WorldWideScience

Sample records for failure corona incremental

  1. Failure mechanisms in single-point incremental forming of metals

    DEFF Research Database (Denmark)

    Silva, Maria B.; Nielsen, Peter Søe; Bay, Niels

    2011-01-01

    The last years saw the development of two different views on how failure develops in single-point incremental forming (SPIF). Today, researchers are split between those claiming that fracture is always preceded by necking and those considering that fracture occurs with suppression of necking. Each...... on formability limits and development of fracture. The unified view conciliates the aforementioned different explanations on the role of necking in fracture and is consistent with the experimental observations that have been reported in the past years. The work is performed on aluminium AA1050-H111 sheets...

  2. Echocardiography and risk prediction in advanced heart failure: incremental value over clinical markers.

    Science.gov (United States)

    Agha, Syed A; Kalogeropoulos, Andreas P; Shih, Jeffrey; Georgiopoulou, Vasiliki V; Giamouzis, Grigorios; Anarado, Perry; Mangalat, Deepa; Hussain, Imad; Book, Wendy; Laskar, Sonjoy; Smith, Andrew L; Martin, Randolph; Butler, Javed

    2009-09-01

    Incremental value of echocardiography over clinical parameters for outcome prediction in advanced heart failure (HF) is not well established. We evaluated 223 patients with advanced HF receiving optimal therapy (91.9% angiotensin-converting enzyme inhibitor/angiotensin receptor blocker, 92.8% beta-blockers, 71.8% biventricular pacemaker, and/or defibrillator use). The Seattle Heart Failure Model (SHFM) was used as the reference clinical risk prediction scheme. The incremental value of echocardiographic parameters for event prediction (death or urgent heart transplantation) was measured by the improvement in fit and discrimination achieved by addition of standard echocardiographic parameters to the SHFM. After a median follow-up of 2.4 years, there were 38 (17.0%) events (35 deaths; 3 urgent transplants). The SHFM had likelihood ratio (LR) chi(2) 32.0 and C statistic 0.756 for event prediction. Left ventricular end-systolic volume, stroke volume, and severe tricuspid regurgitation were independent echocardiographic predictors of events. The addition of these parameters to SHFM improved LR chi(2) to 72.0 and C statistic to 0.866 (P advanced HF.

  3. Sulphur dioxide (SO2) electrotransfer in electric field generated by corona discharge

    International Nuclear Information System (INIS)

    Wang, Zu-wu; Guo, Jia; Zeng, Han-cai; Ge, Chun-liang; Yu, Jiang

    2007-01-01

    The mechanism of the forming SO 2 negative ions and their electrotransfer in the corona discharge electric field was investigated in this paper. The experimental results showed that SO 2 electrotransfer occurred in the electric field with corona discharge, which had potential applications in removal of SO 2 of the flue gas from coal-fired power plants by electrotransfer. SO 2 electrotransfer was enhanced by higher electric-field intensity or a larger discharging area. Assistant uniform electric field after the corona discharge electric field would improve SO 2 electrotransfer. The increment of the desulphurization efficiency by SO 2 electrotransfer might reach as high as 50%. (author)

  4. On excursion increments in heartbeat dynamics

    International Nuclear Information System (INIS)

    Guzmán-Vargas, L.; Reyes-Ramírez, I.; Hernández-Pérez, R.

    2013-01-01

    We study correlation properties of excursion increments of heartbeat time series from healthy subjects and heart failure patients. We construct the excursion time based on the original heartbeat time series, representing the time employed by the walker to return to the local mean value. Next, the detrended fluctuation analysis and the fractal dimension method are applied to the magnitude and sign of the increments in the time excursions between successive excursions for the mentioned groups. Our results show that for magnitude series of excursion increments both groups display long-range correlations with similar correlation exponents, indicating that large (small) increments (decrements) are more likely to be followed by large (small) increments (decrements). For sign sequences and for both groups, we find that increments are short-range anti-correlated, which is noticeable under heart failure conditions

  5. A practical approach to assess leg muscle oxygenation during ramp-incremental cycle ergometry in heart failure

    Directory of Open Access Journals (Sweden)

    A.C. Barroco

    2017-10-01

    Full Text Available Heart failure is characterized by the inability of the cardiovascular system to maintain oxygen (O2 delivery (i.e., muscle blood flow in non-hypoxemic patients to meet O2 demands. The resulting increase in fractional O2 extraction can be non-invasively tracked by deoxygenated hemoglobin concentration (deoxi-Hb as measured by near-infrared spectroscopy (NIRS. We aimed to establish a simplified approach to extract deoxi-Hb-based indices of impaired muscle O2 delivery during rapidly-incrementing exercise in heart failure. We continuously probed the right vastus lateralis muscle with continuous-wave NIRS during a ramp-incremental cardiopulmonary exercise test in 10 patients (left ventricular ejection fraction <35% and 10 age-matched healthy males. Deoxi-Hb is reported as % of total response (onset to peak exercise in relation to work rate. Patients showed lower maximum exercise capacity and O2 uptake-work rate than controls (P<0.05. The deoxi-Hb response profile as a function of work rate was S-shaped in all subjects, i.e., it presented three distinct phases. Increased muscle deoxygenation in patients compared to controls was demonstrated by: i a steeper mid-exercise deoxi-Hb-work rate slope (2.2±1.3 vs 1.0±0.3% peak/W, respectively; P<0.05, and ii late-exercise increase in deoxi-Hb, which contrasted with stable or decreasing deoxi-Hb in all controls. Steeper deoxi-Hb-work rate slope was associated with lower peak work rate in patients (r=–0.73; P=0.01. This simplified approach to deoxi-Hb interpretation might prove useful in clinical settings to quantify impairments in O2 delivery by NIRS during ramp-incremental exercise in individual heart failure patients.

  6. Early Shear Failure Prediction in Incremental Sheet Forming Process Using FEM and ANN

    Science.gov (United States)

    Moayedfar, Majid; Hanaei, Hengameh; Majdi Rani, Ahmad; Musa, Mohd Azam Bin; Sadegh Momeni, Mohammad

    2018-03-01

    The application of incremental sheet forming process as a rapid forming technique is rising in variety of industries such as aerospace, automotive and biomechanical purposes. However, the sheet failure is a big challenge in this process which leads wasting lots of materials. Hence, this study tried to propose a method to predict the early sheet failure in this process using mathematical solution. For the feasibility of the study, design of experiment with the respond surface method is employed to extract a set of experiments data for the simulation. The significant forming parameters were recognized and their integration was used for prediction system. Then, the results were inserted to the artificial neural network as input parameters to predict a vast range of applicable parameters avoiding sheet failure in ISF. The value of accuracy R2 ∼0.93 was obtained and the maximum sheet stretch in the depth of 25mm were recorded. The figures generate from the trend of interaction between effective parameters were provided for future studies.

  7. Single-point incremental forming and formability-failure diagrams

    DEFF Research Database (Denmark)

    Silva, M.B.; Skjødt, Martin; Atkins, A.G.

    2008-01-01

    In a recent work [1], the authors constructed a closed-form analytical model that is capable of dealing with the fundamentals of single point incremental forming and explaining the experimental and numerical results published in the literature over the past couple of years. The model is based...... of deformation that are commonly found in general single point incremental forming processes; and (ii) to investigate the formability limits of SPIF in terms of ductile damage mechanics and the question of whether necking does, or does not, precede fracture. Experimentation by the authors together with data...

  8. Characteristics of a corona discharge with a hot corona electrode

    International Nuclear Information System (INIS)

    Kulumbaev, E. B.; Lelevkin, V. M.; Niyazaliev, I. A.; Tokarev, A. V.

    2011-01-01

    The effect of the temperature of the corona electrode on the electrical characteristics of a corona discharge was studied experimentally. A modified Townsend formula for the current-voltage characteristic of a one-dimensional corona is proposed. Gasdynamic and thermal characteristics of a positive corona discharge in a coaxial electrode system are calculated. The calculated results are compared with the experimental data.

  9. Relationship between angina pectoris and outcomes in patients with heart failure and reduced ejection fraction: an analysis of the Controlled Rosuvastatin Multinational Trial in Heart Failure (CORONA).

    Science.gov (United States)

    Badar, Athar A; Perez-Moreno, Ana Cristina; Jhund, Pardeep S; Wong, Chih M; Hawkins, Nathaniel M; Cleland, John G F; van Veldhuisen, Dirk J; Wikstrand, John; Kjekshus, John; Wedel, Hans; Watkins, Stuart; Gardner, Roy S; Petrie, Mark C; McMurray, John J V

    2014-12-21

    Angina pectoris is common in patients with heart failure and reduced ejection fraction (HF-REF) but its relationship with outcomes has not been well defined. This relationship was investigated further in a retrospective analysis of the Controlled Rosuvastatin Multinational Trial in Heart Failure (CORONA). Four thousand, eight hundred and seventy-eight patients were divided into three categories: no history of angina and no chest pain at baseline (Group A; n = 1240), past history of angina but no chest pain at baseline (Group B; n = 1353) and both a history of angina and chest pain at baseline (Group C; n = 2285). Outcomes were examined using Kaplan-Meier and Cox regression survival analysis. Compared with Group A, Group C had a higher risk of non-fatal myocardial infarction or unstable angina (HR: 2.36, 1.54-3.61; P angina are at an increased risk of acute coronary syndrome and HF hospitalization. Whether these patients would benefit from more aggressive medical therapy or percutaneous revascularization is not known and merits further investigation. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

  10. Taurine supplementation has anti-atherogenic and anti-inflammatory effects before and after incremental exercise in heart failure.

    Science.gov (United States)

    Ahmadian, Mehdi; Roshan, Valiollah Dabidi; Aslani, Elaheh; Stannard, Stephen R

    2017-07-01

    The purpose of this study was to examine the anti-atherogenic and anti-inflammatory effect of supplemental taurine prior to and following incremental exercise in patients with heart failure (HF). Patients with HF and left ventricle ejection fraction less than 50%, and placed in functional class II or III according to the New York Heart Association classification, were randomly assigned to two groups: (1) taurine supplementation; or (2) placebo. The taurine group received oral taurine (500 mg) 3 times a day for 2 weeks, and performed exercise before and after the supplementation period. The placebo group followed the same protocol, but with a starch supplement (500 mg) rather than taurine. The incremental multilevel treadmill test was done using a modified Bruce protocol. Our results indicate that inflammatory indices [C-reactive protein (CRP), platelets] decreased in the taurine group in pre-exercise, post-supplementation and post-exercise, post-supplementation as compared with pre-exercise, pre-supplementation ( p exercise, post-supplementation and post-exercise, post-supplementation as compared with pre-exercise, pre-supplementation in the placebo group ( p exercise, post-supplementation and post-exercise, post-supplementation as compared with pre-exercise, pre-supplementation ( p 0.05). our results suggest that 2 weeks of oral taurine supplementation increases the taurine levels and has anti-atherogenic and anti-inflammatory effects prior to and following incremental exercise in HF patients.

  11. Corona SDK hotshot

    CERN Document Server

    Flanagan, Nevin

    2013-01-01

    Using a project based approach you will learn the coolest aspects of Corona SDK development. Each project contains step bystep explanations, diagrams, screenshots, and downloadable materials.This book is for users who already have completed at least one simple app using Corona and are familiar with mobile development using another platform and have done Lua programming in another context. Knowledge of the basic functions of Corona routines, as well as an understanding of the Lua programming language's syntax and common libraries, is assumed throughout.

  12. Corona helps curb losses

    Energy Technology Data Exchange (ETDEWEB)

    Laasonen, M.; Lahtinen, M.; Lustre, L.

    1996-11-01

    The greatest power losses in electricity transmission arise through a phenomenon called load losses. Corona losses caused by the surface discharge of electricity also constitute a considerable cost item. IVS, the nationwide network company, is investigating corona- induced losses, and has also commissioned similar research from IVO International, the Technical Research Centre of Finland (VTT) and from Tampere University of Technology. The research work strives to gain more in-depth knowledge on the phenomenon of frosting and its impact on corona losses. The correct prediction of frost helps reduce corona losses, while also cutting costs considerably. (orig.)

  13. Disease specific protein corona

    Science.gov (United States)

    Rahman, M.; Mahmoudi, M.

    2015-03-01

    It is now well accepted that upon their entrance into the biological environments, the surface of nanomaterials would be covered by various biomacromolecules (e.g., proteins and lipids). The absorption of these biomolecules, so called `protein corona', onto the surface of (nano)biomaterials confers them a new `biological identity'. Although the formation of protein coronas on the surface of nanoparticles has been widely investigated, there are few reports on the effect of various diseases on the biological identity of nanoparticles. As the type of diseases may tremendously changes the composition of the protein source (e.g., human plasma/serum), one can expect that amount and composition of associated proteins in the corona composition may be varied, in disease type manner. Here, we show that corona coated silica and polystyrene nanoparticles (after interaction with in the plasma of the healthy individuals) could induce unfolding of fibrinogen, which promotes release of the inflammatory cytokines. However, no considerable releases of inflammatory cytokines were observed for corona coated graphene sheets. In contrast, the obtained corona coated silica and polystyrene nanoparticles from the hypofibrinogenemia patients could not induce inflammatory cytokine release where graphene sheets do. Therefore, one can expect that disease-specific protein coronas can provide a novel approach for applying nanomedicine to personalized medicine, improving diagnosis and treatment of different diseases tailored to the specific conditions and circumstances.

  14. Measurement and analysis of time-domain characteristics of corona-generated radio interference from a single positive corona source

    Science.gov (United States)

    Li, Xuebao; Li, Dayong; Chen, Bo; Cui, Xiang; Lu, Tiebing; Li, Yinfei

    2018-04-01

    The corona-generated electromagnetic interference commonly known as radio interference (RI) has become a limiting factor for the design of high voltage direct current transmission lines. In this paper, a time-domain measurement system is developed to measure the time-domain characteristics of corona-generated RI from a single corona source under a positive corona source. In the experiments, the corona current pulses are synchronously measured through coupling capacitors. The one-to-one relationship between the corona current pulse and measured RI voltage pulse is observed. The statistical characteristics of pulse parameters are analyzed, and the correlations between the corona current pulse and RI voltage pulse in the time-domain and frequency-domain are analyzed. Depending on the measured corona current pulses, the time-domain waveform of corona-generated RI is calculated on the basis of the propagation model of corona current on the conductor, the dipolar model for electric field calculation, and the antenna model for inducing voltage calculation. The well matched results between measured and simulated waveforms of RI voltage can show the validity of the measurement and calculation method presented in this paper, which also further show the close correlation between corona current and corona-generated RI.

  15. Comparison of outcomes after hospitalization for worsening heart failure, myocardial infarction, and stroke in patients with heart failure and reduced and preserved ejection fraction

    DEFF Research Database (Denmark)

    Kristensen, Søren L; Jhund, Pardeep S; Køber, Lars

    2015-01-01

    AIMS: To investigate the prognostic significance of hospitalization for worsening heart failure (WHF), myocardial infarction (MI), and stroke in patients with chronic heart failure (HF). METHODS AND RESULTS: We studied 5011 patients with HF and reduced EF (HF-REF) in the CORONA trial and 4128...

  16. Statistical characteristic in time-domain of direct current corona-generated audible noise from conductor in corona cage

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xuebao, E-mail: lxb08357x@ncepu.edu.cn; Cui, Xiang, E-mail: x.cui@ncepu.edu.cn; Ma, Wenzuo; Bian, Xingming; Wang, Donglai [State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206 (China); Lu, Tiebing, E-mail: tiebinglu@ncepu.edu.cn [Beijing Key Laboratory of High Voltage and EMC, North China Electric Power University, Beijing 102206 (China); Hiziroglu, Huseyin [Department of Electrical and Computer Engineering, Kettering University, Flint, Michigan 48504 (United States)

    2016-03-15

    The corona-generated audible noise (AN) has become one of decisive factors in the design of high voltage direct current (HVDC) transmission lines. The AN from transmission lines can be attributed to sound pressure pulses which are generated by the multiple corona sources formed on the conductor, i.e., transmission lines. In this paper, a detailed time-domain characteristics of the sound pressure pulses, which are generated by the DC corona discharges formed over the surfaces of a stranded conductors, are investigated systematically in a laboratory settings using a corona cage structure. The amplitude of sound pressure pulse and its time intervals are extracted by observing a direct correlation between corona current pulses and corona-generated sound pressure pulses. Based on the statistical characteristics, a stochastic model is presented for simulating the sound pressure pulses due to DC corona discharges occurring on conductors. The proposed stochastic model is validated by comparing the calculated and measured A-weighted sound pressure level (SPL). The proposed model is then used to analyze the influence of the pulse amplitudes and pulse rate on the SPL. Furthermore, a mathematical relationship is found between the SPL and conductor diameter, electric field, and radial distance.

  17. Statistical characteristic in time-domain of direct current corona-generated audible noise from conductor in corona cage

    Science.gov (United States)

    Li, Xuebao; Cui, Xiang; Lu, Tiebing; Ma, Wenzuo; Bian, Xingming; Wang, Donglai; Hiziroglu, Huseyin

    2016-03-01

    The corona-generated audible noise (AN) has become one of decisive factors in the design of high voltage direct current (HVDC) transmission lines. The AN from transmission lines can be attributed to sound pressure pulses which are generated by the multiple corona sources formed on the conductor, i.e., transmission lines. In this paper, a detailed time-domain characteristics of the sound pressure pulses, which are generated by the DC corona discharges formed over the surfaces of a stranded conductors, are investigated systematically in a laboratory settings using a corona cage structure. The amplitude of sound pressure pulse and its time intervals are extracted by observing a direct correlation between corona current pulses and corona-generated sound pressure pulses. Based on the statistical characteristics, a stochastic model is presented for simulating the sound pressure pulses due to DC corona discharges occurring on conductors. The proposed stochastic model is validated by comparing the calculated and measured A-weighted sound pressure level (SPL). The proposed model is then used to analyze the influence of the pulse amplitudes and pulse rate on the SPL. Furthermore, a mathematical relationship is found between the SPL and conductor diameter, electric field, and radial distance.

  18. TESIS experiment on study of solar corona in EUV spectral range (CORONAS-PHOTON project)

    International Nuclear Information System (INIS)

    Kuzin, S.V.; Zhitnik, I.A.; Ignat'ev, A.P.; Mitrofanov, A.V.; Pertsov, A.A.; Bugaenko, O.I.

    2005-01-01

    A new orbital station, namely: the CORONAS-PHOTON one (to be launched in 2006) equipped with systems to explore Sun at the intensification period of the solar activity 24-th cycle and at its peak is being designed within the framework of the CORONAS National Sun Space Exploration Program. The station equipment consists of systems to observe Sun within the spectral soft X-ray and vacuum ultraviolet bands. Paper lists and describes the TESIS experiment tools designed for the CORONAS-PHOTON Project to ensure the Sun atmospheric research within short-wave band [ru

  19. Large-scale volcanism associated with coronae on Venus

    Science.gov (United States)

    Roberts, K. Magee; Head, James W.

    1993-01-01

    The formation and evolution of coronae on Venus are thought to be the result of mantle upwellings against the crust and lithosphere and subsequent gravitational relaxation. A variety of other features on Venus have been linked to processes associated with mantle upwelling, including shield volcanoes on large regional rises such as Beta, Atla and Western Eistla Regiones and extensive flow fields such as Mylitta and Kaiwan Fluctus near the Lada Terra/Lavinia Planitia boundary. Of these features, coronae appear to possess the smallest amounts of associated volcanism, although volcanism associated with coronae has only been qualitatively examined. An initial survey of coronae based on recent Magellan data indicated that only 9 percent of all coronae are associated with substantial amounts of volcanism, including interior calderas or edifices greater than 50 km in diameter and extensive, exterior radial flow fields. Sixty-eight percent of all coronae were found to have lesser amounts of volcanism, including interior flooding and associated volcanic domes and small shields; the remaining coronae were considered deficient in associated volcanism. It is possible that coronae are related to mantle plumes or diapirs that are lower in volume or in partial melt than those associated with the large shields or flow fields. Regional tectonics or variations in local crustal and thermal structure may also be significant in determining the amount of volcanism produced from an upwelling. It is also possible that flow fields associated with some coronae are sheet-like in nature and may not be readily identified. If coronae are associated with volcanic flow fields, then they may be a significant contributor to plains formation on Venus, as they number over 300 and are widely distributed across the planet. As a continuation of our analysis of large-scale volcanism on Venus, we have reexamined the known population of coronae and assessed quantitatively the scale of volcanism associated

  20. Single point incremental forming: Formability of PC sheets

    Science.gov (United States)

    Formisano, A.; Boccarusso, L.; Carrino, L.; Lambiase, F.; Minutolo, F. Memola Capece

    2018-05-01

    Recent research on Single Point Incremental Forming of polymers has slightly covered the possibility of expanding the materials capability window of this flexible forming process beyond metals, by demonstrating the workability of thermoplastic polymers at room temperature. Given the different behaviour of polymers compared to metals, different aspects need to be deepened to better understand the behaviour of these materials when incrementally formed. Thus, the aim of the work is to investigate the formability of incrementally formed polycarbonate thin sheets. To this end, an experimental investigation at room temperature was conducted involving formability tests; varying wall angle cone and pyramid frusta were manufactured by processing polycarbonate sheets with different thicknesses and using tools with different diameters, in order to draw conclusions on the formability of polymer sheets through the evaluation of the forming angles and the observation of the failure mechanisms.

  1. Joint Soviet-French studies of the solar corona. II - Photometry of the solar corona on June 30, 1973

    Science.gov (United States)

    Vsekhsvyatsky, S. K.; Dzyubenko, N. I.; Ivanchuk, V. I.; Popov, O. S.; Rubo, G. A.; Koutchmy, S.; Koutchmy, O.; Shtelmacher, G.

    1981-04-01

    Results are presented of a study of negatives obtained on June 30, 1973 during the total solar eclipse in Africa; the study was part of a joint Soviet-French experiment on white corona dynamics, carried out by expeditions of Kiev University (Atar, Mauritania) and the Paris Astrophysical Institute (Moussoro, Chad). The distribution of total corona brightness up to 4.5 solar radii and its K and F corona components for east and north directions were found on the basis of novel methods of photometry and colorimetry using star images up to 8.5m as the photometry standards. Neither the color effect nor flattening is found in the inner part (less than 2.5 solar radii) of the F corona. Integral corona brightness in the standard zone of 1.03-6.00 solar radii was found to be 0.64 x 10 to the -6th solar-E.

  2. Ions mobilities in corona discharge

    International Nuclear Information System (INIS)

    Bakhtaev, Sh. A.; Bochkareva, G. V.; Sydykova, G. K.

    2000-01-01

    Ion mobility in unipolar corona at small inter-electron distances (up to 0.01 m) when as coroning element serves micro-wire is consider. Experimental data of ion mobility in corona discharge external zone in atmospheric air are obtained and its comparative analysis with known data is worked out. (author)

  3. Chaotic characteristics of corona discharges in atmospheric air

    International Nuclear Information System (INIS)

    Tan Xiangyu; Zhang Qiaogen; Wang Xiuhuan; Sun Fu; Zha Wei; Jia Zhijie

    2008-01-01

    A point-plane electrode system in atmospheric air is established to investigate the mechanism of the corona discharge. By using this system, the current pulses of the corona discharges under the 50 Hz ac voltage are measured using partial discharge (PD) measurement instrument and constitute the point-plane voltage-current (V-I) characteristic equation together with the voltage. Then, this paper constructs the nonlinear circuit model and differential equations of the system in an attempt to give the underlying dynamic mechanism based on the nonlinear V-I characteristics of the point-plane corona discharges. The results show that the chaotic phenomenon is found in the corona circuit by the experimental study and nonlinear dynamic analysis. The basic dynamic characteristics, including the Lyapunov exponent, the existence of the strange attractors, and the equilibrium points, are also found and analyzed in the development process of the corona circuit. Moreover, the time series of the corona current pulses obtained in the experiment is used to demonstrate the chaotic characteristics of the corona current based on the nonlinear dynamic circuit theory and the experimental basis. It is pointed out that the corona phenomenon is not a purely stochastic phenomenon but a short term deterministic chaotic activity

  4. Characteristics of pulse corona discharge over water surface

    Science.gov (United States)

    Fujii, Tomio; Arao, Yasushi; Rea, Massimo

    2008-12-01

    Production of ozone and OH radical is required to advance the plasma chemical reactions in the NOx removal processes for combustion gas treatment. The corona discharge to the water surface is expected to induce the good conditions for the proceeding of the NO oxidation and the NO2 dissolution removal into water. In order to get the fundamental data of the corona discharge over the water surface, the positive and negative V-I characteristics and the ozone production were measured with the multi needle and the saw-edge type of the discharge electrodes. The pulse corona characteristics were also measured with some different waveforms of the applied pulse voltage. The experiments were carried out under the atmospheric pressure and room temperature. Both the DC and the pulse corona to the water surface showed a stable and almost the same V-I characteristics as to plate electrodes though the surface of water was waved by corona wind. The positive streamer corona showed more ozone production than the negative one both in the DC and in the pulse corona.

  5. Characteristics of pulse corona discharge over water surface

    International Nuclear Information System (INIS)

    Fujii, Tomio; Arao, Yasushi; Rea, Massimo

    2008-01-01

    Production of ozone and OH radical is required to advance the plasma chemical reactions in the NOx removal processes for combustion gas treatment. The corona discharge to the water surface is expected to induce the good conditions for the proceeding of the NO oxidation and the NO 2 dissolution removal into water. In order to get the fundamental data of the corona discharge over the water surface, the positive and negative V-I characteristics and the ozone production were measured with the multi needle and the saw-edge type of the discharge electrodes. The pulse corona characteristics were also measured with some different waveforms of the applied pulse voltage. The experiments were carried out under the atmospheric pressure and room temperature. Both the DC and the pulse corona to the water surface showed a stable and almost the same V-I characteristics as to plate electrodes though the surface of water was waved by corona wind. The positive streamer corona showed more ozone production than the negative one both in the DC and in the pulse corona.

  6. The nanoparticle biomolecule corona: lessons learned - challenge accepted?

    Science.gov (United States)

    Docter, D; Westmeier, D; Markiewicz, M; Stolte, S; Knauer, S K; Stauber, R H

    2015-10-07

    Besides the wide use of engineered nanomaterials (NMs) in technical products, their applications are not only increasing in biotechnology and biomedicine, but also in the environmental field. While the physico-chemical properties and behaviour of NMs can be characterized accurately under idealized conditions, this is no longer the case in complex physiological or natural environments. Herein, proteins and other biomolecules rapidly bind to NMs, forming a protein/biomolecule corona that critically affects the NMs' (patho)biological and technical identities. As the corona impacts the in vitro and/or in vivo NM applications in humans and ecosystems, a mechanistic understanding of its relevance and of the biophysical forces regulating corona formation is mandatory. Based on recent insights, we here critically review and present an updated concept of corona formation and evolution. We comment on how corona signatures may be linked to effects at the nano-bio interface in physiological and environmental systems. In order to comprehensively analyse corona profiles and to mechanistically understand the coronas' biological/ecological impact, we present a tiered multidisciplinary approach. To stimulate progress in this field, we introduce the potential impact of the corona for NM-microbiome-(human)host interactions and the novel concept of 'nanologicals', i.e., the nanomaterial-specific targeting of molecular machines. We conclude by discussing the relevant challenges that still need to be resolved in this field.

  7. A guide to the solar corona

    CERN Document Server

    Billings, Donald E

    1966-01-01

    A Guide to the Solar Corona is specifically directed to the space scientist or engineer who is not a specialist in solar physics, but whose work requires a fairly detailed knowledge of the corona. It is hoped that the material may prove useful to most graduate students in astrophysics, while solar physicists may find some topics of interest and value to them. The book contains 12 chapters and begins with three descriptive chapters that provide the casual reader with a concept of the corona as it is evident through more or less direct observation. Topics covered include the development of coron

  8. Modeling of Trichel pulses in negative corona

    International Nuclear Information System (INIS)

    Napartovich, A.P.; Akishev, Yu. S.; Deryugin, A.A.; Kochetov, I.V.; Pan'kin, M.V.; Trushkin, N.I.

    1998-01-01

    Results are reported of detailed numerical studies of Trichel pulse formation for dry air in short-gap coronas. Continuity equations for electrons, positive and negative ions, and the Poisson equation averaged over the current cross section were solved numerically with appropriate boundary conditions. The results of numerical simulation make it possible to analyze in detail the trailing edge of the Trichel pulse and the inter-pulse pause determining the period between pulses. In particular, the variations of the total number of negative ions in the corona spacing occurring under typical conditions of a pulsating corona, proved to be quite insignificant. A comparison with experiments demonstrated a reasonable agreement both for the shape of the pulse and for the average characteristics of the negative corona. (J.U.)

  9. Pulsed Corona Discharge Generated By Marx Generator

    Science.gov (United States)

    Sretenovic, G. B.; Obradovic, B. M.; Kovacevic, V. V.; Kuraica, M. M.; Puric J.

    2010-07-01

    The pulsed plasma has a significant role in new environmental protection technologies. As a part of a pulsed corona system for pollution control applications, Marx type repetitive pulse generator was constructed and tested in arrangement with wire-plate corona reactor. We performed electrical measurements, and obtained voltage and current signals, and also power and energy delivered per pulse. Ozone formation by streamer plasma in air was chosen to monitor chemical activity of the pulsed corona discharge.

  10. Corona Associations and Their Implications for Venus

    Science.gov (United States)

    Chapman, M.G.; Zimbelman, J.R.

    1998-01-01

    Geologic mapping principles were applied to determine genetic relations between coronae and surrounding geomorphologic features within two study areas in order to better understand venusian coronae. The study areas contain coronae in a cluster versus a contrasting chain and are (1) directly west of Phoebe Regio (quadrangle V-40; centered at latitude 15??S, longitude 250??) and (2) west of Asteria and Beta Regiones (between latitude 23??N, longitude 239?? and latitude 43??N, longitude 275??). Results of this research indicate two groups of coronae on Venus: (1) those that are older and nearly coeval with regional plains, and occur globally; and (2) those that are younger and occur between Beta, Atla, and Themis Regiones or along extensional rifts elsewhere, sometimes showing systematic age progressions. Mapping relations and Earth analogs suggest that older plains coronae may be related to a near-global resurfacing event perhaps initiated by a mantle superplume or plumes. Younger coronae of this study that show age progression may be related to (1) a tectonic junction of connecting rifts resulting from local mantle upwelling and spread of a quasi-stationary hotspot plume, and (2) localized spread of post-plains volcanism. We postulate that on Venus most of the young, post-resurfacing coronal plumes may be concentrated within an area defined by the bounds of Beta, Atla, and Themis Regiones. ?? 1998 Academic Press.

  11. Pulsed corona demonstrator for semi-industrial scale air purification

    NARCIS (Netherlands)

    Beckers, F.J.C.M.; Hoeben, W.F.L.M.; Huiskamp, T.; Pemen, A.J.M.; Heesch, van E.J.M.

    2013-01-01

    Although pulsed corona technology for air purification is widely investigated by the lab experiments, large-scale application has yet to be proven. Industrial systems require large flow handling and thus, high corona power. An autonomous semi-industrial scale pilot wire-cylinder type corona reactor

  12. Off-limb EUV observations of the solar corona and transients with the CORONAS-F/SPIRIT telescope-coronagraph

    Directory of Open Access Journals (Sweden)

    V. Slemzin

    2008-10-01

    Full Text Available The SPIRIT telescope aboard the CORONAS-F satellite (in orbit from 26 July 2001 to 5 December 2005, observed the off-limb solar corona in the 175 Å (Fe IX, X and XI lines and 304 Å (He II and Si XI lines bands. In the coronagraphic mode the mirror was tilted to image the corona at the distance of 1.1...5 Rsun from the solar center, the outer occulter blocked the disk radiation and the detector sensitivity was enhanced. This intermediate region between the fields of view of ordinary extreme-ultraviolet (EUV telescopes and most of the white-light (WL coronagraphs is responsible for forming the streamer belt, acceleration of ejected matter and emergence of slow and fast solar wind. We present here the results of continuous coronagraphic EUV observations of the solar corona carried out during two weeks in June and December 2002. The images showed a "diffuse" (unresolved component of the corona seen in both bands, and non-radial, ray-like structures seen only in the 175 Å band, which can be associated with a streamer base. The correlations between latitudinal distributions of the EUV brightness in the corona and at the limb were found to be high in 304 Å at all distances and in 175 Å only below 1.5 Rsun. The temporal correlation of the coronal brightness along the west radial line, with the brightness at the underlying limb region was significant in both bands, independent of the distance. On 2 February 2003 SPIRIT observed an expansion of a transient associated with a prominence eruption seen only in the 304 Å band. The SPIRIT data have been compared with the corresponding data of the SOHO LASCO, EIT and UVCS instruments.

  13. Admittance Survey of Type 1 Coronae on Venus: Implications for Elastic Thickness

    Science.gov (United States)

    Hoogenboom, T.; Smrekar, S. E.; Anderson, F. S.; Houseman, G.

    2003-01-01

    Coronae are volcano-tectonic features on Venus which range from 60km to 2600km and are defined by their nearly circular patterns of fractures. Type 1 (regular) coronae are classified as having >50% complete fracture annuli. Previous work has examined the factors controlling the morphology, size, and fracture pattern of coronae, using lithospheric properties, loading signature and geologic characteristics. However, these studies have been limited to Type 2 (topographic) coronae (e.g. coronaes with <50% fracture annuli), and the factors controlling the formation of Type 1 coronae remain poorly understood. In this study, we apply the methodology of to survey the admittance signature for Type 1 coronae to determine the controlling parameters which govern Type 1 coronae formation.

  14. Double streamer phenomena in atmospheric pressure low frequency corona plasma

    International Nuclear Information System (INIS)

    Kim, Dan Bee; Jung, H.; Gweon, B.; Choe, Wonho

    2010-01-01

    Time-resolved images of an atmospheric pressure corona discharge, generated at 50 kHz in a single pin electrode source, show unique positive and negative corona discharge features: a streamer for the positive period and a glow for the negative period. However, unlike in previous reports of dc pulse and low frequency corona discharges, multistreamers were observed at the initial time stage of the positive corona. A possible physical mechanism for the multistreamers is suggested.

  15. Acoustic waves in M dwarfs: Maintaining a corona

    Science.gov (United States)

    Mullan, D. J.; Cheng, Q. Q.

    1994-01-01

    We use a time-dependent hydrodynamics code to follow the propagation of acoustic waves into the corona of an M dwarf star. An important qualitative difference between M dwarfs and stars such as the Sun is that the acoustic spectrum in M dwarfs is expected to peak at periods close to the acoustic cutoff P(sub A): this allows more effective penetration of waves into the corona. In our code, radiative losses in the photosphere, chromosphere, and corona are computed using Rosseland mean opacities, Mg II kappa and Ly alpha emission, and optically thin emissivities respectively. We find that acoustic heating can maintain a corona with a temperature of order 0.7-1 x 10(exp 6) K and a surface X-ray flux as large as 10(exp 5)ergs/sq cm/s. In a recent survey of X-rays from M dwarfs, some (20%-30%) of the stars lie at or below this limiting X-ray flux: we suggest that such stars may be candidates for acoustically maintained coronae.

  16. Properties of minimum-flux coronae in dwarfs and giants

    International Nuclear Information System (INIS)

    Mullan, D.J.

    1976-01-01

    Using a method due to Hearn, we examine the properties of minimum-flux coronae in dwarfs and giants. If the fraction phi of the total stellar luminosity which is used to heat the corona is equal to the solar value phi/sub s/, then red dwarfs must have coronae that are cooler than the solar corona: in UV Ceti, for example, the coronal temperature is a factor 3 less than in the Sun. This is consistent with an independent estimate of coronal temperature in a flare star. If phi=phi/sub s/, main-sequence stars hotter than the Sun have coronae which are hotter than the solar corona. Soft X-rays from Sirius suggest that the coronal temperature in Sirius is indeed hotter than the Sun by a factor of about 40 percent. Giants show an even more marked decrease in coronal temperature at later spectral type than do the dwarfs. We suggest that the reason for the presence of O V emission in β Gem and O VI emission in α Aur, and the absence of O V emission in α Boo and α Tau, is that the coronae in the latter two stars are cooler (rather than hotter, as McClintock et al. have suggested) than in the former two. Our results explain why it is more likely that mass loss has been detected in α Aur and α Boo, but not in α Tau or β Gem. Using a simple flare model, we show that flares in both a dwarf star (UV Ceti) and a giant (α Aur) were initiated not in the corona, but in the transition region

  17. Equitable Colorings Of Corona Multiproducts Of Graphs

    Directory of Open Access Journals (Sweden)

    Furmánczyk Hanna

    2017-11-01

    Full Text Available A graph is equitably k-colorable if its vertices can be partitioned into k independent sets in such a way that the numbers of vertices in any two sets differ by at most one. The smallest k for which such a coloring exists is known as the equitable chromatic number of G and denoted by =(G. It is known that the problem of computation of =(G is NP-hard in general and remains so for corona graphs. In this paper we consider the same model of coloring in the case of corona multiproducts of graphs. In particular, we obtain some results regarding the equitable chromatic number for the l-corona product G ◦l H, where G is an equitably 3- or 4-colorable graph and H is an r-partite graph, a cycle or a complete graph. Our proofs are mostly constructive in that they lead to polynomial algorithms for equitable coloring of such graph products provided that there is given an equitable coloring of G. Moreover, we confirm the Equitable Coloring Conjecture for corona products of such graphs. This paper extends the results from [H. Furmánczyk, K. Kaliraj, M. Kubale and V.J. Vivin, Equitable coloring of corona products of graphs, Adv. Appl. Discrete Math. 11 (2013 103–120].

  18. Soviet-France cooperative study of the solar corona

    International Nuclear Information System (INIS)

    Vsekhvsyatskij, S.K.; Dzyubenko, N.I.; Ivanchuk, V.I.; Popov, O.S.; Rubo, G.A.; Kuchmij, S.; Kuchmij, O.; Shtel'makher, G.

    1981-01-01

    The study continues the investigations on the solar corona performed according to the program of the Soviet-France experiment ''The white corona dynamics'' during total solar eclipses on July 10 1972 and June 30, 1973 by the expeditions of Kiev University and Paris Astrophysical Institute. The results of the study of eclipse negatives obtained on June 30 1973 in Africa are given. On the basis of new methods of photometry and colorimetry using star images up to 8.5sup(m) as the photometry standards it has been found with high accuracy the distribution of the total corona brightness up to r approximately equal to 4.5 Rsub(S) and its K- and F-corona components for E and N directions. Neither color effect nor flattening is found in the dust component (r -6 Esub(S)

  19. CORONA project -contribution to VVER nuclear education and training

    International Nuclear Information System (INIS)

    Ilieva, M.; Miteva, R.; Takov, T.

    2016-01-01

    CORONA Project is established to stimulate the transnational mobility and lifelong learning amongst VVER end users. The project aims to provide a special purpose structure for training of specialists and to maintain the nuclear expertise by gathering the existing and generating new knowledge in the VVER area. CORONA Project consists of two parts: CORONA I (2011-2014) ''Establishment of a regional center of competence for VVER technology and Nuclear Applications'', co-financed by the Framework Program 7 of the European Union (EU) and CORONA II (2015-2018) ''Enhancement of training capabilities in VVER technology through establishment of VVER training academy'', co-financed by HORIZON 2020, EURATOM 2014-2015. The selected form of the CORONA Academy, together with the online availability of the training opportunities will allow trainees from different locations to access the needed knowledge on demand. The project will target also new-comers in VVER community like Vietnam, Turkey, Belarus, etc. (authors)

  20. The TESIS experiment on the CORONAS-PHOTON spacecraft

    Science.gov (United States)

    Kuzin, S. V.; Zhitnik, I. A.; Shestov, S. V.; Bogachev, S. A.; Bugaenko, O. I.; Ignat'ev, A. P.; Pertsov, A. A.; Ulyanov, A. S.; Reva, A. A.; Slemzin, V. A.; Sukhodrev, N. K.; Ivanov, Yu. S.; Goncharov, L. A.; Mitrofanov, A. V.; Popov, S. G.; Shergina, T. A.; Solov'ev, V. A.; Oparin, S. N.; Zykov, A. M.

    2011-04-01

    On February 26, 2009, the first data was obtained in the TESIS experiment on the research of the solar corona using imaging spectroscopy. The TESIS is a part of the scientific equipment of the CORONAS-PHO-TON spacecraft and is designed for imaging the solar corona in soft X-ray and extreme ultraviolet regions of the spectrum with high spatial, spectral, and temporal resolutions at altitudes from the transition region to three solar radii. The article describes the main characteristics of the instrumentation, management features, and operation modes.

