WorldWideScience

Sample records for failure mechanisms 44139-92

  1. Mechanics of Failure Mechanisms in Structures

    CERN Document Server

    Carlson, R L; Craig, J I

    2012-01-01

    This book focuses on the mechanisms and underlying mechanics of failure in various classes of materials such as metallic, ceramic, polymeric, composite and bio-material.  Topics include tensile and compressive fracture, crack initiation and growth, fatigue and creep rupture in metallic materials, matrix cracking and delamination and environmental degradation in polymeric composites, failure of bio-materials such as prosthetic heart valves and prosthetic hip joints, failure of ceramics and ceramic matrix composites, failure of metallic matrix composites, static and dynamic buckling failure, dynamic excitations and creep buckling failure in structural systems. Chapters are devoted to failure mechanisms that are characteristic of each of the materials.  The work also provides the basic elements of fracture mechanics and studies in detail several niche topics such as the effects of toughness gradients, variable amplitude loading effects in fatigue, small fatigue cracks, and creep induced brittleness. Furthe...

  2. Role of failure-mechanism identification in accelerated testing

    Science.gov (United States)

    Hu, J. M.; Barker, D.; Dasgupta, A.; Arora, A.

    1993-01-01

    Accelerated life testing techniques provide a short-cut method to investigate the reliability of electronic devices with respect to certain dominant failure mechanisms that occur under normal operating conditions. However, accelerated tests have often been conducted without knowledge of the failure mechanisms and without ensuring that the test accelerated the same mechanism as that observed under normal operating conditions. This paper summarizes common failure mechanisms in electronic devices and packages and investigates possible failure mechanism shifting during accelerated testing.

  3. Failure mechanism dependence and reliability evaluation of non-repairable system

    International Nuclear Information System (INIS)

    Chen, Ying; Yang, Liu; Ye, Cui; Kang, Rui

    2015-01-01

    Reliability study of electronic system with the physics-of-failure method has been promoted due to the increase knowledge of electronic failure mechanisms. System failure initiates from independent failure mechanisms, have effect on or affect by other failure mechanisms and finally result in system failure. Failure mechanisms in a non-repairable system have many kinds of correlation. One failure mechanism developing to a certain degree will trigger, accelerate or inhibit another or many other failure mechanisms, some kind of failure mechanisms may have the same effect on the failure site, component or system. The destructive effect will be accumulated and result in early failure. This paper presents a reliability evaluation method considering correlativity among failure mechanisms, which includes trigger, acceleration, inhibition, accumulation, and competition. Based on fundamental rule of physics of failure, decoupling methods of these correlations are discussed. With a case, reliability of electronic system is evaluated considering failure mechanism dependence. - Highlights: • Five types of failure mechanism correlations are described. • Decoupling methods of these correlations are discussed. • A reliability evaluation method considering mechanism dependence is proposed. • Results are quite different to results under failure independence assumption

  4. Structural and failure mechanics of sandwich composites

    CERN Document Server

    Carlsson, LA; Carlsson, Leif A

    2011-01-01

    Focusing on important deformation and failure modes of sandwich structures, this volume describes the mechanics behind fracture processes. The text also reviews test methods developed for the cr, structural integrity, and failure mechanisms of sandwich structures.

  5. Si-semiconductor device failure mechanisms

    International Nuclear Information System (INIS)

    Clauss, H.

    1976-12-01

    This report presents investigations on failure mechanisms that may cause defects during production and operation of silicon semiconductor devices. The failure analysis of aluminium metallization defects covers topics such as step coverage, dissolution pits and electromigration. Furthermore, the generation of process induced lattice defects was investigated. Improved processes avoiding those defects were developed. (orig.) [de

  6. Influence of delta ferrite on mechanical and creep properties of steel P92

    Energy Technology Data Exchange (ETDEWEB)

    Mohyla, Petr [VSB - Technical Univ. of Ostrava (Czech Republic). Faculty of Mechanical Engineering; Kubon, Zdenek [Material and Metallurgical Research Ltd., Ostrava (Czech Republic)

    2010-07-01

    This article presents some new results obtained during research of chromium modified steel P92. This steel is considered the best modified 9-12% Cr steel for the construction of modern power plants with ultra-super-critical steam parameters. High creep rupture strength of steel P92 is characterized by its chemical composition and by microstructure as well. Optimal microstructure of steel P92 is ideally composed of homogeneous martensite and fine dispersion of secondary particles. During the research program one P92 heat with an occurrence of about 20% delta ferrite was produced. The article describes the microstructure of the heat in various modes of heat treatment, as well as the results of mechanical properties tests at room temperature and also creep test results. The results are confronted with properties of other heats that have no delta ferrite. The relevance is on the significant difference while comparing of creep test results. The comparison of results brings conclusions, defining influence of delta ferrite on mechanical and creep properties of P92 steel. (orig.)

  7. Analysis of transient fuel failure mechanisms: selected ANL programs

    International Nuclear Information System (INIS)

    Deitrich, L.W.

    1975-01-01

    Analytical programs at Argonne National Laboratory related to fuel pin failure mechanisms in fast-reactor accident transients are described. The studies include transient fuel pin mechanics, mechanics of unclad fuel, and mechanical effects concerning potential fuel failure propagation. (U.S.).

  8. Mechanical circulatory treatment of advanced heart failure

    DEFF Research Database (Denmark)

    Løgstrup, Brian B; Vase, Henrik; Gjedsted, Jakob

    2016-01-01

    Heart failure is one of the most common causes of morbidity and mortality worldwide. When patients cease to respond adequately to optimal medical therapy mechanical circulatory support has been promising. The advent of mechanical circulatory support devices has allowed significant improvements...... in patient survival and quality of life for those with advanced or end-stage heart failure. We provide a general overview of current mechanical circulatory support devices encompassing options for both short- and long-term ventricular support....

  9. Mechanical failure and glass transition in metallic glasses

    International Nuclear Information System (INIS)

    Egami, T.

    2011-01-01

    Research highlights: → We review the recent results of molecular dynamics simulations on metallic glasses. → They show the equivalence of mechanical failure and glass transition. → We discuss the microscopic mechanism behind this equivalence. → We show that the density of defects in metallic glasses is as high as a quarter. → Our concepts about the defect state in glasses need to be changed. - Abstract: The current majority view on the phenomenon of mechanical failure in metallic glasses appears to be that it is caused by the activity of some structural defects, such as free-volumes or shear transformation zones, and the concentration of such defects is small, only of the order of 1%. However, the recent results compel us to revise this view. Through molecular dynamics simulation it has been shown that mechanical failure is the stress-induced glass transition. According to our theory the concentration of the liquid-like sites (defects) is well over 20% at the glass transition. We suggest that the defect concentration in metallic glasses is actually very high, and percolation of such defects causes atomic avalanche and mechanical failure. In this article we discuss the glass transition, mechanical failure and viscosity from such a point of view.

  10. Field failure mechanisms for photovoltaic modules

    Science.gov (United States)

    Dumas, L. N.; Shumka, A.

    1981-01-01

    Beginning in 1976, Department of Energy field centers have installed and monitored a number of field tests and application experiments using current state-of-the-art photovoltaic modules. On-site observations of module physical and electrical degradation, together with in-depth laboratory analysis of failed modules, permits an overall assessment of the nature and causes of early field failures. Data on failure rates are presented, and key failure mechanisms are analyzed with respect to origin, effect, and prospects for correction. It is concluded that all failure modes identified to date are avoidable or controllable through sound design and production practices.

  11. Failure Mechanisms of Brittle Rocks under Uniaxial Compression

    Science.gov (United States)

    Liu, Taoying; Cao, Ping

    2017-09-01

    The behaviour of a rock mass is determined not only by the properties of the rock matrix, but mostly by the presence and properties of discontinuities or fractures within the mass. The compression test on rock-like specimens with two prefabricated transfixion fissures, made by pulling out the embedded metal inserts in the pre-cured period was carried out on the servo control uniaxial loading tester. The influence of the geometry of pre-existing cracks on the cracking processes was analysed with reference to the experimental observation of crack initiation and propagation from pre-existing flaws. Based on the rock fracture mechanics and the stress-strain curves, the evolution failure mechanism of the fissure body was also analyzed on the basis of exploring the law of the compression-shear crack initiation, wing crack growth and rock bridge connection. Meanwhile, damage fracture mechanical models of a compression-shear rock mass are established when the rock bridge axial transfixion failure, tension-shear combined failure, or wing crack shear connection failure occurs on the specimen under axial compression. This research was of significance in studying the failure mechanism of fractured rock mass.

  12. Failure mechanisms in high temperature gas cooled reactor fuel particles

    International Nuclear Information System (INIS)

    Soo, P.; Uneberg, G.; Sabatini, R.L.; Schweitzer, D.G.

    1979-01-01

    BISO coated UO 2 and ThO 2 particles were heated to high temperatures to determine failure mechanisms during hypothetical loss of coolant scenarios. Rapid failure begins when the oxides are reduced to liquid carbides. Several failure mechanisms are applicable, ranging from hole and crack formation in the coatings to catastrophic particle disintegration

  13. Recognition and Analysis of Corrosion Failure Mechanisms

    Directory of Open Access Journals (Sweden)

    Steven Suess

    2006-02-01

    Full Text Available Corrosion has a vast impact on the global and domestic economy, and currently incurs losses of nearly $300 billion annually to the U.S. economy alone. Because of the huge impact of corrosion, it is imperative to have a systematic approach to recognizing and mitigating corrosion problems as soon as possible after they become apparent. A proper failure analysis includes collection of pertinent background data and service history, followed by visual inspection, photographic documentation, material evaluation, data review and conclusion procurement. In analyzing corrosion failures, one must recognize the wide range of common corrosion mechanisms. The features of any corrosion failure give strong clues as to the most likely cause of the corrosion. This article details a proven approach to properly determining the root cause of a failure, and includes pictographic illustrations of the most common corrosion mechanisms, including general corrosion, pitting, galvanic corrosion, dealloying, crevice corrosion, microbiologically-influenced corrosion (MIC, corrosion fatigue, stress corrosion cracking (SCC, intergranular corrosion, fretting, erosion corrosion and hydrogen damage.

  14. Rockfall failure mechanisms in Yosemite Valley, California (USA)

    Science.gov (United States)

    Matasci, Battista; Guerin, Antoine; Carrea, Dario; Stock, Greg M.; Jaboyedoff, Michel; Collins, Brian

    2014-05-01

    Rockfall hazard is especially high in Yosemite Valley, with tens of rockfalls inventoried every year. A rockfall on 5 October 2013 from Ahwiyah Point consisted of a volume of 740 cubic meters and occurred within the perimeter of a larger event on 28 March 2009 that released 25'400 cubic meters of rock (Zimmer et al., 2012). In both events (2009 and 2013), the initial rockfall volumes dislodged a second one approximately equivalent in size by impacting the cliff below the source area during the fall. Rock fragments of up to several cubic meters were deposited on the talus slope, damaging a heavily used and recently reconstructed hiking path. We performed extensive mapping of structural features for several cliffs of Yosemite Valley to improve the assessment of the most susceptible rockfall areas. In particular we mapped and characterized the main brittle structures, the exfoliation joints and the failure mechanisms of the past rockfalls. Several failure mechanisms exist in Yosemite including the propagation of brittle structures that may lead to tensile, planar sliding, wedge sliding or toppling failures. Frequently, topographically-parallel exfoliation joints and topographically-oblique discontinuities coexist, resulting in complex failures. We also developed a methodology to examine how the distribution of joints within the cliff faces of Yosemite Valley affects overall stability with respect to the identified failure mechanisms. For these analyses, we used terrestrial laser scanning (TLS) to collect high resolution point clouds of the vertical and overhanging rock faces throughout the Valley. This provided the necessary 3D data to identify the main joint sets, perform spacing and trace length measurements, and calculate volumes of previous and potential rockfalls. We integrated this information with stability calculations to identify the likely failure mechanisms for each area of cliff and to obtain the number of potential failures per square meter of cliff face

  15. Constitutive behavior and progressive mechanical failure of electrodes in lithium-ion batteries

    Science.gov (United States)

    Zhang, Chao; Xu, Jun; Cao, Lei; Wu, Zenan; Santhanagopalan, Shriram

    2017-07-01

    The electrodes of lithium-ion batteries (LIB) are known to be brittle and to fail earlier than the separators during an external crush event. Thus, the understanding of mechanical failure mechanism for LIB electrodes (anode and cathode) is critical for the safety design of LIB cells. In this paper, we present experimental and numerical studies on the constitutive behavior and progression of failure in LIB electrodes. Mechanical tests were designed and conducted to evaluate the constitutive properties of porous electrodes. Constitutive models were developed to describe the stress-strain response of electrodes under uniaxial tensile and compressive loads. The failure criterion and a damage model were introduced to model their unique tensile and compressive failure behavior. The failure mechanism of LIB electrodes was studied using the blunt rod test on dry electrodes, and numerical models were built to simulate progressive failure. The different failure processes were examined and analyzed in detail numerically, and correlated with experimentally observed failure phenomena. The test results and models improve our understanding of failure behavior in LIB electrodes, and provide constructive insights on future development of physics-based safety design tools for battery structures under mechanical abuse.

  16. Mechanical Properties of Steel P92 Welded Joints Obtained By TIG Technology

    Science.gov (United States)

    Mohyla, P.; Havelka, L.; Schmidová, E.; Vontorová, J.

    2017-11-01

    Mechanical properties of P92 steel welded joints obtained using the TIG (141) technology have been studied upon post-welding heat treatment (PWHT). The microhardness, tensile strength, and impact toughness of metal in the weld and heat-affected zone are determined. The PWHT is shown to be obligatory.

  17. Safety relevant failure mechanisms in the post-operational phase

    International Nuclear Information System (INIS)

    Mayer, Gerhard; Stiller, Jan Christopher; Roemer, Sarah

    2017-03-01

    When the 13"t"h amendment of the Atomic Energy Act came into force, eight Germ an nuclear power plant units had their power operating licences revoked and are now in the so-called post operation phase. Of the remaining nuclear power plants, one have by now also entered the post operation phase, with those left in operation bound for entering this phase sometime between now and the end of 2022. Therefore, failure mechanisms that are particularly relevant for post operation were to be identified and described in the frame of the present project. To do so, three major steps were taken: Firstly, recent national and international pertinent literature was evaluated to obtain indications of failure mechanisms in the post operation phase. It turned out that most of the national and international literature deals with the general procedure of the transition from power operation to decommissioning and dismantling. However, there were also some documents providing detailed indications of possible failure mechanisms in post operation. This includes e.g. the release of radioactive materials caused by the drop of containers, chemical impacts on systems important to safety in connection with decontamination work, and corrosion in connection with the storage of the core in the spent fuel pool, with the latter leading to the jamming of the fuel assemblies in the storage racks and a possible reduction of coolant circulation. In a second step, three safety analyses of pressurised water reactors prepared by the respective plant operators were evaluated to identify failure mechanisms based on systems engineering. The failure mechanisms that were found here include e.g. faults in the boric acid concentration of the reactor coolant, damage to the equipment airlock upon the unloading of Castor casks, leakages in connection with primary system decontamination, and the drop of packages holding radioactive residual materials or waste with subsequent mobilisation of radioactive aerosols

  18. The effect of multiaxial stress state on creep behavior and fracture mechanism of P92 steel

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yuan; Xu, Hong, E-mail: xuhong@ncepu.edu.cn; Ni, Yongzhong; Lan, Xiang; Li, Hongyuan

    2015-06-11

    The creep experiments on plain and double U-typed notched specimens were conducted on P92 steel at 650 °C. The notch strengthening effect was found in the notched specimens. Fracture appearance observed by scanning electron microscopy revealed that dimpled fracture for relatively blunt notched specimen, and dimpled fracture doubled with intergranular brittle fracture for relatively sharp notched specimen, which meant that fracture mechanism of P92 steel altered due to the presence of the notch. Meanwhile, based on Norton–Bailey and Kachanov–Robotnov constitutive models, a modified model was proposed. Finite element simulations were carried out to investigate the effect of multiaxial stress state on the creep behavior, fracture mechanism and damage evolvement of P92 steel. The simulation results agreed well with the fracture behaviors observed experimentally.

  19. Failure mechanisms for compacted uranium oxide fuel cores

    International Nuclear Information System (INIS)

    Berghaus, D.G.; Peacock, H.B.

    1980-01-01

    Tension, compression, and shear tests were performed on test specimens of aluminum-clad, compacted powder fuel cores to determine failure mechanisms of the core material. The core, which consists of 70% uranium oxide in an aluminum matrix, frequently fails during post-extrusion drawing. Tests were conducted to various strain levels up to failure of the core. Sections were made of tested specimens to microscopically study initiation of failure. Two failure modes wee observed. Tensile failure mode is initiated by prior tensile failure of uranium oxide particles with the separation path strongly influenced by the arrangement of particles. Delamination mode consists of the separation of laminae formed during extrusion of tubes. Separation proceeds from fine cracks formed parallel to the laminae. Tensile failure mode was experienced in tension and shear tests. Delamination mode was produced in compression tests

  20. Antithrombin III is associated with acute liver failure in patients with end-stage heart failure undergoing mechanical circulatory support.

    Science.gov (United States)

    Hoefer, Judith; Ulmer, Hanno; Kilo, Juliane; Margreiter, Raimund; Grimm, Michael; Mair, Peter; Ruttmann, Elfriede

    2017-06-01

    There are few data on the role of liver dysfunction in patients with end-stage heart failure supported by mechanical circulatory support. The aim of our study was to investigate predictors for acute liver failure in patients with end-stage heart failure undergoing mechanical circulatory support. A consecutive 164 patients with heart failure with New York Heart Association class IV undergoing mechanical circulatory support were investigated for acute liver failure using the King's College criteria. Clinical characteristics of heart failure together with hemodynamic and laboratory values were analyzed by logistic regression. A total of 45 patients (27.4%) with heart failure developed subsequent acute liver failure with a hospital mortality of 88.9%. Duration of heart failure, cause, cardiopulmonary resuscitation, use of vasopressors, central venous pressure, pulmonary capillary wedge pressure, pulmonary pulsatility index, cardiac index, and transaminases were not significantly associated with acute liver failure. Repeated decompensation, atrial fibrillation (P failure in univariate analysis only. In multivariable analysis, decreased antithrombin III was the strongest single measurement indicating acute liver failure (relative risk per %, 0.84; 95% confidence interval, 0.77-0.93; P = .001) and remained an independent predictor when adjustment for the Model for End-Stage Liver Disease score was performed (relative risk per %, 0.89; 95% confidence interval, 0.80-0.99; P = .031). Antithrombin III less than 59.5% was identified as a cutoff value to predict acute liver failure with a corresponding sensitivity of 81% and specificity of 87%. In addition to the Model for End-Stage Liver Disease score, decreased antithrombin III activity tends to be superior in predicting acute liver failure compared with traditionally thought predictors. Antithrombin III measurement may help to identify patients more precisely who are developing acute liver failure during mechanical

  1. Compressive Failure Mechanisms in Layered Materials

    DEFF Research Database (Denmark)

    Sørensen, Kim Dalsten

    Two important failure modes in fiber reinforced composite materials in cluding layers and laminates occur under loading conditions dominated by compression in the layer direction. These two distinctly different failure modes are 1. buckling driven delamination 2. failure by strain localization...... or on cylindrical substrates modeling the delamination as an interface fracture mechanical problem. Here attention is directed towards double-curved substrates, which introduces a new non-dimensional combination of geometric parameters. It is shown for a wide range of parameters that by choosing the two....... This has some impact on the convergence rate for decreasing mesh size in the load vs. end shortening response for a rectangular block of material. Especially in the immediate post critical range the convergence rate may be slow. The capabilities of the model to deal with more complicated structural...

  2. Investigation of failure mechanisms for HTGR core supports

    International Nuclear Information System (INIS)

    Bennett, J.G.; Ju, F.D.; Anderson, C.A.

    1976-12-01

    The report is concerned with potential instabilities of High-Temperature Gas-Cooled Reactor Cores supported by graphite columns. Two failure mechanisms are investigated in detail: that of torsional buckling of the entire core-column assemblage and that of column failure alone. A torsional model of the core-column assemblage is described and static buckling loads are calculated. Dynamic instability of the model to seismic loadings is also investigated. Individual column failure is examined using nonlinear graphite behavior and safety factors for static loading situations are given and compared to values given by conventional design formulas. A model of a cracked graphite column is given and buckling loads are computed for columns using a combined column and fracture mechanics analysis. A finite element analysis of a cracked graphite column is presented

  3. A zipper network model of the failure mechanics of extracellular matrices.

    Science.gov (United States)

    Ritter, Michael C; Jesudason, Rajiv; Majumdar, Arnab; Stamenovic, Dimitrije; Buczek-Thomas, Jo Ann; Stone, Phillip J; Nugent, Matthew A; Suki, Béla

    2009-01-27

    Mechanical failure of soft tissues is characteristic of life-threatening diseases, including capillary stress failure, pulmonary emphysema, and vessel wall aneurysms. Failure occurs when mechanical forces are sufficiently high to rupture the enzymatically weakened extracellular matrix (ECM). Elastin, an important structural ECM protein, is known to stretch beyond 200% strain before failing. However, ECM constructs and native vessel walls composed primarily of elastin and proteoglycans (PGs) have been found to fail at much lower strains. In this study, we hypothesized that PGs significantly contribute to tissue failure. To test this, we developed a zipper network model (ZNM), in which springs representing elastin are organized into long wavy fibers in a zipper-like formation and placed within a network of springs mimicking PGs. Elastin and PG springs possessed distinct mechanical and failure properties. Simulations using the ZNM showed that the failure of PGs alone reduces the global failure strain of the ECM well below that of elastin, and hence, digestion of elastin does not influence the failure strain. Network analysis suggested that whereas PGs drive the failure process and define the failure strain, elastin determines the peak and failure stresses. Predictions of the ZNM were experimentally confirmed by measuring the failure properties of engineered elastin-rich ECM constructs before and after digestion with trypsin, which cleaves the core protein of PGs without affecting elastin. This study reveals a role for PGs in the failure properties of engineered and native ECM with implications for the design of engineered tissues.

  4. The micro-mechanisms of failure of nodular cast iron

    Directory of Open Access Journals (Sweden)

    Alan Vaško

    2014-12-01

    Full Text Available The contribution deals with a comparison of the micro-mechanisms of failure of nodular cast irons at static, impact and fatigue stress. Several specimens of ferrite-pearlitic nodular cast irons with different content of ferrite in a matrix were used for metallographic analysis, mechanical tests and micro-fractographic analysis. Mechanical properties were found by static tensile test, impact bending test and fatigue tests. The micro-fractographic analysis was made with use of scanning electron microscope VEGA II LMU on fracture surfaces of the specimens fractured by these mechanical and fatigue tests. Fracture surfaces of analysed specimens are characteristic of mixed mode of fracture. Micro-mechanism of failure of nodular cast irons is dependent on the method of stress.

  5. Management of Mechanical Ventilation in Decompensated Heart Failure

    Directory of Open Access Journals (Sweden)

    Brooks T. Kuhn

    2016-12-01

    Full Text Available Mechanical ventilation (MV is a life-saving intervention for respiratory failure, including decompensated congestive heart failure. MV can reduce ventricular preload and afterload, decrease extra-vascular lung water, and decrease the work of breathing in heart failure. The advantages of positive pressure ventilation must be balanced with potential harm from MV: volutrauma, hyperoxia-induced injury, and difficulty assessing readiness for liberation. In this review, we will focus on cardiac, pulmonary, and broader effects of MV on patients with decompensated HF, focusing on practical considerations for management and supporting evidence.

  6. Mechanical properties and failure behaviour of graphene/silicene/graphene heterostructures

    International Nuclear Information System (INIS)

    Chung, Jing-Yang; Sorkin, Viacheslav; Pei, Qing-Xiang; Zhang, Yong-Wei; Chiu, Cheng-Hsin

    2017-01-01

    Van der Waals heterostructures based on graphene and other 2D materials have attracted great attention recently. In this study, the mechanical properties and failure behaviour of a graphene/silicene/graphene heterostructure are investigated using molecular dynamics simulations. We find that by sandwiching silicene in-between two graphene layers, both ultimate tensile strength and Young’s modulus of the heterostructure increase approximately by a factor of 10 compared with those of stand-alone silicene. By examining the fracture process of the heterostructure, we find that graphene and silicene exhibit quite different fracture behaviour. While graphene undergoes cleavage through its zigzag edge only, silicene can cleave through both its zigzag and armchair edges. In addition, we study the effects of temperature and strain rate on the mechanical properties of the heterostructure and find that an increase in temperature results in a decrease in its mechanical strength and stiffness, while an increase in strain rate leads to an increase in its mechanical strength without significant changes in its stiffness. We further explore the failure mechanism and show that the temperature and strain-rate dependent fracture stress can be accurately described by the kinetic theory of fracture. Our findings provide a deep insight into the mechanical properties and failure mechanism of graphene/silicene heterostructures. (paper)

  7. Effects of Tempering Temperature and Path on the Microstructural and Mechanical Properties of ASTM Gr.92 Steel

    International Nuclear Information System (INIS)

    Han, C. H.; Baek, J. H.; Kim, S. H.; Lee, C. B.; Kim, Y. K.; Hong, S. I.

    2009-01-01

    SFR (Sodium-Cooled Fast Reactor) is one of the prospective nuclear reactor for the next generation (Gen-IV) systems. The fuel claddings in the SFR are subject to a high fast nuclear irradiation and a high temperature. Fuel technology is a key aspect of an SFR system, with implications for reactor safety, reactor operations, fuel reprocessing technology, and overall system economics. ASTM Gr.92 steel has been considered as the one of the main candidate fuel cladding materials in the design of SFR in that it has higher thermal conductivity as well as dimensional stability under irradiation when compared as austenitic stainless steel. The changes in microstructure and heat-treatment varying M 23 C 6 , MX, M 2 X, and precipitation by ASTM Gr.92 steels to improve high temperature mechanical properties is the attention. According to several researchers, it plays an important role in the mechanical properties of precipitates V, Nb, Cr, C, N as a form of MX and M 2 X precipitates. These fine precipitates formed in the sub- grain by preventing the movement of dislocations in high-temperature mechanical properties will contribute effectively. This study investigated the effects of tempering temperature and heat-treatment path on microstructure and mechanical properties of ASTM Gr.92 steels

  8. Failure mechanisms and closed reduction of a constrained tripolar acetabular liner.

    Science.gov (United States)

    Robertson, William J; Mattern, Christopher J; Hur, John; Su, Edwin P; Pellicci, Paul M

    2009-02-01

    Unlike traditional bipolar constrained liners, the Osteonics Omnifit constrained acetabular insert is a tripolar device, consisting of an inner bipolar bearing articulating within an outer, true liner. Every reported failure of the Omnifit tripolar implant has been by failure at the shell-bone interface (Type I failure), failure at the shell-liner interface (Type II failure), or failure of the locking mechanism resulting in dislocation of the bipolar-liner interface (Type III failure). In this report we present two cases of failure of the Omnifit tripolar at the bipolar-femoral head interface. To our knowledge, these are the first reported cases of failure at the bipolar-femoral head interface (Type IV failure). In addition, we described the first successful closed reduction of a Type IV failure.

  9. Detection of mechanical failures in induction motors by current spectrum analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sokansky, K; Novak, P; Bilos, J; Labaj, J [Technical University Ostrava, Moraviasilesian Power Stations s.h.c. (Czech Republic)

    1998-12-31

    From the diagnostic point of view, an electric machine can be understood as an electromechanical system. It means that any manifestations of mechanical failures do not have to show themselves only in mechanical quantities, i.e. vibration in our case. Mechanical failures can also manifest themselves in electrical quantities, namely in electric current in our case. This statement is valid inversely too, which means that faults occurring in electric circuits can be measured through mechanical quantities. This presentation deals with measuring the current spectra of induction motors with short circuited armatures that are drives used in the industries most. (orig.) 3 refs.

  10. Detection of mechanical failures in induction motors by current spectrum analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sokansky, K.; Novak, P.; Bilos, J.; Labaj, J. [Technical University Ostrava, Moraviasilesian Power Stations s.h.c. (Czech Republic)

    1997-12-31

    From the diagnostic point of view, an electric machine can be understood as an electromechanical system. It means that any manifestations of mechanical failures do not have to show themselves only in mechanical quantities, i.e. vibration in our case. Mechanical failures can also manifest themselves in electrical quantities, namely in electric current in our case. This statement is valid inversely too, which means that faults occurring in electric circuits can be measured through mechanical quantities. This presentation deals with measuring the current spectra of induction motors with short circuited armatures that are drives used in the industries most. (orig.) 3 refs.

  11. An autonomous recovery mechanism against optical distribution network failures in EPON

    Science.gov (United States)

    Liem, Andrew Tanny; Hwang, I.-Shyan; Nikoukar, AliAkbar

    2014-10-01

    Ethernet Passive Optical Network (EPON) is chosen for servicing diverse applications with higher bandwidth and Quality-of-Service (QoS), starting from Fiber-To-The-Home (FTTH), FTTB (business/building) and FTTO (office). Typically, a single OLT can provide services to both residential and business customers on the same Optical Line Terminal (OLT) port; thus, any failures in the system will cause a great loss for both network operators and customers. Network operators are looking for low-cost and high service availability mechanisms that focus on the failures that occur within the drop fiber section because the majority of faults are in this particular section. Therefore, in this paper, we propose an autonomous recovery mechanism that provides protection and recovery against Drop Distribution Fiber (DDF) link faults or transceiver failure at the ONU(s) in EPON systems. In the proposed mechanism, the ONU can automatically detect any signal anomalies in the physical layer or transceiver failure, switching the working line to the protection line and sending the critical event alarm to OLT via its neighbor. Each ONU has a protection line, which is connected to the nearest neighbor ONU, and therefore, when failure occurs, the ONU can still transmit and receive data via the neighbor ONU. Lastly, the Fault Dynamic Bandwidth Allocation for recovery mechanism is presented. Simulation results show that our proposed autonomous recovery mechanism is able to maintain the overall QoS performance in terms of mean packet delay, system throughput, packet loss and EF jitter.

  12. Li-ion Battery Separators, Mechanical Integrity and Failure Mechanisms Leading to Soft and Hard Internal Shorts.

    Science.gov (United States)

    Zhang, Xiaowei; Sahraei, Elham; Wang, Kai

    2016-09-01

    Separator integrity is an important factor in preventing internal short circuit in lithium-ion batteries. Local penetration tests (nail or conical punch) often produce presumably sporadic results, where in exactly similar cell and test set-ups one cell goes to thermal runaway while the other shows minimal reactions. We conducted an experimental study of the separators under mechanical loading, and discovered two distinct deformation and failure mechanisms, which could explain the difference in short circuit characteristics of otherwise similar tests. Additionally, by investigation of failure modes, we provided a hypothesis about the process of formation of local "soft short circuits" in cells with undetectable failure. Finally, we proposed a criterion for predicting onset of soft short from experimental data.

  13. Survey of potential light water reactor fuel rod failure mechanisms and damage limits

    International Nuclear Information System (INIS)

    Courtright, E.L.

    1979-07-01

    The findings and conclusions are presented of a survey to evaluate current information applicable to the development of fuel rod damage and failure limits for light water reactor fuel elements. The survey includes a review of past fuel failures, and identifies potential damage and failure mechanisms for both steady state operating conditions and postulated accident events. Possible relationships between the various damage and failure mechanisms are also proposed. The report identifies limiting criteria where possible, but concludes that sufficient data are not currently available in many important areas

  14. A Critical Review of Landslide Failure Mechanisms

    Science.gov (United States)

    Stead, D.; Wolter, A.; Clague, J. J.

    2011-12-01

    During the last ten years several comprehensive geotechnical studies have been completed on major historic landslides including Randa in Switzerland, Frank in Canada, Aknes in Norway, La Clapiere in France and Vaiont in Italy. In addition, numerous researchers have documented deep-seated gravitational deformations and a wide variety of large prehistoric rock slope failures. The information provided by these studies is evidence of the significant advances made in our ability to map, monitor and model landslides. Over the same period, the mining industry has developed large open pits with slope heights exceeding 1000 m that provide important analogues to high mountain slopes. In this paper we analyse data from the literature to illustrate the importance of brittle fracture, 3D controls, anisotropy, overburden stress, geomorphic processes, groundwater and temperature in major landslides and provide some indicators as to the research required to further understand the complexity of rock slope failure mechanisms. The nature of the landslide failure surface has received inadequate attention in the past, with failure surfaces typically considered in 2D and simulated as discrete, smooth and often planar features. Current work shows that failure surfaces are inherently three-dimensional and have much structural variability across the area of the landslide scarp, reflecting complex structural histories. Such anisotropy and variations may result in multiple events or distinct blocks that move at different rates. Just as most failure surfaces vary spatially, they may also change with depth and thus should more realistically be considered failure zones rather than discrete surfaces. The increasing recognition of the importance of step-path failures, internal dilation and brittle fracture are indicative of the complexity in slope failure surfaces. Related to the variation in failure surface characteristics is the importance of 3D rotational displacements and both the

  15. Failure Mechanism of Rock Bridge Based on Acoustic Emission Technique

    Directory of Open Access Journals (Sweden)

    Guoqing Chen

    2015-01-01

    Full Text Available Acoustic emission (AE technique is widely used in various fields as a reliable nondestructive examination technology. Two experimental tests were carried out in a rock mechanics laboratory, which include (1 small scale direct shear tests of rock bridge with different lengths and (2 large scale landslide model with locked section. The relationship of AE event count and record time was analyzed during the tests. The AE source location technology and comparative analysis with its actual failure model were done. It can be found that whether it is small scale test or large scale landslide model test, AE technique accurately located the AE source point, which reflected the failure generation and expansion of internal cracks in rock samples. Large scale landslide model with locked section test showed that rock bridge in rocky slope has typical brittle failure behavior. The two tests based on AE technique well revealed the rock failure mechanism in rocky slope and clarified the cause of high speed and long distance sliding of rocky slope.

  16. Experimental and numerical study of the micro-mechanical failure in composites

    DEFF Research Database (Denmark)

    Ashouri Vajari, Danial; Martyniuk, Karolina; Sørensen, Bent F.

    2013-01-01

    The fibre/matrix interfacial debonding is found to be the first microscale failure mechanism leading to subsequent macroscale transverse cracks in composite materials under tensile load. In this paper, the micromechanical interface failure in fiber-reinforced composites is studied experimentally ...

  17. Failure mechanism for thermal fatigue of thermal barrier coating systems

    Energy Technology Data Exchange (ETDEWEB)

    Giolli, C.; Scrivani, A.; Rizzi, G. [Turbocoating S.p.A., Rubbiano di Solignano (Italy); Borgioli, F. [Firenze Univ., Sesto Fiorentino (Italy); Bolelli, G.; Lusvarghi, L. [Univ. di Modena e Reggio Emilia, Modena (Italy)

    2008-07-01

    High temperature thermal fatigue causes the failure of Thermal Barrier Coating (TBC) systems. Due to the difference in thickness and microstructure between thick TBCs and traditional thin TBCs, they cannot be assumed a-priori to possess the same failure mechanisms. Thick TBCs, consisting of a CoNiCrAlY bond coat and Yttria Partially Stabilised Zirconia top coat with different values of porosity, were produced by Air Plasma Spray. Thermal fatigue resistance limit of TBCs was tested by Furnace Cycling Tests (FCT) according to the specifications of an Original Equipment Manufacturer (OEM). TBC systems were analyzed before and after FCT. The morphological and chemical evolution of CoNiCrAlY/TGO microstructure was studied. Sintering effect, residual stress, phase transformation and fracture toughness were evaluated in the ceramic Top Coat. All the tested samples passed FCT according to the specification of an important OEM. Thermal fatigue resistance increases with the amount of porosity in the top coat. The compressive in-plane stresses increase in the TBC systems after thermal cycling, nevertheless the increasing rate has a trend contrary to the porosity level of top coat. The data suggest that the spallation happens at the TGO/Top Coat interface. The failure mechanism of thick TBCs subjected to thermal fatigue was eventually found to be similar to the failure mechanism of thin TBC systems made by APS. (orig.)

  18. Failure mechanisms and electromechanical coupling in semiconducting nanowires

    Directory of Open Access Journals (Sweden)

    Peng B.

    2010-06-01

    Full Text Available One dimensional nanostructures, like nanowires and nanotubes, are increasingly being researched for the development of next generation devices like logic gates, transistors, and solar cells. In particular, semiconducting nanowires with a nonsymmetric wurtzitic crystal structure, such as zinc oxide (ZnO and gallium nitride (GaN, have drawn immense research interests due to their electromechanical coupling. The designing of the future nanowire-based devices requires component-level characterization of individual nanowires. In this paper, we present a unique experimental set-up to characterize the mechanical and electromechanical behaviour of individual nanowires. Using this set-up and complementary atomistic simulations, mechanical properties of ZnO nanowires and electromechanical properties of GaN nanowires were investigated. In ZnO nanowires, elastic modulus was found to depend on nanowire diameter decreasing from 190 GPa to 140 GPa as the wire diameter increased from 5 nm to 80 nm. Inconsistent failure mechanisms were observed in ZnO nanowires. Experiments revealed a brittle fracture, whereas simulations using a pairwise potential predicted a phase transformation prior to failure. This inconsistency is addressed in detail from an experimental as well as computational perspective. Lastly, in addition to mechanical properties, preliminary results on the electromechanical properties of gallium nitride nanowires are also reported. Initial investigations reveal that the piezoresistive and piezoelectric behaviour of nanowires is different from bulk gallium nitride.

  19. The microstructural mechanism of electromigration failure in narrow interconnects of Al alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Choongun [Univ. of California, Berkeley, CA (United States)

    1993-04-01

    This thesis reports a study of the mechanism of electromigration failure in Al-2Cu-1Si thin-film conducting lines on Si. Samples were patterned from 0.5 μm thick vapor-deposited films with various mean grain sizes (G), and had lines widths (W) of 1.3, 2, 4 and 6 μm. The lines were aged at various conditions to change the Cu-precipitate distribution and were tested to failure at T = 225°C and j = 2.5 x 106 A/cm2. Some samples were tested over a range of substrate temperatures, current densities and current reversal times. Aging produces an initially dense distribution of metastable θ' (Al2Cu; coherent) in the grain interiors, with stable θ (Al2Cu; incoherent) at the grain boundaries. The intragranular θ' is gradually absorbed into the grain boundary precipitates. In the wide lines the mean time to failure increases slowly and monotonically with pre-aging time and current reversal time. The failure mode is the formation and coalescence of voids that form on grain boundaries with an apparent activation energy of 0.65 eV. In the narrow lines, the lines failed by a transgranular-slit mechanism with an activation energy near 0.93 eV. The distribution of the polygranular segments and the kinetics of failure varies with the linewidths. Failure occurs after Cu has been swept from the grains that fail. Pre-aging the line to create a more stable distribution of Cu significantly increases the time to failure. When the density of intragranular θ-phase precipitates is maximized, the transgranular-slit failure mechanism is suppressed, and the bamboo grain fails by diffuse thinning to rupture. The results from the current reversal test indicate that the time to sweep Cu in the polygranular segments is longer for longer polygranular segments. Thus the time to first failure in an array of lines is much longer than predicted by a log-normal fit to the distribution of failure times.

  20. Effect of flexural crack on plain concrete beam failure mechanism A numerical simulation

    Directory of Open Access Journals (Sweden)

    Abdoullah Namdar

    2016-03-01

    Full Text Available The flexural failure of plain concrete beam occurs along with development of flexural crack on beam. In this paper by using ABAQUS, mechanism failure of plain concrete beam under three steps have been simulated. The cracking moment has been analytically calculated and applied on the both sides of the fixed beam, and flexural crack has been simulated on beam. Displacement, von Mises, load reaction, displacementcrack length, von Mises-crack length and von Mises-displacement of beams have been graphical depicted. Results indicated that, the flexural crack governs beam mechanism failure and its effects on beam resistance failure. It has been found that the flexural crack in initial stage it developed slowly and changes to be fast at the final stage of collapsing beam due to reduction of the flexural resistance of beam. Increasing mechanical properties of concrete, collapse displacement is reduced.

  1. Deformation and failure mechanism of slope in three dimensions

    Directory of Open Access Journals (Sweden)

    Yingfa Lu

    2015-04-01

    Full Text Available Understanding three-dimensional (3D slope deformation and failure mechanism and corresponding stability analyses are crucially important issues in geotechnical engineering. In this paper, the mechanisms of progressive failure with thrust-type and pull-type landslides are described in detail. It is considered that the post-failure stress state and the pre-peak stress state may occur at different regions of a landslide body with deformation development, and a critical stress state element (or the soil slice block exists between the post-failure stress state and the pre-peak stress state regions. In this regard, two sorts of failure modes are suggested for the thrust-type and three sorts for pull-type landslides, based on the characteristics of shear stress and strain (or tensile stress and strain. Accordingly, a new joint constitutive model (JCM is proposed based on the current stability analytical theories, and it can be used to describe the mechanical behaviors of geo-materials with softening properties. Five methods, i.e. CSRM (comprehensive sliding resistance method, MTM (main thrust method, CDM (comprehensive displacement method, SDM (surplus displacement method, and MPM (main pull method, for slope stability calculation are proposed. The S-shaped curve of monitored displacement vs. time is presented for different points on the sliding surface during progressive failure process of landslide, and the relationship between the displacement of different points on the sliding surface and height of landslide body is regarded as the parabolic curve. The comparisons between the predicted and observed load–displacement and displacement–time relations of the points on the sliding surface are conducted. The classification of stable/unstable displacement–time curves is proposed. The definition of the main sliding direction of a landslide is also suggested in such a way that the failure body of landslide (simplified as “collapse body” is only

  2. Dynamic Response and Failure Mechanism of Brittle Rocks Under Combined Compression-Shear Loading Experiments

    Science.gov (United States)

    Xu, Yuan; Dai, Feng

    2018-03-01

    A novel method is developed for characterizing the mechanical response and failure mechanism of brittle rocks under dynamic compression-shear loading: an inclined cylinder specimen using a modified split Hopkinson pressure bar (SHPB) system. With the specimen axis inclining to the loading direction of SHPB, a shear component can be introduced into the specimen. Both static and dynamic experiments are conducted on sandstone specimens. Given carefully pulse shaping, the dynamic equilibrium of the inclined specimens can be satisfied, and thus the quasi-static data reduction is employed. The normal and shear stress-strain relationships of specimens are subsequently established. The progressive failure process of the specimen illustrated via high-speed photographs manifests a mixed failure mode accommodating both the shear-dominated failure and the localized tensile damage. The elastic and shear moduli exhibit certain loading-path dependence under quasi-static loading but loading-path insensitivity under high loading rates. Loading rate dependence is evidently demonstrated through the failure characteristics involving fragmentation, compression and shear strength and failure surfaces based on Drucker-Prager criterion. Our proposed method is convenient and reliable to study the dynamic response and failure mechanism of rocks under combined compression-shear loading.

  3. Acute respiratory failure requiring mechanical ventilation in severe chronic obstructive pulmonary disease (COPD).

    Science.gov (United States)

    Gadre, Shruti K; Duggal, Abhijit; Mireles-Cabodevila, Eduardo; Krishnan, Sudhir; Wang, Xiao-Feng; Zell, Katrina; Guzman, Jorge

    2018-04-01

    There are limited data on the epidemiology of acute respiratory failure necessitating mechanical ventilation in patients with severe chronic obstructive pulmonary disease (COPD). The prognosis of acute respiratory failure requiring invasive mechanical ventilation is believed to be grim in this population. The purpose of this study was to illustrate the epidemiologic characteristics and outcomes of patients with underlying severe COPD requiring mechanical ventilation.A retrospective study of patients admitted to a quaternary referral medical intensive care unit (ICU) between January 2008 and December 2012 with a diagnosis of severe COPD and requiring invasive mechanical ventilation for acute respiratory failure.We evaluated 670 patients with an established diagnosis of severe COPD requiring mechanical ventilation for acute respiratory failure of whom 47% were male with a mean age of 63.7 ± 12.4 years and Acute physiology and chronic health evaluation (APACHE) III score of 76.3 ± 27.2. Only seventy-nine (12%) were admitted with a COPD exacerbation, 27(4%) had acute respiratory distress syndrome (ARDS), 78 (12%) had pneumonia, 78 (12%) had sepsis, and 312 (47%) had other causes of respiratory failure, including pulmonary embolism, pneumothorax, etc. Eighteen percent of the patients received a trial of noninvasive positive pressure ventilation. The median duration of mechanical ventilation was 3 days (interquartile range IQR 2-7); the median duration for ICU length of stay (LOS) was 5 (IQR 2-9) days and the median duration of hospital LOS was 12 (IQR 7-22) days. The overall ICU mortality was 25%. Patients with COPD exacerbation had a shorter median duration of mechanical ventilation (2 vs 4 days; P = .04), ICU (3 vs 5 days; P = .01), and hospital stay (10 vs 13 days; P = .01). The ICU mortality (9% vs 27%; P respiratory failure. A 1-unit increase in the APACHE III score was associated with a 1% decrease and having an active cancer was associated

  4. Cardiac Rotational Mechanics As a Predictor of Myocardial Recovery in Heart Failure Patients Undergoing Chronic Mechanical Circulatory Support: A Pilot Study.

    Science.gov (United States)

    Bonios, Michael J; Koliopoulou, Antigone; Wever-Pinzon, Omar; Taleb, Iosif; Stehlik, Josef; Xu, Weining; Wever-Pinzon, James; Catino, Anna; Kfoury, Abdallah G; Horne, Benjamin D; Nativi-Nicolau, Jose; Adamopoulos, Stamatis N; Fang, James C; Selzman, Craig H; Bax, Jeroen J; Drakos, Stavros G

    2018-04-01

    Impaired qualitative and quantitative left ventricular (LV) rotational mechanics predict cardiac remodeling progression and prognosis after myocardial infarction. We investigated whether cardiac rotational mechanics can predict cardiac recovery in chronic advanced cardiomyopathy patients. Sixty-three patients with advanced and chronic dilated cardiomyopathy undergoing implantation of LV assist device (LVAD) were prospectively investigated using speckle tracking echocardiography. Acute heart failure patients were prospectively excluded. We evaluated LV rotational mechanics (apical and basal LV twist, LV torsion) and deformational mechanics (circumferential and longitudinal strain) before LVAD implantation. Cardiac recovery post-LVAD implantation was defined as (1) final resulting LV ejection fraction ≥40%, (2) relative LV ejection fraction increase ≥50%, (iii) relative LV end-systolic volume decrease ≥50% (all 3 required). Twelve patients fulfilled the criteria for cardiac recovery (Rec Group). The Rec Group had significantly less impaired pre-LVAD peak LV torsion compared with the Non-Rec Group. Notably, both groups had similarly reduced pre-LVAD LV ejection fraction. By receiver operating characteristic curve analysis, pre-LVAD peak LV torsion of 0.35 degrees/cm had a 92% sensitivity and a 73% specificity in predicting cardiac recovery. Peak LV torsion before LVAD implantation was found to be an independent predictor of cardiac recovery after LVAD implantation (odds ratio, 0.65 per 0.1 degrees/cm [0.49-0.87]; P =0.014). LV rotational mechanics seem to be useful in selecting patients prone to cardiac recovery after mechanical unloading induced by LVADs. Future studies should investigate the utility of these markers in predicting durable cardiac recovery after the explantation of the cardiac assist device. © 2018 American Heart Association, Inc.

  5. Nuclear piping criteria for Advanced Light-Water Reactors, Volume 1--Failure mechanisms and corrective actions

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    This WRC Bulletin concentrates on the major failure mechanisms observed in nuclear power plant piping during the past three decades and on corrective actions taken to minimize or eliminate such failures. These corrective actions are applicable to both replacement piping and the next generation of light-water reactors. This WRC Bulletin was written with the objective of meeting a need for piping criteria in Advanced Light-Water Reactors, but there is application well beyond the LWR industry. This Volume, in particular, is equally applicable to current nuclear power plants, fossil-fueled power plants, and chemical plants including petrochemical. Implementation of the recommendations for mitigation of specific problems should minimize severe failures or cracking and provide substantial economic benefit. This volume uses a case history approach to high-light various failure mechanisms and the corrective actions used to resolve such failures. Particular attention is given to those mechanisms leading to severe piping failures, where severe denotes complete severance, large ''fishmouth'' failures, or long throughwall cracks releasing a minimum of 50 gpm. The major failure mechanisms causing severe failure are erosion-corrosion and vibrational fatigue. Stress corrosion cracking also has been a common problem in nuclear piping systems. In addition thermal fatigue due to mixing-tee and to thermal stratification also is discussed as is microbiologically-induced corrosion. Finally, water hammer, which represents the ultimate in internally-generated dynamic high-energy loads, is discussed

  6. State of the art in power cable design, failure mechanisms and testing

    International Nuclear Information System (INIS)

    Orton, H.

    2005-01-01

    This presentation describes state of the art in power cable design, failure mechanisms and testing. It gives a history of cable usage and design of cables, describes different cable types, assessment of the condition of cables, aging and failures, testing and diagnostics

  7. Friction Stir Weld Failure Mechanisms in Aluminum-Armor Structures Under Ballistic Impact Loading Conditions

    Science.gov (United States)

    2013-01-01

    REPORT Friction Stir Weld Failure Mechanisms in Aluminum-Armor Structures Under Ballistic Impact Loading Conditions 14. ABSTRACT 16. SECURITY...properties and of the attendant ballistic-impact failure mechanisms in prototypical friction stir welding (FSW) joints found in armor structures made of high...mechanisms, friction stir welding M. Grujicic, B. Pandurangan, A. Arakere, C-F. Yen, B. A. Cheeseman Clemson University Office of Sponsored Programs 300

  8. 77 FR 34457 - Pipeline Safety: Mechanical Fitting Failure Reports

    Science.gov (United States)

    2012-06-11

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No... notice provides clarification to owners and operators of gas distribution pipeline facilities when... of a gas distribution pipeline facility to file a written report for any mechanical fitting failure...

  9. A model for predicting pellet-cladding interaction induced fuel rod failure, based on nonlinear fracture mechanics

    International Nuclear Information System (INIS)

    Jernkvist, L.O.

    1993-01-01

    A model for predicting pellet-cladding mechanical interaction induced fuel rod failure, suitable for implementation in finite element fuel-performance codes, is presented. Cladding failure is predicted by explicitly modelling the propagation of radial cracks under varying load conditions. Propagation is assumed to be due to either iodine induced stress corrosion cracking or ductile fracture. Nonlinear fracture mechanics concepts are utilized in modelling these two mechanisms of crack growth. The novelty of this approach is that the development of cracks, which may ultimately lead to fuel rod failure, can be treated as a dynamic and time-dependent process. The influence of cyclic loading, ramp rates and material creep on the failure mechanism can thereby be investigated. Results of numerical calculations, in which the failure model has been used to study the dependence of cladding creep rate on crack propagation velocity, are presented. (author)

  10. Coupled Mechanical-Electrochemical-Thermal Analysis of Failure Propagation in Lithium-ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chao; Santhanagopalan, Shriram; Pesaran, Ahmad

    2016-07-28

    This is a presentation given at the 12th World Congress for Computational Mechanics on coupled mechanical-electrochemical-thermal analysis of failure propagation in lithium-ion batteries for electric vehicles.

  11. Mechanical and microstructural stability of P92 steel under uniaxial tension at high temperature

    International Nuclear Information System (INIS)

    Giroux, P.F.; Dalle, F.; Sauzay, M.; Malaplate, J.; Fournier, B.; Gourgues-Lorenzon, A.F.

    2010-01-01

    9-12%Cr creep-resistant ferritic-martensitic steels are candidates for structural components of Generation IV nuclear power plants. However, they are sensitive to softening during low-cycle fatigue, creep and creep-fatigue tests, due to the destabilisation of the tempered martensite microstructure, possibly inducing a decrease in further creep resistance. To better identify the softening mechanisms in P92 steel during uniaxial deformation, tensile tests were carried out at 823 K, showing an extended and stable softening stage on true stress-strain curves after some work-hardening. Three phenomena were studied in order to understand this behaviour: mechanical instability (necking), damage and grain size evolution. Examination of fractured and non-fractured tensile specimens (light optical and electron microscopy, macrohardness) suggested that the physical mechanisms responsible for softening are mainly (sub)grain size evolution and diffuse necking. Models were proposed to predict grain growth and beginning of the mechanical instability during homogeneous deformation.

  12. Failure Mechanisms of a Gold Microelectrode in Bioelectronics Applications

    Directory of Open Access Journals (Sweden)

    Jonghun Kim

    2015-01-01

    Full Text Available The generation, growth, and collapse of tiny bubbles are inevitable for a microelectrode working in aqueous environment, thus resulting in physical damages on the microelectrode. The failure mechanisms of a microelectrode induced by tiny bubble collapsing are investigated by generating tiny hydrogen bubbles on a gold microelectrode through deionized water electrolysis. The surface of the microelectrode is modified with a thiol-functionalized arginine-glycine-aspartic acid peptide to generate perfectly spherical bubbles in proximity of the surface. The failure of an Au microelectrode is governed by two damage mechanisms, depending on the thickness of the microelectrode: a water-hammer pressure due to the violent collapse of a single large bubble, formed through merging of small bubbles, for ultrathin Au microelectrodes of 40–60 nm in thickness, and an energy accumulation resulting from the repetitive collapse of tiny bubbles for thick Au microelectrodes of 100–120 nm.

  13. Failure mode, effect and criticality analysis (FMECA) on mechanical subsystems of diesel generator at NPP

    International Nuclear Information System (INIS)

    Kim, Tae Woon; Singh, Brijendra; Sung, Tae Yong; Park, Jin Hee; Lee, Yoon Hwan

    1996-06-01

    Largely, the RCM approach can be divided in three phases; (1) Functional failure analysis (FFA) on the selected system or subsystem, (2) Failure mode, effect and criticality analysis (FMECA) to identify the impact of failure to plant safety or economics, (3) Logical tree analysis (LTA) to select appropriate preventive maintenance and surveillance tasks. This report presents FMECA results for six mechanical subsystems of the diesel generators of nuclear power plants. The six mechanical subsystems are Starting air, Lub oil, Governor, Jacket water cooling, Fuel, and Engine subsystems. Generic and plant-specific failure and maintenance records are reviewed to identify critical components/failure modes. FMECA was performed for these critical component/failure modes. After reviewing current preventive maintenance activities of Wolsung unit 1, draft RCM recommendations are developed. 6 tabs., 16 refs. (Author)

  14. Failure mode, effect and criticality analysis (FMECA) on mechanical subsystems of diesel generator at NPP

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Woon; Singh, Brijendra; Sung, Tae Yong; Park, Jin Hee; Lee, Yoon Hwan [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-06-01

    Largely, the RCM approach can be divided in three phases; (1) Functional failure analysis (FFA) on the selected system or subsystem, (2) Failure mode, effect and criticality analysis (FMECA) to identify the impact of failure to plant safety or economics, (3) Logical tree analysis (LTA) to select appropriate preventive maintenance and surveillance tasks. This report presents FMECA results for six mechanical subsystems of the diesel generators of nuclear power plants. The six mechanical subsystems are Starting air, Lub oil, Governor, Jacket water cooling, Fuel, and Engine subsystems. Generic and plant-specific failure and maintenance records are reviewed to identify critical components/failure modes. FMECA was performed for these critical component/failure modes. After reviewing current preventive maintenance activities of Wolsung unit 1, draft RCM recommendations are developed. 6 tabs., 16 refs. (Author).

  15. Agent autonomy approach to probabilistic physics-of-failure modeling of complex dynamic systems with interacting failure mechanisms

    Science.gov (United States)

    Gromek, Katherine Emily

    A novel computational and inference framework of the physics-of-failure (PoF) reliability modeling for complex dynamic systems has been established in this research. The PoF-based reliability models are used to perform a real time simulation of system failure processes, so that the system level reliability modeling would constitute inferences from checking the status of component level reliability at any given time. The "agent autonomy" concept is applied as a solution method for the system-level probabilistic PoF-based (i.e. PPoF-based) modeling. This concept originated from artificial intelligence (AI) as a leading intelligent computational inference in modeling of multi agents systems (MAS). The concept of agent autonomy in the context of reliability modeling was first proposed by M. Azarkhail [1], where a fundamentally new idea of system representation by autonomous intelligent agents for the purpose of reliability modeling was introduced. Contribution of the current work lies in the further development of the agent anatomy concept, particularly the refined agent classification within the scope of the PoF-based system reliability modeling, new approaches to the learning and the autonomy properties of the intelligent agents, and modeling interacting failure mechanisms within the dynamic engineering system. The autonomous property of intelligent agents is defined as agent's ability to self-activate, deactivate or completely redefine their role in the analysis. This property of agents and the ability to model interacting failure mechanisms of the system elements makes the agent autonomy fundamentally different from all existing methods of probabilistic PoF-based reliability modeling. 1. Azarkhail, M., "Agent Autonomy Approach to Physics-Based Reliability Modeling of Structures and Mechanical Systems", PhD thesis, University of Maryland, College Park, 2007.

  16. Mechanical modelling of transient- to- failure SFR fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Feria, F.; Herranz, L. E.

    2014-07-01

    The response of Sodium Fast Reactor (SFR) fuel rods to transient accident conditions is an important safety concern. During transients the cladding strain caused by the stress due to pellet cladding mechanical interaction (PCMI) can lead to failure. Due to the fact that SFR fuel rods are commonly clad with strengthened material made of stainless steel (SS), cladding is usually treated as an elastic-perfectly-plastic material. However, viscoplastic behaviour can contribute to mechanical strain at high temperature (> 1000 K). (Author)

  17. Fracture mechanics evaluation of feedwater line failure at Surry-2: Final report

    International Nuclear Information System (INIS)

    Zahoor, A.; Gamble, R.M.

    1987-10-01

    The purpose of this work was to perform a fracture mechanics evaluation of a failure that occurred in an elbow of the 18-inch suction line to the ''A'' main feed pump at Surry Power Station, Unit 2. The failure occurred during a pressure transient subsequent to a reactor trip, which was initiated by a low-low steam generator level protection signal. Analyses were performed to characterize the crack formation and growth sequence at the estimated failure pressure (550 psi) and normal operating pressure (367 psi); this work included predicting the longitudinal throughwall crack lengths for initial wall breakthrough and failure. A sensitivity study also was performed to assess the effect on the results of variations in several conditions that generally influence failure

  18. Fracture mechanics evaluation of feedwater line failure at Surry-2: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Zahoor, A.; Gamble, R.M.

    1987-10-01

    The purpose of this work was to perform a fracture mechanics evaluation of a failure that occurred in an elbow of the 18-inch suction line to the ''A'' main feed pump at Surry Power Station, Unit 2. The failure occurred during a pressure transient subsequent to a reactor trip, which was initiated by a low-low steam generator level protection signal. Analyses were performed to characterize the crack formation and growth sequence at the estimated failure pressure (550 psi) and normal operating pressure (367 psi); this work included predicting the longitudinal throughwall crack lengths for initial wall breakthrough and failure. A sensitivity study also was performed to assess the effect on the results of variations in several conditions that generally influence failure.

  19. Early failure mechanisms of constrained tripolar acetabular sockets used in revision total hip arthroplasty.

    Science.gov (United States)

    Cooke, Christopher C; Hozack, William; Lavernia, Carlos; Sharkey, Peter; Shastri, Shani; Rothman, Richard H

    2003-10-01

    Fifty-eight patients received an Osteonics constrained acetabular implant for recurrent instability (46), girdlestone reimplant (8), correction of leg lengthening (3), and periprosthetic fracture (1). The constrained liner was inserted into a cementless shell (49), cemented into a pre-existing cementless shell (6), cemented into a cage (2), and cemented directly into the acetabular bone (1). Eight patients (13.8%) required reoperation for failure of the constrained implant. Type I failure (bone-prosthesis interface) occurred in 3 cases. Two cementless shells became loose, and in 1 patient, the constrained liner was cemented into an acetabular cage, which then failed by pivoting laterally about the superior fixation screws. Type II failure (liner locking mechanism) occurred in 2 cases. Type III failure (femoral head locking mechanism) occurred in 3 patients. Seven of the 8 failures occurred in patients with recurrent instability. Constrained liners are an effective method for treatment during revision total hip arthroplasty but should be used in select cases only.

  20. Failure mechanisms of aluminium foams under compressive loads

    Directory of Open Access Journals (Sweden)

    Sáenz, E.

    2000-08-01

    Full Text Available The purpose of this paper is the investigation of the major failure mechanisms of aluminium foams, which were obtained by powder metallurgy route, under compressive loads. The study was focused on two commonly aluminium alloys AlMg1Si or A 6061 and AlSi12. Due to the fact that the failure mechanisms strongly depend on the density and the macrostructural properties of the material, the mechanical properties always have to be correlated to the structural properties. Therefore, macrostructural investigations were used as a basis to establish the correlation between structural and mechanical properties. This was done with a commercially available image analysis system. The average cell size, the cell size distribution and the cell density (number of cells/area were obtained. In order to evaluate the influence of foaming direction on the cell morphology, some cross sections parallel to the foaming direction were prepared. For the characterization of the mechanical compression properties the compressive or upper yield strength (UYS, the densification strain (eD, the energy absorption (Ea and the efficiency (Eff were obtained. Furthermore, the failure behavior of the samples was in-situ observed with a digital video camera and continuously recorded during the test.

    El objetivo de este estudio es investigar los principales mecanismos de fallo de espumas de aluminio sometidas a cargas de compresión. Las espumas metálicas fueron obtenidas mediante el proceso pulvimetalúrgico, utilizándose como materia prima dos aleaciones comerciales AlMg1Si o A 6061 y AlSi12. Debido a que los mecanismos de fallo en este tipo de materiales depende fuertemente de la densidad y las características macroestructurales del material, en este estudio se busca correlacionar las propiedades mecánicas con estas características. La macroestructura se caracterizó mediante análisis de imagen. El tamaño de celda promedio, la distribución de tamaño y la densidad de

  1. Failure mechanism of shear-wall dominant multi-story buildings

    Science.gov (United States)

    Yuksel, S.B.; Kalkan, E.

    2008-01-01

    The recent trend in the building industry of Turkey as well as in many European countries is towards utilizing the tunnel form (shear-wall dominant) construction system for development of multi-story residential units. The tunnel form buildings diverge from other conventional reinforced concrete (RC) buildings due to the lack of beams and columns in their structural integrity. The vertical load-carrying members of these buildings are the structural-walls only, and the floor system is a flat plate. Besides the constructive advantages, tunnel form buildings provide superior seismic performance compared to conventional RC frame and dual systems as observed during the recent devastating earthquakes in Turkey (1999 Mw 7.4 Kocaeli, Mw 7.2 Duzce, and 2004 Mw 6.5 Bingol). With its proven earthquake performance, the tunnel form system is becoming the primary construction technique in many seismically active regions. In this study, a series of nonlinear analyses were conducted using finite element (FE) models to augment our understanding on their failure mechanism under lateral forces. In order to represent the nonlinear behavior adequately, The FE models were verified with the results of experimental studies performed on three dimensional (3D) scaled tunnel form building specimens. The results of this study indicate that the structural walls of tunnel form buildings may exhibit brittle flexural failure under lateral loading, if they are not properly reinforced. The global tension/compression couple triggers this failure mechanism by creating pure axial tension in the outermost shear-walls.

  2. Approximative determination of failure probabilities in probabilistic fracture mechanics

    International Nuclear Information System (INIS)

    Riesch-Oppermann, H.; Brueckner, A.

    1987-01-01

    The possibility of using FORM in probabilistic fracture mechanics (PFM) is investigated. After a short review of the method and a description of some specific problems occurring in PFM applications, results obtained with FORM for the failure probabilities in a typical PFM problem (fatigue crack growth) are compared with those determined by a Monte Carlo simulation. (orig./HP)

  3. Fatigue of the Resin-Enamel Bonded Interface and the Mechanisms of Failure

    Science.gov (United States)

    Yahyazadehfar, Mobin; Mutluay, Mustafa Murat; Majd, Hessam; Ryou, Heonjune; Arola, Dwayne

    2013-01-01

    The durability of adhesive bonds to enamel and dentin and the mechanisms of degradation caused by cyclic loading are important to the survival of composite restorations. In this study a novel method of evaluation was used to determine the strength of resin-enamel bonded interfaces under both static and cyclic loading, and to identify the mechanisms of failure. Specimens with twin interfaces of enamel bonded to commercial resin composite were loaded in monotonic and cyclic 4-point flexure to failure within a hydrated environment. Results for the resin-enamel interface were compared with those for the resin composite (control) and values reported for resin-dentin adhesive bonds. Under both modes of loading the strength of the resin-enamel interface was significantly (p≤0.0001) lower than that of the resin composite and the resin-dentin bonded interface. Fatigue failure of the interface occurred predominately by fracture of enamel, adjacent to the interface, and not due to adhesive failures. In the absence of water aging or acid production of biofilms, the durability of adhesive bonds to enamel is lower than that achieved in dentin bonding. PMID:23571321

  4. Strength and Failure Mechanism of Composite-Steel Adhesive Bond Single Lap Joints

    Directory of Open Access Journals (Sweden)

    Kai Wei

    2018-01-01

    Full Text Available Carbon fiber-reinforced plastics- (CFRP- steel single lap joints with regard to tensile loading with two levels of adhesives and four levels of overlap lengths were experimentally analyzed and numerically simulated. Both joint strength and failure mechanism were found to be highly dependent on adhesive type and overlap length. Joints with 7779 structural adhesive were more ductile and produced about 2-3 kN higher failure load than MA830 structural adhesive. Failure load with the two adhesives increased about 147 N and 176 N, respectively, with increasing 1 mm of the overlap length. Cohesion failure was observed in both types of adhesive joints. As the overlap length increased, interface failure appeared solely on the edge of the overlap in 7779 adhesive joints. Finite element analysis (FEA results revealed that peel and shear stress distributions were nonuniform, which were less severe as overlap length increased. Severe stress concentration was observed on the overlap edge, and shear failure of the adhesive was the main reason for the adhesive failure.

  5. Mechanical Failure of Endocrowns Manufactured with Different Ceramic Materials: An In Vitro Biomechanical Study.

    Science.gov (United States)

    Aktas, Guliz; Yerlikaya, Hatice; Akca, Kivanc

    2018-04-01

    To evaluate the effect of different silica-based ceramic materials on the mechanical failure behavior of endocrowns used in the restoration of endodontically treated mandibular molar teeth. Thirty-six intact mandibular molar teeth extracted because of a loss of periodontal support received root canal treatment. The teeth were prepared with a central cavity to support the endocrowns, replacing the occlusal surface with mesial-lingual-distal walls. Data acquisition of the prepared tooth surfaces was carried out digitally with a powder-free intraoral scanner. Restoration designs were completed on manufactured restorations from three silicate ceramics: alumina-silicate (control), zirconia-reinforced (Zr-R), and polymer-infiltrated (P-I). Following adhesive cementation, endocrowns were subjected to thermal aging, and then, each specimen was obliquely loaded to record the fracture strength and define the mechanical failure. For the failure definition, the fracture type characteristics were identified, and further analytic measurements were made on the fractured tooth and ceramic structure. Load-to-fracture failure did not differ significantly, and the calculated mean values were 1035.08 N, 1058.33 N, and 1025.00 N for control, Zr-R, and P-I groups, respectively; however, the stiffness of the restoration-tooth complex was significantly higher than that in both test groups. No statistically significant correlation was established in paired comparisons of the failure strength, restorative stiffness, and fractured tooth distance parameters. The failure mode for teeth restored with zirconia-reinforced glass ceramics was identified as non-restorable. The resin interface in the control and P-I groups presented similar adhesive failure behavior. Mechanical failure of endocrown restorations does not significantly differ for silica-based ceramics modified either with zirconia or polymer. © 2016 by the American College of Prosthodontists.

  6. Laboratory and 3-D-distinct element analysis of failure mechanism of slope under external surcharge

    Science.gov (United States)

    Li, N.; Cheng, Y. M.

    2014-09-01

    Landslide is a major disaster resulting in considerable loss of human lives and property damages in hilly terrain in Hong Kong, China and many other countries. The factor of safety and the critical slip surface for slope stabilization are the main considerations for slope stability analysis in the past, while the detailed post-failure conditions of the slopes have not been considered in sufficient details. There are however increasing interest on the consequences after the initiation of failure which includes the development and propagation of the failure surfaces, the amount of failed mass and runoff and the affected region. To assess the development of slope failure in more details and to consider the potential danger of slopes after failure has initiated, the slope stability problem under external surcharge is analyzed by the distinct element method (DEM) and laboratory model test in the present research. A more refined study about the development of failure, microcosmic failure mechanism and the post-failure mechanism of slope will be carried out. The numerical modeling method and the various findings from the present work can provide an alternate method of analysis of slope failure which can give additional information not available from the classical methods of analysis.

  7. Safety relevant failure mechanisms in the post-operational phase; Sicherheitstechnisch relevante Fehlermechanismen in der Nachbetriebsphase

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Gerhard; Stiller, Jan Christopher; Roemer, Sarah

    2017-03-15

    When the 13{sup th} amendment of the Atomic Energy Act came into force, eight Germ an nuclear power plant units had their power operating licences revoked and are now in the so-called post operation phase. Of the remaining nuclear power plants, one have by now also entered the post operation phase, with those left in operation bound for entering this phase sometime between now and the end of 2022. Therefore, failure mechanisms that are particularly relevant for post operation were to be identified and described in the frame of the present project. To do so, three major steps were taken: Firstly, recent national and international pertinent literature was evaluated to obtain indications of failure mechanisms in the post operation phase. It turned out that most of the national and international literature deals with the general procedure of the transition from power operation to decommissioning and dismantling. However, there were also some documents providing detailed indications of possible failure mechanisms in post operation. This includes e.g. the release of radioactive materials caused by the drop of containers, chemical impacts on systems important to safety in connection with decontamination work, and corrosion in connection with the storage of the core in the spent fuel pool, with the latter leading to the jamming of the fuel assemblies in the storage racks and a possible reduction of coolant circulation. In a second step, three safety analyses of pressurised water reactors prepared by the respective plant operators were evaluated to identify failure mechanisms based on systems engineering. The failure mechanisms that were found here include e.g. faults in the boric acid concentration of the reactor coolant, damage to the equipment airlock upon the unloading of Castor casks, leakages in connection with primary system decontamination, and the drop of packages holding radioactive residual materials or waste with subsequent mobilisation of radioactive aerosols

  8. Hydraulic mechanism and time-dependent characteristics of loose gully deposits failure induced by rainfall

    Directory of Open Access Journals (Sweden)

    Yong Wu

    2015-12-01

    Full Text Available Failure of loose gully deposits under the effect of rainfall contributes to the potential risk of debris flow. In the past decades, researches on hydraulic mechanism and time-dependent characteristics of loose deposits failure are frequently reported, however adequate measures for reducing debris flow are not available practically. In this context, a time-dependent model was established to determine the changes of water table of loose deposits using hydraulic and topographic theories. In addition, the variation in water table with elapsed time was analyzed. The formulas for calculating hydrodynamic and hydrostatic pressures on each strip and block unit of deposit were proposed, and the slope stability and failure risk of the loose deposits were assessed based on the time-dependent hydraulic characteristics of established model. Finally, the failure mechanism of deposits based on infinite slope theory was illustrated, with an example, to calculate sliding force, anti-sliding force and residual sliding force applied to each slice. The results indicate that failure of gully deposits under the effect of rainfall is the result of continuously increasing hydraulic pressure and water table. The time-dependent characteristics of loose deposit failure are determined by the factors of hydraulic properties, drainage area of interest, rainfall pattern, rainfall duration and intensity.

  9. 3D Printing of Materials with Tunable Failure via Bioinspired Mechanical Gradients.

    Science.gov (United States)

    Kokkinis, Dimitri; Bouville, Florian; Studart, André R

    2018-05-01

    Mechanical gradients are useful to reduce strain mismatches in heterogeneous materials and thus prevent premature failure of devices in a wide range of applications. While complex graded designs are a hallmark of biological materials, gradients in manmade materials are often limited to 1D profiles due to the lack of adequate fabrication tools. Here, a multimaterial 3D-printing platform is developed to fabricate elastomer gradients spanning three orders of magnitude in elastic modulus and used to investigate the role of various bioinspired gradient designs on the local and global mechanical behavior of synthetic materials. The digital image correlation data and finite element modeling indicate that gradients can be effectively used to manipulate the stress state and thus circumvent the weakening effect of defect-rich interfaces or program the failure behavior of heterogeneous materials. Implementing this concept in materials with bioinspired designs can potentially lead to defect-tolerant structures and to materials whose tunable failure facilitates repair of biomedical implants, stretchable electronics, or soft robotics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Analysis of soft rock mineral components and roadway failure mechanism

    Institute of Scientific and Technical Information of China (English)

    陈杰

    2001-01-01

    The mineral components and microstructure of soft rock sampled from roadway floor inXiagou pit are determined by X-ray diffraction and scanning electron microscope. Ccmbined withthe test of expansion and water softening property of the soft rock, the roadway failure mechanism is analyzed, and the reasonable repair supporting principle of roadway is put forward.

  11. Landslide Frequency and Failure Mechanisms at NE Gela Basin (Strait of Sicily)

    Science.gov (United States)

    Kuhlmann, J.; Asioli, A.; Trincardi, F.; Klügel, A.; Huhn, K.

    2017-11-01

    Despite intense research by both academia and industry, the parameters controlling slope stability at continental margins are often speculated upon. Lack of core recovery and age control on failed sediments prevent the assessment of failure timing/frequency and the role of prefailure architecture as shaped by paleoenvironmental changes. This study uses an integrated chronological framework from two boreholes and complementary ultrahigh-resolution acoustic profiling in order to assess (1) the frequency of submarine landsliding at the continental margin of NE Gela Basin and (2) the associated mechanisms of failure. Accurate age control was achieved through absolute radiocarbon dating and indirect dating relying on isotope stratigraphic and micropaleontological reconstructions. A total of nine major slope failure events have been recognized that occurred within the last 87 kyr ( 10 kyr return frequency), though there is evidence for additional syndepositional, small-scaled transport processes of lower volume. Preferential failure involves translational movement of mudflows along subhorizontal surfaces that are induced by sedimentological changes relating to prefailure stratal architecture. Along with sequence-stratigraphic boundaries reflecting paleoenvironmental fluctuations, recovered core material suggests that intercalated volcaniclastic layers are key to the basal confinement and lateral movement of these events in the study area. Another major predisposing factor is given by rapid loading of fine-grained homogenous strata and successive generation of excess pore pressure, as expressed by several fluid escape structures. Recurrent failure, however, requires repeated generation of favorable conditions, and seismic activity, though low if compared to many other Mediterranean settings, is shown to represent a legitimate trigger mechanism.

  12. The failure of earthquake failure models

    Science.gov (United States)

    Gomberg, J.

    2001-01-01

    In this study I show that simple heuristic models and numerical calculations suggest that an entire class of commonly invoked models of earthquake failure processes cannot explain triggering of seismicity by transient or "dynamic" stress changes, such as stress changes associated with passing seismic waves. The models of this class have the common feature that the physical property characterizing failure increases at an accelerating rate when a fault is loaded (stressed) at a constant rate. Examples include models that invoke rate state friction or subcritical crack growth, in which the properties characterizing failure are slip or crack length, respectively. Failure occurs when the rate at which these grow accelerates to values exceeding some critical threshold. These accelerating failure models do not predict the finite durations of dynamically triggered earthquake sequences (e.g., at aftershock or remote distances). Some of the failure models belonging to this class have been used to explain static stress triggering of aftershocks. This may imply that the physical processes underlying dynamic triggering differs or that currently applied models of static triggering require modification. If the former is the case, we might appeal to physical mechanisms relying on oscillatory deformations such as compaction of saturated fault gouge leading to pore pressure increase, or cyclic fatigue. However, if dynamic and static triggering mechanisms differ, one still needs to ask why static triggering models that neglect these dynamic mechanisms appear to explain many observations. If the static and dynamic triggering mechanisms are the same, perhaps assumptions about accelerating failure and/or that triggering advances the failure times of a population of inevitable earthquakes are incorrect.

  13. Dynamic compressive properties and failure mechanism of glass fiber reinforced silica hydrogel

    International Nuclear Information System (INIS)

    Yang Jie; Li Shukui; Yan Lili; Huo Dongmei; Wang Fuchi

    2010-01-01

    The dynamic compressive properties of glass fiber reinforced silica (GFRS) hydrogel were investigated using a spilt Hopkinson pressure bar. Failure mechanism of GFRS hydrogel was studied by scanning electron microscopy (SEM). Result showed that dynamic compressive stresses were much higher than the quasi-static compressive stresses at the same strain. The dynamic compressive strength was directly proportional to the strain rate with same sample dimensions. The dynamic compressive strength was directly proportional to the sample basal area at same strain rate. Dynamic compressive failure strain was small. At high strain rates, glass fibers broke down and separated from the matrix, pores shrank rapidly. Failure resulted from the increase of lateral tensile stress in hydrogel under dynamic compression.

  14. Continuum Damage Mechanics Models for the Analysis of Progressive Failure in Open-Hole Tension Laminates

    Science.gov (United States)

    Song, Kyonchan; Li, Yingyong; Rose, Cheryl A.

    2011-01-01

    The performance of a state-of-the-art continuum damage mechanics model for interlaminar damage, coupled with a cohesive zone model for delamination is examined for failure prediction of quasi-isotropic open-hole tension laminates. Limitations of continuum representations of intra-ply damage and the effect of mesh orientation on the analysis predictions are discussed. It is shown that accurate prediction of matrix crack paths and stress redistribution after cracking requires a mesh aligned with the fiber orientation. Based on these results, an aligned mesh is proposed for analysis of the open-hole tension specimens consisting of different meshes within the individual plies, such that the element edges are aligned with the ply fiber direction. The modeling approach is assessed by comparison of analysis predictions to experimental data for specimen configurations in which failure is dominated by complex interactions between matrix cracks and delaminations. It is shown that the different failure mechanisms observed in the tests are well predicted. In addition, the modeling approach is demonstrated to predict proper trends in the effect of scaling on strength and failure mechanisms of quasi-isotropic open-hole tension laminates.

  15. Mechanisms of dynamic deformation and dynamic failure in aluminum nitride

    International Nuclear Information System (INIS)

    Hu Guangli; Chen, C.Q.; Ramesh, K.T.; McCauley, J.W.

    2012-01-01

    Uniaxial quasi-static, uniaxial dynamic and confined dynamic compression experiments have been performed to characterize the failure and deformation mechanisms of a sintered polycrystalline aluminum nitride using a servohydraulic machine and a modified Kolsky bar. Scanning electron microscopy and transmission electron microscopy (TEM) are used to identify the fracture and deformation mechanisms under high rate and high pressure loading conditions. These results show that the fracture mechanisms are strong functions of confining stress and strain rate, with transgranular fracture becoming more common at high strain rates. Dynamic fracture mechanics and micromechanical models are used to analyze the observed fracture mechanisms. TEM characterization of fragments from the confined dynamic experiments shows that at higher pressures dislocation motion becomes a common dominant deformation mechanism in AlN. Prismatic slip is dominant, and pronounced microcrack–dislocation interactions are observed, suggesting that the dislocation plasticity affects the macroscopic fracture behavior in this material under high confining stresses.

  16. Laboratory and 3-D distinct element analysis of the failure mechanism of a slope under external surcharge

    Science.gov (United States)

    Li, N.; Cheng, Y. M.

    2015-01-01

    Landslide is a major disaster resulting in considerable loss of human lives and property damages in hilly terrain in Hong Kong, China and many other countries. The factor of safety and the critical slip surface for slope stabilization are the main considerations for slope stability analysis in the past, while the detailed post-failure conditions of the slopes have not been considered in sufficient detail. There is however increasing interest in the consequences after the initiation of failure that includes the development and propagation of the failure surfaces, the amount of failed mass and runoff and the affected region. To assess the development of slope failure in more detail and to consider the potential danger of slopes after failure has initiated, the slope stability problem under external surcharge is analyzed by the distinct element method (DEM) and a laboratory model test in the present research. A more refined study about the development of failure, microcosmic failure mechanisms and the post-failure mechanisms of slopes will be carried out. The numerical modeling method and the various findings from the present work can provide an alternate method of analysis of slope failure, which can give additional information not available from the classical methods of analysis.

  17. Mechanical Ventilation during Extracorporeal Membrane Oxygenation in Patients with Acute Severe Respiratory Failure.

    Science.gov (United States)

    Zhang, Zhongheng; Gu, Wan-Jie; Chen, Kun; Ni, Hongying

    2017-01-01

    Conventionally, a substantial number of patients with acute respiratory failure require mechanical ventilation (MV) to avert catastrophe of hypoxemia and hypercapnia. However, mechanical ventilation per se can cause lung injury, accelerating the disease progression. Extracorporeal membrane oxygenation (ECMO) provides an alternative to rescue patients with severe respiratory failure that conventional mechanical ventilation fails to maintain adequate gas exchange. The physiology behind ECMO and its interaction with MV were reviewed. Next, we discussed the timing of ECMO initiation based on the risks and benefits of ECMO. During the running of ECMO, the protective ventilation strategy can be employed without worrying about catastrophic hypoxemia and carbon dioxide retention. There is a large body of evidence showing that protective ventilation with low tidal volume, high positive end-expiratory pressure, and prone positioning can provide benefits on mortality outcome. More recently, there is an increasing popularity on the use of awake and spontaneous breathing for patients undergoing ECMO, which is thought to be beneficial in terms of rehabilitation.

  18. Mechanical Ventilation during Extracorporeal Membrane Oxygenation in Patients with Acute Severe Respiratory Failure

    Directory of Open Access Journals (Sweden)

    Zhongheng Zhang

    2017-01-01

    Full Text Available Conventionally, a substantial number of patients with acute respiratory failure require mechanical ventilation (MV to avert catastrophe of hypoxemia and hypercapnia. However, mechanical ventilation per se can cause lung injury, accelerating the disease progression. Extracorporeal membrane oxygenation (ECMO provides an alternative to rescue patients with severe respiratory failure that conventional mechanical ventilation fails to maintain adequate gas exchange. The physiology behind ECMO and its interaction with MV were reviewed. Next, we discussed the timing of ECMO initiation based on the risks and benefits of ECMO. During the running of ECMO, the protective ventilation strategy can be employed without worrying about catastrophic hypoxemia and carbon dioxide retention. There is a large body of evidence showing that protective ventilation with low tidal volume, high positive end-expiratory pressure, and prone positioning can provide benefits on mortality outcome. More recently, there is an increasing popularity on the use of awake and spontaneous breathing for patients undergoing ECMO, which is thought to be beneficial in terms of rehabilitation.

  19. Determinants of noninvasive ventilation success or failure in morbidly obese patients in acute respiratory failure.

    Directory of Open Access Journals (Sweden)

    Malcolm Lemyze

    Full Text Available Acute respiratory failure (ARF is a common life-threatening complication in morbidly obese patients with obesity hypoventilation syndrome (OHS. We aimed to identify the determinants of noninvasive ventilation (NIV success or failure for this indication.We prospectively included 76 consecutive patients with BMI>40 kg/m2 diagnosed with OHS and treated by NIV for ARF in a 15-bed ICU of a tertiary hospital.NIV failed to reverse ARF in only 13 patients. Factors associated with NIV failure included pneumonia (n = 12/13, 92% vs n = 9/63, 14%; p<0.0001, high SOFA (10 vs 5; p<0.0001 and SAPS2 score (63 vs 39; p<0.0001 at admission. These patients often experienced poor outcome despite early resort to endotracheal intubation (in-hospital mortality, 92.3% vs 17.5%; p<0.001. The only factor significantly associated with successful response to NIV was idiopathic decompensation of OHS (n = 30, 48% vs n = 0, 0%; p = 0.001. In the NIV success group (n = 63, 33 patients (53% experienced a delayed response to NIV (with persistent hypercapnic acidosis during the first 6 hours.Multiple organ failure and pneumonia were the main factors associated with NIV failure and death in morbidly obese patients in hypoxemic ARF. On the opposite, NIV was constantly successful and could be safely pushed further in case of severe hypercapnic acute respiratory decompensation of OHS.

  20. Numerical Analysis on Failure Modes and Mechanisms of Mine Pillars under Shear Loading

    Directory of Open Access Journals (Sweden)

    Tianhui Ma

    2016-01-01

    Full Text Available Severe damage occurs frequently in mine pillars subjected to shear stresses. The empirical design charts or formulas for mine pillars are not applicable to orebodies under shear. In this paper, the failure process of pillars under shear stresses was investigated by numerical simulations using the rock failure process analysis (RFPA 2D software. The numerical simulation results indicate that the strength of mine pillars and the corresponding failure mode vary with different width-to-height ratios and dip angles. With increasing dip angle, stress concentration first occurs at the intersection between the pillar and the roof, leading to formation of microcracks. Damage gradually develops from the surface to the core of the pillar. The damage process is tracked with acoustic emission monitoring. The study in this paper can provide an effective means for understanding the failure mechanism, planning, and design of mine pillars.

  1. Mechanisms of bee venom-induced acute renal failure.

    Science.gov (United States)

    Grisotto, Luciana S D; Mendes, Glória E; Castro, Isac; Baptista, Maria A S F; Alves, Venancio A; Yu, Luis; Burdmann, Emmanuel A

    2006-07-01

    The spread of Africanized bees in the American continent has increased the number of severe envenomation after swarm attacks. Acute renal failure (ARF) is one of the major hazards in surviving patients. To assess the mechanisms of bee venom-induced ARF, rats were evaluated before, up to 70 min and 24h after 0.5mg/kg of venom injection. Control rats received saline. Bee venom caused an early and significant reduction in glomerular filtration rate (GFR, inulin clearance, 0.84+/-0.05 to 0.40+/-0.08 ml/min/100g, pbee venom-induced ARF that may occur even without hemolysis or hypotension.

  2. Thermo-mechanical Fatigue Failure of Thermal Barrier Coated Superalloy Specimen

    Science.gov (United States)

    Subramanian, Rajivgandhi; Mori, Yuzuru; Yamagishi, Satoshi; Okazaki, Masakazu

    2015-09-01

    Failure behavior of thermal barrier coated (TBC) Ni-based superalloy specimens were studied from the aspect of the effect of bond coat material behavior on low cycle fatigue (LCF) and thermo-mechanical fatigue (TMF) at various temperatures and under various loading conditions. Initially, monotonic tensile tests were carried out on a MCrAlY alloy bond coat material in the temperature range of 298 K to 1273 K (25 °C to 1000 °C). Special attention was paid to understand the ductile to brittle transition temperature (DBTT). Next, LCF and TMF tests were carried out on the thermal barrier coated Ni-based alloy IN738 specimen. After these tests, the specimens were sectioned to understand their failure mechanisms on the basis of DBTT of the bond coat material. Experimental results demonstrated that the LCF and TMF lives of the TBC specimen were closely related to the DBTT of the bond coat material, and also the TMF lives were different from those of LCF tests. It has also been observed that the crack density in the bond coat in the TBC specimen was significantly dependent on the test conditions. More importantly, not only the number of cracks but also the crack penetration probability into substrate were shown to be sensitive to the DBTT.

  3. Failure analysis and seal life prediction for contacting mechanical seals

    Science.gov (United States)

    Sun, J. J.; He, X. Y.; Wei, L.; Feng, X.

    2008-11-01

    Fault tree analysis method was applied to quantitatively investigate the causes of the leakage failure of mechanical seals. It is pointed out that the change of the surface topography is the main reasons causing the leakage of mechanical seals under the condition of constant preloads. Based on the fractal geometry theory, the relationship between the surface topography and working time were investigated by experiments, and the effects of unit load acting on seal face on leakage path in a mechanical seal were analyzed. The model of predicting seal life of mechanical seals was established on the basis of the relationship between the surface topography and working time and allowable leakage. The seal life of 108 mechanical seal operating at the system of diesel fuel storage and transportation was predicted and the problem of the condition monitoring for the long-period operation of mechanical seal was discussed by this method. The research results indicate that the method of predicting seal life of mechanical seals is feasible, and also is foundation to make scheduled maintenance time and to achieve safe-reliability and low-cost operation for industrial devices.

  4. Shale Failure Mechanics and Intervention Measures in Underground Coal Mines: Results From 50 Years of Ground Control Safety Research

    Science.gov (United States)

    2015-01-01

    Ground control research in underground coal mines has been ongoing for over 50 years. One of the most problematic issues in underground coal mines is roof failures associated with weak shale. This paper will present a historical narrative on the research the National Institute for Occupational Safety and Health has conducted in relation to rock mechanics and shale. This paper begins by first discussing how shale is classified in relation to coal mining. Characterizing and planning for weak roof sequences is an important step in developing an engineering solution to prevent roof failures. Next, the failure mechanics associated with the weak characteristics of shale will be discussed. Understanding these failure mechanics also aids in applying the correct engineering solutions. The various solutions that have been implemented in the underground coal mining industry to control the different modes of failure will be summarized. Finally, a discussion on current and future research relating to rock mechanics and shale is presented. The overall goal of the paper is to share the collective ground control experience of controlling roof structures dominated by shale rock in underground coal mining. PMID:26549926

  5. Heart Transplant and Mechanical Circulatory Support in Patients With Advanced Heart Failure.

    Science.gov (United States)

    Sánchez-Enrique, Cristina; Jorde, Ulrich P; González-Costello, José

    2017-05-01

    Patients with advanced heart failure have a poor prognosis and heart transplant is still the best treatment option. However, the scarcity of donors, long waiting times, and an increasing number of unstable patients have favored the development of mechanical circulatory support. This review summarizes the indications for heart transplant, candidate evaluation, current immunosuppression strategies, the evaluation and treatment of rejection, infectious prophylaxis, and short and long-term outcomes. Regarding mechanical circulatory support, we distinguish between short- and long-term support and the distinct strategies that can be used: bridge to decision, recovery, candidacy, transplant, and destination therapy. We then discuss indications, risk assessment, management of complications, especially with long-term support, and outcomes. Finally, we discuss future challenges and how the widespread use of long-term support for patients with advanced heart failure will only be viable if their complications and costs are reduced. Copyright © 2017 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  6. Increased Dicarbonyl Stress as a Novel Mechanism of Multi-Organ Failure in Critical Illness

    Directory of Open Access Journals (Sweden)

    Bas C. T. van Bussel

    2017-02-01

    Full Text Available Molecular pathological pathways leading to multi-organ failure in critical illness are progressively being unravelled. However, attempts to modulate these pathways have not yet improved the clinical outcome. Therefore, new targetable mechanisms should be investigated. We hypothesize that increased dicarbonyl stress is such a mechanism. Dicarbonyl stress is the accumulation of dicarbonyl metabolites (i.e., methylglyoxal, glyoxal, and 3-deoxyglucosone that damages intracellular proteins, modifies extracellular matrix proteins, and alters plasma proteins. Increased dicarbonyl stress has been shown to impair the renal, cardiovascular, and central nervous system function, and possibly also the hepatic and respiratory function. In addition to hyperglycaemia, hypoxia and inflammation can cause increased dicarbonyl stress, and these conditions are prevalent in critical illness. Hypoxia and inflammation have been shown to drive the rapid intracellular accumulation of reactive dicarbonyls, i.e., through reduced glyoxalase-1 activity, which is the key enzyme in the dicarbonyl detoxification enzyme system. In critical illness, hypoxia and inflammation, with or without hyperglycaemia, could thus increase dicarbonyl stress in a way that might contribute to multi-organ failure. Thus, we hypothesize that increased dicarbonyl stress in critical illness, such as sepsis and major trauma, contributes to the development of multi-organ failure. This mechanism has the potential for new therapeutic intervention in critical care.

  7. Noninvasive Positive Pressure Ventilation or Conventional Mechanical Ventilation for Neonatal Continuous Positive Airway Pressure Failure

    Directory of Open Access Journals (Sweden)

    Zohreh Badiee

    2014-01-01

    Full Text Available Background: The aim of this study was to assess the success rate of nasal intermittent positive pressure ventilation (NIPPV for treatment of continuous positive airway pressure (CPAP failure and prevention of conventional ventilation (CV in preterm neonates. Methods: Since November 2012 to April 2013, a total number of 55 consecutive newborns with gestational ages of 26-35 weeks who had CPAP failure were randomly assigned to one of the two groups. The NIPPV group received NIPPV with the initial peak inspiratory pressure (PIP of 16-20 cmH 2 O and frequency of 40-60 breaths/min. The CV group received PIP of 12-20 cmH 2 O and frequency of 40-60 breaths/min. Results: About 74% of newborns who received NIPPV for management of CPAP failure responded to NIPPV and did not need intubation and mechanical ventilation. Newborns with lower postnatal age at entry to the study and lower 5 min Apgar score more likely had NIPPV failure. In addition, treatment failure was higher in newborns who needed more frequent doses of surfactant. Duration of oxygen therapy was 9.28 days in CV group and 7.77 days in NIPPV group (P = 0.050. Length of hospital stay in CV group and NIPPV groups were 48.7 and 41.7 days, respectively (P = 0.097. Conclusions: NIPPV could decrease the need for intubation and mechanical ventilation in preterm infants with CPAP failure.

  8. Damage evolution and failure mechanisms in additively manufactured stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Carlton, Holly D., E-mail: carlton4@llnl.gov [Materials Engineering Division, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); Haboub, Abdel [Lincoln University, Life and Physical Sciences Department, 820 Chestnut St, Jefferson City, MO 65101 (United States); Gallegos, Gilbert F. [Materials Engineering Division, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); Parkinson, Dilworth Y.; MacDowell, Alastair A. [Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States)

    2016-01-10

    In situ tensile tests were performed on additively manufactured austenitic stainless steel to track damage evolution within the material. For these experiments Synchrotron Radiation micro-Tomography was used to measure three-dimensional pore volume, distribution, and morphology in stainless steel at the micrometer length-scale while tensile loading was applied. The results showed that porosity distribution played a larger role in affecting the fracture mechanisms than measured bulk density. Specifically, additively manufactured stainless steel specimens with large inhomogeneous void distributions displayed a flaw-dominated failure where cracks were shown to initiate at pre-existing voids, while annealed additively manufactured stainless steel specimens, which contained low porosity and randomly distributed pores, displayed fracture mechanisms that closely resembled wrought metal.

  9. The Weakest Link : Spatial Variability in the Piping Failure Mechanism of Dikes

    NARCIS (Netherlands)

    Kanning, W.

    2012-01-01

    Piping is an important failure mechanism of flood defense structures. A dike fails due to piping when a head difference causes first the uplift of an inland blanket layer, and subsequently soil erosion due to a ground water flow. Spatial variability of subsoil parameters causes the probability of

  10. Numerical simulation of mechanisms of deformation,failure and energy dissipation in porous rock media subjected to wave stresses

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The pore characteristics,mineral compositions,physical and mechanical properties of the subarkose sandstones were acquired by means of CT scan,X-ray diffraction and physical tests.A few physical models possessing the same pore characteristics and matrix properties but different porosities compared to the natural sandstones were developed.The 3D finite element models of the rock media with varied porosities were established based on the CT image processing of the physical models and the MIMICS software platform.The failure processes of the porous rock media loaded by the split Hopkinson pressure bar(SHPB) were simulated by satisfying the elastic wave propagation theory.The dynamic responses,stress transition,deformation and failure mechanisms of the porous rock media subjected to the wave stresses were analyzed.It is shown that an explicit and quantitative analysis of the stress,strain and deformation and failure mechanisms of porous rocks under the wave stresses can be achieved by using the developed 3D finite element models.With applied wave stresses of certain amplitude and velocity,no evident pore deformation was observed for the rock media with a porosity less than 15%.The deformation is dominantly the combination of microplasticity(shear strain),cracking(tensile strain) of matrix and coalescence of the cracked regions around pores.Shear stresses lead to microplasticity,while tensile stresses result in cracking of the matrix.Cracking and coalescence of the matrix elements in the neighborhood of pores resulted from the high transverse tensile stress or tensile strain which exceeded the threshold values.The simulation results of stress wave propagation,deformation and failure mechanisms and energy dissipation in porous rock media were in good agreement with the physical tests.The present study provides a reference for analyzing the intrinsic mechanisms of the complex dynamic response,stress transit mode,deformation and failure mechanisms and the disaster

  11. Failure mechanisms of additively manufactured porous biomaterials: Effects of porosity and type of unit cell.

    Science.gov (United States)

    Kadkhodapour, J; Montazerian, H; Darabi, A Ch; Anaraki, A P; Ahmadi, S M; Zadpoor, A A; Schmauder, S

    2015-10-01

    Since the advent of additive manufacturing techniques, regular porous biomaterials have emerged as promising candidates for tissue engineering scaffolds owing to their controllable pore architecture and feasibility in producing scaffolds from a variety of biomaterials. The architecture of scaffolds could be designed to achieve similar mechanical properties as in the host bone tissue, thereby avoiding issues such as stress shielding in bone replacement procedure. In this paper, the deformation and failure mechanisms of porous titanium (Ti6Al4V) biomaterials manufactured by selective laser melting from two different types of repeating unit cells, namely cubic and diamond lattice structures, with four different porosities are studied. The mechanical behavior of the above-mentioned porous biomaterials was studied using finite element models. The computational results were compared with the experimental findings from a previous study of ours. The Johnson-Cook plasticity and damage model was implemented in the finite element models to simulate the failure of the additively manufactured scaffolds under compression. The computationally predicted stress-strain curves were compared with the experimental ones. The computational models incorporating the Johnson-Cook damage model could predict the plateau stress and maximum stress at the first peak with less than 18% error. Moreover, the computationally predicted deformation modes were in good agreement with the results of scaling law analysis. A layer-by-layer failure mechanism was found for the stretch-dominated structures, i.e. structures made from the cubic unit cell, while the failure of the bending-dominated structures, i.e. structures made from the diamond unit cells, was accompanied by the shearing bands of 45°. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Microscale failure mechanisms leading to internal short circuit in Li-ion batteries under complex loading scenarios

    NARCIS (Netherlands)

    Sahraei, E.; Bosco, E.; Dixon, B.; Lai, B.

    2016-01-01

    One of the least understood mechanisms of Li-ion batteries is the development of internal short circuits under mechanical loads. In this study, a micro mechanical model is developed and subjected to various loading scenarios to understand the sequence of failure in the multi-layer, multi-material

  13. Mechanisms and pathways of growth failure in primordial dwarfism.

    Science.gov (United States)

    Klingseisen, Anna; Jackson, Andrew P

    2011-10-01

    The greatest difference between species is size; however, the developmental mechanisms determining organism growth remain poorly understood. Primordial dwarfism is a group of human single-gene disorders with extreme global growth failure (which includes Seckel syndrome, microcephalic osteodysplastic primordial dwarfism I [MOPD] types I and II, and Meier-Gorlin syndrome). Ten genes have now been identified for microcephalic primordial dwarfism, encoding proteins involved in fundamental cellular processes including genome replication (ORC1 [origin recognition complex 1], ORC4, ORC6, CDT1, and CDC6), DNA damage response (ATR [ataxia-telangiectasia and Rad3-related]), mRNA splicing (U4atac), and centrosome function (CEP152, PCNT, and CPAP). Here, we review the cellular and developmental mechanisms underlying the pathogenesis of these conditions and address whether further study of these genes could provide novel insight into the physiological regulation of organism growth.

  14. Renal osteodystrophy in non-dialysed patients with chronic renal failure

    International Nuclear Information System (INIS)

    Andresen, J.; Nielsen, H.E.

    1980-01-01

    Radiologic bone lesions in 92 non-dialysed patients with chronic renal failure are described. The bone disease increased with the severity of renal failure. In a prospective series of 20 patients progression of osteodystrophy and decrease in metacarpal bone mass were demonstrated. (Auth.)

  15. Failure mechanism and coupled static-dynamic loading theory in deep hard rock mining: A review

    Directory of Open Access Journals (Sweden)

    Xibing Li

    2017-08-01

    Full Text Available Rock failure phenomena, such as rockburst, slabbing (or spalling and zonal disintegration, related to deep underground excavation of hard rocks are frequently reported and pose a great threat to deep mining. Currently, the explanation for these failure phenomena using existing dynamic or static rock mechanics theory is not straightforward. In this study, new theory and testing method for deep underground rock mass under coupled static-dynamic loading are introduced. Two types of coupled loading modes, i.e. “critical static stress + slight disturbance” and “elastic static stress + impact disturbance”, are proposed, and associated test devices are developed. Rockburst phenomena of hard rocks under coupled static-dynamic loading are successfully reproduced in the laboratory, and the rockburst mechanism and related criteria are demonstrated. The results of true triaxial unloading compression tests on granite and red sandstone indicate that the unloading can induce slabbing when the confining pressure exceeds a certain threshold, and the slabbing failure strength is lower than the shear failure strength according to the conventional Mohr-Column criterion. Numerical results indicate that the rock unloading failure response under different in situ stresses and unloading rates can be characterized by an equivalent strain energy density. In addition, we present a new microseismic source location method without premeasuring the sound wave velocity in rock mass, which can efficiently and accurately locate the rock failure in hard rock mines. Also, a new idea for deep hard rock mining using a non-explosive continuous mining method is briefly introduced.

  16. Rubble Mound Breakwater Failure Modes

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Z., Liu

    1995-01-01

    The RMBFM-Project (Rubble Mound Breakwater Failure Modes) is sponsored by the Directorate General XII of the Commission of the European Communities under the Contract MAS-CT92- 0042, with the objective of contributing to the development of rational methods for the design of rubble mound breakwate...

  17. [Ten-year evolution of mechanical ventilation in acute respiratory failure in the hematogical patient admitted to the intensive care unit].

    Science.gov (United States)

    Belenguer-Muncharaz, A; Albert-Rodrigo, L; Ferrandiz-Sellés, A; Cebrián-Graullera, G

    2013-10-01

    A comparison was made between invasive mechanical ventilation (IMV) and noninvasive positive pressure ventilation (NPPV) in haematological patients with acute respiratory failure. A retrospective observational study was made from 2001 to December 2011. A clinical-surgical intensive care unit (ICU) in a tertiary hospital. Patients with hematological malignancies suffering acute respiratory failure (ARF) and requiring mechanical ventilation in the form of either IMV or NPPV. Analysis of infection and organ failure rates, duration of mechanical ventilation and ICU and hospital stays, as well as ICU, hospital and mortality after 90 days. The same variables were analyzed in the comparison between NPPV success and failure. Forty-one patients were included, of which 35 required IMV and 6 NPPV. ICU mortality was higher in the IMV group (100% vs 37% in NPPV, P=.006). The intubation rate in NPPV was 40%. Compared with successful NPPV, failure in the NPPV group involved more complications, a longer duration of mechanical ventilation and ICU stay, and greater ICU and hospital mortality. Multivariate analysis of mortality in the NPPV group identified NPPV failure (OR 13 [95%CI 1.33-77.96], P=.008) and progression to acute respiratory distress syndrome (OR 10 [95%CI 1.95-89.22], P=.03) as prognostic factors. The use of NPPV reduced mortality compared with IMV. NPPV failure was associated with more complications. Copyright © 2012 Elsevier España, S.L. and SEMICYUC. All rights reserved.

  18. Development of a new code to solve hydro-mechanical coupling, shear failure and tensile failure due to hydraulic fracturing operations.

    Science.gov (United States)

    María Gómez Castro, Berta; De Simone, Silvia; Carrera, Jesús

    2016-04-01

    Nowadays, there are still some unsolved relevant questions which must be faced if we want to proceed to the hydraulic fracturing in a safe way. How much will the fracture propagate? This is one of the most important questions that have to be solved in order to avoid the formation of pathways leading to aquifer targets and atmospheric release. Will the fracture failure provoke a microseismic event? Probably this is the biggest fear that people have in fracking. The aim of this work (developed as a part of the EU - FracRisk project) is to understand the hydro-mechanical coupling that controls the shear of existing fractures and their propagation during a hydraulic fracturing operation, in order to identify the key parameters that dominate these processes and answer the mentioned questions. This investigation focuses on the development of a new C++ code which simulates hydro-mechanical coupling, shear movement and propagation of a fracture. The framework employed, called Kratos, uses the Finite Element Method and the fractures are represented with an interface element which is zero thickness. This means that both sides of the element lie together in the initial configuration (it seems a 1D element in a 2D domain, and a 2D element in a 3D domain) and separate as the adjacent matrix elements deform. Since we are working in hard, fragile rocks, we can assume an elastic matrix and impose irreversible displacements in fractures when rock failure occurs. The formulation used to simulate shear and tensile failures is based on the analytical solution proposed by Okada, 1992 and it is part of an iterative process. In conclusion, the objective of this work is to employ the new code developed to analyze the main uncertainties related with the hydro-mechanical behavior of fractures derived from the hydraulic fracturing operations.

  19. Mechanics of arterial subfailure with increasing loading rate.

    Science.gov (United States)

    Stemper, Brian D; Yoganandan, Narayan; Pintar, Frank A

    2007-01-01

    Arterial subfailure leads to delayed symptomatology and high morbidity and mortality rates, particularly for the thoracic aorta and carotid arteries. Although arterial injuries occur during high-velocity automotive collisions, previous studies of arterial subfailure focused on quasi-static loading. This investigation subjected aortic segments to increasing loading rates to quantify effects on elastic, subfailure, and ultimate vessel mechanics. Sixty-two specimens were axially distracted, and 92% demonstrated subfailure before ultimate failure. With increasing loading rate, stress at initial subfailure and ultimate failure significantly increased, and strain at initial subfailure and ultimate failure significantly decreased. Present results indicate increased susceptibility for arterial subfailure and/or dissection under higher-rate extension. According to the present results, automotive occupants are at greater risk of arterial injury under higher velocity impacts due to greater body segment motions in addition to decreased strain tolerance to subfailure and catastrophic failure.

  20. Examination of cadmium safety rod thermal test specimens and failure mechanism evaluation

    International Nuclear Information System (INIS)

    Thomas, J.K.; Peacock, H.B.; Iyer, N.C.

    1992-01-01

    The reactor safety rods may be subjected to high temperatures due to gamma heating after the core coolant level has dropped during the ECS phase of a hypothetical LOCA event. Accordingly, an experimental cadmium safety rod testing subtask was established as part of a task to address the response of reactor core components to this accident. Companion reports describe the experiments and a structural evaluation (finite element analysis) of the safety rod. This report deals primarily with the examination of the test specimens, evaluation of possible failure mechanisms, and confirmatory separate effects experiments. It is concluded that the failures observed in the cadmium safety rod thermal tests which occurred at low temperature (T 800 degrees C) with fast thermal ramp rates are concluded to be mechanical in nature without significant environmental degradation. Based on these tests, tasks were initiated to design and manufacture B 4 C safety rods to replace the cadmium safety rods. The B 4 C safety rods have been manufactured at this time and it is currently planned to charge them to the reactor in the near future. 60 refs

  1. Optimization of BI test parameters to investigate mechanical properties of Grade 92 steel

    Science.gov (United States)

    Barbadikar, Dipika R.; Vincent, S.; Ballal, Atul R.; Peshwe, Dilip R.; Mathew, M. D.

    2018-04-01

    The ball indentation (BI) testing is used to evaluate the tensile properties of materials namely yield strength, strength coefficient, ultimate tensile strength, and strain hardening exponent. The properties evaluated depend on a number of BI test parameters. These parameters include the material constants like yield slope (YS), constraint factor (CF), yield offset parameter (YOP). Number of loading/unloading cycles, preload, indenter size and depth of penetration of indenter also affects the properties. In present investigation the effect of these parameters on the stress-strain curve of normalized and tempered Grade 92 steel is evaluated. Grade 92 is a candidate material for power plant application over austenitic stainless steel and derives its strength from M23C6, MX precipitates and high dislocation density. CF, YS and YOP changed the strength properties considerably. Indenter size effect resulted in higher strength for smaller indenter. It is suggested to use larger indenter diameter and higher number of loading cycles for GRADE 92 steel to get best results using BI technique.

  2. The mechanism and characteristics of ground movement and strata failure caused by mining

    Energy Technology Data Exchange (ETDEWEB)

    Tianquan, L. (Central Coal Mining Research Institute, Beijing (China))

    1988-01-01

    Analyzes strata movement and ground subsidence caused by underground coal mining. Five types of strata failure during and after underground coal mining are comparatively evaluated: caving zone, fractured zone, bending zone, arched caving, bending with continuous ground movement, sinkhole formation. Effects of coal seam thickness, dip angle, coal panel dimensions, rock stratification and mechanical properties on dimensions and distribution of failure zones in rock strata are investigated. Strata movement during level and steep seam mining is comparatively evaluated. Causes of continuous ground surface deformation and discontinuous deformation are analyzed. Rock strata properties and water influx, which influence sinkhole hazards, are discussed.

  3. Role of long-term mechanical circulatory support in patients with advanced heart failure.

    Science.gov (United States)

    Stokes, M B; Bergin, P; McGiffin, D

    2016-05-01

    Advanced heart failure represents a small proportion of patients with heart failure that possess high-risk features associated with high hospital readmission rates, significant functional impairment and mortality. Identification of those who have progressed to, or are near a state of advanced heart failure should prompt referral to a service that offers therapies in mechanical circulatory support (MCS) and cardiac transplantation. MCS has grown as a management strategy in the care of these patients, most commonly as a bridge to cardiac transplantation. The predominant utilisation of MCS is implantation of left ventricular assist devices (LVAD), which have evolved significantly in their technology and application over the past 15-20 years. The technology has evolved to such an extent that Destination Therapy is now being utilised as a strategy in management of advanced heart failure in appropriately selected patients. Complication rates have decreased with VAD implantation, but remain a significant consideration in the decision to implant a device, and in the follow up of these patients. © 2016 Royal Australasian College of Physicians.

  4. Mechanisms of dynamic wetting failure in the presence of soluble surfactants

    Science.gov (United States)

    Kumar, Satish; Liu, Chen-Yu; Carvalho, Marcio S.

    2017-11-01

    A hydrodynamic model and flow visualization experiments are used to understand the mechanisms through which soluble surfactants can influence the onset of dynamic wetting failure. In the model, a Newtonian liquid displaces air in a rectangular channel in the absence of inertia. A Navier-slip boundary condition and constant contact angle are used to describe the dynamic contact line, and surfactants are allowed to adsorb to the interface and moving channel wall (substrate). The Galerkin finite element method is used to calculate steady states and identify the critical capillary number Cacrit at which wetting failure occurs. It is found that surfactant solubility weakens the influence of Marangoni stresses, which tend to promote the onset of wetting failure. The experiments indicate that Cacrit increases with surfactant concentration. For the more viscous solutions used, this behaviour can largely be explained by accounting for changes to the mean surface tension and static contact angle produced by surfactants. For the lowest-viscosity solution used, comparison between the model predictions and experimental observations suggests that other surfactant-induced phenomena such as Marangoni stresses may play a more important role.

  5. Microstructural Characterization of the Heat-Affected Zones in Grade 92 Steel Welds: Double-Pass and Multipass Welds

    Science.gov (United States)

    Xu, X.; West, G. D.; Siefert, J. A.; Parker, J. D.; Thomson, R. C.

    2018-04-01

    The microstructure in the heat-affected zone (HAZ) of multipass welds typical of those used in power plants and made from 9 wt pct chromium martensitic Grade 92 steel is complex. Therefore, there is a need for systematic microstructural investigations to define the different regions of the microstructure across the HAZ of Grade 92 steel welds manufactured using the traditional arc welding processes in order to understand possible failure mechanisms after long-term service. In this study, the microstructure in the HAZ of an as-fabricated two-pass bead-on-plate weld on a parent metal of Grade 92 steel has been systematically investigated and compared to a complex, multipass thick section weldment using an extensive range of electron and ion-microscopy-based techniques. A dilatometer has been used to apply controlled thermal cycles to simulate the microstructures in distinctly different regions in a multipass HAZ using sequential thermal cycles. A wide range of microstructural properties in the simulated materials were characterized and compared with the experimental observations from the weld HAZ. It has been found that the microstructure in the HAZ can be categorized by a combination of sequential thermal cycles experienced by the different zones within the complex weld metal, using the terminology developed for these regions based on a simpler, single-pass bead-on-plate weld, categorized as complete transformation, partial transformation, and overtempered.

  6. Metaiodobenzylguanidine [131I] scintigraphy detects impaired myocardial sympathetic neuronal transport function of canine mechanical-overload heart failure

    International Nuclear Information System (INIS)

    Rabinovitch, M.A.; Rose, C.P.; Rouleau, J.L.

    1987-01-01

    In heart failure secondary to chronic mechanical overload, cardiac sympathetic neurons demonstrate depressed catecholamine synthetic and transport function. To assess the potential of sympathetic neuronal imaging for detection of depressed transport function, serial scintigrams were acquired after the intravenous administration of metaiodobenzylguanidine [ 131 I] to 13 normal dogs, 3 autotransplanted (denervated) dogs, 5 dogs with left ventricular failure, and 5 dogs with compensated left ventricular hypertrophy due to a surgical arteriovenous shunt. Nine dogs were killed at 14 hours postinjection for determination of metaiodobenzylguanidine [ 131 I] and endogenous norepinephrine content in left atrium, left ventricle, liver, and spleen. By 4 hours postinjection, autotransplanted dogs had a 39% reduction in mean left ventricular tracer accumulation, reflecting an absent intraneuronal tracer pool. Failure dogs demonstrated an accelerated early mean left ventricular tracer efflux rate (26.0%/hour versus 13.7%/hour in normals), reflecting a disproportionately increased extraneuronal tracer pool. They also showed reduced late left ventricular and left atrial concentrations of tracer, consistent with a reduced intraneuronal tracer pool. By contrast, compensated hypertrophy dogs demonstrated a normal early mean left ventricular tracer efflux rate (16.4%/hour) and essentially normal late left ventricular and left atrial concentrations of tracer. Metaiodobenzylguanidine [ 131 I] scintigraphic findings reflect the integrity of the cardiac sympathetic neuronal transport system in canine mechanical-overload heart failure. Metaiodobenzylguanidine [ 123 I] scintigraphy should be explored as a means of early detection of mechanical-overload heart failure in patients

  7. Creep Tests and Modeling Based on Continuum Damage Mechanics for T91 and T92 Steels

    Science.gov (United States)

    Pan, J. P.; Tu, S. H.; Zhu, X. W.; Tan, L. J.; Hu, B.; Wang, Q.

    2017-12-01

    9-11%Cr ferritic steels play an important role in high-temperature and high-pressure boilers of advanced power plants. In this paper, a continuum damage mechanics (CDM)-based creep model was proposed to study the creep behavior of T91 and T92 steels at high temperatures. Long-time creep tests were performed for both steels under different conditions. The creep rupture data and creep curves obtained from creep tests were captured well by theoretical calculation based on the CDM model over a long creep time. It is shown that the developed model is able to predict creep data for the two ferritic steels accurately up to tens of thousands of hours.

  8. Failure Mechanisms of the Protective Coatings for the Hot Stamping Applications

    Science.gov (United States)

    Zhao, Chen

    In the present study, four different nitriding techniques were carried on the ductile irons NAAMS-D6510 and cast steels NAAMS-S0050A, which are widely used stamping die materials; duplex treatments (PVD CrN coating+nitriding) were carried on H13 steels, which are common inserts for the hot stamping dies. Inclined impact-sliding wear tests were performed on the nitriding cases under simulated stamping conditions. Surface profilometer, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) were used to investigate the wear and failure mechanisms of the protective coatings. It was found that the nitrided ductile iron samples performed better than the nitrided cast steel specimens. High temperature inclined impact-sliding wear tests were carried out on the CrN coatings. It was found that the coating performed better at elevated temperature. XPS analysis indicated the top surface layer (about 3-4nm) of the coating was oxidized at 400 °C and formed a Cr2O3 protective film. The in-situ formation of the thin Cr2O3 protective layer likely led to the change of wear mechanisms from severe adhesive failure to mild abrasive wear.

  9. Risk Analysis and Prediction of Floor Failure Mechanisms at Longwall Face in Parvadeh-I Coal Mine using Rock Engineering System (RES)

    Science.gov (United States)

    Aghababaei, Sajjad; Saeedi, Gholamreza; Jalalifar, Hossein

    2016-05-01

    The floor failure at longwall face decreases productivity and safety, increases operation costs, and causes other serious problems. In Parvadeh-I coal mine, the timber is used to prevent the puncture of powered support base into the floor. In this paper, a rock engineering system (RES)-based model is presented to evaluate the risk of floor failure mechanisms at the longwall face of E 2 and W 1 panels. The presented model is used to determine the most probable floor failure mechanism, effective factors, damaged regions and remedial actions. From the analyzed results, it is found that soft floor failure is dominant in the floor failure mechanism at Parvadeh-I coal mine. The average of vulnerability index (VI) for soft, buckling and compressive floor failure mechanisms was estimated equal to 52, 43 and 30 for both panels, respectively. By determining the critical VI for soft floor failure mechanism equal to 54, the percentage of regions with VIs beyond the critical VI in E 2 and W 1 panels is equal to 65.5 and 30, respectively. The percentage of damaged regions showed that the excess amount of used timber to prevent the puncture of weak floor below the powered support base is equal to 4,180,739 kg. RES outputs and analyzed results showed that setting and yielding load of powered supports, length of face, existent water at face, geometry of powered supports, changing the cutting pattern at longwall face and limiting the panels to damaged regions with supercritical VIs could be considered to control the soft floor failure in this mine. The results of this research could be used as a useful tool to identify the damaged regions prior to mining operation at longwall panel for the same conditions.

  10. An atypical presentation of mechanical failure of eruption of a mandibular permanent molar: diagnosis and treatment case report.

    LENUS (Irish Health Repository)

    Smith, C P

    2012-06-01

    Failure of eruption of mandibular permanent molars occurs infrequently but is a difficult clinical problem. It can be due to local or systemic factors or failure of the eruption process. Primary failure of eruption (PFE) is a rare condition that can result in severe posterior open bite, requires complex treatment strategies and has unfavourable outcomes. Mechanical failure of eruption (MFE) is more unusual but can respond positively to treatment. Differentiating between the two is crucial in making the correct diagnosis and managing the case successfully.

  11. Mechanistic considerations used in the development of the probability of failure in transient increases in power (PROFIT) pellet-zircaloy cladding (thermo-mechanical-chemical) interactions (pci) fuel failure model

    International Nuclear Information System (INIS)

    Pankaskie, P.J.

    1980-05-01

    A fuel Pellet-Zircaloy Cladding (thermo-mechanical-chemical) interactions (PCI) failure model for estimating the Probability of Failure in Transient Increases in Power (PROFIT) was developed. PROFIT is based on (1) standard statistical methods applied to available PCI fuel failure data and (2) a mechanistic analysis of the environmental and strain-rate-dependent stress versus strain characteristics of Zircaloy cladding. The statistical analysis of fuel failures attributable to PCI suggested that parameters in addition to power, transient increase in power, and burnup are needed to define PCI fuel failures in terms of probability estimates with known confidence limits. The PROFIT model, therefore, introduces an environmental and strain-rate dependent Strain Energy Absorption to Failure (SEAF) concept to account for the stress versus strain anomalies attributable to interstitial-dislocation interaction effects in the Zircaloy cladding

  12. Noninvasive Mechanical Ventilation in Acute Ventilatory Failure: Rationale and Current Applications.

    Science.gov (United States)

    Esquinas, Antonio M; Benhamou, Maly Oron; Glossop, Alastair J; Mina, Bushra

    2017-12-01

    Noninvasive ventilation plays a pivotal role in acute ventilator failure and has been shown, in certain disease processes such as acute exacerbation of chronic obstructive pulmonary disease, to prevent and shorten the duration of invasive mechanical ventilation, reducing the risks and complications associated with it. The application of noninvasive ventilation is relatively simple and well tolerated by patients and in the right setting can change the course of their illness. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Impact of mechanical- and maintenance-induced failures of main reactor coolant pump seals on plant safety

    International Nuclear Information System (INIS)

    Azarm, M.A.; Boccio, J.L.; Mitra, S.

    1985-12-01

    This document presents an investigation of the safety impact resulting from mechanical- and maintenance-induced reactor coolant pump (RCP) seal failures in nuclear power plants. A data survey of the pump seal failures for existing nuclear power plants in the US from several available sources was performed. The annual frequency of pump seal failures in a nuclear power plant was estimated based on the concept of hazard rate and dependency evaluation. The conditional probability of various sizes of leak rates given seal failures was then evaluated. The safety impact of RCP seal failures, in terms of contribution to plant core-melt frequency, was also evaluated for three nuclear power plants. For leak rates below the normal makeup capacity and the impact of plant safety were discussed qualitatively, whereas for leak rates beyond the normal make up capacity, formal PRA methodologies were applied. 22 refs., 17 figs., 19 tabs

  14. FAILURE MECHANISMS OF THERMAL BARRIER COATINGS INTERNAL COMBUSTION ENGINES AND llMPROVEMENTS

    Directory of Open Access Journals (Sweden)

    ADNAN PARLAK

    2003-04-01

    Full Text Available MechanicaJ properties of high performance ceramics have been improved to the point where their use in heat engines is possible. The high temperature strength and low thermal expansion properties of bigh performance ceramics offer an advantage over metals in the development of non-water cooling engine. However, because bard environment in diesel engine combustion chamber, solving the problem of durabiUty of TBC is important. DurabiUty of thermal barrier coatings(TBC is liınited by two main failure mechanisms: Therınal expansion nlİsmatch betwcen bond coat and top coat and bond coat oxidation. Both of these can cause failure of the ceramic top coat. Developments of recent years sholv that bond coats \\Vith higher oxidation resistance tend to have better coating system cyclic lives

  15. Heart failure with preserved ejection fraction: mechanisms, clinical features, and therapies.

    Science.gov (United States)

    Sharma, Kavita; Kass, David A

    2014-06-20

    The clinical syndrome comprising heart failure (HF) symptoms but with a left ventricular ejection fraction (EF) that is not diminished, eg, HF with preserved EF, is increasingly the predominant form of HF in the developed world, and soon to reach epidemic proportions. It remains among the most challenging of clinical syndromes for the practicing clinician and scientist alike, with a multitude of proposed mechanisms involving the heart and other organs and complex interplay with common comorbidities. Importantly, its morbidity and mortality are on par with HF with reduced EF, and as the list of failed treatments continues to grow, HF with preserved EF clearly represents a major unmet medical need. The field is greatly in need of a more unified approach to its definition and view of the syndrome that engages integrative and reserve pathophysiology beyond that related to the heart alone. We need to reflect on prior treatment failures and the message this is providing, and redirect our approaches likely with a paradigm shift in how the disease is viewed. Success will require interactions between clinicians, translational researchers, and basic physiologists. Here, we review recent translational and clinical research into HF with preserved EF and give perspectives on its evolving demographics and epidemiology, the role of multiorgan deficiencies, potential mechanisms that involve the heart and other organs, clinical trials, and future directions. © 2014 American Heart Association, Inc.

  16. Validation and potential mechanisms of red cell distribution width as a prognostic marker in heart failure.

    Science.gov (United States)

    Allen, Larry A; Felker, G Michael; Mehra, Mandeep R; Chiong, Jun R; Dunlap, Stephanie H; Ghali, Jalal K; Lenihan, Daniel J; Oren, Ron M; Wagoner, Lynne E; Schwartz, Todd A; Adams, Kirkwood F

    2010-03-01

    Adverse outcomes have recently been linked to elevated red cell distribution width (RDW) in heart failure. Our study sought to validate the prognostic value of RDW in heart failure and to explore the potential mechanisms underlying this association. Data from the Study of Anemia in a Heart Failure Population (STAMINA-HFP) registry, a prospective, multicenter cohort of ambulatory patients with heart failure supported multivariable modeling to assess relationships between RDW and outcomes. The association between RDW and iron metabolism, inflammation, and neurohormonal activation was studied in a separate cohort of heart failure patients from the United Investigators to Evaluate Heart Failure (UNITE-HF) Biomarker registry. RDW was independently predictive of outcome (for each 1% increase in RDW, hazard ratio for mortality 1.06, 95% CI 1.01-1.12; hazard ratio for hospitalization or mortality 1.06; 95% CI 1.02-1.10) after adjustment for other covariates. Increasing RDW correlated with decreasing hemoglobin, increasing interleukin-6, and impaired iron mobilization. Our results confirm previous observations that RDW is a strong, independent predictor of adverse outcome in chronic heart failure and suggest elevated RDW may indicate inflammatory stress and impaired iron mobilization. These findings encourage further research into the relationship between heart failure and the hematologic system. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  17. Mechanical torque measurement in the proximal femur correlates to failure load and bone mineral density ex vivo

    Directory of Open Access Journals (Sweden)

    Stefan Grote

    2013-06-01

    Full Text Available Knowledge of local bone quality is essential for surgeons to determine operation techniques. A device for intraoperative measurement of local bone quality has been developed by the AO-Research Foundation (DensiProbe®. We used this device to experimentally measure peak breakaway torque of trabecular bone in the proximal femur and correlated this with local bone mineral density (BMD and failure load. Bone mineral density of 160 cadaver femurs was measured by ex situ dual-energy X-ray absorptiometry. The failure load of all femurs was analyzed by side-impact analysis. Femur fractures were fixed and mechanical peak torque was measured with the DensiProbe® device. Correlation was calculated whereas correlation coefficient and significance was calculated by Fisher’s Z-transformation. Moreover, linear regression analysis was carried out. The unpaired Student’s t-test was used to assess the significance of differences. The Ward triangle region had the lowest BMD with 0.511 g/cm2 (±0.17 g/cm2, followed by the upper neck region with 0.546 g/cm2 (±0.16 g/cm2, trochanteric region with 0.685 g/cm2 (±0.19 g/cm2 and the femoral neck with 0.813 g/cm2 (±0.2 g/cm2. Peak torque of DensiProbe® in the femoral head was 3.48 Nm (±2.34 Nm. Load to failure was 4050.2 N (±1586.7 N. The highest correlation of peak torque measured by Densi Probe® and load to failure was found in the femoral neck (r=0.64, P<0.001. The overall correlation of mechanical peak torque with T-score was r=0.60 (P<0.001. A correlation was found between mechanical peak torque, load to failure of bone and BMD in vitro. Trabecular strength of bone and bone mineral density are different aspects of bone strength, but a correlation was found between them. Mechanical peak torque as measured may contribute additional information about bone strength, especially in the perioperative testing.

