accreted as members of groups with five or more galaxies. Moreover, we find that cluster galaxies are significantly less likely to have experienced a merger in the recent past (∼<6 Gyr) than a field halo of the same mass. These results suggest that local cluster processes such as ram pressure stripping, galaxy harassment, or strangulation play the dominant role in explaining the difference between cluster and field populations at a fixed stellar mass, and that pre-evolution or past merging in the group environment is of secondary importance for setting cluster galaxy properties for most clusters. The accretion times for z = 0 cluster members are quite extended, with ∼20% incorporated into the cluster halo more than 7 Gyr ago and ∼20% within the last 2 Gyr. By comparing the observed morphological fractions in cluster and field populations, we estimate an approximate timescale for late-type to early-type transformation within the cluster environment to be ∼6 Gyr.

  6. Origin of faint blue stars

    International Nuclear Information System (INIS)

    Tutukov, A.; Iungelson, L.

    1987-01-01

    The origin of field faint blue stars that are placed in the HR diagram to the left of the main sequence is discussed. These include degenerate dwarfs and O and B subdwarfs. Degenerate dwarfs belong to two main populations with helium and carbon-oxygen cores. The majority of the hot subdwarfs most possibly are helium nondegenerate stars that are produced by mass exchange close binaries of moderate mass cores (3-15 solar masses). The theoretical estimates of the numbers of faint blue stars of different types brighter than certain stellar magnitudes agree with star counts based on the Palomar Green Survey. 28 references

  7. THE BRIGHTEST OF REIONIZING GALAXIES SURVEY: CONSTRAINTS ON THE BRIGHT END OF THE z {approx} 8 LUMINOSITY FUNCTION

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, L. D.; Stiavelli, M.; Pirzkal, N. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Trenti, M. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Oesch, P. A. [UCO/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States); Treu, T. [Department of Physics, University of California, Santa Barbara, CA 93106-9530 (United States); Bouwens, R. J. [Leiden Observatory, Leiden University, NL-2300 RA Leiden (Netherlands); Shull, J. M. [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado, 389-UCB, Boulder, CO 80309 (United States); Holwerda, B. W. [European Space Agency (ESTEC), Keplerlaan 1, NL-2200 AG, Noordwijk (Netherlands)

    2012-12-01

    We report the discovery of 33 Lyman-break galaxy candidates at z {approx} 8 detected in Hubble Space Telescope Wide Field Camera 3 (WFC3) imaging as part of the Brightest of Reionizing Galaxies (BoRG) pure-parallel survey. The ongoing BoRG survey currently has the largest area (274 arcmin{sup 2}) with Y {sub 098} (or Y {sub 105}), J {sub 125}, and H {sub 160} band coverage needed to search for z {approx} 8 galaxies, about three times the current CANDELS area, and slightly larger than what will be the final CANDELS wide component with Y {sub 105} data (required to select z {approx} 8 sources). Our sample of 33 relatively bright Y {sub 098}-dropout galaxies have J {sub 125}-band magnitudes between 25.5 and 27.4 mag. This is the largest sample of bright (J {sub 125} {approx}< 27.4) z {approx} 8 galaxy candidates presented to date. Combining our data set with the Hubble Ultra-Deep Field data set, we constrain the rest-frame ultraviolet galaxy luminosity function at z {approx} 8 over the widest dynamic range currently available. The combined data sets are well fitted by a Schechter function, i.e., {phi} (L) = {phi}{sub *} (L/L{sub *}){sup {alpha}} e{sup -(}L{sup /L{sub *})}, without evidence for an excess of sources at the bright end. At 68% confidence, for h = 0.7 we derive {phi}{sub *} = (4.3{sup +3.5} {sub -2.1}) Multiplication-Sign 10{sup -4} Mpc{sup -3}, M {sub *} = -20.26{sup +0.29} {sub -0.34}, and a very steep faint-end slope {alpha} = -1.98{sup +0.23} {sub -0.22}. While the best-fit parameters still have a strong degeneracy, especially between {phi}{sub *} and M {sub *}, our improved coverage at the bright end has reduced the uncertainty of the faint-end power-law slope at z {approx} 8 compared to the best previous determination at {+-}0.4. With a future expansion of the BoRG survey, combined with planned ultradeep WFC3/IR observations, it will be possible to further reduce this uncertainty and clearly demonstrate the steepening of the faint-end slope compared

  8. The Dependence of galaxy colors on luminosity and environment at z~0.4

    Energy Technology Data Exchange (ETDEWEB)

    Yee, H.K.C.; /Toronto U., Astron. Dept.; Hsieh, B.C.; /Taiwan, Natl. Central U. /Taipei, Inst. Astron. Astrophys.; Lin, Huan; /Fermilab; Gladders, M.D.; /Carnegie Inst.

    2005-08-01

    The authors analyze the B-R{sub c} colors of galaxies as functions of luminosity and local galaxy density using a large photometric redshift catalog based on the Red-Sequence Cluster Survey. They select two samples of galaxies with a magnitude limit of M{sub R{sub e}} < -18.5 and redshift ranges of 0.2 {le} z < 0.4 and 0.4 {le} x < 0.6 containing 10{sup 5} galaxies each. they model the color distributions of subsamples of galaxies and derive the red galaxy fraction and peak colors of red and blue galaxies as functions of galaxy luminosity and environment. The evolution of these relationships over the redshift range of x {approx} 0.5 to z {approx} 0.05 is analyzed in combination with published results from the Sloan Digital Sky Survey. They find that there is a strong evolution in the restframe peak color of bright blue galaxies in that they become redder with decreasing redshift, while the colors of faint blue galaxies remain approximately constant. This effect supports the ''downsizing'' scenario of star formation in galaxies. While the general dependence of the galaxy color distributions on the environment is small, they find that the change of red galaxy fraction with epoch is a function of the local galaxy density, suggesting that the downsizing effect may operate with different timescales in regions of different galaxy densities.

  9. HUBBLE SPACE TELESCOPE WFC3 EARLY RELEASE SCIENCE: EMISSION-LINE GALAXIES FROM INFRARED GRISM OBSERVATIONS

    International Nuclear Information System (INIS)

    Straughn, Amber N.; Gardner, Jonathan P.; Kuntschner, Harald; Kuemmel, Martin; Walsh, Jeremy R.; Cohen, Seth H.; Windhorst, Rogier A.; Malhotra, Sangeeta; Rhoads, James; O'Connell, Robert W.; Pirzkal, Norbert; Bond, Howard E.; Meurer, Gerhardt; McCarthy, Patrick J.; Hathi, Nimish P.; Balick, Bruce; Calzetti, Daniela; Disney, Michael J.; Dopita, Michael A.; Frogel, Jay A.

    2011-01-01

    We present grism spectra of emission-line galaxies (ELGs) from 0.6 to 1.6 μm from the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope. These new infrared grism data augment previous optical Advanced Camera for Surveys G800L 0.6-0.95 μm grism data in GOODS-South from the PEARS program, extending the wavelength coverage well past the G800L red cutoff. The Early Release Science (ERS) grism field was observed at a depth of two orbits per grism, yielding spectra of hundreds of faint objects, a subset of which is presented here. ELGs are studied via the Hα, [O III], and [O II] emission lines detected in the redshift ranges 0.2 ∼ B(F098M) ≅ 25 mag. Seventeen GOODS-South galaxies that previously only had photometric redshifts now have new grism-spectroscopic redshifts, in some cases with large corrections to the photometric redshifts (Δz ≅ 0.3-0.5). Additionally, one galaxy had no previously measured redshift but now has a secure grism-spectroscopic redshift, for a total of 18 new GOODS-South spectroscopic redshifts. The faintest source in our sample has a magnitude m AB(F098M) = 26.9 mag. The ERS grism data also reflect the expected trend of lower specific star formation rates for the highest mass galaxies in the sample as a function of redshift, consistent with downsizing and discovered previously from large surveys. These results demonstrate the remarkable efficiency and capability of the WFC3 NIR grisms for measuring galaxy properties to faint magnitudes and redshifts to z ∼> 2.

  10. A possible formation scenario for dwarf spheroidal galaxies - III. Adding star formation histories to the fiducial model

    Science.gov (United States)

    Alarcón Jara, A. G.; Fellhauer, M.; Matus Carrillo, D. R.; Assmann, P.; Urrutia Zapata, F.; Hazeldine, J.; Aravena, C. A.

    2018-02-01

    Dwarf spheroidal galaxies are regarded as the basic building blocks in the formation of larger galaxies and are the most dark matter dominated systems in the Universe, known so far. There are several models that attempt to explain their formation and evolution, but they have problems modelling the formation of isolated dwarf spheroidal galaxies. Here, we will explain a possible formation scenario in which star clusters form inside the dark matter halo of a dwarf spheroidal galaxy. These star clusters suffer from low star formation efficiency and dissolve while orbiting inside the dark matter halo. Thereby, they build the faint luminous components that we observe in dwarf spheroidal galaxies. In this paper, we study this model by adding different star formation histories to the simulations and compare the results with our previous work and observational data to show that we can explain the formation of dwarf spheroidal galaxies.

  11. HIGH-RESOLUTION SPECTROSCOPY OF EXTREMELY METAL-POOR STARS IN THE LEAST EVOLVED GALAXIES: BOÖTES II

    International Nuclear Information System (INIS)

    Ji, Alexander P.; Frebel, Anna; Simon, Joshua D.; Geha, Marla

    2016-01-01

    We present high-resolution Magellan/MIKE spectra of the four brightest confirmed red giant stars in the ultra-faint dwarf galaxy Boötes II (Boo II). These stars all inhabit the metal-poor tail of the Boo II metallicity distribution function. The chemical abundance pattern of all detectable elements in these stars is consistent with that of the Galactic halo. However, all four stars have undetectable amounts of neutron-capture elements Sr and Ba, with upper limits comparable to the lowest ever detected in the halo or in other dwarf galaxies. One star exhibits significant radial velocity variations over time, suggesting it to be in a binary system. Its variable velocity has likely increased past determinations of the Boo II velocity dispersion. Our four stars span a limited metallicity range, but their enhanced α-abundances and low neutron-capture abundances are consistent with the interpretation that Boo II has been enriched by very few generations of stars. The chemical abundance pattern in Boo II confirms the emerging trend that the faintest dwarf galaxies have neutron-capture abundances distinct from the halo, suggesting the dominant source of neutron-capture elements in halo stars may be different than in ultra-faint dwarfs

  12. Stacked Denoising Autoencoders Applied to Star/Galaxy Classification

    Science.gov (United States)

    Qin, Hao-ran; Lin, Ji-ming; Wang, Jun-yi

    2017-04-01

    In recent years, the deep learning algorithm, with the characteristics of strong adaptability, high accuracy, and structural complexity, has become more and more popular, but it has not yet been used in astronomy. In order to solve the problem that the star/galaxy classification accuracy is high for the bright source set, but low for the faint source set of the Sloan Digital Sky Survey (SDSS) data, we introduced the new deep learning algorithm, namely the SDA (stacked denoising autoencoder) neural network and the dropout fine-tuning technique, which can greatly improve the robustness and antinoise performance. We randomly selected respectively the bright source sets and faint source sets from the SDSS DR12 and DR7 data with spectroscopic measurements, and made preprocessing on them. Then, we randomly selected respectively the training sets and testing sets without replacement from the bright source sets and faint source sets. At last, using these training sets we made the training to obtain the SDA models of the bright sources and faint sources in the SDSS DR7 and DR12, respectively. We compared the test result of the SDA model on the DR12 testing set with the test results of the Library for Support Vector Machines (LibSVM), J48 decision tree, Logistic Model Tree (LMT), Support Vector Machine (SVM), Logistic Regression, and Decision Stump algorithm, and compared the test result of the SDA model on the DR7 testing set with the test results of six kinds of decision trees. The experiments show that the SDA has a better classification accuracy than other machine learning algorithms for the faint source sets of DR7 and DR12. Especially, when the completeness function is used as the evaluation index, compared with the decision tree algorithms, the correctness rate of SDA has improved about 15% for the faint source set of SDSS-DR7.

  13. Satellite dwarf galaxies in a hierarchical universe: the prevalence of dwarf-dwarf major mergers

    Energy Technology Data Exchange (ETDEWEB)

    Deason, Alis [Department of Astronomy and Astrophysics, University of California Santa Cruz, Santa Cruz, CA (United States); Wetzel, Andrew [TAPIR, California Institute of Technology, Pasadena, CA (United States); Garrison-Kimmel, Shea, E-mail: alis@ucolick.org [Center for Cosmology, Department of Physics and Astronomy, University of California, Irvine, CA (United States)

    2014-10-20

    Mergers are a common phenomenon in hierarchical structure formation, especially for massive galaxies and clusters, but their importance for dwarf galaxies in the Local Group remains poorly understood. We investigate the frequency of major mergers between dwarf galaxies in the Local Group using the ELVIS suite of cosmological zoom-in dissipationless simulations of Milky Way- and M31-like host halos. We find that ∼10% of satellite dwarf galaxies with M {sub star} > 10{sup 6} M {sub ☉} that are within the host virial radius experienced a major merger of stellar mass ratio closer than 0.1 since z = 1, with a lower fraction for lower mass dwarf galaxies. Recent merger remnants are biased toward larger radial distance and more recent virial infall times, because most recent mergers occurred shortly before crossing within the virial radius of the host halo. Satellite-satellite mergers also occur within the host halo after virial infall, catalyzed by the large fraction of dwarf galaxies that fell in as part of a group. The merger fraction doubles for dwarf galaxies outside of the host virial radius, so the most distant dwarf galaxies in the Local Group are the most likely to have experienced a recent major merger. We discuss the implications of these results on observable dwarf merger remnants, their star formation histories, the gas content of mergers, and massive black holes in dwarf galaxies.

  14. New observations of z ∼ 7 galaxies: evidence for a patchy reionization

    International Nuclear Information System (INIS)

    Pentericci, L.; Fontana, A.; Castellano, M.; Grazian, A.; Galametz, A.; Giallongo, E.; Paris, D.; Santini, P.; Vanzella, E.; Treu, T.; Mesinger, A.; Dijkstra, M.; Bradač, M.; Conselice, C.; Cristiani, S.; Dunlop, J.; McLure, R.; Giavalisco, M.; Koekemoer, A.; Maiolino, R.

    2014-01-01

    We present new results from our search for z ∼ 7 galaxies from deep spectroscopic observations of candidate z dropouts in the CANDELS fields. Despite the extremely low flux limits achieved by our sensitive observations, only two galaxies have robust redshift identifications, one from its Lyα emission line at z = 6.65, the other from its Lyman break, i.e., the continuum discontinuity at the Lyα wavelength consistent with a redshift of 6.42 but with no emission line. In addition, for 23 galaxies we present deep limits in the Lyα equivalent width derived from the nondetections in ultradeep observations. Using this new data as well as previous samples, we assemble a total of 68 candidate z ∼ 7 galaxies with deep spectroscopic observations, of which 12 have a line detection. With this much enlarged sample we can place solid constraints on the declining fraction of Lyα emission in z ∼ 7 Lyman-break galaxies compared to z ∼ 6, both for bright and faint galaxies. Applying a simple analytical model, we show that the present data favor a patchy reionization process rather than a smooth one.

  15. SUBMILLIMETER FOLLOW-UP OF WISE-SELECTED HYPERLUMINOUS GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Wu Jingwen; Eisenhardt, Peter R. M.; Stern, Daniel; Assef, Roberto [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Tsai, Chao-Wei; Cutri, Roc; Griffith, Roger; Jarrett, Thomas [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Sayers, Jack; Bridge, Carrie [Division of Physics, Math and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Benford, Dominic [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Blain, Andrew [Department of Physics and Astronomy, University of Leicester, LE1 7RH Leicester (United Kingdom); Petty, Sara; Lake, Sean [Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA 90095 (United States); Bussmann, Shane [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS78, Cambridge, MA 02138 (United States); Comerford, Julia M.; Evans, Neal J. II [Department of Astronomy, University of Texas, Austin, TX 78731 (United States); Lonsdale, Carol [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Rho, Jeonghee [SETI Institute, 189 BERNARDO Avenue, Mountain View, CA 94043 (United States); Stanford, S. Adam, E-mail: jingwen.wu@jpl.nasa.gov [Department of Physics, University of California Davis, One Shields Avenue, Davis, CA 95616 (United States); and others

    2012-09-01

    We have used the Caltech Submillimeter Observatory (CSO) to follow-up a sample of Wide-field Infrared Survey Explorer (WISE) selected, hyperluminous galaxies, the so-called W1W2-dropout galaxies. This is a rare ({approx}1000 all-sky) population of galaxies at high redshift (peaks at z = 2-3), which are faint or undetected by WISE at 3.4 and 4.6 {mu}m, yet are clearly detected at 12 and 22 {mu}m. The optical spectra of most of these galaxies show significant active galactic nucleus activity. We observed 14 high-redshift (z > 1.7) W1W2-dropout galaxies with SHARC-II at 350-850 {mu}m, with nine detections, and observed 18 with Bolocam at 1.1 mm, with five detections. Warm Spitzer follow-up of 25 targets at 3.6 and 4.5 {mu}m, as well as optical spectra of 12 targets, are also presented in the paper. Combining WISE data with observations from warm Spitzer and CSO, we constructed their mid-IR to millimeter spectral energy distributions (SEDs). These SEDs have a consistent shape, showing significantly higher mid-IR to submillimeter ratios than other galaxy templates, suggesting a hotter dust temperature. We estimate their dust temperatures to be 60-120 K using a single-temperature model. Their infrared luminosities are well over 10{sup 13} L{sub Sun }. These SEDs are not well fitted with existing galaxy templates, suggesting they are a new population with very high luminosity and hot dust. They are likely among the most luminous galaxies in the universe. We argue that they are extreme cases of luminous, hot dust-obscured galaxies (DOGs), possibly representing a short evolutionary phase during galaxy merging and evolution. A better understanding of their long-wavelength properties needs ALMA as well as Herschel data.

  16. SUBMILLIMETER FOLLOW-UP OF WISE-SELECTED HYPERLUMINOUS GALAXIES

    International Nuclear Information System (INIS)

    Wu Jingwen; Eisenhardt, Peter R. M.; Stern, Daniel; Assef, Roberto; Tsai, Chao-Wei; Cutri, Roc; Griffith, Roger; Jarrett, Thomas; Sayers, Jack; Bridge, Carrie; Benford, Dominic; Blain, Andrew; Petty, Sara; Lake, Sean; Bussmann, Shane; Comerford, Julia M.; Evans, Neal J. II; Lonsdale, Carol; Rho, Jeonghee; Stanford, S. Adam

    2012-01-01

    We have used the Caltech Submillimeter Observatory (CSO) to follow-up a sample of Wide-field Infrared Survey Explorer (WISE) selected, hyperluminous galaxies, the so-called W1W2-dropout galaxies. This is a rare (∼1000 all-sky) population of galaxies at high redshift (peaks at z = 2-3), which are faint or undetected by WISE at 3.4 and 4.6 μm, yet are clearly detected at 12 and 22 μm. The optical spectra of most of these galaxies show significant active galactic nucleus activity. We observed 14 high-redshift (z > 1.7) W1W2-dropout galaxies with SHARC-II at 350-850 μm, with nine detections, and observed 18 with Bolocam at 1.1 mm, with five detections. Warm Spitzer follow-up of 25 targets at 3.6 and 4.5 μm, as well as optical spectra of 12 targets, are also presented in the paper. Combining WISE data with observations from warm Spitzer and CSO, we constructed their mid-IR to millimeter spectral energy distributions (SEDs). These SEDs have a consistent shape, showing significantly higher mid-IR to submillimeter ratios than other galaxy templates, suggesting a hotter dust temperature. We estimate their dust temperatures to be 60-120 K using a single-temperature model. Their infrared luminosities are well over 10 13 L ☉ . These SEDs are not well fitted with existing galaxy templates, suggesting they are a new population with very high luminosity and hot dust. They are likely among the most luminous galaxies in the universe. We argue that they are extreme cases of luminous, hot dust-obscured galaxies (DOGs), possibly representing a short evolutionary phase during galaxy merging and evolution. A better understanding of their long-wavelength properties needs ALMA as well as Herschel data.

  17. Submillimeter Follow-up of Wise-Selected Hyperluminous Galaxies

    Science.gov (United States)

    Wu, Jingwen; Tsai, Chao-Wei; Sayers, Jack; Benford, Dominic; Bridge, Carrie; Blain, Andrew; Eisenhardt, Peter R. M.; Stern, Daniel; Petty, Sara; Assef, Roberto; hide

    2013-01-01

    We have used the Caltech Submillimeter Observatory (CSO) to follow-up a sample of Wide-field Infrared Survey Explorer (WISE) selected, hyperluminous galaxies, the so-called W1W2-dropout galaxies. This is a rare (approximately 1000 all-sky) population of galaxies at high redshift (peaks at zeta = 2-3), which are faint or undetected by WISE at 3.4 and 4.6 micrometers, yet are clearly detected at 12 and 22 micrometers. The optical spectra of most of these galaxies show significant active galactic nucleus activity. We observed 14 high-redshift (zeta greater than 1.7) W1W2-dropout galaxies with SHARC-II at 350-850 micrometers, with nine detections, and observed 18 with Bolocam at 1.1 mm, with five detections. Warm Spitzer follow-up of 25 targets at 3.6 and 4.5 micrometers, as well as optical spectra of 12 targets, are also presented in the paper. Combining WISE data with observations from warm Spitzer and CSO, we constructed their mid-IR to millimeter spectral energy distributions (SEDs). These SEDs have a consistent shape, showing significantly higher mid-IR to submillimeter ratios than other galaxy templates, suggesting a hotter dust temperature.We estimate their dust temperatures to be 60-120 K using a single-temperature model. Their infrared luminosities are well over 10(exp 13) solar luminosity. These SEDs are not well fitted with existing galaxy templates, suggesting they are a new population with very high luminosity and hot dust. They are likely among the most luminous galaxies in the universe.We argue that they are extreme cases of luminous, hot dust-obscured galaxies (DOGs), possibly representing a short evolutionary phase during galaxy merging and evolution. A better understanding of their long-wavelength properties needs ALMA as well as Herschel data.

  18. Morphological Evolution in High-Redshift Radio Galaxies and the Formation of Giant Elliptical Galaxies

    International Nuclear Information System (INIS)

    Breugel, W.J. van; Stanford, S.A.; Spinrad, H.; Stern, D.; Graham, J.R.

    1998-01-01

    We present deep near-infrared images of high-redshift radio galaxies (HzRGs) obtained with the near-infrared camera (NIRC) on the Keck I telescope. In most cases, the near-IR data sample rest wavelengths that are free of contamination from strong emission lines and at λ rest > 4000 Angstrom, where older stellar populations, if present, might dominate the observed flux. At z > 3, the rest-frame optical morphologies generally have faint, large-scale (∼50 kpc) emission surrounding multiple, ∼10 kpc components. The brightest of these components are often aligned with the radio structures. These morphologies change dramatically at 2 rest ) ∼ -20 to -22] of the individual components in the z > 3 HzRGs are similar to the total sizes and luminosities of normal radio-quiet star forming galaxies at z = 3 - 4. For objects where such data are available, our observations show that the line-free, near-IR colors of the z > 3 galaxies are very blue, consistent with models in which recent star formation dominates the observed light. Direct spectroscopic evidence for massive star formation in one of the z > 3 HzRGs exists (4C 41.17). Our results suggest that the z > 3 HzRGs evolve into much more massive systems than the radio-quiet galaxies and that they are qualitatively consistent with models in which massive galaxies form in hierarchical fashion through the merging of smaller star-forming systems. The presence of relatively luminous subcomponents along the radio axes of the z > 3 galaxies suggests a causal connection with the AGN. We compare the radio and near-IR sizes as a function of redshift and suggest that this parameter may be a measure of the degree to which the radio sources have induced star formation in the parent objects. We also discuss the Hubble diagram of radio galaxies, the possibility of a radio power dependence in the K-z relation, and its implications for radio galaxy formation. Finally, we present for the first time in published format basic radio and

  19. Modeling the distribution of Mg II absorbers around galaxies using background galaxies and quasars

    Energy Technology Data Exchange (ETDEWEB)

    Bordoloi, R.; Lilly, S. J. [Institute for Astronomy, ETH Zürich, Wolfgang-Pauli-Strasse 27, 8093 Zürich (Switzerland); Kacprzak, G. G. [Swinburne University of Technology, Victoria 3122 (Australia); Churchill, C. W., E-mail: rongmonb@phys.ethz.ch [New Mexico State University, Las Cruces, NM 88003 (United States)

    2014-04-01

    We present joint constraints on the distribution of Mg II absorption around high redshift galaxies obtained by combining two orthogonal probes, the integrated Mg II absorption seen in stacked background galaxy spectra and the distribution of parent galaxies of individual strong Mg II systems as seen in the spectra of background quasars. We present a suite of models that can be used to predict, for different two- and three-dimensional distributions, how the projected Mg II absorption will depend on a galaxy's apparent inclination, the impact parameter b and the azimuthal angle between the projected vector to the line of sight and the projected minor axis. In general, we find that variations in the absorption strength with azimuthal angles provide much stronger constraints on the intrinsic geometry of the Mg II absorption than the dependence on the inclination of the galaxies. In addition to the clear azimuthal dependence in the integrated Mg II absorption that we reported earlier in Bordoloi et al., we show that strong equivalent width Mg II absorbers (W{sub r} (2796) ≥ 0.3 Å) are also asymmetrically distributed in azimuth around their host galaxies: 72% of the absorbers in Kacprzak et al., and 100% of the close-in absorbers within 35 kpc of the center of their host galaxies, are located within 50° of the host galaxy's projected semi minor axis. It is shown that either composite models consisting of a simple bipolar component plus a spherical or disk component, or a single highly softened bipolar distribution, can well represent the azimuthal dependencies observed in both the stacked spectrum and quasar absorption-line data sets within 40 kpc. Simultaneously fitting both data sets, we find that in the composite model the bipolar cone has an opening angle of ∼100° (i.e., confined to within 50° of the disk axis) and contains about two-thirds of the total Mg II absorption in the system. The single softened cone model has an exponential fall off with

  20. New calibration and some predictions of the scaling relations between the mass of supermassive black holes and the properties of the host galaxies

    Science.gov (United States)

    Benedetto, E.; Fallarino, M. T.; Feoli, A.

    2013-10-01

    We present a new determination of the slope and normalization of three popular scaling laws between the mass of supermassive black holes and stellar velocity dispersion, bulge mass and kinetic energy of the host galaxies. To this aim we have collected 72 objects taken from three different samples and we have used three fitting methods applying the statistical analysis also to the subset of early type galaxies and spirals separately. We find that the relation involving kinetic energy has a slightly better χ2 and linear correlation coefficient than the other two laws. Furthermore, its Hertzsprung-Russell-like behavior is confirmed by the location of young and old galaxies in two different parts of the diagram. A test of its predictive power with the two giant galaxies NGC 3842 and NGC 4889 shows that the mass of the black hole inferred using the kinetic energy law is the closest to the experimental value. The subset of early type galaxies satisfies the theoretical models regarding the black hole mass vs stellar velocity dispersion relation, better than the full sample. Tables 1 and 7 are available in electronic form at http://www.aanda.org

  1. Infrared-faint radio sources remain undetected at far-infrared wavelengths. Deep photometric observations using the Herschel Space Observatory

    Science.gov (United States)

    Herzog, A.; Norris, R. P.; Middelberg, E.; Spitler, L. R.; Leipski, C.; Parker, Q. A.

    2015-08-01

    Context. Showing 1.4 GHz flux densities in the range of a few to a few tens of mJy, infrared-faint radio sources (IFRS) are a type of galaxy characterised by faint or absent near-infrared counterparts and consequently extreme radio-to-infrared flux density ratios up to several thousand. Recent studies showed that IFRS are radio-loud active galactic nuclei (AGNs) at redshifts ≳2, potentially linked to high-redshift radio galaxies (HzRGs). Aims: This work explores the far-infrared emission of IFRS, providing crucial information on the star forming and AGN activity of IFRS. Furthermore, the data enable examining the putative relationship between IFRS and HzRGs and testing whether IFRS are more distant or fainter siblings of these massive galaxies. Methods: A sample of six IFRS was observed with the Herschel Space Observatory between 100 μm and 500 μm. Using these results, we constrained the nature of IFRS by modelling their broad-band spectral energy distribution (SED). Furthermore, we set an upper limit on their infrared SED and decomposed their emission into contributions from an AGN and from star forming activity. Results: All six observed IFRS were undetected in all five Herschel far-infrared channels (stacking limits: σ = 0.74 mJy at 100 μm, σ = 3.45 mJy at 500 μm). Based on our SED modelling, we ruled out the following objects to explain the photometric characteristics of IFRS: (a) known radio-loud quasars and compact steep-spectrum sources at any redshift; (b) starburst galaxies with and without an AGN and Seyfert galaxies at any redshift, even if the templates were modified; and (c) known HzRGs at z ≲ 10.5. We find that the IFRS analysed in this work can only be explained by objects that fulfil the selection criteria of HzRGs. More precisely, IFRS could be (a) known HzRGs at very high redshifts (z ≳ 10.5); (b) low-luminosity siblings of HzRGs with additional dust obscuration at lower redshifts; (c) scaled or unscaled versions of Cygnus A at any

  2. Kinematics of the SN Refsdal host revealed by MUSE: a regularly rotating spiral galaxy at z ≃ 1.5

    Science.gov (United States)

    Di Teodoro, E. M.; Grillo, C.; Fraternali, F.; Gobat, R.; Karman, W.; Mercurio, A.; Rosati, P.; Balestra, I.; Caminha, G. B.; Caputi, K. I.; Lombardi, M.; Suyu, S. H.; Treu, T.; Vanzella, E.

    2018-05-01

    We use Multi Unit Spectroscopic Explorer (MUSE) observations of the galaxy cluster MACS J1149.5+2223 to explore the kinematics of the grand-design spiral galaxy (Sp1149) hosting the supernova `Refsdal'. Sp1149 lies at z ≃ 1.49, has a stellar mass M* ≃ 5 × 109 M⊙, has a star formation rate (SFR) ˜eq 1-6 M_{⊙} yr^{-1}, and represents a likely progenitor of a Milky Way-like galaxy. All the four multiple images of Sp1149 in our data show strong [O II}-line emissions pointing to a clear rotation pattern. We take advantage of the gravitational lensing magnification effect (≃4×) on the [O II} emission of the least distorted image to fit three-dimensional kinematic models to the MUSE data cube and derive the rotation curve and the velocity dispersion profile of Sp1149. We find that the rotation curve steeply rises, peaks at R ≃ 1 kpc, and then (initially) declines and flattens to an average {V_flat}= 128^{+29}_{-19} km s-1. The shape of the rotation curve is well determined, but the actual value of Vflat is quite uncertain because of the nearly face-on configuration of the galaxy. The intrinsic velocity dispersion due to gas turbulence is almost constant across the entire disc with an average of 27 ± 5 km s-1. This value is consistent with z = 0 measurements in the ionized gas component and a factor of 2-4 lower than other estimates in different galaxies at similar redshifts. The average stellar-to-total mass fraction is of the order of one-fifth. Our kinematic analysis returns the picture of a regular star-forming, mildly turbulent, rotation-dominated (V/σ ≃ 5) spiral galaxy in a 4-Gyr-old Universe.

  3. CANDELS: THE EVOLUTION OF GALAXY REST-FRAME ULTRAVIOLET COLORS FROM z = 8 TO 4

    International Nuclear Information System (INIS)

    Finkelstein, Steven L.; Papovich, Casey; Salmon, Brett; Bassett, Robert; Finlator, Kristian; Dickinson, Mark; Ferguson, Henry C.; Koekemoer, Anton M.; Grogin, Norman A.; Giavalisco, Mauro; Reddy, Naveen A.; Mobasher, Bahram; Conselice, Christopher J.; Dunlop, James S.; McLure, Ross J.; Faber, S. M.; Kocevski, Dale D.; Lai, Kamson; Hathi, Nimish P.; Lee, Kyoung-Soo

    2012-01-01

    We study the evolution of galaxy rest-frame ultraviolet (UV) colors in the epoch 4 ∼ 3.5, including 113 at z ≅ 7-8. We fit the observed spectral energy distribution to a suite of synthetic stellar population models and measure the value of the UV spectral slope (β) from the best-fit model spectrum. We run simulations to show that this measurement technique results in a smaller scatter on β than other methods, as well as a reduced number of galaxies with catastrophically incorrect β measurements (i.e., Δβ > 1). We find that the median value of β evolves significantly from –1.82 +0.00 –0.04 at z = 4 to –2.37 +0.26 –0.06 at z = 7. Additionally, we find that faint galaxies at z = 7 have β –2.68 +0.39 –0.24 (∼ –2.4 after correcting for observational bias); this is redder than previous claims in the literature and does not require 'exotic' stellar populations (e.g., very low metallicities or top-heavy initial mass functions) to explain their colors. This evolution can be explained by an increase in dust extinction, from low amounts at z = 7 to A V ∼ 0.5 mag at z = 4. The timescale for this increase is consistent with low-mass asymptotic giant branch stars forming the bulk of the dust. We find no significant ( UV when measuring M UV at a consistent rest-frame wavelength of 1500 Å. This is particularly true at bright magnitudes, though our results do show evidence for a weak correlation at faint magnitudes when galaxies in the HUDF are considered separately, hinting that dynamic range in sample luminosities may play a role. We do find a strong correlation between β and the stellar mass at all redshifts, in that more massive galaxies exhibit redder colors. The most massive galaxies in our sample have similarly red colors at each redshift, implying that dust can build up quickly in massive galaxies and that feedback is likely removing dust from low-mass galaxies at z ≥ 7. Thus, the stellar-mass—metallicity relation, previously observed up

  4. Mapping the Supernova-Rich Fireworks Galaxy NGC 6946

    Science.gov (United States)

    Patton, Locke; Levesque, Emily

    2018-01-01

    Supernovae (SNe) are the spectacularly violent deaths of evolved young massive stars, which expel a shock wave into the intergalactic medium that in turn can spark star formation and disperse heavy elements into their host galaxy. While a SN event can be classified by its spectral signature, determining the nature of a SN progenitor depends upon chance photometry taken prior to the event. By turning to the study of SN host environments and their surrounding interstellar medium within the unique and rare population of galaxies that have hosted three or more SN events within the last century, we are granted the opportunity to study the locations and environmental properties of stellar populations prone to supernova progenitor production. Using moderate-resolution optical slit spectra taken with the Apache Point Observatory 3.5m DIS spectrograph, our goal is to map metallicity, ionization parameter, and star formation rates using emission line diagnostic ratios across each SN-rich galaxy. Dubbed the “Fireworks Galaxy” at a distance of 5.6 ± 1.5 Mpc, NGC 6946 is of particular interest as it has uniquely produced ten core-collapse supernovae (CCSNe) and several other massive star transients within the last century. We present spatially-resolved metallicity and star formation rate (SFR) maps of NGC 6946, tracing fifty-five slit orientations which span the face of the galaxy and cover all CCSN host sites. Future work will include both stellar population synthesis modelling to determine stellar populations, ages, and SFR histories in NGC 6946 and a further expansion of this analysis to the other SN-rich host galaxies in our sample.

  5. LINER galaxy properties and the local environment

    Science.gov (United States)

    Coldwell, Georgina V.; Alonso, Sol; Duplancic, Fernanda; Mesa, Valeria

    2018-05-01

    We analyse the properties of a sample of 5560 low-ionization nuclear emission-line region (LINER) galaxies selected from SDSS-DR12 at low red shift, for a complete range of local density environments. The host LINER galaxies were studied and compared with a well-defined control sample of 5553 non-LINER galaxies matched in red shift, luminosity, morphology and local density. By studying the distributions of galaxy colours and the stellar age population, we find that LINERs are redder and older than the control sample over a wide range of densities. In addition, LINERs are older than the control sample, at a given galaxy colour, indicating that some external process could have accelerated the evolution of the stellar population. The analysis of the host properties shows that the control sample exhibits a strong relation between colours, ages and the local density, while more than 90 per cent of the LINERs are redder and older than the mean values, independently of the neighbourhood density. Furthermore, a detailed study in three local density ranges shows that, while control sample galaxies are redder and older as a function of stellar mass and density, LINER galaxies mismatch the known morphology-density relation of galaxies without low-ionization features. The results support the contribution of hot and old stars to the low-ionization emission although the contribution of nuclear activity is not discarded.

  6. HOW THE FIRST STARS SHAPED THE FAINTEST GAS-DOMINATED DWARF GALAXIES

    International Nuclear Information System (INIS)

    Verbeke, R.; Vandenbroucke, B.; Rijcke, S. De

    2015-01-01

    Low-mass dwarf galaxies are very sensitive test-beds for theories of cosmic structure formation since their weak gravitational fields allow the effects of the relevant physical processes to clearly stand out. Up to now, no unified account has existed of the sometimes seemingly conflicting properties of the faintest isolated dwarfs in and around the Local Group, such as Leo T and the recently discovered Leo P and Pisces A systems. Using new numerical simulations, we show that this serious challenge to our understanding of galaxy formation can be effectively resolved by taking into account the regulating influence of the ultraviolet radiation of the first population of stars on a dwarf’s star formation rate while otherwise staying within the standard cosmological paradigm for structure formation. These simulations produce faint, gas-dominated, star-forming dwarf galaxies that lie on the baryonic Tully–Fisher relation and that successfully reproduce a broad range of chemical, kinematical, and structural observables of real late-type dwarf galaxies. Furthermore, we stress the importance of obtaining properties of simulated galaxies in a manner as close as possible to the typically employed observational techniques

  7. HOW THE FIRST STARS SHAPED THE FAINTEST GAS-DOMINATED DWARF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Verbeke, R.; Vandenbroucke, B.; Rijcke, S. De, E-mail: robbert.verbeke@UGent.be [Sterrenkundig Observatorium, Ghent University, Krijgslaan 281, S9, 9000 Gent (Belgium)

    2015-12-20

    Low-mass dwarf galaxies are very sensitive test-beds for theories of cosmic structure formation since their weak gravitational fields allow the effects of the relevant physical processes to clearly stand out. Up to now, no unified account has existed of the sometimes seemingly conflicting properties of the faintest isolated dwarfs in and around the Local Group, such as Leo T and the recently discovered Leo P and Pisces A systems. Using new numerical simulations, we show that this serious challenge to our understanding of galaxy formation can be effectively resolved by taking into account the regulating influence of the ultraviolet radiation of the first population of stars on a dwarf’s star formation rate while otherwise staying within the standard cosmological paradigm for structure formation. These simulations produce faint, gas-dominated, star-forming dwarf galaxies that lie on the baryonic Tully–Fisher relation and that successfully reproduce a broad range of chemical, kinematical, and structural observables of real late-type dwarf galaxies. Furthermore, we stress the importance of obtaining properties of simulated galaxies in a manner as close as possible to the typically employed observational techniques.

  8. EVIDENCE FOR A WIDE RANGE OF ULTRAVIOLET OBSCURATION IN z {approx} 2 DUSTY GALAXIES FROM THE GOODS-HERSCHEL SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Penner, Kyle [Department of Astronomy, University of Arizona, Tucson, AZ 85721 (United States); Dickinson, Mark; Dey, Arjun; Kartaltepe, Jeyhan [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Pope, Alexandra [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Magnelli, Benjamin [Max Planck Institut fuer Extraterrestrische Physik, Postfach 1312, D-85741 Garching (Germany); Pannella, Maurilio; Aussel, Herve; Daddi, Emanuele; Elbaz, David [Laboratoire AIM Paris-Saclay, CEA/DSM/Irfu-CNRS-Universite Paris Diderot, CEA-Saclay, pt courrier 131, F-91191 Gif-sur-Yvette (France); Altieri, Bruno; Coia, Daniela [Herschel Science Center, European Space Astronomy Center, Villanueva de la Canada, E-28691 Madrid (Spain); Buat, Veronique [Laboratoire d' Astrophysique de Marseille, OAMP, Universite Aix-marseille, CNRS, 38 rue Frederic Joliot-Curie, F-13388 Marseille Cedex 13 (France); Bussmann, Shane; Hwang, Ho Seong [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Charmandaris, Vassilis [Department of Physics and Institute of Theoretical and Computational Physics, University of Crete, GR-71003 Heraklion (Greece); Dannerbauer, Helmut [Institut fuer Astronomie, Universitaet Wien, Tuerkenschanzstrasse 17, A-1180 Vienna (Austria); Lin Lihwai [Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 106, Taiwan (China); Magdis, Georgios [Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Morrison, Glenn, E-mail: kpenner@as.arizona.edu [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States); and others

    2012-11-01

    Dusty galaxies at z {approx} 2 span a wide range of relative brightness between rest-frame mid-infrared (8 {mu}m) and ultraviolet wavelengths. We attempt to determine the physical mechanism responsible for this diversity. Dust-obscured galaxies (DOGs), which have rest-frame mid-IR to UV flux density ratios {approx}> 1000, might be abnormally bright in the mid-IR, perhaps due to prominent emission from active galactic nuclei and/or polycyclic aromatic hydrocarbons, or abnormally faint in the UV. We use far-infrared data from the GOODS-Herschel survey to show that most DOGs with 10{sup 12} L {sub Sun} {approx}< L {sub IR} {approx}< 10{sup 13} L {sub Sun} are not abnormally bright in the mid-IR when compared to other dusty galaxies with similar IR (8-1000 {mu}m) luminosities. We observe a relation between the median IR to UV luminosity ratios and the median UV continuum power-law indices for these galaxies, and we find that only 24% have specific star formation rates that indicate the dominance of compact star-forming regions. This circumstantial evidence supports the idea that the UV- and IR-emitting regions in these galaxies are spatially coincident, which implies a connection between the abnormal UV faintness of DOGs and dust obscuration. We conclude that the range in rest-frame mid-IR to UV flux density ratios spanned by dusty galaxies at z {approx} 2 is due to differing amounts of UV obscuration. Of galaxies with these IR luminosities, DOGs are the most obscured. We attribute differences in UV obscuration to either (1) differences in the degree of alignment between the spatial distributions of dust and massive stars or (2) differences in the total dust content.

  9. POX 4 and Tol 35: Two Peculiar Wolf-Rayet Dwarf Galaxies

    Science.gov (United States)

    Méndez, David I.; Esteban, César

    1999-12-01

    We present results of narrowband (Hα and adjacent continuum) and broadband (U, B, and V) optical CCD imaging together with high-resolution Hα spectroscopy of the blue compact Wolf-Rayet dwarf galaxies POX 4 and Tol 35. POX 4 has a fainter, irregular, and diffuse companion located 20.5" (4.7 kpc) along the minor axis of the galaxy, which is visible also in the Hα emission. The difference in recession velocity between the galaxy and the companion is about 130 km s-1. The observational results lead us to propose that POX 4 could be interpreted as a low-mass ring galaxy, produced by a head-on intrusion of the fainter companion. Regarding the other object, a spectrum taken along the major axis of Tol 35 shows the coexistence of systems of motion with a velocity difference of about 50 km s-1. Moreover, the deep continuum-subtracted Hα image of the galaxy shows very faint features that resemble the beginning of crossed tidal tails or gaseous filaments powered by the mechanical action of the young stellar population. In this sense, Tol 35 could be interpreted either as an object in an intermediate-stage merging process between two gas-rich dwarf galaxies or as an object suffering the effect of a galactic wind.

  10. CEPHEID VARIABLES IN THE MASER-HOST GALAXY NGC 4258

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Samantha L.; Macri, Lucas M., E-mail: lmacri@tamu.edu [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States)

    2015-06-15

    We present results of a ground-based survey for Cepheid variables in NGC 4258. This galaxy plays a key role in the Extragalactic Distance Scale due to its very precise and accurate distance determination via very long baseline interferometry observations of water masers. We imaged two fields within this galaxy using the Gemini North telescope and the Gemini Multi-Object Spectrograph, obtaining 16 epochs of data in the Sloan Digital Sky Survey gri bands over 4 yr. We carried out point-spread function photometry and detected 94 Cepheids with periods between 7 and 127 days, as well as an additional 215 variables which may be Cepheids or Population II pulsators. We used the Cepheid sample to test the absolute calibration of theoretical gri Period–Luminosity relations and found good agreement with the maser distance to this galaxy. The expected data products from the Large Synoptic Survey Telescope should enable Cepheid searches out to at least 10 Mpc.

  11. The Unexpected Past of a Dwarf Galaxy

    Science.gov (United States)

    1996-08-01

    in this way effectively `eats' the smaller one. Thus the Milky Way may contain the remains of many smaller galaxies it has met and consumed in the past. A natural consequence of this theory is that the Milky Way halo may at least partially consist of stars which originally belonged to these smaller galaxies. However, it is also possible that some of the halo stars formed during the early collapse of the gas cloud from which the Milky Way formed. Like the Milky Way, the two nearest, large spiral galaxies (the Andromeda nebula and M33 in the neighbouring Triangulum constellation) are also surrounded by halos of old stars. Contrarily, investigations of the smaller galaxies in the Local Group have until now not shown that they possess such halos. These dwarf galaxies greatly outnumber the large spiral galaxies - to date about two dozen are known - and they are considered to be the last survivors of the earlier cannibalism phase. The nearest are the well-known Magellanic Clouds, about 170,000 (Large Cloud) and 250,000 light years distant (Small Cloud). They can be seen with the unaided eye from the Southern hemisphere. Recent studies indicate that they orbit the Milky Way and that they may eventually fall prey to our galaxy in a future round of cannibalism. So far, no evidence has been found of an old halo around the Magellanic Clouds. This does not necessarily imply that all dwarf galaxies must likewise lack halos: it is also possible that the halos of the Magellanic Clouds were stripped away when they came too close to the Milky Way sometime in the past. The isolated WLM dwarf galaxy Down in the southern sky, in the constellation of Cetus (the Whale or the Sea Monster), lies a relative faint and distant, small galaxy which astronomers normally refer to as the WLM dwarf galaxy . It was first seen in 1909 by the famous astrophotographer Max Wolf on photographic plates obtained at the Heidelberg Observatory (Germany), but it was only in 1926 that its true nature was

  12. The effects of assembly bias on the inference of matter clustering from galaxy-galaxy lensing and galaxy clustering

    Science.gov (United States)

    McEwen, Joseph E.; Weinberg, David H.

    2018-04-01

    The combination of galaxy-galaxy lensing (GGL) and galaxy clustering is a promising route to measuring the amplitude of matter clustering and testing modified gravity theories of cosmic acceleration. Halo occupation distribution (HOD) modeling can extend the approach down to nonlinear scales, but galaxy assembly bias could introduce systematic errors by causing the HOD to vary with large scale environment at fixed halo mass. We investigate this problem using the mock galaxy catalogs created by Hearin & Watson (2013, HW13), which exhibit significant assembly bias because galaxy luminosity is tied to halo peak circular velocity and galaxy colour is tied to halo formation time. The preferential placement of galaxies (especially red galaxies) in older halos affects the cutoff of the mean occupation function for central galaxies, with halos in overdense regions more likely to host galaxies. The effect of assembly bias on the satellite galaxy HOD is minimal. We introduce an extended, environment dependent HOD (EDHOD) prescription to describe these results and fit galaxy correlation measurements. Crucially, we find that the galaxy-matter cross-correlation coefficient, rgm(r) ≡ ξgm(r) . [ξmm(r)ξgg(r)]-1/2, is insensitive to assembly bias on scales r ≳ 1 h^{-1} Mpc, even though ξgm(r) and ξgg(r) are both affected individually. We can therefore recover the correct ξmm(r) from the HW13 galaxy-galaxy and galaxy-matter correlations using either a standard HOD or EDHOD fitting method. For Mr ≤ -19 or Mr ≤ -20 samples the recovery of ξmm(r) is accurate to 2% or better. For a sample of red Mr ≤ -20 galaxies we achieve 2% recovery at r ≳ 2 h^{-1} Mpc with EDHOD modeling but lower accuracy at smaller scales or with a standard HOD fit. Most of our mock galaxy samples are consistent with rgm = 1 down to r = 1h-1Mpc, to within the uncertainties set by our finite simulation volume.

  13. The effects of assembly bias on the inference of matter clustering from galaxy-galaxy lensing and galaxy clustering

    Science.gov (United States)

    McEwen, Joseph E.; Weinberg, David H.

    2018-07-01

    The combination of galaxy-galaxy lensing and galaxy clustering is a promising route to measuring the amplitude of matter clustering and testing modified gravity theories of cosmic acceleration. Halo occupation distribution (HOD) modelling can extend the approach down to non-linear scales, but galaxy assembly bias could introduce systematic errors by causing the HOD to vary with the large-scale environment at fixed halo mass. We investigate this problem using the mock galaxy catalogs created by Hearin & Watson (2013, HW13), which exhibit significant assembly bias because galaxy luminosity is tied to halo peak circular velocity and galaxy colour is tied to halo formation time. The preferential placement of galaxies (especially red galaxies) in older haloes affects the cutoff of the mean occupation function ⟨Ncen(Mmin)⟩ for central galaxies, with haloes in overdense regions more likely to host galaxies. The effect of assembly bias on the satellite galaxy HOD is minimal. We introduce an extended, environment-dependent HOD (EDHOD) prescription to describe these results and fit galaxy correlation measurements. Crucially, we find that the galaxy-matter cross-correlation coefficient, rgm(r) ≡ ξgm(r) . [ξmm(r)ξgg(r)]-1/2, is insensitive to assembly bias on scales r ≳ 1 h-1 Mpc, even though ξgm(r) and ξgg(r) are both affected individually. We can therefore recover the correct ξmm(r) from the HW13 galaxy-galaxy and galaxy-matter correlations using either a standard HOD or EDHOD fitting method. For Mr ≤ -19 or Mr ≤ -20 samples the recovery of ξmm(r) is accurate to 2 per cent or better. For a sample of red Mr ≤ -20 galaxies, we achieve 2 per cent recovery at r ≳ 2 h-1 Mpc with EDHOD modelling but lower accuracy at smaller scales or with a standard HOD fit. Most of our mock galaxy samples are consistent with rgm = 1 down to r = 1 h-1 Mpc, to within the uncertainties set by our finite simulation volume.

  14. Age bimodality in the central region of pseudo-bulges in S0 galaxies

    Science.gov (United States)

    Mishra, Preetish K.; Barway, Sudhanshu; Wadadekar, Yogesh

    2017-11-01

    We present evidence for bimodal stellar age distribution of pseudo-bulges of S0 galaxies as probed by the Dn(4000) index. We do not observe any bimodality in age distribution for pseudo-bulges in spiral galaxies. Our sample is flux limited and contains 2067 S0 and 2630 spiral galaxies drawn from the Sloan Digital Sky Survey. We identify pseudo-bulges in S0 and spiral galaxies, based on the position of the bulge on the Kormendy diagram and their central velocity dispersion. Dividing the pseudo-bulges of S0 galaxies into those containing old and young stellar populations, we study the connection between global star formation and pseudo-bulge age on the u - r colour-mass diagram. We find that most old pseudo-bulges are hosted by passive galaxies while majority of young bulges are hosted by galaxies that are star forming. Dividing our sample of S0 galaxies into early-type S0s and S0/a galaxies, we find that old pseudo-bulges are mainly hosted by early-type S0 galaxies while most of the pseudo-bulges in S0/a galaxies are young. We speculate that morphology plays a strong role in quenching of star formation in the disc of these S0 galaxies, which stops the growth of pseudo-bulges, giving rise to old pseudo-bulges and the observed age bimodality.

  15. Multiwavelength Observations of the Dwarf Seyfert 1 Galaxy POX 52

    Science.gov (United States)

    Thornton, Carol E.; Barth, A. J.; Ho, L. C.; Rutledge, R. E.; Greene, J. E.

    2006-12-01

    POX 52 is an unusual narrow-line Seyfert 1 galaxy, having an estimated black hole mass of order 105 solar masses and a dwarf host galaxy with an absolute magnitude of only MV = -17.6, which gives us a unique opportunity to study black hole-bulge relations in the low-mass regime. We present new observations from a multiwavelength campaign to study its active nucleus and host galaxy. The data include observations from the Chandra and XMM-Newton Observatories, the Hubble Space Telescope, and the Very Large Array. Chandra data show a highly variable point source with a 2.0 10.0 keV luminosity of 0.7 * 1042 ergs/s. We will also describe the X-ray spectral shape, the structure of the host galaxy as determined from GALFIT modeling of the HST ACS/HRC images, and the spectral energy distribution of the active nucleus.

  16. Broad-line high-excitation gas in the elliptical galaxy NGC5128

    International Nuclear Information System (INIS)

    Phillips, M.M.; Taylor, K.; Axon, D.J.; Atherton, P.D.; Hook, R.N.

    1984-01-01

    A faint, but extensive component of broad-line ionized gas has been discovered in the peculiar giant elliptical galaxy NGC5128. This component has a radically different spatial distribution from the well-studied rotating photoionized gas associated with the dust lane although the velocity fields of the two components are similar. The origin of the broad-line gas is considered as its possible relation to the active nucleus and the X-ray jet discussed. (author)

  17. The Dark Side of Galaxy Color: evidence from new SDSS measurements of galaxy clustering and lensing

    OpenAIRE

    Hearin, Andrew P.; Watson, Douglas F.; Becker, Matthew R.; Reyes, Reinabelle; Berlind, Andreas A.; Zentner, Andrew R.

    2013-01-01

    The age matching model has recently been shown to predict correctly the luminosity L and g-r color of galaxies residing within dark matter halos. The central tenet of the model is intuitive: older halos tend to host galaxies with older stellar populations. In this paper, we demonstrate that age matching also correctly predicts the g-r color trends exhibited in a wide variety of statistics of the galaxy distribution for stellar mass M* threshold samples. In particular, we present new measureme...

  18. A Fast Radio Burst Host Galaxy

    OpenAIRE

    Keane, E. F.; Johnston, S.; Bhandari, S.; Barr, E.; Bhat, N. D. R.; Burgay, M.; Caleb, M.; Flynn, C.; Jameson, A.; Kramer, M.; Petroff, E.; Possenti, A.; van Straten, W.; Bailes, M.; Burke-Spolaor, S.

    2016-01-01

    In recent years, millisecond duration radio signals originating from distant galaxies appear to have been discovered in the so-called Fast Radio Bursts. These signals are dispersed according to a precise physical law and this dispersion is a key observable quantity which, in tandem with a redshift measurement, can be used for fundamental physical investigations. While every fast radio burst has a dispersion measurement, none before now have had a redshift measurement, due to the difficulty in...

  19. CHEMICAL SIGNATURES OF THE FIRST GALAXIES: CRITERIA FOR ONE-SHOT ENRICHMENT

    International Nuclear Information System (INIS)

    Frebel, Anna; Bromm, Volker

    2012-01-01

    We utilize metal-poor stars in the local, ultra-faint dwarf galaxies (UFDs; L tot ≤ 10 5 L ☉ ) to empirically constrain the formation process of the first galaxies. Since UFDs have much simpler star formation histories than the halo of the Milky Way, their stellar populations should preserve the fossil record of the first supernova (SN) explosions in their long-lived, low-mass stars. Guided by recent hydrodynamical simulations of first galaxy formation, we develop a set of stellar abundance signatures that characterize the nucleosynthetic history of such an early system if it was observed in the present-day universe. Specifically, we argue that the first galaxies are the product of chemical 'one-shot' events, where only one (long-lived) stellar generation forms after the first, Population III, SN explosions. Our abundance criteria thus constrain the strength of negative feedback effects inside the first galaxies. We compare the stellar content of UFDs with these one-shot criteria. Several systems (Ursa Major II, and also Coma Berenices, Bootes I, Leo IV, Segue 1) largely fulfill the requirements, indicating that their high-redshift predecessors did experience strong feedback effects that shut off star formation. We term the study of the entire stellar population of a dwarf galaxy for the purpose of inferring details about the nature and origin of the first galaxies 'dwarf galaxy archaeology'. This will provide clues to the connection of the first galaxies, the surviving, metal-poor dwarf galaxies, and the building blocks of the Milky Way.

  20. Photometric redshifts as a tool for studying the Coma cluster galaxy populations

    Science.gov (United States)

    Adami, C.; Ilbert, O.; Pelló, R.; Cuillandre, J. C.; Durret, F.; Mazure, A.; Picat, J. P.; Ulmer, M. P.

    2008-12-01

    Aims: We apply photometric redshift techniques to an investigation of the Coma cluster galaxy luminosity function (GLF) at faint magnitudes, in particular in the u* band where basically no studies are presently available at these magnitudes. Methods: Cluster members were selected based on probability distribution function from photometric redshift calculations applied to deep u^*, B, V, R, I images covering a region of almost 1 deg2 (completeness limit R ~ 24). In the area covered only by the u* image, the GLF was also derived after a statistical background subtraction. Results: Global and local GLFs in the B, V, R, and I bands obtained with photometric redshift selection are consistent with our previous results based on a statistical background subtraction. The GLF in the u* band shows an increase in the faint end slope towards the outer regions of the cluster. The analysis of the multicolor type spatial distribution reveals that late type galaxies are distributed in clumps in the cluster outskirts, where X-ray substructures are also detected and where the GLF in the u* band is steeper. Conclusions: We can reproduce the GLFs computed with classical statistical subtraction methods by applying a photometric redshift technique. The u* GLF slope is steeper in the cluster outskirts, varying from α ~ -1 in the cluster center to α ~ -2 in the cluster periphery. The concentrations of faint late type galaxies in the cluster outskirts could explain these very steep slopes, assuming a short burst of star formation in these galaxies when entering the cluster. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is also partly based on data products produced at

  1. A Keck/DEIMOS spectroscopic survey of the faint M31 satellites AndIX, AndXI, AndXII and AndXIII†

    Science.gov (United States)

    Collins, M. L. M.; Chapman, S. C.; Irwin, M. J.; Martin, N. F.; Ibata, R. A.; Zucker, D. B.; Blain, A.; Ferguson, A. M. N.; Lewis, G. F.; McConnachie, A. W.; Peñarrubia, J.

    2010-10-01

    We present the first spectroscopic analysis of the faint M31 satellite galaxies, AndXI and AndXIII, as well as a re-analysis of existing spectroscopic data for two further faint companions, AndIX (correcting for an error in earlier geometric modelling that caused a misclassification of member stars in previous work) and AndXII. By combining data obtained using the Deep Imaging Multi-Object Spectrograph (DEIMOS) mounted on the Keck II telescope with deep photometry from the Suprime-Cam instrument on Subaru, we have identified the most probable members for each of the satellites based on their radial velocities (precise to several down to i ~ 22), distance from the centre of the dwarf spheroidal galaxies (dSphs) and their photometric [Fe/H]. Using both the photometric and spectroscopic data, we have also calculated global properties for the dwarfs, such as systemic velocities, metallicities and half-light radii. We find each dwarf to be very metal poor ([Fe/H] ~ -2 both photometrically and spectroscopically, from their stacked spectrum), and as such, they continue to follow the luminosity-metallicity relationship established with brighter dwarfs. We are unable to resolve dispersion for AndXI due to small sample size and low signal-to-noise ratio, but we set a 1σ upper limit of σv financial support of the W.M. Keck Foundation. Based in part on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan. ‡ E-mail: mlmc2@ast.cam.ac.uk

  2. Probing dark matter with star clusters: a dark matter core in the ultra-faint dwarf Eridanus II

    Science.gov (United States)

    Contenta, Filippo; Balbinot, Eduardo; Petts, James A.; Read, Justin I.; Gieles, Mark; Collins, Michelle L. M.; Peñarrubia, Jorge; Delorme, Maxime; Gualandris, Alessia

    2018-05-01

    We present a new technique to probe the central dark matter (DM) density profile of galaxies that harnesses both the survival and observed properties of star clusters. As a first application, we apply our method to the `ultra-faint' dwarf Eridanus II (Eri II) that has a lone star cluster ˜45 pc from its centre. Using a grid of collisional N-body simulations, incorporating the effects of stellar evolution, external tides and dynamical friction, we show that a DM core for Eri II naturally reproduces the size and the projected position of its star cluster. By contrast, a dense cusped galaxy requires the cluster to lie implausibly far from the centre of Eri II (>1 kpc), with a high inclination orbit that must be observed at a particular orbital phase. Our results, therefore, favour a DM core. This implies that either a cold DM cusp was `heated up' at the centre of Eri II by bursty star formation or we are seeing an evidence for physics beyond cold DM.

  3. WHERE ARE THE FOSSILS OF THE FIRST GALAXIES? I. LOCAL VOLUME MAPS AND PROPERTIES OF THE UNDETECTED DWARFS

    International Nuclear Information System (INIS)

    Bovill, Mia S.; Ricotti, Massimo

    2011-01-01

    We present a new method for generating initial conditions for ΛCDM N-body simulations which provides the dynamical range necessary to follow the evolution and distribution of the fossils of the first galaxies on Local Volume, 5-10 Mpc, scales. The initial distribution of particles represents the position, velocity, and mass distribution of the dark and luminous halos extracted from pre-reionization simulations. We confirm previous results that ultra-faint dwarfs have properties compatible with being well-preserved fossils of the first galaxies. However, because the brightest pre-reionization dwarfs form preferentially in biased regions, they most likely merge into non-fossil halos with circular velocities >20-30 km s -1 . Hence, we find that the maximum luminosity of true fossils in the Milky Way is L V 6 L sun , casting doubts on the interpretation that some classical dSphs are true fossils. In addition, we argue that most ultra-faints at small galactocentric distance, R V ) 50 (∼400 kpc) up to 1 Mpc from the Milky Way contains about a hundred true fossils of the first galaxies with V-band luminosity 10 3 -10 5 L sun and half-light radii, r hl ∼ 100-1000 pc.

  4. Galaxy Evolution in the Radio Band: The Role of Star-forming Galaxies and Active Galactic Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Mancuso, C.; Prandoni, I. [INAF-IRA, Via P. Gobetti 101, I-40129 Bologna (Italy); Lapi, A.; Obi, I.; Perrotta, F.; Bressan, A.; Celotti, A.; Danese, L. [SISSA, Via Bonomea 265, I-34136 Trieste (Italy); Gonzalez-Nuevo, J. [Departamento de Fisica, Universidad de Oviedo, C. Calvo Sotelo s/n, E-33007 Oviedo (Spain)

    2017-06-20

    We investigate the astrophysics of radio-emitting star-forming galaxies and active galactic nuclei (AGNs) and elucidate their statistical properties in the radio band, including luminosity functions, redshift distributions, and number counts at sub-mJy flux levels, which will be crucially probed by next-generation radio continuum surveys. Specifically, we exploit the model-independent approach by Mancuso et al. to compute the star formation rate functions, the AGN duty cycles, and the conditional probability of a star-forming galaxy to host an AGN with given bolometric luminosity. Coupling these ingredients with the radio emission properties associated with star formation and nuclear activity, we compute relevant statistics at different radio frequencies and disentangle the relative contribution of star-forming galaxies and AGNs in different radio luminosity, radio flux, and redshift ranges. Finally, we highlight that radio-emitting star-forming galaxies and AGNs are expected to host supermassive black holes accreting with different Eddington ratio distributions and to occupy different loci in the galaxy main-sequence diagrams. These specific predictions are consistent with current data sets but need to be tested with larger statistics via future radio data with multiband coverage on wide areas, as will become routinely achievable with the advent of the Square Kilometre Array and its precursors.

  5. Black Hole Caught Zapping Galaxy into Existence?

    Science.gov (United States)

    2009-11-01

    Which come first, the supermassive black holes that frantically devour matter or the enormous galaxies where they reside? A brand new scenario has emerged from a recent set of outstanding observations of a black hole without a home: black holes may be "building" their own host galaxy. This could be the long-sought missing link to understanding why the masses of black holes are larger in galaxies that contain more stars. "The 'chicken and egg' question of whether a galaxy or its black hole comes first is one of the most debated subjects in astrophysics today," says lead author David Elbaz. "Our study suggests that supermassive black holes can trigger the formation of stars, thus 'building' their own host galaxies. This link could also explain why galaxies hosting larger black holes have more stars." To reach such an extraordinary conclusion, the team of astronomers conducted extensive observations of a peculiar object, the nearby quasar HE0450-2958 (see eso0523 for a previous study of this object), which is the only one for which a host galaxy has not yet been detected [1]. HE0450-2958 is located some 5 billion light-years away. Until now, it was speculated that the quasar's host galaxy was hidden behind large amounts of dust, and so the astronomers used a mid-infrared instrument on ESO's Very Large Telescope for the observations [2]. At such wavelengths, dust clouds shine very brightly, and are readily detected. "Observing at these wavelengths would allow us to trace dust that might hide the host galaxy," says Knud Jahnke, who led the observations performed at the VLT. "However, we did not find any. Instead we discovered that an apparently unrelated galaxy in the quasar's immediate neighbourhood is producing stars at a frantic rate." These observations have provided a surprising new take on the system. While no trace of stars is revealed around the black hole, its companion galaxy is extremely rich in bright and very young stars. It is forming stars at a rate

  6. The fraction of AGNs in major merger galaxies and its luminosity dependence

    Science.gov (United States)

    Weigel, Anna K.; Schawinski, Kevin; Treister, Ezequiel; Trakhtenbrot, Benny; Sanders, David B.

    2018-05-01

    We use a phenomenological model which connects the galaxy and active galactic nucleus (AGN) populations to investigate the process of AGNs triggering through major galaxy mergers at z ˜ 0. The model uses stellar mass functions as input and allows the prediction of AGN luminosity functions based on assumed Eddington ratio distribution functions (ERDFs). We show that the number of AGNs hosted by merger galaxies relative to the total number of AGNs increases as a function of AGN luminosity. This is due to more massive galaxies being more likely to undergo a merger and does not require the assumption that mergers lead to higher Eddington ratios than secular processes. Our qualitative analysis also shows that to match the observations, the probability of a merger galaxy hosting an AGN and accreting at a given Eddington value has to be increased by a factor ˜10 relative to the general AGN population. An additional significant increase of the fraction of high Eddington ratio AGNs among merger host galaxies leads to inconsistency with the observed X-ray luminosity function. Physically our results imply that, compared to the general galaxy population, the AGN fraction among merger galaxies is ˜10 times higher. On average, merger triggering does however not lead to significantly higher Eddington ratios.

  7. M31 in the Chandra Era: A High Definition Movie of a Nearby Galaxy

    Science.gov (United States)

    Kong, Albert; di Stefano, Rosanne

    2009-09-01

    M31 has been a prime targets for all X-ray missions since the first detection in 1974. With its superb spatial resolution, Chandra is unique in resolving dense source regions and detecting faint sources. Since the launch of Chandra, M31 has been regularly observed. It is perhaps the only nearby galaxy which is observed by an X-ray telescope regularly throughout operation. With 10 years of observations, the center of M31 has been observed with Chandra for nearly 1 Msec. The X-ray skies of M31 not only consist of many transients and variables, globular cluster X-ray sources in M31 are also different from our Milky Way. They are in general more luminous and one of them may even host an intermediate-mass black hole. Supersoft and quasi-soft X-ray sources in M31 are the best kept secret to unlock the nature of the progenitor of Type Ia supernova. In this talk, I will review some of the important Chandra discoveries in M31 in the past 10 years.

  8. The Very Red Afterglow of GRB 000418: Further Evidence for Dust Extinction in a Gamma-Ray Burst Host Galaxy

    Science.gov (United States)

    Klose, S.; Stecklum, B.; Masetti, N.; Pian, E.; Palazzi, E.; Henden, A. A.; Hartmann, D. H.; Fischer, O.; Gorosabel, J.; Sánchez-Fernández, C.; Butler, D.; Ott, Th.; Hippler, S.; Kasper, M.; Weiss, R.; Castro-Tirado, A.; Greiner, J.; Bartolini, C.; Guarnieri, A.; Piccioni, A.; Benetti, S.; Ghinassi, F.; Magazzú, A.; Hurley, K.; Cline, T.; Trombka, J.; McClanahan, T.; Starr, R.; Goldsten, J.; Gold, R.; Mazets, E.; Golenetskii, S.; Noeske, K.; Papaderos, P.; Vreeswijk, P. M.; Tanvir, N.; Oscoz, A.; Muñoz, J. A.; Castro Cerón, J. M.

    2000-12-01

    We report near-infrared and optical follow-up observations of the afterglow of the GRB 000418 starting 2.5 days after the occurrence of the burst and extending over nearly 7 weeks. GRB 000418 represents the second case for which the afterglow was initially identified by observations in the near-infrared. During the first 10 days its R-band afterglow was well characterized by a single power-law decay with a slope of 0.86. However, at later times the temporal evolution of the afterglow flattens with respect to a simple power-law decay. Attributing this to an underlying host galaxy, we find its magnitude to be R=23.9 and an intrinsic afterglow decay slope of 1.22. The afterglow was very red with R-K~4 mag. The observations can be explained by an adiabatic, spherical fireball solution and a heavy reddening due to dust extinction in the host galaxy. This supports the picture that (long) bursts are associated with events in star-forming regions. Based on observations collected at the Bologna Astronomical Observatory in Loiano, Italy; at the TNG, Canary Islands, Spain; at the German-Spanish Astronomical Centre, Calar Alto, operated by the Max-Planck-Institut for Astronomy, Heidelberg, jointly with the Spanish National Commission for Astronomy; at the US Naval Observatory; and at the UK Infrared Telescope.

  9. The post-infall evolution of a satellite galaxy

    OpenAIRE

    {Nichols} M.; {Revaz} Y.; {Jablonka} P.

    2015-01-01

    As galaxy simulations increase in resolution more attention is being paid towards the evolution of dwarf galaxies and how the simulations compare to observations. Despite this increasing resolution we are however, far away from resolving the interactions of satellite dwarf galaxies and the hot coronae which surround host galaxies. We describe a new method which focuses only on the local region surrounding an infalling dwarf in an effort to understand how the hot baryonic halo will alter the c...

  10. OBSERVATIONAL LIMITS ON THE GAS MASS OF A z = 4.9 GALAXY

    International Nuclear Information System (INIS)

    Livermore, R. C.; Swinbank, A. M.; Smail, Ian; Bower, R. G.; Coppin, K. E. K.; Edge, A. C.; Geach, J. E.; Richard, J.; Crain, R. A.

    2012-01-01

    We present the results of a search for molecular gas emission from a star-forming galaxy at z = 4.9. The galaxy benefits from magnification of 22 ± 5 × due to strong gravitational lensing by the foreground cluster MS1358+62. We target the CO(5-4) emission at a known position and redshift from existing Hubble Space Telescope/Advanced Camera for Surveys imaging and Gemini/NIFS [O II]3727 imaging spectroscopy, and obtain a tentative detection at the 4.3σ level with a flux of 0.104 ± 0.024 Jy km s –1 . From the CO line luminosity and assuming a CO-to-H 2 conversion factor α = 2, we derive a gas mass M gas ∼ 1 +1 –0.6 × 10 9 M ☉ . Combined with the existing data, we derive a gas fraction M gas /(M gas + M * ) = 0.59 +0.11 –0.06 . The faint line flux of this galaxy highlights the difficulty of observing molecular gas in representative galaxies at this epoch, and suggests that routine detections of similar galaxies in the absence of gravitational lensing will remain challenging even with ALMA in full science operations.

  11. The HR diagram for luminous stars in nearby galaxies

    International Nuclear Information System (INIS)

    Humphreys, R.M.