  1. Pulsed corona generation using a diode-based pulsed power generator

    Science.gov (United States)

    Pemen, A. J. M.; Grekhov, I. V.; van Heesch, E. J. M.; Yan, K.; Nair, S. A.; Korotkov, S. V.

    2003-10-01

    Pulsed plasma techniques serve a wide range of unconventional processes, such as gas and water processing, hydrogen production, and nanotechnology. Extending research on promising applications, such as pulsed corona processing, depends to a great extent on the availability of reliable, efficient and repetitive high-voltage pulsed power technology. Heavy-duty opening switches are the most critical components in high-voltage pulsed power systems with inductive energy storage. At the Ioffe Institute, an unconventional switching mechanism has been found, based on the fast recovery process in a diode. This article discusses the application of such a "drift-step-recovery-diode" for pulsed corona plasma generation. The principle of the diode-based nanosecond high-voltage generator will be discussed. The generator will be coupled to a corona reactor via a transmission-line transformer. The advantages of this concept, such as easy voltage transformation, load matching, switch protection and easy coupling with a dc bias voltage, will be discussed. The developed circuit is tested at both a resistive load and various corona reactors. Methods to optimize the energy transfer to a corona reactor have been evaluated. The impedance matching between the pulse generator and corona reactor can be significantly improved by using a dc bias voltage. At good matching, the corona energy increases and less energy reflects back to the generator. Matching can also be slightly improved by increasing the temperature in the corona reactor. More effective is to reduce the reactor pressure.

  2. Calculation of single phase AC and monopolar DC hybrid corona effects

    International Nuclear Information System (INIS)

    Zhao, T.; Sebo, S.A.; Kasten, D.G.

    1996-01-01

    Operating a hybrid HVac and HVdc line is an option for increasing the efficiency of power transmission and overcoming the difficulties in obtaining a new right-of-way. This paper proposes a new calculation method for the study of hybrid line corona. The proposed method can be used to calculate dc corona losses and corona currents in dc or ac conductors for single phase ac and monopolar dc hybrid lines. Profiles of electric field strength and ion current density at ground level can be estimated. The effects of the presence of an energized ac conductor on dc conductor corona and dc voltage on ac conductor corona are included in the method. Full-scale and reduced-scale experiments were utilized to investigate the hybrid line corona effects. Verification of the proposed calculation method is given

  3. Corona development and floral nectaries of Asclepiadeae (Asclepiadoideae, Apocynaceae

    Directory of Open Access Journals (Sweden)

    Mariana Maciel Monteiro

    Full Text Available ABSTRACT Flowers of Asclepiadoideae are notable for possessing numerous nectaries and elaborate coronas, where nectar can accumulate but is not necessarily produced. Given the complexity and importance of these structures for reproduction, this study aimed to analyze the ontogeny of the corona, the structure and position of nectaries and the histochemistry of the nectar of species of Asclepiadeae. Two types of coronas were observed: androecial [C(is] and corolline (Ca. The development of the C(is-type of corona initiates opposite the stamens in all species examined with the exception of Matelea in which it begins to develop as a ring around the filament tube. Despite their morphological variation, coronas typically originate from the androecium. A notable difference among the studied species was the location of the nectaries. Primarily, they are located in the stigmatic chamber, where nectar composed of carbohydrates and lipids is produced. A secondary location of nectaries found in species of Peplonia and Matelea is within the corona, where nectar is produced and stored, composed of carbohydrates and lipids in Peplonia and only carbohydrates in Matelea. The functional role of nectar is related to the location of its production since it is a resource for pollinators and inducers of pollen germination.

  4. Direct observation of a single nanoparticle-ubiquitin corona formation

    Science.gov (United States)

    Ding, Feng; Radic, Slaven; Chen, Ran; Chen, Pengyu; Geitner, Nicholas K.; Brown, Jared M.; Ke, Pu Chun

    2013-09-01

    The advancement of nanomedicine and the increasing applications of nanoparticles in consumer products have led to administered biological exposure and unintentional environmental accumulation of nanoparticles, causing concerns over the biocompatibility and sustainability of nanotechnology. Upon entering physiological environments, nanoparticles readily assume the form of a nanoparticle-protein corona that dictates their biological identity. Consequently, understanding the structure and dynamics of a nanoparticle-protein corona is essential for predicting the fate, transport, and toxicity of nanomaterials in living systems and for enabling the vast applications of nanomedicine. Here we combined multiscale molecular dynamics simulations and complementary experiments to characterize the silver nanoparticle-ubiquitin corona formation. Notably, ubiquitins competed with citrates for the nanoparticle surface, governed by specific electrostatic interactions. Under a high protein/nanoparticle stoichiometry, ubiquitins formed a multi-layer corona on the particle surface. The binding exhibited an unusual stretched-exponential behavior, suggesting a rich binding kinetics. Furthermore, the binding destabilized the α-helices while increasing the β-sheet content of the proteins. This study revealed the atomic and molecular details of the structural and dynamic characteristics of nanoparticle-protein corona formation.The advancement of nanomedicine and the increasing applications of nanoparticles in consumer products have led to administered biological exposure and unintentional environmental accumulation of nanoparticles, causing concerns over the biocompatibility and sustainability of nanotechnology. Upon entering physiological environments, nanoparticles readily assume the form of a nanoparticle-protein corona that dictates their biological identity. Consequently, understanding the structure and dynamics of a nanoparticle-protein corona is essential for predicting the fate

  5. Elastic Thickness Estimates for Coronae Associated with Chasmata on Venus

    Science.gov (United States)

    Hoogenboom, T.; Martin, P.; Housean, G. A.

    2005-01-01

    Coronae are large-scale circular tectonic features surrounded by annular ridges. They are generally considered unique to Venus and may offer insights into the differences in lithospheric structure or mantle convective pattern between Venus and Earth. 68% of all coronae are associated with chasmata or fracture belts. The remaining 32% are located at volcanic rises or in the plains. Chasmata are linear to arcuate troughs, with trough parallel fractures and faults which extend for 1000 s of kilometers. Estimates of the elastic thickness of the lithosphere (T(sub e)) have been calculated in a number of gravity/topography studies of Venus and for coronae specifically. None of these studies, however, have explored the dependence of T(sub e) on the tectonic history of the region, as implied from the interpretation of relative timing relationships between coronae and surrounding features. We examine the relationship between the local T(sub e) and the relative ages of coronae and chasmata with the aim of further constraining the origin and evolution of coronae and chasmata systems.

  6. Spatial Mapping and Quantification of Soft and Hard Protein Coronas at Silver Nanocubes

    DEFF Research Database (Denmark)

    Miclaus, Teodora; Bochenkov, Vladimir; Ogaki, Ryosuke

    2014-01-01

    kinetics of the corona-formation at cube edges/corners versus facets at short incubation times, where the polymer stabilization agent delayed corona hardening. The soft corona contained more protein than the hard corona at all time-points (8-fold difference with 10% serum conditions).......Protein coronas around silver nanocubes were quantified in serum-containing media using localized surface plasmon resonances. Both soft and hard coronas showed exposure-time and concentration-dependent changes in protein surface density with time-dependent hardening. We observed spatially dependent...

  7. Corona Borealis

    Science.gov (United States)

    Murdin, P.

    2000-11-01

    (the Northern Crown; abbrev. CrB, gen. Coronae Borealis; area 179 sq. deg.) A northern constellation which lies between Boötes and Hercules, and culminates at midnight in mid-May. It represents the crown that in Greek mythology was made by Hephaestus, god of fire, and worn by Princess Ariadne of Crete. Its brightest stars were cataloged by Ptolemy (c. AD 100-175) in the Almagest....

  8. Are All Flare Ribbons Simply Connected to the Corona?

    Energy Technology Data Exchange (ETDEWEB)

    Judge, Philip G. [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000 (United States); Paraschiv, Alin; Lacatus, Daniela; Donea, Alina [Monash Center for Astrophysics, School of Mathematical Science, Monash University, Victoria 3800 (Australia); Lindsey, Charlie, E-mail: judge@ucar.edu, E-mail: alina.donea@monash.edu, E-mail: alin.paraschiv@monash.edu, E-mail: daniela.lacatus@monash.edu, E-mail: indsey@cora.nwra.com [Northwest Research Associates, 3380 Mitchell Lane, Boulder, CO 80301 (United States)

    2017-04-01

    We consider the observational basis for the belief that flare ribbons in the chromosphere result from energy transport from the overlying corona. We study ribbons of small flares using magnetic and intensity data from the Hinode , Solar Dynamics Observatory , and IRIS missions. While most ribbons appear connected to the corona and overlie regions of significant vertical magnetic field, we examine one ribbon with no clear evidence for such connections. Evolving horizontal magnetic fields seen with Hinode suggest that reconnection with preexisting fields below the corona can explain the data. The identification of just one, albeit small, ribbon, with no apparent connection to the corona, leads us to conclude that at least two mechanisms are responsible for the heating that leads to flare ribbon emission.

  9. Core-Shell-Corona Micelles with a Responsive Shell.

    Science.gov (United States)

    Gohy, Jean-François; Willet, Nicolas; Varshney, Sunil; Zhang, Jian-Xin; Jérôme, Robert

    2001-09-03

    A reactor for the synthesis of gold nanoparticles is one of the uses of a poly(styrene)-block-poly(2-vinylpyridine)-block-poly(ethylene oxide) triblock copolymer (PS-b-P2VP-b-PEO) which forms core-shell-corona micelles in water. Very low polydispersity spherical micelles are observed that consist of a PS core surrounded by a pH-sensitive P2VP shell and a corona of PEO chains end-capped by a hydroxyl group. The corona can act as a site for attaching responsive or sensing molecules. © 2001 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.

  10. Implementing Kernel Methods Incrementally by Incremental Nonlinear Projection Trick.

    Science.gov (United States)

    Kwak, Nojun

    2016-05-20

    Recently, the nonlinear projection trick (NPT) was introduced enabling direct computation of coordinates of samples in a reproducing kernel Hilbert space. With NPT, any machine learning algorithm can be extended to a kernel version without relying on the so called kernel trick. However, NPT is inherently difficult to be implemented incrementally because an ever increasing kernel matrix should be treated as additional training samples are introduced. In this paper, an incremental version of the NPT (INPT) is proposed based on the observation that the centerization step in NPT is unnecessary. Because the proposed INPT does not change the coordinates of the old data, the coordinates obtained by INPT can directly be used in any incremental methods to implement a kernel version of the incremental methods. The effectiveness of the INPT is shown by applying it to implement incremental versions of kernel methods such as, kernel singular value decomposition, kernel principal component analysis, and kernel discriminant analysis which are utilized for problems of kernel matrix reconstruction, letter classification, and face image retrieval, respectively.

  11. The Faraday rotation experiment. [solar corona

    Science.gov (United States)

    Volland, H.; Levy, G. S.; Bird, M. K.; Stelzried, C. T.; Seidel, B. L.

    1984-01-01

    The magnetized plasma of the solar corona was remotely sounded using the Faraday rotation effect. The solar magnetic field together with the electrons of the coronal plasma cause a measurable Faraday rotation effect, since the radio waves of Helios are linearly polarized. The measurement is performed at the ground stations. Alfven waves traveling from the Sun's surface through the corona into interplanetary space are observed. Helios 2 signals penetrating through a region where coronal mass is ejected show wavelike structures.

  12. Simultaneous Observation of High Temperature Plasma of Solar Corona By TESIS CORONAS-PHOTON and XRT Hinode.

    Science.gov (United States)

    Reva, A.; Kuzin, S.; Bogachev, S.; Shestov, S.

    2012-05-01

    The Mg XII spectroheliograph is a part of instrumentation complex TESIS (satellite CORONAS-PHOTON). This instrument builds monochromatic images of hot plasma of the solar corona (λ = 8.42 Å, T>5 MK). The Mg XII spectroheliograph observed hot plasma in the non-flaring active-region NOAA 11019 during nine days. We reconstructed DEM of this active region with the help of genetic algorithm (we used data of the Mg XII spectroheliograph, XRT and EIT). Emission measure of the hot component amounts 1 % of the emission measure of the cool component.

  13. Galactic absorption line coronae

    International Nuclear Information System (INIS)

    Bregman, J.N.

    1981-01-01

    We have investigated whether gaseous coronae around galaxies rise to the absorption systems seen in quasar spectra. In our model, gas originally located in the disk is heated to the million degree range and rises to surround the galaxy; the gas remains bound to the galaxy. Optically thin radiative cooling drives a thermal instability in the hot gas which causes cool clouds (T 4 K) to condense out of the corona. These clouds, which follow ballistic trajectories back to the disk, are the absorption sites. A two-dimensional hydrodynamic code with radiative cooling was used to study the dynamics and thermodynamics of the corona as well as the position rate at which clouds form. Coupled to the code is a galaxy with two mass components, a disk (approx.10 11 M/sub sun/) and a dark halo (approx.10 12 M/sub sun/). In a model where the temperature at the base of the corona (in the disk) is 3 x 10 6 K, absorbing gas of column density NL> or approx. =10 18 cm 2 extends radially to 100 kpc (face-on orientation) and vertically to 60 Kpc (edge-on orientation). The total mass of gas required here (coronal plus cloud gas) is 1.4 x 10 10 M/sub sun/, while the minimum supernova heating rate is one supernova per 27 years. In two other models (base coronal temperatures of 0.50 x 10 6 K and 1 x 10 6 K), coronal gas rises from an extended gaseous disk (in the previous model, the gas comes from a typical gaseous disk approximately 15 kpc in extent). Here, column densities of 10 19 cm -2 out to a radius of 70 kpc (face-on orientation) are achieved with a total gas mass of 1.7 x 10 9 M/sub direct-product/ and 2.0 x 10 9 M/sub sun/ and minimum heating rates of approximately one supernova per 170 years and one supernova per 60 years

  14. Pulsed Corona for Sustainable Technology

    International Nuclear Information System (INIS)

    Heesch, E.J.M. van; Pemen, A.J.M.; Yan, K.; Blom, P.P.M.; Huijbrechts, P.A.H.J.; Der Laan, P.C.T. van

    2000-01-01

    Highly active coronas with a peak power of up to 25 MW p/m corona wire and kJ/liter energy densities in the streamer channels can be produced by pulsed power. Since the voltage pulses are short, full breakdown does not occur even though the discharge currents are hundreds of Amperes. A matched pulsed power source can deposit up to 80% of its electrical energy into such a controlled discharge. Reliable and efficient sources characterized by 100 kV,150 ns wide pulses at 1000 Hz have passed 400 hours of operation. The area of applications is growing: VOC control, hot gas cleanup, water and air purification and sterilization. (author)

  15. Numerical modelling of ozone production in a wire-cylinder corona discharge and comparison with a wire-plate corona discharge

    International Nuclear Information System (INIS)

    Wang Pengxiang; Chen Junhong

    2009-01-01

    The effect of electrode configuration on ozone production in the direct-current corona discharge of dry and humid air is studied by a numerical model that combines the electron distribution in the corona plasma, plasma chemistry and transport phenomena. Two electrode configurations are considered: wire-cylinder discharge with air flowing along the wire axis and wire-plate discharge with air flowing transverse to the wire. The ozone distributions in both types of discharges are compared. For both electrode configurations, the ozone production rate is higher in the negative corona than in the positive corona and it decreases with an increase in relative humidity. More importantly, the detailed ozone distribution in the neighbourhood of the discharge wire, together with the ozone kinetics, reveals the possible difference in the ozone production from the two discharges. With the same operating conditions and sufficiently short flow residence time, the ozone production rate is nearly the same for both electrode configurations. When the flow residence time is longer than the characteristic time for homogeneous ozone destruction, the net ozone production is higher in the wire-cylinder discharge than in the wire-plate discharge due to relatively less ozone destruction.

  16. Numerical modelling of ozone production in a wire-cylinder corona discharge and comparison with a wire-plate corona discharge

    Science.gov (United States)

    Wang, Pengxiang; Chen, Junhong

    2009-02-01

    The effect of electrode configuration on ozone production in the direct-current corona discharge of dry and humid air is studied by a numerical model that combines the electron distribution in the corona plasma, plasma chemistry and transport phenomena. Two electrode configurations are considered: wire-cylinder discharge with air flowing along the wire axis and wire-plate discharge with air flowing transverse to the wire. The ozone distributions in both types of discharges are compared. For both electrode configurations, the ozone production rate is higher in the negative corona than in the positive corona and it decreases with an increase in relative humidity. More importantly, the detailed ozone distribution in the neighbourhood of the discharge wire, together with the ozone kinetics, reveals the possible difference in the ozone production from the two discharges. With the same operating conditions and sufficiently short flow residence time, the ozone production rate is nearly the same for both electrode configurations. When the flow residence time is longer than the characteristic time for homogeneous ozone destruction, the net ozone production is higher in the wire-cylinder discharge than in the wire-plate discharge due to relatively less ozone destruction.

  17. Determination of the Corona model parameters with artificial neural networks

    International Nuclear Information System (INIS)

    Ahmet, Nayir; Bekir, Karlik; Arif, Hashimov

    2005-01-01

    Full text : The aim of this study is to calculate new model parameters taking into account the corona of electrical transmission line wires. For this purpose, a neural network modeling proposed for the corona frequent characteristics modeling. Then this model was compared with the other model developed at the Polytechnic Institute of Saint Petersburg. The results of development of the specified corona model for calculation of its influence on the wave processes in multi-wires line and determination of its parameters are submitted. Results of obtained calculation equations are brought for electrical transmission line with allowance for superficial effect in the ground and wires with reference to developed corona model

  18. Nanoparticles-cell association predicted by protein corona fingerprints

    Science.gov (United States)

    Palchetti, S.; Digiacomo, L.; Pozzi, D.; Peruzzi, G.; Micarelli, E.; Mahmoudi, M.; Caracciolo, G.

    2016-06-01

    In a physiological environment (e.g., blood and interstitial fluids) nanoparticles (NPs) will bind proteins shaping a ``protein corona'' layer. The long-lived protein layer tightly bound to the NP surface is referred to as the hard corona (HC) and encodes information that controls NP bioactivity (e.g. cellular association, cellular signaling pathways, biodistribution, and toxicity). Decrypting this complex code has become a priority to predict the NP biological outcomes. Here, we use a library of 16 lipid NPs of varying size (Ø ~ 100-250 nm) and surface chemistry (unmodified and PEGylated) to investigate the relationships between NP physicochemical properties (nanoparticle size, aggregation state and surface charge), protein corona fingerprints (PCFs), and NP-cell association. We found out that none of the NPs' physicochemical properties alone was exclusively able to account for association with human cervical cancer cell line (HeLa). For the entire library of NPs, a total of 436 distinct serum proteins were detected. We developed a predictive-validation modeling that provides a means of assessing the relative significance of the identified corona proteins. Interestingly, a minor fraction of the HC, which consists of only 8 PCFs were identified as main promoters of NP association with HeLa cells. Remarkably, identified PCFs have several receptors with high level of expression on the plasma membrane of HeLa cells.In a physiological environment (e.g., blood and interstitial fluids) nanoparticles (NPs) will bind proteins shaping a ``protein corona'' layer. The long-lived protein layer tightly bound to the NP surface is referred to as the hard corona (HC) and encodes information that controls NP bioactivity (e.g. cellular association, cellular signaling pathways, biodistribution, and toxicity). Decrypting this complex code has become a priority to predict the NP biological outcomes. Here, we use a library of 16 lipid NPs of varying size (Ø ~ 100-250 nm) and surface

  19. Soviet Union-France cooperative study of the solar corona. 1. The structure singularities and photometry of the corona on July 10, 1972

    International Nuclear Information System (INIS)

    Vsekhsvyatskij, S.K.; Dzyubenko, N.I.; Nesmyanovich, A.T.; Popov, O.S.; Kuchmij, S.; Centre National de la Recherche Scientifique, 75 - Paris

    1975-01-01

    The results of the study of the eclipse negatives obtained by the expedition of the astronomy division of the Kiev University on 10 July 1972 in accordance with the program of the Soviet-France experiment ''Thynamics of white corona'' are given. New formations - ''voids'' and sharp boundary are obtained side by side with the usual coronal structure details: -polar ray systems, large coronal beams; arch systems. A great number of extended thin streamers in the south-west square and a helical beam over bright condensation are registered. Photometry of one of the negatives exibited a considerable heterogeneity of the corona. Mean values of the K-corona brightness are in agreement with the brightness of a maximum corona according to Van de Hulst model within the range of p < 2R. The coronal gifts are registered near the N-pole and in the south-west region are registered

  20. High-tension corona controlled ozone generator for environment protection

    International Nuclear Information System (INIS)

    Vijayan, T; Patil, Jagadish G

    2010-01-01

    Engineering details of a high voltage driven corona-plasma ozone generator are described. The plasma diode of generator has coaxial cylindrical geometry with cathode located inside anode. Cathode is made of a large number of radial gas nozzles arranged on central tubular mast which admits oxygen gas. The sharp endings of the nozzles along with a set of corona rings create the high electric field at the cathode required for formation of dense corona plume responsible for O 3 evolution. A model of coronal plasma generation and ozone production is presented. The plasma formation is strongly dependent on the electric field and temperature in side diode where a high electron density in a low temperature negative corona is suited for high ozone yields. These are established by suitable regulation of A-K gap, voltage, oxygen pressure, and cathode-nozzle population.

  1. Ion-impact secondary emission in negative corona with photoionization

    Directory of Open Access Journals (Sweden)

    B. X. Lu

    2017-03-01

    Full Text Available A corona discharge measurement system and simulation model are presented to investigate the effects of photoionization and ion-impact secondary emission process in negative corona discharge. The simulation results obtained is shown good agreement with experimental observations. Distribution of electron density along the symmetry axis at three critical moments is shown and the role of photoionization in negative corona discharge is clearly explained. Moreover, the current pulses are also presented under different secondary emission coefficients and the effect of the secondary emission coefficient is discussed.

  2. Skylab investigations of solar corona

    International Nuclear Information System (INIS)

    Krivsky, L.

    1976-01-01

    The findings are reported obtained by the observation of the Sun and its corona from Skylab. The most important findings include the discovery of explosive loop structures induced by eruptive phenomena below the corona, in the chromosphere. The front edge of the explosive loop structure was observed at a distance of 1,700,000 to 2,800,000 km from the Sun. The rate of prominence was around 500 km/s. The loop structure disturbed the original shape of the corona above the solar disk edge. A graph was plotted of the variation of the release of the expanding loop structure from the solar surface in millions of kilometers with time. The graph aided in refuting the erroneous assumption that the prominence was not associated with radio bursts similar to those induced by plasma shock waves. It was also shown that a prominent shock wave is present in the vicinity of the expanding structure front which, at lower levels, got released from the eruptive flare above the solar ''surface''. The knowledge obtained does not involve the Sun alone but is also valuable from the point of view of the prognosis of consequent magnetic anomalies in the interstellar space and geomagnetic disturbances on the Earth. (Z.S.)

  3. Personalized disease-specific protein corona influences the therapeutic impact of graphene oxide

    Science.gov (United States)

    Hajipour, Mohammad Javad; Raheb, Jamshid; Akhavan, Omid; Arjmand, Sareh; Mashinchian, Omid; Rahman, Masoud; Abdolahad, Mohammad; Serpooshan, Vahid; Laurent, Sophie; Mahmoudi, Morteza

    2015-05-01

    The hard corona, the protein shell that is strongly attached to the surface of nano-objects in biological fluids, is recognized as the first layer that interacts with biological objects (e.g., cells and tissues). The decoration of the hard corona (i.e., the type, amount, and conformation of the attached proteins) can define the biological fate of the nanomaterial. Recent developments have revealed that corona decoration strongly depends on the type of disease in human patients from which the plasma is obtained as a protein source for corona formation (referred to as the `personalized protein corona'). In this study, we demonstrate that graphene oxide (GO) sheets can trigger different biological responses in the presence of coronas obtained from various types of diseases. GO sheets were incubated with plasma from human subjects with different diseases/conditions, including hypofibrinogenemia, blood cancer, thalassemia major, thalassemia minor, rheumatism, fauvism, hypercholesterolemia, diabetes, and pregnancy. Identical sheets coated with varying protein corona decorations exhibited significantly different cellular toxicity, apoptosis, and uptake, reactive oxygen species production, lipid peroxidation and nitrogen oxide levels. The results of this report will help researchers design efficient and safe, patient-specific nano biomaterials in a disease type-specific manner for clinical and biological applications.The hard corona, the protein shell that is strongly attached to the surface of nano-objects in biological fluids, is recognized as the first layer that interacts with biological objects (e.g., cells and tissues). The decoration of the hard corona (i.e., the type, amount, and conformation of the attached proteins) can define the biological fate of the nanomaterial. Recent developments have revealed that corona decoration strongly depends on the type of disease in human patients from which the plasma is obtained as a protein source for corona formation (referred

  4. Nanoparticles formation and deposition in the trichel pulse corona

    International Nuclear Information System (INIS)

    Amirov, R H; Samoylov, I S; Petrov, A A

    2013-01-01

    Cathode erosion in the negative corona discharge has been studied in the point-to-plane electrode configuration with Cu cathodes in the Trichel pulse regime. Redeposition of erosion products has been found on the cathode surface in form of agglomerates of 10-nm nanoparticles. Nanocraters and nanoparticles formation in the negative corona discharge has been considered in frames of electro-explosive mechanism of cathode erosion. According to this mechanism the cathode erosion is performed as a consequence of elementary erosion events each of which is caused by a Trichel pulse. A 1-dimentional model of corona-produced nanoparticles dynamics in the gap was elaborated. According to results of the simulation, the redeposition is explained by charging of the nanoparticles due to positive ions adsorption and thermionic emission. The size, temperature and initial velocity of the aerosol nanoparticles have the decisive action on redeposition in the negative corona discharge.

  5. The coronas-F space mission key results for solar terrestrial physics

    CERN Document Server

    2014-01-01

    This volume is the updated and extended translation of the Russian original. It presents the results of observations of solar activity and its effects in the Earth space environment carried out from July 2001 to December 2005 on board the CORONAS-F space mission. The general characteristics of the CORONAS-F scientific payload are provided with a description of the principal experiments. The main results focus on the global oscillations of the Sun (p-modes), solar corona, solar flares, solar cosmic rays, Earth’s radiation belts, and upper atmosphere. The book will be welcomed by students, post-graduates, and scientists working in the field of solar and solar-terrestrial physics. This English edition is supplemented by sections presenting new results of the SPIRIT and TESIS experiments under the CORONAS solar program, as well as from the SONG experiment onboard the CORONAS-F satellite.

  6. Exploiting Outage and Error Probability of Cooperative Incremental Relaying in Underwater Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Hina Nasir

    2016-07-01

    Full Text Available This paper embeds a bi-fold contribution for Underwater Wireless Sensor Networks (UWSNs; performance analysis of incremental relaying in terms of outage and error probability, and based on the analysis proposition of two new cooperative routing protocols. Subject to the first contribution, a three step procedure is carried out; a system model is presented, the number of available relays are determined, and based on cooperative incremental retransmission methodology, closed-form expressions for outage and error probability are derived. Subject to the second contribution, Adaptive Cooperation in Energy (ACE efficient depth based routing and Enhanced-ACE (E-ACE are presented. In the proposed model, feedback mechanism indicates success or failure of data transmission. If direct transmission is successful, there is no need for relaying by cooperative relay nodes. In case of failure, all the available relays retransmit the data one by one till the desired signal quality is achieved at destination. Simulation results show that the ACE and E-ACE significantly improves network performance, i.e., throughput, when compared with other incremental relaying protocols like Cooperative Automatic Repeat reQuest (CARQ. E-ACE and ACE achieve 69% and 63% more throughput respectively as compared to CARQ in hard underwater environment.

  7. CORONA DISCHARGE IGNITION FOR ADVANCED STATIONARY NATURAL GAS ENGINES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Paul D. Ronney

    2003-09-12

    An ignition source was constructed that is capable of producing a pulsed corona discharge for the purpose of igniting mixtures in a test chamber. This corona generator is adaptable for use as the ignition source for one cylinder on a test engine. The first tests were performed in a cylindrical shaped chamber to study the characteristics of the corona and analyze various electrode geometries. Next a test chamber was constructed that closely represented the dimensions of the combustion chamber of the test engine at USC. Combustion tests were performed in this chamber and various electrode diameters and geometries were tested. The data acquisition and control system hardware for the USC engine lab was updated with new equipment. New software was also developed to perform the engine control and data acquisition functions. Work is underway to design a corona electrode that will fit in the new test engine and be capable igniting the mixture in one cylinder at first and eventually in all four cylinders. A test engine was purchased for the project that has two spark plug ports per cylinder. With this configuration it will be possible to switch between corona ignition and conventional spark plug ignition without making any mechanical modifications.

  8. Influence of corona charging in cellular polyethylene film

    International Nuclear Information System (INIS)

    Ortega Brana, Gustavo; Magraner, Francisco; Quijano, Alfredo; Llovera Segovia, Pedro

    2011-01-01

    Cellular polymers have recently attracted attention for their property of exhibiting a piezoelectric constant when they are electrically charged. The electrostatic charge generated in the voids by the internal discharges creates and internal macrodipole which is responsible for the piezoelectric effect. Charging by corona discharge is the most used method for cellular polymers. Many works has been published on polypropylene and polyethylene films mainly focused on the required expansion process or on the results obtained for raw cellular materials electrically activated. Our work is based on commercial polyethylene cellular films which have been physically characterized and electrically activated. The effect of thermal treatment, physical uniaxial or biaxial stretching and corona charging was investigated. The new method of corona charging improved the piezoelectric constant under other activation conditions.

  9. Influence of corona charging in cellular polyethylene film

    Energy Technology Data Exchange (ETDEWEB)

    Ortega Brana, Gustavo; Magraner, Francisco; Quijano, Alfredo [Instituto Tecnologico de la Energia (ITE), Av. Juan de la Cierva 24, Parque Tecnologico de Valencia, 46980 Paterna-Valencia (Spain); Llovera Segovia, Pedro, E-mail: gustavo.ortega@ite.es [Instituto de TecnologIa Electrica - Universitat Politecnica de Valencia, Camino de Vera s/n 46022-Valencia (Spain)

    2011-06-23

    Cellular polymers have recently attracted attention for their property of exhibiting a piezoelectric constant when they are electrically charged. The electrostatic charge generated in the voids by the internal discharges creates and internal macrodipole which is responsible for the piezoelectric effect. Charging by corona discharge is the most used method for cellular polymers. Many works has been published on polypropylene and polyethylene films mainly focused on the required expansion process or on the results obtained for raw cellular materials electrically activated. Our work is based on commercial polyethylene cellular films which have been physically characterized and electrically activated. The effect of thermal treatment, physical uniaxial or biaxial stretching and corona charging was investigated. The new method of corona charging improved the piezoelectric constant under other activation conditions.

  10. The heating of the solar corona. Pt. 2

    International Nuclear Information System (INIS)

    McWhirter, R.W.P.; Thonemann, P.C.; Wilson, R.

    1975-01-01

    The density and temperature distribution of the solar corona is calculated assuming an energy balance between thermal conduction and radiated power loss with the primary heating of the corona by the dissipation of sound-waves propagated upwards from below the sun's surface. A sharp transition region is found and the calculated results are compared with observations. A detailed model atmosphere for the transition region and corona is derived using the Harvard Smithsonian Reference Atmosphere (for the chromosphere) as starting point. Hydrostatic equilibrium is assumed in the calculations but it is also shown that a pressure arises because of the sound-waves which is of comparable magnitude to hydrostatic pressure. The inclusion of this pressure introduces difficulties that are discussed. (orig.) [de

  11. Protein Corona Analysis of Silver Nanoparticles Links to Their Cellular Effects.

    Science.gov (United States)

    Juling, Sabine; Niedzwiecka, Alicia; Böhmert, Linda; Lichtenstein, Dajana; Selve, Sören; Braeuning, Albert; Thünemann, Andreas F; Krause, Eberhard; Lampen, Alfonso

    2017-11-03

    The breadth of applications of nanoparticles and the access to food-associated consumer products containing nanosized materials lead to oral human exposure to such particles. In biological fluids nanoparticles dynamically interact with biomolecules and form a protein corona. Knowledge about the protein corona is of great interest for understanding the molecular effects of particles as well as their fate inside the human body. We used a mass spectrometry-based toxicoproteomics approach to elucidate mechanisms of toxicity of silver nanoparticles and to comprehensively characterize the protein corona formed around silver nanoparticles in Caco-2 human intestinal epithelial cells. Results were compared with respect to the cellular function of proteins either affected by exposure to nanoparticles or present in the protein corona. A transcriptomic data set was included in the analyses in order to obtain a combined multiomics view of nanoparticle-affected cellular processes. A relationship between corona proteins and the proteomic or transcriptomic responses was revealed, showing that differentially regulated proteins or transcripts were engaged in the same cellular signaling pathways. Protein corona analyses of nanoparticles in cells might therefore help in obtaining information about the molecular consequences of nanoparticle treatment.

  12. Compensating Faraday Depolarization by Magnetic Helicity in the Solar Corona

    Energy Technology Data Exchange (ETDEWEB)

    Brandenburg, Axel; Ashurova, Mohira B. [Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303 (United States); Jabbari, Sarah, E-mail: brandenb@nordita.org [School of Mathematical Sciences and Monash Centre for Astrophysics, Monash University, Clayton, VIC 3800 (Australia)

    2017-08-20

    A turbulent dynamo in spherical geometry with an outer corona is simulated to study the sign of magnetic helicity in the outer parts. In agreement with earlier studies, the sign in the outer corona is found to be opposite to that inside the dynamo. Line-of-sight observations of polarized emission are synthesized to explore the feasibility of using the local reduction of Faraday depolarization to infer the sign of helicity of magnetic fields in the solar corona. This approach was previously identified as an observational diagnostic in the context of galactic magnetic fields. Based on our simulations, we show that this method can be successful in the solar context if sufficient statistics are gathered by using averages over ring segments in the corona separately for the regions north and south of the solar equator.

  13. Meteoric ions in the corona and solar wind

    International Nuclear Information System (INIS)

    Lemaire, J.

    1990-01-01

    The total mass of refractory material of interplanetary origin penetrating and evaporated in the meltosphere surrounding the sun has been inferred from observations of meteoroids and fireballs falling in earth's atmosphere. The amount of iron atoms deposited this way in the solar corona is of the order of 3000 t/s or larger. The measured flux of outflowing solar wind iron ions is equal to 2200 t/s. The close agreement of both fluxes is evidence that a significant fraction of iron ions observed in the solar wind and in the corona must be of meteoric origin. A similar accord is also obtained for silicon ions. The mean velocity of meteoroid ions formed in the solar corona is equal to the free-fall velocity: i.e., independent of their atomic mass as the thermal speed of heavy ion measured in low-density solar wind streams at 1 AU. Furthermore, the heavy ions of meteoric origin escape out of the corona with a larger bulk velocity than the protons which are mainly of solar origin. These differences of heavy ion and proton bulk velocities are also observed in the solar wind. 52 refs

  14. Effects of corona discharge treatment on some properties of wool ...

    African Journals Online (AJOL)

    Yomi

    2011-12-21

    Dec 21, 2011 ... Corona discharge after operation worsted water absorption property increased and the ... finally conditioned with atmospheric air (20°C, relative humidity ... For corona treatment, a glow discharge generator was used with a.

  15. The energy and pressure balance in the corona

    International Nuclear Information System (INIS)

    McWhirter, R.W.P.; Wilson, R.

    1976-01-01

    This paper reviews theoretical models for the solar corona based on energy and pressure calculations. Processes included in these calculations are: (a) heating of the outer corona by mechanical waves; (b) convective out-flow of gas giving rise to the solar wind; (c) thermal conductions; (d) radiated power loss. Possible observations to help answer some of the outstanding questions about the energy balance are suggested. (author)

  16. Evaluación estética de seis tipos de coronas para dientes primarios

    Directory of Open Access Journals (Sweden)

    Héctor Alejandro Ramírez Peña

    2017-03-01

    Full Text Available Objetivo: Evaluar las preferencias estéticas en relación con el color y la forma de coronas primarias utilizadas para dientes incisivos superiores primarios, mediante la realización de una encuesta a miembros de la Academia Mexicana de Odontología Pediatrica (AMOP. Material y Métodos: Se establecieron seis grupos de estudio con seis coronas diferentes: grupo 1, coronas de zirconia EZ-Pedo; grupo 2, coronas de zirconia NuSmile Zr; grupo 3, coronas estéticas hechas en el consultorio; grupo 4, coronas de fundas de celuloide; grupo 5, coronas estéticas prefabricadas NuSmile signature; y grupo 6, coronas estéticas fenestradas. Se llevaron a cabo encuestas con la finalidad de conocer las preferencias estéticas de estas diferentes coronas, con la finalidad de conocer cuál es la mejor opción para su uso en el consultorio dental. Resultados: Noventa miembros de la AMOP realizaron una encuesta válida, y se determinó que el grupo 4 fue el mejor evaluado, seguido de los grupos 2, 5, 1, 6 y 3. Se identificaron diferencias significativas entre los diferentes grupos. Conclusiones: Las coronas de fundas de celuloide fueron seleccionadas como mejor alternativa de uso en los dientes primarios anteriores, por parte de los miembros de la AMOP; asimismo, se consideró a las coronas de zirconia como una buena opción terapéutica. Es recomendable que se implemente el tratamiento estético en dientes primarios, para realizar un tratamiento integral.

  17. Two-Point Incremental Forming with Partial Die: Theory and Experimentation

    Science.gov (United States)

    Silva, M. B.; Martins, P. A. F.

    2013-04-01

    This paper proposes a new level of understanding of two-point incremental forming (TPIF) with partial die by means of a combined theoretical and experimental investigation. The theoretical developments include an innovative extension of the analytical model for rotational symmetric single point incremental forming (SPIF), originally developed by the authors, to address the influence of the major operating parameters of TPIF and to successfully explain the differences in formability between SPIF and TPIF. The experimental work comprised the mechanical characterization of the material and the determination of its formability limits at necking and fracture by means of circle grid analysis and benchmark incremental sheet forming tests. Results show the adequacy of the proposed analytical model to handle the deformation mechanics of SPIF and TPIF with partial die and demonstrate that neck formation is suppressed in TPIF, so that traditional forming limit curves are inapplicable to describe failure and must be replaced by fracture forming limits derived from ductile damage mechanics. The overall geometric accuracy of sheet metal parts produced by TPIF with partial die is found to be better than that of parts fabricated by SPIF due to smaller elastic recovery upon unloading.

  18. Results of Spectral Corona Observations in Solar Activity Cycles 17-24

    Science.gov (United States)

    Aliev, A. Kh.; Guseva, S. A.; Tlatov, A. G.

    2017-12-01

    The results of the work of the global observation network are considered, and a comparative analysis of the data of various coronal observatories is performed. The coronal activity index has been reconstructed for the period 1939-2016 based on the data of various observatories in Kislovodsk system. For this purpose, the corona daily intensity maps from the Sacramento Peak and Lomnický Štít observatories according to the Solar-Geophysical Data journal have been digitized; they supplement the data of other observatories. The homogeneity and continuity of the corona observations at the Kislovodsk station, including activity cycle 24, is confirmed. Unfortunately, the only observatory at present that continues observation of the spectral corona in Fe XIV 5303 Å and Fe XIV 6374 Å lines is the Kislovodsk astronomical station Mountain Astronomical Station (MAS) of the Central Astronomical Observatory, Russian Academy of Sciences (Pulkovo). The data on the combined corona in 5303 Å line are analyzed. It is shown that there is a high correlation of the intensity index of green corona with solar radiation measurements in the vacuum UV region. Data on the beginning of the new 25th activity cycle in the corona at high latitudes are presented.

  19. Preliminary protein corona formation stabilizes gold nanoparticles and improves deposition efficiency

    Science.gov (United States)

    Luby, Alexandra O.; Breitner, Emily K.; Comfort, Kristen K.

    2016-08-01

    Due to their advantageous characteristics, gold nanoparticles (AuNPs) are being increasingly utilized in a vast array of biomedical applications. However, the efficacy of these procedures are highly dependent upon strong interactions between AuNPs and the surrounding environment. While the field of nanotechnology has grown exponentially, there is still much to be discovered with regards to the complex interactions between NPs and biological systems. One area of particular interest is the generation of a protein corona, which instantaneously forms when NPs encounter a protein-rich environment. Currently, the corona is viewed as an obstacle and has been identified as the cause for loss of application efficiency in physiological systems. To date, however, no study has explored if the protein corona could be designed and advantageously utilized to improve both NP behavior and application efficacy. Therefore, we sought to identify if the formation of a preliminary protein corona could modify both AuNP characteristics and association with the HaCaT cell model. In this study, a corona comprised solely of epidermal growth factor (EGF) was successfully formed around 10-nm AuNPs. These EGF-AuNPs demonstrated augmented particle stability, a modified corona composition, and increased deposition over stock AuNPs, while remaining biocompatible. Analysis of AuNP dosimetry was repeated under dynamic conditions, with lateral flow significantly disrupting deposition and the nano-cellular interface. Taken together, this study demonstrated the plausibility and potential of utilizing the protein corona as a means to influence NP behavior; however, fluid dynamics remains a major challenge to progressing NP dosimetry.

  20. Semi-analytical modelling of positive corona discharge in air

    Science.gov (United States)

    Pontiga, Francisco; Yanallah, Khelifa; Chen, Junhong

    2013-09-01

    Semianalytical approximate solutions of the spatial distribution of electric field and electron and ion densities have been obtained by solving Poisson's equations and the continuity equations for the charged species along the Laplacian field lines. The need to iterate for the correct value of space charge on the corona electrode has been eliminated by using the corona current distribution over the grounded plane derived by Deutsch, which predicts a cos m θ law similar to Warburg's law. Based on the results of the approximated model, a parametric study of the influence of gas pressure, the corona wire radius, and the inter-electrode wire-plate separation has been carried out. Also, the approximate solutions of the electron number density has been combined with a simplified plasma chemistry model in order to compute the ozone density generated by the corona discharge in the presence of a gas flow. This work was supported by the Consejeria de Innovacion, Ciencia y Empresa (Junta de Andalucia) and by the Ministerio de Ciencia e Innovacion, Spain, within the European Regional Development Fund contracts FQM-4983 and FIS2011-25161.

  1. A Comparison between Physics-based and Polytropic MHD Models for Stellar Coronae and Stellar Winds of Solar Analogs

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, O. [Lowell Center for Space Science and Technology, University of Massachusetts, Lowell, MA 01854 (United States)

    2017-02-01

    The development of the Zeeman–Doppler Imaging (ZDI) technique has provided synoptic observations of surface magnetic fields of low-mass stars. This led the stellar astrophysics community to adopt modeling techniques that have been used in solar physics using solar magnetograms. However, many of these techniques have been neglected by the solar community due to their failure to reproduce solar observations. Nevertheless, some of these techniques are still used to simulate the coronae and winds of solar analogs. Here we present a comparative study between two MHD models for the solar corona and solar wind. The first type of model is a polytropic wind model, and the second is the physics-based AWSOM model. We show that while the AWSOM model consistently reproduces many solar observations, the polytropic model fails to reproduce many of them, and in the cases where it does, its solutions are unphysical. Our recommendation is that polytropic models, which are used to estimate mass-loss rates and other parameters of solar analogs, must first be calibrated with solar observations. Alternatively, these models can be calibrated with models that capture more detailed physics of the solar corona (such as the AWSOM model) and that can reproduce solar observations in a consistent manner. Without such a calibration, the results of the polytropic models cannot be validated, but they can be wrongly used by others.

  2. Dynamic characteristics of corona discharge generated under rainfall condition on AC charged conductors

    Science.gov (United States)

    Xu, Pengfei; Zhang, Bo; Wang, Zezhong; Chen, Shuiming; He, Jinliang

    2017-12-01

    By synchronous measurement of corona current and the water droplet deformation process on a conductor surface, different types of corona discharge are visualized when AC voltage is applied on a line-ground electrode system. The corona characteristics are closely related to the applied voltage and water supply rate. With the increase of AC voltage, the positive Taylor cone discharge firstly appears and then disappears, replaced by the dripping and crashing discharge. Furthermore, the number of pulses in each pulse train increases with the increase of applied voltage. The mechanism of the transfer from the positive Taylor cone discharge to the dripping and crashing discharge is found to be related to the oscillation process of the water droplet. The water supply rate also has a great influence on the characteristics of corona currents. The number of positive pulse trains increases linearly when the water supply rate gets larger, leading to a higher audible noise and radio interference level from the AC corona, which is quite different from that of the DC corona. The difference between the AC and DC coronas under rainfall conditions is analyzed finally.

  3. MASC: Magnetic Activity of the Solar Corona

    Science.gov (United States)

    Auchere, Frederic; Fineschi, Silvano; Gan, Weiqun; Peter, Hardi; Vial, Jean-Claude; Zhukov, Andrei; Parenti, Susanna; Li, Hui; Romoli, Marco

    We present MASC, an innovative payload designed to explore the magnetic activity of the solar corona. It is composed of three complementary instruments: a Hard-X-ray spectrometer, a UV / EUV imager, and a Visible Light / UV polarimetric coronagraph able to measure the coronal magnetic field. The solar corona is structured in magnetically closed and open structures from which slow and fast solar winds are respectively released. In spite of much progress brought by two decades of almost uninterrupted observations from several space missions, the sources and acceleration mechanisms of both types are still not understood. This continuous expansion of the solar atmosphere is disturbed by sporadic but frequent and violent events. Coronal mass ejections (CMEs) are large-scale massive eruptions of magnetic structures out of the corona, while solar flares trace the sudden heating of coronal plasma and the acceleration of electrons and ions to high, sometimes relativistic, energies. Both phenomena are most probably driven by instabilities of the magnetic field in the corona. The relations between flares and CMEs are still not understood in terms of initiation and energy partition between large-scale motions, small-scale heating and particle acceleration. The initiation is probably related to magnetic reconnection which itself results magnetic topological changes due to e.g. flux emergence, footpoints motions, etc. Acceleration and heating are also strongly coupled since the atmospheric heating is thought to result from the impact of accelerated particles. The measurement of both physical processes and their outputs is consequently of major importance. However, despite its fundamental importance as a driver for the physics of the Sun and of the heliosphere, the magnetic field of our star’s outer atmosphere remains poorly understood. This is due in large part to the fact that the magnetic field is a very difficult quantity to measure. Our knowledge of its strength and

  4. Multiscale simulation of DC corona discharge and ozone generation from nanostructures

    Science.gov (United States)

    Wang, Pengxiang

    Atmospheric direct current (dc) corona discharge from micro-sized objects has been widely used as an ion source in many devices, such as photocopiers, laser printers, and electronic air cleaners. Shrinking the size of the discharge electrode to the nanometer range (e.g., through the use of carbon nanotubes or CNTs) is expected to lead to a significant reduction in power consumption and detrimental ozone production in these devices. The objectives of this study are to unveil the fundamental physics of the nanoscale corona discharge and to evaluate its performance and ozone production through numerical models. The extremely small size of CNTs presents considerable complexity and challenges in modeling CNT corona discharges. A hybrid multiscale model, which combines a kinetic particle-in-cell plus Monte Carlo collision (PIC-MCC) model and a continuum model, is developed to simulate the corona discharge from nanostructures. The multiscale model is developed in several steps. First, a pure PIC-MCC model is developed and PIC-MCC simulations of corona plasma from micro-sized electrode with same boundary conditions as prior model are performed to validate the PIC-MCC scheme. The agreement between the PIC-MCC model and the prior continuum model indicates the validity of the PIC-MCC scheme. The validated PIC-MCC scheme is then coupled with a continuum model to simulate the corona discharge from a micro-sized electrode. Unlike the prior continuum model which only predicts the corona plasma region, the hybrid model successfully predicts the self-consistent discharge process in the entire corona discharge gap that includes both corona plasma region and unipolar ion region. The voltage-current density curves obtained by the hybrid model agree well with analytical prediction and experimental results. The hybrid modeling approach, which combines the accuracy of a kinetic model and the efficiency of a continuum model, is thus validated for modeling dc corona discharges. For

  5. The effects of corona on current surges induced on conducting lines by EMP: A comparison of experiment data with results of analytic corona models

    Science.gov (United States)

    Blanchard, J. P.; Tesche, F. M.; McConnell, B. W.

    1987-09-01

    An experiment to determine the interaction of an intense electromagnetic pulse (EMP), such as that produced by a nuclear detonation above the Earth's atmosphere, was performed in March, 1986 at Kirtland Air Force Base near Albuquerque, New Mexico. The results of that experiment have been published without analysis. Following an introduction of the corona phenomenon, the reason for interest in it, and a review of the experiment, this paper discusses five different analytic corona models that may model corona formation on a conducting line subjected to EMP. The results predicted by these models are compared with measured data acquired during the experiment to determine the strengths and weaknesses of each model.

  6. Analysis of counter flow of corona wind for heat transfer enhancement

    Science.gov (United States)

    Shin, Dong Ho; Baek, Soo Hong; Ko, Han Seo

    2018-03-01

    A heat sink for cooling devices using the counter flow of a corona wind was developed in this study. Detailed information about the numerical investigations of forced convection using the corona wind was presented. The fins of the heat sink using the counter flow of a corona wind were also investigated. The corona wind generator with a wire-to-plate electrode arrangement was used for generating the counter flow to the fin. The compact and simple geometric characteristics of the corona wind generator facilitate the application of the heat sink using the counter flow, demonstrating the heat sink is effective for cooling electronic devices. Parametric studies were performed to analyze the effect of the counter flow on the fins. Also, the velocity and temperature were measured experimentally for the test mock-up of the heat sink with the corona wind generator to verify the numerical results. From a numerical study, the type of fin and its optimal height, length, and pitch were suggested for various heat fluxes. In addition, the correlations to calculate the mass of the developed heat sink and its cooling performance in terms of the heat transfer coefficient were derived. Finally, the cooling efficiencies corresponding to the mass, applied power, total size, and noise of the devices were compared with the existing commercial central processing unit (CPU) cooling devices with rotor fans. As a result, it was confirmed that the heat sink using the counter flow of the corona wind showed appropriate efficiencies for cooling electronic devices, and is a suitable replacement for the existing cooling device for high power electronics.

  7. Micro Corona Ionizer as an Ozone Source for Bacterial Cell Lysis

    Science.gov (United States)

    Lee, Eun-Hee; Lim, Hyun Jeong; Chua, Beelee; Son, Ahjeong

    2015-04-01

    DNA extraction is a critical process of DNA assays including polymerase chain reaction (PCR), microarrays, molecular cloning, and DNA hybridization which has been well established and can be implemented by commercial kits. DNA extraction involves cell lysis, precipitation, and purification through the combination of physical and chemical processes. Cell lysis is essential to high DNA recovery yield which can be achieved via a variety of physical, chemical, and enzymatic methods. However, these methods were originally developed for bioassays that were labor intensive, time consuming, and vulnerable to contamination and inhibition. Here, we proposed to employ a micro corona ionizer as an ozone source to lyse bacterial cells. Ozone has been well known and used as a disinfectant which allows cell lysis and DNA extraction. Previously, we have shown that a micro corona ionizer is capable of generating a significant amount of ozone. In this study, we employed the micro corona ionizer for the bacterial cell lysis which consists of a 50 μm diameter cantilever wire as the discharge cathode and a 50 μm thick copper foil as anode. Applied voltages varied from 1900 to 2200 V with corresponding corona currents from 16 to 28 μA. The resultant ozone (concentration > 0.14 ppm) generated from the micro corona ionizer was bubbled into the sample via a miniature pump. We demonstrated the cell lysis of Pseudomonas putida as the target bacterium using the micro corona ionizer. At a flow rate of 38 ml/min and applied corona voltage of 2000 V, 98.5 ± 0.2% lysis (normalized to sonication result) was achieved after 10 min. In comparison, untreated and air-treated samples showed normalized % lysis of 11.9 ± 2.4 and 36.1 ± 1.7%, respectively. We also showed that the cell lysis efficiency could be significantly increased by increasing the flow rate and the applied corona voltage. By comparing the experimental results for continuous and pulsed treatment, we verified that the percentage of

  8. Co-existence of two plasma phases in solar and AGN coronas

    Directory of Open Access Journals (Sweden)

    Kubičela A.

    1998-01-01

    Full Text Available Here we have juxtaposed two distant cosmic locations of the Sun and AGN where neutral hydrogen appears in a close connection with hot coronas. Besides the solar photosphere, chromosphere and prominences where the presence of neutral hydrogen is well established, its emission quite high in hot solar corona is still puzzling. Some of earlier observations where Hα emission in solar corona was detected in eclipse and in daily coronagraphic observations are reviewed. A proper theoretical explanation of this cold chromospheric-type emission in the hot corona does not exist yet. On the other side, a similar emission of hydrogen lines is present in Active Galactic Nuclei (AGNs. Much research work is currently being done in this field. We outline some of the concepts of the AGN structure prevailing in the astrophysics today.

  9. Why the negative corona current in air decreases?

    International Nuclear Information System (INIS)

    Pavlik, M.; Skalny, J.D.; Strelle, D.

    1996-01-01

    The time dependence of negative corona current I, called by Gagarin like 'relaxing of CV-characteristics', is a observed phenomena. The observed phenomena was explained by two theoretical models considering the ion-molecule and chemical reactions in the negative corona discharges in air, especially the ozone production. In the presented paper the discrepancies of above mentioned models, re-examination the earlier experimental data and presumptions used in models in a light the latest experimentally confirmed facts are discussed

  10. Are X-ray emitting coronae around supermassive black holes outflowing?

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Teng; Wang, Jun-Xian; Yang, Huan; Zhu, Fei-Fan; Zhou, You-Yuan, E-mail: liuteng@ustc.edu.cn, E-mail: jxw@ustc.edu.cn [CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2014-03-10

    Hard X-ray emission in radio-quiet active galactic nuclei (AGNs) is believed to be produced via inverse Compton scattering by hot and compact coronae near the supermassive black hole. However, the origin and physical properties of the coronae, including geometry, kinematics, and dynamics, remain poorly known. In this work, taking [O IV] 25.89 μm emission line as an isotropic indicator of AGNs' intrinsic luminosity, we compare the intrinsic corona X-ray emission between Seyfert 1 and Compton-thin Seyfert 2 galaxies, which are viewed at different inclinations according to the unification scheme. We compile a sample of 130 Compton-thin Seyfert galaxies with both [O IV] 25.89 μm line luminosities measured with the Spitzer Infrared Spectrometer and X-ray spectra observed by XMM-Newton, Chandra, Suzaku, or Swift. Known radio-loud sources are excluded. We fit the X-ray spectra to obtain the absorption-corrected 2-10 keV continuum luminosities. We find that Seyfert 1 galaxies are intrinsically brighter in intrinsic 2-10 keV emission by a factor of 2.8{sub −0.4}{sup +0.5} (2.2{sub −0.3}{sup +0.9} in Swift Burst Alert Telescope 14-195 keV emission), compared with Compton-thin Seyfert 2 galaxies. The Seyfert 1 and Compton-thin Seyfert 2 galaxies follow a statistically identical correlation between the absorption-corrected 2-10 keV luminosity and the 14-195 keV luminosity, indicating that our absorption correction to the 2-10 keV flux is sufficient. The difference in X-ray emission between the two populations is thus unlikely to be due to X-ray absorption, and instead implies an intrinsic anisotropy in the corona X-ray emission. This striking anisotropy of X-ray emission can be explained by a bipolar outflowing corona with a bulk velocity of ∼0.3-0.5c. This would provide a natural link between the so-called coronae and weak jets in these systems. Other consequences of outflowing coronae are also discussed.

  11. Propagation characteristics of audible noise generated by single corona source under positive DC voltage

    Directory of Open Access Journals (Sweden)

    Xuebao Li

    2017-10-01

    Full Text Available The directivity and lateral profile of corona-generated audible noise (AN from a single corona source are measured through experiments carried out in the semi-anechoic laboratory. The experimental results show that the waveform of corona-generated AN consists of a series of random sound pressure pulses whose pulse amplitudes decrease with the increase of measurement distance. A single corona source can be regarded as a non-directional AN source, and the A-weighted SPL (sound pressure level decreases 6 dB(A as doubling the measurement distance. Then, qualitative explanations for the rationality of treating the single corona source as a point source are given on the basis of the Ingard’s theory for sound generation in corona discharge. Furthermore, we take into consideration of the ground reflection and the air attenuation to reconstruct the propagation features of AN from the single corona source. The calculated results agree with the measurement well, which validates the propagation model. Finally, the influence of the ground reflection on the SPL is presented in the paper.

  12. The effect of atmospheric corona treatment on AA1050 aluminium

    DEFF Research Database (Denmark)

    Jariyaboon, Manthana; Møller, Per; Dunin-Borkowski, Rafal E.

    2010-01-01

    The effect of atmospheric corona discharge on AM 050 aluminium surface was investigated using electrochemical polarization, SEM-EDX, FIB-SEM. and XPS. The corona treatment was performed with varying time (1, 5, and 15 min) in atmospheric air. A 200 nm oxide layer was generated on AA1050 after...

  13. Endochronic theory for inelasticity and failure analysis of concrete structures

    Energy Technology Data Exchange (ETDEWEB)

    Bazant, Z.P.; Bhat, P.D.; Shieh, C.L.

    1976-12-01

    A gradual accumulation of inelastic strain can be most conveniently described in terms of the so-called intrinsic time, whose increment depends on the time increment as well as the strain increments. This approach, which gives a particularly simple description of irreversibility of strain at unloading and cyclic loading, was previously developed for metals and is extended herein to concrete by introducing the hydrostatic pressure sensitivity of inelastic strain, the inelastic dilatancy produced by deviator strains, and the strain-softening tendency at high stress. Failure envelopes are obtained as a collection of the peaks of stress-strain diagrams. By comparison with experimental data from the literature, it is demonstrated that the proposed model predicts quite closely: stress-strain diagrams for concretes of different strength; uniaxial, biaxial and triaxial stress-strain diagrams and failure envelopes; failure envelopes for combined torsion and compression, lateral strains and volume expansion in uniaxial and biaxial tests; the behavior of spirally confined concrete; hysteresis loops or repeated high compression; cyclic creep up to 10/sup 6/ cycles; the strain rate effect; the decrease of long time strength; and the increase of short-time strength due to low stress creep.

  14. Endochronic theory for inelasticity and failure analysis of concrete structures

    International Nuclear Information System (INIS)

    Bazant, Z.P.; Bhat, P.D.; Shieh, C.L.

    1976-12-01

    A gradual accumulation of inelastic strain can be most conveniently described in terms of the so-called intrinsic time, whose increment depends on the time increment as well as the strain increments. This approach, which gives a particularly simple description of irreversibility of strain at unloading and cyclic loading, was previously developed for metals and is extended herein to concrete by introducing the hydrostatic pressure sensitivity of inelastic strain, the inelastic dilatancy produced by deviator strains, and the strain-softening tendency at high stress. Failure envelopes are obtained as a collection of the peaks of stress-strain diagrams. By comparison with experimental data from the literature, it is demonstrated that the proposed model predicts quite closely: stress-strain diagrams for concretes of different strength; uniaxial, biaxial and triaxial stress-strain diagrams and failure envelopes; failure envelopes for combined torsion and compression, lateral strains and volume expansion in uniaxial and biaxial tests; the behavior of spirally confined concrete; hysteresis loops or repeated high compression; cyclic creep up to 10 6 cycles; the strain rate effect; the decrease of long time strength; and the increase of short-time strength due to low stress creep

  15. Inception behaviour of pulsed positive corona in several gases

    International Nuclear Information System (INIS)

    Veldhuizen, E M van; Rutgers, W R

    2003-01-01

    The inception probability and the streamer length of pulsed positive corona discharges is determined in argon, nitrogen, oxygen and air. This study is performed in a 25 mm point-plane gap at a pressure of 1 bar. The lowest voltage at which a discharge in argon starts is 3 kV but only with an inception probability of 1%. At 5 kV the corona discharge in argon transforms into a spark with a probability close to 100%. The inception probability of corona discharges in all molecular gases used here as a function of the voltage is identical, starting with 1% at 4 kV and going up to 100% at 9 kV. The streamer lengths are quite different for these gases, nitrogen requiring the lowest voltage for streamers to cross the gap and oxygen the highest. This is probably due to electron attachment in oxygen. A remarkable result is that in air streamers bridge the gap at 8 kV, but spark breakdown occurs only above 26 kV. This property makes it relatively easy to obtain powerful pulsed corona discharges in air

  16. Inception behaviour of pulsed positive corona in several gases

    Energy Technology Data Exchange (ETDEWEB)

    Veldhuizen, E M van; Rutgers, W R [Technische Universiteit Eindhoven, PO Box 513, 5600 MB Eindhoven (Netherlands)

    2003-11-07

    The inception probability and the streamer length of pulsed positive corona discharges is determined in argon, nitrogen, oxygen and air. This study is performed in a 25 mm point-plane gap at a pressure of 1 bar. The lowest voltage at which a discharge in argon starts is 3 kV but only with an inception probability of 1%. At 5 kV the corona discharge in argon transforms into a spark with a probability close to 100%. The inception probability of corona discharges in all molecular gases used here as a function of the voltage is identical, starting with 1% at 4 kV and going up to 100% at 9 kV. The streamer lengths are quite different for these gases, nitrogen requiring the lowest voltage for streamers to cross the gap and oxygen the highest. This is probably due to electron attachment in oxygen. A remarkable result is that in air streamers bridge the gap at 8 kV, but spark breakdown occurs only above 26 kV. This property makes it relatively easy to obtain powerful pulsed corona discharges in air.

  17. Impedance-stabilized positive corona discharge and its decontamination properties

    Energy Technology Data Exchange (ETDEWEB)

    Horak, P; Khun, J, E-mail: pavel.horak@vscht.c [Department of Physics and Measurements, Faculty of Chemical Engineering, Institute of Chemical Technology, Technicka 5, 166 28 Praha 6 (Czech Republic)

    2010-04-01

    The point-to-plane DC corona discharge in air at atmospheric pressure was stabilized by a serially connected ballast impedance. The ballast impedance was implemented by a resistor-capacitor group connected in parallel. In the case of connecting the serial impedance into the electric circuit of a negative corona, the transition into a spark takes place at parameters similar to those of a non-stabilized discharge. In contrast, in the case of a positive corona, the discharge does not undergo a transition into a spark, but rather into a mode of periodic streamers. We measured the bactericidal effect of the stabilized discharge. The experiments showed that after a 2-minute exposure the quantity of surviving bacteria decreased from 95% for a non-stabilized discharge down to 5% for a stabilized one.

  18. Impedance-stabilized positive corona discharge and its decontamination properties

    International Nuclear Information System (INIS)

    Horak, P; Khun, J

    2010-01-01

    The point-to-plane DC corona discharge in air at atmospheric pressure was stabilized by a serially connected ballast impedance. The ballast impedance was implemented by a resistor-capacitor group connected in parallel. In the case of connecting the serial impedance into the electric circuit of a negative corona, the transition into a spark takes place at parameters similar to those of a non-stabilized discharge. In contrast, in the case of a positive corona, the discharge does not undergo a transition into a spark, but rather into a mode of periodic streamers. We measured the bactericidal effect of the stabilized discharge. The experiments showed that after a 2-minute exposure the quantity of surviving bacteria decreased from 95% for a non-stabilized discharge down to 5% for a stabilized one.

  19. Triggering Excimer Lasers by Photoionization from Corona Discharges

    Science.gov (United States)

    Xiong, Zhongmin; Duffey, Thomas; Brown, Daniel; Kushner, Mark

    2009-10-01

    High repetition rate ArF (192 nm) excimer lasers are used for photolithography sources in microelectronics fabrication. In highly attaching gas mixtures, preionization is critical to obtaining stable, reproducible glow discharges. Photoionization from a separate corona discharge is one technique for preionization which triggers the subsequent electron avalanche between the main electrodes. Photoionization triggering of an ArF excimer laser sustained in multi-atmosphere Ne/Ar/F2/Xe gas mixtures has been investigated using a 2-dimensional plasma hydrodynamics model including radiation transport. Continuity equations for charged and neutral species, and Poisson's equation are solved coincident with the electron temperature with transport coefficients obtained from solutions of Boltzmann's equation. Photoionizing radiation is produced by a surface discharge which propagates along a corona-bar located adjacent to the discharge electrodes. The consequences of pulse power waveform, corona bar location, capacitance and gas mixture on uniformity, symmetry and gain of the avalanche discharge will be discussed.

  20. Joint Soviet--French investigations of the solar corona. 2. Photometry of solar corona of June 30, 1973

    International Nuclear Information System (INIS)

    Vsekhsvyatskii, S.; Dzyubenko, N.; Ivanchuk, V.; Popov, O.; Rubo, G.; Koutchmy, S.; Koutchmy, O.; Stellmacher, G.

    1981-01-01

    The results are presented on a study of eclipse negative obtained on June 30, 1973, in Africa in the program of the Soviet--French experiment ''Dynamics of the White Corona'' by expeditions of Kiev University (Atar, Mauritania) and the Paris Astropysical Institute (Moussoro, Chad). The distributions of the total brightness of the corona out to rapprox. =4.5 R/sub sun/ and of its K and F components for the E and N directions are found with high accuracy on the basis of a new method of photometry and colorimetry using the images of stars down to 8.5/sup m/ as photometric standards. Neither reddening nor flattening of the dusty F component were detected at r -6 E/sub sun/

  1. Equilibrium plasma corona surfaces

    International Nuclear Information System (INIS)

    Ensley, D.L.

    1979-07-01

    The distribution of charge of one sign when the opposite charge density is given is determined. Poisson's equation is solved in plane geometry for a simple specified ion density. This automatically gives the inverse solution for a given electron density, by reversing the sign of the potential. Some solutions can approximate a microwave confined corona, for very over dense cases

  2. Radiation magnetohydrodynamic simulations of the formation of hot accretion disk coronae

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yan-Fei [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Stone, James M. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Davis, Shane W. [Canadian Institute for Theoretical Astrophysics. Toronto, ON M5S3H4 (Canada)

    2014-04-01

    A new mechanism to form a magnetic pressure supported, high temperature corona above the photosphere of an accretion disk is explored using three dimensional radiation magnetohydrodynamic (MHD) simulations. The thermal properties of the disk are calculated self-consistently by balancing radiative cooling through the surfaces of the disk with heating due to dissipation of turbulence driven by magneto-rotational instability (MRI). As has been noted in previous work, we find the dissipation rate per unit mass increases dramatically with height above the mid-plane, in stark contrast to the α-disk model which assumes this quantity is a constant. Thus, we find that in simulations with a low surface density (and therefore a shallow photosphere), the fraction of energy dissipated above the photosphere is significant (about 3.4% in our lowest surface density model), and this fraction increases as surface density decreases. When a significant fraction of the accretion energy is dissipated in the optically thin photosphere, the gas temperature increases substantially and a high temperature, magnetic pressure supported corona is formed. The volume-averaged temperature in the disk corona is more than 10 times larger than at the disk mid-plane. Moreover, gas temperature in the corona is strongly anti-correlated with gas density, which implies the corona formed by MRI turbulence is patchy. This mechanism to form an accretion disk corona may help explain the observed relation between the spectral index and luminosity from active galactic nucleus (AGNs), and the soft X-ray excess from some AGNs. It may also be relevant to spectral state changes in X-ray binaries.

  3. Loeb's and streamer-based mechanism for negative corona current pulses

    International Nuclear Information System (INIS)

    Vagnerova, L.; Skalny, J.D.; Cermak, M.

    1998-01-01

    The negative point-to-plane corona discharge in electronegative gaseous mixtures is studied experimentally and the basic mechanisms controlling the corona phenomena are discussed. The typical shapes of the current pulse waveforms observed in experiments with the nitrogen-freon mixtures are explained in terms of the theory by Loeb and of the positive-streamer-based model. (J.U.)

  4. Prominence-corona interface compared with the chromosphere-corona transition region

    Energy Technology Data Exchange (ETDEWEB)

    Orrall, F Q; Schmahl, E J [Harvard Coll. Observatory, Cambridge, Mass. (USA)

    1976-11-01

    The intensities of 52 EUV emission lines from each of 9 hedgerow prominences observed at the limb with the Harvard experiment on ATM-Skylab have been compared with intensities from the interior of network cells at the center of the disk, in order to compare the prominence-corona (P-C) interface with the chromosphere-corona (C-C) transition region. The intensity ratio Isub(cell)/Isub(prominence) for each line varies systematically (in all of the prominences observed), with the temperature of formation of the line as approximately Tsup(-0.6). The density sensitive C III (formed at T approximately 9x10/sup 4/ K) line ratio Isub(lambda1175)/Isub(lambda977) implies an average density 1.3x10/sup 9/ electrons cm/sup -3/ in the P-C interface and approximately 4 times this value in the C-C transition of the cells. The total optical thickness at the head of the Lyman continuum is < approximately 10 in most of the prominences studied; in two of the prominences, however, the possibility that tau/sub 0/ is large cannot be rejected. Methods of analysis of these EUV data are developed assuming both a resolved and an unresolved internal prominence structure. Although the systematic differences between the P-C interface and the C-C transition are stressed, the similarities are probably more remarkable and may be a result of fine structure in the C-C transition.

  5. DC negative corona discharge in atmospheric pressure helium: transition from the corona to the ‘normal’ glow regime

    International Nuclear Information System (INIS)

    Hasan, Nusair; Farouk, Bakhtier; Antao, Dion S

    2014-01-01

    Direct current (dc) negative corona discharges in atmospheric pressure helium are simulated via detailed numerical modeling. Simulations are conducted to characterize the discharges in atmospheric helium for a pin plate electrode configuration. A self-consistent two-dimensional hybrid model is developed to simulate the discharges and the model predictions are validated with experimental measurements. The discharge model considered consists of momentum and energy conservation equations for a multi-component (electrons, ions, excited species and neutrals) gas mixture, conservation equations for each component of the mixture and state relations. A drift–diffusion approximation for the electron and the ion fluxes is used. A model for the external circuit driving the discharge is also considered and solved along with the discharge model. Many of the key features of a negative corona discharge, namely non-linear current–voltage characteristics, spatially flat cathode current density and glow-like discharge in the high current regime are displayed in the predictions. A transition to the ‘normal’ glow discharge from the corona discharge regime is also observed. The transition is identified from the calculated current–voltage characteristic curve and is characterized by the radial growth of the negative glow and the engulfment of the cathode wire. (paper)

  6. Nanoparticle-protein corona in invertebrate in vitro testing

    DEFF Research Database (Denmark)

    Hayashi, Yuya; Miclaus, Teodora; Scavenius, Carsten

    2013-01-01

    , and the primary cells were thus exposed to silver nanoparticles with pre-formed corona of serum albumin (a major serum protein). Here we have profiled proteins forming the hard corona around silver nanoparticles (OECD reference materials, 15 nm and 75 nm) using gel electrophoresis techniques to identify proteins...... that strongly interact with the nanoparticles. This study was accompanied by multi-parametric flow-cytometry analysis of the cellular responses, in particular nanoparticle accumulation and cytotoxicity. The formation of and differential cellular responses to nanoparticle-protein complexes underscore the need...

  7. Fabrication of corona-free nanoparticles with tunable hydrophobicity.

    Science.gov (United States)

    Moyano, Daniel F; Saha, Krishnendu; Prakash, Gyan; Yan, Bo; Kong, Hao; Yazdani, Mahdieh; Rotello, Vincent M

    2014-07-22

    A protein corona is formed at the surface of nanoparticles in the presence of biological fluids, masking the surface properties of the particle and complicating the relationship between chemical functionality and biological effects. We present here a series of zwitterionic NPs of variable hydrophobicity that do not adsorb proteins at moderate levels of serum protein and do not form hard coronas at physiological serum concentrations. These particles provide platforms to evaluate nanobiological behavior such as cell uptake and hemolysis dictated directly by chemical motifs at the nanoparticle surface.

  8. The concept of bio-corona in modulating the toxicity of engineered nanomaterials (ENM)

    International Nuclear Information System (INIS)

    Westmeier, Dana; Stauber, Roland H.; Docter, Dominic

    2016-01-01

    Besides the wide use of engineered nanomaterials (ENM) in technical products, their application spectrum in biotechnology and biomedicine is steadily increasing. In complex physiological environments the physico-chemical properties and the behavior of nanoparticles (NPs) are challenging to characterize. Biomolecules rapidly adsorb to the nanomaterial, leading to the formation of the protein/biomolecule corona, which critically affects the nanomaterials' (patho)biological and technical identities. This formation can trigger an immune response and affect nanoparticles' toxicity and targeting capabilities. In this review, we provide a survey of recent findings on the (protein)corona-nanoparticle interaction and discuss how the corona modulates both cytotoxicity and the immune response as well as to improve the efficacy of targeted delivery of nanocarriers. - Highlights: • “Nanotoxicology” has emerged an autonomous field with an explosive growth. • Nanomaterials adsorb (bio)molecules forming the so-called (bio)molecule corona. • (Fine-)tune of the corona composition could enable new possibilities in nanomedicine.

  9. Modeling the time evolution of the nanoparticle-protein corona in a body fluid.

    Directory of Open Access Journals (Sweden)

    Daniele Dell'Orco

    Full Text Available BACKGROUND: Nanoparticles in contact with biological fluids interact with proteins and other biomolecules, thus forming a dynamic corona whose composition varies over time due to continuous protein association and dissociation events. Eventually equilibrium is reached, at which point the continued exchange will not affect the composition of the corona. RESULTS: We developed a simple and effective dynamic model of the nanoparticle protein corona in a body fluid, namely human plasma. The model predicts the time evolution and equilibrium composition of the corona based on affinities, stoichiometries and rate constants. An application to the interaction of human serum albumin, high density lipoprotein (HDL and fibrinogen with 70 nm N-iso-propylacrylamide/N-tert-butylacrylamide copolymer nanoparticles is presented, including novel experimental data for HDL. CONCLUSIONS: The simple model presented here can easily be modified to mimic the interaction of the nanoparticle protein corona with a novel biological fluid or compartment once new data will be available, thus opening novel applications in nanotoxicity and nanomedicine.

  10. The concept of bio-corona in modulating the toxicity of engineered nanomaterials (ENM)

    Energy Technology Data Exchange (ETDEWEB)

    Westmeier, Dana; Stauber, Roland H.; Docter, Dominic, E-mail: docter@uni-mainz.de

    2016-05-15

    Besides the wide use of engineered nanomaterials (ENM) in technical products, their application spectrum in biotechnology and biomedicine is steadily increasing. In complex physiological environments the physico-chemical properties and the behavior of nanoparticles (NPs) are challenging to characterize. Biomolecules rapidly adsorb to the nanomaterial, leading to the formation of the protein/biomolecule corona, which critically affects the nanomaterials' (patho)biological and technical identities. This formation can trigger an immune response and affect nanoparticles' toxicity and targeting capabilities. In this review, we provide a survey of recent findings on the (protein)corona-nanoparticle interaction and discuss how the corona modulates both cytotoxicity and the immune response as well as to improve the efficacy of targeted delivery of nanocarriers. - Highlights: • “Nanotoxicology” has emerged an autonomous field with an explosive growth. • Nanomaterials adsorb (bio)molecules forming the so-called (bio)molecule corona. • (Fine-)tune of the corona composition could enable new possibilities in nanomedicine.

  11. Models of the plasma corona formation and stratification of exploding micro-wires

    International Nuclear Information System (INIS)

    Volkov, N.B.; Sarkisov, G.S.; Struve, K.W.; McDaniel, D.H.

    2005-01-01

    There are proposed the models pf plasma corona formation and stratification of a gas-plasma core of exploding micro-wire. The opportunity of use for the description of physical processes in a formed plasma corona of an electronic magnetohydrodynamics is generalized in view of change of particle number as a result of evaporation, ionization and a leaving of electrons on a wire surface. Necessity of the account of influence of a hot plasma corona on stratification of a gas-plasma core was grounded [ru

  12. Comments on the 'minimum flux corona' concept

    International Nuclear Information System (INIS)

    Antiochos, S.K.; Underwood, J.H.

    1978-01-01

    Hearn's (1975) models of the energy balance and mass loss of stellar coronae, based on a 'minimum flux corona' concept, are critically examined. First, it is shown that the neglect of the relevant length scales for coronal temperature variation leads to an inconsistent computation of the total energy flux F. The stability arguments upon which the minimum flux concept is based are shown to be fallacious. Errors in the computation of the stellar wind contribution to the energy budget are identified. Finally we criticize Hearn's (1977) suggestion that the model, with a value of the thermal conductivity modified by the magnetic field, can explain the difference between solar coronal holes and quiet coronal regions. (orig.) 891 WL [de

  13. Comparison of toluene removal in air at atmospheric conditions by different corona discharges.

    Science.gov (United States)

    Schiorlin, Milko; Marotta, Ester; Rea, Massimo; Paradisi, Cristina

    2009-12-15

    Different types of corona discharges, produced by DC of either polarity (+/-DC) and positive pulsed (+pulsed) high voltages, were applied to the removal of toluene via oxidation in air at room temperature and atmospheric pressure. Mechanistic insight was obtained through comparison of the three different corona regimes with regard to process efficiency, products, response to the presence of humidity and, for DC coronas, current/voltage characteristics coupled with ion analysis. Process efficiency increases in the order +DC toluene conversion and product selectivity were achieved, CO(2) and CO accounting for about 90% of all reacted carbon. Ion analysis, performed by APCI-MS (Atmospheric Pressure Chemical Ionization-Mass Spectrometry), provides a powerful rationale for interpreting current/voltage characteristics of DC coronas. All experimental findings are consistent with the proposal that in the case of +DC corona toluene oxidation is initiated by reactions with ions (O(2)(+*), H(3)O(+) and their hydrates, NO(+)) both in dry as well as in humid air. In contrast, with -DC no evidence is found for any significant reaction of toluene with negative ions. It is also concluded that in humid air OH radicals are involved in the initial stage of toluene oxidation induced both by -DC and +pulsed corona.

  14. Core–corona PSt/P(BA–AA) composite particles by two-stage emulsion polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Delong; Ren, Xiaolin; Zhang, Xinya, E-mail: cexyzh@scut.edu.cn; Liao, Shijun [South China University of Technology, School of Chemistry and Chemical Engineering (China)

    2016-03-15

    Raspberry-shaped composite particles with polystyrene (PSt) as core and poly(n-butyl acrylate-co-acrylic acid) (P(BA–AA)) as corona were synthesized via emulsion polymerization. The random copolymer, P(BA–AA), was pre-prepared and used as a polymeric surfactant, its emulsifying properties adjusted by changing the mass ratio of BA and AA. The morphology of the resulting core–corona composite particles, P(St/P(BA–AA)), could be regulated and controlled by varying the concentrations of P(BA–AA) or the mass ratio of BA:AA in P(BA–AA). The experimental results indicate that 3.0–6.0 wt% of P(BA–AA) is required to obtain stable composite emulsions, and P(BA–AA) with a mass ratio of BA:AA = 1:2 is able to generate distinct core–corona structures. A mechanism of composite particle formation is proposed based on the high affinity between the PSt core and the hydrophobic segments of P(BA–A). The regular morphology of the colloidal film is expected to facilitate potential application of core–corona particles in the field of light scattering. Furthermore, the diversity of core–corona particles can be expanded by replacing P(BA–AA) corona particles with other amphiphilic particles.

  15. Breakdown of methylene blue and methyl orange by pulsed corona discharge

    NARCIS (Netherlands)

    Grabowski, L.R.; Veldhuizen, van E.M.; Pemen, A.J.M.; Rutgers, W.R.

    2007-01-01

    The recently developed corona above water technique is applied to water containing 10 mg l-1 methylene blue (MB) or methyl orange (MO). The corona discharge pulses are created with a spark gap switched capacitor followed by a transmission line transformer. The pulse amplitude is 40 kV; its duration

  16. Corona ignition system for highly efficient gasoline engines; Corona-Zuendsystem fuer hocheffiziente Ottomotoren

    Energy Technology Data Exchange (ETDEWEB)

    Burrows, John [Federal-Mogul Limited, Manchester (United Kingdom); Lykowski, Jim; Mixell, Kristapher [Federal-Mogul, Plymouth, MI (United States)

    2013-06-01

    Many future gasoline engines will require higher air/fuel ratios and higher mean effective pressures to further improve fuel efficiency. Federal-Mogul has taken up this challenge and has developed the Advanced Corona Ignition System (ACIS) as a new solution to reliably ignite a mix with high AFR/EGR and high MEP. During engine tests ACIS enabled a direct fuel economy improvement of up to 10 %. (orig.)

  17. Energy distribution of nanoflares in the quiet solar corona

    Science.gov (United States)

    Ulyanov, Artyom

    2012-07-01

    We present a detailed statistical analysis of flare-like events in low layer of solar corona detected with TESIS instrument onboard CORONAS-PHOTON satellite in 171 {Å} during high-cadence (5 sec) time-series. The estimated thermal energies of these small events amount to 10^{23} - 10^{26} erg. According to modern classification flare-like events with such energies are usually referred to as nanoflares. The big number of registered events (above 2000) allowed us to obtain precise distributions of geometric and physical parameters of nanoflares, the most intriguing being energy distribution. Following Aschwanden et al. (2000) and other authors we approximated the calculated energy distribution with a single power law slope: N(E)dE ˜ N^{-α}dE. The power law index was derived to be α = 2.4 ± 0.2, which is very close to the value reported by Krucker & Benz (1998): α ≈ 2.3 - 2.4. The total energy input from registered events constitute about 10^4 erg \\cdot cm^{-2} \\cdot s^{-1}, which is well beyond net losses in quiet corona (3 \\cdot 10^5 erg \\cdot cm^{-2} \\cdot s^{-1}). However, the value of α > 2 indicates that nanoflares with lower energies dominate over nanoflares with bigger energies and could contribute considerably to quiet corona heating.

  18. Ground-based observation of emission lines from the corona of a red-dwarf star.

    Science.gov (United States)

    Schmitt, J H; Wichmann, R

    2001-08-02

    All 'solar-like' stars are surrounded by coronae, which contain magnetically confined plasma at temperatures above 106 K. (Until now, only the Sun's corona could be observed in the optical-as a shimmering envelope during a total solar eclipse.) As the underlying stellar 'surfaces'-the photospheres-are much cooler, some non-radiative process must be responsible for heating the coronae. The heating mechanism is generally thought to be magnetic in origin, but is not yet understood even for the case of the Sun. Ultraviolet emission lines first led to the discovery of the enormous temperature of the Sun's corona, but thermal emission from the coronae of other stars has hitherto been detectable only from space, at X-ray wavelengths. Here we report the detection of emission from highly ionized iron (Fe XIII at 3,388.1 A) in the corona of the red-dwarf star CN Leonis, using a ground-based telescope. The X-ray flux inferred from our data is consistent with previously measured X-ray fluxes, and the non-thermal line width of 18.4 km s-1 indicates great similarities between solar and stellar coronal heating mechanisms. The accessibility and spectral resolution (45,000) of the ground-based instrument are much better than those of X-ray satellites, so a new window to the study of stellar coronae has been opened.

  19. The detailed characteristics of positive corona current pulses in the line-to-plane electrodes

    Science.gov (United States)

    Xuebao, LI; Dayong, LI; Qian, ZHANG; Yinfei, LI; Xiang, CUI; Tiebing, LU

    2018-05-01

    The corona current pulses generated by corona discharge are the sources of the radio interference from transmission lines and the detailed characteristics of the corona current pulses from conductor should be investigated in order to reveal their generation mechanism. In this paper, the line-to-plane electrodes are designed to measure and analyze the characteristics of corona current pulses from positive corona discharges. The influences of inter-electrode gap and line diameters on the detail characteristics of corona current pulses, such as pulse amplitude, rise time, duration time and repetition frequency, are carefully analyzed. The obtained results show that the pulse amplitude and the repetition frequency increase with the diameter of line electrode when the electric fields on the surface of line electrodes are same. With the increase of inter-electrode gap, the pulse amplitude and the repetition frequency first decrease and then turn to be stable, while the rise time first increases and finally turns to be stable. The distributions of electric field and space charges under the line electrodes are calculated, and the influences of inter-electrode gap and line electrode diameter on the experimental results are qualitatively explained.

  20. The corona problem connections between operator theory, function theory, and geometry

    CERN Document Server

    Krantz, Steven; Sawyer, Eric; Treil, Sergei; Wick, Brett

    2014-01-01

    The purpose of the corona workshop was to consider the corona problem in both one and several complex variables, both in the context of function theory and harmonic analysis as well as the context of operator theory and functional analysis. It was held in June 2012 at the Fields Institute in Toronto, and attended by about fifty mathematicians. This volume validates and commemorates the workshop, and records some of the ideas that were developed within. The corona problem dates back to 1941. It has exerted a powerful influence over mathematical analysis for nearly 75 years. There is material to help bring people up to speed in the latest ideas of the subject, as well as historical material to provide background. Particularly noteworthy is a history of the corona problem, authored by the five organizers, that provides a unique glimpse at how the problem and its many different solutions have developed. There has never been a meeting of this kind, and there has never been a volume of this kind. Mathematicians—...

  1. Research on the correlation between corona current spectrum and audible noise spectrum of HVDC transmission line

    Science.gov (United States)

    Liu, Yingyi; Zhou, Lijuan; Liu, Yuanqing; Yuan, Haiwen; Ji, Liang

    2017-11-01

    Audible noise is closely related to corona current on a high voltage direct current (HVDC) transmission line. In this paper, we measured a large amount of audible noise and corona current waveforms simultaneously based on the largest outdoor HVDC corona cage all over the world. By analyzing the experimental data, the related statistical regularities between a corona current spectrum and an audible noise spectrum were obtained. Furthermore, the generation mechanism of audible noise was analyzed theoretically, and the related mathematical expression between the audible noise spectrum and the corona current spectrum, which is suitable for all of these measuring points in the space, has been established based on the electro-acoustic conversion theory. Finally, combined with the obtained mathematical relation, the internal reasons for these statistical regularities appearing in measured corona current and audible noise data were explained. The results of this paper not only present the statistical association regularities between the corona current spectrum and the audible noise spectrum on a HVDC transmission line, but also reveal the inherent reasons of these associated rules.

  2. FTIR study of decomposition of carbon dioxide in dc corona discharges

    International Nuclear Information System (INIS)

    Horvath, G; Skalny, J D; Mason, N J

    2008-01-01

    The decomposition rate of carbon dioxide and the generation of ozone and carbon monoxide in coaxial corona discharges fed by pure CO 2 has been investigated in a dc corona discharge operated in both positive and negative polarities using FTIR spectroscopy. The degree of CO 2 decomposition is found to be dependent on the voltage, U, with a maximum CO 2 decomposition of nearly 10% found in a negative corona discharge for U = 7.5 kV. In all cases the amount of CO 2 decomposition was lower in positive polarity discharges than in negative polarity discharges operated under same conditions. CO and ozone were found to be the main products observed in the discharges.

  3. FTIR study of decomposition of carbon dioxide in dc corona discharges

    Energy Technology Data Exchange (ETDEWEB)

    Horvath, G; Skalny, J D [Department of Experimental Physics, Comenius University, Mlynska dolina F-2, 842 48, Bratislava (Slovakia); Mason, N J [Open University, Department of Physics and Astronomy, Walton Hall, Milton Keynes MK7 6AA (United Kingdom)

    2008-11-21

    The decomposition rate of carbon dioxide and the generation of ozone and carbon monoxide in coaxial corona discharges fed by pure CO{sub 2} has been investigated in a dc corona discharge operated in both positive and negative polarities using FTIR spectroscopy. The degree of CO{sub 2} decomposition is found to be dependent on the voltage, U, with a maximum CO{sub 2} decomposition of nearly 10% found in a negative corona discharge for U = 7.5 kV. In all cases the amount of CO{sub 2} decomposition was lower in positive polarity discharges than in negative polarity discharges operated under same conditions. CO and ozone were found to be the main products observed in the discharges.

  4. Viking solar corona experiment

    International Nuclear Information System (INIS)

    Tyler, G.L.; Brenkle, J.P.; Komarek, T.A.; Zygielbaum, A.I.

    1977-01-01

    The 1976 Mars solar conjunction resulted in complete occulations of the Viking spacecraft by the sun at solar minimum. During the conjunction period, coherent 3.5- and 13-cm wavelength radio waves from the orbiters passed through the solar corona and were received with the 64-m antennas of the NASA Deep Space Network. Data were obtained within at least 0.3 and 0.8 R/sub s/ of the photosphere at the 3.5- and 13-cm wavelengths, respectively. The data can be used to determine the plasma density integrated along the radio path, the velocity of density irregularities in the coronal plasma, and the spectrum of the density fluctuations in the plasma. Observations of integrated plasma density near the south pole of the sun generally agree with a model of the corona which has an 8:1 decrease in plasma density from the equator to the pole. Power spectra of the 3.5- and 13-cm signals at a heliocentric radial distance of about 2 R/sub s/ have a 1/2-power width of several hundred hertz and vary sharply with proximate geometric miss distance. Spectral broadening indicates a marked progressive increase in plasma irregularities with decreasing ray altitude at scales between about 1 and 100 km

  5. Deep Incremental Boosting

    OpenAIRE

    Mosca, Alan; Magoulas, George D

    2017-01-01

    This paper introduces Deep Incremental Boosting, a new technique derived from AdaBoost, specifically adapted to work with Deep Learning methods, that reduces the required training time and improves generalisation. We draw inspiration from Transfer of Learning approaches to reduce the start-up time to training each incremental Ensemble member. We show a set of experiments that outlines some preliminary results on some common Deep Learning datasets and discuss the potential improvements Deep In...

  6. INDUCED SCATTERING LIMITS ON FAST RADIO BURSTS FROM STELLAR CORONAE

    Energy Technology Data Exchange (ETDEWEB)

    Lyubarsky, Yuri [Physics Department, Ben-Gurion University, P.O.B. 653, Beer-Sheva 84105 (Israel); Ostrovska, Sofiya [Department of Mathematics, Atilim University, Incek 06836, Ankara (Turkey)

    2016-02-10

    The origin of fast radio bursts remains a puzzle. Suggestions have been made that they are produced within the Earth’s atmosphere, in stellar coronae, in other galaxies, or at cosmological distances. If they are extraterrestrial, the implied brightness temperature is very high, and therefore the induced scattering places constraints on possible models. In this paper, constraints are obtained on flares from coronae of nearby stars. It is shown that the radio pulses with the observed power could not be generated if the plasma density within and in the nearest vicinity of the source is as high as is necessary to provide the observed dispersion measure. However, one cannot exclude the possibility that the pulses are generated within a bubble with a very low density and pass through the dense plasma only in the outer corona.

  7. Silver nanoparticle-human hemoglobin interface: time evolution of the corona formation and interaction phenomenon

    Science.gov (United States)

    Bhunia, A. K.; Kamilya, T.; Saha, S.

    2017-10-01

    In this paper, we have used spectroscopic and electron microscopic analysis to monitor the time evolution of the silver nanoparticles (Ag NP)-human hemoglobin (Hb) corona formation and to characterize the interaction of the Ag NPs with Hb. The time constants for surface plasmon resonance binding and reorganization are found to be 9.51 and 118.48 min, respectively. The drop of surface charge and the increase of the hydrodynamic diameter indicated the corona of Hb on the Ag NP surface. The auto correlation function is found to broaden with the increasing time of the corona formation. Surface zeta potential revealed that positively charged Hb interact electrostatically with negatively charged Ag NP surfaces. The change in α helix and β sheet depends on the corona formation time. The visualization of the Hb corona from HRTEM showed large number of Hb domains aggregate containing essentially Ag NPs and without Ag NPs. Emission study showed the tertiary deformation, energy transfer, nature of interaction and quenching under three different temperatures.

  8. The Substructure of the Solar Corona Observed in the Hi-C Telescope

    Science.gov (United States)

    Winebarger, A.; Cirtain, J.; Golub, L.; DeLuca, E.; Savage, S.; Alexander, C.; Schuler, T.

    2014-01-01

    In the summer of 2012, the High-resolution Coronal Imager (Hi-C) flew aboard a NASA sounding rocket and collected the highest spatial resolution images ever obtained of the solar corona. One of the goals of the Hi-C flight was to characterize the substructure of the solar corona. We therefore calculate how the intensity scales from a low-resolution (AIA) pixels to high-resolution (Hi-C) pixels for both the dynamic events and "background" emission (meaning, the steady emission over the 5 minutes of data acquisition time). We find there is no evidence of substructure in the background corona; the intensity scales smoothly from low-resolution to high-resolution Hi-C pixels. In transient events, however, the intensity observed with Hi-C is, on average, 2.6 times larger than observed with AIA. This increase in intensity suggests that AIA is not resolving these events. This result suggests a finely structured dynamic corona embedded in a smoothly varying background.

  9. Effect of dc and pulsed corona discharge on DNA and proteins

    International Nuclear Information System (INIS)

    Shvedchikov, A.P.; Polyakova, A.V.; Belousova, E.V.; Ponizovskii, A.Z.; Goncharov, V.A.

    1993-01-01

    The authors have investigated the effect of a d.c. and pulsed corona discharge in air and nitrogen on DNA and albumin films in the temperature range 77-298 K. The authors have shown that upon exposure to a corona discharge and O 3 , the biopolymers are degraded. With a reduction in temperature, the extent of degradation of DNA drops

  10. Legislative Bargaining and Incremental Budgeting

    OpenAIRE

    Dhammika Dharmapala

    2002-01-01

    The notion of 'incrementalism', formulated by Aaron Wildavsky in the 1960's, has been extremely influential in the public budgeting literature. In essence, it entails the claim that legislators engaged in budgetary policymaking accept past allocations, and decide only on the allocation of increments to revenue. Wildavsky explained incrementalism with reference to the cognitive limitations of lawmakers and their desire to reduce conflict. This paper uses a legislative bargaining framework to u...

  11. A semi-analytical study of positive corona discharge in wire–plane electrode configuration

    International Nuclear Information System (INIS)

    Yanallah, K; Pontiga, F; Chen, J H

    2013-01-01

    Wire-to-plane positive corona discharge in air has been studied using an analytical model of two species (electrons and positive ions). The spatial distributions of electric field and charged species are obtained by integrating Gauss's law and the continuity equations of species along the Laplacian field lines. The experimental values of corona current intensity and applied voltage, together with Warburg's law, have been used to formulate the boundary condition for the electron density on the corona wire. To test the accuracy of the model, the approximate electric field distribution has been compared with the exact numerical solution obtained from a finite element analysis. A parametrical study of wire-to-plane corona discharge has then been undertaken using the approximate semi-analytical solutions. Thus, the spatial distributions of electric field and charged particles have been computed for different values of the gas pressure, wire radius and electrode separation. Also, the two dimensional distribution of ozone density has been obtained using a simplified plasma chemistry model. The approximate semi-analytical solutions can be evaluated in a negligible computational time, yet provide precise estimates of corona discharge variables. (paper)

  12. A semi-analytical study of positive corona discharge in wire-plane electrode configuration

    Science.gov (United States)

    Yanallah, K.; Pontiga, F.; Chen, J. H.

    2013-08-01

    Wire-to-plane positive corona discharge in air has been studied using an analytical model of two species (electrons and positive ions). The spatial distributions of electric field and charged species are obtained by integrating Gauss's law and the continuity equations of species along the Laplacian field lines. The experimental values of corona current intensity and applied voltage, together with Warburg's law, have been used to formulate the boundary condition for the electron density on the corona wire. To test the accuracy of the model, the approximate electric field distribution has been compared with the exact numerical solution obtained from a finite element analysis. A parametrical study of wire-to-plane corona discharge has then been undertaken using the approximate semi-analytical solutions. Thus, the spatial distributions of electric field and charged particles have been computed for different values of the gas pressure, wire radius and electrode separation. Also, the two dimensional distribution of ozone density has been obtained using a simplified plasma chemistry model. The approximate semi-analytical solutions can be evaluated in a negligible computational time, yet provide precise estimates of corona discharge variables.

  13. Corona SDK application design

    CERN Document Server

    Williams, Daniel

    2013-01-01

    A step by step tutorial that focuses on everything from setup to deployment of basic apps.Have you ever wanted to create your own app? Then this book is for you. You will learn how to create apps using Corona SDK and how to publish your app so others can get a glimpse of your creation. This book is aimed at both Android and iOS app developers. The reader must have basic knowledge of app development.

  14. ''Relaxing phenomena'' in negative corona discharge in air: new aspects

    International Nuclear Information System (INIS)

    Strelle, D.; Pavlik, M.; Skalny, J.D.

    1998-01-01

    Several conspicuous differences between the positive and the negative corona discharges in air observed in small discharge gaps have been explained by two recent theoretical models considering the ion-molecule and chemical reactions in the negative corona discharge in air. In the present paper the discrepancies of these models are discussed, and the earlier experimental data and the presumptions used in the models are re-examined in the light of the latest experimentally confirmed facts. (J.U.)

  15. Low-level NOx removal in ambient air by pulsed corona technology

    International Nuclear Information System (INIS)

    Beckers, F J C M; Hoeben, W F L M; Pemen, A J M; Van Heesch, E J M

    2013-01-01

    Although removal of NO x by (pulsed) corona discharges has been thoroughly investigated for high concentrations of NO x in flue gas, removal of low levels in ambient air proves to be a difficult task. (Sub) ppm NO x levels exist in traffic tunnels due to accumulation of exhaust gases. The application of pulsed corona technology for purification of traffic tunnel air is studied during a series of lab and field experiments. An industrial pilot scale wire-cylinder type corona reactor has been utilized. Lab tests have been carried out using a diesel generator as NO x source. NO x conversion levels have been determined by applying two Recordum Airpointers (chemiluminescence-based detection). The detector appeared to be cross-sensitive for HNO 3 and high levels of O 3 . NO x removal rates of 60–80% were obtained for inlet levels of 2–10 ppm. The SIE value of 10 ppm NO x removal is 7 J l −1 . The corona discharges produce ppm level NO x at high energy densities. This intrinsic NO x production limits removal of inlet levels due to equilibrium between production and oxidation. (paper)

  16. HIGH SPATIAL RESOLUTION OBSERVATIONS OF LOOPS IN THE SOLAR CORONA

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, David H.; Ugarte-Urra, Ignacio [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States); Warren, Harry P. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Winebarger, Amy R. [NASA Marshall Space Flight Center, ZP 13, Huntsville, AL 35812 (United States)

    2013-08-01

    Understanding how the solar corona is structured is of fundamental importance to determine how the Sun's upper atmosphere is heated to high temperatures. Recent spectroscopic studies have suggested that an instrument with a spatial resolution of 200 km or better is necessary to resolve coronal loops. The High Resolution Coronal Imager (Hi-C) achieved this performance on a rocket flight in 2012 July. We use Hi-C data to measure the Gaussian widths of 91 loops observed in the solar corona and find a distribution that peaks at about 270 km. We also use Atmospheric Imaging Assembly data for a subset of these loops and find temperature distributions that are generally very narrow. These observations provide further evidence that loops in the solar corona are often structured at a scale of several hundred kilometers, well above the spatial scale of many proposed physical mechanisms.

  17. Simulation of the AC corona phenomenon with experimental validation

    International Nuclear Information System (INIS)

    Villa, Andrea; Barbieri, Luca; Marco, Gondola; Malgesini, Roberto; Leon-Garzon, Andres R

    2017-01-01

    The corona effect, and in particular the Trichel phenomenon, is an important aspect of plasma physics with many technical applications, such as pollution reduction, surface and medical treatments. This phenomenon is also associated with components used in the power industry where it is, in many cases, the source of electro-magnetic disturbance, noise and production of undesired chemically active species. Despite the power industry to date using mainly alternating current (AC) transmission, most of the studies related to the corona effect have been carried out with direct current (DC) sources. Therefore, there is technical interest in validating numerical codes capable of simulating the AC phenomenon. In this work we describe a set of partial differential equations that are comprehensive enough to reproduce the distinctive features of the corona in an AC regime. The model embeds some selectable chemical databases, comprising tens of chemical species and hundreds of reactions, the thermal dynamics of neutral species and photoionization. A large set of parameters—deduced from experiments and numerical estimations—are compared, to assess the effectiveness of the proposed approach. (paper)

  18. Corona initiated from grounded objects under thunderstorm conditions and its influence on lightning attachment

    International Nuclear Information System (INIS)

    Bazelyan, E M; Raizer, Yu P; Aleksandrov, N L

    2008-01-01

    Lightning attachment to grounded structures due to the initiation of an upward connecting leader from them is considered taking into account the effect of corona space charge near the structures. It is shown that the corona space charge strongly affects the initiation and development of the connecting leader. Specific features of a non-stationary corona are analysed analytically and numerically for one-dimensional electrode geometries and for a grounded rod coronating in a slowly varying thundercloud electric field that can be enhanced by the charge of an approaching downward lightning leader. Initiation and development of an upward connecting leader or upward lightning from high ground objects are investigated. Prospects of using the effect of coronae to control downward lightning discharges are discussed.

  19. Comparison of reconnection in magnetosphere and solar corona

    Science.gov (United States)

    Imada, Shinsuke; Hirai, Mariko; Isobe, Hiroaki; Oka, Mitsuo; Watanabe, Kyoko; Minoshima, Takashi

    One of the most famous rapid energy conversion mechanisms in space is a magnetic reconnec-tion. The general concept of a magnetic reconnection is that the rapid energy conversion from magnetic field energy to thermal energy, kinetic energy or non-thermal particle energy. The understanding of rapid energy conversion rates from magnetic field energy to other energy is the fundamental and essential problem in the space physics. One of the important goals for studying magnetic reconnection is to answer what plasma condition/parameter controls the energy conversion rates. Earth's magnetotail has been paid much attention to discuss a mag-netic reconnection, because we can discuss magnetic reconnection characteristics in detail with direct in-situ observation. Recently, solar atmosphere has been focused as a space laboratory for magnetic reconnection because of its variety in plasma condition. So far considerable effort has been devoted toward understanding the energy conversion rates of magnetic reconnection, and various typical features associated with magnetic reconnection have been observed in the Earth's magnetotail and the solar corona. In this talk, we first introduce the variety of plasma condition/parameter in solar corona and Earth's magnetotail. Later, we discuss what plasma condition/parameter controls the energy conversion from magnetic field to especially non-thermal particle. To compare non-thermal electron and ion acceleration in magnetic reconnection, we used Hard X-ray (electron) /Neu-tron monitor (ion) for solar corona and Geotail in-situ measurement (electron and ion) for magnetoatil. We found both of electron and ion accelerations are roughly controlled by re-connection electric field (reconnection rate). However, some detail points are different in ion and electron acceleration. Further, we will discuss what is the major difference between solar corona and Earth's magnetotail for particle acceleration.

  20. Threaded-Field-Line Model for the Transition Region and Solar Corona

    Science.gov (United States)

    Sokolov, I.; van der Holst, B.; Gombosi, T. I.

    2014-12-01

    In numerical simulations of the solar corona, both for the ambient state and especially for dynamical processes the most computational resources are spent for maintaining the numerical solution in the Low Solar Corona and in the transition region, where the temperature gradients are very sharp and the magnetic field has a complicated topology. The degraded computational efficiency is caused by the need in a highest resolution as well as the use of the fully three-dimensional implicit solver for electron heat conduction. On the other hand, the physical nature of the processes involved is rather simple (which still does not facilitate the numerical methods) as long as the heat fluxes as well as slow plasma motional velocities are aligned with the magnetic field. The Alfven wave turbulence, which is often believed to be the main driver of the solar wind and the main source of the coronal heating, is characterized by the Poynting flux of the waves, which is also aligned with the magnetic field. Therefore, the plasma state in any point of the three-dimensional grid in the Low Solar Corona can be found by solving a set of one-dimensional equations for the magnetic field line ("thread"), which passes through this point and connects it to the chromosphere and to the global Solar Corona. In the present paper we describe an innovative computational technology based upon the use of the magnetic-field-line-threads to forlmulate the boundary condition for the global solar corona model which traces the connection of each boundary point to the cromosphere along the threads.

  1. Failure Waves in Shock-Compressed Glasses

    International Nuclear Information System (INIS)

    Kanel, G. I.

    2006-01-01

    The failure wave is a network of cracks that are nucleated on the surface and propagate into the elastically stressed body. It is a mode of catastrophic fracture in an elastically stressed media whose relevance is not limited to impact events. In the paper, main properties of the failure waves are summarized and discussed. It has been shown that the failure wave is really a wave process which is characterized by small increase of the longitudinal stress and corresponding increments of the particle velocity and the density. The propagation velocity of the failure wave is less than the sound speed; it is not directly related to the compressibility but is determined by the crack growth speed. The failure wave is steady if the stress state ahead of it is supported unchanging. In some sense the process is similar to a subsonic combustion wave. Computer simulations based on the phenomenological combustion-like model reproduces well all kinematical aspects of the phenomenon

  2. Block copolymer micelle coronas as quasi-two-dimensional dilute or semidilute polymer solutions

    DEFF Research Database (Denmark)

    Svaneborg, C.; Pedersen, J.S.

    2001-01-01

    Chain-chain interactions in a corona of polymers tethered to a spherical core under good solvent conditions are studied using Monte Carlo simulations. The total scattering function of the corona as well as different partial contributions are sampled. By combining the different contributions...

  3. On ion-cyclotron-resonance heating of the corona and solar wind

    Directory of Open Access Journals (Sweden)

    E. Marsch

    2003-01-01

    Full Text Available This paper concisely summarizes and critically reviews recent work by the authors on models of the heating of the solar corona by resonance of ions with high-frequency waves (up to the proton cyclotron frequency. The quasi-linear theory of pitch angle diffusion is presented in connection with relevant solar wind proton observations. Hybrid fluid-kinetic model equations, which include wave-particle interactions and collisions, are derived. Numerical solutions are discussed, representative of the inner corona and near-Sun solar wind. A semi-kinetic model for reduced velocity distributions is presented, yielding kinetic results for heavy ions in the solar corona. It is concluded that a self-consistent treatment of particle distributions and wave spectra is required, in order to adequately describe coronal physics and to obtain agreement with observations.

  4. Radio and television interference caused by corona discharges from high-voltage transmission lines

    International Nuclear Information System (INIS)

    Sarmadi, M.

    1996-01-01

    Increase in power utility loads in industrialized countries, as well as developing countries, demands a higher level of transmission line voltage. Radio interference (RI) problems have been determined to be a limiting factor in selecting the size of transmission line conductors. Transmission line noise is primarily caused by corona discharges in the immediate vicinity of the conductor. It has been observed that discharges occur during both half-cycles of the applied voltage, but positive corona is usually predominant at AM radio frequencies range with practical high-voltage and extra high-voltage transmission lines. The corona radio noise effect is highly dependent upon the presence of particles on the surface of the conductor and the increase of the electrical gradient beyond the breakdown value of the air. Therefore, corona radio noise varies significantly with the weather and atmospheric conditions and generally increases by 10 to 30 dB in foul weather

  5. Transformation of soybean Gy3 gene into Artemisaarenaria mediated by corona discharge

    International Nuclear Information System (INIS)

    Chao, Lu-meng; Na, Ri; Xue, Dan; Xu, Yongze; Liu, Teng

    2013-01-01

    In order to improve the protein content of desert plant, a method of genetic transformation mediated by corona discharge was established. Artemisia seeds were processed in corona electric field for 120 min at 12 kV, and then soaked in 0.1 SSC media that contained Soybean Gy3 gene DNA to incubate for 12 h at 26 °C. Finally the seeds were inoculated on the differentiation medium. Polymerase Chain Reaction (PCR) and Reverse Transcription Polymerase Chain Reaction (RT-PCR) detection showed that the Soybean Gy3 gene had been successfully introduced into genomic DNA of the regenerated plants of Artemisaarenaria. The study provided a new way for corona discharge in plant genetic modification.

  6. Hi-C Observations of an Active Region Corona, and Investigation of the Underlying Magnetic Structure

    Science.gov (United States)

    Tiwari, S. K.; Alexander, C. E.; Winebarger, A.; Moore, R. L.

    2014-01-01

    The solar corona is much hotter (>=10(exp 6) K) than its surface (approx 6000 K), puzzling astrophysicists for several decades. Active region (AR) corona is again hotter than the quiet Sun (QS) corona by a factor of 4-10. The most widely accepted mechanism that could heat the active region corona is the energy release by current dissipation via reconnection of braided magnetic field structure, first proposed by E. N. Parker three decades ago. The first observational evidence for this mechanism has only recently been presented by Cirtain et al. by using High-resolution Coronal Imager (Hi-C) observations of an AR corona at a spatial resolution of 0.2 arcsec, which is required to resolve the coronal loops, and was not available before the rocket flight of Hi-C in July 2012. The Hi-C project is led by NASA/MSFC. In the case of the QS, work done by convection/granulation on the inter-granular feet of the coronal field lines translates into the heat observed in the corona. In the case of the AR, as here, there could be flux emergence, cancellation/submergence, or shear flows generating large stress and tension in coronal field loops which is released as heat in the corona. We are currently investigating the changes taking place in photospheric feet of the magnetic field involved with brightenings in the Hi-C AR corona. For this purpose, we are also using SDO/AIA data of +/- 2 hours around the 5 minutes Hi-C flight. In the present talk, I will first summarize some of the results of the Hi-C observations and then present some results from our recent analysis on what photospheric processes feed the magnetic energy that dissipates into heat in coronal loops.

  7. Unmanned Maritime Systems Incremental Acquisition Approach

    Science.gov (United States)

    2016-12-01

    REPORT TYPE AND DATES COVERED MBA professional report 4. TITLE AND SUBTITLE UNMANNED MARITIME SYSTEMS INCREMENTAL ACQUISITION APPROACH 5. FUNDING...Approved for public release. Distribution is unlimited. UNMANNED MARITIME SYSTEMS INCREMENTAL ACQUISITION APPROACH Thomas Driscoll, Lieutenant...UNMANNED MARITIME SYSTEMS INCREMENTAL ACQUISITION APPROACH ABSTRACT The purpose of this MBA report is to explore and understand the issues

  8. Signatures of Lithospheric Flexure and Elevated Heat Flow in Stereo Topography at Coronae on Venus

    Science.gov (United States)

    O'Rourke, Joseph G.; Smrekar, Suzanne E.

    2018-02-01

    Signatures of lithospheric flexure were previously identified at a dozen or more large coronae on Venus. Thin plate models fit to topographic profiles return elastic parameters, allowing derivation of mechanical thickness and surface heat flows given an assumed yield strength envelope. However, the low resolution of altimetry data from the NASA Magellan mission has hindered studying the vast majority of coronae, particularly those less than a few hundred kilometers in diameter. Here we search for flexural signatures around 99 coronae over ˜20% of the surface in Magellan altimetry data and stereo-derived topography that was recently assembled from synthetic aperture radar images. We derive elastic thicknesses of ˜2 to 30 km (mostly ˜5 to 15 km) with Cartesian and axisymmetric models at 19 coronae. We discuss the implications of low values that were also noted in earlier gravity studies. Most mechanical thicknesses are estimated as 24 K km-1. Implied surface heat flows >95 mW m-2—twice the global average in many thermal evolution models—imply that coronae are major contributors to the total heat budget or Venus is cooling faster than expected. Binomial statistics show that "Type 2" coronae with incomplete fracture annuli are significantly less likely to host flexural signatures than "Type 1" coronae with largely complete annuli. Stress calculations predict extensional faulting where nearly all profiles intersect concentric fractures. We failed to identify systematic variations in flexural parameters based on type, geologic setting, or morphologic class. Obtaining quality, high-resolution topography from a planetwide survey is vital to verifying our conclusions.

  9. Catastrophic cooling and cessation of heating in the solar corona

    Science.gov (United States)

    Peter, H.; Bingert, S.; Kamio, S.

    2012-01-01

    Context. Condensations in the more than 106 K hot corona of the Sun are commonly observed in the extreme ultraviolet (EUV). While their contribution to the total solar EUV radiation is still a matter of debate, these condensations certainly provide a valuable tool for studying the dynamic response of the corona to the heating processes. Aims: We investigate different distributions of energy input in time and space to investigate which process is most relevant for understanding these coronal condensations. Methods: For a comparison to observations we synthesize EUV emission from a time-dependent, one-dimensional model for coronal loops, where we employ two heating scenarios: simply shutting down the heating and a model where the heating is very concentrated at the loop footpoints, while keeping the total heat input constant. Results: The heating off/on model does not lead to significant EUV count rates that one observes with SDO/AIA. In contrast, the concentration of the heating near the footpoints leads to thermal non-equilibrium near the loop top resulting in the well-known catastrophic cooling. This process gives a good match to observations of coronal condensations. Conclusions: This shows that the corona needs a steady supply of energy to support the coronal plasma, even during coronal condensations. Otherwise the corona would drain very fast, too fast to even form a condensation. Movies are available in electronic form at http://www.aanda.org

  10. Depolarization current relaxation process of insulating dielectrics after corona poling under different charging conditions

    Directory of Open Access Journals (Sweden)

    J. W. Zhang

    2017-10-01

    Full Text Available As an insulating dielectric, polyimide is favorable for the application of optoelectronics, electrical insulation system in electric power industry, insulating, and packaging materials in space aircraft, due to its excellent thermal, mechanical and electrical insulating stability. The charge storage profile of such insulating dielectric is utmost important to its application, when it is exposed to electron irradiation, high voltage corona discharge or other treatments. These treatments could induce changes in physical and chemical properties of treated samples. To investigate the charge storage mechanism of the insulating dielectrics after high-voltage corona discharge, the relaxation processes responsible for corona charged polyimide films under different poling conditions were analyzed by the Thermally Stimulated Discharge Currents method (TSDC. In the results of thermal relaxation process, the appearance of various peaks in TSDC spectra provided a deep insight into the molecular status in the dielectric material and reflected stored space charge relaxation process in the insulating polymers after corona discharge treatments. Furthermore, the different space charge distribution status under various poling temperature and different discharge voltage level were also investigated, which could partly reflect the influence of the ambiance condition on the functional dielectrics after corona poling.

  11. Depolarization current relaxation process of insulating dielectrics after corona poling under different charging conditions

    Science.gov (United States)

    Zhang, J. W.; Zhou, T. C.; Wang, J. X.; Yang, X. F.; Zhu, F.; Tian, L. M.; Liu, R. T.

    2017-10-01

    As an insulating dielectric, polyimide is favorable for the application of optoelectronics, electrical insulation system in electric power industry, insulating, and packaging materials in space aircraft, due to its excellent thermal, mechanical and electrical insulating stability. The charge storage profile of such insulating dielectric is utmost important to its application, when it is exposed to electron irradiation, high voltage corona discharge or other treatments. These treatments could induce changes in physical and chemical properties of treated samples. To investigate the charge storage mechanism of the insulating dielectrics after high-voltage corona discharge, the relaxation processes responsible for corona charged polyimide films under different poling conditions were analyzed by the Thermally Stimulated Discharge Currents method (TSDC). In the results of thermal relaxation process, the appearance of various peaks in TSDC spectra provided a deep insight into the molecular status in the dielectric material and reflected stored space charge relaxation process in the insulating polymers after corona discharge treatments. Furthermore, the different space charge distribution status under various poling temperature and different discharge voltage level were also investigated, which could partly reflect the influence of the ambiance condition on the functional dielectrics after corona poling.

  12. Cardiac magnetic resonance imaging in heart failure: where the alphabet begins!

    Science.gov (United States)

    Aljizeeri, Ahmed; Sulaiman, Abdulbaset; Alhulaimi, Naji; Alsaileek, Ahmed; Al-Mallah, Mouaz H

    2017-07-01

    Cardiac Magnetic Resonance Imaging has become a cornerstone in the evaluation of heart failure. It provides a comprehensive evaluation by answering all the pertinent clinical questions across the full pathological spectrum of heart failure. Nowadays, CMR is considered the gold standard in evaluation of ventricular volumes, wall motion and systolic function. Through its unique ability of tissue characterization, it provides incremental diagnostic and prognostic information and thus has emerged as a comprehensive imaging modality in heart failure. This review outlines the role of main conventional CMR sequences in the evaluation of heart failure and their impact in the management and prognosis.

  13. FEM Simulation of Incremental Shear

    International Nuclear Information System (INIS)

    Rosochowski, Andrzej; Olejnik, Lech

    2007-01-01

    A popular way of producing ultrafine grained metals on a laboratory scale is severe plastic deformation. This paper introduces a new severe plastic deformation process of incremental shear. A finite element method simulation is carried out for various tool geometries and process kinematics. It has been established that for the successful realisation of the process the inner radius of the channel as well as the feeding increment should be approximately 30% of the billet thickness. The angle at which the reciprocating die works the material can be 30 deg. . When compared to equal channel angular pressing, incremental shear shows basic similarities in the mode of material flow and a few technological advantages which make it an attractive alternative to the known severe plastic deformation processes. The most promising characteristic of incremental shear is the possibility of processing very long billets in a continuous way which makes the process more industrially relevant

  14. High-cadence observations of CME initiation and plasma dynamics in the corona with TESIS on board CORONAS-Photon

    Science.gov (United States)

    Bogachev, Sergey; Kuzin, Sergey; Zhitnik, I. A.; Bugaenko, O. I.; Goncharov, A. L.; Ignatyev, A. P.; Krutov, V. V.; Lomkova, V. M.; Mitrofanov, A. V.; Nasonkina, T. P.; Oparin, S. N.; Petzov, A. A.; Shestov, S. V.; Slemzin, V. A.; Soloviev, V. A.; Suhodrev, N. K.; Shergina, T. A.

    The TESIS is an ensemble of space instruments designed in Lebedev Institute of Russian Academy of Sciences for spectroscopic and imaging investigation of the Sun in EUV and soft X-ray spectral range with high spatial, temporal and spectral resolution. From 2009 January, when TESIS was launched onboard the Coronas-Photon satellite, it provided about 200 000 new images and spectra of the Sun, obtained during one of the deepest solar minimum in last century. Because of the wide field of view (4 solar radii) and high sensitivity, TESIS provided high-quality data on the origin and dynamics of eruptive prominences and CMEs in the low and intermediate solar corona. TESIS is also the first EUV instrument which provided high-cadence observations of coronal bright points and solar spicules with temporal resolution of a few seconds. We present first results of TESIS observations and discuss them from a scientific point of view.

  15. Dielectric fluid directional spreading under the action of corona discharge

    Science.gov (United States)

    Zhou, Shangru; Liu, Jie; Hu, Qun; Jiang, Teng; Yang, Jinchu; Liu, Sheng; Zheng, Huai

    2018-01-01

    Liquid spreading is a very common nature phenomenon and of significant importance for a broad range of applications. In this study, a dielectric fluid directional spreading phenomenon is presented. Under the action of corona discharge, a dielectric fluid, here a typical silicone directionally spreads along conductive patterns on conductive/nonconductive substrates. Directional spreading behaviors of silicone were experimentally observed on different conductive patterns in detail. Spreading speeds were analyzed at different driving voltages, which induced the corona discharge. The presented phenomenon may be useful to inspire several techniques of manipulating liquid transportation and fabricating micropatterns.

  16. Create 2D mobile games with Corona SDK for iOS and Android

    CERN Document Server

    Mekersa, David

    2015-01-01

    Corona SDK is one of the most powerful tools used to create games and apps for mobile devices.The market requires speed; new developers need to operate quickly and efficiently. Create 2D Mobile Games with Corona SDK gives you the tools needed to master Corona - even within the framework of professional constraints. A must-read guide, this book gives you fast, accurate tips to learn the programming language necessary to create games. Read it sequentially or as an FAQ and you will have the tools you need to create any base game before moving on to advanced topics. The tutorial-based format:Conta

  17. Dynamic development of the protein corona on silica nanoparticles: composition and role in toxicity

    Science.gov (United States)

    Mortensen, Ninell P.; Hurst, Gregory B.; Wang, Wei; Foster, Carmen M.; Nallathamby, Prakash D.; Retterer, Scott T.

    2013-06-01

    The formation and composition of the protein corona on silica (SiO2) nanoparticles (NP) with different surface chemistries was evaluated over time. Native SiO2, amine (-NH2) and carboxy (-COO-) modified NP were examined following incubation in mammalian growth media containing fetal bovine serum (FBS) for 1, 4, 24 and 48 hours. The protein corona transition from its early dynamic state to the later more stable corona was evaluated using mass spectrometry. The NP diameter was 22.4 +/- 2.2 nm measured by scanning transmission electron microscopy (STEM). Changes in hydrodynamic diameter and agglomeration kinetics were studied using dynamic light scattering (DLS). The initial surface chemistry of the NP played an important role in the development and final composition of the protein corona, impacting agglomeration kinetics and NP toxicity. Particle toxicity, indicated by changes in membrane integrity and mitochondrial activity, was measured by lactate dehydrogenase (LDH) release and tetrazolium reduction (MTT), respectively, in mouse alveolar macrophages (RAW264.7) and mouse lung epithelial cells (C10). SiO2-COO- NP had a slower agglomeration rate, formed smaller aggregates, and exhibited lower cytotoxicity compared to SiO2 and SiO2-NH2. Composition of the protein corona for each of the three NP was unique, indicating a strong dependence of corona development on NP surface chemistry. This work underscores the need to understand all aspects of NP toxicity, particularly the influence of agglomeration on effective dose and particle size. Furthermore, the interplay between materials and local biological environment is emphasized and highlights the need to conduct toxicity profiling under physiologically relevant conditions that provide an appropriate estimation of material modifications that occur during exposure in natural environments.The formation and composition of the protein corona on silica (SiO2) nanoparticles (NP) with different surface chemistries was evaluated

  18. Effect of the protein corona on nanoparticles for modulating cytotoxicity and immunotoxicity

    Directory of Open Access Journals (Sweden)

    Lee YK

    2014-12-01

    Full Text Available Yeon Kyung Lee,1,* Eun-Ju Choi,2,* Thomas J Webster,3 Sang-Hyun Kim,4 Dongwoo Khang1 1Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, South Korea; 2Division of Sport Science, College of Science and Technology, Konkuk University, Chungju, South Korea; 3Department of Chemical Engineering and Program in Bioengineering, Northeastern University, Boston, MA, USA; 4Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, South Korea *These authors contributed equally to this work Abstract: Although the cytotoxicity of nanoparticles (NPs is greatly influenced by their interactions with blood proteins, toxic effects resulting from blood interactions are often ignored in the development and use of nanostructured biomaterials for in vivo applications. Protein coronas created during the initial reaction with NPs can determine the subsequent immunological cascade, and protein coronas formed on NPs can either stimulate or mitigate the immune response. Along these lines, the understanding of NP-protein corona formation in terms of physiochemical surface properties of the NPs and NP interactions with the immune system components in blood is an essential step for evaluating NP toxicity for in vivo therapeutics. This article reviews the most recent developments in NP-based protein coronas through the modification of NP surface properties and discusses the associated immune responses. Keywords: nanostructured biomaterials, blood response, cytotoxicity, immunotoxicity, protein corona

  19. Observational capabilities of solar satellite "Coronas-Photon"

    Science.gov (United States)

    Kotov, Yu.

    Coronas-Photon mission is the third satellite of the Russian Coronas program on solar activity observation The main goal of the Coronas-Photon is the study of solar hard electromagnetic radiation in the wide energy range from UV up to high energy gamma-radiation sim 2000MeV Scientific payload for solar radiation observation consists of three type of instruments 1 monitors Natalya-2M Konus-RF RT-2 Penguin-M BRM Phoka Sphin-X Sokol for spectral and timing measurements of full solar disk radiation with timing in flare burst mode up to one msec Instruments Natalya-2M Konus-RF RT-2 will cover the wide energy range of hard X-rays and soft Gamma rays 15keV to 2000MeV and will together constitute the largest area detectors ever used for solar observations Detectors of gamma-ray monitors are based on structured inorganic scintillators with energy resolution sim 5 for nuclear gamma-line band to 35 for GeV-band PSD analysis is used for gamma neutron separation for solar neutron registration T 30MeV Penguin-M has capability to measure linear polarization of hard X-rays using azimuth are measured by Compton scattering asymmetry in case of polarization of an incident flux For X-ray and EUV monitors the scintillation phoswich detectors gas proportional counter CZT assembly and Filter-covered Si-diodes are used 2 Telescope-spectrometer TESIS for imaging solar spectroscopy in X-rays with angular resolution up to 1 in three spectral lines and RT-2 CZT assembly of CZT

  20. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere II. Continuous Emission and Condensed Matter Within the Corona

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2013-07-01

    Full Text Available The K-corona, a significant portion of the solar atmosphere, displays a continuous spectrum which closely parallels photospheric emission, though without the presence of overlying Fraunhofer lines. The E-corona exists in the same region and is characterized by weak emission lines from highly ionized atoms. For instance, the famous green emission line from coronium (FeXIV is part of the E-corona. The F-corona exists beyond the K/E-corona and, like the photospheric spectrum, is characterized by Fraunhofer lines. The F-corona represents photospheric light scattered by dust particles in the interplanetary medium. Within the gaseous models of the Sun, the K-corona is viewed as photospheric radiation which has been scattered by relativistic electrons. This scattering is thought to broaden the Fraunhofer lines of the solar spectrum such that they can no longer be detected in the K-corona. Thus, the gaseous models of the Sun account for the appearance of the K-corona by distorting photospheric light, since they are unable to have recourse to condensed matter to directly produce such radiation. Conversely, it is now advanced that the continuous emission of the K-corona and associated emission lines from the E-corona must be interpreted as manifestations of the same phenomenon: condensed matter exists in the corona. It is well-known that the Sun expels large amounts of material from its surface in the form of flares and coronal mass ejections. Given a liquid metallic hydrogen model of the Sun, it is logical to assume that such matter, which exists in the condensed state on the solar surface, continues to manifest its nature once expelled into the corona. Therefore, the continuous spectrum of the K-corona provides the twenty-seventh line of evidence that the Sun is composed of condensed matter.

  1. Experimental Investigation of the Corona Discharge in Electrical Transmission due to AC/DC Electric Fields

    Directory of Open Access Journals (Sweden)

    Fuangpian Phanupong

    2016-01-01

    Full Text Available Nowadays, using of High Voltage Direct Current (HVDC transmission to maximize the transmission efficiency, bulk power transmission, connection of renewable power source from wind farm to the grid is of prime concern for the utility. However, due to the high electric field stress from Direct Current (DC line, the corona discharge can easily be occurred at the conductor surface leading to transmission loss. Therefore, the polarity effect of DC lines on corona inception and breakdown voltage should be investigated. In this work, the effect of DC polarity and Alternating Current (AC field stress on corona inception voltage and corona discharge is investigated on various test objects, such as High Voltage (HV needle, needle at ground plane, internal defect, surface discharge, underground cable without cable termination, cable termination with simulated defect and bare overhead conductor. The corona discharge is measured by partial discharge measurement device with high-frequency current transformer. Finally, the relationship between supply voltage and discharge intensity on each DC polarity and AC field stress can be successfully determined.

  2. The Growth Potential of Corona Discharges from Aircraft Flying in Precipitation.

    Science.gov (United States)

    1987-11-12

    required for corona onset. However, it turns out that the fields required to generate corona from ’ce and water particles of the anticipated size are...still significantly larger than those commonly encountered in a thundercloud. The exception here is the long water filament drawn out when water drop...trial and error had 300 cone-angle, with a tip of radius -20Im (measured with a travelling microscope). It was necessary to electrolyse the tip in

  3. Transfer of electrical space charge from corona between ground and thundercloud: Measurements and modeling

    Science.gov (United States)

    Soula, Serge

    1994-01-01

    The evolution of the vertical electric field profile deduced from simultaneous field measurements at several levels below a thundercloud shows the development of a space charge layer at least up to 600 m. The average charge density in the whole layer from 0 m to 600 m can reach about 1 nC m(exp -3). The ions are generated at the ground by corona effect and the production rate is evaluated with a new method from the comparison of field evolutions at the ground and at altitude after a lightning flash. The modeling of the relevant processes shows tht ground corona accounts for the observed field evolutions and that the aerosol particles concentration has a very large effect on the evolution of corona ions. However, with a realistic value for this concentration a large amount of ground corona ions reach the level of 600 m.

  4. River water remediation using pulsed corona, pulsed spark or ozonation

    Energy Technology Data Exchange (ETDEWEB)

    Izdebski, T.; Dors, M. [Polish Academy of Sciences, Szewalski Inst. of Fluid Flow Machiney, Fiszera (Poland). Centre for Plasma and Laser Engineering; Mizeraczyk, J. [Polish Academy of Sciences, Szewalski Inst. of Fluid Flow Machiney, Fiszera (Poland). Centre for Plasma and Laser Engineering; Gdynia Maritime Univ., Morska (Poland). Dept. of Marine Electronics

    2010-07-01

    The most common reason for epidemic formation is the pollution of surface and drinking water by wastewater bacteria. Pathogenic microorganisms that form the largest part of this are fecal bacteria, such as escherichia coli (E. coli). Wastewater treatment plants reduce the amount of the fecal bacteria by 1-3 orders of magnitude, depending on the initial number of bacteria. There is a lack of data on waste and drinking water purification by the electrohydraulic discharges method, which causes the destruction and inactivation of viruses, yeast, and bacteria. This paper investigated river water cleaning from microorganisms using pulsed corona, spark discharge and ozonization. The paper discussed the experimental setup and results. It was concluded that ozonization is the most efficient method of water disinfection as compared with pulsed spark and pulsed corona discharges. The pulsed spark discharge in water was capable of killing all microorganism similarly to ozonization, but with much lower energy efficiency. The pulsed corona discharge was found to be the less effective method of water disinfection. 21 refs., 4 figs.

  5. Diagnostics of the solar corona from comparison between Faraday rotation measurements and magnetohydrodynamic simulations

    International Nuclear Information System (INIS)

    Le Chat, G.; Cohen, O.; Kasper, J. C.; Spangler, S. R.

    2014-01-01

    Polarized natural radio sources passing behind the Sun experience Faraday rotation as a consequence of the electron density and magnetic field strength in coronal plasma. Since Faraday rotation is proportional to the product of the density and the component of the magnetic field along the line of sight of the observer, a model is required to interpret the observations and infer coronal structures. Faraday rotation observations have been compared with relatively ad hoc models of the corona. Here for the first time we compare these observations with magnetohydrodynamic (MHD) models of the solar corona driven by measurements of the photospheric magnetic field. We use observations made with the NRAO Very Large Array of 34 polarized radio sources occulted by the solar corona between 5 and 14 solar radii. The measurements were made during 1997 May, and 2005 March and April. We compare the observed Faraday rotation values with values extracted from MHD steady-state simulations of the solar corona. We find that (1) using a synoptic map of the solar magnetic field just one Carrington rotation off produces poorer agreements, meaning that the outer corona changes in the course of one month, even in solar minimum; (2) global MHD models of the solar corona driven by photospheric magnetic field measurements are generally able to reproduce Faraday rotation observations; and (3) some sources show significant disagreement between the model and the observations, which appears to be a function of the proximity of the line of sight to the large-scale heliospheric current sheet.

  6. Current Sheets in the Corona and the Complexity of Slow Wind

    Science.gov (United States)

    Antiochos, Spiro

    2010-01-01

    The origin of the slow solar wind has long been one of the most important problems in solar/heliospheric physics. Two observational constraints make this problem especially challenging. First, the slow wind has the composition of the closed-field corona, unlike the fast wind that originates on open field lines. Second, the slow wind has substantial angular extent, of order 30 degrees, which is much larger than the widths observed for streamer stalks or the widths expected theoretically for a dynamic heliospheric current sheet. We propose that the slow wind originates from an intricate network of narrow (possibly singular) open-field corridors that emanate from the polar coronal hole regions. Using topological arguments, we show that these corridors must be ubiquitous in the solar corona. The total solar eclipse in August 2008, near the lowest point of cycle 23 affords an ideal opportunity to test this theory by using the ultra-high resolution Predictive Science's (PSI) eclipse model for the corona and wind. Analysis of the PSI eclipse model demonstrates that the extent and scales of the open-field corridors can account for both the angular width of the slow wind and its closed-field composition. We discuss the implications of our slow wind theory for the structure of the corona and heliosphere at solar minimum and describe further observational and theoretical tests.

  7. The colour of the solar corona and dust grains in it

    International Nuclear Information System (INIS)

    Ajmanov, A.K.; Nikolsky, G.M.

    1980-01-01

    The photometry of coronal negatives is carried out. The films were obtained at the March 7, 1970 and July 10, 1972 eclipses. A distribution of the coronal brightness in the red (635 mm), green (545 nm), and blue (455 nm) wavelength intervals up to distances of (6-7)Rsub(sun) is deduced (Figure 1). Colour indexes of the corona (the emission ratio red/blue-Csub(rb) and green/blue-Csub(gb)) have been obtained. We assume Csub(rb) = Csub(gb) = 1 in the inner corona ( = 1 μm. RED brightness is evaluated to be 4 x 10 -10 anti Bsub(sun). There is 1 grain of dust in the elementary volume with cross section of 1 cm 2 along the line of sight. The intensity of dust emission in wavelength interval 10 μm deduced by the authors is approximately 1 μ W cm -2 sm -1 . That is in agreement with Mankin et al. (1974) and Lena et al. (1974) observations. The whole dust mass of RED is -11 cm -3 . Determination of the colour of the solar corona have been made by a number of scientists (Tikhov, 1940, 1957; Allen, 1946; Blackwell, 1952; Michard, 1956; Sharonov, 1958; Nay et al. 1961). The corona colour was found to be somewhat redder than the Sun's. However this question is not finally settled to date. (orig.)

  8. Profundidad del surco gingival en dientes primarios restaurados con coronas de acero cromo

    Directory of Open Access Journals (Sweden)

    Rubén Muñoz Delgado

    2015-01-01

    Full Text Available Objetivo: Evaluar la relación entre el ajuste marginal y la profundidad del surco gingival en dientes primarios restaurados con coronas de acero cromo. Métodos: Se midió la profundidad del surco gingival de 114 dientes primarios restaurados con coronas de acero cromo en 67 niños, ambos sexos, de 3 a 6 años de edad de la clínica de Estomatología Pediátrica de la UATx, México. La población en estudio fue dividida en tres grupos: a experimental (n=30, b control (n=8, y c control negativo (n=29. Previo consentimiento informado se tomaron los índices de placa (LöeSilness 1967 e índice gingival en seis superficies; se midió el surco gingival con sonda periodontal y las coronas de acero cromo fueron evaluadas clínica y radiográficamente según su ajuste marginal y longitud cervical. Resultados: Los índices de placa y gingival no mostraron diferencias significativas para los grupos experimental y control negativo. El 34% de las coronas mostraron buen ajuste marginal, 33% un mal ajuste, 10.5% cortas, 7.9% largas y el 14% otro tipo de mal ajuste. La profundidad del surco gingival fue estadísticamente significativa para el primer y segundo molar inferior derechos y en los caninos inferiores (p >0.05; la superficie disto-vestibular presentó la mayor profundidad del surco gingival (2.34 mm, siendo estadísticamente significativa (p>0.05. Conclusiones: La profundidad del surco gingival fue mayor en los dientes rehabilitados con coronas de acero cromo mal ajustadas y sobre contorneadas (largas. La presencia de placa bacteriana y gingivitis estuvo relacionada con las coronas de acero cromo mal ajustadas.

  9. A semi-analytical stationary model of a point-to-plane corona discharge

    International Nuclear Information System (INIS)

    Yanallah, K; Pontiga, F

    2012-01-01

    A semi-analytical model of a dc corona discharge is formulated to determine the spatial distribution of charged particles (electrons, negative ions and positive ions) and the electric field in pure oxygen using a point-to-plane electrode system. A key point in the modeling is the integration of Gauss' law and the continuity equation of charged species along the electric field lines, and the use of Warburg's law and the corona current–voltage characteristics as input data in the boundary conditions. The electric field distribution predicted by the model is compared with the numerical solution obtained using a finite-element technique. The semi-analytical solutions are obtained at a negligible computational cost, and provide useful information to characterize and control the corona discharge in different technological applications. (paper)

  10. Novel modulator topology for corona plasma generation

    NARCIS (Netherlands)

    Ariaans, T.H.P.; Pemen, A.J.M.; Winands, G.J.J.; Liu, Z.; Heesch, van E.J.M.

    2009-01-01

    Gas cleaning using plasma technology is slowly introduced into industry nowadays. Several challenges still have to be overcome: increasing the scale, safety, life time and reducing costs. In 2006 we demonstrated a 20 kW nanosecond pulsed corona system. The electrical efficiency was > 90%. O-radical

  11. Processing method of images obtained during the TESIS/CORONAS-PHOTON experiment

    Science.gov (United States)

    Kuzin, S. V.; Shestov, S. V.; Bogachev, S. A.; Pertsov, A. A.; Ulyanov, A. S.; Reva, A. A.

    2011-04-01

    In January 2009, the CORONAS-PHOTON spacecraft was successfully launched. It includes a set of telescopes and spectroheliometers—TESIS—designed to image the solar corona in soft X-ray and EUV spectral ranges. Due to features of the reading system, to obtain physical information from these images, it is necessary to preprocess them, i.e., to remove the background, correct the white field, level, and clean. The paper discusses the algorithms and software developed and used for the preprocessing of images.

  12. α-Defensins and outcome in patients with chronic heart failure

    DEFF Research Database (Denmark)

    Christensen, Heidi M; Frystyk, Jan; Faber, Jens

    2012-01-01

    Aim a-Defensins are part of the innate immune system. Low-grade inflammation seems to play a crucial role in development and progression of chronic heart failure (CHF). The aims of the present study were to compare plasma levels of a-defensins in CHF patients and healthy controls and to examine......% confidence interval 1.19-2.28, P = 0.002) per 1 standard deviation increment in Ln (natural logarithm)-transformed a-defensin values. The combination of high a-defensins and NT-proBNP levels provided incremental prognostic information independent of well-known prognostic biomarkers in heart failure...... in 194 CHF patients, and compared plasma levels with those of 98 age-matched healthy controls. a-Defensin levels were twice as high among CHF patients in New York Heart Association (NYHA) functional class III-IV than in patients in NYHA class I-II and healthy controls (P = 0.001). The absolute increase...

  13. Kinetic Physics of the Solar Corona and Solar Wind

    Directory of Open Access Journals (Sweden)

    Marsch Eckart

    2006-07-01

    Full Text Available Kinetic plasma physics of the solar corona and solar wind are reviewed with emphasis on the theoretical understanding of the in situ measurements of solar wind particles and waves, as well as on the remote-sensing observations of the solar corona made by means of ultraviolet spectroscopy and imaging. In order to explain coronal and interplanetary heating, the microphysics of the dissipation of various forms of mechanical, electric and magnetic energy at small scales (e.g., contained in plasma waves, turbulences or non-uniform flows must be addressed. We therefore scrutinise the basic assumptions underlying the classical transport theory and the related collisional heating rates, and also describe alternatives associated with wave-particle interactions. We elucidate the kinetic aspects of heating the solar corona and interplanetary plasma through Landau- and cyclotron-resonant damping of plasma waves, and analyse in detail wave absorption and micro instabilities. Important aspects (virtues and limitations of fluid models, either single- and multi-species or magnetohydrodynamic and multi-moment models, for coronal heating and solar wind acceleration are critically discussed. Also, kinetic model results which were recently obtained by numerically solving the Vlasov–Boltzmann equation in a coronal funnel and hole are presented. Promising areas and perspectives for future research are outlined finally.

  14. The Mechanism for Energy Buildup in the Solar Corona

    Science.gov (United States)

    Antiochos, Spiro; Knizhnik, Kalman; DeVore, Richard

    2017-10-01

    Magnetic reconnection and helicity conservation are two of the most important basic processes determining the structure and dynamics of laboratory and space plasmas. The most energetic dynamics in the solar system are the giant CMEs/flares that produce the most dangerous space weather at Earth, yet may also have been essential for the origin of life. The origin of these explosions is that the lowest-lying magnetic flux in the Sun's corona undergoes the continual buildup of stress and free energy that can be released only through explosive ejection. We perform MHD simulations of a coronal volume driven by quasi-random boundary flows designed to model the processes by which the solar interior drives the corona. Our simulations are uniquely accurate in preserving magnetic helicity. We show that even though small-scale stress is injected randomly throughout the corona, the net result of magnetic reconnection is a coherent stressing of the lowest-lying field lines. This highly counter-intuitive result - magnetic stress builds up locally rather than spreading out to a minimum energy state - is the fundamental mechanism responsible for the Sun's magnetic explosions. It is likely to be a mechanism that is ubiquitous throughout laboratory and space plasmas. This work was supported by the NASA LWS and SR Programs.

  15. Water purification by corona-above-water treatment

    NARCIS (Netherlands)

    Pemen, A.J.M.; Heesch, van E.J.M.; Hoeben, W.F.L.M.

    2012-01-01

    Advanced oxidation technologies (AOT), such as non-thermal plasmas, are considered to be very promising for the purpose of water treatment. The goal of this study is to test the feasibility of "Corona-above-water" technology for the treatment of drinking water. Experiments have been performed on the

  16. Nanoflare heating model for collisionless solar corona

    Indian Academy of Sciences (India)

    Magnetic reconnection plays a significant role in heating the solar corona. When two oppositely directed magnetic fields come closer to form a current sheet, the current density of the plasma increases due to which magnetic reconnection and conversion of magnetic energy into thermal energy takes place. The present ...

  17. Performance evaluation of oxygen adsorbents using negative corona discharge–ion mobility spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Azadkish, Kamal; Jafari, Mohammad T., E-mail: jafari@cc.iut.ac.ir; Ghaziaskar, Hassan S.

    2017-02-08

    Trace amounts of oxygen was determined using negative corona discharge as an ionization source for ion mobility spectrometry. A point-in-cylinder geometry with novel design was used to establish the corona discharge without interferences of negative ions such as NO{sub X}{sup −}. The desirable background spectrum shows only electrons peak, providing the instrument capable of trace analysis of oxygen in gaseous samples. The limit of detection and linear dynamic range with high coefficient of determination (r{sup 2} = 0.9997), were obtained for oxygen as 8.5 and 28–14204 ppm, respectively. The relative standard deviations of the method for intraday and interday were obtained 4 and 11%, respectively. The satisfactory results revealed the ability of the negative corona discharge ion mobility spectrometry for investigating the performance of synthesized oxygen adsorbents in nitrogen streams. Two oxygen scavengers of MnO and Cu powder were prepared and the optimum temperature of the reactor containing MnO and Cu powder were obtained as 180 and 230 °C, respectively. Due to higher lifetime of copper powder, it was selected as the oxygen scavenger and some parameters such as: the type of adsorbent support, the size of adsorbent particles, and the amount of copper were studied for preparation of more efficient oxygen adsorbent. - Highlights: • Analysis of oxygen using negative corona discharge-ion mobility spectrometry was investigated for the first time. • Novel designed point-in-cylinder geometry was used to establish the corona discharge without interferences of negative ions. • The method was utilized to evaluate the performance of some synthesized oxygen scavengers.

  18. An optical sensors for monitoring SF6 dissociation in a corona discharge

    International Nuclear Information System (INIS)

    Irawan, R.; Scelsi, G.B.; Woolsey, G.A.

    1999-01-01

    Sulphur hexafluoride (SF 6 ) is a chemically inert gas (Schumb, 1947) and has high dielectric strength, 3 times greater than air (Morrison and Robins, 1994). In high voltage systems, it is used both as a dielectric and an arc-quenching medium. An electrical breakdown event such as a partial discharge (corona) or arc will dissociate SF 6 into sulphur fluorides, sulphur and fluorine. In a contaminant-free environment, the dissociation products recombine back to SF 6 after extinction of the electrical discharge. Otherwise, some of the products will react with contaminants such as water vapour and oxygen, and with the metal surfaces and electrodes of the discharge chamber, to produce by-products including gaseous sulphur oxyfluorides and solid by-products (Van Brunt, 1985; Griffin et al, 1990 and Vukovic, 1997). As a consequence, a reduction in SF 6 concentration takes place, and the insulating efficiency of the system is degraded. If the SF 6 is not renewed, failure of the high voltage system is likely to eventually occur. One method of monitoring a system is to look for the presence of partial discharges, using techniques such as ultrasonic wave detection (Auckland et al, 1996) or fluorescent plastic fibre (Kurosawa et al., 1997). More directly, the integrity of the SF 6 may be examined using techniques such as mass spectrometry, gas chromatography-mass spectrometry and Fourier Transform Infra-Red Spectroscopy. Such techniques, however, are bulky and require gas samples to be extracted, and so they are unsuited to field use. Since SF 6 insulating systems involve high voltages and a high level of electromagnetic interference, direct in-situ optical monitoring appears to provide the best approach. This paper describes the development of such an optical sensing technique, specifically for continuous monitoring of SF 6 degradation in partial or corona discharges

  19. On conditional scalar increment and joint velocity-scalar increment statistics

    International Nuclear Information System (INIS)

    Zhang Hengbin; Wang Danhong; Tong Chenning

    2004-01-01

    Conditional velocity and scalar increment statistics are usually studied in the context of Kolmogorov's refined similarity hypotheses and are considered universal (quasi-Gaussian) for inertial-range separations. In such analyses the locally averaged energy and scalar dissipation rates are used as conditioning variables. Recent studies have shown that certain local turbulence structures can be captured when the local scalar variance (φ 2 ) r and the local kinetic energy k r are used as the conditioning variables. We study the conditional increments using these conditioning variables, which also provide the local turbulence scales. Experimental data obtained in the fully developed region of an axisymmetric turbulent jet are used to compute the statistics. The conditional scalar increment probability density function (PDF) conditional on (φ 2 ) r is found to be close to Gaussian for (φ 2 ) r small compared with its mean and is sub-Gaussian and bimodal for large (φ 2 ) r , and therefore is not universal. We find that the different shapes of the conditional PDFs are related to the instantaneous degree of non-equilibrium (production larger than dissipation) of the local scalar. There is further evidence of this from the conditional PDF conditional on both (φ 2 ) r and χ r , which is largely a function of (φ 2 ) r /χ r , a measure of the degree of non-equilibrium. The velocity-scalar increment joint PDF is close to joint Gaussian and quad-modal for equilibrium and non-equilibrium local velocity and scalar, respectively. The latter shape is associated with a combination of the ramp-cliff and plane strain structures. Kolmogorov's refined similarity hypotheses also predict a dependence of the conditional PDF on the degree of non-equilibrium. Therefore, the quasi-Gaussian (joint) PDF, previously observed in the context of Kolmogorov's refined similarity hypotheses, is only one of the conditional PDF shapes of inertial range turbulence. The present study suggests that

  20. Core/corona modeling of diode-imploded annular loads

    Science.gov (United States)

    Terry, R. E.; Guillory, J. U.

    1980-11-01

    The effects of a tenuous exterior plasma corona with anomalous resistivity on the compression and heating of a hollow, collisional aluminum z-pinch plasma are predicted by a one-dimensional code. As the interior ("core") plasma is imploded by its axial current, the energy exchange between core and corona determines the current partition. Under the conditions of rapid core heating and compression, the increase in coronal current provides a trade-off between radial acceleration and compression, which reduces the implosion forces and softens the pitch. Combined with a heuristic account of energy and momentum transport in the strongly coupled core plasma and an approximate radiative loss calculation including Al line, recombination and Bremsstrahlung emission, the current model can provide a reasonably accurate description of imploding annular plasma loads that remain azimuthally symmetric. The implications for optimization of generator load coupling are examined.

  1. Incremental first pass technique to measure left ventricular ejection fraction

    International Nuclear Information System (INIS)

    Kocak, R.; Gulliford, P.; Hoggard, C.; Critchley, M.

    1980-01-01

    An incremental first pass technique was devised to assess the acute effects of any drug on left ventricular ejection fraction (LVEF) with or without a physiological stress. In particular, the effects of the vasodilater isosorbide dinitrate on LVEF before and after exercise were studied in 11 patients who had suffered cardiac failure. This was achieved by recording the passage of sup(99m)Tc pertechnetate through the heart at each stage of the study using a gamma camera computer system. Consistent values for four consecutive first pass values without exercise or drug in normal subjects illustrated the reproducibility of the technique. There was no significant difference between LVEF values obtained at rest and exercise before or after oral isosorbide dinitrate with the exception of one patient with gross mitral regurgitation. The advantages of the incremental first pass technique are that the patient need not be in sinus rhythm, the effects of physiological intervention may be studied and tests may also be repeated at various intervals during long term follow-up of patients. A disadvantage of the method is the limitation in the number of sequential measurements which can be carried out due to the amount of radioactivity injected. (U.K.)

  2. Magnetorelaxometry in the Presence of a DC Bias Field of Ferromagnetic Nanoparticles Bearing a Viscoelastic Corona

    Directory of Open Access Journals (Sweden)

    Victor Rusakov

    2018-05-01

    Full Text Available With allowance for orientational Brownian motion, the magnetorelaxometry (MRX signal, i.e., the decay of magnetization generated by an ensemble of ferromagnet nanoparticles, each of which bears a macromolecular corona (a loose layer of polymer gel is studied. The rheology of corona is modelled by the Jeffreys scheme. The latter, although comprising only three phenomenological parameters, enables one to describe a wide spectrum of viscoelastic media: from linearly viscous liquids to weakly-fluent gels. The “transverse” configuration of MRX is considered where the system is subjected to a DC (constant bias field, whereas the probing field is applied perpendicularly to the bias one. The analysis shows that the rate of magnetization decay strongly depends on the state of corona and slows down with enhancement of the corona elasticity. In addition, for the case of “transverse” MRX, we consider the integral time, i.e., the characteristic that is applicable to relaxation processes with an arbitrary number of decay modes. Expressions for the dependence of the integral time on the corona elasticity parameter and temperature are derived.

  3. Corona discharge induced snow formation in a cloud chamber.

    Science.gov (United States)

    Ju, Jingjing; Wang, Tie-Jun; Li, Ruxin; Du, Shengzhe; Sun, Haiyi; Liu, Yonghong; Tian, Ye; Bai, Yafeng; Liu, Yaoxiang; Chen, Na; Wang, Jingwei; Wang, Cheng; Liu, Jiansheng; Chin, S L; Xu, Zhizhan

    2017-09-18

    Artificial rainmaking is in strong demand especially in arid regions. Traditional methods of seeding various Cloud Condensation Nuclei (CCN) into the clouds are costly and not environment friendly. Possible solutions based on ionization were proposed more than 100 years ago but there is still a lack of convincing verification or evidence. In this report, we demonstrated for the first time the condensation and precipitation (or snowfall) induced by a corona discharge inside a cloud chamber. Ionic wind was found to have played a more significant role than ions as extra CCN. In comparison with another newly emerging femtosecond laser filamentation ionization method, the snow precipitation induced by the corona discharge has about 4 orders of magnitude higher wall-plug efficiency under similar conditions.

  4. A Covert Disruptive Technology: Test and Development of the Corona Satellite

    Science.gov (United States)

    Peebles, Curtis

    2008-01-01

    The launching by the Soviet Union of the Sputnik satellite in 19457 was an impetuous to the United States. The Intercontinental ballistic Missile (ICBM) that launched the Earth's first satellite, could have been armed with a nuclear warhead, that could destroy an American city. The primary intelligence requirement that the US had was to determine the actual size of the Soviet missile program. To this end, a covert, high-risk photoreconnaissance satellite was developed. The code name of this program was "Corona." This article describes the trials and eventual successes of the Corona program.

  5. Hot Coronae in Local AGN: Present Status and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Andrea Marinucci

    2018-04-01

    Full Text Available The nuclear X-ray emission in radio-quiet Active Galactic Nuclei (AGN is commonly believed to be due to inverse Compton scattering of soft UV photons in a hot corona. The radiation is expected to be polarized, the polarization degree depending mainly on the geometry and optical depth of the corona. Nuclear Spectroscopic Telescope Array (NuSTAR observations are providing for the first time high quality measurements of the coronal physical parameters—temperature and optical depth. We hereby review the NuSTAR results on the coronal physical parameters (temperature and optical depth and discuss their implications for future X-ray polarimetric studies.

  6. SWAP OBSERVATIONS OF THE LONG-TERM, LARGE-SCALE EVOLUTION OF THE EXTREME-ULTRAVIOLET SOLAR CORONA

    Energy Technology Data Exchange (ETDEWEB)

    Seaton, Daniel B.; De Groof, Anik; Berghmans, David; Nicula, Bogdan [Royal Observatory of Belgium-SIDC, Avenue Circulaire 3, B-1180 Brussels (Belgium); Shearer, Paul [Department of Mathematics, 2074 East Hall, University of Michigan, 530 Church Street, Ann Arbor, MI 48109-1043 (United States)

    2013-11-01

    The Sun Watcher with Active Pixels and Image Processing (SWAP) EUV solar telescope on board the Project for On-Board Autonomy 2 spacecraft has been regularly observing the solar corona in a bandpass near 17.4 nm since 2010 February. With a field of view of 54 × 54 arcmin, SWAP provides the widest-field images of the EUV corona available from the perspective of the Earth. By carefully processing and combining multiple SWAP images, it is possible to produce low-noise composites that reveal the structure of the EUV corona to relatively large heights. A particularly important step in this processing was to remove instrumental stray light from the images by determining and deconvolving SWAP's point-spread function from the observations. In this paper, we use the resulting images to conduct the first-ever study of the evolution of the large-scale structure of the corona observed in the EUV over a three year period that includes the complete rise phase of solar cycle 24. Of particular note is the persistence over many solar rotations of bright, diffuse features composed of open magnetic fields that overlie polar crown filaments and extend to large heights above the solar surface. These features appear to be related to coronal fans, which have previously been observed in white-light coronagraph images and, at low heights, in the EUV. We also discuss the evolution of the corona at different heights above the solar surface and the evolution of the corona over the course of the solar cycle by hemisphere.

  7. Electrical and optical analysis of fast transient discharges in a pulsed corona pilot unit

    NARCIS (Netherlands)

    Blom, P.P.M.; Smulders, H.W.M.; Heesch, van E.J.M.; Laan, van der P.C.T.

    1997-01-01

    We give a detailed analysis of intense pulsed corona dis charges. CCD movies and current, voltage and energy in put measurements are the basis of the description. The discharges are generated in a 1.5 kW pilot unit, which cre ates pulsed corona discharges energized by 100 kV pulses of 200 us width,

  8. La Corona: un acercamiento a las políticas del reino Kaan desde un centro secundario del noroeste del Petén La Corona: an approach to politics in the kingdom of Kaan from a secondary center in Norwest Petén

    Directory of Open Access Journals (Sweden)

    Marcello A. Canuto

    2011-01-01

    Full Text Available El Proyecto Regional Arqueológico La Corona estudia la región del noroeste de Petén, Guatemala, donde se localiza la antigua ciudad maya de La Corona, que recientemente fue identificada como el Sitio Q. La investigación ha incluido las excavaciones de arquitectura monumental, asentamientos, la elaboración de mapas, el uso de sensores remotos y la realización de estudios paleoclimatológicos y ecológicos. Desde el punto de vista de los modelos de la organización política, las investigaciones en La Corona presentan una oportunidad para estudiar la naturaleza y las relaciones políticas de los sitios secundarios. Los datos epigráficos relatan una afiliación directa entre La Corona y la dinastía gobernante en Calakmul, por lo que el primer centro seguramente fungió como punto clave para las estrategias de expansión de Calakmul por las Tierras Bajas Mayas durante los siglos VI y VII d.C. Aquí se presentan algunos resultados obtenidos en las investigaciones llevadas al cabo entre 2005 y 2009.The La Corona Regional Archaeological Project is studying the northwestern Peten region (Guatemala, where the ancient Maya city of La Corona is located. This site has been recently identified as the unknown Site Q. The research at La Corona has included excavations of monumental and settlement architecture, mapping, use of remote sensing and ecological and paleo-climate studies. Viewed from the political organization models, investigations at La Corona present an opportunity to study the nature and political relations of secondary sites. Epigraphic data show a direct affiliation between La Corona and the ruling dynasty of Calakmul, suggesting that La Corona could have been a key center for the expansionistic strategies of Calakmul during the sixth and seventh centuries A.D. In this paper we present some of the results obtained in the investigations carried out between 2005 and 2009.

  9. Pulsed power corona discharges for air pollution control

    NARCIS (Netherlands)

    Smulders, H.W.M.; Heesch, van E.J.M.; Paasen, van S.V.B.

    1998-01-01

    Successful introduction of pulsed corona for industrial purposes very much depends on the reliability of high-voltage and pulsed power technology and on the efficiency of energy transfer. In addition, it is of the utmost importance that adequate electromagnetic compatibility (EMC) is achieved

  10. Tomographic Validation of the AWSoM Model of the Inner Corona During Solar Minima

    Science.gov (United States)

    Manchester, W.; Vásquez, A. M.; Lloveras, D. G.; Mac Cormack, C.; Nuevo, F.; Lopez-Fuentes, M.; Frazin, R. A.; van der Holst, B.; Landi, E.; Gombosi, T. I.

    2017-12-01

    Continuous improvement of MHD three-dimensional (3D) models of the global solar corona, such as the Alfven Wave Solar Model (AWSoM) of the Space Weather Modeling Framework (SWMF), requires testing their ability to reproduce observational constraints at a global scale. To that end, solar rotational tomography based on EUV image time-series can be used to reconstruct the 3D distribution of the electron density and temperature in the inner solar corona (r used to validate steady-state 3D MHD simulations of the inner corona using the latest version of the AWSoM model. We perform the study for selected rotations representative of solar minimum conditions, when the global structure of the corona is more axisymmetric. We analyse in particular the ability of the MHD simulation to match the tomographic results across the boundary region between the equatorial streamer belt and the surrounding coronal holes. The region is of particular interest as the plasma flow from that zone is thought to be related to the origin of the slow component of the solar wind.

  11. The Intracellular Destiny of the Protein Corona: A Study on its Cellular Internalization and Evolution.

    Science.gov (United States)

    Bertoli, Filippo; Garry, David; Monopoli, Marco P; Salvati, Anna; Dawson, Kenneth A

    2016-11-22

    It has been well established that the early stages of nanoparticle-cell interactions are governed, at least in part, by the layer of proteins and other biomolecules adsorbed and slowly exchanged with the surrounding biological media (biomolecular corona). Subsequent to membrane interactions, nanoparticles are typically internalized into the cell and trafficked along defined pathways such as, in many cases, the endolysosomal pathway. Indeed, if the original corona is partially retained on the nanoparticle surface, the biomolecules in this layer may play an important role in determining subsequent cellular processing. In this work, using a combination of organelle separation and fluorescence labeling of the initial extracellular corona, we clarify its intracellular evolution as nanoparticles travel within the cell. We show that specific proteins present in the original protein corona are retained on the nanoparticles until they accumulate in lysosomes, and, once there, they are degraded. We also report on how different bare surfaces (amino and carboxyl modified) affect the details of this evolution. One overarching discovery is that the same serum proteins can exhibit different intracellular processing when carried inside cells by nanoparticles, as components of their corona, compared to what is observed when they are transported freely from the extracellular medium.

  12. Tuning complement activation and pathway through controlled molecular architecture of dextran chains in nanoparticle corona.

    Science.gov (United States)

    Coty, Jean-Baptiste; Eleamen Oliveira, Elquio; Vauthier, Christine

    2017-11-05

    The understanding of complement activation by nanomaterials is a key to a rational design of safe and efficient nanomedicines. This work proposed a systematic study investigating how molecular design of nanoparticle coronas made of dextran impacts on mechanisms that trigger complement activation. The nanoparticles used for this work consisted of dextran-coated poly(isobutylcyanoacrylate) (PIBCA) nanoparticles have already been thoroughly characterized. Their different capacity to trigger complement activation established on the cleavage of the protein C3 was also already described making these nanoparticles good models to investigate the relation between the molecular feature of their corona and the mechanism by which they triggered complement activation. Results of this new study show that complement activation pathways can be selected by distinct architectures formed by dextran chains composing the nanoparticle corona. Assumptions that explain the relation between complement activation mechanisms triggered by the nanoparticles and the nanoparticle corona molecular feature were proposed. These results are of interest to better understand how the design of dextran-coated nanomaterials will impact interactions with the complement system. It can open perspectives with regard to the selection of a preferential complement activation pathway or prevent the nanoparticles to activate the complement system, based on a rational choice of the corona configuration. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Synergistic effect of pulsed corona discharges and ozonation on decolourization of methylene blue in water

    International Nuclear Information System (INIS)

    Malik, Muhammad Arif; Ubaid-ur-Rehman; Ghaffar, Abdul; Ahmed, Kurshid

    2002-01-01

    The effect of O 2 and O 3 bubbling on decolourization of methylene blue by pulsed corona discharges in water was studied. The pulsed corona discharges were produced by charging an 80 pF capacitor with a 40 kV DC source, through a 100 MΩ resistor, and discharging it into a needle-plate type reactor at 60 Hz through a rotating spark gap switch. A 20 ml sample of 13.25 mg l -1 methylene blue in distilled water was decolourized in 120 min. Bubbling O 2 at 10 ml min -1 through the discharge region reduced the decolourization time to 25 min. Bubbling O 2 containing 1500 μmol O 3 l -1 at 10 ml min -1 reduced the decolourization time to 8 min. The O 3 was produced by fractionating input energy between a water treatment reactor and a O 3 generator, i.e. no additional energy was consumed for O 3 production. Under the same experimental conditions methylene blue solution in tap water was decolourized in >210 min by corona discharge in solution, in 30 min by corona discharge with O 2 bubbling, and in 11 min by corona discharge with bubbling of O 2 containing 1500 μmol O 3 l -1

  14. Spicular downflows in late-type giant coronae

    International Nuclear Information System (INIS)

    Wallenhorst, S.G.

    1980-01-01

    Models of the coronae of late-type stars are considered, under the assumption that the dominant coronal energy loss is not conduction, as is usually assumed, but rather the losses due to hot spicular material falling back onto the chromosphere. This assumption is used to estimated the increase in stellar mass-loss rate which should occur when stars evolve across the so-called Supersonic Transition Locus (STL). For a constant downward number flux, this increase is estimate to be about one order of magnitude. Energy-balance models are then considered for spicule-dominated coronae, under the additional assumption that the energy input flux to the corona is constant over a star's post-main sequence evolution; this assumption is found to be consistent with observed red giant mass-loss rates. A sequence of models is constructed which enables the various coronal parameters to be estimated for different masses and radii. The models yield results similar to those of the minimum flux coronal theory of A.G. Hearn; these similarities, along with the validity of the minimum flux technique, are discussed. It is shown that several criticisms of the minimum flux method, due to Antiochos and Underwood (1978) and Van Tend (1979), are valid for minimum flux models in which spicular downflow is neglected, but are satisfied by the models considered below. Solutions which precisely satisfy the constant-flux assumption are not found to exist for solar mass stars. Under the assumption that the minimum flux theory is correct, and using a downflow number flux derived from the energy-balance model, the jump in mass-loss rate at the STL is reevaluated. In this more rigorous case, the jump is found to be only about a factor of three. It is concluded that large increases in mass-loss rate are not to be expected as stars evolve across this transition locus

  15. Modeling and characterization of field-enhanced corona discharge in ozone-generator diode

    Science.gov (United States)

    Patil, Jagadish G.; Vijayan, T.

    2010-02-01

    Electric field enhanced corona plasma discharge in ozone generator diode of axial symmetry has been investigated and characterized in theory. The cathode K of diode is made of a large number of sharpened nozzles arranged on various radial planes on the axial mast and pervaded in oxygen gas inside the anode cup A, produces high fields over MV/m and aids in the formation of a corona plume of dense ozone cloud over the cathode surface. An r-z finite difference scheme has been devised and employed to numerically determine the potential and electric field distributions inside the diode. The analyses of cathode emissions revealed a field emission domain conformed to modified Child-Langmuir diode-current. Passage of higher currents (over μA) in shorter A-K gaps d gave rise to cathode heated plasma extending from the corona to Saha regimes depending on local temperature. Plasma densities of order 102-106 m-3 are predicted in these. For larger d however, currents are smaller and heating negligible and a negative corona favoring ozone formation is attained. High ozone yields about 20 per cent of oxygen input is predicted in this domain. The generator so developed will be applied to various important applications such as, purification of ambient air /drinking water, ozone therapy, and so on.

  16. Modeling and characterization of field-enhanced corona discharge in ozone-generator diode

    Energy Technology Data Exchange (ETDEWEB)

    Patil, Jagadish G; Vijayan, T, E-mail: jagdishlove@gmail.co [Mahatma Education Society' s ' Pillai' s Institute of Information Technology, Engineering, Media Studies and Research' Dr. K M Vasudevan Pillai' s Campus, Sector 16, New Panvel, Navi Mumbai - 410 206 (India)

    2010-02-01

    Electric field enhanced corona plasma discharge in ozone generator diode of axial symmetry has been investigated and characterized in theory. The cathode K of diode is made of a large number of sharpened nozzles arranged on various radial planes on the axial mast and pervaded in oxygen gas inside the anode cup A, produces high fields over MV/m and aids in the formation of a corona plume of dense ozone cloud over the cathode surface. An r-z finite difference scheme has been devised and employed to numerically determine the potential and electric field distributions inside the diode. The analyses of cathode emissions revealed a field emission domain conformed to modified Child-Langmuir diode-current. Passage of higher currents (over {mu}A) in shorter A-K gaps d gave rise to cathode heated plasma extending from the corona to Saha regimes depending on local temperature. Plasma densities of order 10{sup 2}-10{sup 6} m{sup -3} are predicted in these. For larger d however, currents are smaller and heating negligible and a negative corona favoring ozone formation is attained. High ozone yields about 20 per cent of oxygen input is predicted in this domain. The generator so developed will be applied to various important applications such as, purification of ambient air /drinking water, ozone therapy, and so on.

  17. Modeling and characterization of field-enhanced corona discharge in ozone-generator diode

    International Nuclear Information System (INIS)

    Patil, Jagadish G; Vijayan, T

    2010-01-01

    Electric field enhanced corona plasma discharge in ozone generator diode of axial symmetry has been investigated and characterized in theory. The cathode K of diode is made of a large number of sharpened nozzles arranged on various radial planes on the axial mast and pervaded in oxygen gas inside the anode cup A, produces high fields over MV/m and aids in the formation of a corona plume of dense ozone cloud over the cathode surface. An r-z finite difference scheme has been devised and employed to numerically determine the potential and electric field distributions inside the diode. The analyses of cathode emissions revealed a field emission domain conformed to modified Child-Langmuir diode-current. Passage of higher currents (over μA) in shorter A-K gaps d gave rise to cathode heated plasma extending from the corona to Saha regimes depending on local temperature. Plasma densities of order 10 2 -10 6 m -3 are predicted in these. For larger d however, currents are smaller and heating negligible and a negative corona favoring ozone formation is attained. High ozone yields about 20 per cent of oxygen input is predicted in this domain. The generator so developed will be applied to various important applications such as, purification of ambient air /drinking water, ozone therapy, and so on.

  18. Combined corona discharge and UV photoionization source for ion mobility spectrometry.

    Science.gov (United States)

    Bahrami, Hamed; Tabrizchi, Mahmoud

    2012-08-15

    An ion mobility spectrometer is described which is equipped with two non-radioactive ion sources, namely an atmospheric pressure photoionization and a corona discharge ionization source. The two sources cannot only run individually but are additionally capable of operating simultaneously. For photoionization, a UV lamp was mounted parallel to the axis of the ion mobility cell. The corona discharge electrode was mounted perpendicular to the UV radiation. The total ion current from the photoionization source was verified as a function of lamp current, sample flow rate, and drift field. Simultaneous operation of the two ionization sources was investigated by recording ion mobility spectra of selected samples. The design allows one to observe peaks from either the corona discharge or photoionization individually or simultaneously. This makes it possible to accurately compare peaks in the ion mobility spectra from each individual source. Finally, the instrument's capability for discriminating two peaks appearing in approximately identical drift times using each individual ionization source is demonstrated. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Alkali ion migration between stacked glass plates by corona discharge treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kawaguchi, Keiga [Research Institute for Electronic Science, Hokkaido University, N20 W10, Kita-ku, Sapporo, Hokkaido 001-0020 (Japan); Suzuki, Toshio [Research Center, Asahi Glass Co., Ltd., 1150 Hazawa-cho, Kanagawa-ku, Yokohama, Kanagawa 221-8755 (Japan); Ikeda, Hiroshi [Art, Science and Technology Center for Cooperative Research, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580 (Japan); Sakai, Daisuke [Department of Electrical and Electronic Engineering, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido 090-8507 (Japan); Funatsu, Shiro; Uraji, Keiichiro [Production Technology Center, Asahi Glass Co., Ltd., 1-1 Suehiro-cyo, Tsurumiku, Yokohama, Kanagawa 230-0045 (Japan); Yamamoto, Kiyoshi [Research Center, Asahi Glass Co., Ltd., 1150 Hazawa-cho, Kanagawa-ku, Yokohama, Kanagawa 221-8755 (Japan); Harada, Kenji [Department of Computer Science, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido 090-8507 (Japan); Nishii, Junji, E-mail: nishii@es.hokudai.ac.jp [Research Institute for Electronic Science, Hokkaido University, N20 W10, Kita-ku, Sapporo, Hokkaido 001-0020 (Japan)

    2015-05-30

    Highlights: • Two stacked glass plates with a 1 mm gap were treated by corona discharge. • Spatial migration of alkali ion over the gap was demonstrated. • Hydrogen gas was necessary for uniform migration. • Surface modification was done with this process without high temperature or vacuum. - Abstract: Corona discharge reflects the spatial migration of alkali ions over a gap between two glass plates. This study examined stacked glass plates containing different alkali ions treated with the corona discharge plasma generated by applied voltage of 4.5 kV at 200 °C. Protons generated at the anode electrode penetrate into the potassium-ion-containing upper glass plate, which is located 5 mm below the anode electrode. Potassium ions intruded into the lower glass plate containing sodium ions placed on the cathode electrode, even over a 1 mm gap separating the plates. Finally, the sodium ion discharged on the cathode electrode. The hydrogen atmosphere was effective at inhibiting the potassium ion reaction with ambient gases during the spatial migration between the two glass plates.

  20. CORONA ACADEMY, Opportunities for Enhancement of Training Capabilities in VVER Technology

    International Nuclear Information System (INIS)

    Ilieva, M.; Dieguez Porras, P.; Klepakova, A.

    2016-01-01

    Full text: The general objective of the project CORONA II is to enhance the safety of nuclear installations through further improvement of the training capabilities for providing the necessary personnel competencies in VVER area. More specific objective of the project is to continue the development of a state-of-the-art regional training network for VVER competence called CORONA Academia. The project aims at continuation of the European cooperation and support in this area for preservation and further development of expertise in the nuclear field by improvement of higher education and training. The consortium is focusing its effort on using the most advanced ways of providing training to the trainees, saving cost and time–distance learning and e-learning approaches which will be tested in CORONA II Project. The knowledge management portal will integrate the information on VVER web into a single communication system and develop and implement a semantic web structure to achieve mutual recognition of authentication information with other databases. That will enable the partners to share the materials available in each specific training center. (author

  1. THE STRUCTURE AND SPECTRAL FEATURES OF A THIN DISK AND EVAPORATION-FED CORONA IN HIGH-LUMINOSITY ACTIVE GALACTIC NUCLEI

    International Nuclear Information System (INIS)

    Liu, J. Y.; Liu, B. F.; Qiao, E. L.; Mineshige, S.

    2012-01-01

    We investigate the accretion process in high-luminosity active galactic nuclei (HLAGNs) in the scenario of the disk evaporation model. Based on this model, the thin disk can extend down to the innermost stable circular orbit (ISCO) at accretion rates higher than 0.02 M-dot Edd while the corona is weak since part of the coronal gas is cooled by strong inverse Compton scattering of the disk photons. This implies that the corona cannot produce as strong X-ray radiation as observed in HLAGNs with large Eddington ratio. In addition to the viscous heating, other heating to the corona is necessary to interpret HLAGN. In this paper, we assume that a part of accretion energy released in the disk is transported into the corona, heating up the electrons, and is thereby radiated away. For the first time, we compute the corona structure with additional heating, fully taking into account the mass supply to the corona, and find that the corona could indeed survive at higher accretion rates and that its radiation power increases. The spectra composed of bremsstrahlung and Compton radiation are also calculated. Our calculations show that the Compton-dominated spectrum becomes harder with the increase of energy fraction (f) liberating in the corona, and the photon index for hard X-ray (2-10 keV) is 2.2 bol /L 2-10keV ) increases with increasing accretion rate for f < 8/35, which is roughly consistent with the observational results.

  2. Greener corona discharge for enhanced wind generation with a simple dip-coated carbon nanotube decoration

    Science.gov (United States)

    Wu, Yishan; Li, Jun; Ye, Jianchun; Chen, Xiaohong; Li, Huili; Huang, Sumei; Zhao, Ran; Ou-Yang, Wei

    2017-10-01

    Corona discharge-induced wind (CDIW) has been widely utilized in production lines in the food and semiconductor industries and in indoor devices such as electrostatic precipitators. Some ozone is inevitably emitted, posing serious health risks to respiratory system and lung function of a human being. In this work, a greener corona discharge with enhanced wind generation for a needle-to-cylinder discharge structure is demonstrated using a simple dip-coating method to attach carbon nanotubes (CNTs) to the discharge electrode of a stainless steel needle. Compared with a conventional discharge electrode without CNT decoration, the velocity of the CDIW is greatly enhanced, the onset voltage is lowered, the energy conversion efficiency is greatly improved and the concentration of generated ozone is much reduced, making this easy method of CNT decoration a promising candidate for greener corona discharge systems. In addition, several impact factors for improved performance are discussed mathematically and phenomenologically, providing an insight into the corona discharge and wind generation.

  3. Greener corona discharge for enhanced wind generation with a simple dip-coated carbon nanotube decoration

    International Nuclear Information System (INIS)

    Wu, Yishan; Ye, Jianchun; Chen, Xiaohong; Li, Huili; Huang, Sumei; Zhao, Ran; Ou-Yang, Wei; Li, Jun

    2017-01-01

    Corona discharge-induced wind (CDIW) has been widely utilized in production lines in the food and semiconductor industries and in indoor devices such as electrostatic precipitators. Some ozone is inevitably emitted, posing serious health risks to respiratory system and lung function of a human being. In this work, a greener corona discharge with enhanced wind generation for a needle-to-cylinder discharge structure is demonstrated using a simple dip-coating method to attach carbon nanotubes (CNTs) to the discharge electrode of a stainless steel needle. Compared with a conventional discharge electrode without CNT decoration, the velocity of the CDIW is greatly enhanced, the onset voltage is lowered, the energy conversion efficiency is greatly improved and the concentration of generated ozone is much reduced, making this easy method of CNT decoration a promising candidate for greener corona discharge systems. In addition, several impact factors for improved performance are discussed mathematically and phenomenologically, providing an insight into the corona discharge and wind generation. (paper)

  4. Fast imaging of intermittent electrospraying of water with positive corona discharge

    International Nuclear Information System (INIS)

    Pongrác, B; Janda, M; Martišovitš, V; Machala, Z; Kim, H H

    2014-01-01

    The effect of the electrospraying of water in combination with a positive direct current (dc) streamer corona discharge generated in air was investigated in this paper. We employed high-speed camera visualizations and oscilloscopic discharge current measurements in combination with an intensified charge-coupled device camera for fast time-resolved imaging. The repetitive process of Taylor cone formation and droplet formation from the mass fragments of water during the electrospray was visualized. Depending on the applied voltage, the following intermittent modes of electrospraying typical for water were observed: dripping mode, spindle mode, and oscillating-spindle mode. The observed electrospraying modes were repetitive with a frequency of a few hundreds of Hz, as measured from the fast image sequences. This frequency agreed well with the frequency of the measured streamer current pulses. The presence of filamentary streamer discharges at relatively low voltages probably prevented the establishment of a continuous electrospray in the cone–jet mode. After each streamer, a positive glow corona discharge was established on the water filament tip, and it propagated from the stressed electrode along with the water filament elongation. The results show a reciprocal character of intermittent electrospraying of water, and the presence of corona discharge, where both the electrospray and the discharge affect each other. The generation of a corona discharge from the water cone depended on the repetitive process of the cone formation. Also, the propagation and curvature of the water filament were influenced by the discharge and its resultant space charge. Furthermore, these phenomena were partially influenced by the water conductivity. (paper)

  5. Intermittent heating of the solar corona by MHD turbulence

    Directory of Open Access Journals (Sweden)

    É. Buchlin

    2007-10-01

    Full Text Available As the dissipation mechanisms considered for the heating of the solar corona would be sufficiently efficient only in the presence of small scales, turbulence is thought to be a key player in the coronal heating processes: it allows indeed to transfer energy from the large scales to these small scales. While Direct numerical simulations which have been performed to investigate the properties of magnetohydrodynamic turbulence in the corona have provided interesting results, they are limited to small Reynolds numbers. We present here a model of coronal loop turbulence involving shell-models and Alfvén waves propagation, allowing the much faster computation of spectra and turbulence statistics at higher Reynolds numbers. We also present first results of the forward-modelling of spectroscopic observables in the UV.

  6. Prognostic incremental role of right ventricular function in acute decompensation of advanced chronic heart failure.

    Science.gov (United States)

    Frea, Simone; Pidello, Stefano; Bovolo, Virginia; Iacovino, Cristina; Franco, Erica; Pinneri, Francesco; Galluzzo, Alessandro; Volpe, Alessandra; Visconti, Massimiliano; Peirone, Andrea; Morello, Mara; Bergerone, Serena; Gaita, Fiorenzo

    2016-05-01

    The purpose of this study was to evaluate the additional prognostic value of echocardiography in acute decompensation of advanced chronic heart failure (CHF), focusing on right ventricular (RV) dysfunction and its interaction with loading conditions. Few data are available on the prognostic role of echocardiography in acute HF and on the significance of pulmonary hypertension in patients with severe RV failure. A total of 265 NYHA IV patients admitted for acute decompensation of advanced CHF (EF 22 ± 7%, systolic blood pressure 107 ± 20 mmHg) were prospectively enrolled. Fifty-nine patients met the primary composite endpoint of cardiac death, urgent heart transplantation, and urgent mechanical circulatory support implantation at 90 days. Pulmonary hypertension failed to predict events, while patients with a low transtricuspid systolic gradient (TR gradient statistic from 0.59 to 0.73 (P advanced CHF, pulmonary hypertension failed to predict events. The in-hospital and short-term prognosis can be better predicted by eRAP and RVCPI. © 2016 The Authors. European Journal of Heart Failure © 2016 European Society of Cardiology.

  7. 48 CFR 3432.771 - Provision for incremental funding.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 7 2010-10-01 2010-10-01 false Provision for incremental funding. 3432.771 Section 3432.771 Federal Acquisition Regulations System DEPARTMENT OF EDUCATION..., Incremental Funding, in a solicitation if a cost-reimbursement contract using incremental funding is...

  8. Two-zone model of coronal hole structure in the high corona

    International Nuclear Information System (INIS)

    Wang, Z.; Kundu, M.R.; Yoshimura, H.

    1988-01-01

    The two-zone coronal hole structure model presently proposed for the high corona at 1.5-1.7 solar radii emerges from a comparison of computation results for the potential magnetic fields of the corona and meter-decameter radio observations. The two zones of a coronal hole are defined by the configuration of magnetic field lines around a coronal hole: (1) the central hole of an open diverging magnetic field line system; and (2) the boundary zone between the central zone of the open field line system and the closed field line system or systems surrounding the open field line system. 19 references

  9. Physical conditions in the corona for a bipolar magnetic region

    International Nuclear Information System (INIS)

    Vorpahl, J.A.

    1978-01-01

    The S-056 X-ray data from Skylab has been used to determine quantitative values for the coronal conditions characterizing a new bipolar magnetic region (BMR). In particular, the author includes (a) the time variation of the total soft X-ray flux from the BMR as a function of time; (b) the temporal and spatial variation of the temperature and emission measure; (c) the variation with time of thermal energy density; (d) the (calculated) magnetic field configuration and magnetic flux density in the corona; and (e) the temporal variation of the magnetic field energy in the corona. Detailed comparisons are made between the configuration of X-ray features and the magnetic field topology. (Auth.)

  10. Absolute photometry of the corona of July 10, 1972 total solar eclipse

    Energy Technology Data Exchange (ETDEWEB)

    Khetsuriani, Ts.S.; Tetruashvili, Eh.I.

    1985-01-01

    The observations were carried out by the Abastumani astrophysical observatory expedition at July 10.1972 total solar eclipse from a site of the Chukotka Peninsula. The photometry of the corona images is performed by the equidensity method having expressed the intensities in absolute units. The F and K components of the corona are separated on the basis of photometric and polarisation data. The variations of the electron concentration with the distance from the centre of the Sun and tempeatures at various distances are calculated.

  11. Oxidation of sulfur and nitrogen oxides by pulse corona discharge

    International Nuclear Information System (INIS)

    Amirov, R.H.; Desiaterik, Yu.N.; Filimonova, E.A.; Zhelezniak, M.B.; Chae, J.O.

    1996-01-01

    The NO x and SO 2 removal efficiency of the corona reactor has been measured both with and without ammonia addition to the gas stream. Experimental conditions are described. The dependence of NO and SO 2 removal efficiency from flow rate and initial pollutant concentrations were measured. One test with fixed amount of the inputted energy per the unit of SO 2 but with different initial concentration have been made. It is found that increasing of the initial concentration from 200 ppm to 700 ppm can enlarge the removal efficiency by factor 2.5. Some tests were carried out with both pollutant gases SO 2 and NO simultaneously. An efficiency on the SO 2 removal of 96% and on the NO removal 70% in pulse corona have been achieved with ammonia addition when SO 2 initial concentration was 480 ppm and the NO initial concentration was 230 ppm. A numerical model for NO and SO 2 oxidation in homogeneous gas flow has been developed. The flow contains cold (T = 300-400 K) background components N 2 , CO 2 , H 2 O, O 2 and impurities SO 2 , NO x , CO. A source of chemically active species is an electrical streamer discharge of corona type. (authors)

  12. Assessment of environmental impact of HVDC power lines in terms of corona currents

    International Nuclear Information System (INIS)

    Tikhodeev, N.N.

    1997-01-01

    Corona loss measurements were made on a HVDC power transmission line to evaluate current density. Ion currents were obtained from unipolar and bipolar 400 to 1000 kV DC test lines. A numerical solution was proposed for assessing the maximum current density of unipolar corona currents near the lines. A larger ground clearance of line conductors was proposed as being the most effective way of lowering the current density. 11 refs., 2 tabs., 4 figs

  13. Synergistic effect of pulsed corona discharges and ozonation on decolourization of methylene blue in water

    Energy Technology Data Exchange (ETDEWEB)

    Malik, Muhammad Arif [Applied Chemistry Division, PINSTECH, PO Nilore, Islamabad (Pakistan); Ubaid-ur-Rehman [Applied Chemistry Division, PINSTECH, PO Nilore, Islamabad (Pakistan); Ghaffar, Abdul; Ahmed, Kurshid [Electronics Division, PINSTECH, PO Nilore, Islamabad (Pakistan)

    2002-08-01

    The effect of O{sub 2} and O{sub 3} bubbling on decolourization of methylene blue by pulsed corona discharges in water was studied. The pulsed corona discharges were produced by charging an 80 pF capacitor with a 40 kV DC source, through a 100 M{omega} resistor, and discharging it into a needle-plate type reactor at 60 Hz through a rotating spark gap switch. A 20 ml sample of 13.25 mg l{sup -1} methylene blue in distilled water was decolourized in 120 min. Bubbling O{sub 2} at 10 ml min{sup -1} through the discharge region reduced the decolourization time to 25 min. Bubbling O{sub 2} containing 1500 {mu}mol O{sub 3} l{sup -1} at 10 ml min{sup -1} reduced the decolourization time to 8 min. The O{sub 3} was produced by fractionating input energy between a water treatment reactor and a O{sub 3} generator, i.e. no additional energy was consumed for O{sub 3} production. Under the same experimental conditions methylene blue solution in tap water was decolourized in >210 min by corona discharge in solution, in 30 min by corona discharge with O{sub 2} bubbling, and in 11 min by corona discharge with bubbling of O{sub 2} containing 1500 {mu}mol O{sub 3} l{sup -1}.

  14. Increment memory module for spectrometric data recording

    International Nuclear Information System (INIS)

    Zhuchkov, A.A.; Myagkikh, A.I.

    1988-01-01

    Incremental memory unit designed to input differential energy spectra of nuclear radiation is described. ROM application as incremental device has allowed to reduce the number of elements and do simplify information readout from the unit. 12-bit 2048 channels present memory unit organization. The device is connected directly with the bus of microprocessor systems similar to KR 580. Incrementation maximal time constitutes 3 mks. It is possible to use this unit in multichannel counting mode

  15. Small Diameter Bomb Increment II (SDB II)

    Science.gov (United States)

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-439 Small Diameter Bomb Increment II (SDB II) As of FY 2017 President’s Budget Defense... Bomb Increment II (SDB II) DoD Component Air Force Joint Participants Department of the Navy Responsible Office References SAR Baseline (Production...Mission and Description Small Diameter Bomb Increment II (SDB II) is a joint interest United States Air Force (USAF) and Department of the Navy

  16. Design of the corona current measurement sensor with wide bandwidth under dc ultra-high-voltage environment

    International Nuclear Information System (INIS)

    Liu, Yingyi; Yuan, Haiwen; Yang, Qinghua; Cui, Yong

    2011-01-01

    The research in the field of corona discharge, which is one of the key technologies, can help us to realize ultra-high-voltage (UHV) power transmission. This paper proposes a new sampling resistance sensor to measure the dc UHV corona current in a wide band. By designing the structural and distributed parameters of the sensor, the UHV dielectric breakdown performance and the wide-band measuring characteristics of the sensor are satisfied. A high-voltage discharge test shows that the designed sensor can work under a 1200 kV dc environment without the occurrence of corona discharge. A frequency characteristic test shows that the measuring bandwidth of the sensor can be improved from the current 4.5 to 20 MHz. The test results in an actual dc UHV transmission line demonstrate that the sensor can accurately measure the corona current under the dc UHV environment

  17. Incremental-hinge piping analysis methods for inelastic seismic response prediction

    International Nuclear Information System (INIS)

    Jaquay, K.R.; Castle, W.R.; Larson, J.E.

    1989-01-01

    This paper proposes nonlinear seismic response prediction methods for nuclear piping systems based on simplified plastic hinge analyses. The simplified plastic hinge analyses utilize an incremental series of flat response spectrum loadings and replace yielded components with hinge elements when a predefined hinge moment is reached. These hinge moment values, developed by Rodabaugh, result in inelastic energy dissipation of the same magnitude as observed in seismic tests of piping components. Two definitions of design level equivalent loads are employed: one conservatively based on the peaks of the design acceleration response spectra, the other based on inelastic frequencies determined by the method of Krylov and Bogolyuboff recently extended by Lazzeri to piping. Both definitions account for piping system inelastic energy dissipation using Newmark-Hall inelastic response spectrum reduction factors and the displacement ductility results of the incremental-hinge analysis. Two ratchet-fatigue damage models are used: one developed by Rodabaugh that conservatively correlates Markl static fatigue expressions to seismic tests to failure of piping components; the other developed by Severud that uses the ratchet expression of Bree for elbows and Edmunds and Beer for straights, and defines ratchet-fatigue interaction using Coffin's ductility based fatigue equation. Comparisons of predicted behavior versus experimental results are provided for a high-level seismic test of a segment of a representative nuclear plant piping system. (orig.)

  18. Structure of the solar transition region and inner corona

    International Nuclear Information System (INIS)

    Mariska, J.T.

    1977-01-01

    Emission gradient curves for extreme ultraviolet (EUV) resonance lines of lithium-like ions were constructed from spectroheliograms of quiet limb regions and a north polar coronal hole observed with the Harvard experiment on Skylab. The observations are interpreted with simple coronal models. Comparison of the theoretical and observed emission gradients for quiet regions indicates that for these areas the temperature rises throughout the inner corona (1.03 less than or equal to r less than or equal to 1.20 R/sub mass/). In the coronal hole the temperature rises in a manner consistent with a constant conductive flux to an isothermal corona at a temperature of 1.1 x 10 6 K at 1.08/sub mass/. The geometry of the coronal hole boundary is also determined. The boundary geometry and density distribution are combined with typical solar wind parameters at the north to determine an outflow velocity of 15 km s -1 at 1.08 R/sub mass/. The energy balance implications of the models are examined. It was found that in the transition region both conduction and radiation are important in determining the energy balance in network regions in both quiet areas and coronal holes. Additional energy sources are required in the network in coronal holes. In the corona it is found that, to within the errors of the determination, the energy losses, and hence the requirements for mechanical heating, are the same in quiet regions and coronal holes

  19. Reticulated Vitreous Carbon Electrodes for Gas Phase Pulsed Corona Reactors

    National Research Council Canada - National Science Library

    Locke, B

    1998-01-01

    A new design for gas phase pulsed corona reactors incorporating reticulated vitreous carbon electrodes is demonstrated to be effective for the removal of nitrogen oxides from synthetic air mixtures...

  20. Reticulated Vitreous Carbon Electrodes for Gas Phase Pulsed Corona Reactors

    National Research Council Canada - National Science Library

    LOCKE, B

    1999-01-01

    A new design for gas phase pulsed corona reactors incorporating reticulated vitreous carbon electrodes is demonstrated to be effective for the removal of nitrogen oxides from synthetic air mixtures...

  1. Protein corona: a new approach for nanomedicine design

    Directory of Open Access Journals (Sweden)

    Nguyen VH

    2017-04-01

    Full Text Available Van Hong Nguyen, Beom-Jin Lee Department of Pharmacy, Bioavailability Control Laboratory, College of Pharmacy, Ajou University, Suwon, Republic of Korea Abstract: After administration of nanoparticle (NP into biological fluids, an NP–protein complex is formed, which represents the “true identity” of NP in our body. Hence, protein–NP interaction should be carefully investigated to predict and control the fate of NPs or drug-loaded NPs, including systemic circulation, biodistribution, and bioavailability. In this review, we mainly focus on the formation of protein corona and its potential applications in pharmaceutical sciences such as prediction modeling based on NP-adsorbed proteins, usage of active proteins for modifying NP to achieve toxicity reduction, circulation time enhancement, and targeting effect. Validated correlative models for NP biological responses mainly based on protein corona fingerprints of NPs are more highly accurate than the models solely set up from NP properties. Based on these models, effectiveness as well as the toxicity of NPs can be predicted without in vivo tests, while novel cell receptors could be identified from prominent proteins which play important key roles in the models. The ungoverned protein adsorption onto NPs may have generally negative effects such as rapid clearance from the bloodstream, hindrance of targeting capacity, and induction of toxicity. In contrast, controlling protein adsorption by modifying NPs with diverse functional proteins or tailoring appropriate NPs which favor selective endogenous peptides and proteins will bring promising therapeutic benefits in drug delivery and targeted cancer treatment. Keywords: protein-nanoparticle interaction, protein corona, exchange of adsorbed protein, toxicity reduction, predictive modeling, targeting drug delivery

  2. Planning Through Incrementalism

    Science.gov (United States)

    Lasserre, Ph.

    1974-01-01

    An incremental model of decisionmaking is discussed and compared with the Comprehensive Rational Approach. A model of reconciliation between the two approaches is proposed, and examples are given in the field of economic development and educational planning. (Author/DN)

  3. Photometric intensity and polarization measurements of the solar corona.

    Science.gov (United States)

    Mcdougal, D. S.

    1971-01-01

    Use of a satellite photometric observatory (SPO) to measure the solar corona from Miahuatlan, Mexico during the Mar. 7, 1970, total eclipse of the sun. The SPO is equipped with a 24-in. Cassegrainian telescope, a four-channel photoelectric photometer, a Wollaston prism, and a rotating half-wave plate. Simultaneous measurements were made of the two orthogonal components of coronal light in the B and R bands of the UBVRI system. A 1-minute arc aperture was scanned from the lunar disk center out to five solar radii in a series of spirals of gradually increasing radius. For the first time, simultaneous multicolor intensity, degree, and angle of polarization profiles are computed from photoelectric measurements. Comparison of the variations of the measurements for each spiral scan yield a detailed picture of the intensity and polarization features in the K corona.

  4. STEREO OBSERVATIONS OF FAST MAGNETOSONIC WAVES IN THE EXTENDED SOLAR CORONA ASSOCIATED WITH EIT/EUV WAVES

    International Nuclear Information System (INIS)

    Kwon, Ryun-Young; Ofman, Leon; Kramar, Maxim; Olmedo, Oscar; Davila, Joseph M.; Thompson, Barbara J.; Cho, Kyung-Suk

    2013-01-01

    We report white-light observations of a fast magnetosonic wave associated with a coronal mass ejection observed by STEREO/SECCHI/COR1 inner coronagraphs on 2011 August 4. The wave front is observed in the form of density compression passing through various coronal regions such as quiet/active corona, coronal holes, and streamers. Together with measured electron densities determined with STEREO COR1 and Extreme UltraViolet Imager (EUVI) data, we use our kinematic measurements of the wave front to calculate coronal magnetic fields and find that the measured speeds are consistent with characteristic fast magnetosonic speeds in the corona. In addition, the wave front turns out to be the upper coronal counterpart of the EIT wave observed by STEREO EUVI traveling against the solar coronal disk; moreover, stationary fronts of the EIT wave are found to be located at the footpoints of deflected streamers and boundaries of coronal holes, after the wave front in the upper solar corona passes through open magnetic field lines in the streamers. Our findings suggest that the observed EIT wave should be in fact a fast magnetosonic shock/wave traveling in the inhomogeneous solar corona, as part of the fast magnetosonic wave propagating in the extended solar corona.

  5. Are coronae of late type stars made of solar-like structures? The Fx-HR diagram and the pressure-temperature correlation

    OpenAIRE

    Peres, G.; Orlando, S.; Reale, F.

    2004-01-01

    We show that stellar coronae can be composed of X-ray emitting structures like those in the solar corona, using a large set of ROSAT/PSPC observations of late-type-stars, and a large set of solar X-ray data collected with Yohkoh/SXT. We have considered data on the solar corona at various phases of the cycle and various kinds of X-ray coronal structures, from flares to the background corona. The surface flux (F_x) vs. spectral hardness ratio (HR) diagram is a fundamental tool for our study. We...

  6. FDTD Stability: Critical Time Increment

    OpenAIRE

    Z. Skvor; L. Pauk

    2003-01-01

    A new approach suitable for determination of the maximal stable time increment for the Finite-Difference Time-Domain (FDTD) algorithm in common curvilinear coordinates, for general mesh shapes and certain types of boundaries is presented. The maximal time increment corresponds to a characteristic value of a Helmholz equation that is solved by a finite-difference (FD) method. If this method uses exactly the same discretization as the given FDTD method (same mesh, boundary conditions, order of ...

  7. Incremental Visualizer for Visible Objects

    DEFF Research Database (Denmark)

    Bukauskas, Linas; Bøhlen, Michael Hanspeter

    This paper discusses the integration of database back-end and visualizer front-end into a one tightly coupled system. The main aim which we achieve is to reduce the data pipeline from database to visualization by using incremental data extraction of visible objects in a fly-through scenarios. We...... also argue that passing only relevant data from the database will substantially reduce the overall load of the visualization system. We propose the system Incremental Visualizer for Visible Objects (IVVO) which considers visible objects and enables incremental visualization along the observer movement...... path. IVVO is the novel solution which allows data to be visualized and loaded on the fly from the database and which regards visibilities of objects. We run a set of experiments to convince that IVVO is feasible in terms of I/O operations and CPU load. We consider the example of data which uses...

  8. NO removal characteristics of a corona radical shower system under DC and AC/DC superimposed operations

    NARCIS (Netherlands)

    Yan, K.; Yamamoto, T.; Kanazawa, S.; Ohkubo, T.; Nomoto, Y.; Chang, Jen-Shih

    2001-01-01

    In this paper, the effects of the applied voltage modes on the positive corona discharge morphology and NO removal characteristics from air streams are experimentally investigated. By using a DC superimposed high frequency AC power supply (10-60 kHz), a uniform streamer corona can be generated,

  9. An Economic Evaluation of Sacubitril/Valsartan for Heart Failure Patients in the Netherlands

    NARCIS (Netherlands)

    van der Pol, Simon; Degener, Fabian; Postma, Maarten J.; Vemer, Pepijn

    Background: In September 2014, the PARADIGM-HF trial showed the heart failure drug combination sacubitril/valsartan to be superior to enalapril for patients with a reduced ejection fraction. Objectives: To determine the incremental cost-effectiveness of sacubitril/valsartan compared with enalapril

  10. Reconstructing Historical Land Cover Type and Complexity by Synergistic Use of Landsat Multispectral Scanner and CORONA

    Directory of Open Access Journals (Sweden)

    Amir Reza Shahtahmassebi

    2017-07-01

    Full Text Available Survey data describing land cover information such as type and diversity over several decades are scarce. Therefore, our capacity to reconstruct historical land cover using field data and archived remotely sensed data over large areas and long periods of time is somewhat limited. This study explores the relationship between CORONA texture—a surrogate for actual land cover type and complexity—with spectral vegetation indices and texture variables derived from Landsat MSS under the Spectral Variation Hypothesis (SVH such as to reconstruct historical continuous land cover type and complexity. Image texture of CORONA was calculated using a mean occurrence measure while image textures of Landsat MSS were calculated by occurrence and co-occurrence measures. The relationship between these variables was evaluated using correlation and regression techniques. The reconstruction procedure was undertaken through regression kriging. The results showed that, as expected, texture based on the visible bands and corresponding indices indicated larger correlation with CORONA texture, a surrogate of land cover (correlation >0.65. In terms of prediction, the combination of the first-order mean of band green, second-order measure of tasseled cap brightness, second-order mean of Normalized Visible Index (NVI and second-order entropy of NIR yielded the best model with respect to Akaike’s Information Criterion (AIC, r-square, and variance inflation factors (VIF. The regression model was then used in regression kriging to map historical continuous land cover. The resultant maps indicated the type and degree of complexity in land cover. Moreover, the proposed methodology minimized the impacts of topographic shadow in the region. The performance of this approach was compared with two conventional classification methods: hard classifiers and continuous classifiers. In contrast to conventional techniques, the technique could clearly quantify land cover complexity and

  11. Failure? Isn't It Time to Slay the Design-Dragon?

    Science.gov (United States)

    Winkler, Dietmar R.

    2009-01-01

    There is a closed cycle of design education that replicates the most common design practice--and feeds into that practice that seeks awards based on incremental change supported by professional organizations and trade journals--that feeds back to education forms for imitation. This is the educational failure this paper cites. It takes to task the…

  12. The effect of polycarboxylate shell of magnetite nanoparticles on protein corona formation in blood plasma

    Energy Technology Data Exchange (ETDEWEB)

    Szekeres, Márta, E-mail: szekeres@chem.u-szeged.hu [Department of Physical Chemistry and Materials Sciences, University of Szeged, Hungary, 1 Aradi vt, 6720 Szeged (Hungary); Tóth, Ildikó Y. [Department of Physical Chemistry and Materials Sciences, University of Szeged, Hungary, 1 Aradi vt, 6720 Szeged (Hungary); Turcu, R. [National Institute R& D for Isotopic and Molecular Technology, Cluj-Napoca 400293 (Romania); Tombácz, Etelka [Department of Physical Chemistry and Materials Sciences, University of Szeged, Hungary, 1 Aradi vt, 6720 Szeged (Hungary)

    2017-04-01

    The development of protein corona around nanoparticles upon administration to the human body is responsible in a large part for their biodistribution, cell-internalization and toxicity or biocompatibility. We studied the influence of the chemical composition of polyelectrolyte shells (citric acid (CA) and poly(acrylic-co-maleic acid) (PAM)) of core-shell magnetite nanoparticles (MNPs) on the evolution of protein corona in human plasma (HP). The aggregation state and zeta potential of the particles were measured in the range of HP concentration between 1 and 80 (v/v)% 3 min and 20 h after dispersing the particles in HP diluted with Tris buffered saline. Naked MNPs aggregated in HP solution, but the carboxylated MNPs became stabilized colloidally at higher plasma concentrations. Significant differences were observed at low plasma concentration. CA@MNPs aggregated instantly while the hydrodynamic diameter of PAM@MNP increased only slightly at 1–3 v/v % HP concentrations. The observed differences in protein corona formation can be explained by the differences in the steric effects of the polycarboxylate shells. It is interesting that relatively small but systematic changes in zeta potential alter the aggregation state significantly. - Highlights: • Human plasma protein corona cannot stabilize naked and citrate-coated magnetite nanoparticles. • Polycarboxylic acid (PAM) coated MNPs are well stabilized with HP protein corona. • Stability pattern of naked, CA and PAM-coated MNPs is not predicted by zeta potential.

  13. Corona Onset Characteristics of Bundle Conductors in UHV AC Power Lines at 2200 m Altitude

    Directory of Open Access Journals (Sweden)

    Shilong Huang

    2018-04-01

    Full Text Available The corona onset characteristic of bundle conductors is an important limiting factor for the design of UHV AC power lines in high-altitude areas. An experimental study on the corona characteristics of 8 × LGJ630, 6 × LGJ720, 8 × LGJ720 and 10 × LGJ720 bundle conductors commonly used in UHV power lines under dry and wet conductor conditions, as well as artificial moderate and heavy rain conditions, was conducted in Ping’an County, Xining City (elevation 2200 m. By using the tangent line method, the corona onset voltages and onset electric field of four types of conductors at high altitudes are obtained for the first time. In addition, the calculation model of corona onset voltage considering the outer strands’ effect on the electric field and the geometric factor in the corona cage in high altitude areas is established. The comparison of the calculation results and experimental results under dry conditions verifies the model’s correctness. Based on the results, an optimal selection scheme for high altitudes is proposed. The roughness coefficient was also calculated and analysed: the roughness coefficient of bundled conductors was between 0.59 and 0.77, and the roughness coefficient of the wet conductor was between the dry and rainy conditions. Both the experimental data and the calculation model can provide a reference for conductor selection for UHV AC power lines for use in high-altitude areas.

  14. Removal of iodomethane from air using a plot-scale corona discharge scrubber

    International Nuclear Information System (INIS)

    Dickson, L.W.; Toft-Hall, A.; Torgerson, D.F.

    1985-12-01

    This report presents the results of a study of the removal of iodomethane from air using a pilot-scale corona discharge scrubber. The removal was measured in the following parameter ranges: bulk air flow, 30 to 350 m 3 /h; initial CH 3 I concentration, 6 to 230 μmol/m 3 ; and discharge current, 0 to 75 mA DC (negative polarity). Approximately five to ten moles of iodomethane are removed per mole of electrons added to the air stream at a discharge voltage of ∼ 10 kV. This removal efficiency suggests that both ion-molecule and radical-molecule reactions may be important in the removal of iodomethane from air in a corona discharge. The results of this pilot-scale demonstration indicate that a corona discharge scrubber would be suitable for removing iodine species from air as part of the emergency filtered-air discharge system of a nuclear reactor. The application of this technology to the control of nitrogen oxide, sulfur dioxide and hydrogen sulfide emissions is being investigated. 15 refs

  15. Method for measuring the stochastic properties of corona and partial-discharge pulses

    International Nuclear Information System (INIS)

    Van Brunt, R.J.; Kulkarni, S.V.

    1989-01-01

    A new method is described for measuring the stochastic behavior of corona and partial-discharge pulses which utilizes a pulse selection and sorting circuit in conjunction with a computer-controlled multichannel analyzer to directly measure various conditional and unconditional pulse-height and pulse-time-separation distributions. From these measured distributions it is possible to determine the degree of correlation between successive discharge pulses. Examples are given of results obtained from measurements on negative, point-to-plane (Trichel-type) corona pulses in a N 2 /O 2 gas mixture which clearly demonstrate that the phenomenon is inherently stochastic in the sense that development of a discharge pulse is significantly affected by the amplitude of and time separation from the preceding pulse. It is found, for example, that corona discharge pulse amplitude and time separation from an earlier pulse are not independent random variables. Discussions are given about the limitations of the method, sources of error, and data analysis procedures required to determine self-consistency of the various measured distributions

  16. A morphological study of the changes in the ultrastructure of a bacterial biofilm disrupted by an ac corona discharge in air

    International Nuclear Information System (INIS)

    Stepanova, Olga; Astafiev, Alexander; Kudryavtsev, Anatoly; Rybalchenko, Oksana; Orlova, Olga; Kapustina, Valentina

    2016-01-01

    The morphology of bacterial cells and biofilms subjected to a low frequency (∼10"5 Hz) ac (∼10"−"1 A) corona discharge was investigated using electron microscopy. A low-frequency ac corona discharge in air is shown to have a bactericidal and bacteriostatic effect on Escherichia coli M17 culture at both the cellular and population levels. Corona exposure inhibits the formation of a microbial community and results in the destruction of formed biofilms. This paper presents data on changes in the ultrastructure of cells and biofilms after corona treatment. Our results suggest that the E. coli M17 cells inside biofilms are affected with results similar to sub-lethal and lethal thermal exposure. Some of the biological aspects of colony and biofilm cells death are evaluated. Morphological changes in the ultrastructure of the biofilms under corona treatment are described. Our results indicate that the heating effect is the main factor responsible for the corona-induced inactivation of bacteria.

  17. A morphological study of the changes in the ultrastructure of a bacterial biofilm disrupted by an ac corona discharge in air

    Energy Technology Data Exchange (ETDEWEB)

    Stepanova, Olga, E-mail: o.m.stepanova@spbu.ru; Astafiev, Alexander; Kudryavtsev, Anatoly [Physical Faculty, Saint Petersburg State University, St. Petersburg (Russian Federation); Rybalchenko, Oksana; Orlova, Olga; Kapustina, Valentina [Faculty of Medicine, Saint Petersburg State University, St. Petersburg (Russian Federation)

    2016-08-14

    The morphology of bacterial cells and biofilms subjected to a low frequency (∼10{sup 5} Hz) ac (∼10{sup −1} A) corona discharge was investigated using electron microscopy. A low-frequency ac corona discharge in air is shown to have a bactericidal and bacteriostatic effect on Escherichia coli M17 culture at both the cellular and population levels. Corona exposure inhibits the formation of a microbial community and results in the destruction of formed biofilms. This paper presents data on changes in the ultrastructure of cells and biofilms after corona treatment. Our results suggest that the E. coli M17 cells inside biofilms are affected with results similar to sub-lethal and lethal thermal exposure. Some of the biological aspects of colony and biofilm cells death are evaluated. Morphological changes in the ultrastructure of the biofilms under corona treatment are described. Our results indicate that the heating effect is the main factor responsible for the corona-induced inactivation of bacteria.

  18. Power variation for Gaussian processes with stationary increments

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler; Corcuera, J.M.; Podolskij, Mark

    2009-01-01

    We develop the asymptotic theory for the realised power variation of the processes X=•G, where G is a Gaussian process with stationary increments. More specifically, under some mild assumptions on the variance function of the increments of G and certain regularity conditions on the path of the pr......We develop the asymptotic theory for the realised power variation of the processes X=•G, where G is a Gaussian process with stationary increments. More specifically, under some mild assumptions on the variance function of the increments of G and certain regularity conditions on the path...... a chaos representation....

  19. Adaptación de una corona metal cerámica como pilar de una prótesis parcial removible preexistente

    OpenAIRE

    Torres Herbozo, Melissa; Quintana del Solar, Martin; Castillo Andamayo, Diana

    2016-01-01

    El presente artículo muestra el reporte de un caso clínico donde se confeccionó una corona metal cerámica que fue adaptada a una prótesis parcial removible pre existente. Por lo general el tratamiento para estos casos es la confección de una nueva prótesis parcial removible adaptada a la nueva corona, lo cual implica mayor tiempo de trabajo y costo para el paciente. Diversos materiales y técnicas pueden ser utilizados para la realización de la corona como por ejemplo coronas de aleaciones met...

  20. Corona discharge secondary ionization of laser desorbed neutral molecules from a liquid matrix at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Turney, Kevin [Department of Chemistry, University of Florida, Gainesville, Florida 32611 (United States); Harrison, W.W. [Department of Chemistry, University of Florida, Gainesville, Florida 32611 (United States)]. E-mail: harrison@chem.ufl.edu

    2006-06-15

    Matrix assisted laser desorption/ionization (MALDI) is studied at atmospheric pressure using liquid sampling methods. A time-of-flight mass spectrometer couples to an open sample stage accessed by a UV laser for desorption and ionization. Also coupled to the sampling state is a corona discharge for auxiliary ionization of desorbed neutral molecules. The interaction of the laser desorption and corona ionization is studied for a range of desorption conditions, showing enhanced analyte ionization, but the effect is analytically advantageous only at low desorption rates. The effect of corona discharge voltage was also explored. The decoupling of neutral molecule formation and subsequent ionization provides an opportunity to study each process separately.

  1. Corona discharge secondary ionization of laser desorbed neutral molecules from a liquid matrix at atmospheric pressure

    International Nuclear Information System (INIS)

    Turney, Kevin; Harrison, W.W.

    2006-01-01

    Matrix assisted laser desorption/ionization (MALDI) is studied at atmospheric pressure using liquid sampling methods. A time-of-flight mass spectrometer couples to an open sample stage accessed by a UV laser for desorption and ionization. Also coupled to the sampling state is a corona discharge for auxiliary ionization of desorbed neutral molecules. The interaction of the laser desorption and corona ionization is studied for a range of desorption conditions, showing enhanced analyte ionization, but the effect is analytically advantageous only at low desorption rates. The effect of corona discharge voltage was also explored. The decoupling of neutral molecule formation and subsequent ionization provides an opportunity to study each process separately

  2. The CORONAS-Photon/TESIS experiment on EUV imaging spectroscopy of the Sun

    Science.gov (United States)

    Kuzin, S.; Zhitnik, I.; Bogachev, S.; Bugaenko, O.; Ignat'ev, A.; Mitrofanov, A.; Perzov, A.; Shestov, S.; Slemzin, V.; Suhodrev, N.

    The new experiment TESIS is developent for russian CORONAS-Photon mission launch is planned on the end of 2007 The experiment is aimed on the study of activity of the Sun in the phases of minimum rise and maximum of 24 th cycle of Solar activity by the method of XUV imaging spectroscopy The method is based on the registration full-Sun monochromatic images with high spatial and temporal resolution The scientific tasks of the experiment are i Investigation dynamic processes in corona flares CME etc with high spatial up to 1 and temporal up to 1 second resolution ii determination of the main plasma parameters like plasma electron and ion density and temperature differential emission measure etc iii study of the processes of appearance and development large scale long-life magnetic structures in the solar corona study of the fluency of this structures on the global activity of the corona iv study of the mechanisms of energy accumulation and release in the solar flares and mechanisms of transformation of this energy into the heating of the plasma and kinematics energy To get the information for this studies the TESIS will register full-Sun images in narrow spectral intervals and the monochromatic lines of HeII SiXI FeXXI-FeXXIII MgXII ions The instrument includes 5 independent channels 2 telescopes for 304 and 132 A wide-field 2 5 degrees coronograph 280-330A and 8 42 A spectroheliographs The detailed description of the TESIS experiment and the instrument is presented

  3. Protein corona as a proteome fingerprint: The example of hidden biomarkers for cow mastitis.

    Science.gov (United States)

    Miotto, Giovanni; Magro, Massimiliano; Terzo, Milo; Zaccarin, Mattia; Da Dalt, Laura; Bonaiuto, Emanuela; Baratella, Davide; Gabai, Gianfranco; Vianello, Fabio

    2016-04-01

    Proteome modifications in a biological fluid can potentially indicate the occurrence of pathologies, even if the identification of a proteome fingerprint correlated to a specific disease represents a very difficult task. When a nanomaterial is introduced into a biological fluid, macromolecules compete to form a protein corona on the nanoparticle surface, and depending on the specific proteome, different patterns of proteins will form the final protein corona shell depending on their affinity for the nanoparticle surface. Novel surface active maghemite nanoparticles (SAMNs) display a remarkable selectivity toward protein corona formation, and they are able to concentrate proteins and peptides presenting high affinities for their surface even if they are present in very low amounts. Thus, SAMNs may confer visibility to hidden biomarkers correlated to the occurrence of a pathology. In the present report, SAMNs were introduced into milk samples from healthy cows and from animals affected by mastitis, and the selectively bound protein corona shell was easily analyzed and quantified by gel electrophoresis and characterized by mass spectrometry. Upon incubation in mastitic milk, SAMNs were able to selectively bind αs2-casein fragments containing the FALPQYLK sequence, as part of the larger casocidin-1 peptide with strong antibacterial activity, which were not present in healthy samples. Thus, SAMNs can be used as a future candidate for the rapid diagnosis of mastitis in bovine milk. The present report proposes protein competition for SAMN protein corona formation as a means of mirroring proteome modifications. Thus, the selected protein shell on the nanoparticles results in a fingerprint of the specific pathology. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Air trichloroethylene oxidation in a corona plasma-catalytic reactor

    Science.gov (United States)

    Masoomi-Godarzi, S.; Ranji-Burachaloo, H.; Khodadadi, A. A.; Vesali-Naseh, M.; Mortazavi, Y.

    2014-08-01

    The oxidative decomposition of trichloroethylene (TCE; 300 ppm) by non-thermal corona plasma was investigated in dry air at atmospheric pressure and room temperature, both in the absence and presence of catalysts including MnOx, CoOx. The catalysts were synthesized by a co-precipitation method. The morphology and structure of the catalysts were characterized by BET surface area measurement and Fourier Transform Infrared (FTIR) methods. Decomposition of TCE and distribution of products were evaluated by a gas chromatograph (GC) and an FTIR. In the absence of the catalyst, TCE removal is increased with increases in the applied voltage and current intensity. Higher TCE removal and CO2 selectivity is observed in presence of the corona and catalysts, as compared to those with the plasma alone. The results show that MnOx and CoOx catalysts can dissociate the in-plasma produced ozone to oxygen radicals, which enhances the TCE decomposition.

  5. Incremental passivity and output regulation for switched nonlinear systems

    Science.gov (United States)

    Pang, Hongbo; Zhao, Jun

    2017-10-01

    This paper studies incremental passivity and global output regulation for switched nonlinear systems, whose subsystems are not required to be incrementally passive. A concept of incremental passivity for switched systems is put forward. First, a switched system is rendered incrementally passive by the design of a state-dependent switching law. Second, the feedback incremental passification is achieved by the design of a state-dependent switching law and a set of state feedback controllers. Finally, we show that once the incremental passivity for switched nonlinear systems is assured, the output regulation problem is solved by the design of global nonlinear regulator controllers comprising two components: the steady-state control and the linear output feedback stabilising controllers, even though the problem for none of subsystems is solvable. Two examples are presented to illustrate the effectiveness of the proposed approach.

  6. Stellar winds and coronae of low-mass Population II/III stars

    Science.gov (United States)

    Suzuki, Takeru K.

    2018-06-01

    We investigated stellar winds from zero-/low-metallicity low-mass stars by magnetohydrodynamical simulations for stellar winds driven by Alfvén waves from stars with mass M = (0.6-0.8) M⊙ and metallicity Z = (0-1) Z⊙, where M⊙ and Z⊙ are the solar mass and metallicity, respectively. Alfvénic waves, which are excited by the surface convection, travel upward from the photosphere and heat up the corona by their dissipation. For lower Z, denser gas can be heated up to the coronal temperature because of the inefficient radiation cooling. The coronal density of Population II/III stars with Z ≤ 0.01 Z⊙ is one to two orders of magnitude larger than that of a solar-metallicity star with the same mass, and as a result, the mass loss rate, \\dot{M}, is 4.5-20 times larger. This indicates that metal accretion on low-mass Pop. III stars is negligible. The soft X-ray flux of the Pop. II/III stars is also expected to be ˜1-30 times larger than that of a solar-metallicity counterpart owing to the larger coronal density, even though the radiation cooling efficiency is smaller. A larger fraction of the input Alfvénic wave energy is transmitted to the corona in low-Z stars because they avoid severe reflection owing to the smaller density difference between the photosphere and the corona. Therefore, a larger fraction is converted to the thermal energy of the corona and the kinetic energy of the stellar wind. From this energetics argument, we finally derived a scaling of \\dot{M} as \\dot{M}∝ L R_{\\star }^{11/9} M_{\\star }^{-10/9} T_eff^{11/2}[\\max (Z/Z_{⊙},0.01)]^{-1/5}, where L, R⋆, and Teff are the stellar luminosity, radius, and effective temperature, respectively.

  7. Stellar winds and coronae of low-mass Population II/III stars

    Science.gov (United States)

    Suzuki, Takeru K.

    2018-04-01

    We investigated stellar winds from zero-/low-metallicity low-mass stars by magnetohydrodynamical simulations for stellar winds driven by Alfvén waves from stars with mass M = (0.6-0.8) M⊙ and metallicity Z = (0-1) Z⊙, where M⊙ and Z⊙ are the solar mass and metallicity, respectively. Alfvénic waves, which are excited by the surface convection, travel upward from the photosphere and heat up the corona by their dissipation. For lower Z, denser gas can be heated up to the coronal temperature because of the inefficient radiation cooling. The coronal density of Population II/III stars with Z ≤ 0.01 Z⊙ is one to two orders of magnitude larger than that of a solar-metallicity star with the same mass, and as a result, the mass loss rate, \\dot{M}, is 4.5-20 times larger. This indicates that metal accretion on low-mass Pop. III stars is negligible. The soft X-ray flux of the Pop. II/III stars is also expected to be ˜1-30 times larger than that of a solar-metallicity counterpart owing to the larger coronal density, even though the radiation cooling efficiency is smaller. A larger fraction of the input Alfvénic wave energy is transmitted to the corona in low-Z stars because they avoid severe reflection owing to the smaller density difference between the photosphere and the corona. Therefore, a larger fraction is converted to the thermal energy of the corona and the kinetic energy of the stellar wind. From this energetics argument, we finally derived a scaling of \\dot{M} as \\dot{M}∝ L R_{\\star }^{11/9} M_{\\star }^{-10/9} T_eff^{11/2}[\\max (Z/Z_{⊙},0.01)]^{-1/5}, where L, R⋆, and Teff are the stellar luminosity, radius, and effective temperature, respectively.

  8. The Effect of a Corona Discharge on a Lightning Attachment

    International Nuclear Information System (INIS)

    Aleksandrov, N.L.; Bazelyan, E.M.; Raizer, Yu.P.

    2005-01-01

    The interaction between the lightning leader and the space charge accumulated near the top of a ground object in the atmospheric electric field is considered using analytical and numerical models developed earlier to describe spark discharges in long laboratory gaps. The specific features of a nonstationary corona discharge that develops in the electric field of a thundercloud and a downward lightning leader are analyzed. Conditions for the development of an upward lightning discharge from a ground object and for the propagation of an upward-connecting leader from the object toward a downward lightning leader (the process determining the point of strike to the ground) are investigated. Possible mechanisms for the interaction of the corona space charge with an upward leader and prospects of using it to control downward lightning discharges are analyzed

  9. AC/DC/pulsed-power modulator for corona-plasma generation

    NARCIS (Netherlands)

    Ariaans, T.H.P.; Pemen, A.J.M.; Winands, G.J.J.; Heesch, van E.J.M.; Liu, Z.

    2009-01-01

    Gas-cleaning techniques using nonthermal plasma are slowly introduced into industry nowadays. In this paper, we present a novel power modulator for the efficient generation of large-volume corona plasma. No expensive high-voltage components are required. Switching is done at an intermediate voltage

  10. A new casemix adjustment index for hospital mortality among patients with congestive heart failure.

    Science.gov (United States)

    Polanczyk, C A; Rohde, L E; Philbin, E A; Di Salvo, T G

    1998-10-01

    Comparative analysis of hospital outcomes requires reliable adjustment for casemix. Although congestive heart failure is one of the most common indications for hospitalization, congestive heart failure casemix adjustment has not been widely studied. The purposes of this study were (1) to describe and validate a new congestive heart failure-specific casemix adjustment index to predict in-hospital mortality and (2) to compare its performance to the Charlson comorbidity index. Data from all 4,608 admissions to the Massachusetts General Hospital from January 1990 to July 1996 with a principal ICD-9-CM discharge diagnosis of congestive heart failure were evaluated. Massachusetts General Hospital patients were randomly divided in a derivation and a validation set. By logistic regression, odds ratios for in-hospital death were computed and weights were assigned to construct a new predictive index in the derivation set. The performance of the index was tested in an internal Massachusetts General Hospital validation set and in a non-Massachusetts General Hospital external validation set incorporating data from all 1995 New York state hospital discharges with a primary discharge diagnosis of congestive heart failure. Overall in-hospital mortality was 6.4%. Based on the new index, patients were assigned to six categories with incrementally increasing hospital mortality rates ranging from 0.5% to 31%. By logistic regression, "c" statistics of the congestive heart failure-specific index (0.83 and 0.78, derivation and validation set) were significantly superior to the Charlson index (0.66). Similar incrementally increasing hospital mortality rates were observed in the New York database with the congestive heart failure-specific index ("c" statistics 0.75). In an administrative database, this congestive heart failure-specific index may be a more adequate casemix adjustment tool to predict hospital mortality in patients hospitalized for congestive heart failure.

  11. [Action-oriented versus state-oriented reactions to experimenter-induced failures].

    Science.gov (United States)

    Brunstein, J C

    1989-01-01

    The present study assessed different effects of action-oriented versus state-oriented styles of coping with failure on achievement-related performance and cognition. In a learned helplessness experiment, students were exposed to an academic failure situation and were then tested on a series of problem-solving tasks, either immediately after the pretreatment or after a delay of 24 hours. Performance and cognitive concomitants were measured during both experimental periods. Results demonstrated that action orientation was associated with self-immunizing cognitions during helplessness training. Action-oriented participants improved their performance level even after repeated failure feedbacks. Moreover, action-oriented students assigned to the delayed test condition responded with increased striving for success and showed performance increments, even in comparison with control subjects. In contrast, state-oriented participants developed symptoms of helplessness and showed impaired performance during failure inductions. In later tests on problem-solving tasks, state-oriented groups responded with increased fear of failure. Independent of immediate or delayed test conditions, they soon lapsed into new performance decrements.

  12. Corona-induced graft polymerization for surface modification of porous polyethersulfone membranes

    International Nuclear Information System (INIS)

    Zhu Liping; Zhu Baoku; Xu Li; Feng Yongxiang; Liu Fu; Xu Youyi

    2007-01-01

    Graft polymerization of acrylic acid (AA) onto porous polyethersulfone (PES) membrane surfaces was developed using corona discharge in atmospheric ambience as an activation process followed by polymerization of AA in aqueous solution. The effects of the corona parameters and graft polymerization conditions on grafting yield (GY) of AA were investigated. The grafting of AA on the PES membranes was confirmed by ATR-FTIR and X-ray photoelectron spectroscopy (XPS) analysis. Porosimetry measurements indicate the average pore diameters and porosities of the modified membranes decrease with the increase of the GY. The hydrophilicity and surface wetting properties of the original and modified membranes were evaluated by observing the dynamic changes of water contact angles. It is found that the grafting of AA occurs not only on the membrane surfaces, but also on the pore walls of the cells inside the membrane. The permeability experiments of protein solution reveal that the grafting of PAA endows the modified membranes with enhanced fluxes and anti-fouling properties. The optimized GY of AA is in the range of 150-200 μg/cm 2 . In addition, the tensile experiments show the corona discharge treatment with the power lower than 150 W yields little damage to the mechanical strength of the membranes

  13. Degradation of methylparaben in water by corona plasma coupled with ozonation.

    Science.gov (United States)

    Dobrin, D; Magureanu, M; Bradu, C; Mandache, N B; Ionita, P; Parvulescu, V I

    2014-11-01

    The degradation of methylparaben (MeP) in water was investigated using a pulsed corona discharge generated in oxygen, above the liquid. A comparison was made between results obtained in semi-batch corona (SBC) configuration (stationary solution, continuous gas flow) and results obtained in a semi-batch corona with recirculation combined with ozonation (SBCR + O3), where the liquid is continuously circulated between a solution reservoir and the plasma reactor and the effluent gas containing ozone is bubbled through the solution in the reservoir. It was found that MeP was completely degraded after 10-15 min of treatment in both configurations. Oxidation by ozone alone, in the absence of plasma, was a slower process. The energy efficiency for MeP removal (Y MeP) and for mineralization (Y TOC) was significantly higher in the SBCR + O3 configuration (Y MeP = 7.1 g/kWh at 90 % MeP removal and Y TOC = 0.41 g/kWh at 50 % total organic carbon (TOC) removal) than in the SBC configuration (Y MeP = 0.6 g/kWh at 90 % MeP removal and Y TOC = 0.11 g/kWh at 50 % TOC removal).

  14. Magnetic Untwisting in Solar Jets that Go into the Outer Corona in Polar Coronal Holes

    Science.gov (United States)

    Moore, Ronald L.; Sterling, Alphonse C.; Falconer, David A.

    2014-01-01

    We present results from 14 exceptionally high-reaching large solar jets observed in the polar coronal holes. EUV movies from SDO/AIA show that each jet is similar to many other similar-size and smaller jets that erupt in coronal holes, but each is exceptional in that it goes higher than most other jets, so high that it is observed in the outer corona beyond 2.2 R(sub Sun) in images from the SOHO/LASCO/C2 coronagraph. For these high-reaching jets, we find: (1) the front of the jet transits the corona below 2.2 R(sub Sun) at a speed typically several times the sound speed; (2) each jet displays an exceptionally large amount of spin as it erupts; (3) in the outer corona, most jets display oscillatory swaying having an amplitude of a few degrees and a period of order 1 hour. We conclude that these jets are magnetically driven, propose that the driver is a magnetic-untwisting wave that is grossly a large-amplitude (i.e., nonlinear) torsional Alfven wave that is put into the reconnected open magnetic field in the jet by interchange reconnection as the jet erupts, and estimate from the measured spinning and swaying that the magnetic-untwisting wave loses most of its energy in the inner corona below 2.2 R(sub Sun). From these results for these big jets, we reason that the torsional magnetic waves observed in Type-II spicules should dissipate in the corona in the same way and could thereby power much of the coronal heating in coronal holes.

  15. A Modified SPH Method for Dynamic Failure Simulation of Heterogeneous Material

    Directory of Open Access Journals (Sweden)

    G. W. Ma

    2014-01-01

    Full Text Available A modified smoothed particle hydrodynamics (SPH method is applied to simulate the failure process of heterogeneous materials. An elastoplastic damage model based on an extension form of the unified twin shear strength (UTSS criterion is adopted. Polycrystalline modeling is introduced to generate the artificial microstructure of specimen for the dynamic simulation of Brazilian splitting test and uniaxial compression test. The strain rate effect on the predicted dynamic tensile and compressive strength is discussed. The final failure patterns and the dynamic strength increments demonstrate good agreements with experimental results. It is illustrated that the polycrystalline modeling approach combined with the SPH method is promising to simulate more complex failure process of heterogeneous materials.

  16. Discovery of Finely Structured Dynamic Solar Corona Observed in the Hi-C Telescope

    Science.gov (United States)

    Winebarger, A.; Cirtain, J.; Golub, L.; DeLuca, E.; Savage, S.; Alexander, C.; Schuler, T.

    2014-01-01

    In the summer of 2012, the High-resolution Coronal Imager (Hi-C) flew aboard a NASA sounding rocket and collected the highest spatial resolution images ever obtained of the solar corona. One of the goals of the Hi-C flight was to characterize the substructure of the solar corona. We therefore examine how the intensity scales from AIA resolution to Hi-C resolution. For each low-resolution pixel, we calculate the standard deviation in the contributing high-resolution pixel intensities and compare that to the expected standard deviation calculated from the noise. If these numbers are approximately equal, the corona can be assumed to be smoothly varying, i.e. have no evidence of substructure in the Hi-C image to within Hi-C's ability to measure it given its throughput and readout noise. A standard deviation much larger than the noise value indicates the presence of substructure. We calculate these values for each low-resolution pixel for each frame of the Hi-C data. On average, 70 percent of the pixels in each Hi-C image show no evidence of substructure. The locations where substructure is prevalent is in the moss regions and in regions of sheared magnetic field. We also find that the level of substructure varies significantly over the roughly 160 s of the Hi-C data analyzed here. This result indicates that the finely structured corona is concentrated in regions of heating and is highly time dependent.

  17. DISCOVERY OF FINELY STRUCTURED DYNAMIC SOLAR CORONA OBSERVED IN THE Hi-C TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Winebarger, Amy R.; Cirtain, Jonathan; Savage, Sabrina; Alexander, Caroline [NASA Marshall Space Flight Center, ZP 13, Huntsville, AL 35812 (United States); Golub, Leon; DeLuca, Edward [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Schuler, Timothy, E-mail: amy.r.winebarger@nasa.gov [State University of New York College at Buffalo, 1300 Elmwood Avenue, Buffalo, NY 14222 (United States)

    2014-05-20

    In the Summer of 2012, the High-resolution Coronal Imager (Hi-C) flew on board a NASA sounding rocket and collected the highest spatial resolution images ever obtained of the solar corona. One of the goals of the Hi-C flight was to characterize the substructure of the solar corona. We therefore examine how the intensity scales from AIA resolution to Hi-C resolution. For each low-resolution pixel, we calculate the standard deviation in the contributing high-resolution pixel intensities and compare that to the expected standard deviation calculated from the noise. If these numbers are approximately equal, the corona can be assumed to be smoothly varying, i.e., have no evidence of substructure in the Hi-C image to within Hi-C's ability to measure it given its throughput and readout noise. A standard deviation much larger than the noise value indicates the presence of substructure. We calculate these values for each low-resolution pixel for each frame of the Hi-C data. On average, 70% of the pixels in each Hi-C image show no evidence of substructure. The locations where substructure is prevalent is in the moss regions and in regions of sheared magnetic field. We also find that the level of substructure varies significantly over the roughly 160 s of the Hi-C data analyzed here. This result indicates that the finely structured corona is concentrated in regions of heating and is highly time dependent.

  18. DISCOVERY OF FINELY STRUCTURED DYNAMIC SOLAR CORONA OBSERVED IN THE Hi-C TELESCOPE

    International Nuclear Information System (INIS)

    Winebarger, Amy R.; Cirtain, Jonathan; Savage, Sabrina; Alexander, Caroline; Golub, Leon; DeLuca, Edward; Schuler, Timothy

    2014-01-01

    In the Summer of 2012, the High-resolution Coronal Imager (Hi-C) flew on board a NASA sounding rocket and collected the highest spatial resolution images ever obtained of the solar corona. One of the goals of the Hi-C flight was to characterize the substructure of the solar corona. We therefore examine how the intensity scales from AIA resolution to Hi-C resolution. For each low-resolution pixel, we calculate the standard deviation in the contributing high-resolution pixel intensities and compare that to the expected standard deviation calculated from the noise. If these numbers are approximately equal, the corona can be assumed to be smoothly varying, i.e., have no evidence of substructure in the Hi-C image to within Hi-C's ability to measure it given its throughput and readout noise. A standard deviation much larger than the noise value indicates the presence of substructure. We calculate these values for each low-resolution pixel for each frame of the Hi-C data. On average, 70% of the pixels in each Hi-C image show no evidence of substructure. The locations where substructure is prevalent is in the moss regions and in regions of sheared magnetic field. We also find that the level of substructure varies significantly over the roughly 160 s of the Hi-C data analyzed here. This result indicates that the finely structured corona is concentrated in regions of heating and is highly time dependent

  19. Ozone generation by negative direct current corona discharges in dry air fed coaxial wire-cylinder reactors

    International Nuclear Information System (INIS)

    Yehia, Ashraf; Mizuno, Akira

    2013-01-01

    An analytical study was made in this paper for calculating the ozone generation by negative dc corona discharges. The corona discharges were formed in a coaxial wire-cylinder reactor. The reactor was fed by dry air flowing with constant rates at atmospheric pressure and room temperature, and stressed by a negative dc voltage. The current-voltage characteristics of the negative dc corona discharges formed inside the reactor were measured in parallel with concentration of the generated ozone under different operating conditions. An empirical equation was derived from the experimental results for calculating the ozone concentration generated inside the reactor. The results, that have been recalculated by using the derived equation, have agreed with the experimental results over the whole range of the investigated parameters, except in the saturation range for the ozone concentration. Therefore, the derived equation represents a suitable criterion for expecting the ozone concentration generated by negative dc corona discharges in dry air fed coaxial wire-cylinder reactors under any operating conditions in range of the investigated parameters.

  20. Theory of Single Point Incremental Forming

    DEFF Research Database (Denmark)

    Martins, P.A.F.; Bay, Niels; Skjødt, Martin

    2008-01-01

    This paper presents a closed-form theoretical analysis modelling the fundamentals of single point incremental forming and explaining the experimental and numerical results available in the literature for the past couple of years. The model is based on membrane analysis with bi-directional in-plan......-plane contact friction and is focused on the extreme modes of deformation that are likely to be found in single point incremental forming processes. The overall investigation is supported by experimental work performed by the authors and data retrieved from the literature.......This paper presents a closed-form theoretical analysis modelling the fundamentals of single point incremental forming and explaining the experimental and numerical results available in the literature for the past couple of years. The model is based on membrane analysis with bi-directional in...

  1. Second harmonic generation from corona-poled polymer thin films ...

    Indian Academy of Sciences (India)

    2014-02-09

    Feb 9, 2014 ... We characterize thermal stability of second harmonic generation (SHG) properties of four different Y-type polymers poled using corona poling method. These polymers are based on donor–acceptor–donor-type repeating unit with different aromatic moieties acting as donors and dicyanomethylene acting as ...

  2. Efficiency of Oral Incremental Rehearsal versus Written Incremental Rehearsal on Students' Rate, Retention, and Generalization of Spelling Words

    Science.gov (United States)

    Garcia, Dru; Joseph, Laurice M.; Alber-Morgan, Sheila; Konrad, Moira

    2014-01-01

    The purpose of this study was to examine the efficiency of an incremental rehearsal oral versus an incremental rehearsal written procedure on a sample of primary grade children's weekly spelling performance. Participants included five second and one first grader who were in need of help with their spelling according to their teachers. An…

  3. Air trichloroethylene oxidation in a corona plasma-catalytic reactor

    International Nuclear Information System (INIS)

    Masoomi-Godarzi, S.; Ranji-Burachaloo, H.; Khodadadi, A.A.; Vesali-Naseh, M.; Mortazavi, Y.

    2014-01-01

    The oxidative decomposition of trichloroethylene (TCE; 300 ppm) by non-thermal corona plasma was investigated in dry air at atmospheric pressure and room temperature, both in the absence and presence of catalysts including MnO x , CoO x . The catalysts were synthesized by a co-precipitation method. The morphology and structure of the catalysts were characterized by BET surface area measurement and Fourier Transform Infrared (FTIR) methods. Decomposition of TCE and distribution of products were evaluated by a gas chromatograph (GC) and an FTIR. In the absence of the catalyst, TCE removal is increased with increases in the applied voltage and current intensity. Higher TCE removal and CO 2 selectivity is observed in presence of the corona and catalysts, as compared to those with the plasma alone. The results show that MnO x and CoO x catalysts can dissociate the in-plasma produced ozone to oxygen radicals, which enhances the TCE decomposition. (author)

  4. Negative corona discharges modelling. Application to the electrostatic precipitation

    International Nuclear Information System (INIS)

    Gaychet, S.

    2010-01-01

    Electrostatic precipitation presents many advantages from the nuclear wastes treatment's point of view. Indeed, this kind of process can capture submicron particles without producing secondary wastes (no filter media) and without pressure looses in the exhaust circuit. The work presented in this thesis concerns the study of negative corona discharges in air at atmospheric pressure occurring in an electrostatic precipitator (ESP) developed by the CEA (Atomic Energy Committee). The aim of this study is to determine how the electrostatic precipitation dedicated phenomena, especially the specific high voltage generator, the gas temperature and the fact that particles are flowing through the gap then collapsing on the electrodes, modify the discharge to improve the efficiency of ESPs. This work is based on a fundamental experimental study of the negative corona discharge and on numerical simulations of this discharge under conditions close to those of the lab scale ESP developed by the CEA. (author) [fr

  5. The protein corona protects against size- and dose-dependent toxicity of amorphous silica nanoparticles

    Directory of Open Access Journals (Sweden)

    Dominic Docter

    2014-08-01

    Full Text Available Besides the lung and skin, the gastrointestinal (GI tract is one of the main targets for accidental exposure or biomedical applications of nanoparticles (NP. Biological responses to NP, including nanotoxicology, are caused by the interaction of the NP with cellular membranes and/or cellular entry. Here, the physico-chemical characteristics of NP are widely discussed as critical determinants, albeit the exact mechanisms remain to be resolved. Moreover, proteins associate with NP in physiological fluids, forming the protein corona potentially transforming the biological identity of the particle and thus, adding an additional level of complexity for the bio–nano responses.Here, we employed amorphous silica nanoparticles (ASP and epithelial GI tract Caco-2 cells as a model to study the biological impact of particle size as well as of the protein corona. Caco-2 or mucus-producing HT-29 cells were exposed to thoroughly characterized, negatively charged ASP of different size in the absence or presence of proteins. Comprehensive experimental approaches, such as quantifying cellular metabolic activity, microscopic observation of cell morphology, and high-throughput cell analysis revealed a dose- and time-dependent toxicity primarily upon exposure with ASP30 (Ø = 30 nm. Albeit smaller (ASP20, Ø = 20 nm or larger particles (ASP100; Ø = 100 nm showed a similar zeta potential, they both displayed only low toxicity. Importantly, the adverse effects triggered by ASP30/ASP30L were significantly ameliorated upon formation of the protein corona, which we found was efficiently established on all ASP studied. As a potential explanation, corona formation reduced ASP30 cellular uptake, which was however not significantly affected by ASP surface charge in our model. Collectively, our study uncovers an impact of ASP size as well as of the protein corona on cellular toxicity, which might be relevant for processes at the nano–bio interface in general.

  6. Influence of the airflow speed along transmission lines on the DC corona discharge loss, using finite element approach

    Energy Technology Data Exchange (ETDEWEB)

    Shemshadi, A.; Akbari, A. [Electric Department, K. N. Toosi University of Technology, Tehran (Iran, Islamic Republic of); Niayesh, K. [Electric Engineering Department, Tehran University, Tehran (Iran, Islamic Republic of)

    2012-07-15

    Corona discharge is of great interest from the physical point of view and due to its numerous practical applications in industry and especially one of the most important sources of loss in the high voltage transmission lines. This paper provides guidelines for the amount of electric loss caused by corona phenomenon occurred around a DC high voltage wire placed between two flat plates and influence of wind speed rate on the amount of corona loss using COMSOL Multiphysics. So electric potential distribution patterns and charge density diffusion around the wire are studied in this article.

  7. Congestive heart failure is associated with lipoprotein components in statin-treated patients with coronary heart disease Insights from the Incremental Decrease in End points Through Aggressive Lipid Lowering Trial (IDEAL)

    DEFF Research Database (Denmark)

    Holme, Ingar; Strandberg, Timo E; Faergeman, Ole

    2009-01-01

    BACKGROUND: Very few, if any, studies have assessed the ability of apolipoproteins to predict new-onset of congestive heart failure (HF) in statin-treated patients with coronary heart disease (CHD). AIMS: To employ the Incremental Decrease in End points Through Aggressive Lipid Lowering Trial...... with the occurrence of new-onset HF. Variables related to low-density lipoprotein cholesterol (LDL-C) carried less predictive information than those related to high-density lipoprotein cholesterol (HDL-C), and apoA-1 was the single variable most strongly associated with HF. LDL-C was less predictive than both non......-HDL-C (total cholesterol minus HDL-C) and apoB. The ratio of apoB to apoA-1 was most strongly related to HF after adjustment for potential confounders, among which diabetes had a stronger correlation with HF than did hypertension. ApoB/apoA-1 carried approximately 2.2 times more of the statistical information...

  8. Performance Evaluation of Incremental K-means Clustering Algorithm

    OpenAIRE

    Chakraborty, Sanjay; Nagwani, N. K.

    2014-01-01

    The incremental K-means clustering algorithm has already been proposed and analysed in paper [Chakraborty and Nagwani, 2011]. It is a very innovative approach which is applicable in periodically incremental environment and dealing with a bulk of updates. In this paper the performance evaluation is done for this incremental K-means clustering algorithm using air pollution database. This paper also describes the comparison on the performance evaluations between existing K-means clustering and i...

  9. The influence of the breakdown electric field in the configuration of lightning corona sheath on charge distribution in the channel

    Science.gov (United States)

    Ignjatovic, Milan; Cvetic, Jovan; Heidler, Fridolin; Markovic, Slavoljub; Djuric, Radivoje

    2014-11-01

    A model of corona sheath that surrounds the thin core of the lightning channel has been investigated by using a generalized traveling current source return stroke model. The lightning channel is modeled by a charged corona sheath that stretches around a highly conductive central core through which the main current flows. The channel core with the negatively charged outer channel sheath forms a strong electric field, with an overall radial orientation. The return stroke process is modeled as the negative leader charge in the corona sheath being discharged by the positive charge coming from the channel core. Expressions that describe how the corona sheath radius evolves during the return stroke are obtained from the corona sheath model, which predicts charge motion within the sheath. The corona sheath model, set forth by Maslowski and Rakov (2006), Tausanovic et al. (2010), Marjanovic and Cvetic (2009), Cvetic et al. (2011) and Cvetic et al. (2012), divides the sheath onto three zones: zone 1 (surrounding the channel core with net positive charge), zone 2 (surrounding zone 1 with negative charge) and zone 3 (the outer zone, representing uncharged virgin air). In the present study, we have assumed a constant electric field inside zone 1, as suggested by experimental research of corona discharges in coaxial geometry conducted by Cooray (2000). The present investigation builds upon previous studies by Tausanovic et al. (2010) and Cvetic et al. (2012) in several ways. The value of the breakdown electric field has been varied for probing its effect on channel charge distribution prior and during the return stroke. With the aim of investigating initial space charge distribution along the channel, total electric field at the outer surface of the channel corona sheath, just before the return stroke, is calculated and compared for various return stroke models. A self-consistent algorithm is applied to the generalized traveling current source return stroke model, so that the

  10. Mass and energy flows between the Solar chromosphere, transition region, and corona

    Science.gov (United States)

    Hansteen, V. H.

    2017-12-01

    A number of increasingly sophisticated numerical simulations spanning the convection zone to corona have shed considerable insight into the role of the magnetic field in the structure and energetics of the Sun's outer atmosphere. This development is strengthened by the wealth of observational data now coming on-line from both ground based and space borne observatories. We discuss what numerical models can tell us about the mass and energy flows in the region of the upper chromosphere and lower corona, using a variety of tools, including the direct comparison with data and the use of passive tracer particles (so-called 'corks') inserted into the simulated flows.

  11. New Views of the Solar Corona from STEREO and SDO

    Science.gov (United States)

    Vourlidas, A.

    2012-01-01

    In the last few years, we have been treated to an unusual visual feast of solar observations of the corona in EUV wavelengths. The observations from the two vantage points of STEREO/SECCHI are now capturing the entire solar atmosphere simultaneously in four wavelengths. The SDO/AIA images provide us with arcsecond resolution images of the full visible disk in ten wavelengths. All these data are captured with cadences of a few seconds to a few minutes. In this talk, I review some intriguing results from our first attempts to deal with these observations which touch upon the problems of coronal mass ejection initiation and solar wind generation. I will also discuss data processing techniques that may help us recover even more information from the images. The talk will contain a generous portion of beautiful EUV images and movies of the solar corona.

  12. Characteristics of shocks in the solar corona, as inferred from radio, optical, and theoretical investigations

    Science.gov (United States)

    Maxwell, A.; Dryer, M.

    1982-01-01

    Solar radio bursts of spectral type II provide one of the chief diagnostics for the propagation of shocks through the solar corona. Radio data on the shocks are compared with computer models for propagation of fast-mode MHD shocks through the solar corona. Data on coronal shocks and high-velocity ejecta from solar flares are then discussed in terms of a general model consisting of three main velocity regimes.

  13. Dynamics of a lightning corona sheath—A constant field approach using the generalized traveling current source return stroke model

    Science.gov (United States)

    Cvetic, Jovan; Heidler, Fridolin; Markovic, Slavoljub; Radosavljevic, Radovan; Osmokrovic, Predrag

    2012-11-01

    A generalized lightning traveling current source return stroke model has been used to examine the characteristics of the lightning channel corona sheath surrounding a thin channel core. A model of the lightning channel consisting of a charged corona sheath and a narrow, highly conducting central core that conducts the main current flow is assumed. Strong electric field, with a predominant radial direction, has been created during the return stroke between the channel core and the outer channel sheath containing the negative charge. The return stroke process is modeled with the positive charge coming from the channel core discharging the negative leader charge in the corona sheath. The corona sheath model that predicts the charge motion in the sheath is used to derive the expressions of the sheath radius vs. time during the return stroke. According to the corona sheath model proposed earlier by Maslowski and Rakov (2006) and Maslowski et al. (2009), it consists of three zones, zone 1 (surrounding channel core with net positive charge), zone 2 (surrounding zone 1 with negative charge) and zone 3 (outer zone representing the virgin air without charges). We adopted the assumption of a constant electric field inside zone 1 of the corona sheath observed in the experimental research of corona discharges in a coaxial geometry by Cooray (2000). This assumption seems to be more realistic than the assumption of a uniform corona space charge density used previously in the study of Maslowski and Rakov (2006), Marjanovic and Cvetic (2009), and Tausanovic et al. (2010). Applying the Gauss' law on the infinitesimally small cylindrical section of the channel the expressions for time-dependence of the radii of zones 1 and 2 during the return stroke are derived. The calculations have shown that the overall channel dynamics concerning electrical discharge is roughly 50% slower and the maximum radius of zone 1 is about 33% smaller compared to the corresponding values calculated in the

  14. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere V. On the Nature of the Corona

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2013-07-01

    Full Text Available The E-corona is the site of numerous emission lines associated with high ionization states (i.e. FeXIV-FeXXV. Modern gaseous models of the Sun require that these states are produced by atomic irradiation, requiring the sequential removal of electrons to infinity, without an associated electron acceptor. This can lead to computed temperatures in the corona which are unrealistic (i.e. ∼30–100 MK contrasted to solar core values of ∼16 MK. In order to understand the emission lines of the E-corona, it is vital to recognize that they are superimposed upon the K-corona, which produces a continuous spectrum, devoid of Fraunhofer lines, arising from this same region of the Sun. It has been advanced that the K-corona harbors self-luminous condensed matter (Robitaille P.M. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere II. Continuous Emission and Condensed Matter Within the Corona. Progr. Phys., 2013, v. 3, L8–L10; Robitaille P.M. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere III. Importance of Continuous Emission Spectra from Flares, Coronal Mass Ejections, Prominences, and Other Coronal Structures. Progr. Phys., 2013, v. 3, L11–L14. Condensed matter can possess elevated electron affinities which may strip nearby atoms of their electrons. Such a scenario accounts for the high ionization states observed in the corona: condensed matter acts to harness electrons, ensuring the electrical neutrality of the Sun, despite the flow of electrons and ions in the solar winds. Elevated ionization states reflect the presence of materials with high electron affinities in the corona, which is likely to be a form of metallic hydrogen, and does not translate into elevated temperatures in this region of the solar atmosphere. As a result, the many mechanisms advanced to account for coronal heating in the gaseous models of the Sun

  15. Cost-Effectiveness of Sacubitril-Valsartan in Patients With Heart Failure With Reduced Ejection Fraction.

    Science.gov (United States)

    Sandhu, Alexander T; Ollendorf, Daniel A; Chapman, Richard H; Pearson, Steven D; Heidenreich, Paul A

    2016-11-15

    Sacubitril-valsartan therapy reduces cardiovascular mortality compared with enalapril therapy in patients with heart failure with reduced ejection fraction. To evaluate the cost-effectiveness of sacubitril-valsartan versus angiotensin-converting enzyme inhibitor therapy in patients with chronic heart failure. Markov decision model. Clinical trials, observational analyses, reimbursement data from the Centers for Medicare & Medicaid Services, drug pricing databases, and Centers for Disease Control and Prevention life tables. Patients at an average age of 64 years, New York Heart Association (NYHA) class II to IV heart failure, and left ventricular ejection fraction of 0.40 or less. Lifetime. Societal. Treatment with sacubitril-valsartan or lisinopril. Life-years, quality-adjusted life-years (QALYs), costs, heart failure hospitalizations, and incremental cost-effectiveness ratios. The sacubitril-valsartan group experienced 0.08 fewer heart failure hospitalization, 0.69 additional life-year, 0.62 additional QALY, and $29 203 in incremental costs, equating to a cost per QALY gained of $47 053. The cost per QALY gained was $44 531 in patients with NYHA class II heart failure and $58 194 in those with class III or IV heart failure. Sacubitril-valsartan treatment was most sensitive to the duration of improved outcomes, with a cost per QALY gained of $120 623 if the duration was limited to the length of the trial (median, 27 months). No variations in other parameters caused the cost to exceed $100 000 per QALY gained. The benefit of sacubitril-valsartan is based on a single clinical trial. Treatment with sacubitril-valsartan provides reasonable value in reducing cardiovascular mortality and morbidity in patients with NYHA class II to IV heart failure. U.S. Department of Veterans Affairs and Institute for Clinical and Economic Review.

  16. Flare-induced MHD disturbances in the corona--Moreton waves and type II shocks

    International Nuclear Information System (INIS)

    Uchida, Y.

    1972-01-01

    The propagation in the corona of the magnetohydrodynamic (MHD) disturbance possibly emitted at the explosive stage in the initial phase of a flare is considered. The behavior of the MHD fast-mode wavefront, whose source is located at the flare, is calculated by using eiconal-characteristic method in the High Altitude Observatory (HAO) realistic models of coronal magnetic field and density for the days of some particular flare events. It is shown as the result that the peculiar behavior of Moreton' s surface wave and the peculiar appearance in the shape and position of the type II burst sources can be consistently understood by considering the refraction, focussing, and fermation of shocks of MHD fast-mode disturbance in the actual distribution of Alfven velocity in the corona. Based on some comparison of the positions of low-Alfven-velocity regions in the corona with observed positions of type II burst sources, it is proposed that the type II burst sources may be identified with such low-Alfven-velocity regions ''illuminated'' by thus enhanced shocks. (U.S.)

  17. A study on the electrical characteristics of corona discharges for flue gas treatment

    International Nuclear Information System (INIS)

    Jung, Suk Won

    2000-02-01

    A wire- cylinder reactor and wire- plate reactor were designed and constructed for generating the corona discharges to be applied to the dissociation of NOx and SOx in the flue gases of combustion engines and power plants. Experiments for the characterization of the corona discharges in air were carried out. To obtain the pulsed voltage shape, a rotary spark gap switch was formed with a DC motor. A discharge circuit was constructed with a resistor (50kΩ ), DC high voltage power supply, a rotary spark gap switch. Two electric probes and voltage probe were installed in order to measure the total current, displacement current, conduction current and applied voltage. The charges, power, and energy in the two reactors were calculated from the measured voltage and current. Also, to find the frequency dependence of the corona discharge, the high frequency (20kHz) and high voltage power supply was used in the wire- cylinder reactor. The each obtained and calculated value from the probes in both reactor cases (high frequency, low frequency ) were compared each other

  18. [Do mastery goals buffer self-esteem from the threat of failure?].

    Science.gov (United States)

    Niiya, Yu; Crocker, Jennifer

    2007-12-01

    Self-esteem is vulnerable when failure occurs in the domain where people base their self-worth (Crocker & Wolfe, 2001). We tested whether learning orientations can reduce the vulnerability of self-esteem associated with contingent self-worth and encourage persistence following failure. Our past research (Niiya, Crocker, & Bartmess, 2004) indicated that people who base their self-worth on academics maintain their self-esteem following failure when they are primed with an incremental theory of intelligence. Our present study extends these findings by (a) examining whether mastery goals (Elliot & Church, 1997) can also buffer self-esteem from failure, (b) using a different manipulation of success and failure, (c) using a different task, and (d) including a measure of persistence. We found that college students who based their self-esteem on academic competence reported lower self-esteem following failure than following success when they had low mastery goals, but the effect of success and failure was eliminated when students had high mastery goals. Moreover, high mastery students showed greater persistence following failure than low mastery students. The study provided converging evidence that learning orientations buffer self-esteem from failure.

  19. Novel dielectric reduces corona breakdown in ac capacitors

    Science.gov (United States)

    Loehner, J. L.

    1972-01-01

    Dielectric system was developed which consists of two layers of 25-gage paper separated by one layer of 50-gage polypropylene to reduce corona breakdown in ac capacitors. System can be used in any alternating current application where constant voltage does not exceed 400 V rms. With a little research it could probably be increased to 700 to 800 V rms.

  20. DBD-Corona Discharge for Degradation of Toxic Gases

    International Nuclear Information System (INIS)

    Pacheco-Pacheco, M.; Pacheco-Sotelo, J.; Moreno-Saavedra, H.; Diaz-Gomez, J. A.; Mercado-Cabrera, A.; Yousfi, M.

    2007-01-01

    The non-thermal plasma technology is a promising technique to treat SO 2 and NO x . Chemical radicals produced with this technology can remove several pollutants at atmospheric pressure in a very short period of time simultaneously. Both theoretical and experimental study on SO 2 and NO x removal, by a dielectric barrier discharge (DBD) with corona effect, is presented

  1. Quantum independent increment processes

    CERN Document Server

    Franz, Uwe

    2005-01-01

    This volume is the first of two volumes containing the revised and completed notes lectures given at the school "Quantum Independent Increment Processes: Structure and Applications to Physics". This school was held at the Alfried-Krupp-Wissenschaftskolleg in Greifswald during the period March 9 – 22, 2003, and supported by the Volkswagen Foundation. The school gave an introduction to current research on quantum independent increment processes aimed at graduate students and non-specialists working in classical and quantum probability, operator algebras, and mathematical physics. The present first volume contains the following lectures: "Lévy Processes in Euclidean Spaces and Groups" by David Applebaum, "Locally Compact Quantum Groups" by Johan Kustermans, "Quantum Stochastic Analysis" by J. Martin Lindsay, and "Dilations, Cocycles and Product Systems" by B.V. Rajarama Bhat.

  2. A precise measurement of the magnetic field in the corona of the black hole binary V404 Cygni.

    Science.gov (United States)

    Dallilar, Yigit; Eikenberry, Stephen S; Garner, Alan; Stelter, Richard D; Gottlieb, Amy; Gandhi, Poshak; Casella, Piergiorgio; Dhillon, Vik S; Marsh, Tom R; Littlefair, Stuart P; Hardy, Liam; Fender, Rob; Mooley, Kunal; Walton, Dominic J; Fuerst, Felix; Bachetti, Matteo; Castro-Tirado, A J; Charcos, Miguel; Edwards, Michelle L; Lasso-Cabrera, Nestor M; Marin-Franch, Antonio; Raines, S Nicholas; Ackley, Kendall; Bennett, John G; Cenarro, A Javier; Chinn, Brian; Donoso, H Veronica; Frommeyer, Raymond; Hanna, Kevin; Herlevich, Michael D; Julian, Jeff; Miller, Paola; Mullin, Scott; Murphey, Charles H; Packham, Chris; Varosi, Frank; Vega, Claudia; Warner, Craig; Ramaprakash, A N; Burse, Mahesh; Punnadi, Sujit; Chordia, Pravin; Gerarts, Andreas; de Paz Martín, Héctor; Calero, María Martín; Scarpa, Riccardo; Acosta, Sergio Fernandez; Hernández Sánchez, William Miguel; Siegel, Benjamin; Pérez, Francisco Francisco; Viera Martín, Himar D; Rodríguez Losada, José A; Nuñez, Agustín; Tejero, Álvaro; Martín González, Carlos E; Rodríguez, César Cabrera; Molgó, Jordi; Rodriguez, J Esteban; Cáceres, J Israel Fernández; Rodríguez García, Luis A; Lopez, Manuel Huertas; Dominguez, Raul; Gaggstatter, Tim; Lavers, Antonio Cabrera; Geier, Stefan; Pessev, Peter; Sarajedini, Ata

    2017-12-08

    Observations of binary stars containing an accreting black hole or neutron star often show x-ray emission extending to high energies (>10 kilo--electron volts), which is ascribed to an accretion disk corona of energetic particles akin to those seen in the solar corona. Despite their ubiquity, the physical conditions in accretion disk coronae remain poorly constrained. Using simultaneous infrared, optical, x-ray, and radio observations of the Galactic black hole system V404 Cygni, showing a rapid synchrotron cooling event in its 2015 outburst, we present a precise 461 ± 12 gauss magnetic field measurement in the corona. This measurement is substantially lower than previous estimates for such systems, providing constraints on physical models of accretion physics in black hole and neutron star binary systems. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  3. The effect of coronae on leader initiation and development under thunderstorm conditions and in long air gaps

    International Nuclear Information System (INIS)

    Aleksandrov, N.L.; Bazelyan, E.M.; Carpenter Jr, R.B.; Drabkin, M.M.; Raizer, Yu P.

    2001-01-01

    The initiation and development of a leader is theoretically studied by considering an electrode which is embedded in a cloud of space charge injected by a corona discharge. The focus is on the initiation of upward lightning from a stationary grounded object in a thundercloud electric field. The main results are also applicable to the leader process in long laboratory air gaps at direct voltage. Simple physical models of non-stationary coronae developing in free space near a solitary stressed sphere and of a leader propagating in the space charge cloud of coronae are suggested. It is shown that the electric field redistribution due to the space charge released by the long corona discharge near the top of a high object hinders the initiation and development of an upward leader from the object in a thundercloud electric field. The conditions for the formation of corona streamers that are required to initiate a leader are derived. The criteria are obtained for a leader to be initiated and propagate in the space charge cloud. A hypothesis is proposed that the streamers are never initiated near the top of a high object under thunderstorm conditions if at ground level there is only a slowly-varying electric field of the thundercloud. The streamers may be induced by the fast-rising electric field of distant downward leaders or intracloud discharges. (author)

  4. Removal of NO and SO2 in Corona Discharge Plasma Reactor with Water Film

    Institute of Scientific and Technical Information of China (English)

    贺元吉; 董丽敏; 杨嘉祥

    2004-01-01

    In this paper, a novel type of a corona discharge plasma reactor was designed, which consists of needle-plate-combined electrodes, in which a series of needle electrodes are placed in a glass container filled with flue gas, and a plate electrode is immersed in the water. Based on this model, the removal of NO and SO2 was tested experimentally. In addition, the effect of streamer polarity on the reduction of SO2 and NO was investigated in detail. The experimental results show that the corona wind formed between the high-voltage needle electrode and the water by corona discharge enhances the cleaning efficiency of the flue gas because of the presence of water,and the cleaning efficiency will increase with the increase of applied dc voltage within a definite range. The removal efficiency of SO2 up to 98%, and about 85% of NOx removal under suitable conditions is obtained in our experiments.

  5. Constant-current corona triode adapted and optimized for the characterization of thin dielectric films

    Science.gov (United States)

    Giacometti, José A.

    2018-05-01

    This work describes an enhanced corona triode with constant current adapted to characterize the electrical properties of thin dielectric films used in organic electronic devices. A metallic grid with a high ionic transparency is employed to charge thin films (100 s of nm thick) with a large enough charging current. The determination of the surface potential is based on the grid voltage measurement, but using a more sophisticated procedure than the previous corona triode. Controlling the charging current to zero, which is the open-circuit condition, the potential decay can be measured without using a vibrating grid. In addition, the electric capacitance and the characteristic curves of current versus the stationary surface potential can also be determined. To demonstrate the use of the constant current corona triode, we have characterized poly(methyl methacrylate) thin films with films with thicknesses in the range from 300 to 500 nm, frequently used as gate dielectric in organic field-effect transistors.

  6. Incremental short daily home hemodialysis: a case series.

    Science.gov (United States)

    Toth-Manikowski, Stephanie M; Mullangi, Surekha; Hwang, Seungyoung; Shafi, Tariq

    2017-07-05

    Patients starting dialysis often have substantial residual kidney function. Incremental hemodialysis provides a hemodialysis prescription that supplements patients' residual kidney function while maintaining total (residual + dialysis) urea clearance (standard Kt/Vurea) targets. We describe our experience with incremental hemodialysis in patients using NxStage System One for home hemodialysis. From 2011 to 2015, we initiated 5 incident hemodialysis patients on an incremental home hemodialysis regimen. The biochemical parameters of all patients remained stable on the incremental hemodialysis regimen and they consistently achieved standard Kt/Vurea targets. Of the two patients with follow-up >6 months, residual kidney function was preserved for ≥2 years. Importantly, the patients were able to transition to home hemodialysis without automatically requiring 5 sessions per week at the outset and gradually increased the number of treatments and/or dialysate volume as the residual kidney function declined. An incremental home hemodialysis regimen can be safely prescribed and may improve acceptability of home hemodialysis. Reducing hemodialysis frequency by even one treatment per week can reduce the number of fistula or graft cannulations or catheter connections by >100 per year, an important consideration for patient well-being, access longevity, and access-related infections. The incremental hemodialysis approach, supported by national guidelines, can be considered for all home hemodialysis patients with residual kidney function.

  7. El comercio de productos alimentarios entre las Coronas de Castilla y Aragón en los siglos XIV y XV

    Directory of Open Access Journals (Sweden)

    Diago Hernando, Máximo

    2001-12-01

    Full Text Available The author analyses in this article the export trade of foodstuffs between the territories of the Crown of Castile and those of the Crown of Aragón during the fourteenth and fifteenth centuries, taking into account the overland traffic as well as the maritime one. He gives account of the importance attained by the export of cattle, fish and corn from Castile to Aragón. And on the other side he proves that foodstuffss played a minor role in the exports from the Crown of Aragón to the Crown of Castile, though spices, wine and oil, among other foodstuffs, were exported to Castile from the territories of the Crown of Aragón.

    En este artículo el autor analiza el comercio de exportación de los productos alimentarios entre los territorios de la Corona de Castilla y los de la Corona de Aragón, durante los siglos XIV y XV, tanto por vía terrestre como por vía marítima. Subraya la importancia que alcanzó la exportación de ganado, pescado y cereales desde la Corona de Castilla a la Corona de Aragón. Como contrapartida, el autor demuestra que los productos de alimentación no tenían tanta importancia dentro de las exportaciones efectuadas desde la Corona de Aragón a la Corona de Castilla, si bien las especias, el vino y el aceite fueron objeto de exportación desde la Corona de Aragón a Castilla.

  8. Study on law of negative corona discharge in microparticle-air two-phase flow media

    Directory of Open Access Journals (Sweden)

    Bo He

    2016-03-01

    Full Text Available To study the basic law of negative corona discharge in solid particle-air two-phase flow, corona discharge experiments in a needle-plate electrode system at different voltage levels and different wind speed were carried out in the wind tunnel. In this paper, the change law of average current and current waveform were analyzed, and the observed phenomena were systematically explained from the perspectives of airflow, particle charging, and particle motion with the help of PIV (particle image velocity measurements and ultraviolet observations.

  9. JET PROPERTIES OF GeV-SELECTED RADIO-LOUD NARROW-LINE SEYFERT 1 GALAXIES AND POSSIBLE CONNECTION TO THEIR DISK AND CORONA

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiao-Na; Lin, Da-Bin; Liang, En-Wei [Department of Physics and GXU-NAOC Center for Astrophysics and Space Sciences, Guangxi University, Nanning 530004 (China); Zhang, Jin [National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Xue, Zi-Wei; Zhang, Shuang-Nan, E-mail: zhang.jin@hotmail.com [Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, Kunming 650011 (China)

    2015-01-01

    The observed spectral energy distributions of five GeV-selected narrow-line Seyfert 1 (NLS1) galaxies are fitted with a model including the radiation ingredients from the relativistic jet, the accretion disk, and the corona. We compare the properties of these GeV NLS1 galaxies with flat spectrum radio quasars (FSRQs), BL Lacertae objects (BL Lacs), and radio-quiet (RQ) Seyfert galaxies, and explore possible hints for jet-disk/corona connection. Our results show that the radiation physics and the jet properties of the GeV NLS1 galaxies resemble that of FSRQs. The luminosity variations of PMN J0948+0022 and 1H 0323+342 at the GeV band is tightly correlated with the beaming factor (δ), similar to that observed in FSRQ 3C 279. The accretion disk luminosities and the jet powers of the GeV NLS1 galaxies cover both the ranges of FSRQs and BL Lacs. With the detection of bright corona emission in 1H 0323+342, we show that the ratio of the corona luminosity (L {sub corona}) to the accretion disk luminosity (L {sub d}) is marginally within the high end of this ratio distribution for an RQ Seyfert galaxy sample, and the variation of jet luminosity may connect with L {sub corona}. However, it is still unclear whether a system with a high L {sub corona}/L {sub d} ratio prefers to power a jet.

  10. Pulsed corona generation using a diode-based pulsed power generator

    NARCIS (Netherlands)

    Pemen, A.J.M.; Grekhov, I.V.; Heesch, van E.J.M.; Yan, K.; Nair, S.A.; Korotkov, S.V.

    2003-01-01

    Pulsed plasma techniques serve a wide range of unconventional processes, such as gas and water processing, hydrogen production, and nanotechnology. Extending research on promising applications, such as pulsed corona processing, depends to a great extent on the availability of reliable, efficient and

  11. A high-voltage pulse generator for corona plasma generation

    NARCIS (Netherlands)

    Yan, K.; Heesch, van E.J.M.; Pemen, A.J.M.; Huijbrechts, P.A.H.J.; Gompel, van F.M.; Leuken, van H.E.M.; Matyas, Z.

    2002-01-01

    This paper discusses a high-voltage pulse generator for producing corona plasma. The generator consists of three resonant charging circuits, a transmission line transformer, and a triggered spark-gap switch. Voltage pulses in the order of 30-100 kV with a rise time of 10-20 ns, a pulse duration of

  12. Filamentation of diamond nanoparticles treated in underwater corona discharge

    Czech Academy of Sciences Publication Activity Database

    Jirásek, Vít; Lukeš, Petr; Kozak, Halyna; Artemenko, Anna; Člupek, Martin; Čermák, Jan; Rezek, Bohuslav; Kromka, Alexander

    2016-01-01

    Roč. 6, č. 3 (2016), 2352-2360 ISSN 2046-2069 R&D Projects: GA ČR GA15-01687S; GA MŠk(CZ) LD14011 Institutional support: RVO:68378271 ; RVO:61389021 Keywords : nanodiamonds * pulsed streamer corona discharge * filamentation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.108, year: 2016

  13. Quantum independent increment processes

    CERN Document Server

    Franz, Uwe

    2006-01-01

    This is the second of two volumes containing the revised and completed notes of lectures given at the school "Quantum Independent Increment Processes: Structure and Applications to Physics". This school was held at the Alfried-Krupp-Wissenschaftskolleg in Greifswald in March, 2003, and supported by the Volkswagen Foundation. The school gave an introduction to current research on quantum independent increment processes aimed at graduate students and non-specialists working in classical and quantum probability, operator algebras, and mathematical physics. The present second volume contains the following lectures: "Random Walks on Finite Quantum Groups" by Uwe Franz and Rolf Gohm, "Quantum Markov Processes and Applications in Physics" by Burkhard Kümmerer, Classical and Free Infinite Divisibility and Lévy Processes" by Ole E. Barndorff-Nielsen, Steen Thorbjornsen, and "Lévy Processes on Quantum Groups and Dual Groups" by Uwe Franz.

  14. An analytical theory of corona discharge plasmas

    International Nuclear Information System (INIS)

    Uhm, H.S.; Lee, W.M.

    1997-01-01

    In this paper we describe an analytical investigation of corona discharge systems. Electrical charge and the energy transfer mechanism are investigated based on the circuit analysis. Efficient delivery of electrical energy from the external circuit to the reactor chamber is a major issue in design studies. The optimum condition obtained in this paper ensures 100% energy transfer. Second-order coupled differential equations are numerically solved. All the analytical results agree remarkably well with numerical data. The reactor capacitor plays a pivotal role in circuit performance. The voltage profile is dominated by the reactor capacitor. Corona discharge properties in the reactor chamber are also investigated, assuming that a specified voltage profile V(t) is fed through the inner conductor. The analytical description is based on the electron moment equation. Defining the plasma breakdown parameter u=V/R c p, plasma is generated for a high-voltage pulse satisfying u>u c , where u c is the critical breakdown parameter defined by geometrical configuration. Here, u is in units of a million volts per m per atm, and R c is the outer conductor radius. It is found that the plasma density profile generated inside the reactor chamber depends very sensitively on the system parameters. A small change of a physical parameter can easily lead to a density change in one order of magnitude

  15. Magnetic Untwisting in Jets that Go into the Outer Solar Corona in Polar Coronal Holes

    Science.gov (United States)

    Moore, Ronald L.; Sterling, Alphonse C.; Falconer, David

    2014-06-01

    We present results from a study of 14 jets that were observed in SDO/AIA EUV movies to erupt in the Sun’s polar coronal holes. These jets were similar to the many other jets that erupt in coronal holes, but reached higher than the vast majority, high enough to be observed in the outer corona beyond 2 solar radii from Sun center by the SOHO/LASCO/C2 coronagraph. We illustrate the characteristic structure and motion of these high-reaching jets by showing observations of two representative jets. We find that (1) the speed of the jet front from the base of the corona out to 2-3 solar radii is typically several times the sound speed in jets in coronal holes, (2) each high-reaching jet displays unusually large rotation about its axis (spin) as it erupts, and (3) in the outer corona, many jets display lateral swaying and bending of the jet axis with an amplitude of a few degrees and a period of order 1 hour. From these observations we infer that these jets are magnetically driven, propose that the driver is a magnetic-untwisting wave that is basically a large-amplitude (non-linear) torsional Alfven wave that is put into the open magnetic field in the jet by interchange reconnection as the jet erupts, and estimate that the magnetic-untwisting wave loses most of its energy before reaching the outer corona. These observations of high-reaching coronal jets suggest that the torsional magnetic waves observed in Type-II spicules can similarly dissipate in the corona and thereby power much of the coronal heating in coronal holes and quiet regions. This work is funded by the NASA/SMD Heliophysics Division’s Living With a Star Targeted Research & Technology Program.

  16. Introduction to investigations of the negative corona and EHD flow in gaseous two-phase fluids

    Science.gov (United States)

    Jerzy, MIZERACZYK; Artur, BERENDT

    2018-05-01

    Research interests have recently been directed towards electrical discharges in multi-phase environments. Natural electrical discharges, such as lightning and coronas, occur in the Earth’s atmosphere, which is actually a mixture of gaseous phase (air) and suspended solid and liquid particulate matters (PMs). An example of an anthropogenic gaseous multi-phase environment is the flow of flue gas through electrostatic precipitators (ESPs), which are generally regarded as a mixture of a post-combustion gas with solid PM and microdroplets suspended in it. Electrical discharges in multi-phase environments, the knowledge of which is scarce, are becoming an attractive research subject, offering a wide variety of possible discharges and multi-phase environments to be studied. This paper is an introduction to electrical discharges in multi-phase environments. It is focused on DC negative coronas and accompanying electrohydrodynamic (EHD) flows in a gaseous two-phase fluid formed by air (a gaseous phase) and solid PM (a solid phase), run under laboratory conditions. The introduction is based on a review of the relevant literature. Two cases will be considered: the first case is of a gaseous two-phase fluid, initially motionless in a closed chamber before being subjected to a negative corona (with the needle-to-plate electrode arrangement), which afterwards induces an EHD flow in the chamber, and the second, of a gaseous two-phase fluid flowing transversely with respect to the needle-to-plate electrode axis along a chamber with a corona discharge running between the electrodes. This review-based introductory paper should be of interest to theoretical researchers and modellers in the field of negative corona discharges in single- or two-phase fluids, and for engineers who work on designing EHD devices (such as ESPs, EHD pumps, and smoke detectors).

  17. A cone-like enhancement of polar solar corona plasma and its influence on heliospheric particles

    Science.gov (United States)

    Grzedzielski, Stan; Sokół, Justyna M.

    2017-04-01

    We will present results of the study of the properties of the solar wind plasma due to rotation of the polar solar corona. We focus in our study on the solar minimum conditions, when the polar coronal holes are well formed and the magnetic field in the solar polar corona exhibit almost regular "ray-like" structure. The solar rotation twists the magnetic field lines of the expanding fast polar solar wind and the resulting toroidal component of the field induces a force directed towards the rotation axis. This phenomenon is tantamount to a (weak) zeta pinch, known also in other astrophysical contexts (e.g. like in AGN jets). The pinch compresses the polar solar corona plasma and forms a cone-like enhancement of the solar wind density aligned with the rotation axis in the spherically symmetric case. The effect is likely very dynamic due to fast changing conditions in the solar corona, however in the study presented here, we assume a time independent description to get an order-of-magnitude estimate. The weak pinch is treated as a first-order perturbation to the zeroth-order radial flow. Following the assumptions based on the available knowledge about the plasma properties in the polar solar corona we estimated the most typical density enhancements. The cone like structure may extend as far from the Sun as tens of AU and thus will influence the heliospheric particles inside the heliosphere. An increase of the solar wind density in the polar region may be related with a decrease of the solar wind speed. Such changes of the solar wind plasma at high latitudes may modify the charge-exchange and electron impact ionization rates of heliospheric particles in interplanetary space. We will present their influence on the interstellar neutral gas and energetic neutral atoms observed by IBEX.

  18. Interaction of single and multi-layer graphene oxide with fetal bovine serum: assessing the protein corona formation

    Energy Technology Data Exchange (ETDEWEB)

    Franqui, Lidiane Silva; Farias, Marcelo Alexandre de; Portugal, Rodrigo Villares; Costa, Carlos Alberto; Leme, Adriana Franco Paes; Martinez, Diego Stefani Teodoro, E-mail: lidiane.franqui@pos.ft.unicamp.br [Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP (Brazil); Coluci, Vitor Rafael [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)

    2016-07-01

    Full text: When in contact with biological systems, nanomaterials surface adsorbs biomolecules present in the biological medium, mainly proteins, yielding a molecular coating 'protein corona' which affects the biological response and toxicity of the nanomaterials. Several factors can influence the protein corona formation, such as nanomaterial physicochemical properties and the nature of biological medium. In this work, we have performed a comparative study between the single and multi-layer graphene oxide nanomaterials (SL-GO and ML-GO, respectively) after their interaction with DMEM cell culture medium containing fetal bovine serum (FBS). Bare GOs and FBS protein corona-coated GOs were characterized using dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), atomic force microscopy (AFM), cryogenic transmission electron microscopy (Cryo-TEM) and X-ray photoelectron spectroscopy (XPS). The protein corona composition was characterized by gel electrophoresis (SDS-PAGE) and mass spectrometry (LC-MS/MS). Our results showed that, after interaction with FBS, GO particle size increased due to the protein corona formation. Besides, the presence of proteins also has significantly increased the dispersion stability of SLGO and ML-GO over time. Whereas the main proteins have been identified in both SL-GO and ML-GO, SL-GO has adsorbed larger amounts of proteins than ML-GO. Finally, the number of GO layers influences its interactions with FBS proteins and dispersion stability in DMEM medium. These results point out implications for in vitro cytotoxicity assessment and biomedical applications of these promising carbon nanomaterials. (author)

  19. Interaction of single and multi-layer graphene oxide with fetal bovine serum: assessing the protein corona formation

    International Nuclear Information System (INIS)

    Franqui, Lidiane Silva; Farias, Marcelo Alexandre de; Portugal, Rodrigo Villares; Costa, Carlos Alberto; Leme, Adriana Franco Paes; Martinez, Diego Stefani Teodoro; Coluci, Vitor Rafael

    2016-01-01

    Full text: When in contact with biological systems, nanomaterials surface adsorbs biomolecules present in the biological medium, mainly proteins, yielding a molecular coating 'protein corona' which affects the biological response and toxicity of the nanomaterials. Several factors can influence the protein corona formation, such as nanomaterial physicochemical properties and the nature of biological medium. In this work, we have performed a comparative study between the single and multi-layer graphene oxide nanomaterials (SL-GO and ML-GO, respectively) after their interaction with DMEM cell culture medium containing fetal bovine serum (FBS). Bare GOs and FBS protein corona-coated GOs were characterized using dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), atomic force microscopy (AFM), cryogenic transmission electron microscopy (Cryo-TEM) and X-ray photoelectron spectroscopy (XPS). The protein corona composition was characterized by gel electrophoresis (SDS-PAGE) and mass spectrometry (LC-MS/MS). Our results showed that, after interaction with FBS, GO particle size increased due to the protein corona formation. Besides, the presence of proteins also has significantly increased the dispersion stability of SLGO and ML-GO over time. Whereas the main proteins have been identified in both SL-GO and ML-GO, SL-GO has adsorbed larger amounts of proteins than ML-GO. Finally, the number of GO layers influences its interactions with FBS proteins and dispersion stability in DMEM medium. These results point out implications for in vitro cytotoxicity assessment and biomedical applications of these promising carbon nanomaterials. (author)

  20. Accretion Disks and Coronae in the X-Ray Flashlight

    Science.gov (United States)

    Degenaar, Nathalie; Ballantyne, David R.; Belloni, Tomaso; Chakraborty, Manoneeta; Chen, Yu-Peng; Ji, Long; Kretschmar, Peter; Kuulkers, Erik; Li, Jian; Maccarone, Thomas J.; Malzac, Julien; Zhang, Shu; Zhang, Shuang-Nan

    2018-02-01

    Plasma accreted onto the surface of a neutron star can ignite due to unstable thermonuclear burning and produce a bright flash of X-ray emission called a Type-I X-ray burst. Such events are very common; thousands have been observed to date from over a hundred accreting neutron stars. The intense, often Eddington-limited, radiation generated in these thermonuclear explosions can have a discernible effect on the surrounding accretion flow that consists of an accretion disk and a hot electron corona. Type-I X-ray bursts can therefore serve as direct, repeating probes of the internal dynamics of the accretion process. In this work we review and interpret the observational evidence for the impact that Type-I X-ray bursts have on accretion disks and coronae. We also provide an outlook of how to make further progress in this research field with prospective experiments and analysis techniques, and by exploiting the technical capabilities of the new and concept X-ray missions ASTROSAT, NICER, Insight-HXMT, eXTP, and STROBE-X.

  1. Secreted protein eco-corona mediates uptake and impacts of polystyrene nanoparticles on Daphnia magna.

    Science.gov (United States)

    Nasser, Fatima; Lynch, Iseult

    2016-03-30

    Nanoparticles (NPs) are defined as having at least one external dimension between 1 and 100 nm. Due to their small size, NPs have a large surface area to volume ratio giving them unique characteristics that differ from bulk material of the same chemical composition. As a result these novel materials have found numerous applications in medical and industrial fields with the result that environmental exposure to NPs is increasingly likely. Similarly, increased reliance on plastic, which degrades extremely slowly in the environment, is resulting in increased accumulation of micro-/nano-plastics in fresh and marine waters, whose ecotoxicological impacts are as yet poorly understood. Although NPs are well known to adsorb macromolecules from their environment, forming a biomolecule corona which changes the NP identity and how it interacts with organisms, significantly less research has been performed on the ecological corona (eco-corona). Secretion of biomolecules is a well established predator-prey response in aquatic food chains, raising the question of whether NPs interact with secreted proteins, and the impact of such interaction on NP uptake and ecotoxicity. We report here initial studies, including optimisation of protocols using carboxylic-acid and amino modified spherical polystyrene NPs, to assess interaction of NPs with biomolecules secreted by Daphnia magna and the impact of these interactions on NP uptake, retention and toxicity towards Daphnia magna. Daphnia magna are an important environmental indicator species who may be especially sensitive to nanoparticles (NPs) as a result of being filter-feeders. This paper demonstrates for the first time that proteins released by Daphnia magna create an eco-corona around polystyrene NPs which causes heightened uptake of the NPs and consequently increases toxicity. The secreted protein eco-corona also causes the NPs to be less efficiently removed from the gut of D. magna and NPs remaining in the gut of D. magna

  2. Growth increments in teeth of Diictodon (Therapsida

    Directory of Open Access Journals (Sweden)

    J. Francis Thackeray

    1991-09-01

    Full Text Available Growth increments circa 0.02 mm in width have been observed in sectioned tusks of Diictodon from the Late Permian lower Beaufort succession of the South African Karoo, dated between about 260 and 245 million years ago. Mean growth increments show a decline from relatively high values in the Tropidostoma/Endothiodon Assemblage Zone, to lower values in the Aulacephalodon/Cistecephaluszone, declining still further in the Dicynodon lacerficeps/Whaitsia zone at the end of the Permian. These changes coincide with gradual changes in carbon isotope ratios measured from Diictodon tooth apatite. It is suggested that the decline in growth increments is related to environmental changes associated with a decline in primary production which contributed to the decline in abundance and ultimate extinction of Diictodon.

  3. Eplerenone : a pharmacoeconomic review of its use in patients with post-myocardial infarction heart failure.

    Science.gov (United States)

    Croom, Katherine F; Plosker, Greg L

    2005-01-01

    Eplerenone (Inspra) is a selective aldosterone blocker. When added to standard medical therapy, eplerenone significantly improved morbidity and mortality in patients with left ventricular (LV) systolic dysfunction and clinical evidence of heart failure following acute myocardial infarction (MI), in a well designed, placebo-controlled trial known as EPHESUS (Eplerenone Post-acute myocardial infarction Heart failure Efficacy and SUrvival Study). Although eplerenone was generally well tolerated, it was associated with a higher incidence of hyperkalaemia than placebo.Cost-effectiveness analyses based on this trial have been performed in the US, The Netherlands, Germany, France and Spain. Direct medical costs were analysed based on prospectively collected resource-use data with local costs applied; modelling was conducted to calculate incremental costs per life-year or QALY gained, with survival curves assumed to remain parallel after treatment ended. Eplerenone was associated with a gain of 0.0304 life-years (approximately 11 days) compared with placebo during the study period. Based on these analyses, eplerenone was cost effective compared with placebo in patients with LV systolic dysfunction and heart failure after an MI when added to standard therapy for 16 months. The incremental cost per life-year gained for eplerenone versus placebo (for a range of three different life-expectancy projections) was 10,402-21,876 US dollars in the US (year 2001 costs, except for eplerenone [2004]) [equivalent to 12,274-25,814 euro; mid-2001 exchange rate], 5,365-12,795 euro for The Netherlands (year 2003 costs), 6,956-14,628 euro for Germany, 5,432-11,423 euro for France and 8,626-18,141 euro for Spain (year of costing not reported). The US, Dutch, French and Spanish analyses estimated that >90% of observations for incremental cost per life-year gained were below a threshold of 50,000 US dollars or 50,000 euro. Incremental costs per QALY gained for eplerenone versus placebo in the

  4. Incremental Integrity Checking: Limitations and Possibilities

    DEFF Research Database (Denmark)

    Christiansen, Henning; Martinenghi, Davide

    2005-01-01

    Integrity checking is an essential means for the preservation of the intended semantics of a deductive database. Incrementality is the only feasible approach to checking and can be obtained with respect to given update patterns by exploiting query optimization techniques. By reducing the problem...... to query containment, we show that no procedure exists that always returns the best incremental test (aka simplification of integrity constraints), and this according to any reasonable criterion measuring the checking effort. In spite of this theoretical limitation, we develop an effective procedure...

  5. Influences of the pulsed power supply on corona streamer appearance

    NARCIS (Netherlands)

    Veldhuizen, van E.M.; Briels, T.M.P.; Grabowski, L.R.; