WorldWideScience

Sample records for faint eclipsing cataclysmic

  1. Study of the eclipses of cataclysmic variables

    International Nuclear Information System (INIS)

    Zhang, E.H.

    1986-01-01

    The cataclysmic variables (CV's) are all close binary stars in which a secondary star fills its Roche lobe and transfers mass to its white dwarf companion. The transferred mass forms an accretion disk or ring, around the white dwarf. Reliable determinations of the masses of the two-component stars, the distributions of temperature and brightness across the disk, and other parameters, are necessary to understand both the CV's and the accretion processes, but they are extremely difficult to measure. The best way to obtain this data is to observe eclipsing CV's. The author developed a computer program to synthesize light curves of eclipsing CV's using the most realistic model built so far to analyze the eclipses of CV's. A statistical method was developed to perform a complete error analysis of the results of the numerical studies. High-speed, multi-color photometry of three eclipsing CV's - HT Cas, U Gem, and AC Cnc - was obtained. Using the program to analyze the observed light curves, the author derived, for each system, the orbital inclination, the sizes, masses and temperature of the two component stars, and the temperature distribution across the disk

  2. Eclipses of cataclysmic variables. II. U Geminorum

    International Nuclear Information System (INIS)

    Zhang, E.H.; Robinson, E.L.

    1987-01-01

    U Gem is an eclipsing dwarf nova with an orbital period of 4 h 15 m. High-speed, multicolor photometric observations of U Gem in its quiescent state were obtained. A program was used that synthesizes the light curves of cataclysmic variables to derive the properties of U Gem from its eclipses. Using radial velocity curves published by Wade (1981) and by Stover (1981), it was found that i = 69.7 + or - 0.7 deg, M1 = 1.12 + or - 0.13 solar masses, and M2 = 0.53 + or - 0.06 solar mass. The radial temperature distribution across the accretion disk in U Gem shows that the disk is a hollow ring around the white dwarf with R(out) = 0.30 + or - 0.04 and R(in) = 0.12 + or - 0.05 a, where a is the separation of the two stars. The temperature of the ring is 4800 + or - 300 K. The model also reproduces the published infrared light curves and ultraviolet spectral distributions of U Gem. A mass transfer rate of 7.8 x 10 to the -10th solar mass/yr is derived. The structure of the ring around the white dwarf is consistent with the current theories of accretion disk instabilities in dwarf novae. 39 references

  3. VizieR Online Data Catalog: Faint cataclysmic variables from SDSS (Woudt+, 2012)

    Science.gov (United States)

    Woudt, P. A.; Warner, B.; de Bude, D.; Macfarlane, S.; Schurch, M. P. E.; Zietsman, E.

    2013-01-01

    We present high-speed photometric observations of 20 faint cataclysmic variables (CVs) selected from the Sloan Digital Sky Survey (SDSS) and Catalina catalogues. Measurements are given of 15 new directly measured orbital periods, including four eclipsing dwarf novae (SDSS 0904+03, CSS 0826-00, CSS 1404-10 and CSS 1626-12), two new polars (CSS 0810+00 and CSS 1503-22) and two dwarf novae with superhumps in quiescence (CSS 0322+02 and CSS 0826-00). Whilst most of the dwarf novae presented here have periods below 2h, SDSS 0805+07 and SSS 0617-36 have relatively long orbital periods of 5.489 and 3.440h, respectively. The double-humped orbital modulations observed in SSS 0221-26, CSS 0345-01, CSS 1300+11 and CSS 1443-17 are typical of low-mass transfer rate dwarf novae. The white dwarf primary of SDSS 0919+08 is confirmed to have non-radial oscillations, and quasi-periodic oscillations were observed in the short-period dwarf nova CSS 1028-08 during outburst. We further report the detection of a new nova-like variable (SDSS 1519+06). The frequency distribution of orbital periods of CVs in the Catalina Real-time Transient Survey (CRTS) has a high peak near ~80min orbital period, independently confirming that found by Gansicke et al. (2009MNRAS.397.2170G) from SDSS sources. We also observe a marked correlation between the median in the orbital period distribution and the outburst class, in the sense that dwarf novae with a single observed outburst (over the 5-year baseline of the CRTS coverage) occur predominantly at shortest orbital period. (2 data files).

  4. Investigations of a New Eclipsing Cataclysmic Variable HBHA 4705-03

    Science.gov (United States)

    Yakin, D. G.; Suleimanov, V. F.; Shimansky, V. V.; Vlasyuk, V. V.; Spiridonova, O. I.

    2013-01-01

    Results of photometric and spectroscopic investigations of the recently discovered eclipsing cataclysmic variable star HBHA 4705-03 are presented. The emission spectra of the system show broad hydrogen and helium emission lines. The bright spots with an approximately zero velocity components are found in the Doppler maps for the hydrogen and ionized helium lines. The disc structure is more prominent in the maps for the neutral helium lines. The masses of the components (MWD = 0.54 ± 0.10M⊙ and MRD = 0.45 ± 0.05 M⊙), and the orbit inclination (i = 71.°8 ± 0.°7) were estimated using the radial velocity light curve and the eclipse width. The modeling of the light curve allows us to evaluate the bright spot parameters and the mass accretion rate (M ≍ 2 ·1017 g s-1).

  5. On the SW Sex-type eclipsing cataclysmic variable SDSS0756+0858

    Energy Technology Data Exchange (ETDEWEB)

    Tovmassian, Gagik; Hernandez, Mercedes Stephania; González-Buitrago, Diego; Zharikov, Sergey; García-Díaz, Maria Teresa, E-mail: gag@astro.unam.mx [Instituto de Astronomía, Universidad Nacional Autonoma de México, Apdo. Postal 877, Ensenada, Baja California 22800 (Mexico)

    2014-03-01

    We conducted a spectroscopic and photometric study of SDSS J075653.11+085831. X-ray observations were also attempted. We determined the orbital period of this binary system to be 3.29 hr. It is a deep eclipsing system, whose spectra show mostly single-peaked, Balmer emission lines and a rather intense He II line. There is also the presence of faint (often double-peaked) He I emission lines as well as several absorption lines, Mg I being the most prominent. All of these features point toward the affiliation of this object with the growing number of SW Sex-type objects. We developed a phenomenological model of an SW Sex system to reproduce the observed photometric and spectral features.

  6. On the SW Sex-type eclipsing cataclysmic variable SDSS0756+0858

    International Nuclear Information System (INIS)

    Tovmassian, Gagik; Hernandez, Mercedes Stephania; González-Buitrago, Diego; Zharikov, Sergey; García-Díaz, Maria Teresa

    2014-01-01

    We conducted a spectroscopic and photometric study of SDSS J075653.11+085831. X-ray observations were also attempted. We determined the orbital period of this binary system to be 3.29 hr. It is a deep eclipsing system, whose spectra show mostly single-peaked, Balmer emission lines and a rather intense He II line. There is also the presence of faint (often double-peaked) He I emission lines as well as several absorption lines, Mg I being the most prominent. All of these features point toward the affiliation of this object with the growing number of SW Sex-type objects. We developed a phenomenological model of an SW Sex system to reproduce the observed photometric and spectral features.

  7. Fainting

    Science.gov (United States)

    ... a medicine you’re taking. Alcohol, cocaine, and marijuana can also cause fainting. More serious causes of fainting include seizures and problems with the heart or with the blood vessels leading to the brain. How is fainting diagnosed? Your doctor will probably ...

  8. Fainting

    Science.gov (United States)

    ... go to the ER. When Desiree asked her school nurse about it the next day, she said Desiree probably fainted because she stayed in the whirlpool too long or the temperature was set too high, affecting her blood pressure. ...

  9. Syncope (Fainting)

    Science.gov (United States)

    ... for Heart.org CPR & ECC for Heart.org Shop for Heart.org Causes for Heart.org Advocate ... loss of consciousness usually related to insufficient blood flow to the brain. It’s also called fainting or " ...

  10. Cataclysmic Variable Stars

    Science.gov (United States)

    Hellier, Coel

    2001-01-01

    Cataclysmic variable stars are the most variable stars in the night sky, fluctuating in brightness continually on timescales from seconds to hours to weeks to years. The changes can be recorded using amateur telescopes, yet are also the subject of intensive study by professional astronomers. That study has led to an understanding of cataclysmic variables as binary stars, orbiting so closely that material transfers from one star to the other. The resulting process of accretion is one of the most important in astrophysics. This book presents the first account of cataclysmic variables at an introductory level. Assuming no previous knowledge of the field, it explains the basic principles underlying the variability, while providing an extensive compilation of cataclysmic variable light curves. Aimed at amateur astronomers, undergraduates, and researchers, the main text is accessible to those with no mathematical background, while supplementary boxes present technical details and equations.

  11. Faint Traces

    OpenAIRE

    Denyer, Frank

    2005-01-01

    CD of six compositions by Denyer played by The Barton Workshop (Amsterdam): ‘Out of the Shattered Shadows 1’; ‘Out of the Shattered Shadows 2’; ‘Faint Traces’; ‘Music for Two Performers’; ‘Play’; ‘Passages’. Liner notes by Bob Gilmore. \\ud \\ud Like ‘Fired City’ (2002), this is a portrait CD and comprises première recordings of six works. The three longest – one of which is the title track (2001) – are the most recent. All six works continue Denyer’s research into new acoustic instrumental sou...

  12. THE NEW ECLIPSING CV MASTER OTJ192328.22+612413.5—A POSSIBLE SW SEXTANTIS STAR

    International Nuclear Information System (INIS)

    Kennedy, M. R.; Callanan, P.; Bouanane, S.; Garnavich, P. M.; Rose, B. M.; Szkody, P.; Bendjoya, P.; Abe, L.; Rivet, J. P.; Suarez, O.

    2016-01-01

    We present optical photometry and spectroscopy of the new eclipsing cataclysmic variable MASTER OTJ192328.22+612413.5, discovered by the MASTER team. We find the orbital period to be P = 0.16764612(5) day/4.023507(1) hr. The depth of the eclipse (2.9 ± 0.1 mag) suggests that the system is nearly edge on, and modeling of the system confirms the inclination to be between 81.°3 and 83.°6. The brightness outside the eclipse varies between observations, with a change of 1.6 ± 0.1 mag. Spectroscopy reveals double-peaked Balmer emission lines. By using spectral features matching a late M-type companion, we bound the distance to be 750 ± 250 pc, depending on the companion’s spectral type. The source displays 2 mag brightness changes on timescales of days. The amplitude of these changes, along with the spectrum at the faint state, suggest that the system is possibly a dwarf nova. The lack of any high-excitation He ii lines suggests that this system is not magnetically dominated. The light curve in both quiescence and outburst resembles that of Lanning 386, implying MASTER OTJ192328.22+612413.5 is a possible cross between a dwarf nova and a SW Sextantis star.

  13. THE NEW ECLIPSING CV MASTER OTJ192328.22+612413.5—A POSSIBLE SW SEXTANTIS STAR

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, M. R.; Callanan, P.; Bouanane, S. [Department of Physics, University College Cork, Cork (Ireland); Garnavich, P. M.; Rose, B. M. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Szkody, P. [Department of Astronomy, University of Washington, Seattle, WA (United States); Bendjoya, P.; Abe, L.; Rivet, J. P.; Suarez, O., E-mail: markkennedy@umail.ucc.ie [Laboratoire Lagrange UMR 7293, Université de Nice Sophia-Antipolis, Observatoire de la Côte d’Azur (France)

    2016-07-01

    We present optical photometry and spectroscopy of the new eclipsing cataclysmic variable MASTER OTJ192328.22+612413.5, discovered by the MASTER team. We find the orbital period to be P = 0.16764612(5) day/4.023507(1) hr. The depth of the eclipse (2.9 ± 0.1 mag) suggests that the system is nearly edge on, and modeling of the system confirms the inclination to be between 81.°3 and 83.°6. The brightness outside the eclipse varies between observations, with a change of 1.6 ± 0.1 mag. Spectroscopy reveals double-peaked Balmer emission lines. By using spectral features matching a late M-type companion, we bound the distance to be 750 ± 250 pc, depending on the companion’s spectral type. The source displays 2 mag brightness changes on timescales of days. The amplitude of these changes, along with the spectrum at the faint state, suggest that the system is possibly a dwarf nova. The lack of any high-excitation He ii lines suggests that this system is not magnetically dominated. The light curve in both quiescence and outburst resembles that of Lanning 386, implying MASTER OTJ192328.22+612413.5 is a possible cross between a dwarf nova and a SW Sextantis star.

  14. Evolution and Outbursts of Cataclysmic Variables

    Directory of Open Access Journals (Sweden)

    S.-B. Qian

    2015-02-01

    Full Text Available Mass transfer and accretion are very important to understand the evolution and observational properties of cataclysmic variables (CVs. Due to the lack of an accretion disk, eclipsing profiles of polars are the best source to study the character of mass transfer in CVs. By analyzing long-term photometric variations in the eclipsing polar HU Aqr, the property of mass transfer and accretion are investigated. The correlation between the brightness state change and the variation of the ingress profile suggests that both the accretion hot spot and the accretion stream are produced instantaneously. The observations clearly show that it is the variation of mass transfer causing the brightness state changes that is a direct evidence of variable mass transfer in a CV. It is shown that it is the local dark-spot activity near the L1 point to cause the change of the mass transfer rather than the activity cycles of the cool secondary star. Our results suggest that the evolution of CVs is more complex than that predicted by the standard model and we should consider the effect of variable mass accretion in nova and dwarf nova outbursts.

  15. White Dwarfs in Cataclysmic Variable Stars: Surface Temperatures and Evolution

    Directory of Open Access Journals (Sweden)

    Edward M. Sion

    2012-06-01

    Full Text Available A summary is presented of what is currently known about the surface temperatures of accreting white dwarfs (WDs detected in non-magnetic and magnetic cataclysmic variables (CVs based upon synthetic spectral analyses of far ultraviolet data. A special focus is placed on WD temperatures above and below the CV period gap as a function of the orbital period, Porb. The principal uncertainty of the temperatures for the CV WDs in the Teff - Porb distribution, besides the distance to the CV, is the mass of the WD. Only in eclipsing CV systems, an area of eclipsing binary studies, which was so central to Robert H. Koch’s career, is it possible to know CV WD masses with high precision.

  16. Period changes of cataclysmic variables below the period gap: V2051 Oph, OY Car and Z Cha

    Science.gov (United States)

    Pilarčík, L.; Wolf, M.; Zasche, P.; Vraštil, J.

    2018-04-01

    We present our results of a long-term monitoring of cataclysmic variable stars (CVs). About 40 new eclipses were measured for the three southern SU UMa-type eclipsing CVs: V2051 Oph, OY Car and Z Cha. Based on the current O - C diagrams we confirmed earlier findings that V2051 Oph and OY Car present cyclic changes of their orbital periods lasting 25 and 29 years, respectively. In case of Z Cha we propose the light-time effect caused probably by a presence of the third component orbiting the eclipsing CV with the period of 43.5 years. The minimal mass of this companion results about 15 MJup.

  17. Cataclysmic variables observed with INTEGRAL

    Czech Academy of Sciences Publication Activity Database

    Šimon, Vojtěch; Hudec, René; Münz, Filip; Štrobl, Jan

    2006-01-01

    Roč. 6, č. 1 (2006), s. 149-154 ISSN 1009-9271 R&D Projects: GA ČR GA205/05/2167 Institutional research plan: CEZ:AV0Z10030501 Keywords : cataclysmic variables * intermediate polars * X-rays Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.746, year: 2006

  18. A visible and infrared study of the eclipsing dwarf nova OY Carinae

    International Nuclear Information System (INIS)

    Berriman, G.

    1984-01-01

    This paper presents four visible light curves of the highly inclined, short-period cataclysmic binary star OY Carinae in quiescence. These light curves show that the red dwarf eclipses both its white dwarf companion and the accretion disc and hotspot, which originate from material transferred from the red dwarf to the white dwarf. The consequences of the findings are discussed in the light of current ideas about the evolution of cataclysmic variable stars. (author)

  19. Observations of eclipses of UU Sge

    Science.gov (United States)

    Shimansky, V. V.; Borisov, N. V.; Bikmaev, I. F.; Shimanskaya, N. N.

    2012-06-01

    We have performed spectroscopy and photometry of eclipses of the pre-cataclysmic variable UUSge using the 6-m telescope of the Special AstrophysicalObservatory and the 1.5-mRussian-Turkish telescope. Our analysis of variations of the B- V and V- R color indices during the eclipses indicates that the temperature of the secondary is T eff,2 = 6000-6300 K. A similar value, T eff,2 = 6200 ± 200 K, follows from our comparison of the observed spectrum of UU Sge at the total eclipse phase and theoretical spectra of late-type stars. We identify 27 absorption lines of 11 chemical elements in the secondary's spectrum. Their abnormal intensities indicate possible high-velocity turbulent motions (up to ξ turb = 10.0 km/s) in the atmosphere of the star and the presence of hot gas above its surface.

  20. Searching for nova shells around cataclysmic variables

    Science.gov (United States)

    Sahman, D. I.; Dhillon, V. S.; Knigge, C.; Marsh, T. R.

    2015-08-01

    We present the results of a search for nova shells around 101 cataclysmic variables (CVs), using H α images taken with the 4.2-m William Herschel Telescope (WHT) and the 2.5-m Isaac Newton Telescope Photometric H α Survey of the Northern Galactic Plane (IPHAS). Both telescopes are located on La Palma. We concentrated our WHT search on nova-like variables, whilst our IPHAS search covered all CVs in the IPHAS footprint. We found one shell out of the 24 nova-like variables we examined. The newly discovered shell is around V1315 Aql and has a radius of ˜2.5 arcmin, indicative of a nova eruption approximately 120 yr ago. This result is consistent with the idea that the high mass-transfer rate exhibited by nova-like variables is due to enhanced irradiation of the secondary by the hot white dwarf following a recent nova eruption. The implications of our observations for the lifetime of the nova-like variable phase are discussed. We also examined four asynchronous polars, but found no new shells around any of them, so we are unable to confirm that a recent nova eruption is the cause of the asynchronicity in the white dwarf spin. We find tentative evidence of a faint shell around the dwarf nova V1363 Cyg. In addition, we find evidence for a light echo around the nova V2275 Cyg, which erupted in 2001, indicative of an earlier nova eruption ˜300 yr ago, making V2275 Cyg a possible recurrent nova.

  1. CATACLYSMIC VARIABLES FROM SDSS. VII. THE SEVENTH YEAR (2006)

    International Nuclear Information System (INIS)

    Szkody, Paula; Anderson, Scott F.; Hayden, Michael; Kronberg, Martin; McGurk, Rosalie; Riecken, Thomas; Schmidt, Gary D.; West, Andrew A.; Gaensicke, Boris T.; Gomez-Moran, Ada N.; Schwope, Axel D.; Schneider, Donald P.; Schreiber, Matthias R.

    2009-01-01

    Coordinates, magnitudes, and spectra are presented for 39 cataclysmic variables (CVs) found in Sloan Digital Sky Survey (SDSS) spectra that were primarily obtained in 2006. Of these, 13 were CVs identified prior to the SDSS spectra (AK Cnc, GY Cnc, GO Com, ST LMi, NY Ser, MR Ser, QW Ser, EU UMa, IY UMa, HS1340+1524, RXJ1610.1+0352, Boo 1, Leo 5). Follow-up spectroscopic observations of seven systems (including one from year 2005 and another from year 2004) were obtained, resulting in estimates of the orbital periods for three objects. The new CVs include two candidates for high inclination, eclipsing systems, four new polars, and three systems whose spectra clearly reveal atmospheric absorption lines from the underlying white dwarf.

  2. The masses of cataclysmic variables

    International Nuclear Information System (INIS)

    Robinson, E.L.

    1976-01-01

    Masses are derived for the individual components of six cataclysmic variables. There is a considerable spread in the masses of the white dwarf components, which range from 0.73 M/sub sun/ in EM Cyg to 1.26 M/sub sun/ in Z Cam. All of the white dwarfs have masses greater than 0.70 M/sub sun/, but there is no evidence that there is any preferred mass. It is found that the morphology of the eruptions (i.e., nova versus dwarf nova) is independent of the mass of both the white dwarf and the late-type star

  3. Pulse timing for cataclysmic variables

    International Nuclear Information System (INIS)

    Chester, T.J.

    1979-01-01

    It is shown that present pulse timing measurements of cataclysmic variables can be explained by models of accretion disks in these systems, and thus such measurements can constrain disk models. The model for DQ Her correctly predicts the amplitude variation of the continuum pulsation and can also perhaps explain the asymmetric amplitude of the pulsed lambda4686 emission line. Several other predictions can be made from the model. In particular, if pulse timing measurements that resolve emission lines both in wavelength and in binary phase can be made, the projected orbital radius of the white dwarf could be deduced

  4. Eclipsed neutrinos

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Full text: The total solar eclipse visible in Southern Asia on 24 October provided an opportunity for an unusual physics experiment. At face value, the levels of solar neutrinos detected on the Earth's surface are difficult to understand and suggest that perhaps the composition of solar neutrinos oscillates between different neutrino types on their journey. In this way neutrinos originating in the Sun as electrontype could convert into heavy neutrinos, which could subsequently disintegrate into an electron-neutrino and a photon. In certain neutrino scenarios, such a photon would have an energy corresponding to that of visible light, and in principle should be detectable if there are enough of them. The problem is that they would normally be swamped by the copious photons of sunlight. The 24 October solar eclipse provided a chance to check this out. A team led by François Vannucci, spokesman of the Nomad neutrino experiment at CERN, en route to the 'Rencontres du Vietnam' physics meeting in Ho Chi Minh Ville, set up a CCD-equipped telescope. To insure against cloud cover, a second telescope followed the eclipse in the desert of Rajastan, India, where the eclipse was to last only half as long, but the chance of cloud was minimal. No background solar signal was seen, or, expressed in physics terms, if solar radiation has any heavy neutrino component, then less than a millionth of it disintegrates into an electron neutrino and a visible photon before it arrives at the Earth. The negative result also has implications for candidate massive, unstable neutrinos from other sources, notably a component of the missing 'dark matter' of the Universe. The next such eclipse should be visible in North Asia in 1997, when hopefully better measurements will be made

  5. Follow up observations of SDSS and CRTS candidate cataclysmic variables

    Energy Technology Data Exchange (ETDEWEB)

    Szkody, Paula; Vasquez-Soltero, Stephanie [Department of Astronomy, University of Washington, P.O. Box 351580, Seattle, WA 98195 (United States); Everett, Mark E.; Silva, David R. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Howell, Steve B. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Landolt, Arlo U. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Bond, Howard E., E-mail: szkody@astro.washington.edu, E-mail: dsilva@noao.edu, E-mail: steve.b.howell@nasa.gov, E-mail: landolt@rouge.phys.lsu.edu, E-mail: heb11@psu.edu [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States)

    2014-10-01

    We present photometry and spectroscopy of 11 and 35 potential cataclysmic variables, respectively, from the Sloan Digital Sky Survey, the Catalina Real-Time Transient Survey, and vsnet alerts. The photometry results include quasi-periodic oscillations during the decline of V1363 Cyg, nightly accretion changes in the likely Polar (AM Herculis binary) SDSS J1344+20, eclipses in SDSS J2141+05 with an orbital period of 76 ± 2 minutes, and possible eclipses in SDSS J2158+09 at an orbital period near 100 minutes. Time-resolved spectra reveal short orbital periods near 80 minutes for SDSS J0206+20, 85 minutes for SDSS J1502+33, and near 100 minutes for CSS J0015+26, RXS J0150+37, SDSS J1132+62, SDSS J2154+15, and SDSS J2158+09. The prominent He II line and velocity amplitude of SDSS J2154+15 are consistent with a Polar nature for this object, while the absence of this line and a low velocity amplitude argue against this classification for RXS J0150+37. Single spectra of 10 objects were obtained near outburst and the rest near quiescence, confirming the dwarf novae nature of these objects.

  6. Winds in cataclysmic variable stars

    International Nuclear Information System (INIS)

    Cordova, F.A.; Ladd, E.F.; Mason, K.O.

    1984-01-01

    Ultraviolet spectrophotometry of two dwarf novae, CN Ori and RX And, at various phases of their outburst cycles confirms that the far uv flux increases dramatically about 1-2 days after the optical outburst begins. At this time the uv spectral line profiles indicate the presence of a high velocity wind. The detectability of the wind depends more on the steepness of the spectrum, and thus on the flux in the extreme ultraviolet, than on the absolute value of the far uv luminosity. The uv continuum during outburst consists of (at least) two components, the most luminous of which is located behind the wind and is completely absorbed by the wind at the line frequencies. Several pieces of evidence suggest that the uv emission lines that are observed in many cataclysmic variables during quiescence have a different location in the binary than the wind, and are affected very little by the outburst

  7. Investigations of cataclysmic variables by ESA INTEGRAL

    Czech Academy of Sciences Publication Activity Database

    Hudec, René; Blažek, Martin

    2012-01-01

    Roč. 83, č. 2 (2012), s. 659-664 ISSN 0037-8720. [Workshop on the golden age of cataclysmic variables and related objects /2./. Palermo , 09.09.2013-14.09.2013] R&D Projects: GA ČR GA205/08/1207 Institutional research plan: CEZ:AV0Z10030501 Keywords : stars * high-energy sources * cataclysmic variables Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  8. Composition of faint comets

    International Nuclear Information System (INIS)

    Brown, L.W.

    1986-01-01

    The study uses an emission line, differential imaging camera built by the Science Operations Branch. This instrument allows photometric data to be obtained over a large area of a comet in a large number of resolution elements. The detector is a 100x100 Reticon array which with interchangeable optics can give resolutions from 2'' to 30'' over a field of 1' to 15'. The camera through its controlling computer can simultaneously take images in on-line and continuum filters and through computer subtraction and calibration present a photometric image of the comet produced by only the emission of the molecule under study. Initial work has shown two significant problems. First the auxiliary equipment of the telescope has not allowed the unambiguous location of faint comets so that systematic observations could be made, and secondly initial data has not shown much molecular emission from the faint comets which were located. Work last year on a software and hardware display system and this year on additional guide motors on the 36-inch telescope has allowed the differential camera to act as its own finder and guide scope. Comet IRAS was observed in C2 and CO+, as well as an occultation by the comet of SAO029103. The perodic comet Giacobini-Zinner was also observed in C2

  9. Cataclysmic variables, Hubble-Sandage variables and eta Carinae

    International Nuclear Information System (INIS)

    Bath, G.T.

    1980-01-01

    The Hubble-Sandage variables are the most luminous stars in external galaxies. They were first investigated by Hubble and Sandage (1953) for use as distance indicators. Their main characteristics are high luminosity, blue colour indices, and irregular variability. Spectroscopically they show hydrogen and helium in emission with occasionally weaker FeII and [FeII], and no Balmer jump (Humphreys 1975, 1978). In this respect they closely resemble cataclysmic variables, particularly dwarf novae. In the quiescent state dwarf novae show broad H and HeI, together with a strong UV continuum. In contrast to the spectroscopic similarities, the luminosities could hardly differ more. Rather than being the brightest stars known, quiescent dwarf novae are as faint or fainter than the sun. It is suggested that the close correspondence between the spectral appearance of the two classes combined with the difference in luminosity is well accounted for by a model of Hubble-Sandage variables in which the same physical processes are occurring, but on a larger scale. (Auth.)

  10. Eclipse models

    International Nuclear Information System (INIS)

    Michel, F.C.

    1989-01-01

    Three existing eclipse models for the PSR 1957 + 20 pulsar are discussed in terms of their requirements and the information they yield about the pulsar wind: the interacting wind from a companion model, the magnetosphere model, and the occulting disk model. It is shown out that the wind model requires an MHD wind from the pulsar, with enough particles that the Poynting flux of the wind can be thermalized; in this model, a large flux of energetic radiation from the pulsar is required to accompany the wind and drive the wind off the companion. The magnetosphere model requires an EM wind, which is Poynting flux dominated; the advantage of this model over the wind model is that the plasma density inside the magnetosphere can be orders of magnitude larger than in a magnetospheric tail blown back by wind interaction. The occulting disk model also requires an EM wind so that the interaction would be pushed down onto the companion surface, minimizing direct interaction of the wind with the orbiting macroscopic particles

  11. Short-timescale variability in cataclysmic binaries

    International Nuclear Information System (INIS)

    Cordova, F.A.; Mason, K.O.

    1982-01-01

    Rapid variability, including flickering and pulsations, has been detected in cataclysmic binaries at optical and x-ray frequencies. In the case of the novalike variable TT Arietis, simultaneous observations reveal that the x-ray and optical flickering activity is strongly correlated, while short period pulsations are observed that occur at the same frequencies in both wavelength bands

  12. Photometry of faint blue stars

    International Nuclear Information System (INIS)

    Kilkenny, D.; Hill, P.W.; Brown, A.

    1977-01-01

    Photometry on the uvby system is given for 61 faint blue stars. The stars are classified by means of the Stromgren indices, using criteria described in a previous paper (Kilkenny and Hill (1975)). (author)

  13. Structure and Evolution of Magnetic Cataclysmic Variables

    Science.gov (United States)

    Andronov, I. L.

    2007-06-01

    Theoretical models and observational results are reviewed. The general picture of the structure and evolution of cataclysmic variables (CV) is presented, together with a brief discussion of additional mechanisms of intrinsic variability of the components and magnetic activity of secondaries. Special attention is paid to the accretion structures - flow, disk, column - which are affected by the magnetic field of the white dwarf. The mass and angular momentum transfer in asynchronous MCVs leads to a "propeller" stage of rapid synchronization, after which the "idlings" of the white dwarf are altered to "swingings" with a characteristic time of century(ies). The disk- magnetic field interaction leads to precession of the white dwarf, which causes quasi-periodic changes of the equilibrium rotational period. "Shot noise" in cataclysmic variables is discussed based on one-bandpass and multi-color observations.

  14. CVcat: An interactive database on cataclysmic variables

    Science.gov (United States)

    Kube, J.; Gänsicke, B. T.; Euchner, F.; Hoffmann, B.

    2003-06-01

    CVcat is a database that contains published data on cataclysmic variables and related objects. Unlike in the existing online sources, the users are allowed to add data to the catalogue. The concept of an ``open catalogue'' approach is reviewed together with the experience from one year of public usage of CVcat. New concepts to be included in the upcoming AstroCat framework and the next CVcat implementation are presented. CVcat can be found at http://www.cvcat.org.

  15. Studies of faint field galaxies

    International Nuclear Information System (INIS)

    Ellis, R.S.

    1983-01-01

    Although claims are often made that photometric surveys of faint field galaxies reveal evidence for evolution over recent epochs (z<0.6), it has not yet been possible to select a single evolutionary model from comparisons with the data. Magnitude counts are sensitive to evolution but the data is well-mixed in distance because of the width of the luminosity function (LF). Colours can narrow the possibilities but the effects of redshift and morphology can only be separated using many passbands. In this paper, the author highlights two ways in which one can make further progress in this important subject. First, he discusses results based on the AAT redshift survey which comprises 5 Schmidt fields to J = 16.7 i.e. well beyond local inhomogeneities. Secondly, the difficulties in resolving the many possibilities encountered with faint photometry could be resolved with redshifts. To obtain redshift distributions for faint samples is now feasible via multi-object spectroscopy. At intermediate magnitudes (J=20) such distributions test the faint end of the galaxy LF; at faint magnitudes (J=22) they offer a direct evolutionary test. (Auth.)

  16. XMM-NEWTON AND OPTICAL OBSERVATIONS OF CATACLYSMIC VARIABLES FROM THE SLOAN DIGITAL SKY SURVEY

    International Nuclear Information System (INIS)

    Hilton, Eric J.; Szkody, Paula; Mukadam, Anjum; Henden, Arne; Dillon, William; Schmidt, Gary D.

    2009-01-01

    We report on XMM-Newton and optical results for six cataclysmic variables that were selected from Sloan Digital Sky Survey (SDSS) spectra because they showed strong He II emission lines, indicative of being candidates for containing white dwarfs with strong magnetic fields. While high X-ray background rates prevented optimum results, we are able to confirm SDSS J233325.92+152222.1 as an intermediate polar from its strong pulse signature at 21 minutes and its obscured hard X-ray spectrum. Ground-based circular polarization and photometric observations were also able to confirm SDSS J142256.31 - 022108.1 as a polar with a period near 4 hr. Photometry of SDSS J083751.00+383012.5 and SDSS J093214.82+495054.7 solidifies the orbital period of the former as 3.18 hr and confirms the latter as a high-inclination system with deep eclipses.

  17. Follow-up Observations of SDSS and CRTS Candidate Cataclysmic Variables II

    Science.gov (United States)

    Szkody, Paula; Everett, Mark E.; Dai, Zhibin; Serna-Grey, Donald

    2018-01-01

    Spectra of 38 candidate or known cataclysmic variables are presented. Most are candidate dwarf novae or systems containing possible highly magnetic white dwarfs, while a few (KR Aur, LS Peg, V380 Oph, and V694 Mon) are previously known objects caught in unusual states. Individual spectra are used to confirm a dwarf nova nature or other classification while radial velocities of 15 systems provide orbital periods and velocity amplitudes that aid in determining the nature of the objects. Our results substantiate a polar nature for four objects, find an eclipsing SW Sex star below the period gap, another as a likely intermediate polar, as well as two dwarf novae with periods in the middle of the gap. Based on observations obtained with the Apache Point Observatory (APO) 3.5 m telescope, which is owned and operated by the Astrophysical Research Consortium (ARC).

  18. Origin of faint blue stars

    International Nuclear Information System (INIS)

    Tutukov, A.; Iungelson, L.

    1987-01-01

    The origin of field faint blue stars that are placed in the HR diagram to the left of the main sequence is discussed. These include degenerate dwarfs and O and B subdwarfs. Degenerate dwarfs belong to two main populations with helium and carbon-oxygen cores. The majority of the hot subdwarfs most possibly are helium nondegenerate stars that are produced by mass exchange close binaries of moderate mass cores (3-15 solar masses). The theoretical estimates of the numbers of faint blue stars of different types brighter than certain stellar magnitudes agree with star counts based on the Palomar Green Survey. 28 references

  19. Maven for Eclipse

    CERN Document Server

    Shah, Sanjay

    2014-01-01

    If you want to learn about Maven and use it from within Eclipse to develop Java projects, this is the book for you. Prior experience in developing Java projects and using the Eclipse IDE is presumed. Whether you are a beginner or an experienced developer, this book will get you up and running quickly, with a hands-on approach.

  20. Circular polarimetry of EXO 033319-2554.2 - a new eclipsing AM Herculis star

    International Nuclear Information System (INIS)

    Berriman, G.; Smith, P.S.

    1988-01-01

    This Letter presents circular polarimetry that unequivocally identifies EXO 033319-2554.2 as only the third eclipsing AM Her star and brings the total number of AM Her stars now identified to 14. The orbital period is 126.4 minutes, as previously reported, and defines a new short-period edge to the period gap seen in all classes of cataclysmic variable stars. EXO 033319-2554.2 shows 2.5 mag deep eclipses of the predominantly accreting magnetic pole on the white dwarf. Before the eclipse, the pole rotates into the line of sight and shows white-light circular polarization, due to cyclotron radiation, that reaches values as high as 10 percent. There is some evidence that the second pole is emitting cyclotron radiation too. How high time resolution photometry, linear polarimetry, and spectroscopy will be of great value in understanding this system. 17 references

  1. Circular polarimetry of EXO 033319-2554.2 - A new eclipsing AM Herculis star

    Science.gov (United States)

    Berriman, Graham; Smith, Paul S.

    1988-01-01

    This Letter presents circular polarimetry that unequivocally identifies EXO 033319-2554.2 as only the third eclipsing AM Her star and brings the total number of AM Her stars now identified to 14. The orbital period is 126.4 minutes, as previously reported, and defines a new short-period edge to the period gap seen in all classes of cataclysmic variable stars. EXO 033319-2554.2 shows 2.5 mag deep eclipses of the predominantly accreting magnetic pole on the white dwarf. Before the eclipse, the pole rotates into the line of sight and shows white-light circular polarization, due to cyclotron radiation, that reaches values as high as 10 percent. There is some evidence that the second pole is emitting cyclotron radiation too. How high time resolution photometry, linear polarimetry, and spectroscopy will be of great value in understanding this system.

  2. White Dwarfs in Cataclysmic Variables: An Update

    Directory of Open Access Journals (Sweden)

    E. M. Sion

    2015-02-01

    Full Text Available In this review, we summarize what is currently known about the surface temperatures of accreting white dwarfs in nonmagnetic and magnetic cataclysmic variables (CVs based upon synthetic spectral analyses of far ultraviolet data. We focus only on white dwarf surface temperatures, since in the area of chemical abundances, rotation rates, WD masses and accretion rates, relatively little has changed since our last review, pending the results of a large HST GO programinvolving 48 CVs of different CV types. The surface temperature of the white dwarf in SS Cygni is re-examined in the light of its revised distance. We also discuss new HST spectra of the recurrent nova T Pyxidis as it transitioned into quiescence following its April 2011 nova outburst.

  3. Lessons from ECLIPSE

    DEFF Research Database (Denmark)

    Faner, Rosa; Tal-Singer, Ruth; Riley, John H

    2014-01-01

    The Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-points (ECLIPSE) study was a large 3-year observational controlled multicentre international study aimed at defining clinically relevant subtypes of chronic obstructive pulmonary disease (COPD) and identifying novel biomar...

  4. Golden Era of Cataclysmic Variables and Related Objects: concluding remarks

    Czech Academy of Sciences Publication Activity Database

    Hudec, René

    2012-01-01

    Roč. 83, č. 2 (2012), s. 883-890 ISSN 0037-8720. [Workshop on the golden age of cataclysmic variables and related objects /2./. Palermo , 09.09.2013-14.09.2013] R&D Projects: GA ČR GA205/08/1207 Institutional research plan: CEZ:AV0Z10030501 Keywords : stars * variable stars * cataclysmic variables Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  5. Cataclysmic Variables from SDSS I. The First Results

    OpenAIRE

    Szkody, P.; Anderson, S. F.; Agueros, M.; Covarrubias, R.; Bentz, M.; Hawley, S.; Margon, B.; Voges, W.; Henden, A.; Knapp, G. R.; Berk, D. E. Vanden; Rest, A.; Miknaitis, G.; Magnier, E.; Brinkmann, J.

    2001-01-01

    The commissioning year of the Sloan Digital Sky Survey has demonstrated that many cataclysmic variables have been missed in previous surveys with brighter limits. We report the identification of 22 cataclysmic variables, of which 19 are new discoveries and 3 are known systems (SW UMa, BH Lyn and Vir4). A compendium of positions, colors and characteristics of these systems obtained from the SDSS photometry and spectroscopy is presented along with data obtained during follow-up studies with the...

  6. NEWS: Eclipse matters (still)!

    Science.gov (United States)

    1999-05-01

    This collection of snippets has as its theme the 1999 Solar Eclipse, and covers items that might be of interest to eclipse watchers and their associates. Much information can be obtained from the national web site at http://www.eclipse.org.uk. Set up by the CLRC Rutherford Appleton Laboratory, on behalf of the UK Eclipse Group, the site is intended to keep viewers abreast of developments during the countdown to the eclipse. The list of contents includes: about eclipses; eclipse pictures; eclipse science; safety advice; latest news; and local information. There is also a wealth of images and video footage, so the site has been organized with the visitor having a small PC and modem in mind, so that the key information can be accessed as quickly as possible. Free colour leaflets containing useful details for eclipse watchers can be obtained from the Particle Physics and Astronomy Research Council. `The Sun - our local star' and `Neutrinos' are additions to PPARC's series introducing key areas of its science. They answer such questions as what the Sun is, what eclipses are, why the Sun is important and where neutrinos come from. They support the National Curriculum Key Stages 3 and 4 plus A-level physics. The A5 leaflets open out into an A2 sized double-sided wall chart and bulk quantitites are available for class sets, visitor centres, exhibitions, open days etc. A full list of PPARC materials can be found at the website http://www.pparc.ac.uk or by order from Mark Wells, PPARC, Polaris House, North Star Avenue, Swindon SN2 1SZ (fax: 01793 442002). A message has been received from George Care, Head of Physics in the Science Department at Mounts Bay School, Penzance, which we now pass on to our readers. During his application for electronic access to Physics Education via the Institute of Physics Affiliated Schools and Colleges scheme, George notes that his school is on the track of the eclipse this summer and he has invited us to pass on the details to anyone who

  7. SPECTROSCOPIC ORBITAL PERIODS FOR 29 CATACLYSMIC VARIABLES FROM THE SLOAN DIGITAL SKY SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Thorstensen, John R.; Taylor, Cynthia J.; Peters, Christopher S.; Skinner, Julie N. [Department of Physics and Astronomy 6127 Wilder Laboratory, Dartmouth College Hanover, NH 03755-3528 (United States); Southworth, John [Astrophysics Group Keele University Staffordshire ST5 5BG (United Kingdom); Gänsicke, Boris T. [Department of Physics University of Warwick Coventry CV4 7AL (United Kingdom)

    2015-04-15

    We report follow-up spectroscopy of 29 cataclysmic variables from the Sloan Digital Sky Survey (SDSS), 22 of which were discovered by SDSS and seven of which are previously known systems that were recovered in SDSS. The periods for 16 of these objects were included in the tabulation by Gänsicke et al. While most of the systems have periods less than 2 hr, only one has a period in the 80–86 minutes “spike” found by Gänsicke et al., and 11 have periods longer than 3 hr, indicating that the present sample is skewed toward longer-period, higher-luminosity objects. Seven of the objects have spectra resembling dwarf novae, but have apparently never been observed in outburst, suggesting that many cataclysmics with relatively low variability amplitude remain to be discovered. Some of the objects are notable. SDSS J07568+0858 and SDSS J08129+1911 were previously known to have deep eclipses; in addition to spectroscopy, we use archival data from the Catalina Real Time Transient Survey to refine their periods. We give a parallax-based distance of 195 (+54, −39) pc for LV Cnc (SDSS J09197+0857), which at P{sub orb} = 81 m has the shortest orbital period in our sample. SDSS J08091+3814 shows both the spectroscopic phase offset and phase-dependent absorption found in SW Sextantis stars. The average spectra of SDSS J08055+0720 and SDSS J16191+1351 show contributions from K-type secondaries, and SDSS J080440+0239 shows a contribution from an early M star. We use these to constrain the distances. SDSS J09459+2922 has characteristics typical of a magnetic system. SDSS11324+6249 may be a novalike variable, and if so, its orbital period (99 minutes) is unusually short for that subclass.

  8. Eclipses and the Olympics

    Science.gov (United States)

    Pang, K. D.; Yau, K. K.

    2000-12-01

    Like returns of Halley's comet the Olympic games occur periodically, though not as regularly in antiquity. Dates were also imprecise due to the chaotic calendars in use. Reported sightings of comets and eclipses can be used with game dates to help fix ancient events. However some reported darkening of the sun, e.g., after Julius Caesar's murder in 44 BC, was due to volcanic eruptions. A red comet, visible in daylight, first appeared during the games that year. It was also seen from China and Korea (Pang, Sciences 31, 30). Phlegon's ``Olympiads" (2nd century) says that Christ's crucifixion was in the 4th year of the 202nd Olympiad (AD 29-33), when a total solar eclipse occurred in the 6th hour. Only the Nov. 24, AD 29 eclipse over Asia Minor can match that, and Joel's prophecy (Acts 2, 14-21) that ``the sun will be turned to darkness and moon to blood." However it conflicts with ``the first day of Passover," as recorded by Mathew, Mark and Luke, i.e., full moon in early spring. Humphreys and Waddington (Nature 306, 743) have suggested meteorological darkening and the April 3, AD 33 lunar eclipse instead. Schaefer has questioned the eclipse's visibility from Jerusalem (31.46N, 35.14E). The six computations he cited gave dissimilar answers due to the imprecise rates of the secular lunar acceleration, and lengthening of the day used (Q.Jl.R.astr.Soc. 31, 53). Lunar laser ranging has since fixed the former at -26"/cen2. Analysis of ancient Chinese solar eclipse records, e.g., the April 21, 899 BC and April 4, AD 368 ``double dawns" over Zheng, has given us a delta T (in sec) = 30t2, where t is centuries before 1800 (Pang, Yau and Chou, in ``Dynamics of Ice Age Earth: A Modern Perspective," 1998). Our computations show that the moon rose over Jerusalem, with 1/3 still in the umbra and the rest in penumbra. Holdover meteorological darkening with long absorption air mass could have help reddened the moon also. Finally the first ``eclipse season" (the Aug. 21 lunar, and

  9. Spectral Eclipse Timing

    Science.gov (United States)

    Dobbs-Dixon, Ian; Agol, Eric; Deming, Drake

    2015-12-01

    We utilize multi-dimensional simulations of varying equatorial jet strength to predict wavelength-dependent variations in the eclipse times of gas-giant planets. A displaced hot spot introduces an asymmetry in the secondary eclipse light curve that manifests itself as a measured offset in the timing of the center of eclipse. A multi-wavelength observation of secondary eclipse, one probing the timing of barycentric eclipse at short wavelengths and another probing at longer wavelengths, will reveal the longitudinal displacement of the hot spot and break the degeneracy between this effect and that associated with the asymmetry due to an eccentric orbit. The effect of time offsets was first explored in the IRAC wavebands by Williams et al. Here we improve upon their methodology, extend to a broad range of wavelengths, and demonstrate our technique on a series of multi-dimensional radiative-hydrodynamical simulations of HD 209458b with varying equatorial jet strength and hot-spot displacement. Simulations with the largest hot-spot displacement result in timing offsets of up to 100 s in the infrared. Though we utilize a particular radiative hydrodynamical model to demonstrate this effect, the technique is model independent. This technique should allow a much larger survey of hot-spot displacements with the James Webb Space Telescope than currently accessible with time-intensive phase curves, hopefully shedding light on the physical mechanisms associated with thermal energy advection in irradiated gas giants.

  10. SPECTRAL ECLIPSE TIMING

    International Nuclear Information System (INIS)

    Dobbs-Dixon, Ian; Agol, Eric; Deming, Drake

    2015-01-01

    We utilize multi-dimensional simulations of varying equatorial jet strength to predict wavelength-dependent variations in the eclipse times of gas-giant planets. A displaced hot spot introduces an asymmetry in the secondary eclipse light curve that manifests itself as a measured offset in the timing of the center of eclipse. A multi-wavelength observation of secondary eclipse, one probing the timing of barycentric eclipse at short wavelengths and another probing at longer wavelengths, will reveal the longitudinal displacement of the hot spot and break the degeneracy between this effect and that associated with the asymmetry due to an eccentric orbit. The effect of time offsets was first explored in the IRAC wavebands by Williams et al. Here we improve upon their methodology, extend to a broad range of wavelengths, and demonstrate our technique on a series of multi-dimensional radiative-hydrodynamical simulations of HD 209458b with varying equatorial jet strength and hot-spot displacement. Simulations with the largest hot-spot displacement result in timing offsets of up to 100 s in the infrared. Though we utilize a particular radiative hydrodynamical model to demonstrate this effect, the technique is model independent. This technique should allow a much larger survey of hot-spot displacements with the James Webb Space Telescope than currently accessible with time-intensive phase curves, hopefully shedding light on the physical mechanisms associated with thermal energy advection in irradiated gas giants

  11. SPECTRAL ECLIPSE TIMING

    Energy Technology Data Exchange (ETDEWEB)

    Dobbs-Dixon, Ian [Department of Physics, NYU Abu Dhabi P.O. Box 129188 Abu Dhabi (United Arab Emirates); Agol, Eric [Department of Astronomy, University of Washington, Seattle WA 98195 (United States); Deming, Drake [NASA Astrobiology Institute Virtual Planet Laboratory (United States)

    2015-12-10

    We utilize multi-dimensional simulations of varying equatorial jet strength to predict wavelength-dependent variations in the eclipse times of gas-giant planets. A displaced hot spot introduces an asymmetry in the secondary eclipse light curve that manifests itself as a measured offset in the timing of the center of eclipse. A multi-wavelength observation of secondary eclipse, one probing the timing of barycentric eclipse at short wavelengths and another probing at longer wavelengths, will reveal the longitudinal displacement of the hot spot and break the degeneracy between this effect and that associated with the asymmetry due to an eccentric orbit. The effect of time offsets was first explored in the IRAC wavebands by Williams et al. Here we improve upon their methodology, extend to a broad range of wavelengths, and demonstrate our technique on a series of multi-dimensional radiative-hydrodynamical simulations of HD 209458b with varying equatorial jet strength and hot-spot displacement. Simulations with the largest hot-spot displacement result in timing offsets of up to 100 s in the infrared. Though we utilize a particular radiative hydrodynamical model to demonstrate this effect, the technique is model independent. This technique should allow a much larger survey of hot-spot displacements with the James Webb Space Telescope than currently accessible with time-intensive phase curves, hopefully shedding light on the physical mechanisms associated with thermal energy advection in irradiated gas giants.

  12. Eclipsing binaries in open clusters

    DEFF Research Database (Denmark)

    Southworth, John; Clausen, J.V.

    2006-01-01

    Stars: fundamental parameters - Stars : binaries : eclipsing - Stars: Binaries: spectroscopic - Open clusters and ass. : general Udgivelsesdato: 5 August......Stars: fundamental parameters - Stars : binaries : eclipsing - Stars: Binaries: spectroscopic - Open clusters and ass. : general Udgivelsesdato: 5 August...

  13. Cataclysmic Variables as Supernova Ia Progenitors

    Directory of Open Access Journals (Sweden)

    Stella Kafka

    2012-06-01

    Full Text Available Although the identification of the progenitors of type Ia supernovae (SNeIa remains controversial, it is generally accepted that they originate from binary star systems in which at least one component is a carbon-oxygen white dwarf (WD; those systems are grouped under the wide umbrella of cataclysmic variables. Current theories for SNeIa progenitors hold that, either via Roche lobe overflow of the companion or via a wind, the WD accumulates hydrogen or helium rich material which is then burned to C and O onto the WD’s surface. However, the specifics of this scenario are far from being understood or defined, allowing for a wealth of theories fighting for attention and a dearth of observations to support them. I discuss the latest attempts to identify and study those controversial SNeIa progenitors. I also introduce the most promising progenitor in hand and I present observational diagnostics that can reveal more members of the category.

  14. Globular Clusters for Faint Galaxies

    Science.gov (United States)

    Kohler, Susanna

    2017-07-01

    The origin of ultra-diffuse galaxies (UDGs) has posed a long-standing mystery for astronomers. New observations of several of these faint giants with the Hubble Space Telescope are now lending support to one theory.Faint-Galaxy MysteryHubble images of Dragonfly 44 (top) and DFX1 (bottom). The right panels show the data with greater contrast and extended objects masked. [van Dokkum et al. 2017]UDGs large, extremely faint spheroidal objects were first discovered in the Virgo galaxy cluster roughly three decades ago. Modern telescope capabilities have resulted in many more discoveries of similar faint galaxies in recent years, suggesting that they are a much more common phenomenon than we originally thought.Despite the many observations, UDGs still pose a number of unanswered questions. Chief among them: what are UDGs? Why are these objects the size of normal galaxies, yet so dim? There are two primary models that explain UDGs:UDGs were originally small galaxies, hence their low luminosity. Tidal interactions then puffed them up to the large size we observe today.UDGs are effectively failed galaxies. They formed the same way as normal galaxies of their large size, but something truncated their star formation early, preventing them from gaining the brightness that we would expect for galaxies of their size.Now a team of scientists led by Pieter van Dokkum (Yale University) has made some intriguing observations with Hubble that lend weight to one of these models.Globulars observed in 16 Coma-cluster UDGs by Hubble. The top right panel shows the galaxy identifications. The top left panel shows the derived number of globular clusters in each galaxy. [van Dokkum et al. 2017]Globulars GaloreVan Dokkum and collaborators imaged two UDGs with Hubble: Dragonfly 44 and DFX1, both located in the Coma galaxy cluster. These faint galaxies are both smooth and elongated, with no obvious irregular features, spiral arms, star-forming regions, or other indications of tidal interactions

  15. Raspberry Pi Eclipse Experiments

    Science.gov (United States)

    Chizek Frouard, Malynda

    2018-01-01

    The 21 August 2017 solar eclipse was an excellent opportunity for electronics and science enthusiasts to collect data during a fascinating phenomenon. With my recent personal interest in Raspberry Pis, I thought measuring how much the temperature and illuminance changes during a total solar eclipse would be fun and informational.Previous observations of total solar eclipses have remarked on the temperature drop during totality. Illuminance (ambient light) varies over 7 orders of magnitude from day to night and is highly dependent on relative positions of Sun, Earth, and Moon. I wondered whether totality was really as dark as night.Using a Raspberry Pi Zero W, a Pimoroni Enviro pHAT, and a portable USB charger, I collected environmental temperature; CPU temperature (because the environmental temperature sensor sat very near the CPU on the Raspberry Pi); barometric pressure; ambient light; R, G, and B colors; and x, y, and z acceleration (for marking times when I moved the sensor) data at a ~15 second cadence starting at about 5 am until 1:30 pm from my eclipse observation site in Glendo, WY. Totality occurred from 11:45 to 11:47 am, lasting about 2 minutes and 30 seconds.The Raspberry Pi recorded a >20 degree F drop in temperature during the eclipse, and the illuminance during totality was equivalent to twilight measurements earlier in the day. A limitation in the ambient light sensor prevented accurate measurements of broad daylight and most of the partial phase of the eclipse, but an alternate ambient light sensor combined with the Raspberry Pi setup would make this a cost-efficient set-up for illuminance studies.I will present data from the ambient light sensor, temperature sensor, and color sensor, noting caveats from my experiments, lessons learned for next time, and suggestions for anyone who wants to perform similar experiments for themselves or with a classroom.

  16. Totality eclipses of the Sun

    CERN Document Server

    Littmann, Mark; Willcox, Ken

    2008-01-01

    A total eclipse of the Sun is the most awesome sight in the heavens. Totality: Eclipses of the Sun takes you to eclipses of the past, present, and future, and lets you see - and feel - why people travel to the ends of the Earth to observe them. - ;A total eclipse of the Sun is the most awesome sight in the heavens. Totality: Eclipses of the Sun takes you to eclipses of the past, present, and future, and lets you see - and feel - why people travel to the ends of the Earth to observe them. Totality: Eclipses of the Sun is the best guide and reference book on solar eclipses ever written. It explains: how to observe them; how to photograph and videotape them; why they occur; their history and mythology; and future eclipses - when and where to see them. Totality also tells the remarkable story of how eclipses shocked scientists, revealed the workings of the Sun, and made Einstein famous. And the book shares the experiences and advice of many veteran eclipse observers. Totality: Eclipses of the Sun is profusely ill...

  17. After the Eclipse

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 2. Chief Editor's column - After the Eclipse. Rajaram Nityananda. Article-in-a-Box Volume 1 Issue 2 February 1996 pp 2-3. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/001/02/0002-0003 ...

  18. Eclipse of epsilon Aurigae

    Science.gov (United States)

    Templeton, Matthew R.

    2009-07-01

    The bright, long-period, eclipsing binary star epsilon Aurigae is predicted to begin its next eclipse late July or early August of 2009. Epsilon Aurigae is now past solar conjunction and has reappeared as a morning object. All observers -- both visual and instrumental -- are encouraged to contribute observations of the eclipse during the next two years, beginning immediately for morning observers. Observations are urgently requested right now because it is less likely to be observed in the morning, and the eclipse will begin within the next month. The AAVSO is participating in a global campaign to record this eclipse as part of the International Year of Astronomy 2009 celebrations, organized by the Citizen Sky project (http://www.citizensky.org). For experienced visual observers, please observe this star on a weekly basis, using charts available via VSP from the AAVSO website. For novice visual observers, we recommend participating in this observing program by following the Citizen Sky 10-Star tutorial program, which provides a simple training experience in variable star observing. Photoelectric observers belonging to the AAVSO PEP-V program may submit data as usual via the WebObs feature of the AAVSO website Blue&Gold section. Photoelectric observers may also contribute reduced observations in all filters (including infrared J- and H-bands) directly to the AAVSO via WebObs. Observers using wide-field CCD and DSLR systems are also encouraged to participate; avoid saturating the star. For those with narrower-field systems (D Jeffrey Hopkins are co-leading the precision photometry efforts.

  19. New light on faint stars

    International Nuclear Information System (INIS)

    Reid, N.; Gilmore, G.

    1982-01-01

    This paper presents the first purely photometric derivation of the stellar main-sequence luminosity function to absolute magnitude Msub(V) = + 19, which is comparable to the minimum mass for thermonuclear burning. The observations consist of COSMOS measures of UK Schmidt telescope plates in the V, R and I bands. They provide a complete sample of every star in 18.24 square degrees towards the South Galactic Pole, brighter than I = 17.0. Absolute magnitudes and distances are derived by photometric parallax from the Msub(V)/V-I and Msub(V)/I-K relations, which have been carefully calibrated on our photometric system. For +9<=Msub(V)<=+19, the photometrically defined luminosity function is in agreement with that derived from samples of nearby stars, and by proper motion techniques. There is no evidence for any excess of intrinsically faint stars, even though this survey reaches some 5 mag deeper into the luminosity function than previous photometric surveys. Re-analysis of subsamples of other photometric studies of the local stellar density removes any evidence for a significant excess of M dwarfs relative to the kinematically derived luminosity function. The missing mass in the solar neighbourhood, if any, does not reside in main-sequence stars brighter than Msub(V) approx. = + 17 mag. (author)

  20. Mass transfer and the period gap of cataclysmic variables

    International Nuclear Information System (INIS)

    Verbunt, F.

    1984-01-01

    Three different explanations for the period gap of cataclysmic variables are investigated in some detail, and compared with the observations. The static picture is ruled out; strong continued magnetic braking is shown to be unlikely; disrupted magnetic braking is shown to provide a good explanation. A simple derivation is given for the magnetic braking of a star as a function of the magnetic-field strength and the wind mass flux. A field strength of >= 100 gauss and a wind of 10 -10 Msub(solar mass) yr -1 are needed for the secondary of a cataclysmic variable to explain the braking. These values are rather high, but perhaps not unfeasible. (author)

  1. Einstein x-ray observations of cataclysmic variables

    International Nuclear Information System (INIS)

    Mason, K.O.; Cordova, F.A.

    1982-01-01

    Observations with the imaging x-ray detectors on the Einstein Observatory have led to a large increase in the number of low luminosity x-ray sources known to be associated with cataclysmic variable stars (CVs). The high sensitivity of the Einstein instrumentation has permitted study of their short timescale variability and spectra. The data are adding significantly to our knowledge of the accretion process in cataclysmic variables and forcing some revision in our ideas concerning the origin of the optical variability in these stars

  2. Unravelling the role of the SW Sextantis stars in the evolution of cataclysmic variables

    Science.gov (United States)

    Torres, Manuel; Steeghs, Danny; Gaensicke, Boris; Marsh, Tom; Rodriguez-Gil, Pablo; Schmidtobreick, Linda; Long, Knox; Schreiber, Matthias

    2007-08-01

    SW Sextantis stars are a relatively large group of cataclysmic variables (CVs) whose properties contradict all predictions made by the current CV evolution theories. Very little is known about the properties of their accreting white dwarfs and their donor stars, as the stellar components are usually outshone by an extremely bright accretion flow. Consequently, a proper assesment of their evolutionary state is illusionary. We are monitoring the brightness of a number of SW Sex stars and request here Gemini/GMOS-N ToO time to obtain orbital phase-resolved spectroscopy if one of them enters a low state, since this is the only opportunity for studying the stellar components individually. These data will be used to accurately measure the mass ratio of the system which, combined with the orbital inclination derived from modelling of either the disc eclipses in the high state or the ellipsoidal modulation in the low state, will eventually provide the first detailed system parameters for any SW Sex star.

  3. Krakatoa Erupts!: Using a Historic Cataclysm to Teach Modern Science

    Science.gov (United States)

    Clary, Renee; Wandersee, James

    2011-01-01

    Through integration of geology, biology, chemistry, and the history of science, the historic Krakatoa eruption offers a unique portal for student inquiry in the classroom. Students are inherently fascinated by natural disasters, and modern comparisons to the Krakatoa cataclysm are as close as the day's news. This article uses the historic Krakatoa…

  4. White-dwarf rotational equilibria in magnetic cataclysmic variable stars

    Energy Technology Data Exchange (ETDEWEB)

    Warner, B. (Cape Town Univ. (South Africa). Dept. of Astronomy Australian National Univ., Canberra (Australia). Dept. of Mathematics); Wickramasinghe, D.T. (Australian National Univ., Canberra (Australia). Dept. of Mathematics)

    1991-02-01

    The magnetic cataclysmic variable stars (polars, intermediate polars and DQ Her stars) are grouped about three lines in the orbital period-spin period diagram. This segregation is shown to be the consequence of competition between braking and accretion torques when combined with the effects of cyclical variations in rate of mass transfer. (author).

  5. Lessons learned from ESA INTEGRAL: cataclysmic variables and blazars

    Czech Academy of Sciences Publication Activity Database

    Hudec, René; Gális, R.; Kocka, Matúš

    2010-01-01

    Roč. 81, č. 1 (2010), s. 320-325 ISSN 0037-8720. [Multifrequency behaviour of high energy cosmic sources. Vulcano, 25.05.2009-30.05. 2009] Institutional research plan: CEZ:AV0Z10030501 Keywords : high-energy sources * cataclysmic variables * INTEGRAL Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  6. High-Speed Photo-Polarimetry of Magnetic Cataclysmic Variables

    Directory of Open Access Journals (Sweden)

    S. B. Potter

    2015-02-01

    Full Text Available I review recent highlights of the SAAO High-speed Photo-POlarimeter (HIPPO on the study of magnetic Cataclysmic Variables. Its high-speed capabilities are demonstrated with example observations made of the intermediate polar NY Lup and the polar IGRJ14536-5522.

  7. Minimum period and the gap in periods of Cataclysmic binaries

    International Nuclear Information System (INIS)

    Paczynski, B.; Sienkiewicz, R.

    1983-01-01

    The 81 minute cutoff to the orbital periods of hydrogen-rich cataclysmic binaries is consistent with evolution of those systems being dominated by angular momentum losses due to gravitational radiation. Unfortunately, many uncertainties, mainly poorly known atmospheric opacities below 2000 K, make is physically impossible to verify the quadrupole formula for gravitational radiation by using the observed cutoff at 81 minutes. The upper boundary of the gap in orbital periods observed at about 3 hours is almost certainly due to enhanced angular momentum losses from cataclysmic binaries which have longer periods. The physical mechanism of those losses is not identified, but a possible importance of stellar winds is pointed out. The lower boundary of the gap may be explained with the oldest cataclysmic binaries, whose periods evolved past the minimum at 81 minutes and reached the value of 2 hours within about 12 x 10 9 years after the binary had formed. Those binaries should have secondary components of only 0.02 solar masses, and their periods could be used to estimate ages of the oldest cataclysmic stars, and presumably the age of Galaxy. An alternative explanation for the gap requires that binaries should be detached while crossing the gap. A possible mechanism for this phenomenon is discussed. It requires the secondary components to be about 0.2 solar masses in the binaries just below the gap

  8. X-Ray Emission of Cataclysmic Variables Observed by Integral

    Czech Academy of Sciences Publication Activity Database

    Gális, R.; Eckert, D.; Paltani, S.; Münz, F.; Kocka, Matúš

    2009-01-01

    Roč. 18, 3-4 (2009), s. 321-326 ISSN 1392-0049 Grant - others:ESA(XE) ESA- PECS project No. 98023; VEGA(SK) 2/0078/10 Institutional research plan: CEZ:AV0Z10030501 Keywords : binaries starss * cataclysmic * X-rays Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.032, year: 2009

  9. Cycles in the cataclysmic variable V795 Herculis

    Czech Academy of Sciences Publication Activity Database

    Šimon, Vojtěch; Polášek, Cyril; Štrobl, Jan; Hudec, René; Blažek, Martin

    2012-01-01

    Roč. 540, April (2012), A15/1-A15/11 ISSN 0004-6361 R&D Projects: GA ČR GA205/08/1207 Institutional research plan: CEZ:AV0Z10030501 Keywords : novae * cataclysmic variables * accretion disks Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.084, year: 2012

  10. Theoretical statistics of zero-age cataclysmic variables

    International Nuclear Information System (INIS)

    Politano, M.J.

    1988-01-01

    The distribution of the white dwarf masses, the distribution of the mass ratios and the distribution of the orbital periods in cataclysmic variables which are forming at the present time are calculated. These systems are referred to as zero-age cataclysmic variables. The results show that 60% of the systems being formed contain helium white dwarfs and 40% contain carbon-oxygen white dwarfs. The mean dwarf mass in those systems containing helium white dwarfs is 0.34. The mean white dwarf mass in those systems containing carbon-oxygen white dwarfs is 0.75. The orbital period distribution identifies four main classes of zero-age cataclysmic variables: (1) short-period systems containing helium white dwarfs, (2) systems containing carbon-oxygen white dwarfs whose secondaries are convectively stable against rapid mass transfer to the white dwarf, (3) systems containing carbon-oxygen white dwarfs whose secondaries are radiatively stable against rapid mass transfer to the white dwarf and (4) long period systems with evolved secondaries. The white dwarf mass distribution in zero-age cataclysmic variables has direct application to the calculation of the frequency of outburst in classical novae as a function of the mass of the white dwarf. The method developed in this thesis to calculate the distributions of the orbital parameters in zero-age cataclysmic variables can be used to calculate theoretical statistics of any class of binary systems. This method provides a theoretical framework from which to investigate the statistical properties and the evolution of the orbital parameters of binary systems

  11. Total eclipses of the sun

    CERN Document Server

    Zirker, Jack B

    2014-01-01

    Eclipses have captured attention and sparked curiosity about the cosmos since the first appearance of humankind. Having been blamed for everything from natural disasters to the fall of kings, they are now invaluable tools for understanding many celestial as well as terrestrial phenomena. This clear, easy-to-understand guide explains what causes total eclipses and how they can be used in experiments to examine everything from the dust between the planets to general relativity. A new chapter has been added on the eclipse of July 11, 1991 (the great Hawaiian eclipse). Originally published in 19

  12. Machine learning from hard x-ray surveys: applications to magnetic cataclysmic variable studies

    Science.gov (United States)

    Scaringi, Simone

    2009-11-01

    Within this thesis are discussed two main topics of contemporary astrophysics. The first is that of machine learning algorithms for astronomy whilst the second is that of magnetic cataclysmic variables (mCVs). To begin, an overview is given of ISINA: INTEGRAL Scouce Identifiction Network Algorithm. This machine learning algorithm, using random forests, is applied to the IBIS/ISGRI data set in order to ease the production of unbiased future soft gamma-ray source catalogues. The feature extraction process on an initial candidate list is described together with feature merging. Three trainng and testing sets are created in order to deal with the diverse time-scales encountered when dealing with the gamma-ray sky: one dealing with faint persistent source recognition, one dealing with strong persistent sources and a final one dealing with transients. For the latter, a new transient detection technique is introduced and described: the transient matrix. Finally the performance of the network is assessed and discussed using the testing set and some illustrative source examples. ISINA is also compared to the more conventional approach of visual inspection. Next mCVs are discussed, and in particular the properties arising from a hard X-ray selected sample which has proven remarkably efficient in detecting intermediate polars and asynchronous polars, two of the rarest type of cataclysmic variables (CVs). This thesis focuses particularly on the link between hard X-ray properties and spin/orbital periods. To this end, a new sample of these objects is constructed by cross-corelating candidate sources detected in INTEGRAL/IBIS observations against catalogues of known CVs. Also included in the analysis are hard X-ray Observations from Swift/BAT and SUZAKU/HXD in order to make the study more complete. It is found that most hard X-ray detected mCVs have Pspin/Porb<0.1 above the period gap. In this respect, attention is given to the very low number of detected systems in any ban

  13. On the masses of the white dwarfs in cataclysmic variables

    International Nuclear Information System (INIS)

    Livio, M.; Soker, N.

    1984-01-01

    The question of the masses of the white dwarfs in cataclysmic binaries is examined. It is shown that selection effects can explain an overabundance of massive white dwarfs in novae but not in dwarf novae. It is proposed that the spiralling-in process in the common envelope favours the formation of more massive white dwarfs A number of simplified spiralling-in calculations are performed. The calculations demonstrate that the probability of coalescence of the secondary with the primary core, or secondary dissipation, is higher in the case of a giant envelope than in the case of a super giant envelope. Consequently, binaries with primary core masses greater than approx. 0.7 Msolar masses (and thus massive white dwarf remnants), have a better chance of surviving common envelope evolution and are therefore better candidates for the formation of cataclysmic variables. (author)

  14. Observing cataclysmic variables and related objects with different techniques

    Czech Academy of Sciences Publication Activity Database

    Šimon, Vojtěch

    2012-01-01

    Roč. 83, č. 2 (2012), s. 675-682 ISSN 0037-8720. [Workshop on the golden age of cataclysmic variables and related objects /2./. Palermo , 09.09.2013-14.09.2013] R&D Projects: GA ČR GA205/08/1207 Institutional research plan: CEZ:AV0Z10030501 Keywords : X-rays * binaries * circumstellar matter Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  15. Is WD 1437-008 a cataclysmic variable?

    Science.gov (United States)

    Shimansky, V. V.; Nurtdinova, D. N.; Borisov, N. V.; Spiridonova, O. I.

    2011-10-01

    Comprehensive observations of a close binary candidate WD 1437-008 are performed. The shape and amplitude of the observed brightness variations are shown to be inconsistent with the hypothesis of reflection effects, and the photometric period of the system, P phot = 0. d 2775, is found to differ from the period of spectral variations, P sp = 0. d 272060. As a result, WD 1437-008 has been preliminarily classified as a low-inclination cataclysmic variable.

  16. Comments on the evolution and origin of cataclysmic binaries

    International Nuclear Information System (INIS)

    Whyte, C.A.; Eggleton, P.P.

    1980-01-01

    Aspects of the observational data on cataclysmic binaries are discussed and possible correlations between type of behaviour and binary period are noted. A gap between 2 and 3 hr in binary periods is judged to be real. A simple numerical procedure for evolving Roche-lobe-filling stars is described, and applied to white dwarf-red dwarf binaries for various mass loss and angular momentum loss mechanisms, and initial conditions. The results, in which the short-time-scale behaviour of the systems is ignored, are classified into four modes of evolution: normal, nuclear evolution dominated, angular momentum loss dominated and hydrodynamical. The clustering below 2 hr is interpreted in terms of evolution following the hydrodynamical mode, and it is suggested that both stars in such systems are of low mass. This may be the commonest type of cataclysmic binary. A possible explanation for the apparent clustering of classical novae to periods of 3 to 5 hr is given, and evolutionary schemes for cataclysmic binaries outlined. It is suggested that the short-period systems (approximately < 2 hr) arise mainly from late case B mass transfer in the original binary and the longer period systems mainly from case C. (author)

  17. Discovery of a Faint Eclipsing Binary GSC 02265-01456 DF Guo1, K ...

    Indian Academy of Sciences (India)

    The standard Johnson and Cousins V , and Rc filters were used during ... the expected mean square deviation and the unevenly spaced observations, it is less ..... 0.3555. 0.3555. 0.3556. 0.3556. 0.3556. 0.3556. 0.3556. 0.2. 0.3. 0.4. 0.5. 0.6.