    1978-01-01

    Due to the extreme faintness of stars in other galaxies it is only possible to sample the brightest stars in the nearest galaxies. The observations must then be compared with comparable data for the brightest stars, the supergiants and O-type stars, in the Milky Way. The data for the luminous stars are most complete for the Milky Way and the Large Magellanic Cloud. The luminosities for the stars in our Galaxy are based on their membership in associations and clusters, and consequently are representative of Population I within approximately 3kpc of the Sun. The data for the stars in the LMC with spectral types O to G8 come from published observations, and the M supergiants are from the author's recent observations of red stars in the LMC. This is the first time that the M supergiants have been included in an HR diagram of the Large Cloud. The presence of the red stars is important for any discussion of the evolution of the massive stars. (Auth.)

  12. The Hot ISM of Normal Galaxies

    Science.gov (United States)

    Fabbiano, Giuseppina

    1999-01-01

    X-ray observations of galaxies have shown the presence of hot ISM and gaseous halos. The most spectacular examples am in early-type galaxies (E and S0), and in galaxies hosting intense starforming regions. This talk will review the observational evidence and highlight the outstanding issues in our understanding of this gaseous component, with emphasis on our present understanding of the chemical composition of these hot halos. It will address how Chandra, XMM, and future X-ray missions can address these studies.

  13. Galaxy Zoo: Observing secular evolution through bars

    International Nuclear Information System (INIS)

    Cheung, Edmond; Faber, S. M.; Koo, David C.; Athanassoula, E.; Bosma, A.; Masters, Karen L.; Nichol, Robert C.; Melvin, Thomas; Bell, Eric F.; Lintott, Chris; Schawinski, Kevin; Skibba, Ramin A.; Willett, Kyle W.

    2013-01-01

    In this paper, we use the Galaxy Zoo 2 data set to study the behavior of bars in disk galaxies as a function of specific star formation rate (SSFR) and bulge prominence. Our sample consists of 13,295 disk galaxies, with an overall (strong) bar fraction of 23.6% ± 0.4%, of which 1154 barred galaxies also have bar length (BL) measurements. These samples are the largest ever used to study the role of bars in galaxy evolution. We find that the likelihood of a galaxy hosting a bar is anticorrelated with SSFR, regardless of stellar mass or bulge prominence. We find that the trends of bar likelihood and BL with bulge prominence are bimodal with SSFR. We interpret these observations using state-of-the-art simulations of bar evolution that include live halos and the effects of gas and star formation. We suggest our observed trends of bar likelihood with SSFR are driven by the gas fraction of the disks, a factor demonstrated to significantly retard both bar formation and evolution in models. We interpret the bimodal relationship between bulge prominence and bar properties as being due to the complicated effects of classical bulges and central mass concentrations on bar evolution and also to the growth of disky pseudobulges by bar evolution. These results represent empirical evidence for secular evolution driven by bars in disk galaxies. This work suggests that bars are not stagnant structures within disk galaxies but are a critical evolutionary driver of their host galaxies in the local universe (z < 1).

  14. Galactic-scale Feedback Observed in the 3C 298 Quasar Host Galaxy

    Science.gov (United States)

    Vayner, Andrey; Wright, Shelley A.; Murray, Norman; Armus, Lee; Larkin, James E.; Mieda, Etsuko

    2017-12-01

    We present high angular resolution multiwavelength data of the 3C 298 radio-loud quasar host galaxy (z = 1.439) taken using the W.M. Keck Observatory OSIRIS integral field spectrograph (IFS) with adaptive optics, the Atacama Large Millimeter/submillimeter Array (ALMA), the Hubble Space Telescope (HST) WFC3, and the Very Large Array (VLA). Extended emission is detected in the rest-frame optical nebular emission lines Hβ, [O III], Hα, [N II], and [S II], as well as in the molecular lines CO (J = 3‑2) and (J = 5‑4). Along the path of the relativistic jets of 3C 298, we detect conical outflows in ionized gas emission with velocities of up to 1700 {km} {{{s}}}-1 and an outflow rate of 450–1500 {M}ȯ {{yr}}-1 extended over 12 kpc. Near the spatial center of the conical outflow, CO (J = 3‑2) emission shows a molecular gas disk with a rotational velocity of ±150 {km} {{{s}}}-1 and total molecular mass ({M}{{{H}}2}) of 6.6+/- 0.36× {10}9 {M}ȯ . On the blueshifted side of the molecular disk, we observe broad extended emission that is due to a molecular outflow with a rate of 2300 {M}ȯ {{yr}}-1 and depletion timescale of 3 Myr. We detect no narrow Hα emission in the outflow regions, suggesting a limit on star formation of 0.3 {M}ȯ {{yr}}-1 {{kpc}}-2. Quasar-driven winds are evacuating the molecular gas reservoir, thereby directly impacting star formation in the host galaxy. The observed mass of the supermassive black hole is {10}9.37{--9.56} {M}ȯ , and we determine a dynamical bulge mass of {M}{bulge}=1{--}1.7× {10}10\\tfrac{R}{1.6 {kpc}} {M}ȯ . The bulge mass of 3C 298 lies 2–2.5 orders of magnitude below the expected value from the local galactic bulge—supermassive black hole mass ({M}{bulge}{--}{M}{BH}) relationship. A second galactic disk observed in nebular emission is offset from the quasar by 9 kpc, suggesting that the system is an intermediate-stage merger. These results show that galactic-scale negative feedback is occurring early in the merger

  15. METALLICITY IN THE GRB 100316D/SN 2010bh HOST COMPLEX

    International Nuclear Information System (INIS)

    Levesque, Emily M.; Berger, Edo; Soderberg, Alicia M.; Chornock, Ryan

    2011-01-01

    The recent long-duration GRB 100316D, associated with supernova SN 2010bh and detected by Swift, is one of the nearest gamma-ray burst (GRB)-supernovae (SNe) ever observed (z = 0.059). This provides us with a unique opportunity to study the explosion environment on ∼kpc scale in relation to the host galaxy complex. Here we present spatially resolved spectrophotometry of the host galaxy, focusing on both the explosion site and the brightest star-forming regions. Using these data, we extract the spatial profiles of the relevant emission features (Hα, Hβ, [O III]λ5007, and [N II]λ6584) and use these profiles to examine variations in metallicity and star formation rate (SFR) as a function of position in the host galaxy. We conclude that GRB 100316D/SN2010bh occurred in a low-metallicity host galaxy, and that the GRB-SN explosion site corresponds to the region with the lowest metallicity and highest SFR sampled by our observations.

  16. Distance determinations to shield galaxies from Hubble space telescope imaging

    Energy Technology Data Exchange (ETDEWEB)

    McQuinn, Kristen B. W.; Skillman, Evan D. [Minnesota Institute for Astrophysics, School of Physics and Astronomy, University of Minnesota, 116 Church Street, S.E., Minneapolis, MN 55455 (United States); Cannon, John M.; Cave, Ian [Department of Physics and Astronomy, Macalester College, 1600 Grand Avenue, Saint Paul, MN 55105 (United States); Dolphin, Andrew E. [Raytheon Company, 1151 E. Hermans Road, Tucson, AZ 85756 (United States); Salzer, John J. [Department of Astronomy, Indiana University, 727 East 3rd Street, Bloomington, IN 47405 (United States); Haynes, Martha P.; Adams, Elizabeth; Giovanelli, Riccardo [Center for Radiophysics and Space Research, Space Sciences Building, Cornell University, Ithaca, NY 14853 (United States); Elson, Ed C. [Astrophysics, Cosmology and Gravity Centre (ACGC), Department of Astronomy, University of Cape Town, Private Bag X3, Rondebosch 7701 (South Africa); Ott, Juërgen [National Radio Astronomy Observatory, P.O. Box O, 1003 Lopezville Road, Socorro, NM 87801 (United States); Saintonge, Amélie, E-mail: kmcquinn@astro.umn.edu [Max-Planck-Institute for Astrophysics, D-85741 Garching (Germany)

    2014-04-10

    The Survey of H I in Extremely Low-mass Dwarf (SHIELD) galaxies is an ongoing multi-wavelength program to characterize the gas, star formation, and evolution in gas-rich, very low-mass galaxies. The galaxies were selected from the first ∼10% of the H I Arecibo Legacy Fast ALFA (ALFALFA) survey based on their inferred low H I mass and low baryonic mass, and all systems have recent star formation. Thus, the SHIELD sample probes the faint end of the galaxy luminosity function for star-forming galaxies. Here, we measure the distances to the 12 SHIELD galaxies to be between 5 and 12 Mpc by applying the tip of the red giant method to the resolved stellar populations imaged by the Hubble Space Telescope. Based on these distances, the H I masses in the sample range from 4 × 10{sup 6} to 6 × 10{sup 7} M {sub ☉}, with a median H I mass of 1 × 10{sup 7} M {sub ☉}. The tip of the red giant branch distances are up to 73% farther than flow-model estimates in the ALFALFA catalog. Because of the relatively large uncertainties of flow-model distances, we are biased toward selecting galaxies from the ALFALFA catalog where the flow model underestimates the true distances. The measured distances allow for an assessment of the native environments around the sample members. Five of the galaxies are part of the NGC 672 and NGC 784 groups, which together constitute a single structure. One galaxy is part of a larger linear ensemble of nine systems that stretches 1.6 Mpc from end to end. Three galaxies reside in regions with 1-9 neighbors, and four galaxies are truly isolated with no known system identified within a radius of 1 Mpc.

  17. A high-redshift IRAS galaxy with huge luminosity - hidden quasar or protogalaxy

    Energy Technology Data Exchange (ETDEWEB)

    Rowan-Robinson, M; Broadhurst, T [Queen Mary Coll., London (UK). School of Mathematical Sciences; Lawrence, A [Queen Mary Coll., London (UK). Dept. of Physics; McMahon, R G [Cambridge Univ. (UK). Inst. of Astronomy; Lonsdale, C J [California Inst. of Tech., Pasadena, CA (USA). Infrared Processing and Analysis Center; Oliver, S J; Taylor, A N [Queen Mary Coll., London (UK). School of Mathematical Sciences; Hacking, P B; Conrow, T [California Inst. of Tech., Pasadena, CA (USA). Infrared Processing and Analysis Center; Saunders, W [Oxford Univ. (UK). Dept. of Astrophysics; Ellis, R S [Durham Univ. (UK). Dept. of Physics; Efstathiou, G P [Oxford Univ. (UK). Dept. of Astrophysics; Condon, J J [National Radio Astronomy Observatory, Charlottesville, VA (USA)

    1991-06-27

    During a survey intended to measure redshifts for 1,400 galaxies identified with faint sources detected by the Infrared Astronomy Satellite, we found an emission-line galaxy at a redshift of 2.286, and with the enormous far-infrared luminosity of 3 x 10{sup 14} times that of the sun (L{sub sun}) The spectrum is very unusual, showing lines of high excitation but with very weak Lyman-{alpha} emission. A self-absorbed synchrotron model for the infrared energy distribution cannot be ruled out, but a thermal origin seems more plausible. A radio-quiet quasar embedded in a very dusty galaxy could account for the infrared emission, as might a starburst embedded in 1-10 x 10{sup 9} M{sub sun} of dust. The latter case demands so much dust that the object would probably be a massive galaxy in the process of formation. In either case, this is a remarkable object, and the presence of a large amount of dust in an object of such high redshift implies the generation of heavy elements at an early cosmological epoch. (author).

  18. SPHEREx: Understanding the Origin and Evolution of Galaxies Through the Extragalactic Background Light

    Science.gov (United States)

    Zemcov, Michael; SPHEREx Science Team

    2018-01-01

    The near IR extragalactic background light (EBL) encodes the integrated light production over cosmic history, so traces the total emission from all galaxies along the line of sight up to the ancient first-light objects responsible for the epoch of reionization (EOR). The EBL can be constrained through measurements of anisotropies, taking advantage of the fact that extragalactic populations produce fluctuations with distinct spatial and spectral characteristics from local foregrounds. In particular, EBL anisotropies trace the underlying clustering of faint emission sources, such as stars, galaxies and accreting black holes present during the EOR, dwarf galaxies, and intra-halo light (IHL), all of which are components not readily detected in point source surveys. The fluctuation amplitude observed independently by a number of recent measurements exceeds that expected from the large-scale clustering of known galaxy populations, indicating the presence of a large integrated brightness from these faint and diffuse components. Improved large-area measurements covering the entire near-IR are required to constrain the possible models for the history of emission from stars back to the EOR.SPHEREx brings new capabilities to EBL fluctuation measurements, employing 96 spectral channels covering 0.75 to 5 microns with spectral resolving power R = 41 to 135 that enable SPHEREx to carry out a multi-frequency separation of the integrated light from galaxies, IHL, and EOR components using the rich auto- and cross-correlation information available from two 45 square degree surveys of the ecliptic poles. SPHEREx is an ideal intensity mapping machine, and has the sensitivity to disentangle the history of light production associated with EBL fluctuations. SPHEREx will search for an EOR component its to minimum required level through component separation and spectral fitting techniques optimized for the near-IR. In addition to broad-band intensity mapping that enhances and extends the

  19. SATELLITE DWARF GALAXIES IN A HIERARCHICAL UNIVERSE: THE PREVALENCE OF DWARF-DWARF MAJOR MERGERS

    OpenAIRE

    Deason, A; Wetzel, A; Garrison-Kimmel, S

    2014-01-01

    Mergers are a common phenomenon in hierarchical structure formation, especially for massive galaxies and clusters, but their importance for dwarf galaxies in the Local Group remains poorly understood. We investigate the frequency of major mergers between dwarf galaxies in the Local Group using the ELVIS suite of cosmological zoom-in dissipationless simulations of Milky Way- and M31-like host halos. We find that ~10% of satellite dwarf galaxies with M_star > 10^6 M_sun that are within the host...

  20. Mergers in galaxy groups. I. Structure and properties of elliptical remnants

    International Nuclear Information System (INIS)

    Taranu, Dan S.; Dubinski, John; Yee, H. K. C.

    2013-01-01

    We present collisionless simulations of dry mergers in groups of 3 to 25 galaxies to test the hypothesis that elliptical galaxies form at the centers of such groups. Mock observations of the central remnants confirm their similarity to ellipticals, despite having no dissipational component. We vary the profile of the original spiral's bulge and find that ellipticals formed from spirals with exponential bulges have too low Sersic indices. Mergers of spirals with de Vaucouleurs (classical) bulges produce remnants with larger Sersic indices correlated with luminosity, as with Sloan Digital Sky Survey ellipticals. Exponential bulge mergers are better fits to faint ellipticals, whereas classical bulge mergers better match luminous ellipticals. Similarly, luminous ellipticals are better reproduced by remnants undergoing many (>5) mergers, and fainter ellipticals by those with fewer mergers. The remnants follow tight size-luminosity and velocity dispersion-luminosity (Faber-Jackson) relations (<0.12 dex scatter), demonstrating that stochastic merging can produce tight scaling relations if the merging galaxies also follow tight scaling relations. The slopes of the size-luminosity and Faber-Jackson relations are close to observations but slightly shallower in the former case. Both relations' intercepts are offset—remnants are too large but have too low dispersions at fixed luminosity. Some remnants show substantial (v/σ > 0.1) rotational support, although most are slow rotators and few are very fast rotators (v/σ > 0.5). These findings contrast with previous studies concluding that dissipation is necessary to produce ellipticals from binary mergers of spirals. Multiple, mostly minor and dry mergers can produce bright ellipticals, whereas significant dissipation could be required to produce faint, rapidly rotating ellipticals.

  1. ACTIVE GALACTIC NUCLEI AS MAIN CONTRIBUTORS TO THE ULTRAVIOLET IONIZING EMISSIVITY AT HIGH REDSHIFTS: PREDICTIONS FROM A Λ-CDM MODEL WITH LINKED AGN/GALAXY EVOLUTION

    International Nuclear Information System (INIS)

    Giallongo, E.; Menci, N.; Fiore, F.; Castellano, M.; Fontana, A.; Grazian, A.; Pentericci, L.

    2012-01-01

    We have evaluated the contribution of the active galactic nuclei (AGN) population to the ionization history of the universe based on a semi-analytic model of galaxy formation and evolution in the cold dark matter cosmological scenario. The model connects the growth of black holes and of the ensuing AGN activity to galaxy interactions. In the model we have included a self-consistent physical description of the escape of ionizing UV photons; this is based on the blast-wave model for the AGN feedback we developed in a previous paper to explain the distribution of hydrogen column densities in AGNs of various redshifts and luminosities, due to absorption by the host galaxy gas. The model predicts UV luminosity functions for AGNs that are in good agreement with those derived from the observations especially at low and intermediate redshifts (z ∼ 3). At higher redshifts (z > 5), the model tends to overestimate the data at faint luminosities. Critical biases in both the data and in the model are discussed to explain such apparent discrepancies. The predicted hydrogen photoionization rate as a function of redshift is found to be consistent with that derived from the observations. All of the above suggests that we should reconsider the role of the AGNs as the main driver of the ionization history of the universe.

  2. Growing Galaxies Gently

    Science.gov (United States)

    2010-10-01

    of the flow of pristine gas from the surrounding space and the associated formation of new stars. They were very careful to make sure that their specimen galaxies had not been disturbed by interactions with other galaxies. The selected galaxies were very regular, smoothly rotating discs, similar to the Milky Way, and they were seen about two billion years after the Big Bang (at a redshift of around three). In galaxies in the modern Universe the heavy elements [1] are more abundant close to the centre. But when Cresci's team mapped their selected distant galaxies with the SINFONI spectrograph on the VLT [2] they were excited to see that in all three cases there was a patch of the galaxy, close to the centre, with fewer heavy elements, but hosting vigorously forming stars, suggesting that the material to fuel the star formation was coming from the surrounding pristine gas that is low in heavy elements. This was the smoking gun that provided the best evidence yet of young galaxies accreting primitive gas and using it to form new generations of stars. As Cresci concludes: "This study has only been possible because of the outstanding performance of the SINFONI instrument on the VLT. It has opened a new window for studying the chemical properties of very distant galaxies. SINFONI provides information not only in two spatial dimensions, but also in a third, spectral dimension, which allows us to see the internal motions inside galaxies and study the chemical composition of the interstellar gas." Notes [1] The gas filling the early Universe was almost all hydrogen and helium. The first generations of stars processed this primitive material to create heavier elements such as oxygen, nitrogen and carbon by nuclear fusion. When this material was subsequently spewed back into space by intense particle winds from massive young stars and supernova explosions the amounts of heavy elements in the galaxy gradually increased. Astronomers refer to elements other than hydrogen and

  3. SPECTROSCOPIC CONFIRMATION OF FAINT LYMAN BREAK GALAXIES NEAR REDSHIFT FIVE IN THE HUBBLE ULTRA DEEP FIELD

    International Nuclear Information System (INIS)

    Rhoads, James E.; Malhotra, Sangeeta; Cohen, Seth; Grogin, Norman; Hathi, Nimish; Ryan, Russell; Straughn, Amber; Windhorst, Rogier A.; Pirzkal, Norbert; Xu Chun; Koekemoer, Anton; Panagia, Nino; Dickinson, Mark; Ferreras, Ignacio; Gronwall, Caryl; Kuemmel, Martin; Walsh, Jeremy; Meurer, Gerhardt; Pasquali, Anna; Yan, H.-J.

    2009-01-01

    We present the faintest spectroscopically confirmed sample of z ∼ 5 Lyman break galaxies (LBGs) to date. The sample is based on slitless grism spectra of the Hubble Ultra Deep Field region from the Grism ACS Program for Extragalactic Science (GRAPES) and Probing Evolution and Reionization Spectroscopically (PEARS) projects, using the G800L grism on the Hubble Space Telescope Advanced Camera for Surveys. We report here confirmations of 39 galaxies, preselected as candidate LBGs using photometric selection criteria. We compare a 'traditional' V-dropout selection, based on the work of Giavalisco et al., to a more liberal one (with V - i > 0.9), and find that the traditional criteria are about 64% complete and 81% reliable. We also study the Lyα emission properties of our sample. We find that Lyα emission is detected in ∼1/4 of the sample, and that the liberal V-dropout color selection includes ∼55% of previously published line-selected Lyα sources. Finally, we examine our stacked two-dimensional spectra. We demonstrate that strong, spatially extended (∼1'') Lyα emission is not a generic property of these LBGs, but that a modest extension of the Lyα photosphere (compared to the starlight) may be present in those galaxies with prominent Lyα emission.

  4. Stellar properties of dwarf galaxies and their connections with the Milky Way halo

    Science.gov (United States)

    Revaz, Yves; Pascale Jablonka

    2018-06-01

    In this talk, relying on recent chemo-dynamical simulations, I will describe the stellar properties and in particular the abundances ratios of dwarf galaxies emerging from a LCDM framework. Faint systems quenched by the UV-background as well as luminous ones exhibiting an extended star formation history nicely reproduce observations, without necessary requiring a strong interaction with the Milky Way. However, dwarf galaxies with complex star formation histories like Carina and Fornax are much more difficult to reproduce. Those systems are often believed to result from an interaction with the Milky Way. I will show that when such interaction is taken into account in our high resolution simulations through ram pressure stripping, a much more complex reality appears.

  5. Correlating The Star Formation Histories Of MaNGA Galaxies With Their Past AGN Activity

    Science.gov (United States)

    Gonzalez Ortiz, Andrea

    2017-01-01

    We investigate active galactic nuclei (AGN) as a primary mechanism affecting star formation in MaNGA galaxies. Using the Pipe3D code, we modeled the stellar population from MaNGA spectra and derived the star formation histories of 53 AGN host galaxies. We seek to compare the star formation histories of the host galaxies of AGN with the ages of their radio lobes to better understand the role of AGN feedback in the star formation histories of MaNGA galaxies. MaNGA (Mapping Nearby Galaxies at APO) is one of the three core programs in the fourth generation Sloan Digital Sky Survey(SDSS). MaNGA will investigate the internal kinematics of nearly 10,000 local galaxies through dithered observations using fiber integral field units (IFUs) that vary in diameter from 12" (19 fibers) to 32" (127 fibers). In this poster, we present initial results on the star formation histories of MaNGA AGN host galaxies. This work was supported by the SDSS Research Experience for Undergraduates program, which is funded by a grant from Sloan Foundation to the Astrophysical Research Consortium.

  6. Faint Traces

    OpenAIRE

    Denyer, Frank

    2005-01-01

    CD of six compositions by Denyer played by The Barton Workshop (Amsterdam): ‘Out of the Shattered Shadows 1’; ‘Out of the Shattered Shadows 2’; ‘Faint Traces’; ‘Music for Two Performers’; ‘Play’; ‘Passages’. Liner notes by Bob Gilmore. \\ud \\ud Like ‘Fired City’ (2002), this is a portrait CD and comprises première recordings of six works. The three longest – one of which is the title track (2001) – are the most recent. All six works continue Denyer’s research into new acoustic instrumental sou...

  7. A SEARCH FOR DISK-GALAXY LENSES IN THE SLOAN DIGITAL SKY SURVEY

    International Nuclear Information System (INIS)

    Feron, Chloe; Hjorth, Jens; Samsing, Johan; McKean, John P.

    2009-01-01

    We present the first automated spectroscopic search for disk-galaxy lenses, using the Sloan Digital Sky Survey (SDSS) database. We follow up eight gravitational lens candidates, selected among a sample of ∼40,000 candidate massive disk galaxies, using a combination of ground-based imaging and long-slit spectroscopy. We confirm two gravitational lens systems: one probable disk galaxy and one probable S0 galaxy. The remaining systems are four promising disk-galaxy lens candidates, as well as two probable gravitational lenses whose lens galaxy might be an S0 galaxy. The redshifts of the lenses are z lens ∼ 0.1. The redshift range of the background sources is z source ∼ 0.3-0.7. The systems presented here are (confirmed or candidate) galaxy-galaxy lensing systems, that is, systems where the multiple images are faint and extended, allowing an accurate determination of the lens galaxy mass and light distributions without contamination from the background galaxy. Moreover, the low redshift of the (confirmed or candidates) lens galaxies is favorable for measuring rotation points to complement the lensing study. We estimate the rest-frame total mass-to-light ratio within the Einstein radius for the two confirmed lenses: we find M tot /L I = 5.4 ± 1.5 within 3.9 ± 0.9 kpc for SDSS J081230.30+543650.9 and M tot /L I = 1.5 ± 0.9 within 1.4 ± 0.8 kpc for SDSS J145543.55+530441.2 (all in solar units). Hubble Space Telescope or adaptive optics imaging is needed to further study the systems.

  8. THE EFFECT OF DRY MERGERS ON THE COLOR-MAGNITUDE RELATION OF EARLY-TYPE GALAXIES

    International Nuclear Information System (INIS)

    Skelton, Rosalind E.; Bell, Eric F.; Somerville, Rachel S.

    2009-01-01

    We investigate the effect of dry merging on the color-magnitude relation (CMR) of galaxies and find that the amount of merging predicted by a hierarchical model results in a red sequence that compares well with the observed low-redshift relation. A sample of ∼ 29,000 early-type galaxies selected from the Sloan Digital Sky Survey Data Release 6 shows that the bright end of the CMR has a shallower slope and smaller scatter than the faint end. This magnitude dependence is predicted by a simple toy model in which gas-rich mergers move galaxies onto a 'creation red sequence' (CRS) by quenching their star formation, and subsequent mergers between red, gas-poor galaxies (so-called 'dry' mergers) move galaxies along the relation. We use galaxy merger trees from a semianalytic model of galaxy formation to test the amplitude of this effect and find a change in slope at the bright end that brackets the observations, using gas fraction thresholds of 10%-30% to separate wet and dry mergers. A more realistic model that includes scatter in the CRS shows that dry merging decreases the scatter at the bright end. Contrary to previous claims, the small scatter in the observed CMR thus cannot be used to constrain the amount of dry merging.

  9. Photometry of faint blue stars

    International Nuclear Information System (INIS)

    Kilkenny, D.; Hill, P.W.; Brown, A.

    1977-01-01

    Photometry on the uvby system is given for 61 faint blue stars. The stars are classified by means of the Stromgren indices, using criteria described in a previous paper (Kilkenny and Hill (1975)). (author)

  10. The Universe Going Green: Extraordinarily Strong [OIII]5007 in Typical Dwarf Galaxies at z~3

    Science.gov (United States)

    Malkan, Matthew Arnold; Cohen, Daniel

    2017-01-01

    We constructed the average SEDs of U-dropout galaxies in the Subaru Deep Field. This sample contains more than 5000 Lyman-break galaxies at z~3. Their average near- and mid-IR colors were obtained by stacking JHK and IRAC imaging, in bins of stellar mass. At the lowest mass bins an increasingly strong excess flux is seen in the K filter. This excess can reach 1 magnitude in the broadband filter, and we attribute it to strong \\OIII $\\lambda{5007}$ line emission. The equivalent width is extraordinarily high, reaching almost 1000\\Ang\\ for the average z=3 galaxy at an i magnitude of 27. Such extreme [OIII] emission is very rare in the current epoch, only seen in a handful of metal-deficient dwarf starbursts sometimes referred to as ''Green Peas". In contrast, extreme [OIII]--strong enough to dominate the entire broad-band SED--was evidently the norm for faint galaxies at high redshift. We present evidence that these small but numerous galaxies were primarily responsible for the reionization of the Universe.

  11. The Impact of Assembly Bias on the Galaxy Content of Dark Matter Halos

    Science.gov (United States)

    Zehavi, Idit; Contreras, Sergio; Padilla, Nelson; Smith, Nicholas J.; Baugh, Carlton M.; Norberg, Peder

    2018-01-01

    We study the dependence of the galaxy content of dark matter halos on large-scale environment and halo formation time using semi-analytic galaxy models applied to the Millennium simulation. We analyze subsamples of halos at the extremes of these distributions and measure the occupation functions for the galaxies they host. We find distinct differences among these occupation functions. The main effect with environment is that central galaxies (and in one model, also the satellites) in denser regions start populating lower-mass halos. A similar, but significantly stronger, trend exists with halo age, where early-forming halos are more likely to host central galaxies at lower halo mass. We discuss the origin of these trends and the connection to the stellar mass–halo mass relation. We find that, at fixed halo mass, older halos and to some extent also halos in dense environments tend to host more massive galaxies. Additionally, we see a reverse trend for the occupation of satellite galaxies where early-forming halos have fewer satellites, likely due to having more time for them to merge with the central galaxy. We describe these occupancy variations in terms of the changes in the occupation function parameters, which can aid in constructing realistic mock galaxy samples. Finally, we study the corresponding galaxy auto- and cross-correlation functions of the different samples and elucidate the impact of assembly bias on galaxy clustering. Our results can inform theoretical modeling of galaxy assembly bias and attempts to detect it in the real universe.

  12. THE NUMBER OF TIDAL DWARF SATELLITE GALAXIES IN DEPENDENCE OF BULGE INDEX

    International Nuclear Information System (INIS)

    López-Corredoira, Martín; Kroupa, Pavel

    2016-01-01

    We show that a significant correlation (up to 5σ) emerges between the bulge index, defined to be larger for a larger bulge/disk ratio, in spiral galaxies with similar luminosities in the Galaxy Zoo 2 of the Sloan Digital Sky Survey and the number of tidal-dwarf galaxies in the catalog by Kaviraj et al. In the standard cold or warm dark matter cosmological models, the number of satellite galaxies correlates with the circular velocity of the dark matter host halo. In generalized gravity models without cold or warm dark matter, such a correlation does not exist, because host galaxies cannot capture infalling dwarf galaxies due to the absence of dark-matter-induced dynamical friction. However, in such models, a correlation is expected to exist between the bulge mass and the number of satellite galaxies because bulges and tidal-dwarf satellite galaxies form in encounters between host galaxies. This is not predicted by dark matter models in which bulge mass and the number of satellites are a priori uncorrelated because higher bulge/disk ratios do not imply higher dark/luminous ratios. Hence, our correlation reproduces the prediction of scenarios without dark matter, whereas an explanation is not found readily from the a priori predictions of the standard scenario with dark matter. Further research is needed to explore whether some application of the standard theory may explain this correlation

  13. Identifying the Location in the Host Galaxy of Short GRB 1111l7A with the Chandra Sub- Arcsecond Position

    Science.gov (United States)

    Sakamoto, Takanori; Troja, E.; Aoki, K.; Guiriec, S.; Im, M.; Leloudas, G.; Malesani, D.; Melandri, A.; deUgartePostigo, A.; Urata, Y.; hide

    2012-01-01

    We present our successful program using Chandra for identifying the X-ray afterglow with sub-arcsecond accuracy for the short GRB 111117A d iscovered by Swift and Fermi. Thanks to our rapid target of opportuni ty request, Chandra clearly detected the X-ray afterglow, whereas no optical afterglow was found in deep optical observations. Instead, we clearly detect the host galaxy in optica; and also in near-infrared b ands. We found that the best photometric redshift fitofthe host is z = 1.31:(+0.46/-0.23) (90% confidence), making it one of the highest redshift short GRBs. Furthermore, we see an offset of 1.0+/-O.2 arcseco nds, which corresponds to 8.4+/-1.7 kpc aSBuming z= 1.31, between the host and the afterglow position. We discuss the importance of using Chandra for obtaining sub-arcsecond localization of the afterglow in X -rays for short GRBs to study GRB environments in great detail.

  14. THE UNIFICATION OF POWERFUL QUASARS AND RADIO GALAXIES AND THEIR RELATION TO OTHER MASSIVE GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Podigachoski, Pece; Barthel, Peter [Kapteyn Astronomical Institute, University of Groningen, 9747 AD Groningen (Netherlands); Haas, Martin [Astronomisches Institut, Ruhr Universität, D-44801 Bochum (Germany); Leipski, Christian [Max-Planck Institut für Astronomie (MPIA), D-69117 Heidelberg (Germany); Wilkes, Belinda, E-mail: podigachoski@astro.rug.nl [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

    2015-06-10

    The unification model for powerful radio galaxies (RGs) and radio-loud quasars postulates that these objects are intrinsically the same but viewed along different angles. Herschel Space Observatory data permit the assessment of that model in the far-infrared spectral window. We analyze photometry from Spitzer and Herschel for the distant 3CR hosts, and find that RGs and quasars have different mid-infrared, but indistinguishable far-infrared colors. Both these properties, the former being orientation dependent and the latter orientation invariant, are in line with expectations from the unification model. Adding powerful radio-quiet active galaxies and typical massive star-forming (SF) galaxies to the analysis, we demonstrate that infrared colors not only provide an orientation indicator, but can also distinguish active from SF galaxies.

  15. THE UNIFICATION OF POWERFUL QUASARS AND RADIO GALAXIES AND THEIR RELATION TO OTHER MASSIVE GALAXIES

    International Nuclear Information System (INIS)

    Podigachoski, Pece; Barthel, Peter; Haas, Martin; Leipski, Christian; Wilkes, Belinda

    2015-01-01

    The unification model for powerful radio galaxies (RGs) and radio-loud quasars postulates that these objects are intrinsically the same but viewed along different angles. Herschel Space Observatory data permit the assessment of that model in the far-infrared spectral window. We analyze photometry from Spitzer and Herschel for the distant 3CR hosts, and find that RGs and quasars have different mid-infrared, but indistinguishable far-infrared colors. Both these properties, the former being orientation dependent and the latter orientation invariant, are in line with expectations from the unification model. Adding powerful radio-quiet active galaxies and typical massive star-forming (SF) galaxies to the analysis, we demonstrate that infrared colors not only provide an orientation indicator, but can also distinguish active from SF galaxies

  16. IDENTIFYING THE LOCATION IN THE HOST GALAXY OF THE SHORT GRB 111117A WITH THE CHANDRA SUBARCSECOND POSITION

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, T.; Troja, E. [Center for Research and Exploration in Space Science and Technology (CRESST), NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Aoki, K. [Subaru Telescope, National Astronomical Observatory of Japan, 650 North A' ohoku Place, Hilo, HI 96720 (United States); Guiriec, S.; Barthelmy, S. D. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Im, M.; Jeon, Y. [Center for the Exploration of the Origin of the Universe (CEOU), Department of Physics and Astronomy, Seoul National University, Seoul, 151-747 (Korea, Republic of); Leloudas, G.; Malesani, D.; De Ugarte Postigo, A.; Andersen, M. I. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen O (Denmark); Melandri, A.; D' Avanzo, P. [INAF-Osservatorio Astronomico di Brera, via Bianchi 46, I-23807 Merate (Italy); Urata, Y. [Institute of Astronomy, National Central University, Chung-Li 32054, Taiwan (China); Xu, D. [Department of Particle Physics and Astronomy, The Weizmann Institute of Science, Rehovot 76100 (Israel); Gorosabel, J.; Sanchez-Ramirez, R. [Instituto de Astrofisica de Andalucia (CSIC), Glorieta de la Astronomia s/n, E-18008 Granada (Spain); Bai, J. [Yunnan Astronomical Observatory, Chinese Academy of Sciences, Kunming, Yunnan Province, 650011 (China); Briggs, M. S. [Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35805 (United States); Foley, S. [Max-Planck-Institut fuer extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching (Germany); and others

    2013-03-20

    We present our successful Chandra program designed to identify, with subarcsecond accuracy, the X-ray afterglow of the short GRB 111117A, which was discovered by Swift and Fermi. Thanks to our rapid target of opportunity request, Chandra clearly detected the X-ray afterglow, though no optical afterglow was found in deep optical observations. The host galaxy was clearly detected in the optical and near-infrared band, with the best photometric redshift of z=1.31{sub -0.23}{sup +0.46} (90% confidence), making it one of the highest known short gamma-ray burst (GRB) redshifts. Furthermore, we see an offset of 1.0 {+-} 0.2 arcsec, which corresponds to 8.4 {+-} 1.7 kpc, between the host and the afterglow position. We discuss the importance of using Chandra for obtaining subarcsecond X-ray localizations of short GRB afterglows to study GRB environments.

  17. Type I Shell Galaxies as a Test of Gravity Models

    Energy Technology Data Exchange (ETDEWEB)

    Vakili, Hajar; Rahvar, Sohrab [Department of Physics, Sharif University of Technology, P.O. Box 11365-9161, Tehran (Iran, Islamic Republic of); Kroupa, Pavel, E-mail: vakili@physics.sharif.edu [Helmholtz-Institut für Strahlen-und Kernphysik, Universität Bonn, Nussallee 14-16, D-53115 Bonn (Germany)

    2017-10-10

    Shell galaxies are understood to form through the collision of a dwarf galaxy with an elliptical galaxy. Shell structures and kinematics have been noted to be independent tools to measure the gravitational potential of the shell galaxies. We compare theoretically the formation of shells in Type I shell galaxies in different gravity theories in this work because this is so far missing in the literature. We include Newtonian plus dark halo gravity, and two non-Newtonian gravity models, MOG and MOND, in identical initial systems. We investigate the effect of dynamical friction, which by slowing down the dwarf galaxy in the dark halo models limits the range of shell radii to low values. Under the same initial conditions, shells appear on a shorter timescale and over a smaller range of distances in the presence of dark matter than in the corresponding non-Newtonian gravity models. If galaxies are embedded in a dark matter halo, then the merging time may be too rapid to allow multi-generation shell formation as required by observed systems because of the large dynamical friction effect. Starting from the same initial state, the observation of small bright shells in the dark halo model should be accompanied by large faint ones, while for the case of MOG, the next shell generation patterns iterate with a specific time delay. The first shell generation pattern shows a degeneracy with the age of the shells and in different theories, but the relative distance of the shells and the shell expansion velocity can break this degeneracy.

  18. A multi-wavelength view of the central kiloparsec region in the luminous infrared galaxy NGC 1614

    Energy Technology Data Exchange (ETDEWEB)

    Herrero-Illana, Rubén; Pérez-Torres, Miguel Á.; Alberdi, Antxon; Hernández-García, Lorena [Instituto de Astrofísica de Andalucía-CSIC, P.O. Box 3004, E-18008 Granada (Spain); Alonso-Herrero, Almudena [Instituto de Física de Cantabria, CSIC-Universidad de Cantabria, E-39005 Santander (Spain); Colina, Luis [Centro de Astrobiología (INTA-CSIC), Ctra. de Torrejón a Ajalvir, km 4, E-28850 Torrejón de Ardoz, Madrid (Spain); Efstathiou, Andreas [School of Sciencies, European University Cyprus, Diogenes Street, Engomi, 1516 Nicosia (Cyprus); Miralles-Caballero, Daniel [Instituto de Física Teórica, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Väisänen, Petri [South African Astronomical Observatory, P.O. Box 9, Observatory 7935 Cape Town (South Africa); Packham, Christopher C. [Department of Physics and Astronomy, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249 (United States); Rajpaul, Vinesh [Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Zijlstra, Albert A. [Jodrell Bank Centre for Astrophysics, University of Manchester, Manchester M13 9PL (United Kingdom)

    2014-05-10

    The Luminous Infrared Galaxy NGC 1614 hosts a prominent circumnuclear ring of star formation. However, the nature of the dominant emitting mechanism in its central ∼100 pc is still under debate. We present sub-arcsecond angular resolution radio, mid-infrared, Paα, optical, and X-ray observations of NGC 1614, aimed at studying in detail both the circumnuclear ring and the nuclear region. The 8.4 GHz continuum emission traced by the Very Large Array and the Gemini/T-ReCS 8.7 μm emission, as well as the Paα line emission, show remarkable morphological similarities within the star-forming ring, suggesting that the underlying emission mechanisms are tightly related. We used a Hubble Space Telescope/NICMOS Paα map of similar resolution to our radio maps to disentangle the thermal free-free and non-thermal synchrotron radio emission, from which we obtained the intrinsic synchrotron power law for each individual region within the central kiloparsec of NGC 1614. The radio ring surrounds a relatively faint, steep-spectrum source at the very center of the galaxy, suggesting that the central source is not powered by an active galactic nucleus (AGN), but rather by a compact (r ≲ 90 pc) starburst (SB). Chandra X-ray data also show that the central kiloparsec region is dominated by SB activity, without requiring the existence of an AGN. We also used publicly available infrared data to model-fit the spectral energy distribution of both the SB ring and a putative AGN in NGC 1614. In summary, we conclude that there is no need to invoke an AGN to explain the observed bolometric properties of the galaxy.

  19. Stellar-to-halo mass relation of cluster galaxies

    International Nuclear Information System (INIS)

    Niemiec, Anna; Jullo, Eric; Limousin, Marceau; Giocoli, Carlo

    2017-01-01

    In the formation of galaxy groups and clusters, the dark matter haloes containing satellite galaxies are expected to be tidally stripped in gravitational interactions with the host. We use galaxy-galaxy weak lensing to measure the average mass of dark matter haloes of satellite galaxies as a function of projected distance to the centre of the host, since stripping is expected to be greater for satellites closer to the centre of the cluster. We further classify the satellites according to their stellar mass: assuming that the stellar component of the galaxy is less disrupted by tidal stripping, stellar mass can be used as a proxy of the infall mass. We study the stellar to halo mass relation of satellites as a function of the cluster-centric distance to measure tidal stripping. We use the shear catalogues of the DES science veri cation archive, the CFHTLenS and the CFHT Stripe 82 surveys, and we select satellites from the redMaPPer catalogue of clusters. For galaxies located in the outskirts of clusters, we nd a stellar to halo mass relation in good agreement with the theoretical expectations from Moster, Naab & White (2013) for central galaxies. In the centre of the cluster, we nd that this relation is shifted to smaller halo mass for a given stellar mass. We interpret this nding as further evidence for tidal stripping of dark matter haloes in high density environments.

  20. A SAMPLE OF SEYFERT-2 GALAXIES WITH ULTRALUMINOUS GALAXY-WIDE NARROW-LINE REGIONS: QUASAR LIGHT ECHOES?

    International Nuclear Information System (INIS)

    Schirmer, M.; Diaz, R.; Levenson, N. A.; Winge, C.; Holhjem, K.

    2013-01-01

    We report the discovery of Seyfert-2 galaxies in SDSS-DR8 with galaxy-wide, ultraluminous narrow-line regions (NLRs) at redshifts z = 0.2-0.6. With a space density of 4.4 Gpc –3 at z ∼ 0.3, these 'green beans' (GBs) are amongst the rarest objects in the universe. We are witnessing an exceptional and/or short-lived phenomenon in the life cycle of active galactic nuclei (AGNs). The main focus of this paper is on a detailed analysis of the GB prototype galaxy J2240–0927 (z = 0.326). Its NLR extends over 26 × 44 kpc and is surrounded by an extended NLR. With a total [O III] λ5008 luminosity of (5.7 ± 0.9) × 10 43 erg s –1 , this is one of the most luminous NLRs known around any type-2 galaxy. Using VLT/XSHOOTER, we show that the NLR is powered by an AGN, and we derive resolved extinction, density, and ionization maps. Gas kinematics is disturbed on a global scale, and high-velocity outflows are absent or faint. This NLR is unlike any other NLR or extended emission line region known. Spectroscopy with Gemini/GMOS reveals extended, high-luminosity [O III] emission also in other GBs. WISE 24 μm luminosities are 5-50 times lower than predicted by the [O III] fluxes, suggesting that the NLRs reflect earlier, very active quasar states that have strongly subsided in less than a galaxy's light-crossing time. These light echoes, or ionization echoes, are about 100 times more luminous than any other such echo known to date. X-ray data are needed for photoionization modeling and to verify the light echoes.

  1. Smooth H I Low Column Density Outskirts in Nearby Galaxies

    Science.gov (United States)

    Ianjamasimanana, R.; Walter, Fabian; de Blok, W. J. G.; Heald, George H.; Brinks, Elias

    2018-06-01

    The low column density gas at the outskirts of galaxies as traced by the 21 cm hydrogen line emission (H I) represents the interface between galaxies and the intergalactic medium, i.e., where galaxies are believed to get their supply of gas to fuel future episodes of star formation. Photoionization models predict a break in the radial profiles of H I at a column density of ∼5 × 1019 cm‑2 due to the lack of self-shielding against extragalactic ionizing photons. To investigate the prevalence of such breaks in galactic disks and to characterize what determines the potential edge of the H I disks, we study the azimuthally averaged H I column density profiles of 17 nearby galaxies from the H I Nearby Galaxy Survey and supplemented in two cases with published Hydrogen Accretion in LOcal GAlaxieS data. To detect potential faint H I emission that would otherwise be undetected using conventional moment map analysis, we line up individual profiles to the same reference velocity and average them azimuthally to derive stacked radial profiles. To do so, we use model velocity fields created from a simple extrapolation of the rotation curves to align the profiles in velocity at radii beyond the extent probed with the sensitivity of traditional integrated H I maps. With this method, we improve our sensitivity to outer-disk H I emission by up to an order of magnitude. Except for a few disturbed galaxies, none show evidence of a sudden change in the slope of the H I radial profiles: the alleged signature of ionization by the extragalactic background.

  2. Alignment between galaxies and large-scale structure

    International Nuclear Information System (INIS)

    Faltenbacher, A.; Li Cheng; White, Simon D. M.; Jing, Yi-Peng; Mao Shude; Wang Jie

    2009-01-01

    Based on the Sloan Digital Sky Survey DR6 (SDSS) and the Millennium Simulation (MS), we investigate the alignment between galaxies and large-scale structure. For this purpose, we develop two new statistical tools, namely the alignment correlation function and the cos(2θ)-statistic. The former is a two-dimensional extension of the traditional two-point correlation function and the latter is related to the ellipticity correlation function used for cosmic shear measurements. Both are based on the cross correlation between a sample of galaxies with orientations and a reference sample which represents the large-scale structure. We apply the new statistics to the SDSS galaxy catalog. The alignment correlation function reveals an overabundance of reference galaxies along the major axes of red, luminous (L ∼ * ) galaxies out to projected separations of 60 h- 1 Mpc. The signal increases with central galaxy luminosity. No alignment signal is detected for blue galaxies. The cos(2θ)-statistic yields very similar results. Starting from a MS semi-analytic galaxy catalog, we assign an orientation to each red, luminous and central galaxy, based on that of the central region of the host halo (with size similar to that of the stellar galaxy). As an alternative, we use the orientation of the host halo itself. We find a mean projected misalignment between a halo and its central region of ∼ 25 deg. The misalignment decreases slightly with increasing luminosity of the central galaxy. Using the orientations and luminosities of the semi-analytic galaxies, we repeat our alignment analysis on mock surveys of the MS. Agreement with the SDSS results is good if the central orientations are used. Predictions using the halo orientations as proxies for central galaxy orientations overestimate the observed alignment by more than a factor of 2. Finally, the large volume of the MS allows us to generate a two-dimensional map of the alignment correlation function, which shows the reference

  3. Active galactic nuclei. From the central engine to the host galaxy

    International Nuclear Information System (INIS)

    Gilbert, Didier

    2008-01-01

    After some recalls on galaxies, on their classification, on the Universe expansion and on the Hubble law, this academic report addresses active galactic nuclei (AGN) by describing their anatomy (central black hole, accretion disk, jets and winds, Broad Line Region, Narrow Line Region, molecular torus and dusts, radio lobes). The author also presents the unified model. In the next part, he proposes an overview of active galaxies and active galactic nuclei by distinguishing galaxies with a strong stellar activity, radio-quiet and radio-loud active galactic nuclei. Examples are presented for each of these types. In the last part, the author draws perspectives for research in cosmology, and outlines questions which are still to be answered

  4. Globular Clusters Shine in a Galaxy Lacking Dark Matter

    Science.gov (United States)

    Kohler, Susanna

    2018-04-01

    You may have seen recent news about NGC 1052DF2, a galaxy that was discovered to have little or no dark matter. Now, a new study explores what NGC 1052DF2 does have: an enigmatic population of unusually large and luminous globular clusters.Keck/LRIS spectra (left and right) and HST images (center) of the 11 clusters associated with NGC 1052DF2. The color images each span 1 1. [van Dokkum et al. 2018]An Unusual DwarfThe ultra-diffuse galaxy NGC 1052DF2, originally identified with the Dragonfly Telescope Array, has puzzled astronomers since the discovery that its dynamical mass determined by the motions of globular-cluster-like objects spotted within it is essentially the same as its stellar mass. This equivalence implies that the galaxy is strangely lacking dark matter; the upper limit set on its dark matter halo is 400 times smaller than what we would expect for such a dwarf galaxy.Led by Pieter van Dokkum (Yale University), the team that made this discovery has now followed up with detailed Hubble Space Telescope imaging and Keck spectroscopy. Their goal? To explore the objects that allowed them to make the dynamical-mass measurement: the oddly bright globular clusters of NGC 1052DF2.Sizes (circularized half-light radii) vs. absolute magnitudes for globular clusters in NGC1052DF2 (black) and the Milky Way (red). [Adapted from van Dokkum et al. 2018]Whats Up with the Globular Clusters?Van Dokkum and collaborators spectroscopically confirmed 11 compact objects associated with the faint galaxy. These objects are globular-cluster-like in their appearance, but the peak of their luminosity distribution is offset by a factor of four from globular clusters of other galaxies; these globular clusters are significantly brighter than is typical.Using the Hubble imaging, the authors determined that NGC 1052DF2s globular clusters are more than twice the size of the Milky Ways globular clusters in the same luminosity range. As is typical for globular clusters, they are an old

  5. Intra-night optical variability properties of X-ray bright Narrow-line Seyfert 1 galaxies

    Science.gov (United States)

    Ojha, Vineet; Chand, Hum; Gopal-Krishna

    2018-04-01

    We present Intra Night Optical Variability (INOV) study of the 9 Narrow-line Seyfert 1 (NLSy 1) galaxies which are detected in X-ray at more than 3σ level. Our observations cover a total of 9 nights ( 36 hr) with each NLSy 1 monitored for ≥ 3.5 hr in each night. After applying F-test to assess variability status of these sources, we found none of these sources to be variable. Such non-variability nature of X-ray detected NLSy 1 galaxies suggests the lack of jet dominance as far as X-ray emission is concerned. Higher photometric accuracy for these faint sources, achievable with the newly installed ARIES 3.6m DOT will be helpful.

  6. STELLAR, GAS, AND DARK MATTER CONTENT OF BARRED GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Cervantes Sodi, Bernardo, E-mail: b.cervantes@crya.unam.mx [Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Campus Morelia, A.P. 3-72, C.P. 58089 Michoacán, México (Mexico)

    2017-01-20

    We select a sample of galaxies from the Sloan Digital Sky Survey Data Release 7 (SDSS-DR7) where galaxies are classified, through visual inspection, as hosting strong bars, weak bars, or as unbarred galaxies, and make use of H i mass and kinematic information from the Arecibo Legacy Fast ALFA survey catalog, to study the stellar, atomic gas, and dark matter content of barred disk galaxies. We find, in agreement with previous studies, that the bar fraction increases with increasing stellar mass. A similar trend is found with total baryonic mass, although the dependence is not as strong as with stellar mass, due to the contribution of gas. The bar fraction shows a decrease with increasing gas mass fraction. This anticorrelation between the likelihood of a galaxy hosting a bar with the gas richness of the galaxy results from the inhibiting effect the gas has in the formation of bars. We also find that for massive galaxies with stellar masses larger than 10{sup 10} M {sub ⊙}, at fixed stellar mass, the bar fraction decreases with increasing global halo mass (i.e., halo mass measured up to a radius of the order of the H i disk extent).

  7. Optical, Near-IR, and X-Ray Observations of SN 2015J and Its Host Galaxy

    Science.gov (United States)

    Nucita, A. A.; De Paolis, F.; Saxton, R.; Testa, V.; Strafella, F.; Read, A.; Licchelli, D.; Ingrosso, G.; Convenga, F.; Boutsia, K.

    2017-12-01

    SN 2015J was discovered on 2015 April 27th and is classified as an SN IIn. At first, it appeared to be an orphan SN candidate, I.e., without any clear identification of its host galaxy. Here, we present an analysis of the observations carried out by the VLT 8 m class telescope with the FORS2 camera in the R band and the Magellan telescope (6.5 m) equipped with the IMACS Short-Camera (V and I filters) and the FourStar camera (Ks filter). We show that SN 2015J resides in what appears to be a very compact galaxy, establishing a relation between the SN event and its natural host. We also present and discuss archival and new X-ray data centered on SN 2015J. At the time of the supernova explosion, Swift/XRT observations were made and a weak X-ray source was detected at the location of SN 2015J. Almost one year later, the same source was unambiguously identified during serendipitous observations by Swift/XRT and XMM-Newton, clearly showing an enhancement of the 0.3-10 keV band flux by a factor ≃ 30 with respect to the initial state. Swift/XRT observations show that the source is still active in the X-rays at a level of ≃ 0.05 counts s-1. The unabsorbed X-ray luminosity derived from the XMM-Newton slew and SWIFT observations, {L}x≃ 5× {10}41 erg s-1, places SN 2015J among the brightest young supernovae in X-rays. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA, with ESO Telescopes at the La Silla-Paranal Observatory under program ID 298.D-5016(A), and with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile. We also acknowledge the use of public data from the Swift data archive.

  8. The APM galaxy survey: Pt. 2; Photometric corrections

    Energy Technology Data Exchange (ETDEWEB)

    Maddox, S.J.; Efstathiou, G.; Sutherland, W.J. (Oxford Univ. (UK). Dept. of Astrophysics)

    1990-10-01

    We describe the methods that we have used to establish accurate photometry in a survey of two million galaxies brighter then b{sub j} 20.5 covering over 4300 square degrees of the South Galactic cap. We apply a field correction for vignetting and differential desensitization which is accurate to ''< approx''0.04 mag across each of 185 Schmidt plates. Images in the overlapping regions of neighbouring plate pairs are used to establish a uniform magnitude system over the entire survey. We discuss the residual magnitude differences in the overlaps and the propagation of plate-to-plate magnitude errors across the network of plates. We argue that the rms plate zero-point error in the final matched survey is 0.04 mag. CCD photometry of 40 faint galaxy sequences is used to calibrate the matched magnitudes and to set stringent limits on large-scale gradients in the matched survey photometry. (author).

  9. A search for AGN activity in Infrared-Faint Radio Sources (IFRS)

    Science.gov (United States)

    Lenc, Emil; Middelberg, Enno; Norris, Ray; Mao, Minnie

    2010-04-01

    We propose to observe a large sample of radio sources from the ATLAS (Australia Telescope Large Area Survey) source catalogue with the LBA, to determine their compactness. The sample consists of 36 sources with no counterpart in the co-located SWIRE survey (3.6 um to 160 um), carried out with the Spitzer Space Telescope. This rare class of sources, dubber Infrared-Faint Radio Sources (IFRS), is inconsistent with current galaxy evolution models. VLBI observations are an essential way to obtain further clues on what these objects are and why they are hidden from infrared observations. We will measure the flux densities on long baselines to determine their compactness. Only five IFRS have been previously targeted with VLBI observations (resulting in two detections). We propose using single baseline (Parkes-ATCA) eVLBI observations with the LBA at 1 Gbps to maximise sensitivity. With the observations proposed here we will increase the number of VLBI-observed IFRS from 5 to 36, allowing us to draw statistical conclusions about this intriguing new class of objects.

  10. The H IX galaxy survey - II. H I kinematics of H I eXtreme galaxies

    Science.gov (United States)

    Lutz, K. A.; Kilborn, V. A.; Koribalski, B. S.; Catinella, B.; Józsa, G. I. G.; Wong, O. I.; Stevens, A. R. H.; Obreschkow, D.; Dénes, H.

    2018-05-01

    By analysing a sample of galaxies selected from the H I Parkes All Sky Survey (HIPASS) to contain more than 2.5 times their expected H I content based on their optical properties, we investigate what drives these H I eXtreme (H IX) galaxies to be so H I-rich. We model the H I kinematics with the Tilted Ring Fitting Code TiRiFiC and compare the observed H IX galaxies to a control sample of galaxies from HIPASS as well as simulated galaxies built with the semi-analytic model DARK SAGE. We find that (1) H I discs in H IX galaxies are more likely to be warped and more likely to host H I arms and tails than in the control galaxies, (2) the average H I and average stellar column density of H IX galaxies is comparable to the control sample, (3) H IX galaxies have higher H I and baryonic specific angular momenta than control galaxies, (4) most H IX galaxies live in higher spin haloes than most control galaxies. These results suggest that H IX galaxies are H I-rich because they can support more H I against gravitational instability due to their high specific angular momentum. The majority of the H IX galaxies inherits their high specific angular momentum from their halo. The H I content of H IX galaxies might be further increased by gas-rich minor mergers. This paper is based on data obtained with the Australia Telescope Compact Array through the large program C 2705.

  11. The influence of galaxy environment on the stellar initial mass function of early-type galaxies

    Science.gov (United States)

    Rosani, Giulio; Pasquali, Anna; La Barbera, Francesco; Ferreras, Ignacio; Vazdekis, Alexandre

    2018-06-01

    In this paper, we investigate whether the stellar initial mass function (IMF) of early-type galaxies depends on their host environment. To this purpose, we have selected a sample of early-type galaxies from the SPIDER catalogue, characterized their environment through the group catalogue of Wang et al., and used their optical Sloan Digital Sky Survey (SDSS) spectra to constrain the IMF slope, through the analysis of IMF-sensitive spectral indices. To reach a high enough signal-to-noise ratio, we have stacked spectra in velocity dispersion (σ0) bins, on top of separating the sample by galaxy hierarchy and host halo mass, as proxies for galaxy environment. In order to constrain the IMF, we have compared observed line strengths and predictions of MIUSCAT/EMILES synthetic stellar population models, with varying age, metallicity, and `bimodal' (low-mass tapered) IMF slope (Γ _b). Consistent with previous studies, we find that Γ _b increases with σ0, becoming bottom-heavy (i.e. an excess of low-mass stars with respect to the Milky Way like IMF) at high σ0. We find that this result is robust against the set of isochrones used in the stellar population models, as well as the way the effect of elemental abundance ratios is taken into account. We thus conclude that it is possible to use currently state-of-the-art stellar population models and intermediate resolution spectra to consistently probe IMF variations. For the first time, we show that there is no dependence of Γb on environment or galaxy hierarchy, as measured within the 3 arcsec SDSS fibre, thus leaving the IMF as an intrinsic galaxy property, possibly set already at high redshift.

  12. Gas, Stars, and Star Formation in Alfalfa Dwarf Galaxies

    Science.gov (United States)

    Huang, Shan; Haynes, Martha P.; Giovanelli, Riccardo; Brinchmann, Jarle; Stierwalt, Sabrina; Neff, Susan G.

    2012-01-01

    We examine the global properties of the stellar and Hi components of 229 low H i mass dwarf galaxies extracted from the ALFALFA survey, including a complete sample of 176 galaxies with H i masses ALFALFA dwarfs are faint and of low surface brightness; only 56% of those within the SDSS footprint have a counterpart in the SDSS spectroscopic survey. A large fraction of the dwarfs have high specific star formation rates (SSFRs), and estimates of their SFRs and M* obtained by SED fitting are systematically smaller than ones derived via standard formulae assuming a constant SFR. The increased dispersion of the SSFR distribution at M* approximately less than10(exp 8)M(sub 0) is driven by a set of dwarf galaxies that have low gas fractions and SSFRs; some of these are dE/dSphs in the Virgo Cluster. The imposition of an upper Hi mass limit yields the selection of a sample with lower gas fractions for their M* than found for the overall ALFALFA population. Many of the ALFALFA dwarfs, particularly the Virgo members, have H i depletion timescales shorter than a Hubble time. An examination of the dwarf galaxies within the full ALFALFA population in the context of global star formation (SF) laws is consistent with the general assumptions that gas-rich galaxies have lower SF efficiencies than do optically selected populations and that Hi disks are more extended than stellar ones.

  13. Automated detection of very Low Surface Brightness galaxies in the Virgo Cluster

    Science.gov (United States)

    Prole, D. J.; Davies, J. I.; Keenan, O. C.; Davies, L. J. M.

    2018-04-01

    We report the automatic detection of a new sample of very low surface brightness (LSB) galaxies, likely members of the Virgo cluster. We introduce our new software, DeepScan, that has been designed specifically to detect extended LSB features automatically using the DBSCAN algorithm. We demonstrate the technique by applying it over a 5 degree2 portion of the Next-Generation Virgo Survey (NGVS) data to reveal 53 low surface brightness galaxies that are candidate cluster members based on their sizes and colours. 30 of these sources are new detections despite the region being searched specifically for LSB galaxies previously. Our final sample contains galaxies with 26.0 ≤ ⟨μe⟩ ≤ 28.5 and 19 ≤ mg ≤ 21, making them some of the faintest known in Virgo. The majority of them have colours consistent with the red sequence, and have a mean stellar mass of 106.3 ± 0.5M⊙ assuming cluster membership. After using ProFit to fit Sérsic profiles to our detections, none of the new sources have effective radii larger than 1.5 Kpc and do not meet the criteria for ultra-diffuse galaxy (UDG) classification, so we classify them as ultra-faint dwarfs.

  14. zBEAMS: a unified solution for supernova cosmology with redshift uncertainties

    International Nuclear Information System (INIS)

    Roberts, Ethan; Lochner, Michelle; Bassett, Bruce A.; Lablanche, Pierre-Yves; Agarwal, Shankar; Fonseca, José

    2017-01-01

    Supernova cosmology without spectra will be an important component of future surveys such as LSST. This lack of supernova spectra results in uncertainty in the redshifts which, if ignored, leads to significantly biased estimates of cosmological parameters. Here we present a hierarchical Bayesian formalism— zBEAMS—that addresses this problem by marginalising over the unknown or uncertain supernova redshifts to produce unbiased cosmological estimates that are competitive with supernova data with spectroscopically confirmed redshifts. zBEAMS provides a unified treatment of both photometric redshifts and host galaxy misidentification (occurring due to chance galaxy alignments or faint hosts), effectively correcting the inevitable contamination in the Hubble diagram. Like its predecessor BEAMS, our formalism also takes care of non-Ia supernova contamination by marginalising over the unknown supernova type. We illustrate this technique with simulations of supernovae with photometric redshifts and host galaxy misidentification. A novel feature of the photometric redshift case is the important role played by the redshift distribution of the supernovae.

  15. zBEAMS: a unified solution for supernova cosmology with redshift uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Ethan; Lochner, Michelle; Bassett, Bruce A.; Lablanche, Pierre-Yves; Agarwal, Shankar [African Institute for Mathematical Sciences, 6 Melrose Road, Muizenberg, 7945, Cape Town (South Africa); Fonseca, José, E-mail: rbreth001@myuct.ac.za, E-mail: michelle@aims.ac.za, E-mail: jfonseca@uwc.ac.za, E-mail: bruce.a.bassett@gmail.com, E-mail: plablanche@aims.ac.za, E-mail: agarwalshankar@aims.ac.za [Department of Physics and Astronomy, University of the Western Cape, Cape Town 7535 (South Africa)

    2017-10-01

    Supernova cosmology without spectra will be an important component of future surveys such as LSST. This lack of supernova spectra results in uncertainty in the redshifts which, if ignored, leads to significantly biased estimates of cosmological parameters. Here we present a hierarchical Bayesian formalism— zBEAMS—that addresses this problem by marginalising over the unknown or uncertain supernova redshifts to produce unbiased cosmological estimates that are competitive with supernova data with spectroscopically confirmed redshifts. zBEAMS provides a unified treatment of both photometric redshifts and host galaxy misidentification (occurring due to chance galaxy alignments or faint hosts), effectively correcting the inevitable contamination in the Hubble diagram. Like its predecessor BEAMS, our formalism also takes care of non-Ia supernova contamination by marginalising over the unknown supernova type. We illustrate this technique with simulations of supernovae with photometric redshifts and host galaxy misidentification. A novel feature of the photometric redshift case is the important role played by the redshift distribution of the supernovae.

  16. Dying Stars Indicate Lots of Dark Matter in Giant Galaxy

    Science.gov (United States)

    1994-04-01

    Very difficult and time-consuming observations performed with the ESO 3.5-metre New Technology Telescope (NTT) in November 1993 by an international team of astronomers [1], indicate that up to 90 percent of the matter in a distant giant galaxy may be of a kind that cannot be seen by normal telescopes. The astronomers were able to observe the individual motions of 37 extremely faint Planetary Nebulae [2] in the outskirts of the giant elliptical galaxy NGC 1399 that is located at the centre of the southern Fornax cluster of galaxies, at a distance of about 50 million light-years. The mass of the galaxy can be inferred from these motions: the faster they are, the more massive is the galaxy. Surprisingly, the total mass of NGC 1399 found from these new measurements is about ten times as large as the combined mass of the stars and nebulae seen in this galaxy. These new results also have important implications for the current ideas about the formation of giant galaxies. GIANT GALAXIES Galaxies are the basic building blocks of the Universe. Some look like spinning spirals, like our own Milky Way galaxy, with its several hundreds of billions of stars in a flat, rotating disk. Some galaxies lead a comparatively quiet life, others are violent and explosive. But perhaps the most enigmatic of them all are the largest ones, the giant elliptical galaxies. They are huge collections of stars and hot gas, 100 times brighter than the Milky Way and in many of them, the hot gas is a powerful emitter of radio waves and X-rays. The giant galaxies are mostly found at the centres of vast clusters of hundreds or thousands of smaller galaxies, like swarms of bees about the central hive. How did these great galaxies form at the centres of their clusters? Astronomers who make computer simulations of the early Universe believe they know the answer. In their simulations, they see these giant galaxies forming by gradual aggregation of small clumps of matter falling towards the centre, thereby

  17. GRB 080517: a local, low-luminosity gamma-ray burst in a dusty galaxy at z = 0.09

    Science.gov (United States)

    Stanway, Elizabeth R.; Levan, Andrew J.; Tanvir, Nial; Wiersema, Klaas; van der Horst, Alexander; Mundell, Carole G.; Guidorzi, Cristiano

    2015-02-01

    We present an analysis of the photometry and spectroscopy of the host galaxy of Swift-detected GRB 080517. From our optical spectroscopy, we identify a redshift of z = 0.089 ± 0.003, based on strong emission lines, making this a rare example of a very local, low-luminosity, long gamma-ray burst. The galaxy is detected in the radio with a flux density of S4.5 GHz = 0.22 ± 0.04 mJy - one of relatively few known gamma-ray bursts hosts with a securely measured radio flux. Both optical emission lines and a strong detection at 22 μm suggest that the host galaxy is forming stars rapidly, with an inferred star formation rate ˜16 M⊙ yr-1 and a high dust obscuration (E(B - V) > 1, based on sightlines to the nebular emission regions). The presence of a companion galaxy within a projected distance of 25 kpc, and almost identical in redshift, suggests that star formation may have been triggered by galaxy-galaxy interaction. However, fitting of the remarkably flat spectral energy distribution from the ultraviolet through to the infrared suggests that an older, 500 Myr post-starburst stellar population is present along with the ongoing star formation. We conclude that the host galaxy of GRB 080517 is a valuable addition to the still very small sample of well-studied local gamma-ray burst hosts.

  18. Does the galaxy-halo connection vary with environment?

    Science.gov (United States)

    Dragomir, Radu; Rodríguez-Puebla, Aldo; Primack, Joel R.; Lee, Christoph T.

    2018-05-01

    (Sub)halo abundance matching (SHAM) assumes that one (sub) halo property, such as mass Mvir or peak circular velocity Vpeak, determines properties of the galaxy hosted in each (sub) halo such as its luminosity or stellar mass. This assumption implies that the dependence of galaxy luminosity functions (GLFs) and the galaxy stellar mass function (GSMF) on environmental density is determined by the corresponding halo density dependence. In this paper, we test this by determining from a Sloan Digital Sky Survey sample the observed dependence with environmental density of the ugriz GLFs and GSMF for all galaxies, and for central and satellite galaxies separately. We then show that the SHAM predictions are in remarkable agreement with these observations, even when the galaxy population is divided between central and satellite galaxies. However, we show that SHAM fails to reproduce the correct dependence between environmental density and g - r colour for all galaxies and central galaxies, although it better reproduces the colour dependence on environmental density of satellite galaxies.

  19. Intracluster light in clusters of galaxies at redshifts 0.4 < z < 0.8

    Science.gov (United States)

    Guennou, L.; Adami, C.; Da Rocha, C.; Durret, F.; Ulmer, M. P.; Allam, S.; Basa, S.; Benoist, C.; Biviano, A.; Clowe, D.; Gavazzi, R.; Halliday, C.; Ilbert, O.; Johnston, D.; Just, D.; Kron, R.; Kubo, J. M.; Le Brun, V.; Marshall, P.; Mazure, A.; Murphy, K. J.; Pereira, D. N. E.; Rabaça, C. R.; Rostagni, F.; Rudnick, G.; Russeil, D.; Schrabback, T.; Slezak, E.; Tucker, D.; Zaritsky, D.

    2012-01-01

    Context. The study of intracluster light (ICL) can help us to understand the mechanisms taking place in galaxy clusters, and to place constraints on the cluster formation history and physical properties. However, owing to the intrinsic faintness of ICL emission, most searches and detailed studies of ICL have been limited to redshifts z DAFT/FADA Survey. Methods: We analyze the ICL by applying the OV WAV package, a wavelet-based technique, to deep HST ACS images in the F814W filter and to V-band VLT/FORS2 images of three clusters. Detection levels are assessed as a function of the diffuse light source surface brightness using simulations. Results: In the F814W filter images, we detect diffuse light sources in all the clusters, with typical sizes of a few tens of kpc (assuming that they are at the cluster redshifts). The ICL detected by stacking the ten F814W images shows an 8σ detection in the source center extending over a ~50 × 50 kpc2 area, with a total absolute magnitude of -21.6 in the F814W filter, equivalent to about two L∗ galaxies per cluster. We find a weak correlation between the total F814W absolute magnitude of the ICL and the cluster velocity dispersion and mass. There is no apparent correlation between the cluster mass-to-light ratio (M/L) and the amount of ICL, and no evidence of any preferential orientation in the ICL source distribution. We find no strong variation in the amount of ICL between z = 0 and z = 0.8. In addition, we find wavelet-detected compact objects (WDCOs) in the three clusters for which data in two bands are available; these objects are probably very faint compact galaxies that in some cases are members of the respective clusters and comparable to the faint dwarf galaxies of the Local Group. Conclusions: We show that the ICL is prevalent in clusters at least up to redshift z = 0.8. In the future, we propose to detect the ICL at even higher redshifts, to determine wether there is a particular stage of cluster evolution where it

  20. Classifying Radio Galaxies with the Convolutional Neural Network

    Energy Technology Data Exchange (ETDEWEB)

    Aniyan, A. K.; Thorat, K. [Department of Physics and Electronics, Rhodes University, Grahamstown (South Africa)

    2017-06-01

    We present the application of a deep machine learning technique to classify radio images of extended sources on a morphological basis using convolutional neural networks (CNN). In this study, we have taken the case of the Fanaroff–Riley (FR) class of radio galaxies as well as radio galaxies with bent-tailed morphology. We have used archival data from the Very Large Array (VLA)—Faint Images of the Radio Sky at Twenty Centimeters survey and existing visually classified samples available in the literature to train a neural network for morphological classification of these categories of radio sources. Our training sample size for each of these categories is ∼200 sources, which has been augmented by rotated versions of the same. Our study shows that CNNs can classify images of the FRI and FRII and bent-tailed radio galaxies with high accuracy (maximum precision at 95%) using well-defined samples and a “fusion classifier,” which combines the results of binary classifications, while allowing for a mechanism to find sources with unusual morphologies. The individual precision is highest for bent-tailed radio galaxies at 95% and is 91% and 75% for the FRI and FRII classes, respectively, whereas the recall is highest for FRI and FRIIs at 91% each, while the bent-tailed class has a recall of 79%. These results show that our results are comparable to that of manual classification, while being much faster. Finally, we discuss the computational and data-related challenges associated with the morphological classification of radio galaxies with CNNs.