  18. Assessing rockfall susceptibility in steep and overhanging slopes using three-dimensional analysis of failure mechanisms

    Science.gov (United States)

    Matasci, Battista; Stock, Greg M.; Jaboyedoff, Michael; Carrea, Dario; Collins, Brian D.; Guérin, Antoine; Matasci, G.; Ravanel, L.

    2018-01-01

    Rockfalls strongly influence the evolution of steep rocky landscapes and represent a significant hazard in mountainous areas. Defining the most probable future rockfall source areas is of primary importance for both geomorphological investigations and hazard assessment. Thus, a need exists to understand which areas of a steep cliff are more likely to be affected by a rockfall. An important analytical gap exists between regional rockfall susceptibility studies and block-specific geomechanical calculations. Here we present methods for quantifying rockfall susceptibility at the cliff scale, which is suitable for sub-regional hazard assessment (hundreds to thousands of square meters). Our methods use three-dimensional point clouds acquired by terrestrial laser scanning to quantify the fracture patterns and compute failure mechanisms for planar, wedge, and toppling failures on vertical and overhanging rock walls. As a part of this work, we developed a rockfall susceptibility index for each type of failure mechanism according to the interaction between the discontinuities and the local cliff orientation. The susceptibility for slope parallel exfoliation-type failures, which are generally hard to identify, is partly captured by planar and toppling susceptibility indexes. We tested the methods for detecting the most susceptible rockfall source areas on two famously steep landscapes, Yosemite Valley (California, USA) and the Drus in the Mont-Blanc massif (France). Our rockfall susceptibility models show good correspondence with active rockfall sources. The methods offer new tools for investigating rockfall hazard and improving our understanding of rockfall processes.

  19. Andreas Acrivos Dissertation Award: Onset of Dynamic Wetting Failure - The Mechanics of High-Speed Fluid Displacement

    Science.gov (United States)

    Vandre, Eric

    2014-11-01

    Dynamic wetting is crucial to processes where a liquid displaces another fluid along a solid surface, such as the deposition of a coating liquid onto a moving substrate. Dynamic wetting fails when process speed exceeds some critical value, leading to incomplete fluid displacement and transient phenomena that impact a variety of applications, such as microfluidic devices, oil-recovery systems, and splashing droplets. Liquid coating processes are particularly sensitive to wetting failure, which can induce air entrainment and other catastrophic coating defects. Despite the industrial incentives for careful control of wetting behavior, the hydrodynamic factors that influence the transition to wetting failure remain poorly understood from empirical and theoretical perspectives. This work investigates the fundamentals of wetting failure in a variety of systems that are relevant to industrial coating flows. A hydrodynamic model is developed where an advancing fluid displaces a receding fluid along a smooth, moving substrate. Numerical solutions predict the onset of wetting failure at a critical substrate speed, which coincides with a turning point in the steady-state solution path for a given set of system parameters. Flow-field analysis reveals a physical mechanism where wetting failure results when capillary forces can no longer support the pressure gradients necessary to steadily displace the receding fluid. Novel experimental systems are used to measure the substrate speeds and meniscus shapes associated with the onset of air entrainment during wetting failure. Using high-speed visualization techniques, air entrainment is identified by the elongation of triangular air films with system-dependent size. Air films become unstable to thickness perturbations and ultimately rupture, leading to the entrainment of air bubbles. Meniscus confinement in a narrow gap between the substrate and a stationary plate is shown to delay air entrainment to higher speeds for a variety of

  20. Determinants of noninvasive ventilation success or failure in morbidly obese patients in acute respiratory failure.

    Science.gov (United States)

    Lemyze, Malcolm; Taufour, Pauline; Duhamel, Alain; Temime, Johanna; Nigeon, Olivier; Vangrunderbeeck, Nicolas; Barrailler, Stéphanie; Gasan, Gaëlle; Pepy, Florent; Thevenin, Didier; Mallat, Jihad

    2014-01-01

    Acute respiratory failure (ARF) is a common life-threatening complication in morbidly obese patients with obesity hypoventilation syndrome (OHS). We aimed to identify the determinants of noninvasive ventilation (NIV) success or failure for this indication. We prospectively included 76 consecutive patients with BMI>40 kg/m2 diagnosed with OHS and treated by NIV for ARF in a 15-bed ICU of a tertiary hospital. NIV failed to reverse ARF in only 13 patients. Factors associated with NIV failure included pneumonia (n = 12/13, 92% vs n = 9/63, 14%; psuccessful response to NIV was idiopathic decompensation of OHS (n = 30, 48% vs n = 0, 0%; p = 0.001). In the NIV success group (n = 63), 33 patients (53%) experienced a delayed response to NIV (with persistent hypercapnic acidosis during the first 6 hours). Multiple organ failure and pneumonia were the main factors associated with NIV failure and death in morbidly obese patients in hypoxemic ARF. On the opposite, NIV was constantly successful and could be safely pushed further in case of severe hypercapnic acute respiratory decompensation of OHS.

  1. Dependent failure analysis of NPP data bases

    International Nuclear Information System (INIS)

    Cooper, S.E.; Lofgren, E.V.; Samanta, P.K.; Wong Seemeng

    1993-01-01

    A technical approach for analyzing plant-specific data bases for vulnerabilities to dependent failures has been developed and applied. Since the focus of this work is to aid in the formulation of defenses to dependent failures, rather than to quantify dependent failure probabilities, the approach of this analysis is critically different. For instance, the determination of component failure dependencies has been based upon identical failure mechanisms related to component piecepart failures, rather than failure modes. Also, component failures involving all types of component function loss (e.g., catastrophic, degraded, incipient) are equally important to the predictive purposes of dependent failure defense development. Consequently, dependent component failures are identified with a different dependent failure definition which uses a component failure mechanism categorization scheme in this study. In this context, clusters of component failures which satisfy the revised dependent failure definition are termed common failure mechanism (CFM) events. Motor-operated valves (MOVs) in two nuclear power plant data bases have been analyzed with this approach. The analysis results include seven different failure mechanism categories; identified potential CFM events; an assessment of the risk-significance of the potential CFM events using existing probabilistic risk assessments (PRAs); and postulated defenses to the identified potential CFM events. (orig.)

  2. Failure Predictions for VHTR Core Components using a Probabilistic Contiuum Damage Mechanics Model

    Energy Technology Data Exchange (ETDEWEB)

    Fok, Alex

    2013-10-30

    The proposed work addresses the key research need for the development of constitutive models and overall failure models for graphite and high temperature structural materials, with the long-term goal being to maximize the design life of the Next Generation Nuclear Plant (NGNP). To this end, the capability of a Continuum Damage Mechanics (CDM) model, which has been used successfully for modeling fracture of virgin graphite, will be extended as a predictive and design tool for the core components of the very high- temperature reactor (VHTR). Specifically, irradiation and environmental effects pertinent to the VHTR will be incorporated into the model to allow fracture of graphite and ceramic components under in-reactor conditions to be modeled explicitly using the finite element method. The model uses a combined stress-based and fracture mechanics-based failure criterion, so it can simulate both the initiation and propagation of cracks. Modern imaging techniques, such as x-ray computed tomography and digital image correlation, will be used during material testing to help define the baseline material damage parameters. Monte Carlo analysis will be performed to address inherent variations in material properties, the aim being to reduce the arbitrariness and uncertainties associated with the current statistical approach. The results can potentially contribute to the current development of American Society of Mechanical Engineers (ASME) codes for the design and construction of VHTR core components.

  3. Frequency-dependent failure mechanisms of nanocrystalline gold interconnect lines under general alternating current

    Science.gov (United States)

    Luo, X. M.; Zhang, B.; Zhang, G. P.

    2014-09-01

    Thermal fatigue failure of metallization interconnect lines subjected to alternating currents (AC) is becoming a severe threat to the long-term reliability of micro/nanodevices with increasing electrical current density/power. Here, thermal fatigue failure behaviors and damage mechanisms of nanocrystalline Au interconnect lines on the silicon glass substrate have been investigated by applying general alternating currents (the pure alternating current coupled with a direct current (DC) component) with different frequencies ranging from 0.05 Hz to 5 kHz. We observed both thermal fatigue damages caused by Joule heating-induced cyclic strain/stress and electromigration (EM) damages caused by the DC component. Besides, the damage formation showed a strong electrically-thermally-mechanically coupled effect and frequency dependence. At lower frequencies, thermal fatigue damages were dominant and the main damage forms were grain coarsening with grain boundary (GB) cracking/voiding and grain thinning. At higher frequencies, EM damages took over and the main damage forms were GB cracking/voiding of smaller grains and hillocks. Furthermore, the healing effect of the reversing current was considered to elucidate damage mechanisms of the nanocrystalline Au lines generated by the general AC. Lastly, a modified model was proposed to predict the lifetime of the nanocrystalline metal interconnect lines, i.e., that was a competing drift velocity-based approach based on the threshold time required for reverse diffusion/healing to occur.

  4. A Hybrid Approach to Composite Damage and Failure Analysis Combining Synergistic Damage Mechanics and Peridynamics

    Science.gov (United States)

    2017-12-31

    Composite Damage and Failure Analysis Combinin Synergistic Damage Mechanics and Peridynamics 6. AUTHOR(S) 5b. GRANT NUMBER N00014-16-1-2173 5c...NUMBER 8. PERFORMING ORGANIZATION REPORT NUMBER Texas A&M Engineering Experiment Station (TEES) 400 Harvey Mitchell Parkway, Suite 300 College...1.3 related to Synergistic Damage Mechanics and Tasks 2.2 and 2.4 related to Peridynamics, as described in the project proposal. The activities

  5. Is thrombosis a contributor to heart failure pathophysiology? Possible mechanisms, therapeutic opportunities, and clinical investigation challenges

    NARCIS (Netherlands)

    Zannad, F.; Stough, W.G.; Regnault, V.; Gheorghiade, M.; Deliargyris, E.; Gibson, C.M.; Agewall, S.; Berkowitz, S.D.; Burton, P.; Calvo, G.; Goldstein, S.; Verheugt, F.W.A.; Koglin, J.; O'Connor, C.M.

    2013-01-01

    Thrombotic events (coronary thrombosis, venous thromboembolism, intraventricular thrombosis, intracranial and systemic thromboembolism) occur frequently in patients with heart failure. These events may be precipitated by several mechanisms including hypercoagulability through enhancement of

  6. Electrical failure analysis for root-cause determination

    International Nuclear Information System (INIS)

    Riddle, J.

    1990-01-01

    This paper outlines a practical failure analysis sequence. Several technical definitions are required. A failure is defined as a component that was operating in a system where the system malfunctioned and the replacement of the device restored system functionality. The failure mode is the malfunctioning behavior of the device. The failure mechanism is the underlying cause or source of the failure mode. The failure mechanism is the root cause of the failure mode. The failure analysis procedure needs to be adequately refined to result in the determination of the cause of failure to the degree that corrective action or design changes will prevent recurrence of the failure mode or mechanism. An example of a root-cause determination analysis performed for a nuclear power industry customer serves to illustrate the analysis methodology

  7. Creep-Fatigue Failure Diagnosis

    Science.gov (United States)

    Holdsworth, Stuart

    2015-01-01

    Failure diagnosis invariably involves consideration of both associated material condition and the results of a mechanical analysis of prior operating history. This Review focuses on these aspects with particular reference to creep-fatigue failure diagnosis. Creep-fatigue cracking can be due to a spectrum of loading conditions ranging from pure cyclic to mainly steady loading with infrequent off-load transients. These require a range of mechanical analysis approaches, a number of which are reviewed. The microstructural information revealing material condition can vary with alloy class. In practice, the detail of the consequent cracking mechanism(s) can be camouflaged by oxidation at high temperatures, although the presence of oxide on fracture surfaces can be used to date events leading to failure. Routine laboratory specimen post-test examination is strongly recommended to characterise the detail of deformation and damage accumulation under known and well-controlled loading conditions to improve the effectiveness and efficiency of failure diagnosis. PMID:28793676

  8. Prognostic importance of left ventricular mechanical dyssynchrony in heart failure with preserved ejection fraction

    DEFF Research Database (Denmark)

    Biering-Sørensen, Tor; Shah, Sanjiv J; Anand, Inder

    2017-01-01

    AIMS: Left ventricular mechanical dyssynchrony has been described in heart failure with preserved ejection fraction (HFpEF), but its prognostic significance is not known. METHODS AND RESULTS: Of 3445 patients with HFpEF enrolled in the Treatment of Preserved Cardiac Function Heart Failure...... models assessed the association of dyssynchrony with the composite outcome of cardiovascular death or heart failure hospitalization. Mean age was 70 ± 10 years, LVEF was 60 ± 8%, and QRS duration was 101 ± 27 ms. Worse dyssynchrony, reflected in SD T2P LS, was associated with wider QRS, prior myocardial...... with the composite outcome in unadjusted analysis [hazard ratio (HR) 1.04, 95% confidence interval (CI) 1.01-1.07; P = 0.021, per 10 ms increase], but not after adjusting for clinical characteristics, or after further adjustment for LVEF, AF, NYHA class, stroke, heart rate, creatinine, haematocrit, and QRS duration...

  9. The likelihood of failures in the operation of the lifting mechanism electrical hook bridge crane

    Directory of Open Access Journals (Sweden)

    Ritenman I.L.

    2017-09-01

    Full Text Available Given the application of the methods of analysis of types and consequences of failures (FMEA analysis to assess the technical risk of occurrence of emergency situations during the operation of the lifting mechanism electrical hook bridge crane. The technique allows to identify the limiting elements and to determine the significance of effects in the design of the lifting mechanism, to develop measures to reduce the risk of the occurrence of an emergency.

  10. Mechanical failure of anodized aluminum under three and four-point bending tests

    International Nuclear Information System (INIS)

    Bargui, M.; Bensalah, W.; Elleuch, K.; Ayedi, H.F.

    2013-01-01

    Highlights: • We study the flexural behavior of anodic oxide layers formed on aluminum. • Three and four-point bending tests were used as techniques. • Changing the beam configuration will change the flexural response. - Abstract: In this work, three and four-point bending tests were adopted as methods for characterizing anodized aluminum beams in a sulfuric acid bath. The failure behavior of sandwich beams having aluminum oxide face sheets and aluminum core were tested. In so doing, many configurations were adopted by anodizing aluminum beams on one and both sides to investigate faces in place of tension and compression. Bending tests showed different behaviors. When the oxide was only on the top side of the beam (working in compression) a slight sudden decrease of the load was observed. This fact was absent on beams with oxide layers working in tensile. The bending behavior of sandwich beams was similar to those with oxide on top sides but with much higher loads. The mechanical failure of the oxide was mainly caused by its failure when it is placed in compression beneath the loading rollers. Finally, a morphological study of the aluminum oxide layers after bending tests was conducted by optical microscopy

  11. Cardiovascular mechanisms of SSRI drugs and their benefits and risks in ischemic heart disease and heart failure.

    Science.gov (United States)

    Andrade, Chittaranjan; Kumar, Chethan B; Surya, Sandarsh

    2013-05-01

    Depression and heart disease are commonly comorbid. Selective serotonin reuptake inhibitors (SSRIs) are commonly used to treat depression. In March 2011, we carried out a 15-year search of PubMed for preclinical and clinical publications related to SSRIs and ischemic heart disease (IHD) or congestive heart failure (CHF). We identify and discuss a number of mechanisms by which SSRIs may influence cardiovascular functioning and health outcomes in patients with heart disease; many of the mechanisms that we present have received little attention in previous reviews. We examine studies with positive, neutral, and negative outcomes in IHD and CHF patients treated with SSRIs. SSRIs influence cardiovascular functioning and health through several different mechanisms; for example, they inhibit serotonin-mediated and collagen-mediated platelet aggregation, reduce inflammatory mediator levels, and improve endothelial function. SSRIs improve indices of ventricular functioning in IHD and heart failure without adversely affecting electrocardiographic parameters. SSRIs may also be involved in favorable or unfavorable drug interactions with medications that influence cardiovascular functions. The clinical evidence suggests that, in general, SSRIs are safe in patients with IHD and may, in fact, exert a cardioprotective effect. The clinical data are less clear in patients with heart failure, and the evidence for benefits with SSRIs is weak.

  12. Rebar corrosion due to carbonation in structural reinforced concretes for near-surface LLW repositories: A critical failure mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Torok, J

    1995-03-01

    The concrete roof of a near-surface radioactive waste repository is the principle protection against water infiltration and intrusion. The following potential roof failure mechanism is examined: carbon dioxide generated by the biodegradation of organic materials in the repository initiates corrosion of reinforcing steel embedded in the concrete roof. Because the bottom surface of the roof is mostly under tension, it is susceptible to cracking. The migration path for carbon dioxide is through cracks in the concrete between the bottom of the roof and the reinforcing bars. Carbonate corrosion of the reinforcing bars may result in concrete spalling, more extensive rebar corrosion and ultimately structural failure. Attention is brought to this failure mechanism because it has generally been overlooked in repository performance assessments. Literature relevant to the above failure is reviewed. Prerequisites for rebar corrosion are the presence of carbon dioxide and oxygen in the repository gas, high relative humidity and through-cracks in the concrete. High carbon dioxide concentrations and relative humidity are expected in the repository. The oxygen concentration in the repository is expected to be very low, and that is expected to minimize rebar corrosion rates. Cracks are likely to form in locations with high tensile stresses. Healing of the cracks could be a mitigating factor, but based on our analysis, it can not be relied on. To minimize the potential of this failure mechanism occurring with the Intrusion Resistant Underground Structure (IRUS), Canada`s proposed near-surface repository, carbon dioxide from the repository gas will be absorbed by the reactive, porous concrete placed between the waste and the roof. (author). 4 refs.

  13. Rebar corrosion due to carbonation in structural reinforced concretes for near-surface LLW repositories: A critical failure mechanism

    International Nuclear Information System (INIS)

    Torok, J.

    1995-03-01

    The concrete roof of a near-surface radioactive waste repository is the principle protection against water infiltration and intrusion. The following potential roof failure mechanism is examined: carbon dioxide generated by the biodegradation of organic materials in the repository initiates corrosion of reinforcing steel embedded in the concrete roof. Because the bottom surface of the roof is mostly under tension, it is susceptible to cracking. The migration path for carbon dioxide is through cracks in the concrete between the bottom of the roof and the reinforcing bars. Carbonate corrosion of the reinforcing bars may result in concrete spalling, more extensive rebar corrosion and ultimately structural failure. Attention is brought to this failure mechanism because it has generally been overlooked in repository performance assessments. Literature relevant to the above failure is reviewed. Prerequisites for rebar corrosion are the presence of carbon dioxide and oxygen in the repository gas, high relative humidity and through-cracks in the concrete. High carbon dioxide concentrations and relative humidity are expected in the repository. The oxygen concentration in the repository is expected to be very low, and that is expected to minimize rebar corrosion rates. Cracks are likely to form in locations with high tensile stresses. Healing of the cracks could be a mitigating factor, but based on our analysis, it can not be relied on. To minimize the potential of this failure mechanism occurring with the Intrusion Resistant Underground Structure (IRUS), Canada's proposed near-surface repository, carbon dioxide from the repository gas will be absorbed by the reactive, porous concrete placed between the waste and the roof. (author). 4 refs

  14. Utility of the Seattle Heart Failure Model in patients with advanced heart failure.

    Science.gov (United States)

    Kalogeropoulos, Andreas P; Georgiopoulou, Vasiliki V; Giamouzis, Grigorios; Smith, Andrew L; Agha, Syed A; Waheed, Sana; Laskar, Sonjoy; Puskas, John; Dunbar, Sandra; Vega, David; Levy, Wayne C; Butler, Javed

    2009-01-27

    The aim of this study was to validate the Seattle Heart Failure Model (SHFM) in patients with advanced heart failure (HF). The SHFM was developed primarily from clinical trial databases and extrapolated the benefit of interventions from published data. We evaluated the discrimination and calibration of SHFM in 445 advanced HF patients (age 52 +/- 12 years, 68.5% male, 52.4% white, ejection fraction 18 +/- 8%) referred for cardiac transplantation. The primary end point was death (n = 92), urgent transplantation (n = 14), or left ventricular assist device (LVAD) implantation (n = 3); a secondary analysis was performed on mortality alone. Patients were receiving optimal therapy (angiotensin-II modulation 92.8%, beta-blockers 91.5%, aldosterone antagonists 46.3%), and 71.0% had an implantable device (defibrillator 30.4%, biventricular pacemaker 3.4%, combined 37.3%). During a median follow-up of 21 months, 109 patients (24.5%) had an event. Although discrimination was adequate (c-statistic >0.7), the SHFM overall underestimated absolute risk (observed vs. predicted event rate: 11.0% vs. 9.2%, 21.0% vs. 16.6%, and 27.9% vs. 22.8% at 1, 2, and 3 years, respectively). Risk underprediction was more prominent in patients with an implantable device. The SHFM had different calibration properties in white versus black patients, leading to net underestimation of absolute risk in blacks. Race-specific recalibration improved the accuracy of predictions. When analysis was restricted to mortality, the SHFM exhibited better performance. In patients with advanced HF, the SHFM offers adequate discrimination, but absolute risk is underestimated, especially in blacks and in patients with devices. This is more prominent when including transplantation and LVAD implantation as an end point.

  15. Study of the Rock Mass Failure Process and Mechanisms During the Transformation from Open-Pit to Underground Mining Based on Microseismic Monitoring

    Science.gov (United States)

    Zhao, Yong; Yang, Tianhong; Bohnhoff, Marco; Zhang, Penghai; Yu, Qinglei; Zhou, Jingren; Liu, Feiyue

    2018-05-01

    To quantitatively understand the failure process and failure mechanism of a rock mass during the transformation from open-pit mining to underground mining, the Shirengou Iron Mine was selected as an engineering project case study. The study area was determined using the rock mass basic quality classification method and the kinematic analysis method. Based on the analysis of the variations in apparent stress and apparent volume over time, the rock mass failure process was analyzed. According to the recent research on the temporal and spatial change of microseismic events in location, energy, apparent stress, and displacement, the migration characteristics of rock mass damage were studied. A hybrid moment tensor inversion method was used to determine the rock mass fracture source mechanisms, the fracture orientations, and fracture scales. The fracture area can be divided into three zones: Zone A, Zone B, and Zone C. A statistical analysis of the orientation information of the fracture planes orientations was carried out, and four dominant fracture planes were obtained. Finally, the slip tendency analysis method was employed, and the unstable fracture planes were obtained. The results show: (1) The microseismic monitoring and hybrid moment tensor analysis can effectively analyze the failure process and failure mechanism of rock mass, (2) during the transformation from open-pit to underground mining, the failure type of rock mass is mainly shear failure and the tensile failure is mostly concentrated in the roof of goafs, and (3) the rock mass of the pit bottom and the upper of goaf No. 18 have the possibility of further damage.

  16. Characterising mechanical transmission wire ropes’ typical failure modes

    Directory of Open Access Journals (Sweden)

    Edgar Espejo

    2007-01-01

    Full Text Available The National University of Colombia’s Engineering School’s AFIS research group has helped several public and private institutions during the last five years in analysing the causes of failures presented in elevation and trans- port machinery leading to expensive consequences and even the loss of life. A group of typical wire rope failure modes have been identified, along with their common causes. These are presented in this work to offer help to our industry’s engineers and technicians, allowing them to identify possible risk situations in their routine work regarding the wire ropes which they use and approaches for carrying out wire rope failure analysis.

  17. Some Aspects of the Failure Mechanisms in BaTiO3-Based Multilayer Ceramic Capacitors

    Science.gov (United States)

    Liu, David Donhang; Sampson, Michael J.

    2012-01-01

    The objective of this presentation is to gain insight into possible failure mechanisms in BaTiO3-based ceramic capacitors that may be associated with the reliability degradation that accompanies a reduction in dielectric thickness, as reported by Intel Corporation in 2010. The volumetric efficiency (microF/cm3) of a multilayer ceramic capacitor (MLCC) has been shown to not increase limitlessly due to the grain size effect on the dielectric constant of ferroelectric ceramic BaTiO3 material. The reliability of an MLCC has been discussed with respect to its structure. The MLCCs with higher numbers of dielectric layers will pose more challenges for the reliability of dielectric material, which is the case for most base-metal-electrode (BME) capacitors. A number of MLCCs manufactured using both precious-metal-electrode (PME) and BME technology, with 25 V rating and various chip sizes and capacitances, were tested at accelerated stress levels. Most of these MLCCs had a failure behavior with two mixed failure modes: the well-known rapid dielectric wearout, and so-called 'early failures." The two failure modes can be distinguished when the testing data were presented and normalized at use-level using a 2-parameter Weibull plot. The early failures had a slope parameter of Beta >1, indicating that the early failures are not infant mortalities. Early failures are triggered due to external electrical overstress and become dominant as dielectric layer thickness decreases, accompanied by a dramatic reduction in reliability. This indicates that early failures are the main cause of the reliability degradation in MLCCs as dielectric layer thickness decreases. All of the early failures are characterized by an avalanche-like breakdown leakage current. The failures have been attributed to the extrinsic minor construction defects introduced during fabrication of the capacitors. A reliability model including dielectric thickness and extrinsic defect feature size is proposed in this

  18. Testing and Failure Mechanisms of Ice Phase Change Material Heat Exchangers

    Science.gov (United States)

    Leimkuehler, Thomas O.; Stephan, Ryan A.; Hawkins-Reynolds, Ebony

    2011-01-01

    Phase change materials (PCM) may be useful for thermal control systems that involve cyclical heat loads or cyclical thermal environments such as specific spacecraft orientations in Low Earth Orbit (LEO) and low beta angle Low Lunar Orbit (LLO). Thermal energy can be stored in the PCM during peak heat loads or in adverse thermal environments. The stored thermal energy can then be released later during minimum heat loads or in more favorable thermal environments. One advantage that PCM s have over evaporators in this scenario is that they do not use a consumable. The use of water as a PCM rather than the more traditional paraffin wax has the potential for significant mass reduction since the latent heat of formation of water is approximately 70% greater than that of wax. One of the potential drawbacks of using ice as a PCM is its potential to rupture its container as water expands upon freezing. In order to develop a space qualified ice PCM heat exchanger, failure mechanisms must first be understood. Therefore, a methodical experimental investigation has been undertaken to demonstrate and document specific failure mechanisms due to ice expansion in the PCM. A number of ice PCM heat exchangers were fabricated and tested. Additionally, methods for controlling void location in order to reduce the risk of damage due to ice expansion were investigated. This paper presents the results of testing that occurred from March through September of 2010 and builds on testing that occurred during the previous year.

  19. Material heterogeneity in cancellous bone promotes deformation recovery after mechanical failure.

    Science.gov (United States)

    Torres, Ashley M; Matheny, Jonathan B; Keaveny, Tony M; Taylor, David; Rimnac, Clare M; Hernandez, Christopher J

    2016-03-15

    Many natural structures use a foam core and solid outer shell to achieve high strength and stiffness with relatively small amounts of mass. Biological foams, however, must also resist crack growth. The process of crack propagation within the struts of a foam is not well understood and is complicated by the foam microstructure. We demonstrate that in cancellous bone, the foam-like component of whole bones, damage propagation during cyclic loading is dictated not by local tissue stresses but by heterogeneity of material properties associated with increased ductility of strut surfaces. The increase in surface ductility is unexpected because it is the opposite pattern generated by surface treatments to increase fatigue life in man-made materials, which often result in reduced surface ductility. We show that the more ductile surfaces of cancellous bone are a result of reduced accumulation of advanced glycation end products compared with the strut interior. Damage is therefore likely to accumulate in strut centers making cancellous bone more tolerant of stress concentrations at strut surfaces. Hence, the structure is able to recover more deformation after failure and return to a closer approximation of its original shape. Increased recovery of deformation is a passive mechanism seen in biology for setting a broken bone that allows for a better approximation of initial shape during healing processes and is likely the most important mechanical function. Our findings suggest a previously unidentified biomimetic design strategy in which tissue level material heterogeneity in foams can be used to improve deformation recovery after failure.

  20. Failure probability assessment of wall-thinned nuclear pipes using probabilistic fracture mechanics

    International Nuclear Information System (INIS)

    Lee, Sang-Min; Chang, Yoon-Suk; Choi, Jae-Boong; Kim, Young-Jin

    2006-01-01

    The integrity of nuclear piping system has to be maintained during operation. In order to maintain the integrity, reliable assessment procedures including fracture mechanics analysis, etc., are required. Up to now, this has been performed using conventional deterministic approaches even though there are many uncertainties to hinder a rational evaluation. In this respect, probabilistic approaches are considered as an appropriate method for piping system evaluation. The objectives of this paper are to estimate the failure probabilities of wall-thinned pipes in nuclear secondary systems and to propose limited operating conditions under different types of loadings. To do this, a probabilistic assessment program using reliability index and simulation techniques was developed and applied to evaluate failure probabilities of wall-thinned pipes subjected to internal pressure, bending moment and combined loading of them. The sensitivity analysis results as well as prototypal integrity assessment results showed a promising applicability of the probabilistic assessment program, necessity of practical evaluation reflecting combined loading condition and operation considering limited condition

  1. Dynamic Analysis of Cable-Stayed Bridges Affected by Accidental Failure Mechanisms under Moving Loads

    Directory of Open Access Journals (Sweden)

    Fabrizio Greco

    2013-01-01

    Full Text Available The dynamic behavior of cable-stayed bridges subjected to moving loads and affected by an accidental failure in the cable suspension system is investigated. The main aim of the paper is to quantify, numerically, the dynamic amplification factors of typical kinematic and stress design variables, by means of a parametric study developed in terms of the structural characteristics of the bridge components. The bridge formulation is developed by using a geometric nonlinear formulation, in which the effects of local vibrations of the stays and of large displacements in the girder and the pylons are taken into account. Explicit time dependent damage laws, reproducing the failure mechanism in the cable system, are considered to investigate the influence of the failure mode characteristics on the dynamic bridge behavior. The analysis focuses attention on the influence of the inertial characteristics of the moving loads, by accounting coupling effects arising from the interaction between girder and moving system. Sensitivity analyses of typical design bridge variables are proposed. In particular, the effects produced by the moving system characteristics, the tower typologies, and the failure mode characteristics involved in the cable system are investigated by means of comparisons between damaged and undamaged bridge configurations.

  2. The failure mechanisms of HTR coated particle fuel and computer code

    International Nuclear Information System (INIS)

    Yang Lin; Liu Bing; Shao Youlin; Liang Tongxiang; Tang Chunhe

    2010-01-01

    The basic constituent unit of fuel element in HTR is ceramic coated particle fuel. And the performance of coated particle fuel determines the safety of HTR. In addition to the traditional detection of radiation experiments, establishing computer code is of great significance to the research. This paper mainly introduces the structure and the failure mechanism of TRISO-coated particle fuel, as well as a few basic assumptions,principles and characteristics of some existed main overseas codes. Meanwhile, this paper has proposed direction of future research by comparing the advantages and disadvantages of several computer codes. (authors)

  3. Fatigue behavior and failure mechanisms of direct laser deposited Ti–6Al–4V

    Energy Technology Data Exchange (ETDEWEB)

    Sterling, Amanda J.; Torries, Brian [Department of Mechanical Engineering, Mississippi State University, Box 9552, Mississippi State, MS 39762 (United States); Shamsaei, Nima, E-mail: shamsaei@me.msstate.edu [Department of Mechanical Engineering, Mississippi State University, Box 9552, Mississippi State, MS 39762 (United States); Center for Advanced Vehicular Systems (CAVS), Mississippi State University, Box 5405, , Mississippi State, MS 39762 (United States); Thompson, Scott M. [Department of Mechanical Engineering, Mississippi State University, Box 9552, Mississippi State, MS 39762 (United States); Center for Advanced Vehicular Systems (CAVS), Mississippi State University, Box 5405, , Mississippi State, MS 39762 (United States); Seely, Denver W. [Center for Advanced Vehicular Systems (CAVS), Mississippi State University, Box 5405, , Mississippi State, MS 39762 (United States)

    2016-02-08

    In order for additive-manufactured parts to become more widely utilized and trusted in application, it is important to have their mechanical properties well-characterized and certified. The fatigue behavior and failure mechanisms of Ti–6Al–4V specimens fabricated using Laser Engineered Net Shaping (LENS), a Direct Laser Deposition (DLD) additive manufacturing (AM) process, are investigated in this study. A series of fully-reversed strain-controlled fatigue tests is conducted on Ti–6Al–4V specimens manufactured via LENS in their as-built and heat-treated conditions. Scanning Electron Microscopy (SEM) is used to examine the fracture surfaces of fatigue specimens to qualify the failure mechanism, crack initiation sites, and defects such as porosity. Due to the relatively high localized heating and cooling rates experienced during DLD, fabricated parts are observed to possess anisotropic microstructures, and thus, different mechanical properties than those of their traditionally-manufactured wrought counterparts. The fatigue lives of the investigated LENS specimens were found to be shorter than those of wrought specimens, and porosity was found to be the primary contributor to these shorter fatigue lives, with the exception of the heat-treated LENS samples. The presence of pores promotes more unpredictable fatigue behavior, as evidenced by data scatter. Pore shape, size, location, and number were found to impact the fatigue behavior of the as-built and annealed DLD parts. As porosity seems to be the main contributor to the fatigue behavior of DLD parts, it is important to optimize the manufacturing process and design parameters to minimize and control pore generation during the build.

  4. Failures of the State”: Factors of Formation and Mechanisms of Influence on Economic Processes

    Directory of Open Access Journals (Sweden)

    Gontar Nikolay Vladimirovich

    2014-11-01

    Full Text Available The article is devoted to the problem of genesis and influence on real economic processes of “failures of the state”. The article designates the objective functions inherent in the state the realization of which can increase the efficiency of economic interactions reducing transaction expenses. Besides, the key factors of non-optimal activity of the state as well as actual “failures of the state” are considered. The approaches to the definition of “failures of the state” are analyzed. Taking into account functional approach the author proposes the model definition allowing to separate “failures of the state” from factors and conditions of their emergence. Among the emergence factors of “failures of the state” the author analyzes in detail the key division of economy subjects to net-payers and net-recipients of the income, the fact of distribution of consequences of state regulation to the sectors which are not direct objects of regulation as well as the influence of short-term decisions for long-term prospects are designated. The author also analyzes the range of “failures of the state”, including such as formation of monopolies, tax discouraging, failures of social security, nature of “state business”, derivation of resources and workers from economy, formation of an inequality and calculational (price chaos in economy. The key consequences and volume of the economic damage formed by “failures of the state” are considered, the corresponding quantitative estimates are given. The most important vectors of optimization of activity of the state which provide minimization of “failures of the state” and the related economic damage are designated. According to the author, such vectors include the priority of market self-regulation under the condition of refusal from substitutes in the form of “approach” of public sector to market standards. The minimization of public sector activity aimed at the exclusion of

  5. Effects of service condition on rolling contact fatigue failure mechanism and lifetime of thermal spray coatings—A review

    Science.gov (United States)

    Cui, Huawei; Cui, Xiufang; Wang, Haidou; Xing, Zhiguo; Jin, Guo

    2015-01-01

    The service condition determines the Rolling Contact Fatigue(RCF) failure mechanism and lifetime under ascertain material structure integrity parameter of thermal spray coating. The available literature on the RCF testing of thermal spray coatings under various condition services is considerable; it is generally difficult to synthesize all of the result to obtain a comprehensive understanding of the parameters which has a great effect on a thermal spray coating's resistance of RCF. The effects of service conditions(lubrication states, contact stresses, revolve speed, and slip ratio) on the changing of thermal spray coatings' contact fatigue lifetime is introduced systematically. The effects of different service condition on RCF failure mechanism of thermal spray coating from the change of material structure integrity are also summarized. Moreover, In order to enhance the RCF performance, the parameter optimal design formula of service condition and material structure integrity is proposed based on the effect of service condition on thermal spray coatings' contact fatigue lifetime and RCF failure mechanism. The shortage of available literature and the forecast focus in future researches are discussed based on available research. The explicit result of RCF lifetime law and parameter optimal design formula in term of lubrication states, contact stresses, revolve speed, and slip ratio, is significant to improve the RCF performance on the engineering application.

  6. Failure analysis and failure prevention in electric power systems

    International Nuclear Information System (INIS)

    Rau, C.A. Jr.; Becker, D.G.; Besuner, P.M.; Cipolla, R.C.; Egan, G.R.; Gupta, P.; Johnson, D.P.; Omry, U.; Tetelman, A.S.; Rettig, T.W.; Peters, D.C.

    1977-01-01

    New methods have been developed and applied to better quantify and increase the reliability, safety, and availability of electric power plants. Present and potential problem areas have been identified both by development of an improved computerized data base of malfunctions in nuclear power plants and by detailed metallurgical and mechanical failure analyses of selected problems. Significant advances in the accuracy and speed of structural analyses have been made through development and application of the boundary integral equation and influence function methods of stress and fracture mechanics analyses. The currently specified flaw evaluation procedures of the ASME Boiler and Pressure Vessel Code have been computerized. Results obtained from these procedures for evaluation of specific in-service inspection indications have been compared with results obtained utilizing the improved analytical methods. Mathematical methods have also been developed to describe and analyze the statistical variations in materials properties and in component loading, and uncertainties in the flaw size that might be passed by quality assurance systems. These new methods have been combined to develop accurate failure rate predictions based upon probabilistic fracture mechanics. Improved failure prevention strategies have been formulated by combining probabilistic fracture mechanics and cost optimization techniques. The approach has been demonstrated by optimizing the nondestructive inspection level with regard to both reliability and cost. (Auth.)

  7. Failure mechanism of monolayer graphene under hypervelocity impact of spherical projectile

    Science.gov (United States)

    Xia, Kang; Zhan, Haifei; Hu, De'An; Gu, Yuantong

    2016-09-01

    The excellent mechanical properties of graphene have enabled it as appealing candidate in the field of impact protection or protective shield. By considering a monolayer graphene membrane, in this work, we assessed its deformation mechanisms under hypervelocity impact (from 2 to 6 km/s), based on a serial of in silico studies. It is found that the cracks are formed preferentially in the zigzag directions which are consistent with that observed from tensile deformation. Specifically, the boundary condition is found to exert an obvious influence on the stress distribution and transmission during the impact process, which eventually influences the penetration energy and crack growth. For similar sample size, the circular shape graphene possesses the best impact resistance, followed by hexagonal graphene membrane. Moreover, it is found the failure shape of graphene membrane has a strong relationship with the initial kinetic energy of the projectile. The higher kinetic energy, the more number the cracks. This study provides a fundamental understanding of the deformation mechanisms of monolayer graphene under impact, which is crucial in order to facilitate their emerging future applications for impact protection, such as protective shield from orbital debris for spacecraft.

  8. Analysis of the failure mechanism for a stable organic photovoltaic during 10 000 h of testing

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Norrman, Kion

    2007-01-01

    The degradation and failure mechanisms of a stable photovoltaic device comprising a bilayer heterojunction formed between poly(3-carboxythiophene-2,5-diyl-co-thiophene-2,5-diyl) (P3CT) and Buckminsterfullerene (C-60) sandwiched between indium tin oxide (ITO) and aluminium (Al) electrodes were...

  9. Mechanical dispersion is associated with poor outcome in heart failure with a severely depressed left ventricular function and bundle branch blocks.

    Science.gov (United States)

    Stankovic, Ivan; Janicijevic, Aleksandra; Dimic, Aleksandra; Stefanovic, Milica; Vidakovic, Radosav; Putnikovic, Biljana; Neskovic, Aleksandar N

    2018-03-01

    Bundle branch blocks (BBB)-related mechanical dyssynchrony and dispersion may improve patient selection for device therapy, but their effect on the natural history of this patient population is unknown. A total of 155 patients with LVEF ≤ 35% and BBB, not treated with device therapy, were included. Mechanical dyssynchrony was defined as the presence of either septal flash or apical rocking. Contraction duration was assessed as time interval from the electrocardiographic R-(Q-)wave to peak longitudinal strain in each of 17 left ventricular segments. Mechanical dispersion was defined as either the standard deviation of all time intervals (dispersion SD ) or as the difference between the longest and shortest time intervals (dispersion delta ). Patients were followed for cardiac mortality during a median period of 33 months. Mechanical dyssynchrony was not associated with survival. More pronounced mechanical dispersion delta was found in patients with dyssynchrony than in those without. In the multivariate regression analysis, patients' functional class, diabetes mellitus and dispersion delta were independently associated with mortality. Mechanical dispersion, but not dyssynchrony, was independently associated with mortality and it may be useful for risk stratification of patients with heart failure (HF) and BBB. Key Messages Mechanical dispersion, measured by strain echocardiography, is associated with poor outcome in heart failure with a severely depressed left ventricular function and bundle branch blocks. Mechanical dispersion may be useful for risk stratification of patients with heart failure and bundle branch blocks.

  10. Experiment study on failure mechanism of Bai Huichang landslide and analysis on time effect of deformation

    Energy Technology Data Exchange (ETDEWEB)

    Ronghua, Fu; Baokui, Yao; Yuke, Sun

    1985-01-01

    Bai Huichang landslide is a large scale landslide which is of the character of leveled pushing slide and collapse. To study the failure mechanism of the landslide, to analyse the reasons for failure of the landslide, to evaluate and to predict the stability of the slope, systematic tests of physico-mechanical properties of the clay rock on the sliding surface and analysis of the constituents of the substances are made. Tests on slope models made of photo-elastic material and of blocks are made. The results show that the landslide is a typical one with leveled pushing slide and collapse character, and the main reason for the landslide is the poor physico-mechanical properties and the poor water-stable properties of the clay rock which contain a vast amount of the montmorillonite. The deformation of the slope model is very similar to that of the actual slope. Regression analysis of the observed deformation of the slope indicates that the deformation decays at a rate about 70% each year. It means that the landslide will tend to be stable and no serious landslide will occur which will endanger the safety of Changhangou Colliery. 3 references.

  11. Morphology of the ash corrosion products on the P92 steel

    International Nuclear Information System (INIS)

    Hernas, A.; Imosa, M.

    2004-01-01

    The P92 steel, owing to its high mechanical strength at an elevated temperature, is one of the new steel types intended for the components of modern boilers in the power engineering industry. Currently, attempts are being undertaken to use the P92 steel for the components of boiler units in municipal waste incineration plants. Therefore, it is important that an analysis be made of the P92 steel resistance to the high-temperature chlorine - sulfur corrosion impact, the latter being the main factor which limits durability of boilers in waste incineration plants. The present article presents the investigation of P92 steel corrosion resistance under the conditions of high-temperature chlorine- sulfur corrosion in an atmosphere of flue gas with ashes. The analyses were conducted by means of laboratory tests in an atmosphere containing sulfur and chlorine compounds. The morphology of corrosion products was determined by scanning microscopy and X-ray analysis methods. (author)

  12. Novel Functions of MicroRNA-17-92 Cluster in the Endocrine System.

    Science.gov (United States)

    Wan, Shan; Chen, Xiang; He, Yuedong; Yu, Xijie

    2018-01-01

    MiR-17-92 cluster is coded by MIR17HG in chromosome 13, which is highly conserved in vertebrates. Published literatures have proved that miR-17-92 cluster critically regulates tumorigenesis and metastasis. Recent researches showed that the miR-17-92 cluster also plays novel functions in the endocrine system. To summarize recent findings on the physiological and pathological roles of miR-17-92 cluster in bone, lipid and glucose metabolisms. MiR-17-92 cluster plays significant regulatory roles in bone development and metabolism through regulating the differentiation and function of osteoblasts and osteoclasts. In addition, miR-17- 92 cluster is nearly involved in every aspect of lipid metabolism. Last but not the least, the miR-17-92 cluster is closely bound up with pancreatic beta cell function, development of type 1 diabetes and insulin resistance. However, whether miR-17-92 cluster is involved in the communication among bone, fat and glucose metabolisms remains unknown. Growing evidence indicates that miR-17-92 cluster plays significant roles in bone, lipid and glucose metabolisms through a variety of signaling pathways. Fully understanding its modulating mechanisms may necessarily facilitate to comprehend the clinical and molecule features of some metabolic disorders such as osteoporosis, arthrosclerosis and diabetes mellitus. It may provide new drug targets to prevent and cure these disorders. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. The analysis of failure data in the presence of critical and degraded failures

    International Nuclear Information System (INIS)

    Haugen, Knut; Hokstad, Per; Sandtorv, Helge

    1997-01-01

    Reported failures are often classified into severityclasses, e.g., as critical or degraded. The critical failures correspond to loss of function(s) and are those of main concern. The rate of critical failures is usually estimated by the number of observed critical failures divided by the exposure time, thus ignoring the observed degraded failures. In the present paper failure data are analyzed, applying an alternative estimate for the critical failure rate, also taking the number of observed degraded failures into account. The model includes two alternative failure mechanisms, one being of the shock type, immediately leading to a critical failure, another resulting in a gradual deterioration, leading to a degraded failure before the critical failure occurs. Failure data on safety valves from the OREDA (Offshore REliability DAta) data base are analyzed using this model. The estimate for the critical failure rate is obtained and compared with the standard estimate

  14. 24 CFR 92.606 - Reallocations.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Reallocations. 92.606 Section 92.606 Housing and Urban Development Office of the Secretary, Department of Housing and Urban Development HOME INVESTMENT PARTNERSHIPS PROGRAM American Dream Downpayment Initiative § 92.606 Reallocations. If...

  15. 24 CFR 92.506 - Audit.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Audit. 92.506 Section 92.506 Housing and Urban Development Office of the Secretary, Department of Housing and Urban Development HOME INVESTMENT PARTNERSHIPS PROGRAM Program Administration § 92.506 Audit. Audits of the participating...

  16. Heart Failure With Preserved Ejection Fraction in Diabetes: Mechanisms and Management.

    Science.gov (United States)

    Meagher, Patrick; Adam, Mohamed; Civitarese, Robert; Bugyei-Twum, Antoinette; Connelly, Kim A

    2018-05-01

    Diabetes mellitus (DM) is a major cause of heart failure in the Western world, either secondary to coronary artery disease or from a distinct entity known as "diabetic cardiomyopathy." Furthermore, heart failure with preserved ejection fraction (HFpEF) is emerging as a significant clinical problem for patients with DM. Current clinical data suggest that between 30% and 40% of patients with HFpEF suffer from DM. The typical structural phenotype of the HFpEF heart consists of endothelial dysfunction, increased interstitial and perivascular fibrosis, cardiomyocyte stiffness, and hypertrophy along with advanced glycation end products deposition. There is a myriad of mechanisms that result in the phenotypical HFpEF heart including impaired cardiac metabolism and substrate utilization, altered insulin signalling leading to protein kinase C activation, advanced glycated end products deposition, prosclerotic cytokine activation (eg, transforming growth factor-β activation), along with impaired nitric oxide production from the endothelium. Moreover, recent investigations have focused on the role of endothelial-myocyte interactions. Despite intense research, current therapeutic strategies have had little effect on improving morbidity and mortality in patients with DM and HFpEF. Possible explanations for this include a limited understanding of the role that direct cell-cell communication or indirect cell-cell paracrine signalling plays in the pathogenesis of DM and HFpEF. Additionally, integrins remain another important mediator of signals from the extracellular matrix to cells within the failing heart and might play a significant role in cell-cell cross-talk. In this review we discuss the characteristics and mechanisms of DM and HFpEF to stimulate potential future research for patients with this common, and morbid condition. Copyright © 2018 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  17. Graphene coating for anti-corrosion and the investigation of failure mechanism

    International Nuclear Information System (INIS)

    Zhu, Y X; Duan, C Y; Chen, Y F; Wang, Y; Liu, H Y

    2017-01-01

    Graphene produced by chemical vapor deposition (CVD) methods has been considered as a promising corrosion prevention layer because of its exceptional structure and impermeability. However, the anti-corrosion performance and the failure mechanism are still controversial. In this study, graphene layers with different quality levels, crystallite sizes, and layer numbers were prepared on the surface of Cu by a CVD process. The effects of grain boundaries (GBs) on the failure of graphene layers to provide adequate protection were investigated in detail by combining graphene transfer techniques, computation, and anti-corrosion measurements. Our results reveal that corrosion rates decrease marginally upon the increase of graphene layer number, and this rather weak dependence on thickness likely arises from the aligned nature of the GBs in CVD-grown few-layer graphene. This problem can potentially be overcome by layer-by-layer graphene transfer technique, in which corrosion is found to be arrested locally when transferred graphene is present on top of the as-grown graphene. However, this advantage is not reflected in corrosion studies performed on large-scale samples, where cracks or imperfect interfaces could offset the advantages of GB misalignment. With improvements in technology, the layer-by-layer assembly technique could be used to develop an effective anti-corrosion barrier. (paper)

  18. 50 CFR 92.2 - Authority.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Authority. 92.2 Section 92.2 Wildlife and... PROVISIONS MIGRATORY BIRD SUBSISTENCE HARVEST IN ALASKA General Provisions § 92.2 Authority. The Secretary of the Interior issues the regulations in this part under the authority granted to the Secretary by the...

  19. 24 CFR 92.354 - Labor.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Labor. 92.354 Section 92.354... INVESTMENT PARTNERSHIPS PROGRAM Other Federal Requirements § 92.354 Labor. (a) General. (1) Every contract... prevailing in the locality, as predetermined by the Secretary of Labor pursuant to the Davis-Bacon Act (40 U...

  20. 45 CFR 92.33 - Supplies.

    Science.gov (United States)

    2010-10-01

    ... residual inventory of unused supplies exceeding $5,000 in total aggregate fair market value upon... 45 Public Welfare 1 2010-10-01 2010-10-01 false Supplies. 92.33 Section 92.33 Public Welfare..., Property, and Subawards § 92.33 Supplies. (a) Title. Title to supplies acquired under a grant or subgrant...

  1. A 3D Analysis of Rock Block Deformation and Failure Mechanics Using Terrestrial Laser Scanning

    Science.gov (United States)

    Rowe, Emily; Hutchinson, D. Jean; Kromer, Ryan A.; Edwards, Tom

    2017-04-01

    planes on the slope that were confining the block. It is concluded that rock blocks in White Canyon may be classified as one of five main failure mechanisms based on their pre-failure deformation and structure: planar slide, topple, rotation, wedge, and overhang, with overhang failures representing a large portion of rockfalls in this area. Overhang rockfalls in the White Canyon are characterized by blocks that (a) are not supported by an underlying discontinuity plane, and (b) generally do not exhibit pre-failure deformation. Though overhanging rock blocks are a structural subset of toppling failure, their behavior suggests a different mechanism of detachment. Future work will further populate the present database of rockfalls in White Canyon and will expand the study to include other sites along this corridor. The ultimate goal of this research is to establish warning thresholds based on deformation magnitudes for rockfalls in White Canyon to assist Canadian railways in better understanding and managing these slopes.

  2. Fatigue degradation and failure of rotating composite structures - Materials characterisation and underlying mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Gamstedt, E K; Andersen, S I

    2001-03-01

    The present review concerns rotating composite structures, in which fatigue degradation is of key concern for in-service failure. Such applications are for instance rotor blades in wind turbines, helicopter rotor blades, flywheels for energy storage, marine and aeronautical propellers, and rolls for paper machines. The purpose is to identify areas where impending efforts should be made to make better use of composite materials in these applications. In order to obtain better design methodologies, which would allow more reliable and slender structures, improved test methods are necessary. Furthermore, the relation between structural, component and specimen test results should be better understood than what is presently the case. Improved predictive methods rely on a better understanding of the underlying damage mechanisms. With mechanism-based models, the component substructure or even the material microstructure could be optimised for best possible fatigue resistance. These issues are addressed in the present report, with special emphasis on test methods, and scaling from damage mechanisms to relevant material properties. (au)

  3. 40 CFR 92.6 - Regulatory structure.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Regulatory structure. 92.6 Section 92... Regulations for Locomotives and Locomotive Engines § 92.6 Regulatory structure. This section provides an overview of the regulatory structure of this part. (a) The regulations of this part 92 are intended to...

  4. Light water reactor lower head failure analysis

    International Nuclear Information System (INIS)

    Rempe, J.L.; Chavez, S.A.; Thinnes, G.L.

    1993-10-01

    This document presents the results from a US Nuclear Regulatory Commission-sponsored research program to investigate the mode and timing of vessel lower head failure. Major objectives of the analysis were to identify plausible failure mechanisms and to develop a method for determining which failure mode would occur first in different light water reactor designs and accident conditions. Failure mechanisms, such as tube ejection, tube rupture, global vessel failure, and localized vessel creep rupture, were studied. Newly developed models and existing models were applied to predict which failure mechanism would occur first in various severe accident scenarios. So that a broader range of conditions could be considered simultaneously, calculations relied heavily on models with closed-form or simplified numerical solution techniques. Finite element techniques-were employed for analytical model verification and examining more detailed phenomena. High-temperature creep and tensile data were obtained for predicting vessel and penetration structural response

  5. Light water reactor lower head failure analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rempe, J.L.; Chavez, S.A.; Thinnes, G.L. [EG and G Idaho, Inc., Idaho Falls, ID (United States)] [and others

    1993-10-01

    This document presents the results from a US Nuclear Regulatory Commission-sponsored research program to investigate the mode and timing of vessel lower head failure. Major objectives of the analysis were to identify plausible failure mechanisms and to develop a method for determining which failure mode would occur first in different light water reactor designs and accident conditions. Failure mechanisms, such as tube ejection, tube rupture, global vessel failure, and localized vessel creep rupture, were studied. Newly developed models and existing models were applied to predict which failure mechanism would occur first in various severe accident scenarios. So that a broader range of conditions could be considered simultaneously, calculations relied heavily on models with closed-form or simplified numerical solution techniques. Finite element techniques-were employed for analytical model verification and examining more detailed phenomena. High-temperature creep and tensile data were obtained for predicting vessel and penetration structural response.

  6. Tensile Mechanical Properties and Failure Modes of a Basalt Fiber/Epoxy Resin Composite Material

    OpenAIRE

    He, Jingjing; Shi, Junping; Cao, Xiaoshan; Hu, Yifeng

    2018-01-01

    Uniaxial tensile tests of basalt fiber/epoxy (BF/EP) composite material with four different fiber orientations were conducted under four different fiber volume fractions, and the variations of BF/EP composite material failure modes and tensile mechanical properties were analyzed. The results show that when the fiber volume fraction is constant, the tensile strength, elastic modulus, and limiting strain of BF/EP composite material all decrease with increasing fiber orientation angle. When the ...

  7. Fe-Substitution for Ni in Misch Metal-Based Superlattice Hydrogen Absorbing Alloys—Part 2. Ni/MH Battery Performance and Failure Mechanisms

    Directory of Open Access Journals (Sweden)

    Tiejun Meng

    2017-09-01

    Full Text Available The electrochemical performance and failure mechanisms of Ni/MH batteries made with a series of the Fe-substituted A2B7 superlattice alloys as the negative electrodes were investigated. The incorporation of Fe does not lead to improved cell capacity or cycle life at either room or low temperature, although Fe promotes the formation of a favorable Ce2Ni7 phase. Fe-substitution was found to inhibit leaching of Al from the metal hydride negative electrode and promote leaching of Co, which could potentially extend the cycle life of the positive electrode. The failure mechanisms of the cycled cells with the Fe-substituted superlattice hydrogen absorbing alloys were analyzed by scanning electron microscopy, energy dispersive spectroscopy and inductively coupled plasma analysis. The failure of cells with Fe-free and low Fe-content alloys is mainly attributed to the pulverization of the metal hydride alloy. Meanwhile, severe oxidation/corrosion of the negative electrode is observed for cells with high Fe-content alloys, resulting in increased internal cell resistance, formation of micro-shortages in the separator and eventual cell failure.

  8. 40 CFR 92.5 - Reference materials.

    Science.gov (United States)

    2010-07-01

    ..., Standard Test Method for Distillation of Petroleum Products § 92.113 ASTM D 93-94, Standard Test Methods... API Gravity of Crude Petroleum and Petroleum Products (Hydrometer Method) § 92.113 ASTM D 445-94... Viscosity) § 92.113 ASTM D 613-95, Standard Test Method for Cetane Number of Diesel Fuel Oil § 92.113 ASTM D...

  9. Failure mechanism of resistance-spot-welded specimens impacted on base material by bullets

    Science.gov (United States)

    Fan, Chunlei; Ma, Bohan; Chen, Danian; Wang, Huanran; Ma, Dongfang

    2018-01-01

    The tests of bullet impact on the base material (BM) of a simple specimen with a single resistance-spot-welded (RSW) nugget of TRIP800 steel are performed to investigate the response of the RSW specimen to the ballistic debris impact on the RSW specimen. A one-stage gas gun is used to fire the bullets while a laser velocity interferometer system for any reflector (VISAR) is used to measure the velocity histories of the free surfaces of the RSW specimen. The recovered RSW specimens are examined with the three-dimensional super depth digital microscope (SDDM) and the scanning electro microscope (SEM). For the tests of small multiple-bullet impact, it is revealed that the wave train of the VISAR measured results and the detachment of the base material interfaces in the recovered RSW specimens are directly related to the reflection and refraction of the curved stress waves incoming to the interfaces and the free surfaces in the RSW specimens. The detachment of BM interfaces can lead to the impact failure of the RSW joints for the larger multiple-bullet impact at higher velocity, the mechanism of which is different from the case for normal incidence (spalling). For the tests of single large bullet impact, it is brought to light experimentally that the plastic strain concentration at the "notch tip" spurs either the crack near the RSW joint or the split of the nugget. The numerical simulation shows up the process of splitting the nugget: a crack initiates at the "notch tip", propagates across the nugget interface and splits the nugget into two parts. It is indicated that the interaction between the stress waves and many interfaces/free surfaces in the RSW specimen under ballistic impact causes variable local stress triaxialities and stress Lode angles, which affects the deformation and fracture mechanism of the RSW specimen including stretching and shearing failure. It is shown that the impact failure of the RSW joints is a mixture of brittle fracture and ductile

  10. Clinical experience in treatment of five H1N1 flu patients with respiratory failure with high-frequency oscillatory mechanical ventilation

    Directory of Open Access Journals (Sweden)

    Zhi-gang ZHANG

    2011-08-01

    Full Text Available Objective To investigate the application and safety of high-frequency oscillation ventilation(HFOV in the treatment of patients suffering from H1N1 influenza with respiratory failure.Methods Self-control study was conducted.The treatment of five H1N1 influenza patients with respiratory failure was switched to HFOV after failure of conventional mechanical ventilation(CMV.Blood gas [partial pressure of oxygen(PaO2,partial pressure of carbon dioxide(PCO2,pH],respiratory mechanics indices [oxygen concentration(FiO2,mean airway pressure(Paw,static response(Cst,oxygenation index(PaO2/FiO2] before and after treatment were observed.Lung biopsy and clinical treatment data were also analyzed.Results Oxygenation was improved in 3 patients 6 to 8 hours after HFOV treatment,and marked improvement was observed after 24-48h.48-72h later,HFOV was replaced by CMV,and the patients weaned from mechanical ventilation successfully at 144h.In two patients symptoms were exacerbated after HFOV for 8 hours and the treatment was switched to CMV.Among them one died at 75h,and another one was treated with extracorporeal membrane oxygenation(ECMO and died at 145h.Conclusions HFOV can significantly improve the outcome of H1N1 flu patients with respiratory failure.The sequential treatment with HFOV followed by CMV can reduce complications and mortality.

  11. Contact Mechanics and Failure Modes of Compliant Polymeric Bearing Materials for Knee Cartilage Replacement

    Science.gov (United States)

    Tohfafarosh, Mariya Shabbir

    control samples. However, chemical spectra of electron beam sterilized samples revealed minor changes, which were absent in unsterilized and gamma sterilized samples. Upon successful sterilization evaluation, both polycarbonate urethane and the novel hydrogel were investigated for the contact mechanics of compliant-on-compliant artificial knee bearings using a finite element analysis approach. A simplified, axisymmetric, finite element model of a medial knee compartment was developed and validated, and a design of simulation experiments was carried out to evaluate the effect of implant conformity, implant thickness and material properties on the contact mechanics of compliant knee bearings under normal walking and stair climbing loads. All input parameters, namely, implant conformity, implant thickness and material properties, significantly (pengineering strain (39 - 53% true strain) without any signs of cracking or fracture. The tension was determined to be the primary failure mode for the proposed materials, and the tensile test was used to define the failure criteria of the materials. The unconfined compression tests were used to define the yield stresses and strains under compression, which is the main mode of loading for the knee joint. The results of the plane strain compression were modeled using a finite element model and the maximum principal stress, von Mises stress, maximum shear stress, and maximum principal strain failure criteria were predicted at the corresponding yield strain of each material formulation. Upon comparing the knee model contact stress and strain prediction under normal walking and stair climbing loads with those of the empirical failure criteria at yield, the polycarbonate urethane showed better overall potential for use in compliant knee implants, while the hydrogels exhibited higher potential for delamination or fracture, especially if appropriate implant conformity and thickness are not employed. The outcome of this study and the previous

  12. Parathyroid scintigraphy in chronic renal failure

    International Nuclear Information System (INIS)

    Baulieu, J.L.; Houlier, S.; Baulieu, F.; Rousseau, C.

    1995-01-01

    The performances of the scintigraphic localization of parathyroid adenoma have improved with the use of technetium-99m radiolabeled tracers and the development of thyroid subtraction methods. By using methoxy--isobutyl-isonitrile (MIB) alone in two phases, sensitivity and specificity are respectively O.85 and 0.92. The interest of scintigraphy compared with ultrasonography is specially marked in the situations encountered in patients with renal failure: hyperplasia, multiple or ectopic adenoma, association with thyroid nodules. However, the localisation of adenoma remains more difficult in renal failure than in primary hyperthyroidism. Scintigraphy seems to be essential for localizing adenoma and eventually hyperplasia, before surgery in patients in bad conditions or before a second operation. (authors). 26 refs., 3 figs., 2 tabs

  13. Adaptive coupling between damage mechanics and peridynamics: a route for objective simulation of material degradation up to complete failure

    KAUST Repository

    Han, Fei

    2016-05-17

    The objective (mesh-independent) simulation of evolving discontinuities, such as cracks, remains a challenge. Current techniques are highly complex or involve intractable computational costs, making simulations up to complete failure difficult. We propose a framework as a new route toward solving this problem that adaptively couples local-continuum damage mechanics with peridynamics to objectively simulate all the steps that lead to material failure: damage nucleation, crack formation and propagation. Local-continuum damage mechanics successfully describes the degradation related to dispersed microdefects before the formation of a macrocrack. However, when damage localizes, it suffers spurious mesh dependency, making the simulation of macrocracks challenging. On the other hand, the peridynamic theory is promising for the simulation of fractures, as it naturally allows discontinuities in the displacement field. Here, we present a hybrid local-continuum damage/peridynamic model. Local-continuum damage mechanics is used to describe “volume” damage before localization. Once localization is detected at a point, the remaining part of the energy is dissipated through an adaptive peridynamic model capable of the transition to a “surface” degradation, typically a crack. We believe that this framework, which actually mimics the real physical process of crack formation, is the first bridge between continuum damage theories and peridynamics. Two-dimensional numerical examples are used to illustrate that an objective simulation of material failure can be achieved by this method.

  14. Adaptive coupling between damage mechanics and peridynamics: a route for objective simulation of material degradation up to complete failure

    KAUST Repository

    Han, Fei; Lubineau, Gilles; Azdoud, Yan

    2016-01-01

    The objective (mesh-independent) simulation of evolving discontinuities, such as cracks, remains a challenge. Current techniques are highly complex or involve intractable computational costs, making simulations up to complete failure difficult. We propose a framework as a new route toward solving this problem that adaptively couples local-continuum damage mechanics with peridynamics to objectively simulate all the steps that lead to material failure: damage nucleation, crack formation and propagation. Local-continuum damage mechanics successfully describes the degradation related to dispersed microdefects before the formation of a macrocrack. However, when damage localizes, it suffers spurious mesh dependency, making the simulation of macrocracks challenging. On the other hand, the peridynamic theory is promising for the simulation of fractures, as it naturally allows discontinuities in the displacement field. Here, we present a hybrid local-continuum damage/peridynamic model. Local-continuum damage mechanics is used to describe “volume” damage before localization. Once localization is detected at a point, the remaining part of the energy is dissipated through an adaptive peridynamic model capable of the transition to a “surface” degradation, typically a crack. We believe that this framework, which actually mimics the real physical process of crack formation, is the first bridge between continuum damage theories and peridynamics. Two-dimensional numerical examples are used to illustrate that an objective simulation of material failure can be achieved by this method.

  15. A microscopic investigation of failure mechanisms in a triaxially braided polyimide composite at room and elevated temperatures

    International Nuclear Information System (INIS)

    Montesano, John; Fawaz, Zouheir; Poon, Cheung; Behdinan, Kamran

    2014-01-01

    Highlights: • Experimental investigation on a unique braided polyimide composite material. • Tensile static and fatigue tests at both room temperature and elevated temperature. • Tests reveal that elevated temperature causes a reduction in microscopic damage. • Temperature-dependent damage development caused a reduction in fatigue life. • A fundamental understanding of the novel material behavior was achieved. - Abstract: An experimental investigation is conducted on a unique triaxially braided polyimide composite material in order to track the development of microscopic damage leading to failure. Tensile static and fatigue tests are conducted at both room and elevated temperatures. Edge replication and scanning electron microscopy are employed to track damage development and to identify failure mechanisms, respectively. Static tests reveal that although the elevated temperature environment does not significantly alter the mechanical properties of the composite, its influence on the development of microscopic damage development is notable. The dominant damage mechanism of braider yarn cracking is mitigated at elevated temperatures as a direct result of resin softening, which is also the case for the fatigue test specimens. The result of the temperature-dependent microscopic damage development is a reduction in the fatigue lives at elevated temperatures. This study yielded an improved understanding of microscopic damage mechanisms and local deformation behavior for an advanced composite material, which is valuable for designers

  16. Lessons learned from failure analysis

    International Nuclear Information System (INIS)

    Le May, I.

    2006-01-01

    Failure analysis can be a very useful tool to designers and operators of plant and equipment. It is not simply something that is done for lawyers and insurance companies, but is a tool from which lessons can be learned and by means of which the 'breed' can be improved. In this presentation, several failure investigations that have contributed to understanding will be presented. Specifically, the following cases will be discussed: 1) A fire at a refinery that occurred in a desulphurization unit. 2) The failure of a pipeline before it was even put into operation. 3) Failures in locomotive axles that took place during winter operation. The refinery fire was initially blamed on defective Type 321 seamless stainless steel tubing, but there were conflicting views between 'experts' involved as to the mechanism of failure and the writer was called upon to make an in-depth study. This showed that there were a variety of failure mechanism involved, including high temperature fracture, environmentally-induced cracking and possible manufacturing defects. The unraveling of the failure sequence is described and illustrated. The failure of an oil transmission was discovered when the line was pressure tested some months after it had been installed and before it was put into service. Repairs were made and failure occurred in another place upon the next pressure test being conducted. After several more repairs had been made the line was abandoned and a lawsuit was commenced on the basis that the steel was defective. An investigation disclosed that the material was sensitive to embrittlement and the causes of this were determined. As a result, changes were made in the microstructural control of the product to avoid similar problems in future. A series of axle failures occurred in diesel electric locomotives during winter. An investigation was made to determine the nature of the failures which were not by classical fatigue, nor did they correspond to published illustrations of Cu

  17. Investigation on multilayer failure mechanism of RPV with a high temperature gradient from core meltdown scenario

    Energy Technology Data Exchange (ETDEWEB)

    Jianfeng, Mao, E-mail: jianfeng-mao@163.com [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032 (China); Engineering Research Center of Process Equipment and Remanufacturing, Ministry of Education (China); Xiangqing, Li [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032 (China); Shiyi, Bao, E-mail: bsy@zjut.edu.cn [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032 (China); Engineering Research Center of Process Equipment and Remanufacturing, Ministry of Education (China); Lijia, Luo [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032 (China); Zengliang, Gao [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032 (China); Engineering Research Center of Process Equipment and Remanufacturing, Ministry of Education (China)

    2016-12-15

    Highlights: • The multilayer failure mechanism is investigated for RPV under CHF. • Failure time and location of RPV are predicted under various SA scenarios. • The structural behaviors are analyzed in depth for creep and plasticity. • The effect of internal pressure and temperature gradient is considered. • The structural integrity of RPV is secured within the required 72 creep hours. - Abstract: The Fukushima accident shows that in-vessel retention (IVR) of molten core debris has not been appropriately assessed, and a certain pressure (up to 8.0 MPa) still exists inside the reactor pressure vessel (RPV). In the traditional concept of IVR, the pressure is supposed to successfully be released, and the temperature distributed among the wall thickness is assumed to be uniform. However, this concept is seriously challenged by reality of Fukushima accident with regard to the existence of both internal pressure and high temperature gradient. Therefore, in order to make the IVR mitigation strategy succeed, the numerical investigation of the lower head behavior and its failure has been performed for several internal pressures under high temperature gradient. According to some requirements in severe accident (SA) management of RPV, it should be ensured that the IVR mitigation takes effect in preventing the failure of the structure within a period of 72 h. Subsequently, the failure time and location have to be predicted under the critical heat flux (CHF) loading condition for lower head, since the CHF is limit thermal boundary before the melt-through of RPV. In illustrating the so called ‘multilayer failure mechanism’, the structural behaviors of RPV are analyzed in terms of the stress, creep strain, deformation, damage on selected paths.

  18. Investigation on multilayer failure mechanism of RPV with a high temperature gradient from core meltdown scenario

    International Nuclear Information System (INIS)

    Jianfeng, Mao; Xiangqing, Li; Shiyi, Bao; Lijia, Luo; Zengliang, Gao

    2016-01-01

    Highlights: • The multilayer failure mechanism is investigated for RPV under CHF. • Failure time and location of RPV are predicted under various SA scenarios. • The structural behaviors are analyzed in depth for creep and plasticity. • The effect of internal pressure and temperature gradient is considered. • The structural integrity of RPV is secured within the required 72 creep hours. - Abstract: The Fukushima accident shows that in-vessel retention (IVR) of molten core debris has not been appropriately assessed, and a certain pressure (up to 8.0 MPa) still exists inside the reactor pressure vessel (RPV). In the traditional concept of IVR, the pressure is supposed to successfully be released, and the temperature distributed among the wall thickness is assumed to be uniform. However, this concept is seriously challenged by reality of Fukushima accident with regard to the existence of both internal pressure and high temperature gradient. Therefore, in order to make the IVR mitigation strategy succeed, the numerical investigation of the lower head behavior and its failure has been performed for several internal pressures under high temperature gradient. According to some requirements in severe accident (SA) management of RPV, it should be ensured that the IVR mitigation takes effect in preventing the failure of the structure within a period of 72 h. Subsequently, the failure time and location have to be predicted under the critical heat flux (CHF) loading condition for lower head, since the CHF is limit thermal boundary before the melt-through of RPV. In illustrating the so called ‘multilayer failure mechanism’, the structural behaviors of RPV are analyzed in terms of the stress, creep strain, deformation, damage on selected paths.

  19. 22 CFR 92.92 - Service of legal process under provisions of State law.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Service of legal process under provisions of... AND RELATED SERVICES Quasi-Legal Services § 92.92 Service of legal process under provisions of State law. It may be found that a State statue purporting to regulate the service of process in foreign...

  20. Absolute branching intensities in the decay of 92Rb to 92Sr

    CERN Document Server

    Lhersonneau, G; Rizzi, V; Alyakrinskiy, O; Lanchais, A; Volkov, Yu.M; Barzakh, A.E; Fedorov, D.V; Ionan, A.M; Ivanov, V.S; Mezilev, K.A; Moroz, F.V; Orlov, S.Yu; Panteleev, V.N; Lau, C; Bajeat, O; Essabaa, S; Leroy, R; Jardin, P; Stroe, L; 10.1103/PhysRevC.74.017308

    2006-01-01

    The branching of the 2+ to 0+ transition in 92Sr has been measured to 0.032(4) per 92Rb decay. It confirms an earlier measurement however discarded in nuclear data evaluations since in contradiction with accepted lower logft limits. The conflict could be solved assuming that close to half of the decay intensity, mostly as high-energy ground-state transitions, is missing in th edecay scheme.

  1. Failure Criterion for Brick Masonry: A Micro-Mechanics Approach

    Directory of Open Access Journals (Sweden)

    Kawa Marek

    2015-02-01

    Full Text Available The paper deals with the formulation of failure criterion for an in-plane loaded masonry. Using micro-mechanics approach the strength estimation for masonry microstructure with constituents obeying the Drucker-Prager criterion is determined numerically. The procedure invokes lower bound analysis: for assumed stress fields constructed within masonry periodic cell critical load is obtained as a solution of constrained optimization problem. The analysis is carried out for many different loading conditions at different orientations of bed joints. The performance of the approach is verified against solutions obtained for corresponding layered and block microstructures, which provides the upper and lower strength bounds for masonry microstructure, respectively. Subsequently, a phenomenological anisotropic strength criterion for masonry microstructure is proposed. The criterion has a form of conjunction of Jaeger critical plane condition and Tsai-Wu criterion. The model proposed is identified based on the fitting of numerical results obtained from the microstructural analysis. Identified criterion is then verified against results obtained for different loading orientations. It appears that strength of masonry microstructure can be satisfactorily described by the criterion proposed.

  2. Investigation of the Failure Mechanism of HTPB/AP/Al Propellant by In-situ Uniaxial Tensile Experimentation in SEM

    NARCIS (Netherlands)

    Ramshorst, M.C.J. van; Benedetto, G.L. di; Duvalois, W.; Hooijmeijer, P.A.; Heijden, A.E.D.M. van der

    2016-01-01

    The failure mechanism of a propellant consisting of hydroxyl terminated poly-butadiene filled with ammonium perchlorate and aluminum (HTPB/AP/Al) was determined by performing in-situ uniaxial tensile tests in a scanning electron microscope (SEM). The experimental test plan contained uniaxial tensile

  3. Activation and Inhibition of Sodium-Hydrogen Exchanger Is a Mechanism That Links the Pathophysiology and Treatment of Diabetes Mellitus With That of Heart Failure.

    Science.gov (United States)

    Packer, Milton

    2017-10-17

    The mechanisms underlying the progression of diabetes mellitus and heart failure are closely intertwined, such that worsening of one condition is frequently accompanied by worsening of the other; the degree of clinical acceleration is marked when the 2 coexist. Activation of the sodium-hydrogen exchanger in the heart and vasculature (NHE1 isoform) and the kidneys (NHE3 isoform) may serve as a common mechanism that links both disorders and may underlie their interplay. Insulin insensitivity and adipokine abnormalities (the hallmarks of type 2 diabetes mellitus) are characteristic features of heart failure; conversely, neurohormonal systems activated in heart failure (norepinephrine, angiotensin II, aldosterone, and neprilysin) impair insulin sensitivity and contribute to microvascular disease in diabetes mellitus. Each of these neurohormonal derangements may act through increased activity of both NHE1 and NHE3. Drugs used to treat diabetes mellitus may favorably affect the pathophysiological mechanisms of heart failure by inhibiting either or both NHE isoforms, and drugs used to treat heart failure may have beneficial effects on glucose tolerance and the complications of diabetes mellitus by interfering with the actions of NHE1 and NHE3. The efficacy of NHE inhibitors on the risk of cardiovascular events may be enhanced when heart failure and glucose intolerance coexist and may be attenuated when drugs with NHE inhibitory actions are given concomitantly. Therefore, the sodium-hydrogen exchanger may play a central role in the interplay of diabetes mellitus and heart failure, contribute to the physiological and clinical progression of both diseases, and explain certain drug-drug and drug-disease interactions that have been reported in large-scale randomized clinical trials. © 2017 American Heart Association, Inc.

  4. An analytical model for interactive failures

    International Nuclear Information System (INIS)

    Sun Yong; Ma Lin; Mathew, Joseph; Zhang Sheng

    2006-01-01

    In some systems, failures of certain components can interact with each other, and accelerate the failure rates of these components. These failures are defined as interactive failure. Interactive failure is a prevalent cause of failure associated with complex systems, particularly in mechanical systems. The failure risk of an asset will be underestimated if the interactive effect is ignored. When failure risk is assessed, interactive failures of an asset need to be considered. However, the literature is silent on previous research work in this field. This paper introduces the concepts of interactive failure, develops an analytical model to analyse this type of failure quantitatively, and verifies the model using case studies and experiments

  5. Modeling Dynamic Anisotropic Behaviour and Spall Failure in Commercial Aluminium Alloys AA7010

    Science.gov (United States)

    Mohd Nor, M. K.; Ma'at, N.; Ho, C. S.

    2018-04-01

    This paper presents a finite strain constitutive model to predict a complex elastoplastic deformation behaviour involves very high pressures and shockwaves in orthotropic materials of aluminium alloys. The previous published constitutive model is used as a reference to start the development in this work. The proposed formulation that used a new definition of Mandel stress tensor to define Hill's yield criterion and a new shock equation of state (EOS) of the generalised orthotropic pressure is further enhanced with Grady spall failure model to closely predict shockwave propagation and spall failure in the chosen commercial aluminium alloy. This hyperelastic-plastic constitutive model is implemented as a new material model in the Lawrence Livermore National Laboratory (LLNL)-DYNA3D code of UTHM's version, named Material Type 92 (Mat92). The implementations of a new EOS of the generalised orthotropic pressure including the spall failure are also discussed in this paper. The capability of the proposed constitutive model to capture the complex behaviour of the selected material is validated against range of Plate Impact Test data at 234, 450 and 895 ms-1 impact velocities.

  6. The pathophysiology of heart failure.

    Science.gov (United States)

    Kemp, Clinton D; Conte, John V

    2012-01-01

    Heart failure is a clinical syndrome that results when the heart is unable to provide sufficient blood flow to meet metabolic requirements or accommodate systemic venous return. This common condition affects over 5 million people in the United States at a cost of $10-38 billion per year. Heart failure results from injury to the myocardium from a variety of causes including ischemic heart disease, hypertension, and diabetes. Less common etiologies include cardiomyopathies, valvular disease, myocarditis, infections, systemic toxins, and cardiotoxic drugs. As the heart fails, patients develop symptoms which include dyspnea from pulmonary congestion, and peripheral edema and ascites from impaired venous return. Constitutional symptoms such as nausea, lack of appetite, and fatigue are also common. There are several compensatory mechanisms that occur as the failing heart attempts to maintain adequate function. These include increasing cardiac output via the Frank-Starling mechanism, increasing ventricular volume and wall thickness through ventricular remodeling, and maintaining tissue perfusion with augmented mean arterial pressure through activation of neurohormonal systems. Although initially beneficial in the early stages of heart failure, all of these compensatory mechanisms eventually lead to a vicious cycle of worsening heart failure. Treatment strategies have been developed based upon the understanding of these compensatory mechanisms. Medical therapy includes diuresis, suppression of the overactive neurohormonal systems, and augmentation of contractility. Surgical options include ventricular resynchronization therapy, surgical ventricular remodeling, ventricular assist device implantation, and heart transplantation. Despite significant understanding of the underlying pathophysiological mechanisms in heart failure, this disease causes significant morbidity and carries a 50% 5-year mortality. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Identification of Bearing Failure Using Signal Vibrations

    Science.gov (United States)

    Yani, Irsyadi; Resti, Yulia; Burlian, Firmansyah

    2018-04-01

    Vibration analysis can be used to identify damage to mechanical systems such as journal bearings. Identification of failure can be done by observing the resulting vibration spectrum by measuring the vibration signal occurring in a mechanical system Bearing is one of the engine elements commonly used in mechanical systems. The main purpose of this research is to monitor the bearing condition and to identify bearing failure on a mechanical system by observing the resulting vibration. Data collection techniques based on recordings of sound caused by the vibration of the mechanical system were used in this study, then created a database system based bearing failure due to vibration signal recording sounds on a mechanical system The next step is to group the bearing damage by type based on the databases obtained. The results show the percentage of success in identifying bearing damage is 98 %.

  8. 7 CFR 1735.92 - Accounting considerations.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 11 2010-01-01 2010-01-01 false Accounting considerations. 1735.92 Section 1735.92... All Acquisitions and Mergers § 1735.92 Accounting considerations. (a) Proper accounting shall be... in the absence of such a commission, as required by RUS based on Generally Accepted Accounting...

  9. 24 CFR 92.616 - Program administration.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Program administration. 92.616 Section 92.616 Housing and Urban Development Office of the Secretary, Department of Housing and Urban Development HOME INVESTMENT PARTNERSHIPS PROGRAM American Dream Downpayment Initiative § 92.616 Program...

  10. 24 CFR 92.612 - Project requirements.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Project requirements. 92.612 Section 92.612 Housing and Urban Development Office of the Secretary, Department of Housing and Urban Development HOME INVESTMENT PARTNERSHIPS PROGRAM American Dream Downpayment Initiative § 92.612 Project...

  11. 24 CFR 92.608 - Consolidated plan.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Consolidated plan. 92.608 Section 92.608 Housing and Urban Development Office of the Secretary, Department of Housing and Urban Development HOME INVESTMENT PARTNERSHIPS PROGRAM American Dream Downpayment Initiative § 92.608 Consolidated...

  12. 24 CFR 92.610 - Program requirements.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Program requirements. 92.610 Section 92.610 Housing and Urban Development Office of the Secretary, Department of Housing and Urban Development HOME INVESTMENT PARTNERSHIPS PROGRAM American Dream Downpayment Initiative § 92.610 Program...

  13. 22 CFR 92.36 - Authentication defined.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Authentication defined. 92.36 Section 92.36... Notarial Acts § 92.36 Authentication defined. An authentication is a certification of the genuineness of... recognized in another jurisdiction. Documents which may require authentication include legal instruments...

  14. 46 CFR 92.07-10 - Construction.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Construction. 92.07-10 Section 92.07-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS CONSTRUCTION AND ARRANGEMENT Structural Fire Protection § 92.07-10 Construction. (a) The hull, superstructure, structural...

  15. 92R Monoclonal Antibody Inhibits Human CCR9+ Leukemia Cells Growth in NSG Mice Xenografts.

    Science.gov (United States)

    Somovilla-Crespo, Beatriz; Martín Monzón, Maria Teresa; Vela, Maria; Corraliza-Gorjón, Isabel; Santamaria, Silvia; Garcia-Sanz, Jose A; Kremer, Leonor

    2018-01-01

    CCR9 is as an interesting target for the treatment of human CCR9 + -T cell acute lymphoblastic leukemia, since its expression is limited to immature cells in the thymus, infiltrating leukocytes in the small intestine and a small fraction of mature circulating T lymphocytes. 92R, a new mouse mAb (IgG2a isotype), was raised using the A-isoform of hCCR9 as immunogen. Its initial characterization demonstrates that binds with high affinity to the CCR9 N-terminal domain, competing with the previously described 91R mAb for receptor binding. 92R inhibits human CCR9 + tumor growth in T and B-cell deficient Rag2 -/- mice. In vitro assays suggested complement-dependent cytotoxicity and antibody-dependent cell-mediated cytotoxicity as possible in vivo mechanisms of action. Unexpectedly, 92R strongly inhibited tumor growth also in a model with compromised NK and complement activities, suggesting that other mechanisms, including phagocytosis or apoptosis, might also be playing a role on 92R-mediated tumor elimination. Taken together, these data contribute to strengthen the hypothesis of the immune system's opportunistic nature.

  16. Heart Failure in Women

    Science.gov (United States)

    Bozkurt, Biykem; Khalaf, Shaden

    2017-01-01

    Heart failure is an important cause of morbidity and mortality in women, and they tend to develop it at an older age compared to men. Heart failure with preserved ejection fraction is more common in women than in men and accounts for at least half the cases of heart failure in women. When comparing men and women who have heart failure and a low left ventricular ejection fraction, the women are more symptomatic and have a similarly poor outcome. Overall recommendations for guideline-directed medical therapies show no differences in treatment approaches between men and women. Overall, women are generally underrepresented in clinical trials for heart failure. Further studies are needed to shed light into different mechanisms, causes, and targeted therapies of heart failure in women. PMID:29744014

  17. 7 CFR 301.92-1 - Definitions.

    Science.gov (United States)

    2010-01-01

    ..., or field grown cycads, and tissue culture plants grown in vitro; and plants meeting the definition of... 7 Agriculture 5 2010-01-01 2010-01-01 false Definitions. 301.92-1 Section 301.92-1 Agriculture..., DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Phytophthora Ramorum § 301.92-1 Definitions...

  18. 9 CFR 92.3 - Movement restrictions.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Movement restrictions. 92.3 Section 92... ANIMAL PRODUCTS: PROCEDURES FOR REQUESTING RECOGNITION OF REGIONS § 92.3 Movement restrictions. Whenever... exist and the EC imposes prohibitions or other restrictions on the movement of animals or animal...

  19. 50 CFR 27.92 - Private structures.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Private structures. 27.92 Section 27.92... NATIONAL WILDLIFE REFUGE SYSTEM PROHIBITED ACTS Other Disturbing Violations § 27.92 Private structures. No..., pier, dock, fence, wall, pile, anchorage, or other structure or obstruction in any national wildlife...

  20. 22 CFR 92.37 - Authentication procedure.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Authentication procedure. 92.37 Section 92.37... Notarial Acts § 92.37 Authentication procedure. (a) The consular officer must compare the foreign official...) Where the State law requires the consular officer's certificate of authentication to show that the...

  1. 29 CFR 1917.92 - Respiratory protection.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Respiratory protection. 1917.92 Section 1917.92 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) MARINE TERMINALS Personal Protection § 1917.92 Respiratory protection. (See § 1917.1(a)(2)(x...

  2. 7 CFR 1737.92 - Loan documents.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 11 2010-01-01 2010-01-01 false Loan documents. 1737.92 Section 1737.92 Agriculture... PRE-LOAN POLICIES AND PROCEDURES COMMON TO INSURED AND GUARANTEED TELECOMMUNICATIONS LOANS Final Loan Approval Procedures § 1737.92 Loan documents. Following approval of the loan, RUS shall forward the...

  3. 46 CFR 92.20-15 - Construction.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Construction. 92.20-15 Section 92.20-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS CONSTRUCTION AND ARRANGEMENT Accommodations for Officers and Crew § 92.20-15 Construction. All crew spaces are to be...

  4. Crack Growth Behaviour of P92 Steel Under Creep-fatigue Interaction Conditions

    Directory of Open Access Journals (Sweden)

    JING Hong-yang

    2017-05-01

    Full Text Available Creep-fatigue interaction tests of P92 steel at 630℃ under stress-controlled were carried out, and the crack propagation behaviour of P92 steel was studied. The fracture mechanism of crack growth under creep-fatigue interaction and the transition points in a-N curves were analyzed based on the fracture morphology. The results show that the fracture of P92 steel under creep-fatigue interaction is creep ductile fracture and the (Ctavg parameter is employed to demonstrate the crack growth behaviour; in addition, the fracture morphology shows that the crack growth for P92 steel under creep-fatigue interaction is mainly caused by the nucleation and growth of the creep voids and micro-cracks. Furthermore, the transition point of a-lg(Ni/Nf curve corresponds to the turning point of initial crack growth changed into steady crack growth while the transition point of (da/dN-N curve exhibits the turning point of steady creep crack growth changed into the accelerated crack growth.

  5. Failure mechanism of coated biomaterials under high impact-sliding contact stresses

    Science.gov (United States)

    Chen, Ying

    This study uses a newly developed testing method--- inclined cyclic impact-sliding test to investigate the failure behaviors of different types of biomaterials, (SS316L, Ti6Al4V and CoCr) coated by different coatings (TiN, DLC and PEO), under extremely high dynamic contact stress conditions. This test method can simulate the combined impact and sliding/rolling loading conditions, which is very practical in many aspects of commercial usages. During the tests, fatigue cracking, chipping, peeling and material transferring were observed in damaged area. This research is mainly focused on the failure behaviors of load-bearing materials which cyclic impacting and sliding are always involved. This purpose was accomplished in the three stages: First, impact-sliding test was carried out on TiN coated unhardened M2. It was found that soft substrate can cause early failure of coating due to the considerable plastic deformation in the substrate. In this case, stronger substrate is required to support coating better when tested under high contact stresses. Second, PEO coated Ti-6Al-4V was tested under pure sliding and impact-sliding wear conditions. PEO coating was found not strong enough to afford the high contact pressure under cyclic impact-sliding wear test due to its porous surface structure. However, the wear performance of PEO coating was enhanced due to the sub-stoichiometric oxide. To sum up, for load-bearing biomedical implants involved in high impacting movement, PEO coating may not be a promising surface protection. Third, the dense, smooth PVD/CVD bio-inert coatings were reconsidered. DLC and TiN coatings, combined by different substrates together with different interface materials were tested under the cyclic impact-sliding test using a set of proper loading. The results show that to choose a proper combination of coating, interface and substrate based on their mechanical properties is of great importance under the test condition. Hard substrates provide support

  6. 22 CFR 92.60 - Examination procedures.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Examination procedures. 92.60 Section 92.60... and Letters Rogatory § 92.60 Examination procedures. (a) Explaining interrogatory to witness. If the... examination of a witness propound such inquiries as may be necessary to satisfy himself whether the witness is...

  7. 11 CFR 100.92 - Candidate debates.

    Science.gov (United States)

    2010-01-01

    ... 11 Federal Elections 1 2010-01-01 2010-01-01 false Candidate debates. 100.92 Section 100.92 Federal Elections FEDERAL ELECTION COMMISSION GENERAL SCOPE AND DEFINITIONS (2 U.S.C. 431) Exceptions to Contributions § 100.92 Candidate debates. Funds provided to defray costs incurred in staging candidate debates...

  8. 30 CFR 7.92 - New technology.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false New technology. 7.92 Section 7.92 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF... Mines § 7.92 New technology. MSHA may approve a diesel engine that incorporates technology for which the...

  9. 45 CFR 92.41 - Financial reporting.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Financial reporting. 92.41 Section 92.41 Public... Reports, Records Retention, and Enforcement § 92.41 Financial reporting. (a) General. (1) Except as... authorized by OMB, for: (i) Submitting financial reports to Federal agencies, or (ii) Requesting advances or...

  10. Integrated failure probability estimation based on structural integrity analysis and failure data: Natural gas pipeline case

    International Nuclear Information System (INIS)

    Dundulis, Gintautas; Žutautaitė, Inga; Janulionis, Remigijus; Ušpuras, Eugenijus; Rimkevičius, Sigitas; Eid, Mohamed

    2016-01-01

    In this paper, the authors present an approach as an overall framework for the estimation of the failure probability of pipelines based on: the results of the deterministic-probabilistic structural integrity analysis (taking into account loads, material properties, geometry, boundary conditions, crack size, and defected zone thickness), the corrosion rate, the number of defects and failure data (involved into the model via application of Bayesian method). The proposed approach is applied to estimate the failure probability of a selected part of the Lithuanian natural gas transmission network. The presented approach for the estimation of integrated failure probability is a combination of several different analyses allowing us to obtain: the critical crack's length and depth, the failure probability of the defected zone thickness, dependency of the failure probability on the age of the natural gas transmission pipeline. A model's uncertainty analysis and uncertainty propagation analysis are performed, as well. - Highlights: • Degradation mechanisms of natural gas transmission pipelines. • Fracture mechanic analysis of the pipe with crack. • Stress evaluation of the pipe with critical crack. • Deterministic-probabilistic structural integrity analysis of gas pipeline. • Integrated estimation of pipeline failure probability by Bayesian method.

  11. Failure mechanism of resistance-spot-welded specimens impacted on base material by bullets

    Directory of Open Access Journals (Sweden)

    Chunlei Fan

    2018-01-01

    Full Text Available The tests of bullet impact on the base material (BM of a simple specimen with a single resistance-spot-welded (RSW nugget of TRIP800 steel are performed to investigate the response of the RSW specimen to the ballistic debris impact on the RSW specimen. A one-stage gas gun is used to fire the bullets while a laser velocity interferometer system for any reflector (VISAR is used to measure the velocity histories of the free surfaces of the RSW specimen. The recovered RSW specimens are examined with the three-dimensional super depth digital microscope (SDDM and the scanning electro microscope (SEM. For the tests of small multiple-bullet impact, it is revealed that the wave train of the VISAR measured results and the detachment of the base material interfaces in the recovered RSW specimens are directly related to the reflection and refraction of the curved stress waves incoming to the interfaces and the free surfaces in the RSW specimens. The detachment of BM interfaces can lead to the impact failure of the RSW joints for the larger multiple-bullet impact at higher velocity, the mechanism of which is different from the case for normal incidence (spalling. For the tests of single large bullet impact, it is brought to light experimentally that the plastic strain concentration at the “notch tip” spurs either the crack near the RSW joint or the split of the nugget. The numerical simulation shows up the process of splitting the nugget: a crack initiates at the “notch tip”, propagates across the nugget interface and splits the nugget into two parts. It is indicated that the interaction between the stress waves and many interfaces/free surfaces in the RSW specimen under ballistic impact causes variable local stress triaxialities and stress Lode angles, which affects the deformation and fracture mechanism of the RSW specimen including stretching and shearing failure. It is shown that the impact failure of the RSW joints is a mixture of brittle

  12. The effect of carbon content on mechanical properties, failure and corrosion resistance of deposited chromium metal

    Directory of Open Access Journals (Sweden)

    Леонід Кімович Лещинськiй

    2017-06-01

    Full Text Available It has been shown that if choosing a metal composition for surfacing rolls and rollers of continuous casting machines, both the carbon impact on the mechanical and functional properties and the critical values of the chromium concentration, which determine the corrosion resistance of the metal with regard to electrochemical corrosion theory, should be considered as well. The paper studied the effect of chromium and carbon steel the X5-X12 type on the structure, technological strength, mechanical properties, fracturing resistance and corrosion resistance of the weld metal. The composition of chromium tool steels (deposited metal (X5-used for the rolls of hot rolling mills and (X12-used for continuous casting machines rollers correspond to these values. The impact of carbon on the properties of the deposited metal containing chromium was considered by comparing the data for both types of the deposited metal. It was found that for both types of the deposited metal (X5 and X12, the limiting value of the carbon content, providing an optimal combination of strength, ductility, failure resistance is the same. If the carbon content is more than the limiting value – (0,25% the technological strength and failure resistance of the deposited metal significantly reduce. With increasing carbon content from 0,18 to 0,25% the martensite structure has a mixed morphology – lath and plate. The strength and toughness of the deposited metal grow. Of particular interest is simultaneous increase in the specific work of failure resulted from crack inhibition at the boundary with far less solid and more ductile ferrite. As for the 5% chromium metal, the X12 type composition with 0,25% C, is borderline. With a further increase in the carbon content of the metal both ductility and failure resistance sharply decrease and with 0,40% C the growth rate of fatigue crack increases by almost 1,5 times

  13. Stress State Analysis and Failure Mechanisms of Masonry Columns Reinforced with FRP under Concentric Compressive Load

    OpenAIRE

    Jiří Witzany; Radek Zigler

    2016-01-01

    The strengthening and stabilization of damaged compressed masonry columns with composites based on fabrics of high-strength fibers and epoxy resin, or polymer-modified cement mixtures, belongs to novel, partially non-invasive and reversible progressive methods. The stabilizing and reinforcing effect of these fabrics significantly applies to masonry structures under concentric compressive loading whose failure mechanism is characterized by the appearance and development of vertical tensile cra...

  14. 31 CFR 92.18 - Judicial review.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Judicial review. 92.18 Section 92.18... States Mint § 92.18 Judicial review. A Final Notice of Assessment issued under the procedures in this subpart may be subject to judicial review pursuant to 5 U.S.C. 701 et seq. ...

  15. 45 CFR 92.25 - Program income.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Program income. 92.25 Section 92.25 Public Welfare... Administration § 92.25 Program income. (a) General. Grantees are encouraged to earn income to defray program costs. Program income includes income from fees for services performed, from the use or rental of real...

  16. 46 CFR 92.10-10 - Location.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Location. 92.10-10 Section 92.10-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS CONSTRUCTION AND ARRANGEMENT Means of Escape § 92.10-10 Location. (a) The two means of escape shall be as remote as practicable so as...

  17. On the importance of analyzing flood defense failures

    Directory of Open Access Journals (Sweden)

    Özer Işıl Ece

    2016-01-01

    Full Text Available Flood defense failures are rare events but when they do occur lead to significant amounts of damage. The defenses are usually designed for rather low-frequency hydraulic loading and as such typically at least high enough to prevent overflow. When they fail, flood defenses like levees built with modern design codes usually either fail due to wave overtopping or geotechnical failure mechanisms such as instability or internal erosion. Subsequently geotechnical failures could trigger an overflow leading for the breach to grow in size Not only the conditions relevant for these failure mechanisms are highly uncertain, also the model uncertainty in geomechanical, internal erosion models, or breach models are high compared to other structural models. Hence, there is a need for better validation and calibration of models or, in other words, better insight in model uncertainty. As scale effects typically play an important role and full-scale testing is challenging and costly, historic flood defense failures can be used to provide insights into the real failure processes and conditions. The recently initiated SAFElevee project at Delft University of Technology aims to exploit this source of information by performing back analysis of levee failures at different level of detail. Besides detailed process based analyses, the project aims to investigate spatial and temporal patterns in deformation as a function of the hydrodynamic loading using satellite radar interferometry (i.e. PS-InSAR in order to examine its relation with levee failure mechanisms. The project aims to combine probabilistic approaches with the mechanics of the various relevant failure mechanisms to reduce model uncertainty and propose improvements to assessment and design models. This paper describes the approach of the study to levee breach analysis and the use of satellites for breach initiation analysis, both adopted within the SAFElevee project.

  18. Malaria induced acute renal failure: A single center experience

    International Nuclear Information System (INIS)

    KV Kanodia; AV Vanikar

    2010-01-01

    Malaria has protean clinical manifestations and renal complications, particularly acute renal failure that could be life threatening. To evaluate the incidence, clinical profile, ou come and predictors of mortality in patients with malarial acute renal failure, we retrospectively studied the last two years records of malaria induced acute renal failure in patients with peripheral smear positive for malarial parasites. One hundred (10.4%) (63 males, 37 females) malaria induced acute renal failure amongst 958 cases of acute renal failure were evaluated. Plasmodium (P). falciparum was reported in 85%, P. vivax in 2%, and both in 13% patients. The mean serum creatinine was 9.2 ± 4.2 mg%, and oligo/anuria was present in 82%; 78% of the patients required hemodialysis. Sixty four percent of the patients recovered completely, 10% incompletely, and 5% developed chronic kidney failure; mortality occurred in 21% of the patients. Low hemoglobin, oligo/anuria on admission, hyperbilirubinemia, cerebral malaria, disseminated intravascular coagulation, and high serum creatinine were the main predictors of mortality. We conclude that malaria is associated with acute renal failure, which occurs most commonly in plasmodium falciparum infected patients. Early diagnosis and prompt dialysis with supportive management can reduce morality and enhance recovery of renal function (Author).

  19. [Antituberculous retreatement in case of failure to category I regimen].

    Science.gov (United States)

    Horo, K; Koffi, N B; Kouassi, B A; Brou-Godé, V C; Ahui, B J M; Silué, Y; Touré, K; Gnazé, Z A; Kouakou, K M; N'gom, A; Aka-Danguy, E

    2010-11-01

    In Côte d'Ivoire, since April 2002, the antituberculous regime for category I patients (ARC-I) passed from 2RHZ/4RH to 2RHZE/4RH, without modification of the antituberculous regime for category II (ARC-II) for treatment of cases of the failures to respond to treatment with ARC-I (FARC-I) and patients with a relapse of tuberculosis (TR). The objective of this study was to determine the outcome of patients treated by ARC-II (2RHZES/1RHZE/5RHE). This study was retrospective and compared outcomes during patient follow-up under ARC-II between 1999-2000 (period 1=267 cases) and 2004-2005 (period 2=434 cases). The ARC-II regime has been prescribed for 297 cases of FARC-I and 404 cases of TR. The failure rate of the ARC-II regime was estimated to be 11.98% during the first period compared to 5.53% during the second (PFARC-I cases, therapeutic failure was estimated to 20.54% versus 5.92% in TR group (PFARC-I : 16.16% at the second month, 13.13% to the third month and 20.54% at the fifth month versus 4.20% at the second month, 1.48% to the third month and 5.92% at the fifth month within TB cases (P<0.001). Management of failures to the ARC-I regime must be reviewed to prevent the development of multidrug resistant TB. Copyright © 2010 SPLF. Published by Elsevier Masson SAS. All rights reserved.

  20. Coupled Large Scale Hydro-mechanical Modelling for cap-rock Failure Risk Assessment of CO2 Storage in Deep Saline Aquifers

    International Nuclear Information System (INIS)

    Rohmer, J.; Seyedi, D.M.

    2010-01-01

    This work presents a numerical strategy of large scale hydro-mechanical simulations to assess the risk of damage in cap-rock formations during a CO 2 injection process. The proposed methodology is based on the development of a sequential coupling between a multiphase fluid flow (TOUGH2) and a hydro-mechanical calculation code (Code-Aster) that enables us to perform coupled hydro-mechanical simulation at a regional scale. The likelihood of different cap-rock damage mechanisms can then be evaluated based on the results of the coupled simulations. A scenario based approach is proposed to take into account the effect of the uncertainty of model parameters on damage likelihood. The developed methodology is applied for the cap-rock failure analysis of deep aquifer of the Dogger formation in the context of the Paris basin multilayered geological system as a demonstration example. The simulation is carried out at a regional scale (100 km) considering an industrial mass injection rate of CO 2 of 10 Mt/y. The assessment of the stress state after 10 years of injection is conducted through the developed sequential coupling. Two failure mechanisms have been taken into account, namely the tensile fracturing and the shear slip reactivation of pre-existing fractures. To deal with the large uncertainties due to sparse data on the layer formations, a scenario based strategy is undertaken. It consists in defining a first reference modelling scenario considering the mean values of the hydro-mechanical properties for each layer. A sensitivity analysis is then carried out and shows the importance of both the initial stress state and the reservoir hydraulic properties on the cap-rock failure tendency. On this basis, a second scenario denoted 'critical' is defined so that the most influential model parameters are taken in their worst configuration. None of these failure criteria is activated for the considered conditions. At a phenomenological level, this study points out three key

  1. Microproteinuria Predicts Organ Failure in Patients Presenting with Acute Pancreatitis

    DEFF Research Database (Denmark)

    Bertilsson, Sara; Swärd, Per; Håkansson, Anders

    2016-01-01

    patients were included (14 % with organ failure; 6 % with severe AP). The α1-microglobulin-, albumin-, and IgG/creatinine ratios correlated with high-sensitivity C-reactive protein 48 h after admission (r = 0.47–0.61, p .... Urine samples were collected upon admission, 12–24 h after admission, and 3 months post-discharge for calculation of urine α1-microglobulin-, albumin-, IgG-, and IgM/creatinine ratios. Data regarding AP etiology, severity, and development of organ failure were registered. Results: Overall, 92 AP...... organ failure (p creatinine ratio upon admission predicted organ failure [adjusted odds ratio 1.286, 95 % confidence interval (CI) 1.024–1.614] with similar accuracy (AUROC 0.81, 95 % CI 0.69–0.94) as the more complex APACHE II score (AUROC 0.86, 95 % CI 0...

  2. Atherosclerotic Cardiovascular Disease and Heart Failure in Type 2 Diabetes – Mechanisms, Management, and Clinical Considerations

    Science.gov (United States)

    Low Wang, Cecilia C.; Hess, Connie N.; Hiatt, William R.; Goldfine, Allison B.

    2016-01-01

    Cardiovascular disease remains the principal cause of death and disability among patients with diabetes mellitus. Diabetes exacerbates mechanisms underlying atherosclerosis and heart failure. Unfortunately, these mechanisms are not adequately modulated by therapeutic strategies focusing solely on optimal glycemic control with currently available drugs or approaches. In the setting of multi-factorial risk reduction with statins and other lipid lowering agents, anti-hypertensive therapies, and anti-hyperglycemic treatment strategies, cardiovascular complication rates are falling, yet remain higher for patients with diabetes than for those without. This review considers the mechanisms, history, controversies, new pharmacologic agents, and recent evidence for current guidelines for cardiovascular management in the patient with diabetes mellitus to support evidence-based care in the patient with diabetes and heart disease outside of the acute care setting. PMID:27297342

  3. Immune mediated liver failure.

    Science.gov (United States)

    Wang, Xiaojing; Ning, Qin

    2014-01-01

    Liver failure is a clinical syndrome of various etiologies, manifesting as jaundice, encephalopathy, coagulopathy and circulatory dysfunction, which result in subsequent multiorgan failure. Clinically, liver failure is classified into four categories: acute, subacute, acute-on-chronic and chronic liver failure. Massive hepatocyte death is considered to be the core event in the development of liver failure, which occurs when the extent of hepatocyte death is beyond the liver regenerative capacity. Direct damage and immune-mediated liver injury are two major factors involved in this process. Increasing evidence has suggested the essential role of immune-mediated liver injury in the pathogenesis of liver failure. Here, we review the evolved concepts concerning the mechanisms of immune-mediated liver injury in liver failure from human and animal studies. Both innate and adaptive immunity, especially the interaction of various immune cells and molecules as well as death receptor signaling system are discussed. In addition, we highlight the concept of "immune coagulation", which has been shown to be related to the disease progression and liver injury exacerbation in HBV related acute-on-chronic liver failure.

  4. 45 CFR 92.32 - Equipment.

    Science.gov (United States)

    2010-10-01

    ... awarding agency. (d) Management requirements. Procedures for managing equipment (including replacement... return. (e) Disposition. When original or replacement equipment acquired under a grant or subgrant is no... 45 Public Welfare 1 2010-10-01 2010-10-01 false Equipment. 92.32 Section 92.32 Public Welfare...

  5. 9 CFR 92.1 - Definitions.

    Science.gov (United States)

    2010-01-01

    ... animal kingdom, except man, including: Cattle, sheep, goats, other ruminants, swine, horses, asses, mules... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Definitions. 92.1 Section 92.1 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EXPORTATION...

  6. 44 CFR 9.2 - Policy.

    Science.gov (United States)

    2010-10-01

    ... Agency to provide leadership in floodplain management and the protection of wetlands. Further, the Agency... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Policy. 9.2 Section 9.2 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY...

  7. Sulfolobus Turreted Icosahedral Virus c92 Protein Responsible for the Formation of Pyramid-Like Cellular Lysis Structures

    DEFF Research Database (Denmark)

    Snyder, Jamie C; Brumfield, Susan K; Peng, Nan

    2011-01-01

    Host cells infected by Sulfolobus turreted icosahedral virus (STIV) have been shown to produce unusual pyramid-like structures on the cell surface. These structures represent a virus-induced lysis mechanism that is present in Archaea and appears to be distinct from the holin/endolysin system desc...... disruption of c92 within STIV demonstrates that c92 is an essential protein for virus replication. Immunolocalization of c92 shows that the protein is localized to the cellular membranes forming the pyramid-like structures.......Host cells infected by Sulfolobus turreted icosahedral virus (STIV) have been shown to produce unusual pyramid-like structures on the cell surface. These structures represent a virus-induced lysis mechanism that is present in Archaea and appears to be distinct from the holin/endolysin system...... described for DNA bacteriophages. This study investigated the STIV gene products required for pyramid formation in its host Sulfolobus solfataricus. Overexpression of STIV open reading frame (ORF) c92 in S. solfataricus alone is sufficient to produce the pyramid-like lysis structures in cells. Gene...

  8. Mechanics and complications of reverse shoulder arthroplasty: morse taper failure analysis and prospective rectification

    International Nuclear Information System (INIS)

    Hoskin, HLD; Furie, E; Ganey, TM; Schlatterer, DR; Collins, W

    2017-01-01

    and O are used as stabilizers that help raise the temperature at which titanium can be cast. Since the presence of stabilizers reduces ductility and fatigue strength, all interstitial elements are removed after casting. Considering this, the presence of C and O suggests that not all of the interstitials were removed during the manufacturing process, resulting in decreased fatigue strength. Further destructive analytical testing would verify weld quality and failure mode. RTSSs are quite successful in select patients not amenable to traditional shoulder arthroplasty options. This case report highlights how an implant may function well for several years and then suddenly fail without warning. SEM and EDS analysis suggest that residual C and O in the taper lowered the metal implant’s integrity, leading to torsional cracking at the weld junction of the humeral tray and the taper. The elevated levels of C and O measured at fracture sites on both the tray and the taper suggest poor quality filler metal or failure to remove all interstitial elements after casting. In both cases, the results would be decreased fatigue strength and overall toughness, leading to mechanical failure. A manufacturer’s recall of all implants soon followed the reporting of this implant failure; subsequently, the metal materials were changed from Ti 6 Al 4 V to both titanium alloy and cobalt-chrome alloy (Co-Cr-Mo). Time will tell if the alterations were sufficient. (paper)

  9. 21 CFR 500.92 - Implementation.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Implementation. 500.92 Section 500.92 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS GENERAL Regulation of Carcinogenic Compounds Used in Food-Producing Animals...

  10. Coaching behaviors associated with changes in fear of failure: changes in self-talk and need satisfaction as potential mechanisms.

    Science.gov (United States)

    Conroy, David E; Coatsworth, J Douglas

    2007-04-01

    Cognitive-interpersonal and motivational mechanisms may regulate relations between youth perceptions of interpersonal aspects of the social ecology and their fear-of-failure (FF) levels. Youth (N=165) registered for a summer swim league rated their fear of failure at the beginning, middle, and end of the season. Extensive model comparisons indicated that youths' end-of-season ratings of coach behaviors could be reduced to three factors (affiliation, control, blame). Perceived control and blame from coaches predicted residualized change in corresponding aspects of youths' self-talk, but only changes in self-blame positively predicted changes in FF levels during the season. Perceived affiliation from coaches predicted autonomy need satisfaction which, in turn, negatively predicted the rate of change in FF levels during the season. These findings indicate that (a) youth perceptions of coaches were directly and indirectly related to acute socialization of FF and (b) both cognitive-interpersonal and motivational mechanisms contributed to this socialization process. Further research is needed to test for developmental differences in these mechanisms to determine whether findings generalize to more heterogeneous and at-risk populations and to investigate other potential social-ecological influences on socialization.

  11. Failure analysis of leakage on titanium tubes within heat exchangers in a nuclear power plant. Part II: Mechanical degradation

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Y.; Yang, Z.G. [Department of Materials Science, Fudan University, Shanghai (China); Yuan, J.Z. [Third Qinshan Nuclear Power Co. Ltd., Haiyan, Zhejiang Province (China)

    2012-01-15

    Serious failure incidents like clogging, quick thinning, and leakage frequently occurred on lots of titanium tubes of heat exchangers in a nuclear power plant in China. In the Part I of the whole failure analysis study with totally two parts, factors mainly involving three kinds of electrochemical corrosions were investigated, including galvanic corrosion, crevice corrosion, and hydrogen-assisted corrosion. In the current Part II, through microscopically analyzing the ruptures on the leaked tubes by scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS), another four causes dominantly lying in the aspect of mechanical degradation were determined - clogging, erosion, mechanical damaging, and fretting. Among them, the erosion effect was the primary one, thus the stresses it exerted on the tube wall were also supplementarily evaluated by finite element method (FEM). Based on the analysis results, the different degradation extents and morphologies by erosion on the tubes when they were clogged by different substances such as seashell, rubber debris, and sediments were compared, and relevant mechanisms were discussed. Finally, countermeasures were put forward as well. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Development, Testing, and Failure Mechanisms of a Replicative Ice Phase Change Material Heat Exchanger

    Science.gov (United States)

    Leimkuehler, Thomas O.; Hansen, Scott; Stephan, Ryan A.

    2010-01-01

    Phase change materials (PCM) may be useful for thermal control systems that involve cyclical heat loads or cyclical thermal environments such as Low Earth Orbit (LEO) and Low Lunar Orbit (LLO). Thermal energy can be stored in the PCM during peak heat loads or in adverse thermal environments. The stored thermal energy can then be released later during minimum heat loads or in more favorable thermal environments. One advantage that PCM's have over evaporators in this scenario is that they do not use a consumable. Wax PCM units have been baselined for the Orion thermal control system and also provide risk mitigation for the Altair Lander. However, the use of water as a PCM has the potential for significant mass reduction since the latent heat of formation of water is approximately 70% greater than that of wax. One of the potential drawbacks of using ice as a PCM is its potential to rupture its container as water expands upon freezing. In order to develop a space qualified ice PCM heat exchanger, failure mechanisms must first be understood. Therefore, a methodical experimental investigation has been undertaken to demonstrate and document specific failure mechanisms due to ice expansion in the PCM. An ice PCM heat exchanger that replicates the thermal energy storage capacity of an existing wax PCM unit was fabricated and tested. Additionally, methods for controlling void location in order to reduce the risk of damage due to ice expansion are investigated. This paper presents the results to date of this investigation. Nomenclature

  13. 7 CFR 1000.91-1000.92 - [Reserved

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true [Reserved] 1000.91-1000.92 Section 1000.91-1000.92 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing... Miscellaneous Provisions §§ 1000.91-1000.92 [Reserved] ...

  14. The extent of intestinal failure-associated liver disease in patients referred for intestinal rehabilitation is associated with increased mortality: an analysis of the pediatric intestinal failure consortium database.

    Science.gov (United States)

    Javid, Patrick J; Oron, Assaf P; Duggan, Christopher; Squires, Robert H; Horslen, Simon P

    2017-09-05

    The advent of regional multidisciplinary intestinal rehabilitation programs has been associated with improved survival in pediatric intestinal failure. Yet, the optimal timing of referral for intestinal rehabilitation remains unknown. We hypothesized that the degree of intestinal failure-associated liver disease (IFALD) at initiation of intestinal rehabilitation would be associated with overall outcome. The multicenter, retrospective Pediatric Intestinal Failure Consortium (PIFCon) database was used to identify all subjects with baseline bilirubin data. Conjugated bilirubin (CBili) was used as a marker for IFALD, and we stratified baseline bilirubin values as CBili4 mg/dL. The association between baseline CBili and mortality was examined using Cox proportional hazards regression. Of 272 subjects in the database, 191 (70%) children had baseline bilirubin data collected. 38% and 28% of patients had CBili >4 mg/dL and CBili 4 mg/dL, prematurity, race, and small bowel atresia. On regression analysis controlling for age, prematurity, and diagnosis, the risk of mortality was increased by 3-fold for baseline CBili 2-4 mg/dL (HR 3.25 [1.07-9.92], p=0.04) and 4-fold for baseline CBili >4 mg/dL (HR 4.24 [1.51-11.92], p=0.006). On secondary analysis, CBili >4 mg/dL at baseline was associated with a lower chance of attaining enteral autonomy. In children with intestinal failure treated at intestinal rehabilitation programs, more advanced IFALD at referral is associated with increased mortality and decreased prospect of attaining enteral autonomy. Early referral of children with intestinal failure to intestinal rehabilitation programs should be strongly encouraged. Treatment Study, Level III. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Novel failure mechanism and improvement for split-gate trench MOSFET with large current under unclamped inductive switch stress

    Science.gov (United States)

    Tian, Ye; Yang, Zhuo; Xu, Zhiyuan; Liu, Siyang; Sun, Weifeng; Shi, Longxing; Zhu, Yuanzheng; Ye, Peng; Zhou, Jincheng

    2018-04-01

    In this paper, a novel failure mechanism under unclamped inductive switch (UIS) for Split-Gate Trench Metal Oxide Semiconductor Field Effect Transistor (MOSFET) with large current is investigated. The device sample is tested and analyzed in detail. The simulation results demonstrate that the nonuniform potential distribution of the source poly should be responsible for the failure. Three structures are proposed and verified available to improve the device UIS ruggedness by TCAD simulation. The best one of the structures the device with source metal inserting into source poly through contacts in the field oxide is carried out and measured. The results demonstrate that the optimized structure can balance the trade-off between the UIS ruggedness and the static characteristics.

  16. Ab Initio f values for Fe II J=9/2 ->9/2^o transitions

    Science.gov (United States)

    Beck, Donald

    2005-05-01

    Relativistic configuration interaction f values have been obtained for 264 transitions between the lowest 12 J=9/2 and the 22 J=9/2^o levels. Length and velocity gauges agree to 3.8% for in-shell transitions and 10.0% for shell jump transitions. Two J=9/2^o levels are so nearly degenerate that it was necessary to introduce a semi-empirical correction to produce the correct level ordering. The results are in overall good agreement with the semi-empirical results of Kurucz ootnotetextR. L. Kurucz, http://kurucz.harvard.edu/atoms/2601/ and Raassen ootnotetextA. J. J. Raasen, ftp://ftp.wins.uva.nl/pub/orth/iron/FeII.E1 (1999). An efficient method of including magnetic Breit effects in the energy matrix is presented.

  17. Serum Procalcitonin and Peripheral Venous Lactate for Predicting Dengue Shock and/or Organ Failure: A Prospective Observational Study.

    Directory of Open Access Journals (Sweden)

    Vipa Thanachartwet

    2016-08-01

    Full Text Available Currently, there are no biomarkers that can predict the incidence of dengue shock and/or organ failure, although the early identification of risk factors is important in determining appropriate management to reduce mortality. Therefore, we sought to determine the factors associated with dengue shock and/or organ failure and to evaluate the prognostic value of serum procalcitonin (PCT and peripheral venous lactate (PVL levels as biomarkers of dengue shock and/or organ failure.A prospective observational study was conducted among adults hospitalized for confirmed viral dengue infection at the Hospital for Tropical Diseases in Bangkok, Thailand between October 2013 and July 2015. Data, including baseline characteristics, clinical parameters, laboratory findings, serum PCT and PVL levels, management, and outcomes, were recorded on pre-defined case report forms. Of 160 patients with dengue, 128 (80.0% patients had dengue without shock or organ failure, whereas 32 (20.0% patients developed dengue with shock and/or organ failure. Using a stepwise multivariate logistic regression analysis, PCT ≥0.7 ng/mL (odds ratio [OR]: 4.80; 95% confidence interval [CI]: 1.60-14.45; p = 0.005 and PVL ≥2.5 mmol/L (OR: 27.99, 95% CI: 8.47-92.53; p <0.001 were independently associated with dengue shock and/or organ failure. A combination of PCT ≥0.7 ng/mL and PVL ≥2.5 mmol/L provided good prognostic value for predicting dengue shock and/or organ failure, with an area under the receiver operating characteristics curve of 0.83 (95% CI: 0.74-0.92, a sensitivity of 81.2% (95% CI: 63.6-92.8%, and a specificity of 84.4% (95% CI: 76.9-90.2%. Dengue shock patients with non-clearance of PCT and PVL expired during hospitalization.PCT ≥0.7 ng/mL and PVL ≥2.5 mmol/L were independently associated with dengue shock and/or organ failure. The combination of PCT and PVL levels could be used as prognostic biomarkers for the prediction of dengue shock and/or organ failure.

  18. 45 CFR 92.44 - Termination for convenience.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Termination for convenience. 92.44 Section 92.44 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION UNIFORM ADMINISTRATIVE... Requirements Reports, Records Retention, and Enforcement § 92.44 Termination for convenience. Except as...

  19. Assessing mechanical properties of the dissimilar metal welding between P92 steels and alloy 617 at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. H.; Hwang, J. H.; Park, Y. S.; Kim, T. M.; Bae, D. H. [Sungkyunkwan University, Suwon (Korea, Republic of); Seo, W. B. [Institute of Mechanical Engineering, Yeungnam University, Daegu (Korea, Republic of); Han, J. W. [School of Mechanical Engineering, Hoseo University, Cheonan (Korea, Republic of)

    2016-10-15

    In this study, a new welding technology of dissimilar materials, Cr-based P92 steels and Ni-based Alloy 617 is introduced and demonstrated to investigate its reliability. Firstly, multi-pass dissimilar metal welding between P92 steel and Alloy 617 was performed using DCEN TIG welding technology, buttering welding technique and a narrow gap groove. After welding, in order to understand characteristics of the dissimilar metal welds, metallurgical micro-structures analysis by optical observation and static tensile strength assessment of the dissimilar welded joints were conducted at 700°C.

  20. 40 CFR 86.430-78 - Vehicle failure.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Vehicle failure. 86.430-78 Section 86... Later New Motorcycles, General Provisions § 86.430-78 Vehicle failure. Any test vehicle which incurs major mechanical failure necessitating disassembly of the engine shall not be used as a test vehicle...

  1. Vitamin D Biology in Heart Failure : Molecular Mechanisms and Systematic Review

    NARCIS (Netherlands)

    Meems, Laura M. G.; van der Harst, P.; van Gilst, W. H.; de Boer, R. A.

    Vitamin D has recently been suggested as an important mediator of blood pressure and cardiovascular disease, including heart failure. In patients with heart failure, low vitamin D levels are associated with adverse outcome and correlate with established clinical correlates and biomarkers. Many

  2. Treatment of respiratory failure in COPD

    Directory of Open Access Journals (Sweden)

    Stephan Budweiser

    2008-12-01

    Full Text Available Stephan Budweiser1, Rudolf A Jörres2, Michael Pfeifer1,31Center for Pneumology, Hospital Donaustauf, Donaustauf, Germany; 2Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Ludwig-Maximilians-University, Munich, Germany; 3Department of Internal Medicine II, Division of Respirology, University of Regensburg, Regensburg, GermanyAbstract: Patients with advanced COPD and acute or chronic respiratory failure are at high risk for death. Beyond pharmacological treatment, supplemental oxygen and mechanical ventilation are major treatment options. This review describes the physiological concepts underlying respiratory failure and its therapy, as well as important treatment outcomes. The rationale for the controlled supply of oxygen in acute hypoxic respiratory failure is undisputed. There is also a clear survival benefit from long-term oxygen therapy in patients with chronic hypoxia, while in mild, nocturnal, or exercise-induced hypoxemia such long-term benefits appear questionable. Furthermore, much evidence supports the use of non-invasive positive pressure ventilation in acute hypercapnic respiratory failure. It application reduces intubation and mortality rates, and the duration of intensive care unit or hospital stays, particularly in the presence of mild to moderate respiratory acidosis. COPD with chronic hypercapnic respiratory failure became a major indication for domiciliary mechanical ventilation, based on pathophysiological reasoning and on data regarding symptoms and quality of life. Still, however, its relevance for long-term survival has to be substantiated in prospective controlled studies. Such studies might preferentially recruit patients with repeated hypercapnic decompensation or a high risk for death, while ensuring effective ventilation and the patients’ adherence to therapy.Keywords: respiratory failure, COPD, mechanical ventilation, non-invasive ventilation long-term oxygen therapy, chronic

  3. Elevated temperature failures in boiler tubes - case studies

    International Nuclear Information System (INIS)

    Gowrisankar, I.; Bandyopadhyay, G.

    1989-01-01

    Metallurgical investigation of boiler tube failures enables identification of failure mechanisms and the underlying cause related to boiler conditions. Some case studies in short term overheating, prolonged overheating and low cycle fatigue failures in boiler tubes are discussed. (author)

  4. 24 CFR 92.65 - Funding sanctions.

    Science.gov (United States)

    2010-04-01

    ... HOME INVESTMENT PARTNERSHIPS PROGRAM Allocation Formula Insular Areas Program § 92.65 Funding sanctions... assistance where any corrective or remedial actions taken under § 92.551 fail to remedy an insular area's...