  18. Getting started with Eclipse Juno

    CERN Document Server

    Durelli, Vinicius H S; Teixeira, Rafael Medeiros

    2013-01-01

    Written as a concise yet practical guide that details the main features which are usually required by a programmer who makes use of the Eclipse platform, this book covers Eclipse 3.8 in a way that is accessible to the Java novice and expert alike. The reader is guided through a series of hands-on examples that introduce Eclipse and some of its plugins.The primary audience for this book are the Java programmers. This book has been written in a way that it is accessible both to beginners and advanced Java programmers alike. Also, if you are a seasoned Java developer who has been using another ID

  19. Visualizing SPH Cataclysmic Variable Accretion Disk Simulations with Blender

    Science.gov (United States)

    Kent, Brian R.; Wood, Matthew A.

    2015-01-01

    We present innovative ways to use Blender, a 3D graphics package, to visualize smoothed particle hydrodynamics particle data of cataclysmic variable accretion disks. We focus on the methods of shape key data constructs to increasedata i/o and manipulation speed. The implementation of the methods outlined allow for compositing of the various visualization layers into a final animation. The viewing of the disk in 3D from different angles can allow for a visual analysisof the physical system and orbits. The techniques have a wide ranging set of applications in astronomical visualization,including both observation and theoretical data.

  20. Eclipse takeoff and flight

    Science.gov (United States)

    1998-01-01

    This 25-second clip shows the QF-106 'Delta Dart' tethered to the USAF C-141A during takeoff and in flight. NASA Dryden Flight Research Center, Edwards, California, supported a Kelly Space and Technology, Inc. (KST)/U.S. Air Force project known as Eclipse, which demonstrated a reusable tow launch vehicle concept. The purpose of the project was to demonstrate a reusable tow launch vehicle concept that had been conceived and patented by KST. Kelly Space obtained a contract with the USAF Research Laboratory for the tow launch demonstration project under the Small Business Innovation Research (SBIR) program. The USAF SBIR contract included the modifications to turn the QF-106 into the Experimental Demonstrator #1 (EXD-01), and the C141A aircraft to incorporate the tow provisions to link the two aircraft, as well as conducting flight tests. The demonstration consisted of ground and flight tests. These tests included a Combined Systems Test of both airplanes joined by a tow rope, a towed taxi test, and six towed flights. The primary goal of the project was demonstrating the tow phase of the Eclipse concept using a scaled-down tow aircraft (C-141A) and a representative aerodynamically-shaped aircraft (QF-106A) as a launch vehicle. This was successfully accomplished. On December 20, 1997, NASA research pilot Mark Stucky flew a QF-106 on the first towed flight behind an Air Force C-141 in the joint Eclipse project with KST to demonstrate the reusable tow launch vehicle concept developed by KST. Kelly hoped to use the data from the tow tests to validate a tow-to-launch procedure for reusable space launch vehicles. Stucky flew six successful tow tests between December 1997 and February 6, 1998. On February 6, 1998, the sixth and final towed flight brought the project to a successful completion. Preliminary flight results determined that the handling qualities of the QF-106 on tow were very stable; actual flight measured values of tow rope tension were well within predictions

  1. David Levy's Guide to Eclipses, Transits, and Occultations

    Science.gov (United States)

    Levy, David H.

    2010-08-01

    Introduction; Part I. The Magic and History of Eclipses: 1. Shakespeare, King Lear, and the Great Eclipse of 1605; 2. Three centuries later: Einstein, relativity, and the solar eclipse of 1919; 3. What causes solar and lunar eclipses; Part II. Observing Solar Eclipses: 4. Safety considerations; 5. What to expect during a partial eclipse; 6. Annular eclipses and what to see in them; 7. Total eclipse of the Sun: introduction to the magic; 8. The onset: temperature drop, Baily's Beads, Diamond Ring; 9. Totality: Corona, Prominences, Chromosphere, and surrounding area; 10. Photographing and imaging a solar eclipse; Part III. Observing Lunar Eclipses: 11. Don't forget the penumbral eclipses!; 12. Partial lunar eclipses; 13. Total lunar eclipses; 14. Photographing and imaging lunar eclipses; Part IV. Occultations: 15. When the Moon occults a star; Part V. Transits: 16. When planets cross the Sun; Part VI. My Favorite Eclipses: 17. A personal canon of eclipses, occultations, and transits I have seen; Appendices; Index.

  2. X-ray emission and the winds of cataclysmic variables

    International Nuclear Information System (INIS)

    Cordova, F.A.

    1985-01-01

    X-ray and ultraviolet observations of cataclysmic variable stars reveal a variety of exotic behavior - pulsations, winds, and episodic outbursts - are these related, what do they tell us about the nature of the outburst, about the environment of the accreting white dwarf. The author summarizes the observed changes in the x-ray and uv continuum and spectral features through the outbursts of the dwarf novae. The author then discusses how the modeling of these data have refined our ideas about the location and nature of the emissions, and the source of the outbursts. The author shows how comparisons of the x-ray and uv properties of cataclysmic variables with similar phenomena in other astronomical systems - the solar corona, OB stars, and Be stars - suggest ways in which the x-ray and uv emissions in CVs may be related, and point to further, specific observations that would elucidate our understanding of the behavior and role of the white dwarf in the outburst. 26 references

  3. White dwarf models of supernovae and cataclysmic variables

    International Nuclear Information System (INIS)

    Nomoto, K.; Hashimoto, M.

    1986-01-01

    If the accreting white dwarf increases its mass to the Chandrasekhar mass, it will either explode as a Type I supernova or collapse to form a neutron star. In fact, there is a good agreement between the exploding white dwarf model for Type I supernovae and observations. We describe various types of evolution of accreting white dwarfs as a function of binary parameters (i.e,. composition, mass, and age of the white dwarf, its companion star, and mass accretion rate), and discuss the conditions for the precursors of exploding or collapsing white dwarfs, and their relevance to cataclysmic variables. Particular attention is given to helium star cataclysmics which might be the precursors of some Type I supernovae or ultrashort period x-ray binaries. Finally we present new evolutionary calculations using the updated nuclear reaction rates for the formation of O+Ne+Mg white dwarfs, and discuss the composition structure and their relevance to the model for neon novae. 61 refs., 14 figs

  4. Mapping the 2017 Eclipse: Education, Navigation, Inspiration

    Science.gov (United States)

    Zeiler, M.

    2015-12-01

    Eclipse maps are a unique vessel of knowledge. At a glance, they communicate the essential knowledge of where and when to successfully view a total eclipse of the sun. An eclipse map also provides detailed knowledge of eclipse circumstances superimposed on the highway system for optimal navigation, especially in the event that weather forces relocation. Eclipse maps are also a vital planning tool for solar physicists and astrophotographers capturing high-resolution imagery of the solar corona. Michael Zeiler will speak to the role of eclipse maps in educating the American public and inspiring people to make the effort to reach the path of totality for the sight of a lifetime. Michael will review the role of eclipse maps in astronomical research and discuss a project under development, the 2017 Eclipse Atlas for smartphones, tablets, and desktop computers.

  5. Interacting Winds in Eclipsing Symbiotic Systems

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Interacting Winds in Eclipsing Symbiotic Systems – The Case Study of EG Andromedae ... to obtain the physical parameters of a quiescent eclipsing symbiotic system. ... Articles are also visible in Web of Science immediately.

  6. The Population of Optically Faint GEO Debris

    Science.gov (United States)

    Seitzer, Patrick; Barker, Ed; Buckalew, Brent; Burkhardt, Andrew; Cowardin, Heather; Frith, James; Gomez, Juan; Kaleida, Catherine; Lederer, Susan M.; Lee, Chris H.

    2016-01-01

    The 6.5-m Magellan telescope 'Walter Baade' at the Las Campanas Observatory in Chile has been used for spot surveys of the GEO orbital regime to study the population of optically faint GEO debris. The goal is to estimate the size of the population of GEO debris at sizes much smaller than can be studied with 1-meter class telescopes. Despite the small size of the field of view of the Magellan instrument (diameter 0.5-degree), a significant population of objects fainter than R = 19th magnitude have been found with angular rates consistent with circular orbits at GEO. We compare the size of this population with the numbers of GEO objects found at brighter magnitudes by smaller telescopes. The observed detections have a wide range in characteristics starting with those appearing as short uniform streaks. But there are a substantial number of detections with variations in brightness, flashers, during the 5-second exposure. The duration of each of these flashes can be extremely brief: sometimes less than half a second. This is characteristic of a rapidly tumbling object with a quite variable projected size times albedo. If the albedo is of the order of 0.2, then the largest projected size of these objects is around 10-cm. The data in this paper was collected over the last several years using Magellan's IMACS camera in f/2 mode. The analysis shows the brightness bins for the observed GEO population as well as the periodicity of the flashers. All objects presented are correlated with the catalog: the focus of the paper will be on the uncorrelated, optically faint, objects. The goal of this project is to better characterize the faint debris population in GEO that access to a 6.5-m optical telescope in a superb site can provide.

  7. Integration of BETA with Eclipse

    DEFF Research Database (Denmark)

    Andersen, Peter; Madsen, Ole Lehrmann; Enevoldsen, Mads Brøgger

    2004-01-01

    This paper presents language interoperability issues appearing in order to implement support for the BETA language in the Java-based Eclipse integrated development environment. One of the challenges is to implement plug-ins in BETA and be able to load them in Eclipse. In order to do this, some fo...... it is possible to implement plug-ins in BETA and even inherit from Java classes. In the paper the two approaches are described together with part of the mapping from BETA to Java class files. http://www.sciencedirect.com/science/journal/15710661...

  8. Counts and colors of faint galaxies

    International Nuclear Information System (INIS)

    Kron, R.G.

    1980-01-01

    The color distribution of faint galaxies is an observational dimension which has not yet been fully exploited, despite the important constraints obtainable for galaxy evolution and cosmology. Number-magnitude counts alone contain very diluted information about the state of things because galaxies from a wide range in redshift contribute to the counts at each magnitude. The most-frequently-seen type of galaxy depends on the luminosity function and the relative proportions of galaxies of different spectral classes. The addition of color as a measured quantity can thus considerably sharpen the interpretation of galaxy counts since the apparent color depends on the redshift and rest-frame spectrum. (Auth.)

  9. Hubble Space Telescope, Faint Object Camera

    Science.gov (United States)

    1981-01-01

    This drawing illustrates Hubble Space Telescope's (HST's), Faint Object Camera (FOC). The FOC reflects light down one of two optical pathways. The light enters a detector after passing through filters or through devices that can block out light from bright objects. Light from bright objects is blocked out to enable the FOC to see background images. The detector intensifies the image, then records it much like a television camera. For faint objects, images can be built up over long exposure times. The total image is translated into digital data, transmitted to Earth, and then reconstructed. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.

  10. Faint Objects and How to Observe Them

    CERN Document Server

    Cudnik, Brian

    2013-01-01

    Astronomers' Observing Guides provide up-to-date information for amateur astronomers who want to know all about what it is they are observing. This is the basis of the first part of the book. The second part details observing techniques for practical astronomers, working with a range of different instruments. Faint Objects and How to Observe Them is for visual observers who want to "go deep" with their observing. It's a guide to some of the most distant, dim, and rarely observed objects in the sky, with background information on surveys and object lists -- some familiar and some not. Typically, amateur astronomers begin by looking at the brighter objects, and work their way "deeper" as their experience and skills improve. Faint Objects is about the faintest objects we can see with an amateur's telescope -- their physical nature, why they appear so dim, and how to track them down. By definition, these objects are hard to see! But moderate equipment (a decent telescope of at least 10-inch aperture) and the righ...

  11. Eclipse plugin development by example beginner's guide

    CERN Document Server

    Blewitt, Alex

    2013-01-01

    A Beginner's Guide following the ""by Example"" approach. There will be 5-8 major examples that will be used in the book to develop advanced plugins with the Eclipse IDE.This book is for Java developers who are familiar with Eclipse as a Java IDE and are interested in learning how to develop plug-ins for Eclipse. No prior knowledge of Eclipse plug-in development or OSGi is necessary, although you are expected to know how to create, run, and debug Java programs in Eclipse.

  12. Android development tools for Eclipse

    CERN Document Server

    Shah, Sanjay

    2013-01-01

    A standard tutorial aimed at developing Android applications in a practical manner.Android Development Tools for Eclipse is aimed at beginners and existing developers who want to learn more about Android development. It is assumed that you have experience in Java programming and that you have used IDE for development.

  13. STRUCTURE AND DYNAMICS OF THE 2010 JULY 11 ECLIPSE WHITE-LIGHT CORONA

    International Nuclear Information System (INIS)

    Pasachoff, J. M.; Rusin, V.; Saniga, M.

    2011-01-01

    The white-light corona (WLC) during the total solar eclipse on 2010 July 11 was observed by several teams in the Moon's shadow stretching across the Pacific Ocean and a number of isolated islands. We present a comparison of the WLC as observed by eclipse teams located on the Tatakoto Atoll in French Polynesia and on Easter Island, 83 minutes later, combined with near-simultaneous space observations. The eclipse was observed at the beginning of the solar cycle, not long after solar minimum. Nevertheless, the solar corona shows a plethora of different features (coronal holes, helmet streamers, polar rays, very faint loops and radial-oriented thin streamers, a coronal mass ejection, and a puzzling 'curtain-like' object above the north pole). Comparing the observations from the two sites enables us to detect some dynamic phenomena. The eclipse observations are further compared with a hairy-ball model of the magnetic field and near-simultaneous images from the Atmospheric Imaging Assembly on NASA's Solar Dynamics Observatory, the Extreme Ultraviolet Imager on NASA's Solar Terrestrial Relations Observatory, the Sun Watcher, using Active Pixel System Detector and Image Processing on ESA's PRoject for Onboard Autonomy, and the Naval Research Laboratory's Large Angle and Spectrometric Coronagraph on ESA's Solar and Heliospheric Observatory. The Ludendorff flattening coefficient is 0.156, matching the expected ellipticity of coronal isophotes at 2 Rs un , for this rising phase of the solar-activity cycle.

  14. SWSex Stars, Old Novae, and the Evolution of Cataclysmic Variables

    Directory of Open Access Journals (Sweden)

    L. Schmidtobreick

    2015-02-01

    Full Text Available The population of cataclysmic variables with orbital periods right above the period gap are dominated by systems with extremely high mass transfer rates, the so-called SW Sextantis stars. On the other hand, some old novae in this period range which are expected to show high mass transfer rate instead show photometric and/or spectroscopic resemblance to low mass transfer systems like dwarf novae. We discuss them as candidates for so-called hibernating systems, CVs that changed their mass transfer behaviour due to a previously experienced nova outburst. This paper is designed to provide input for further research and discussion as the results as such are still very preliminary.

  15. The origin of the infrared light of cataclysmic variable stars

    International Nuclear Information System (INIS)

    Berriman, G.; Szkody, P.; Capps, R.W.

    1985-01-01

    This paper presents a model-independent overview of the origin of the near infrared (1-2 μm) light of a sample of 28 cataclysmic binary stars, largely dwarf novae in quiescence. The infrared light comes from the red dwarf that supplies matter to the white dwarf companion and the accretion disc around the white dwarf. The complex nature of the disc prevents near-infrared photometry from being a good probe of the red dwarfs, even in those systems where they are seen in the visual. All that can be found reliably is an upper limit to the proportion light that the red dwarfs supply, and consequently lower limits to the distances to the systems. The infrared light of the discs comes from opaque material and from the optically thin gas that gives rise to the visual and UV emission lines. (author)

  16. The evolution of polar caps in magnetic cataclysmic variables

    International Nuclear Information System (INIS)

    Frank, J.; Chanmugam, G.

    1986-01-01

    A simple analysis of the evolution of the size of the magnetic polar cap in accreting white dwarfs is made on the basis of current theories of the secular evolution of magnetic cataclysmic variables. For white dwarfs with dipolar fields it is shown that the size of the polar cap in DQ Her binaries is larger than in AM Her binaries. The size of the former is, however, smaller than deduced from interpretation of their X-ray light curves, while that of the latter is in rough agreement. If the dwarf contains an aligned magnetic quadrupole the size of the polar caps of the DQ Her binaries is significantly increased. Magnetic field decay of the quadrupole moment in the older AM Her binaries implies that their fields are predominantly dipolar. (author)

  17. Cataclysmic variables in the SUPERBLINK proper motion survey

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Julie N.; Thorstensen, John R. [Department of Physics and Astronomy, 6127 Wilder Laboratory, Dartmouth College, Hanover, NH 03755-3528 (United States); Lépine, Sébastien, E-mail: jns@dartmouth.edu [Department of Physics and Astronomy, Georgia State University, 25 Park Place NE, Atlanta, GA 30303 (United States)

    2014-12-01

    We have discovered a new high proper motion cataclysmic variable (CV) in the SUPERBLINK proper motion survey, which is sensitive to stars with proper motions greater than 40 mas yr{sup −1}. This CV was selected for follow-up observations as part of a larger search for CVs selected based on proper motions and their near-UV−V and V−K{sub s} colors. We present spectroscopic observations from the 2.4 m Hiltner Telescope at MDM Observatory. The new CV's orbital period is near 96 minutes, its spectrum shows the double-peaked Balmer emission lines characteristic of quiescent dwarf novae, and its V magnitude is near 18.2. Additionally, we present a full list of known CVs in the SUPERBLINK catalog.

  18. Reflected eclipses on circumbinary planets

    Directory of Open Access Journals (Sweden)

    Deeg H.J.

    2011-02-01

    Full Text Available A photometric method to detect planets orbiting around shortperiodic binary stars is presented. It is based on the detection of eclipse-signatures in the reflected light of circumbinary planets. Amplitudes of such ’reflected eclipses’ will depend on the orbital configurations of binary and planet relative to the observer. Reflected eclipses will occur with a period that is distinct from the binary eclipses, and their timing will also be modified by variations in the light-travel time of the eclipse signal. For the sample of eclipsing binaries found by the Kepler mission, reflected eclipses from close circumbinary planets may be detectable around at least several dozen binaries. A thorough detection effort of such reflected eclipses may then detect the inner planets present, or give solid limits to their abundance.

  19. Astrophysics of cataclysmic variables by ESA Gaia and low dispersion spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Hudec, René; Šimon, Vojtěch; Hudec, L.; Hudcová, Věra

    2012-01-01

    Roč. 83, č. 2 (2012), s. 849-853 ISSN 0037-8720. [Workshop on the golden age of cataclysmic variables and related objects /2./. Palermo, 09.09.2013-14.09.2013] R&D Projects: GA ČR GA205/08/1207 Institutional research plan: CEZ:AV0Z10030501 Keywords : stars * variable stars * cataclysmic variables Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  20. The Properties of Faint Field Galaxies

    Science.gov (United States)

    Driver, Simon. P.

    1994-12-01

    One of the current drawbacks of Charge Coupled Devices (CCDs) is their restrictive fields of view. The Hitchhiker CCD camera overcomes this limitation by operating in parallel with existing instrumentation and is able to cover a large area as well as large volumes. Hitchhiker is mounted on the 4.2m William Herschel Telescope and has been operating for two years. The first use of the Hitchhiker data set has been to study the general properties of faint galaxies. The observed trend of how the differential numbers of galaxies vary with magnitude agrees extremely well with those of other groups and covers, for the first time, all four major optical bandpasses. This multi-band capability has also allowed the study of how the colors of galaxies change with magnitude and how the correlation of galaxies on the sky varies between the optical bandpasses. A dwarf dominated model has been developed to explain these observations and challenges our knowledge of the space-density of dwarf galaxies. The model demonstrates that a simple upward turn in the luminosity distribution of galaxies, similar to that observed in clusters, would remain undetected by the field surveys yet can explain many of the observations without recourse to non-passive galaxy evolution. The conclusion is that the field luminosity distribution is not constrained at faint absolute magnitudes. A combination of a high density of dwarf galaxies and mild evolution could explain all the observations. Continuing work with HST and the Medium Deep Survey Team now reveals the morphological mix of galaxies down to mI ~ 24.0. The results confirm that ellipticals and early-type spirals are well fitted by standard no-evolution models whilst the late-type spirals can only be fitted by strong evolution and/or a significant turn-up in the local field LF.

  1. Chromospheric activity of periodic variable stars (including eclipsing binaries) observed in DR2 LAMOST stellar spectral survey

    Science.gov (United States)

    Zhang, Liyun; Lu, Hongpeng; Han, Xianming L.; Jiang, Linyan; Li, Zhongmu; Zhang, Yong; Hou, Yonghui; Wang, Yuefei; Cao, Zihuang

    2018-05-01

    The LAMOST spectral survey provides a rich databases for studying stellar spectroscopic properties and chromospheric activity. We cross-matched a total of 105,287 periodic variable stars from several photometric surveys and databases (CSS, LINEAR, Kepler, a recently updated eclipsing star catalogue, ASAS, NSVS, some part of SuperWASP survey, variable stars from the Tsinghua University-NAOC Transient Survey, and other objects from some new references) with four million stellar spectra published in the LAMOST data release 2 (DR2). We found 15,955 spectra for 11,469 stars (including 5398 eclipsing binaries). We calculated their equivalent widths (EWs) of their Hα, Hβ, Hγ, Hδ and Caii H lines. Using the Hα line EW, we found 447 spectra with emission above continuum for a total of 316 stars (178 eclipsing binaries). We identified 86 active stars (including 44 eclipsing binaries) with repeated LAMOST spectra. A total of 68 stars (including 34 eclipsing binaries) show chromospheric activity variability. We also found LAMOST spectra of 12 cataclysmic variables, five of which show chromospheric activity variability. We also made photometric follow-up studies of three short period targets (DY CVn, HAT-192-0001481, and LAMOST J164933.24+141255.0) using the Xinglong 60-cm telescope and the SARA 90-cm and 1-m telescopes, and obtained new BVRI CCD light curves. We analyzed these light curves and obtained orbital and starspot parameters. We detected the first flare event with a huge brightness increase of more than about 1.5 magnitudes in R filter in LAMOST J164933.24+141255.0.

  2. Exoplanet Characterization With Spitzer Eclipses

    Science.gov (United States)

    Harrington, Joseph

    We will analyze our existing Spitzer eclipse data for 11 exoplanets (GJ 436b, WASP-8b, WASP-29b, WASP-11b, TrES-1, WASP-34b, WASP-43b, HD 209458b, HAT-P-30b, HAT-P-13b, and WASP-12b) along with all other Spitzer eclipse and transit data for these systems (723 hours of total data). In combination with transit results, these measurements reveal the surface fluxes emitted by the planets' atmospheres in the six Spitzer bandpasses (3.6, 4.5, 5.8, 8.0, 16, and 24 1-4m), as well as orbital eccentricity and in a few cases possibly even precession rate. The fluxes, in turn, can constrain atmospheric composition and thermal profiles. We propose here to analyze data for these planets using Monte Carlo-driven, radiative-transfer, model-fitting codes; to conduct aggregate analyses; and to develop and share statistical modeling tools. Secondary eclipses provide us with a unique way to characterize exoplanetary atmospheres. Since other techniques like spectroscopy divide the planetary signal into many channels, they require very high signal-to-noise ratio (S/N) and are only possible for a few planets. Broadband eclipse photometry is thus the only technique that can measure dozens of atmospheres and identify the mechanisms that cause planets at a given irradiation level to behave so differently from one another. Until JWST becomes available, the broad variety of Spitzer data that we already have in hand, along with observations from the Hubble Space Telescope and possibly SOFIA, are our best way to understand the wide diversity of exoplanetary atmospheres. Since 2010, the team has produced six papers from a new, highly modular pipeline that implements optimal methods for analysis of Spitzer photometric time series, and our efficiency is increasing. The sensitivity needed for these measurements is up to 100 times better than Spitzer's design criteria, so careful treatment of systematic error is critically important and first-order approximations rarely work. The new pipeline

  3. Photometry of the three eclipsing novalike variables EC 21178-5417, GS Pav and V345 Pav

    Science.gov (United States)

    Bruch, Albert

    2017-10-01

    As part of a project to better characterize comparatively bright, yet little studied cataclysmic variables time resolved photometry of the three eclipsing novalike variables EC 21178-5417, GS Pav und V345 Pav is presented. Previously known orbital periods are significantly improved and long-term ephemeris are derived. Variations of eclipse profiles, occurring on time scales of days to weeks, are analyzed. Out of eclipse the light curves are characterized by low scale flickering superposed on more gradual variations with amplitudes limited to a few tenths of a magnitude and profiles which at least in EC 21178-5417 and GS Pav roughly follow the same pattern in all observed cycles. Additionally, signs for variations on the time scale of some tens of minutes are seen in GS Pav, most clearly in two subsequent nights when in the first of these a signal with a period of 15.7 min was observed over several hours. In the second night variations with twice this period were seen. While no additional insight could be gained on quasi periodic oscillations (QPOs) and dwarf nova oscillations in EC 21178-5417, previously detected by Warner et al. (2003), and while such oscillations could not be found in V345 Pav, stacked power spectra of GS Pav clearly reveal the presence of QPOs over time intervals of several hours with periods varying between 200 s and 500 s in that system.

  4. Resource Letter OSE-1: Observing Solar Eclipses

    Science.gov (United States)

    Pasachoff, Jay M.; Fraknoi, Andrew

    2017-07-01

    This Resource Letter provides a guide to the available literature, listing selected books, articles, and online resources about scientific, cultural, and practical issues related to observing solar eclipses. It is timely, given that a total solar eclipse will cross the continental United States on August 21, 2017. The next total solar eclipse path crossing the U.S. and Canada will be on April 8, 2024. In 2023, the path of annularity of an annular eclipse will cross Mexico, the United States, and Canada, with partial phases visible throughout those countries.

  5. The new pre-cataclysmic binary PG 2200+085

    OpenAIRE

    Shimansky, V.; Sakhibullin, N. A.; Bikmaev, I.; Ritter, H.; Suleimanov, V.; Borisov, N.; Galeev, A.

    2006-01-01

    We present the results of spectroscopic-- and orbit--sampled photometric observations of the faint UV-excess object PG 2200+085. The optical CCD photometry observations of this object were performed by the Russian-Turkish 1.5-meter telescope RTT150 at the TUBITAK National Observatory (Turkey). The long-slit optical spectroscopy observations with 2.6 A resolution were carried out by 6-meter telescope BTA at the Special Astrophysical Observatory (Russia). The photometric variations over two nig...

  6. Accurate shear measurement with faint sources

    International Nuclear Information System (INIS)

    Zhang, Jun; Foucaud, Sebastien; Luo, Wentao

    2015-01-01

    For cosmic shear to become an accurate cosmological probe, systematic errors in the shear measurement method must be unambiguously identified and corrected for. Previous work of this series has demonstrated that cosmic shears can be measured accurately in Fourier space in the presence of background noise and finite pixel size, without assumptions on the morphologies of galaxy and PSF. The remaining major source of error is source Poisson noise, due to the finiteness of source photon number. This problem is particularly important for faint galaxies in space-based weak lensing measurements, and for ground-based images of short exposure times. In this work, we propose a simple and rigorous way of removing the shear bias from the source Poisson noise. Our noise treatment can be generalized for images made of multiple exposures through MultiDrizzle. This is demonstrated with the SDSS and COSMOS/ACS data. With a large ensemble of mock galaxy images of unrestricted morphologies, we show that our shear measurement method can achieve sub-percent level accuracy even for images of signal-to-noise ratio less than 5 in general, making it the most promising technique for cosmic shear measurement in the ongoing and upcoming large scale galaxy surveys

  7. VHE gamma-rays from radio pulsars and cataclysmic variables

    International Nuclear Information System (INIS)

    De Jager, O.C.; Brink, C.; Meintjies, P.J.; Nel, H.I.; North, A.R.; Raubenheimer, B.C.; Van der Walt, D.J.

    1990-01-01

    We present the results of observations (above 1 TeV) of radio pulsars and cataclysmic variables with the Potchefstroom air Cerenkov facility. We were able to confirm our previous detection of PSR 1509-58 and the final significance is 1.7x10 -5 . A DC enhancement at the 10 -3 significance level was seen from the L 4 Lagrange position in the PSR 1957+20 system. This result was confirmed by COS-B data. We were also able to detect the 5.4 ms pulsar PSR 1855+09 at a marginal significance level of 5%. However, the best and longest observation indicates non-uniformity at the 0.005 significance level. The TeV light curve resembles the radio light curve. The latter is also reminiscent of other millisecond pulsar observed above 1 TeV. The intermediate polar AEAQR (P = 33.08s) shows a period shift which is consistent with recent model predictions. However, the present significance of this results does not allow an unambiguous claim. (orig.)

  8. Hydrodynamic simulations of accretion disks in cataclysmic variables

    International Nuclear Information System (INIS)

    Hirose, Masahito; Osaki, Yoji

    1990-01-01

    The tidal effects of secondary stars on accretion disks in cataclysmic variables are studied by two-dimensional hydrodynamical simulations. The time evolution of an accretion disk under a constant mass supply rate from the secondary is followed until it reaches a quasi-steady state. We have examined various cases of different mass ratios of binary systems. It is found that the accretion disk settles into a steady state of an elongated disk fixed in the rotating frame of the binary in a binary system with comparable masses of component stars. On the other hand, in the case of a low-mass secondary, the accretion disk develops a non-axisymmetric (eccentric) structure and finally settles into a periodically oscillating state in which a non-axisymmetric eccentric disk rotates in the opposite direction to the orbital motion of the binary in the rotating frame of the binary. The period of oscillation is a few percent longer than the orbital period of the binary, and it offers a natural explanation for the ''superhump'' periodicity of SU UMa stars. Our results thus confirm basically those of Whitehurst (1988, AAA 45.064.032) who discovered the tidal instability of an accretion disk in the case of a low-mass secondary. We then discuss the cause of the tidal instability. It is shown that the tidal instability of accretion disks is caused by a parametric resonance between particle orbits and an orbiting secondary star with a 1:3 period ratio. (author)

  9. Star-planet systems as possible progenitors of cataclysmic binaries

    International Nuclear Information System (INIS)

    Livio, M.; Soker, N.

    1984-01-01

    The evolution of a star-planet system is studied, in the phase in which the star becomes a red giant, thus enabling the planet to accrete mass either from its envelope or from its wind. It is found that for planets which are embedded in the envelope, there exists a certain critical initial mass, under which the planets are totally evaporated while spiralling-in. Planets with an initial mass above this critical value are all transformed into low-mass stellar companions to the giant's core. The final masses of these secondaries are almost independent of their initial mass and their initial separation, as long as the latter is greater than a certain critical value. The final masses are essentially determined by the giant's envelope mass. The star-planet separation is found to increase for planets that accrete from the stellar wind, when tidal effects are neglected. Possible consequences of these results on the problem of formation of low-mass cataclysmic binaries are discussed. (author)

  10. IPHAS J062746.41+014811.3: A DEEPLY ECLIPSING INTERMEDIATE POLAR

    International Nuclear Information System (INIS)

    Aungwerojwit, A.; Gänsicke, B. T.; Wheatley, P. J.; Pyrzas, S.; Staels, B.; Krajci, T.; Rodríguez-Gil, P.

    2012-01-01

    We present time-resolved photometry of a cataclysmic variable discovered in the Isaac Newton Telescope Photometric Hα Survey of the northern galactic plane, IPHAS J062746.41+014811.3, and classify the system as the fourth deeply eclipsing intermediate polar known with an orbital period of P orb = 8.16 hr and a spin period of P spin = 2210 s. The system shows mild variations of its brightness that appear to be accompanied by a change in the amplitude of the spin modulation at optical wavelengths and a change in the morphology of the eclipse profile. The inferred magnetic moment of the white dwarf is μ wd ∼ (6-7) × 10 33 G cm 3 , and in this case IPHAS J062746.41+014811.3 will evolve either into a short-period EX Hya-like intermediate polar with a large P spin /P orb ratio or, perhaps more likely, into a synchronized polar. Swift observations show that the system is an ultraviolet and X-ray source, with a hard X-ray spectrum that is consistent with those seen in other intermediate polars. The ultraviolet light curve shows orbital modulation and an eclipse, while the low signal-to-noise ratio X-ray light curve does not show a significant modulation on the spin period. The measured X-ray flux is about an order of magnitude lower than would be expected from scaling by the optical fluxes of well-known X-ray-selected intermediate polars.

  11. Eclipse Soundscapes Project: Making the August 21, 2017 Total Solar Eclipse Accessible to Everyone

    Science.gov (United States)

    Winter, H. D., III

    2017-12-01

    The Eclipse Soundscapes Project delivered a multisensory experience that allowed the blind and visually impaired to engage with the August 21, 2017 total solar eclipse along with their sighted peers in a way that would not have been possible otherwise. The project, from the Smithsonian Astrophysical Observatory and NASA's Heliophysics Education Consortium, includes illustrative audio descriptions of the eclipse in real time, recordings of the changing environmental sounds during the eclipse, and an interactive "rumble map" app that allows users to experience the eclipse through touch and sound. The Eclipse Soundscapes Project is working with organizations such as the National Parks Service (NPS), Science Friday, and Brigham Young University and by WGBH's National Center for Accessible Media (NCAM) to bring the awe and wonder of the total solar eclipse and other astronomical phenomena to a segment of the population that has been excluded from and astronomy and astrophysics for far too long, while engaging all learners in new and exciting ways.

  12. Evaluating the Eclipse: How good was it?

    Science.gov (United States)

    Noel-Storr, Jacob; InsightSTEM Evaluation Team

    2018-01-01

    We present findings from the evaluation program carried out of education, public outreach, and communication activities around the "Great American Eclipse" of August 21, 2017. We include findings drawn from the experiences of 30 participants in planning activities prior to the eclipse and 31 recipients of mini-grants for eclipse activities supported by the American Astronomical Society through a grant from the National Science Foundation. We synthesize evaluations gathered by these and other volunteering organizations to provide a multi-site picture of experiences and learning outcomes at eclipse-related events - both in the path of totality and in partial eclipse settings. We make use of qualitative and quantitative responses representing over 30,000 individuals who observed (or tried to observe) the eclipse. We will share findings from across the range of programs included in our evaluation network along with specific highlights. We emphasize a reflection on the motivation and activity behind the 2017 eclipse, and how to leverage the lessons learned for future events on this scale (such as the eclipse of April 8, 2024) along with messages relevant to other events connected with astronomical phenomena, or in multi-site settings.This work was supported in part by the National Science Foundation under Grant No. 1564535 awarded to the American Astronomical Society. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the National Science Foundation or the American Astronomical Society.

  13. Mastering Eclipse plug-in development

    CERN Document Server

    Blewitt, Alex

    2014-01-01

    If you are a Java developer who is familiar with the Eclipse plug-in environment, this book covers the advanced concepts that you need to know to achieve true expertise. Prior experience in creating Eclipse plug-ins is assumed for this book.

  14. Is an eclipse described in the Odyssey?

    Science.gov (United States)

    Baikouzis, Constantino; Magnasco, Marcelo O

    2008-07-01

    Plutarch and Heraclitus believed a certain passage in the 20th book of the Odyssey ("Theoclymenus's prophecy") to be a poetic description of a total solar eclipse. In the late 1920s, Schoch and Neugebauer computed that the solar eclipse of 16 April 1178 B.C.E. was total over the Ionian Islands and was the only suitable eclipse in more than a century to agree with classical estimates of the decade-earlier sack of Troy around 1192-1184 B.C.E. However, much skepticism remains about whether the verses refer to this, or any, eclipse. To contribute to the issue independently of the disputed eclipse reference, we analyze other astronomical references in the Epic, without assuming the existence of an eclipse, and search for dates matching the astronomical phenomena we believe they describe. We use three overt astronomical references in the epic: to Boötes and the Pleiades, Venus, and the New Moon; we supplement them with a conjectural identification of Hermes's trip to Ogygia as relating to the motion of planet Mercury. Performing an exhaustive search of all possible dates in the span 1250-1115 B.C., we looked to match these phenomena in the order and manner that the text describes. In that period, a single date closely matches our references: 16 April 1178 B.C.E. We speculate that these references, plus the disputed eclipse reference, may refer to that specific eclipse.

  15. Strategies for the public communication of eclipses

    Science.gov (United States)

    Bretones, P. S.

    2015-03-01

    Eclipses are among the celestial events that draw the attention of the public. This paper discusses strategies for using eclipses as public communication opportunities in the media. It discusses the impact of articles written by the author and analysis of published material for 25 observed eclipses over the last 30 years by mass media in the state of São Paulo, Brazil. On each occasion, a standard article was posted on the Internet and sent to newspapers, radio and TV with information, such as: date, time and local circumstances; type of the eclipse; area of visibility; explanation; diagram of the phenomenon, and the Moon's path through Earth's shadow; eclipses in history; techniques of observation; getting photographs; place and event for public observation. Over the years, direct contact was maintained with the media and jounralists by the press offices of the institutions.

  16. Effect of solar eclipse on microbes

    Directory of Open Access Journals (Sweden)

    Amrita Shriyan

    2011-01-01

    Full Text Available Objective : A solar eclipse was observed in India on 15 th January, 2010. It was a total eclipse in some parts of the country, while it was a partial eclipse in other parts. Microorganisms play an important role in various phenomena on the earth. This study was undertaken to know the influence of solar eclipse on nature indirectly, by analyzing certain genotypic and phenotypic variations in prokaryotes and eukaryotes. Since yeast have similar gene expression as that of humans, investigations were pursued on Candida albicans. Hence the study of the effect of solar eclipse on cultures of Staphylococcus aureus, Klebsiella species, Escherichia coli, and C. albicans was performed in the laboratory. The effect of the total or partial eclipse on the microorganism isolated from clinical isolates was investigated during the time period from 11.15 am to 3.15 pm. Materials and Methods : Cultures of S. aureus, Klebsiella species, and E. coli colonies on nutrient agar slants and broth and C. albicans on Sabouraud′s dextrose agar plates and broth. Slants were exposed to sunlight during eclipse and exposure to normal sunlight at Mangalore, Dakshina Kannada district, Karnataka state, India. Results : There was significant change observed during exposure to normal sunlight and eclipse phase. Bacterial colonies showed difference in morphology on smear examination and sensitivity pattern during this study. One fungal species and three bacterial isolates were studied and changes were recorded. Fungal species showed a definite change in their morphology on exposure to sunlight during eclipse observed by stained smear examination from broth, plate, and slant. Conclusion : Present study concludes that blocking of the sun rays during eclipse does not harm prokaryotes and eukaryotes, instead promoted the progeny of predators in the race of better acclimatization and survival in the natural and changing environmental conditions.

  17. Reducing the devastating effects of cataclysmic events: Cooperation

    International Nuclear Information System (INIS)

    Jing Ding; Fong, P.

    1989-01-01

    Natural calamities, including earthquakes, land sinkings, volcanos, floods, tsunamis, hurricanes, avalanches, lightnings, forest fires, are discussed. Their devastating effects can be alleviated by cooperative efforts, sometimes international, among all concerned. The successful earthquake management of the Haicheng event is discussed as an example. Now the authors have environmental calamities, including erosion floods, dam failures, acid rain, ozone depletion, and the global greenhouse effect. There are empirical and theoretical questions about whether the greenhouse effect leads to global warming or polar ice melting. The warming prediction was based on model calculation with an incorrect boundary condition. When corrected with the right boundary condition, the models predict ice melting. The same is borne out in independent static and dynamic theories. Thus, there will be no greenhouse warming, only a sea level rise of up to 200 feet, which is much worse. The only way out is replacing fossil fuels by nuclear power. The nuclear fear is analyzed in terms of the Don Quixote syndrome and Laplace dictum. The lessons of Three Mile Island and Chernobyl actually strengthen the case of nuclear safety. New reactor technology and design will make it even safer. After 250 years of studying the history of the earth, geologists are now able to show that it is nothing but a long series of gradual changes and violent events. What was true in the past will remain so in the future, and cataclysms will occur again and again. Earthquakes, land subsidence and volcanic eruptions; flood and drought; the tsunami, tropical cyclones and avalanches; lightning and forest fires; have occurred ever since mountains, oceans, rivers, atmosphere, and ice sheets have been on the earth, and they will continue to happen

  18. Cataclysmic Variables and Active Binary Stars in Omega Centauri

    Science.gov (United States)

    Arias, T.; Brochmann, M.; Dorfman, J. L.; White, M. V.; Cool, A. M.

    2004-12-01

    We report findings from our ongoing research on the globular cluster Omega Centauri (NGC 5139) using a 3x3 mosaic of Wide Field Camera pointings with the HST Advanced Camera for Surveys (ACS). The data consist of F435W (B435), F625W (R625), and F658N (Hα ) images and cover roughly 10x10 arcminutes, out to beyond the cluster's half-mass radius. Our current work is a search for cataclysmic variables (CVs) and active binaries (ABs) (e.g., RS CVn and BY Dra stars) as counterparts to X-ray point sources previously detected with Chandra. The ACS field encompasses 109 of the Chandra sources, 20-50 of which are likely to be cluster members according to our statistical estimates (the rest being primarily active galaxies). Using DAOPHOT to obtain photometry in 20x20 arcsecond patches surrounding each X-ray source, we are constructing color-magnitude diagrams to search for stars with Hα -R625 and/or B435-R625 colors indicative of CVs or ABs in ˜ 1 arcsecond Chandra error circles. With roughly half of the patches analyzed, several AB candidates and only a small number of CV candidates have emerged. Our tentative conclusion is that CVs may be significantly rarer in Omega Cen than in 47 Tuc, in contrast to the comparable numbers ( ˜100) predicted for these two clusters from tidal capture theory (Di Stefano and Rappaport 1994). Alternatively, the CVs could be strongly concentrated toward the cluster center, and thus not yet appear in our sample. To date, most of the patches we have analyzed are 3-4 arcminutes from the cluster center and thus are outside the cluster core (radius 2.6 arcminutes). Our continuing work should soon enable us to resolve this question. This work is supported by NASA grant GO-9442 from the Space Telescope Science Institute.

  19. Analysis of cataclysmic variable GSC02197-00886 evolution

    Science.gov (United States)

    Mitrofanova, A. A.; Borisov, N. V.; Shimansky, V. V.

    2014-01-01

    We present the spectral analysis of the physical state and evolution of the WZSge-type cataclysmic variable GSC02197-00886. The spectra of the system, covering the total orbital period at the time of the outburst on May 8, 2010, at the late relaxation stage, and in the quiescent state, were obtained at the SAO RAS 6-m BTA telescope in 2010-2012. From the absorption and emission HI, He I, and Fe II lines, we have determined the radial velocities for all the nights of observations and constructed the maps of Doppler tomography for the quiescent state. It was found that during the outburst the spectra of the object were formed in an optically thick accretion disk with an effective temperature of T eff ≈ 45 000 K and in a hotter boundary layer. During the relaxation of the system, the accretion disk gradually became optically thinner in the continuum and in the emission lines. In the quiescent state (July 2012), the continuous spectrum was dominated by the radiation of the cooling white dwarf with T eff = 18 000 K. The emission lines are formed on the surface of the cool star by the X-ray irradiation of the 1RXSJ213807.1+261958 source. We propose a method for determining the parameters of the white dwarf, based on the numerical modeling of the system spectra in the quiescent state and their comparison with the observed spectra. It is shown that the effective temperature of white dwarf has decreased by Δ T eff = 6000 K during the relaxation from August 2010 to July 2012. We have obtained a set of parameters for GSC02197-00886 and shown their good agreement with the average parameters of the W Z Sge-type systems, presented in the literature.

  20. High-speed photometry of Gaia14aae: an eclipsing AM CVn that challenges formation models

    Science.gov (United States)

    Green, M. J.; Marsh, T. R.; Steeghs, D. T. H.; Kupfer, T.; Ashley, R. P.; Bloemen, S.; Breedt, E.; Campbell, H. C.; Chakpor, A.; Copperwheat, C. M.; Dhillon, V. S.; Hallinan, G.; Hardy, L. K.; Hermes, J. J.; Kerry, P.; Littlefair, S. P.; Milburn, J.; Parsons, S. G.; Prasert, N.; van Roestel, J.; Sahman, D. I.; Singh, N.

    2018-05-01

    AM CVn-type systems are ultracompact, hydrogen-deficient accreting binaries with degenerate or semidegenerate donors. The evolutionary history of these systems can be explored by constraining the properties of their donor stars. We present high-speed photometry of Gaia14aae, an AM CVn with a binary period of 49. 7 min and the first AM CVn in which the central white dwarf is fully eclipsed by the donor star. Modelling of the light curves of this system allows for the most precise measurement to date of the donor mass of an AM CVn, and relies only on geometric and well-tested physical assumptions. We find a mass ratio q = M2/M1 = 0.0287 ± 0.0020 and masses M1 = 0.87 ± 0.02 M⊙ and M2 = 0.0250 ± 0.0013 M⊙. We compare these properties to the three proposed channels for AM CVn formation. Our measured donor mass and radius do not fit with the contraction that is predicted for AM CVn donors descended from white dwarfs or helium stars at long orbital periods. The donor properties we measure fall in a region of parameter space in which systems evolved from hydrogen-dominated cataclysmic variables are expected, but such systems should show spectroscopic hydrogen, which is not seen in Gaia14aae. The evolutionary history of this system is therefore not clear. We consider a helium-burning star or an evolved cataclysmic variable to be the most likely progenitors, but both models require additional processes and/or fine-tuning to fit the data. Additionally, we calculate an updated ephemeris which corrects for an anomalous time measurement in the previously published ephemeris.

  1. The eclipse period of Escherichia coli

    DEFF Research Database (Denmark)

    von Freiesleben, Ulrik; Krekling, Martin A.; Hansen, Flemming G.

    2000-01-01

    corresponds to the period of origin hemimethylation. The SeqA protein was absolutely required for the eclipse, and DnaA titration studies suggested that the SeqA protein prevented the binding of multiple DnaA molecules on oriC (initial complex formation). No correlation between the amount of SeqA and eclipse...... length was revealed, but increased SeqA levels affected chromosome partitioning and/or cell division. This was corroborated further by an aberrant nucleoid distribution in SeqA-deficient cells. We suggest that the SeqA protein's role in maintaining the eclipse is tied to a function in chromosome...

  2. Cataclysmic variables from a ROSAT/2MASS selection - I. Four new intermediate polars

    NARCIS (Netherlands)

    Gänsicke, B.T.; Marsh, T.R.; Edge, A.; Rodríguez-Gil, P.; Steeghs, D.; Araujo-Betancor, S.; Harlaftis, E.; Giannakis, O.; Pyrzas, S.; Morales-Rueda, L.; Aungwerojwit, A.

    2005-01-01

    We report the first results from a new search for cataclysmic variables (CVs) using a combined X-ray (ROSAT)/infrared (2MASS) target selection that discriminates against background active galactic nuclei. Identification spectra were obtained at the Isaac Newton Telescope for a total of 174 targets,

  3. The 1995 total solar eclipse: an overview.

    Science.gov (United States)

    Singh, J.

    A number of experiments were conducted during the total solar eclipse of October 24, 1995. First time efforts were made to photograph the solar corona using IAF jet aircrafts and transport planes ad hot air balloons.

  4. Spitzer secondary eclipses of Qatar-1b

    Science.gov (United States)

    Garhart, Emily; Deming, Drake; Mandell, Avi; Knutson, Heather; Fortney, Jonathan J.

    2018-02-01

    Aims: Previous secondary eclipse observations of the hot Jupiter Qatar-1b in the Ks band suggest that it may have an unusually high day side temperature, indicative of minimal heat redistribution. There have also been indications that the orbit may be slightly eccentric, possibly forced by another planet in the system. We investigate the day side temperature and orbital eccentricity using secondary eclipse observations with Spitzer. Methods: We observed the secondary eclipse with Spitzer/IRAC in subarray mode, in both 3.6 and 4.5 μm wavelengths. We used pixel-level decorrelation to correct for Spitzer's intra-pixel sensitivity variations and thereby obtain accurate eclipse depths and central phases. Results: Our 3.6 μm eclipse depth is 0.149 ± 0.051% and the 4.5 μm depth is 0.273 ± 0.049%. Fitting a blackbody planet to our data and two recent Ks band eclipse depths indicates a brightness temperature of 1506 ± 71 K. Comparison to model atmospheres for the planet indicates that its degree of longitudinal heat redistribution is intermediate between fully uniform and day-side only. The day side temperature of the planet is unlikely to be as high (1885 K) as indicated by the ground-based eclipses in the Ks band, unless the planet's emergent spectrum deviates strongly from model atmosphere predictions. The average central phase for our Spitzer eclipses is 0.4984 ± 0.0017, yielding e cos ω = -0.0028 ± 0.0027. Our results are consistent with a circular orbit, and we constrain e cos ω much more strongly than has been possible with previous observations. Tables of the lightcurve data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A55

  5. Modelling secondary eclipses of Kepler exoplanets

    Directory of Open Access Journals (Sweden)

    Hambálek Lubomír

    2015-01-01

    Full Text Available We have selected several Kepler objects with potentially the deepest secondary eclipses. By combination of many single phased light-curves (LCs we have produced a smooth LC with a larger SNR and made the secondary eclipses more distinct. This allowed us to measure the depth of primary and secondary minimum with greater accuracy and then to determine stellar and planetary radii by simplex modelling.

  6. 1982-1984 Eclipse of Epsilon Aurigae

    International Nuclear Information System (INIS)

    Stencel, R.E.

    1985-09-01

    A workshop proceedings concerned with the new data collected during the 1982-1984 eclipse period of the 27-year system Epsilon Aurigae is presented. This binary star has been a classic problem in astrophysics because the opaque eclipsing object is nonstellar, and probably disk shaped. Invited papers concerning the history of the system, optical, infrared and ultraviolet photometry, optical polarimetry and ultraviolet spectroscopy are included. An invited paper concerning comprehensive theoretical interpretation in the context of stellar evolution also is included

  7. Boise State's Idaho Eclipse Outreach Program

    Science.gov (United States)

    Davis, Karan; Jackson, Brian

    2017-10-01

    The 2017 total solar eclipse is an unprecedented opportunity for astronomical education throughout the continental United States. With the path of totality passing through 14 states, from Oregon to South Carolina, the United States is expecting visitors from all around the world. Due to the likelihood of clear skies, Idaho was a popular destination for eclipse-chasers. In spite of considerable enthusiasm and interest by the general population, the resources for STEM outreach in the rural Pacific Northwest are very limited. In order to help prepare Idaho for the eclipse, we put together a crowdfunding campaign through the university and raised over $10,000. Donors received eclipse shades as well as information about the eclipse specific to Idaho. Idaho expects 500,000 visitors, which could present a problem for the many small, rural towns scattered across the path of totality. In order to help prepare and equip the public for the solar eclipse, we conducted a series of site visits to towns in and near the path of totality throughout Idaho. To maximize the impact of this effort, the program included several partnerships with local educational and community organizations and a focus on the sizable refugee and low-income populations in Idaho, with considerable attendance at most events.

  8. The (Almost) Unseen Total Eclipse of 1831

    Science.gov (United States)

    Bartky, Ian R.

    2008-03-01

    The total eclipse of August 1831 began at sunrise in Australia, swept across the western South Pacific Ocean, and ended at sunset in the central South Pacific. As a result of the eclipse's path over mostly uninhabited ocean, the region's sparse European (British) population, and near-useless local predictions of the event at Hobart and Sydney in almanacs sold to the general public, almost no one witnessed its passage. In an attempt to document the eclipse, journals of naive observers - those having no access to a prediction - were examined. Thus far, the sole record is in the Pitcairn Island Register Book. Considering the Pitcairners' extreme isolation and the rather modest partial eclipse that occurred there, the entry is a surprising one; however, it can be explained in terms of events associated with their initial removal to Tahiti in March 1831 followed by their return home in June. Further, an authoritative means to identify any issues associated with eclipse predictions compiled for private-sector almanacs came in 1833 when sweeping changes in the British Nautical Almanac's section on eclipses were instituted.

  9. IPHAS J025827.88+635234.9 and IPHAS J051814.33+294113.0: Two probable eclipsing intermediate polars

    Science.gov (United States)

    Joshi, Arti; Pandey, Jeewan Chandra

    2018-04-01

    We present photometry in the R-band and linear polarimetry of two cataclysmic variables, namely IPHAS J025827.88 + 635234.9 and IPHAS J051814.33 + 294113.0. The data were obtained from 1-m class tele-scopes of the Aryabhatta Research Institute of Observational Sciences (ARIES; Nainital, India). In addition to the deep eclipse, strong short-period oscillations are also found. We derived a pulse period of (1203 ± 25) s for IPHAS J025827.88 + 635234.9 and (3277 ± 81) s for IPHAS J051814.33 + 294113.0. The presence of both orbital and spin modulations in these systems indicate that they belong to a class of intermediate polars. The full width at half depth of the eclipse is also found to be variable from epoch to epoch for IPHAS J025827.88 + 635234.9. The presence of a variable linear polarization of high value in these two sources indicates that these systems possess a strong magnetic field.

  10. EoR Foregrounds: the Faint Extragalactic Radio Sky

    Science.gov (United States)

    Prandoni, Isabella

    2018-05-01

    A wealth of new data from upgraded and new radio interferometers are rapidly improving and transforming our understanding of the faint extra-galactic radio sky. Indeed the mounting statistics at sub-mJy and μJy flux levels is finally allowing us to get stringent observational constraints on the faint radio population and on the modeling of its various components. In this paper I will provide a brief overview of the latest results in areas that are potentially important for an accurate treatment of extra-galactic foregrounds in experiments designed to probe the Epoch of Reionization.

  11. CONFIRMATION OF FAINT DWARF GALAXIES IN THE M81 GROUP

    Energy Technology Data Exchange (ETDEWEB)

    Chiboucas, Kristin [Gemini Observatory, 670 North A' ohoku Pl, Hilo, HI 96720 (United States); Jacobs, Bradley A.; Tully, R. Brent [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96821 (United States); Karachentsev, Igor D., E-mail: kchibouc@gemini.edu, E-mail: bjacobs@ifa.hawaii.edu, E-mail: tully@ifa.hawaii.edu, E-mail: ikar@luna.sao.ru [Special Astrophysical Observatory (SAO), Russian Academy of Sciences, Nizhnij Arkhyz, Karachai-Cherkessian Republic 369167 (Russian Federation)

    2013-11-01

    We have followed up on the results of a 65 deg{sup 2} CFHT/MegaCam imaging survey of the nearby M81 Group searching for faint and ultra-faint dwarf galaxies. The original survey turned up 22 faint candidate dwarf members. Based on two-color HST ACS/WFC and WFPC2 photometry, we now confirm 14 of these as dwarf galaxy members of the group. Distances and stellar population characteristics are discussed for each. To a completeness limit of M{sub r{sup '}}= -10, we find a galaxy luminosity function slope of –1.27 ± 0.04 for the M81 Group. In this region, there are now 36 M81 Group members known, including 4 blue compact dwarfs; 8 other late types including the interacting giants M81, NGC 3077, and M82; 19 early type dwarfs; and at least 5 potential tidal dwarf galaxies. We find that the dSph galaxies in M81 appear to lie in a flattened distribution, similar to that found for the Milky Way and M31. One of the newly discovered dSph galaxies has properties similar to the ultra-faint dwarfs being found in the Local Group with a size R{sub e} ∼ 100 pc and total magnitude estimates M{sub r{sup '}}= -6.8 and M{sub I} ∼ –9.1.

  12. Photometric Variability in the Faint Sky Variability Survey

    NARCIS (Netherlands)

    Morales-Rueda, L.; Groot, P.J.; Augusteijn, T.; Nelemans, G.A.; Vreeswijk, P.M.; Besselaar, E.J.M. van den

    2005-01-01

    The Faint Sky Variability Survey (FSVS) is aimed at finding photometric and/or astrometric variable objects between 16th and 24th mag on time-scales between tens of minutes and years with photometric precisions ranging from 3 millimag to 0.2 mag. An area of ~23 deg2, located at mid and

  13. Confirmation of Faint Dwarf Galaxies in the M81 Group

    Science.gov (United States)

    Chiboucas, Kristin; Jacobs, Bradley A.; Tully, R. Brent; Karachentsev, Igor D.

    2013-11-01

    We have followed up on the results of a 65 deg2 CFHT/MegaCam imaging survey of the nearby M81 Group searching for faint and ultra-faint dwarf galaxies. The original survey turned up 22 faint candidate dwarf members. Based on two-color HST ACS/WFC and WFPC2 photometry, we now confirm 14 of these as dwarf galaxy members of the group. Distances and stellar population characteristics are discussed for each. To a completeness limit of M_{r^{\\prime }} = -10, we find a galaxy luminosity function slope of -1.27 ± 0.04 for the M81 Group. In this region, there are now 36 M81 Group members known, including 4 blue compact dwarfs; 8 other late types including the interacting giants M81, NGC 3077, and M82; 19 early type dwarfs; and at least 5 potential tidal dwarf galaxies. We find that the dSph galaxies in M81 appear to lie in a flattened distribution, similar to that found for the Milky Way and M31. One of the newly discovered dSph galaxies has properties similar to the ultra-faint dwarfs being found in the Local Group with a size Re ~ 100 pc and total magnitude estimates M_{r^{\\prime }} = -6.8 and MI ~ -9.1.

  14. Short timescale variability in the faint sky variability survey

    NARCIS (Netherlands)

    Morales-Rueda, L.; Groot, P.J.; Augusteijn, T.; Nelemans, G.A.; Vreeswijk, P.M.; Besselaar, E.J.M. van den

    2006-01-01

    We present the V-band variability analysis of the Faint Sky Variability Survey (FSVS). The FSVS combines colour and time variability information, from timescales of 24 minutes to tens of days, down to V = 24. We find that �1% of all point sources are variable along the main sequence reaching �3.5%

  15. Celestial shadows eclipses, transits, and occultations

    CERN Document Server

    Westfall, John

    2015-01-01

    Much of what is known about the universe comes from the study of celestial shadows—eclipses, transits, and occultations.  The most dramatic are total eclipses of the Sun, which constitute one of the most dramatic and awe-inspiring events of nature.  Though once a source of consternation or dread, solar eclipses now lead thousands of amateur astronomers and eclipse-chasers to travel to remote points on the globe to savor their beauty and the adrenaline-rush of experiencing totality, and were long the only source of information about the hauntingly beautiful chromosphere and corona of the Sun.   Long before Columbus, the curved shadow of the Earth on the Moon during a lunar eclipse revealed that we inhabit a round world. The rare and wonderful transits of Venus, which occur as it passes between the Earth and the Sun, inspired eighteenth century expeditions to measure the distance from the Earth to the Sun, while the recent transits of 2004 and 2012 were the most widely observed ever--and still produced re...

  16. PG 1316+678: A young pre-cataclysmic binary with weak reflection effects

    Science.gov (United States)

    Shimansky, V. V.; Borisov, N. V.; Bikmaev, I. F.; Sakhibullin, N. A.; Shimanskaya, N. N.; Spiridonova, O. I.; Irtuganov, E. N.

    2013-03-01

    The PG 1316+678 star is classified as a pre-cataclysmic binary, as is evidenced by its photometric and spectroscopic observations. Its orbital period is determined to be P orb = 3.3803d, which coincides with the photometric period. The intensities of the emission HI and HeI lines are shown to vary synchronously with the brightness of the object (Δ m V = 0.065 m , Δ m R = 0.08 m ). These variations arise as the UV radiation from the DAO white dwarf is reflected from the surface of the cold companion. The parameters of the binary are estimated and the time of its evolution after the common-envelope phase is determined to be t ≈ 240 000 years. Thus, PG 1316+678 is a young pre-cataclysmic NN Ser variable with the smallest known photometric reflection effect.

  17. The Gaugamela Battle Eclipse: An Archaeoastronomical Analysis

    Science.gov (United States)

    Polcaro, V. F.; Valsecchi, G. B.; Verderame, L.

    A total lunar eclipse occurred during the night preceding the decisive Battle of Gaugamela (20th September 331 BCE), when the Macedonian army, led by Alexander the Great, finally defeated the Persian king Darius and his army. This astronomical event, well known to historians, had a relevant role on the battle outcome. The eclipse was described in detail by Babylonian astronomers, though, unfortunately, the text of their report has only partially been preserved. We have reconstructed the evolution of the phenomenon as it appeared to the observer in Babylonia, by using the positional astronomy code "Planetario V2.0". On the base of this reconstruction we suggest a number of integrations to the lost part of the text, allowing a finer astrological interpretation of the eclipse and of its influence on the mood of the armies that set against each other on the following morning.

  18. The X-ray cataclysmic variable 1E0643.0-1648

    International Nuclear Information System (INIS)

    Bailey, J.; Hough, J.H.

    1981-01-01

    A new simultaneous IR/optical high-speed photometer on the UK IR telescope has been used to study the recently discovered cataclysmic variable 1 E0643.0-1648. The light curve shows it to be a dwarf nova with a recurrence time scale of 15 days. Photometry obtained during the decline from an outburst showed slow flickering, with the IR and optical curves correlated with no delay. (author)

  19. Cataclysmic variables as probes of x-ray properties of interstellar grains

    International Nuclear Information System (INIS)

    Bode, M.F.; Evans, A.; Norwell, G.A.

    1983-01-01

    Interstellar-grain properties have previously been probed at wavelengths ranging from the infrared to the ultraviolet. Recent work by other authors has shown that we may also observe the effects of scattering by such grains at x-ray wavelengths. In this paper we suggest that investigations of the x-ray properties of interstellar grains may profitably be conducted in sight lines to variable sources. Particular emphasis is given in this context to cataclysmic variables and related objects

  20. The Golden Age of Cataclysmic Variables and Related Objects - II Concluding Address

    Directory of Open Access Journals (Sweden)

    F. Giovannelli

    2015-02-01

    Full Text Available Before to conclude officially this workshop — far from me the idea to attempt some concluding remarks already dealt at the meeting with various burning by Joseph Patterson, Mariko Kato, Dmitry Bisikalo, and Rene Hudec —, I would like to comment few highlights coming out from our fruitful week of discussions about The Golden Age of Cataclysmic Variables and Related Objects - II, without any pretension of completeness.

  1. The Mystery and Beauty of Total Solar Eclipses

    Indian Academy of Sciences (India)

    ARTICLE. The Mystery and Beauty of Total Solar Eclipses. T Chandrasekhar is with the Astronomy and ..... Specialized instruments called coronagraphs, lo- cated at mountaintop ... Scientific studies of the solar eclipses began with the eclipse of. 1842 which ... a method simultaneously evolved by English spectroscopist.

  2. Living matter: the "lunar eclipse" phenomena.

    Science.gov (United States)

    Korpan, Nikolai N

    2010-01-01

    The present investigations describe a unique phenomenon, namely the phenomenon of the "lunar eclipse", which has been observed and discovered by the author in living substance during the freeze-thawing processes in vivo using temperatures of various intensities and its cryosurgical response in animal experiment. Similar phenomena author has observed in nature, namely the total lunar eclipse and total solar eclipse. In this experimental study 76 animals (mongrel dogs) were investigated. A disc cryogenic probe was placed on the pancreas after the laparotomy. For cryosurgical exposure a temperature range of -40 degrees C, -80 degrees C, -120 degrees C and -180 degrees C was selected in contact with pancreas parenchyma. The freeze-thaw cycle was monitored by intraoperative ultrasound before, during and after cryosurgery. Each cryolesion was observed for one hour after thawing intraoperatively. Immediately after freezing, during the thawing process, the snow-white pancreas parenchyma, frozen hard to an ice block and resembling a full moon with a sharp demarcation line, gradually assumed a ruby-red shade and a hemispherical shape as it grew in size depend on reconstruction vascular circulation from the periphery to the center. This snow-white cryogenic lesion dissolved in the same manner in all animal tissues. The "lunar eclipse" phenomenon contributes to a fundamental understanding of the mechanisms of biological tissue damage during low temperature exposure in cryoscience and cryomedicine. Properties of the pancreas parenchyma response during the phenomenon of the "lunar eclipse" provide important insights into the mechanisms of damage and the formation of cryogenic lesion immediately after thawing in cryosurgery. Vascular changes and circulatory stagnation are commonly considered to be the main mechanism of biological tissue injury during low temperature exposure. The phenomenon of the "lunar eclipse" suggests that cryosurgery is the first surgical technique to use

  3. Chandra Sees Remarkable Eclipse of Black Hole

    Science.gov (United States)

    2007-04-01

    A remarkable eclipse of a supermassive black hole and the hot gas disk around it has been observed with NASA's Chandra X-ray Observatory. This eclipse has allowed two key predictions about the effects of supermassive black holes to be tested. Just as eclipses of the Sun and moon give astronomers rare opportunities to learn about those objects, an alignment in a nearby galaxy has provided a rare opportunity to investigate a supermassive black hole. Illustrations of Black Hole Eclipse Illustrations of Black Hole Eclipse The supermassive black hole is located in NGC 1365, a galaxy 60 million light years from Earth. It contains a so called active galactic nucleus, or AGN. Scientists believe that the black hole at the center of the AGN is fed by a steady stream of material, presumably in the form of a disk. Material just about to fall into a black hole should be heated to millions of degrees before passing over the event horizon, or point of no return. The disk of gas around the central black hole in NGC 1365 produces copious X-rays but is much too small to resolve directly with a telescope. However, the disk was eclipsed by an intervening cloud, so observation of the time taken for the disk to go in and out of eclipse allowed scientists to estimate the size of the disk. Black Hole Animation Black Hole Animation "For years we've been struggling to confirm the size of this X-ray structure," said Guido Risaliti of the Harvard-Smithsonian Center for Astrophysics (CfA) in Cambridge, Mass, and the Italian Institute of Astronomy (INAF). "This serendipitous eclipse enabled us to make this breakthrough." The Chandra team directly measured the size of the X-ray source as about seven times the distance between the Sun and the Earth. That means the source of X-rays is about 2 billion times smaller than the host galaxy and only about 10 times larger than the estimated size of the black hole's event horizon, consistent with theoretical predictions. Chandra X-ray Image of NGC 1365

  4. X-ray Counterparts of Infrared Faint Radio Sources

    Science.gov (United States)

    Schartel, Norbert

    2011-10-01

    Infrared Faint Radio Sources (IFRS) are radio sources with extremely faint or even absent infrared emission in deep Spitzer Surveys. Models of their spectral energy distributions, the ratios of radio to infrared flux densities and their steep radio spectra strongly suggest that IFRS are AGN at high redshifts (2IFRS, but if confirmed, the increased AGN numbers at these redshifts will account for the unresolved part of the X-ray background. The identification of X-ray counterparts of IFRS is considered to be the smoking gun for this hypothesis. We propose to observe 8 IFRS using 30ks pointed observations. X-ray detections of IFRS with different ratios of radio-to-infrared fluxes, will constrain the class-specific SED.

  5. Notable Images of the 2017 Total Solar Eclipse

    Science.gov (United States)

    Wilson, Teresa; Dahiwale, Aishwarya; Nemiroff, Robert; Bonnell, Jerry

    2018-01-01

    The "Great American Eclipse" – the total solar eclipse visible across the USA on 21 August 2017 – resulted in some notable eclipse images and videos high in educational and scientific value. Some of the images that were selected to appear on the Astronomy Picture of the Day (APOD) website are shown in high resolution accompanied by educational descriptions. The questions of whether this eclipse was the most viewed and the most photographed event of any type in human history will be discussed. People are invited to come by and share their own eclipse images and stories.

  6. The Benchmark Eclipsing Binary V530 Ori

    DEFF Research Database (Denmark)

    Torres, Guillermo; Lacy, Claud H. Sandberg; Pavlovski, Kresimir

    2015-01-01

    We report accurate measurements of the physical properties (mass, radius, temperature) of components of the G+M eclipsing binary V530 On. The M-type secondary shows a larger radius and a cooler temperature than predicted by standard stellar evolution models, as has been found for many other low...

  7. Bringing the Great American Solar Eclipse to West Virginia

    Science.gov (United States)

    Keesee, A. M.; Williamson, K.; Robertson-Honecker, J.

    2017-12-01

    West Virginia experienced up to 90% coverage during the Great American Solar Eclipse on August 21st. To reach the greatest number of West Virginians, we targeted educators and the 4-H program to provide those community leaders with the tools to help students learn about and safely view the eclipse. We developed a website that consolodated relevant eclipse activities, fact sheets, and outreach videos to train educators and others in the public about the science of the eclipse and how to view a partial eclipse safely. The 4-H Summer Experiement used at all 4-H summer camps and events was designed to focus on the eclipse. We distributed over 20,000 custom designed eclipse glasses. These were distributed to teachers through an online request system and to 4-H members involved in summer activities. We hosted a pre-eclipse event on the campus of West Virginia University for the public to learn about the science of the eclipse, relevant research being conducted at the university, and provide tips for safe viewing. Student volunteers were available on campus during the day of the eclipse to hand out glasses and answer questions. We will present the results of our outreach and events as well as lessons learned for the 2024 eclipse. Support for this project was provided by the WVU Department of Physics and Astronomy, WVU Extension, the WV Space Grant Consortium, a WVU internal grant, the Green Bank Observatory, and individual supporters of a crowdfunding campaign.

  8. Spectral irradiance curve calculations for any type of solar eclipse

    International Nuclear Information System (INIS)

    Deepak, A.; Merrill, J.E.

    1974-01-01

    A simple procedure is described for calculating the eclipse function (EF), alpha, and hence the spectral irradiance curve (SIC), (1-alpha), for any type of solar eclipse: namely, the occultation (partial/total) eclipse and the transit (partial/annular) eclipse. The SIC (or the EF) gives the variation of the amount (or the loss) of solar radiation of a given wavelength reaching a distant observer for various positions of the moon across the sun. The scheme is based on the theory of light curves of eclipsing binaries, the results of which are tabulated in Merrill's Tables, and is valid for all wavelengths for which the solar limb-darkening obeys the cosine law: J = /sub c/(1 - X + X cost gamma). As an example of computing the SIC for an occultation eclipse which may be total, the calculations for the March 7, 1970, eclipse are described in detail. (U.S.)

  9. Eclipsing binaries observed with the WIRE satellite I. Discovery and photometric analysis of the new bright A0 IV eclipsing binary psi centauri

    DEFF Research Database (Denmark)

    Bruntt, Hans; Southworth, J.; Penny, A. J.

    2006-01-01

    Stars: fundamental parameters, binaries: close, eclipsing, techniques: photometric Udgivelsesdato: Sep.......Stars: fundamental parameters, binaries: close, eclipsing, techniques: photometric Udgivelsesdato: Sep....

  10. Eclipse Megamovie: Solar Discoveries, Education, and Outreach through Crowdsourcing 2017 Eclipse Images

    Science.gov (United States)

    Peticolas, L. M.; Hudson, H. S.; Martinez Oliveros, J. C.; Johnson, C.; Zevin, D.; Krista, L. D.; Bender, M.; Mcintosh, S. W.; Konerding, D.; Koh, J.; Pasachoff, J.; Lorimore, B.; Jiang, G.; Storksdieck, M.; Yan, D.; Shore, L.; Fraknoi, A.; Filippenko, A.

    2016-12-01

    Since 2011, a team of solar scientists, eclipse chasers, education and outreach professionals, and film makers have been working to explore the possibility of gathering images from the public during the 2017 eclipse across the United States, to be used for scientific research, education, and enhancing the public's experience of the eclipse. After years of testing the initial ideas, engaging new organizations, and exploring new technologies, our team has developed a blueprint for this project. There are three main goals for this effort: 1. to learn more about the dynamic non-equilibrium processes in the corona and lower atmosphere of the Sun, 2. to educate the public about space physics, 3. provide different levels of engagement opportunities for an interested public, and 4. to understand how these various levels of engagement with a major scientific phenomena allow people to develop deeper personal connections to Science, Technology, Engineering, and Mathematics (STEM). We will meet these goals by training 1000 volunteers to take scientifically valid images and donate the images to this project, while also allowing the general public to share their images as well. During the Aug 21, 2017 eclipse, we will analyze these images in real-time to produce public-generated movies showing the corona of the Sun during totality from thousands of people. These movies will be disseminated in near real-time (on the order of 10s of minutes) to other eclipse programs, news organizations, and to the general public. Meanwhile, images collected during and after the eclipse will be available to scientists and the public for research purposes. To further engage the public, video clips, film, and a documentary will be produced prior and after the event. A science education research team will work alongside the team to understand how the project supports deeper connections to the eclipse experience.

  11. Solar Eclipse Computer API: Planning Ahead for August 2017

    Science.gov (United States)

    Bartlett, Jennifer L.; Chizek Frouard, Malynda; Lesniak, Michael V.; Bell, Steve

    2016-01-01

    With the total solar eclipse of 2017 August 21 over the continental United States approaching, the U.S. Naval Observatory (USNO) on-line Solar Eclipse Computer can now be accessed via an application programming interface (API). This flexible interface returns local circumstances for any solar eclipse in JavaScript Object Notation (JSON) that can be incorporated into third-party Web sites or applications. For a given year, it can also return a list of solar eclipses that can be used to build a more specific request for local circumstances. Over the course of a particular eclipse as viewed from a specific site, several events may be visible: the beginning and ending of the eclipse (first and fourth contacts), the beginning and ending of totality (second and third contacts), the moment of maximum eclipse, sunrise, or sunset. For each of these events, the USNO Solar Eclipse Computer reports the time, Sun's altitude and azimuth, and the event's position and vertex angles. The computer also reports the duration of the total phase, the duration of the eclipse, the magnitude of the eclipse, and the percent of the Sun obscured for a particular eclipse site. On-line documentation for using the API-enabled Solar Eclipse Computer, including sample calls, is available (http://aa.usno.navy.mil/data/docs/api.php). The same Web page also describes how to reach the Complete Sun and Moon Data for One Day, Phases of the Moon, Day and Night Across the Earth, and Apparent Disk of a Solar System Object services using API calls.For those who prefer using a traditional data input form, local circumstances can still be requested that way at http://aa.usno.navy.mil/data/docs/SolarEclipses.php. In addition, the 2017 August 21 Solar Eclipse Resource page (http://aa.usno.navy.mil/data/docs/Eclipse2017.php) consolidates all of the USNO resources for this event, including a Google Map view of the eclipse track designed by Her Majesty's Nautical Almanac Office (HMNAO). Looking further ahead, a

  12. 1RXS J180834.7+101041 is a new cataclysmic variable with non-uniform disc

    Science.gov (United States)

    Yakin, D. G.; Suleimanov, V. F.; Shimansky, V. V.; Borisov, N. V.; Bikmaev, I. F.; Sakhibullin, N. A.

    2010-11-01

    Results of photometric and spectroscopic investigations of the recently discovered disc cataclysmic variable star 1RXS J180834.7+101041 are presented. Emission spectra of the system show broad double peaked hydrogen and helium emission lines. Doppler maps for the hydrogen lines demonstrate strongly non-uniform emissivity distribution in the disc, similar to that found in IP Peg. It means that the system is a new cataclysmic variable with a spiral density wave in the disc. Masses of the components (MWD = 0.8+/-0.22 Msolar and MRD = 0.14+/-0.02 Msolar), and the orbit inclination (i = 78°+/- 1.°5) were estimated using the various well-known relations for cataclysmic variables.

  13. Identification and spectrophotometry of faint southern radio galaxies

    International Nuclear Information System (INIS)

    Spinrad, H.; Kron, R.G.; Hunstead, R.W.

    1980-01-01

    We have observed a mixed sample of southern radio sources, identified on the Palomar sky survey or on previous direct plates taken with medium-aperture reflectors. At CIO we obtained a few deep 4m photographs and SIT spectrophotometry for redshift and continuum-color measurement. Almost all our sources were faint galaxies; the largest redshift measured was for 3C 275, with z=0.480. The ultraviolet continuum of PKS 0400--643, a ''thermal'' galaxy with z=0.476, closely resembles that of 3C 295 and shows some color evolution in U--B compared to nearby giant ellipticals

  14. Are the infrared-faint radio sources pulsars?

    Science.gov (United States)

    Cameron, A. D.; Keith, M.; Hobbs, G.; Norris, R. P.; Mao, M. Y.; Middelberg, E.

    2011-07-01

    Infrared-faint radio sources (IFRS) are objects which are strong at radio wavelengths but undetected in sensitive Spitzer observations at infrared wavelengths. Their nature is uncertain and most have not yet been associated with any known astrophysical object. One possibility is that they are radio pulsars. To test this hypothesis we undertook observations of 16 of these sources with the Parkes Radio Telescope. Our results limit the radio emission to a pulsed flux density of less than 0.21 mJy (assuming a 50 per cent duty cycle). This is well below the flux density of the IFRS. We therefore conclude that these IFRS are not radio pulsars.

  15. Features of the mass transfer in magnetic cataclysmic variables with fast-rotating white dwarfs

    Directory of Open Access Journals (Sweden)

    Isakova Polina

    2014-01-01

    Full Text Available The flow structure in magnetic cataclysmic variables was investigated taking into account the effects of strong magnetic field and fast rotation of the white dwarf. We modeled the AE Aqr system as a unique object that has the rotation period of the white dwarf is about 1000 times shorter than the orbital period of the binary system. Observations show that in spite of fast rotation of the white dwarf some part of the stream from the inner Lagrange point comes into the Roche lobe region. We analyzed possible mechanisms preventing material to outflow from the system.

  16. SPECTROSCOPY OF NEW AND POORLY KNOWN CATACLYSMIC VARIABLES IN THE KEPLER FIELD

    International Nuclear Information System (INIS)

    Howell, Steve B.; Still, Martin; Everett, Mark E.; Seebode, Sally A.; Szkody, Paula; Wood, Matt; Ramsay, Gavin; Cannizzo, John; Smale, Alan

    2013-01-01

    The NASA Kepler mission has been in science operation since 2009 May and is providing high precision, high cadence light curves of over 150,000 targets. Prior to launch, nine cataclysmic variables were known to lie within Kepler's field of view. We present spectroscopy for seven systems, four of which were newly discovered since launch. All of the stars presented herein have been observed by, or are currently being observed by, the Kepler space telescope. Three historic systems and one new candidate could not be detected at their sky position and two candidates are called into question as to their true identity.

  17. SPECTROSCOPY OF NEW AND POORLY KNOWN CATACLYSMIC VARIABLES IN THE KEPLER FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Howell, Steve B.; Still, Martin [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Everett, Mark E. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Seebode, Sally A. [San Mateo High School, San Mateo, CA 94401 (United States); Szkody, Paula [Astronomy Department, University of Washington, Seattle, WA 98195 (United States); Wood, Matt [Physics and Astronomy Department, Texas A and M University-Commerce, Commerce, TX 75429 (United States); Ramsay, Gavin [Armagh Observatory, College Hill, Armagh BT61 9DG (United Kingdom); Cannizzo, John [CRESST and Astroparticle Physics Laboratory, NASA/GSFC, Greenbelt, MD 20771 (United States); Smale, Alan [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2013-04-15

    The NASA Kepler mission has been in science operation since 2009 May and is providing high precision, high cadence light curves of over 150,000 targets. Prior to launch, nine cataclysmic variables were known to lie within Kepler's field of view. We present spectroscopy for seven systems, four of which were newly discovered since launch. All of the stars presented herein have been observed by, or are currently being observed by, the Kepler space telescope. Three historic systems and one new candidate could not be detected at their sky position and two candidates are called into question as to their true identity.

  18. System Geometries and Transit/Eclipse Probabilities

    Directory of Open Access Journals (Sweden)

    Howard A.

    2011-02-01

    Full Text Available Transiting exoplanets provide access to data to study the mass-radius relation and internal structure of extrasolar planets. Long-period transiting planets allow insight into planetary environments similar to the Solar System where, in contrast to hot Jupiters, planets are not constantly exposed to the intense radiation of their parent stars. Observations of secondary eclipses additionally permit studies of exoplanet temperatures and large-scale exo-atmospheric properties. We show how transit and eclipse probabilities are related to planet-star system geometries, particularly for long-period, eccentric orbits. The resulting target selection and observational strategies represent the principal ingredients of our photometric survey of known radial-velocity planets with the aim of detecting transit signatures (TERMS.

  19. Digitizing Villanova University's Eclipsing Binary Card Catalogue

    Science.gov (United States)

    Guzman, Giannina; Dalton, Briana; Conroy, Kyle; Prsa, Andrej

    2018-01-01

    Villanova University’s Department of Astrophysics and Planetary Science has years of hand-written archival data on Eclipsing Binaries at its disposal. This card catalog began at Princeton in the 1930’s with notable contributions from scientists such as Henry Norris Russel. During World War II, the archive was moved to the University of Pennsylvania, which was one of the world centers for Eclipsing Binary research, consequently, the contributions to the catalog during this time were immense. It was then moved to University of Florida at Gainesville before being accepted by Villanova in the 1990’s. The catalog has been kept in storage since then. The objective of this project is to digitize this archive and create a fully functional online catalog that contains the information available on the cards, along with the scan of the actual cards. Our group has built a database using a python-powered infrastructure to contain the collected data. The team also built a prototype web-based searchable interface as a front-end to the catalog. Following the data-entry process, information like the Right Ascension and Declination will be run against SIMBAD and any differences between values will be noted as part of the catalog. Information published online from the card catalog and even discrepancies in information for a star, could be a catalyst for new studies on these Eclipsing Binaries. Once completed, the database-driven interface will be made available to astronomers worldwide. The group will also acquire, from the database, a list of referenced articles that have yet to be found online in order to further pursue their digitization. This list will be comprised of references in the cards that were neither found on ADS nor online during the data-entry process. Pursuing the integration of these references to online queries such as ADS will be an ongoing process that will contribute and further facilitate studies on Eclipsing Binaries.

  20. Relativistic apsidal motion in eccentric eclipsing binaries

    Czech Academy of Sciences Publication Activity Database

    Wolf, M.; Claret, L.; Kotková, Lenka; Kučáková, Hana; Kocián, R.; Brát, L.; Svoboda, P.; Šmelcer, L.

    2010-01-01

    Roč. 509, January (2010), A18/1-A18/14 ISSN 0004-6361 Grant - others:GA ČR(CZ) GA205/04/2063; GA ČR(CZ) GA205/06/0217 Institutional research plan: CEZ:AV0Z10030501 Keywords : binaries eclipsing Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.410, year: 2010

  1. Radial Velocities of 41 Kepler Eclipsing Binaries

    Science.gov (United States)

    Matson, Rachel A.; Gies, Douglas R.; Guo, Zhao; Williams, Stephen J.

    2017-12-01

    Eclipsing binaries are vital for directly determining stellar parameters without reliance on models or scaling relations. Spectroscopically derived parameters of detached and semi-detached binaries allow us to determine component masses that can inform theories of stellar and binary evolution. Here we present moderate resolution ground-based spectra of stars in close binary systems with and without (detected) tertiary companions observed by NASA’s Kepler mission and analyzed for eclipse timing variations. We obtain radial velocities and spectroscopic orbits for five single-lined and 35 double-lined systems, and confirm one false positive eclipsing binary. For the double-lined spectroscopic binaries, we also determine individual component masses and examine the mass ratio {M}2/{M}1 distribution, which is dominated by binaries with like-mass pairs and semi-detached classical Algol systems that have undergone mass transfer. Finally, we constrain the mass of the tertiary component for five double-lined binaries with previously detected companions.

  2. Eclipse Megamovie 2017: How did we do?

    Science.gov (United States)

    Hudson, Hugh; Bender, Mark; Collier, Braxton; Johnson, Calvin; Koh, Justin; Konerding, David; Martinez Oliveros, Juan Carlos; Peticolas, Laura; White, Vivian; Zevin, Dan

    2018-01-01

    The Eclipse Megamovie program, as set up for the Great American Eclipse of 21 August 2017, achived a massive volunteer participation, making maximal use existing equipment but with coordinated training. Everything worked fine, and the archive entered the public domain on Friday, October 6. It comprises about 800 GB of data from DSLR cameras and telescopes. An additional 200 GB of data were obtained by smartphone cameras operating a dedicated free app. The massive oversampling made possible by the many (about 2500) volunteer observers has opened new parameter space for tracking coronal and chromospheric time development. Fortuitously some solar activity appeared during the 90-minute period of totality, including a C-class flare and an ongoing CME. At the smartphone level, with the advantage of precise GPS timing, we have data on solar structure via the timing of Baily's Beads at the 2nd and 3rd contacts. The Megamovie archive is an historical first, and we hope that it has already been a springboard for citizen-science projects. We discuss the execution of the program, presenting some of the 2017 science plans and results. We expect that the eclipse of 2024 will be better still.

  3. Fourier analysis of the light curves of eclipsing variables. XI

    International Nuclear Information System (INIS)

    Kopal, Z.

    1977-01-01

    The aim of the present paper is to introduce a new definition of the loss of light suffered by mutual eclipses of the components of close binary systems: namely, as a cross-correlation of two apertures representing the eclipsing and eclipsed discs. The advantages of such a strategy over the more conventional (geometrical) approach are (a) greater symmetry of the respective expressions; (b) greater affinity of expressions arising from distortion with those expressing the light changes due to eclipses of spherical stars; and (c) greater freedom in dealing with the effects of particular distribution of brightness over the disc of the star undergoing eclipse (generalized limb-darkening), as well as of possible semi-transparency of the eclipsing component (Wolf-Rayet stars). In point of fact, none of these tasks could be handled with equal ease by any other technique; nor could the corresponding loss of light be so automated by any other approach. (Auth.)

  4. Secondary eclipses in the CoRoT light curves

    Directory of Open Access Journals (Sweden)

    Belmonte Juan Antonio

    2013-04-01

    Full Text Available We identify and characterize secondary eclipses in the original light curves of published CoRoT planets using uniform detection and evaluation criteria. Our analysis is based on a Bayesian statistics: the eclipse search is carried out using Bayesian model selection, and the characterization of the plausible eclipse candidates using Bayesian parameter estimation. We discover statistically significant eclipse events for two planets, CoRoT-6b and CoRoT-11b, and for one brown dwarf, CoRoT-15b. We also find marginally significant eclipse events passing our plausibility criteria for CoRoT-3b, 13b, 18b, and 21b, and confirm the previously published CoRoT-1b and CoRoT-2b eclipses.

  5. A Tool for Optimizing Observation Planning for Faint Moving Objects

    Science.gov (United States)

    Arredondo, Anicia; Bosh, Amanda S.; Levine, Stephen

    2016-10-01

    Observations of small solar system bodies such as trans-Neptunian objects and Centaurs are vital for understanding the basic properties of these small members of our solar system. Because these objects are often very faint, large telescopes and long exposures may be necessary, which can result in crowded fields in which the target of interest may be blended with a field star. For accurate photometry and astrometry, observations must be planned to occur when the target is free of background stars; this restriction results in limited observing windows. We have created a tool that can be used to plan observations of faint moving objects. Features of the tool include estimates of best times to observe (when the object is not too near another object), a finder chart output, a list of possible astrometric and photometric reference stars, and an exposure time calculator. This work makes use of the USNOFS Image and Catalogue Archive operated by the United States Naval Observatory, Flagstaff Station (S.E. Levine and D.G. Monet 2000), the JPL Horizons online ephemeris service (Giorgini et al. 1996), the Minor Planet Center's MPChecker (http://cgi.minorplanetcenter.net/cgi-bin/checkmp.cgi), and source extraction software SExtractor (Bertin & Arnouts 1996). Support for this work was provided by NASA SSO grant NNX15AJ82G.

  6. Practicing for 2023 and 2024: What the AAS Solar Eclipse Task Force Learned from the "Great American Eclipse" of 2017

    Science.gov (United States)

    Fienberg, R. T.; Speck, A. K.; Habbal, S. R.

    2017-12-01

    More than three years ahead of the "Great American Eclipse" of August 2017, the American Astronomical Society formed the AAS Solar Eclipse Task Force to function as a think tank, coordinating body, and communication gateway to the vast resources available about the 2017 eclipse and solar eclipses more generally. The task force included professional and amateur astronomers, formal and informal educators, and science journalists; many had experienced total solar eclipses before, and others would experience their first totality in August 2017. The AAS task force secured funding from the AAS Council, the National Science Foundation, and NASA. These resources were used mainly for three purposes: (1) to build a website that contains basic information about solar eclipses, safe viewing practices, and eclipse imaging and video, along with resources for educators and the media and a searchable map of eclipse-related events and activities, with links to other authoritative websites with more detailed information; (2) to solicit, receive, evaluate, and fund proposals for mini-grants to support eclipse-related education and public outreach to underrepresented groups both inside and outside the path of totality; and (3) to organize a series of multidisciplinary workshops across the country to prepare communities for the eclipse and to facilitate collaborations between astronomers, meteorologists, school administrators, and transporation and emergency-management professionals. Most importantly, the AAS Solar Eclipse Task Force focused on developing and disseminating appropriate eclipse safety information. The AAS and NASA jointly developed safety messaging that won the endorsement of the American Academies of Opthalmology and Optometry. In the weeks immediately preceding the eclipse, it became clear that the marketplace was being flooded by counterfeit eclipse glasses and solar viewers, leading to a last minute change in our communication strategy. In this talk, we'll review the

  7. Educating the Public about the 2017 Total Solar Eclipse

    Science.gov (United States)

    Pasachoff, Jay M.

    2017-01-01

    On behalf of the International Astronomical Union's Working Group on Solar Eclipses, I have long worked to bring knowledge about eclipses and how to observe the safely to the people of the various countries from which partial, annular, or total solar eclipses are visible. In 2017, we have first a chance to educate the people of South America on the occasion of the February 26 annular eclipse through southern Chile and Argentina that is partial throughout almost the entire continent (and an eclipse workshop will be held February 22-24 in Esquel, Argentina: http://sion.frm.utn.edu.ar/WDEAII) and then a chance to educate the 300 million people of the United States and others in adjacent countries as far south as northern South America about the glories of totality and how to observe partial phases. Our website, a compendium of links to information about maps, safe observing, science, and more is at http://eclipses.info. We link to important mapping sites at EclipseWise.com, GreatAmericanEclipse.com, and http://xjubier.free.fr/en/site_pages/solar_eclipses/xSE_GoogleMap3.php?Ecl=+20170821&Acc=2&Umb=1&Lmt=1&Mag=1&Max=1, and information about cloudiness statistics at http://eclipsophile.com, as well as simulation sites at https://svs.gsfc.nasa.gov/cgi-bin/details.cgi?aid=4314 and http://eyes.jpl.nasa.gov. The American Astronomical Society's task force on the 2017 eclipse has a website at http://eclipse.aas.org. We are working to disseminate accurate information about how and why to observe the total solar eclipse, trying among other things to head off common misinformation about the hazards of looking at the sun at eclipses or otherwise. About 12 million Americans live within the 70-mile-wide band of totality, and we encourage others to travel into it, trying to make clear the difference between even a 99% partial eclipse and a total eclipse, with its glorious Baily's beads, diamond rings, and totality that on this occasion lasts between 2 minutes and 2 minutes 40 seconds

  8. Lunar eclipses: Probing the atmosphere of an inhabited planet

    Science.gov (United States)

    García Muñoz, A.

    2013-04-01

    The Moon's brightness during a lunar eclipse is indicative of the composition, cloudiness and aerosol loading of the Earth's atmosphere. The idea of using lunar eclipse observations to characterize the Earth's atmosphere is not new, but the interest raised by the prospects of discovering Earth-like exoplanets transiting their host stars has brought renewed attention to the method. We review some recent efforts made in the prediction and interpretation of lunar eclipses. We also comment on the contribution of the lunar eclipse theory to the refractive theory of planetary transits.

  9. Lunar eclipses: Probing the atmosphere of an inhabited planet

    Directory of Open Access Journals (Sweden)

    Muñoz A. García

    2013-04-01

    Full Text Available The Moon's brightness during a lunar eclipse is indicative of the composition, cloudiness and aerosol loading of the Earth's atmosphere. The idea of using lunar eclipse observations to characterize the Earth's atmosphere is not new, but the interest raised by the prospects of discovering Earth-like exoplanets transiting their host stars has brought renewed attention to the method. We review some recent efforts made in the prediction and interpretation of lunar eclipses. We also comment on the contribution of the lunar eclipse theory to the refractive theory of planetary transits.

  10. Total Addiction The Life of an Eclipse Chaser

    CERN Document Server

    Russo, Kate

    2012-01-01

    Seeing a total solar eclipse is often described as a once-in-a-lifetime experience. However, for many who have experienced totality, once-in-a-lifetime is simply not enough. They want more, and are willing to go to great lengths often at great expense to repeat the experience. What is it like to experience totality? What is it about the experience that motivates these eclipse chasers? Is there an eclipse chaser personality? Can eclipse chasing actually be described as an addiction? This book describes the people who dedicate their lives to chasing their dream.

  11. Cataclysm No More: New Views on the Timing and Delivery of Lunar Impactors.

    Science.gov (United States)

    Zellner, Nicolle E B

    2017-09-01

    If properly interpreted, the impact record of the Moon, Earth's nearest neighbour, can be used to gain insights into how the Earth has been influenced by impacting events since its formation ~4.5 billion years (Ga) ago. However, the nature and timing of the lunar impactors - and indeed the lunar impact record itself - are not well understood. Of particular interest are the ages of lunar impact basins and what they tell us about the proposed "lunar cataclysm" and/or the late heavy bombardment (LHB), and how this impact episode may have affected early life on Earth or other planets. Investigations of the lunar impactor population over time have been undertaken and include analyses of orbital data and images; lunar, terrestrial, and other planetary sample data; and dynamical modelling. Here, the existing information regarding the nature of the lunar impact record is reviewed and new interpretations are presented. Importantly, it is demonstrated that most evidence supports a prolonged lunar (and thus, terrestrial) bombardment from ~4.2 to 3.4 Ga and not a cataclysmic spike at ~3.9 Ga. Implications for the conditions required for the origin of life are addressed.

  12. Kepler eclipsing binary stars. IV. Precise eclipse times for close binaries and identification of candidate three-body systems

    International Nuclear Information System (INIS)

    Conroy, Kyle E.; Stassun, Keivan G.; Prša, Andrej; Orosz, Jerome A.; Welsh, William F.; Fabrycky, Daniel C.

    2014-01-01

    We present a catalog of precise eclipse times and analysis of third-body signals among 1279 close binaries in the latest Kepler Eclipsing Binary Catalog. For these short-period binaries, Kepler's 30 minute exposure time causes significant smearing of light curves. In addition, common astrophysical phenomena such as chromospheric activity, as well as imperfections in the light curve detrending process, can create systematic artifacts that may produce fictitious signals in the eclipse timings. We present a method to measure precise eclipse times in the presence of distorted light curves, such as in contact and near-contact binaries which exhibit continuously changing light levels in and out of eclipse. We identify 236 systems for which we find a timing variation signal compatible with the presence of a third body. These are modeled for the light travel time effect and the basic properties of the third body are derived. This study complements J. A. Orosz et al. (in preparation), which focuses on eclipse timing variations of longer period binaries with flat out-of-eclipse regions. Together, these two papers provide comprehensive eclipse timings for all binaries in the Kepler Eclipsing Binary Catalog, as an ongoing resource freely accessible online to the community.

  13. Period changes of the long-period cataclysmic binary EX Draconis

    Czech Academy of Sciences Publication Activity Database

    Pilarčík, L.; Wolf, M.; Dubovsky, P.A.; Hornoch, Kamil; Kotková, Lenka

    2012-01-01

    Roč. 539, March (2012), A153/1-A153/5 ISSN 0004-6361 Institutional support: RVO:67985815 Keywords : close binaries * eclipsing * star s Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.084, year: 2012

  14. The Great American Eclipse: Lessons Learned from Public Education

    Science.gov (United States)

    Edson, Shauna Elizabeth; Phoebe Waterman Haas Public Observatory

    2018-01-01

    The total solar eclipse of 2017 was a high-profile opportunity for nationwide public education. Astronomy experts suddenly became vital sources of information for a lay population whose interest in the eclipse greatly surpassed expectations. At the National Air and Space Museum, we leveraged our relatively accessible location and particularly diverse audience to help thousands of people, from novices to enthusiasts, prepare to view the eclipse safely. The goal was to empower all people so they could experience this unique astronomical event, understand what was happening, and observe the Sun safely. Over the course of two years spent talking with the public about the eclipse, we encountered common misconceptions, worries about safety or liability, and people experiencing confusion or information overload. We developed guidelines for handling these challenges, from correcting misinformation to managing the sudden spike in demand for glasses just before August 21.In particular, we helped people understand the following essential points:- The total phase of the eclipse is only visible from a limited path.- The partial eclipse is visible from a large area outside the path of totality.- The eclipse takes up to three hours from start to finish, providing ample time for viewing.- The Sun can be observed safely using several methods, including but not limited to eclipse glasses.- The eclipse happens because the Moon’s orbit is taking it directly between the Sun and the Earth.- Eclipses do not happen every month because the Moon’s orbit is tilted with respect to the Earth's orbital plane.- Students in schools can safely view the eclipse, with proper protection and supervision, to prevent eye damage and minimize liability.Public education about the eclipse appears to have been successful, as evidenced by the large number of people who saw their first total solar eclipse and the absence of reported eye damage cases. Amidst the excitement, photographs, and stories that

  15. Morphology and astrometry of Infrared-Faint Radio Sources

    Science.gov (United States)

    Middelberg, Enno; Norris, Ray; Randall, Kate; Mao, Minnie; Hales, Christopher

    2008-10-01

    Infrared-Faint Radio Sources, or IFRS, are an unexpected class of object discovered in the Australia Telescope Large Area Survey, ATLAS. They are compact 1.4GHz radio sources with no visible counterparts in co-located (relatively shallow) Spitzer infrared and optical images. We have detected two of these objects with VLBI, indicating the presence of an AGN. These observations and our ATLAS data indicate that IFRS are extended on scales of arcseconds, and we wish to image their morphologies to obtain clues about their nature. These observations will also help us to select optical counterparts from very deep, and hence crowded, optical images which we have proposed. With these data in hand, we will be able to compare IFRS to known object types and to apply for spectroscopy to obtain their redshifts.

  16. Do the enigmatic ``Infrared-Faint Radio Sources'' include pulsars?

    Science.gov (United States)

    Hobbs, George; Middelberg, Enno; Norris, Ray; Keith, Michael; Mao, Minnie; Champion, David

    2009-04-01

    The Australia Telescope Large Area Survey (ATLAS) team have surveyed seven square degrees of sky at 1.4GHz. During processing some unexpected infrared-faint radio sources (IFRS sources) were discovered. The nature of these sources is not understood, but it is possible that some of these sources may be pulsars within our own galaxy. We propose to observe the IFRS sources with steep spectral indices using standard search techniques to determine whether or not they are pulsars. A pulsar detection would 1) remove a subset of the IFRS sources from the ATLAS sample so they would not need to be observed with large optical/IR telescopes to find their hosts and 2) be intrinsically interesting as the pulsar would be a millisecond pulsar and/or have an extreme spatial velocity.

  17. White dwarfs in the WTS: Eclipsing binaries

    Directory of Open Access Journals (Sweden)

    Burleigh M.R.

    2013-04-01

    Full Text Available We have identified photometric white dwarf candidates in the WFCAM transit survey through a reduced proper motion versus colour approach. Box-fitting with parameters adjusted to detect the unique signature of a white dwarf + planet/brown dwarf transit/eclipse event was performed, as well as looking for variability due to the irradiation of the companions atmosphere by the white dwarf's high UV flux. We have also performed a simple sensitivity analysis in order to assess the ability of the survey to detect companions to white dwarfs via the transit method.

  18. Zimbabwe's total solar eclipse June 21st 2001 | Unknown ...

    African Journals Online (AJOL)

    The research was developed to observe and record the effects of the total solar eclipse on the behaviour of wildlife in the park, and covered a period of 3 days in order to provide comparisons between normal and eclipse conditions. The data is still undergoing comparative analysis, and the results will be submitted to the ...

  19. Visual damage following direct sighting of solar eclipse in Ghana ...

    African Journals Online (AJOL)

    education concerning the damaging effects of the solar eclipse. Advanced techniques, such as scanning laser Ophthalmoscopy and the multifocal electroretinography (ERG) offer the possibility of detailed examination of small retina lesions in Ghana after an eclipse of the sun. African Journal of Health Sciences Vol. 14 (3-4) ...

  20. Statistical analysis of geomagnetic field variations during solar eclipses

    Science.gov (United States)

    Kim, Jung-Hee; Chang, Heon-Young

    2018-04-01

    We investigate the geomagnetic field variations recorded by INTERMAGNET geomagnetic observatories, which are observed while the Moon's umbra or penumbra passed over them during a solar eclipse event. Though it is generally considered that the geomagnetic field can be modulated during solar eclipses, the effect of the solar eclipse on the observed geomagnetic field has proved subtle to be detected. Instead of exploring the geomagnetic field as a case study, we analyze 207 geomagnetic manifestations acquired by 100 geomagnetic observatories during 39 solar eclipses occurring from 1991 to 2016. As a result of examining a pattern of the geomagnetic field variation on average, we confirm that the effect can be seen over an interval of 180 min centered at the time of maximum eclipse on a site of a geomagnetic observatory. That is, demonstrate an increase in the Y component of the geomagnetic field and decreases in the X component and the total strength of the geomagnetic field. We also find that the effect can be overwhelmed, depending more sensitively on the level of daily geomagnetic events than on the level of solar activity and/or the phase of solar cycle. We have demonstrated it by dividing the whole data set into subsets based on parameters of the geomagnetic field, solar activity, and solar eclipses. It is suggested, therefore, that an evidence of the solar eclipse effect can be revealed even at the solar maximum, as long as the day of the solar eclipse is magnetically quiet.

  1. The 2017 Solar Eclipse Community Impacts through Public Library Engagement

    Science.gov (United States)

    Dusenbery, P.; Holland, A.; LaConte, K.; Mosshammer, G.; Harold, J. B.; Fraknoi, A.; Schatz, D.; Duncan, D. K.

    2017-12-01

    More than two million pairs of eclipse glasses were distributed free through public libraries in the U.S. for the solar eclipse of the Sun taking place on August 21, 2017. About 7,000 organizations, including public library branches, bookmobiles, tribal libraries, library consortia, and state libraries took part in the celestial event of the century. Many organizations received a package of free safe-viewing glasses, plus a 24-page information booklet about eclipse viewing and suggested program ideas. An educational video was also produced on how best to do public outreach programs about the eclipse. The project was supported, in part, by the Gordon and Betty Moore Foundation, with additional help from Google, NASA, the Research Corporation, and the National Science Foundation (NSF). The program was managed through the Space Science Institute's National Center for Interactive Learning as part of its STAR Library Network (STAR_Net). Resources developed by STAR_Net for this event included an Eclipse Resource Center; a newsletter for participating libraries to learn about eclipses and how to implement an effective and safe eclipse program; eclipse program activities on its STEM Activity Clearinghouse; webinars; and connections to subject matter experts from NASA's and the American Astronomical Society's volunteer networks. This presentation will provide an overview of the extensive collaboration that made this program possible as well as highlight the national impact that public libraries made in their communities.

  2. Absolute dimensions of eclipsing binaries XXVII. V1130 tauri

    DEFF Research Database (Denmark)

    Clausen, Jens Viggo; Olsen, E, H.; Helt, B. E.

    2010-01-01

    stars: evolution / stars: fundamental parameters / stars: individual: V1130¿Tau / binaries: eclipsing / techniques: photometric / techniques: radial velocities Udgivelsesdato: 17 Feb.......stars: evolution / stars: fundamental parameters / stars: individual: V1130¿Tau / binaries: eclipsing / techniques: photometric / techniques: radial velocities Udgivelsesdato: 17 Feb....

  3. Optical and near-infrared imaging of faint Gigahertz Peaked Spectrum sources

    NARCIS (Netherlands)

    Snellen, IAG; Schilizzi, RT; de Bruyn, AG; Miley, GK; Rottgering, HJA; McMahon, RG; Fournon, IP

    1998-01-01

    A sample of 47 faint Gigahertz Peaked Spectrum (GPS) radio sources selected from the Westerbork Northern Sky Survey (WENSS) has been imaged in the optical and near-infrared, resulting in an identification fraction of 87 per cent. The R - I and R - K colours of the faint optical counterparts are as

  4. Infrared-faint radio sources in the SERVS deep fields. Pinpointing AGNs at high redshift

    NARCIS (Netherlands)

    Maini, A.; Prandoni, I.; Norris, R. P.; Spitler, L. R.; Mignano, A.; Lacy, M.; Morganti, R.

    2016-01-01

    Context. Infrared-faint radio sources (IFRS) represent an unexpected class of objects which are relatively bright at radio wavelength, but unusually faint at infrared (IR) and optical wavelengths. A recent and extensive campaign on the radio-brightest IFRSs (S1.4 GHz≳ 10 mJy) has provided evidence

  5. A dual-mask coronagraph for observing faint companions to binary stars

    NARCIS (Netherlands)

    Cady, E.; McElwain, M.; Kasdin, N.J.; Thalmann, C.

    2011-01-01

    Observations of binary stars for faint companions with conventional coronagraphic methods are challenging, as both targets will be bright enough to obscure any nearby faint companions if their scattered light is not suppressed. We propose coronagraphic examination of binary stars using an

  6. Preparing a Nation for the Eclipse of a Generation -

    Science.gov (United States)

    Speck, Angela; Habbal, Shadia; Tresch Fienberg, Richard; Kentrianakis, Michael; Fraknoi, Andrew; Nordgren, Tyler; Penn, Matthew; Pasachoff, Jay M.; Bakich, Michael; Winter, Henry; Gay, Pamela; Motta, Mario

    2018-01-01

    On August 21st 2017, there was a total solar eclipse visible from a vast swath of the US.In preparation for that event, the American Astronomical society created a taskforce charged with planning for the eclipse for the entire nation. The preparations included interfacing with the public, the media, non-profit organizations and governmental organizations. Preliminary data suggests that nearly 90% of American adults watched the eclipse either directly or via live streams. Moreover, there were no major problems associated with the event, in spite of valiant attempts from, e.g. imprope solar viewing materials. The eclipse offered opportunities for many scientific experiments within and ebyond astronomy. Here we present on the work of the taskforce, and the lessons learned as well as lesser known science experiments undertaken during the eclipse.

  7. Student artistry sparks eclipse excitement on Maui: NSO/DKIST EPO for the 2016 Partial Solar Eclipse

    Science.gov (United States)

    Schad, Thomas A.; Penn, Matthew J.; Armstrong, James

    2016-05-01

    Local creativity and artistry is a powerful resource that enhances education programs and helps us generate excitement for science within our communities. In celebration of the 2016 Solar Eclipse, the National Solar Observatory (NSO) and its Daniel K Inouye Solar Telescope (DKIST) project were pleased to engage with students across Maui County, Hawai`i, via the 2016 Maui Eclipse Art Contest. With the help of the Maui Economic Development Board and the University of Hawai'is Institute for Astronomy, we solicited art entries from all K-12 schools in Maui County approximately 6 months prior to the eclipse. Along with divisional prizes, a grand prize was selected by a panel of local judges, which was subsequently printed on 25,000 solar eclipse viewing glasses and distributed to all Maui students. We found that the impact of a locally-sourced glasses design cannot be understated. Overall, the success of this program relied upon reaching out to individual teachers, supplying educational flyers to all schools, and visiting classrooms. On the day of the eclipse, all of the art entries were prominently displayed during a community eclipse viewing event at Kalama Beach Park in Kihei, HI, that was co-hosted by NSO and the Maui Science Center. This eclipse art contest was integral to making local connections to help promote science education on Maui, and we suggest that it could be adapted to the solar community's EPO activities for the upcoming 2017 Great American Solar Eclipse.

  8. Accretion torques due to three-dimensional channelled flows in magnetic cataclysmic variables

    International Nuclear Information System (INIS)

    Campbell, C.G.

    1986-01-01

    Angular momentum transfer due to three-dimensional magnetically channelled accretion flows in cataclysmic binaries is considered. The white dwarf experiences a torque due to the twist in that part of its magnetic field which interacts with the accretion stream. The channelling process can also enhance angular momentum exchange between the stream and the orbit by increasing the gravitational torques. The components of the accretion torque are calculated for an arbitrary static magnetic orientation of the white dwarf, and their variation with orientation is presented. For high inclinations of the accreting pole to the orbital plane the component of the accretion torque parallel to this plane can be comparable to its perpendicular component. It is shown that the parallel component of the torque is still significant relative to the perpendicular component if material links to the white dwarf's magnetic field well away from the L 1 region. (author)

  9. Theoretical, numerical and experimental study of accretion shocks dynamics in magnetic cataclysmic variables

    International Nuclear Information System (INIS)

    Busschaert, Clotilde

    2013-01-01

    Magnetic cataclysmic variables are interacting binary Systems containing a highly magnetized white dwarf which accretes material from a companion. Material is led along magnetic field lines and falls onto the magnetic pole(s) supersonically forming an accretion column. As the material hits the surface, a reverse shock is formed and the shocked region is structured by the cooling effect of radiation processes. This work is a multidisciplinary study of the dynamics of the accretion column. Firstly, a numerical study of the accretion column structure at the astrophysical scale is presented. The observational consequences are discussed. This approach is completed by experiments using radiative flows generated by powerful lasers. The relevance of such experiments is based on the establishment of scaling laws. News scaling laws in the frame of radiative ideal or resistive MHD are exposed. The results of the sizing and the interpretation of the POLAR experimental campaign of 2012 on LULI2000 installation are presented. (author) [fr

  10. Eclipse 2017: Through the Eyes of NASA

    Science.gov (United States)

    Mayo, Louis; NASA Heliophysics Education Consortium

    2017-10-01

    The August 21, 2017 total solar eclipse across America was, by all accounts, the biggest science education program ever carried out by NASA, significantly larger than the Curiosity Mars landing and the New Horizons Pluto flyby. Initial accounting estimates over two billion people reached and website hits exceeding five billion. The NASA Science Mission Directorate spent over two years planning and developing this enormous public education program, establishing over 30 official NASA sites along the path of totality, providing imagery from 11 NASA space assets, two high altitude aircraft, and over 50 high altitude balloons. In addition, a special four focal plane ground based solar telescope was developed in partnership with Lunt Solar Systems that observed and processed the eclipse in 6K resolution. NASA EDGE and NASA TV broadcasts during the entirity of totality across the country reached hundreds of millions, world wide.This talk will discuss NASA's strategy, results, and lessons learned; and preview some of the big events we plan to feature in the near future.

  11. SPITZER SECONDARY ECLIPSES OF WASP-18b

    International Nuclear Information System (INIS)

    Nymeyer, Sarah; Harrington, Joseph; Hardy, Ryan A.; Stevenson, Kevin B.; Campo, Christopher J.; Blecic, Jasmina; Bowman, William C.; Britt, Christopher B. T.; Cubillos, Patricio; Madhusudhan, Nikku; Collier-Cameron, Andrew; Maxted, Pierre F. L.; Loredo, Thomas J.; Hellier, Coel; Anderson, David R.; Gillon, Michael; Hebb, Leslie; Wheatley, Peter J.; Pollacco, Don

    2011-01-01

    The transiting exoplanet WASP-18b was discovered in 2008 by the Wide Angle Search for Planets project. The Spitzer Exoplanet Target of Opportunity Program observed secondary eclipses of WASP-18b using Spitzer's Infrared Array Camera in the 3.6 μm and 5.8 μm bands on 2008 December 20, and in the 4.5 μm and 8.0 μm bands on 2008 December 24. We report eclipse depths of 0.30% ± 0.02%, 0.39% ± 0.02%, 0.37% ± 0.03%, 0.41% ± 0.02%, and brightness temperatures of 3100 ± 90, 3310 ± 130, 3080 ± 140, and 3120 ± 110 K in order of increasing wavelength. WASP-18b is one of the hottest planets yet discovered—as hot as an M-class star. The planet's pressure-temperature profile most likely features a thermal inversion. The observations also require WASP-18b to have near-zero albedo and almost no redistribution of energy from the day side to the night side of the planet.

  12. Extended Schmidt law holds for faint dwarf irregular galaxies

    Science.gov (United States)

    Roychowdhury, Sambit; Chengalur, Jayaram N.; Shi, Yong

    2017-12-01

    Context. The extended Schmidt law (ESL) is a variant of the Schmidt which relates the surface densities of gas and star formation, with the surface density of stellar mass added as an extra parameter. Although ESL has been shown to be valid for a wide range of galaxy properties, its validity in low-metallicity galaxies has not been comprehensively tested. This is important because metallicity affects the crucial atomic-to-molecular transition step in the process of conversion of gas to stars. Aims: We empirically investigate for the first time whether low metallicity faint dwarf irregular galaxies (dIrrs) from the local universe follow the ESL. Here we consider the "global" law where surface densities are averaged over the galactic discs. dIrrs are unique not only because they are at the lowest end of mass and star formation scales for galaxies, but also because they are metal-poor compared to the general population of galaxies. Methods: Our sample is drawn from the Faint Irregular Galaxy GMRT Survey (FIGGS) which is the largest survey of atomic hydrogen in such galaxies. The gas surface densities are determined using their atomic hydrogen content. The star formation rates are calculated using GALEX far ultraviolet fluxes after correcting for dust extinction, whereas the stellar surface densities are calculated using Spitzer 3.6 μm fluxes. The surface densities are calculated over the stellar discs defined by the 3.6 μm images. Results: We find dIrrs indeed follow the ESL. The mean deviation of the FIGGS galaxies from the relation is 0.01 dex, with a scatter around the relation of less than half that seen in the original relation. In comparison, we also show that the FIGGS galaxies are much more deviant when compared to the "canonical" Kennicutt-Schmidt relation. Conclusions: Our results help strengthen the universality of the ESL, especially for galaxies with low metallicities. We suggest that models of star formation in which feedback from previous generations

  13. Eclipse journeys to the dark side of the Moon

    CERN Document Server

    Close, Frank

    2017-01-01

    On August 21st, over one hundred million people will gather across the USA to witness the most-watched total solar eclipse in history. Eclipse: Journeys to the Dark Side of the Moon, by popular science author Frank Close, describes the spellbinding allure of this beautiful natural phenomenon. The book explains why eclipses happen, reveals their role in history, literature and myth, and introduces us to eclipse chasers, who travel with ecstatic fervor to some of the most inaccessible places on the globe. The book also includes the author's quest to solve a 3000-year-old mystery: how did the moon move backward during a total solar eclipse, as claimed in the Book of Joshua? Eclipse is also the story of how a teacher inspired the author, aged eight, to pursue a career in science and a love affair with eclipses that has taken him to a war zone in the Western Sahara, the South Pacific, and the African bush. The tale comes full circle with another eight-year old boy - the author's grandson - at the 2017 great Americ...

  14. Eclipsing binary stars with a δ Scuti component

    Science.gov (United States)

    Kahraman Aliçavuş, F.; Soydugan, E.; Smalley, B.; Kubát, J.

    2017-09-01

    Eclipsing binaries with a δ Sct component are powerful tools to derive the fundamental parameters and probe the internal structure of stars. In this study, spectral analysis of six primary δ Sct components in eclipsing binaries has been performed. Values of Teff, v sin I, and metallicity for the stars have been derived from medium-resolution spectroscopy. Additionally, a revised list of δ Sct stars in eclipsing binaries is presented. In this list, we have only given the δ Sct stars in eclipsing binaries to show the effects of the secondary components and tidal-locking on the pulsations of primary δ Sct components. The stellar pulsation, atmospheric and fundamental parameters (e.g. mass, radius) of 92 δ Sct stars in eclipsing binaries have been gathered. Comparison of the properties of single and eclipsing binary member δ Sct stars has been made. We find that single δ Sct stars pulsate in longer periods and with higher amplitudes than the primary δ Sct components in eclipsing binaries. The v sin I of δ Sct components is found to be significantly lower than that of single δ Sct stars. Relationships between the pulsation periods, amplitudes and stellar parameters in our list have been examined. Significant correlations between the pulsation periods and the orbital periods, Teff, log g, radius, mass ratio, v sin I and the filling factor have been found.

  15. A Comprehensive Catalog of Galactic Eclipsing Binary Stars with Eccentric Orbits Based on Eclipse Timing Diagrams

    Science.gov (United States)

    Kim, C.-H.; Kreiner, J. M.; Zakrzewski, B.; Ogłoza, W.; Kim, H.-W.; Jeong, M.-J.

    2018-04-01

    A comprehensive catalog of 623 galactic eclipsing binary (EB) systems with eccentric orbits is presented with more than 2830 times of minima determined from the archived photometric data by various sky-survey projects and new photometric measurements. The systems are divided into two groups according to whether the individual system has a GCVS name or not. All the systems in both groups are further classified into three categories (D, A, and A+III) on the basis of their eclipse timing diagrams: 453 D systems showing just constantly displaced secondary minima, 139 A systems displaying only apsidal motion (AM), and 31 A+III systems exhibiting both AM and light-time effects. AM parameters for 170 systems (A and A+III systems) are consistently calculated and cataloged with basic information for all systems. Some important statistics for the AM parameters are discussed and compared with those derived for the eccentric EB systems in the Large and Small Magellanic Clouds.

  16. Radio and infrared observations of the faint nebula GM24

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, L F; Roth, M; Tapia, M; Canto, J; Persi, P; Ferrari-Toniolo, M

    1986-02-01

    The faint nebulosity GM24=PP85 listed by Parsamian and Petrosian (1979) was observed at infrared (1-10 ..mu..m) and radio (6 cm and CO line) wavelengths in the vicinity of the CO hot spot reported by Torrelles et al. (1983). The radio continuum (6 cm) emission from a spherically symmetrical HII region was detected with the Very Large Array. Its position coincides with the brightest part of the visible nebulosity and a 1-4 ..mu..m emission peak. Their infrared maps made at the Observatorio Astronomico Nacional de San Pedro Martir, show two additional (1-10 ..mu..m) peaks located at distances approx. 30 arc sec from the compact HII region, all surrounded by extended near infrared (1-4 ..mu..m) emission. A detailed CO (J=1 ..-->.. 0) map of the whole molecular cloud was also obtained with the University of Texas Millimeter - Wave Telescope. Their results are interpreted in terms of the recent formation of three massive stars, one of which, having developed an HII region, is at a slightly later phase of its evolution. The extended near infrared emission may arise in a reflection nebula similar to NGC 7538-Irs 9. 4 references.

  17. VLBI observations of Infrared-Faint Radio Sources

    Science.gov (United States)

    Middelberg, Enno; Phillips, Chris; Norris, Ray; Tingay, Steven

    2006-10-01

    We propose to observe a small sample of radio sources from the ATLAS project (ATLAS = Australia Telescope Large Area Survey) with the LBA, to determine their compactness and map their structures. The sample consists of three radio sources with no counterpart in the co-located SWIRE survey (3.6 um to 160 um), carried out with the Spitzer Space Telescope. This rare class of sources, dubbed Infrared-Faint Radio Sources, or IFRS, is inconsistent with current galaxy evolution models. VLBI observations are an essential way to obtain further clues on what these objects are and why they are hidden from infrared observations: we will map their structure to test whether they resemble core-jet or double-lobed morphologies, and we will measure the flux densities on long baselines, to determine their compactness. Previous snapshot-style LBA observations of two other IFRS yielded no detections, hence we propose to use disk-based recording with 512 Mbps where possible, for highest sensitivity. With the observations proposed here, we will increase the number of VLBI-observed IFRS from two to five, soon allowing us to draw general conclusions about this intriguing new class of objects.

  18. SUPERNOVA 2003ie WAS LIKELY A FAINT TYPE IIP EVENT

    Energy Technology Data Exchange (ETDEWEB)

    Arcavi, Iair; Gal-Yam, Avishay [Department of Particle Physics and Astrophysics, The Weizmann Institute of Science, Rehovot 76100 (Israel); Sergeev, Sergey G., E-mail: iair.arcavi@weizmann.ac.il [Crimean Astrophysical Observatory, P/O Nauchny, Crimea 98409 (Ukraine)

    2013-04-15

    We present new photometric observations of supernova (SN) 2003ie starting one month before discovery, obtained serendipitously while observing its host galaxy. With only a weak upper limit derived on the mass of its progenitor (<25 M{sub Sun }) from previous pre-explosion studies, this event could be a potential exception to the ''red supergiant (RSG) problem'' (the lack of high-mass RSGs exploding as Type IIP SNe). However, this is true only if SN2003ie was a Type IIP event, something which has never been determined. Using recently derived core-collapse SN light-curve templates, as well as by comparison to other known SNe, we find that SN2003ie was indeed a likely Type IIP event. However, with a plateau magnitude of {approx} - 15.5 mag, it is found to be a member of the faint Type IIP class. Previous members of this class have been shown to arise from relatively low-mass progenitors (<12 M{sub Sun }). It therefore seems unlikely that this SN had a massive RSG progenitor. The use of core-collapse SN light-curve templates is shown to be helpful in classifying SNe with sparse coverage. These templates are likely to become more robust as large homogeneous samples of core-collapse events are collected.

  19. Herschel-PACS photometry of faint stars for sensitivity performance assessment and establishment of faint FIR primary photometric standards

    Science.gov (United States)

    Klaas, U.; Balog, Z.; Nielbock, M.; Müller, T. G.; Linz, H.; Kiss, Cs.

    2018-05-01

    Aims: Our aims are to determine flux densities and their photometric accuracy for a set of seventeen stars that range in flux from intermediately bright (≲2.5 Jy) to faint (≳5 mJy) in the far-infrared (FIR). We also aim to derive signal-to-noise dependence with flux and time, and compare the results with predictions from the Herschel exposure-time calculation tool. Methods: We obtain aperture photometry from Herschel-PACS high-pass-filtered scan maps and chop/nod observations of the faint stars. The issues of detection limits and sky confusion noise are addressed by comparison of the field-of-view at different wavelengths, by multi-aperture photometry, by special processing of the maps to preserve extended emission, and with the help of large-scale absolute sky brightness maps from AKARI. This photometry is compared with flux-density predictions based on photospheric models for these stars. We obtain a robust noise estimate by fitting the flux distribution per map pixel histogram for the area around the stars, scaling it for the applied aperture size and correcting for noise correlation. Results: For 15 stars we obtain reliable photometry in at least one PACS filter, and for 11 stars we achieve this in all three PACS filters (70, 100, 160 μm). Faintest fluxes, for which the photometry still has good quality, are about 10-20 mJy with scan map photometry. The photometry of seven stars is consistent with models or flux predictions for pure photospheric emission, making them good primary standard candidates. Two stars exhibit source-intrinsic far-infrared excess: β Gem (Pollux), being the host star of a confirmed Jupiter-size exoplanet, due to emission of an associated dust disk, and η Dra due to dust emission in a binary system with a K1 dwarf. The investigation of the 160 μm sky background and environment of four sources reveals significant sky confusion prohibiting the determination of an accurate stellar flux at this wavelength. As a good model

  20. Coordinated weather balloon solar radiation measurements during a solar eclipse.

    Science.gov (United States)

    Harrison, R G; Marlton, G J; Williams, P D; Nicoll, K A

    2016-09-28

    Solar eclipses provide a rapidly changing solar radiation environment. These changes can be studied using simple photodiode sensors, if the radiation reaching the sensors is unaffected by cloud. Transporting the sensors aloft using standard meteorological instrument packages modified to carry extra sensors, provides one promising but hitherto unexploited possibility for making solar eclipse radiation measurements. For the 20 March 2015 solar eclipse, a coordinated campaign of balloon-carried solar radiation measurements was undertaken from Reading (51.44°N, 0.94°W), Lerwick (60.15°N, 1.13°W) and Reykjavik (64.13°N, 21.90°W), straddling the path of the eclipse. The balloons reached sufficient altitude at the eclipse time for eclipse-induced variations in solar radiation and solar limb darkening to be measured above cloud. Because the sensor platforms were free to swing, techniques have been evaluated to correct the measurements for their changing orientation. In the swing-averaged technique, the mean value across a set of swings was used to approximate the radiation falling on a horizontal surface; in the swing-maximum technique, the direct beam was estimated by assuming that the maximum solar radiation during a swing occurs when the photodiode sensing surface becomes normal to the direction of the solar beam. Both approaches, essentially independent, give values that agree with theoretical expectations for the eclipse-induced radiation changes.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'. © 2016 The Authors.

  1. Total Eclipse of the Ballpark: Connecting Space and Sports

    Science.gov (United States)

    Wasser, Molly; Petro, Noah; Jones, Andrea; Bleacher, Lora; Keller, John; Wes Patterson, G.

    2018-01-01

    The anticipation and excitement surrounding the total solar eclipse of 2017 provided astronomy educators with an incredible platform to share space science with huge audiences. The Public Engagement Team for NASA’s Lunar Reconnaissance Orbiter (LRO) took advantage of this opportunity to share lunar science with the public by highlighting the often-overlooked central player in the eclipse – the Moon. As the sole planetary science representatives on NASA’s Science Mission Directorate eclipse leadership team, the LRO team had limited resources to conduct national public outreach. In order to increase our reach, we found success in partnerships.In early 2017, we began working with Minor League Baseball (MiLB) teams across the path of totality on August eclipse events. These partnerships proved fruitful for both parties. While MiLB is a national organization, each team is deeply rooted in its community. This proved essential as each of our four main MiLB partners handled event logistics, provided facilities, connected NASA Subject Matter Experts (SMEs) with local media, and drew in captive crowds. With this tactic, a handful of NASA representatives were able to reach nearly 30,000 people. In turn, LRO provided engaging educational content relevant to the context, SMEs to guide the eclipse viewing experience, eclipse glasses, and safety information. Our participation drew in an audience who would not typically attend baseball games while we were able to reach individuals who would not normally attend a science event. In addition, the eclipse inspired one team, the Salem-Keizer Volcanoes from Salem, OR, to make baseball history by holding the first ever eclipse delay in professional sports.In this talk, we will present on the benefits of the partnership, offer lessons learned, and suggest ways to get involved for the 2024 eclipse – and all the baseball seasons in between.

  2. a Faint and Lonely Brown Dwarf in the Solar Vicinity

    Science.gov (United States)

    1997-04-01

    Discovery of KELU-1 Promises New Insights into Strange Objects Brown Dwarfs are star-like objects which are too small to become real stars, yet too large to be real planets. Their mass is too small to ignite those nuclear processes which are responsible for the large energies and high temperatures of stars, but it is much larger than that of the planets we know in our solar system. Until now, very few Brown Dwarfs have been securely identified as such. Two are members of double-star systems, and a few more are located deep within the Pleiades star cluster. Now, however, Maria Teresa Ruiz of the Astronomy Department at Universidad de Chile (Santiago de Chile), using telescopes at the ESO La Silla observatory, has just discovered one that is all alone and apparently quite near to us. Contrary to the others which are influenced by other objects in their immediate surroundings, this new Brown Dwarf is unaffected and will thus be a perfect object for further investigations that may finally allow us to better understand these very interesting celestial bodies. It has been suggested that Brown Dwarfs may constitute a substantial part of the unseen dark matter in our Galaxy. This discovery may therefore also have important implications for this highly relevant research area. Searching for nearby faint stars The story of this discovery goes back to 1987 when Maria Teresa Ruiz decided to embark upon a long-term search (known as the Calan-ESO proper-motion survey ) for another type of unusual object, the so-called White Dwarfs , i.e. highly evolved, small and rather faint stars. Although they have masses similar to that of the Sun, such stars are no larger than the Earth and are therefore extremely compact. They are particularly interesting, because they most probably represent the future end point of evolution of our Sun, some billions of years from now. For this project, the Chilean astronomer obtained large-field photographic exposures with the 1-m ESO Schmidt telescope at

  3. Eclipse effects on field crops and marine zooplankton: the 29 March 2006 total solar eclipse

    Directory of Open Access Journals (Sweden)

    G. Economou

    2008-08-01

    Full Text Available Some effects in the biosphere from the Total Solar Eclipse of 29 March 2006 were investigated in field crops and marine zooplankton. Taking into account the decisive role of light on plant life and productivity, measurements of photosynthesis and stomatal behaviour were conducted on seven important field-grown cereal and leguminous crops. A drop in photosynthetic rates, by more than a factor of 5 in some cases, was observed, and the minimum values of photosynthetic rates ranged between 3.13 and 10.13 μmol CO2 m−2 s−1. The drop in solar irradiance and the increase in mesophyll CO2-concentration during the eclipse did not induce stomatal closure thus not blocking CO2 uptake by plants. Light effects on the photochemical phase of photosynthesis may be responsible for the observed depression in photosynthetic rates. Field studies addressing the migratory responses of marine zooplankton (micro-zooplankton (ciliates, and meso-zooplankton due to the rapid changes in underwater light intensity were also performed. The light intensity attenuation was simulated with the use of accurate underwater radiative transfer modeling techniques. Ciliates, responded to the rapid decrease in light intensity during the eclipse adopting night-time behaviour. From the meso-zooplankton assemblage, various vertical migratory behaviours were adopted by different species.

  4. Eclipse effects on field crops and marine zooplankton: the 29 March 2006 total solar eclipse

    Science.gov (United States)

    Economou, G.; Christou, E. D.; Giannakourou, A.; Gerasopoulos, E.; Georgopoulos, D.; Kotoulas, V.; Lyra, D.; Tsakalis, N.; Tzortziou, M.; Vahamidis, P.; Papathanassiou, E.; Karamanos, A.

    2008-08-01

    Some effects in the biosphere from the Total Solar Eclipse of 29 March 2006 were investigated in field crops and marine zooplankton. Taking into account the decisive role of light on plant life and productivity, measurements of photosynthesis and stomatal behaviour were conducted on seven important field-grown cereal and leguminous crops. A drop in photosynthetic rates, by more than a factor of 5 in some cases, was observed, and the minimum values of photosynthetic rates ranged between 3.13 and 10.13 μmol CO2 m-2 s-1. The drop in solar irradiance and the increase in mesophyll CO2-concentration during the eclipse did not induce stomatal closure thus not blocking CO2 uptake by plants. Light effects on the photochemical phase of photosynthesis may be responsible for the observed depression in photosynthetic rates. Field studies addressing the migratory responses of marine zooplankton (micro-zooplankton (ciliates), and meso-zooplankton) due to the rapid changes in underwater light intensity were also performed. The light intensity attenuation was simulated with the use of accurate underwater radiative transfer modeling techniques. Ciliates, responded to the rapid decrease in light intensity during the eclipse adopting night-time behaviour. From the meso-zooplankton assemblage, various vertical migratory behaviours were adopted by different species.

  5. An Outreach Project to Provide 2.1 Million Eclipse Glasses and Eclipse Information through 7,100 Libraries Nationwide

    Science.gov (United States)

    Fraknoi, Andrew; Schatz, Dennis; Dusenbery, Paul; Duncan, Douglas; Holland, Anne; Laconte, Keliann

    2018-01-01

    With support from the Moore Foundation, Google, the Research Corporation, and NASA, we were able to distribute about 2.1 million eclipse glasses and an extensive booklet of eclipse information and outreach suggestions to 7,100 public libraries throughout the nation. It appears that this project was the single largest program to provide glasses and eclipse information to the public in the U.S. The project using (and significantly enlarged) the existing STARNet network of libraries set up and maintained by the Space Science Institute. We were able to get glasses to a diverse set of institutions, including urban, rural, Native American, small town and large city libraries. In this poster, we will summarize the history of the project, the various components and how they worked together, and the results of a post survey of the librarians, which provided numbers, photographs, and impressions from the many libraries and their patrons. A map of the libraries involved is at www.starnetlibraries.org/2017eclipse/. The booklet of information that was sent to help train librarians in eclipse science and eclipse outreach can still be downloaded free at: http://www.starnetlibraries.org/EclipseGuide/.”

  6. Astrometry with Hubble Space Telescope Fine Guidance Sensor 3: The Parallax of the Cataclysmic Variable RW Triangulum

    Science.gov (United States)

    McArthur, B. E.; Benedict, G. F.; Lee, J.; Lu, C.-L.; van Altena, W. F.; Deliyannis, C. P.; Girard, T.; Fredrick, L. W.; Nelan, E.; Duncombe, R. L.; Hemenway, P. D.; Jefferys, W. H.; Shelus, P. J.; Franz, O. G.; Wasserman, L. H.

    1999-07-01

    RW Triangulum (RW Tri) is a 13th magnitude nova-like cataclysmic variable star with an orbital period of 0.2319 days (5.56 hr). Infrared observations of RW Tri indicate that its secondary is most likely a late-K dwarf (Dhillon). Past analyses predicted a distance of 270 pc, derived from a blackbody fit to the spectrum of the central part of the disk (Rutten, van Paradijs, & Tinbergen). Recently completed Hubble Space Telescope Fine Guidance Sensor interferometric observations allow us to determine the first trigonometric parallax to RW Tri. This determination puts the distance of RW Tri at 341-31+38, one of the most distant objects with a direct parallax measurement. We compare our result with methods previously employed to estimate distances to cataclysmic variables.

  7. On the history of the early meteoritic bombardment of the Moon: Was there a terminal lunar cataclysm?

    Science.gov (United States)

    Michael, Greg; Basilevsky, Alexander; Neukum, Gerhard

    2018-03-01

    This work revisits the hypothesis of the so-called 'lunar terminal cataclysm' suggested by Tera et al. (1973, 1974) as a strong peak in the meteorite bombardment of the Moon around 3.9 Ga ago. According to the hypothesis, most of the impact craters observed on the lunar highlands formed during this short time period and thus formed the majority of the lunar highland impact breccias and melts. The hypothesis arose from the observation that the ages of highland samples from all the lunar missions are mostly grouped around 3.9-4.0 Ga. Since those missions, however, radiometric dating techniques have progressed and many samples, both old and new, have been re-analyzed. Nevertheless, the debate over whether there was a terminal cataclysm persists. To progress in this problem we summarized results of 269 K-Ar datings (mostly made using the 40Ar-39Ar technique) of highland rocks represented by the Apollo 14, 15, 16, 17 and Luna 20 samples and 94 datings of clasts of the highland rocks from 23 lunar meteorites representing 21 localities on the lunar surface, and considered them jointly with the results of our modelling of the cumulative effect of the impact gardening process on the presence of impact melt of different ages at the near-surface of the Moon. The considered results of K-Ar dating of the Apollo-Luna samples of lunar highland rocks confirmed a presence of strong peak centered at 3.87 Ga. But since the time when the hypothesis of terminal cataclysm was suggested, it has become clear that this peak could be a result of sampling bias: it is the only prominent feature at the sites with an apparent domination of Imbrium basin ejecta (Apollo 14 and 15) and the age pattern is more complicated for the sites influenced not only by Imbrium ejecta but also that of other basins (Nectaris at the Apollo 16 site and Serenitatis at the Apollo 17 site). Our modelling shows that the cataclysm, if it occurred, should produce a strong peak in the measured age values but we see in

  8. The intermediate-age pre-cataclysmic variables SDSS J172406+562003 and RE J2013+4002

    Science.gov (United States)

    Shimansky, V. V.; Borisov, N. V.; Nurtdinova, D. N.; Mitrofanova, A. A.; Vlasyuk, V. V.; Spiridonova, O. I.

    2012-06-01

    We have analyzed the physical status of the pre-cataclysmic variables SDSSJ172406+562003 and RE J2013+4002, which have evolved after their common-envelope stage a time t = 106-107 years. Spectroscopy and photometry of these systems were performed with the 6-m and 1-m telescopes of the Special Astrophysical Observatory. We demonstrate that emission lines in the spectra were formed solely by the reflection of radiation emitted by the white dwarfs on the surfaces of their cool companions, under conditions close to local thermodynamic equilibrium. These effects are also responsible for most of the objects' photometric variability amplitude. However, comparing the light curves of SDSS 172406 from different epochs, we find aperiodic brightness variations, probably due to spottedness of the surface of the secondary. Jointly analyzing the spectra, radial-velocity curves, and light curves of the pre-cataclysmic variables and modeling the reflection effects, we have derived their fundamental parameters. We demonstrate that the secondaries in these systems are consistent with evolutionary models for main-sequence stars and do not have the luminosity excesses characteristic of cool stars in young pre-cataclysmic variables.

  9. The radio properties of infrared-faint radio sources

    Science.gov (United States)

    Middelberg, E.; Norris, R. P.; Hales, C. A.; Seymour, N.; Johnston-Hollitt, M.; Huynh, M. T.; Lenc, E.; Mao, M. Y.

    2011-02-01

    Context. Infrared-faint radio sources (IFRS) are objects that have flux densities of several mJy at 1.4 GHz, but that are invisible at 3.6 μm when using sensitive Spitzer observations with μJy sensitivities. Their nature is unclear and difficult to investigate since they are only visible in the radio. Aims: High-resolution radio images and comprehensive spectral coverage can yield constraints on the emission mechanisms of IFRS and can give hints to similarities with known objects. Methods: We imaged a sample of 17 IFRS at 4.8 GHz and 8.6 GHz with the Australia Telescope Compact Array to determine the structures on arcsecond scales. We added radio data from other observing projects and from the literature to obtain broad-band radio spectra. Results: We find that the sources in our sample are either resolved out at the higher frequencies or are compact at resolutions of a few arcsec, which implies that they are smaller than a typical galaxy. The spectra of IFRS are remarkably steep, with a median spectral index of -1.4 and a prominent lack of spectral indices larger than -0.7. We also find that, given the IR non-detections, the ratio of 1.4 GHz flux density to 3.6 μm flux density is very high, and this puts them into the same regime as high-redshift radio galaxies. Conclusions: The evidence that IFRS are predominantly high-redshift sources driven by active galactic nuclei (AGN) is strong, even though not all IFRS may be caused by the same phenomenon. Compared to the rare and painstakingly collected high-redshift radio galaxies, IFRS appear to be much more abundant, but less luminous, AGN-driven galaxies at similar cosmological distances.

  10. Eclipse 2017: Partnering with NASA MSFC to Inspire Students

    Science.gov (United States)

    Fry, Craig " Ghee" Adams, Mitzi; Gallagher, Dennis; Krause, Linda

    2017-01-01

    NASA's Marshall Space Flight Center (MSFC) is partnering with the U.S. Space and Rocket Center (USSRC), and Austin Peay State University (APSU) to engage citizen scientists, engineers, and students in science investigations during the 2017 American Solar Eclipse. Investigations will support the Citizen Continental America Telescopic Eclipse (CATE), Ham Radio Science Citizen Investigation(HamSCI), and Interactive NASA Space Physics Ionosphere Radio Experiments (INSPIRE). All planned activities will engage Space Campers and local high school students in the application of the scientific method as they seek to explore a wide range of observations during the eclipse. Where planned experiments touch on current scientific questions, the camper/students will be acting as citizen scientists, participating with researchers from APSU and MSFC. Participants will test their expectations and after the eclipse, share their results, experiences, and conclusions to younger Space Campers at the US Space & Rocket Center.

  11. Ancient Chinese observations of physical phenomena attending solar eclipses

    International Nuclear Information System (INIS)

    Wang, P.K.; Siscoe, G.L.

    1980-01-01

    The realization that solar activity probably undergoes changes in qualitative character on time scales greater than the 11 or 22 year cycle but short compared to the duration of recorded history gives renewed importance to historical documents describing the state of solar activity. Modern eclipse observation reveal the presence of solar acitivity through the appearance of coronal structures and prominences. It has been widely remarked that eclipse records prior to the 18th century are uniformly silent on these conspicuous solar eclipse features, raising the possibility, however unlikely, that a change in solar activity has occurred which rendered them only recently noticeable. We present here material from ancient Chinese sources, primarily astrological, that describe phenomena attending solar eclipses that are almost certainly coronal structures and prominences. Thus, these aspects of the present character of solar activity have apparently occurred at other times in history, if not continuously. (orig.)

  12. Characterisation of COPD heterogeneity in the ECLIPSE cohort

    DEFF Research Database (Denmark)

    Agusti, Alvar; Calverley, Peter M A; Celli, Bartolome

    2010-01-01

    Chronic obstructive pulmonary disease (COPD) is a complex condition with pulmonary and extra-pulmonary manifestations. This study describes the heterogeneity of COPD in a large and well characterised and controlled COPD cohort (ECLIPSE)....

  13. Lessons from Distributing Eclipse Glasses: Planning Ahead for April 2024

    Science.gov (United States)

    Bartlett, Jennifer Lynn; Wilson, Teresa; Chizek Frouard, Malynda R.; Phlips, Alan

    2018-01-01

    In preparation for the 2017 August 21 total solar eclipse across the continental United States, a multifaceted effort encouraged safe public observation of this spectacular event. However, we experienced mixed results distributing free ISO 12312-2 compliant eclipse glasses.On the positive side, we successfully dispensed several hundred in Virginia through in-school programs about the eclipse. We created a 2017-eclipse information sheet to accompany a safe-viewing handout. To facilitate sending glasses home in student backpacks, we wrapped each pair in a double-sided flyer and sealed the bundle in an individual envelope. We also passed out glasses during evening and weekend activities at a planetarium. Religious, business, and educational groups were all excited to receive them as were co-workers, family, and friends.On the negative side, planetarium staff declined to give eclipse glasses to students without a parent due to safety and liability concerns. Then, a day camp returned 200 pairs less than 72 hours before the event for the same reasons. However, we also received several requests from groups that had waited until too late to be accommodated easily.During the week before the eclipse, demand for eclipse glasses in New York, Michigan, Indiana, Illinois, Wisconsin, Minnesota, South Dakota, Nebraska, and Missouri was less than anticipated. While many people were well prepared, the recalls and reported counterfeiting made others suspicious. Concurrently, vendors were offering their remaining stock for $1–10 each.The experiences of the 2017 total solar eclipse, both good and bad, will not completely fade before preparations for 2024 begin. We look forward enthusiastically to sharing that event with as many people as possible and hope that the overall distribution of eclipse glasses goes more smoothly.We thank the AAS for providing 1,000+ of the eclipse glasses we shared, which were donated to them by Google to promote the Eclipse Megamovie project; Rainbow

  14. Physics Of Eclipsing Binaries. II. Towards the Increased Model Fidelity

    OpenAIRE

    Prša, Andrej; Conroy, Kyle E.; Horvat, Martin; Pablo, Herbert; Kochoska, Angela; Bloemen, Steven; Giammarco, Joseph; Hambleton, Kelly M.; Degroote, Pieter

    2016-01-01

    The precision of photometric and spectroscopic observations has been systematically improved in the last decade, mostly thanks to space-borne photometric missions and ground-based spectrographs dedicated to finding exoplanets. The field of eclipsing binary stars strongly benefited from this development. Eclipsing binaries serve as critical tools for determining fundamental stellar properties (masses, radii, temperatures and luminosities), yet the models are not capable of reproducing observed...

  15. Hot spot manifestation in eclipsing dwarf nova HT Cassiopeiae

    OpenAIRE

    Bakowska, K.; Olech, A.

    2014-01-01

    We report the detection of the hot spot in light curves of the eclipsing dwarf nova HT Cassiopeiae during its superoutburst in 2010 November. Analysis of eight reconstructed light curves of the hot spot eclipses showed directly that the brightness of the hot spot was changing significantly during the superoutburst. Thereby, detected hot spot manifestation in HT Cas is the newest observational evidence for the EMT model for dwarf novae.

  16. Characterisation of COPD heterogeneity in the ECLIPSE cohort

    DEFF Research Database (Denmark)

    Agusti, Alvar; Calverley, Peter M A; Celli, Bartolome

    2010-01-01

    Chronic obstructive pulmonary disease (COPD) is a complex condition with pulmonary and extra-pulmonary manifestations. This study describes the heterogeneity of COPD in a large and well characterised and controlled COPD cohort (ECLIPSE).......Chronic obstructive pulmonary disease (COPD) is a complex condition with pulmonary and extra-pulmonary manifestations. This study describes the heterogeneity of COPD in a large and well characterised and controlled COPD cohort (ECLIPSE)....

  17. Cataclysms and Catastrophes: A Case Study of Improving K-12 Science Education Through a University Partnership

    Science.gov (United States)

    Fennell, T.; Ellins, K. K.; Morris, M.; Christeson, G.

    2003-12-01

    The K-12 science teacher is always seeking ways of improving and updating their curriculum by integrating the latest research into their most effective classroom activities. However, the daily demands of delivering instruction to large numbers of students coupled with the rapid advances in some fields of science can often overwhelm this effort. The NSF-sponsored Cataclysms and Catastrophes curriculum, developed by scientists from the The University of Texas at Austin Institute for Geophysics (UTIG) and Bureau of Economic Geology (BEG), middle and high school teachers, and UT graduate students (NSF GK-12 fellows) working together through the GK-12 program, is a textbook example of how universities can facilitate this quest, benefiting education at both K-12 and university levels. In 1992, "The Great K-T Extinction Debate" was developed as an activity in the Planet Earth class at the Liberal Arts and Science Academy of Austin as an interdisciplinary approach to science. Taking advantage of the media attention generated by the impact scenario for the K-T extinction, the activity consists of students participating in a simulated senate hearing on the potential causes of the K-T extinction and their implications for society today. This activity not only exposes students to the wide range of science involved in understanding mass extinctions, but also to the social, political and economic implications when this science is brought into the public arena and the corresponding use of data in decision making and disaster preparedness. While "The Great K-T Extinction Debate" was always a popular and effective activity with students, it was in desperate need of updating to keep pace with the evolving scientific debate over the cause of the K-T extinction and the growing body of impact evidence discovered over the past decade. By adding two inquiry-based learning activities that use real geophysical data collected by scientists studying the buried Chicxulub feature as a

  18. Near-infrared imaging survey of faint companions around young dwarfs in the Pleiades cluster

    International Nuclear Information System (INIS)

    Itoh, Yoichi; Funayama, Hitoshi; Hashiguchi, Toshio; Oasa, Yumiko; Hayashi, Masahiko; Fukagawa, Misato; Currie, Thayne

    2011-01-01

    We conducted a near-infrared imaging survey of 11 young dwarfs in the Pleiades cluster using the Subaru Telescope and the near-infrared coronagraph imager. We found ten faint point sources, with magnitudes as faint as 20 mag in the K-band, with around seven dwarfs. Comparison with the Spitzer archive images revealed that a pair of the faint sources around V 1171 Tau is very red in infrared wavelengths, which indicates very low-mass young stellar objects. However, the results of our follow-up proper motion measurements implied that the central star and the faint sources do not share common proper motions, suggesting that they are not physically associated.

  19. Fourier analysis of the light curves of eclipsing variables. XV

    International Nuclear Information System (INIS)

    Demircan, O.

    1978-01-01

    A new general expression for the theoretical moments Asub(2m) of the light curves of eclipsing systems has been presented in the form of infinite series expansion. In this expansion, the terms have been given as the product of two different polynomials which satisfy certain three-term recursion formulae, and the coefficients diminish rapidly with increasing number of terms. Thus, the numerical values of the theoretical moments Asub(2m) can be generated recursively up to four significant figures for any given set of eclipse elements. This can be utilized to solve the eclipse elements in two ways: (i) with an indirect method, (ii) with a direct method as minimization to the observational moments Asub(2m) (area fitting). The procedures for obtaining the elements of any eclipsing system consisting of spherical stars have been automated by making use of the new expression for the moments Asub(2m) of the light curves. The theoretical functions f 0 , f 2 , f 4 , f 6 , g 2 and g 4 which are the functions of a and c 0 , have been used to solve the eclipse elements from the observed photometric data. The closed-form expressions for the functions f 2 , f 4 and f 6 have also been derived in terms of Kopal's I-integrals. The automated methods for obtaining the eclipse elements from one minimum alone have been tested on the light curves of YZ (21) Cassiopeiae under the spherical model assumptions. The results of these applications are given. (Auth.)

  20. Exploring the Hard and Soft X-ray Emission of Magnetic Cataclysmic Variables

    Science.gov (United States)

    de Martino, D.; Anzolin, G.; Bonnet-Bidaud, J.-M.; Falanga, M.; Matt, G.; Mouchet, M.; Mukai, K.; Masetti, N.

    2009-05-01

    A non-negligible fraction of galactic hard (>20 keV) X-ray sources were identified as CVs of the magnetic Intermediate Polar type in INTEGRAL, SWIFT and RXTE surveys, that suggests a still hidden but potentially important population of faint hard X-ray sources. Simbol-X has the unique potential to simultaneously characterize their variable and complex soft and hard X-ray emission thus allowing to understand their putative role in galactic populations of X-ray sources.

  1. The primary role of the SW Sextantis stars in the evolution of cataclysmic variables

    Science.gov (United States)

    Torres, Manuel; Gaensicke, Boris; Rodriguez-Gil, Pablo; Long, Knox; Marsh, Tom; Steeghs, Danny; Munoz-Darias, Teodoro; Shahbaz, Tariq; Schmidtobreick, Linda; Schreiber, Matthias

    2009-02-01

    SW Sextantis stars are a relatively large group of cataclysmic variables (CVs) which plays a fundamental role in our understanding of CV structure and evolution. Very little is known about the properties of their accreting white dwarfs and their donor stars, as the stellar components are usually outshone by an extremely bright accretion flow. Consequently, a proper assesment of their evolutionary state is illusionary. We are monitoring the brightness of a number of SW Sex stars and request here Gemini/GMOS-N ToO time to obtain orbital phase-resolved spectroscopy if one of them enters a low state, since this is the only opportunity for studying the stellar components individually. These data will be used to accurately measure the binary parameters, white dwarf temperature, and distance to the system for a SW Sex star for the first time. The measured stellar masses and radii will especially be a precious input to the theory of compact binary evolution as a whole.

  2. Unravelling the role of SW Sextantis stars in the evolution of cataclysmic variables

    Science.gov (United States)

    Araujo-Betancor, Sofia; Gansicke, Boris; Long, Knox; Rodriguez-Gil, Pablo

    2005-08-01

    SW Sextantis stars are a relatively large group of cataclysmic variables whose properties contradict all predictions made by the current CV evolution theories. Very little is known about the properties of their accreting white dwarfs and their donor stars, as the stellar components are usually outshone by an extremely bright accretion flow. Consequently, a proper assessment of their evolutionary state is illusionary. There is one particular behavior of the SW Sex stars that can allow us to overcome this problem: SW Sex stars exhibit low states during which accretion onto the white dwarf decreases or shuts off completely. Only during this rare occasions we can directly observe the white dwarf and the donor star in these systems, and measurements of the white dwarf temperature, spectral type of the donor, mass and distance to the system can be carried out. With this aim in mind, we have set up a long-term monitoring of a group of five SW Sex stars using the 1.3 m telescope at CTIO. Here we propose to activate follow-up TOOs to obtain optical spectra of the low states to accurately determine the fundamental properties of these systems.

  3. Discovery of a New Classical Nova Shell Around a Nova-like Cataclysmic Variable

    Science.gov (United States)

    Guerrero, Martín A.; Sabin, Laurence; Tovmassian, Gagik; Santamaría, Edgar; Michel, Raul; Ramos-Larios, Gerardo; Alarie, Alexandre; Morisset, Christophe; Bermúdez Bustamante, Luis C.; González, Chantal P.; Wright, Nick J.

    2018-04-01

    The morphology and optical spectrum of IPHASX J210204.7+471015, a nebula classified as a possible planetary nebula are, however, strikingly similar to those of AT Cnc, a classical nova shell around a dwarf nova. To investigate its true nature, we have obtained high-resolution narrowband [O III] and [N II] images and deep optical spectra. The nebula shows an arc of [N II]-bright knots notably enriched in nitrogen, while an [O III]-bright bow shock is progressing throughout the ISM. Diagnostic line ratios indicate that shocks are associated with the arc and bow shock. The central star of this nebula has been identified by its photometric variability. Time-resolved photometric and spectroscopic data of this source reveal a period of 4.26 hr, which is attributed to a binary system. The optical spectrum is notably similar to that of RW Sex, a cataclysmic variable star (CV) of the UX UMa nova-like (NL) type. Based on these results, we propose that IPHASX J210204.7 + 471015 is a classical nova shell observed around a CV-NL system in quiescence.

  4. CATACLYSMIC VARIABLES FROM THE SLOAN DIGITAL SKY SURVEY. VIII. THE FINAL YEAR (2007–2008)

    International Nuclear Information System (INIS)

    Szkody, Paula; Anderson, Scott F.; Brooks, Keira; Kronberg, Martin; Riecken, Thomas; Gänsicke, Boris T.; Ross, Nicholas P.; Schmidt, Gary D.; Schneider, Donald P.; Agüeros, Marcel A.; Gomez-Moran, Ada N.; Schwope, Axel D.; Knapp, Gillian R.; Schreiber, Matthias R.

    2011-01-01

    This paper completes the series of cataclysmic variables (CVs) identified from the Sloan Digital Sky Survey (SDSS) I/II. The coordinates, magnitudes, and spectra of 33 CVs are presented. Among the 33 are eight systems known prior to SDSS (CT Ser, DO Leo, HK Leo, IR Com, V849 Her, V405 Peg, PG1230+226, and HS0943+1404), as well as nine objects recently found through various photometric surveys. Among the systems identified since the SDSS are two polar candidates, two intermediate polar candidates, and one candidate for containing a pulsating white dwarf. Our follow-up data have confirmed a polar candidate from Paper VII and determined tentative periods for three of the newly identified CVs. A complete summary table of the 285 CVs with spectra from SDSS I/II is presented as well as a link to an online table of all known CVs from both photometry and spectroscopy that will continue to be updated as future data appear.

  5. Exploratory Spectroscopy of Magnetic Cataclysmic Variables Candidates and Other Variable Objects

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, A. S.; Palhares, M. S. [IP and D, Universidade do Vale do Paraíba, 12244-000, São José dos Campos, SP (Brazil); Rodrigues, C. V.; Cieslinski, D.; Jablonski, F. J. [Divisão de Astrofísica, Instituto Nacional de Pesquisas Espaciais, 12227-010, São José dos Campos, SP (Brazil); Silva, K. M. G. [Gemini Observatory, Casilla 603, La Serena (Chile); Almeida, L. A. [Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, 05508-900, São Paulo, SP (Brazil); Rodríguez-Ardila, A., E-mail: alexandre@univap.br [Laboratório Nacional de Astrofísica LNA/MCTI, 37504-364, Itajubá MG (Brazil)

    2017-04-01

    The increasing number of synoptic surveys made by small robotic telescopes, such as the photometric Catalina Real-Time Transient Survey (CRTS), provides a unique opportunity to discover variable sources and improves the statistical samples of such classes of objects. Our goal is the discovery of magnetic Cataclysmic Variables (mCVs). These are rare objects that probe interesting accretion scenarios controlled by the white-dwarf magnetic field. In particular, improved statistics of mCVs would help to address open questions on their formation and evolution. We performed an optical spectroscopy survey to search for signatures of magnetic accretion in 45 variable objects selected mostly from the CRTS. In this sample, we found 32 CVs, 22 being mCV candidates, 13 of which were previously unreported as such. If the proposed classifications are confirmed, it would represent an increase of 4% in the number of known polars and 12% in the number of known IPs. A fraction of our initial sample was classified as extragalactic sources or other types of variable stars by the inspection of the identification spectra. Despite the inherent complexity in identifying a source as an mCV, variability-based selection, followed by spectroscopic snapshot observations, has proved to be an efficient strategy for their discoveries, being a relatively inexpensive approach in terms of telescope time.

  6. Spitzer ultra faint survey program (surfs up). I. An overview

    Energy Technology Data Exchange (ETDEWEB)

    Bradač, Maruša; Huang, Kuang-Han; Cain, Benjamin; Hall, Nicholas; Lubin, Lori [Department of Physics, University of California, Davis, CA 95616 (United States); Ryan, Russell; Casertano, Stefano [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Lemaux, Brian C. [Aix Marseille Université, CNRS, LAM (Laboratoire d' Astrophysique de Marseille) UMR 7326, F-13388 Marseille (France); Schrabback, Tim; Hildebrandt, Hendrik [Argelander-Institut für Astronomie, Auf Dem Hügel 71, D-53121 Bonn (Germany); Gonzalez, Anthony H. [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611 (United States); Allen, Steve; Von der Linden, Anja [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 382 Via Pueblo Mall, Stanford, CA 94305-4060 (United States); Gladders, Mike [The University of Chicago, The Kavli Institute for Cosmological Physics, 933 East 56th Street, Chicago, IL 60637 (United States); Hinz, Joannah; Zaritsky, Dennis [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Treu, Tommaso, E-mail: marusa@physics.ucdavis.edu [Department of Physics, University of California, Santa Barbara, CA 93106 (United States)

    2014-04-20

    Spitzer UltRa Faint SUrvey Program is a joint Spitzer and Hubble Space Telescope Exploration Science program using 10 galaxy clusters as cosmic telescopes to study z ≳ 7 galaxies at intrinsically lower luminosities, enabled by gravitational lensing, than blank field surveys of the same exposure time. Our main goal is to measure stellar masses and ages of these galaxies, which are the most likely sources of the ionizing photons that drive reionization. Accurate knowledge of the star formation density and star formation history at this epoch is necessary to determine whether these galaxies indeed reionized the universe. Determination of the stellar masses and ages requires measuring rest-frame optical light, which only Spitzer can probe for sources at z ≳ 7, for a large enough sample of typical galaxies. Our program consists of 550 hr of Spitzer/IRAC imaging covering 10 galaxy clusters with very well-known mass distributions, making them extremely precise cosmic telescopes. We combine our data with archival observations to obtain mosaics with ∼30 hr exposure time in both 3.6 μm and 4.5 μm in the central 4' × 4' field and ∼15 hr in the flanking fields. This results in 3σ sensitivity limits of ∼26.6 and ∼26.2 AB magnitudes for the central field in the IRAC 3.6 and 4.5 μm bands, respectively. To illustrate the survey strategy and characteristics we introduce the sample, present the details of the data reduction and demonstrate that these data are sufficient for in-depth studies of z ≳ 7 sources (using a z = 9.5 galaxy behind MACS J1149.5+2223 as an example). For the first cluster of the survey (the Bullet Cluster) we have released all high-level data mosaics and IRAC empirical point-spread function models. In the future we plan to release these data products for the entire survey.

  7. A Coral Sea Rehearsal for the Eclipse Megamovie

    Science.gov (United States)

    Hudson, H. S.; Davey, A. R.; Ireland, J.; Jones, L.; Mcintosh, S. W.; Paglierani, R.; Pasachoff, J. M.; Peticolas, L. M.; Russell, R. M.; Suarez Sola, F. I.; Sutherland, L.; Thompson, M. J.

    2012-12-01

    The "Eclipse on the Coral Sea" - 13/14 November 2012 (GMT/Australia) - will have happened already. Our intention is to have used this opportunity as a trial run for the eclipse in 2017, which features 1.5 hours of totality across the whole width of the continental US. Conceived first and foremost as an education and public outreach activity, the plan is to engage the public in solar science and technology by providing a way for them to include images they have taken of the solar eclipse, into a movie representation of coronal evolution in time. This project will assimilate as much eclipse photography as possible from the public. The resulting movie(s) will cover all ranges of expertise, and at the basic smartphone or hand-held digital camera level, we expect to have obtained a huge number of images in the case of good weather conditions. The capability of modern digital technology to handle such a data flow is new. The basic purpose of this and the 2017 Megamovie observations is to explore this capability and its ability to engage people from many different communities in the solar science, astronomy, mathematics, and technology. The movie in 2017, especially, may also have important science impact because of the uniqueness of the corona as seen under eclipse conditions. In this presentation we will describe our smartphone application development (see the "Transit of Venus" app for a role model here). We will also summarize data acquisition via both the app and more traditional web interfaces. Although for the Coral Sea eclipse event we don't expect to have a movie product by the time of the AGU, for the 2017 event we do intend to assemble the heterogenous data into beautiful movies within a short space of time after the eclipse. These movies may have relatively low resolution but would extend to the base of the corona. We encourage participation in the 2012 observations, noting that no total eclipse, prior to 2017, will occur in a region with good infrastructure

  8. The R band light curves of eclipses of U Gem in outburst

    Czech Academy of Sciences Publication Activity Database

    Šimon, Vojtěch

    č. 5453 (2003), s. 1-4 ISSN 0374-0676 Institutional research plan: CEZ:AV0Z1003909 Keywords : cataclysmic variables * general binaries stars Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  9. Eclipse - tow flight closeup and release

    Science.gov (United States)

    1998-01-01

    This clip, running 15 seconds in length, shows the QF-106 'Delta Dart' gear down, with the tow rope secured to the attachment point above the aircraft nose. First there is a view looking back from the C-141A, then looking forward from the nose of the QF-106, and finally a shot of the aircraft being released from the tow rope. NASA Dryden Flight Research Center, Edwards, California, supported a Kelly Space and Technology, Inc. (KST)/U.S. Air Force project known as Eclipse, which demonstrated a reusable tow launch vehicle concept. The purpose of the project was to demonstrate a reusable tow launch vehicle concept that had been conceived and patented by KST. Kelly Space obtained a contract with the USAF Research Laboratory for the tow launch demonstration project under the Small Business Innovation Research (SBIR) program. The USAF SBIR contract included the modifications to turn the QF-106 into the Experimental Demonstrator #1 (EXD-01), and the C141A aircraft to incorporate the tow provisions to link the two aircraft, as well as conducting flight tests. The demonstration consisted of ground and flight tests. These tests included a Combined Systems Test of both airplanes joined by a tow rope, a towed taxi test, and six towed flights. The primary goal of the project was demonstrating the tow phase of the Eclipse concept using a scaled-down tow aircraft (C-141A) and a representative aerodynamically-shaped aircraft (QF-106A) as a launch vehicle. This was successfully accomplished. On December 20, 1997, NASA research pilot Mark Stucky flew a QF-106 on the first towed flight behind an Air Force C-141 in the joint Eclipse project with KST to demonstrate a reusable tow launch vehicle concept developed by KST. Kelly Space and Technology hoped to use the data from the tow tests to validate a tow-to-launch procedure for reusable space launch vehicles. Stucky flew six successful tow tests between December 1997 and February 6, 1998. On February 6, 1998, the sixth and final towed

  10. Earth's transmission spectrum from lunar eclipse observations.

    Science.gov (United States)

    Pallé, Enric; Osorio, María Rosa Zapatero; Barrena, Rafael; Montañés-Rodríguez, Pilar; Martín, Eduardo L

    2009-06-11

    Of the 342 planets so far discovered orbiting other stars, 58 'transit' the stellar disk, meaning that they can be detected through a periodic decrease in the flux of starlight. The light from the star passes through the atmosphere of the planet, and in a few cases the basic atmospheric composition of the planet can be estimated. As we get closer to finding analogues of Earth, an important consideration for the characterization of extrasolar planetary atmospheres is what the transmission spectrum of our planet looks like. Here we report the optical and near-infrared transmission spectrum of the Earth, obtained during a lunar eclipse. Some biologically relevant atmospheric features that are weak in the reflection spectrum (such as ozone, molecular oxygen, water, carbon dioxide and methane) are much stronger in the transmission spectrum, and indeed stronger than predicted by modelling. We also find the 'fingerprints' of the Earth's ionosphere and of the major atmospheric constituent, molecular nitrogen (N(2)), which are missing in the reflection spectrum.

  11. Phenomenological Modeling of Newly Discovered Eclipsing Binary 2MASS J18024395 + 4003309 = VSX J180243.9+400331

    Directory of Open Access Journals (Sweden)

    Ivan L. Andronov

    2015-06-01

    Full Text Available We present a by-product of our long term photometric monitoring of cataclysmic variables. 2MASS J18024395 +4003309 = VSX J180243.9 +400331 was discovered in the field of the intermediate polar V1323 Her observed using the Korean 1-m telescope located at Mt. Lemmon, USA. An analysis of the two-color VR CCD observations of this variable covers all the phase intervals for the first time. The light curves show this object can be classified as an Algol-type variable with tidally distorted components, and an asymmetry of the maxima (the O’Connell effect. The periodogram analysis confirms the cycle numbering of Andronov et al. (2012 and for the initial approximation, the ephemeris is used as follows: Min I. BJD = 2456074.4904+0.3348837E . For phenomenological modeling, we used the trigonometric polynomial approximation of statistically optimal degree, and a recent method “NAV” (“New Algol Variable” using local specific shapes for the eclipse. Methodological aspects and estimates of the physical parameters based on analysis of phenomenological parameters are presented. As results of our phenomenological model, we obtained for the inclination i=90°, M1=0.745M◉, M2=0.854M◉, M=M1+M2=1.599M◉, the orbital separation a=1.65·109m=2.37R◉ and relative radii r1=R1/a=0.314 and r2=R2/a=0.360. These estimates may be used as preliminary starting values for further modeling using extended physical models based on the Wilson & Devinney (1971 code and it's extensions

  12. Phenomenological Modeling of Newly Discovered Eclipsing Binary 2MASS J18024395 + 4003309 = VSX J180243.9+400331

    Science.gov (United States)

    Andronov, Ivan L.; Kim, Yonggi; Kim, Young-Hee; Yoon, Joh-Na; Chinarova, Lidia L.; Tkachenko, Mariia G.

    2015-06-01

    We present a by-product of our long term photometric monitoring of cataclysmic variables. 2MASS J18024395 +4003309 = VSX J180243.9 +400331 was discovered in the field of the intermediate polar V1323 Her observed using the Korean 1-m telescope located at Mt. Lemmon, USA. An analysis of the two-color VR CCD observations of this variable covers all the phase intervals for the first time. The light curves show this object can be classified as an Algol-type variable with tidally distorted components, and an asymmetry of the maxima (the O'Connell effect). The periodogram analysis confirms the cycle numbering of Andronov et al. (2012) and for the initial approximation, the ephemeris is used as follows: Min I. BJD = 2456074.4904+0.3348837E . For phenomenological modeling, we used the trigonometric polynomial approximation of statistically optimal degree, and a recent method "NAV" ("New Algol Variable") using local specific shapes for the eclipse. Methodological aspects and estimates of the physical parameters based on analysis of phenomenological parameters are presented. As results of our phenomenological model, we obtained for the inclination i=90°, M1=0.745M⊙, M2=0.854M⊙, M=M1+M2=1.599M⊙, the orbital separation a=1.65°109m=2.37R⊙ and relative radii r1=R1/a=0.314 and r2=R2/a=0.360. These estimates may be used as preliminary starting values for further modeling using extended physical models based on the Wilson & Devinney (1971) code and it's extensions

  13. MARVELS Radial Velocity Solutions to Seven Kepler Eclipsing Binaries

    Science.gov (United States)

    Heslar, Michael Francis; Thomas, Neil B.; Ge, Jian; Ma, Bo; Herczeg, Alec; Reyes, Alan; SDSS-III MARVELS Team

    2016-01-01

    Eclipsing binaries serve momentous purposes to improve the basis of understanding aspects of stellar astrophysics, such as the accurate calculation of the physical parameters of stars and the enigmatic mass-radius relationship of M and K dwarfs. We report the investigation results of 7 eclipsing binary candidates, initially identified by the Kepler mission, overlapped with the radial velocity observations from the SDSS-III Multi-Object APO Radial-Velocity Exoplanet Large-Area Survey (MARVELS). The RV extractions and spectroscopic solutions of these eclipsing binaries were generated by the University of Florida's 1D data pipeline with a median RV precision of ~60-100 m/s, which was utilized for the DR12 data release. We performed the cross-reference fitting of the MARVELS RV data and the Kepler photometric fluxes obtained from the Kepler Eclipsing Binary Catalog (V2) and modelled the 7 eclipsing binaries in the BinaryMaker3 and PHOEBE programs. This analysis accurately determined the absolute physical and orbital parameters of each binary. Most of the companion stars were determined to have masses of K and M dwarf stars (0.3-0.8 M⊙), and allowed for an investigation into the mass-radius relationship of M and K dwarfs. Among the cases are KIC 9163796, a 122.2 day period "heartbeat star", a recently-discovered class of eccentric binaries known for tidal distortions and pulsations, with a high eccentricity (e~0.75) and KIC 11244501, a 0.29 day period, contact binary with a double-lined spectrum and mass ratio (q~0.45). We also report on the possible reclassification of 2 Kepler eclipsing binary candidates as background eclipsing binaries based on the analysis of the flux measurements, flux ratios of the spectroscopic and photometric solutions, the differences in the FOVs, the image processing of Kepler, and RV and spectral analysis of MARVELS.

  14. The Great American Eclipse Glasses Debacle of 2017

    Science.gov (United States)

    Tresch Fienberg, Richard; AAS Solar Eclipse Task Force

    2018-01-01

    In 2014, looking ahead to the “Great American” solar eclipse of 21 August 2017, the American Astronomical Society established the AAS Solar Eclipse Task Force to help prepare the public for a safe and enjoyable experience. We worked with NASA and several associations of eye-care professionals to come up a safety message that we could all stand behind. The gist of it was that it is perfectly safe to view totality without protection, but when any part of the Sun’s bright face is exposed, you must view through eclipse glasses or handheld viewers that meet the ISO 12312-2 international safety standard for filters for direct viewing of the Sun. We compiled a list of manufacturers whose products we knew to meet the standard (because we examined their test data) and posted it on our website. These manufacturers were all based in the US or Europe. A few weeks before the eclipse, reports surfaced of viewers purchased on Amazon.com labeled “Made in China” or that were obvious knock-offs of US manufacturers’ products. Amazon responded by suspending virtually all sales of eclipse viewers and recalling many of units already sold and shipped. Millions of people who’d bought eclipse glasses online, whether from legitimate sources or from bad actors, were unsure whether they could trust their purchases. We had to change our safety messaging: it was no longer sufficient to tell people to look for the ISO 12312-2 label, because that was being printed on Chinese-made glasses that hadn’t actually been shown to meet the standard. Instead, the only way to know that you had safe viewers was to know that you got them from a legitimate source — which meant we had to expand the list on our website to include every legitimate seller we could identify. Doing so required a monumental effort under intense time pressure. Thankfully there were few reports of eye injuries following the eclipse, but apparently many people who otherwise would have viewed the eclipse chose to skip

  15. Impact of the 2017 Solar Eclipse on Smart Grid

    Science.gov (United States)

    Reda, I.; Andreas, A.; Sengupta, M.; Habte, A.

    2017-12-01

    With the increasing interest in using solar energy as a major contributor to renewable energy utilization, and with the focus on using smart grids to optimize the use of electrical energy based on demand and resources from different locations, arises the need to know the Moon position in the sky with respect to the Sun. When a solar eclipse occurs, the Moon disk might totally or partially shade the Sun disk, which can affect the irradiance level from the sun disk, consequently, a resource on the grid is affected. The Moon position can then provide the smart grid users with information about potential total or partial solar eclipse at different locations in the grid, so that other resources on the grid can be directed where this might be needed when such phenomena occurs. At least five solar eclipses occur yearly at different locations on earth, they can last three hours or more depending on the location, which can have devastating effects on the smart grid users. On August 21, 2017 a partial solar eclipse will occur at the National Renewable Energy Laboratory in Golden, Colorado, USA. The solar irradiance will be measured during the eclipse and compared to the data generated by a model for validation.

  16. Your guide to the 2017 total solar eclipse

    CERN Document Server

    Bakich, Michael E

    2016-01-01

    In this book Astronomy Magazine editor Michael Bakich presents all the information you’ll need to be ready for the total solar eclipse that will cross the United States on August 21, 2017. In this one resource you’ll find out where the eclipse will occur, how to observe it safely, what you’ll experience during the eclipse, the best equipment to choose, how to photograph the event, detailed weather forecasts for locations where the Moon’s shadow will fall, and much more. Written in easy-to-understand language (and with a glossary for those few terms you may not be familiar with), this is the must-have reference for this unique occurrence. It’s not a stretch to say that this eclipse will prove to be the most viewed sky event in history. That’s why even now, more than a year before the eclipse, astronomy clubs, government agencies, cities — even whole states — are preparing for the unprecedented onslaught of visitors whose only desire is to experience darkness at midday. Bakich informs observers ...

  17. A DEEPLY ECLIPSING DETACHED DOUBLE HELIUM WHITE DWARF BINARY

    International Nuclear Information System (INIS)

    Parsons, S. G.; Marsh, T. R.; Gaensicke, B. T.; Drake, A. J.; Koester, D.

    2011-01-01

    Using Liverpool Telescope+RISE photometry we identify the 2.78 hr period binary star CSS 41177 as a detached eclipsing double white dwarf binary with a 21,100 K primary star and a 10,500 K secondary star. This makes CSS 41177 only the second known eclipsing double white dwarf binary after NLTT 11748. The 2 minute long primary eclipse is 40% deep and the secondary eclipse 10% deep. From Gemini+GMOS spectroscopy, we measure the radial velocities of both components of the binary from the Hα absorption line cores. These measurements, combined with the light curve information, yield white dwarf masses of M 1 = 0.283 ± 0.064 M sun and M 2 = 0.274 ± 0.034 M sun , making them both helium core white dwarfs. As an eclipsing, double-lined spectroscopic binary, CSS 41177 is ideally suited to measuring precise, model-independent masses and radii. The two white dwarfs will merge in roughly 1.1 Gyr to form a single sdB star.

  18. Impact of the 2017 Solar Eclipse on the Smart Grid

    Energy Technology Data Exchange (ETDEWEB)

    Habte, Aron M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Reda, Ibrahim M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Andreas, Afshin M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sengupta, Manajit [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-12-12

    With the increasing interest in using solar energy as a major contributor to the use of renewable generation, and with the focus on using smart grids to optimize the use of electrical energy based on demand and resources from different locations, the need arises to know the moons position in the sky with respect to the sun. When a solar eclipse occurs, the moon disk might totally or partially shade the sun disk, which can affect the irradiance level from the sun disk, consequently affecting a resource on the electric grid. The moons position can then provide smart grid users with information about how potential total or partial solar eclipses might affect different locations on the grid so that other resources on the grid can be directed to where they might be needed when such phenomena occurs. At least five solar eclipses occur yearly at different locations on Earth, they can last 3 hours or more depending on the location, and they can affect smart grid users. On August 21, 2017, a partial and full solar eclipse occurred in many locations in the United States, including at the National Renewable Energy Laboratory in Golden, Colorado. Solar irradiance measurements during the eclipse were compared to the data generated by a model for validation at eight locations.

  19. Corot 310266512: A Light Curve With Primary, Secondary And Tertiary Eclipses

    Directory of Open Access Journals (Sweden)

    Fernández Fernández Javier

    2015-01-01

    Full Text Available We present the photometric study of an interesting target in the CoRoT exoplanet database: CoRoT 310266512. Its light curve shows primary, secondary and tertiary eclipses that suggests the presence of at least three celestial bodies. The primary and secondary eclipses have the same orbital period, 7.42 days, and the tertiary eclipse has an orbital period of 3.27 days. Two of the tertiary eclipses fall within a primary eclipse and a secondary eclipse. The properties of the light curve indicate the presence of two physically separated systems. The primary and secondary eclipses corresponds to a binary system (System I. The tertiary eclipses correspond to a star-planet system or a star-dwarf system (System II. Some parameters of these two systems are obtained from JKTEBOP [1] program.

  20. Accuracy of lunar eclipse observations made by Jesuit astronomers in China.

    Science.gov (United States)

    Fatoohi, L. J.; Stephenson, F. R.

    1996-02-01

    The Jesuit astronomers observed numerous lunar eclipses at Beijing and summaries of their observations - made between 1644 and 1785 - are preserved. The various lunar eclipse measurements that the Jesuits made are compared with the results of present-day computation.

  1. Absolute dimensions of solar-type eclipsing binaries III. EW orionis

    DEFF Research Database (Denmark)

    Clausen, Jens Viggo; Bruntt, H.; Olsen, E. H.

    2010-01-01

    stars: evolution / stars: fundamental parameters / stars: abundances / binaries: eclipsing / techniques: photometric / techniques: spectroscopic Udgivelsesdato: 23 Feb.......stars: evolution / stars: fundamental parameters / stars: abundances / binaries: eclipsing / techniques: photometric / techniques: spectroscopic Udgivelsesdato: 23 Feb....

  2. EVOLUTION OF CATACLYSMIC VARIABLES AND RELATED BINARIES CONTAINING A WHITE DWARF

    Energy Technology Data Exchange (ETDEWEB)

    Kalomeni, B.; Rappaport, S.; Molnar, M. [Department of Physics, and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Nelson, L. [Department of Physics, Bishop’s University, 2600 College St., Sherbrooke, Quebec, QC J1M 1Z7 (Canada); Quintin, J. [Department of Physics, McGill University, Montréal, QC H3A 2T8 (Canada); Yakut, K., E-mail: kalomeni@mit.edu, E-mail: sar@mit.edu, E-mail: momchil.molnar@gmail.com, E-mail: belinda.kalomeni@ege.edu.tr, E-mail: kadri.yakut@ege.edu.tr, E-mail: lnelson@ubishops.ca, E-mail: jquintin@physics.mcgill.ca [Department of Astronomy and Space Sciences, Ege University, 35100, İzmir (Turkey)

    2016-12-10

    We present a binary evolution study of cataclysmic variables (CVs) and related systems with white dwarf (WD) accretors, including for example, AM CVn systems, classical novae, supersoft X-ray sources (SXSs), and systems with giant donor stars. Our approach intentionally avoids the complications associated with population synthesis algorithms, thereby allowing us to present the first truly comprehensive exploration of all of the subsequent binary evolution pathways that zero-age CVs might follow (assuming fully non-conservative, Roche-lobe overflow onto an accreting WD) using the sophisticated binary stellar evolution code MESA. The grid consists of 56,000 initial models, including 14 WD accretor masses, 43 donor-star masses (0.1–4.7 M {sub ⊙}), and 100 orbital periods. We explore evolution tracks in the orbital period and donor-mass ( P {sub orb}– M {sub don}) plane in terms of evolution dwell times, masses of the WD accretor, accretion rate, and chemical composition of the center and surface of the donor star. We report on the differences among the standard CV tracks, those with giant donor stars, and ultrashort period systems. We show where in parameter space one can expect to find SXSs, present a diagnostic to distinguish among different evolutionary paths to forming AM CVn binaries, quantify how the minimum orbital period in CVs depends on the chemical composition of the donor star, and update the P {sub orb}( M {sub wd}) relation for binaries containing WDs whose progenitors lost their envelopes via stable Roche-lobe overflow. Finally, we indicate where in the P {sub orb}– M {sub don} the accretion disks will tend to be stable against the thermal-viscous instability, and where gravitational radiation signatures may be found with LISA.

  3. Exploratory Spectroscopy of Magnetic Cataclysmic Variables Candidates and Other Variable Objects

    Science.gov (United States)

    Oliveira, A. S.; Rodrigues, C. V.; Cieslinski, D.; Jablonski, F. J.; Silva, K. M. G.; Almeida, L. A.; Rodríguez-Ardila, A.; Palhares, M. S.

    2017-04-01

    The increasing number of synoptic surveys made by small robotic telescopes, such as the photometric Catalina Real-Time Transient Survey (CRTS), provides a unique opportunity to discover variable sources and improves the statistical samples of such classes of objects. Our goal is the discovery of magnetic Cataclysmic Variables (mCVs). These are rare objects that probe interesting accretion scenarios controlled by the white-dwarf magnetic field. In particular, improved statistics of mCVs would help to address open questions on their formation and evolution. We performed an optical spectroscopy survey to search for signatures of magnetic accretion in 45 variable objects selected mostly from the CRTS. In this sample, we found 32 CVs, 22 being mCV candidates, 13 of which were previously unreported as such. If the proposed classifications are confirmed, it would represent an increase of 4% in the number of known polars and 12% in the number of known IPs. A fraction of our initial sample was classified as extragalactic sources or other types of variable stars by the inspection of the identification spectra. Despite the inherent complexity in identifying a source as an mCV, variability-based selection, followed by spectroscopic snapshot observations, has proved to be an efficient strategy for their discoveries, being a relatively inexpensive approach in terms of telescope time. Based on observations obtained at the Observatório do Pico dos Dias/LNA, and at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU).

  4. DISCOVERY OF A NOVA-LIKE CATACLYSMIC VARIABLE IN THE KEPLER MISSION FIELD

    International Nuclear Information System (INIS)

    Williams, Kurtis A.; De Martino, Domitilla; Silvotti, Roberto; Bruni, Ivan; Dufour, Patrick; Riecken, Thomas S.; Kronberg, Martin; Mukadam, Anjum; Handler, G.

    2010-01-01

    We announce the identification of a new cataclysmic variable (CV) star in the field of the Kepler Mission, KIC J192410.81+445934.9. This system was identified during a search for compact pulsators in the Kepler field. High-speed photometry reveals coherent large-amplitude variability with a period of 2.94 hr. Rapid, large-amplitude quasi-periodic variations are also detected on time scales of ∼1200 s and ∼650 s. Time-resolved spectroscopy covering one half photometric period shows shallow, broad Balmer and He I absorption lines with bright emission cores as well as strong He II and Bowen blend emission. Radial velocity variations are also observed in the Balmer and He I emission lines that are consistent with the photometric period. We therefore conclude that KIC J192410.81+445934.9 is a nova-like (NL) variable of the UX UMa class in or near the period gap, and it may belong to the rapidly growing subclass of SW Sex systems. Based on Two Micron All Sky Survey photometry and companion star models, we place a lower limit on the distance to the system of ∼500 pc. Due to limitations of our discovery data, additional observations including spectroscopy and polarimetry are needed to confirm the nature of this object. Such data will enable further understanding of the behavior of NL variables in the critical period range of 3-4 hr, where standard CV evolutionary theory finds major problems. The presence of this system in the Kepler Mission field of view also presents a unique opportunity to obtain a continuous photometric data stream of unparalleled length and precision on a CV system.

  5. EVOLUTION OF CATACLYSMIC VARIABLES AND RELATED BINARIES CONTAINING A WHITE DWARF

    International Nuclear Information System (INIS)

    Kalomeni, B.; Rappaport, S.; Molnar, M.; Nelson, L.; Quintin, J.; Yakut, K.

    2016-01-01

    We present a binary evolution study of cataclysmic variables (CVs) and related systems with white dwarf (WD) accretors, including for example, AM CVn systems, classical novae, supersoft X-ray sources (SXSs), and systems with giant donor stars. Our approach intentionally avoids the complications associated with population synthesis algorithms, thereby allowing us to present the first truly comprehensive exploration of all of the subsequent binary evolution pathways that zero-age CVs might follow (assuming fully non-conservative, Roche-lobe overflow onto an accreting WD) using the sophisticated binary stellar evolution code MESA. The grid consists of 56,000 initial models, including 14 WD accretor masses, 43 donor-star masses (0.1–4.7 M ⊙ ), and 100 orbital periods. We explore evolution tracks in the orbital period and donor-mass ( P orb – M don ) plane in terms of evolution dwell times, masses of the WD accretor, accretion rate, and chemical composition of the center and surface of the donor star. We report on the differences among the standard CV tracks, those with giant donor stars, and ultrashort period systems. We show where in parameter space one can expect to find SXSs, present a diagnostic to distinguish among different evolutionary paths to forming AM CVn binaries, quantify how the minimum orbital period in CVs depends on the chemical composition of the donor star, and update the P orb ( M wd ) relation for binaries containing WDs whose progenitors lost their envelopes via stable Roche-lobe overflow. Finally, we indicate where in the P orb – M don the accretion disks will tend to be stable against the thermal-viscous instability, and where gravitational radiation signatures may be found with LISA.

  6. New cataclysmic variables and other exotic binaries in the globular cluster 47 Tucanae*

    Science.gov (United States)

    Rivera Sandoval, L. E.; van den Berg, M.; Heinke, C. O.; Cohn, H. N.; Lugger, P. M.; Anderson, J.; Cool, A. M.; Edmonds, P. D.; Wijnands, R.; Ivanova, N.; Grindlay, J. E.

    2018-04-01

    We present 22 new (+3 confirmed) cataclysmic variables (CVs) in the non-core-collapsed globular cluster 47 Tucanae (47 Tuc). The total number of CVs in the cluster is now 43, the largest sample in any globular cluster so far. For the identifications we used near-ultraviolet (NUV) and optical images from the Hubble Space Telescope, in combination with X-ray results from the Chandra X-ray Observatory. This allowed us to build the deepest NUV CV luminosity function of the cluster to date. We found that the CVs in 47 Tuc are more concentrated towards the cluster centre than the main-sequence turn-off stars. We compared our results to the CV populations of the core-collapsed globular clusters NGC 6397 and NGC 6752. We found that 47 Tuc has fewer bright CVs per unit mass than those two other clusters. That suggests that dynamical interactions in core-collapsed clusters play a major role creating new CVs. In 47 Tuc, the CV population is probably dominated by primordial and old dynamically formed systems. We estimated that the CVs in 47 Tuc have total masses of ˜1.4 M⊙. We also found that the X-ray luminosity function of the CVs in the three clusters is bimodal. Additionally, we discuss a possible double degenerate system and an intriguing/unclassified object. Finally, we present four systems that could be millisecond pulsar companions given their X-ray and NUV/optical colours. For one of them we present very strong evidence for being an ablated companion. The other three could be CO or He white dwarfs.

  7. Late Pleistocene-Holocene cataclysmic eruptions at Nevado de Toluca and Jocotitlan volcanoes, central Mexico

    Science.gov (United States)

    Macias, J.L.; Garcia, P.A.; Arce, J.L.; Siebe, C.; Espindola, J.M.; Komorowski, J.C.; Scott, K.

    1997-01-01

    This field guide describes a five day trip to examine deposits of Late Pleistocene-Holocene cataclysmic eruptions at Nevado de Toluca and Jocotitlan volcanoes in central Mexico. We will discuss the stratigraphy, petrology, and sedimentological characteristics of these deposits which provide insights into the eruptive history, type of volcanic activity, and transport and emplacement mechanisms of pyroclastic materials. These parameters will allow us to discuss the kinds of hazards and the risk that they pose to populations around these volcanoes. The area to be visited is tectonically complex thus we will also discuss the location of the volcanoes with respect to the tectonic environment. The first four days of the field trip will be dedicated to Nevado de Toluca Volcano (19 degrees 09'N; 99 degrees 45'W) located at 23 km. southwest of the City of Toluca, and is the fourth highest peak in the country, reaching an elevation of 4,680 meters above sea level (m.a.s.l.). Nevado de Toluca is an andesitic-dacitic stratovolcano, composed of a central vent excavated upon the remains of older craters destroyed by former events. Bloomfield and Valastro, (1974, 1977) concluded that the last cycle of activity occurred nearly equal 11,600 yr. ago. For this reason Nevado de Toluca has been considered an extinct volcano. Our studies, however, indicate that Nevado de Toluca has had at least two episodes of cone destruction by sector collapse as well as several explosive episodes including plinian eruptions and dome-destruction events. These eruptions occurred during the Pleistocene but a very young eruption characterized by surge and ash flows occurred ca. 3,300 yr. BP. This new knowledge of the volcano's eruptive history makes the evaluation of its present state of activity and the geological hazards necessary. This is important because the area is densely populated and large cities such as Toluca and Mexico are located in its proximity.

  8. NON-THERMAL EMISSION FROM CATACLYSMIC VARIABLES: IMPLICATIONS ON ASTROPARTICLE PHYSICS

    Directory of Open Access Journals (Sweden)

    Vojtech Šimon

    2013-12-01

    Full Text Available We review the lines of evidence that some cataclysmic variables (CVs are the sources of non-thermal radiation. It was really observed in some dwarf novae in outburst, a novalike CV in the high state, an intermediate polar, polars, and classical novae (CNe during outburst. The detection of this radiation suggests the presence of highly energetic particles in these CVs. The conditions for the observability of this emission depend on the state of activity, and the system parameters. We review the processes and conditions that lead to the production of this radiation in various spectral bands, from gamma-rays including TeV emission to radio. Synchrotron and cyclotron emissions suggest the presence of strong magnetic fields in CV. In some CVs, e.g. during some dwarf nova outbursts, the magnetic field generated in the accretion disk leads to the synchrotron jets radiating in radio. The propeller effect or a shock in the case of the magnetized white dwarf (WD can lead to a strong acceleration of the particles that produce gamma-ray emission via pi0 decay; even Cherenkov radiation is possible. In addition, a gamma-ray production via pi0 decay was observed in the ejecta of an outburst of a symbiotic CN. Nuclear reactions during thermonuclear runaway in the outer layer of the WD undergoing CN outburst lead to the production of radioactive isotopes; their decay is the source of gamma-ray emission. The production of accelerated particles in CVs often has episodic character with a very small duty cycle; this makes their detection and establishing the relation of the behavior in various bands difficult.

  9. La mort de Tupac Amaru, l’ultime cataclysme ?

    Directory of Open Access Journals (Sweden)

    Nejma Jalal-Kermele

    2011-06-01

    Full Text Available L’exécution du jeune Inca Tupac Amaru en 1572 fut pour les Indiens du Pérou un véritable cataclysme. Il s’insérait dans un contexte particulier : celui de la vice-royauté du Pérou qui connaissait, depuis de longues années, une série de guerres et de complots. Au cœur de cet espace troublé, se trouvait un royaume néo-inca que la Couronne espérait vaincre par une politique du compromis. Toledo, envoyé pour faire rentrer le Pérou dans un ordre nouveau, avait marqué, dès le début de son gouvernement, son opposition au régime de Vilcabamba dont la seule présence fragilisait la légitimité du pouvoir du roi de Castille aux Indes. C’était donc la question des Justes Titres qui préoccupait Toledo, décidé à lutter activement contre la pensée de Las Casas. La mort d’un messager, envoyé pour négocier avec l’Inca, servit de prétexte à une attaque de Vilcabamba qui permit l’arrestation du jeune Tupac Amaru que le vice-roi décida de condamner à mort, en dépit de sa conversion au catholicisme. L’exécution marqua pour les Indiens la fin d’un monde, la fin d’un espoir et apparut comme l’ultime catastrophe, une répétition de la mort de l’Inca et des Dieux. De nombreux récits rapportent la détresse infinie des Indiens et la désapprobation quasi générale des témoins. Nous voudrions proposer ici une rapide analyse des différentes lectures du cataclysme et tenter de montrer que, pour Toledo, il s’inséra dans une politique claire et assumée. Outre la question idéologique, le vice-roi s’appuya sur des arguments sécuritaires et fit finalement de Tupac Amaru non un prince mais un simple délinquant de droit commun. Cette réécriture de l’Histoire permit d’instaurer une nouvelle définition de la politique espagnole au Pérou mais le cataclysme marqua les esprits et Tupac Amaru, loin d’être oublié, devint un symbole qui traversa les siècles jusqu’à aujourd’hui.La ejecución del joven

  10. Dynamics of Line-Driven Winds from Disks in Cataclysmic Variables. I. Solution Topology and Wind Geometry

    OpenAIRE

    Feldmeier, Achim; Shlosman, Isaac

    1999-01-01

    We analyze the dynamics of 2-D stationary, line-driven winds from accretion disks in cataclysmic variable stars. The driving force is that of line radiation pressure, in the formalism developed by Castor, Abbott & Klein for O stars. Our main assumption is that wind helical streamlines lie on straight cones. We find that the Euler equation for the disk wind has two eigenvalues, the mass loss rate and the flow tilt angle with the disk. Both are calculated self-consistently. The wind is characte...

  11. An outstanding researcher of the solar eclipses- Nicolas Donitch

    Science.gov (United States)

    Gaina, Alex

    1998-09-01

    Nicolae Donitch (1874, Chisinau-1958, Nice, France?) worked in Russia (until 1917), Romania (1918-1944) and France (1945-1958?). His observatory was placed in Dubossary-Vechi (where he worked with some intervals between 1908 and 1944. He was designated by the Russian Academy of Sciences for the observations of the total Solar eclipse in Elche (Spain) on 28 May 1900. Other solar eclipses observed by N. Donitch: 17-18 may 1901, Padong (Sumatra); 1904 - the annular eclipse of the Sun in Pnom-Penh (Cambodge); august 1905, Alcala de Chisvert (Spain) and Assuan (Upper Egypt); 16/17 April 1912, Portugal; 21 august 1914, Crimea; 1925, USA; 1929 Indochina and Philipines; 1930, Egypt; 1932 Egypt and cape Porpoise,Maine USA; 1936, Inneboli, Turkey. Other solar investigations by N. Donitch; Solar cromosphere (Odessa, 1902; Mount- Blanch, 1902-1903); The passage of the planet Mercury through the solar disk (November, 1907, Egypt; October 1914, Algeria).

  12. Daylight levels during the solar eclipse of 11 August 1999

    Science.gov (United States)

    Darula, S.; Kambezidis, H. D.; Kittler, R.

    Solar eclipses are unique phenomena not only for astronomical and space observations but also for terrestrial; they create unique conditions of sunbeam blockage which cause not only the reduction of direct sunlight but also the dimming of skylight from the whole sky vault. Very favorable conditions were met during the recent August 1999 solar eclipse in Athens, Greece and Bratislava, Slovakia. General class daylight stations operate within the International Daylight Measurements Program in the two cities. One-minute data of global/diffuse illuminance and zenith luminance from those stations have been used to provide information about their levels and the daylight reduction rate during the eclipse. An approximate formula for the estimation of sunlight and skylight illuminance levels as well as zenith luminance using relative luminance sky patterns is also presented in this work. To achieve this, recently developed sky standards together with their parameterizations are utilized.

  13. A Statistical Approach to Exoplanetary Molecular Spectroscopy Using Spitzer Eclipses

    Science.gov (United States)

    Deming, Drake; Garhart, Emily; Burrows, Adam; Fortney, Jonathan; Knutson, Heather; Todorov, Kamen

    2018-01-01

    Secondary eclipses of exoplanets observed using the Spitzer Space Telescope measure the total emission emergent from exoplanetary atmospheres integrated over broad photometric bands. Spitzer photometry is excellent for measuring day side temperatures, but is less well suited to the detection of molecular absorption or emission features. Even for very hot exoplanets, it can be difficult to attain the accuracy on eclipse depth that is needed to unambiguously interpret the Spitzer results in terms of molecular absorption or emission. However, a statistical approach, wherein we seek deviations from a simple blackbody planet as a function of the planet's equilibrium temperature, shows promise for defining the nature and strength of molecular absorption in ensembles of planets. In this paper, we explore such an approach using secondary eclipses observed for tens of hot exoplanets during Spitzer's Cycles 10, 12, and 13. We focus on the possibility that the hottest planets exhibit molecular features in emission, due to temperature inversions.

  14. Through the Eyes of NASA: NASA's 2017 Eclipse Education Progam

    Science.gov (United States)

    Mayo, L.

    2017-12-01

    Over the last three years, NASA has been developing plans to bring the August 21st total solar eclipse to the nation, "as only NASA can", leveraging its considerable space assets, technology, scientists, and its unmatched commitment to science education. The eclipse, long anticipated by many groups, represents the largest Big Event education program that NASA has ever undertaken. It is the latest in a long string of successful Big Event international celebrations going back two decades including both transits of Venus, three solar eclipses, solar maximum, and mission events such as the MSL/Curiosity landing on Mars, and the launch of the Lunar Reconnaissance Orbiter (LRO) to name a few. This talk will detail NASA's program development methods, strategic partnerships, and strategies for using this celestial event to engage the nation and improve overall science literacy.

  15. Behavior of Photovoltaic System during Solar Eclipse in Prague

    Directory of Open Access Journals (Sweden)

    Martin Libra

    2016-01-01

    Full Text Available PV power plants have been recently installed in very large scale. So the effects of the solar eclipse are of big importance especially for grid connected photovoltaic (PV systems. There was a partial solar eclipse in Prague on 20th March 2015. We have evaluated the data from our facility in order to monitor the impact of this natural phenomenon on the behavior of PV system, and these results are presented in the paper. The behavior of PV system corresponds with the theoretical assumption. The power decrease of the PV array corresponds with the relative size of the solar eclipse. I-V characteristics of the PV panel correspond to the theoretical model presented in our previous work.

  16. The 1984 eclipse of the symbiotic binary SY Muscae

    Science.gov (United States)

    Kenyon, S. J.; Michalitisianos, A. G.; Lutz, J. H.; Kafatos, M.

    1985-01-01

    Data from IUE spectra obtained with the 10 x 20-arcsec aperture on May 13, 1984, and optical spectrophotometry obtained with an SIT vidicon on the 1.5-m telescope at CTIO on April 29-May 1, 1984, are reported for the symbiotic binary SY Mus. The data are found to be consistent with a model of a red-giant secondary of 60 solar radii which completely eclipses the hot primary every 627 d but only partially eclipses the 75-solar-radius He(+) region surrounding the primary. The distance to SY Mus is estimated as 1.3 kpc. It is suggested that the large Balmer decrement in eclipse, with (H-alpha)/(H-beta) = 8.3 and (H-beta)/(H-gamma) = 1.5, is associated with an electron density of about 10 to the 10th/cu cm.

  17. Discovery of an old nova shell surrounding the cataclysmic variable V1315 Aql

    Science.gov (United States)

    Sahman, D. I.; Dhillon, V. S.; Littlefair, S. P.; Hallinan, G.

    2018-04-01

    Following our tentative discovery of a faint shell around V1315 Aql reported in Sahman et al. (2015), we undertook deep Hα imaging and intermediate-resolution spectroscopy of the shell. We find that the shell has its geometric centre located on V1315 Aql. The mass, spectral features and density of the shell are consistent with other nova shells, rather than planetary nebulae or supernova remnants. The radial velocity of the shell is consistent with the systemic velocity of V1315 Aql. We believe this evidence strongly suggests that the shell originates from an earlier nova event. This is the first nova shell discovered around a novalike, and supports the theory of nova-induced cycles in mass transfer rates (hibernation theory) first proposed by Shara et al. (1986).

  18. There's An App For That: Planning Ahead for the Solar Eclipse in August 2017

    Science.gov (United States)

    Chizek Frouard, Malynda R.; Lesniak, Michael V.; Bell, Steve

    2017-01-01

    With the total solar eclipse of 2017 August 21 over the continental United States approaching, the U.S. Naval Observatory (USNO) on-line Solar Eclipse Computer can now be accessed via an Android application, available on Google Play.Over the course of the eclipse, as viewed from a specific site, several events may be visible: the beginning and ending of the eclipse (first and fourth contacts), the beginning and ending of totality (second and third contacts), the moment of maximum eclipse, sunrise, or sunset. For each of these events, the USNO Solar Eclipse 2017 Android application reports the time, Sun's altitude and azimuth, and the event's position and vertex angles. The app also lists the duration of the total phase, the duration of the eclipse, the magnitude of the eclipse, and the percent of the Sun obscured for a particular eclipse site.All of the data available in the app comes from the flexible USNO Solar Eclipse Computer Application Programming Interface (API), which produces JavaScript Object Notation (JSON) that can be incorporated into third-party Web sites or custom applications. Additional information is available in the on-line documentation (http://aa.usno.navy.mil/data/docs/api.php).For those who prefer using a traditional data input form, the local circumstances can still be requested at http://aa.usno.navy.mil/data/docs/SolarEclipses.php.In addition the 2017 August 21 Solar Eclipse Resource page (http://aa.usno.navy.mil/data/docs/Eclipse2017.php) consolidates all of the USNO resources for this event, including a Google Map view of the eclipse track designed by Her Majesty's Nautical Almanac Office (HMNAO).Looking further ahead, a 2024 April 8 Solar Eclipse Resource page (http://aa.usno.navy.mil/data/docs/Eclipse2024.php) is also available.

  19. Chemical Abundance Measurements of Ultra-Faint Dwarf Galaxies Discovered by the Dark Energy Survey

    Science.gov (United States)

    Nagasawa, Daniel; Marshall, Jennifer L.; Simon, Joshua D.; Hansen, Terese; Li, Ting; Bernstein, Rebecca; Balbinot, Eduardo; Drlica-Wagner, Alex; Pace, Andrew; Strigari, Louis; Pellegrino, Craig; DePoy, Darren L.; Suntzeff, Nicholas; Bechtol, Keith; Dark Energy Suvey

    2018-01-01

    We present chemical abundance analysis results derived from high-resolution spectroscopy of ultra-faint dwarfs discovered by the Dark Energy Survey. Ultra-faint dwarf galaxies preserve a fossil record of the chemical abundance patterns imprinted by the first stars in the Universe. High-resolution spectroscopic observations of member stars in several recently discovered Milky Way satellites reveal a range of abundance patterns among ultra-faint dwarfs suggesting that star formation processes in the early Universe were quite diverse. The chemical content provides a glimpse not only of the varied nucleosynthetic processes and chemical history of the dwarfs themselves, but also the environment in which they were formed. We present the chemical abundance analysis of these objects and discuss possible explanations for the observed abundance patterns.

  20. Faint galaxies - Bounds on the epoch of galaxy formation and the cosmological deceleration parameter

    International Nuclear Information System (INIS)

    Yoshii, Yuzuru; Peterson, B.A.

    1991-01-01

    Models of galaxy luminosity evolution are used to interpret the observed color distributions, redshift distributions, and number counts of faint galaxies. It is found from the color distributions that the redshift corresponding to the epoch of galaxy formation must be greater than three, and that the number counts of faint galaxies, which are sensitive to the slope of the faint end of the luminosity function, are incompatible with q0 = 1/2 and indicate a smaller value. The models assume that the sequence of galaxy types is due to different star-formation rates, that the period of galaxy formation can be characterized by a single epoch, and that after formation, galaxies change in luminosity by star formation and stellar evolution, maintaining a constant comoving space density. 40 refs

  1. Eclipse studies of the dwarf nova Oy Carinae in quiescence

    International Nuclear Information System (INIS)

    Wood, J.H.; Horne, K.; Berriman, G.; Wade, R.A.

    1989-01-01

    High-speed photometry of OY Car have been obtained which cover 20 eclipses in white light and seven eclipses in UBR. The results show the red dwarf to have a mass of 0.070 + or - 0.002 solar masses and a radius of 0.127 + or - 0.002 solar radii, and the white dwarf to have a temperature of several thousand degrees below 15,000 K. The bright spot is found to have a compact 15,000-K core and a tail that extends along the rim but does not penetrate far into the disk. 31 refs

  2. Observations of Comets and Eclipses in the Andes

    Science.gov (United States)

    Ziółkowski, Mariusz

    There is no doubt that the Incas possessed a system for observing and interpreting unusual astronomical phenomena, such as eclipses or comets. References to it, however, are scarce, often of anecdotal nature and are not collected into any coherent "Inca observation catalog". The best documented of such events is the "Ataw Wallpa's comet", seen in Cajamarca in July of 1533 and the solar eclipse, that in 1543, prevented conquistador Lucas Martínez from discovering the rich silver mines in northern Chile. Archived descriptions of the Andean population's reaction to these phenomena indicate that they were treated as extremely important omens, that should not, under any circumstances, be ignored.

  3. St. Benedict Sees the Light: Asam's Solar Eclipses as Metaphor

    Science.gov (United States)

    Olson, Roberta J. M.; Pasachoff, Jay M.

    During the Baroque period, artists worked in a style - encouraged by the Roman Catholic Church and the Council of Trent - that revealed the divine in natural forms and made religious experiences more accessible. Cosmas Damian Asam, painter and architect, and his brother Egid (Aegid) Quirin Asam, sculptor and stuccatore, were the principal exponents of eighteenth-century, southern-German religious decoration and architecture in the grand manner, the Gesamtkunstwerk. Cosmas Damian's visionary and ecstatic art utilized light, both physical and illusionistic, together with images of meteorological and astronomical phenomena, such as solar and lunar eclipses. This paper focuses on his representations of eclipses and demonstrates how Asam was galvanized by their visual, as well as metaphorical power and that he studied a number of them. He subsequently applied his observations in a series of paintings for the Benedictine order that become increasingly astronomically accurate and spiritually profound. From the evidence presented, especially in three depictions of St. Benedict's vision, the artist harnessed his observations to visualize the literary description of the miraculous event in the Dialogues of St. Gregory the Great, traditionally a difficult scene to illustrate, even for Albrecht Dürer. Asam painted the trio at Einsiedeln, Switzerland (1724-27); Kladruby, the Czech Republic (1725-27), where he captured the solar corona and the "diamond-ring effect"; and Weltenburg, Germany (1735), where he also depicted the diamond-ring effect at a total solar eclipse. We conclude that his visualizations were informed by his personal observations of the solar eclipses on 12 May 1706, 22 May 1724, and 13 May 1733. Asam may have also known the eclipse maps of Edmond Halley and William Whiston that were issued in advance. Astronomers did not start studying eclipses scientifically until the nineteenth century, making Asam's depictions all the more fascinating. So powerful was the

  4. Using Stellarium to cyber-observe the Great American Eclipse

    Science.gov (United States)

    Prim, Ellie R.; Sitar, David J.

    2017-09-01

    The Great American Eclipse is over. Somewhat sad, is it not? Individuals who were unable to experience the event on August 21, 2017, can now cyber-observe the eclipse with Stellarium (http://www.stellarium.org). In the authors' opinion, it is fun and has many great applications in the classroom. In addition it is open source and available for Android, iOS, and Linux users. We here at Appalachian use it in our introductory astronomy labs for specific activities such as investigating coordinate systems, discovering differences between solar and sidereal days, as well as determining why your "astrological sign" is most often not your "astronomical sign."

  5. The total solar eclipse of 2010 July 11

    Science.gov (United States)

    McGee, H.; James, N.; Mason, J.

    2010-08-01

    The solar eclipse of 2010 July 11 always promised to be a logistical nightmare to observe. The Moon's shadow first touched the Earth in the southern Pacific, encountering land at Mangaia in the Cook Islands only after 1450km of open ocean. The narrow track of totality then swung northeast, passing tantalisingly close to the islands of Tahiti and Moorea, which experienced a 98% partial eclipse. Beyond Tahiti the track crossed the Tuamotu archipelago of French Polynesia - thousands of tiny coral atolls, of which very few are inhabited, and even fewer have airstrips that make them accessible to visitors.

  6. THE SUBARU HIGH-z QUASAR SURVEY: DISCOVERY OF FAINT z ∼ 6 QUASARS

    International Nuclear Information System (INIS)

    Kashikawa, Nobunari; Furusawa, Hisanori; Niino, Yuu; Ishizaki, Yoshifumi; Onoue, Masafusa; Toshikawa, Jun; Ishikawa, Shogo; Willott, Chris J.; Im, Myungshin; Shimasaku, Kazuhiro; Ouchi, Masami; Hibon, Pascale

    2015-01-01

    We present the discovery of one or two extremely faint z ∼ 6 quasars in 6.5 deg 2 utilizing a unique capability of the wide-field imaging of the Subaru/Suprime-Cam. The quasar selection was made in (i'-z B ) and (z B -z R ) colors, where z B and z R are bandpasses with central wavelengths of 8842 Å and 9841 Å, respectively. The color selection can effectively isolate quasars at z ∼ 6 from M/L/T dwarfs without the J-band photometry down to z R < 24.0, which is 3.5 mag deeper than the Sloan Digital Sky Survey (SDSS). We have selected 17 promising quasar candidates. The follow-up spectroscopy for seven targets identified one apparent quasar at z = 6.156 with M 1450 = –23.10. We also identified one possible quasar at z = 6.041 with a faint continuum of M 1450 = –22.58 and a narrow Lyα emission with HWHM =427 km s –1 , which cannot be distinguished from Lyman α emitters. We derive the quasar luminosity function at z ∼ 6 by combining our faint quasar sample with the bright quasar samples by SDSS and CFHQS. Including our data points invokes a higher number density in the faintest bin of the quasar luminosity function than the previous estimate employed. This suggests a steeper faint-end slope than lower z, though it is yet uncertain based on a small number of spectroscopically identified faint quasars, and several quasar candidates still remain to be diagnosed. The steepening of the quasar luminosity function at the faint end does increase the expected emission rate of the ionizing photon; however, it only changes by a factor of approximately two to six. This was found to still be insufficient for the required photon budget of reionization at z ∼ 6

  7. Detailed abundances in stars belonging to ultra-faint dwarf spheroidal galaxies

    OpenAIRE

    François, P.; Monaco, L.; Villanova, S.; Catelan, M.; Bonifacio, P.; Bellazzini, M.; Bidin, C. Moni; Marconi, G.; Geisler, D.; Sbordone, L.

    2012-01-01

    We report preliminary results concerning the detailed chemical composition of metal poor stars belonging to close ultra-faint dwarf galaxies (hereafter UfDSphs). The abundances have been determined thanks to spectra obtained with X-Shooter, a high efficiency spectrograph installed on one of the ESO VLT units. The sample of ultra-faint dwarf spheroidal stars have abundance ratios slightly lower to what is measured in field halo star of the same metallicity.We did not find extreme abundances in...

  8. Variation of Surface Air Temperature in Relation to El Nino and Cataclysmic Volcanic Eruptions, 1796-1882

    Science.gov (United States)

    Wilson, Robert M.

    1999-01-01

    During the contemporaneous interval of 1796-1882 a number of significant decreases in temperature are found in the records of Central England and Northern Ireland. These decreases appear to be related to the occurrences of El Nino and/or cataclysmic volcanic eruptions. For example, a composite of residual temperatures of the Central England dataset, centering temperatures on the yearly onsets of 20 El Nino of moderate to stronger strength, shows that, on average, the change in temperature varied by about +/- 0.3 C from normal being warmer during the boreal fall-winter leading up to the El Nino year and cooler during the spring-summer of the El Nino year. Also, the influence of El Nino on Central England temperatures appears to last about 1-2 years. Similarly, a composite of residual temperatures of the Central England dataset, centering temperatures on the month of eruption for 26 cataclysmic volcanic eruptions, shows that, on average, the change in temperature decreased by about 0.1 - 0.2 C, typically, 1-2 years after the eruption, although for specific events, like Tambora, the decrease was considerably greater. Additionally, tropical eruptions appear to produce greater changes in temperature than extratropical eruptions, and eruptions occurring in boreal spring-summer appear to produce greater changes in temperature than those occurring in fall-winter.

  9. Mind the Gap when Data Mining the Ritter-Kolb Cataclysmic Variable Catalogue

    Science.gov (United States)

    Sparks, Warren M.; Sion, Edward M.

    2017-01-01

    The cataclysmic variable (CV) binary consists of a white dwarf primary and a low-mass secondary which overflows its Roche lobe. The Ritter-Kolb catalogue (2003, A&A, 404, 301) is a collection (~1000) of CV binaries and related objects. We have mined this catalogue for CVs with unevolved secondaries whose mass ratio (secondary/primary) is known (~130). A plot of the secondary mass verses the log of the orbital period exhibits the well-known period gap at 2-3 hrs. In addition, this plot shows that the secondary masses just above the period gap are collectively much larger than those just below. The average of the first ten secondary masses above the period is 180% larger than the average below the gap.The disrupted magnetic braking hypothesis (Howell, Nelson, and Rappaport 2001, ApJ, 550, 897 [HNR]) predicts that when the secondary becomes fully convective, the magnetic braking, which has driven the secondary out of thermal equilibrium, stops. In adjusting to thermal equilibrium the secondary shrinks below its Roche lobe and no longer loses mass. The binary system ceases to appear as a CV until gravitational radiation loss brings the secondary back in contact with its Roche lobe. This scenario is at odds with the apparent secondary mass loss across the period gap. Either the secondary continues to lose mass while crossing the period gap or the secondary masses are miscalculated!Magnetic braking causes the secondary to expand or inflate larger than its single star counterpart. Any orbital parameter calculation which assumes a radius-mass relationship based on single main-sequence stars will overestimate the mass of the secondary. We can approximate this mass overestimation from calculations by HNR which take into account the thermal heating from magnetic braking. Using this approximation as a first-order correction to the secondary mass, we replot the deflated secondary mass versus the binary period. The deflated masses immediately above and below the period gap are

  10. VizieR Online Data Catalog: Radial velocities of 35 cataclysmic variables (Thorstensen+, 2016)

    Science.gov (United States)

    Thorstensen, J. R.; Alper, E. H.; Weil, K. E.

    2017-02-01

    We present spectroscopic follow-up observations of 35 newly discovered cataclysmic variables (CVs), 32 of which were found by the Catalina Real Time Transient Surveys (CRTS; Drake et al. 2009, Cat. J/ApJ/696/870; Drake et al. 2014, Cat. J/MNRAS/441/1186; Breedt et al. 2014, Cat. J/MNRAS/443/3174), ASAS-SN (Shappee et al. 2014ApJ...788...48S), and/or MASTER (Lipunov et al. 2010AdAst2010E..30L). All our observations are from Michigan-Dartmouth-MIT (MDM) Observatory on Kitt Peak, Arizona. For nearly all the spectra, we used the "modspec" spectrograph (a description of the modspec can be found at http://mdm.kpno.noao.edu/Manuals/ModSpec/modspec_man.html) with a 600line/mm grating. We mostly used a SITe 20482 CCD detector, which yielded 2Å/pixel from 4210 to 7500Å, with declining throughput toward the ends of the spectral range. When this detector was unavailable, we used a very similar 10242 SITe detector ("Templeton"), which covered 4660 to 6730Å. The modspec was mounted mostly on the 2.4m Hiltner telescope, but for some of the brighter objects, we used the 1.3m McGraw-Hill telescope. For a few of the 1.3m spectra, we used the Mark III grism spectrograph, which covered 4580 to 6850Å at 2.3Å/pixel. On both telescopes and with both spectrographs, we used an Andor Ikon camera to view the reflective slit jaws through a microscope and guided the telescope with a separate off-axis guider. With this arrangement we could place any object that was bright enough for a usable spectrum in the slit and track it accurately even if the portion of the light spilling onto the slit jaws was invisible. Our emission-line radial velocities are almost entirely of Hα, since it almost always gives the best signal-to-noise ratio with our instrument. (3 data files).

  11. The eclipsing AM Herculis star 2A 0311 - 227

    International Nuclear Information System (INIS)

    Allen, D.A.; Wright, A.E.; Ward, M.J.

    1981-01-01

    Infrared photometry and optical spectrophotometry of the AM Herculis star 2A 0311 - 227 are described. In its 81-min orbit there are two eclipses at infrared wavelengths and a third, intermittent eclipse of the optical emission lines. One of these eclipses is caused by an M dwarf which orbits a magnetic white dwarf. Much of the geometry of the system can be specified. An inclination near 80 0 is found, and a mass of the M dwarf which corresponds to a spectral type of M7 or M8. Accretion appears to occur on to two magnetic poles of the white dwarf, but the field strengths differ so that one pole emits preferentially at optical wavelengths and the other mostly in the infrared. The location of the redder-emitting magnetic pole can be specified because of its eclipse by the white dwarf, but there remains some uncertainty in the location of the bluer pole. All interpretations seem to require that the magnetic poles are not symmetrically disposed about the white dwarf, and some evidence suggests that like poles are less than 60 0 apart. (author)

  12. Worldwide photometry of the January 1989 Tau Persei eclipse

    Science.gov (United States)

    Hall, Douglas S.; Curott, David R.; Barksdale, William S.; Diethelm-Sutter, Roger; Ells, Jack

    1991-01-01

    New UBV photoelectric photometry of Tau Persei obtained at 19 different observatories during its recent January 1989 eclipse is presented. Mideclipse occurred at JD 2 447 542.31 + or - 0.01. The resulting light curve, though not complete at all phases, is solved for the elements with the help of two quantities derived from spectroscopy: the eclipse is 84 percent total at mideclipse, and the ratio of the radii is 0.135 + or - 0.01. Radii relative to the semimajor axis are 0.0236 for the G5 giant and 0.0032 for the A2 star. With a reasonable total mass assumed, the absolute radii say the A2 star could be luminosity class V or somewhat evolved and the G5 star is between III and II but could be closer to II. The G5 giant is brighter than the A2 star by 1.72 mag in V and the color excess in B - V is 0.06 mag, both quantities consistent (within uncertainties) with earlier estimates of Ake (1986). The eclipse duration, from first to fourth contact, is 2.09 day. The orbital inclination is 88.74 deg, consistent with what McAlister derived from speckle interferometry. Because of the large (e = 0.73) eccentricity, there is no secondary eclipse at all.

  13. Dayside atmospheric structure of HD209458b from Spitzer eclipses

    Science.gov (United States)

    Reinhard, Matthew; Harrington, Joseph; Challener, Ryan; Cubillos, Patricio; Blecic, Jasmina

    2017-10-01

    HD209458b is a hot Jupiter with a radius of 1.26 ± 0.08 Jupiter radii (Richardson et al, 2006) and a mass of 0.64 ± 0.09 Jupiter masses (Snellen et al, 2010). The planet orbits a G0 type star with an orbital period of 3.52472 ± 2.81699e-05 days, and a relatively low eccentricity of 0.0082 +0.0078/-0.0082 (Wang and Ford 2013). We report the analysis of observations of HD209458b during eclipse, taken in the 3.6 and 4.5 micron channels by the Spitzer Space Telescope's Infrared Array Camera (Program 90186). We produce a photometric light curve of the eclipses in both channels, using our Photometry for Orbits Eclipses and Transits (POET) code, and calculate the brightness temperatures and eclipse depths. We also present best estimates of the atmospheric parameters of HD209458b using our Bayesian Atmospheric Radiative Transfer (BART) code. These are some preliminary results of what will be an analysis of all available Spitzer data for HD209458b. Spitzer is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. This work was supported by NASA Planetary Atmospheres grant NX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G.

  14. Eclipse of Epsilon Aurigae visible spectroscopy and ultraviolet activity

    International Nuclear Information System (INIS)

    Ferluga, S.; Hack, M.

    1985-01-01

    The preliminary results of the study of several high resolution spectrograms (lambda 3500 - lambda 7000 A), obtained at the Haute Provence Observatory (OHP) in France, at different epochs before, during and after the eclipse are reported. Some of these spectrograms are compared with corresponding IUE high resolution observations, in order to study the effects of the intrinsic UV activity, towards the longer wavelengths

  15. Eclipsing binary stars with a delta Scuti component

    Czech Academy of Sciences Publication Activity Database

    Alicavus, F.K.; Soydugan, E.; Smalley, B.; Kubát, Jiří

    2017-01-01

    Roč. 470, č. 1 (2017), s. 915-931 ISSN 0035-8711 R&D Projects: GA ČR(CZ) GA16-01116S Institutional support: RVO:67985815 Keywords : stars * eclipsing binaries * fundamental parameters Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 4.961, year: 2016

  16. Information on the forthcoming total solar eclipse December 2002 ...

    African Journals Online (AJOL)

    On Wednesday, 2002 December 04, a total eclipse of the Sun will be visible from within a narrow corridor which traverses the southern part of Africa. The path of the Moon's umbral shadow begins in the South Atlantic and crosses southern Africa. After traversing the southern Indian Ocean, the path sweeps through southern ...

  17. The spectrographic orbit of the eclipsing binary HH Carinae

    International Nuclear Information System (INIS)

    Mandrini, C.H.; Mendez, R.H.; Niemela, V.S.; Ferrer, O.E.

    1985-01-01

    We present a radial velocity study of the eclipsing binary system HH Carinae, and determine for the first time its spectrographic orbital elements. Using the results of a previous photometric study by Soderhjelm, we also determine the values of the masses and dimensions of the binary components. (author)

  18. The O-type eclipsing binary SZ Camelopardalis revisited

    Czech Academy of Sciences Publication Activity Database

    Mayer, P.; Drechsel, H.; Kubát, Jiří; Šlechta, Miroslav

    2010-01-01

    Roč. 524, Dec (2010), A1/1-A1/5 ISSN 0004-6361 Institutional research plan: CEZ:AV0Z10030501 Keywords : eclipsing binaries * early-type stars * fundamental parameters Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.410, year: 2010

  19. Investigation of eclipsing binary stars exhibiting calcium II emission

    International Nuclear Information System (INIS)

    Oliver, J.P.

    1974-01-01

    Three color photometry of some eclipsing binaries showing Calcium II emission is reported. A highly stable and accurate d.c. amplifier, and a new type digital averaging system are described. Past and current light curves of SS Boo, RS CVn, WY Cnc, WW Dra, UV Psc, Z Her, SS Cam, RW UMa, AR Lac, and RT Lac are discussed with particular emphasis on asymmetries in the heights of the maxima and variations in the depths of the minima. Both RS CVn and SS Boo show nearly sinusoidal variation outside eclipse. Spectra of SS Boo and RS CVn are discussed. The suggestion is made that many of these systems belong to a new category of variable eclipsing binary star. It is pointed out that most double line eclipsing binaries with late-type sub-giant secondary components fall into this group, and that many of the characteristics of this group are not easily explained on the basis of existing data and theory. Possible models are discussed and the need for future photometric and spectroscopic study is emphasized. (U.S.)

  20. Stonehenge: A Simple and Accurate Predictor of Lunar Eclipses

    Science.gov (United States)

    Challener, S.

    1999-12-01

    Over the last century, much has been written about the astronomical significance of Stonehenge. The rage peaked in the mid to late 1960s when new computer technology enabled astronomers to make the first complete search for celestial alignments. Because there are hundreds of rocks or holes at Stonehenge and dozens of bright objects in the sky, the quest was fraught with obvious statistical problems. A storm of controversy followed and the subject nearly vanished from print. Only a handful of these alignments remain compelling. Today, few astronomers and still fewer archaeologists would argue that Stonehenge served primarily as an observatory. Instead, Stonehenge probably served as a sacred meeting place, which was consecrated by certain celestial events. These would include the sun's risings and settings at the solstices and possibly some lunar risings as well. I suggest that Stonehenge was also used to predict lunar eclipses. While Hawkins and Hoyle also suggested that Stonehenge was used in this way, their methods are complex and they make use of only early, minor, or outlying areas of Stonehenge. In contrast, I suggest a way that makes use of the imposing, central region of Stonehenge; the area built during the final phase of activity. To predict every lunar eclipse without predicting eclipses that do not occur, I use the less familiar lunar cycle of 47 lunar months. By moving markers about the Sarsen Circle, the Bluestone Circle, and the Bluestone Horseshoe, all umbral lunar eclipses can be predicted accurately.

  1. IUE observations of the eclipsing binary Epsilon Aurigae

    International Nuclear Information System (INIS)

    Hack, M.; Selvelli, P.L.

    1978-01-01

    It is stated that the eclipsing binary Epsilon Aur is a most peculiar binary system and it has not been explained satisfactorily. Observations of this system using the International Ultraviolet Explorer (IUE) collected at the Villafranca Satellite Tracking Station of the European Space Agency are here reported. (author)

  2. Eclipse Across America: Through the Eyes of NASA

    Science.gov (United States)

    Young, C. Alex; Heliophysics Education Consortium

    2018-01-01

    Monday, August 21, 2017, marked the first total solar eclipse to cross the continental United States coast-to-coast in almost a century. NASA scientists and educators, working alongside many partners, were spread across the entire country, both inside and outside the path of totality. Like many other organizations, NASA prepared for this eclipse for several years. The August 21 eclipse was NASA's biggest media event in recent history, and was made possible by the work of thousands of volunteers, collaborators and NASA employees. The agency supported science, outreach, and media communications activities along the path of totality and across the country. This culminated in a 3 ½-hour broadcast from Charleston, SC, showcasing the sights and sounds of the eclipse – starting with the view from a plane off the coast of Oregon and ending with images from the International Space Station as the Moon's inner shadow left the US East Coast. Along the way, NASA shared experiments and research from different groups of scientists, including 11 NASA-supported studies, 50+ high-altitude balloon launches, and 12 NASA and partner space-based assets. This talk shares the timeline of this momentous event from NASA's perspective, describing outreach successes and providing a glimpse at some of the science results available and yet to come.

  3. The Solar Eclipse Mural Series by Howard Russell Butler

    Science.gov (United States)

    Pasachoff, J. M.; Olson, R. J. M.

    2016-01-01

    There is a rich trove of astronomical phenomena in works of art by artists from the greater New York area, a trend that is even more pronounced in the oeuvres of New York City residents through the present day. A case in point is the trio of oil paintings by artist (and former physics professor) Howard Russell Butler depicting total solar eclipses in 1918, 1923, and 1925 that are based on his own observations. They were long displayed in the former art-deco building of the Hayden Planetarium of the American Museum of Natural History, the location of this conference. (The Museum also has nine other Butler paintings, none of which are currently exhibited.) Since the eclipse paintings have been in storage for many years, these once famous works are now virtually forgotten. Based on our research as an astronomer who has seen sixty-two solar eclipses and an art historian who has written extensively about astronomical imagery, we will discuss Butler's Solar Eclipse Triptych to explore its place in the history of astronomical imaging.

  4. Apsidal Motion in Eccentric Eclipsing Binary WW Camelopardalis

    Czech Academy of Sciences Publication Activity Database

    Wolf, M.; Kotková, Lenka; Kocián, R.; Dřevěný, R.; Hanžl, D.

    2010-01-01

    Roč. 139, č. 3 (2010), s. 1028-1030 ISSN 0004-6256 R&D Projects: GA ČR GA205/08/0003 Institutional research plan: CEZ:AV0Z10030501 Keywords : eclipsing Binaries * WW Camelopardali Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.548, year: 2010

  5. Multi-Wavelength Eclipse Observations of a Quiescent Prominence

    Czech Academy of Sciences Publication Activity Database

    Jejčič, S.; Heinzel, Petr; Zapiór, M.; Druckmüller, M.; Gunár, Stanislav; Kotrč, Pavel

    2014-01-01

    Roč. 289, č. 7 (2014), s. 2487-2501 ISSN 0038-0938 R&D Projects: GA ČR GAP209/12/0906 Institutional support: RVO:67985815 Keywords : eclipse observations * prominences * quiescent Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.039, year: 2014

  6. Electron densities in quiescent prominences derived from eclipse observations

    Czech Academy of Sciences Publication Activity Database

    Jejčič, S.; Heinzel, Petr

    2009-01-01

    Roč. 254, č. 1 (2009), s. 89-100 ISSN 0038-0938 Grant - others:EU(XE) ESA-PECS project No. 98030 Institutional research plan: CEZ:AV0Z10030501 Keywords : prominences quiescent * eclipse observations * visible spectrum Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 3.628, year: 2009

  7. Eclipses and dust formation by WC9 type Wolf-Rayet stars

    Science.gov (United States)

    Williams, P. M.

    2014-12-01

    Visual photometry of 16 WC8-9 dust-making Wolf-Rayet (WR) stars during 2001-2009 was extracted from the All-Sky Automated Survey All Star Catalogue (ASAS-3) to search for eclipses attributable to extinction by dust formed in clumps in our line of sight. Data for a comparable number of dust-free WC6-9 stars were also examined to help characterize the data set. Frequent eclipses were observed from WR 104, and several from WR 106, extending the 1994-2001 studies by Kato et al., but not supporting their phasing the variations in WR 104 with its `pinwheel' rotation period. Only four other stars showed eclipses, WR 50 (one of the dust-free stars), WR 69, WR 95 and WR 117, and there may have been an eclipse by WR 121, which had shown two eclipses in the past. No dust eclipses were shown by the `historic' eclipsers WR 103 and WR 113. The atmospheric eclipses of the latter were observed but the suggestion by David-Uraz et al. that dust may be partly responsible for these is not supported. Despite its frequent eclipses, there is no evidence in the infrared images of WR 104 for dust made in its eclipses, demonstrating that any dust formed in this process is not a significant contributor to its circumstellar dust cloud and suggesting that the same applies to the other stars showing fewer eclipses.

  8. To Measure Probable Physical Changes On The Earth During Total Solar Eclipse Using Geophysical Methods

    International Nuclear Information System (INIS)

    Gocmen, C.

    2007-01-01

    When the total solar eclipse came into question, people connected the eclipse with the earthquake dated 17.08.1999. We thought if any physical parameters change during total solar eclipse on the earth, we could measure this changing and we did the project 'To Measure Probable Physical Changes On The Earth During Total Solar Eclipse Using Geophysical Methods' We did gravity, magnetic and self-potential measurements at Konya and Ankara during total solar eclipse (29, March, 2006) and the day before eclipse and the day after eclipse. The measurements went on three days continuously twenty-four hours at Konya and daytime in Ankara. Bogazici University Kandilli Observatory gave us magnetic values in Istanbul and we compare the values with our magnetic values. Turkish State Meteorological Service sent us temperature and air pressure observations during three days, in Konya and Ankara. We interpreted all of them

  9. On the Dearth of Ultra-faint Extremely Metal-poor Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez Almeida, J.; Filho, M. E.; Vecchia, C. Dalla [Instituto Astrofísica de Canarias, E-38200 La Laguna, Tenerife (Spain); Skillman, E. D., E-mail: jos@iac.es [Minnesota Institute for Astrophysics, School of Physics and Astronomy, University of Minnesota, Minneapolis, MN (United States)

    2017-02-01

    Local extremely metal-poor galaxies (XMPs) are of particular astrophysical interest since they allow us to look into physical processes characteristic of the early universe, from the assembly of galaxy disks to the formation of stars in conditions of low metallicity. Given the luminosity–metallicity relationship, all galaxies fainter than M{sub r} ≃ −13 are expected to be XMPs. Therefore, XMPs should be common in galaxy surveys. However, they are not common, because several observational biases hamper their detection. This work compares the number of faint XMPs in the SDSS-DR7 spectroscopic survey with the expected number, given the known biases and the observed galaxy luminosity function (LF). The faint end of the LF is poorly constrained observationally, but it determines the expected number of XMPs. Surprisingly, the number of observed faint XMPs (∼10) is overpredicted by our calculation, unless the upturn in the faint end of the LF is not present in the model. The lack of an upturn can be naturally understood if most XMPs are central galaxies in their low-mass dark matter halos, which are highly depleted in baryons due to interaction with the cosmic ultraviolet background and to other physical processes. Our result also suggests that the upturn toward low luminosity of the observed galaxy LF is due to satellite galaxies.

  10. The Faint End of the Quasar Luminosity Function at z ~ 4

    Science.gov (United States)

    Glikman, Eilat; Bogosavljević, Milan; Djorgovski, S. G.; Stern, Daniel; Dey, Arjun; Jannuzi, Buell T.; Mahabal, Ashish

    2010-02-01

    The evolution of the quasar luminosity function (QLF) is one of the basic cosmological measures providing insight into structure formation and mass assembly in the universe. We have conducted a spectroscopic survey to find faint quasars (-26.0 law (Φ vprop L β) gives a faint-end slope β = -1.6 ± 0.2. If we consider our larger, but highly incomplete sample going 1 mag fainter, we measure a steeper faint-end slope -2 law LF. Our best fit finds a bright-end slope, α = -2.4 ± 0.2, and faint-end slope, β = -2.3 ± 0.2, without a well-constrained break luminosity. This is effectively a single power law, with β = -2.7 ± 0.1. We use these results to place limits on the amount of ultraviolet radiation produced by quasars and find that quasars are able to ionize the intergalactic medium at these redshifts. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  11. Long-Term Continuous Double Station Observation of Faint Meteor Showers

    Czech Academy of Sciences Publication Activity Database

    Vítek, S.; Páta, P.; Koten, Pavel; Fliegel, K.

    2016-01-01

    Roč. 16, č. 9 (2016), 1493/1-1493/10 ISSN 1424-8220 R&D Projects: GA ČR GA14-25251S Institutional support: RVO:67985815 Keywords : faint meteor shower * meteoroid * CCD camera Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.677, year: 2016

  12. DISCOVERY OF A FAINT QUASAR AT z ∼ 6 AND IMPLICATIONS FOR COSMIC REIONIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yongjung; Im, Myungshin; Jeon, Yiseul; Choi, Changsu; Hong, Jueun; Hyun, Minhee; Jun, Hyunsung David; Kim, Dohyeong; Kim, Duho; Kim, Jae-Woo; Lee, Seong-Kook; Taak, Yoon Chan; Yoon, Yongmin [Center for the Exploration of the Origin of the Universe (CEOU), Building 45, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Kim, Minjin; Park, Won-Kee [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of); Karouzos, Marios [Astronomy Program, FPRD, Department of Physics and Astronomy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Kim, Ji Hoon [Subaru Telescope, National Astronomical Observatory of Japan, 650 North A’ohoku Place, Hilo, HI 96720 (United States); Pak, Soojong, E-mail: yjkim@astro.snu.ac.kr, E-mail: mim@astro.snu.ac.kr [School of Space Research and Institute of Natural Sciences, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 446-701 (Korea, Republic of)

    2015-11-10

    Recent studies suggest that faint active galactic nuclei may be responsible for the reionization of the universe. Confirmation of this scenario requires spectroscopic identification of faint quasars (M{sub 1450} > −24 mag) at z ≳ 6, but only a very small number of such quasars have been spectroscopically identified so far. Here, we report the discovery of a faint quasar IMS J220417.92+011144.8 at z ∼ 6 in a 12.5 deg{sup 2} region of the SA22 field of the Infrared Medium-deep Survey (IMS). The spectrum of the quasar shows a sharp break at ∼8443 Å, with emission lines redshifted to z = 5.944 ± 0.002 and rest-frame ultraviolet continuum magnitude M{sub 1450} = −23.59 ± 0.10 AB mag. The discovery of IMS J220417.92+011144.8 is consistent with the expected number of quasars at z ∼ 6 estimated from quasar luminosity functions based on previous observations of spectroscopically identified low-luminosity quasars. This suggests that the number of M{sub 1450} ∼ −23 mag quasars at z ∼ 6 may not be high enough to fully account for the reionization of the universe. In addition, our study demonstrates that faint quasars in the early universe can be identified effectively with a moderately wide and deep near-infrared survey such as the IMS.

  13. Lessons Learned During the Recent ɛ Aurigae Eclipse Observing Campaign

    Science.gov (United States)

    Stencel, R. E.

    2012-06-01

    (Abstract only) The eighteen-month-long eclipse of the third-magnitude star, epsilon Aurigae, is forecast to end during May 2011, based on six eclipse events, in 2010, 1982, 1955, 1930, 1902, and 1874. In partnership with AAVSO, Hopkins Phoenix Observatory, and others, we have organized observing campaigns during the past several years in order to maximize data acquired during this rare event and to promote reporting and analysis of observations of all kinds. Hundreds of registered participants have signed up for alert notices and newsletters, and many dozens of observers have contributed photometry, spectra, and ideas to the ongoing effort - see websites: www.CitizenSky.org and www.hposoft.com/Campaign09.html. In this presentation, I will provide an update on the participation leading to extensive photometric results. Similarly, bright star spectroscopy has greatly benefited from small telescope plus spectrometer capabilities, now widely available, that complement traditional but less-frequent large telescope high dispersion work. Polarimetry provided key insights during the last eclipse, and we promoted the need for new data using this method. Finally, interferometry has come of age since the last eclipse, leading to the direct detection of the transiting dark disk causing the eclipse. Along with these traditional measurements, I will outline campaign-related efforts to promote Citizen Science opportunities among the public. Support for these efforts derives in part from AAVSO/NSF-Informal Science Education, NSF AAG grant 10-16678, and a bequest to the University of Denver Astronomy Program by alumnus William Herschel Womble, for which I am grateful.

  14. Lessons Learned During the Recent Epsilon Aurigae Eclipse Observing Campaign

    Science.gov (United States)

    Stencel, Robert E.

    2011-05-01

    The 18 month long eclipse of the 3rd magnitude star, epsilon Aurigae, is forecast to end during May 2011, based on six eclipse events, in 2010, 1982, 1955, 1930, 1902 and 1874. In partnership with AAVSO, Hopkins Phoenix Observatory and others, we have organized observing campaigns during the past several years in order to maximize data acquired during this rare event and to promote reporting and analysis of observations of all kinds. Hundreds of registered participants have signed up for alert notices and newsletters, and many dozens of observers have contributed photometry, spectra and ideas to the ongoing effort - see websites: www.CitizenSky.org and www.hposoft.com/Campaign09.html . In this presentation, I will provide an update on the participation leading to extensive photometric results. Similarly, bright star spectroscopy has greatly benefited from small telescope plus spectrometer capabilities, now widely available, that complement traditional but less-frequent large telescope high dispersion work. Polarimetry provided key insights during the last eclipse, and we promoted the need for new data using this method. Finally, interferometry has come of age since the last eclipse, leading to the direct detection of the transiting dark disk causing the eclipse. Along with these traditional measurements, I will outline campaign-related efforts to promote Citizen Science opportunities among the public. Support for these efforts derives in part from AAVSO/NSF-Informal Science Education, NSF AAG grant 10-16678 and a bequest to the University of Denver Astronomy Program by alumnus William Herschel Womble, for which I am grateful.

  15. The Trojan war dated by two solar eclipses.

    Science.gov (United States)

    Henriksson, Goran

    The Trojan War was very significant for the ancient Greeks and they dated historical events according to the number of years after the fall of Troy. However, there was already in antiquity no consensus as to the exact date of the war when compared with different epochs. Even after the modern discovery of the ancient city, there has been disagreement among different excavators as to which layer corresponds to the city mentioned in the Iliad attributed to Homer. In this paper an attempt is made to identify the strange obscuration of the sun that occurred during the final battle of the Iliad as a total solar eclipse close to the southern border of the zone of totality. There exists only one solar eclipse that corresponds to the description in the text and this is the total solar eclipse of June 11, in 1312 BC. When I first presented this date in 1986, there was a difference of about 60 years compared with the most common archaeological dating at that time. My date is now fully supported by the latest results from the German-American excavation that identifies the fall of Homer's Troy with the destruction of the archaeological layer Troy VIh, dated to about 1300 BC. Further independent support is provided by another solar eclipse that dates the reign of the Hittite king Muwatalli II. This king wrote a letter to king Alaksandu in Wilusa, identified as the Hittite name for Ilios, the most frequently used name for Troy in the Iliad. Alexander was another name for Paris who abducted Helen, the crime that resulted in the war. Muwatalli II was king 1315-1297 BC, according to the chronology for the Hittite Kingdom based on a solar eclipse in 1335 BC, during the tenth year of King Mursili II (1345- 1315 BC), the father of Muwatalli II.

  16. Report about the Solar Eclipse on August 11, 1999

    Science.gov (United States)

    1999-08-01

    This webpage provides information about the total eclipse on Wednesday, August 11, 1999, as it was seen by ESO staff, mostly at or near the ESO Headquarters in Garching (Bavaria, Germany). The zone of totality was about 108 km wide and the ESO HQ were located only 8 km south of the line of maximum totality. The duration of the phase of totality was about 2 min 17 sec. The weather was quite troublesome in this geographical area. Heavy clouds moved across the sky during the entire event, but there were also some holes in between. Consequently, sites that were only a few kilometres from each other had very different viewing conditions. Some photos and spectra of the eclipsed Sun are displayed below, with short texts about the circumstances under which they were made. Please note that reproduction of pictures on this webpage is only permitted, if the author is mentioned as source. Information made available before the eclipse is available here. Eclipse Impressions at the ESO HQ Photo by Eddy Pomaroli Preparing for the Eclipse Photo: Eddy Pomaroli [JEG: 400 x 239 pix - 116k] [JPEG: 800 x 477 pix - 481k] [JPEG: 3000 x 1789 pix - 3.9M] Photo by Eddy Pomaroli During the 1st Partial Phase Photo: Eddy Pomaroli [JPEG: 400 x 275 pix - 135k] [JPEG: 800 x 549 pix - 434k] [JPEG: 2908 x 1997 pix - 5.9M] Photo by Hamid Mehrgan Heavy Clouds Above Digital Photo: Hamid Mehrgan [JPEG: 400 x 320 pix - 140k] [JPEG: 800 x 640 pix - 540k] [JPEG: 1280 x 1024 pix - 631k] Photo by Olaf Iwert Totality Approaching Digital Photo: Olaf Iwert [JPEG: 400 x 320 pix - 149k] [JPEG: 800 x 640 pix - 380k] [JPEG: 1280 x 1024 pix - 536k] Photo by Olaf Iwert Beginning of Totality Digital Photo: Olaf Iwert [JPEG: 400 x 236 pix - 86k] [JPEG: 800 x 471 pix - 184k] [JPEG: 1280 x 753 pix - 217k] Photo by Olaf Iwert A Happy Eclipse Watcher Digital Photo: Olaf Iwert [JPEG: 400 x 311 pix - 144k] [JPEG: 800 x 622 pix - 333k] [JPEG: 1280 x 995 pix - 644k] ESO HQ Eclipse Video Clip [MPEG-version] ESO HQ Eclipse Video

  17. Analysis of 45-years of Eclipse Timings of the Hyades (K2 V+ DA) Eclipsing Binary V471 Tauri

    Science.gov (United States)

    Marchioni, Lucas; Guinan, Edward; Engle, Scott

    2018-01-01

    V471 Tau is an important detached 0.521-day eclipsing binary composed of a K2 V and a hot DA white dwarf star. This system resides in the Hyades star cluster located approximately 153 Ly from us. V471 Tau is considered to be the end-product of common-envelope binary star evolution and is currently a pre-CV system. V471 Tau serves as a valuable astrophysical laboratory for studying stellar evolution, white dwarfs, stellar magnetic dynamos, and possible detection of low mass companions using the Light Travel Time (LTT) Effects. Since its discovery as an eclipsing binary in 1970, photometry has been carried out and many eclipse timings have been determined. We have performed an analysis of the available photometric data available on V471 Tauri. The binary system has been the subject of analyses regarding the orbital period. From this analysis several have postulated the existence of a third body in the form of a brown dwarf that is causing periodic variations in the system’s apparent period. In this study we combine ground based data with photometry secured recently from the Kepler K2 mission. After detrending and phasing the available data, we are able to compare the changing period of the eclipsing binary system against predictions on the existence of this third body. The results of the analysis will be presented. This research is sponsored by grants from NASA and NSF for which we are very grateful.

  18. Spectral and photometric analysis of the eclipsing binary epsilon Aurigae prior to and during the 2009-2011 eclipse

    Czech Academy of Sciences Publication Activity Database

    Chadima, P.; Harmanec, P.; Bennett, P.D.; Kloppenborg, B.; Stencel, R.; Yang, S.; Božić, H.; Šlechta, Miroslav; Kotková, Lenka; Wolf, M.; Škoda, Petr; Votruba, Viktor; Hopkins, J.L.; Buil, C.; Sudar, D.

    2011-01-01

    Roč. 530, June (2011), A146/1-A146/13 ISSN 0004-6361 Institutional research plan: CEZ:AV0Z10030501 Keywords : variables stars * binaries * eclipsing Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.587, year: 2011

  19. KEPLER ECLIPSING BINARY STARS. III. CLASSIFICATION OF KEPLER ECLIPSING BINARY LIGHT CURVES WITH LOCALLY LINEAR EMBEDDING

    International Nuclear Information System (INIS)

    Matijevič, Gal; Prša, Andrej; Orosz, Jerome A.; Welsh, William F.; Bloemen, Steven; Barclay, Thomas

    2012-01-01

    We present an automated classification of 2165 Kepler eclipsing binary (EB) light curves that accompanied the second Kepler data release. The light curves are classified using locally linear embedding, a general nonlinear dimensionality reduction tool, into morphology types (detached, semi-detached, overcontact, ellipsoidal). The method, related to a more widely used principal component analysis, produces a lower-dimensional representation of the input data while preserving local geometry and, consequently, the similarity between neighboring data points. We use this property to reduce the dimensionality in a series of steps to a one-dimensional manifold and classify light curves with a single parameter that is a measure of 'detachedness' of the system. This fully automated classification correlates well with the manual determination of morphology from the data release, and also efficiently highlights any misclassified objects. Once a lower-dimensional projection space is defined, the classification of additional light curves runs in a negligible time and the method can therefore be used as a fully automated classifier in pipeline structures. The classifier forms a tier of the Kepler EB pipeline that pre-processes light curves for the artificial intelligence based parameter estimator.

  20. Interpretation of eclipsing light curves of dwarf novae

    International Nuclear Information System (INIS)

    Matvienko, A.N.; Cherepashchuk, A.M.; Yagola, A.G.

    1988-01-01

    The method for interpretation of eclipsing light curves of dwarf novae is proposed, taking into account the influence of the hot spot situated in the outer part of the disk-like envelope surrounding a white dwarf. This method is applied to the analysis of the eclipsing light curves of the system Z Cha in the quiet and active stages. It is shown that the optical luminosity of the hot spot in the system Z Cha in the active stage is 3-5 times greater than that in the quiet stage. Radius of the disk-like envelope in the active stage is more than twice greater than that in the quiet stage

  1. Changes in environmental radon related with the day eclipse

    International Nuclear Information System (INIS)

    Gaso P, M.I.; Cervantes, M.L.; Segovia A, N.; Espindola, V.H.

    1992-05-01

    Systematic studies of radon and of gamma dose in air in the Nuclear Center of Mexico during a period of nine months that include the total Sun eclipse happened at July 11, 1991 were carried out. The radon concentrations were measured with an electronic equipment that measures in continuous form and the rate of gamma dose in air was obtained with a ionization chamber. The results show that the radon fluctuations in air are influenced by the meteorological changes showing behaviors different to long and short term. The variations of long term are correlated directly with the external temperature while those of short term have an inverse relationship with the temperature. These last results are discussed regarding drastic atmospheric changes happened in the period and those light changes result of the total Sun eclipse. The rate of gamma dose in air showed stability during the study. (Author)

  2. Photometric study of the pulsating, eclipsing binary OO DRA

    International Nuclear Information System (INIS)

    Zhang, X. B.; Deng, L. C.; Tian, J. F.; Wang, K.; Yan, Z. Z.; Luo, C. Q.; Sun, J. J.; Liu, Q. L.; Xin, H. Q.; Zhou, Q.; Luo, Z. Q.

    2014-01-01

    We present a comprehensive photometric study of the pulsating, eclipsing binary OO Dra. Simultaneous B- and V-band photometry of the star was carried out on 14 nights. A revised orbital period and a new ephemeris were derived from the data. The first photometric solution of the binary system and the physical parameters of the component stars are determined. They reveal that OO Dra could be a detached system with a less-massive secondary component nearly filling its Roche lobe. By subtracting the eclipsing light changes from the data, we obtained the intrinsic pulsating light curves of the hotter, massive primary component. A frequency analysis of the residual light yields two confident pulsation modes in both B- and V-band data with the dominant frequency detected at 41.865 c/d. A brief discussion concerning the evolutionary status and the pulsation nature of the binary system is finally given.

  3. The 2017 Total Solar Eclipse: Through the Eyes of NASA

    Science.gov (United States)

    Mayo, Louis; NASA Goddard Heliophysics Education Consortium

    2017-10-01

    The August 21st, 2017 Total Solar Eclipse Across America provided a unique opportunity to teach event-based science to nationwide audiences. NASA spent over three years planning space and Earth science education programs for informal audiences, undergraduate institutions, and life long learners to bring this celestial event to the public through the eyes of NASA. This talk outlines how NASA used its unique assets including mission scientists and engineers, space based assets, citizen science, educational technology, science visualization, and its wealth of science and technology partners to bring the eclipse to the country through multimedia, cross-discipline science activities, curricula, and media programing. Audience reach, impact, and lessons learned are detailed. Plans for similar events in 2018 and beyond are outlined.

  4. Solar eclipses as a vehicle for international astronomy education.

    Science.gov (United States)

    Pasachoff, J. M.

    The public's attention is drawn to astronomy whenever solar eclipse - partial, annular, or total - is visible, and we must take advantage of the opportunity to teach about the nature of science, the ability of astronomers to predict and analyze distant bodies and events, and the value of scientific research. We must also instruct people how to watch the partial and annular phases safely and that the total phase is not harmful.

  5. Tapir: A web interface for transit/eclipse observability

    Science.gov (United States)

    Jensen, Eric

    2013-06-01

    Tapir is a set of tools, written in Perl, that provides a web interface for showing the observability of periodic astronomical events, such as exoplanet transits or eclipsing binaries. The package provides tools for creating finding charts for each target and airmass plots for each event. The code can access target lists that are stored on-line in a Google spreadsheet or in a local text file.

  6. Infrared observations of the eclipsing millisecond pulsar 1957 + 20

    International Nuclear Information System (INIS)

    Eales, S.A.; Becklin, E.E.; Zuckerman, B.

    1990-01-01

    We have taken 2.2-μm images, over the entire range of orbital phase, of the eclipsing millisecond pulsar 1957 + 20. We show that the 2.2-μm flux from the pulsar system is variable, and that the infrared light curve is similar to the optical light curve. Four additional images at 1.2 μm show that there is a possible infrared excess from the system. (author)

  7. Martin Buber: eclipse de Deus e o Holocausto

    Directory of Open Access Journals (Sweden)

    Renato Somberg Pfeffer

    2007-10-01

    Full Text Available Resumo: Este artigo analisa a questão da eclipse de Deus em Martin Buber. A experiência religiosa israelita parte de duas compreensões convergentes de Deus: Ele é o senhor da história e criador do mundo e do homem. Tudo que existe não se explica por si mesmo, tudo se remete ao criador. A partir desse ponto de vista, serão enfocados Deus e o Holocausto.

  8. The faint-end of galaxy luminosity functions at the Epoch of Reionization

    Science.gov (United States)

    Yue, B.; Castellano, M.; Ferrara, A.; Fontana, A.; Merlin, E.; Amorín, R.; Grazian, A.; Mármol-Queralto, E.; Michałowski, M. J.; Mortlock, A.; Paris, D.; Parsa, S.; Pilo, S.; Santini, P.; Di Criscienzo, M.

    2018-05-01

    During the Epoch of Reionization (EoR), feedback effects reduce the efficiency of star formation process in small halos or even fully quench it. The galaxy luminosity function (LF) may then turn over at the faint-end. We analyze the number counts of z > 5 galaxies observed in the fields of four Frontier Fields (FFs) clusters and obtain constraints on the LF faint-end: for the turn-over magnitude at z ~ 6, MUVT >~-13.3 for the circular velocity threshold of quenching star formation process, vc* <~ 47 km s-1. We have not yet found significant evidence of the presence of feedback effects suppressing the star formation in small galaxies.

  9. Investigating the Impact of a Solar Eclipse on Atmospheric Radiation

    Science.gov (United States)

    Fender, Josh; Morse, Justin; Ringler, John; Galovich, Cynthia; Kuehn, Charles A.; Semak, Matthew

    2018-06-01

    We present a project that measured atmospheric muon flux as a function of altitude during a total solar eclipse. An auxiliary goal was to design and build a cost-effective muon detection device that is simple enough for those with minimal training to build. The detector is part of a self-contained autonomous payload that is carried to altitude aboard a weather balloon. The detection system consists of three Geiger counters connected to a coincidence circuit. This system, along with internal and external temperature sensors and an altimeter, are controlled by an onboard Arduino Mega microcontroller. An internal frame was constructed to house and protect the payload components using modular 3D-printed parts. The payload was launched during the 2017 solar eclipse from Guernsey, Wyoming, along the path of totality. Initial data analysis indicates that line-of-sight blockage of the sun due to a total eclipse produces a negligible difference in muon flux when compared to the results of previous daytime flights. The successful performance of the payload, its low overall cost, and its ease of use suggest that this project would be well-suited for individuals or groups such as high school or undergraduate science students to reproduce and enhance.

  10. TIDALLY INDUCED PULSATIONS IN KEPLER ECLIPSING BINARY KIC 3230227

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Zhao; Gies, Douglas R. [Center for High Angular Resolution Astronomy and Department of Physics and Astronomy, Georgia State University, P.O. Box 5060, Atlanta, GA 30302-5060 (United States); Fuller, Jim, E-mail: guo@astro.gsu.edu, E-mail: gies@chara.gsu.edu, E-mail: jfuller@caltech.edu [TAPIR, Walter Burke Institute for Theoretical Physics, Mailcode 350-17, Caltech, Pasadena, CA 91125 (United States)

    2017-01-01

    KIC 3230227 is a short period (P  ≈ 7.0 days) eclipsing binary with a very eccentric orbit ( e  = 0.6). From combined analysis of radial velocities and Kepler light curves, this system is found to be composed of two A-type stars, with masses of M {sub 1} = 1.84 ± 0.18  M {sub ⊙}, M {sub 2} = 1.73 ± 0.17  M {sub ⊙} and radii of R {sub 1} = 2.01 ± 0.09  R {sub ⊙}, R {sub 2} = 1.68 ± 0.08 R {sub ⊙} for the primary and secondary, respectively. In addition to an eclipse, the binary light curve shows a brightening and dimming near periastron, making this a somewhat rare eclipsing heartbeat star system. After removing the binary light curve model, more than 10 pulsational frequencies are present in the Fourier spectrum of the residuals, and most of them are integer multiples of the orbital frequency. These pulsations are tidally driven, and both the amplitudes and phases are in agreement with predictions from linear tidal theory for l  = 2, m  = −2 prograde modes.

  11. Spitzer Secondary Eclipses of HAT-P-13b

    Science.gov (United States)

    Hardy, Ryan A.; Harrington, J.; Hardin, M. R.; Madhusudhan, N.; Cubillos, P.; Blecic, J.; Bakos, G.; Hartman, J. D.

    2013-10-01

    HAT-P-13 b is a transiting hot Jupiter with a slightly eccentric orbit (e = 0.010) inhabiting a two-planet system. The two-planet arrangement provides an opportunity to probe the interior structure of HAT-P-13b. Under equilibrium-tide theory and confirmation that the apsides of planets b and c are in alignment, a measurement of the planet's eccentricity can be related to the planet's tidal Love number k2, which describes the central condensation of the planet's mass and its deformation under tidal effects. A measurement of k2 could constrain interior models of HAT-P-13b. HAT-P-13b's orbit is configured favorably for refinement of the eccentricity by secondary eclipse timing observations, which provide direct measurements of ecosω. In 2010, Spitzer observed two secondary eclipses of HAT-P-13b in the 3.6- and 4.5-μm IRAC bandpasses. We present secondary eclipse times and depths; joint models of the HAT-P-13 system that incorporate transit photometry and radial velocity data; and constraints on the atmospheric chemistry of HAT-P-13b that suggest solar-abundance composition without a thermal inversion. Spitzer is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA, which provided support for this work. This work was supported in part by NASA Planetary Atmospheres Grant NNX13AF38G.

  12. Nationwide network of total solar eclipse high altitude balloon flights

    Science.gov (United States)

    Des Jardins, A. C.

    2017-12-01

    Three years ago we envisioned tapping into the strength of the National Space Grant Program to make the most of a rare astronomical event to engage the general public through education and to create meaningful long-lasting partnerships with other private and public entities. We believe strongly in giving student participants career-making opportunities through the use of the most cutting edge tools, resources, and communication. The NASA Space Grant network was in a unique position to engage the public in the eclipse in an awe-inspiring and educational way at a surprisingly small cost. In addition to public engagement, the multidisciplinary project presented an in-depth hands-on learning opportunity for the thousands of student participants. The project used a network of high altitude ballooning teams positioned along the path of totality from Oregon to South Carolina to conduct coordinated collaborative activities during the eclipse. These activities included 1) capturing and streaming live video of the eclipse from near space, 2) partnering with NASA Ames on a space biology experiment, and 3) conducting high-resolution atmospheric radiosonde measurements. This presentation will summarize the challenges, results, lessons learned, and professional evaluation from developing, training, and coordinating the collaboration. Details of the live streaming HD video and radiosonde activities are described in separate submissions to this session.

  13. Solar-system Education for the 2017 Total Solar Eclipse

    Science.gov (United States)

    Pasachoff, Jay M.

    2017-10-01

    I describe an extensive outreach program about the Sun, the silhouette of the Moon, and the circumstances both celestial and terrestrial of the August 21, 2017, total solar eclipse. Publications included a summary of the last decade of solar-eclipse research for Nature Astronomy, a Resource Letter on Observing Solar Eclipses for the American Journal of Physics, and book reviews for Nature and for Phi Beta Kappa's Key Reporter. Symposia arranged include sessions at AAS, APS, AGU, and AAAS. Lectures include all ages from pre-school through elementary school to high school to senior-citizen residences. The work, including the scientific research about the solar corona that is not part of this abstract, was supported by grants from the Solar Terrestrial Program of the Atmospheric and Geospace Sciences Division of NSF and from the Committee for Research and Exploration of the National Geographic Society. Additional student support was received from NSF, NASA's Massachusetts Space Grant Consortium, the Honorary Research Society Sigma Xi, the Clare Booth Luce Foundation, and funds at Williams College.

  14. A New Orbit for the Eclipsing Binary V577 Oph

    Science.gov (United States)

    Jeffery, Elizabeth J.; Barnes, Thomas G., III; Skillen, Ian; Montemayor, Thomas J.

    2017-09-01

    Pulsating stars in eclipsing binary systems are unique objects for providing constraints on stellar models. To fully leverage the information available from the binary system, full orbital radial velocity curves must be obtained. We report 23 radial velocities for components of the eclipsing binary V577 Oph, whose primary star is a δ Sct variable. The velocities cover a nearly complete orbit and a time base of 20 years. We computed orbital elements for the binary and compared them to the ephemeris computed by Creevey et al. The comparison shows marginally different results. In particular, a change in the systemic velocity by -2 km s-1 is suggested by our results. We compare this systemic velocity difference to that expected due to reflex motion of the binary in response to the third body in the system. The systemic velocity difference is consistent with reflex motion, given our mass determination for the eclipsing binary and the orbital parameters determined by Volkov & Volkova for the three-body orbit. We see no evidence for the third body in our spectra, but we do see strong interstellar Na D lines that are consistent in strength with the direction and expected distance of V577 Oph.

  15. PHYSICS OF ECLIPSING BINARIES. II. TOWARD THE INCREASED MODEL FIDELITY

    Energy Technology Data Exchange (ETDEWEB)

    Prša, A.; Conroy, K. E.; Horvat, M.; Kochoska, A.; Hambleton, K. M. [Villanova University, Dept. of Astrophysics and Planetary Sciences, 800 E Lancaster Avenue, Villanova PA 19085 (United States); Pablo, H. [Université de Montréal, Pavillon Roger-Gaudry, 2900, boul. Édouard-Montpetit Montréal QC H3T 1J4 (Canada); Bloemen, S. [Radboud University Nijmegen, Department of Astrophysics, IMAPP, P.O. Box 9010, 6500 GL, Nijmegen (Netherlands); Giammarco, J. [Eastern University, Dept. of Astronomy and Physics, 1300 Eagle Road, St. Davids, PA 19087 (United States); Degroote, P. [KU Leuven, Instituut voor Sterrenkunde, Celestijnenlaan 200D, B-3001 Heverlee (Belgium)

    2016-12-01

    The precision of photometric and spectroscopic observations has been systematically improved in the last decade, mostly thanks to space-borne photometric missions and ground-based spectrographs dedicated to finding exoplanets. The field of eclipsing binary stars strongly benefited from this development. Eclipsing binaries serve as critical tools for determining fundamental stellar properties (masses, radii, temperatures, and luminosities), yet the models are not capable of reproducing observed data well, either because of the missing physics or because of insufficient precision. This led to a predicament where radiative and dynamical effects, insofar buried in noise, started showing up routinely in the data, but were not accounted for in the models. PHOEBE (PHysics Of Eclipsing BinariEs; http://phoebe-project.org) is an open source modeling code for computing theoretical light and radial velocity curves that addresses both problems by incorporating missing physics and by increasing the computational fidelity. In particular, we discuss triangulation as a superior surface discretization algorithm, meshing of rotating single stars, light travel time effects, advanced phase computation, volume conservation in eccentric orbits, and improved computation of local intensity across the stellar surfaces that includes the photon-weighted mode, the enhanced limb darkening treatment, the better reflection treatment, and Doppler boosting. Here we present the concepts on which PHOEBE is built and proofs of concept that demonstrate the increased model fidelity.

  16. A New Orbit for the Eclipsing Binary V577 Oph

    Energy Technology Data Exchange (ETDEWEB)

    Jeffery, Elizabeth J. [Physics Department, California Polytechnic State University, San Luis Obispo, CA 93407 (United States); Barnes, Thomas G. III; Montemayor, Thomas J. [The University of Texas at Austin, McDonald Observatory, 1 University Station, C1402, Austin, TX 78712-0259 (United States); Skillen, Ian, E-mail: ejjeffer@calpoly.edu, E-mail: tgb@astro.as.utexas.edu, E-mail: tm@astro.as.utexas.edu, E-mail: wji@ing.iac.es [Isaac Newton Group, Apartado de Correos 321, E-38700 Santa Cruz de La Palma, Canary Islands (Spain)

    2017-09-01

    Pulsating stars in eclipsing binary systems are unique objects for providing constraints on stellar models. To fully leverage the information available from the binary system, full orbital radial velocity curves must be obtained. We report 23 radial velocities for components of the eclipsing binary V577 Oph, whose primary star is a δ Sct variable. The velocities cover a nearly complete orbit and a time base of 20 years. We computed orbital elements for the binary and compared them to the ephemeris computed by Creevey et al. The comparison shows marginally different results. In particular, a change in the systemic velocity by −2 km s{sup −1} is suggested by our results. We compare this systemic velocity difference to that expected due to reflex motion of the binary in response to the third body in the system. The systemic velocity difference is consistent with reflex motion, given our mass determination for the eclipsing binary and the orbital parameters determined by Volkov and Volkova for the three-body orbit. We see no evidence for the third body in our spectra, but we do see strong interstellar Na D lines that are consistent in strength with the direction and expected distance of V577 Oph.

  17. TIDALLY INDUCED PULSATIONS IN KEPLER ECLIPSING BINARY KIC 3230227

    International Nuclear Information System (INIS)

    Guo, Zhao; Gies, Douglas R.; Fuller, Jim

    2017-01-01

    KIC 3230227 is a short period (P  ≈ 7.0 days) eclipsing binary with a very eccentric orbit ( e  = 0.6). From combined analysis of radial velocities and Kepler light curves, this system is found to be composed of two A-type stars, with masses of M 1  = 1.84 ± 0.18  M ⊙ , M 2  = 1.73 ± 0.17  M ⊙ and radii of R 1  = 2.01 ± 0.09  R ⊙ , R 2  = 1.68 ± 0.08 R ⊙ for the primary and secondary, respectively. In addition to an eclipse, the binary light curve shows a brightening and dimming near periastron, making this a somewhat rare eclipsing heartbeat star system. After removing the binary light curve model, more than 10 pulsational frequencies are present in the Fourier spectrum of the residuals, and most of them are integer multiples of the orbital frequency. These pulsations are tidally driven, and both the amplitudes and phases are in agreement with predictions from linear tidal theory for l  = 2, m  = −2 prograde modes.

  18. High-speed photometry of the eclipsing dwarf nova OY Carinae

    Science.gov (United States)

    Cook, M. C.

    1985-01-01

    High-speed photometry of the eclipsing dwarf nova OY Car in the quiescent state is presented. OY Car becomes highly reddened during eclipse, with minimum flux colours inconsistent with optically thick emission in the U and B bandpasses. Mass ratios in the range 6.5 to 12 are required to reconcile the eclipse structure with theoretical gas stream trajectories. Primary eclipse timings reveal a significant decrease in the orbital period and the duration of primary eclipse indicates the presence of a luminous ring about the white dwarf. The hotspot eclipse reveals a hotspot which is elongated along the rim of the accretion disc, with optical emission being non-uniformly distributed along the rim. The location of the hotspot in the accretion disc implies a disc radius larger than that of an inviscid disc, with variation in the position of the hotspot being consistent with a fixed stream trajectory.

  19. The 1st of April 2470 BC Total Solar Eclipse Seen by the Prophet Ibraheem

    Science.gov (United States)

    Yousef, S. M.

    The Holy Quran describes a phenomenon seen by young Abraham that can only fit a solar eclipse. Two criteria were given for this particular eclipse; first only one planet was seen as soon as it got dark and second no corona was seen. In order to justify the first selection rule, examinations of solar and planetary longitudes for total solar eclipses passing over Babel were carried out. Only the eclipse of the 1st of April 2470 BC meets this condition, as it was only Venus that was seen at that eclipse. The second selection rule was also naturally fulfilled, as Babel happened to be on the border of the totality zone hence no corona was seen, however all the time the moon glistened as Baily's beads. There is no doubt that the prophet Abraham witnessed the 1st of April total solar eclipse that passed over Babel. This will put him about 470 years backward than it was previously anticipated.

  20. What are the Perspectives of Indonesian Students to Japanese Ritual during Solar Eclipse?

    Science.gov (United States)

    Haristiani, N.; Rusli, A.; Wiryani, A. S.; Nandiyanto, A. B. D.; Purnamasari, A.; Sucahya, T. N.; Permatasari, N.

    2018-02-01

    In this globalization era, many people still believe the myths about solar eclipse. The myths about solar eclipse are different between one country or are to another. In this context, the aim of this study was to investigate the perspective of Indonesian students in viewing how the Japanese people face their believing myths in solar eclipse. This research also investigated the student belief on several mythical stories in Indonesia, their understanding of the Islamic view, and their knowledge based on science concept relating to the solar eclipse phenomenon. To understand the Indonesian students’ perspective about the solar eclipse myths in Japanese, we took a survey to Indonesian students which are studying Japanese culture and language. Based on the results, the Indonesian student think that there is no significant difference between Indonesian and Japanese people in facing the solar eclipse.

  1. Confirming Variability in the Secondary Eclipse Depth of the Rocky Super-Earth 55 Cancri e

    Science.gov (United States)

    Tamburo, Patrick; Mandell, Avi; Deming, Drake; Garhart, Emily

    2017-01-01

    We present a reanalysis of Spitzer transit and secondary eclipse observations of the rocky super Earth 55 Cancri e using Pixel Level Decorrelation (Deming et al. 2015). Secondary eclipses of this planet were found to be significantly variable by Demory et al. (2016), implying a changing brightness temperature which could be evidence of volcanic activity due to tidal forces. If genuine, this result would represent the first evidence for such a process outside of bodies in our own solar system, and would further expand our understanding of the huge variety of planetary systems that can develop in our universe. Spitzer eclipse observations, however, are subject to strong systematic effects which can heavily impact the retrieved eclipse model. A reanalysis of this result with an independent method is therefore needed to confirm eclipse depth variability. We tentatively confirm variability, finding a shallower increase in eclipse depth over the course of observations compared to Demory et al. (2015).

  2. Identification of faint central stars in extended, low-surface-brightness planetary nebulae

    International Nuclear Information System (INIS)

    Kwitter, K.B.; Lydon, T.J.; Jacoby, G.H.

    1988-01-01

    As part of a larger program to study the properties of planetary nebula central stars, a search for faint central stars in extended, low-surface-brightness planetary nebulae using CCD imaging is performed. Of 25 target nebulae, central star candidates have been identified in 17, with certainties ranging from extremely probable to possible. Observed V values in the central star candidates extend to fainter than 23 mag. The identifications are presented along with the resulting photometric measurements. 24 references

  3. The Evolution in the Faint-End Slope of the Quasar Luminosity Function

    OpenAIRE

    Hopkins, Philip F.; Hernquist, Lars; Cox, Thomas J.; Di Matteo, Tiziana; Robertson, Brant; Springel, Volker

    2005-01-01

    (Abridged) Based on numerical simulations of galaxy mergers that incorporate black hole (BH) growth, we predict the faint end slope of the quasar luminosity function (QLF) and its evolution with redshift. Our simulations have yielded a new model for quasar lifetimes where the lifetime depends on both the instantaneous and peak quasar luminosities. This motivates a new interpretation of the QLF in which the bright end consists of quasars radiating at nearly their peak luminosities, but the fai...

  4. MEASURING THE UNDETECTABLE: PROPER MOTIONS AND PARALLAXES OF VERY FAINT SOURCES

    International Nuclear Information System (INIS)

    Lang, Dustin; Hogg, David W.; Jester, Sebastian; Rix, Hans-Walter

    2009-01-01

    The near future of astrophysics involves many large solid-angle, multi-epoch, multiband imaging surveys. These surveys will, at their faint limits, have data on a large number of sources that are too faint to be detected at any individual epoch. Here, we show that it is possible to measure in multi-epoch data not only the fluxes and positions, but also the parallaxes and proper motions of sources that are too faint to be detected at any individual epoch. The method involves fitting a model of a moving point source simultaneously to all imaging, taking account of the noise and point-spread function (PSF) in each image. By this method it is possible to measure the proper motion of a point source with an uncertainty close to the minimum possible uncertainty given the information in the data, which is limited by the PSF, the distribution of observation times (epochs), and the total signal-to-noise in the combined data. We demonstrate our technique on multi-epoch Sloan Digital Sky Survey (SDSS) imaging of the SDSS Southern Stripe (SDSSSS). We show that with our new technique we can use proper motions to distinguish very red brown dwarfs from very high-redshift quasars in these SDSS data, for objects that are inaccessible to traditional techniques, and with better fidelity than by multiband imaging alone. We rediscover all 10 known brown dwarfs in our sample and present nine new candidate brown dwarfs, identified on the basis of significant proper motion.

  5. Exploring three faint source detections methods for aperture synthesis radio images

    Science.gov (United States)

    Peracaula, M.; Torrent, A.; Masias, M.; Lladó, X.; Freixenet, J.; Martí, J.; Sánchez-Sutil, J. R.; Muñoz-Arjonilla, A. J.; Paredes, J. M.

    2015-04-01

    Wide-field radio interferometric images often contain a large population of faint compact sources. Due to their low intensity/noise ratio, these objects can be easily missed by automated detection methods, which have been classically based on thresholding techniques after local noise estimation. The aim of this paper is to present and analyse the performance of several alternative or complementary techniques to thresholding. We compare three different algorithms to increase the detection rate of faint objects. The first technique consists of combining wavelet decomposition with local thresholding. The second technique is based on the structural behaviour of the neighbourhood of each pixel. Finally, the third algorithm uses local features extracted from a bank of filters and a boosting classifier to perform the detections. The methods' performances are evaluated using simulations and radio mosaics from the Giant Metrewave Radio Telescope and the Australia Telescope Compact Array. We show that the new methods perform better than well-known state of the art methods such as SEXTRACTOR, SAD and DUCHAMP at detecting faint sources of radio interferometric images.

  6. Comment on "Clouds and the Faint Young Sun Paradox" by Goldblatt and Zahnle (2011

    Directory of Open Access Journals (Sweden)

    R. Rondanelli

    2012-03-01

    Full Text Available Goldblatt and Zahnle (2011 raise a number of issues related to the possibility that cirrus clouds can provide a solution to the faint young sun paradox. Here, we argue that: (1 climates having a lower than present mean surface temperature cannot be discarded as solutions to the faint young sun paradox, (2 the detrainment from deep convective clouds in the tropics is a well-established physical mechanism for the formation of high clouds that have a positive radiative forcing (even if the possible role of these clouds as a negative climate feedback remains controversial and (3 even if some cloud properties are not mutually consistent with observations in radiative transfer parameterizations, the most relevant consistency (for the purpose of hypothesis testing is with observations of the cloud radiative forcing. Therefore, we maintain that cirrus clouds, as observed in the current climate and covering a large region of the tropics, can provide a solution to the faint young sun paradox, or at least ease the amount of CO2 or other greenhouse substances needed to provide temperatures above freezing during the Archean.

  7. On the Nature of Ultra-faint Dwarf Galaxy Candidates. II. The Case of Cetus II

    Science.gov (United States)

    Conn, Blair C.; Jerjen, Helmut; Kim, Dongwon; Schirmer, Mischa

    2018-04-01

    We obtained deep Gemini GMOS-S g, r photometry of the ultra-faint dwarf galaxy candidate Cetus II with the aim of providing stronger constraints on its size, luminosity, and stellar population. Cetus II is an important object in the size–luminosity plane, as it occupies the transition zone between dwarf galaxies and star clusters. All known objects smaller than Cetus II (r h ∼ 20 pc) are reported to be star clusters, while most larger objects are likely dwarf galaxies. We found a prominent excess of main-sequence stars in the color–magnitude diagram of Cetus II, best described by a single stellar population with an age of 11.2 Gyr, metallicity of [Fe/H] = ‑1.28 dex, an [α/Fe] = 0.0 dex at a heliocentric distance of 26.3 ± 1.2 kpc. As well as being spatially located within the Sagittarius dwarf tidal stream, these properties are well matched to the Sagittarius galaxy’s Population B stars. Interestingly, like our recent findings on the ultra-faint dwarf galaxy candidate Tucana V, the stellar field in the direction of Cetus II shows no evidence of a concentrated overdensity despite tracing the main sequence for over six magnitudes. These results strongly support the picture that Cetus II is not an ultra-faint stellar system in the Milky Way halo, but made up of stars from the Sagittarius tidal stream.

  8. The Faint End of the Lyman Alpha Luminosity Function at 2 < z < 3.8

    Science.gov (United States)

    Devarakonda, Yaswant; Livermore, Rachael; Indahl, Briana; Wold, Isak; Davis, Dustin; Finkelstein, Steven

    2018-01-01

    Most current models predict that our universe is mostly composed of small, dim galaxies. Due to these galaxies being so faint, it is very difficult to study these types of galaxies outside of our local universe. This is particularly an issue for studying how these small galaxies evolved over their lifetimes. With the benefit of gravitational lensing, however, we are able to observe galaxies that are farther and fainter than ever before possible. In this particular study, we focus on Lyman-Alpha emitting galaxies between the redshifts of 2-3.8, so that we may study these galaxies during the epoch of peak star formation in the universe. We use the McDonald Observatory 2.7, Harlan Smith telescope with the VIRUS-P IFU spectrograph to observe several Hubble Frontier Field lensing clusters to spectroscopically discover faint galaxies over this redshift range. In addition to providing insight into the faint-end slope of the Lyman alpha luminosity function, the spectroscopic redshifts will allow us to better constrain the mass models of the foreground clusters, such as Abell 370, so that we may better understand lensing effects for this and future studies.

  9. The 2017 solar eclipse and Majorana & Allais gravity anomalies

    Science.gov (United States)

    Munera, Hector A.

    2017-01-01

    Two little known anomalies hint to phenomena beyond current theory. Majorana effect: around 1920 in a series of well-designed experiments with a chemical laboratory balance, Quirino Majorana found in Italy that mercury (Hg) and lead (Pb) might shield terrestrial gravity. Majorana experiments were never repeated by the international scientific community. Instead his results were dismissed on theoretical claims: a) unobserved heating of earth by absorption of gravity, and b) unobserved cyclic lunar perturbation of solar gravity at earth’s surface. However, Majorana critics missed the crucial fact that shielding is not mere absorption, but also scattering, and that atomic number Z of matter in the moon is much lower than Z=80 (Hg) and Z=82 (Pb). From the June 30/1954 solar eclipse onwards, high-quality mechanical gravimeters were used to search for Majorana shielding by the moon. Results are positive, provided that shielding is interpreted as scattering rather than absorption of gravity by moon (H. A. Munera, Physics Essays 24, 428-434, 2011). Allais effect: during the same 1954 eclipse (partial in Paris) Maurice Allais had in operation a sensitive paraconical pendulum for a very different purpose. Surprisingly, the pendulum was perturbed by the eclipse, condition repeated once again in a 1959 solar eclipse, also partial in Paris. During the past sixty years, paraconical, torsion and Foucault pendula, and other mechanical devices, have been used to (dis)confirm Allais effect, but the results are not conclusive thus far. A book edited by this author (Should the laws of gravitation be revised? Apeiron 2011) describes some of those observations. Various unexpected effects, some of them torsional, appear both near the optical shadow, and far away. The Sun-Moon-Earth alignment in a solar eclipse allows detection on the terrestrial surface of the dark matter flow scattered on moon’s surface (flow not hitting earth in other geometries). Rotation of moon may induce

  10. THE ECLIPSING SYSTEM EP ANDROMEDAE AND ITS CIRCUMBINARY COMPANIONS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Woo; Hinse, Tobias Cornelius; Park, Jang-Ho, E-mail: jwlee@kasi.re.kr, E-mail: tchinse@gmail.com, E-mail: pooh107162@kasi.re.kr [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of)

    2013-04-15

    We present new long-term CCD photometry for EP And acquired during the period 2007-2012. The light curves display total eclipses at primary minima and season-to-season light variability. Our synthesis for all available light curves indicates that the eclipsing pair is a W-type overcontact binary with parameters of q = 2.578, i = 83. Degree-Sign 3, {Delta}T = 27 K, f = 28%, and l{sub 3} = 2%-3%. The asymmetric light curves in 2007 were satisfactorily modeled by a cool spot on either of the eclipsing components from a magnetic dynamo. Including our 95 timing measurements, a total of 414 times of minimum light spanning about 82 yr was used for a period study. A detailed analysis of the eclipse timing diagram revealed that the orbital period of EP And has varied as a combination of an upward-opening parabola and two periodic variations, with cycle lengths of P{sub 3} = 44.6 yr and P{sub 4} = 1.834 yr and semi-amplitudes of K{sub 3} = 0.0100 days and K{sub 4} = 0.0039 days, respectively. The observed period increase at a fractional rate of +1.39 Multiplication-Sign 10{sup -10} is in excellent agreement with that calculated from the W-D code and can be plausibly explained by some combination of mass transfer from the primary to the secondary star and angular momentum loss due to magnetic braking. The most reasonable explanation for both cycles is a pair of light-travel-time effects driven by the possible existence of a third and fourth component with projected masses of M{sub 3} = 0.25 M{sub Sun} and M{sub 4} = 0.90 M{sub Sun }. The more massive companion could be revealed using high-resolution spectroscopic data extending over the course of a few years and could also be a binary itself. It is possible that the circumbinary objects may have played an important role in the formation and evolution of the eclipsing pair, which would cause it to have a short initial orbital period and thus evolve into an overcontact configuration by angular momentum loss.

  11. Infrared-faint radio sources are at high redshifts. Spectroscopic redshift determination of infrared-faint radio sources using the Very Large Telescope

    Science.gov (United States)

    Herzog, A.; Middelberg, E.; Norris, R. P.; Sharp, R.; Spitler, L. R.; Parker, Q. A.

    2014-07-01

    Context. Infrared-faint radio sources (IFRS) are characterised by relatively high radio flux densities and associated faint or even absent infrared and optical counterparts. The resulting extremely high radio-to-infrared flux density ratios up to several thousands were previously known only for high-redshift radio galaxies (HzRGs), suggesting a link between the two classes of object. However, the optical and infrared faintness of IFRS makes their study difficult. Prior to this work, no redshift was known for any IFRS in the Australia Telescope Large Area Survey (ATLAS) fields which would help to put IFRS in the context of other classes of object, especially of HzRGs. Aims: This work aims at measuring the first redshifts of IFRS in the ATLAS fields. Furthermore, we test the hypothesis that IFRS are similar to HzRGs, that they are higher-redshift or dust-obscured versions of these massive galaxies. Methods: A sample of IFRS was spectroscopically observed using the Focal Reducer and Low Dispersion Spectrograph 2 (FORS2) at the Very Large Telescope (VLT). The data were calibrated based on the Image Reduction and Analysis Facility (IRAF) and redshifts extracted from the final spectra, where possible. This information was then used to calculate rest-frame luminosities, and to perform the first spectral energy distribution modelling of IFRS based on redshifts. Results: We found redshifts of 1.84, 2.13, and 2.76, for three IFRS, confirming the suggested high-redshift character of this class of object. These redshifts and the resulting luminosities show IFRS to be similar to HzRGs, supporting our hypothesis. We found further evidence that fainter IFRS are at even higher redshifts. Conclusions: Considering the similarities between IFRS and HzRGs substantiated in this work, the detection of IFRS, which have a significantly higher sky density than HzRGs, increases the number of active galactic nuclei in the early universe and adds to the problems of explaining the formation of

  12. Mechanism of adsorption and eclipse of bacteriophage phi X174. I. In vitro conformational change under conditions of eclipse.

    Science.gov (United States)

    Incardona, N L; Blonski, R; Feeney, W

    1972-01-01

    Bacteriophage phiX174 undergoes a conformational change during viral eclipse when virus-host cell complexes are incubated briefly at 37 C in a complex starvation buffer at pH 8. In this report, basically the same transition is demonstrated in vitro. Incubation of phiX alone for 2 to 3 hr at 35 C in 0.1 m CaCl(2) (pH 7.2) results in an irreversible decrease in S(20,w) because of an increase in the frictional coefficient that occurs during the change in conformation. The slower sedimenting conformation is noninfectious. These properties are remarkably similar to those of the eclipsed particles characterized by Newbold and Sinsheimer. Therefore, the key structural requirements for the molecular mechanism must reside within the architecture of the virus itself. This extremely simplified system uncovered the calcium ion requirement and pronounced dependence on pH between 6 and 7, both inherent properties of adsorption. This and the more than 10-fold greater rate of the in vivo conformational transition allude to the cooperative nature of attachment and eclipse for phiX.

  13. Kepler Eclipsing Binary Stars. I. Catalog and Principal Characterization of 1879 Eclipsing Binaries in the First Data Release

    Science.gov (United States)

    Prša, Andrej; Batalha, Natalie; Slawson, Robert W.; Doyle, Laurance R.; Welsh, William F.; Orosz, Jerome A.; Seager, Sara; Rucker, Michael; Mjaseth, Kimberly; Engle, Scott G.; Conroy, Kyle; Jenkins, Jon; Caldwell, Douglas; Koch, David; Borucki, William

    2011-03-01

    The Kepler space mission is devoted to finding Earth-size planets orbiting other stars in their habitable zones. Its large, 105 deg2 field of view features over 156,000 stars that are observed continuously to detect and characterize planet transits. Yet, this high-precision instrument holds great promise for other types of objects as well. Here we present a comprehensive catalog of eclipsing binary stars observed by Kepler in the first 44 days of operation, the data being publicly available through MAST as of 2010 June 15. The catalog contains 1879 unique objects. For each object, we provide its Kepler ID (KID), ephemeris (BJD0, P 0), morphology type, physical parameters (T eff, log g, E(B - V)), the estimate of third light contamination (crowding), and principal parameters (T 2/T 1, q, fillout factor, and sin i for overcontacts, and T 2/T 1, (R 1 + R 2)/a, esin ω, ecos ω, and sin i for detached binaries). We present statistics based on the determined periods and measure the average occurrence rate of eclipsing binaries to be ~1.2% across the Kepler field. We further discuss the distribution of binaries as a function of galactic latitude and thoroughly explain the application of artificial intelligence to obtain principal parameters in a matter of seconds for the whole sample. The catalog was envisioned to serve as a bridge between the now public Kepler data and the scientific community interested in eclipsing binary stars.

  14. KEPLER ECLIPSING BINARY STARS. I. CATALOG AND PRINCIPAL CHARACTERIZATION OF 1879 ECLIPSING BINARIES IN THE FIRST DATA RELEASE

    International Nuclear Information System (INIS)

    Prsa, Andrej; Engle, Scott G.; Conroy, Kyle; Batalha, Natalie; Rucker, Michael; Mjaseth, Kimberly; Slawson, Robert W.; Doyle, Laurance R.; Welsh, William F.; Orosz, Jerome A.; Seager, Sara; Jenkins, Jon; Caldwell, Douglas; Koch, David; Borucki, William

    2011-01-01

    The Kepler space mission is devoted to finding Earth-size planets orbiting other stars in their habitable zones. Its large, 105 deg 2 field of view features over 156,000 stars that are observed continuously to detect and characterize planet transits. Yet, this high-precision instrument holds great promise for other types of objects as well. Here we present a comprehensive catalog of eclipsing binary stars observed by Kepler in the first 44 days of operation, the data being publicly available through MAST as of 2010 June 15. The catalog contains 1879 unique objects. For each object, we provide its Kepler ID (KID), ephemeris (BJD 0 , P 0 ), morphology type, physical parameters (T eff , log g, E(B - V)), the estimate of third light contamination (crowding), and principal parameters (T 2 /T 1 , q, fillout factor, and sin i for overcontacts, and T 2 /T 1 , (R 1 + R 2 )/a, esin ω, ecos ω, and sin i for detached binaries). We present statistics based on the determined periods and measure the average occurrence rate of eclipsing binaries to be ∼1.2% across the Kepler field. We further discuss the distribution of binaries as a function of galactic latitude and thoroughly explain the application of artificial intelligence to obtain principal parameters in a matter of seconds for the whole sample. The catalog was envisioned to serve as a bridge between the now public Kepler data and the scientific community interested in eclipsing binary stars.

  15. Outreach to Scientists and to the Public about the Scientific Value of Solar Eclipses

    Science.gov (United States)

    Pasachoff, J.

    2017-12-01

    The Great American Eclipse of August 21, 2017, provided an unprecedented opportunity for outreach among American audiences on a giant scale in the age of social media. Professonal scientists and other educators, however, were not exempt from ignorance of the remaining scientific value of observing solar eclipses, often mistakenly thinking that space satellites or mountaintop observatories could make artificial eclipses as good as natural ones, which they can't. Further, as Chair of the Working Group on Eclipses of the International Astronomical Union and as a frequent observer of solar eclipses in other countries, I felt an obligation to provide at-least-equal hospitality in our country. Here I discuss our welcome to and interaction with eclipse scientists from Greece, Slovakia, Australia, Bulgaria, Iran, China, and Japan and their participation in the eclipse observations. I describe my own outreach about the still-vital solar-eclipse observations through my August 2017 articles in Nature Astronomy and Scientific American as well as through book reviews in Nature and Phi Beta Kappa's Key Reporter and co-authorship of a Resource Letter on Observing Solar Eclipses in the July issue og the American Journal of Physics. I describe my eclipse-day Academic Minute on National Public Radio via WAMC and on http://365daysofastronomy.org, a website started during the International Year of Astronomy. I discuss my blog post on lecturing to pre-school through elementary-school students for the National Geographic Society's Education Blog. I show my Op-Ed pre-eclipse in the Washington Post. I discuss our eclipse-night broadcast of an eclipse program on PBS's NOVA, and its preparation over many months, back as far and farther than the February 26, 2017, annular solar eclipse observed from Argentinian Patagonia, with images from prior eclipses including 2013 in Gabon and 2015 in Svalbard. My work at the 2017 total solar eclipse was supported in large part with grants from the

  16. The Solar Eclipse Predictions of Chiljeongsam-Oepyeon in Early Choseon

    Science.gov (United States)

    Ahn, Young Sook; Lee, Yong Sam

    2004-12-01

    The history books of East Asia about astronomical phenomena have the more records of the solar eclipse frequently than any other ones. It is because traditionally, the solar eclipse meaned the fate of dynasty and the king's rule. The Sun, the biggest thing in the heaven symbolized the king, and the solar eclipse foresaw that the king had the problem in private including the body, and the country might suffer from difficulties in a great scale. So the king and all of the ministers used to gather to hold a ceremony named Gusikrye which solar eclipse may pass safely. Consequently, kings always had concernments on collecting informations of solar eclipse. Inspite of importance of solar eclipse predictions, but at the beginning of the Choseon, the predictions of the solar eclipse didn't fit. King Sejong compiled the Chiljeongsan-naepion and the Chiljeongsan-oepyeon to calculate the celestial phenomena including the solar eclipse. By the publications of these two books, the calendar making system of Choseon was firmly established. The Chiljeongsan-oepyeon adopted Huihui calendar of Arabia. The Solar eclipse predictions of Chiljeongsan-oepyeon were relative correct compared to modern method in early Choseon dynasty.

  17. The Solar Eclipse Predictions of Chiljeongsam-Oepyeon in Early Choseon

    Directory of Open Access Journals (Sweden)

    Young Sook Ahn

    2004-12-01

    Full Text Available The history books of East Asia about astronomical phenomena have the more records of the solar eclipse frequently than any other ones. It is because traditionally, the solar eclipse meaned the fate of dynasty and the king's rule. The Sun, the biggest thing in the heaven symbolized the king, and the solar eclipse foresaw that the king had the problem in private including the body, and the country might suffer from difficulties in a great scale. So the king and all of the ministers used to gather to hold a ceremony named Gusikrye which solar eclipse may pass safely. Consequently, kings always had concernments on collecting informations of solar eclipse. Inspite of importance of solar eclipse predictions, but at the beginning of the Choseon, the predictions of the solar eclipse didn't fit. King Sejong compiled the Chiljeongsan-naepion and the Chiljeongsan-oepyeon to calculate the celestial phenomena including the solar eclipse. By the publications of these two books, the calendar making system of Choseon was firmly established. The Chiljeongsan-oepyeon adopted Huihui calendar of Arabia. The Solar eclipse predictions of Chiljeongsan-oepyeon were relative correct compared to modern method in early Choseon dynasty.

  18. Books and Other Resources for Education about the August 21, 2017, Solar Eclipse

    Science.gov (United States)

    Pasachoff, Jay M.; Fraknoi, Andrew; Kentrianakis, Michael

    2017-06-01

    As part of our work to reach and educate the 300+ million Americans of all ages about observing the August 21 solar eclipse, especially by being outdoors in the path of totality but also for those who will see only partial phases, we have compiled annotated lists of books, pamphlets, travel guides, websites, and other information useful for teachers, students, and the general public and made them available on the web, at conferences, and through webinars. Our list includes new eclipse books by David Barron, Anthony Aveni, Frank Close, Tyler Nordgren, John Dvorak, Michael Bakich, and others. We list websites accessible to the general public including those of the International Astronomical Union Working Group on Eclipses (http://eclipses.info, which has links to all the sites listed below); the AAS Eclipse 2017 Task Force (http://eclipse2017.aas.org); NASA Heliophysics (http://eclipse.nasa.gov); Fred Espenak (the updated successor to his authoritative "NASA website": http://EclipseWise.com); Michael Zeiler (http://GreatAmericanEclipse.com); Xavier Jubier (http://xjubier.free.fr/en/site_pages/solar_eclipses/); Jay Anderson (meteorology: http://eclipsophile.com); NASA's Eyes (http://eyes.nasa.gov/eyes-on-eclipse.html and its related app); the Astronomical Society of the Pacific (http://www.astrosociety.org/eclipse); Dan McGlaun (http://eclipse2017.org/); Bill Kramer (http://eclipse-chasers.com). Specialized guides include Dennis Schatz and Andrew Fraknoi's Solar Science for teachers (from the National Science Teachers Association:http://www.nsta.org/publications/press/extras/files/solarscience/SolarScienceInsert.pdf), and a printing with expanded eclipse coverage of Jay Pasachoff's, Peterson Field Guide to the Stars and Planets (14th printing of the fourth edition, 2016: http://solarcorona.com).A version of our joint list is to be published in the July issue of the American Journal of Physics as a Resource Letter on Eclipses, adding to JMP's 2010, "Resource Letter SP

  19. Project Report ECLIPSE: European Citizenship Learning Program for Secondary Education

    Directory of Open Access Journals (Sweden)

    Olga Bombardelli

    2014-04-01

    Full Text Available This paper reports on a European project, the Comenius ECLIPSE project (European Citizenship Learning in a Programme for Secondary Education developed by six European partners coordinated by the University of Trento in the years 2011-2014. ECLIPSE (co-financed by the EACEA - Education, Audiovisual and Culture Executive Agency aims at developing, testing, and implementing a Programme of European Citizenship, in order to improve citizenship competence and responsibility and to strengthen the sense of belonging and European identity of 8th grade pupils. These goals are reachable thanks to a number of measures in formal, non-formal and informal fields. The project partners created teaching and monitoring tools for pupils: seven ECMs (European Citizenship Modules, knowledge tests, pupils’ portfolio, and suggestions for teachers, especially a portfolio for ECLIPSE educators. The ECLIPSE teaching/ testing materials were implemented in several schools of the partner’s countries in order to make sure that it is useful for European pupils of different school systems. It can be used in a flexible way keeping in mind different learning needs in each school system, with a view to improving transversal competencies like learning to learn, as well as initiative and active involvement in improving the chances for young people in citizenship and work worlds. Dieses Papier beschreibt ein europäisches Projekt: das Comenius Projekt ECLIPSE (European Citizenship Learning in einem Programm für Secondary Education, das von sechs europäischen Partnern entwickelt und von der Universität Trient in den Jahren 2011-2014 koordiniert wurde. ECLIPSE wurde von der EACEA (Education, Audiovisual and Culture Executive Agency kofinanziert; es zielt auf die Entwicklung, Überprüfung und Implementierung eines Programms zur Entwicklung eines europäischen Bürgersinns, um Kompetenzen als Staatsbürger und zugleich einer europäischen Identität und Verantwortung bei Sch

  20. THE EVOLUTION OF CATACLYSMIC VARIABLES AS REVEALED BY THEIR DONOR STARS

    International Nuclear Information System (INIS)

    Knigge, Christian; Baraffe, Isabelle; Patterson, Joseph

    2011-01-01

    We present an attempt to reconstruct the complete evolutionary path followed by cataclysmic variables (CVs), based on the observed mass-radius relationship of their donor stars. Along the way, we update the semi-empirical CV donor sequence presented previously by one of us, present a comprehensive review of the connection between CV evolution and the secondary stars in these systems, and reexamine most of the commonly used magnetic braking (MB) recipes, finding that even conceptually similar ones can differ greatly in both magnitude and functional form. The great advantage of using donor radii to infer mass-transfer and angular-momentum-loss (AML) rates is that they sample the longest accessible timescales and are most likely to represent the true secular (evolutionary average) rates. We show explicitly that if CVs exhibit long-term mass-transfer-rate fluctuations, as is often assumed, the expected variability timescales are so long that other tracers of the mass-transfer rate-including white dwarf (WD) temperatures-become unreliable. We carefully explore how much of the radius difference between CV donors and models of isolated main-sequence stars may be due to mechanisms other than mass loss. The tidal and rotational deformation of Roche-lobe-filling stars produces ≅ 4.5% radius inflation below the period gap and ≅ 7.9% above. A comparison of stellar models to mass-radius data for non-interacting stars suggests a real offset of ≅ 1.5% for fully convective stars (i.e., donors below the gap) and ≅ 4.9% for partially radiative ones (donors above the gap). We also show that donor bloating due to irradiation is probably smaller than, and at most comparable to, these effects. After calibrating our models to account for these issues, we fit self-consistent evolution sequences to our compilation of donor masses and radii. In the standard model of CV evolution, AMLs below the period gap are assumed to be driven solely by gravitational radiation (GR), while AMLs

  1. The Evolution of Cataclysmic Variables as Revealed by Their Donor Stars

    Science.gov (United States)

    Knigge, Christian; Baraffe, Isabelle; Patterson, Joseph

    2011-06-01

    We present an attempt to reconstruct the complete evolutionary path followed by cataclysmic variables (CVs), based on the observed mass-radius relationship of their donor stars. Along the way, we update the semi-empirical CV donor sequence presented previously by one of us, present a comprehensive review of the connection between CV evolution and the secondary stars in these systems, and reexamine most of the commonly used magnetic braking (MB) recipes, finding that even conceptually similar ones can differ greatly in both magnitude and functional form. The great advantage of using donor radii to infer mass-transfer and angular-momentum-loss (AML) rates is that they sample the longest accessible timescales and are most likely to represent the true secular (evolutionary average) rates. We show explicitly that if CVs exhibit long-term mass-transfer-rate fluctuations, as is often assumed, the expected variability timescales are so long that other tracers of the mass-transfer rate—including white dwarf (WD) temperatures—become unreliable. We carefully explore how much of the radius difference between CV donors and models of isolated main-sequence stars may be due to mechanisms other than mass loss. The tidal and rotational deformation of Roche-lobe-filling stars produces ~= 4.5% radius inflation below the period gap and ~= 7.9% above. A comparison of stellar models to mass-radius data for non-interacting stars suggests a real offset of ~= 1.5% for fully convective stars (i.e., donors below the gap) and ~= 4.9% for partially radiative ones (donors above the gap). We also show that donor bloating due to irradiation is probably smaller than, and at most comparable to, these effects. After calibrating our models to account for these issues, we fit self-consistent evolution sequences to our compilation of donor masses and radii. In the standard model of CV evolution, AMLs below the period gap are assumed to be driven solely by gravitational radiation (GR), while AMLs

  2. Geospatial Analysis of Low-frequency Radio Signals Collected During the 2017 Solar Eclipse

    Science.gov (United States)

    Liles, W. C.; Nelson, J.; Kerby, K. C.; Lukes, L.; Henry, J.; Oputa, J.; Lemaster, G.

    2017-12-01

    The total solar eclipse of 2017, with a path that crosses the continental United States, offers a unique opportunity to gather geospatially diverse data. The EclipseMob project has been designed to crowdsource this data by building a network of citizen scientists across the country. The project focuses on gathering low-frequency radio wave data before, during, and after the eclipse. WWVB, a 60 KHz transmitter in Ft. Collins, CO operated by the National Institutes of Standard and Technology, will provide the transmit signal that will be observed by project participants. Participating citizen scientists are building simple antennas and receivers designed by the EclipseMob team and provided to participants in the form of "receiver kits." The EclipseMob receiver downsamples the 60 KHz signal to 18 KHz and supplies the downsampled signal to the audio jack of a smartphone. A dedicated app is used to collect data and upload it to the EclipseMob server. By studying the variations in WWVB amplitude observed during the eclipse at over 150 locations across the country, we aim to understand how the ionization of the D layer of the ionosphere is impacted by the eclipse as a function of both time and space (location). The diverse locations of the EclipseMob participants will provide data from a wide variety of propagation paths - some crossing the path of the total eclipse, and some remaining on the same side of the eclipse path as the transmitter. Our initial data analysis will involve identifying characteristics that define geospatial relationships in the behavior of observed WWVB signal amplitudes.

  3. On the Importance of Solar Eclipse Geometry in the Interpretation of Ionospheric Observations

    Science.gov (United States)

    Stankov, S.; Verhulst, T. G. W.

    2017-12-01

    A reliable interpretation of solar eclipse effects on the geospace environment, and on the ionosphere in particular, necessitates a careful consideration of the so-called eclipse geometry. A solar eclipse is a relatively rare astronomical phenomenon, which geometry is rather complex, specific for each event, and fast changing in time. The standard, most popular way to look at the eclipse geometry is via the two-dimensional representation (map) of the solar obscuration on the Earth's surface, in which the path of eclipse totality is drawn together with isolines of the gradually-decreasing eclipse magnitude farther away from this path. Such "surface maps" are widely used to readily explain some of the solar eclipse effects including, for example, the well-known decrease in total ionisation (due to the substantial decrease in solar irradiation), usually presented by the popular and easy to understand ionospheric characteristic of Total Electron Content (TEC). However, many other effects, especially those taking place at higher altitudes, cannot be explained in this fashion. Instead, a complete, four-dimensional (4D) description of the umbra (and penumbra), would be required. This presentation will address the issue of eclipse geometry effects on various ionospheric observations carried out during the total solar eclipse of August 21, 2017. In particular, GPS-based TEC and ionosonde measurements will be analysed and the eclipse effects on the ionosphere will be interpreted with respect to the actual eclipse geometry at ionospheric heights. Whenever possible, a comparison will be made with results from previous events, such as the ones from March 20, 2015 and October 3, 2005.

  4. Magnetic Inflation and Stellar Mass. I. Revised Parameters for the Component Stars of the Kepler Low-mass Eclipsing Binary T-Cyg1-12664

    Energy Technology Data Exchange (ETDEWEB)

    Han, Eunkyu; Muirhead, Philip S. [Department of Astronomy and Institute for Astrophysical Research, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States); Swift, Jonathan J. [The Thacher School, 5025 Thacher Road Ojai, CA 93023 (United States); Baranec, Christoph; Atkinson, Dani [Institute for Astronomy, University of Hawaiì at Mānoa, Hilo, HI 96720-2700 (United States); Law, Nicholas M. [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255 (United States); Riddle, Reed [California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Mace, Gregory N. [McDonald Observatory and The University of Texas, 2515 Speedway, Stop C1400, Austin, TX 78712-1205 (United States); DeFelippis, Daniel, E-mail: eunkyuh@bu.edu [Department of Astronomy, Columbia University, 550 West 120th Street, New York, NY 10027 (United States)

    2017-09-01

    Several low-mass eclipsing binary stars show larger than expected radii for their measured mass, metallicity, and age. One proposed mechanism for this radius inflation involves inhibited internal convection and starspots caused by strong magnetic fields. One particular eclipsing binary, T-Cyg1-12664, has proven confounding to this scenario. Çakırlı et al. measured a radius for the secondary component that is twice as large as model predictions for stars with the same mass and age, but a primary mass that is consistent with predictions. Iglesias-Marzoa et al. independently measured the radii and masses of the component stars and found that the radius of the secondary is not in fact inflated with respect to models, but that the primary is, which is consistent with the inhibited convection scenario. However, in their mass determinations, Iglesias-Marzoa et al. lacked independent radial velocity measurements for the secondary component due to the star’s faintness at optical wavelengths. The secondary component is especially interesting, as its purported mass is near the transition from partially convective to a fully convective interior. In this article, we independently determined the masses and radii of the component stars of T-Cyg1-12664 using archival Kepler data and radial velocity measurements of both component stars obtained with IGRINS on the Discovery Channel Telescope and NIRSPEC and HIRES on the Keck Telescopes. We show that neither of the component stars is inflated with respect to models. Our results are broadly consistent with modern stellar evolutionary models for main-sequence M dwarf stars and do not require inhibited convection by magnetic fields to account for the stellar radii.

  5. PN G068.1+11.0: A young pre-cataclysmic variable with an extremely hot primary

    Science.gov (United States)

    Mitrofanova, A. A.; Shimansky, V. V.; Borisov, N. V.; Spiridonova, O. I.; Gabdeev, M. M.

    2016-02-01

    An analysis of spectroscopic and photometric data for the young pre-cataclysmic variable (PCV) PN G068.1+11.0, which passed through its common-envelope stage relatively recently, is presented. The spectroscopic and photometric data were obtained with the 6-m telescope and Zeiss-1000 telescope of the Special Astrophysical Observatory. The light curves show sinusoidal brightness variations with the orbital-period time scale and brightness-variation amplitudes of Δ m = 1. m41, 1. m62, and 1. m57 in the B, V, and R bands, respectively. The system's spectrum exhibits weak HI (H β-H δ) andHeII λλ4541, 4686, 5411 Å absorption lines during the phases of minimum brightness, as well as HI, HeII, CIII, CIV, NIII, and OII emission lines whose intensity variations are synchronized with variations of the integrated brightness of the system. The emission-line formation in the spectra can be fully explained by the effects of fluorescence of the ultraviolet light from the primary at the surface of the cool star. All the characteristics of the optical light of PN G068.1+11.0 confirm that it is a young PCV containing sdO subdwarf. The radial velocities were measured from a blend of lines of moderately light elements, CIII+NIII λ4640 Å, which is formed at the surface of the secondary due to reflection effects. The ephemeris of the system has been improved through a joint analysis of the radial-velocity curves and light curves of pre-cataclysmic variable, using modelling of the reflection effects. The fundamental parameters of PN G068.1+11.0 have been determined using two evolutionary tracks for planetary-nebula nuclei of different masses (0.7 M ⊙and 0.78 M ⊙). The model spectra for the system and a comparison with the observations demonstrate the possibility of refining the components' effective temperatures if the quality of the spectra used is improved.

  6. Properties of an eclipsing double white dwarf binary NLTT 11748

    International Nuclear Information System (INIS)

    Kaplan, David L.; Walker, Arielle N.; Marsh, Thomas R.; Bours, Madelon C. P.; Breedt, Elmé; Bildsten, Lars; Copperwheat, Chris M.; Dhillon, Vik S.; Littlefair, Stuart P.; Howell, Steve B.; Shporer, Avi; Steinfadt, Justin D. R.

    2014-01-01

    We present high-quality ULTRACAM photometry of the eclipsing detached double white dwarf binary NLTT 11748. This system consists of a carbon/oxygen white dwarf and an extremely low mass (<0.2 M ☉ ) helium-core white dwarf in a 5.6 hr orbit. To date, such extremely low-mass white dwarfs, which can have thin, stably burning outer layers, have been modeled via poorly constrained atmosphere and cooling calculations where uncertainties in the detailed structure can strongly influence the eventual fates of these systems when mass transfer begins. With precise (individual precision ≈1%), high-cadence (≈2 s), multicolor photometry of multiple primary and secondary eclipses spanning >1.5 yr, we constrain the masses and radii of both objects in the NLTT 11748 system to a statistical uncertainty of a few percent. However, we find that overall uncertainty in the thickness of the envelope of the secondary carbon/oxygen white dwarf leads to a larger (≈13%) systematic uncertainty in the primary He WD's mass. Over the full range of possible envelope thicknesses, we find that our primary mass (0.136-0.162 M ☉ ) and surface gravity (log (g) = 6.32-6.38; radii are 0.0423-0.0433 R ☉ ) constraints do not agree with previous spectroscopic determinations. We use precise eclipse timing to detect the Rømer delay at 7σ significance, providing an additional weak constraint on the masses and limiting the eccentricity to ecos ω = (– 4 ± 5) × 10 –5 . Finally, we use multicolor data to constrain the secondary's effective temperature (7600 ± 120 K) and cooling age (1.6-1.7 Gyr).

  7. Properties of an eclipsing double white dwarf binary NLTT 11748

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, David L.; Walker, Arielle N. [Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI 53211 (United States); Marsh, Thomas R.; Bours, Madelon C. P.; Breedt, Elmé [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Bildsten, Lars [Kavli Institute for Theoretical Physics and Department of Physics, Kohn Hall, University of California, Santa Barbara, CA 93106 (United States); Copperwheat, Chris M. [Astrophysics Research Institute, Liverpool John Moores University, IC2, Liverpool Science Park, 146 Brownlow Hill, Liverpool L3 5RF (United Kingdom); Dhillon, Vik S.; Littlefair, Stuart P. [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom); Howell, Steve B. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Shporer, Avi [California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Steinfadt, Justin D. R., E-mail: kaplan@uwm.edu [Department of Physics, Broida Hall, University of California, Santa Barbara, CA 93106 (United States)

    2014-01-10

    We present high-quality ULTRACAM photometry of the eclipsing detached double white dwarf binary NLTT 11748. This system consists of a carbon/oxygen white dwarf and an extremely low mass (<0.2 M {sub ☉}) helium-core white dwarf in a 5.6 hr orbit. To date, such extremely low-mass white dwarfs, which can have thin, stably burning outer layers, have been modeled via poorly constrained atmosphere and cooling calculations where uncertainties in the detailed structure can strongly influence the eventual fates of these systems when mass transfer begins. With precise (individual precision ≈1%), high-cadence (≈2 s), multicolor photometry of multiple primary and secondary eclipses spanning >1.5 yr, we constrain the masses and radii of both objects in the NLTT 11748 system to a statistical uncertainty of a few percent. However, we find that overall uncertainty in the thickness of the envelope of the secondary carbon/oxygen white dwarf leads to a larger (≈13%) systematic uncertainty in the primary He WD's mass. Over the full range of possible envelope thicknesses, we find that our primary mass (0.136-0.162 M {sub ☉}) and surface gravity (log (g) = 6.32-6.38; radii are 0.0423-0.0433 R {sub ☉}) constraints do not agree with previous spectroscopic determinations. We use precise eclipse timing to detect the Rømer delay at 7σ significance, providing an additional weak constraint on the masses and limiting the eccentricity to ecos ω = (– 4 ± 5) × 10{sup –5}. Finally, we use multicolor data to constrain the secondary's effective temperature (7600 ± 120 K) and cooling age (1.6-1.7 Gyr).

  8. The Kepler eclipsing system KIC 5621294 and its substellar companion

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Woo; Hong, Kyeongsoo; Hinse, Tobias Cornelius, E-mail: jwlee@kasi.re.kr, E-mail: kshong@kasi.re.kr, E-mail: tchinse@gmail.com [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of)

    2015-03-01

    We present the physical properties of KIC 5621294, showing light and timing variations from the Kepler photometry. Its light curve displays partial eclipses and the O’Connell effect, with Max II fainter than Max I, which was fitted quite well by applying third-body and spot effects to the system. The results indicate that the eclipsing pair is a classical Algol-type system with parameters of q = 0.22, i = 76.°8, and Δ(T{sub 1}−T{sub 2}) = 4235 K, in which the detached primary component fills about 77% of its limiting lobe. Striking discrepancies exist between the primary and secondary eclipse times obtained with the method of Kwee and van Woerden. These are mainly caused by surface inhomogeneities due to spot activity detected in our light curve synthesis. The 1253 light curve timings from the Wilson–Devinney code were used for a period study. It was found that the orbital period of KIC 5621294 has varied due to periodic variation overlaid on a downward parabola. The sinusoidal variation with a period of 961 days and a semi-amplitude of 22.5 s most likely arises from a light-time effect due to a third component with a mass of M{sub 3}sini{sub 3} = 46.9 M{sub Jup}, which is in good agreement with that calculated from the light curve itself. If its orbital inclination is larger than about 40°, the mass of the circumbinary object would possibly match a brown dwarf. The parabolic variation could not be fully explained by either a mass transfer between the binary components or angular momentum via magnetic braking. It is possible that the parabola may be the only observed part of a period modulation caused by the presence of another companion in a wider orbit.

  9. Two Eclipses, a Theory, and a World War

    Science.gov (United States)

    Batten, Alan H.

    2015-01-01

    Both the beginning and ending of World War I were signalled by total solar eclipses at which attempts were made to measure the deflection, predicted by Albert Einstein, of starlight passing close to the Sun. An American team led by W. W. Campbell and a German team led by E. F. Freundlich travelled to Russia to observe the eclipse of 1914 August 21. The Americans were foiled by the weather, and the Germans were interned as enemy aliens, so no successful measurements were made. British astronomers, led by A. S. Eddington, mounted two expeditions to observe the eclipse of 1919 May 29, one to Brazil, the other, with Eddington personally in charge, to an island off the west coast of Africa. The results, presented with much fanfare, appeared to constitute a spectacular confirmation of general relativity, although much debate surrounded the observations and their interpretation in later decades. The stories of Freundlich and Eddington intertwine not only with controversial questions about how best to make and to reduce the observations, but also with attitudes toward the war, notably the extreme anti-German sentiment that pervaded the countries of the western alliance, contrasted with the Quaker pacifism of Eddington himself; and also with differing attitudes to relativity among European and American astronomers. Eddington later played a role in bringing Freundlich to the United Kingdom after the rise of Hitler and the Nazis. Ironically, in later life, Freundlich became increasingly sceptical of general relativity and proposed a theory of proton-proton interaction to account for the cosmological red-shifts.

  10. Ten Kepler eclipsing binaries containing the third components

    Czech Academy of Sciences Publication Activity Database

    Zasche, P.; Wolf, M.; Kučáková, H.; Vraštil, J.; Juryšek, Jakub; Mašek, Martin; Jelínek, M.

    2015-01-01

    Roč. 149, č. 6 (2015), s. 1-11, č. článku 197. ISSN 0004-6256 R&D Projects: GA MŠk(CZ) LG13007 EU Projects: European Commission(XE) 283783 - GLORIA Institutional support: RVO:68378271 Keywords : eclipsing binaries * KIC 2305372 * KIC 3440230 * KIC 5513861 * KIC 5621294 * KIC 7630658 * KIC 8553788 * KIC 9007918 * KIC 9402652 * KIC 10581918 * KIC 10686876 Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 4.617, year: 2015

  11. The G+M eclipsing binary v530 orionis

    DEFF Research Database (Denmark)

    Torres, Guillermo; Lacy, Claud H Sandberg; Pavlovski, Krešimir

    2014-01-01

    We report extensive photometric and spectroscopic observations of the 6.1 day period, G+M-type detached double-lined eclipsing binary V530 Ori, an important new benchmark system for testing stellar evolution models for low-mass stars. We determine accurate masses and radii for the components...... in the primary spectrum shows the system to have a slightly subsolar abundance, with [Fe/H] = –0.12 ± 0.08. A comparison with theory reveals that standard models underpredict the radius and overpredict the temperature of the secondary, as has been found previously for other M dwarfs. On the other hand, models...

  12. Spectrum of EY Orionis at the secondary eclipse

    International Nuclear Information System (INIS)

    Ismailov, N.Z.

    1987-01-01

    The results of spectral observations of the binary system EY orions at the secondary eclipse are presented. Some peculiar properties in the linear spectrum of the star have been discovered. The spectrum of the second component is not observed. The rotational velocity of the visible component is equal to 150 ± 30 km/s. During the phases 0.52-0.58, during approximately 1 d the radial velocities deviate from the radial velocity curve. According to the character of its spectrum the system EY Orions is similar to typical Orion variables

  13. Physical elements of the eclipsing binary δ Orionis

    Czech Academy of Sciences Publication Activity Database

    Mayer, P.; Harmanec, P.; Wolf, M.; Božić, H.; Šlechta, Miroslav

    2010-01-01

    Roč. 520, Sep-Oct (2010), A89/1-A89/12 ISSN 0004-6361 R&D Projects: GA ČR GA205/06/0584 Grant - others:GA ČR(CZ) GA205/06/0304; GA ČR(CZ) GAP209/10/0715 Program:GA Institutional research plan: CEZ:AV0Z10030501 Keywords : eclipsing binaries * early-type stars * fundamental parameters Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.410, year: 2010

  14. Expansion of the Eclipse Digital Signal Processing System.

    Science.gov (United States)

    1982-12-01

    routed to ind from extended memory through this window. SAct willy, dti is not physically moved, address registers are imply hiai~jt d. ’zThe...method of moving data on the Eclipse is with the extended memory feature. With this feature data is not physically moved, address registers are simply...8217eOU WIdT TO,. Fig 1 IE.ETZIM U2. E( 11 -4., - IULTIPI.E P * S WI) STPM FILTER (- PAWtfTEP FILE PFILE FILTER FILE: WILE FIEP. LENGTH 55 WINIIM OF WQS

  15. Summary of solar eclipse operations in Australia, June 1974

    International Nuclear Information System (INIS)

    Lathrop, L.W.

    1975-03-01

    During the solar eclipse of June 20, 1974, a team of scientists and engineers from the United States and Australia conducted a series of scientific observations to study the temperature distribution in the solar corona. The performance of the rocket launched experiments is summarized. Two identical experiments were launched. Both rocket systems performed nominally. One failed to acquire the sun before entry into the shadow. Film from the recovered payload verified that the sun was not in view. The other test appeared to point successfully at the sun. However, the payload was not recovered and no data were obtained. The probable cause of the failures is discussed. (U.S.)

  16. Automating ActionScript Projects with Eclipse and Ant

    CERN Document Server

    Koning, Sidney

    2011-01-01

    Automating repetitive programming tasks is easier than many Flash/AS3 developers think. With the Ant build tool, the Eclipse IDE, and this concise guide, you can set up your own "ultimate development machine" to code, compile, debug, and deploy projects faster. You'll also get started with versioning systems, such as Subversion and Git. Create a consistent workflow for multiple machines, or even complete departments, with the help of extensive Ant code samples. If you want to work smarter and take your skills to a new level, this book will get you on the road to automation-with Ant. Set up y

  17. Statistical eclipses of close-in Kepler sub-Saturns

    Energy Technology Data Exchange (ETDEWEB)

    Sheets, Holly A.; Deming, Drake, E-mail: hsheets@astro.umd.edu [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States)

    2014-10-20

    We present a method to detect small atmospheric signals in Kepler's planet candidate light curves by averaging light curves for multiple candidates with similar orbital and physical characteristics. Our statistical method allows us to measure unbiased physical properties of Kepler's planet candidates, even for candidates whose individual signal-to-noise precludes the detection of their secondary eclipse. We detect a secondary eclipse depth of 3.83{sub −1.11}{sup +1.10} ppm for a group of 31 sub-Saturn (R < 6 R {sub ⊕}) planet candidates with the greatest potential for a reflected light signature ((R{sub p} /a){sup 2} > 10 ppm). Including Kepler-10b in this group increases the depth to 5.08{sub −0.72}{sup +0.71} ppm. For a control group with (R{sub p} /a){sup 2} < 1 ppm, we find a depth of 0.36 ± 0.37 ppm, consistent with no detection. We also analyze the light curve of Kepler-10b and find an eclipse depth of 7.08 ± 1.06 ppm. If the eclipses are due solely to reflected light, this corresponds to a geometric albedo of 0.22 ± 0.06 for our group of close-in sub-Saturns, 0.37 ± 0.05 if including Kepler-10b in the group, and 0.60 ± 0.09 for Kepler-10b alone. Including a thermal emission model does not change the geometric albedo appreciably, assuming A{sub B} = (3/2)*A{sub g} . Our result for Kepler-10b is consistent with previous works. Our result for close-in sub-Saturns shows that Kepler-10b is unusually reflective, but our analysis is consistent with the results of Demory for super-Earths. Our results also indicate that hot Neptunes are typically more reflective than hot Jupiters.

  18. Anomalous Eclipses of the Young Star RW Aur A

    Science.gov (United States)

    Lamzin, S.; Cheryasov, D.; Chuntonov, G.; Dodin, A.; Grankin, K.; Malanchev, K.; Nadzhip, A.; Safonov, B.; Shakhovskoy, D.; Shenavrin, V.; Tatarnikov, A.; Vozyakova, O.

    2017-06-01

    Results of UBVRIJHKLM photometry, VRI polarimetry and optical spectroscopy of a young star RW Aur A obtained during 2010-11 and 2014-16 dimming events are presented. During the second dimming the star decreased its brightness to ΔV >4.5 mag, polarization of its light in I-band was up to 30 %, and color-magnitude diagramm was similar to that of UX Ori type stars. We conclude that the reason of both dimmings is an eclipses of the star by dust screen, but the size of the screen is much larger than in the case of UXORs.

  19. VizieR Online Data Catalog: Parameters of 529 Kepler eclipsing binaries (Kjurkchieva+, 2017)

    Science.gov (United States)

    Kjurkchieva, D.; Vasileva, D.; Atanasova, T.

    2017-11-01

    We reviewed the Kepler eclipsing binary catalog (Prsa et al. 2011, Cat. J/AJ/141/83; Slawson et al. 2011, Cat. J/AJ/142/160; Matijevic et al. 2012) to search for detached eclipsing binaries with eccentric orbits. (5 data files).

  20. Fourier techniques for an analysis of eclipsing binary light curves. Pt. 6b

    International Nuclear Information System (INIS)

    Demircan, O.

    1980-01-01

    This is a continuation of a previous paper which appeared in this journal (Demircan, 1980b) and aims at ascertaining some other relations between the integral transforms of the light curves of eclipsing binary systems. The appropriate use of these relations should facilitate the numerical computations for an analysis of eclipsing binary light curves by different Fourier techniques. (orig.)

  1. EPIC 219217635: A Doubly Eclipsing Quadruple System Containing an Evolved Binary

    DEFF Research Database (Denmark)

    Borkovits, T.; Albrecht, S.; Rappaport, S.

    2018-01-01

    We have discovered a doubly eclipsing, bound, quadruple star system in the field of K2 Campaign 7. EPIC 219217635 is a stellar image with Kp = 12.7 that contains an eclipsing binary (‘EB’) with PA = 3.59470 d and a second EB with PB = 0.61825 d. We have obtained followup radial-velocity (‘RV’) sp...

  2. The geometry of the eclipse of a pointlike star by a Roche-lobe-filling companion

    International Nuclear Information System (INIS)

    Chanan, G.A.; Middleditch, J.; Nelson, J.E.

    1976-01-01

    For binary systems of this type, which may be representative of certain X-ray sources, the eclipse duration defines a relation between the mass ratio and orbital inclination of the system; we have derived and tabulated this relation. Eclipse geometry for binary systems in which both stars fill their Roche lobes is also discussed briefly

  3. 75 FR 61345 - Airworthiness Directives; Eclipse Aerospace, Inc. Model EA500 Airplanes

    Science.gov (United States)

    2010-10-05

    ... Airworthiness Directives; Eclipse Aerospace, Inc. Model EA500 Airplanes AGENCY: Federal Aviation Administration... service information identified in this AD, contact Eclipse Aerospace Incorporated, 2503 Clark Carr Loop... Kinney, Aerospace Engineer, Ft. Worth Aircraft Certification Office, FAA, 2601 Meacham Blvd., Fort Worth...

  4. Statistical study of the solar eclipses over Egypt during 20 centuries (1–2000

    Directory of Open Access Journals (Sweden)

    H.I. Abdel-Rahman

    2017-06-01

    The General Linear Trend formula for predicting the future values for every types of solar eclipse was obtained and determined during next 500 years (2001–2500. We compare our results with calculated once by NASA for each types of solar eclipse. Our results are in a good agreement with that published by NASA.

  5. Primordial black holes as dark matter: constraints from compact ultra-faint dwarfs

    Science.gov (United States)

    Zhu, Qirong; Vasiliev, Eugene; Li, Yuexing; Jing, Yipeng

    2018-05-01

    The ground-breaking detections of gravitational waves from black hole mergers by LIGO have rekindled interest in primordial black holes (PBHs) and the possibility of dark matter being composed of PBHs. It has been suggested that PBHs of tens of solar masses could serve as dark matter candidates. Recent analytical studies demonstrated that compact ultra-faint dwarf galaxies can serve as a sensitive test for the PBH dark matter hypothesis, since stars in such a halo-dominated system would be heated by the more massive PBHs, their present-day distribution can provide strong constraints on PBH mass. In this study, we further explore this scenario with more detailed calculations, using a combination of dynamical simulations and Bayesian inference methods. The joint evolution of stars and PBH dark matter is followed with a Fokker-Planck code PHASEFLOW. We run a large suite of such simulations for different dark matter parameters, then use a Markov chain Monte Carlo approach to constrain the PBH properties with observations of ultra-faint galaxies. We find that two-body relaxation between the stars and PBH drives up the stellar core size, and increases the central stellar velocity dispersion. Using the observed half-light radius and velocity dispersion of stars in the compact ultra-faint dwarf galaxies as joint constraints, we infer that these dwarfs may have a cored dark matter halo with the central density in the range of 1-2 M⊙pc - 3, and that the PBHs may have a mass range of 2-14 M⊙ if they constitute all or a substantial fraction of the dark matter.

  6. Resolving the faint end of the satellite luminosity function for the nearest elliptical Centaurus A

    Science.gov (United States)

    Crnojevic, Denija

    2014-10-01

    We request HST/ACS imaging to follow up 15 new faint candidate dwarfs around the nearest elliptical Centaurus A (3.8 Mpc). The dwarfs were found via a systematic ground-based (Magellan/Megacam) survey out to ~150 kpc, designed to directly confront the "missing satellites" problem in a wholly new environment. Current Cold Dark Matter models for structure formation fail to reproduce the shallow slope of the satellite luminosity function in spiral-dominated groups for which dwarfs fainter than M_V<-14 have been surveyed (the Local Group and the nearby, interacting M81 group). Clusters of galaxies show a better agreement with cosmological predictions, suggesting an environmental dependence of the (poorly-understood) physical processes acting on the evolution of low mass galaxies (e.g., reionization). However, the luminosity function completeness for these rich environments quickly drops due to the faintness of the satellites and to the difficult cluster membership determination. We target a yet unexplored "intermediate" environment, a nearby group dominated by an elliptical galaxy, ideal due to its proximity: accurate (10%) distance determinations for its members can be derived from resolved stellar populations. The proposed observations of the candidate dwarfs will confirm their nature, group membership, and constrain their luminosities, metallicities, and star formation histories. We will obtain the first complete census of dwarf satellites of an elliptical down to an unprecedented M_V<-9. Our results will crucially constrain cosmological predictions for the faint end of the satellite luminosity function to achieve a more complete picture of the galaxy formation process.

  7. Evidence for Infrared-faint Radio Sources as z > 1 Radio-loud Active Galactic Nuclei

    Science.gov (United States)

    Huynh, Minh T.; Norris, Ray P.; Siana, Brian; Middelberg, Enno

    2010-02-01

    Infrared-Faint Radio Sources (IFRSs) are a class of radio objects found in the Australia Telescope Large Area Survey which have no observable mid-infrared counterpart in the Spitzer Wide-area Infrared Extragalactic (SWIRE) survey. The extended Chandra Deep Field South now has even deeper Spitzer imaging (3.6-70 μm) from a number of Legacy surveys. We report the detections of two IFRS sources in IRAC images. The non-detection of two other IFRSs allows us to constrain the source type. Detailed modeling of the spectral energy distribution of these objects shows that they are consistent with high-redshift (z >~ 1) active galactic nuclei.

  8. Infrared Faint Radio Sources in the Extended Chandra Deep Field South

    Science.gov (United States)

    Huynh, Minh T.

    2009-01-01

    Infrared-Faint Radio Sources (IFRSs) are a class of radio objects found in the Australia Telescope Large Area Survey (ATLAS) which have no observable counterpart in the Spitzer Wide-area Infrared Extragalactic Survey (SWIRE). The extended Chandra Deep Field South now has even deeper Spitzer imaging (3.6 to 70 micron) from a number of Legacy surveys. We report the detections of two IFRS sources in IRAC images. The non-detection of two other IFRSs allows us to constrain the source type. Detailed modeling of the SED of these objects shows that they are consistent with high redshift AGN (z > 2).

  9. Alignment statistics of clusters with their brightest members at bright and faint isophotes

    International Nuclear Information System (INIS)

    Struble, M.F.

    1987-01-01

    For a sample of 21 first-ranked cluster galaxies with published isophotal photometry and position angles of these isophotes, it is found that the major axes of both the bright and faint isophotal contours tend to be aligned within about 30 deg of the major axis of the parent cluster. This supports the hypothesis that first-ranked galaxies are formed already aligned with their parent clusters rather than the hypothesis that only outer envelopes which accreted after formation are aligned with the cluster. 21 references

  10. Geological Sulfur Isotopes Indicate Elevated OCS in the Archean Atmosphere, Solving the Faint Young Sun Paradox

    DEFF Research Database (Denmark)

    Ueno, Yuichiro; Johnson, Matthew Stanley; Danielache, Sebastian Oscar

    2009-01-01

    Distributions of sulfur isotopes in geological samples would provide a record of atmospheric composition if the mechanism producing the isotope effects could be described quantitatively. We determined the UV absorption spectra of 32SO2, 33SO2, and 34SO2 and use them to interpret the geological re......-rich, reducing Archean atmosphere. The radiative forcing, due to this level of OCS, is able to resolve the faint young sun paradox. Further, the decline of atmospheric OCS may have caused the late Archean glaciation....

  11. Solar Eclipse: Concept of “Science” and “Language” Literacy

    Science.gov (United States)

    Haristiani, N.; Zaen, R.; Nandiyanto, A. B. D.; Rusmana, A. N.; Azis, F.; Danuwijaya, A. A.; Abdullah, A. G.

    2018-02-01

    The purpose of this study was to evaluate the concept of science and language literacy of solar eclipse. The study was conducted through a survey to 250 students with different ages (from 17 to 23 years old), grades, and majors in Universitas Pendidikan Indonesia. The survey was completed with a questionnaire consisting of 41 questions. In the case of the language literacy, experimental results showed that various expressions in facing the solar eclipse phenomenon are found. Relating to the science literacy, most students have good science understanding to the solar eclipse phenomenon. In conclusion, the understanding about the solar eclipse is affected by formal science education and religion understanding that they have been accepted since their childhood. These factors have also influenced the belief of Indonesian people to the solar eclipse myth and the way of expressions a language literacy.

  12. Monitoring a photovoltaic system during the partial solar eclipse of August 2017

    Science.gov (United States)

    Kurinec, Santosh K.; Kucer, Michal; Schlein, Bill

    2018-05-01

    The power output of a 4.85 kW residential photovoltaic (PV) system located in Rochester, NY is monitored during the partial solar eclipse of August 21, 2017. The data is compared with the data on a day before and on the same day, a year ago. The area of exposed solar disk is measured using astrophotography every 16 s of the eclipse. Global solar irradiance is estimated using the eclipse shading, time of the day, location coordinates, atmospheric conditions and panel orientation. A sharp decline, as expected in the energy produced is observed at the time of the peak of the eclipse. The observed data of the PV energy produced is related with the model calculations taking into account solar eclipse coverage and cloudiness conditions. The paper provides a cohesive approach of irradiance calculations and obtaining anticipated PV performance.

  13. OPTICAL STUDIES OF 13 HARD X-RAY SELECTED CATACLYSMIC BINARIES FROM THE SWIFT-BAT SURVEY

    International Nuclear Information System (INIS)

    Halpern, Jules P.; Thorstensen, John R.

    2015-01-01

    From a set of 13 cataclysmic binaries that were discovered in the Swift Burst Alert Telescope (BAT) survey, we conducted time-resolved optical spectroscopy and/or time-series photometry of 11, with the goal of measuring their orbital periods and searching for spin periods. Seven of the objects in this study are new optical identifications. Orbital periods are found for seven targets, ranging from 81 minutes to 20.4 hr. PBC J0706.7+0327 is an AM Herculis star (polar) based on its emission-line variations and large amplitude photometric modulation on the same period. Swift J2341.0+7645 may be a polar, although the evidence here is less secure. Coherent pulsations are detected from two objects, Swift J0503.7−2819 (975 s) and Swift J0614.0+1709 (1412 s and 1530 s, spin and beat periods, respectively), indicating that they are probable intermediate polars (DQ Herculis stars). For two other stars, longer spin periods are tentatively suggested. We also present the discovery of a 2.00 hr X-ray modulation from RX J2015.6+3711, possibly a contributor to Swift J2015.9+3715, and likely a polar

  14. A NEW SUB-PERIOD-MINIMUM CATACLYSMIC VARIABLE WITH PARTIAL HYDROGEN DEPLETION AND EVIDENCE OF SPIRAL DISK STRUCTURE

    International Nuclear Information System (INIS)

    Littlefield, C.; Garnavich, P.; Magno, K.; Applegate, A.; Pogge, R.; Irwin, J.; Marion, G. H.; Kirshner, R.; Vinkó, J.

    2013-01-01

    We present time-resolved spectroscopy and photometry of CSS 120422:111127+571239 (=SBS 1108+574), a recently discovered SU UMa-type dwarf nova whose 55 minute orbital period is well below the cataclysmic variable (CV) period minimum of ∼78 minutes. In contrast with most other known CVs, its spectrum features He I emission of comparable strength to the Balmer lines, implying a hydrogen abundance less than 0.1 of long-period CVs—but still at least 10 times higher than that in AM CVn stars. Together, the short orbital period and remarkable helium-to-hydrogen ratio suggest that mass transfer in CSS 120422 began near the end of the donor star's main-sequence lifetime, meaning that this CV is a strong candidate progenitor of an AM CVn system as described by Podsiadlowski et al. Moreover, a Doppler tomogram of the Hα line reveals two distinct regions of enhanced emission. While one is the result of the stream-disk impact, the other is probably attributable to spiral disk structure generated when material in the outer disk achieves a 2:1 orbital resonance with respect to the donor.

  15. Non-radial oscillations of rotating stars and their relevance to the short-period oscillations of cataclysmic variables

    International Nuclear Information System (INIS)

    Papaloizou, J.; Pringle, J.E.

    1978-01-01

    The usual hypothesis, that the short-period coherent oscillations seen in cataclysmic variables are attributable to g modes in a slowly rotating white dwarf, is considered. It is shown that this hypothesis is untenable for three main reasons: (i) the observed periods are too short for reasonable white dwarf models, (ii) the observed variability of the oscillations is too rapid and (iii) the expected rotation of the white dwarf, due to accretion, invalidates the slow rotation assumption on which standard g-mode theory is based. The low-frequency spectrum of a rotating pulsating star is investigated taking the effects of rotation fully into account. In this case there are two sets of low-frequency modes, the g modes, and modes similar to Rossby waves in the Earth's atmosphere and oceans, which are designated r modes. Typical periods for such modes are 1/m times the rotation period of the white dwarfs outer layers (m is the aximuthal wavenumber). It is concluded that non-radial oscillations of rotating white dwarfs can account for the properties of the oscillations seen in dwarf novae. Application of these results to other systems is also discussed. (author)

  16. General Relativity Theory Explains the Shnoll Effect and Makes Possible Forecasting Earthquakes and Weather Cataclysms (Letters to Progress in Physics

    Directory of Open Access Journals (Sweden)

    Rabounski D.

    2014-04-01

    Full Text Available The Shnoll effect manifests itself in the fine structure of the noise registered in very sta- ble processes, where the magnitude of signal and the average noise remain unchanged. It is found in the periodic fluctuation of the fine structure of the noise according to the cosmic cycles connected with stars, the Sun, and the Moon. Th e Shnoll effect is ex- plained herein, employing the framework of General Relativity, as the twin / entangled synchronization states of the observer’s reference frame. The states are repeated while the observer travels, in common with the Earth, through the c osmic grid of the geodesic synchronization paths that connect his local reference fra me with the reference frames of other cosmic bodies. These synchronization periods matc h the periods that are man- ifested due to the Shnoll e ff ect, regardless of which process produces the noise. These synchronization periods are expected to exist in the noise o f natural processes of any type (physics, biology, social, etc. as well as in such arti ficial processes as computer- software random-number generation. This conclusion accor ds with what was registered according the Shnoll effect. The theory not only explains the Shnoll effect but also al- lows for forecasting fluctuations in the stock exchange mark et, fluctuations of weather, earthquakes, and other cataclysms.

  17. Solar Eclipse-Induced Changes in the Ionosphere over the Continental US

    Science.gov (United States)

    Erickson, P. J.; Zhang, S.; Goncharenko, L. P.; Coster, A. J.; Hysell, D. L.; Sulzer, M. P.; Vierinen, J.

    2017-12-01

    For the first time in 26 years, a total solar eclipse occurred over the continental United States on 21 August 2017, between 16:00-20:00 UT. We report on American solar eclipse observations of the upper atmosphere, conducted by a team led by MIT Haystack Observatory. Efforts measured ionospheric and thermospheric eclipse perturbations. Although eclipse effects have been studied for more than 50 years, recent major sensitivity and resolution advances using radio-based techniques are providing new information on the eclipse ionosphere-thermosphere-mesosphere (ITM) system response. Our study was focused on quantifying eclipse effects on (1) traveling ionospheric disturbances (TIDs) and atmospheric gravity waves (AGWs); (2) spatial ionospheric variations associated with the eclipse; and (3) altitudinal and temporal ionospheric profile variations. We present selected early findings on ITM eclipse response including a dense global network of 6000 GNSS total electron content (TEC) receivers (100 million measurements per day; 1x1 degree spatial grid) and the Millstone Hill and Arecibo incoherent scatter radars. TEC depletions of up to 60% in magnitude were associated with the eclipse umbra and penumbra and consistently trailed the eclipse totality center. TEC enhancements associated with prominent orographic features were observed in the western US due to complex interactions as the lower atmosphere cooled in response to decreasing EUV energy inputs. Strong TIDs in the form of bow waves, stern waves, and a stern wake were observed in TEC data. Altitude-resolved plasma parameter profiles from Millstone Hill saw a nearly 50% decrease in F region electron density in vertical profiles, accompanied by a corresponding 200-250 K decrease in electron temperature. Wide field Millstone Hill radar scans showed similar decreases in electron density to the southwest, maximizing along the line of closest approach to totality. Data is available to the research community through the MIT

  18. LIMB-DARKENING COEFFICIENTS FOR ECLIPSING WHITE DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Gianninas, A.; Strickland, B. D.; Kilic, Mukremin [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks St., Norman, OK 73019 (United States); Bergeron, P., E-mail: alexg@nhn.ou.edu, E-mail: benstrickland@ou.edu, E-mail: kilic@ou.edu, E-mail: bergeron@astro.umontreal.ca [Departement de Physique, Universite de Montreal, C.P. 6128, Succ. Centre-Ville, Montreal, Quebec H3C 3J7 (Canada)

    2013-03-20

    We present extensive calculations of linear and nonlinear limb-darkening coefficients as well as complete intensity profiles appropriate for modeling the light-curves of eclipsing white dwarfs. We compute limb-darkening coefficients in the Johnson-Kron-Cousins UBVRI photometric system as well as the Large Synoptic Survey Telescope (LSST) ugrizy system using the most up to date model atmospheres available. In all, we provide the coefficients for seven different limb-darkening laws. We describe the variations of these coefficients as a function of the atmospheric parameters, including the effects of convection at low effective temperatures. Finally, we discuss the importance of having readily available limb-darkening coefficients in the context of present and future photometric surveys like the LSST, Palomar Transient Factory, and the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS). The LSST, for example, may find {approx}10{sup 5} eclipsing white dwarfs. The limb-darkening calculations presented here will be an essential part of the detailed analysis of all of these systems.

  19. LIMB-DARKENING COEFFICIENTS FOR ECLIPSING WHITE DWARFS

    International Nuclear Information System (INIS)

    Gianninas, A.; Strickland, B. D.; Kilic, Mukremin; Bergeron, P.

    2013-01-01

    We present extensive calculations of linear and nonlinear limb-darkening coefficients as well as complete intensity profiles appropriate for modeling the light-curves of eclipsing white dwarfs. We compute limb-darkening coefficients in the Johnson-Kron-Cousins UBVRI photometric system as well as the Large Synoptic Survey Telescope (LSST) ugrizy system using the most up to date model atmospheres available. In all, we provide the coefficients for seven different limb-darkening laws. We describe the variations of these coefficients as a function of the atmospheric parameters, including the effects of convection at low effective temperatures. Finally, we discuss the importance of having readily available limb-darkening coefficients in the context of present and future photometric surveys like the LSST, Palomar Transient Factory, and the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS). The LSST, for example, may find ∼10 5 eclipsing white dwarfs. The limb-darkening calculations presented here will be an essential part of the detailed analysis of all of these systems.

  20. Groundwater modelling of Aespoe using the ECLIPSE program

    International Nuclear Information System (INIS)

    Wokil, H.

    1995-06-01

    The pre-investigations indicated that the dominant rocks ranged in composition from true granite to dioritic or gabbroic rocks. In conjunction with these investigations at the area, a number of indications were obtained of high transmissive fracture zones. To be able to understand the fracture zone NE-1 as well as possible, a number of hydraulic tests were performed, for example a tracer test. The program ECLIPSE 100 is one of the standard programs in the oil industry which is used to simulate oil fields. ECLIPSE 100 is a multi-facility simulator and it can be used to simulate 1, 2 and 3 phase systems, one option is oil, two phase options are oil/gas, oil/water or gas/water, and the third option is oil/gas/water. Good results were obtained from the simulator match of the tracer concentration versus time to the measured values from the tracer test of the fracture zone NE-1. The simulation was less successful in modelling the draw-down of water in the wells. We were also unable to reach a balance situation for the water pressure prior to injecting the tracer in order to accommodate several weeks of leakage into the tunnel prior to the tracer test. As a main conclusion, we found the results of the simulation to be satisfactory and we believe that further work should be done to adapt the program completely for groundwater simulation. 19 refs, 10 tabs, 13 figs

  1. Eclipse-Free-Time Assessment Tool for IRIS

    Science.gov (United States)

    Eagle, David

    2012-01-01

    IRIS_EFT is a scientific simulation that can be used to perform an Eclipse-Free- Time (EFT) assessment of IRIS (Infrared Imaging Surveyor) mission orbits. EFT is defined to be those time intervals longer than one day during which the IRIS spacecraft is not in the Earth s shadow. Program IRIS_EFT implements a special perturbation of orbital motion to numerically integrate Cowell's form of the system of differential equations. Shadow conditions are predicted by embedding this integrator within Brent s method for finding the root of a nonlinear equation. The IRIS_EFT software models the effects of the following types of orbit perturbations on the long-term evolution and shadow characteristics of IRIS mission orbits. (1) Non-spherical Earth gravity, (2) Atmospheric drag, (3) Point-mass gravity of the Sun, and (4) Point-mass gravity of the Moon. The objective of this effort was to create an in-house computer program that would perform eclipse-free-time analysis. of candidate IRIS spacecraft mission orbits in an accurate and timely fashion. The software is a suite of Fortran subroutines and data files organized as a "computational" engine that is used to accurately predict the long-term orbit evolution of IRIS mission orbits while searching for Earth shadow conditions.

  2. PREFACE: Eclipse on the Coral Sea: Cycle 24 Ascending

    Science.gov (United States)

    Cally, Paul; Erdélyi, Robert; Norton

    2013-06-01

    A total solar eclipse is the most spectacular and awe-inspiring astronomical phenomenon most people will ever see in their lifetimes. Even hardened solar scientists draw inspiration from it. The eclipse with 2 minutes totality in the early morning of 14 November 2012 (local time) drew over 120 solar researchers (and untold thousands of the general public) to the small and picturesque resort town of Palm Cove just north of Cairns in tropical north Queensland, Australia, and they were rewarded when the clouds parted just before totality to reveal a stunning solar display. Eclipse photograph The eclipse was also the catalyst for an unusually broad and exciting conference held in Palm Cove over the week 12--16 November. Eclipse on the Coral Sea: Cycle 24 Ascending served as GONG 2012, LWS/SDO-5, and SOHO 27, indicating how widely it drew on the various sub-communities within solar physics. Indeed, as we neared the end of the ascending phase of the peculiar Solar Cycle 24, it was the perfect time to bring the whole community together to discuss our Sun's errant recent behaviour, especially as Cycle 24 is the first to be fully observed by the Solar Dynamics Observatory (SDO). The whole-Sun perspective was a driving theme of the conference, with the cycle probed from interior (helioseismology), to atmosphere (the various lines observed by the Atmospheric Imaging Assemble (AIA) aboard SDO, the several instruments on Hinode, and other modern observatories), and beyond (CMEs etc). The quality of the presentations was exceptional, and the many speakers are to be commended for pitching their talks to the broad community present. These proceedings draw from the invited and contributed oral presentations and the posters exhibited in Palm Cove. They give an (incomplete) snapshot of the meeting, illustrating its broad vistas. The published contributions are organized along the lines of the conference sessions, as set out in the Contents, leading off with a provocative view of

  3. CHEMICAL DIVERSITY IN THE ULTRA-FAINT DWARF GALAXY TUCANA II

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Alexander P.; Frebel, Anna; Ezzeddine, Rana [Department of Physics and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Casey, Andrew R., E-mail: alexji@mit.edu [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA (United Kingdom)

    2016-11-20

    We present the first detailed chemical abundance study of the ultra-faint dwarf galaxy Tucana II, based on high-resolution Magellan/MIKE spectra of four red giant stars. The metallicities of these stars range from [Fe/H] = −3.2 to −2.6, and all stars are low in neutron-capture abundances ([Sr/Fe] and [Ba/Fe] < −1). However, a number of anomalous chemical signatures are present. One star is relatively metal-rich ([Fe/H] = −2.6) and shows [Na, α , Sc/Fe] < 0, suggesting an extended star formation history with contributions from AGB stars and SNe Ia. Two stars with [Fe/H] < −3 are mildly carbon-enhanced ([C/Fe] ∼ 0.7) and may be consistent with enrichment by faint supernovae, if such supernovae can produce neutron-capture elements. A fourth star with [Fe/H] = −3 is carbon-normal, and exhibits distinct light element abundance ratios from the carbon-enhanced stars. This carbon-normal star implies that at least two distinct nucleosynthesis sources, both possibly associated with Population III stars, contributed to the early chemical enrichment of this galaxy. Despite its very low luminosity, Tucana II shows a diversity of chemical signatures that preclude it from being a simple “one-shot” first galaxy yet still provide a window into star and galaxy formation in the early universe.

  4. CHEMICAL DIVERSITY IN THE ULTRA-FAINT DWARF GALAXY TUCANA II

    International Nuclear Information System (INIS)

    Ji, Alexander P.; Frebel, Anna; Ezzeddine, Rana; Casey, Andrew R.

    2016-01-01

    We present the first detailed chemical abundance study of the ultra-faint dwarf galaxy Tucana II, based on high-resolution Magellan/MIKE spectra of four red giant stars. The metallicities of these stars range from [Fe/H] = −3.2 to −2.6, and all stars are low in neutron-capture abundances ([Sr/Fe] and [Ba/Fe] < −1). However, a number of anomalous chemical signatures are present. One star is relatively metal-rich ([Fe/H] = −2.6) and shows [Na, α , Sc/Fe] < 0, suggesting an extended star formation history with contributions from AGB stars and SNe Ia. Two stars with [Fe/H] < −3 are mildly carbon-enhanced ([C/Fe] ∼ 0.7) and may be consistent with enrichment by faint supernovae, if such supernovae can produce neutron-capture elements. A fourth star with [Fe/H] = −3 is carbon-normal, and exhibits distinct light element abundance ratios from the carbon-enhanced stars. This carbon-normal star implies that at least two distinct nucleosynthesis sources, both possibly associated with Population III stars, contributed to the early chemical enrichment of this galaxy. Despite its very low luminosity, Tucana II shows a diversity of chemical signatures that preclude it from being a simple “one-shot” first galaxy yet still provide a window into star and galaxy formation in the early universe.

  5. Star/galaxy separation at faint magnitudes: Application to a simulated Dark Energy Survey

    Energy Technology Data Exchange (ETDEWEB)

    Soumagnac, M.T.; et al.

    2013-06-21

    We address the problem of separating stars from galaxies in future large photometric surveys. We focus our analysis on simulations of the Dark Energy Survey (DES). In the first part of the paper, we derive the science requirements on star/galaxy separation, for measurement of the cosmological parameters with the Gravitational Weak Lensing and Large Scale Structure probes. These requirements are dictated by the need to control both the statistical and systematic errors on the cosmological parameters, and by Point Spread Function calibration. We formulate the requirements in terms of the completeness and purity provided by a given star/galaxy classifier. In order to achieve these requirements at faint magnitudes, we propose a new method for star/galaxy separation in the second part of the paper. We first use Principal Component Analysis to outline the correlations between the objects parameters and extract from it the most relevant information. We then use the reduced set of parameters as input to an Artificial Neural Network. This multi-parameter approach improves upon purely morphometric classifiers (such as the classifier implemented in SExtractor), especially at faint magnitudes: it increases the purity by up to 20% for stars and by up to 12% for galaxies, at i-magnitude fainter than 23.

  6. Star/galaxy separation at faint magnitudes: application to a simulated Dark Energy Survey

    Energy Technology Data Exchange (ETDEWEB)

    Soumagnac, M. T.; Abdalla, F. B.; Lahav, O.; Kirk, D.; Sevilla, I.; Bertin, E.; Rowe, B. T. P.; Annis, J.; Busha, M. T.; Da Costa, L. N.; Frieman, J. A.; Gaztanaga, E.; Jarvis, M.; Lin, H.; Percival, W. J.; Santiago, B. X.; Sabiu, C. G.; Wechsler, R. H.; Wolz, L.; Yanny, B.

    2015-04-14

    We address the problem of separating stars from galaxies in future large photometric surveys. We focus our analysis on simulations of the Dark Energy Survey (DES). In the first part of the paper, we derive the science requirements on star/galaxy separation, for measurement of the cosmological parameters with the gravitational weak lensing and large-scale structure probes. These requirements are dictated by the need to control both the statistical and systematic errors on the cosmological parameters, and by point spread function calibration. We formulate the requirements in terms of the completeness and purity provided by a given star/galaxy classifier. In order to achieve these requirements at faint magnitudes, we propose a new method for star/galaxy separation in the second part of the paper. We first use principal component analysis to outline the correlations between the objects parameters and extract from it the most relevant information. We then use the reduced set of parameters as input to an Artificial Neural Network. This multiparameter approach improves upon purely morphometric classifiers (such as the classifier implemented in SExtractor), especially at faint magnitudes: it increases the purity by up to 20 per cent for stars and by up to 12 per cent for galaxies, at i-magnitude fainter than 23.

  7. A study of faint radio sources near the North Galactic Pole

    International Nuclear Information System (INIS)

    Benn, C.R.

    1981-09-01

    A large amount of observational data has been obtained on faint radio sources in a small area of sky near the North Galactic Pole (the 5C 12 area). This provides a new perspective (3 decades in flux density from the 3CR catalogue) on the physical properties and cosmological evolution of extragalactic radio sources. Chapter 1 introduces the problem and concludes that faint-object cosmology is best served by intensive investigation of sources in a small area of sky. An optimum area is chosen, at right ascension 12sup(h) 58sup(m) 43sup(s) and declination 35 0 14' 00'' (1950.0). Chapter 2 describes the 5C12 radio survey (complete to 9mJy apparent flux density at 408MHz) conducted with the One Mile Telescope at Cambridge. Chapter 4 describes a 4.85GHz survey to 20mJy of the area, conducted at Effelsberg. In chapter 5, a program of optical identification for the sources is described, using deep (msub(g) = 22.5, msub(y) = 20.7) Schmidt plates taken at Hale Observatories. A statistical algorithm is developed to cope with the problems of optical confusion due to radio positional errors. Chapter 6 draws on data from the previous 4, and presents results concerning radio source counts, spectral index distributions, optical identifications and clustering. (author)

  8. THE ORIGIN OF THE HEAVIEST METALS IN MOST ULTRA-FAINT DWARF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Roederer, Ian U., E-mail: iur@umich.edu [Department of Astronomy, University of Michigan, 1085 S. University Ave., Ann Arbor, MI 48109 (United States)

    2017-01-20

    The heaviest metals found in stars in most ultra-faint dwarf (UFD) galaxies in the Milky Way halo are generally underabundant by an order of magnitude or more when compared with stars in the halo field. Among the heavy elements produced by n -capture reactions, only Sr and Ba can be detected in red giant stars in most UFD galaxies. This limited chemical information is unable to identify the nucleosynthesis process(es) responsible for producing the heavy elements in UFD galaxies. Similar [Sr/Ba] and [Ba/Fe] ratios are found in three bright halo field stars, BD−18°5550, CS 22185–007, and CS 22891–200. Previous studies of high-quality spectra of these stars report detections of additional n -capture elements, including Eu. The [Eu/Ba] ratios in these stars span +0.41 to +0.86. These ratios and others among elements in the rare Earth domain indicate an r -process origin. These stars have some of the lowest levels of r -process enhancement known, with [Eu/H] spanning −3.95 to −3.32, and they may be considered nearby proxies for faint stars in UFD galaxies. Direct confirmation, however, must await future observations of additional heavy elements in stars in the UFD galaxies themselves.

  9. Observations of faint comets at McDonald Observatory: 1978-1980

    Science.gov (United States)

    Barker, E. S.; Cochran, A. L.; Rybski, P. M.

    1981-01-01

    Modern observational techniques, developed for spectroscopy and photometry of faint galaxies and quasars, successfully applied to faint comets on the 2.7 m telescope. The periodic comets Van Biesbrock, Ashbrook-Jackson, Schwassmann-Wachmann 1, Tempel 2, Encke, Forbes, Brooks 2, Stephan-Oterma and the new comets Bradfield (19791), Bowell (1980b), Chernis-Petrauskas (1980k) were observed. The comets ranged in magnitude from 10th to 20th magnitude. For comets fainter than 19th magnitude, reflectance spectra at 100A resolution and area photometry were obtained. On comets of 17th or 18th magnitude, spectrometric scans (6A resolution) of the nucleus or inner coma region. On those comets which are brighter than 16th magnitude spatial spectrophotometric (6A resolution) studies of the inner and extended comae were done. An extensive spatial study of the comae of P/Encke and P/Stephen-Oterma, correlated with heliocentric distance is taking place. The observing process used is described and examples of the results obtained to date are discussed.

  10. Revealing a comet-like shape of the faint periphery of the nearby galaxy M 32

    Science.gov (United States)

    Georgiev, Ts. B.

    2016-02-01

    We performed BVRI photometry of the galaxy M 32 building images and isophote maps in magnitudes and in color indexes. While searching for the faint thick disk of M 32 we apply median filtering with aperture of 7.3 arcmin to detach the residual image of M 32 and its periphery above the surrounding magnitude or color background. The residual images in all photometric systems show that the periphery of M 32 possesses a comet-like shape with a tail oriented to SSE, in a direction opposite to the direction of M 110. The images calibrated in color indexes (b - v) and (b - v)+(r - i) show that the tail is redder than the local median background. The residual images in color indexes show that the red tail broadens and curves in direction towards S and SW. Simultaneously, the brightest part of M 32 occurs bounded from NW-NE-SE sides by a sickle-like formation with a significantly lower red color index. Generally, we do not find a faint thick disk of M 32. However, the comet-like shape on the periphery of M 32, especially as a formation with an increased red color index, provokes involuntarily the impression that the satellite M 32 overtakes the Andromeda galaxy. The redshifts show that the intimacy velocity of M 32 and Andromeda galaxy is about 100 km/s.

  11. Building on the US Eclipse Experience in Schools, with the Public, and Beyond the US

    Science.gov (United States)

    Simmons, Mike; Chee, Zoe; Bartolone, Lindsay

    2018-01-01

    Astronomers Without Borders (AWB) organized several programs for the August 21, 2017 total solar eclipse, both before and after the event, to increase participation, build on the inspiration of the eclipse, share the eclipse experience, and prepare for the eclipse in 2024.AWB focused on preparing institutions that were least likely to receive resources despite extensive nationwide efforts. AWB distributed more than 100,000 donated glasses, to isolated schools, children's cancer hospitals, abused women’s shelters, and other institutions without access to other resource providers.AWB’s Building on the Eclipse Education Program builds on the inspiration of the eclipse for STEM education. The program uses a small, personal spectroscope kit to study sunlight in different scientific fields and includes free classroom activities that meet NGSS standards.A program to collect eclipse observing glasses for schools in developing countries for future eclipses was announced around the time of the eclipse and quickly went viral, with coverage by national and innumerable local media outlets. This effort builds on AWB’s earlier programs for schools in Africa and in South America for past eclipses. Well over one million pairs are expected, as compared to the tens of thousands AWB provided through crowdfunding for previous efforts. Nearly 1000 glasses collection centers were created spontaneously, without a public call. Factors leading to widespread and diverse public participation will be presented.A program calling for first-time eclipse observers to share their experiences addresses a major issue in encouraging people to travel to the path of totality. Expert and eclipse-enthusiast testimony often fails to convince people of the value of the experience of totality as “a few minutes of darkness.” This program will share the disconnect between expectation and experience from first-time “ordinary” observers to encourage others to travel to the path of totality for the

  12. Solar Eclipse Engagement and Outreach in Madras and Warm Springs, Oregon

    Science.gov (United States)

    Kirk, M. S.; Pesnell, W. D.; Ahern, S.; Boyle, M.; Gonzales, T.; Leone, C.

    2017-12-01

    The Central Oregon towns of Madras and Warm Springs were in an ideal location to observe the total solar eclipse of 2017. In anticipation of this event, we embarked on a yearlong partnership to engage and excite these communities. We developed educational events for all students in the school district, grades K-12, as well as two evening keynote addresses during an eclipse week in May. This eclipse week provided resources, learning opportunities, and safety information for all students and families prior to the end of the school year. With the collaboration of graphic design students at Oregon State University, we produced static educational displays as an introduction to the Museum at Warm Springs' exhibit featuring eclipse art. The weekend before the eclipse, we gave away 15,000 pairs of solar viewing glasses to the local community and manned a science booth at the Oregon Solarfest to engage the arriving eclipse tourists. These efforts culminated on Monday, August 21st with tens of thousands of people viewing eclipse totality in Madras and Warm Springs.

  13. Suppression of the Polar Tongue of Ionization During the 21 August 2017 Solar Eclipse

    Science.gov (United States)

    Dang, Tong; Lei, Jiuhou; Wang, Wenbin; Burns, Alan; Zhang, Binzheng; Zhang, Shun-Rong

    2018-04-01

    It has long been recognized that during solar eclipses, the ionosphere-thermosphere system changes greatly within the eclipse shadow, due to the rapid reduction of solar irradiation. However, the concept that a solar eclipse impacts polar ionosphere behavior and dynamics as well as magnetosphere-ionosphere coupling has not been appreciated. In this study, we investigate the potential impact of the 21 August 2017 solar eclipse on the polar tongue of ionization (TOI) using a high-resolution, coupled ionosphere-thermosphere-electrodynamics model. The reduction of electron densities by the eclipse in the middle latitude TOI source region leads to a suppressed TOI in the polar region. The TOI suppression occurred when the solar eclipse moved into the afternoon sector. The Global Positioning System total electron content observations show similar tendency of polar region total electron content suppression. This study reveals that a solar eclipse occurring at middle latitudes may have significant influences on the polar ionosphere and magnetosphere-ionosphere coupling.

  14. Effects of solar eclipse on the electrodynamical processes of the equatorial ionosphere: a case study during 11 August 1999 dusk time total solar eclipse over India

    Directory of Open Access Journals (Sweden)

    R. Sridharan

    Full Text Available The effects on the electrodynamics of the equatorial E- and F-regions of the ionosphere, due to the occurrence of the solar eclipse during sunset hours on 11 August 1999, were investigated in a unique observational campaign involving ground based ionosondes, VHF and HF radars from the equatorial location of Trivandrum (8.5° N; 77° E; dip lat. 0.5° N, India. The study revealed the nature of changes brought about by the eclipse in the evening time E- and F-regions in terms of (i the sudden intensification of a weak blanketing ES-layer and the associated large enhancement of the VHF backscattered returns, (ii significant increase in h' F immediately following the eclipse and (iii distinctly different spatial and temporal structures in the spread-F irregularity drift velocities as observed by the HF radar. The significantly large enhancement of the backscattered returns from the E-region coincident with the onset of the eclipse is attributed to the generation of steep electron density gradients associated with the blanketing ES , possibly triggered by the eclipse phenomena. The increase in F-region base height immediately after the eclipse is explained as due to the reduction in the conductivity of the conjugate E-region in the path of totality connected to the F-region over the equator along the magnetic field lines, and this, with the peculiar local and regional conditions, seems to have reduced the E-region loading of the F-region dynamo, resulting in a larger post sunset F-region height (h' F rise. These aspects of E-and F-region behaviour on the eclipse day are discussed in relation to those observed on the control day.

    Key words. Ionosphere (electric fields and currents; equatorial ionosphere; ionospheric irregularities

  15. Effects of solar eclipse on the electrodynamical processes of the equatorial ionosphere: a case study during 11 August 1999 dusk time total solar eclipse over India

    Directory of Open Access Journals (Sweden)

    R. Sridharan

    2002-12-01

    Full Text Available The effects on the electrodynamics of the equatorial E- and F-regions of the ionosphere, due to the occurrence of the solar eclipse during sunset hours on 11 August 1999, were investigated in a unique observational campaign involving ground based ionosondes, VHF and HF radars from the equatorial location of Trivandrum (8.5° N; 77° E; dip lat. 0.5° N, India. The study revealed the nature of changes brought about by the eclipse in the evening time E- and F-regions in terms of (i the sudden intensification of a weak blanketing ES-layer and the associated large enhancement of the VHF backscattered returns, (ii significant increase in h' F immediately following the eclipse and (iii distinctly different spatial and temporal structures in the spread-F irregularity drift velocities as observed by the HF radar. The significantly large enhancement of the backscattered returns from the E-region coincident with the onset of the eclipse is attributed to the generation of steep electron density gradients associated with the blanketing ES , possibly triggered by the eclipse phenomena. The increase in F-region base height immediately after the eclipse is explained as due to the reduction in the conductivity of the conjugate E-region in the path of totality connected to the F-region over the equator along the magnetic field lines, and this, with the peculiar local and regional conditions, seems to have reduced the E-region loading of the F-region dynamo, resulting in a larger post sunset F-region height (h' F rise. These aspects of E-and F-region behaviour on the eclipse day are discussed in relation to those observed on the control day.Key words. Ionosphere (electric fields and currents; equatorial ionosphere; ionospheric irregularities

  16. New inclination changing eclipsing binaries in the Magellanic Clouds

    Science.gov (United States)

    Juryšek, J.; Zasche, P.; Wolf, M.; Vraštil, J.; Vokrouhlický, D.; Skarka, M.; Liška, J.; Janík, J.; Zejda, M.; Kurfürst, P.; Paunzen, E.

    2018-01-01

    Context. Multiple stellar systems are unique laboratories for astrophysics. Analysis of their orbital dynamics, if well characterized from their observations, may reveal invaluable information about the physical properties of the participating stars. Unfortunately, there are only a few known and well described multiple systems, this is even more so for systems located outside the Milky Way galaxy. A particularly interesting situation occurs when the inner binary in a compact triple system is eclipsing. This is because the stellar interaction, typically resulting in precession of orbital planes, may be observable as a variation of depth of the eclipses on a long timescale. Aims: We aim to present a novel method to determine compact triples using publicly available photometric data from large surveys. Here we apply it to eclipsing binaries (EBs) in Magellanic Clouds from OGLE III database. Our tool consists of identifying the cases where the orbital plane of EB evolves in accord with expectations from the interaction with a third star. Methods: We analyzed light curves (LCs) of 26121 LMC and 6138 SMC EBs with the goal to identify those for which the orbital inclination varies in time. Archival LCs of the selected systems, when complemented by our own observations with Danish 1.54-m telescope, were thoroughly analyzed using the PHOEBE program. This provided physical parameters of components of each system. Time dependence of the EB's inclination was described using the theory of orbital-plane precession. By observing the parameter-dependence of the precession rate, we were able to constrain the third companion mass and its orbital period around EB. Results: We identified 58 candidates of new compact triples in Magellanic Clouds. This is the largest published sample of such systems so far. Eight of them were analyzed thoroughly and physical parameters of inner binary were determined together with an estimation of basic characteristics of the third star. Prior to our

  17. The radio spectral energy distribution of infrared-faint radio sources

    Science.gov (United States)

    Herzog, A.; Norris, R. P.; Middelberg, E.; Seymour, N.; Spitler, L. R.; Emonts, B. H. C.; Franzen, T. M. O.; Hunstead, R.; Intema, H. T.; Marvil, J.; Parker, Q. A.; Sirothia, S. K.; Hurley-Walker, N.; Bell, M.; Bernardi, G.; Bowman, J. D.; Briggs, F.; Cappallo, R. J.; Callingham, J. R.; Deshpande, A. A.; Dwarakanath, K. S.; For, B.-Q.; Greenhill, L. J.; Hancock, P.; Hazelton, B. J.; Hindson, L.; Johnston-Hollitt, M.; Kapińska, A. D.; Kaplan, D. L.; Lenc, E.; Lonsdale, C. J.; McKinley, B.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Morgan, J.; Oberoi, D.; Offringa, A.; Ord, S. M.; Prabu, T.; Procopio, P.; Udaya Shankar, N.; Srivani, K. S.; Staveley-Smith, L.; Subrahmanyan, R.; Tingay, S. J.; Wayth, R. B.; Webster, R. L.; Williams, A.; Williams, C. L.; Wu, C.; Zheng, Q.; Bannister, K. W.; Chippendale, A. P.; Harvey-Smith, L.; Heywood, I.; Indermuehle, B.; Popping, A.; Sault, R. J.; Whiting, M. T.

    2016-10-01

    Context. Infrared-faint radio sources (IFRS) are a class of radio-loud (RL) active galactic nuclei (AGN) at high redshifts (z ≥ 1.7) that are characterised by their relative infrared faintness, resulting in enormous radio-to-infrared flux density ratios of up to several thousand. Aims: Because of their optical and infrared faintness, it is very challenging to study IFRS at these wavelengths. However, IFRS are relatively bright in the radio regime with 1.4 GHz flux densities of a few to a few tens of mJy. Therefore, the radio regime is the most promising wavelength regime in which to constrain their nature. We aim to test the hypothesis that IFRS are young AGN, particularly GHz peaked-spectrum (GPS) and compact steep-spectrum (CSS) sources that have a low frequency turnover. Methods: We use the rich radio data set available for the Australia Telescope Large Area Survey fields, covering the frequency range between 150 MHz and 34 GHz with up to 19 wavebands from different telescopes, and build radio spectral energy distributions (SEDs) for 34 IFRS. We then study the radio properties of this class of object with respect to turnover, spectral index, and behaviour towards higher frequencies. We also present the highest-frequency radio observations of an IFRS, observed with the Plateau de Bure Interferometer at 105 GHz, and model the multi-wavelength and radio-far-infrared SED of this source. Results: We find IFRS usually follow single power laws down to observed frequencies of around 150 MHz. Mostly, the radio SEDs are steep (α IFRS show statistically significantly steeper radio SEDs than the broader RL AGN population. Our analysis reveals that the fractions of GPS and CSS sources in the population of IFRS are consistent with the fractions in the broader RL AGN population. We find that at least % of IFRS contain young AGN, although the fraction might be significantly higher as suggested by the steep SEDs and the compact morphology of IFRS. The detailed multi

  18. Reanalysis of the radii of the Benchmark eclipsing binary V578 Mon

    International Nuclear Information System (INIS)

    Garcia, E. V.; Stassun, Keivan G.; Torres, Guillermo

    2013-01-01

    V578 Mon is an eclipsing binary system in which both stars have masses above 10 M ☉ determined with an accuracy better than 3%. It is one of only five such massive eclipsing binaries known that also possess eccentric orbits and measured apsidal motions, thus making it an important benchmark for theoretical stellar evolution models. However, recently reported determinations of the radii of V578 Mon differ significantly from previously reported values. We reanalyze the published data for V578 Mon and trace the discrepancy to the use of an incorrect formulation for the stellar potentials in the most recent analysis. Here we report corrected radii for this important benchmark eclipsing binary.

  19. A Photometric Study of Three Eclipsing Binary Stars (Poster abstract)

    Science.gov (United States)

    Ryan, A.

    2016-12-01

    (Abstract only) As part of a program to study eclipsing binary stars that exhibit the O'Connell Effect (OCE) we are observing a selection of binary stars in a long term study. The OCE is a difference in maximum light across the ligthcurve possibly cause by starspots. We observed for 7 nights at McDonald Observatory using the 30-inch telescope in July 2015, and used the same telescope remotely for a total of 20 additional nights in August, October, December, and January. We will present lightcurves for three stars from this study, characterize the OCE for these stars, and present our model results for the physical parameters of the star making up each of these systems.

  20. LB 3459, an O-type subdwarf eclipsing binary system

    International Nuclear Information System (INIS)

    Kilkenny, D.; Penfold, J.E.; Hilditch, R.W.

    1979-01-01

    Four-colour photometry of the short-period eclipsing binary system LB 3459 confirms features seen in earlier less-detailed data. An analysis of all the observational data suggests the system to be an O-type subdwarf plus a hot white dwarf rather than two sdO stars. A value of 0.03 is obtained for the linear limb-darkening coefficient of the primary and estimates of the absolute magnitudes of the two components give a distance of 70 +- 25 pc for the system. The primary and secondary may have radii as small as 0.04 solar radius and 0.02 solar radius respectively, indicating a component separation of only 0.25 solar radius. Several unsolved problems connected with the nature and evolution of the LB 3459 system are noted. (author)

  1. SPEEDY: An Eclipse-based IDE for invariant inference

    Directory of Open Access Journals (Sweden)

    David R. Cok

    2014-04-01

    Full Text Available SPEEDY is an Eclipse-based IDE for exploring techniques that assist users in generating correct specifications, particularly including invariant inference algorithms and tools. It integrates with several back-end tools that propose invariants and will incorporate published algorithms for inferring object and loop invariants. Though the architecture is language-neutral, current SPEEDY targets C programs. Building and using SPEEDY has confirmed earlier experience demonstrating the importance of showing and editing specifications in the IDEs that developers customarily use, automating as much of the production and checking of specifications as possible, and showing counterexample information directly in the source code editing environment. As in previous work, automation of specification checking is provided by back-end SMT solvers. However, reducing the effort demanded of software developers using formal methods also requires a GUI design that guides users in writing, reviewing, and correcting specifications and automates specification inference.

  2. Non regular variations in the LOD from European medieval eclipses

    Science.gov (United States)

    Martinez, M. J.; Marco, F. J.

    2012-12-01

    The study of ancient eclipses has demonstrated its utility to approximate some astronomical constants, in particular in the field of the Earth's rotation. It is a well known fact that the rate of rotation of the Earth is slowly decreasing in time. There are many possible reasons for this fact, including internal and external mechanisms. The most important external causes are lunar and solar tides. While internal causes can be very diverse: examples of short term effects are changing wind patterns, electromagnetic coupling between the fluid core of the Earth and the lower mantle, while sea-level fluctuations associated with climatic variations are examples of long time effects. In any case, the most important cause is the tidal friction.

  3. Ectopic fat accumulation in patients with COPD: an ECLIPSE substudy

    Directory of Open Access Journals (Sweden)

    Martin M

    2017-01-01

    Full Text Available Mickaël Martin,1 Natalie Almeras,1 Jean-Pierre Després,1 Harvey O Coxson,2 George R Washko,3 Isabelle Vivodtzev,4 Emiel FM Wouters,5 Erica Rutten,6 Michelle C Williams,7 John T Murchison,8 William MacNee,7 Don D Sin,2 François Maltais1 On behalf of the Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE Study Group 1Research Centre, Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, QC, 2Department of Radiology, University of British Columbia, Vancouver, BC, Canada; 3Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA; 4Hypoxia Pathophysiology Laboratory, Grenoble University Hospital, Grenoble, France; 5Department of Respiratory Medicine, Maastricht University Medical Center, Maastricht, 6Research and Development, CIRO, Horn, the Netherlands; 7Department of Respiratory Medicine, University of Edinburgh, 8Department of Radiology, Royal Infirmary of Edinburgh, Edinburgh, UK Background: Obesity is increasingly associated with COPD, but little is known about the prevalence of ectopic fat accumulation in COPD and whether this can possibly be associated with poor clinical outcomes and comorbidities. The Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE substudy tested the hypothesis that COPD is associated with increased ectopic fat accumulation and that this would be associated with COPD-related outcomes and comorbidities.Methods: Computed tomography (CT images of the thorax obtained in ECLIPSE were used to quantify ectopic fat accumulation at L2–L3 (eg, cross-sectional area [CSA] of visceral adipose tissue [VAT] and muscle tissue [MT] attenuation, a reflection of muscle fat infiltration and CSA of MT. A dose–response relationship between CSA of VAT, MT attenuation and CSA of MT and COPD-related outcomes (6-minute walking distance [6MWD], exacerbation rate, quality of life, and forced

  4. Absolute dimensions and masses of eclipsing binaries. V. IQ Persei

    International Nuclear Information System (INIS)

    Lacy, C.H.; Frueh, M.L.; McDonald Observatory, Austin)

    1985-01-01

    New photometric and spectroscopic observations of the 1.7 day eclipsing binary IQ Persei (B8 + A6) have been analyzed to yield very accurate fundamental properties of the system. Reticon spectroscopic observations obtained at McDonald Observatory were used to determine accurate radial velocities of both stars in this slightly eccentric large light-ratio binary. A new set of VR light curves obtained at McDonald Observatory were analyzed by synthesis techniques, and previously published UBV light curves were reanalyzed to yield accurate photometric orbits. Orbital parameters derived from both sets of photometric observations are in excellent agreement. The absolute dimensions, masses, luminosities, and apsidal motion period (140 yr) derived from these observations agree well with the predictions of theoretical stellar evolution models. The A6 secondary is still very close to the zero-age main sequence. The B8 primary is about one-third of the way through its main-sequence evolution. 27 references

  5. Analysis of a Failed Eclipse Plasma Ejection Using EUV Observations

    Science.gov (United States)

    Tavabi, E.; Koutchmy, S.; Bazin, C.

    2018-03-01

    The photometry of eclipse white-light (W-L) images showing a moving blob is interpreted for the first time together with observations from space with the PRoject for On Board Autonomy (PROBA-2) mission (ESA). An off-limb event seen with great details in W-L was analyzed with the SWAP imager ( Sun Watcher using Active pixel system detector and image Processing) working in the EUV near 174 Å. It is an elongated plasma blob structure of 25 Mm diameter moving above the east limb with coronal loops under. Summed and co-aligned SWAP images are evaluated using a 20-h sequence, in addition to the 11 July, 2010 eclipse W-L images taken from several sites. The Atmospheric Imaging Assembly (AIA) instrument on board the Solar Dynamics Observatory (SDO) recorded the event suggesting a magnetic reconnection near a high neutral point; accordingly, we also call it a magnetic plasmoid. The measured proper motion of the blob shows a velocity up to 12 km s^{-1}. Electron densities of the isolated condensation (cloud or blob or plasmoid) are photometrically evaluated. The typical value is 108 cm^{-3} at r=1.7 R_{⊙}, superposed on a background corona of 107 cm^{-3} density. The mass of the cloud near its maximum brightness is found to be 1.6×10^{13} g, which is typically 0.6×10^{-4} of the overall mass of the corona. From the extrapolated magnetic field the cloud evolves inside a rather broad open region but decelerates, after reaching its maximum brightness. The influence of such small events for supplying material to the ubiquitous slow wind is noticed. A precise evaluation of the EUV photometric data, after accurately removing the stray light, suggests an interpretation of the weak 174 Å radiation of the cloud as due to resonance scattering in the Fe IX/X lines.

  6. Spectral variation of the solar radiation during an eclipse

    Directory of Open Access Journals (Sweden)

    Peter Koepke

    2001-05-01

    Full Text Available The time dependent variation of the spectral extraterrestrial solar flux is modelled for the conditions during a total eclipse. These data are used to calculate irradiance and actinic flux at the Earth’s surface for atmospheric conditions of August 11, 1999 at Weihenstephan. These results are compared with measurements. It is shown, that the spectral composition of solar radiation varies during the eclipse, since solar limb darkening has a spectral dependence. The solar radiation differs from that of a hypothetical sun without limb darkening by up to 30% in the near IR at 1500 nm and 60% in the UV-B at 310 nm. As shown by a comparison of modelling and measurements, this spectral variation has to be taken into account for modelling of UV radiative quantities in the atmosphere and resulting photochemical processes. The effect of broken cloudiness on irradiance and actinic flux and its dependency on wavelength and receiver geometry is explained. Der Verlauf der spektralen extraterrestrischen solaren Strahlung wÄhrend einer Sonnenfinsternis wurde berechnet. Basierend auf diesen Daten, unter BerÜcksichtigung der atmosphÄrischen Bedingungen am 11. August 1999 in Weihenstephan, wurden Globalstrahlung und Aktinischer Fluss am Boden modelliert und mit Messwerten verglichen. Die spektrale Zusammensetzung der Strahlung Ändert sich wÄhrend einer Sonnenfinsternis, bedingt durch die wellenlÄngenabhÄngige Randverdunklung der Sonne. Im Vergleich zu einer hypothetischen Sonne ohne Randverdunklung ist die solare Strahlung im nahen IR um bis zu 30% gemindert und im UVB bei 310 nm um bis zu 60%. Diese spektralen Änderungen sollten bei der Modellierung von Strahlung, z.B. fÜr photochemische Prozesse berÜcksichtigt werden. Dies wurde durch Messung und Modellierung gezeigt. Der Einfluss von Wolken auf gemessene Werte von Globalstrahlung und Aktinischem Fluss wurde untersucht und erklÄrt.

  7. The Age of Upper Scorpius from Eclipsing Binaries

    Science.gov (United States)

    David, Trevor; Hillenbrand, Lynne

    2018-01-01

    The Upper Scorpius OB association is the nearest region of recent massive star formation and thus an important benchmark for investigations concerning astrophysical timescales. Classical estimates of the association age based on the kinematics of high-mass members and a Hertzsprung-Russell (H-R) diagram of the full stellar population established an age of 5 Myr. However, recent analyses based on the H-R diagram for intermediate- and high-mass members suggest an older age of 11 Myr. Importantly, the H-R diagram ages of stars in Upper Scorpius (and other clusters of a similar age) are mass-dependent, such that low-mass members appear younger than their high-mass counterparts. Here we report an age that is self-consistent in the mass range of 0.3–5 M⊙, and based on the fundamentally-determined masses and radii of eclipsing binaries (EBs). We present nine EBs in Upper Scorpius, four of which are newly reported here and all of which were discovered from K2 photometry. Joint fitting of the eclipse photometry and radial velocities from newly acquired Keck-I/HIRES spectra yields precise masses and radii for those systems that are spectroscopically double-lined. We identify one of the EB components as a slowly pulsating B-star. We use these EBs to develop an empirical mass-radius relation for pre-main-sequence stars, and to evaluate the predictions of widely-used stellar evolutionary models. Our results are consistent with previous studies that indicate most models underestimate the masses of low-mass stars by tens of percent based on H-R diagram analyses. Models including the effects of magnetic fields produce better agreement between the observed bulk and radiative parameters of these young, low-mass stars. From the orbital elements and photometrically inferred rotation periods, we consider the dynamical states of several binaries and compare with expectations from tidal dissipation theories.

  8. An Airborne Infrared Spectrometer for Solar Eclipse Observations

    Science.gov (United States)

    Samra, Jenna; DeLuca, Edward E.; Golub, Leon; Cheimets, Peter; Philip, Judge

    2016-05-01

    The airborne infrared spectrometer (AIR-Spec) is an innovative solar spectrometer that will observe the 2017 solar eclipse from the NSF/NCAR High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER). AIR-Spec will image five infrared coronal emission lines to determine whether they may be useful probes of coronal magnetism.The solar magnetic field provides the free energy that controls coronal heating, structure, and dynamics. Energy stored in coronal magnetic fields is released in flares and coronal mass ejections and ultimately drives space weather. Therefore, direct coronal field measurements have significant potential to enhance understanding of coronal dynamics and improve solar forecasting models. Of particular interest are observations of field lines in the transitional region between closed and open flux systems, providing important information on the origin of the slow solar wind.While current instruments routinely observe only the photospheric and chromospheric magnetic fields, AIR-Spec will take a step toward the direct observation of coronal fields by measuring plasma emission in the infrared at high spatial and spectral resolution. During the total solar eclipse of 2017, AIR-Spec will observe five magnetically sensitive coronal emission lines between 1.4 and 4 µm from the HIAPER Gulfstream V at an altitude above 14.9 km. The instrument will measure emission line intensity, width, and Doppler shift, map the spatial distribution of infrared emitting plasma, and search for waves in the emission line velocities.AIR-Spec consists of an optical system (feed telescope, grating spectrometer, and infrared detector) and an image stabilization system, which uses a fast steering mirror to correct the line-of-sight for platform perturbations. To ensure that the instrument meets its research goals, both systems are undergoing extensive performance modeling and testing. These results are shown with reference to the science requirements.

  9. Faint (and bright variable stars in the satellites of the Milky Way

    Directory of Open Access Journals (Sweden)

    Vivas A. Katherina

    2017-01-01

    Full Text Available I describe two ongoing projects related with variable stars in the satellites of the MilkyWay. In the first project, we are searching for dwarf Cepheid stars (a.k.a δ Scuti and/or SX Phe in some of the classical dwarf spheroidal galaxies. Our goal is to characterize the population of these variable stars under different environments (age, metallicity in order to study their use as standard candles in systems for which the metallicity is not necessarily known. In the second project we search for RR Lyrae stars in the new ultra-faint satellite galaxies that have been discovered around the Milky Way in recent years.

  10. TOWARD A NETWORK OF FAINT DA WHITE DWARFS AS HIGH-PRECISION SPECTROPHOTOMETRIC STANDARDS

    Energy Technology Data Exchange (ETDEWEB)

    Narayan, G.; Matheson, T.; Saha, A.; Claver, J. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Axelrod, T.; Olszewski, E. [University of Arizona, Steward Observatory, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Holberg, J. B. [University of Arizona, Lunar and Planetary Laboratory, 1629 East University Boulevard, Tucson, AZ 85721 (United States); Stubbs, C. W. [Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA 02138 (United States); Bohlin, R. C.; Deustua, S.; Rest, A., E-mail: gnarayan@noao.edu [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2016-05-10

    We present the initial results from a program aimed at establishing a network of hot DA white dwarfs to serve as spectrophotometric standards for present and future wide-field surveys. These stars span the equatorial zone and are faint enough to be conveniently observed throughout the year with large-aperture telescopes. The spectra of these white dwarfs are analyzed in order to generate a non-local-thermodynamic-equilibrium model atmosphere normalized to Hubble Space Telescope colors, including adjustments for wavelength-dependent interstellar extinction. Once established, this standard star network will serve ground-based observatories in both hemispheres as well as space-based instrumentation from the UV to the near IR. We demonstrate the effectiveness of this concept and show how two different approaches to the problem using somewhat different assumptions produce equivalent results. We discuss the lessons learned and the resulting corrective actions applied to our program.

  11. A Modified Adaptive Stochastic Resonance for Detecting Faint Signal in Sensors

    Directory of Open Access Journals (Sweden)

    Hengwei Li

    2007-02-01

    Full Text Available In this paper, an approach is presented to detect faint signals with strong noises in sensors by stochastic resonance (SR. We adopt the power spectrum as the evaluation tool of SR, which can be obtained by the fast Fourier transform (FFT. Furthermore, we introduce the adaptive filtering scheme to realize signal processing automatically. The key of the scheme is how to adjust the barrier height to satisfy the optimal condition of SR in the presence of any input. For the given input signal, we present an operable procedure to execute the adjustment scheme. An example utilizing one audio sensor to detect the fault information from the power supply is given. Simulation results show that th

  12. Faint nebulosities in the vicinity of the Magellanic H I Stream

    International Nuclear Information System (INIS)

    Johnson, P.G.; Meaburn, J.; Osman, A.M.I.

    1982-01-01

    Very deep Hα image tube photographs with a wide-field filter camera have been taken of the Magellanic H I Stream. A diffuse region of emission has been detected. Furthermore a mosaic of high contrast prints of IIIaJ survey plates taken with the SRC Schmidt, has been compiled over the same area. A complex region of faint, blue, filamentary nebulosity has been revealed. This appears to be reflection nebulosity either in the galactic plane or less probably, in the vicinity of the Large Magellanic Cloud. A deep Hα 1.2-m Schmidt photograph of these blue filaments reinforces the suggestion that they are reflection nebulae. The reflection and emission nebulosities in this vicinity have been compared to each other and the Magellanic H I Stream. The diffuse region of Hα emission is particularly well correlated with the Stream. (author)

  13. Faint H-alpha emission objects near the equatorial selected areas

    International Nuclear Information System (INIS)

    Robertson, T.H.; Jordan, T.M.

    1989-01-01

    An objective-prism survey of fields centered on the 24 Kapteyn Selected Areas along the celestial equator has resulted in the detection of 120 faint H-alpha emission-line objects. Diffuse objects and stars having molecular bands in their spectra are not included. Only 18 of these stars were identified in previous lists of emission-line objects. Identifications were found for an additional three stars. Images of these objects appear to be stellar on direct plates. The magnitude range for these stars is V = 10.1-19.00. Positions and V magnitudes of these objects are provided, as are identifications of objects which have been reported in other lists. Frequency distributions of the apparent magnitudes and Galactic latitudes of these emission-line objects are discussed, and finding charts are provided. 14 refs

  14. Foreground effect on the J-factor estimation of ultra-faint dwarf spheroidal galaxies

    Science.gov (United States)

    Ichikawa, Koji; Horigome, Shun-ichi; Ishigaki, Miho N.; Matsumoto, Shigeki; Ibe, Masahiro; Sugai, Hajime; Hayashi, Kohei

    2018-05-01

    Dwarf spheroidal galaxies (dSphs) are promising targets for the gamma-ray dark matter (DM) search. In particular, DM annihilation signal is expected to be strong in some of the recently discovered nearby ultra-faint dSphs, which potentially give stringent constraints on the O(1) TeV WIMP DM. However, various non-negligible systematic uncertainties complicate the estimation of the astrophysical factors relevant for the DM search in these objects. Among them, the effects of foreground stars particularly attract attention because the contamination is unavoidable even for the future kinematical survey. In this article, we assess the effects of the foreground contamination on the astrophysical J-factor estimation by generating mock samples of stars in the four ultra-faint dSphs and using a model of future spectrographs. We investigate various data cuts to optimize the quality of the data and apply a likelihood analysis which takes member and foreground stellar distributions into account. We show that the foreground star contaminations in the signal region (the region of interest) and their statistical uncertainty can be estimated by interpolating the foreground star distribution in the control region where the foreground stars dominate the member stars. Such regions can be secured at future spectroscopic observations utilizing a multiple object spectrograph with a large field of view; e.g. the Prime Focus Spectrograph mounted on Subaru Telescope. The above estimation has several advantages: The data-driven estimation of the contamination makes the analysis of the astrophysical factor stable against the complicated foreground distribution. Besides, foreground contamination effect is considered in the likelihood analysis.

  15. STELLAR ARCHEOLOGY IN THE GALACTIC HALO WITH ULTRA-FAINT DWARFS. VII. HERCULES

    Energy Technology Data Exchange (ETDEWEB)

    Musella, Ilaria; Ripepi, Vincenzo; Marconi, Marcella, E-mail: ilaria@na.astro.it, E-mail: ripepi@na.astro.it, E-mail: marcella@na.astro.it [INAF, Osservatorio Astronomico di Capodimonte, I-8013 Napoli (Italy); and others

    2012-09-10

    We present the first time-series study of the ultra-faint dwarf galaxy Hercules. Using a variety of telescope/instrument facilities we secured about 50 V and 80 B epochs. These data allowed us to detect and characterize 10 pulsating variable stars in Hercules. Our final sample includes six fundamental-mode (ab-type) and three first-overtone (c-type) RR Lyrae stars, and one Anomalous Cepheid. The average period of the ab-type RR Lyrae stars, (P{sub ab}) = 0.68 days ({sigma} = 0.03 days), places Hercules in the Oosterhoff II group, as found for almost the totality of the ultra-faint dwarf galaxies investigated so far for variability. The RR Lyrae stars were used to obtain independent estimates of the metallicity, reddening, and distance to Hercules, for which we find [Fe/H] = -2.30 {+-} 0.15 dex, E(B - V) = 0.09 {+-} 0.02 mag, and (m - M){sub 0} = 20.6 {+-} 0.1 mag, in good agreement with the literature values. We have obtained a V, B - V color-magnitude diagram (CMD) of Hercules that reaches V {approx} 25 mag and extends beyond the galaxy's half-light radius over a total area of 40' Multiplication-Sign 36'. The CMD and the RR Lyrae stars indicate the presence of a population as old and metal-poor as (at least) the Galactic globular cluster M68.

  16. FAINT NEAR-ULTRAVIOLET/FAR-ULTRAVIOLET STANDARDS FROM SWIFT/UVOT, GALEX, AND SDSS PHOTOMETRY

    International Nuclear Information System (INIS)

    Siegel, Michael H.; Hoversten, Erik A.; Roming, Peter W. A.; Brown, Peter

    2010-01-01

    At present, the precision of deep ultraviolet photometry is somewhat limited by the dearth of faint ultraviolet standard stars. In an effort to improve this situation, we present a uniform catalog of 11 new faint (u ∼ 17) ultraviolet standard stars. High-precision photometry of these stars has been taken from the Sloan Digital Sky Survey and Galaxy Evolution Explorer archives and combined with new data from the Swift Ultraviolet Optical Telescope to provide precise photometric measures extending from the near-infrared to the far-ultraviolet. These stars were chosen because they are known to be hot (20, 000 eff < 50, 000 K) DA white dwarfs with published Sloan spectra that should be photometrically stable. This careful selection allows us to compare the combined photometry and Sloan spectroscopy to models of pure hydrogen atmospheres to both constrain the underlying properties of the white dwarfs and test the ability of white dwarf models to predict the photometric measures. We find that the photometry provides good constraints on white dwarf temperatures, which demonstrates the ability of Swift/UVOT to investigate the properties of hot luminous stars. We further find that the models reproduce the photometric measures in all 11 passbands to within their systematic uncertainties. Within the limits of our photometry, we find the standard stars to be photometrically stable. This success indicates that the models can be used to calibrate additional filters to our standard system, permitting easier comparison of photometry from heterogeneous sources. The largest source of uncertainty in the model fitting is the uncertainty in the foreground reddening curve, a problem that is especially acute in the UV.

  17. Infrared-faint radio sources in the SERVS deep fields. Pinpointing AGNs at high redshift

    Science.gov (United States)

    Maini, A.; Prandoni, I.; Norris, R. P.; Spitler, L. R.; Mignano, A.; Lacy, M.; Morganti, R.

    2016-12-01

    Context. Infrared-faint radio sources (IFRS) represent an unexpected class of objects which are relatively bright at radio wavelength, but unusually faint at infrared (IR) and optical wavelengths. A recent and extensive campaign on the radio-brightest IFRSs (S1.4 GHz≳ 10 mJy) has provided evidence that most of them (if not all) contain an active galactic nuclei (AGN). Still uncertain is the nature of the radio-faintest IFRSs (S1.4 GHz≲ 1 mJy). Aims: The scope of this paper is to assess the nature of the radio-faintest IFRSs, testing their classification and improving the knowledge of their IR properties by making use of the most sensitive IR survey available so far: the Spitzer Extragalactic Representative Volume Survey (SERVS). We also explore how the criteria of IFRSs can be fine-tuned to pinpoint radio-loud AGNs at very high redshift (z > 4). Methods: We analysed a number of IFRS samples identified in SERVS fields, including a new sample (21 sources) extracted from the Lockman Hole. 3.6 and 4.5 μm IR counterparts of the 64 sources located in the SERVS fields were searched for and, when detected, their IR properties were studied. Results: We compared the radio/IR properties of the IR-detected IFRSs with those expected for a number of known classes of objects. We found that IR-detected IFRSs are mostly consistent with a mixture of high-redshift (z ≳ 3) radio-loud AGNs. The faintest ones (S1.4 GHz 100 μJy), however, could be also associated with nearer (z 2) dust-enshrouded star-burst galaxies. We also argue that, while IFRSs with radio-to-IR ratios >500 can very efficiently pinpoint radio-loud AGNs at redshift 2 < z < 4, lower radio-to-IR ratios ( 100-200) are expected for higher redshift radio-loud AGNs.

  18. The faint radio source population at 15.7 GHz - II. Multi-wavelength properties

    Science.gov (United States)

    Whittam, I. H.; Riley, J. M.; Green, D. A.; Jarvis, M. J.; Vaccari, M.

    2015-11-01

    A complete, flux density limited sample of 96 faint (>0.5 mJy) radio sources is selected from the 10C survey at 15.7 GHz in the Lockman Hole. We have matched this sample to a range of multi-wavelength catalogues, including Spitzer Extragalactic Representative Volume Survey, Spitzer Wide-area Infrared Extragalactic survey, United Kingdom Infrared Telescope Infrared Deep Sky Survey and optical data; multi-wavelength counterparts are found for 80 of the 96 sources and spectroscopic redshifts are available for 24 sources. Photometric redshifts are estimated for the sources with multi-wavelength data available; the median redshift of the sample is 0.91 with an interquartile range of 0.84. Radio-to-optical ratios show that at least 94 per cent of the sample are radio loud, indicating that the 10C sample is dominated by radio galaxies. This is in contrast to samples selected at lower frequencies, where radio-quiet AGN and star-forming galaxies are present in significant numbers at these flux density levels. All six radio-quiet sources have rising radio spectra, suggesting that they are dominated by AGN emission. These results confirm the conclusions of Paper I that the faint, flat-spectrum sources which are found to dominate the 10C sample below ˜1 mJy are the cores of radio galaxies. The properties of the 10C sample are compared to the Square Kilometre Array Design Studies Simulated Skies; a population of low-redshift star-forming galaxies predicted by the simulation is not found in the observed sample.

  19. Modeling Radial Velocities and Eclipse Photometry of the Kepler Target KIC 4054905: an Oscillating Red Giant in an Eclipsing Binary

    Science.gov (United States)

    Benbakoura, M.; Gaulme, P.; McKeever, J.; Beck, P. G.; Jackiewicz, J.; García, R. A.

    2017-12-01

    Asteroseismology is a powerful tool to measure the fundamental properties of stars and probe their interiors. This is particularly efficient for red giants because their modes are well detectable and give information on their deep layers. However, the seismic relations used to infer the mass and radius of a star have been calibrated on the Sun. Therefore, it is crucial to assess their accuracy for red giants which are not perfectly homologous to it. We study eclipsing binaries with a giant component to test their validity. We identified 16 systems for which we intend to compare the dynamical masses and radii obtained by combined photometry and spectroscopy to the values obtained from asteroseismology. In the present work, we illustrate our approach on a system from our sample.

  20. Observation of variable pre-eclipse dips and disk winds in the eclipsing LMXB XTE J1710-281

    Science.gov (United States)

    Raman, Gayathri; Maitra, Chandreyee; Paul, Biswajit

    2018-04-01

    We report the first detection of highly ionized Fe species in the X-ray spectrum of the eclipsing and dipping Low Mass X-ray Binary XTE J1710-281. Using archival Chandra and Suzaku observations, we have carried out a spectro-timing analysis of the source during three different epochs. We compare the average orbital profile and obtain differences in pre-eclipse dip morphologies between different observation epochs. We observe an orbit to orbit evolution of the dips for the first time in this source in both the Chandra observations, reflecting changes in the structure of the accretion disc in timescales of hours. We further perform intensity resolved spectroscopy for both the Chandra and the Suzaku data to characterize the changes in the spectral parameters from the persistent to the dipping intervals. We find that the absorbers responsible for the dips, can be best described using a partially ionized partial covering absorber, with an ionization parameter, log(ξ) of ˜2. The photon index of the source remained at ˜2 during both the Chandra and the Suzaku observations. In the 0.6-9 keV Suzaku spectra, we detect a broad 0.72 keV Fe L-alpha emission line complex and two narrow absorption lines at ˜6.60 keV and ˜7.01 keV. The highly ionized Fe line signatures, being an indicator of accretion disc-winds, has been observed for the first time in XTE J1710-281.

  1. Chromosomal aberrations found in Paracalanus aculeatus (Giesbrecht) at the time of solar eclipse

    Digital Repository Service at National Institute of Oceanography (India)

    Goswami, U.; Goswami, S.C.

    Chromosomal aberrations in the form of an unequal heteromorphic homologous pair and a supernumerary chromosome were observed in the gonad of a copepod - @iParacalanus aculeatus@@ after being exposed to the total solar eclipse of Feb. 16, 1980...

  2. Effects of total solar eclipse on the behavioural and metabolic activities of tropical intertidal animals

    Digital Repository Service at National Institute of Oceanography (India)

    Parulekar, A.H.; Ansari, Z.A.; Verlecar, X.N.; Harkantra, S.N.

    To study the effects of total solar eclipse of 16th Feb. 1980, on the behaviour and metabolic activities of intertidal invertebrates - nematodes, gastropods and bivalves - having different habitat preference a set of relevant observations, covering...

  3. SPECIAL SEMINAR - The NOTTE experiment, or how to become a Total Solar Eclipse chaser

    CERN Multimedia

    CERN. Geneva

    2007-01-01

    The seminar will be followed by a brief presentation of future camps for solar eclipse chasers and scientists organized in 2008 in Russia, Kazakhstan, China and Mongolia, in 2009 in Shanghai and on the Easter Island in 2010.

  4. Engage All Americans with Eclipse 2017 Through the Eyes of NASA

    Science.gov (United States)

    Ng, C.; Young, C. A.; Mayo, L.; Cline, T. D.; Stephenson, B. E.; Debebe, A.; Lewis, E. M.; Odenwald, S. F.; Hill, S. W.

    2016-12-01

    Join NASA and millions in the U.S. and around the world in observing the August 21, 2017 solar eclipse. This presentation will discuss NASA's education and communication plans for the 2017 eclipse, highlighting some programs, resources, and citizen science activities that will engage and educate many across the country and beyond. NASA will offer unique observations of this celestial event from the ground to space. Additionally, there are do-it-yourself (DIY) science, lunar and math challenges, art contests, Makerspace ideas, and various activities for learners of all ages. Education resources and tool kits may be of particular interest to formal and informal educators. Find out what events are happening in your neighborhood, and plan your own eclipse parties with resources and activities. Last but not the least, experience the eclipse on August 21 and learn more through NASA broadcast programming that will include telescopic views from multiple locations, simple measurements, and live and taped interviews.

  5. Bringing the Great American Eclipse of 2017 to Audiences across the Nation

    Science.gov (United States)

    Young, C. A.; Mayo, L.; Cline, T. D.; Ng, C.; Stephenson, B. E.

    2015-12-01

    The August 21, 2017 eclipse across America will be seen by an estimated 500 million people from northern Canada to South America as well as parts of western Europe and Africa. Through This "Great American Eclipse" NASA in partnership with Google, the American Parks Network, American Astronomical Society, the Astronomical League, and numerous other science, education, outreach, and public communications groups and organizations will develop the approaches, resources, partnerships, and technology applications necessary to bring the excitement and the science of the August 21st, 2017 total solar eclipse across America to formal and informal audiences in the US and around the world. This effort will be supported by the highly visible and successful Sun Earth Days program and will be the main theme for Sun-Earth Days 2017.This presentation will discuss NASA's education and communication plans for the eclipse and will detail a number of specific programs and partnerships being leveraged to enhance our reach and impact.

  6. z'-BAND GROUND-BASED DETECTION OF THE SECONDARY ECLIPSE OF WASP-19b

    Energy Technology Data Exchange (ETDEWEB)

    Burton, J. R.; Watson, C. A.; Pollacco, D. [Astrophysics Research Centre, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Littlefair, S. P.; Dhillon, V. S. [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom); Gibson, N. P. [Department of Physics, University of Oxford, Oxford OX1 3RH (United Kingdom); Marsh, T. R., E-mail: jburton04@qub.ac.uk [Department of Physics and Astronomy, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2012-08-01

    We present the ground-based detection of the secondary eclipse of the transiting exoplanet WASP-19b. The observations were made in the Sloan z' band using the ULTRACAM triple-beam CCD camera mounted on the New Technology Telescope. The measurement shows a 0.088% {+-} 0.019% eclipse depth, matching previous predictions based on H- and K-band measurements. We discuss in detail our approach to the removal of errors arising due to systematics in the data set, in addition to fitting a model transit to our data. This fit returns an eclipse center, T{sub 0}, of 2455578.7676 HJD, consistent with a circular orbit. Our measurement of the secondary eclipse depth is also compared to model atmospheres of WASP-19b and is found to be consistent with previous measurements at longer wavelengths for the model atmospheres we investigated.

  7. [Development of a Software for Automatically Generated Contours in Eclipse TPS].

    Science.gov (United States)

    Xie, Zhao; Hu, Jinyou; Zou, Lian; Zhang, Weisha; Zou, Yuxin; Luo, Kelin; Liu, Xiangxiang; Yu, Luxin

    2015-03-01

    The automatic generation of planning targets and auxiliary contours have achieved in Eclipse TPS 11.0. The scripting language autohotkey was used to develop a software for automatically generated contours in Eclipse TPS. This software is named Contour Auto Margin (CAM), which is composed of operational functions of contours, script generated visualization and script file operations. RESULTS Ten cases in different cancers have separately selected, in Eclipse TPS 11.0 scripts generated by the software could not only automatically generate contours but also do contour post-processing. For different cancers, there was no difference between automatically generated contours and manually created contours. The CAM is a user-friendly and powerful software, and can automatically generated contours fast in Eclipse TPS 11.0. With the help of CAM, it greatly save plan preparation time and improve working efficiency of radiation therapy physicists.

  8. Verification of Monitor unit calculations for eclipse Treatment Planning System by in- house developed spreadsheet

    Directory of Open Access Journals (Sweden)

    Hemalatha Athiyaman

    2018-04-01

    Conclusion: The spreadsheet was tested for most of the routine treatment sites and geometries. It has good agreement with the Eclipse TPS version 13.8 for homogenous treatment sites such as head &and neck and carcinoma cervix.

  9. Interacting Winds in Eclipsing Symbiotic Systems - The Case Study of EG Andromedae

    Science.gov (United States)

    Calabrò, Emanuele

    2014-03-01

    We report the mathematical representation of the so called eccentric eclipse model, whose numerical solutions can be used to obtain the physical parameters of a quiescent eclipsing symbiotic system. Indeed the nebular region produced by the collision of the stellar winds should be shifted to the orbital axis because of the orbital motion of the system. This mechanism is not negligible, and it led us to modify the classical concept of an eclipse. The orbital elements obtained from spectroscopy and photometry of the symbiotic EG Andromedae were used to test the eccentric eclipse model. Consistent values for the unknown orbital elements of this symbiotic were obtained. The physical parameters are in agreement with those obtained by means of other simulations for this system.

  10. Effect of the August 11, 1999 total solar eclipse on geomagnetic pulsations

    Czech Academy of Sciences Publication Activity Database

    Pal, B.; Heilig, B.; Zieger, B.; Szendröi, J.; Verö, J.; Lühr, H.; Yumoto, K.; Tanaka, Y.; Střeštík, Jaroslav

    2007-01-01

    Roč. 42, č. 1 (2007), s. 23-58 ISSN 1217-8977 Institutional research plan: CEZ:AV0Z30120515 Keywords : field line resonance * geomagnetic pulsations * solar eclipse Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  11. Comparisons of Measurements and Modeling of Solar Eclipse Effects on VLF Transmissions

    Science.gov (United States)

    Eccles, J. V.; Rice, D. D.; Sojka, J. J.; Marshall, R. A.; Drob, D. P.; Decena, J. C.

    2017-12-01

    The solar eclipse of 2017 August 21 provides an excellent opportunity to examine Very Low Frequency (VLF) radio signal propagation through the path of the solar eclipse between Navy VLF transmitters and several VLF receivers. The VLF transmitters available for this study radio signal propagation study are NLK in Jim Creek, Washington (24.8 kHz, 192 kW, 48.20N, 121.90W), NML in LaMour, North Dakota (25.2 kHz, 500 kW 46.37N, 93.34W), and NAA in Cutler, Maine (24.0 kHz, 1000 kW, 44.65N, 67.29W). These VLF transmitters provide propagation paths to three VLF receivers at Utah State University (41.75N, 111.76W), Bear Lake Observatory (41.95N, 111.39W), Salt Lake City (40.76N, 111.89W) and one receiver in Boulder, Colorado (40.02N, 105.27W). The solar eclipse shadow will cross all propagations paths during the day and will modify the D region electron density within the solar shadow. The week prior to the solar eclipse will be used to generate a diurnal baseline of VLF single strength for each transmitter-receiver pair. These will be compared to the day of the solar eclipse to identify VLF propagation differences through the solar eclipse shawdow. Additionally, the electron density effects of the week prior and of the solar eclipse day will be modeled using the Data-Driven D Region (DDDR) model [Eccles et al., 2005] with a detailed eclipse solar flux mask. The Long-Wave Propagation Code and the HASEL RF ray-tracing code will be used to generate VLF signal strength for each measured propagation path through the days prior and the solar eclipse day. Model-measurement comparisons will be presented and the D region electron density effects of the solar eclipse will be examined. The DDDR is a time-dependent D region model, which makes it very suitable for the solar eclipse effects on the electron density for the altitude range of 36 to 130 km. Eccles J. V., R. D. Hunsucker, D. Rice, J. J. Sojka (2005), Space weather effects on midlatitude HF propagation paths: Observations and

  12. The effects of a solar eclipse on photo-oxidants in different areas of China

    Directory of Open Access Journals (Sweden)

    J.-B. Wu

    2011-08-01

    Full Text Available This study investigates the effects of the total solar eclipse of 22 July 2009 on surface ozone and other photo-oxidants over China. A box model was used to study the sensitivity of ozone to the limb darkening effect during an eclipse event, and to show that the impact on ozone is small (less than 0.5 %. In addition, the regional model WRF-Chem was applied to study the effects of the eclipse on meteorological and chemical parameters, focusing on different regions in China. Chemical and meteorological observations were used to validate the model and to show that it can capture the effects of the total solar eclipse well. Model calculations show distinct differences in the spatial distributions of meteorological and chemical parameters with and without the eclipse. The maximum impacts of the eclipse occur over the area of totality, where there is a decrease in surface temperature of 1.5 °C and decrease in wind speed of 1 m s−1. The maximum impacts on atmospheric pollutants occur over parts of north and east China where emissions are greater, with an increase of 5 ppbv in NO2 and 25 ppbv in CO and a decrease of 10 ppbv in O3 and 4 ppbv in NO. This study also demonstrates the effects of the solar eclipse on surface photo-oxidants in different parts of China. Although the sun was obscured to a smaller extent in polluted areas than in clean areas, the impacts of the eclipse in polluted areas are greater and last longer than they do in clean areas. In contrast, the change in radical concentrations (OH, HO2 and NO3 in clean areas is much larger than in polluted areas mainly because of the limited source of radicals in these areas. The change in radical concentrations during the eclipse reveals that nighttime chemistry dominates in both clean and polluted areas. As solar eclipses provide a natural opportunity to test more thoroughly our understanding of atmospheric chemistry, especially that

  13. [A New Way to Look Up. Solar Retinopathy Risks and Methods of Prevention Prior to the 2015 Solar Eclipse].

    Science.gov (United States)

    Tsatsos, M; MacGregor, C; Gousia, D; Moschos, M; Detorakis, E

    2017-06-01

    A solar eclipse is an impressive natural phenomenon that was last experienced in Europe in 2006. Last year, on March 20th 2015, a solar eclipse was visible in much of Europe. Solar retinopathy is a recognised potentially sight threatening condition that has been associated with direct or unprotected sun gazing. Public education has been shown to improve behaviour and attitudes that could influence the development of solar retinopathy during an eclipse. We have performed a study through newspapers prior to the 2015 solar eclipse in different European countries, in order to determine the level of public health awareness and attitudes to protection. Methods: 31 online editions of national newspapers were reviewed from six countries where the eclipse was most visible. Solar retinopathy, potential warnings, safe methods of viewing an eclipse and assessment of use and dangers of modern technologies were assessed. Results: All 25 newspapers examined mentioned the solar eclipse and risk to eyesight. Safe methods for viewing the eclipse were discussed in all newspapers. Eclipse eyeglasses were mentioned in 29 of the 31 newspapers reviewed. Children were identified as a high-risk group but advice for children viewing the eclipse varied between countries. Conclusion: Since the solar eclipse of 2006, there has been an increase in the level of education available in the media. Although the safe methods for viewing an eclipse have not changed in recent years, emerging technologies, such as camera phones and the "selfie" trend, have potentially increased the risk of eclipse-associated retinopathy. Georg Thieme Verlag KG Stuttgart · New York.

  14. Eclipsing binary stars with extreme light curve asymmetries mined from large astronomical surveys

    Directory of Open Access Journals (Sweden)

    Papageorgiou Athanasios

    2017-01-01

    Full Text Available The O’Connell effect is one of the most perplexing challenges in binary studies as it has not been convincingly explained. Furthermore, a simple method to obtain essential parameters for eclipsing binaries exhibiting this effect and to extract information describing the asymmetry in the light curve maxima is needed. We have developed an automated program that characterizes the morphology of light curves by depth of both minima, height of both maxima and curvature outside the eclipses.

  15. White light coronal structures and flattening during six total solar eclipses

    Directory of Open Access Journals (Sweden)

    B.A. Marzouk

    2016-12-01

    Flattening index is the first quantitative parameter introduced for analyses of the global structure of the solar corona. It varies with respect to the phase of the solar activity and sunspot number. In this paper we study the solar corona during the 1990, 1999, 2006, 2008, 2009 and 2012 total solar eclipses. We obtain flattening coefficients for all the six eclipses by using a new computer program. Our results are in a good agreement with published results.

  16. Physics of Eclipsing Binaries: Modelling in the new era of ultra-high precision photometry

    OpenAIRE

    Pavlovski, K.; Bloemen, S.; Degroote, P.; Conroy, K.; Hambleton, Kelly; Giammarco, J.M.; Pablo, H.; Prša, A.; Tkachenko, A.; Torres, G.

    2013-01-01

    Recent ultra-high precision observations of eclipsing binaries, especially data acquired by the Kepler satellite, have made accurate light curve modelling increasingly challenging but also more rewarding. In this contribution, we discuss low-amplitude signals in light curves that can now be used to derive physical information about eclipsing binaries but that were unaccessible before the Kepler era. A notable example is the detection of Doppler beaming, which leads to an increase in flux when...

  17. Introducing adapted Nelder & Mead's downhill simplex method to a fully automated analysis of eclipsing binaries

    OpenAIRE

    Prsa, A.; Zwitter, T.

    2004-01-01

    Eclipsing binaries are extremely attractive objects because absolute physical parameters (masses, luminosities, radii) of both components may be determined from observations. Since most efforts to extract these parameters were based on dedicated observing programs, existing modeling code is based on interactivity. Gaia will make a revolutionary advance in shear number of observed eclipsing binaries and new methods for automatic handling must be introduced and thoroughly tested. This paper foc...

  18. Physics of Eclipsing Binaries: Motivation for the New-Age Modeling Suite

    OpenAIRE

    Pavlovski, K.; Prša, A.; Degroote, P.; Conroy, K.; Bloemen, S.; Hambleton, Kelly; Giammarco, J.; Pablo, H.; Tkachenko, A.; Torres, G.

    2013-01-01

    Recent ultra-high precision observations of eclipsing binaries, especially data acquired by the Kepler satellite, have made accurate light curve modelling increasingly challenging but also more rewarding. In this contribution, we discuss low-amplitude signals in light curves that can now be used to derive physical information about eclipsing binaries but that were unaccessible before the Kepler era. A notable example is the detection of Doppler beaming, which leads to an increase in flux when...

  19. British Observations of the 18 August 1868 Total Solar Eclipse from Guntoor, India

    Science.gov (United States)

    Orchiston, Wayne; Lee, Eun-Hee; Ahn, Young-Sook

    The total solar eclipse of 18 August 1868 was observed in Aden, India, Siam (present-day Thailand) and the Dutch East Indies (present-day Indonesia). One Indian expedition was sponsored by the Royal Astronomical Society, and led by Major J.F. Tennant. In this chapter we describe the observing team and instruments, discuss their observations, and conclude with some remarks on the place of the 1868 eclipse in solar studies and later nineteenth century European astronomical expeditions to India.

  20. On the height of the faculae above the photosphere from the eclipse of July 31, 1981

    International Nuclear Information System (INIS)

    Akimov, L.A.; Belkina, I.L.; Dyatel, N.P.

    1984-01-01

    The relative moments of contacts of lunar and solar limbs for the undisturbed photosphere regions and faculae are determined from July 31, 1981 solar eclipse slitless spectrograms. The comparison of the observed moments of local contacts with the theoretical ones, based on the lunar limh relief data, has shown that the visible limb of the farulae is approximately 120 km higher than the undisturbed photosphere limb. This result is in agreement with the previous eclipse data of July 10, 1972

  1. Height of the faculae above the photosphere from the eclipse of July 31, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Akimov, L.A.; Belkina, I.L.; Dyatel, N.P. (Khar' kovskij Gosudarstvennyj Univ. (Ukrainian SSR). Astronomicheskaya Observatoriya)

    The relative moments of contacts of lunar and solar limbs for the undisturbed photosphere regions and faculae are determined from July 31, 1981 solar eclipse slitless spectrograms. The comparison of the observed moments of local contacts with the theoretical ones, based on the lunar limb relief data, has shown that the visible limb of the farulae is approximately 120 km higher than the undisturbed photosphere limb. This result is in agreement with the previous eclipse data of July 10, 1972.

  2. Solar eclipse demonstrating the importance of photochemistry in new particle formation

    OpenAIRE

    Jokinen, Tuija; Kontkanen, Jenni; Lehtipalo, Katrianne; Manninen, Hanna E.; Aalto, Juho; Porcar-Castell, Albert; Garmash, Olga; Nieminen, Tuomo; Ehn, Mikael; Kangasluoma, Juha; Junninen, Heikki; Levula, Janne; Duplissy, Jonathan; Ahonen, Lauri R.; Rantala, Pekka

    2017-01-01

    Solar eclipses provide unique possibilities to investigate atmospheric processes, such as new particle formation (NPF), important to the global aerosol load and radiative balance. The temporary absence of solar radiation gives particular insight into different oxidation and clustering processes leading to NPF. This is crucial because our mechanistic understanding on how NPF is related to photochemistry is still rather limited. During a partial solar eclipse over Finland in 2015, we found that...

  3. REPEATABILITY AND ACCURACY OF EXOPLANET ECLIPSE DEPTHS MEASURED WITH POST-CRYOGENIC SPITZER

    Energy Technology Data Exchange (ETDEWEB)

    Ingalls, James G.; Krick, J. E.; Carey, S. J.; Stauffer, John R.; Lowrance, Patrick J.; Grillmair, Carl J.; Capak, Peter; Glaccum, William; Laine, Seppo; Surace, Jason; Storrie-Lombardi, Lisa [Spitzer Science Center, California Institute of Technology, 1200 E California Boulevard, Mail Code 314-6, Pasadena, CA 91125 (United States); Buzasi, Derek [Department of Chemistry and Physics, Florida Gulf Coast University, Fort Myers, FL 33965 (United States); Deming, Drake [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Diamond-Lowe, Hannah; Stevenson, Kevin B. [Department of Astronomy and Astrophysics, University of Chicago, 5640 S Ellis Avenue, Chicago, IL 60637 (United States); Evans, Thomas M. [School of Physics, University of Exeter, EX4 4QL Exeter (United Kingdom); Morello, G. [Department of Physics and Astronomy, University College London, Gower Street, WC1 E6BT (United Kingdom); Wong, Ian, E-mail: ingalls@ipac.caltech.edu [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States)

    2016-08-01

    We examine the repeatability, reliability, and accuracy of differential exoplanet eclipse depth measurements made using the InfraRed Array Camera (IRAC) on the Spitzer Space Telescope during the post-cryogenic mission. We have re-analyzed an existing 4.5 μ m data set, consisting of 10 observations of the XO-3b system during secondary eclipse, using seven different techniques for removing correlated noise. We find that, on average, for a given technique, the eclipse depth estimate is repeatable from epoch to epoch to within 156 parts per million (ppm). Most techniques derive eclipse depths that do not vary by more than a factor 3 of the photon noise limit. All methods but one accurately assess their own errors: for these methods, the individual measurement uncertainties are comparable to the scatter in eclipse depths over the 10 epoch sample. To assess the accuracy of the techniques as well as to clarify the difference between instrumental and other sources of measurement error, we have also analyzed a simulated data set of 10 visits to XO-3b, for which the eclipse depth is known. We find that three of the methods (BLISS mapping, Pixel Level Decorrelation, and Independent Component Analysis) obtain results that are within three times the photon limit of the true eclipse depth. When averaged over the 10 epoch ensemble,  5 out of 7 techniques come within 60 ppm of the true value. Spitzer exoplanet data, if obtained following current best practices and reduced using methods such as those described here, can measure repeatable and accurate single eclipse depths, with close to photon-limited results.

  4. Rats Can Acquire Conditional Fear of Faint Light Leaking through the Acrylic Resin Used to Mount Fiber Optic Cannulas

    Science.gov (United States)

    Eckmier, Adam; de Marcillac, Willy Daney; Maître, Agnès; Jay, Thérèse M.; Sanders, Matthew J.; Godsil, Bill P.

    2016-01-01

    Rodents are exquisitely sensitive to light and optogenetic behavioral experiments routinely introduce light-delivery materials into experimental situations, which raises the possibility that light could leak and influence behavioral performance. We examined whether rats respond to a faint diffusion of light, termed caplight, which emanated through…

  5. Hydra II: A Faint and Compact Milky Way Dwarf Galaxy Found in the Survey of the Magellanic Stellar History

    NARCIS (Netherlands)

    Martin, Nicolas F.; Nidever, David L.; Besla, Gurtina; Olsen, Knut; Walker, Alistair R.; Vivas, A. Katherina; Gruendl, Robert A.; Kaleida, Catherine C.; Muñoz, Ricardo R.; Blum, Robert D.; Saha, Abhijit; Conn, Blair C.; Bell, Eric F.; Chu, You-Hua; Cioni, Maria-Rosa L.; de Boer, Thomas J. L.; Gallart, Carme; Jin, Shoko; Kunder, Andrea; Majewski, Steven R.; Martinez-Delgado, David; Monachesi, Antonela; Monelli, Matteo; Monteagudo, Lara; Noël, Noelia E. D.; Olszewski, Edward W.; Stringfellow, Guy S.; van der Marel, Roeland P.; Zaritsky, Dennis

    We present the discovery of a new dwarf galaxy, Hydra II, found serendipitously within the data from the ongoing Survey of the Magellanic Stellar History conducted with the Dark Energy Camera on the Blanco 4 m Telescope. The new satellite is compact ({{r}h}=68 ± 11 pc) and faint ({{M}V}=-4.8 ± 0.3),

  6. Detection of the Secondary Eclipse of Exoplanet HAT P-11b

    Science.gov (United States)

    Barry, R. K.; Deming, L. D.; Bakos, G.; Harrington, J.; Madhusudhan, N.; Noyes, R.; Seager, S.

    2010-01-01

    We have successfully conducted secondary eclipse observations of exoplanet HAT-P-11b using the Spitzer Space Telescope. HAT-P-11b was, until very recently, the smallest transiting extrasolar planet yet found and one of only two known exo-Neptunes. We observed the system at 3.6 microns for a period of 22 hours centered on the anticipated secondary eclipse time, to detect the eclipse and determine its phase. Having detected the secondary eclipse, we are at present making a more focused series of observations in both the 3.6 and 4.5 micron bands to fully characterize it. HAT-P-11b has a period of 4.8878 days, radius of 0.422 RJ, mass of 0.081 MJ and semi-major axis 0.053 AU. Measurements of the secondary eclipse will serve to clarify two key issues; 1) the planetary brightness temperature and the nature of its atmosphere, and 2) the eccentricity of its orbit, with implications for its dynamical evolution. A precise determination of the orbit phase for the secondary eclipse will also be of great utility for Kepler observations of this system at visible wavelengths.

  7. The mid 19th and early 20th Century Pull of a Nearby Eclipse Shadow Path

    Science.gov (United States)

    Bonifácio, Vitor

    2012-09-01

    The unique observing conditions allowed by total solar eclipses made them a highly desirable target of 19th and early 20th century astronomical expeditions, particularly after 1842. Due to the narrowness of the lunar shadow at the Earth's surface this usually implied traveling to faraway locations with all the subsequent inconveniences, in particular, high costs and complex logistics. A situation that improved as travel became faster, cheaper and more reliable. The possibility to observe an eclipse in one's own country implied no customs, no language barriers, usually shorter travelling distances and the likely support of local and central authorities. The eclipse proximity also provided a strong argument to pressure the government to support the eclipse observation. Sometimes the scientific elite would use such high profile events to rhetorically promote broader goals. In this paper we will analyse the motivation, goals, negotiating strategies and outcomes of the Portuguese eclipse expeditions made between 1860 and 1914. We will focus, in particular, on the observation of the solar eclipses of 22 December 1870 and 17 April 1912. The former allowed the start-up of astrophysical studies in the country while the movie obtained at the latter led Francisco da Costa Lobo to unexpectedly propose a polar flattening of the Moon.

  8. Analysis of Geomagnetic Field Variations during Total Solar Eclipses Using INTERMAGNET Data

    Science.gov (United States)

    KIM, J. H.; Chang, H. Y.

    2017-12-01

    We investigate variations of the geomagnetic field observed by INTERMAGNET geomagnetic observatories over which the totality path passed during a solar eclipse. We compare results acquired by 6 geomagnetic observatories during the 4 total solar eclipses (11 August 1999, 1 August 2008, 11 July 2010, and 20 March 2015) in terms of geomagnetic and solar ecliptic parameters. These total solar eclipses are the only total solar eclipse during which the umbra of the moon swept an INTERMAGNET geomagnetic observatory and simultaneously variations of the geomagnetic field are recorded. We have confirmed previous studies that increase BY and decreases of BX, BZ and F are conspicuous. Interestingly, we have noted that variations of geomagnetic field components observed during the total solar eclipse at Isla de Pascua Mataveri (Easter Island) in Chile (IPM) in the southern hemisphere show distinct decrease of BY and increases of BX and BZ on the contrary. We have found, however, that variations of BX, BY, BZ and F observed at Hornsund in Norway (HRN) seem to be dominated by other geomagnetic occurrence. In addition, we have attempted to obtain any signatures of influence on the temporal behavior of the variation in the geomagnetic field signal during the solar eclipse by employing the wavelet analysis technique. Finally, we conclude by pointing out that despite apparent success a more sophisticate and reliable algorithm is required before implementing to make quantitative comparisons.

  9. Spatiotemporal change of sky polarization during the total solar eclipse on 29 March 2006 in Turkey: polarization patterns of the eclipsed sky observed by full-sky imaging polarimetry.

    Science.gov (United States)

    Sipocz, Brigitta; Hegedüs, Ramón; Kriska, György; Horváth, Gábor

    2008-12-01

    Using 180 degrees field-of-view (full-sky) imaging polarimetry, we measured the spatiotemporal change of the polarization of skylight during the total solar eclipse on 29 March 2006 in Turkey. We present our observations here on the temporal variation of the celestial patterns of the degree p and angle alpha of linear polarization of the eclipsed sky measured in the red (650 nm), green (550 nm), and blue (450 nm) parts of the spectrum. We also report on the temporal and spectral change of the positions of neutral (unpolarized, p = 0) points, and points with local minima or maxima of p of the eclipsed sky. Our results are compared with the observations performed by the same polarimetric technique during the total solar eclipse on 11 August 1999 in Hungary. Practically the same characteristics of celestial polarization were encountered during both eclipses. This shows that the observed polarization phenomena of the eclipsed sky may be general.

  10. The significance of faint visualization of the superior sagittal sinus in brain scintigraphy for the diagnosis of brain death

    International Nuclear Information System (INIS)

    Bisset, R.; Sfakianakis, G.; Ihmedian, I.; Holzman, B.; Curless, R.; Serafini, A.

    1985-01-01

    Brain death is associated with cessation of blood flow to the brain. Tc-99m brain flow studies are used as a laboratory confirmatory test for the establishment of the diagnosis of brain death. Criteria for the diagnosis of cessation of blood flow to the brain are 1) visualization of carotid artery activity in the neck of the patient and 2) no visualization of activity in the distribution of the anterior and middle cerebral arteries. The authors noticed that in a significant number of patients, although there was no visualization of arterial blood flow to the brain the static images demonstrated faint accumulation of activity in the region of the superior sagittal sinus (SSS). In a four year period 212 brain flow studies were performed in 154 patients for diagnosis of brain death; of them 137 studies (65%) showed no evidence of arterial flow. In 103 out of the 137 studies (75%) there was no visualization of the SSS; in the remaining 34 studies (3l patients) however three patterns of faint activity attributed to partial and or faint visualization of the SSS could be recognized at the midline of the immediate anterior static view: a) linear from the cranial vault floor up b) disk shaped at the apex of the vault and c) disk shaped at the apex tailing caudad. All of the 3l patients in this group satisfied brain death criteria within four days of the last study which showed faint visualization of the superior sagittal sinus. The authors conclude that even in the presence of a faint visualization of the superior sagittal sinus on static post brain flow scintigraphy, the diagnosis of cessation of blood flow to the brain can be made if there is no evidence of arterial blood flow

  11. Early Science Results from the Williams College Eclipse Expedition

    Science.gov (United States)

    Pasachoff, Jay M.; Person, Michael J.; Dantowitz, Ron; Lockwood, Christian A.; Nagle-McNaughton, Tim; Meadors, Erin N.; Perez, Cielo C.; Marti, Connor J.; Yu, Ross; Rosseau, Brendan; Daly, Declan M.; Ide, Charles A.; Davis, Allen B.; Lu, Muzhou; Sliski, David; Seiradakis, John; Voulgaris, Aris; Rusin, Vojtech; Peñaloza-Murillo, Marcos A.; Roman, Michael; Seaton, Daniel B.; Steele, Amy; Lee, Duane M.; Freeman, Marcus J.

    2018-01-01

    We describe our first cut of data reduction on a wide variety of observations of the solar corona and of the effect of the penumbra and umbra on the terrestrial atmosphere, carried out from our eclipse site on the campus of Willamette University in Salem, Oregon. Our team of faculty, undergraduate students, graduate students, and other colleagues observed the eclipse, taking images and spectra with a variety of sensors and telescopes. Equipment included frame-transfer cameras observing at 3 Hz in 0.3 nm filters at the coronal green and red lines to measure the power spectrum of oscillations in coronal loops or elsewhere in the lower corona; 3 spectrographs; a variety of telescopes and telephotos for white-light imaging; a double Lyot system tuned at Fe XIV 530.3 nm (FWHM 0.4 nm) and Fe X 637.4 nm (FWHM 0.5 nm); and a weather station to record changes in the terrestrial atmosphere. We are comparing our observations with predictions based on the previous mapping of the photospheric magnetic field, and preparing wide-field complete coronal imaging incorporating NOAA/NASA GOES-16 SUVI and NRL/NASA/LASCO for the corona outside our own images (which extend, given the completely clear skies we had, at least 4 solar radii), and NASA SDO/AIA and NOAA/NASA GOES-16 SUVI for the solar disk. One of our early composites appeared as Astronomy Picture of the Day for September 27: https://apod.nasa.gov/apod/ap170927.htmlOur expedition was supported in large part by grants from the Committee for Research and Exploration of the National Geographic Society and from the Solar Terrestrial Program of the Atmospheric and Geospace Sciences Division of the National Science Foundation, with additional student support from the STP/AGS of NSF, the NASA Massachusetts Space Grant Consortium, the Sigma Xi honorary scientific society, the Clare Booth Luce Foundation studentship and the Freeman Foote Expeditionary Fund at Williams College, other Williams College funds, and U. Pennsylvania funds.

  12. Observations of the atmospheric surface layer parameters during the total solar eclipse of March 29th, in Greece

    Energy Technology Data Exchange (ETDEWEB)

    Founda, Dimitra; Lykoudis, Spyridon; Psiloglou, Basil E.; Petrakis, Michael; Zerefos, Christos [Inst. for Environmental Research and Sustainable Development, National Observatory of Athens (Greece)

    2009-10-15

    This study examines the effect of the total solar eclipse of March 29{sup th} 2006, on some parameters of the atmospheric surface layer. The eclipse effects on the mean, but also turbulent parameters of the wind were studied at Kastelorizo, a small island of southeastern Greece situated within the totality path of the eclipse. Although the eclipse effect on the mean flow was partly masked by the synoptic situation, the analysis of the intensive (high frequency) wind measurements showed a decrease of the turbulent processes with reduced values of the turbulent kinetic energy and shear stress for a short period around the maximum phase of the eclipse. The buoyancy flux decreased by one order of magnitude during the phenomenon. The power spectra of the three wind components were found to be lower by almost one order of magnitude near the total phase when compared to spectra after the end of the eclipse. (orig.)

  13. Girl Scout Stars: Engaging Girl Scouts in the 2017 Total Eclipse

    Science.gov (United States)

    Harman, P. K.

    2017-12-01

    Reaching for the Stars: NASA Science for Girl Scouts (Girl Scout Stars) engages Girl Scouts in observing the 2017 eclipse. Three councils are host-sponsors of Girl Scout Total Eclipse Destinations,. Total Eclipse of the Heartland, sponsored by Girl Scouts of Southern Illinois, begins with planetarium, and science center visits in St. Louis, and transits to Carbondale for the eclipse. The Great Eclipse Adventure, sponsored by the Girl Scouts of the Missouri Heartland, features hands-on science activities led by Astronomy and Physics faculty and grad students at University of Missouri, Columbia, MO, and observing the eclipse at a camp nearby. Eyes to the Sky: A Once in a Lifetime Destination, by the Girl Scouts of South Carolina - Mountains to Midlands, visits a Challenger Center, a planetarium, and observatory, and culminates at Camp MaBak, Marietta, SC. Girl Scout Destinations are travel adventures, for individual girls ages 11 and older, that are inspiring, life-changing experiences. Destinations are determined via an application and review process by Girls Scouts of the USA. Girl Scout Stars also developed an Eclipse Activity Guide and kit box of materials, distributed the materials to 91 Girl Scout Councils, and delivered webinar training to councils. The eclipse materials enrich the girls' summer camp experiences with activities that promote understanding the Sun-Earth-Moon relationship, the solar system and safe eclipse viewing; and that feature science practices. Examples of the reach of the kit boxes are Girl Scouts of Montana and Wyoming Total Eclipse Event in Casper, WY, and the Girl Scouts of Northern California summer camps featuring the activities. In Girl Scouting, girls discover their skills, talents and what they care about; connect with other Girl Scouts and people in their community; and take action to change the world. This is called the Girl Scout Leadership Experience. With girl-led, hands on activities where girls can team up and work together

  14. Star formation rate and extinction in faint z ∼ 4 Lyman break galaxies

    Energy Technology Data Exchange (ETDEWEB)

    To, Chun-Hao; Wang, Wei-Hao [Institute of Astronomy and Astrophysics, Academia Sinica, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan (China); Owen, Frazer N. [National Radio Astronomy Observatory, P.O. Box 0, Socorro, NM 87801 (United States)

    2014-09-10

    We present a statistical detection of 1.5 GHz radio continuum emission from a sample of faint z ∼ 4 Lyman break galaxies (LBGs). To constrain their extinction and intrinsic star formation rate (SFR), we combine the latest ultradeep Very Large Array 1.5 GHz radio image and the Hubble Space Telescope Advanced Camera for Surveys (ACS) optical images in the GOODS-N. We select a large sample of 1771 z ∼ 4 LBGs from the ACS catalog using B {sub F435W}-dropout color criteria. Our LBG samples have I {sub F775W} ∼ 25-28 (AB), ∼0-3 mag fainter than M{sub UV}{sup ⋆} at z ∼ 4. In our stacked radio images, we find the LBGs to be point-like under our 2'' angular resolution. We measure their mean 1.5 GHz flux by stacking the measurements on the individual objects. We achieve a statistical detection of S {sub 1.5} {sub GHz} = 0.210 ± 0.075 μJy at ∼3σ for the first time on such a faint LBG population at z ∼ 4. The measurement takes into account the effects of source size and blending of multiple objects. The detection is visually confirmed by stacking the radio images of the LBGs, and the uncertainty is quantified with Monte Carlo simulations on the radio image. The stacked radio flux corresponds to an obscured SFR of 16.0 ± 5.7 M {sub ☉} yr{sup –1}, and implies a rest-frame UV extinction correction factor of 3.8. This extinction correction is in excellent agreement with that derived from the observed UV continuum spectral slope, using the local calibration of Meurer et al. This result supports the use of the local calibration on high-redshift LBGs to derive the extinction correction and SFR, and also disfavors a steep reddening curve such as that of the Small Magellanic Cloud.

  15. Photometric study of the eclipsing binary U Sagittae

    International Nuclear Information System (INIS)

    McNamara, D.H.; Feltz, K.A. Jr.

    1976-01-01

    The geometric and photometric elements of the eclipsing star U Sge have been derived from uvby observations secured in 1973-74. The ''best'' elements are r 1 = 0.296, r 2 = 0.225, i = 90 0 ; and L 1 = 0.130, L 2 = 0.870 in yellow light where the subscript 1 refers to the G2 IV-III component and the subscript 2 refers to the B8 V component. Radii and masses of the two stars can be derived by assuming that the larger star fills its Roche lobe. This assumption yields r 1 = 3.32 R/sub solar mass/, r 2 = 2.52 R/sub solar mass/, M 1 = 1.4 solar mass, and M 2 = 3.5 solar mass. The absolute magnitudes are found by two different methods and yield M/sub v/ = -0/sup m/4 for the B star and M/sub v/ = + 1.8/sup m/ for the G star. If corrections for radiative interactions are made, the absolute magnitude of the G star is M/sub v/ is approximately equal + 2.2/sup m/. Observational data secured in the u filter suggest that Balmer continuum emission can be detected from an emitting gas stream or disk. The gas must be concentrated near the following hemisphere of the B Star. The m 1 measurements of the secondary component suggest a metal deficiency of [Fe/H] = -0.6

  16. Spectrophotometric study of the AN And eclipsing binary star

    International Nuclear Information System (INIS)

    Rachkovskaya, T.M.

    1979-01-01

    The spectrum of eclipsing binary AN And has been studied using spectrograms with dispersion of 6-15 A/mm. The experiments have been carried out in 1967 and 1976 in the Crimea astrophysical laboratory. The equivalent widths of hydrogen and metallic lines were found to be 1.3-1.5 times stronger on the spectrograms in 1976 in comparison with those in 1967. The calcium spectral type Sp(KCa2)=A9, F0 was found to be earlier than the metallic one Sp(M)=F2-F5. The rotation velocity supposes the synchronism of axial and orbital rotation. Enchancement of titanium, strontiUm, conium and a deficit of magnesium and chromium is observed in the atmosphere of the star as compared with the Sun. The turbulence velocity is equal to 9.4 km/s. The velocity of the system centre-of-mass is equal to (-5.6 km/s) and the half of the amplitude of the main component beam velocity is equal to 72 km/s

  17. Fourier analysis of the light curves of eclipsing variables, XXIV

    International Nuclear Information System (INIS)

    Edalati, M.T.

    1978-01-01

    The aim of the present paper will be to evaluate numerically Jacobian and other functions which have been discussed in more detail in a previous paper of this series, and also choose the most convenient moments to obtain a good determination for the unknown eclipse parameters a and c 0 . More than 12 different pairs of g-functions for real values of m have been investigated numerically and diagrammatically. The behaviour of g-functions depends but very little on different combination of the moments, and related diagrams are approximately the same as g 2 and g 4 . The behaviour of the vanishing Jacobian, arising from different pairs of g-functions for real values of m>= 0 . Accordingly, the author obtains the optimum combination of the moments (i.e., A 6 , A 7 , A 8 and A 9 ) in g-functions g 7 and g 8 . It has been noted that the behaviour of the g-functions which depend on the combinations of the higher order moments (i.e., m>= 5) have been ruled out, because the proportional error of the moments Asub(2m) increases with increasing values of real m. The automated method has been tested successfully on the light curve of RT Per. Finally, a comparison is given of the elements of RT Per arising from two different pairs of g-functions, i.e. g 2 , g 4 and g 7 , g 8 for the light curves analysis. (Auth.)

  18. Physical Properties of the LMC Eclipsing Binary Stars

    Science.gov (United States)

    Prsa, Andrej; Devinney, E. J.; Guinan, E. F.; Engle, S. G.; DeGeorge, M.

    2009-01-01

    To date, three independent studies have devised an automatic procedure to analyse and extract the principal parameters of 2581 detached eclipsing binary stars from the OGLE photometric survey of the Large Magellanic Cloud (LMC): Devor (2005), Tamuz et al. (2006), and Prsa et al. (2008). For time efficiency, Devor used a simple model of two spherical, limb-darkened stars without tidal or reflection physics. Tamuz et al.'s approach employs a more realistic EBOP model, which is still limited in handling proximity physics. Our study used a back-propagating neural network that was trained on the light curves computed by a modern Wilson-Devinney code. The three approaches are confronted and correlations in the results are sought that indicate the degree of reliability of the obtained results. A database of solutions consistent across all three studies is presented. We assess the suitability of each method for other morphology types (i.e. semi-detached and overcontact binaries) and we overview the practical limitations of these methods for the upcoming survey data. This research is supported by NFS/RUI Grant No. AST-05-07542, which we gratefully acknowledge.

  19. UBV Photometry at the Outside Eclipse Phase of AZ Cassiopeiae

    Directory of Open Access Journals (Sweden)

    Il-Seong Nha

    1994-06-01

    Full Text Available VV Cep-type long period spectroscopic-eclipsing binary AZ Cas has been observed for five years, 1985 Oct ~ 1990 Feb, in UBV at the Ilsan Station of Yonsei University Observatory. A total of 431 observations (U=129, B=142 and V=160 are made for 86 nights. Instrumental differential UBV and B-V light curves made with these observations cover phases nearly a half of one period. There is no appreciable light variation in V but in other two passbands a gradual decrease of the brightness is clearly noticed. The loss of light in B resulted in a reddening in △(B-V by +0.06 at phases between 0.4~0.5 as compared with that of at phase ~0.1. This intrinsic reddening arouses a question why at the orbital phase of the transit of a hot star in front of a cool M supergiant the heating of the facing hemisphere of M supergiant by the strong radiation from the B star is absent. With regard to this unusual situation we propose a hypothesis that a large amount of gas stream of low temperature ejected from the surface of M supergiant component towards the B star dominates the brightness of B star and reflection effect.

  20. DISTANCES TO FOUR SOLAR NEIGHBORHOOD ECLIPSING BINARIES FROM ABSOLUTE FLUXES

    International Nuclear Information System (INIS)

    Wilson, R. E.; Van Hamme, W.

    2009-01-01

    Eclipsing binary (EB)-based distances are estimated for four solar neighborhood EBs by means of the Direct Distance Estimation (DDE) algorithm. Results are part of a project to map the solar neighborhood EBs in three dimensions, independently of parallaxes, and provide statistical comparisons between EB and parallax distances. Apart from judgments on adopted temperature and interstellar extinction, DDE's simultaneous light-velocity solutions are essentially objective and work as well for semidetached (SD) and overcontact binaries as for detached systems. Here, we analyze two detached and two SD binaries, all double lined. RS Chamaeleontis is a pre-main-sequence (MS), detached EB with weak δ Scuti variations. WW Aurigae is detached and uncomplicated, except for having high metallicity. RZ Cassiopeiae is SD and has very clear δ Scuti variations and several peculiarities. R Canis Majoris (R CMa) is an apparently simple but historically problematic SD system, also with weak δ Scuti variations. Discussions include solution rules and strategies, weighting, convergence, and third light problems. So far there is no indication of systematic band dependence among the derived distances, so the adopted band-calibration ratios seem consistent. Agreement of EB-based and parallax distances is typically within the overlapped uncertainties, with minor exceptions. We also suggest an explanation for the long-standing undermassiveness problem of R CMa's hotter component, in terms of a fortuitous combination of low metallicity and evolution slightly beyond the MS.

  1. Characterisation of COPD heterogeneity in the ECLIPSE cohort

    Directory of Open Access Journals (Sweden)

    Agusti Alvar

    2010-09-01

    Full Text Available Abstract Background Chronic obstructive pulmonary disease (COPD is a complex condition with pulmonary and extra-pulmonary manifestations. This study describes the heterogeneity of COPD in a large and well characterised and controlled COPD cohort (ECLIPSE. Methods We studied 2164 clinically stable COPD patients, 337 smokers with normal lung function and 245 never smokers. In these individuals, we measured clinical parameters, nutritional status, spirometry, exercise tolerance, and amount of emphysema by computed tomography. Results COPD patients were slightly older than controls and had more pack years of smoking than smokers with normal lung function. Co-morbidities were more prevalent in COPD patients than in controls, and occurred to the same extent irrespective of the GOLD stage. The severity of airflow limitation in COPD patients was poorly related to the degree of breathlessness, health status, presence of co-morbidity, exercise capacity and number of exacerbations reported in the year before the study. The distribution of these variables within each GOLD stage was wide. Even in subjects with severe airflow obstruction, a substantial proportion did not report symptoms, exacerbations or exercise limitation. The amount of emphysema increased with GOLD severity. The prevalence of bronchiectasis was low (4% but also increased with GOLD stage. Some gender differences were also identified. Conclusions The clinical manifestations of COPD are highly variable and the degree of airflow limitation does not capture the heterogeneity of the disease.

  2. A 12 MINUTE ORBITAL PERIOD DETACHED WHITE DWARF ECLIPSING BINARY

    International Nuclear Information System (INIS)

    Brown, Warren R.; Kilic, Mukremin; Kenyon, Scott J.; Hermes, J. J.; Winget, D. E.; Prieto, Carlos Allende

    2011-01-01

    We have discovered a detached pair of white dwarfs (WDs) with a 12.75 minute orbital period and a 1315 km s -1 radial velocity amplitude. We measure the full orbital parameters of the system using its light curve, which shows ellipsoidal variations, Doppler boosting, and primary and secondary eclipses. The primary is a 0.25 M sun tidally distorted helium WD, only the second tidally distorted WD known. The unseen secondary is a 0.55 M sun carbon-oxygen WD. The two WDs will come into contact in 0.9 Myr due to loss of energy and angular momentum via gravitational wave radiation. Upon contact the systems may merge (yielding a rapidly spinning massive WD), form a stable interacting binary, or possibly explode as an underluminous Type Ia supernova. The system currently has a gravitational wave strain of 10 -22 , about 10,000 times larger than the Hulse-Taylor pulsar; this system would be detected by the proposed Laser Interferometer Space Antenna gravitational wave mission in the first week of operation. This system's rapid change in orbital period will provide a fundamental test of general relativity.

  3. Absolute parameters of southern detached eclipsing binary: HD 53570

    Science.gov (United States)

    Sürgit, D.

    2018-05-01

    In this study, we conducted the first analysis of spectroscopic and photometric observations of the eclipsing binary star HD 53570. Spectroscopic observations of HD 53570 were made at the Sutherland Station of the South African Astronomical Observatory in 2013 and 2014. The radial velocities of the components were determined using the cross-correlation technique. The spectroscopic mass ratio obtained for the system was 1.13 ( ± 0.07). The All Sky Automated Survey V light curve of HD 53570 was analyzed using the Wilson-Devinney code combined with the Monte Carlo search method. The final model showed that HD 53570 has a detached configuration. The mass and radii of the primary and secondary components of HD 53570 were derived as 1.06 ( ± 0.07) M⊙, 1.20 ( ± 0.16) M⊙, and 1.42 ( ± 0.14) R⊙, 2.07 ( ± 0.16) R⊙, respectively. The distance of HD 53570 was computed as 248 ( ± 38) pc considering interstellar extinction. The evolutionary status of the component stars was also investigated using Geneva evolutionary models.

  4. Using the ionospheric response to the solar eclipse on 20 March 2015 to detect spatial structure in the solar corona

    Science.gov (United States)

    Bradford, J.; Bell, S. A.; Wilkinson, J.; Smith, D.; Tudor, S.

    2016-01-01

    The total solar eclipse that occurred over the Arctic region on 20 March 2015 was seen as a partial eclipse over much of Europe. Observations of this eclipse were used to investigate the high time resolution (1 min) decay and recovery of the Earth’s ionospheric E-region above the ionospheric monitoring station in Chilton, UK. At the altitude of this region (100 km), the maximum phase of the eclipse was 88.88% obscuration of the photosphere occurring at 9:29:41.5 UT. In comparison, the ionospheric response revealed a maximum obscuration of 66% (leaving a fraction, Φ, of uneclipsed radiation of 34±4%) occurring at 9:29 UT. The eclipse was re-created using data from the Solar Dynamics Observatory to estimate the fraction of radiation incident on the Earth’s atmosphere throughout the eclipse from nine different emission wavelengths in the extreme ultraviolet (EUV) and X-ray spectrum. These emissions, having varying spatial distributions, were each obscured differently during the eclipse. Those wavelengths associated with coronal emissions (94, 211 and 335 Å) most closely reproduced the time varying fraction of unobscured radiation observed in the ionosphere. These results could enable historic ionospheric eclipse measurements to be interpreted in terms of the distribution of EUV and X-ray emissions on the solar disc. This article is part of the themed issue ‘Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse’. PMID:27550766

  5. Predicting the α Comae Berenices Time of Eclipse: How 3 Ambiguous Measurements out of 609 Caused a 26 Year Binary’s Eclipse to be Missed

    NARCIS (Netherlands)

    Muterspaugh, M.W.; Wijngaarden, M.J.P.; Henrichs, H.F.; Lane, B.F.; Hartkopf, W.I.; Henry, G.W.; Schaefer, G.H.; Farrington, C.; Hummel, C.A.; Zavala, R.T.

    2015-01-01

    The dwarf stars in the 26 year period binary α Com were predicted to eclipse each other in early 2015. That prediction was based on an orbit model made with over 600 astrometric observations using micrometers, speckle interferometry, and long baseline optical interferometry. Unfortunately, it has

  6. Assessing the impact of a solar eclipse on weather and photovoltaic production

    Directory of Open Access Journals (Sweden)

    Carmen Köhler

    2016-02-01

    Full Text Available With the strong expansion of the installed renewable energy over the last years, the relevance of weather forecasts for operating the German power system has considerably increased. In that context, rare but important events like the solar eclipse on the morning of 20 March 2015 pose an additional challenge when operating the power system, as it affects the photovoltaic (PV power production by inducing strong gradients in the feed-in. In order to maintain grid stability, the uncertainties associated with the eclipse have been estimated in advance for planning necessary precautions. Especially the maximum gradients in PV-power were of importance for the provision of balancing energy. Numerical weather prediction (NWP is very suited for this assessment, as it allows to consider the complex mechanisms occurring in the atmosphere. Thus the impact of the eclipse on meteorological parameters which affect the PV-power generation were evaluated. Sensitivity studies with NWP models have been conducted in order to assess the reduction in short wave radiation and temperature during the total solar eclipse months before the actual event. For this purpose, model simulations with the non-hydrostatic COSMO models from the German Weather Service (DWD have been performed over Germany and Europe. As the weather situation and especially the cloud cover during the eclipse could not be known in advance, a realistic worst case (clear sky conditions and a best case (overcast conditions scenario were simulated over Germany. Thereof the PV-power production has been estimated and analyzed for the different scenarios. The NWP model data from the sensitivity studies are openly distributed (doi:10.1594/PANGAEA.839163. As near real-time NWP simulations considering the solar eclipse were conducted a few days prior to the event, they are herein validated with measurements. Furthermore, the actual PV-power production and actions taken by the TSOs during the solar eclipse are

  7. Confirming Variability in the Secondary Eclipse Depth of the Super-Earth 55 Cancri e

    Science.gov (United States)

    Tamburo, P.; Mandell, A.; Deming, D.; Garhart, E.

    2018-05-01

    We present a reanalysis of five transit and eight eclipse observations of the ultrashort-period super-Earth 55 Cancri e observed using the Spitzer Space Telescope during 2011–2013. We use pixel-level decorrelation to derive accurate transit and eclipse depths from the Spitzer data, and we perform an extensive error analysis. We focus on determining possible variability in the eclipse data, as was reported in Demory et al. From the transit data, we determine updated orbital parameters, yielding T 0 = 2,455,733.0037 ± 0.0002, P = 0.7365454 ± 0.0000003 days, i = 83.5 ± 1.°3, and R p = 1.89 ± 0.05 R ⊕. Our transit results are consistent with a constant depth, and we conclude that they are not variable. We find a significant amount of variability between the eight eclipse observations and confirm agreement with Demory et al. through a correlation analysis. We convert the eclipse measurements to brightness temperatures, and generate and discuss several heuristic models that explain the evolution of the planet’s eclipse depth versus time. The eclipses are best modeled by a year-to-year variability model, but variability on shorter timescales cannot be ruled out. The derived range of brightness temperatures can be achieved by a dark planet with inefficient heat redistribution intermittently covered over a large fraction of the substellar hemisphere by reflective grains, possibly indicating volcanic activity or cloud variability. This time-variable system should be observable with future space missions, both planned (JWST) and proposed (i.e., ARIEL).

  8. How Cool was the Eclipse? Atmospheric Measurements and Citizen Science via NASA's GLOBE Observer

    Science.gov (United States)

    Weaver, K. L. K.; Riebeek Kohl, H.

    2017-12-01

    The solar eclipse of 2017 presented an extraordinary opportunity to engage the public in shared science activity across the entire United States. While a natural focus of the eclipse was on astronomy and heliophysics, there was also an opening for excellent connections to Earth science. Because of the excitement of the event, many people gathered for long periods before and after totality, a perfect opportunity for observations and data collection to explore the impact of the eclipse on the atmosphere. The data was collected via NASA's GLOBE Observer app, a subset of the Global Learning and Observations to Benefit the Environment Program, a citizen science project which has been active for more than 20 years training teachers to collect many different types of environmental science data with their students. GLOBE Observer expands that audience to citizen scientists who might not be connected to a school, but are still interested in collecting data. In addition to the clouds observations that are normally part of GLOBE Observer, a special temporary protocol was added for the eclipse to include air temperature. Both types of measurements were collected at regular intervals for several hours before and after the point of maximum eclipse. By crowdsourcing data from all across the United States, on and off the path of totality, the hope was to be able to see patterns that wouldn't be apparent with fewer data points. In particular, there are few sources of detailed cloud data from the ground, including cloud type as well as overall cloud cover, especially as collected during a unique natural experiment such as an eclipse. This presentation will report preliminary results of the GLOBE Observer eclipse citizen science project, including participation totals and impact, data site distribution, as well as early analyses of both temperature and cloud data.

  9. Getting a Feel for Eclipses: A Tactile Discovery of an Awe-inspiring Celestial Event

    Science.gov (United States)

    Runyon, C. R.; Hall, C.; Hurd, D.; Minafra, J.; Williams, M. N.; Quinn, K.

    2017-12-01

    Solar eclipses provide a unique viewing opportunity for people across the world. August 21, 2017 was no exception. From Oregon to South Carolina, viewers were able to witness this remarkable phenomenon as the Moon comes between the Sun and Earth, casting a shadow on Earth. From a personal social / emotional standpoint seeing a total solar eclipse is indescribable and unforgettable. For the sighted, such an event is experienced through a combination of multiple senses, not just sight. For those people who are Blind / visually impaired (B/VI), the experience is different. While they may sense changes in the intensity of the sunlight, temperature, and animal noises, they are unable to "see" what is happening. How might this remarkable experience be brought to life for the B/VI? The NASA Solar System Exploration Research Virtual Institute Center for Lunar and Asteroid Surface Science (SSERVI CLASS) education/public engagement team developed a tactile book to do just this. The tactile book, Getting a Feel for Eclipses, provides users who are B/VI a means to see and experience the total solar eclipse through their fingertips. The unique, hand-made, tactile graphics are created from various textured materials such that each feature is readily identified. A QR code associated with the book provides access to digital content describing each tactile. Through this delivery mechanism, users who are B/VI, or even sighted may access the content with any smart device. Distributed to Schools for the Blind, national organizations for the Blind, Libraries, Museums and Science Centers across the country, the book helped bring a rare event to life for thousands of people who may not have otherwise been able to experience the eclipse. We look forward to 2024 when the U.S. will once again host the "path of totality." Until then, Getting a Feel for Eclipses will continue to serve as a guide to those interested, and an updated eclipse path map will continue to make the book pertinent.

  10. EclipseMob: Results from a nation-wide citizen science experiment on the effects of the 2017 Solar Eclipse on Low-frequency (LF) Radio Propagation

    Science.gov (United States)

    Liles, W. C.; Lukes, L.; Nelson, J.; Henry, J.; Oputa, J.; Kerby-Patel, K. C.

    2017-12-01

    Early experiments to study the effects of a solar eclipse on radio wave propagation were done with either a limited number of sites before any theory of the ionosphere had been confirmed or involved collecting data that proved to be unusable because submissions were missing critical information such as date, time or location. This study used the 2017 solar eclipse over the continental U.S. to conduct the first wide-area (across the U.S.) low-frequency (LF) propagation study. The data collection process was crowdsourced through the engagement of students/educators, citizens, ham radio enthusiasts, and the scientific community. In order to accomplish data collection by geographically dispersed citizen scientists, the EclipseMob team designed and shared a low cost, low tool/skill DIY receiver system to collect LF data that leveraged existing cell phone technology and made the experiment more accessible to students and people with no prior experience constructing electronic systems. To support engagement, in addition to web guides (eclipsemob..org), EclipseMob supplied 150 DIY kits and provided build/Q&A webinars and events. For the experiment, participants constructed a simple receiver system consisting of a homemade antenna, a simple homemade receiver to convert the radio frequency (RF) signals to audio frequencies, and a smart phone app. Before, during, and after the eclipse, participants used their receiver systems to record transmitter signal data from WWVB located near Fort Collins, Colorado on 60.000 kHz (a U.S. frequency standard that is operated by NIST and transmits time codes). A second frequency, 55.500 kHz transmitted by a LF station in Dixon, CA was also used. By using the time, date and location features of the smart phone, the problems experienced in earlier experiments could be minimized. By crowdsourcing the observation sites across the U.S., data from a number of different short, medium and long- paths could be obtained as the total eclipse crossed

  11. A Search for Faint, Diffuse Halo Emission in Edge-On Galaxies with Spitzer/IRAC

    Science.gov (United States)

    Ashby, Matthew; Arendt, R. G.; Pipher, J. L.; Forrest, W. J.; Marengo, M.; Barmby, P.; Willner, S. P.; Stauffer, J. R.; Fazio, G. G.

    2006-12-01

    We present deep infrared mosaics of the nearby edge-on spiral galaxies NGC 891, 4244, 4565, and 5907. These data were acquired at 3.6, 4.5, 5.8, and 8.0 microns using the Infrared Array Camera aboard Spitzer as part of GTO program number 3. This effort is designed to detect the putative faint, diffuse emission from halos and thick disks of spiral galaxies in the near-mid infrared under the thermally stable, low-background conditions of space. These conditions in combination with the advantageous viewing angles presented by these well-known edge-on spirals provide arguably the best opportunity to characterize the halo/thick disk components of such galaxies in the infrared. In this contribution we describe our observations, data reduction techniques, corrections for artifacts in the data, and the modeling approach we applied to analyze this unique dataset. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech.

  12. REFERENCE-LESS DETECTION, ASTROMETRY, AND PHOTOMETRY OF FAINT COMPANIONS WITH ADAPTIVE OPTICS

    International Nuclear Information System (INIS)

    Gladysz, Szymon; Christou, Julian C.

    2009-01-01

    We propose a complete framework for the detection, astrometry, and photometry of faint companions from a sequence of adaptive optics (AO) corrected short exposures. The algorithms exploit the difference in statistics between the on-axis and off-axis intensity of the AO point-spread function (PSF) to differentiate real sources from speckles. We validate the new approach and illustrate its performance using moderate Strehl ratio data obtained with the natural guide star AO system on the Lick Observatory's 3 m Shane Telescope. We obtain almost a 2 mag gain in achievable contrast by using our detection method compared to 5σ detectability in long exposures. We also present a first guide to expected accuracy of differential photometry and astrometry with the new techniques. Our approach performs better than PSF-fitting in general and especially so for close companions, which are located within the uncompensated seeing (speckle) halo. All three proposed algorithms are self-calibrating, i.e., they do not require observation of a calibration star. One of the advantages of this approach is improved observing efficiency.

  13. Degree of polarization and source counts of faint radio sources from Stacking Polarized intensity

    International Nuclear Information System (INIS)

    Stil, J. M.; George, S. J.; Keller, B. W.; Taylor, A. R.

    2014-01-01

    We present stacking polarized intensity as a means to study the polarization of sources that are too faint to be detected individually in surveys of polarized radio sources. Stacking offers not only high sensitivity to the median signal of a class of radio sources, but also avoids a detection threshold in polarized intensity, and therefore an arbitrary exclusion of sources with a low percentage of polarization. Correction for polarization bias is done through a Monte Carlo analysis and tested on a simulated survey. We show that the nonlinear relation between the real polarized signal and the detected signal requires knowledge of the shape of the distribution of fractional polarization, which we constrain using the ratio of the upper quartile to the lower quartile of the distribution of stacked polarized intensities. Stacking polarized intensity for NRAO VLA Sky Survey (NVSS) sources down to the detection limit in Stokes I, we find a gradual increase in median fractional polarization that is consistent with a trend that was noticed before for bright NVSS sources, but is much more gradual than found by previous deep surveys of radio polarization. Consequently, the polarized radio source counts derived from our stacking experiment predict fewer polarized radio sources for future surveys with the Square Kilometre Array and its pathfinders.

  14. A Study of Planetary Nebulae using the Faint Object Infrared Camera for the SOFIA Telescope

    Science.gov (United States)

    Davis, Jessica

    2012-01-01

    A planetary nebula is formed following an intermediate-mass (1-8 solar M) star's evolution off of the main sequence; it undergoes a phase of mass loss whereby the stellar envelope is ejected and the core is converted into a white dwarf. Planetary nebulae often display complex morphologies such as waists or torii, rings, collimated jet-like outflows, and bipolar symmetry, but exactly how these features form is unclear. To study how the distribution of dust in the interstellar medium affects their morphology, we utilize the Faint Object InfraRed CAmera for the SOFIA Telescope (FORCAST) to obtain well-resolved images of four planetary nebulae--NGC 7027, NGC 6543, M2-9, and the Frosty Leo Nebula--at wavelengths where they radiate most of their energy. We retrieve mid infrared images at wavelengths ranging from 6.3 to 37.1 micron for each of our targets. IDL (Interactive Data Language) is used to perform basic analysis. We select M2-9 to investigate further; analyzing cross sections of the southern lobe reveals a slight limb brightening effect. Modeling the dust distribution within the lobes reveals that the thickness of the lobe walls is higher than anticipated, or rather than surrounding a vacuum surrounds a low density region of tenuous dust. Further analysis of this and other planetary nebulae is needed before drawing more specific conclusions.

  15. VizieR Online Data Catalog: Infrared-faint radio sources catalog (Collier+, 2014)

    Science.gov (United States)

    Collier, J. D.; Banfield, J. K.; Norris, R. P.; Schnitzeler, D. H. F. M.; Kimball, A. E.; Filipovic, M. D.; Jarrett, T. H.; Lonsdale, C. J.; Tothill, N. F. H.

    2014-11-01

    The 20cm radio data come from the Unified Radio Catalog (URC) compiled by Kimball & Ivezic (2008AJ....136..684K). This radio catalogue combines data from the National Radio Astronomy Observatory (NRAO) VLA Sky Survey (NVSS; Condon et al., 1998, Cat. VIII/65), Faint Images of the Radio Sky at Twenty Centimeters (FIRST; Becker, White & Helfand, 1995, cat. VIII/92), Green Bank 6cm survey (GB6; Gregory et al., 1996, Cat. VIII/40), the Westerbork Northern Sky Survey (WENSS; Rengelink et al. 1997; de Bruyn et al. 2000, Cat. VIII/62) and the Sloan Digital Sky Survey Data Release 6 (SDSS DR6; Adelman-McCarthy et al., 2008, Cat. II/282). We use updated NVSS and FIRST data from the URC version 2.0 (Kimball & Ivezic, in preparation), which includes a number of new sources as well as updated positions and flux densities. The IR data come from WISE (Wright et al. (WISE Team) 2009, Cat. II/311), which is an all-sky survey centred at 3.4, 4.6, 12 and 22um (referred to as bands W1, W2, W3 and W4), with respective angular resolutions of 6.1, 6.4, 6.5 and 12.0-arcsec (full width at half-maximum, FWHM), and typical 5σ sensitivity levels of 0.08, 0.11, 1 and 6mJy, with sensitivity increasing towards the ecliptic poles. (1 data file).

  16. Archean Earth Atmosphere Fractal Haze Aggregates: Light Scattering Calculations and the Faint Young Sun Paradox

    Science.gov (United States)

    Boness, D. A.; Terrell-Martinez, B.

    2010-12-01

    As part of an ongoing undergraduate research project of light scattering calculations involving fractal carbonaceous soot aggregates relevant to current anthropogenic and natural sources in Earth's atmosphere, we have read with interest a recent paper [E.T. Wolf and O.B Toon,Science 328, 1266 (2010)] claiming that the Faint Young Sun paradox discussed four decades ago by Carl Sagan and others can be resolved without invoking heavy CO2 concentrations as a greenhouse gas warming the early Earth enough to sustain liquid water and hence allow the origin of life. Wolf and Toon report that a Titan-like Archean Earth haze, with a fractal haze aggregate nature due to nitrogen-methane photochemistry at high altitudes, should block enough UV light to protect the warming greenhouse gas NH3 while allowing enough visible light to reach the surface of the Earth. To test this hypothesis, we have employed a rigorous T-Matrix arbitrary-particle light scattering technique, to avoid the simplifications inherent in Mie-sphere scattering, on haze fractal aggregates at UV and visible wavelenths of incident light. We generate these model aggregates using diffusion-limited cluster aggregation (DLCA) algorithms, which much more closely fit actual haze fractal aggregates than do diffusion-limited aggregation (DLA) algorithms.

  17. An Improved Technique for the Photometry and Astrometry of Faint Companions

    Science.gov (United States)

    Burke, Daniel; Gladysz, Szymon; Roberts, Lewis; Devaney, Nicholas; Dainty, Chris

    2009-07-01

    We propose a new approach to differential astrometry and photometry of faint companions in adaptive optics images. It is based on a prewhitening matched filter, also referred to in the literature as the Hotelling observer. We focus on cases where the signal of the companion is located within the bright halo of the parent star. Using real adaptive optics data from the 3 m Shane telescope at the Lick Observatory, we compare the performance of the Hotelling algorithm with other estimation algorithms currently used for the same problem. The real single-star data are used to generate artificial binary objects with a range of magnitude ratios. In most cases, the Hotelling observer gives significantly lower astrometric and photometric errors. In the case of high Strehl ratio (SR) data (SR ≈ 0.5), the differential photometry of a binary star with a Δm = 4.5 and a separation of 0.6″ is better than 0.1 mag a factor of 2 lower than the other algorithms considered.

  18. Ultra faint dwarf galaxies: an arena for testing dark matter versus modified gravity

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Weikang; Ishak, Mustapha, E-mail: wxl123830@utdallas.edu, E-mail: mishak@utdallas.edu [Department of Physics, University of Texas at Dallas, Richardson, TX 75083 (United States)

    2016-10-01

    The scenario consistent with a wealth of observations for the missing mass problem is that of weakly interacting dark matter particles. However, arguments or proposals for a Newtonian or relativistic modified gravity scenario continue to be made. A distinguishing characteristic between the two scenarios is that dark matter particles can produce a gravitational effect, in principle, without the need of baryons while this is not the case for the modified gravity scenario where such an effect must be correlated with the amount of baryonic matter. We consider here ultra-faint dwarf (UFD) galaxies as a promising arena to test the two scenarios based on the above assertion. We compare the correlation of the luminosity with the velocity dispersion between samples of UFD and non-UFD galaxies, finding a significant loss of correlation for UFD galaxies. For example, we find for 28 non-UFD galaxies a strong correlation coefficient of −0.688 which drops to −0.077 for the 23 UFD galaxies. Incoming and future data will determine whether the observed stochasticity for UFD galaxies is physical or due to systematics in the data. Such a loss of correlation (if it is to persist) is possible and consistent with the dark matter scenario for UFD galaxies but would constitute a new challenge for the modified gravity scenario.

  19. STAR FORMATION IN ULTRA-FAINT DWARFS: CONTINUOUS OR SINGLE-AGE BURSTS?

    International Nuclear Information System (INIS)

    Webster, David; Bland-Hawthorn, Joss; Sutherland, Ralph

    2015-01-01

    We model the chemical evolution of six ultra-faint dwarfs (UFDs): Bootes I, Canes Venatici II, Coma Berenices, Hercules, Leo IV, and Ursa Major I based on their recently determined star formation histories. We show that two single-age bursts cannot explain the observed [α/Fe] versus [Fe/H] distribution in these galaxies and that some self-enrichment is required within the first burst. An alternative scenario is modeled, in which star formation is continuous except for short interruptions when one or more supernovae temporarily blow the dense gas out from the center of the system. This model allows for self-enrichment and can reproduce the chemical abundances of the UFDs in which the second burst is only a trace population. We conclude that the most likely star formation history is one or two extended periods of star formation, with the first burst lasting for at least 100 Myr. As found in earlier work, the observed properties of UFDs can be explained by formation at a low mass (M vir ∼10 7 M ⊙ ), rather than being stripped remnants of much larger systems

  20. A search for AGN activity in Infrared-Faint Radio Sources (IFRS)

    Science.gov (United States)

    Lenc, Emil; Middelberg, Enno; Norris, Ray; Mao, Minnie

    2010-04-01

    We propose to observe a large sample of radio sources from the ATLAS (Australia Telescope Large Area Survey) source catalogue with the LBA, to determine their compactness. The sample consists of 36 sources with no counterpart in the co-located SWIRE survey (3.6 um to 160 um), carried out with the Spitzer Space Telescope. This rare class of sources, dubber Infrared-Faint Radio Sources (IFRS), is inconsistent with current galaxy evolution models. VLBI observations are an essential way to obtain further clues on what these objects are and why they are hidden from infrared observations. We will measure the flux densities on long baselines to determine their compactness. Only five IFRS have been previously targeted with VLBI observations (resulting in two detections). We propose using single baseline (Parkes-ATCA) eVLBI observations with the LBA at 1 Gbps to maximise sensitivity. With the observations proposed here we will increase the number of VLBI-observed IFRS from 5 to 36, allowing us to draw statistical conclusions about this intriguing new class of objects.

  1. The first VLBI image of an infrared-faint radio source

    Science.gov (United States)

    Middelberg, E.; Norris, R. P.; Tingay, S.; Mao, M. Y.; Phillips, C. J.; Hotan, A. W.

    2008-11-01

    Context: We investigate the joint evolution of active galactic nuclei and star formation in the Universe. Aims: In the 1.4 GHz survey with the Australia Telescope Compact Array of the Chandra Deep Field South and the European Large Area ISO Survey - S1 we have identified a class of objects which are strong in the radio but have no detectable infrared and optical counterparts. This class has been called Infrared-Faint Radio Sources, or IFRS. 53 sources out of 2002 have been classified as IFRS. It is not known what these objects are. Methods: To address the many possible explanations as to what the nature of these objects is we have observed four sources with the Australian Long Baseline Array. Results: We have detected and imaged one of the four sources observed. Assuming that the source is at a high redshift, we find its properties in agreement with properties of Compact Steep Spectrum sources. However, due to the lack of optical and infrared data the constraints are not particularly strong.

  2. STAR FORMATION IN ULTRA-FAINT DWARFS: CONTINUOUS OR SINGLE-AGE BURSTS?

    Energy Technology Data Exchange (ETDEWEB)

    Webster, David; Bland-Hawthorn, Joss [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia); Sutherland, Ralph, E-mail: d.webster@physics.usyd.edu.au [Research School of Astronomy and Astrophysics, Australian National University, Cotter Rd, Weston, ACT 2611 (Australia)

    2015-01-30

    We model the chemical evolution of six ultra-faint dwarfs (UFDs): Bootes I, Canes Venatici II, Coma Berenices, Hercules, Leo IV, and Ursa Major I based on their recently determined star formation histories. We show that two single-age bursts cannot explain the observed [α/Fe] versus [Fe/H] distribution in these galaxies and that some self-enrichment is required within the first burst. An alternative scenario is modeled, in which star formation is continuous except for short interruptions when one or more supernovae temporarily blow the dense gas out from the center of the system. This model allows for self-enrichment and can reproduce the chemical abundances of the UFDs in which the second burst is only a trace population. We conclude that the most likely star formation history is one or two extended periods of star formation, with the first burst lasting for at least 100 Myr. As found in earlier work, the observed properties of UFDs can be explained by formation at a low mass (M{sub vir}∼10{sup 7} M{sub ⊙}), rather than being stripped remnants of much larger systems.

  3. CEMP Stars in the Halo and Their Origin in Ultra-Faint Dwarf Galaxies

    Science.gov (United States)

    Beers, Timothy C.

    2018-06-01

    The very metal-poor (VMP; [Fe/H] 3.0) stars provide a direct view of Galactic chemical and dynamical evolution; detailed spectroscopic studies of these objects are the best way to identify and distinguish between various scenarios for the enrichment of early star-forming gas clouds soon after the Big Bang. It has been recognized that a large fraction of VMP (15-20%) and EMP stars (30-40%) possess significant over-abundances of carbon relative to iron, [C/Fe] > +0.7. This fraction rises to at least 80% for stars with [Fe/H] 3.0 belong to the CEMP-no sub-class, characterized by the lack of strong enhancements in the neutron-capture elements (e.g., [Ba/Fe] < 0.0). The CEMP-no abundance signature is commonly observed among stars ultra-faint dwarf spheroidal galaxies such as SEGUE-1. In addition, kinematic studies of CEMP-no stars strongly suggest an association with the outer-halo population of the Galaxy, which was likely formed from the accretion of low-mass mini-halos. These observations, and other lines of evidence, indicate that the CEMP-no stars of the Milky Way were born in low-mass dwarf galaxies, and later subsumed into the halo.

  4. Ionospheric response over Europe during the solar eclipse of March 20, 2015

    Directory of Open Access Journals (Sweden)

    Hoque Mohammed Mainul

    2016-01-01

    Full Text Available The solar eclipse on March 20, 2015 was a fascinating event for people in Northern Europe. From a scientific point of view, the solar eclipse can be considered as an in situ experiment on the Earth’s upper atmosphere with a well-defined switching off and on of solar irradiation. Due to the strong changes in solar radiation during the eclipse, dynamic processes were initiated in the atmosphere and ionosphere causing a measurable impact, for example, on temperature and ionization. We analyzed the behavior of total ionospheric ionization over Europe by reconstructing total electron content (TEC maps and differential TEC maps. Investigating the large depletion zone around the shadow spot, we found a TEC reduction of up to 6 TEC units, i.e., the total plasma depletion reached up to about 50%. However, the March 20, 2015 eclipse occurred during the recovery phase of a strong geomagnetic storm and the ionosphere was still perturbed and depleted. Therefore, the unusual high depletion is due to the negative bias of up to 20% already observed over Northern Europe before the eclipse occurred. After removing the negative storm effect, the eclipse-induced depletion amounts to about 30%, which is in agreement with previous observations. During the solar eclipse, ionospheric plasma redistribution processes significantly affected the shape of the electron density profile, which is seen in the equivalent slab thickness derived by combining vertical incidence sounding (VS and TEC measurements. We found enhanced slab thickness values revealing, on the one hand, an increased width of the ionosphere around the maximum phase and, on the other, evidence for delayed depletion of the topside ionosphere. Additionally, we investigated very low frequency (VLF signal strength measurements and found immediate amplitude changes due to ionization loss at the lower ionosphere during the eclipse time. We found that the magnitude of TEC depletion is linearly dependent on the

  5. Solar eclipses at high latitudes: ionospheric effects in the lower ionosphere

    Science.gov (United States)

    Cherniakov, S.

    2017-12-01

    The partial reflection facility of the Polar Geophysical Institute (the Tumanny observatory, 69.0N, 35.7E) has observed behavior of the high-latitude lower ionosphere during the 20 March 2015 total solar eclipse. There were several effects during the eclipse. At the heights of 60-80 km the ionosphere has shown the effect of a "short night", but at the higher altitudes local enhanced electron concentration had a wave-like form. Data received by the riometer of the Tumanny observatory have also shown wave-like behavior. The behavior can be explained by influence of acoustic-gravity waves which originated after cooling of the atmosphere during the lunar shadow supersonic movement, and transport processes during the eclipse. During the 21 August 2017 solar eclipse there was a substorm at the high latitudes. But after the end of the substorm in the region of the Tumanny observatory the observed amplitudes of the reflected waves had wave effects which could be connected with the coming waves from the region of the eclipse. The wave features were also shown in the behavior of the total electron content (TEC) of the lower ionosphere. During several solar eclipses it was implemented observations of lower ionosphere behavior by the partial reflection facility of the Tumanny observatory. The consideration of the lower ionosphere TEC had revealed common features in the TEC behavior during the eclipses. The photochemical theory of processes in the lower ionosphere is very complicated and up to now it is not completely developed. Therefore introduction of the effective coefficients determining the total speed of several important reactions has been widely adopted when modeling the D-region of the ionosphere. However, experimental opportunities for obtaining effective recombination coefficients are rather limited. One of the methods to estimate effective recombination coefficients uses the phenomenon of a solar eclipse. During solar eclipses at the partial reflection facility of

  6. INFRARED ECLIPSES OF THE STRONGLY IRRADIATED PLANET WASP-33b, AND OSCILLATIONS OF ITS HOST STAR

    Energy Technology Data Exchange (ETDEWEB)

    Deming, Drake; Fraine, Jonathan D. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Sada, Pedro V. [Department of Mathematics and Physics, Universidad de Monterrey, Monterrey (Mexico); Madhusudhan, Nikku [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544-1001 (United States); Knutson, Heather A. [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Harrington, Joseph; Blecic, Jasmina; Nymeyer, Sarah [Planetary Sciences Group, Department of Physics, University of Central Florida, Orlando, FL 32816-2385 (United States); Smith, Alexis M. S. [Astrophysics Group, Keele University, Staffordshire ST5 5BG (United Kingdom); Jackson, Brian, E-mail: ddeming@astro.umd.edu [Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, DC 20015 (United States)

    2012-08-01

    We observe two secondary eclipses of the strongly irradiated transiting planet WASP-33b, in the K{sub s} band at 2.15 {mu}m, and one secondary eclipse each at 3.6 {mu}m and 4.5 {mu}m using Warm Spitzer. This planet orbits an A5V {delta}-Scuti star that is known to exhibit low-amplitude non-radial p-mode oscillations at about 0.1% semi-amplitude. We detect stellar oscillations in all of our infrared eclipse data, and also in one night of observations at J band (1.25 {mu}m) out of eclipse. The oscillation amplitude, in all infrared bands except K{sub s} , is about the same as in the optical. However, the stellar oscillations in K{sub s} band (2.15 {mu}m) have about twice the amplitude (0.2%) as seen in the optical, possibly because the Brackett-{gamma} line falls in this bandpass. As regards the exoplanetary eclipse, we use our best-fit values for the eclipse depth, as well as the 0.9 {mu}m eclipse observed by Smith et al., to explore possible states of the exoplanetary atmosphere, based on the method of Madhusudhan and Seager. On this basis we find two possible states for the atmospheric structure of WASP-33b. One possibility is a non-inverted temperature structure in spite of the strong irradiance, but this model requires an enhanced carbon abundance (C/O > 1). The alternative model has solar composition, but an inverted temperature structure. Spectroscopy of the planet at secondary eclipse, using a spectral resolution that can resolve the water vapor band structure, should be able to break the degeneracy between these very different possible states of the exoplanetary atmosphere. However, both of those model atmospheres absorb nearly all of the stellar irradiance with minimal longitudinal re-distribution of energy, strengthening the hypothesis of Cowan and Agol that the most strongly irradiated planets circulate energy poorly. Our measurement of the central phase of the eclipse yields ecos {omega} = 0.0003 {+-} 0.00013, which we regard as being consistent with a

  7. Computing Cosmic Cataclysms

    Science.gov (United States)

    Centrella, Joan M.

    2010-01-01

    The final merger of two black holes releases a tremendous amount of energy, more than the combined light from all the stars in the visible universe. This energy is emitted in the form of gravitational waves, and observing these sources with gravitational wave detectors requires that we know the pattern or fingerprint of the radiation emitted. Since black hole mergers take place in regions of extreme gravitational fields, we need to solve Einstein's equations of general relativity on a computer in order to calculate these wave patterns. For more than 30 years, scientists have tried to compute these wave patterns. However, their computer codes have been plagued by problems that caused them to crash. This situation has changed dramatically in the past few years, with a series of amazing breakthroughs. This talk will take you on this quest for these gravitational wave patterns, showing how a spacetime is constructed on a computer to build a simulation laboratory for binary black hole mergers. We will focus on the recent advances that are revealing these waveforms, and the dramatic new potential for discoveries that arises when these sources will be observed.

  8. Automated Morphological Classification in Deep Hubble Space Telescope UBVI Fields: Rapidly and Passively Evolving Faint Galaxy Populations

    Science.gov (United States)

    Odewahn, Stephen C.; Windhorst, Rogier A.; Driver, Simon P.; Keel, William C.

    1996-11-01

    We analyze deep Hubble Space Telescope Wide Field Planetary Camera 2 (WFPC2) images in U, B, V, I using artificial neural network (ANN) classifiers, which are based on galaxy surface brightness and light profile (but not on color nor on scale length, rhl). The ANN distinguishes quite well between E/S0, Sabc, and Sd/Irr+M galaxies (M for merging systems) for BJ ~ 24 mag. The faint blue galaxy counts in the B band are dominated by Sd/Irr+M galaxies and can be explained by a moderately steep local luminosity function (LF) undergoing strong luminosity evolution. We suggest that these faint late-type objects (24 mag <~ BJ <~ 28 mag) are a combination of low-luminosity lower redshift dwarf galaxies, plus compact star-forming galaxies and merging systems at z ~= 1--3, possibly the building blocks of the luminous early-type galaxies seen today.

  9. DEEP SPITZER OBSERVATIONS OF INFRARED-FAINT RADIO SOURCES: HIGH-REDSHIFT RADIO-LOUD ACTIVE GALACTIC NUCLEI?

    International Nuclear Information System (INIS)

    Norris, Ray P.; Mao, Minnie; Afonso, Jose; Cava, Antonio; Farrah, Duncan; Oliver, Seb; Huynh, Minh T.; Mauduit, Jean-Christophe; Surace, Jason; Ivison, R. J.; Jarvis, Matt; Lacy, Mark; Maraston, Claudia; Middelberg, Enno; Seymour, Nick

    2011-01-01

    Infrared-faint radio sources (IFRSs) are a rare class of objects which are relatively bright at radio wavelengths but very faint at infrared and optical wavelengths. Here we present sensitive near-infrared observations of a sample of these sources taken as part of the Spitzer Extragalactic Representative Volume Survey. Nearly all the IFRSs are undetected at a level of ∼1 μJy in these new deep observations, and even the detections are consistent with confusion with unrelated galaxies. A stacked image implies that the median flux density is S 3.6μm ∼ 0.2 μJy or less, giving extreme values of the radio-infrared flux density ratio. Comparison of these objects with known classes of object suggests that the majority are probably high-redshift radio-loud galaxies, possibly suffering from significant dust extinction.

  10. Implications of the Secondary Eclipse of Exoplanet HAT-P-11b

    Science.gov (United States)

    Barry, Richard K.; Deming, L. D.; Bakos, G.; Harrington, J.; Madhusudhan, N.; Noyes, R.; Seager, S.

    2010-01-01

    We observed exoplanet HAT-P-11b and have successfully detected its secondary eclipse. We conducted observations using the Spitzer Space Telescope in the post-cryo mission at 3.6 microns for a period of 22 hours centered on the anticipated secondary eclipse time, to detect the eclipse and determine its phase. Having detected the secondary eclipse, we are at present making a more focused series of observations in both the 3.6 and 4.5 micron bands to fully characterize it. HAT-P-11b is one of only two known exo-Neptunes and has a period of 4.8878 days, radius of 0.422 RJ, mass of 0.081 MJ and semi-major axis 0.053 AU. Measurements of the secondary eclipse will serve to clarify two key issues; 1) the planetary brightness temperature and the nature of its atmosphere, and 2) the eccentricity of its orbit, with implications for its dynamical evolution. We discuss implications of these observations.

  11. Ionospheric Bow Waves and Perturbations Induced by the 21 August 2017 Solar Eclipse

    Science.gov (United States)

    Zhang, Shun-Rong; Erickson, Philip J.; Goncharenko, Larisa P.; Coster, Anthea J.; Rideout, William; Vierinen, Juha

    2017-12-01

    During solar eclipses, the Moon's shadow causes a large reduction in atmospheric energy input, including not only the stratosphere but also the thermosphere and ionosphere. The eclipse shadow has a supersonic motion which is theoretically expected to generate atmospheric bow waves, similar to a fast-moving river boat, with waves starting in the lower atmosphere and propagating into the ionosphere. However, previous geographically limited observations have had difficulty detecting these weak waves within the natural background atmospheric variability, and the existence of eclipse-induced ionospheric waves and their evolution in a complex coupling system remain controversial. During the 21 August 2017 eclipse, high fidelity and wide coverage ionospheric observations provided for the first time an oversampled set of eclipse data, using a dense network of Global Navigation Satellite System receivers at ˜2,000 sites in North America. We show the first unambiguous evidence of ionospheric bow waves as electron content disturbances over central/eastern United States, with ˜1 h duration, 300-400 km wavelength and 280 m/s phase speed emanating from and tailing the totality region. We also identify large ionospheric perturbations moving at the supersonic speed of the maximum solar obscuration which are too fast to be associated with known gravity wave or large-scale traveling ionospheric disturbance processes. This study reveals complex interconnections between the Sun, Moon, and Earth's neutral atmosphere and ionosphere and demonstrates persistent coupling processes between different components of the Earth's atmosphere, a topic of significant community interest.

  12. ON THE PULSATIONAL-ORBITAL-PERIOD RELATION OF ECLIPSING BINARIES WITH δ-SCT COMPONENTS

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X. B.; Luo, C. Q. [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Fu, J. N. [Department of Astronomy, Beijing Normal University, Beijing 100875 (China)

    2013-11-01

    We have deduced a theoretical relation between the pulsation and orbital-periods of pulsating stars in close binaries based on their Roche lobe filling. It appears to be of a simple linear form, with the slope as a function of the pulsation constant, the mass ratio, and the filling factor for an individual system. Testing the data of 69 known eclipsing binaries containing δ-Sct-type components yields an empirical slope of 0.020 ± 0.006 for the P{sub pul}-P{sub orb} relation. We have further derived the upper limit of the P{sub pul}/P{sub orb} ratio for the δ-Sct stars in eclipsing binaries with a value of 0.09 ± 0.02. This value could serve as a criterion to distinguish whether or not a pulsator in an eclipsing binary pulsates in the p-mode. Applying the deduced P{sub pul}-P{sub orb} relation, we have computed the dominant pulsation constants for 37 δ-Sct stars in eclipsing systems with definite photometric solutions. These ranged between 0.008 and 0.033 days with a mean value of about 0.014 days, indicating that δ-Sct stars in eclipsing binaries mostly pulsate in the fourth or fifth overtones.

  13. The Joint Facial and Invasive Neck Trauma (J-FAINT) Project, Iraq and Afghanistan 2003-2011

    Science.gov (United States)

    2013-01-01

    Original Research— Facial Plastic and Reconstructive Surgery The Joint Facial and Invasive Neck Trauma (J-FAINT) Project, Iraq and Afghanistan 2003...number and type of facial and penetrat- ing neck trauma injuries sustained in Operation Iraqi Freedom (OIF) and Operation Enduring Freedom (OEF). Study...queried for data from OIF and OEF from January 2003 to May 2011. Information on demographics; type and severity of facial , neck, and associated trauma

  14. Galaxy modelling. II. Multi-wavelength faint counts from a semi-analytic model of galaxy formation

    Science.gov (United States)

    Devriendt, J. E. G.; Guiderdoni, B.

    2000-11-01

    This paper predicts self-consistent faint galaxy counts from the UV to the submm wavelength range. The stardust spectral energy distributions described in Devriendt et al. \\citeparyear{DGS99} (Paper I) are embedded within the explicit cosmological framework of a simple semi-analytic model of galaxy formation and evolution. We begin with a description of the non-dissipative and dissipative collapses of primordial perturbations, and plug in standard recipes for star formation, stellar evolution and feedback. We also model the absorption of starlight by dust and its re-processing in the IR and submm. We then build a class of models which capture the luminosity budget of the universe through faint galaxy counts and redshift distributions in the whole wavelength range spanned by our spectra. In contrast with a rather stable behaviour in the optical and even in the far-IR, the submm counts are dramatically sensitive to variations in the cosmological parameters and changes in the star formation history. Faint submm counts are more easily accommodated within an open universe with a low value of Omega_0 , or a flat universe with a non-zero cosmological constant. We confirm the suggestion of Guiderdoni et al. \\citeparyear{GHBM98} that matching the current multi-wavelength data requires a population of heavily-extinguished, massive galaxies with large star formation rates ( ~ 500 M_sun yr-1) at intermediate and high redshift (z >= 1.5). Such a population of objects probably is the consequence of an increase of interaction and merging activity at high redshift, but a realistic quantitative description can only be obtained through more detailed modelling of such processes. This study illustrates the implementation of multi-wavelength spectra into a semi-analytic model. In spite of its simplicity, it already provides fair fits of the current data of faint counts, and a physically motivated way of interpolating and extrapolating these data to other wavelengths and fainter flux

  15. Sweating the small stuff: simulating dwarf galaxies, ultra-faint dwarf galaxies, and their own tiny satellites

    Science.gov (United States)

    Wheeler, Coral; Oñorbe, Jose; Bullock, James S.; Boylan-Kolchin, Michael; Elbert, Oliver D.; Garrison-Kimmel, Shea; Hopkins, Philip F.; Kereš, Dušan

    2015-10-01

    We present Feedback in Realistic Environment (FIRE)/GIZMO hydrodynamic zoom-in simulations of isolated dark matter haloes, two each at the mass of classical dwarf galaxies (Mvir ≃ 1010 M⊙) and ultra-faint galaxies (Mvir ≃ 109 M⊙), and with two feedback implementations. The resulting central galaxies lie on an extrapolated abundance matching relation from M⋆ ≃ 106 to 104 M⊙ without a break. Every host is filled with subhaloes, many of which form stars. Each of our dwarfs with M⋆ ≃ 106 M⊙ has 1-2 well-resolved satellites with M⋆ = 3-200 × 103 M⊙. Even our isolated ultra-faint galaxies have star-forming subhaloes. If this is representative, dwarf galaxies throughout the Universe should commonly host tiny satellite galaxies of their own. We combine our results with the Exploring the Local Volume in Simulations (ELVIS) simulations to show that targeting ˜ 50 kpc regions around nearby isolated dwarfs could increase the chances of discovering ultra-faint galaxies by ˜35 per cent compared to random pointings, and specifically identify the region around the Phoenix dwarf galaxy as a good potential target. The well-resolved ultra-faint galaxies in our simulations (M⋆ ≃ 3-30 × 103 M⊙) form within Mpeak ≃ 0.5-3 × 109 M⊙ haloes. Each has a uniformly ancient stellar population ( > 10 Gyr) owing to reionization-related quenching. More massive systems, in contrast, all have late-time star formation. Our results suggest that Mhalo ≃ 5 × 109 M⊙ is a probable dividing line between haloes hosting reionization `fossils' and those hosting dwarfs that can continue to form stars in isolation after reionization.

  16. γ DORADUS PULSATIONS IN THE ECLIPSING BINARY STAR KIC 6048106

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Woo, E-mail: jwlee@kasi.re.kr [Korea Astronomy and Space Science Institute, Daejeon 34113 (Korea, Republic of)

    2016-12-20

    We present the Kepler photometry of KIC 6048106, which is exhibiting the O’Connell effect and multiperiodic pulsations. Including a starspot on either of the components, light-curve synthesis indicates that this system is a semi-detached Algol with a mass ratio of 0.211, an orbital inclination of 73.°9, and a large temperature difference of 2534 K. To examine in detail both the spot variations and pulsations, we separately analyzed the Kepler time-series data at the interval of an orbital period in an iterative way. The results reveal that the variable asymmetries of the light maxima can be interpreted as the changes with time of a magnetic cool spot on the secondary component. Multiple frequency analyses were performed in the outside-eclipse light residuals after removal of the binarity effects from the observed Kepler data. We detected 30 frequencies with signal to noise amplitude ratios larger than 4.0, of which six ( f {sub 2}– f {sub 6} and f {sub 10}) can be identified as high-order (17 ≤  n  ≤ 25) low-degree ( ℓ  = 2) gravity-mode pulsations that were stable during the observing run of 200 days. In contrast, the other frequencies may be harmonic and combination terms. For the six frequencies, the pulsation periods and pulsation constants are in the ranges of 0.352–0.506 days and 0.232–0.333 days, respectively. These values and the position on the Hertzsprung–Russell diagram demonstrate that the primary star is a γ Dor variable. The evolutionary status and the pulsation nature of KIC 6048106 are discussed.

  17. OGLE II Eclipsing Binaries In The LMC: Analysis With Class

    Science.gov (United States)

    Devinney, Edward J.; Prsa, A.; Guinan, E. F.; DeGeorge, M.

    2011-01-01

    The Eclipsing Binaries (EBs) via Artificial Intelligence (EBAI) Project is applying machine learning techniques to elucidate the nature of EBs. Previously, Prsa, et al. applied artificial neural networks (ANNs) trained on physically-realistic Wilson-Devinney models to solve the light curves of the 1882 detached EBs in the LMC discovered by the OGLE II Project (Wyrzykowski, et al.) fully automatically, bypassing the need for manually-derived starting solutions. A curious result is the non-monotonic distribution of the temperature ratio parameter T2/T1, featuring a subsidiary peak noted previously by Mazeh, et al. in an independent analysis using the EBOP EB solution code (Tamuz, et al.). To explore this and to gain a fuller understanding of the multivariate EBAI LMC observational plus solutions data, we have employed automatic clustering and advanced visualization (CAV) techniques. Clustering the OGLE II data aggregates objects that are similar with respect to many parameter dimensions. Measures of similarity for example, could include the multidimensional Euclidean Distance between data objects, although other measures may be appropriate. Applying clustering, we find good evidence that the T2/T1 subsidiary peak is due to evolved binaries, in support of Mazeh et al.'s speculation. Further, clustering suggests that the LMC detached EBs occupying the main sequence region belong to two distinct classes. Also identified as a separate cluster in the multivariate data are stars having a Period-I band relation. Derekas et al. had previously found a Period-K band relation for LMC EBs discovered by the MACHO Project (Alcock, et al.). We suggest such CAV techniques will prove increasingly useful for understanding the large, multivariate datasets increasingly being produced in astronomy. We are grateful for the support of this research from NSF/RUI Grant AST-05-75042 f.

  18. Preliminary analysis on faint luminous lightning events recorded by multiple high speed cameras

    Science.gov (United States)

    Alves, J.; Saraiva, A. V.; Pinto, O.; Campos, L. Z.; Antunes, L.; Luz, E. S.; Medeiros, C.; Buzato, T. S.

    2013-12-01

    The objective of this work is the study of some faint luminous events produced by lightning flashes that were recorded simultaneously by multiple high-speed cameras during the previous RAMMER (Automated Multi-camera Network for Monitoring and Study of Lightning) campaigns. The RAMMER network is composed by three fixed cameras and one mobile color camera separated by, in average, distances of 13 kilometers. They were located in the Paraiba Valley (in the cities of São José dos Campos and Caçapava), SP, Brazil, arranged in a quadrilateral shape, centered in São José dos Campos region. This configuration allowed RAMMER to see a thunderstorm from different angles, registering the same lightning flashes simultaneously by multiple cameras. Each RAMMER sensor is composed by a triggering system and a Phantom high-speed camera version 9.1, which is set to operate at a frame rate of 2,500 frames per second with a lens Nikkor (model AF-S DX 18-55 mm 1:3.5 - 5.6 G in the stationary sensors, and a lens model AF-S ED 24 mm - 1:1.4 in the mobile sensor). All videos were GPS (Global Positioning System) time stamped. For this work we used a data set collected in four RAMMER manual operation days in the campaign of 2012 and 2013. On Feb. 18th the data set is composed by 15 flashes recorded by two cameras and 4 flashes recorded by three cameras. On Feb. 19th a total of 5 flashes was registered by two cameras and 1 flash registered by three cameras. On Feb. 22th we obtained 4 flashes registered by two cameras. Finally, in March 6th two cameras recorded 2 flashes. The analysis in this study proposes an evaluation methodology for faint luminous lightning events, such as continuing current. Problems in the temporal measurement of the continuing current can generate some imprecisions during the optical analysis, therefore this work aim to evaluate the effects of distance in this parameter with this preliminary data set. In the cases that include the color camera we analyzed the RGB

  19. Hubble Space Telescope: Faint object spectrograph instrument handbook. Version 1.1

    Science.gov (United States)

    Ford, Holland C. (Editor)

    1990-01-01

    The Faint Object Spectrograph (FOS) has undergone substantial rework since the 1985 FOS Instrument Handbook was published, and we are now more knowledgeable regarding the spacecraft and instrument operations requirements and constraints. The formal system for observation specification has also evolved considerably, as the GTO programs were defined in detail. This supplement to the FOS Instrument Handbook addresses the important aspects of these changes, to facilitate proper selection and specification of FOS observing programs. Since the Handbook was published, the FOS red detector has been replaced twice, first with the best available spare in 1985 (which proved to have a poor, and steadily degrading red response), and later with a newly developed Digicon, which exhibits a high, stable efficiency and a dark-count rate less than half that of its predecessors. Also, the FOS optical train was realigned in 1987-88 to eliminate considerable beam-vignetting losses, and the collimators were both removed and recoated for greater reflectivity. Following the optics and detector rework, the FOS was carefully recalibrated (although only ambient measurements were possible, so the far-UV characteristics could not be re-evaluated directly). The resulting efficiency curves, including improved estimates of the telescope throughput, are shown. A number of changes in the observing-mode specifications and addition of several optional parameters resulted as the Proposal Instructions were honed during the last year. Target-brightness limitations, which have only recently been formulated carefully, are described. Although these restrictions are very conservative, it is imperative that the detector safety be guarded closely, especially during the initial stages of flight operations. Restrictions on the use of the internal calibration lamps and aperture-illumination sources (TA LEDs), also resulting from detector safety considerations, are outlined. Finally, many changes have been made to

  20. Detection of a faint fast-moving near-Earth asteroid using the synthetic tracking technique

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Chengxing; Shao, Michael; Nemati, Bijan; Werne, Thomas; Zhou, Hanying; Turyshev, Slava G.; Sandhu, Jagmit [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Hallinan, Gregg; Harding, Leon K., E-mail: chengxing.zhai@jpl.nasa.gov [Department of Astronomy, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States)

    2014-09-01

    We report a detection of a faint near-Earth asteroid (NEA) using our synthetic tracking technique and the CHIMERA instrument on the Palomar 200 inch telescope. With an apparent magnitude of 23 (H = 29, assuming detection at 20 lunar distances), the asteroid was moving at 6.°32 day{sup –1} and was detected at a signal-to-noise ratio (S/N) of 15 using 30 s of data taken at a 16.7 Hz frame rate. The detection was confirmed by a second observation 77 minutes later at the same S/N. Because of its high proper motion, the NEA moved 7 arcsec over the 30 s of observation. Synthetic tracking avoided image degradation due to trailing loss that affects conventional techniques relying on 30 s exposures; the trailing loss would have degraded the surface brightness of the NEA image on the CCD down to an approximate magnitude of 25 making the object undetectable. This detection was a result of our 12 hr blind search conducted on the Palomar 200 inch telescope over two nights, scanning twice over six (5.°3 × 0.°046) fields. Detecting only one asteroid is consistent with Harris's estimates for the distribution of the asteroid population, which was used to predict a detection of 1.2 NEAs in the H-magnitude range 28-31 for the two nights. The experimental design, data analysis methods, and algorithms are presented. We also demonstrate milliarcsecond-level astrometry using observations of two known bright asteroids on the same system with synthetic tracking. We conclude by discussing strategies for scheduling observations to detect and characterize small and fast-moving NEAs using the new technique.