  5. 24 CFR 92.200 - Private-public partnership.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Private-public partnership. 92.200 Section 92.200 Housing and Urban Development Office of the Secretary, Department of Housing and Urban Development HOME INVESTMENT PARTNERSHIPS PROGRAM Program Requirements § 92.200 Private-public partnership...

  6. 46 CFR 92.01-15 - Special consideration.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Special consideration. 92.01-15 Section 92.01-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS CONSTRUCTION AND ARRANGEMENT Hull Structure § 92.01-15 Special consideration. (a) Special consideration will be...

  7. 24 CFR 92.604 - ADDI allocation formula.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false ADDI allocation formula. 92.604 Section 92.604 Housing and Urban Development Office of the Secretary, Department of Housing and Urban Development HOME INVESTMENT PARTNERSHIPS PROGRAM American Dream Downpayment Initiative § 92.604 ADDI...

  8. Zr-92(d,p)Zr-93 and Zr-92(d,t)Zr-91

    Science.gov (United States)

    Baron, N.; Fink, C. L.; Christensen, P. R.; Nickels, J.; Torsteinsen, T.

    1972-01-01

    The structures of Zr-93 and Zr-91 were studied by the stripping reaction Zr-92(d,p)Zr-93 and the pick-up reaction Zr-92(d,t)Zr-91 using 13 MeV incident deuterons. The reaction product particles were detected by counter telescope. Typical spectra from the reactions were analyzed by a nonlinear least squares peak fitting program which included a background search. Spin and parity assignments to observed excited levels were made by comparing experimental angular distributions with distorted wave Born approximation calculations.

  9. Failure to thrive in childhood.

    Science.gov (United States)

    Nützenadel, Walter

    2011-09-01

    Failure to thrive impairs children's weight gain and growth, their defenses against infection, and their psychomotor and intellectual development. This paper is a review of pertinent articles that were published from 1995 to October 2010 and contained the terms "failure to thrive", "underweight", "malnutrition", "malabsorption", "maldigestion" and "refeeding syndrome". The articles were retrieved by a search in the PubMed and Cochrane Library databases. In developed countries, failure to thrive is usually due to an underlying disease. The degree of malnutrition is assessed with anthropometric techniques. For each patient, the underlying disease must be identified and the mechanism of failure to thrive understood, so that proper medical and nutritional treatment can be provided. Nutritional treatment involves either giving more food, or else raising the caloric density of the patient's food. Liquid formulas can be given as a supplement to normal meals or as balanced or unbalanced tube feeds; they can be given orally, through a nasogastric tube, or through a gastrostomy tube. Severely malnourished children with poor oral intake should be treated with parenteral nutrition. To avoid refeeding syndrome in severely malnourished children, food intake should be increased slowly at first, and phosphate, magnesium, and potassium supplements should be given. The proper treatment of failure to thrive in childhood consists of treatment of the underlying illness, combined with nutritional treatment that addresses the mechanism of the accompanying failure to thrive.

  10. Failure Mechanisms and Color Stability in Light-Emitting Diodes during Operation in High- Temperature Environments in Presence of Contamination

    Energy Technology Data Exchange (ETDEWEB)

    Lall, Pradeep; Zhang, Hao; Davis, J Lynn

    2015-05-26

    The energy efficiency of light-emitting diode (LED) technology compared to incandescent light bulbs has triggered an increased focus on solid state luminaries for a variety of lighting applications. Solid-state lighting (SSL) utilizes LEDs, for illumination through the process of electroluminescence instead of heating a wire filament as seen with traditional lighting. The fundamental differences in the construction of LED and the incandescent lamp results in different failure modes including lumen degradation, chromaticity shift and drift in the correlated color temperature. The use of LED-based products for safety-critical and harsh environment applications necessitates the characterization of the failure mechanisms and modes. In this paper, failure mechanisms and color stability has been studied for commercially available vertical structured thin film LED (VLED) under harsh environment conditions with and without the presence of contaminants. The VLED used for the study was mounted on a ceramic starboard in order to connect it to the current source. Contamination sources studied include operation in the vicinity of vulcanized rubber and adhesive epoxies in the presence of temperature and humidity. Performance of the VLEDs has been quantified using the measured luminous flux and color shift of the VLEDs subjected to both thermal and humidity stresses under a forward current bias of 350 mA. Results indicate that contamination can result in pre-mature luminous flux degradation and color shift in LEDs.

  11. The function and failure of sensory predictions.

    Science.gov (United States)

    Bansal, Sonia; Ford, Judith M; Spering, Miriam

    2018-04-23

    Humans and other primates are equipped with neural mechanisms that allow them to automatically make predictions about future events, facilitating processing of expected sensations and actions. Prediction-driven control and monitoring of perceptual and motor acts are vital to normal cognitive functioning. This review provides an overview of corollary discharge mechanisms involved in predictions across sensory modalities and discusses consequences of predictive coding for cognition and behavior. Converging evidence now links impairments in corollary discharge mechanisms to neuropsychiatric symptoms such as hallucinations and delusions. We review studies supporting a prediction-failure hypothesis of perceptual and cognitive disturbances. We also outline neural correlates underlying prediction function and failure, highlighting similarities across the visual, auditory, and somatosensory systems. In linking basic psychophysical and psychophysiological evidence of visual, auditory, and somatosensory prediction failures to neuropsychiatric symptoms, our review furthers our understanding of disease mechanisms. © 2018 New York Academy of Sciences.

  12. An Investigation of Digital Instrumentation and Control System Failure Modes

    International Nuclear Information System (INIS)

    Korsah, Kofi; Cetiner, Mustafa Sacit; Muhlheim, Michael David; Poore, Willis P. III

    2010-01-01

    A study sponsored by the Nuclear Regulatory Commission study was conducted to investigate digital instrumentation and control (DI and C) systems and module-level failure modes using a number of databases both in the nuclear and non-nuclear industries. The objectives of the study were to obtain relevant operational experience data to identify generic DI and C system failure modes and failure mechanisms, and to obtain generic insights, with the intent of using results to establish a unified framework for categorizing failure modes and mechanisms. Of the seven databases studied, the Equipment Performance Information Exchange database was found to contain the most useful data relevant to the study. Even so, the general lack of quality relative to the objectives of the study did not allow the development of a unified framework for failure modes and mechanisms of nuclear I and C systems. However, an attempt was made to characterize all the failure modes observed (i.e., without regard to the type of I and C equipment under consideration) into common categories. It was found that all the failure modes identified could be characterized as (a) detectable/preventable before failures, (b) age-related failures, (c) random failures, (d) random/sudden failures, or (e) intermittent failures. The percentage of failure modes characterized as (a) was significant, implying that a significant reduction in system failures could be achieved through improved online monitoring, exhaustive testing prior to installation, adequate configuration control or verification and validation, etc.

  13. Valve system incorporating single failure protection logic

    Science.gov (United States)

    Ryan, Rodger; Timmerman, Walter J. H.

    1980-01-01

    A valve system incorporating single failure protective logic. The system consists of a valve combination or composite valve which allows actuation or de-actuation of a device such as a hydraulic cylinder or other mechanism, integral with or separate from the valve assembly, by means of three independent input signals combined in a function commonly known as two-out-of-three logic. Using the input signals as independent and redundant actuation/de-actuation signals, a single signal failure, or failure of the corresponding valve or valve set, will neither prevent the desired action, nor cause the undesired action of the mechanism.

  14. High temperature deformation behavior, thermal stability and irradiation performance in Grade 92 steel

    Science.gov (United States)

    Alsagabi, Sultan

    The 9Cr-2W ferritic-martensitic steel (i.e. Grade 92 steel) possesses excellent mechanical and thermophysical properties; therefore, it has been considered to suit more challenging applications where high temperature strength and creep-rupture properties are required. The high temperature deformation mechanism was investigated through a set of tensile testing at elevated temperatures. Hence, the threshold stress concept was applied to elucidate the operating high temperature deformation mechanism. It was identified as the high temperature climb of edge dislocations due to the particle-dislocation interactions and the appropriate constitutive equation was developed. In addition, the microstructural evolution at room and elevated temperatures was investigated. For instance, the microstructural evolution under loading was more pronounced and carbide precipitation showed more coarsening tendency. The growth of these carbide precipitates, by removing W and Mo from matrix, significantly deteriorates the solid solution strengthening. The MX type carbonitrides exhibited better coarsening resistance. To better understand the thermal microstructural stability, long tempering schedules up to 1000 hours was conducted at 560, 660 and 760°C after normalizing the steel. Still, the coarsening rate of M23C 6 carbides was higher than the MX-type particles. Moreover, the Laves phase particles were detected after tempering the steel for long periods before they dissolve back into the matrix at high temperature (i.e. 720°C). The influence of the tempering temperature and time was studied for Grade 92 steel via Hollomon-Jaffe parameter. Finally, the irradiation performance of Grade 92 steel was evaluated to examine the feasibility of its eventual reactor use. To that end, Grade 92 steel was irradiated with iron (Fe2+) ions to 10, 50 and 100 dpa at 30 and 500°C. Overall, the irradiated samples showed some irradiation-induced hardening which was more noticeable at 30°C. Additionally

  15. Anisotropic Failure Strength of Shale with Increasing Confinement: Behaviors, Factors and Mechanism.

    Science.gov (United States)

    Cheng, Cheng; Li, Xiao; Qian, Haitao

    2017-11-15

    Some studies reported that the anisotropic failure strength of shale will be weakened by increasing confinement. In this paper, it is found that there are various types of anisotropic strength behaviors. Four types of anisotropic strength ratio ( S A 1 ) behaviors and three types of anisotropic strength difference ( S A 2 ) behaviors have been classified based on laboratory experiments on nine groups of different shale samples. The cohesion c w and friction angle ϕ w of the weak planes are proven to be two dominant factors according to a series of bonded-particle discrete element modelling analyses. It is observed that shale is more prone to a slight increase of S A 1 and significant increase of S A 2 with increasing confinement for higher cohesion c w and lower to medium friction angle ϕ w . This study also investigated the mechanism of the anisotropic strength behaviors with increasing confinement. Owing to different contributions of c w and ϕ w under different confinements, different combinations of c w and ϕ w may have various types of influences on the minimum failure strength with the increasing confinement; therefore, different types of anisotropic behaviors occur for different shale specimens as the confinement increases. These findings are very important to understand the stability of wellbore and underground tunneling in the shale rock mass, and should be helpful for further studies on hydraulic fracture propagations in the shale reservoir.

  16. 22 CFR 92.63 - Arrangement of papers.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Arrangement of papers. 92.63 Section 92.63... and Letters Rogatory § 92.63 Arrangement of papers. Unless special instructions to the contrary are received, the various papers comprising the completed record of the depositions should usually be arranged...

  17. 31 CFR 92.1 - Manufacture of medals.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Manufacture of medals. 92.1 Section 92.1 Money and Finance: Treasury Regulations Relating to Money and Finance UNITED STATES MINT OPERATIONS AND PROCEDURES Numismatic Operations § 92.1 Manufacture of medals. With the approval of the...

  18. 24 CFR 92.218 - Amount of matching contribution.

    Science.gov (United States)

    2010-04-01

    ... under § 92.102(b)(2) from the resources of a State (other than a transfer of the State's formula... (pursuant to § 92.207); community housing development organization operating expenses (pursuant to § 92.208); capacity building (pursuant to § 92.300(b)) of community housing development organizations; and project...

  19. Erythrocyte Membrane Failure by Electromechanical Stress

    Directory of Open Access Journals (Sweden)

    E Du

    2018-01-01

    Full Text Available We envision that electrodeformation of biological cells through dielectrophoresis as a new technique to elucidate the mechanistic details underlying membrane failure by electrical and mechanical stresses. Here we demonstrate the full control of cellular uniaxial deformation and tensile recovery in biological cells via amplitude-modified electric field at radio frequency by an interdigitated electrode array in microfluidics. Transient creep and cyclic experiments were performed on individually tracked human erythrocytes. Observations of the viscoelastic-to-viscoplastic deformation behavior and the localized plastic deformations in erythrocyte membranes suggest that electromechanical stress results in irreversible membrane failure. Examples of membrane failure can be separated into different groups according to the loading scenarios: mechanical stiffening, physical damage, morphological transformation from discocyte to echinocyte, and whole cell lysis. These results show that this technique can be potentially utilized to explore membrane failure in erythrocytes affected by other pathophysiological processes.

  20. The renal nerves in chronic heart failure: efferent and afferent mechanisms

    Science.gov (United States)

    Schiller, Alicia M.; Pellegrino, Peter R.; Zucker, Irving H.

    2015-01-01

    The function of the renal nerves has been an area of scientific and medical interest for many years. The recent advent of a minimally invasive catheter-based method of renal denervation has renewed excitement in understanding the afferent and efferent actions of the renal nerves in multiple diseases. While hypertension has been the focus of much this work, less attention has been given to the role of the renal nerves in the development of chronic heart failure (CHF). Recent studies from our laboratory and those of others implicate an essential role for the renal nerves in the development and progression of CHF. Using a rabbit tachycardia model of CHF and surgical unilateral renal denervation, we provide evidence for both renal efferent and afferent mechanisms in the pathogenesis of CHF. Renal denervation prevented the decrease in renal blood flow observed in CHF while also preventing increases in Angiotensin-II receptor protein in the microvasculature of the renal cortex. Renal denervation in CHF also reduced physiological markers of autonomic dysfunction including an improvement in arterial baroreflex function, heart rate variability, and decreased resting cardiac sympathetic tone. Taken together, the renal sympathetic nerves are necessary in the pathogenesis of CHF via both efferent and afferent mechanisms. Additional investigation is warranted to fully understand the role of these nerves and their role as a therapeutic target in CHF. PMID:26300788

  1. Sulfolobus turreted icosahedral virus c92 protein responsible for the formation of pyramid-like cellular lysis structures.

    Science.gov (United States)

    Snyder, Jamie C; Brumfield, Susan K; Peng, Nan; She, Qunxin; Young, Mark J

    2011-07-01

    Host cells infected by Sulfolobus turreted icosahedral virus (STIV) have been shown to produce unusual pyramid-like structures on the cell surface. These structures represent a virus-induced lysis mechanism that is present in Archaea and appears to be distinct from the holin/endolysin system described for DNA bacteriophages. This study investigated the STIV gene products required for pyramid formation in its host Sulfolobus solfataricus. Overexpression of STIV open reading frame (ORF) c92 in S. solfataricus alone is sufficient to produce the pyramid-like lysis structures in cells. Gene disruption of c92 within STIV demonstrates that c92 is an essential protein for virus replication. Immunolocalization of c92 shows that the protein is localized to the cellular membranes forming the pyramid-like structures.

  2. The likelihood of failures in the operation of the mechanism of movement of a cargo truck electrical hook bridge crane

    Directory of Open Access Journals (Sweden)

    Ritenman I.L.

    2018-03-01

    Full Text Available Given the application of the methods of analysis of types and consequences of failures (FMEA analysis to assess the technical risk of occurrence of emergency situations during the operation of the lifting mechanism electrical hook bridge crane. The technique allows to identify the limiting elements and to determine the significance of effects in the design of the lifting mechanism, to develop measures to reduce the risk of the occurrence of an emergency.

  3. The likelihood of failures in the operation of the mechanism of movement of a cargo truck electrical hook bridge crane

    Directory of Open Access Journals (Sweden)

    Ritenman I.L.

    2017-12-01

    Full Text Available Given the application of the methods of analysis of types and consequences of failures (FMEA analysis to assess the technical risk of occurrence of emergency situations during the operation of the lifting mechanism electrical hook bridge crane. The technique allows to identify the limiting elements and to determine the significance of effects in the design of the lifting mechanism, to develop measures to reduce the risk of the occurrence of an emergency.

  4. Recognition and Analysis of Corrosion Failure Mechanisms

    OpenAIRE

    Steven Suess

    2006-01-01

    Corrosion has a vast impact on the global and domestic economy, and currently incurs losses of nearly $300 billion annually to the U.S. economy alone. Because of the huge impact of corrosion, it is imperative to have a systematic approach to recognizing and mitigating corrosion problems as soon as possible after they become apparent. A proper failure analysis includes collection of pertinent background data and service history, followed by visual inspection, photographic documentation, materi...

  5. 45 CFR 92.26 - Non-Federal audit.

    Science.gov (United States)

    2010-10-01

    ... fiscal year, shall: (1) Determine whether State or local subgrantees have met the audit requirements of... 45 Public Welfare 1 2010-10-01 2010-10-01 false Non-Federal audit. 92.26 Section 92.26 Public... Financial Administration § 92.26 Non-Federal audit. (a) Basic rule. Grantees and subgrantees are responsible...

  6. Lower early postnatal oxygen saturation target and risk of ductus arteriosus closure failure.

    Science.gov (United States)

    Inomata, Kei; Taniguchi, Shinji; Yonemoto, Hiroki; Inoue, Takeshi; Kawase, Akihiko; Kondo, Yuichi

    2016-11-01

    Early postnatal hyperoxia is a major risk factor for retinopathy of prematurity (ROP) in extremely premature infants. To reduce the occurrence of ROP, we adopted a lower early postnatal oxygen saturation (SpO 2 ) target range (85-92%) from April 2011. Lower SpO 2 target range, however, may lead to hypoxemia and an increase in the risk of ductus arteriosus (DA) closure failure. The aim of this study was therefore to determine whether a lower SpO 2 target range, during the early postnatal stage, increases the risk of DA closure failure. Infants born at closure failure in period 2 (21%) was significantly higher than that in period 1 (1%). On multivariate logistic regression analysis, the lower oxygen saturation target range was an independent risk factor for DA closure failure. Lower early postnatal oxygen saturation target range increases the risk of DA closure failure. © 2016 Japan Pediatric Society.

  7. Pellet-Cladding Mechanical Interaction Failure Threshold for Reactivity Initiated Accidents for Pressurized Water Reactors and Boiling Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, Carl E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Geelhood, Kenneth J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-06-01

    Pacific Northwest National Laboratory (PNNL) has been requested by the U.S. Nuclear Regulatory Commission to evaluate the reactivity initiated accident (RIA) tests that have recently been performed in the Nuclear Safety Research Reactor (NSRR) and CABRI (French research reactor) on uranium dioxide (UO2) and mixed uranium and plutonium dioxide (MOX) fuels, and to propose pellet-cladding mechanical interaction (PCMI) failure thresholds for RIA events. This report discusses how PNNL developed PCMI failure thresholds for RIA based on least squares (LSQ) regression fits to the RIA test data from cold-worked stress relief annealed (CWSRA) and recrystallized annealed (RXA) cladding alloys under pressurized water reactor (PWR) hot zero power (HZP) conditions and boiling water reactor (BWR) cold zero power (CZP) conditions.

  8. 19 CFR 162.92 - Notice of seizure.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Notice of seizure. 162.92 Section 162.92 Customs... (CONTINUED) INSPECTION, SEARCH, AND SEIZURE Civil Asset Forfeiture Reform Act § 162.92 Notice of seizure. (a) Generally. Customs will send written notice of seizure as provided in this section to all known interested...

  9. Right ventricular strain in heart failure: Clinical perspective.

    Science.gov (United States)

    Tadic, Marijana; Pieske-Kraigher, Elisabeth; Cuspidi, Cesare; Morris, Daniel A; Burkhardt, Franziska; Baudisch, Ana; Haßfeld, Sabine; Tschöpe, Carsten; Pieske, Burket

    2017-10-01

    The number of studies demonstrating the importance of right ventricular remodelling in a wide range of cardiovascular diseases has increased in the past two decades. Speckle-tracking imaging provides new variables that give comprehensive information about right ventricular function and mechanics. In this review, we summarize current knowledge of right ventricular mechanics in heart failure with reduced ejection fraction and preserved ejection fraction. We searched PubMed, MEDLINE, Ovid and Embase databases for studies published from January 2000 to December 2016 in the English language using the following keywords: "right ventricle"; "strain"; "speckle tracking"; "heart failure with reduced ejection fraction"; and "heart failure with preserved ejection fraction". Investigations showed that right ventricular dysfunction is associated with higher cardiovascular and overall mortality in patients with heart failure, irrespective of ejection fraction. The number of studies investigating right ventricular strain in patients with heart failure with reduced ejection fraction is constantly increasing, whereas data on right ventricular mechanics in patients with heart failure with preserved ejection fraction are limited. Given the high feasibility, accuracy and clinical implications of right ventricular strain in the population with heart failure, it is of great importance to try to include the evaluation of right ventricular strain as a regular part of each echocardiographic examination in patients with heart failure. However, further investigations are necessary to establish right ventricular strain as a standard variable for decision-making. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. 46 CFR 92.10-35 - Public spaces.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Public spaces. 92.10-35 Section 92.10-35 Shipping COAST... ARRANGEMENT Means of Escape § 92.10-35 Public spaces. (a) In all cases, public spaces having a deck area of... different corridors, rooms, or spaces to minimize the possibility of one incident blocking both exits. ...

  11. 46 CFR 92.20-35 - Hospital space.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Hospital space. 92.20-35 Section 92.20-35 Shipping COAST... ARRANGEMENT Accommodations for Officers and Crew § 92.20-35 Hospital space. (a) Each vessel which in the... crew of 12 or more, must be provided with a hospital space. This space must be situated with due regard...

  12. 22 CFR 40.92 - Aliens unlawfully present.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Aliens unlawfully present. 40.92 Section 40.92... UNDER THE IMMIGRATION AND NATIONALITY ACT, AS AMENDED Aliens Previously Removed § 40.92 Aliens unlawfully present. (a) 3-year bar. An alien described in INA 212(a)(9)(B)(i)(I) shall be ineligible for a...

  13. 46 CFR 92.25-10 - Storm rails.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Storm rails. 92.25-10 Section 92.25-10 Shipping COAST... ARRANGEMENT Rails and Guards § 92.25-10 Storm rails. (a) On vessels in ocean and coastwise service, suitable storm rails shall be installed in all passageways and at the deckhouse sides where persons on board...

  14. The strength and failure of silica optical fibers

    International Nuclear Information System (INIS)

    Yan, C; Bai, R X; Yu, H; Canning, J; Law, S

    2010-01-01

    The mechanical strength and failure behavior of conventional and microstructured silica optical fibers was investigated using a tensile test and fracture mechanics and numerical analyses. The effect of polymer coating on failure behavior was also studied. The results indicate that all these fibers fail in a brittle manner and failure normally starts from fiber surfaces. The failure loads observed in coated fibers are higher than those in bare fibers. The introduction of air holes reduces fiber strength and their geometrical arrangements have a remarkable effect on stress distribution in the longitudinal direction. These results are potentially useful for the design, fabrication and evaluation of optical fibers for a wide range of applications.

  15. Failure Analysis of Storage Data Magnetic Systems

    Directory of Open Access Journals (Sweden)

    Ortiz–Prado A.

    2010-10-01

    Full Text Available This paper shows the conclusions about the corrosion mechanics in storage data magnetic systems (hard disk. It was done from the inspection of 198 units that were in service in nine different climatic regions characteristic for Mexico. The results allow to define trends about the failure forms and the factors that affect them. In turn, this study has analyzed the causes that led to mechanical failure and those due to deterioration by atmospheric corrosion. On the basis of the results obtained from the field sampling, demonstrates that the hard disk failure is fundamentally by mechanical effects. The deterioration by environmental effects were found in read-write heads, integrated circuits, printed circuit boards and in some of the electronic components of the controller card of the device, but not in magnetic storage surfaces. There fore, you can discard corrosion on the surface of the disk as the main kind of failure due to environmental deterioration. To avoid any inconvenience in the magnetic data storage system it is necessary to ensure sealing of the system.

  16. Adjustable, physiological ventricular restraint improves left ventricular mechanics and reduces dilatation in an ovine model of chronic heart failure.

    Science.gov (United States)

    Ghanta, Ravi K; Rangaraj, Aravind; Umakanthan, Ramanan; Lee, Lawrence; Laurence, Rita G; Fox, John A; Bolman, R Morton; Cohn, Lawrence H; Chen, Frederick Y

    2007-03-13

    Ventricular restraint is a nontransplantation surgical treatment for heart failure. The effect of varying restraint level on left ventricular (LV) mechanics and remodeling is not known. We hypothesized that restraint level may affect therapy efficacy. We studied the immediate effect of varying restraint levels in an ovine heart failure model. We then studied the long-term effect of restraint applied over a 2-month period. Restraint level was quantified by use of fluid-filled epicardial balloons placed around the ventricles and measurement of balloon luminal pressure at end diastole. At 4 different restraint levels (0, 3, 5, and 8 mm Hg), transmural myocardial pressure (P(tm)) and indices of myocardial oxygen consumption (MVO2) were determined in control (n=5) and ovine heart failure (n=5). Ventricular restraint therapy decreased P(tm) and MVO2, and improved mechanical efficiency. An optimal physiological restraint level of 3 mm Hg was identified to maximize improvement without an adverse affect on systemic hemodynamics. At this optimal level, end-diastolic P(tm) and MVO2 indices decreased by 27% and 20%, respectively. The serial longitudinal effects of optimized ventricular restraint were then evaluated in ovine heart failure with (n=3) and without (n=3) restraint over 2 months. Optimized ventricular restraint prevented and reversed pathological LV dilatation (130+/-22 mL to 91+/-18 mL) and improved LV ejection fraction (27+/-3% to 43+/-5%). Measured restraint level decreased over time as the LV became smaller, and reverse remodeling slowed. Ventricular restraint level affects the degree of decrease in P(tm), the degree of decrease in MVO2, and the rate of LV reverse remodeling. Periodic physiological adjustments of restraint level may be required for optimal restraint therapy efficacy.

  17. Performance of immunological response in predicting virological failure.

    Science.gov (United States)

    Ingole, Nayana; Mehta, Preeti; Pazare, Amar; Paranjpe, Supriya; Sarkate, Purva

    2013-03-01

    In HIV-infected individuals on antiretroviral therapy (ART), the decision on when to switch from first-line to second-line therapy is dictated by treatment failure, and this can be measured in three ways: clinically, immunologically, and virologically. While viral load (VL) decreases and CD4 cell increases typically occur together after starting ART, discordant responses may be seen. Hence the current study was designed to determine the immunological and virological response to ART and to evaluate the utility of immunological response to predict virological failure. All treatment-naive HIV-positive individuals aged >18 years who were eligible for ART were enrolled and assessed at baseline, 6 months, and 12 months clinically and by CD4 cell count and viral load estimations. The patients were categorized as showing concordant favorable (CF), immunological only (IO), virological only (VO), and concordant unfavorable responses (CU). The efficiency of immunological failure to predict virological failure was analyzed across various levels of virological failure (VL>50, >500, and >5,000 copies/ml). At 6 months, 87(79.81%), 7(5.5%), 13 (11.92%), and 2 (1.83%) patients and at 12 months 61(69.3%), 9(10.2%), 16 (18.2%), and 2 (2.3%) patients had CF, IO, VO, and CU responses, respectively. Immunological failure criteria had a very low sensitivity (11.1-40%) and positive predictive value (8.3-25%) to predict virological failure. Immunological criteria do not accurately predict virological failure resulting in significant misclassification of therapeutic responses. There is an urgent need for inclusion of viral load testing in the initiation and monitoring of ART.

  18. Recognition during recall failure: Semantic feature matching as a mechanism for recognition of semantic cues when recall fails.

    Science.gov (United States)

    Cleary, Anne M; Ryals, Anthony J; Wagner, Samantha R

    2016-01-01

    Research suggests that a feature-matching process underlies cue familiarity-detection when cued recall with graphemic cues fails. When a test cue (e.g., potchbork) overlaps in graphemic features with multiple unrecalled studied items (e.g., patchwork, pitchfork, pocketbook, pullcork), higher cue familiarity ratings are given during recall failure of all of the targets than when the cue overlaps in graphemic features with only one studied target and that target fails to be recalled (e.g., patchwork). The present study used semantic feature production norms (McRae et al., Behavior Research Methods, Instruments, & Computers, 37, 547-559, 2005) to examine whether the same holds true when the cues are semantic in nature (e.g., jaguar is used to cue cheetah). Indeed, test cues (e.g., cedar) that overlapped in semantic features (e.g., a_tree, has_bark, etc.) with four unretrieved studied items (e.g., birch, oak, pine, willow) received higher cue familiarity ratings during recall failure than test cues that overlapped in semantic features with only two (also unretrieved) studied items (e.g., birch, oak), which in turn received higher familiarity ratings during recall failure than cues that did not overlap in semantic features with any studied items. These findings suggest that the feature-matching theory of recognition during recall failure can accommodate recognition of semantic cues during recall failure, providing a potential mechanism for conceptually-based forms of cue recognition during target retrieval failure. They also provide converging evidence for the existence of the semantic features envisaged in feature-based models of semantic knowledge representation and for those more concretely specified by the production norms of McRae et al. (Behavior Research Methods, Instruments, & Computers, 37, 547-559, 2005).

  19. Comparative study of nasopharyngeal carcinoma staging system between the chinese 2008 and '92 Fuzhou

    International Nuclear Information System (INIS)

    Zong Jingfeng; Lin Shaojun; Zhang Yu; Chen Yunbin; Guo Qiaojuan; Pan Jianji

    2010-01-01

    Objective: To carry out a comparative study between the Chinese 2008 and '92 staging system of nasopharyngeal carcinoma (NPC). Methods: A total of 777 patients presented with untreated non disseminated NPC who had received MRI scan of nasopharynx and neck were studied retrospectively. The clinical materials and information of imaging were collected. All patients were restaged according to the Chinese 2008 and 92 staging system of nasopharyngeal carcinoma. Distribution of T, N stage, survival and prognostic value were compared. 513 patients of the 777 cases were treated with conventional radiotherapy, 264 cases with intensity modulated radiation therapy. Results: The 3-year follow-up rate was 97.6%. The consistency of T stages was 95.0%. T, N and clinical stage distributions in two systems were similar ( Kappa = 0.93, P = 0.000; Kappa = 0.58, P = 0.000; Kappa = 0.74, P = 0.000). Local failure-free survival and disease specific survival were also similar. There was no difference of distant metastasis between N 0 and N 1 (χ 2 = 1.94, P=0. 164), and a marginal difference between N 1 and N 2 (χ 2 =3.83, P=0.051) in the Chinese '92 staging system. However, although there was also no difference of distant metastasis-free survival between N 0 and N 1a (χ 2 =0.07, P =0.797), ) the difference of overall survival among N 1b , N 2 , and N 3 were significant (χ 2 = 4.95, P = 0.026; χ 2 = 6.74, P = 0.009) in the Chinese 2008 staging system. Conventional radiotherapy or intensity modulated radiation therapy was not a prognostic factor for survival (χ 2 = 3.60, P =0.058). It is reasonable for the Chinese 2008 staging system integrated lymph node characteristics such as laterality, level and extra nodal neoplastic spread into the N staging criteria (χ 2 = 6.59, P = 0.010; χ 2 =4.78, P=0. 029; χ 2 =9.32, P=0.002). Conclusions: For the Chinese 2008 staging system, it was reasonable to simplify the previous T stage. The N stage showed a better predictive role of distant

  20. Retrieval system for emplaced spent unreprocessed fuel (SURF) in salt bed depository: accident event analysis and mechanical failure probabilities. Final report

    International Nuclear Information System (INIS)

    Bhaskaran, G.; McCleery, J.E.

    1979-10-01

    This report provides support in developing an accident prediction event tree diagram, with an analysis of the baseline design concept for the retrieval of emplaced spent unreprocessed fuel (SURF) contained in a degraded Canister. The report contains an evaluation check list, accident logic diagrams, accident event tables, fault trees/event trees and discussions of failure probabilities for the following subsystems as potential contributors to a failure: (a) Canister extraction, including the core and ram units; (b) Canister transfer at the hoist area; and (c) Canister hoisting. This report is the second volume of a series. It continues and expands upon the report Retrieval System for Emplaced Spent Unreprocessed Fuel (SURF) in Salt Bed Depository: Baseline Concept Criteria Specifications and Mechanical Failure Probabilities. This report draws upon the baseline conceptual specifications contained in the first report

  1. Application of non-invasive mechanical ventilation in an asthmatic pregnant woman in respiratory failure: a case report

    Science.gov (United States)

    Caner, Hanife; Eryuksel, Emel; Kosar, Filiz

    2013-01-01

    The use of non-invasive mechanical ventilation (NIV) during an asthma attack is controversial. We report a case of a 28-year-old female patient in her 16th week of pregnancy with community-acquired pneumonia who presented during an asthma attack, which led to hypoxic respiratory failure. She was successfully treated using NIV. This case is worth discussing as it includes two clinical conditions in which NIV is often considered contraindicated. PMID:23372957

  2. Application of non-invasive mechanical ventilation in an asthmatic pregnant woman in respiratory failure: a case report

    OpenAIRE

    Dalar, Levent; Caner, Hanife; Eryuksel, Emel; Kosar, Filiz

    2013-01-01

    The use of non-invasive mechanical ventilation (NIV) during an asthma attack is controversial. We report a case of a 28-year-old female patient in her 16th week of pregnancy with community-acquired pneumonia who presented during an asthma attack, which led to hypoxic respiratory failure. She was successfully treated using NIV. This case is worth discussing as it includes two clinical conditions in which NIV is often considered contraindicated.

  3. Phenotypic characterization of miR-92a-/- mice reveals an important function of miR-92a in skeletal development.

    Directory of Open Access Journals (Sweden)

    Daniela Penzkofer

    Full Text Available MicroRNAs (miRNAs, miRs emerged as key regulators of gene expression. Germline hemizygous deletion of the gene that encodes the miR-17∼92 miRNA cluster was associated with microcephaly, short stature and digital abnormalities in humans. Mice deficient for the miR-17∼92 cluster phenocopy several features such as growth and skeletal development defects and exhibit impaired B cell development. However, the individual contribution of miR-17∼92 cluster members to this phenotype is unknown. Here we show that germline deletion of miR-92a in mice is not affecting heart development and does not reduce circulating or bone marrow-derived hematopoietic cells, but induces skeletal defects. MiR-92a-/- mice are born at a reduced Mendelian ratio, but surviving mice are viable and fertile. However, body weight of miR-92a-/- mice was reduced during embryonic and postnatal development and adulthood. A significantly reduced body and skull length was observed in miR-92a-/- mice compared to wild type littermates. µCT analysis revealed that the length of the 5th mesophalanx to 5th metacarpal bone of the forelimbs was significantly reduced, but bones of the hindlimbs were not altered. Bone density was not affected. These findings demonstrate that deletion of miR-92a is sufficient to induce a developmental skeletal defect.

  4. LSSVM-Based Rock Failure Criterion and Its Application in Numerical Simulation

    Directory of Open Access Journals (Sweden)

    Changxing Zhu

    2015-01-01

    Full Text Available A rock failure criterion is very important for the prediction of the failure of rocks or rock masses in rock mechanics and engineering. Least squares support vector machines (LSSVM are a powerful tool for addressing complex nonlinear problems. This paper describes a LSSVM-based rock failure criterion for analyzing the deformation of a circular tunnel under different in situ stresses without assuming a function form. First, LSSVM was used to represent the nonlinear relationship between the mechanical properties of rock and the failure behavior of the rock in order to construct a rock failure criterion based on experimental data. Then, this was used in a hypothetical numerical analysis of a circular tunnel to analyze the mechanical behavior of the rock mass surrounding the tunnel. The Mohr-Coulomb and Hoek-Brown failure criteria were also used to analyze the same case, and the results were compared; these clearly indicate that LSSVM can be used to establish a rock failure criterion and to predict the failure of a rock mass during excavation of a circular tunnel.

  5. 24 CFR 92.352 - Environmental review.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Environmental review. 92.352... Development HOME INVESTMENT PARTNERSHIPS PROGRAM Other Federal Requirements § 92.352 Environmental review. (a) General. The environmental effects of each activity carried out with HOME funds must be assessed in...

  6. Failure propagation tests and analysis at PNC

    International Nuclear Information System (INIS)

    Tanabe, H.; Miyake, O.; Daigo, Y.; Sato, M.

    1984-01-01

    Failure propagation tests have been conducted using the Large Leak Sodium Water Reaction Test Rig (SWAT-1) and the Steam Generator Safety Test Facility (SWAT-3) at PNC in order to establish the safety design of the LMFBR prototype Monju steam generators. Test objectives are to provide data for selecting a design basis leak (DBL), data on the time history of failure propagations, data on the mechanism of the failures, and data on re-use of tubes in the steam generators that have suffered leaks. Eighteen fundamental tests have been performed in an intermediate leak region using the SWAT-1 test rig, and ten failure propagation tests have been conducted in the region from a small leak to a large leak using the SWAT-3 test facility. From the test results it was concluded that a dominant mechanism was tube wastage, and it took more than one minute until each failure propagation occurred. Also, the total leak rate in full sequence simulation tests including a water dump was far less than that of one double-ended-guillotine (DEG) failure. Using such experimental data, a computer code, LEAP (Leak Enlargement and Propagation), has been developed for the purpose of estimating the possible maximum leak rate due to failure propagation. This paper describes the results of the failure propagation tests and the model structure and validation studies of the LEAP code. (author)

  7. Identification of corrosion and damage mechanisms by using scanning electron microscopy and energy-dispersive X-ray microanalysis: contribution to failure analysis case histories

    Science.gov (United States)

    Pantazopoulos, G.; Vazdirvanidis, A.

    2014-03-01

    Emphasis is placed on the evaluation of corrosion failures of copper and machineable brass alloys during service. Typical corrosion failures of the presented case histories mainly focussed on stress corrosion cracking and dezincification that acted as the major degradation mechanisms in components used in piping and water supply systems. SEM assessment, coupled with EDS spectroscopy, revealed the main cracking modes together with the root-source(s) that are responsible for the damage initiation and evolution. In addition, fracture surface observations contributed to the identification of the incurred fracture mechanisms and potential environmental issues that stimulated crack initiation and propagation. Very frequently, the detection of chlorides among the corrosion products served as a suggestive evidence of the influence of working environment on passive layer destabilisation and metal dissolution.

  8. Observations on analysis, testing and failure of prestressed concrete containments

    International Nuclear Information System (INIS)

    Murray, D.W.

    1984-01-01

    The paper reviews the mechanics which indicate that a bursting failure with large energy release is the failure mechanism to be expected from ductile lined containment structures pressurized to failure. It reviews a study which shows that, because of leakage, this is not the case for unlined prestressed containments. It argues that current practice, since it does not specifically address the bursting failure problem for lined prestressed containments, is inadequate to ensure that this type of failure could not occur. It concludes that, in view of the inadequacy of the current state-of-the-art to predict leakage from lined structures, the logical remedy is to eliminate all possibility of bursting failure by making provision for venting of containments. (orig.)

  9. Success/Failure Prediction of Noninvasive Mechanical Ventilation in Intensive Care Units. Using Multiclassifiers and Feature Selection Methods.

    Science.gov (United States)

    Martín-González, Félix; González-Robledo, Javier; Sánchez-Hernández, Fernando; Moreno-García, María N

    2016-05-17

    This paper addresses the problem of decision-making in relation to the administration of noninvasive mechanical ventilation (NIMV) in intensive care units. Data mining methods were employed to find out the factors influencing the success/failure of NIMV and to predict its results in future patients. These artificial intelligence-based methods have not been applied in this field in spite of the good results obtained in other medical areas. Feature selection methods provided the most influential variables in the success/failure of NIMV, such as NIMV hours, PaCO2 at the start, PaO2 / FiO2 ratio at the start, hematocrit at the start or PaO2 / FiO2 ratio after two hours. These methods were also used in the preprocessing step with the aim of improving the results of the classifiers. The algorithms provided the best results when the dataset used as input was the one containing the attributes selected with the CFS method. Data mining methods can be successfully applied to determine the most influential factors in the success/failure of NIMV and also to predict NIMV results in future patients. The results provided by classifiers can be improved by preprocessing the data with feature selection techniques.

  10. Alterations in myocardial free fatty acid clearance precede mechanical abnormalities in canine tachycardia-induced heart failure.

    Science.gov (United States)

    Freeman, G L; Colston, J T; Miller, D D

    1994-01-01

    The purpose of this study was to evaluate whether abnormalities of free fatty acid metabolism are present before the onset of overt mechanical dysfunction in dogs with tachycardia-induced heart failure. We studied six dogs chronically instrumented to allow assessment of left ventricular function in the pressure-volume plane. Free fatty acid clearance was assessed according to the washout rate of a free fatty acid analog, iodophenylpentadecanoic acid ([123I]PPA or IPPA). IPPA clearance was measured within 1 hour of the hemodynamic assessment. The animals were studied under baseline conditions and 11.7 +/- 3.6 days after ventricular pacing at a rate of 240 beats/min. Hemodynamic studies after pacing showed a nonsignificant increase in left ventricular end-diastolic pressure (11.7 +/- 4.7 to 17.4 +/- 6.5 mm Hg) and a nonsignificant decrease in the maximum derivative of pressure with respect to time (1836 +/- 164 vs 1688 +/- 422 mm Hg/sec). There was also no change in the time constant of left ventricular relaxation, which was 34.8 +/- 7.67 msec before and 35.3 +/- 7.3 msec after pacing. However, a significant prolongation in the clearance half-time of [123I]PPA, from 86.1 +/- 23.9 to 146.5 +/- 22.6 minutes (p < 0.01) was found. Thus abnormal lipid clearance appears before the onset of significant mechanical dysfunction in tachycardia-induced heart failure. This suggests that abnormal substrate metabolism may play an important role in the pathogenesis of this condition.

  11. Ceramic capacitor insulation resistance failures accelerated by low voltage

    Science.gov (United States)

    Brennan, T. F.

    1978-01-01

    Ceramic capacitors failed insulation resistance testing at less than one-tenth their rated voltage. Many failures recovered as the voltage was increased. Comprehensive failure analysis techniques, some of which are unprecedented, were used to examine these failures. It was determined that there was more than one failure mechanism, and the results indicate a need for special additional screening.

  12. Study on TCM syndromes of liver failure and yang-supporting therapy

    Directory of Open Access Journals (Sweden)

    MAO Dewen

    2015-01-01

    Full Text Available This paper reviews traditional Chinese medicine (TCM physicians′understanding of liver failure including its TCM causes, mechanisms, positions, and syndrome differentiation in various dynasties. The results suggest that modern researchers agree with ancient physicians on these aspects of liver failure. Based on achievements of ancient TCM physicians, modern researchers have further developed and improved their understanding of TCM causes, mechanisms, positions, and syndrome differentiation of liver failure. Moreover, this paper discusses the treatment of chronic liver failure with yang-supporting therapy, which provides a novel perspective and method for treating chronic liver failure.

  13. MYC through miR-17-92 Suppresses Specific Target Genes to Maintain Survival, Autonomous Proliferation, and a Neoplastic State

    KAUST Repository

    Li, Yulin; Choi, Peter  S.; Casey, Stephanie  C.; Dill, David  L.; Felsher, Dean  W.

    2014-01-01

    The MYC oncogene regulates gene expression through multiple mechanisms, and its overexpression culminates in tumorigenesis. MYC inactivation reverses turmorigenesis through the loss of distinguishing features of cancer, including autonomous proliferation and survival. Here we report that MYC via miR-17-92 maintains a neoplastic state through the suppression of chromatin regulatory genes Sin3b, Hbp1, Suv420h1, and Btg1, as well as the apoptosis regulator Bim. The enforced expression of miR-17-92 prevents MYC suppression from inducing proliferative arrest, senescence, and apoptosis and abrogates sustained tumor regression. Knockdown of the five miR-17-92 target genes blocks senescence and apoptosis while it modestly delays proliferative arrest, thus partially recapitulating miR-17-92 function. We conclude that MYC, via miR-17-92, maintains a neoplastic state by suppressing specific target genes.

  14. MYC through miR-17-92 Suppresses Specific Target Genes to Maintain Survival, Autonomous Proliferation, and a Neoplastic State

    KAUST Repository

    Li, Yulin

    2014-08-01

    The MYC oncogene regulates gene expression through multiple mechanisms, and its overexpression culminates in tumorigenesis. MYC inactivation reverses turmorigenesis through the loss of distinguishing features of cancer, including autonomous proliferation and survival. Here we report that MYC via miR-17-92 maintains a neoplastic state through the suppression of chromatin regulatory genes Sin3b, Hbp1, Suv420h1, and Btg1, as well as the apoptosis regulator Bim. The enforced expression of miR-17-92 prevents MYC suppression from inducing proliferative arrest, senescence, and apoptosis and abrogates sustained tumor regression. Knockdown of the five miR-17-92 target genes blocks senescence and apoptosis while it modestly delays proliferative arrest, thus partially recapitulating miR-17-92 function. We conclude that MYC, via miR-17-92, maintains a neoplastic state by suppressing specific target genes.

  15. 24 CFR 92.618 - Performance reviews and sanctions.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Performance reviews and sanctions. 92.618 Section 92.618 Housing and Urban Development Office of the Secretary, Department of Housing and Urban Development HOME INVESTMENT PARTNERSHIPS PROGRAM American Dream Downpayment Initiative § 92...

  16. 75 FR 10462 - 92nd Meeting

    Science.gov (United States)

    2010-03-08

    ... ARCTIC RESEARCH COMMISSION [USARC 10-018] 92nd Meeting February 16, 2010. Notice is hereby given that the U.S. Arctic Research Commission will hold its 92nd meeting in Miami, FL, on March 15, 2010... to order and approval of the agenda. (2) Approval of the minutes from the 91st meeting. (3...

  17. All-trans retinoic acid negatively regulates cytotoxic activities of nature killer cell line 92

    International Nuclear Information System (INIS)

    Li Ang; He Meilan; Wang Hui; Qiao Bin; Chen Ping; Gu Hua; Zhang Mengjie; He Shengxiang

    2007-01-01

    NK cells are key components of innate immune systems and their activities are regulated by cytokines and hormones. All-trans retinoic acid (ATRA), as a metabolite of vitamin A and an immunomodulatory hormone, plays an important role in regulating immune responses. In the present study, we investigated the effect of ATRA on human NK cell line NK92. We found that ATRA dose-dependently suppressed cytotoxic activities of NK92 cells without affecting their proliferation. To explore the mechanisms underlying the ATRA influence on NK92 cells, we examined the production of cytokines (TNF-α, IFN-γ), gene expression of cytotoxic-associated molecules (perforin, granzyme B, nature killer receptors (NCRs), and NKG2D), and the activation of NF-κB pathways related with immune response. Our results demonstrated that ATRA suppressed NF-κB activity and prevented IκBα degradation in a dose-dependent way, inhibited IFN-γ production and gene expression of granzyme B and NKp46. Our findings suggest that ATRA is a negative regulator of NK92 cell activation and may act as a potential regulator of anti-inflammatory functions in vivo

  18. Multiparticle octupole coupling and magnetic moments of hn9/2 isomers in N=126 isotones

    International Nuclear Information System (INIS)

    Stuchbery, A.E.; Byrne, A.P.; Dracoulis, G.D.; Fabricius, B.; Kibedi, T.

    1992-12-01

    The influence of particle-vibration coupling on the g-factors of the (h 9/2 ) n > isomers in the N = 126 isotones is assessed using the multiparticle octupole coupling model. According to the model, admixtures of the configuration (h 9/2 ) n-1 f 7/2 > in the yrast 8 + and 21/2 - states, nominally associated with the configuration (h 9/2 ) n >, increase with n. On its own, the octupole mixing mechanism therefore predicts g-factors for these states that increase with the number of valence protons. This trend is the opposite of that predicted by core-polarization blocking. Combining multiparticle octupole coupling and first order core-polarization blocking significantly reduces the discrepancy between the experimental and theoretical g-factors of these states. It is concluded that the observed breakdown in additivity for the g-factors of the (h 9/2 ) n > isomers in the N = 126 isotones arises primarily from first order core-polarization blocking and the combination of configuration mixing due to multiparticle octupole coupling and shell model residual interactions. 40 refs., 5 tabs., 3 figs

  19. Failure Prediction And Detection In Cloud Datacenters

    Directory of Open Access Journals (Sweden)

    Purvil Bambharolia

    2017-09-01

    Full Text Available Cloud computing is a novel technology in the field of distributed computing. Usage of Cloud computing is increasing rapidly day by day. In order to serve the customers and businesses satisfactorily fault occurring in datacenters and servers must be detected and predicted efficiently in order to launch mechanisms to tolerate the failures occurred. Failure in one of the hosted datacenters may propagate to other datacenters and make the situation worse. In order to prevent such situations one can predict a failure proliferating throughout the cloud computing system and launch mechanisms to deal with it proactively. One of the ways to predict failures is to train a machine to predict failure on the basis of messages or logs passed between various components of the cloud. In the training session the machine can identify certain message patterns relating to failure of data centers. Later on the machine can be used to check whether a certain group of message logs follow such patterns or not. Moreover each cloud server can be defined by a state which indicates whether the cloud is running properly or is facing some failure. Parameters such as CPU usage memory usage etc. can be maintained for each of the servers. Using this parameters we can add a layer of detection where in we develop a decision tree based on these parameters which can classify whether the passed in parameters to the decision tree indicate failure state or proper state.

  20. 28 CFR 0.92 - National Institute of Justice.

    Science.gov (United States)

    2010-07-01

    ... 28 Judicial Administration 1 2010-07-01 2010-07-01 false National Institute of Justice. 0.92 Section 0.92 Judicial Administration DEPARTMENT OF JUSTICE ORGANIZATION OF THE DEPARTMENT OF JUSTICE 1-Office of Justice Programs and Related Agencies § 0.92 National Institute of Justice. The National...

  1. 40 CFR 92.406 - Reports filing: record retention.

    Science.gov (United States)

    2010-07-01

    ....406 Section 92.406 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... Reporting Requirements, Voluntary Emission Recall Program § 92.406 Reports filing: record retention. (a) The... authorized officials of the EPA upon request. Effective Date Note: At 63 FR 19059, Apr. 16, 1998, § 92.406...

  2. Mechanisms of initial endplate failure in the human vertebral body.

    Science.gov (United States)

    Fields, Aaron J; Lee, Gideon L; Keaveny, Tony M

    2010-12-01

    Endplate failure occurs frequently in osteoporotic vertebral fractures and may be related to the development of high tensile strain. To determine whether the highest tensile strains in the vertebra occur in the endplates, and whether such high tensile strains are associated with the material behavior of the intervertebral disc, we used micro-CT-based finite element analysis to assess tissue-level strains in 22 elderly human vertebrae (81.5 ± 9.6 years) that were compressed through simulated intervertebral discs. In each vertebra, we compared the highest tensile and compressive strains across the different compartments: endplates, cortical shell, and trabecular bone. The influence of Poisson-type expansion of the disc on the results was determined by compressing the vertebrae a second time in which we suppressed the Poisson expansion. We found that the highest tensile strains occurred within the endplates whereas the highest compressive strains occurred within the trabecular bone. The ratio of strain to assumed tissue-level yield strain was the highest for the endplates, indicating that the endplates had the greatest risk of initial failure. Suppressing the Poisson expansion of the disc decreased the amount of highly tensile-strained tissue in the endplates by 79.4 ± 11.3%. These results indicate that the endplates are at the greatest risk of initial failure due to the development of high tensile strains, and that such high tensile strains are associated with the Poisson expansion of the disc. We conclude that initial failure of the vertebra is associated with high tensile strains in the endplates, which in turn are influenced by the material behavior of the disc. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Constructive characteristics and calculation test of the CTN-10-3/92 accelerator model

    International Nuclear Information System (INIS)

    Armas Cardona, R.; Garcia Rodriguez, R.; Calderon Pinar, F.

    1996-01-01

    In the present report is accomplished a short technical justification on the use of accelerometers in mechanical in mechanical vibration measurements and its theoretical basis. The principal objective is the presentation of the constructive solution of the CTN-10-3/92 accelerometer model, as well as the results of the calibration projects that permitted to determine the sensibility, the capacitance, the dielectric permissivity, the open circuit voltage, the piezoelectric constant and the frequency response. Finally, it is offered a technical valuation of obtained results

  4. A Novel Thermal-Mechanical Detection System for Reactor Pressure Vessel Bottom Failure Monitoring in Severe Accidents

    International Nuclear Information System (INIS)

    Bi, Daowei; Bu, Jiangtao; Xu, Dongling

    2013-06-01

    Following the Fukushima Daiichi nuclear accident in Japan, there is an increased need of enhanced capabilities for severe accident management (SAM) program. Among others, a reliable method for detecting reactor pressure vessel (RPV) bottom failure has been evaluated as imperative by many utility owners. Though radiation and/or temperature measurement are potential solutions by tradition, there are some limitations for them to function desirably in such severe accident as that in Japan. To provide reliable information for assessment of accident progress in SAM program, in this paper we propose a novel thermal-mechanical detection system (TMDS) for RPV bottom failure monitoring in severe accidents. The main components of TMDS include thermally sensitive element, metallic cables, tension controlled switch and main control room annunciation device. With TMDS installed, there shall be a reliable means of keeping SAM decision-makers informed whether the RPV bottom has indeed failed. Such assurance definitely guarantees enhancement of severe accident management performance and significantly improve nuclear safety and thus protect the society and people. (authors)

  5. Diabetes Mellitus and Heart Failure.

    Science.gov (United States)

    Lehrke, Michael; Marx, Nikolaus

    2017-06-01

    Epidemiologic and clinical data from the last 2 decades have shown that the prevalence of heart failure in diabetes is very high, and the prognosis for patients with heart failure is worse in those with diabetes than in those without diabetes. Experimental data suggest that various mechanisms contribute to the impairment in systolic and diastolic function in patients with diabetes, and there is an increased recognition that these patients develop heart failure independent of the presence of coronary artery disease or its associated risk factors. In addition, current clinical data demonstrated that treatment with the sodium glucose cotransporter 2 inhibitor empagliflozin reduced hospitalization for heart failure in patients with type 2 diabetes mellitus and high cardiovascular risk. This review article summarizes recent data on the prevalence, prognosis, pathophysiology, and therapeutic strategies to treat patients with diabetes and heart failure. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Can patients with moderate to severe acute respiratory failure from COPD be treated safely with noninvasive mechanical ventilation on the ward?

    Directory of Open Access Journals (Sweden)

    Yalcinsoy M

    2016-05-01

    Full Text Available Murat Yalcinsoy,1 Cuneyt Salturk,2 Selahattin Oztas,2 Sinem Gungor,2 Ipek Ozmen,2 Feyyaz Kabadayi,2 Aysem Askim Oztim,2 Emine Aksoy,2 Nalan Adıguzel,2 Ozlem Oruc,2 Zuhal Karakurt2 1Department of Pulmonary Medicine, Inonu University Medical Faculty, Turgut Ozal Medical Center, Malatya, 2Department of Pulmonary Medicine, Sureyyapaşa Chest Diseases and Thoracic Surgery Training and Research Hospital, Istanbul, Turkey Purpose: Noninvasive mechanical ventilation (NIMV usage outside of intensive care unit is not recommended in patients with COPD for severe acute respiratory failure (ARF. We assessed the factors associated with failure of NIMV in patients with ARF and severe acidosis admitted to the emergency department and followed on respiratory ward.Patients and methods: This is a retrospective observational cohort study conducted in a tertiary teaching hospital specialized in chest diseases and thoracic surgery between June 1, 2013 and May 31, 2014. COPD patients who were admitted to our emergency department due to ARF were included. Patients were grouped according to the severity of acidosis into two groups: group 1 (pH=7.20–7.25 and group 2 (pH=7.26–7.30.Results: Group 1 included 59 patients (mean age: 70±10 years, 30.5% female and group 2 included 171 patients (mean age: 67±11 years, 28.7% female. On multivariable analysis, partial arterial oxygen pressure to the inspired fractionated oxygen (PaO2/FiO2 ratio <200, delta pH value <0.30, and pH value <7.31 on control arterial blood gas after NIMV in the emergency room and peak C-reactive protein were found to be the risk factors for NIMV failure in COPD patients with ARF in the ward.Conclusion: NIMV is effective not only in mild respiratory failure but also with severe forms of COPD patients presenting with severe exacerbation. The determination of the failure criteria of NIMV and the expertise of the team is critical for treatment success. Keywords: noninvasive mechanical ventilation

  7. Failure diagnosis aiding device for plant equipment

    International Nuclear Information System (INIS)

    Uhara, Yoshihiko.

    1990-01-01

    The present invention intends to improve the efficiency of trouble shooting for equipments of industrial plants such as nuclear power plants. The device of the present invention comprises an intelligence base and an inference mechanism base. The intelligence base comprises a rule base, an information storing section having a part frame and a working frame and a user's frame. The parts frame contains the failure rate on every parts and data on related operations. The working frame contains the importance and frequency of working. The user's frame contains parameters showing the extent of user's skills. The rule base, the parts frame and the working frame can be selected in accordance with the extent of the user's skill in the inference mechanism. With such a constitution, failures can be checked with the intelligence base in accordance with the knowledges for the failures of the equipments and the extent of user's skill by way of the inference mechanism. (I.S.)

  8. The Effect of Rainfall Patterns on the Mechanisms of Shallow Slope Failure

    Directory of Open Access Journals (Sweden)

    Muhammad Suradi

    2014-04-01

    Full Text Available This paper examines how rainfall patterns affect the mechanisms of shallow slope failure. Numerical modelling, utilising the commercial software SVFlux and SVSlope, was carried out for a coupled analysis of rainfall-induced slope seepage and instability, with reference to a shallow landslide took place in Jabiru, Northern Territory (NT Australia in 2007. Rainfall events were varied in terms of pattern in this analysis. The results revealed that slopes are sensitive to rainfall pattern when the rainfall intensity has a high degree of fluctuation at around the same value as that of saturated hydraulic conductivity. Average rainfall intensity at the beginning of a rainfall period plays a primary role in determining the rate of decrease in initial factor of safety (Fi towards minimum factor of safety (Fmin. The effect of rainfall events on the slope instability is attributed to the amount of rainwater infiltration into slope associated with rainfall pattern.

  9. Reliability physics and engineering time-to-failure modeling

    CERN Document Server

    McPherson, J W

    2013-01-01

    Reliability Physics and Engineering provides critically important information that is needed for designing and building reliable cost-effective products. Key features include:  ·       Materials/Device Degradation ·       Degradation Kinetics ·       Time-To-Failure Modeling ·       Statistical Tools ·       Failure-Rate Modeling ·       Accelerated Testing ·       Ramp-To-Failure Testing ·       Important Failure Mechanisms for Integrated Circuits ·       Important Failure Mechanisms for  Mechanical Components ·       Conversion of Dynamic  Stresses into Static Equivalents ·       Small Design Changes Producing Major Reliability Improvements ·       Screening Methods ·       Heat Generation and Dissipation ·       Sampling Plans and Confidence Intervals This textbook includes numerous example problems with solutions. Also, exercise problems along with the answers are included at the end of each chapter. Relia...

  10. Chronic heart failure modifies respiratory mechanics in rats: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Deise M. Pacheco

    2016-01-01

    Full Text Available ABSTRACT Objective To analyze respiratory mechanics and hemodynamic alterations in an experimental model of chronic heart failure (CHF following myocardial infarction. Method Twenty-seven male adult Wistar rats were randomized to CHF group (n=12 or Sham group (n=15. Ten weeks after coronary ligation or sham surgery, the animals were anesthetized and submitted to respiratory mechanics and hemodynamic measurements. Pulmonary edema as well as cardiac remodeling were measured. Results The CHF rats showed pulmonary edema 26% higher than the Sham group. The respiratory system compliance (Crs and the total lung capacity (TLC were lower (40% and 27%, respectively in the CHF rats when compared to the Sham group (P<0.01. There was also an increase in tissue resistance (Gti and elastance (Hti (28% and 45%, respectively in the CHF group. Moreover, left ventricular end-diastolic pressure was higher (32 mmHg vs 4 mmHg, P<0.01, while the left ventricular systolic pressure was lower (118 mmHg vs 130 mmHg, P=0.02 in the CHF group when compared to the control. Pearson’s correlation coefficient showed a negative association between pulmonary edema and Crs (r=–0.70, P=0.0001 and between pulmonary edema and TLC (r=–0.67,P=0.0034. Pulmonary edema correlated positively with Gti (r=0.68, P=0.001 and Hti (r=0.68, P=0.001. Finally, there was a strong positive relationship between pulmonary edema and heart weight (r=0.80, P=0.001. Conclusion Rats with CHF present important changes in hemodynamic and respiratory mechanics, which may be associated with alterations in cardiopulmonary interactions.

  11. Chest radiological patterns predict the duration of mechanical ventilation in children with RSV infection

    International Nuclear Information System (INIS)

    Prodhan, Parthak; Westra, Sjirk J.; Lin, James; Karni-Sharoor, Sarit; Regan, Susan; Noviski, Natan

    2009-01-01

    RSV-infected children demonstrate various radiographic features, some of which are associated with worse clinical outcomes. To investigate whether specific chest radiological patterns in RSV-infected children with acute respiratory failure (ARF) in the peri-intubation period are associated with prolonged duration of mechanical ventilation. We included RSV-infected children 8 days, a backward stepwise regression arrived at a model that included age and right and left lung atelectasis. Using day 2 chest radiograph results, the best model included age and left lung atelectasis. A model combining the two days' findings yielded an area under the ROC curve of 0.92 with a satisfactory fit (P = 0.95). Chest radiological patterns around the time of intubation can identify children with RSV-associated ARF who would require prolonged mechanical ventilation. (orig.)

  12. Failure Mechanism of a Stellite Coating on Heat-Resistant Steel

    Science.gov (United States)

    Wang, Dong; Zhao, Haixing; Wang, Huang; Li, Yuyan; Liu, Xia; He, Guo

    2017-09-01

    The Stellite 21 coating on the heat-resistant steel X12CrMoWVNbN10-1-1 (so-called COSTE) used in a steam turbine valve was found to be fatigue broken after service at around 873 K (600 °C) for about 8 years. In order to investigate the failure mechanism, a fresh Stellite 21 coating was also prepared on the same COSTE steel substrate by using the similar deposition parameters for comparison. It was found that the Stellite 21 coating was significantly diluted by the steel, resulting in a thin Fe-rich layer in the coating close to the fusion line. Such high Fe concentration together with the incessant Fe diffusion from the steel substrate to the coating during the service condition (about 873 K (600 °C) for long time) induced the eutectoid decomposition of the fcc α-Co(Fe,Cr,Mo) solid solution, forming an irregular eutectoid microstructure that was composed of the primitive cubic α'-FeCo(Cr,Mo) phase and the tetragonal σ-CrCo(Fe,Mo) phase. The brittle nature of such α'/ σ eutectoid microstructure contributed to the fatigue fracture of the Stellite 21 coating, resulting in an intergranular rupture mode.

  13. Fracture mechanics in new designed power module under thermo-mechanical loads

    Directory of Open Access Journals (Sweden)

    Durand Camille

    2014-06-01

    Full Text Available Thermo-mechanically induced failure is a major reliability issue in the microelectronic industry. On this account, a new type of Assembly Interconnected Technology used to connect MOSFETs in power modules has been developed. The reliability is increased by using a copper clip soldered on the top side of the chip, avoiding the use of aluminium wire bonds, often responsible for the failure of the device. Thus the new designed MOSFET package does not follow the same failure mechanisms as standard modules. Thermal and power cycling tests were performed on these new packages and resulting failures were analyzed. Thermo-mechanical simulations including cracks in the aluminium metallization and intermetallics (IMC were performed using Finite Element Analysis in order to better understand crack propagation and module behaviour.

  14. Intensity-Modulated Radiotherapy in the Treatment of Oropharyngeal Cancer: Clinical Outcomes and Patterns of Failure

    International Nuclear Information System (INIS)

    Daly, Megan E.; Le, Quynh-Thu; Maxim, Peter G.; Loo, Billy W.; Kaplan, Michael J.; Fischbein, Nancy J.; Pinto, Harlan; Chang, Daniel T.

    2010-01-01

    Purpose: To report outcomes, failures, and toxicities in patients treated with intensity-modulated radiotherapy (IMRT) for squamous cell carcinoma of the oropharynx. Methods And Materials: Between Aug 2001 and Oct 2007, 107 patients were treated with IMRT with curative intent at Stanford University. Twenty-two patients were treated postoperatively, and 85 were treated definitively. Concurrent platinum-based chemotherapy was administered to 86 patients (80%) and cetuximab to 8 patients (7%). The prescribed dose was 66 Gy at 2.2 Gy/fraction for definitively treated cases and 60 Gy at 2 Gy/fraction for postoperative cases. Median follow-up was 29 months among surviving patients (range, 4-105 months). Results: Eight patients had persistent disease or local-regional failure at a median of 6.5 months (range, 0-9.9 months). Six local failures occurred entirely within the high-risk clinical target volume (CTV) (one with simultaneous distant metastasis). One patient relapsed within the high- and intermediate-risk CTV. One patient had a recurrence at the junction between the IMRT and low-neck fields. Seven patients developed distant metastasis as the first site of failure. The 3-year local-regional control (LRC), freedom from distant metastasis, overall survival, and disease-free survival rates were 92%, 92%, 83%, and 81%, respectively. T stage (T4 vs. T1-T3) was predictive of poorer LRC (p = 0.001), overall survival (p = 0.001), and disease-free survival (p < 0.001) rates. Acute toxicity consisted of 58% grade 3 mucosal and 5% grade 3 skin reactions. Six patients (6%) developed grade ≥3 late complications. Conclusions: IMRT provides excellent LRC for oropharyngeal squamous cell carcinoma. Distant metastases are a major failure pattern. No marginal failures were observed.

  15. MEMS Reliability: Infrastructure, Test Structures, Experiments, and Failure Modes

    Energy Technology Data Exchange (ETDEWEB)

    TANNER,DANELLE M.; SMITH,NORMAN F.; IRWIN,LLOYD W.; EATON,WILLIAM P.; HELGESEN,KAREN SUE; CLEMENT,J. JOSEPH; MILLER,WILLIAM M.; MILLER,SAMUEL L.; DUGGER,MICHAEL T.; WALRAVEN,JEREMY A.; PETERSON,KENNETH A.

    2000-01-01

    The burgeoning new technology of Micro-Electro-Mechanical Systems (MEMS) shows great promise in the weapons arena. We can now conceive of micro-gyros, micro-surety systems, and micro-navigators that are extremely small and inexpensive. Do we want to use this new technology in critical applications such as nuclear weapons? This question drove us to understand the reliability and failure mechanisms of silicon surface-micromachined MEMS. Development of a testing infrastructure was a crucial step to perform reliability experiments on MEMS devices and will be reported here. In addition, reliability test structures have been designed and characterized. Many experiments were performed to investigate failure modes and specifically those in different environments (humidity, temperature, shock, vibration, and storage). A predictive reliability model for wear of rubbing surfaces in microengines was developed. The root causes of failure for operating and non-operating MEMS are discussed. The major failure mechanism for operating MEMS was wear of the polysilicon rubbing surfaces. Reliability design rules for future MEMS devices are established.

  16. Failure mechanism and supporting measures for large deformation of Tertiary deep soft rock

    Institute of Scientific and Technical Information of China (English)

    Guo Zhibiao; Wang Jiong; Zhang Yuelin

    2015-01-01

    The Shenbei mining area in China contains typical soft rock from the Tertiary Period. As mining depths increase, deep soft rock roadways are damaged by large deformations and constantly need to be repaired to meet safety requirements, which is a great security risk. In this study, the characteristics of deformation and failure of typical roadway were analyzed, and the fundamental reason for the roadway deformation was that traditional support methods and materials cannot control the large deformation of deep soft rock. Deep soft rock support technology was developed based on constant resistance energy absorption using constant resistance large deformation bolts. The correlative deformation mechanisms of surrounding rock and bolt were analyzed to understand the principle of constant resistance energy absorption. The new technology works well on-site and provides a new method for the excavation of roadways in Tertiary deep soft rock.

  17. 27 CFR 40.92 - Change in trade name.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 2 2010-04-01 2010-04-01 false Change in trade name. 40.92 Section 40.92 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU... Changes in Name § 40.92 Change in trade name. Where there is a change in, or an addition or discontinuance...

  18. 46 CFR 92.20-50 - Heating and cooling.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Heating and cooling. 92.20-50 Section 92.20-50 Shipping... AND ARRANGEMENT Accommodations for Officers and Crew § 92.20-50 Heating and cooling. (a) All manned... heating and cooling system for accommodations must be capable of maintaining a temperature of 21 °C (70 °F...

  19. Tensile Fracture Behavior and Failure Mechanism of Additively-Manufactured AISI 4140 Low Alloy Steel by Laser Engineered Net Shaping

    Directory of Open Access Journals (Sweden)

    Hoyeol Kim

    2017-11-01

    Full Text Available AISI 4140 powder was directly deposited on AISI 4140 wrought substrate using laser engineered net shaping (LENS to investigate the compatibility of a LENS-deposited part with the substrate. Tensile testing at room temperature was performed to evaluate the interface bond performance and fracture behavior of the test specimens. All the samples failed within the as-deposited zone, indicating that the interfacial bond is stronger than the interlayer bond inside the deposit. The fracture surfaces were analyzed using scanning electron microscopy (SEM and energy disperse X-ray spectrometry (EDS. Results show that the tensile fracture failure of the as-deposited part is primarily affected by lack-of-fusion defects, carbide precipitation, and oxide particles inclusions, which causes premature failure of the deposit by deteriorating the mechanical properties and structural integrity.

  20. Sacroiliac joint luxation after pedicle subtraction osteotomy: report of two cases and analysis of failure mechanism.

    Science.gov (United States)

    Charles, Yann Philippe; Yu, Bo; Steib, Jean-Paul

    2016-05-01

    Sagittal decompensation after pedicle subtraction osteotomy (PSO) is considered as late onset complication. Several mechanisms have been suggested, but little attention has been paid to the caudal end of lumbar instrumented fusion, especially sacral iliac joint (SIJ) deterioration. Clinical histories and radiographic sagittal parameters of two patients with SIJ luxation after PSO are presented. The biomechanical failure mechanism and risk factors are analysed. Two patients underwent correction of fixed anterior sagittal imbalance by PSO, followed by pseudarthrosis revision surgery. Both of them sustained persistent sacroiliac pain, progressive recurrence of anterior imbalance and progressive pelvic incidence (PI) increase around 10°. An acute bilateral SIJ luxation occurred in both patients leading to sharp increase or PI around 20°. One patient was treated by SIJ fusion and the other patient was placed on non-weight-bearing crutch ambulation for 1 year. Both patients had a high preoperative PI (95° and 78°). A theoretical match between lumbar lordosis (LL) and PI was not achieved by PSO. Osteopenia was present in both patients. Computed tomography evidenced L5-S1 pseudarthrosis and sacroiliac joint violation by pelvic or sacral ala screws. Patients with high PI might seek for further compensation at their SIJ when lacking LL after PSO. Chronic anterior imbalance might lead to progressive weakening of sacroiliac ligaments. Initial circumferential lumbosacral fusion and accurate iliac screw fixation might reduce stress on implants, risk for pseudarthrosis, implant failure and finally SIJ deterioration. Bone mineral density should further be investigated preoperatively.

  1. Generalized Block Failure

    DEFF Research Database (Denmark)

    Jönsson, Jeppe

    2015-01-01

    Block tearing is considered in several codes as a pure block tension or a pure block shear failure mechanism. However in many situations the load acts eccentrically and involves the transfer of a substantial moment in combination with the shear force and perhaps a normal force. A literature study...... shows that no readily available tests with a well-defined substantial eccentricity have been performed. This paper presents theoretical and experimental work leading towards generalized block failure capacity methods. Simple combination of normal force, shear force and moment stress distributions along...... yield lines around the block leads to simple interaction formulas similar to other interaction formulas in the codes....

  2. Analysis of failures in concrete containments

    International Nuclear Information System (INIS)

    Moreno-Gonzalez, A.

    1989-09-01

    The function of Containment, in an accident event, is to avoid the release of radioactive substances into the surroundings. Containment failure, therefore, is defined as the appearance of leak paths to the external environment. These leak paths may appear either as a result of loss of leaktightness due to degradation of design conditions or structural failure with containment material break. This document is a survey of the state of the art of Containment Failure Analysis. It gives a detailed description of all failure mechanisms, indicating all the possible failure modes and their causes, right from failure resulting from degradation of the materials to structural failure and linear breake failure. Following the description of failure modes, possible failure criteria are identified, with special emphasis on structural failure criteria. These criteria have been obtained not only from existing codes but also from the latest experimental results. A chapter has been dedicated exclusively to failure criteria in conventional structures, for the purpose of evaluating the possibility of application to the case of containment. As the structural behaviour of the containment building is very complex, it is not possible to define failure through a single parameter. It is therefore advisable to define a methodology for containment failure analysis which could be applied to a particular containment. This methodology should include prevailing load and material conditions together with the behaviour of complex conditions such as the liner-anchorage-cracked concrete interaction

  3. Pump shaft failures - a compendium of case studies

    CSIR Research Space (South Africa)

    Bernt, F

    2001-04-01

    Full Text Available During operation, pump shafts usually suffer from degradation as a result of corrosion and/or mechanical degradation, usually in the form of fatigue failures. In many cases corrosion precedes fatigue failure and can actually accelerate the rate...

  4. Can patients with moderate to severe acute respiratory failure from COPD be treated safely with noninvasive mechanical ventilation on the ward?

    Science.gov (United States)

    Yalcinsoy, Murat; Salturk, Cuneyt; Oztas, Selahattin; Gungor, Sinem; Ozmen, Ipek; Kabadayi, Feyyaz; Oztim, Aysem Askim; Aksoy, Emine; Adıguzel, Nalan; Oruc, Ozlem; Karakurt, Zuhal

    2016-01-01

    Noninvasive mechanical ventilation (NIMV) usage outside of intensive care unit is not recommended in patients with COPD for severe acute respiratory failure (ARF). We assessed the factors associated with failure of NIMV in patients with ARF and severe acidosis admitted to the emergency department and followed on respiratory ward. This is a retrospective observational cohort study conducted in a tertiary teaching hospital specialized in chest diseases and thoracic surgery between June 1, 2013 and May 31, 2014. COPD patients who were admitted to our emergency department due to ARF were included. Patients were grouped according to the severity of acidosis into two groups: group 1 (pH=7.20-7.25) and group 2 (pH=7.26-7.30). Group 1 included 59 patients (mean age: 70±10 years, 30.5% female) and group 2 included 171 patients (mean age: 67±11 years, 28.7% female). On multivariable analysis, partial arterial oxygen pressure to the inspired fractionated oxygen (PaO2/FiO2) ratio failure in COPD patients with ARF in the ward. NIMV is effective not only in mild respiratory failure but also with severe forms of COPD patients presenting with severe exacerbation. The determination of the failure criteria of NIMV and the expertise of the team is critical for treatment success.

  5. Recovery Strategies in On-Line Service Failure

    OpenAIRE

    Ozuem, Wilson; Lancaster, Geoff

    2013-01-01

    Despite a proliferation of a number of studies on service failures and recovery in e-service settings, there is a paucity of knowledge of ways in which service failures and recovery practices are implemented in the fashion industry. Drawing on constructivist perspective, this study offers a new perspective on an effective relational mechanism that would bridge the rupture between consumers and companies particularly in the on-line fashion sector. The analysis adds to studies on service failur...

  6. Outcomes of patients with right ventricular failure on milrinone after left ventricular assist device implantation.

    Science.gov (United States)

    Tsiouris, Athanasios; Paone, Gaetano; Brewer, Robert J; Nemeh, Hassan W; Borgi, Jamil; Morgan, Jeffrey A

    2015-01-01

    Previous studies have grouped together both patients requiring right ventricular assist devices (RVADs) with patients requiring prolonged milrinone therapy after left ventricular assist device (LVAD) implantation. We retrospectively identified 149 patients receiving LVADs and 18 (12.1%) of which developed right ventricular (RV) failure. We then separated these patients into those requiring RVADs versus prolonged milrinone therapy. This included 10 patients who were treated with prolonged milrinone and eight patients who underwent RVAD placement. Overall, the RV failure group had worse survival compared with the non-RV failure cohort (p = 0.038). However, this was only for the subgroup of patients who required RVADs, who had a 1, 6, 12, and 24 month survival of 62.5%, 37.5%, 37.5%, and 37.5%, respectively, versus 96.8%, 92.1%, 86.7%, and 84.4% for patients without RV failure (p milrinone therapy for RV failure had similar survivals compared with patients without RV failure. In the RV failure group, age, preoperative renal failure, and previous cardiac surgery were predictors of the need for prolonged postoperative milrinone. As LVADs become a more widely used therapy for patients with refractory, end-stage heart failure, it will be important to reduce the incidence of RV failure, as it yields significant morbidity and increases cost.

  7. Characterization of radioiodine therapy failures in Graves' disease

    International Nuclear Information System (INIS)

    Sabri, O.; Zimny, M.; Schreckenberger, M.; Reinartz, P.; Nowak, B.; Ostwald, E.; Schaefer, W.; Block, S.; Setani, K.; Buell, U.

    2001-01-01

    Aim of this study was a characterization of radioiodine therapy (RIT) failures in Graves' disease without simultaneous carbimazole. Method: 226 patients with a confirmed diagnosis of Graves' disease received 686.8 ± 376.4 MBq of iodine-131 orally for thyroid ablation. Target dose was 250 Gy. All patients were followed up for 6 months. Therapy failures were compared with successes regarding possible influencing variables initial thyroid volume, thyroid function, immune activity (TRAb), I-131 uptake, effective half-life, absorbed energy dose, age and gender. Results: 212 of 226 patients (93.8%) were treated successfully, 14 (6.2%) showed a hyperthyroidism relapse within 6 months which required a second radioiodine therapy. A success rate of 92.5% (62/67) could also be achieved with 67 patients who were hyperthyroid at the time of RIT. Compared to the therapy successes, the 14 failures achieved significantly lower absorbed doses (223.8 ± 76.6 Gy vs. 285.2 ± 82.1 Gy, p 0.2). Of the 14 failures, n = 8 reached an absorbed dose 250 Gy. Stepwise logistic regression revealed only absorbed energy dose as a variable significantly influencing therapy success (p 0.2) or gender (p = 0.13). Two-tailed Fisher's exact test showed no significant influence of gender on success rates (failures/successes: male 1/36, female 13/176, p = 0.48). Conclusions: Except for the absorbed energy dose, no other significant variable influencing the outcome of radioiodine therapy in Graves' disease without simultaneous carbimazole could be found. It should be noted, though, that 5 therapy failures (2.2%) reached an absorbed energy dose of >250 Gy. (orig.) [de

  8. Islet β cell failure in type 2 diabetes

    Science.gov (United States)

    Prentki, Marc; Nolan, Christopher J.

    2006-01-01

    The major focus of this Review is on the mechanisms of islet β cell failure in the pathogenesis of obesity-associated type 2 diabetes (T2D). As this demise occurs within the context of β cell compensation for insulin resistance, consideration is also given to the mechanisms involved in the compensation process, including mechanisms for expansion of β cell mass and for enhanced β cell performance. The importance of genetic, intrauterine, and environmental factors in the determination of “susceptible” islets and overall risk for T2D is reviewed. The likely mechanisms of β cell failure are discussed within the two broad categories: those with initiation and those with progression roles. PMID:16823478

  9. 28 CFR 92.8 - Providing recruitment services.

    Science.gov (United States)

    2010-07-01

    ... populations to a police department. The recruitment strategies employed may include: (a) A process for... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Providing recruitment services. 92.8... POLICING SERVICES (COPS) Police Recruitment Program Guidelines § 92.8 Providing recruitment services. The...

  10. 40 CFR 92.122 - Smoke meter calibration.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Smoke meter calibration. 92.122 Section 92.122 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... meter calibration. The smokemeter shall be checked according to the following procedure prior to each...

  11. Deformation and Failure Mechanism of Roadway Sensitive to Stress Disturbance and Its Zonal Support Technology

    Directory of Open Access Journals (Sweden)

    Qiangling Yao

    2016-01-01

    Full Text Available The 6163 haulage roadway in the Qidong coal mine passes through a fault zone, which causes severe deformation in the surrounding rock, requiring repeated roadway repairs. Based on geological features in the fault area, we analyze the factors affecting roadway deformation and failure and propose the concept of roadway sensitive to stress disturbance (RSSD. We investigate the deformation and failure mechanism of the surrounding rocks of RSSD using field monitoring, theoretical analysis, and numerical simulation. The deformation of the surrounding rocks involves dilatation of shallow rocks and separation of deep rocks. Horizontal and longitudinal fissures evolve to bed separation and fracture zones; alternatively, fissures can evolve into fracture zones with new fissures extending to deeper rock. The fault affects the stress field of the surrounding rock to ~27 m radius. Its maximum impact is on the vertical stress of the rib rock mass and its minimum impact is on the vertical stress of the floor rock mass. Based on our results, we propose a zonal support system for a roadway passing through a fault. Engineering practice shows that the deformation of the surrounding rocks of the roadway can be effectively controlled to ensure normal and safe production in the mine.

  12. Mechanisms and management of heart failure in active rheumatic ...

    African Journals Online (AJOL)

    Fulminating active rheumatic carditis has been observed for over three decades in this environment with no recent alteration in either the incidence or the pattern of presentation. Heart failure (in this context defined as 'an inadequate circulation at rest together with a raised pulmonary venous pressure, with or without an ...

  13. Diagnostic value of N-terminal pro-brain natriuretic peptide for pleural effusion due to heart failure: a meta-analysis.

    Science.gov (United States)

    Zhou, Q; Ye, Z J; Su, Y; Zhang, J C; Shi, H Z

    2010-08-01

    N-terminal pro-brain natriuretic peptide (NT-proBNP) is a biomarker useful in diagnosis of pleural effusion due to heart failure. Thus far, its overall diagnostic accuracy has not been systematically reviewed. The aim of the present meta-analysis was to establish the overall diagnostic accuracy of the measurement of pleural NT-proBNP for identifying pleural effusion due to heart failure. After a systematic review of English-language studies, sensitivity, specificity, and other measures of accuracy of NT-proBNP concentrations in pleural fluid in the diagnosis of pleural effusion resulting from heart failure were pooled using fixed-effects models. Summary receiver operating characteristic curves were used to summarise overall test performance. Eight publications met the inclusion criteria. The summary estimates for pleural NT-proBNP in the diagnosis of pleural effusion attributable to heart failure were: sensitivity 0.95 (95% CI 0.92 to 0.97), specificity 0.94 (0.92 to 0.96), positive likelihood ratio 14.12 (10.23 to 19.51), negative likelihood ratio 0.06 (0.04 to 0.09) and diagnostic OR 213.87 (122.50 to 373.40). NT-proBNP levels in pleural fluid showed a high diagnostic accuracy and may help accurately differentiate cardiac from non-cardiac conditions in patients presenting with pleural effusion.

  14. Thermo-mechanical failure criteria for x-ray windows and filters and comparison with experiments

    International Nuclear Information System (INIS)

    Wang, Z.; Kuzay, T.M.

    1993-01-01

    Synchrotron x-ray windows are vacuum separators and are usually made of thin beryllium metal. Filters are provided upstream of the window to filter out the soft x-rays to protect the window from overheating and failing. The filters are made of thin carbon products or sometimes beryllium, the same material as the window. Because the window is a vacuum separator, understanding its potential structural failure under thermal load is very important. Current structural failure models for the brazed windows and filters under thermal stresses are not very accurate. Existing models have been carefully examined and found to be inconsistent with the actual failure modes of windows tested. Due to the thinness of the filter/window, the most likely failure mode is thermal buckling. In fact, recent synchrotron tests conducted in Japan on window failures bear out this position. In this paper, failure criteria for filters/windows are proposed, and analyses are performed and compared with the experimental results from various sources. A consistent result is found between the analysis and reported experiments. A series of additional analyses based on the proposed failure criteria is also carried out for filter and window designs for the third generation synchrotron beamline front ends. Comparative results are presented here

  15. Soft Roof Failure Mechanism and Supporting Method for Gob-Side Entry Retaining

    Directory of Open Access Journals (Sweden)

    Hongyun Yang

    2015-10-01

    Full Text Available To study the soft roof failure mechanism and the supporting method for a gateway in a gently inclined coal seam with a dip angle of 16° kept for gob-side entry retaining, and through the methodology of field investigation and numerical and analytical modeling, this paper analyzed the stress evolution law of roof strata at the working face end and determined that the sharp horizontal stress unloading phenomenon along the coal wall side did not appear after the working face advanced. Conversely, the horizontal stress along the gob side instantly decreased and the tensile stress produced, and the vertical stress in the central part of the roof had a higher reduction magnitude as well. An in-depth study indicates that the soft roof of the working face end subsided and seriously separated due to the effect of the front abutment pressure and the roof hanging length above the gob line, as well as certain other factors, including the rapid unloading of the lateral stress, tension and shear on the lower roof rock layer and dynamic disturbance. Those influencing factors also led to rapid crack propagation on a large scale and serious fracturing in the soft roof of the working face end. However, in the gob stress stabilized zone, the soft roof in the gob-side entry retaining has a shearing failure along the filling wall inside affected by the overburden pressure, rock bulking pressure, and roof gravity. To maintain the roof integrity, decrease the roof deformation, and enable the control of the working face end soft roof and the stabilization of the gob-side entry retaining roof, this study suggests that the preferred bolt installation angle for the soft roof situation is 70° based on the rock bolt extrusion strengthening theory.

  16. Myocardial injury after surgery is a risk factor for weaning failure from mechanical ventilation in critical patients undergoing major abdominal surgery.

    Directory of Open Access Journals (Sweden)

    Shu Li

    Full Text Available Myocardial injury after noncardiac surgery (MINS is a newly proposed concept that is common among adults undergoing noncardiac surgery and associated with substantial mortality. We analyzed whether MINS was a risk factor for weaning failure in critical patients who underwent major abdominal surgery.This retrospective study was conducted in the Department of Critical Care Medicine of Peking University People's Hospital. The subjects were all critically ill patients who underwent major abdominal surgery between January 2011 and December 2013. Clinical and laboratory parameters during the perioperative period were investigated. Backward stepwise regression analysis was performed to evaluate MINS relative to the rate of weaning failure. Age, hypertension, chronic renal disease, left ventricular ejection fraction before surgery, Acute Physiologic and Chronic Health Evaluation II score, pleural effusion, pneumonia, acute kidney injury, duration of mechanical ventilation before weaning and the level of albumin after surgery were treated as independent variables.This study included 381 patients, of whom 274 were successfully weaned. MINS was observed in 42.0% of the patients. The MINS incidence was significantly higher in patients who failed to be weaned compared to patients who were successfully weaned (56.1% versus 36.5%; P<0.001. Independent predictive factors of weaning failure were MINS, age, lower left ventricular ejection fraction before surgery and lower serum albumin level after surgery. The MINS odds ratio was 4.098 (95% confidence interval, 1.07 to 15.6; P = 0.04. The patients who were successfully weaned had shorter hospital stay lengths and a higher survival rate than those who failed to be weaned.MINS is a risk factor for weaning failure from mechanical ventilation in critical patients who have undergone major abdominal surgery, independent of age, lower left ventricular ejection fraction before surgery and lower serum albumin levels after

  17. 40 CFR 80.92 - Baseline auditor requirements.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Baseline auditor requirements. 80.92... (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Anti-Dumping § 80.92 Baseline auditor requirements. (a... determination methodology, resulting baseline fuel parameter, volume and emissions values verified by an auditor...

  18. Effect of thermo-mechanical loading histories on fatigue crack growth behavior and the threshold in SUS 316 and SCM 440 steels. For prevention of high cycle thermal fatigue failures

    International Nuclear Information System (INIS)

    Okazaki, Masakazu; Muzvidziwa, Milton; Iwasaki, Akira; Kasahara, Naoto

    2014-01-01

    High cycle thermal fatigue failure of pipes induced by fluid temperature change is one of the interdisciplinary issues to be concerned for long term structural reliability of high temperature components in energy systems. In order to explore advanced life assessment methods to prevent the failure, fatigue crack propagation tests were carried out in a low alloy steel and an austenitic stainless steel under typical thermal and thermo-mechanical histories. Special attention was paid to both the effect of thermo-mechanical loading history on the fatigue crack threshold, as well as to the applicability of continuum fracture mechanics treatment to small or short cracks. It was shown experimentally that the crack-based remaining fatigue life evaluation provided more reasonable assessment than the traditional method based on the semi-empirical law in terms of 'usage factor' for high cycle thermal fatigue failure that is employed in JSME Standard, S017. The crack propagation analysis based on continuum fracture mechanics was almost successfully applied to the small fatigue cracks of which size was comparable to a few times of material grain size. It was also shown the thermo-mechanical histories introduced unique effects to the prior fatigue crack wake, resulting in occasional change in the fatigue crack threshold. (author)

  19. 75 FR 26180 - Effects on Broadband Communications Networks of Damage To or Failure of Network Equipment or...

    Science.gov (United States)

    2010-05-11

    ... FEDERAL COMMUNICATIONS COMMISSION 47 CFR Chapter I [PS Docket No. 10-92; FCC 10-62] Effects on... the National Broadband Plan, the Federal Communications Commission (Commission or FCC) adopted this... networks and to explore potential measures to reduce network vulnerability to failures in network equipment...

  20. Annual Research Progress Report FY 92.

    Science.gov (United States)

    1993-01-11

    of Sports Medicine. 27-30 Surgery. Seattle, WA, Sep 92. May 92. Donovan M: Oral and Maxillofacial Surgery Zeballos RJ: Behind the Scenes of Service...presenting to the Pediatric and Adolescent Clinic for school or sport physicals, between 10 and 17 years of age. Tanner staging will be assessed by examiners... cryotherapy or laser vaporization of the transformation zone of the cervix (Group A). Patients with odd last digit SSN will be assigned to the

  1. [Definition of acute heart failure].

    Science.gov (United States)

    Metra, Marco; Carbone, Giorgio; Lombardi, Carlo; Borghi, Claudio; Vescovo, Giorgio

    2014-02-01

    Acute heart failure (AHF) is a potentially life-threatening condition that may arise as a deterioration of a previous heart failure or may be the first presentation of heart failure. Several causes or precipitating factors have been listed, as well as different mechanisms have been described, thus leading to a broad spectrum of clinical presentations. Symptoms and signs of AHF have a strong clinical and prognostic significance and are kept into consideration to guide disease management. In particular, a higher clinical severity or a worse prognosis are associated with lower blood pressure levels, fluid overload, evidence of myocardial ischemia or renal impairment. Putatively, interventions addressed to restore these factors may play a role in the management of AHF.

  2. Failure mechanisms of superhard materials when cutting superalloys

    International Nuclear Information System (INIS)

    Focke, A.E.; Westermann, F.E.; Ermi, A.; Yavelak, J.; Hoch, M.

    1975-01-01

    The present research studies the reasons for the failure of tungsten carbide tools while cutting superalloys. There is a continuous layer of the superalloy in the bottom of the crater which from time to time is torn away locally, taking tungsten carbide crystal with it. Under recommended cutting conditions a plateau (unworn cutting surface) separates the crater from the cutting edge of the tool when cutting AISI 4340. This plateau is totally absent in all cutting of Inconel 718, even in short, two-minute tests. The crater intersects the cutting edge--only a thin wedge of carbide is left which either breaks off or deforms and wears very rapidly. Temperature measurements carried out by use of an infrared detector aimed on the corner of the tungsten carbide indicate at recommended speeds a sharp rise of the temperature at the beginning of the cutting operation, then a steady-state very slow increase as the cutting continues, and finally just before tool failure a very rapid increase in the temperature again. Scanning and replica electron microscopy through the crater and flank face shows that both under the crater and in the back of the cutting edge a fairly deep layer of ''disturbed metal'' exists in which the tungsten carbide grains are much smaller and have much more rounded edges than in the original material. 10 figures, 4 tables

  3. 40 CFR 92.908 - National security exemption.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false National security exemption. 92.908... Provisions § 92.908 National security exemption. A manufacturer or remanufacturer requesting a national security exemption must state the purpose for which the exemption is required and the request must be...

  4. 40 CFR 92.103 - Test procedures; overview.

    Science.gov (United States)

    2010-07-01

    ... § 92.113. Analytical gases are specified in § 92.112. (c) The power produced by the engine is measured... cycle. (b)(1) The sampling systems specified in this subpart are intended to collect representative... Parts per million and locomotive engines require a heated, continuous hydrocarbon detector; natural gas...

  5. Failure analysis of buried tanks

    International Nuclear Information System (INIS)

    Watkins, R.K.

    1994-01-01

    Failure of a buried tank can be hazardous. Failure may be a leak through which product is lost from the tank; but also through which contamination can occur. Failures are epidemic -- because buried tanks are out of sight, but also because designers of buried tanks have adopted analyses developed for pressure tanks. So why do pressure tanks fail when they are buried? Most failures of buried tanks are really soil failures. Soil compresses, or slips, or liquefies. Soil is not only a load, it is a support without which the tank deforms. A high water table adds to the load on the tank. It also reduces the strength of the soil. Based on tests, structural analyses are proposed for empty tanks buried in soils of various quality, with the water table at various levels, and with internal vacuum. Failure may be collapse tank. Such collapse is a sudden, audible inversion of the cylinder when the sidefill soil slips. Failure may be flotation. Failure may be a leak. Most leaks are fractures in the welds in overlap seams at flat spots. Flat spots are caused by a hard bedding or a heavy surface wheel load. Because the tank wall is double thick at the overlap, shearing stress in the weld is increased. Other weld failures occur when an end plate shears down past a cylinder; or when the tank is supported only at its ends like a beam. These, and other, failures can be analyzed with justifiable accuracy using basic principles of mechanics of materials. 10 figs

  6. Weld Growth Mechanisms and Failure Behavior of Three-Sheet Resistance Spot Welds Made of 5052 Aluminum Alloy

    Science.gov (United States)

    Li, Yang; Yan, Fuyu; Luo, Zhen; Chao, Y. J.; Ao, Sansan; Cui, Xuetuan

    2015-06-01

    This paper investigates the weld nugget formation in three-sheet aluminum alloy resistance spot welding. The nugget formation process in three equal thickness sheets and three unequal thickness sheets of 5052 aluminum alloy were studied. The results showed that the nugget was initially formed at the workpiece/workpiece interfaces (i.e., both upper interface and lower interface). The two small nuggets then grew along the radial direction and axial direction (welding direction) as the welding time increased. Eventually, the two nuggets fused into one large nugget. During the welding process, the Peltier effect between the Cu-Al caused the shift of the nugget in the welding direction. In addition, the mechanical strength and fracture mode of the weld nuggets at the upper and lower interfaces were also studied using tensile shear specimen configuration. Three failure modes were identified, namely interfacial, mixed, and pullout. The critical welding time and critical nugget diameter corresponding to the transitions of these modes were investigated. Finally, an empirical failure load formula for three-sheet weld similar to two-sheet spot weld was developed.

  7. Common cause failures of reactor pressure components

    International Nuclear Information System (INIS)

    Mankamo, T.

    1978-01-01

    The common cause failure is defined as a multiple failure event due to a common cause. The existence of common failure causes may ruin the potential advantages of applying redundancy for reliability improvement. Examples relevant to large mechanical components are presented. Preventive measures against common cause failures, such as physical separation, equipment diversity, quality assurance, and feedback from experience are discussed. Despite the large number of potential interdependencies, the analysis of common cause failures can be done within the framework of conventional reliability analysis, utilizing, for example, the method of deriving minimal cut sets from a system fault tree. Tools for the description and evaluation of dependencies between components are discussed: these include the model of conditional failure causes that are common to many components, and evaluation of the reliability of redundant components subjected to a common load. (author)

  8. 31 CFR 92.4 - Uncirculated Mint Sets.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Uncirculated Mint Sets. 92.4 Section... OPERATIONS AND PROCEDURES Numismatic Operations § 92.4 Uncirculated Mint Sets. Uncirculated Mint Sets, i.e., specially packaged coin sets containing one coin of each denomination struck at the Mints at Philadelphia...

  9. 24 CFR 92.201 - Distribution of assistance.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Distribution of assistance. 92.201 Section 92.201 Housing and Urban Development Office of the Secretary, Department of Housing and Urban... and objective measures of rural housing need, such as poverty and substandard housing, as set forth in...

  10. Failure of endodontic treatment: The usual suspects.

    Science.gov (United States)

    Tabassum, Sadia; Khan, Farhan Raza

    2016-01-01

    Inappropriate mechanical debridement, persistence of bacteria in the canals and apex, poor obturation quality, over and under extension of the root canal filling, and coronal leakage are some of the commonly attributable causes of failure. Despite the high success rate of endodontic treatment, failures do occur in a large number of cases and most of the times can be attributed to the already stated causes. With an ever increasing number of endodontic treatments being done each day, it has become imperative to avoid or minimize the most fundamental of reasons leading to endodontic failure. This paper reviews the most common causes of endodontic failure along with radiographic examples.

  11. 22 CFR 92.40 - Authentication of foreign extradition papers.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Authentication of foreign extradition papers. 92.40 Section 92.40 Foreign Relations DEPARTMENT OF STATE LEGAL AND RELATED SERVICES NOTARIAL AND RELATED SERVICES Specific Notarial Acts § 92.40 Authentication of foreign extradition papers. Foreign...

  12. 45 CFR 92.13 - Participation by faith-based organizations.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Participation by faith-based organizations. 92.13 Section 92.13 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION UNIFORM...-Award Requirements § 92.13 Participation by faith-based organizations. The funds provided under this...

  13. 24 CFR 92.302 - Housing education and organizational support.

    Science.gov (United States)

    2010-04-01

    ... organizational support. 92.302 Section 92.302 Housing and Urban Development Office of the Secretary, Department... Organizations § 92.302 Housing education and organizational support. HUD is authorized to provide education and organizational support assistance, in conjunction with HOME funds made available to community housing development...

  14. Effect of Progressive Heart Failure on Cerebral Hemodynamics and Monoamine Metabolism in CNS.

    Science.gov (United States)

    Mamalyga, M L; Mamalyga, L M

    2017-07-01

    Compensated and decompensated heart failure are characterized by different associations of disorders in the brain and heart. In compensated heart failure, the blood flow in the common carotid and basilar arteries does not change. Exacerbation of heart failure leads to severe decompensation and is accompanied by a decrease in blood flow in the carotid and basilar arteries. Changes in monoamine content occurring in the brain at different stages of heart failure are determined by various factors. The functional exercise test showed unequal monoamine-synthesizing capacities of the brain in compensated and decompensated heart failure. Reduced capacity of the monoaminergic systems in decompensated heart failure probably leads to overstrain of the central regulatory mechanisms, their gradual exhaustion, and failure of the compensatory mechanisms, which contributes to progression of heart failure.

  15. Modeling Epidemic Network Failures

    DEFF Research Database (Denmark)

    Ruepp, Sarah Renée; Fagertun, Anna Manolova

    2013-01-01

    This paper presents the implementation of a failure propagation model for transport networks when multiple failures occur resulting in an epidemic. We model the Susceptible Infected Disabled (SID) epidemic model and validate it by comparing it to analytical solutions. Furthermore, we evaluate...... the SID model’s behavior and impact on the network performance, as well as the severity of the infection spreading. The simulations are carried out in OPNET Modeler. The model provides an important input to epidemic connection recovery mechanisms, and can due to its flexibility and versatility be used...... to evaluate multiple epidemic scenarios in various network types....

  16. Failure mechanisms of closed-cell aluminum foam under monotonic and cyclic loading

    International Nuclear Information System (INIS)

    Amsterdam, E.; De Hosson, J.Th.M.; Onck, P.R.

    2006-01-01

    This paper concentrates on the differences in failure mechanisms of Alporas closed-cell aluminum foam under either monotonic or cyclic loading. The emphasis lies on aspects of crack nucleation and crack propagation in relation to the microstructure. The cell wall material consists of Al dendrites and an interdendritic network of Al 4 Ca and Al 22 CaTi 2 precipitates. In situ scanning electron microscopy monotonic tensile tests were performed on small samples to study crack nucleation and propagation. Digital image correlation was employed to map the strain in the cell wall on the characteristic microstructural length scale. Monotonic tensile tests and tension-tension fatigue tests were performed on larger samples to observe the overall fracture behavior and crack path in monotonic and cyclic loading. The crack nucleation and propagation path in both loading conditions are revealed and it can be concluded that during monotonic tension cracks nucleate in and propagate partly through the Al 4 Ca interdendritic network, whereas under cyclic loading cracks nucleate and propagate through the Al dendrites

  17. Evaluation of the onset of failure under mechanical and thermal stresses on luting agent for metal-ceramic and metal crowns by finite element analysis

    Directory of Open Access Journals (Sweden)

    Hema Agnihotri

    2010-01-01

    Full Text Available Long-term clinical failures of cemented prosthesis depend, to a large extent, on the integrity of the luting agent. The causative factors that lead to microfracture and, hence, failure of the luting agents are the stresses acting inside the oral cavity. Therefore, the present study was designed to develop an understanding of the relationship between stresses in the tooth and the failure potential of the luting agent. Two-dimensional finite element stress analysis was performed on the mandibular second premolar. The behavior of zinc-phosphate and glass-ionomer were studied under different crowns (metal-ceramic and metal crown and loading conditions (mechanical force of 450 N acting vertically over the occlusal surface, thermal loads of 60° and 0°C. It was observed from the study that failure threshold of the luting agent was influenced both by the elastic modulus of the luting agent and by the type of the crown.

  18. Right heart failure and "failure to thrive" after left ventricular assist device: clinical predictors and outcomes.

    Science.gov (United States)

    Baumwol, Jay; Macdonald, Peter S; Keogh, Anne M; Kotlyar, Eugene; Spratt, Phillip; Jansz, Paul; Hayward, Christopher S

    2011-08-01

    This study determined predictors of early post-operative right heart failure (RHF) and its consequences, as well as predictors of those who clinically thrive longer term after insertion of a continuous-flow left ventricular assist device (LVAD). Pre-operative and latest follow-up data were analyzed for 40 consecutive patients who received third-generation centrifugal-flow LVADs. RHF was defined using previously described criteria, including post-operative inotropes, pulmonary vasodilator use, or right-sided mechanical support. Patients were also categorized according to clinical outcomes after LVAD insertion. LVADs were implanted as a bridge to transplantation (BTT) in 33 patients and as destination therapy in 7. Before LVAD implant, 22 patients were Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS) level 1, and 17 were at level 2. Temporary mechanical assistance was present in 50% of the cohort at LVAD implantation. The 6-month survival/progression to transplant was 92.5%. Average LVAD support time was 385 days (range, 21-1,011 days). RHF developed postoperatively in 13 of 40 patients (32.5%). RHF patients had more severe pre-operative tricuspid incompetence than non-RHF patients. The BTT patients with evidence of RHF had poorer survival to transplant (6 of 11 [54.5%]) than those without RHF (20 of 22 [90.9%]), p = 0.027). There were no other hemodynamic or echocardiographic predictors of short-term RHF. After LVAD, 22 of the 40 patients (55%) thrived clinically. For BTT patients, 20 of 21 (95%) of those who thrived progressed to transplant or were alive at latest follow-up vs 6 of 12 (50%) of those who failed to thrive (FTT; p thrived. Early post-operative RHF results in poorer survival/progression to transplantation for BTT patients and is predicted by greater pre-operative tricuspid incompetence. The most important predictor for those who will clinically thrive longer-term after LVAD insertion is younger age. Crown Copyright © 2011

  19. Perioperative acute renal failure.

    LENUS (Irish Health Repository)

    Mahon, Padraig

    2012-02-03

    PURPOSE OF REVIEW: Recent biochemical evidence increasingly implicates inflammatory mechanisms as precipitants of acute renal failure. In this review, we detail some of these pathways together with potential new therapeutic targets. RECENT FINDINGS: Neutrophil gelatinase-associated lipocalin appears to be a sensitive, specific and reliable biomarker of renal injury, which may be predictive of renal outcome in the perioperative setting. For estimation of glomerular filtration rate, cystatin C is superior to creatinine. No drug is definitively effective at preventing postoperative renal failure. Clinical trials of fenoldopam and atrial natriuretic peptide are, at best, equivocal. As with pharmacological preconditioning of the heart, volatile anaesthetic agents appear to offer a protective effect to the subsequently ischaemic kidney. SUMMARY: Although a greatly improved understanding of the pathophysiology of acute renal failure has offered even more therapeutic targets, the maintenance of intravascular euvolaemia and perfusion pressure is most effective at preventing new postoperative acute renal failure. In the future, strategies targeting renal regeneration after injury will use bone marrow-derived stem cells and growth factors such as insulin-like growth factor-1.

  20. 24 CFR 92.356 - Conflict of interest.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Conflict of interest. 92.356... Development HOME INVESTMENT PARTNERSHIPS PROGRAM Other Federal Requirements § 92.356 Conflict of interest. (a... subrecipients, the conflict of interest provisions in 24 CFR 85.36 and 24 CFR 84.42, respectively, apply. In all...

  1. 75 FR 49870 - Effects on Broadband Communications Networks of Damage to or Failure of Network Equipment or...

    Science.gov (United States)

    2010-08-16

    ... FEDERAL COMMUNICATIONS COMMISSION 47 CFR Chapter I [PS Docket No. 10-92; DA 10-1357] Effects on Broadband Communications Networks of Damage to or Failure of Network Equipment or Severe Overload AGENCY... with rubber bands or fasteners. Any envelopes must be disposed of before entering the building...

  2. Long non-coding RNA H19 suppresses retinoblastoma progression via counteracting miR-17-92 cluster.

    Science.gov (United States)

    Zhang, Aihui; Shang, Weiwei; Nie, Qiaoli; Li, Ting; Li, Suhui

    2018-04-01

    Long non-coding RNAs (lncRNAs) are frequently dysregulated and play important roles in many cancers. lncRNA H19 is one of the earliest discovered lncRNAs which has diverse roles in different cancers. However, the expression, roles, and action mechanisms of H19 in retinoblastoma are still largely unknown. In this study, we found that H19 is downregulated in retinoblastoma tissues and cell lines. Gain-of-function and loss-of-function assays showed that H19 inhibits retinoblastoma cell proliferation, induces retinoblastoma cell cycle arrest and cell apoptosis. Mechanistically, we identified seven miR-17-92 cluster binding sites on H19, and found that H19 directly bound to miR-17-92 cluster via these seven binding sites. Through binding to miR-17-92 cluster, H19 relieves the suppressing roles of miR-17-92 cluster on p21. Furthermore, H19 represses STAT3 activation induced by miR-17-92 cluster. Hence, our results revealed that H19 upregulates p21 expression, inhibits STAT3 phosphorylation, and downregulates the expression of STAT3 target genes BCL2, BCL2L1, and BIRC5. In addition, functional assays demonstrated that the mutation of miR-17-92 cluster binding sites on H19 abolished the proliferation inhibiting, cell cycle arrest and cell apoptosis inducing roles of H19 in retinoblastoma. In conclusion, our data suggested that H19 inhibits retinoblastoma progression via counteracting the roles of miR-17-92 cluster, and implied that enhancing the action of H19 may be a promising therapeutic strategy for retinoblastoma. © 2017 Wiley Periodicals, Inc.

  3. Achieving zero fuel failure rates at Armenian NPP

    International Nuclear Information System (INIS)

    Muradyan, T.

    2015-01-01

    In spite of the zero fuel failure rates in Armenian NPP there is a continued high level of interest. The generally accepted goal of achieving a zero failure rate requires detailed knowledge of existing failure mechanisms, their root causes and remedies. In this paper the foreign material management; water-chemistry regime; refuel machine management system and the transition into the use of vibration proof fuel of average enrichment 3,82% are presented

  4. 22 CFR 92.28 - Signature of affiant on affidavit.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Signature of affiant on affidavit. 92.28 Section 92.28 Foreign Relations DEPARTMENT OF STATE LEGAL AND RELATED SERVICES NOTARIAL AND RELATED SERVICES Specific Notarial Acts § 92.28 Signature of affiant on affidavit. The signature of the affiant is...

  5. Right heart dysfunction and failure in heart failure with preserved ejection fraction: mechanisms and management. Position statement on behalf of the Heart Failure Association of the European Society of Cardiology.

    Science.gov (United States)

    Gorter, Thomas M; van Veldhuisen, Dirk J; Bauersachs, Johann; Borlaug, Barry A; Celutkiene, Jelena; Coats, Andrew J S; Crespo-Leiro, Marisa G; Guazzi, Marco; Harjola, Veli-Pekka; Heymans, Stephane; Hill, Loreena; Lainscak, Mitja; Lam, Carolyn S P; Lund, Lars H; Lyon, Alexander R; Mebazaa, Alexandre; Mueller, Christian; Paulus, Walter J; Pieske, Burkert; Piepoli, Massimo F; Ruschitzka, Frank; Rutten, Frans H; Seferovic, Petar M; Solomon, Scott D; Shah, Sanjiv J; Triposkiadis, Filippos; Wachter, Rolf; Tschöpe, Carsten; de Boer, Rudolf A

    2018-01-01

    There is an unmet need for effective treatment strategies to reduce morbidity and mortality in patients with heart failure with preserved ejection fraction (HFpEF). Until recently, attention in patients with HFpEF was almost exclusively focused on the left side. However, it is now increasingly recognized that right heart dysfunction is common and contributes importantly to poor prognosis in HFpEF. More insights into the development of right heart dysfunction in HFpEF may aid to our knowledge about this complex disease and may eventually lead to better treatments to improve outcomes in these patients. In this position paper from the Heart Failure Association of the European Society of Cardiology, the Committee on Heart Failure with Preserved Ejection Fraction reviews the prevalence, diagnosis, and pathophysiology of right heart dysfunction and failure in patients with HFpEF. Finally, potential treatment strategies, important knowledge gaps and future directions regarding the right side in HFpEF are discussed. © 2017 The Authors. European Journal of Heart Failure © 2017 European Society of Cardiology.

  6. MiR-17-92 cluster and immunity.

    Science.gov (United States)

    Kuo, George; Wu, Chao-Yi; Yang, Huang-Yu

    2018-05-29

    MicroRNAs (MiR, MiRNA) are small single-stranded non-coding RNAs that play an important role in the regulation of gene expression. MircoRNAs exert their effect by binding to complementary nucleotide sequences of the targeted messenger RNA, thus forming an RNA-induced silencing complex. The mircoRNA-17-92 cluster encoded by the miR-17-92 host gene is first found in malignant B-cell lymphoma. Recent research identifies the miR-17-92 cluster as a crucial player in the development of the immune system, the heart, the lung, and oncogenic events. In light of the miR-17-92 cluster's increasing role in regulating the immune system, our review will discuss the latest knowledge regarding its involvement in cells of both innate and adaptive immunity, including B cells, subsets of T cells such as Th1, Th2, T follicular helper cells, regulatory T cells, monocytes/macrophages, NK cells, and dendritic cells, and the possible targets that are regulated by its members. Copyright © 2018. Published by Elsevier B.V.

  7. Technology integration box beam failure study

    Science.gov (United States)

    Shuart, M. J.; Ambur, Damodar R.; Davis, D. D., Jr.; Davis, R. C.; Farley, G. L.; Lotts, C. G.; Wang, J. T.

    1993-01-01

    Composite structures have the potential to be cost-effective, structurally efficient primary aircraft structures. The Advanced Composites Technology (ACT) Program has the goal to develop the technology to exploit this potential for heavily loaded aircraft structures. As part of the ACT Program, Lockheed Aeronautical Systems Company completed the design and fabrication of the Technology Integration Box Beam (TIBB). The TIBB is an advanced composite prototype structure for the center wing section of the C-130 aircraft. Lockheed subjected the TIBB to downbending, upbending, torsion and combined upbending and torsion load conditions to verify the design. The TIBB failed at 83 percent of design ultimate load for the combined upbending and torsion load condition. The objective of this paper is to describe the mechanisms that led to the failure of the TIBB. The results of a comprehensive analytical and experimental study are presented. Analytical results include strain and deflection results from both a global analysis of the TIBB and a local analysis of the failure region. These analytical results are validated by experimental results from the TIBB tests. The analytical and experimental results from the TIBB tests are used to determine a sequence of events that resulted in failure of the TIBB. A potential cause of failure is high stresses in a stiffener runout region. Analytical and experimental results are also presented for a stiffener runout specimen that was used to simulate the TIBB failure mechanisms.

  8. Fuel failure in water reactors: Causes and mitigation. Proceedings of a technical meeting

    International Nuclear Information System (INIS)

    2003-03-01

    The objective of this technical meeting (TM) was to review the present knowledge of the causes and mechanisms of fuel failure in water reactors during normal operational conditions. Emphasis has been given to analysis of failure causes and their mitigation by means of design as well as plant and core operation including strategies for operation with failed fuel. Some information on detection techniques (on-line monitoring and diagnostics, flux tilting, sipping techniques, etc) has also been presented. This TM presented also the progress on the above-mentioned subjects since the last meeting held in 1992 (Dimitrovgrad, Russian Federation). The topics covered in the papers were as follows: Experience feedback on fuel reliability (8 papers); Strategies to avoid or mitigate fuel failures (4 papers); Experimental studies on fuel failures and degradation mechanisms (4 papers); Modelling of fuel failure mechanisms (3 papers); Detection and monitoring during operation or outage (4 papers); Modelling and assessment of fuel failures (3 papers)

  9. Nanowire failure: long = brittle and short = ductile.

    Science.gov (United States)

    Wu, Zhaoxuan; Zhang, Yong-Wei; Jhon, Mark H; Gao, Huajian; Srolovitz, David J

    2012-02-08

    Experimental studies of the tensile behavior of metallic nanowires show a wide range of failure modes, ranging from ductile necking to brittle/localized shear failure-often in the same diameter wires. We performed large-scale molecular dynamics simulations of copper nanowires with a range of nanowire lengths and provide unequivocal evidence for a transition in nanowire failure mode with change in nanowire length. Short nanowires fail via a ductile mode with serrated stress-strain curves, while long wires exhibit extreme shear localization and abrupt failure. We developed a simple model for predicting the critical nanowire length for this failure mode transition and showed that it is in excellent agreement with both the simulation results and the extant experimental data. The present results provide a new paradigm for the design of nanoscale mechanical systems that demarcates graceful and catastrophic failure. © 2012 American Chemical Society

  10. Assessing cell fusion and cytokinesis failure as mechanisms of clone 9 hepatocyte multinucleation in vitro.

    Science.gov (United States)

    Simic, Damir; Euler, Catherine; Thurby, Christina; Peden, Mike; Tannehill-Gregg, Sarah; Bunch, Todd; Sanderson, Thomas; Van Vleet, Terry

    2012-08-01

    In this in vitro model of hepatocyte multinucleation, separate cultures of rat Clone 9 cells are labeled with either red or green cell tracker dyes (Red Cell Tracker CMPTX or Vybrant CFDA SE Cell Tracer), plated together in mixed-color colonies, and treated with positive or negative control agents for 4 days. The fluorescent dyes become cell-impermeant after entering cells and are not transferred to adjacent cells in a population, but are inherited by daughter cells after fusion. The mixed-color cultures are then evaluated microscopically for multinucleation and analysis of the underlying mechanism (cell fusion/cytokinesis). Multinucleated cells containing only one dye have undergone cytokinesis failure, whereas dual-labeled multinucleated cells have resulted from fusion. © 2012 by John Wiley & Sons, Inc.

  11. 24 CFR 92.600 - Purpose.

    Science.gov (United States)

    2010-04-01

    ... INVESTMENT PARTNERSHIPS PROGRAM American Dream Downpayment Initiative § 92.600 Purpose. This subpart describes the requirements for the HOME Program American Dream Downpayment Initiative (ADDI). Through the...

  12. Forensic Study of Early Failures with Unbonded Concrete Overlays

    Science.gov (United States)

    2017-11-01

    A forensic investigation was conducted to identify failure mechanisms responsible for early failures of unbonded concrete overlays on selected projects in Ohio, including I-70 in Madison County, I-77 in Washington and Noble Counties, and I-90 in Lake...

  13. Focus on renal congestion in heart failure.

    Science.gov (United States)

    Afsar, Baris; Ortiz, Alberto; Covic, Adrian; Solak, Yalcin; Goldsmith, David; Kanbay, Mehmet

    2016-02-01

    Hospitalizations due to heart failure are increasing steadily despite advances in medicine. Patients hospitalized for worsening heart failure have high mortality in hospital and within the months following discharge. Kidney dysfunction is associated with adverse outcomes in heart failure patients. Recent evidence suggests that both deterioration in kidney function and renal congestion are important prognostic factors in heart failure. Kidney congestion in heart failure results from low cardiac output (forward failure), tubuloglomerular feedback, increased intra-abdominal pressure or increased venous pressure. Regardless of the cause, renal congestion is associated with increased morbidity and mortality in heart failure. The impact on outcomes of renal decongestion strategies that do not compromise renal function should be explored in heart failure. These studies require novel diagnostic markers that identify early renal damage and renal congestion and allow monitoring of treatment responses in order to avoid severe worsening of renal function. In addition, there is an unmet need regarding evidence-based therapeutic management of renal congestion and worsening renal function. In the present review, we summarize the mechanisms, diagnosis, outcomes, prognostic markers and treatment options of renal congestion in heart failure.

  14. Variable load failure mechanism for high-speed load sensing electro-hydrostatic actuator pump of aircraft

    Directory of Open Access Journals (Sweden)

    Cun SHI

    2018-05-01

    Full Text Available This paper presents a novel transient lubrication model for the analysis of the variable load failure mechanism of high-speed pump used in Load Sensing Electro-Hydrostatic Actuator (LS-EHA. Focusing on the slipper/swashplate pair partial abrasion, which is considered as the dominant failure mode in the high-speed condition, slipper dynamic models are established. A forth sliding motion of the slipper on the swashplate surface is presented under the fact that the slipper center of mass will rotate around the center of piston ball when the swashplate angle is dynamically adjusted. Besides, extra inertial tilting moments will be produced for the slipper based on the theorem on translation of force, which will increase rapidly when LS-EHA pump operates under high-speed condition. Then, a dynamic lubricating model coupling with fluid film thickness field, temperature field and pressure field is proposed. The deformation effects caused by thermal deflection and hydrostatic pressure are considered. A numerical simulation model is established to validate the effectiveness and accuracy of the proposed model. Finally, based on the load spectrum of aircraft flight profile, the variable load conditions and the oil film characteristics are analyzed, and series of variable load rules of oil film thickness with variable speed/variable pressure/variable displacement are concluded. Keywords: Coupling lubrication model, Electro-Hydrostatic Actuator (EHA, High-speed pump, Partial abrasion, Slipper pair, Variable load

  15. Progressive Damage and Failure Analysis of Composite Laminates

    Science.gov (United States)

    Joseph, Ashith P. K.

    Composite materials are widely used in various industries for making structural parts due to higher strength to weight ratio, better fatigue life, corrosion resistance and material property tailorability. To fully exploit the capability of composites, it is required to know the load carrying capacity of the parts made of them. Unlike metals, composites are orthotropic in nature and fails in a complex manner under various loading conditions which makes it a hard problem to analyze. Lack of reliable and efficient failure analysis tools for composites have led industries to rely more on coupon and component level testing to estimate the design space. Due to the complex failure mechanisms, composite materials require a very large number of coupon level tests to fully characterize the behavior. This makes the entire testing process very time consuming and costly. The alternative is to use virtual testing tools which can predict the complex failure mechanisms accurately. This reduces the cost only to it's associated computational expenses making significant savings. Some of the most desired features in a virtual testing tool are - (1) Accurate representation of failure mechanism: Failure progression predicted by the virtual tool must be same as those observed in experiments. A tool has to be assessed based on the mechanisms it can capture. (2) Computational efficiency: The greatest advantages of a virtual tools are the savings in time and money and hence computational efficiency is one of the most needed features. (3) Applicability to a wide range of problems: Structural parts are subjected to a variety of loading conditions including static, dynamic and fatigue conditions. A good virtual testing tool should be able to make good predictions for all these different loading conditions. The aim of this PhD thesis is to develop a computational tool which can model the progressive failure of composite laminates under different quasi-static loading conditions. The analysis

  16. Failure analysis of stainless steel femur fixation plate.

    Science.gov (United States)

    Hussain, P B; Mohammad, M

    2004-05-01

    Failure analysis was performed to investigate the failure of the femur fixation plate which was previously fixed on the femur of a girl. Radiography, metallography, fractography and mechanical testing were conducted in this study. The results show that the failure was due to the formation of notches on the femur plate. These notches act as stress raisers from where the cracks start to propagate. Finally fracture occurred on the femur plate and subsequently, the plate failed.

  17. Local anesthetic failure associated with inflammation: verification of the acidosis mechanism and the hypothetic participation of inflammatory peroxynitrite

    Directory of Open Access Journals (Sweden)

    Takahiro Ueno

    2008-11-01

    Full Text Available Takahiro Ueno1, Hironori Tsuchiya2, Maki Mizogami1, Ko Takakura11Department of Anesthesiology, Asahi University School of Dentistry, Mizuho, Gifu, Japan; 2Department of Dental Basic Education, Asahi University School of Dentistry, Mizuho, Gifu, JapanAbstract: The presence of inflammation decreases local anesthetic efficacy, especially in dental anesthesia. Although inflammatory acidosis is most frequently cited as the cause of such clinical phenomena, this has not been experimentally proved. We verified the acidosis mechanism by studying the drug and membrane lipid interaction under acidic conditions together with proposing an alternative hypothesis. Liposomes and nerve cell model membranes consisting of phospholipids and cholesterol were treated at different pH with lidocaine, prilocaine and bupivacaine (0.05%–0.2%, w/v. Their membrane-interactive potencies were compared by the induced-changes in membrane fluidity. Local anesthetics fluidized phosphatidylcholine membranes with the potency being significantly lower at pH 6.4 than at pH 7.4 (p < 0.01, supporting the acidosis theory. However, they greatly fluidized nerve cell model membranes even at pH 6.4 corresponding to inflamed tissues, challenging the conventional mechanism. Local anesthetics acted on phosphatidylserine liposomes, as well as nerve cell model membranes, at pH 6.4 with almost the same potency as that at pH 7.4, but not on phosphatidylcholine, phosphatidylethanolamine and sphingomyelin liposomes. Since the positively charged anesthetic molecules are able to interact with nerve cell membranes by ion-paring with anionic components like phosphatidylserine, tissue acidosis is not essentially responsible for the local anesthetic failure associated with inflammation. The effects of local anesthetics on nerve cell model membranes were inhibited by treating with peroxynitrite (50 μM, suggesting that inflammatory cells producing peroxynitrite may affect local anesthesia

  18. The Renal Nerves in Chronic Heart Failure: Afferent and Efferent Mechanisms

    Directory of Open Access Journals (Sweden)

    Alicia Marie Schiller

    2015-08-01

    Full Text Available The function of the renal nerves has been an area of scientific and medical interest for many years. The recent advent of a minimally invasive catheter-based method of renal denervation has renewed excitement in understanding the afferent and efferent actions of the renal nerves in multiple diseases. While hypertension has been the focus of much this work, less attention has been given to the role of the renal nerves in the development of chronic heart failure (CHF. Recent studies from our laboratory and those of others implicate an essential role for the renal nerves in the development and progression of CHF. Using a rabbit tachycardia model of CHF and surgical unilateral renal denervation, we provide evidence for both renal efferent and afferent mechanisms in the pathogenesis of CHF. Renal denervation prevented the decrease in renal blood flow observed in CHF while also preventing increases in Angiotensin-II receptor protein in the microvasculature of the renal cortex. Renal denervation in CHF also reduced physiological markers of autonomic dysfunction including an improvement in arterial baroreflex function, heart rate variability, and decreased resting cardiac sympathetic tone. Taken together, the renal sympathetic nerves are necessary in the pathogenesis of CHF via both efferent and afferent

  19. Use of non-invasive mechanical ventilation in the Emergency Department, clinical outcomes and correlates of failure

    Directory of Open Access Journals (Sweden)

    Paolo Groff

    2008-09-01

    Full Text Available

    Background: Despite several studies having been carried in this organizational context, there is an absence of information about the effectiveness of non-invasive mechanical ventilation (NIV in Emergency Departments (ED, based on a number of suitable patients with acute respiratory failure (ARF of different aetiology. In particular, it has not yet been defined as to whether the context of the ED suits the necessary requirement of quality for the correct application of the method and if the obtained results are different from those taken in other studies in general or respiratory intensive care unit. Finally there are few data related to the predictive factors to NIV failure (endotracheal intubation, in-hospital mortality when applied in the emergency setting.

    Methods: To answer these questions we have retrospectively studied a population of 210 patients (95 with COPD exsacerbation ; 92 with acute cardiogenic pulmonary oedema; 23 with severe community acquired pneumonia treated for ARF in the “critical area” of four Italian level II Emergency Departments. For all patients demographic data; some comorbidities (diabetes, dementia, sopraventricular arrhythmias, obesity; the physiological scores (Kelly, SAPS II, Apache II; the need for pharmacological sedation; vital and blood gas parameters (evaluated at entry, after one hour of treatment and before its suspension; the ventilatory modality applied (CPAP or PSV + PEEP and some parameters of in-hospital stay (duration of the hospitalization in the critical area, duration of ventilation, compliance to the treatment, patient's refusal to continue it, development of skin necrosis, need for endotracheal intubation, in-hospital mortality were considered. Finally demographic, event of death with Cox regression or to the need for ETI through linear regression analysis.

    Results: Globally, in-hospital mortality reached 13,3%, the percentage

  20. Boiler and HRSG tube failures. Lesson 4: Hydrogen damage

    Energy Technology Data Exchange (ETDEWEB)

    Dooley, R. Barry; Bursik, Albert

    2010-02-15

    University 101 courses are typically designed to help incoming first-year undergraduate students to adjust to the university, develop a better understanding of the college environment, and acquire essential academic success skills. Why are we offering a special Boiler and HRSG Tube Failures PPChem 101? The answer is simple, yet very conclusive: There is a lack of knowledge on the identification of tube failure mechanisms and for the implementation of adequate counteractions in many power plants, particularly at industrial power and steam generators. There is a lack of knowledge to prevent repeat tube failures. The vast majority of BTF/HTF have been, and continue to be, repeat failures. It is hoped that the information about the failure mechanisms of BTF supplied in this course will help to put plant engineers and chemists on the right track. The major goal of this course is the avoidance of repeat BTF. This fourth lesson is focused on hydrogen damage of water-touched tubes in conventional boilers and in the high-pressure evaporators of heat recovery steam generators. (orig.)

  1. Boiler and HRSG tube failures. Lesson 5. Caustic gouging

    Energy Technology Data Exchange (ETDEWEB)

    Dooley, Barry R.; Bursik, Albert

    2010-03-15

    University 101 courses are typically designed to help incoming first-year undergraduate students to adjust to the university, develop a better understanding of the college environment, and acquire essential academic success skills. Why are we offering a special Boiler and HRSG Tube Failures PPChem 101? The answer is simple, yet very conclusive: - There is a lack of knowledge on the identification of tube failure mechanisms and for the implementation of adequate counteractions in many power plants, particularly at industrial power and steam generators. - There is a lack of knowledge to prevent repeat tube failures. The vast majority of BTF/HTF have been, and continue to be, repeat failures. It is hoped that the information about the failure mechanisms of BTF supplied in this course will help to put plant engineers and chemists on the right track. The major goal of this course is the avoidance of repeat BTF. This fifth lesson is focused on caustic gouging of water-touched tubes in conventional boilers and in the high-pressure evaporators of heat recovery steam generators. (orig.)

  2. Incidence and predictors of 6 months mortality after an acute heart failure event in rural Uganda: The Mbarara Heart Failure Registry (MAHFER).

    Science.gov (United States)

    Abeya, Fardous Charles; Lumori, Boniface Amanee Elias; Akello, Suzan Joan; Annex, Brian H; Buda, Andrew J; Okello, Samson

    2018-03-29

    We sought to estimate the incidence and predictors of all-cause mortality 6 months after heart failure hospitalization in Uganda. Mbarara Heart Failure Registry is a cohort of patients hospitalized with a clinical diagnosis of heart failure at Mbarara Regional Referral Hospital, Uganda. We measured serum electrolytes, cardiac markers, and echocardiograms. All participants were followed until death or end of 6 months. We used Fine and Gray models to estimate the incidence and predictors all-cause mortality. A total of 215 participants were enrolled, 141 (66%) were women, and mean age 53 (standard deviation 22) years. Nineteen (9%) had diabetes, 40 (19%) had HIV, and 119 (55%) had hypertension. The overall incidence of all-cause mortality was 3.58 (95% CI 2.92, 4.38) per 1000 person-days. Men had higher incidence of death compared to women (4.02 vs 3.37 per 1000 person-days). The incidence of all-cause mortality during hospitalization was almost twice that of in the community (27.5 vs 14.77 per 1000 person-days). In adjusted analysis, increasing age, NYHA class IV, decreasing renal function, smoking, each unit increase in serum levels of Potassium, BNP, and Creatine kinase-MB predicted increased incidence of 6 months all-cause death whereas taking beta-blockers and having an index admission on a weekend compared to a week day predicted survival. There is a high incidence of all-cause mortality occurring in-hospital among patients hospitalized with heart failure in rural Uganda. Heart failure directed therapies should be instituted to curb heart failure-related mortality. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Multistage centrifugal extractor of E92 model

    International Nuclear Information System (INIS)

    Wang Houheng; Xing Zhifu; Liu Xiangyan; Liu Shi; Wan Yi; Liang Kui; Hu Benyue

    1987-01-01

    The E92 Model multistage centrifugal extractor has been developed for the recovery of uranium and plutonium from spent nuclear reactor fuel. It offers the following advantages: shorter residence time, low hlod-up, less space required, and simplified startup and shutdown procedures, etc. Experiments on performaces of hydraulics, mass-transfer and crud discharging have proved that this unit provides a wide range of operation. The total flow rate can very from 300 to 450 L/h at organic to aqueous flow ratio of 1 to 5. The unit is designed for ratio of oranic to aqueous phase densities at a range of 0.75 to 0.85. Overall extraction and back-extraction efficiencies which is great than 99.99% were achieved using natural uranium as feed. Experiments showed that mechanical assembling and disassembling of the unit could be rapidly carried out. A run continuning up to 500 hours was stable

  4. Tensile Mechanical Properties and Failure Modes of a Basalt Fiber/Epoxy Resin Composite Material

    Directory of Open Access Journals (Sweden)

    Jingjing He

    2018-01-01

    Full Text Available Uniaxial tensile tests of basalt fiber/epoxy (BF/EP composite material with four different fiber orientations were conducted under four different fiber volume fractions, and the variations of BF/EP composite material failure modes and tensile mechanical properties were analyzed. The results show that when the fiber volume fraction is constant, the tensile strength, elastic modulus, and limiting strain of BF/EP composite material all decrease with increasing fiber orientation angle. When the fiber orientation angle is constant, the tensile strength, elastic modulus, and limiting strain of BF/EP composite material all increase with increasing fiber volume fraction. A certain degree of fiber clustering appears in the epoxy resin when the basalt fiber volume fraction is >1.2%. The fiber equidistribution coefficient and clustering fiber content were used to characterize the basalt fiber clustering effect. With the increase of fiber volume fraction, the clustering fiber content gradually increased, but the fiber equidistribution coefficient decreased. Meanwhile, based on Tsai theory, a geometric model and a tensile mechanical model of the clustering fiber are established. By considering the fiber clustering effect, the BF/EP composite material tensile strength is calculated, and the calculated values are close to the experimental results.

  5. Radiation Failures in Intel 14nm Microprocessors

    Science.gov (United States)

    Bossev, Dobrin P.; Duncan, Adam R.; Gadlage, Matthew J.; Roach, Austin H.; Kay, Matthew J.; Szabo, Carl; Berger, Tammy J.; York, Darin A.; Williams, Aaron; LaBel, K.; hide

    2016-01-01

    In this study the 14 nm Intel Broadwell 5th generation core series 5005U-i3 and 5200U-i5 was mounted on Dell Inspiron laptops, MSI Cubi and Gigabyte Brix barebones and tested with Windows 8 and CentOS7 at idle. Heavy-ion-induced hard- and catastrophic failures do not appear to be related to the Intel 14nm Tri-Gate FinFET process. They originate from a small (9 m 140 m) area on the 32nm planar PCH die (not the CPU) as initially speculated. The hard failures seem to be due to a SEE but the exact physical mechanism has yet to be identified. Some possibilities include latch-ups, charge ion trapping or implantation, ion channels, or a combination of those (in biased conditions). The mechanism of the catastrophic failures seems related to the presence of electric power (1.05V core voltage). The 1064 nm laser mimics ionization radiation and induces soft- and hard failures as a direct result of electron-hole pair production, not heat. The 14nm FinFET processes continue to look promising for space radiation environments.

  6. Structural integrity and failure mechanisms of a smart piezoelectric actuator under a cyclic bending mode

    International Nuclear Information System (INIS)

    Woo, Sung-Choong; Goo, Nam Seo

    2008-01-01

    Information on the onset and evolution of damage within materials is essential for guaranteeing the integrity of actuator systems. The authors have evaluated the structural integrity and the failure mechanisms of smart composite actuators with a PZT ceramic plate under electric cyclic loading. For this, two kinds of actuators, actuator 1 and actuator 2, were manufactured. Prior to the main testing, performance testing was performed on the actuators to determine their resonant frequencies. Electric cyclic tests were conducted up to twenty million cycles. An acoustic emission technique was used for monitoring the damage evolution in real time. We observed the extent of the damage after testing using scanning electron microscopy and reflected optical microscopy to support characteristics in the acoustic emission behavior that corresponded to specific types of damage mechanisms. It was shown that the initial damage mechanism of the smart composite actuator under electric cyclic loading originated from the transgranular micro-fatigue damage in the PZT ceramic layer. With increasing cycles, a local intergranular crack initiated and developed onto the surface of the PZT ceramic layer or propagated into the internal layer. Finally, short-circuiting led to the electric breakdown of the actuator. These results were different depending on the drive frequencies and the configuration of the actuators. Moreover, we differentiated between the aforementioned damage mechanisms via AE signal pattern analyses based on the primary frequency and the waveform. From our results, we conclude that the drive frequency and the existence of a protecting layer are dominant factors in the structural integrity of the smart composite actuator

  7. Reliability design of mechanical systems a guide for mechanical and civil engineers

    CERN Document Server

    Woo, Seongwoo

    2017-01-01

    This book describes basic reliability concepts – parametric ALT plan, failure mechanism and design, and reliability testing with acceleration factor and sample size equation. A generalized life-stress failure model with a new effort concept has been derived and recommended to calculate the acceleration factor of the mechanical system. The new sample size equation with the acceleration factor has also been derived to carry out the parametric ALT. This new parametric ALT should help a mechanical/civil engineer to uncover the design parameters affecting reliability during the design process of the mechanical system. Consequently, it should help companies to improve product reliability and avoid recalls due to the product/structure failures in the field. As the improper or missing design parameters in the design phase are experimentally identified by this new reliability design method - parametric ALT, the mechanical/civil engineering system might improve in reliability by the increase in lifetime and the reduc...

  8. Mechanical ventilation during extracorporeal membrane oxygenation.

    Science.gov (United States)

    Schmidt, Matthieu; Pellegrino, Vincent; Combes, Alain; Scheinkestel, Carlos; Cooper, D Jamie; Hodgson, Carol

    2014-01-21

    The timing of extracorporeal membrane oxygenation (ECMO) initiation and its outcome in the management of respiratory and cardiac failure have received considerable attention, but very little attention has been given to mechanical ventilation during ECMO. Mechanical ventilation settings in non-ECMO studies have been shown to have an effect on survival and may also have contributed to a treatment effect in ECMO trials. Protective lung ventilation strategies established for non-ECMO-supported respiratory failure patients may not be optimal for more severe forms of respiratory failure requiring ECMO support. The influence of positive end-expiratory pressure on the reduction of the left ventricular compliance may be a matter of concern for patients receiving ECMO support for cardiac failure. The objectives of this review were to describe potential mechanisms for lung injury during ECMO for respiratory or cardiac failure, to assess the possible benefits from the use of ultra-protective lung ventilation strategies and to review published guidelines and expert opinions available on mechanical ventilation-specific management of patients requiring ECMO, including mode and ventilator settings. Articles were identified through a detailed search of PubMed, Ovid, Cochrane databases and Google Scholar. Additional references were retrieved from the selected studies. Growing evidence suggests that mechanical ventilation settings are important in ECMO patients to minimize further lung damage and improve outcomes. An ultra-protective ventilation strategy may be optimal for mechanical ventilation during ECMO for respiratory failure. The effects of airway pressure on right and left ventricular afterload should be considered during venoarterial ECMO support of cardiac failure. Future studies are needed to better understand the potential impact of invasive mechanical ventilation modes and settings on outcomes.

  9. Congestive Heart Failure and Central Sleep Apnea.

    Science.gov (United States)

    Sands, Scott A; Owens, Robert L

    2016-03-01

    Congestive heart failure (CHF) is among the most common causes of admission to hospitals in the United States, especially in those over age 65. Few data exist regarding the prevalence CHF of Cheyne-Stokes respiration (CSR) owing to congestive heart failure in the intensive care unit (ICU). Nevertheless, CSR is expected to be highly prevalent among those with CHF. Treatment should focus on the underlying mechanisms by which CHF increases loop gain and promotes unstable breathing. Few data are available to determine prevalence of CSR in the ICU, or how CSR might affect clinical management and weaning from mechanical ventilation. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Experimental and numerical study of the failure process and energy mechanisms of rock-like materials containing cross un-persistent joints under uniaxial compression.

    Directory of Open Access Journals (Sweden)

    Rihong Cao

    Full Text Available Joints and fissures in natural rocks have a significant influence on the stability of the rock mass, and it is often necessary to evaluate strength failure and crack evolution behavior. In this paper, based on experimental tests and numerical simulation (PFC2D, the macro-mechanical behavior and energy mechanism of jointed rock-like specimens with cross non-persistent joints under uniaxial loading were investigated. The focus was to study the effect of joint dip angle α and intersection angle γ on the characteristic stress, the coalescence modes and the energy release of jointed rock-like specimens. For specimens with γ = 30° and 45°, the UCS (uniaxial compression strength, CIS (crack initiation stress and CDiS (critical dilatancy stress increase as α increases from 0° to 75°. When γ = 60° and 75°, the UCS, CIS and CDiS increase as α increases from 0° to 60° and decrease when α is over 60°. Both the inclination angle α and intersection angle γ have great influence on the failure pattern of pre-cracked specimens. With different α and γ, specimens exhibit 4 kinds of failure patterns. Both the experimental and numerical results show that the energy of a specimen has similar trends with characteristic stress as α increases.

  11. Lower head failure analysis

    International Nuclear Information System (INIS)

    Rempe, J.L.; Thinnes, G.L.; Allison, C.M.; Cronenberg, A.W.

    1991-01-01

    The US Nuclear Regulatory Commission is sponsoring a lower vessel head research program to investigate plausible modes of reactor vessel failure in order to determine (a) which modes have the greatest likelihood of occurrence during a severe accident and (b) the range of core debris and accident conditions that lead to these failures. This paper presents the methodology and preliminary results of an investigation of reactor designs and thermodynamic conditions using analytic closed-form approximations to assess the important governing parameters in non-dimensional form. Preliminary results illustrate the importance of vessel and tube geometrical parameters, material properties, and external boundary conditions on predicting vessel failure. Thermal analyses indicate that steady-state temperature distributions will occur in the vessel within several hours, although the exact time is dependent upon vessel thickness. In-vessel tube failure is governed by the tube-to-debris mass ratio within the lower head, where most penetrations are predicted to fail if surrounded by molten debris. Melt penetration distance is dependent upon the effective flow diameter of the tube. Molten debris is predicted to penetrate through tubes with a larger effective flow diameter, such as a boiling water reactor (BWR) drain nozzle. Ex-vessel tube failure for depressurized reactor vessels is predicted to be more likely for a BWR drain nozzle penetration because of its larger effective diameter. At high pressures (between ∼0.1 MPa and ∼12 MPa) ex-vessel tube rupture becomes a dominant failure mechanism, although tube ejection dominates control rod guide tube failure at lower temperatures. However, tube ejection and tube rupture predictions are sensitive to the vessel and tube radial gap size and material coefficients of thermal expansion

  12. Predictive value of daily living score in acute respiratory failure of COPD patients requiring invasive mechanical ventilation pilot study.

    Science.gov (United States)

    Langlet, Ketty; Van Der Linden, Thierry; Launois, Claire; Fourdin, Caroline; Cabaret, Philippe; Kerkeni, Nadia; Barbe, Coralie; Lebargy, François; Deslée, Gaetan

    2012-10-18

    Mechanical ventilation (MV) is imperative in many forms of acute respiratory failure (ARF) in COPD patients. Previous studies have shown the difficulty to identify parameters predicting the outcome of COPD patients treated by invasive MV. Our hypothesis was that a non specialized score as the activities daily living (ADL) score may help to predict the outcome of these patients. We studied the outcome of 25 COPD patients admitted to the intensive care unit for ARF requiring invasive MV. The patients were divided into those weaning success (group A n = 17, 68%) or failure (group B n = 8, 32%). We investigated the correlation between the ADL score and the outcome and mortality. The ADL score was higher in group A (5.1 ±1.1 vs 3.7 ± 0.7 in group B, p success and mortality at 6 months, suggesting that the assessment of daily activities should be an important component of ARF management in COPD patients.

  13. The effect of the pore-fluid factor on strength and failure mechanism of Wilkeson sandstone

    Science.gov (United States)

    Kätker, A. K.; Rempe, M.; Renner, J.

    2016-12-01

    The effective stress law, σn,eff = σn - αpf, is a central tool in analysing phenomena related to hydromechanical coupling, such as fluid-induced seismicity or aftershock activity. The effective-stress coefficient α assumes different values for specific physical properties and may deviate from 1. The limited number of studies suggest that brittle compressive strength obeys an effective-stress law when effective drainage is achieved. Yet, open questions remain regarding, e.g., the role of the loading path. We performed suites of triaxial compression tests on samples of Wilkeson sandstone at a range of pore-fluid pressures but identical effective confining pressure (60, 100, and 120 MPa) maintaining the pore-fluid factor λ = pf / pc constant (0.05, 0.2, 0.4, 0.55) during the isostatic loading stage to ensure uniform loading paths. Samples were shortened with a strain rate of 4×10-7 s-1 yielding drained conditions. All tests were terminated at a total axial strain of 4.5% for comparability of microstructures. The tests also included continuous permeability determination and ultrasonic p-wave-velocity measurements to monitor microstructural evolution. Results from experiments conducted at peff = 100 MPa show that dry samples exhibit a higher peak strength and brittle failure while water-saturated samples tend to deform at lower stress by cataclastic flow indicating physico-chemical weakening. Regardless of pore-fluid factor, the saturated experiments exhibit similar peak and residual strength. Differences in failure mechanism (degree of macroscopic localization) and volumetric strain evolution are however noticed, albeit without systematic relation to pore-fluid factor. Microstructure analyses by optical and scanning electron microscopy revealed an evolution from localized shear zones in dry experiments and experiments with a low pore-fluid factor to rather distributed cataclastic flow for experiments with high pore fluid factors. Yet, mechanical and structural

  14. Difficult cases in heart failure: the challenge of neurocognitive dysfunction in severe heart failure.

    Science.gov (United States)

    Sangha, Sumadeep S; Uber, Patricia A; Park, Myung H; Scott, Robert L; Mehra, Mandeep R

    2002-01-01

    Often ignored, neurocognitive dysfunction in chronic heart failure represents a daunting morbidity progressing to loss of self-reliance. Although the precise mechanisms arbitrating the development of this disorder remain elusive, microembolization and cerebral hypoperfusion are implicated. Other causes of cognitive decline may include prior cardiac surgery, chronic hypertension, sleep disordered breathing, hyperhomocysteinemia, dementia of aging, and more traditional causes such as Alzheimer's disease. The discovery of neurocognitive defects in heart failure must prompt a well-constructed diagnostic evaluation to search for the underlying causes since this process may be at least partially reversible in many cases. Copyright 2002 CHF, Inc

  15. Effects of cryogenic temperature on the mechanical and failure characteristics of melamine-urea-formaldehyde adhesive plywood

    Science.gov (United States)

    Kim, Jeong-Hyeon; Choi, Sung-Woong; Park, Doo-Hwan; Park, Seong-Bo; Kim, Seul-Kee; Park, Kwang-Jun; Lee, Jae-Myung

    2018-04-01

    The present study investigates the applicability of melamine-urea-formaldehyde (MUF) resin plywood in cryogenic applications, including liquefied natural gas (LNG) carrier insulation systems. Phenolic-formaldehyde (PF) resin plywood has been extensively used as a structural material in industrial applications. However, many shortcomings of PF resin plywood have been reported, and replacement of PF resin plywood with a new material is necessary to resolve these problems. MUF resin plywood has the advantages of short fabrication time, low veneer cost, and economic feasibility compared to PF resin plywood. However, the mechanical and failure characteristics of MUF resin plywood have not yet been investigated at low temperature ranges. For this reason, adapting MUF resin plywood for cryogenic applications has been difficult, despite the many strong points of the material in engineering aspects. In this study, the effects of cryogenic temperature and thermal treatment on the mechanical characteristics of MUF resin plywood are investigated. The performance of MUF resin plywood is compared with that of PF resin plywood to verify the applicability of the material for use as a structural material in LNG insulation systems. The results demonstrate that MUF resin plywood has mechanical properties comparable with those of PF resin plywood, even at cryogenic conditions.

  16. Micromechanical Failure Analyses for Finite Element Polymer Modeling

    Energy Technology Data Exchange (ETDEWEB)

    CHAMBERS,ROBERT S.; REEDY JR.,EARL DAVID; LO,CHI S.; ADOLF,DOUGLAS B.; GUESS,TOMMY R.

    2000-11-01

    Polymer stresses around sharp corners and in constrained geometries of encapsulated components can generate cracks leading to system failures. Often, analysts use maximum stresses as a qualitative indicator for evaluating the strength of encapsulated component designs. Although this approach has been useful for making relative comparisons screening prospective design changes, it has not been tied quantitatively to failure. Accurate failure models are needed for analyses to predict whether encapsulated components meet life cycle requirements. With Sandia's recently developed nonlinear viscoelastic polymer models, it has been possible to examine more accurately the local stress-strain distributions in zones of likely failure initiation looking for physically based failure mechanisms and continuum metrics that correlate with the cohesive failure event. This study has identified significant differences between rubbery and glassy failure mechanisms that suggest reasonable alternatives for cohesive failure criteria and metrics. Rubbery failure seems best characterized by the mechanisms of finite extensibility and appears to correlate with maximum strain predictions. Glassy failure, however, seems driven by cavitation and correlates with the maximum hydrostatic tension. Using these metrics, two three-point bending geometries were tested and analyzed under variable loading rates, different temperatures and comparable mesh resolution (i.e., accuracy) to make quantitative failure predictions. The resulting predictions and observations agreed well suggesting the need for additional research. In a separate, additional study, the asymptotically singular stress state found at the tip of a rigid, square inclusion embedded within a thin, linear elastic disk was determined for uniform cooling. The singular stress field is characterized by a single stress intensity factor K{sub a} and the applicable K{sub a} calibration relationship has been determined for both fully bonded and

  17. Bottom head failure program plan

    International Nuclear Information System (INIS)

    Meyer, R.O.

    1989-01-01

    Earlier this year the NRC staff presented a Revised Severe Accident Research Program Plan (SECY-89-123) to the Commission and initiated work on that plan. Two of the near-term issues in that plan involve failure of the bottom head of the reactor pressure vessel. These two issues are (1) depressurization and DCH and (2) BWR Mark I Containment Shell Meltthrough. ORNL has developed models for several competing failure mechanisms for BWRs. INEL has performed analytical and experimental work directly related to bottom head failure in connection with several programs. SNL has conducted a number of analyses and experimental activities to examine the failure of LWR vessels. In addition to the government-sponsored work mentioned above, EPRI and FAI performed studies on vessel failure for the Industry Degraded Core Rulemaking Program (IDCOR). EPRI examined the failure of a PWR vessel bottom head without penetrations, as found in some Combustion Engineering reactors. To give more attention to this subject as called for by the revised Severe Accident Research Plan, two things are being done. First, work previously done is being reviewed carefully to develop an overall picture and to determine the reliability of assumptions used in those studies. Second, new work is being planned for FY90 to try to complete a reasonable understanding of the failure process. The review and planning are being done in close cooperation with the ACRS. Results of this exercise will be presented in this paper

  18. 45 CFR 92.5 - Effect on other issuances.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Effect on other issuances. 92.5 Section 92.5 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION UNIFORM ADMINISTRATIVE... Effect on other issuances. All other grants administration provisions of codified program regulations...

  19. Monitoring of Failure Mechanisms in a Composite Bending Actuator during Cyclic Loading by Acoustic Emission

    Science.gov (United States)

    Woo, Sung-Choong; Goo, Nam Seo

    The objective of this work is to investigate the influence of electromechanical cyclic loading on the performance of a bending piezoelectric composite actuator. We have analyzed the fatigue damage mechanisms in terms of the behavior of the AE event rate. It was found that whether the actuators are subjected to purely electric loading or electromechanical loading, the initial fatigue damage of the bending piezoelectric composite actuator was caused by the transgranular fracture in the PZT ceramic layer; the final failure was caused only in the case of PCAWB under electromechanical loading by a local discharge, which critically affected the performance reduction of the actuators. As the number of cycles increased, a large reduction in displacement performance coincided with a high AE event rate, which was identified via microscopic observations.

  20. Initiation of vacuum breakdown and failure mechanism of the carbon nanotube during thermal field emission

    Science.gov (United States)

    Dan, Cai; Lie, Liu; Jin-Chuan, Ju; Xue-Long, Zhao; Hong-Yu, Zhou; Xiao, Wang

    2016-04-01

    The carbon nanotube (CNT)-based materials can be used as vacuum device cathodes. Owing to the excellent field emission properties of CNT, it has great potentials in the applications of an explosive field emission cathode. The falling off of CNT from the substrate, which frequently appears in experiments, restricts its application. In addition, the onset time of vacuum breakdown limits the performance of the high-power explosive-emission-cathode-based diode. In this paper, the characteristics of the CNT, electric field strength, contact resistance and the kind of substrate material are varied to study the parameter effects on the onset time of vacuum breakdown and failure mechanism of the CNT by using the finite element method. Project supported by the National Natural Science Foundation of China (Grant Nos. 11305263 and 61401484).

  1. Hydriding failure in water reactor fuel elements

    International Nuclear Information System (INIS)

    Sah, D.N.; Ramadasan, E.; Unnikrishnan, K.

    1980-01-01

    Hydriding of the zircaloy cladding has been one of the important causes of failure in water reactor fuel elements. This report reviews the causes, the mechanisms and the methods for prevention of hydriding failure in zircaloy clad water reactor fuel elements. The different types of hydriding of zircaloy cladding have been classified. Various factors influencing zircaloy hydriding from internal and external sources in an operating fuel element have been brought out. The findings of post-irradiation examination of fuel elements from Indian reactors, with respect to clad hydriding and features of hydriding failure are included. (author)

  2. Fracture Mechanics Models for Brittle Failure of Bottom Rails due to Uplift in Timber Frame Shear Walls

    Directory of Open Access Journals (Sweden)

    Joergen L. Jensen

    2016-01-01

    Full Text Available In partially anchored timber frame shear walls, hold-down devices are not provided; hence the uplift forces are transferred by the fasteners of the sheathing-to-framing joints into the bottom rail and via anchor bolts from the bottom rail into the foundation. Since the force in the anchor bolts and the sheathing-to-framing joints do not act in the same vertical plane, the bottom rail is subjected to tensile stresses perpendicular to the grain and splitting of the bottom rail may occur. This paper presents simple analytical models based on fracture mechanics for the analysis of such bottom rails. An existing model is reviewed and several alternative models are derived and compared qualitatively and with experimental data. It is concluded that several of the fracture mechanics models lead to failure load predictions which seem in sufficiently good agreement with the experimental results to justify their application in practical design.

  3. Hypertension as a risk factor for heart failure.

    Science.gov (United States)

    Kannan, Arun; Janardhanan, Rajesh

    2014-07-01

    Hypertension remains a significant risk factor for development of congestive heart failure CHF), with various mechanisms contributing to both systolic and diastolic dysfunction. The pathogenesis of myocardial changes includes structural remodeling, left ventricular hypertrophy, and fibrosis. Activation of the sympathetic nervous system and renin-angiotensin system is a key contributing factor of hypertension, and thus interventions that antagonize these systems promote regression of hypertrophy and heart failure. Control of blood pressure is of paramount importance in improving the prognosis of patients with heart failure.

  4. 24 CFR 92.252 - Qualification as affordable housing: Rental housing.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Qualification as affordable housing: Rental housing. 92.252 Section 92.252 Housing and Urban Development Office of the Secretary, Department of Housing and Urban Development HOME INVESTMENT PARTNERSHIPS PROGRAM Project Requirements § 92.252...

  5. 36 CFR 51.92 - What are standard proformas?

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false What are standard proformas? 51.92 Section 51.92 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE... narrative description must include, but is not limited to, identification of the loan's collateral after...

  6. 21 CFR 1301.92 - Illicit activities by employees.

    Science.gov (United States)

    2010-04-01

    ... MANUFACTURERS, DISTRIBUTORS, AND DISPENSERS OF CONTROLLED SUBSTANCES Employee Screening-Non-Practitioners § 1301.92 Illicit activities by employees. It is the position of DEA that employees who possess, sell, use... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Illicit activities by employees. 1301.92 Section...

  7. 36 CFR 9.2 - Definitions.

    Science.gov (United States)

    2010-07-01

    ... ore from a claim in the normal course of business of extraction for processing or marketing. It does... MANAGEMENT Mining and Mining Claims § 9.2 Definitions. The terms used in this part shall have the following...

  8. Exercise Intolerance in Heart Failure

    DEFF Research Database (Denmark)

    Brassard, Patrice; Gustafsson, Finn

    2016-01-01

    Exercise tolerance is affected in patients with heart failure (HF). Although the inability of the heart to pump blood to the working muscle has been the conventional mechanism proposed to explain the lowered capacity of patients with HF to exercise, evidence suggests that the pathophysiological...

  9. Advanced Materials and Process Technology for Mechanical Failure Prevention (Proceedings of the Meeting of the Mechanical Failures Prevention Group (48th) Held in Wakefield, Massachusetts on 19-21 April 1994,

    Science.gov (United States)

    1994-04-21

    stress rupture fractured specimens (a) as- ROC’ed, (b) beat treated by schedule 2. (a) (b) (c) (d) Figure 6: SEM fractographs of super-a, tensile... beat 195 - - . -i The microstructure in the weld region and at the fatigue failures was studied and related o the observed failures.Fati ue data are...inspector also can use one or two audio output channels for either mono or stereo ( binaural ) presentation of the aural information. Auralkatlon of

  10. High-Temperature Graphitization Failure of Primary Superheater Tube

    Science.gov (United States)

    Ghosh, D.; Ray, S.; Roy, H.; Mandal, N.; Shukla, A. K.

    2015-12-01

    Failure of boiler tubes is the main cause of unit outages of the plant, which further affects the reliability, availability and safety of the unit. So failure analysis of boiler tubes is absolutely essential to predict the root cause of the failure and the steps are taken for future remedial action to prevent the failure in near future. This paper investigates the probable cause/causes of failure of the primary superheater tube in a thermal power plant boiler. Visual inspection, dimensional measurement, chemical analysis, metallographic examination and hardness measurement are conducted as the part of the investigative studies. Apart from these tests, mechanical testing and fractographic analysis are also conducted as supplements. Finally, it is concluded that the superheater tube is failed due to graphitization for prolonged exposure of the tube at higher temperature.

  11. Transient Fuel Behavior and Failure Condition in the CABRI-2 Experiments

    International Nuclear Information System (INIS)

    Sato, Ikken; Lemoine, Francette; Struwe, Dankward

    2004-01-01

    In the CABRI-2 program, 12 tests were performed under various transient conditions covering a wide range of accident scenarios using two types of preirradiated fast breeder reactor (FBR) fuel pins with different smear densities and burnups. For each fuel, a nonfailure-transient test was performed, and it provided basic information such as fuel thermal condition, fuel swelling, and gas release. From the failure tests, information on failure mode, failure time, and axial location was obtained. Based on this information, failure conditions such as fuel enthalpy and cladding temperature were evaluated. These failure conditions were compared with the CABRI-1 tests in which different fuels as well as different transient conditions were used. This comparison, together with supporting information available from existing in-pile and out-of-pile experiments, allowed an effective understanding on failure mechanisms depending on fuel and transient conditions. It is concluded that pellet-cladding mechanical interaction (PCMI) due to fuel thermal expansion and fission-gas-induced swelling is playing an important role on mechanical clad loading especially with high smear density and low fuel-heating-rate conditions. At very high heating-rate conditions, there is no sufficient time to allow significant fuel swelling, so that cavity pressurization with fuel melting becomes the likely failure mechanism. Fuel smear density and fission-gas retention have a strong impact both on PCMI and cavity pressurization. Furthermore, pin failure is strongly dependent on cladding temperature, which plays an important role in the axial failure location. With the low smear-density fuel, considerable PCMI mitigation is possible leading to a high failure threshold as well as in-pin molten-fuel relocation along the central hole. However, even with the low smear density fuel, PCMI failure could take place with an elevated cladding-temperature condition. On the other hand, in case of a sufficiently long

  12. Finite Element Creep-Fatigue Analysis of a Welded Furnace Roll for Identifying Failure Root Cause

    Science.gov (United States)

    Yang, Y. P.; Mohr, W. C.

    2015-11-01

    Creep-fatigue induced failures are often observed in engineering components operating under high temperature and cyclic loading. Understanding the creep-fatigue damage process and identifying failure root cause are very important for preventing such failures and improving the lifetime of engineering components. Finite element analyses including a heat transfer analysis and a creep-fatigue analysis were conducted to model the cyclic thermal and mechanical process of a furnace roll in a continuous hot-dip coating line. Typically, the roll has a short life, modeling heat convection from hot air inside the furnace. The creep-fatigue analysis was performed by inputting the predicted temperature history and applying mechanical loads. The analysis results showed that the failure was resulted from a creep-fatigue mechanism rather than a creep mechanism. The difference of material properties between the filler metal and the base metal is the root cause for the roll failure, which induces higher creep strain and stress in the interface between the weld and the HAZ.

  13. Enhanced Schapery Theory Software Development for Modeling Failure of Fiber-Reinforced Laminates

    Science.gov (United States)

    Pineda, Evan J.; Waas, Anthony M.

    2013-01-01

    Progressive damage and failure analysis (PDFA) tools are needed to predict the nonlinear response of advanced fiber-reinforced composite structures. Predictive tools should incorporate the underlying physics of the damage and failure mechanisms observed in the composite, and should utilize as few input parameters as possible. The purpose of the Enhanced Schapery Theory (EST) was to create a PDFA tool that operates in conjunction with a commercially available finite element (FE) code (Abaqus). The tool captures the physics of the damage and failure mechanisms that result in the nonlinear behavior of the material, and the failure methodology employed yields numerical results that are relatively insensitive to changes in the FE mesh. The EST code is written in Fortran and compiled into a static library that is linked to Abaqus. A Fortran Abaqus UMAT material subroutine is used to facilitate the communication between Abaqus and EST. A clear distinction between damage and failure is imposed. Damage mechanisms result in pre-peak nonlinearity in the stress strain curve. Four internal state variables (ISVs) are utilized to control the damage and failure degradation. All damage is said to result from matrix microdamage, and a single ISV marks the micro-damage evolution as it is used to degrade the transverse and shear moduli of the lamina using a set of experimentally obtainable matrix microdamage functions. Three separate failure ISVs are used to incorporate failure due to fiber breakage, mode I matrix cracking, and mode II matrix cracking. Failure initiation is determined using a failure criterion, and the evolution of these ISVs is controlled by a set of traction-separation laws. The traction separation laws are postulated such that the area under the curves is equal to the fracture toughness of the material associated with the corresponding failure mechanism. A characteristic finite element length is used to transform the traction-separation laws into stress-strain laws

  14. Current strategies for preventing renal dysfunction in patients with heart failure: a heart failure stage approach

    Science.gov (United States)

    Issa, Victor Sarli; Andrade, Lúcia; Bocchi, Edimar Alcides

    2013-01-01

    Renal dysfunction is common during episodes of acute decompensated heart failure, and historical data indicate that the mean creatinine level at admission has risen in recent decades. Different mechanisms underlying this change over time have been proposed, such as demographic changes, hemodynamic and neurohumoral derangements and medical interventions. In this setting, various strategies have been proposed for the prevention of renal dysfunction with heterogeneous results. In the present article, we review and discuss the main aspects of renal dysfunction prevention according to the different stages of heart failure. PMID:23644863

  15. Metabolic Response on Post-therapy FDG-PET Predicts Patterns of Failure After Radiotherapy for Cervical Cancer

    International Nuclear Information System (INIS)

    Schwarz, Julie K.; Siegel, Barry A.; Dehdashti, Farrokh; Grigsby, Perry W.

    2012-01-01

    Purpose: To determine the patterns of failure in patients with cervical cancer treated with definitive radiotherapy and evaluated for metabolic response with early posttherapy 18 F-fluorodeoxyglucose positron emission tomography (FDG-PET). Methods and Materials: The records of 238 patients with cervical cancer were reviewed. All patients were treated with a combination of external radiotherapy and intracavitary brachytherapy. Two hundred and nineteen patients (92%) received concurrent chemotherapy. All patients underwent pretreatment FDG-PET, and posttherapy FDG-PET was performed within 8–16 weeks of the completion of radiotherapy. Posttherapy FDG-PET results were categorized as complete metabolic response (CMR), partial metabolic response (PMR), and progressive disease (PD). Failure patterns were categorized as none, isolated local failure (central pelvis ± pelvic lymph nodes), distant failure, or combined local plus distant failure. Results: Of the 91 patients (38%) who had a recurrence, 22 had isolated local failures, and 69 had distant failures (49 distant failures and 20 combined local plus distant failures). Of the 173 patients with a CMR, 40 (23%) experienced treatment failure. All 25 patients with PD experienced treatment failure, which was distant in 24 patients (96%). Among the 40 patients with PMR, no failure has been observed for 14 patients (35%). Of the 26 failures within the PMR group, 15 (58%) were limited to the pelvis. Differences in the patterns of failure between the three groups (CMR, PMR, PD) were statistically significant (chi-square test; p < 0.0001). Conclusions: The majority of failures after definitive radiotherapy for cervical cancer include distant failures, even in the setting of concurrent chemotherapy. PMR within the cervix or lymph nodes is more commonly associated with isolated local recurrence.

  16. Sequential Oxygenation Index and Organ Dysfunction Assessment within the First 3 Days of Mechanical Ventilation Predict the Outcome of Adult Patients with Severe Acute Respiratory Failure

    Directory of Open Access Journals (Sweden)

    Hsu-Ching Kao

    2013-01-01

    Full Text Available Objective. To determine early predictors of outcomes of adult patients with severe acute respiratory failure. Method. 100 consecutive adult patients with severe acute respiratory failure were evaluated in this retrospective study. Data including comorbidities, Sequential Organ Failure Assessment (SOFA score, Acute Physiological Assessment and Chronic Health Evaluation II (APACHE II score, PaO2, FiO2, PaO2/FiO2, PEEP, mean airway pressure (mPaw, and oxygenation index (OI on the 1st and the 3rd day of mechanical ventilation, and change in OI within 3 days were recorded. Primary outcome was hospital mortality; secondary outcome measure was ventilator weaning failure. Results. 38 out of 100 (38% patients died within the study period. 48 patients (48% failed to wean from ventilator. Multivariate analysis showed day 3 OI ( and SOFA ( score were independent predictors of hospital mortality. Preexisting cerebrovascular accident (CVA ( was the predictor of weaning failure. Results from Kaplan-Meier method demonstrated that higher day 3 OI was associated with shorter survival time (log-Rank test, . Conclusion. Early OI (within 3 days and SOFA score were predictors of mortality in severe acute respiratory failure. In the future, prospective studies measuring serial OIs in a larger scale of study cohort is required to further consolidate our findings.

  17. Natural history of β-cell adaptation and failure in type 2 diabetes

    Science.gov (United States)

    Alejandro, Emilyn U.; Gregg, Brigid; Blandino-Rosano, Manuel; Cras-Méneur, Corentin; Bernal-Mizrachi, Ernesto

    2014-01-01

    Type 2 diabetes mellitus (T2D) is a complex disease characterized by β-cell failure in the setting of insulin resistance. The current evidence suggests that genetic predisposition, and environmental factors can impair the capacity of the β-cells to respond to insulin resistance and ultimately lead to their failure. However, genetic studies have demonstrated that known variants account for less than 10% of the overall estimated T2D risk, suggesting that additional unidentified factors contribute to susceptibility of this disease. In this review, we will discuss the different stages that contribute to the development of β-cell failure in T2D. We divide the natural history of this process in three major stages: susceptibility, β-cell adaptation and β-cell failure and provide an overview of the molecular mechanisms involved. Further research into mechanisms will reveal key modulators of β-cell failure and thus identify possible novel therapeutic targets and potential interventions to protect against β-cell failure. PMID:25542976

  18. 22 CFR 92.89 - Fees for service of legal process.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Fees for service of legal process. 92.89 Section 92.89 Foreign Relations DEPARTMENT OF STATE LEGAL AND RELATED SERVICES NOTARIAL AND RELATED SERVICES Quasi-Legal Services § 92.89 Fees for service of legal process. No charge should be made for...

  19. Rehabilitation Strategies after Spinal Cord Injury: Inquiry into the Mechanisms of Success and Failure.

    Science.gov (United States)

    Côté, Marie-Pascale; Murray, Marion; Lemay, Michel A

    2017-05-15

    Body-weight supported locomotor training (BWST) promotes recovery of load-bearing stepping in lower mammals, but its efficacy in individuals with a spinal cord injury (SCI) is limited and highly dependent on injury severity. While animal models with complete spinal transections recover stepping with step-training, motor complete SCI individuals do not, despite similarly intensive training. In this review, we examine the significant differences between humans and animal models that may explain this discrepancy in the results obtained with BWST. We also summarize the known effects of SCI and locomotor training on the muscular, motoneuronal, interneuronal, and supraspinal systems in human and non-human models of SCI and address the potential causes for failure to translate to the clinic. The evidence points to a deficiency in neuronal activation as the mechanism of failure, rather than muscular insufficiency. While motoneuronal and interneuronal systems cannot be directly probed in humans, the changes brought upon by step-training in SCI animal models suggest a beneficial re-organization of the systems' responsiveness to descending and afferent feedback that support locomotor recovery. The literature on partial lesions in humans and animal models clearly demonstrate a greater dependency on supraspinal input to the lumbar cord in humans than in non-human mammals for locomotion. Recent results with epidural stimulation that activates the lumbar interneuronal networks and/or increases the overall excitability of the locomotor centers suggest that these centers are much more dependent on the supraspinal tonic drive in humans. Sensory feedback shapes the locomotor output in animal models but does not appear to be sufficient to drive it in humans.

  20. Mechanisms and management of diuretic resistance in congestive heart failure.

    Science.gov (United States)

    De Bruyne, L K M

    2003-05-01

    Diuretic drugs are used almost universally in patients with congestive heart failure, most frequently the potent loop diuretics. Despite their unproven effect on survival, their indisputable efficacy in relieving congestive symptoms makes them first line therapy for most patients. In the treatment of more advanced stages of heart failure diuretics may fail to control salt and water retention despite the use of appropriate doses. Diuretic resistance may be caused by decreased renal function and reduced and delayed peak concentrations of loop diuretics in the tubular fluid, but it can also be observed in the absence of these pharmacokinetic abnormalities. When the effect of a short acting diuretic has worn off, postdiuretic salt retention will occur during the rest of the day. Chronic treatment with a loop diuretic results in compensatory hypertrophy of epithelial cells downstream from the thick ascending limb and consequently its diuretic effect will be blunted. Strategies to overcome diuretic resistance include restriction of sodium intake, changes in dose, changes in timing, and combination diuretic therapy.

  1. Diuretics in heart failure: practical considerations.

    Science.gov (United States)

    Basraon, Jagroop; Deedwani, Prakash C

    2012-09-01

    This review discusses the role of diuretics in heart failure by focusing on different classifications and mechanisms of action. Pharmacodynamic and pharmacokinetic properties of diuretics are elucidated. The predominant discussion highlights the use of loop diuretics, which are the most commonly used drugs in heart failure. Different methods of using this therapy in different settings along with a comprehensive review of the side-effect profile are highlighted. Special situations necessitating adjustment and the phenomenon of diuretic resistance are explained. Copyright © 2012. Published by Elsevier Inc.

  2. Age of M92 and M15

    International Nuclear Information System (INIS)

    Sandage, A.

    1983-01-01

    Comparison of VandenBerg's isochrones for globular clusters with the photometry of many main-sequence stars in M92 and M15 gives an age of T = 18 +- 2 x 10 9 years for both clusters, using a vertical fit to the turn-off luminosity, together with distance modulii found from the period-color-luminosity relation of their RR Lyrae stars. Comparison of the systematics of the composite CM diagram for clusters of different metallicity with that predicted from VandenBerg's isochrones, all for T = 18 x 10 9 years, shows good agreement. Justification of the adopted zero-point value of M/sub v/ (RR,M92) = +0.63 is made by comparing the main sequences of M92, M3, and M5 with that defined by 11 field subdwarfs whose metallicities lie between [Fe/H] of -2.2 and -1.2 for which adequate astrometric distances exist

  3. A mid-layer model for human reliability analysis: understanding the cognitive causes of human failure events

    International Nuclear Information System (INIS)

    Shen, Song-Hua; Chang, James Y.H.; Boring, Ronald L.; Whaley, April M.; Lois, Erasmia; Langfitt Hendrickson, Stacey M.; Oxstrand, Johanna H.; Forester, John Alan; Kelly, Dana L.; Mosleh, Ali

    2010-01-01

    The Office of Nuclear Regulatory Research (RES) at the US Nuclear Regulatory Commission (USNRC) is sponsoring work in response to a Staff Requirements Memorandum (SRM) directing an effort to establish a single human reliability analysis (HRA) method for the agency or guidance for the use of multiple methods. As part of this effort an attempt to develop a comprehensive HRA qualitative approach is being pursued. This paper presents a draft of the method's middle layer, a part of the qualitative analysis phase that links failure mechanisms to performance shaping factors. Starting with a Crew Response Tree (CRT) that has identified human failure events, analysts identify potential failure mechanisms using the mid-layer model. The mid-layer model presented in this paper traces the identification of the failure mechanisms using the Information-Diagnosis/Decision-Action (IDA) model and cognitive models from the psychological literature. Each failure mechanism is grouped according to a phase of IDA. Under each phase of IDA, the cognitive models help identify the relevant performance shaping factors for the failure mechanism. The use of IDA and cognitive models can be traced through fault trees, which provide a detailed complement to the CRT.

  4. A Mid-Layer Model for Human Reliability Analysis: Understanding the Cognitive Causes of Human Failure Events

    Energy Technology Data Exchange (ETDEWEB)

    Stacey M. L. Hendrickson; April M. Whaley; Ronald L. Boring; James Y. H. Chang; Song-Hua Shen; Ali Mosleh; Johanna H. Oxstrand; John A. Forester; Dana L. Kelly; Erasmia L. Lois

    2010-06-01

    The Office of Nuclear Regulatory Research (RES) is sponsoring work in response to a Staff Requirements Memorandum (SRM) directing an effort to establish a single human reliability analysis (HRA) method for the agency or guidance for the use of multiple methods. As part of this effort an attempt to develop a comprehensive HRA qualitative approach is being pursued. This paper presents a draft of the method’s middle layer, a part of the qualitative analysis phase that links failure mechanisms to performance shaping factors. Starting with a Crew Response Tree (CRT) that has identified human failure events, analysts identify potential failure mechanisms using the mid-layer model. The mid-layer model presented in this paper traces the identification of the failure mechanisms using the Information-Diagnosis/Decision-Action (IDA) model and cognitive models from the psychological literature. Each failure mechanism is grouped according to a phase of IDA. Under each phase of IDA, the cognitive models help identify the relevant performance shaping factors for the failure mechanism. The use of IDA and cognitive models can be traced through fault trees, which provide a detailed complement to the CRT.

  5. Pump failure leads to alternative vertical pump condition monitoring technique

    International Nuclear Information System (INIS)

    DeVilliers, Adriaan; Glandon, Kevin

    2011-01-01

    Condition monitoring and detecting early signs of potential failure mechanisms present particular problems in vertical pumps. Most often, the majority of the pump assembly is not readily accessible for visual or audible inspection or conventional vibration monitoring techniques using accelerometers and/or proximity sensors. The root cause failure analysis of a 2-stage vertical centrifugal service-water pump at a nuclear power generating facility in the USA is presented, highlighting this long standing challenge in condition monitoring of vertical pumps. This paper will summarize the major findings of the root cause analysis (RCA), highlight the limitations of traditional monitoring techniques, and present an expanded application of motor current monitoring as a means to gain insight into the mechanical performance and condition of a pump. The 'real-world' example of failure, monitoring and correlation of the monitoring technique to a detailed pump disassembly inspection is also presented. This paper will explain some of the reasons behind well known design principles requiring natural frequency separation from known forcing frequencies, as well as explore an unexpected submerged brittle fracture failure mechanism, and how such issues may be avoided. (author)

  6. Acute respiratory failure and mechanical ventilation in pregnant patient: A narrative review of literature

    Directory of Open Access Journals (Sweden)

    Pradeep Kumar Bhatia

    2016-01-01

    Full Text Available Physiological changes of pregnancy imposes higher risk of acute respiratory failure (ARF with even a slight insult and remains an important cause of maternal and fetal morbidity and mortality. Although pregnant women have different respiratory physiology and different causes of ARF, guidelines specific to ventilatory settings, goals of oxygenation and weaning process could not be framed due to lack of large-scale randomized controlled trials. During the 2009 H1N1 pandemic, pregnant women had higher morbidity and mortality compared to nonpregnant women. During this period, alternative strategies of ventilation such as high-frequency oscillatory ventilation, inhalational of nitric oxide, prone positioning, and extra corporeal membrane oxygenation were increasingly used as a desperate measure to rescue pregnant patients with severe hypoxemia who were not improving with conventional mechanical ventilation. This article highlights the causes of ARF and recent advances in invasive, noninvasive and alternative strategies of ventilation used during pregnancy.

  7. An experimental study of the mechanism of failure of rocks under borehole jack loading

    Science.gov (United States)

    Van, T. K.; Goodman, R. E.

    1971-01-01

    Laboratory and field tests with an experimental jack and an NX-borehole jack are reported. The following conclusions were made: Under borehole jack loading, a circular opening in a brittle solid fails by tensile fracturing when the bearing plate width is not too small. Two proposed contact stress distributions can explain the mechanism of tensile fracturing. The contact stress distribution factor is a material property which can be determined experimentally. The borehole tensile strength is larger than the rupture flexural strength. Knowing the magnitude and orientation of the in situ stress field, borehole jack test results can be used to determine the borehole tensile strength. Knowing the orientation of the in situ stress field and the flexural strength of the rock substance, the magnitude of the in situ stress components can be calculated. The detection of very small cracks is essential for the accurate determination of the failure loads which are used in the calculation of strengths and stress components.

  8. Chocolate consumption and risk of heart failure in the Physicians' Health Study.

    Science.gov (United States)

    Petrone, Andrew B; Gaziano, J Michael; Djoussé, Luc

    2014-12-01

    To test the hypothesis that chocolate consumption is associated with a lower risk of heart failure (HF). We prospectively studied 20 278 men from the Physicians' Health Study. Chocolate consumption was assessed between 1999 and 2002 via a self-administered food frequency questionnaire and HF was ascertained through annual follow-up questionnaires with validation in a subsample. We used Cox regression to estimate multivariable adjusted relative risk of HF. During a mean follow-up of 9.3 years there were 876 new cases of HF. The mean age at baseline was 66.4 ± 9.2 years. Hazard ratios [95% confidence intervals (CI)] for HF were 1.0 (ref), 0.86 (0.72-1.03), 0.80 (0.66-0.98), 0.92 (0.74-1.13), and 0.82 (0.63-1.07), for chocolate consumption of less than 1/month, 1-3/week, 2-4/week, and 5+/week, respectively, after adjusting for age, body mass index (BMI), smoking, alcohol, exercise, energy intake, and history of atrial fibrillation (P for quadratic trend = 0.62). In a secondary analysis, chocolate consumption was inversely associated with risk of HF in men whose BMI was chocolate might be associated with a lower risk of HF in male physicians. © 2014 The Authors. European Journal of Heart Failure © 2014 European Society of Cardiology.

  9. Update on Simulating Ice-Cliff Failure

    Science.gov (United States)

    Parizek, B. R.; Christianson, K. A.; Alley, R. B.; Voytenko, D.; Vankova, I.; Dixon, T. H.; Walker, R. T.; Holland, D.

    2017-12-01

    Using a 2D full-Stokes diagnostic ice-flow model and engineering and glaciological failure criteria, we simulate the limiting physical conditions for rapid structural failure of subaerial ice cliffs. Previously, using a higher-order flowline model, we reported that the threshold height, in crevassed ice and/or under favorable conditions for hydrofracture or crack lubrication, may be only slightly above the 100-m maximum observed today and that under well-drained or low-melt conditions, mechanically-competent ice supports cliff heights up to 220 m (with a likely range of 180-275 m) before ultimately succumbing to tensional and compressive failure along a listric surface. However, proximal to calving fronts, bridging effects lead to variations in vertical normal stress from the background glaciostatic stress state that give rise to the along-flow gradients in vertical shear stress that are included within a full-Stokes momentum balance. When including all flowline stresses within the physics core, diagnostic solutions continue to support our earlier findings that slumping failure ultimately limits the upper bound for cliff heights. Shear failure still requires low cohesive strength, tensile failure leads to deeper dry-crevasse propagation (albeit, less than halfway through the cliff), and compressive failure drops the threshold height for triggering rapid ice-front retreat via slumping to 200 m (145-280 m).

  10. Heart Failure as an Aging-Related Phenotype.

    Science.gov (United States)

    Morita, Hiroyuki; Komuro, Issei

    2018-01-27

    The molecular pathophysiology of heart failure, which is one of the leading causes of mortality, is not yet fully understood. Heart failure can be regarded as a systemic syndrome of aging-related phenotypes. Wnt/β-catenin signaling and the p53 pathway, both of which are key regulators of aging, have been demonstrated to play a critical role in the pathogenesis of heart failure. Circulating C1q was identified as a novel activator of Wnt/β-catenin signaling, promoting systemic aging-related phenotypes including sarcopenia and heart failure. On the other hand, p53 induces the apoptosis of cardiomyocytes in the failing heart. In these molecular mechanisms, the cross-talk between cardiomyocytes and non-cardiomyocytes (e,g,. endothelial cells, fibroblasts, smooth muscle cells, macrophages) deserves mentioning. In this review, we summarize recent advances in the understanding of the molecular pathophysiology underlying heart failure, focusing on Wnt/β-catenin signaling and the p53 pathway.

  11. On Failure in Polycrystalline and Amorphous Brittle Materials

    Science.gov (United States)

    Bourne, N. K.

    2009-12-01

    The performance of behaviour of brittle materials depends upon discrete deformation mechanisms operating during the loading process. The critical mechanisms determining the behaviour of armour ceramics have not been isolated using traditional ballistics. It has recently become possible to measure strength histories in materials under shock. The data gained for the failed strength of the armour are shown to relate directly to the penetration measured into tiles. Further the material can be loaded and recovered for post-mortem examination. Failure is by micro-fracture that is a function of the defects and then cracking activated by plasticity mechanisms within the grains and failure at grain boundaries in the amorphous intergranular phase. Thus it is the shock-induced plastic yielding of grains at the impact face that determines the later time penetration through the tile.

  12. Deformation mechanisms in ferritic/martensitic steels and the impact on mechanical design

    International Nuclear Information System (INIS)

    Ghoniem, Nasr M.; Po, Giacomo; Sharafat, Shahram

    2013-01-01

    Structural steels for nuclear applications have undergone rapid development during the past few decades, thanks to a combination of trial-and-error, mechanism-based optimization, and multiscale modeling approaches. Deformation mechanisms are shown to be intimately related to mechanical design via dominant plastic deformation modes. Because mechanical design rules are mostly based on failure modes associated with plastic strain damage accumulation, we present here the fundamental deformation mechanisms for Ferritic/Martensitic (F/M) steels, and delineate their operational range of temperature and stress. The connection between deformation mechanisms, failure modes, and mechanical design is shown through application of design rules. A specific example is given for the alloy F82H utilized in the design of a Test Blanket Module (TBM) in the International Thermonuclear Experimental Reactor (ITER), where several constitutive equations are developed for design-related mechanical properties

  13. Deformation mechanisms in ferritic/martensitic steels and the impact on mechanical design

    Energy Technology Data Exchange (ETDEWEB)

    Ghoniem, Nasr M., E-mail: ghoniem@seas.ucla.edu; Po, Giacomo; Sharafat, Shahram

    2013-10-15

    Structural steels for nuclear applications have undergone rapid development during the past few decades, thanks to a combination of trial-and-error, mechanism-based optimization, and multiscale modeling approaches. Deformation mechanisms are shown to be intimately related to mechanical design via dominant plastic deformation modes. Because mechanical design rules are mostly based on failure modes associated with plastic strain damage accumulation, we present here the fundamental deformation mechanisms for Ferritic/Martensitic (F/M) steels, and delineate their operational range of temperature and stress. The connection between deformation mechanisms, failure modes, and mechanical design is shown through application of design rules. A specific example is given for the alloy F82H utilized in the design of a Test Blanket Module (TBM) in the International Thermonuclear Experimental Reactor (ITER), where several constitutive equations are developed for design-related mechanical properties.

  14. Modelling the mechanical behaviour of heterogeneous Ta/TA6V welded joints: behaviour and failure criteria

    International Nuclear Information System (INIS)

    Paris, Th.

    2008-12-01

    As laser welding of two different materials (heterogeneous welding) leads to a joint having a characteristic size close to the millimetre, i.e. much smaller than that of a structure, and as such a junction displays completely different mechanical properties because of the metallurgical transformations induced by intense thermal loading, the aim of this research thesis is to develop a behaviour model, flexible and robust enough, to represent all together the mechanical behaviours of the Ta, the TA6V and the melted zone. This model must be able to take plasticity and visco-plasticity into account, and also to provide a failure criterion through damage mechanics and its coupling with the behaviour. The author first reports the experimental characterization of the base materials (Ta and TA6V) by using tensile tests under different strain rates and different directions, relaxation tests and fatigue shear tests. He also characterizes the melted zone by describing the influence of a thermal treatment (induced by welding) on the formation of the melted zone, and by using different tests: four point bending on notched specimens, nano-indentation test, and longitudinal tensile test. In a second part, the author develops the model within the framework of continuum thermodynamics, and explores the numerical issues. The last part deals with the validation of the model for the concerned materials (Ta and TA6V) and melted zone

  15. Review of constitutive models and failure criteria for concrete

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jeong Moon; Choun, Young Sun [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-03-01

    The general behavior, constitutive models, and failure criteria of concrete are reviewed. The current constitutive models for concrete cannot satisfy all of mechanical behavior of concrete. Among several constitutive models, damage models are recommended to describe properly the structural behavior of concrete containment buildings, because failure modes and post-failure behavior are important in containment buildings. A constitutive model which can describe the concrete behavior in tension is required because the containment buildings will reach failure state due to ultimate internal pressure. Therefore, a thorough study on the behavior and models under tension stress state in concrete and reinforced concrete has to be performed. There are two types of failure criteria in containment buildings: structural failure criteria and leakage failure criteria. For reinforced or prestressed concrete containment buildings, concrete cracking does not mean the structural failure of containment building because the reinforcement or post-tensioning system is able to resist tensile stress up to yield stress. Therefore leakage failure criteria will be prior to structural failure criteria, and a strain failure criterion for concrete has to be established. 120 refs., 59 figs., 1 tabs. (Author)

  16. Observation of the failure mechanism of brick masonry doublets with cement and lime mortars by microfocus X-ray computed tomography

    OpenAIRE

    Hendrickx, Roel; Bruyninckx, Katrien; Schueremans, Luc; Kerckhofs, Greet; Verstrynge, Els; Wevers, Martine; Van Balen, Koenraad

    2010-01-01

    The nature of the failure mechanism of masonry under compression depends on the properties of the brick and mortar. It is well-known that the ratio of stiffness of both materials has an important effect. Furthermore the pattern of crack development and propagation and the occurrence of local compaction of soft mortars have been the subject of some study, but remained difficult to observe. This study aims at the visualisation of these phenomena by using a hydraulic press inside a microfocus X-...

  17. Technical findings related to Generic Issue 23: Reactor coolant pump seal failure

    International Nuclear Information System (INIS)

    Ruger, C.J.; Luckas, W.J. Jr.

    1989-03-01

    Reactor coolant pumps contain mechanical seals to limit the leakage of pressurized coolant from the reactor coolant system to the containment. These seals have the potential to leak, and a few have degraded and even failed resulting in a small break loss of coolant accident (LOCA). As a result, ''Reactor Coolant Pump Seal Failure,'' Generic Issue 23 was established. This report summarizes the findings of a technical investigation generated as part of the program to resolve this issue. These technical findings address the various fact-finding issue tasks developed for the action plan associated with the generic issue, namely background information on seal failure, evaluation of seal cooling, and mechanical- and maintenance-induced failure mechanisms. 46 refs., 15 figs., 14 tabs

  18. Tidally Driven Failure Along Europa's Rhadamanthys Linea

    Science.gov (United States)

    Cameron, M.; Konter, B.; Pappalardo, R. T.

    2013-12-01

    The surface of Europa is crosscut by a dense network of fractures and there are many candidate faults for studying past tectonic activity. To better understand the role of tidal stress sources and implications for faulting on Europa, we investigate the relationship between shear and normal stresses at Rhadamanthys Linea, a northwest oriented fracture in the northern hemisphere. Previous work on Agenor Linea, a right-lateral strike-slip fracture in the southern hemisphere, suggests that both tidal diurnal and non-synchronous rotation (NSR) stresses play a critical role in the mechanics of Coulomb shear failure on Europa. At Agenor Linea, shear failure from diurnal tidal stress mechanisms is difficult to achieve because the relatively large over¬burden stress (ie., 1.2 MPa at 1 km depth) dominates the stress field; however, MPa order stresses from NSR permit right-lateral shear failure along the west side of the fault at shallow depths (Astypalea Linea and Conamara Chaos will also be investigated, offering a unique comparison of geologic activity of fractures residing in geographically diverse locations of Europa.

  19. Trade credit and the propagation of corporate failure: An empirical analysis

    OpenAIRE

    Jacobsen, Tor; von Schedvin, Erik

    2012-01-01

    We quantify the importance of trade credit chains for the propagation of corporate bankruptcies. Our results show that trade creditors (suppliers) that issue more trade credit are more exposed to trade debtor (customer) failures, both in terms of the likelihood of experiencing a debtor failure and the loss given failure. We further document that the credit loss invoked by a debtor failure imposes a substantially enhanced bankruptcy risk on the creditors. The propagation mechanism is mitigated...

  20. Local therapy in localized Ewing tumors: results of 1058 patients treated in the CESS 81, CESS 86, and EICESS 92 trials

    International Nuclear Information System (INIS)

    Schuck, Andreas; Ahrens, Susanne; Paulussen, Michael; Kuhlen, Michaela; Koenemann, Stefan; Ruebe, Christian; Winkelmann, Winfried; Kotz, Rainer; Dunst, Juergen; Willich, Normann; Juergens, Heribert

    2003-01-01

    Purpose: The impact of different local therapy approaches on local control, event-free survival, and secondary malignancies in the CESS 81, CESS 86, and EICESS 92 trials was investigated. Methods and Materials: The data of 1058 patients with localized Ewing tumors were analyzed. Wherever feasible, a surgical local therapy approach was used. In patients with a poor histologic response or with intralesional and marginal resections, this was to be followed by radiotherapy (RT). In EICESS 92, preoperative RT was introduced for patients with expected close resection margins. Definitive RT was used in cases in which surgical resection seemed impossible. In CESS 81, vincristine, adriamycin, cyclophosphamide, and actinomycin D was used. In CESS 86, vincristine, adriamycin, ifosfamide, and actinomycin D was introduced for patients with central tumors or primaries >100 cm 3 . In CESS 92, etoposide, vincristine, adriamycin, ifosfamide, and actinomycin D was randomized against vincristine, adriamycin, ifosfamide, and actinomycin D in patients with primaries >100 cm 3 . Results: The rate of local failure was 7.5% after surgery with or without postoperative RT, and was 5.3% after preoperative and 26.3% after definitive RT (p=0.001). Event-free survival was reduced after definitive RT (p=0.0001). Irradiated patients represented a negatively selected population with unfavorable tumor sites. Definitive RT showed comparable local control to that of postoperative RT after intralesional resections. Patients with postoperative RT had improved local control after intralesional resections and in tumors with wide resection and poor histologic response compared with patients receiving surgery alone. Patients with marginal resections with or without postoperative radiotherapy showed comparable local control, yet the number of patients with good histologic response was higher in the latter treatment group (72.2% vs. 38.5%). Conclusion: Patients with resectable tumors after initial

  1. Predictive value of daily living score in acute respiratory failure of COPD patients requiring invasive mechanical ventilation pilot study

    Directory of Open Access Journals (Sweden)

    Langlet Ketty

    2012-10-01

    Full Text Available Abstract Background Mechanical ventilation (MV is imperative in many forms of acute respiratory failure (ARF in COPD patients. Previous studies have shown the difficulty to identify parameters predicting the outcome of COPD patients treated by invasive MV. Our hypothesis was that a non specialized score as the activities daily living (ADL score may help to predict the outcome of these patients. Methods We studied the outcome of 25 COPD patients admitted to the intensive care unit for ARF requiring invasive MV. The patients were divided into those weaning success (group A n = 17, 68% or failure (group B n = 8, 32%. We investigated the correlation between the ADL score and the outcome and mortality. Results The ADL score was higher in group A (5.1 ±1.1 vs 3.7 ± 0.7 in group B, p  Conclusion Our pilot study demonstrates that the ADL score is predictive of weaning success and mortality at 6 months, suggesting that the assessment of daily activities should be an important component of ARF management in COPD patients.

  2. Comprehensive Deployment Method for Technical Characteristics Base on Multi-failure Modes Correlation Analysis

    Science.gov (United States)

    Zheng, W.; Gao, J. M.; Wang, R. X.; Chen, K.; Jiang, Y.

    2017-12-01

    This paper put forward a new method of technical characteristics deployment based on Reliability Function Deployment (RFD) by analysing the advantages and shortages of related research works on mechanical reliability design. The matrix decomposition structure of RFD was used to describe the correlative relation between failure mechanisms, soft failures and hard failures. By considering the correlation of multiple failure modes, the reliability loss of one failure mode to the whole part was defined, and a calculation and analysis model for reliability loss was presented. According to the reliability loss, the reliability index value of the whole part was allocated to each failure mode. On the basis of the deployment of reliability index value, the inverse reliability method was employed to acquire the values of technology characteristics. The feasibility and validity of proposed method were illustrated by a development case of machining centre’s transmission system.

  3. Fuel failure detection and location methods in CAGRs

    International Nuclear Information System (INIS)

    Harris, A.M.

    1982-06-01

    The release of fission products from AGR fuel failures and the way in which the signals from such failures must be detected against the background signal from uranium contamination of the fuel is considered. Theoretical assessments of failure detection are used to show the limitations of the existing Electrostatic Wire Precipitator Burst Can Detection system (BCD) and how its operating parameters can be optimised. Two promising alternative methods, the 'split count' technique and the use of iodine measurements, are described. The results of a detailed study of the mechanical and electronic performance of the present BCD trolleys are given. The limited experience of detection and location of two fuel failures in CAGR using conventional and alternative methods is reviewed. The larger failure was detected and located using the conventional BCD equipment with a high confidence level. It is shown that smaller failures may not be easy to detect and locate using the current BCD equipment, and the second smaller failure probably remained in the reactor for about a year before it was discharged. The split count technique used with modified BCD equipment was able to detect the smaller failure after careful inspection of the data. (author)

  4. Failure rates in piping manufactured to different standards

    International Nuclear Information System (INIS)

    Barnes, R.W.; Cooper, G.D.

    1995-11-01

    Most non-nuclear process piping systems in Canada and the United States are constructed to the requirements of the piping codes of the American Society of Mechanical Engineers (ASME B31.1 and B31.3). Section III of the ASME Boiler and Pressure Vessel Code, has additional requirements for piping that are expected to provide further assurance of pressure boundary integrity. This project attempted to determine if the additional requirements of Section III were beneficial in preventing failure of the pressure boundary. The approach taken in the study was to determine the causes of failure of non-nuclear piping subjected to service similar to that experienced by piping in CANDU nuclear power plants. The study examined information on carbon steel piping systems filled with water/steam which operate up to a maximum temperature of 600 F and a maximum pressure of 1600 psi. The failure mechanisms were identified and analysed to determine whether application of the requirements of Section III would have prevented the failure. Through a process of interviews and literature search, 186 failures were identified and assembled into a reference database. Many of the records were incomplete; therefore, the reference database was trimmed to include a subset of 65 failure points supported by complete data. This subset formed the basis for this study. The results from the study of other databases assembled for similar purposes were reviewed and compared to the conclusions reached in this study. These reviews confirmed the conclusions reached in this study. (author). 48 refs., 20 tabs

  5. 28 CFR 92.7 - Scope.

    Science.gov (United States)

    2010-07-01

    ... Recruitment Program Guidelines § 92.7 Scope. (a) The Police Recruitment program offers funds to qualified... encountering problems throughout the police department application process shall receive counseling, tutorials, and other academic assistance as necessary to assist them in the application process of a police...

  6. 29 CFR 1915.92 - Illumination.

    Science.gov (United States)

    2010-07-01

    ... Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS FOR SHIPYARD EMPLOYMENT General Working Conditions § 1915.92...) All means of access and walkways leading to working areas as well as the working areas themselves...

  7. Reliability modelling for wear out failure period of a single unit system

    OpenAIRE

    Arekar, Kirti; Ailawadi, Satish; Jain, Rinku

    2012-01-01

    The present paper deals with two time-shifted density models for wear out failure period of a single unit system. The study, considered the time-shifted Gamma and Normal distributions. Wear out failures occur as a result of deterioration processes or mechanical wear and its probability of occurrence increases with time. A failure rate as a function of time deceases in an early failure period and it increases in wear out period. Failure rates for time shifted distributions and expression for m...

  8. Northwest Territories Power Corporation annual report 1991/92

    International Nuclear Information System (INIS)

    1992-06-01

    The Northwest Territories Power Corporation is a crown corporation of the government of the Northwest Territories. The Corporation operates diesel and hydroelectric production facilities to provide utility services on a self-sustaining basis in the Northwest Territories. Total revenue for 1991/92 amounted to $92,872,000 with $84,954,000 coming from the sale of power. Financial statements are presented. 3 figs

  9. Modelling river bank erosion processes and mass failure mechanisms using 2-D depth averaged numerical model

    Science.gov (United States)

    Die Moran, Andres; El kadi Abderrezzak, Kamal; Tassi, Pablo; Herouvet, Jean-Michel

    2014-05-01

    Bank erosion is a key process that may cause a large number of economic and environmental problems (e.g. land loss, damage to structures and aquatic habitat). Stream bank erosion (toe erosion and mass failure) represents an important form of channel morphology changes and a significant source of sediment. With the advances made in computational techniques, two-dimensional (2-D) numerical models have become valuable tools for investigating flow and sediment transport in open channels at large temporal and spatial scales. However, the implementation of mass failure process in 2D numerical models is still a challenging task. In this paper, a simple, innovative algorithm is implemented in the Telemac-Mascaret modeling platform to handle bank failure: failure occurs whether the actual slope of one given bed element is higher than the internal friction angle. The unstable bed elements are rotated around an appropriate axis, ensuring mass conservation. Mass failure of a bank due to slope instability is applied at the end of each sediment transport evolution iteration, once the bed evolution due to bed load (and/or suspended load) has been computed, but before the global sediment mass balance is verified. This bank failure algorithm is successfully tested using two laboratory experimental cases. Then, bank failure in a 1:40 scale physical model of the Rhine River composed of non-uniform material is simulated. The main features of the bank erosion and failure are correctly reproduced in the numerical simulations, namely the mass wasting at the bank toe, followed by failure at the bank head, and subsequent transport of the mobilised material in an aggradation front. Volumes of eroded material obtained are of the same order of magnitude as the volumes measured during the laboratory tests.

  10. Adherence to the ESC Heart Failure Treatment Guidelines in Spain: ESC Heart Failure Long-term Registry.

    Science.gov (United States)

    Crespo-Leiro, María G; Segovia-Cubero, Javier; González-Costello, José; Bayes-Genis, Antoni; López-Fernández, Silvia; Roig, Eulàlia; Sanz-Julve, Marisa; Fernández-Vivancos, Carla; de Mora-Martín, Manuel; García-Pinilla, José Manuel; Varela-Román, Alfonso; Almenar-Bonet, Luis; Lara-Padrón, Antonio; de la Fuente-Galán, Luis; Delgado-Jiménez, Juan

    2015-09-01

    To estimate the percentage of heart failure patients in Spain that received the European Society of Cardiology recommended treatments, and in those that did not, to determine the reasons why. The study included 2834 consecutive ambulatory patients with heart failure from 27 Spanish hospitals. We recorded general information, the treatment indicated, and the reasons why it was not prescribed in some cases. In patients who met the criteria to receive a certain drug, true undertreatment was defined as the percentage of patients who, without justification, did not receive the drug. In total, 92.6% of ambulatory patients with low ejection fraction received angiotensin converting enzyme inhibitors or angiotensin receptor blockers, 93.3% beta-blockers, and 74.5% mineralocorticoid receptor antagonists. The true undertreatment rates were 3.4%, 1.8%, and 19.0%, respectively. Target doses were reached in 16.2% of patients receiving angiotensin converting enzyme inhibitors, 23.3% of those with angiotensin receptor blockers, 13.2% of those prescribed beta-blockers, and 23.5% of those with mineralocorticoid receptor antagonists. Among patients who could benefit from ivabradine, 29.1% received this drug. In total, 36% of patients met the criteria for defibrillator implantation and 90% of them had received the device or were scheduled for implantation, whereas 19.6% fulfilled the criteria for resynchronization therapy and 88.0% already had or would soon have the device. In patients who met the criteria, but did not undergo device implantation, the reasons were not cost-related. When justified reasons for not administering heart failure drugs were taken into account, adherence to the guideline recommendations was excellent. Exclusive use of the percentage of treated patients is a poor indicator of the quality of healthcare in heart failure. Measures should be taken to improve the attainment of optimal dosing in each patient. Copyright © 2015 Sociedad Española de Cardiolog

  11. Internal Progressive Failure in Deep-Seated Landslides

    Science.gov (United States)

    Yerro, Alba; Pinyol, Núria M.; Alonso, Eduardo E.

    2016-06-01

    Except for simple sliding motions, the stability of a slope does not depend only on the resistance of the basal failure surface. It is affected by the internal distortion of the moving mass, which plays an important role on the stability and post-failure behaviour of a landslide. The paper examines the stability conditions and the post-failure behaviour of a compound landslide whose geometry is inspired by one of the representative cross-sections of Vajont landslide. The brittleness of the mobilized rock mass was described by a strain-softening Mohr-Coulomb model, whose parameters were derived from previous contributions. The analysis was performed by means of a MPM computer code, which is capable of modelling the whole instability procedure in a unified calculation. The gravity action has been applied to initialize the stress state. This step mobilizes part of the strength along a shearing band located just above the kink of the basal surface, leading to the formation a kinematically admissible mechanism. The overall instability is triggered by an increase of water level. The increase of pore water pressures reduces the effective stresses within the slope and it leads to a progressive failure mechanism developing along an internal shearing band which controls the stability of the compound slope. The effect of the basal shearing resistance has been analysed during the post-failure stage. If no shearing strength is considered (as predicted by a thermal pressurization analysis), the model predicts a response similar to actual observations, namely a maximum sliding velocity of 25 m/s and a run-out close to 500 m.

  12. Radiographic manifestations of teeth and jaw bones in chronic renal failure patients: A longitudinal study

    Directory of Open Access Journals (Sweden)

    Puja Rai

    2016-01-01

    Full Text Available Introduction: Chronic renal failure (CRF is an important health problem worldwide with a tendency of annual progression. Renal failure could alter the balance of the stomatognathic system, thus conditioning the prevalence of oral diseases at its different stages. Researchers estimate that up to 90% of renal patients show oral manifestations and a wide range of bony anomalies accounting for 92% of the patients. Aims and Objectives: The aim and objective of this study was to evaluate radiographic manifestations in CRF patients and compare the findings between the stages of CRF. Materials and Methods: A longitudinal study on fifty CRF patients was conducted. Patients were divided into three stages depending on the severity of renal failure. Orthopantomograph was taken for all the subjects. Results: The study showed that 88% of the study group had positive radiographic findings. Stage IV renal failure patients had more severe manifestations as compared to Stages II and III. Conclusion: Majority of the patients had positive radiographic findings which can be one of the diagnostic markers in CRF patients.

  13. A New Animal Model for Investigation of Mechanical Unloading in Hypertrophic and Failing Hearts: Combination of Transverse Aortic Constriction and Heterotopic Heart Transplantation.

    Directory of Open Access Journals (Sweden)

    Andreas Schaefer

    Full Text Available Previous small animal models for simulation of mechanical unloading are solely performed in healthy or infarcted hearts, not representing the pathophysiology of hypertrophic and dilated hearts emerging in heart failure patients. In this article, we present a new and economic small animal model to investigate mechanical unloading in hypertrophic and failing hearts: the combination of transverse aortic constriction (TAC and heterotopic heart transplantation (hHTx in rats.To induce cardiac hypertrophy and failure in rat hearts, three-week old rats underwent TAC procedure. Three and six weeks after TAC, hHTx with hypertrophic and failing hearts in Lewis rats was performed to induce mechanical unloading. After 14 days of mechanical unloading animals were euthanatized and grafts were explanted for further investigations.50 TAC procedures were performed with a survival of 92% (46/50. When compared to healthy rats left ventricular surface decreased to 5.8±1.0 mm² (vs. 9.6± 2.4 mm² (p = 0.001 after three weeks with a fractional shortening (FS of 23.7± 4.3% vs. 28.2± 1.5% (p = 0.01. Six weeks later, systolic function decreased to 17.1± 3.2% vs. 28.2± 1.5% (p = 0.0001 and left ventricular inner surface increased to 19.9±1.1 mm² (p = 0.0001. Intraoperative graft survival during hHTx was 80% with 46 performed procedures (37/46. All transplanted organs survived two weeks of mechanical unloading.Combination of TAC and hHTx in rats offers an economic and reproducible small animal model enabling serial examination of mechanical unloading in a truly hypertrophic and failing heart, representing the typical pressure overloaded and dilated LV, occurring in patients with moderate to severe heart failure.

  14. Endovascular retrieval of a CardioMEMS heart failure system

    Directory of Open Access Journals (Sweden)

    Arun Reghunathan, MD

    2018-04-01

    Full Text Available As the creation and utilization of new implantable devices increases, so does the need for interventionalists to devise unique retrieval mechanisms. This report describes the first endovascular retrieval of a CardioMEMS heart failure monitoring device. A 20-mm gooseneck snare was utilized in conjunction with a 9-French sheath and Envoy catheter for retrieval. The patient suffered no immediate postprocedural complications but died 5 days after the procedure from multiorgan failure secondary to sepsis. Keywords: CardioMEMS heart failure system, Endovascular retrieval

  15. Failure mechanisms in single-point incremental forming of metals

    DEFF Research Database (Denmark)

    Silva, Maria B.; Nielsen, Peter Søe; Bay, Niels

    2011-01-01

    The last years saw the development of two different views on how failure develops in single-point incremental forming (SPIF). Today, researchers are split between those claiming that fracture is always preceded by necking and those considering that fracture occurs with suppression of necking. Each...... on formability limits and development of fracture. The unified view conciliates the aforementioned different explanations on the role of necking in fracture and is consistent with the experimental observations that have been reported in the past years. The work is performed on aluminium AA1050-H111 sheets...

  16. 40 CFR 92.208 - Certification.

    Science.gov (United States)

    2010-07-01

    ... the construction of a locomotive or locomotive engine, where such step may reasonably be expected to... POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Certification Provisions § 92.208 Certification. (a) This paragraph (a) applies to manufacturers of new locomotives and new locomotive engines. If, after a review of...

  17. Long-term follow-up of salvage radiotherapy in Hodgkin's lymphoma after chemotherapy failure

    International Nuclear Information System (INIS)

    Campbell, Belinda; Wirth, Andrew; Milner, Alvin; Di Iulio, Juliana; MacManus, Michael; Ryan, Gail M.

    2005-01-01

    Purpose: To evaluate the long-term results of salvage radiotherapy (SRT) for Hodgkin's lymphoma after chemotherapy failure. Methods and Materials: We reviewed 81 patients undergoing SRT for persistent or recurrent Hodgkin's lymphoma after chemotherapy; 19 also received conventional-dose salvage chemotherapy. Results: At SRT, the median patient age was 31 years. Of the 81 patients, 81% had Stage I-II, 25.9% had B symptoms, 14.8% had bulky disease, and 7.4% had extranodal disease. A less than a complete response (CR) to the last chemotherapy regimen occurred in 47%. SRT was generally limited to one side of the diaphragm, and the median dose was 36 Gy. After SRT, 75% of patients achieved a CR, with 82% retaining durable in-field control. In-field failure was associated with less than a CR to the last chemotherapy regimen (p = 0.0287). Most failures were at distant sites, with 60% in previously involved sites. The 10-year freedom from treatment failure and overall survival rates were 32.8% and 45.7%, respectively. The adverse prognostic factors for freedom from treatment failure were age >50 years (p 50 years (p < 0.001), B symptoms (p = 0.002), and less than a CR to the last chemotherapy regimen (p = 0.002). Favorable cohorts had a 10-year freedom from treatment failure rate of 51% and overall survival rate of 92%. Conclusions: Salvage radiotherapy is effective for selected patients with Hodgkin's lymphoma after chemotherapy failure and should be considered for incorporation into salvage programs

  18. Biochemical failure after radical external beam radiotherapy for prostate cancer

    International Nuclear Information System (INIS)

    Nomoto, Satoshi; Imada, Hajime; Kato, Fumio; Yahara, Katsuya; Morioka, Tomoaki; Ohguri, Takayuki; Nakano, Keita; Korogi, Yukunori

    2005-01-01

    The purpose of this study was to evaluate biochemical failures after radical external beam radiotherapy for prostate cancer. A total of 143 patients with prostate cancer (5 cases in stage A2, 95 in stage B and 43 in stage C; 18 in low risk group, 37 in intermediate risk group, 67 in high risk group and 21 in unknown group) were included in this study. Patients of stage A2 and B underwent external irradiation of 46 Gy to the prostate gland and seminal vesicle and additional 20 Gy to the prostate gland, while patients of stage C underwent external irradiation of 66 Gy to the prostate gland and seminal vesicle including 46 Gy to the pelvis. Neoadjuvant hormonal therapy was done in 66 cases, and long-term hormonal therapy in 75 cases; two cases were treated with radiation therapy alone. The 3-year relapse free survival rates by stage A2, B and C were 100%, 96.7% and 88.1%, respectively. The 3-year relapse free survival rates by low, intermediate and high risk groups were 100%, 92.3% and 89.7%, respectively. Biochemical failure was noted in nine cases during the average observation term of 32.2 months; in this group the median of prostate specific antigen (PSA) value was 2.6 ng/ml, the doubling time was 8.6 months, and the term of biochemical failure was 33.2 months. Six of eight cases with biochemical failure were the neoadjuvant hormonal therapy group, but biochemical no evidence of disease (bNED) curve showed no significant difference between neoadjuvant and long-term hormonal groups. It is supposed that unnecessary hormonal therapies were performed based on the nonspecific diagnosis of biochemical failure after radical radiotherapy in our group of patients. A precise criterion of biochemical failure after radical radiotherapy for prostate cancer is necessary. (author)

  19. Functional microimaging. A hierarchical investigation of bone failure behavior

    International Nuclear Information System (INIS)

    Voide, Romain; Lenthe, G.Harry van; Stauber, Martin; Schneider, Philipp; Thurner, Philipp J.; Mueller, Ralph; Wyss, Peter; Stampanoni, Marco

    2008-01-01

    Biomechanical testing is the gold standard to determine bone competence, and has been used extensively. Direct mechanical testing provides detailed information on overall bone mechanical and material properties, but fails in revealing local properties such as local deformations and strains and does not permit quantification of fracture progression. Therefore, we incorporated several imaging methods in our mechanical setups to get a better insight into bone deformation and failure characteristics on various levels of structural organization. Our aim was to develop an integrative approach for hierarchical investigation of bone, working at different scales of resolution ranging from the whole bone to its ultrastructure. Inbred strains of mice make useful models to study bone properties. In this study, we concentrated on C57BL/6 (B6) and in C3H/He (C3H) mice, two strains known for their differences in bone phenotype. At the macroscopic level, we used high-resolution and high-speed cameras which allowed to visualize global failure behavior and fracture initiation with high temporal resolution. This image data proved especially important when dealing with small bones such as murine femora. At the microscopic level, bone microstructure, i.e. trabecular architecture and cortical porosity, are known to influence bone strength and failure mechanisms significantly. For this reason, we developed an image-guided failure assessment technique, also referred to as functional microimaging, allowing direct time-lapsed three-dimensional visualization and computation of local displacements and strains for better quantification of fracture initiation and progression. While the resolution of conventional desktop micro-computed tomography is typically around a few micrometers, computer tomography systems based on highly brilliant synchrotron radiation X-ray sources permit to explore the sub-micrometer world. This allowed, for the first time, to uncover fully nondestructively the 3D

  20. Impact of defects on the electrical transport, optical properties and failure mechanisms of GaN nanowires.

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Andrew M.; Aubry, Sylvie; Shaner, Eric Arthur; Siegal, Michael P.; Li, Qiming; Jones, Reese E.; Westover, Tyler; Wang, George T.; Zhou, Xiao Wang; Talin, Albert Alec; Bogart, Katherine Huderle Andersen; Harris, C. Thomas; Huang, Jian Yu

    2010-09-01

    We present the results of a three year LDRD project that focused on understanding the impact of defects on the electrical, optical and thermal properties of GaN-based nanowires (NWs). We describe the development and application of a host of experimental techniques to quantify and understand the physics of defects and thermal transport in GaN NWs. We also present the development of analytical models and computational studies of thermal conductivity in GaN NWs. Finally, we present an atomistic model for GaN NW electrical breakdown supported with experimental evidence. GaN-based nanowires are attractive for applications requiring compact, high-current density devices such as ultraviolet laser arrays. Understanding GaN nanowire failure at high-current density is crucial to developing nanowire (NW) devices. Nanowire device failure is likely more complex than thin film due to the prominence of surface effects and enhanced interaction among point defects. Understanding the impact of surfaces and point defects on nanowire thermal and electrical transport is the first step toward rational control and mitigation of device failure mechanisms. However, investigating defects in GaN NWs is extremely challenging because conventional defect spectroscopy techniques are unsuitable for wide-bandgap nanostructures. To understand NW breakdown, the influence of pre-existing and emergent defects during high current stress on NW properties will be investigated. Acute sensitivity of NW thermal conductivity to point-defect density is expected due to the lack of threading dislocation (TD) gettering sites, and enhanced phonon-surface scattering further inhibits thermal transport. Excess defect creation during Joule heating could further degrade thermal conductivity, producing a viscous cycle culminating in catastrophic breakdown. To investigate these issues, a unique combination of electron microscopy, scanning luminescence and photoconductivity implemented at the nanoscale will be used in

  1. Isomer spectroscopy in 92Ru and 95Pd

    International Nuclear Information System (INIS)

    Gorska, M.; Rejmund, M.; Schubart, R.; Grawe, H.; Heese, J.; Maier, K.H.; Spohr, K.; Fitzgerald, J.B.; Fossan, D.B.

    1996-01-01

    The parity changing γ-transitions like E1, M2, E3 in 92 Ru and 95 Pd nuclei have been investigated to probe the purity of the Shell Model. Two isomers of 92 Ru and 95 Pd have been produced in the 58 Ni + 40 Ca heavy ion reaction at 58 Ni beams energy 215 MeV. The gamma-ray transition strength have been deduced

  2. Women-specific risk factors for heart failure: A genetic approach.

    Science.gov (United States)

    van der Kemp, Jet; van der Schouw, Yvonne T; Asselbergs, Folkert W; Onland-Moret, N Charlotte

    2018-03-01

    Heart failure is a complex disease, which is presented differently by men and women. Several studies have shown that reproductive factors, such as age at natural menopause, parity and polycystic ovarian syndrome (PCOS), may play a role in the development of heart failure. Shared genetics may provide clues to underlying mechanisms; however, this has never been examined. Therefore, the aim of the current study was to explore whether any reproductive factor is potentially related to heart failure in women, based on genetic similarities. Conducting a systematic literature review, single nucleotide polymorphisms (SNPs) associated with reproductive factors, heart failure and its risk factors were extracted from recent genome-wide association studies. We tested whether there was any overlap between the SNPs and their proxies of reproductive risk factors with those known for heart failure or its risk factors. In total, 520 genetic variants were found that are associated with reproductive factors, namely age at menarche, age at natural menopause, menstrual cycle length, PCOS, preeclampsia, preterm delivery and spontaneous dizygotic twinning. For heart failure and associated phenotypes, 25 variants were found. Genetic variants for reproductive factors did not overlap with those for heart failure. However, age at menarche, gestational diabetes and PCOS were found to be genetically linked to risk factors for heart failure, such as atrial fibrillation, diabetes and smoking. Corresponding implicated genes, such as TNNI3K, ErbB3, MKL2, MTNR1B and PRKD1, may explain the associations between reproductive factors and heart failure. Exact effector mechanisms of these genes remain to be investigated further. Copyright © 2017. Published by Elsevier B.V.

  3. 40 CFR 92.210 - Amending the application and certificate of conformity.

    Science.gov (United States)

    2010-07-01

    ... certificate of conformity. 92.210 Section 92.210 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Certification Provisions § 92.210 Amending the application and certificate of conformity. (a) The manufacturer... covered by a certificate of conformity. This notification must include a request to amend the application...

  4. 24 CFR 92.502 - Program disbursement and information system.

    Science.gov (United States)

    2010-04-01

    ... information system. 92.502 Section 92.502 Housing and Urban Development Office of the Secretary, Department of... disbursement and information system. (a) General. The Home Investment Trust Fund account established in the United States Treasury is managed through a computerized disbursement and information system established...

  5. Hydra-Ring: a computational framework to combine failure probabilities

    Science.gov (United States)

    Diermanse, Ferdinand; Roscoe, Kathryn; IJmker, Janneke; Mens, Marjolein; Bouwer, Laurens

    2013-04-01

    This presentation discusses the development of a new computational framework for the safety assessment of flood defence systems: Hydra-Ring. Hydra-Ring computes the failure probability of a flood defence system, which is composed of a number of elements (e.g., dike segments, dune segments or hydraulic structures), taking all relevant uncertainties explicitly into account. This is a major step forward in comparison with the current Dutch practice in which the safety assessment is done separately per individual flood defence section. The main advantage of the new approach is that it will result in a more balanced prioratization of required mitigating measures ('more value for money'). Failure of the flood defence system occurs if any element within the system fails. Hydra-Ring thus computes and combines failure probabilities of the following elements: - Failure mechanisms: A flood defence system can fail due to different failure mechanisms. - Time periods: failure probabilities are first computed for relatively small time scales (assessment of flood defense systems, Hydra-Ring can also be used to derive fragility curves, to asses the efficiency of flood mitigating measures, and to quantify the impact of climate change and land subsidence on flood risk. Hydra-Ring is being developed in the context of the Dutch situation. However, the computational concept is generic and the model is set up in such a way that it can be applied to other areas as well. The presentation will focus on the model concept and probabilistic computation techniques.

  6. 24 CFR 92.508 - Recordkeeping.

    Science.gov (United States)

    2010-04-01

    ... private sector as required by § 92.200. (ii) The forms of HOME assistance used in the program, including... local government, or both) equal to or greater than the difference between its formula allocation and... records. (1) The participating jurisdiction must provide citizens, public agencies, and other interested...

  7. A review of stent’s failure on patent ductus arteriosus

    Science.gov (United States)

    Lazim, Zulfaqih; Ismail, Al Emran; Taib, Ishkrizat; Atan, Bainun Akmal Mohd

    2017-01-01

    This paper presents a review of stent’s failure on patent ductus arteriosus (PDA). Ductus arteriosus (DA) is an opening for newborn babies and some patient that experienced cynotic congenital heart disease (CCHD) should maintain the duct opening for survival. To date, there are no specific research on mechanical stent failure study at DA. The challenging of the stent implantation on PDA is the PDA morphology. The failure of stent in term of stent fracture have been reported and reviewed in this paper. Furthermore, the failure prediction of stent is important for further stent design development. The morphology of PDA, stent type and material used in PDA and method for accessing the failure of stent is reviewed.

  8. Comparison of mode of failure between primary and revision total knee arthroplasties.

    Science.gov (United States)

    Liang, H; Bae, J K; Park, C H; Kim, K I; Bae, D K; Song, S J

    2018-04-01

    Cognizance of common reasons for failure in primary and revision TKA, together with their time course, facilitates prevention. However, there have been few reports specifically comparing modes of failure for primary vs. revision TKA using a single prosthesis. The goal of the study was to compare the survival rates, modes of failure, and time periods associated with each mode of failure, of primary vs. revision TKA. The survival rates, modes of failure, time period for each mode of failure, and risk factors would differ between primary and revision TKA. Data from a consecutive cohort comprising 1606 knees (1174 patients) of primary TKA patients, and 258 knees (224 patients) of revision TKA patients, in all of whom surgery involved a P.F.C ® prosthesis (Depuy, Johnson & Johnson, Warsaw, IN), was retrospectively reviewed. The mean follow-up periods of primary and revision TKAs were 9.2 and 9.8 years, respectively. The average 10- and 15-year survival rates for primary TKA were 96.7% (CI 95%,±0.7%) and 85.4% (CI 95%,±2.0%), and for revision TKA 91.4% (CI 95%,±2.5%) and 80.5% (CI 95%,±4.5%). Common modes of failure included polyethylene wear, loosening, and infection. The most common mode of failure was polyethylene wear in primary TKA, and infection in revision TKA. The mean periods (i.e., latencies) of polyethylene wear and loosening did not differ between primary and revision TKAs, but the mean period of infection was significantly longer for revision TKA (1.2 vs. 4.8 years, P=0.003). Survival rates decreased with time, particularly more than 10 years post-surgery, for both primary and revision TKAs. Continuous efforts are required to prevent and detect the various modes of failure during long-term follow-up. Greater attention is necessary to detect late infection-induced failure following revision TKA. Case-control study, Level III. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. Wood-adhesive bonding failure : modeling and simulation

    Science.gov (United States)

    Zhiyong Cai

    2010-01-01

    The mechanism of wood bonding failure when exposed to wet conditions or wet/dry cycles is not fully understood and the role of the resulting internal stresses exerted upon the wood-adhesive bondline has yet to be quantitatively determined. Unlike previous modeling this study has developed a new two-dimensional internal-stress model on the basis of the mechanics of...

  10. Effect of Preconditioning and Soldering on Failures of Chip Tantalum Capacitors

    Science.gov (United States)

    Teverovsky, Alexander A.

    2014-01-01

    Soldering of molded case tantalum capacitors can result in damage to Ta205 dielectric and first turn-on failures due to thermo-mechanical stresses caused by CTE mismatch between materials used in the capacitors. It is also known that presence of moisture might cause damage to plastic cases due to the pop-corning effect. However, there are only scarce literature data on the effect of moisture content on the probability of post-soldering electrical failures. In this work, that is based on a case history, different groups of similar types of CWR tantalum capacitors from two lots were prepared for soldering by bake, moisture saturation, and longterm storage at room conditions. Results of the testing showed that both factors: initial quality of the lot, and preconditioning affect the probability of failures. Baking before soldering was shown to be effective to prevent failures even in lots susceptible to pop-corning damage. Mechanism of failures is discussed and recommendations for pre-soldering bake are suggested based on analysis of moisture characteristics of materials used in the capacitors' design.

  11. Mechanical failures after fixation with proximal femoral nail and risk factors

    Directory of Open Access Journals (Sweden)

    Koyuncu S

    2015-12-01

    postoperative complications were seen in 27 patients (17.7%. A total of 14 patients (9.2% underwent a revision procedure for mechanical complications.Conclusion: The study results suggest that the quality of fracture reduction is an important factor that affects the revision rate and SWS score in patients with mechanical complications after osteosynthesis with PFN for trochanteric fractures. Keywords: trochanteric hip fracture, proximal femoral nail, fracture reduction, complications, risk factors, intramedullary nail

  12. Anxiety and depression after failure of assisted reproductive treatment among patients experiencing infertility.

    Science.gov (United States)

    Maroufizadeh, Saman; Karimi, Elaheh; Vesali, Samira; Omani Samani, Reza

    2015-09-01

    To investigate the impact of the number of previous infertility treatment failures on anxiety and depression. In a cross-sectional study, individuals (men and women, but not couples) aged at least 18 years who had a history of infertility and could read and write in Persian were enrolled at the Royan Institute, Tehran, Iran, between November 1, 2013, and February 28, 2014. Participants provided demographic and infertility information and completed the Persian version of the Hospital Anxiety and Depression Scale (HADS). Overall, 330 patients (122 men, 208 women) were included. Mean scores on the HADS anxiety and depression subscales (HADS-A and HADS-D) were 8.40±4.51 and 5.95±3.54, respectively. In multiple regression analysis, mean HADS-A scores were significantly higher for patients with one treatment failure (9.57±4.58) than for those without a history of treatment (7.79±4.13; P=0.003). HADS-D scores were significantly higher for patients with two failures (6.92±3.69) than for those with no previous treatment (5.59±3.79; P=0.019). Patients with infertility have increased depression and anxiety after infertility treatment failure. Counseling or treatment for these potential psychological effects should be considered after infertility treatment failure. Copyright © 2015 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved.

  13. Determining the influence of calcification on the failure properties of abdominal aortic aneurysm (AAA) tissue.

    Science.gov (United States)

    O'Leary, Siobhan A; Mulvihill, John J; Barrett, Hilary E; Kavanagh, Eamon G; Walsh, Michael T; McGloughlin, Tim M; Doyle, Barry J

    2015-02-01

    Varying degrees of calcification are present in most abdominal aortic aneurysms (AAAs). However, their impact on AAA failure properties and AAA rupture risk is unclear. The aim of this work is evaluate and compare the failure properties of partially calcified and predominantly fibrous AAA tissue and investigate the potential reasons for failure. Uniaxial mechanical testing was performed on AAA samples harvested from 31 patients undergoing open surgical repair. Individual tensile samples were divided into two groups: fibrous (n=31) and partially calcified (n=38). The presence of calcification was confirmed by fourier transform infrared spectroscopy (FTIR). A total of 69 mechanical tests were performed and the failure stretch (λf), failure stress (σf) and failure tension (Tf) were recorded for each test. Following mechanical testing, the failure sites of a subset of both tissue types were examined using scanning electron microscopy (SEM)/energy dispersive X-ray spectroscopy (EDS) to investigate the potential reasons for failure. It has been shown that the failure properties of partially calcified tissue are significantly reduced compared to fibrous tissue and SEM and EDS results suggest that the junction between a calcification deposit and the fibrous matrix is highly susceptible to failure. This study implicates the presence of calcification as a key player in AAA rupture risk and provides further motivation for the development of non-invasive methods of measuring calcification. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Dissimilar weld failure analysis and development program

    International Nuclear Information System (INIS)

    Holko, K.H.; Li, C.C.

    1982-01-01

    The problem of dissimilar weld cracking and failure is examined. This problem occurs in boiler superheater and reheater sections as well as main steam piping. Typically, a dissimilar weld joins low-alloy steel tubing such as Fe-2-1/4 Cr-1Mo to stainless steel tubing such as 321H and 304H. Cracking and failure occur in the low-alloy steel heat-affected zone very close to the weld interface. The 309 stainless steel filler previously used has been replaced with nickel-base fillers such as Inconel 132, Inconel 182, and Incoweld A. This change has extended the time to cracking and failure, but has not solved the problem. To illustrate and define the problem, the metallography of damaged and failed dissimilar welds is described. Results of mechanical tests of dissimilar welds removed from service are presented, and factors believed to be influential in causing damage and failure are discussed. In addition, the importance of dissimilar weldment service history is demonstrated, and the Dissimilar Weld Failure Analysis and Development Program is described. 15 figures

  15. pRotective vEntilation with veno-venouS lung assisT in respiratory failure: A protocol for a multicentre randomised controlled trial of extracorporeal carbon dioxide removal in patients with acute hypoxaemic respiratory failure.

    Science.gov (United States)

    McNamee, J J; Gillies, M A; Barrett, N A; Agus, A M; Beale, R; Bentley, A; Bodenham, A; Brett, S J; Brodie, D; Finney, S J; Gordon, A J; Griffiths, M; Harrison, D; Jackson, C; McDowell, C; McNally, C; Perkins, G D; Tunnicliffe, W; Vuylsteke, A; Walsh, T S; Wise, M P; Young, D; McAuley, D F

    2017-05-01

    One of the few interventions to demonstrate improved outcomes for acute hypoxaemic respiratory failure is reducing tidal volumes when using mechanical ventilation, often termed lung protective ventilation. Veno-venous extracorporeal carbon dioxide removal (vv-ECCO 2 R) can facilitate reducing tidal volumes. pRotective vEntilation with veno-venouS lung assisT (REST) is a randomised, allocation concealed, controlled, open, multicentre pragmatic trial to determine the clinical and cost-effectiveness of lower tidal volume mechanical ventilation facilitated by vv-ECCO 2 R in patients with acute hypoxaemic respiratory failure. Patients requiring intubation and mechanical ventilation for acute hypoxaemic respiratory failure will be randomly allocated to receive either vv-ECCO 2 R and lower tidal volume mechanical ventilation or standard care with stratification by recruitment centre. There is a need for a large randomised controlled trial to establish whether vv-ECCO 2 R in acute hypoxaemic respiratory failure can allow the use of a more protective lung ventilation strategy and is associated with improved patient outcomes.

  16. Bayesian analysis of repairable systems showing a bounded failure intensity

    International Nuclear Information System (INIS)

    Guida, Maurizio; Pulcini, Gianpaolo

    2006-01-01

    The failure pattern of repairable mechanical equipment subject to deterioration phenomena sometimes shows a finite bound for the increasing failure intensity. A non-homogeneous Poisson process with bounded increasing failure intensity is then illustrated and its characteristics are discussed. A Bayesian procedure, based on prior information on model-free quantities, is developed in order to allow technical information on the failure process to be incorporated into the inferential procedure and to improve the inference accuracy. Posterior estimation of the model-free quantities and of other quantities of interest (such as the optimal replacement interval) is provided, as well as prediction on the waiting time to the next failure and on the number of failures in a future time interval is given. Finally, numerical examples are given to illustrate the proposed inferential procedure

  17. 22 CFR 92.75 - Services in connection with income tax returns.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Services in connection with income tax returns. 92.75 Section 92.75 Foreign Relations DEPARTMENT OF STATE LEGAL AND RELATED SERVICES NOTARIAL AND RELATED SERVICES Miscellaneous Notarial Services § 92.75 Services in connection with income tax returns...

  18. 45 CFR 92.50 - Closeout.

    Science.gov (United States)

    2010-10-01

    ... agencies may extend this timeframe. These may include but are not limited to: (1) Final performance or... Construction Programs (SF-271) (as applicable). (3) Final request for payment (SF-270) (if applicable). (4) Invention disclosure (if applicable). (5) Federally-owned property report: In accordance with § 92.32(f), a...

  19. Insufficiency of Medical Care for Patients with Acute Respiratory Failure

    Directory of Open Access Journals (Sweden)

    A. V. Dats

    2017-01-01

    Full Text Available The purpose of the research: to analyze insufficiency of medical care for patients with acute respiratory failure in the ICU.Materials and methods. It was a retrospective study of 160 patients' medical records (age from 15 to 84 years with acute respiratory failure (ARF hospitalized in the ICUs of 24 regional and municipal hospitals of the Irkutsk Oblast. Medical records were provided by the Territorial Fund of Compulsory Medical Insurance of citizens of Irkutsk region.The results. The basic defects in conducting mechanical ventilation were associated with improper lung function evaluation, microbiological tests of sputum and radiology. ARF was not diagnosed in 32 of 160 ICU patients (20%. In 23% of cases the causes of ARF were not diagnosed. The greatest part of the defects in the treatment of patients with acute respiratory failure was found during the treatment of hypoxemia: no recovery of the respiratory tract patency, no prescription of oxygen for hypoxemia, no mechanical ventilation for persistent hypoxemia on the background of maximum oxygen supply and late switching to mechanical ventilation at the stage of hypoxic cardiac arrest.Conclusions. The use of pulse oximetry alone in the absence of arterial blood gas analysis in 98% of patients with acute respiratory failure and failure to perform the lung X-ray and/or MSCT imaging in 21% of patients were accompanied by a high level of undiagnosed acute respiratory distress syndrome (78%, lung contusion (60%, pulmonary embolism (40%, cardiogenic pulmonary edema (33%, and nosocomial pneumonia (28%. Defects of treatment of patients with ARF in 46% of cases were caused by inadequate management of hypoxemia associated with the recovery of the respiratory tract patency, prescription of oxygen, and mechanical ventilation. 

  20. Fuel element failures caused by iodine stress corrosion

    International Nuclear Information System (INIS)

    Videm, K.; Lunde, L.

    1976-01-01

    Sections of unirradiated cladding tubes were plugged in both ends by mechanical seals and internally pressurized with argon containing iodine. The time to failure and the strain at failure as a function of stress was determined for tubing with different heat treatments. Fully annealed tubes suffer cracking at the lowest stress but exhibit the largest strains at failure. Elementary iodine is not necessary for stress corrosion: small amounts of iodides of zirconium, iron and aluminium can also give cracking. Moisture, however, was found to act as an inhibitor. A deformation threshold exists below which stress corrosion failure does not occur regardless of the exposure time. This deformation limit is lower the harder the tube. The deformation at failure is dependent on the deformation rate and has a minimum at 0.1%/hr. At higher deformation rates the failure deformation increases, but only slightly for hard tubes. Fuel was over-power tested at ramp rates varying between 0.26 to 30 W/cm min. For one series of fuel pins the failure deformations of 0.8% at high ramp rates were in good agreement with predictions based on stress corrosion experiments. For another series of experiments the failure deformation was surprisingly low, about 0.2%. (author)

  1. Study of Stark Effect in n-doped 1.55 μm InN0.92yP1-1.92yBiy/InP MQWs

    Science.gov (United States)

    Bilel, C.; Chakir, K.; Rebey, A.; Alrowaili, Z. A.

    2018-05-01

    The effect of an applied electric field on electronic band structure and optical absorption properties of n-doped InN0.92y P1-1.92y Bi y /InP multiple quantum wells (MQWs) was theoretically studied using a self-consistent calculation combined with the 16-band anti-crossing model. The incorporation of N and Bi atoms into an InP host matrix leads to rapid reduction of the band gap energy covering a large infrared range. The optimization of the well parameters, such as the well/barrier widths, N/Bi compositions and doping density, allowed us to obtain InN0.92y P1-1.92y Bi y /InP MQWs operating at the wavelength 1.55 μm. Application of the electric field causes a red-shift of the fundamental transition energy T 1 accompanied by a significant change in the spatial distribution of confined electron density. The Stark effect on the absorption coefficient of n-doped InN0.92y P1-1.92y Bi y /InP MQWs was investigated. The Bi composition of these MQWs was adjusted for each electric field value in order to maintain the wavelength emission at 1.55 μm.

  2. 22 CFR 92.38 - Forms of certificate of authentication.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Forms of certificate of authentication. 92.38... SERVICES Specific Notarial Acts § 92.38 Forms of certificate of authentication. The form of a certificate of authentication depends on the statutory requirements of the jurisdiction where the authenticated...

  3. 24 CFR 92.222 - Reduction of matching contribution requirement.

    Science.gov (United States)

    2010-04-01

    ... major disaster pursuant to the Robert T. Stafford Disaster Relief and Emergency Assistance Act is made... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Reduction of matching contribution requirement. 92.222 Section 92.222 Housing and Urban Development Office of the Secretary, Department of...

  4. Problem solving and Program design using the TI-92

    NARCIS (Netherlands)

    Ir.ing. Ton Marée; ir Martijn van Dongen

    2000-01-01

    This textbook is intended for a basic course in problem solving and program design needed by scientists and engineers using the TI-92. The TI-92 is an extremely powerful problem solving tool that can help you manage complicated problems quickly. We assume no prior knowledge of computers or

  5. Anemia and iron deficiency in heart failure : mechanisms and therapeutic approaches

    NARCIS (Netherlands)

    van Veldhuisen, Dirk J.; Anker, Stefan D.; Ponikowski, Piotr; Macdougall, Iain C.

    Anemia and iron deficiency are common in patients with heart failure (HF), and are associated with worse symptoms and adverse outcomes in this population. Although the two can occur together, anemia in HF is often not caused by iron deficiency, and iron deficiency can be present without causing

  6. Accurate Prediction of Motor Failures by Application of Multi CBM Tools: A Case Study

    Science.gov (United States)

    Dutta, Rana; Singh, Veerendra Pratap; Dwivedi, Jai Prakash

    2018-02-01

    Motor failures are very difficult to predict accurately with a single condition-monitoring tool as both electrical and the mechanical systems are closely related. Electrical problem, like phase unbalance, stator winding insulation failures can, at times, lead to vibration problem and at the same time mechanical failures like bearing failure, leads to rotor eccentricity. In this case study of a 550 kW blower motor it has been shown that a rotor bar crack was detected by current signature analysis and vibration monitoring confirmed the same. In later months in a similar motor vibration monitoring predicted bearing failure and current signature analysis confirmed the same. In both the cases, after dismantling the motor, the predictions were found to be accurate. In this paper we will be discussing the accurate predictions of motor failures through use of multi condition monitoring tools with two case studies.

  7. Failure analysis of vise jaw holders for hacksaw machine

    Directory of Open Access Journals (Sweden)

    Essam Ali Al-Bahkali

    2018-01-01

    Full Text Available Failure analysis in mechanical components has been investigated in many studies in the last few years. Failure analysis and prevention are important functions in all engineering disciplines. Materials engineers are often the lead role in the analysis of failures, where a component or product fails in service or if a failure occurs during manufacturing or production processing. In any case, one must determine the cause of the failure to prevent future occurrences and/or to improve the performance of the device, component or structure. For example, the vise jaw holders of hacksaws can break due to accidental heavy loads or machine misuse. The parts that break are the stationary and movable vise jaw holders and the connecter power screw between the holders. To investigate the failure of these components, a three-dimensional finite element model for stress analysis was performed. First, the analysis identified the broken components of the hacksaw machine. In addition, the type of materials of the broken parts was identified, a CAD model was built, and the hacksaw mechanism was analyzed to determine the accurate applied loads on the broken parts. After analyzing the model using Abaqus CAE software, the results showed that the location of the high stresses was identical with the high-stress locations in the original, broken parts. Furthermore, the power screw was subjected to a high load, which deformed the power screw. Also, the stationary vise jaw holder was broken by impact because it was not touched by the power screw until the movable vise jaw holder broke. A conclusion is drawn from the failure analysis and a way to improve the design of the broken parts is suggested.

  8. Gradual failure of structures in creep conditions

    International Nuclear Information System (INIS)

    Chrzanowski, M.; Latus, P.

    1993-01-01

    The most characteristic feature of progressive material deterioration in creep conditions Is its time-dependence. In structures this process comprises of three stages: 1. Incubation of a macroscopic defect at the time of First Crack Appearance (FCA); 2. Propagation of a macro-crack throughout the structural member at the Time of Member Failure (TMF); 3. Propagation of failure of consecutive structure members, leading to the Final Structure Collapse (FSC). The importance of a full analysis of a structure which comprises all above stages has been demonstrated previously. Corresponding times are denoted as t 1 , t 2 , t 3 respectively. Depending on many factors, like material properties, loading and supports, the ratio of t 1 /t 2 and t 2 /t 3 may vary significantly, and thus exhibiting a safety margin connected with damage propagation throughout the structure. However, the full analysis becomes very sophisticated since creep and damage evolutions law are often nonlinear ones, and analysis should include changing geometry of a structure. It was was found that the failure propagation in analysed structures appeared to be very sensitive to structures geometry and loading. The time ratio t 1 /t 3 depends on redundancy k (higher the redundancy lower the ratio), but structures collapse by local mechanisms. These mechanisms can be different depending on k. More decisive than redundancy is an overall configuration of loads and structure geometry because of different mechanism of final failure. So far, no general conclusion can be drawn, but the whole analysis resembles that of limit analysis for structures made of ideally plastic or elastic-plastic materials. Nevertheless it Is evident that full analysis of structures in creep conditions can significantly enhance the structures life-time expectation

  9. 77 FR 44139 - Drawbridge Operation Regulation; Sacramento River, Sacramento, CA

    Science.gov (United States)

    2012-07-27

    ... Operation Regulation; Sacramento River, Sacramento, CA AGENCY: Coast Guard, DHS. ACTION: Notice of temporary... Sacramento, CA. The deviation is necessary to allow the community to participate in the Fleet Feet Event, Run... Tower Drawbridge, mile 59.0, Sacramento River, at Sacramento, CA. The Tower Drawbridge navigation span...

  10. Production of U92+ with an EBIT

    International Nuclear Information System (INIS)

    Marrs, R.E.

    1995-01-01

    A super electron beam ion trap has been used to produce bare U 92+ ions at an electron beam energy of 198 keV. Evaporative cooling with light ions was used to trap a population of 5 x 10 4 highly charged uranium ions for many seconds and reduce their temperature to less than 2q eV, suggesting that a very low emittance source of these ions is possible. Roughly 10 U 92+ and 500 U 91+ ions were present in the Super EBIT as determined from x-ray emission spectra of the trapped ions

  11. Translational aspects of cell therapy for heart failure

    OpenAIRE

    Nasseri, Boris

    2015-01-01

    This cumulative “habilitation” thesis focuses on myocardial regeneration by means of cell therapy and on experimental and clinical approaches. To supplement the articles published by the author the work gives an overview of the pathogenesis of heart failure and remodeling of the heart, taking into account the role of nitric oxide and statins. Further, the treatment of ischemic heart failure including organ transplantation and mechanical circulatory support is discussed. Different approaches t...

  12. The common mode failures analysis of the redundent system with dependent human error

    International Nuclear Information System (INIS)

    Kim, M.K.; Chang, S.H.

    1983-01-01

    Common mode failures (CMFs) have been a serious concern in the nuclear power plant. Thereis a broad category of the failure mechanisms that can cause common mode failures. This paper is a theoretical investigation of the CMFs on the unavailability of the redundent system. It is assumed that the total CMFs consist of the potential CMFs and the dependent human error CMFs. As the human error dependency is higher, the total CMFs are more effected by the dependent human error. If the human error dependence is lower, the system unavailability strongly depends on the potential CMFs, rather than the mechanical failure or the dependent human error. And it is shown that the total CMFs are dominant factor to the unavailability of the redundent system. (Author)

  13. Boiler tube failure prevention in fossil fired boilers

    International Nuclear Information System (INIS)

    Townsend, R.D.

    1993-01-01

    It is the common experience of power generating companies worldwide that the main causes of forced outages on power plant are those due to boiler tube failures on fossil units. The main reason for the large number of failures are the severe environmental conditions in fossil boilers as the effects of stress, temperature, temperature gradients, corrosion, erosion and vibration combine to produce degradation of the tube steel. Corrosion by oxidation, by combustion products and by impure boiler water can significantly reduce the tube wall thickness and result in failure of a tube many years before its designed service life. Errors can also occur in the design manufacturer, storage, operation, and maintenance of boiler tubing and the wrong material installed in a critical location can lead to premature failure. Altogether, experts in the US and UK, from many different disciplines, have identified seven broad categories of boiler tube failure mechanisms. 1 tab., 2 figs

  14. 49 CFR 92.35 - Interest, penalties and administrative costs.

    Science.gov (United States)

    2010-10-01

    ... accrue until payment is received. Interest shall be calculated only on the principal of the debt (simple... 49 Transportation 1 2010-10-01 2010-10-01 false Interest, penalties and administrative costs. 92... UNITED STATES BY SALARY OFFSET § 92.35 Interest, penalties and administrative costs. (a) Where a DOT...

  15. Micromechanics Based Failure Analysis of Heterogeneous Materials

    Science.gov (United States)

    Sertse, Hamsasew M.

    In recent decades, heterogeneous materials are extensively used in various industries such as aerospace, defense, automotive and others due to their desirable specific properties and excellent capability of accumulating damage. Despite their wide use, there are numerous challenges associated with the application of these materials. One of the main challenges is lack of accurate tools to predict the initiation, progression and final failure of these materials under various thermomechanical loading conditions. Although failure is usually treated at the macro and meso-scale level, the initiation and growth of failure is a complex phenomena across multiple scales. The objective of this work is to enable the mechanics of structure genome (MSG) and its companion code SwiftComp to analyze the initial failure (also called static failure), progressive failure, and fatigue failure of heterogeneous materials using micromechanics approach. The initial failure is evaluated at each numerical integration point using pointwise and nonlocal approach for each constituent of the heterogeneous materials. The effects of imperfect interfaces among constituents of heterogeneous materials are also investigated using a linear traction-displacement model. Moreover, the progressive and fatigue damage analyses are conducted using continuum damage mechanics (CDM) approach. The various failure criteria are also applied at a material point to analyze progressive damage in each constituent. The constitutive equation of a damaged material is formulated based on a consistent irreversible thermodynamics approach. The overall tangent modulus of uncoupled elastoplastic damage for negligible back stress effect is derived. The initiation of plasticity and damage in each constituent is evaluated at each numerical integration point using a nonlocal approach. The accumulated plastic strain and anisotropic damage evolution variables are iteratively solved using an incremental algorithm. The damage analyses

  16. Understanding the failure mechanisms of microwave bipolar transistors caused by electrostatic discharge

    Science.gov (United States)

    Jin, Liu; Yongguang, Chen; Zhiliang, Tan; Jie, Yang; Xijun, Zhang; Zhenxing, Wang

    2011-10-01

    Electrostatic discharge (ESD) phenomena involve both electrical and thermal effects, and a direct electrostatic discharge to an electronic device is one of the most severe threats to component reliability. Therefore, the electrical and thermal stability of multifinger microwave bipolar transistors (BJTs) under ESD conditions has been investigated theoretically and experimentally. 100 samples have been tested for multiple pulses until a failure occurred. Meanwhile, the distributions of electric field, current density and lattice temperature have also been analyzed by use of the two-dimensional device simulation tool Medici. There is a good agreement between the simulated results and failure analysis. In the case of a thermal couple, the avalanche current distribution in the fingers is in general spatially unstable and results in the formation of current crowding effects and crystal defects. The experimental results indicate that a collector-base junction is more sensitive to ESD than an emitter-base junction based on the special device structure. When the ESD level increased to 1.3 kV, the collector-base junction has been burnt out first. The analysis has also demonstrated that ESD failures occur generally by upsetting the breakdown voltage of the dielectric or overheating of the aluminum-silicon eutectic. In addition, fatigue phenomena are observed during ESD testing, with devices that still function after repeated low-intensity ESDs but whose performances have been severely degraded.

  17. Ablation of the MiR-17-92 MicroRNA Cluster in Germ Cells Causes Subfertility in Female Mice.

    Science.gov (United States)

    Wang, Jian; Xu, Bo; Tian, Geng G; Sun, Tao; Wu, Ji

    2018-01-01

    Oogenesis is a highly complex process that is intricately regulated by interactions of multiple genes and signaling molecules. However, the underlying molecular mechanisms are poorly understood. There is emerging evidence that microRNAs contribute to oogenesis. Here, we aimed to investigate the role of miR-17-92 cluster in regulating oogenesis. The miR-17-92 cluster was genetically ablated in germ cells of female mice by applying the Cre-loxp system for conditional gene knockout. Mating experiment, superovulation and histological analysis were used to assess the fertility of the model female mice. TUNEL assay was used to identify apoptotic cells in ovaries. The expression level of apoptosis- and follicular atresia- related genes was evaluated by qRT-PCR. Western blotting was performed to detect protein expression. Bioinformatics software and dual luciferase reporter assay were applied to predict and verify the target of miR-17-92 cluster. Deletion of miR-17-92 cluster in germ cells of female mice caused increased oocyte degradation and follicular atresia, perturbed oogenesis, and ultimately led to subfertility. Genes involved in follicular atresia and the mitochondrial apoptotic pathway were obviously up-regulated. Furthermore, we verified that miR-19a regulated oogenesis at the post-transcriptional level by targeting Bmf in the ovaries of miR-17-92 cluster conditional knockout female mice. The miR-17-92 cluster is an important regulator of oogenesis. These findings will assist in better understanding the etiology of disorders in oogenesis and in developing new therapeutic targets for female infertility. © 2018 The Author(s). Published by S. Karger AG, Basel.

  18. Effects of cold worked and fully annealed claddings on fuel failure behaviour

    International Nuclear Information System (INIS)

    Saito, Shinzo; Hoshino, Hiroaki; Shiozawa, Shusaku; Yanagihara, Satoshi

    1979-12-01

    Described are the results of six differently heat-treated Zircaloy clad fuel rod tests in NSRR experiments. The purpose of the test is to examine the extent of simulating irradiated claddings in mechanical properties by as-cold worked ones and also the effect of fully annealing on the fuel failure bahaviour in a reactivity initiated accident (RIA) condition. As-cold worked cladding does not properly simulated the embrittlement of the irradiated one in a RIA condition, because the cladding is fully annealed before the fuel failure even in the short transient. Therefore, the fuel behaviour such as fuel failure threshold energy, failure mechanism, cladding deformation and cladding oxidation of the fully annealed cladding fuel, as well as that of the as-cold worked cladding fuel, are not much different from that of the standard stress-relieved cladding fuel. (author)

  19. miR-92a family and their target genes in tumorigenesis and metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Molin, E-mail: molin_li@hotmail.com [Department of Pathophysiology, Basic Medical Science of Dalian Medical University, Dalian 116044 (China); Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, Dalian 116044 (China); Guan, Xingfang; Sun, Yuqiang [Department of Pathophysiology, Basic Medical Science of Dalian Medical University, Dalian 116044 (China); Mi, Jun [Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, Dalian 116044 (China); Shu, Xiaohong [College of Pharmacy, Dalian Medical University Cancer Center, Dalian 116044 (China); Liu, Fang [Department of Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027 (China); Li, Chuangang, E-mail: li_chuangang@sina.com [Department of Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027 (China)

    2014-04-15

    The miR-92a family, including miR-25, miR-92a-1, miR-92a-2 and miR-363, arises from three different paralog clusters miR-17-92, miR-106a-363, and miR-106b-25 that are highly conservative in the process of evolution, and it was thought as a group of microRNAs (miRNAs) correlated with endothelial cells. Aberrant expression of miR-92a family was detected in multiple cancers, and the disturbance of miR-92a family was related with tumorigenesis and tumor development. In this review, the progress on the relationship between miR-92a family and their target genes and malignant tumors will be summarized. - Highlights: • Aberrant expression of miR-92a, miR-25 and miR-363 can be observed in many kinds of malignant tumors. • The expression of miR-92a family is regulated by LOH, epigenetic alteration, transcriptional factors such as SP1, MYC, E2F, wild-type p53 etc. • Roles of miR-92a family in tumorigenesis and development: promoting cell proliferation, invasion and metastasis, inhibiting cell apoptosis.

  20. miR-92a family and their target genes in tumorigenesis and metastasis

    International Nuclear Information System (INIS)

    Li, Molin; Guan, Xingfang; Sun, Yuqiang; Mi, Jun; Shu, Xiaohong; Liu, Fang; Li, Chuangang

    2014-01-01

    The miR-92a family, including miR-25, miR-92a-1, miR-92a-2 and miR-363, arises from three different paralog clusters miR-17-92, miR-106a-363, and miR-106b-25 that are highly conservative in the process of evolution, and it was thought as a group of microRNAs (miRNAs) correlated with endothelial cells. Aberrant expression of miR-92a family was detected in multiple cancers, and the disturbance of miR-92a family was related with tumorigenesis and tumor development. In this review, the progress on the relationship between miR-92a family and their target genes and malignant tumors will be summarized. - Highlights: • Aberrant expression of miR-92a, miR-25 and miR-363 can be observed in many kinds of malignant tumors. • The expression of miR-92a family is regulated by LOH, epigenetic alteration, transcriptional factors such as SP1, MYC, E2F, wild-type p53 etc. • Roles of miR-92a family in tumorigenesis and development: promoting cell proliferation, invasion and metastasis, inhibiting cell apoptosis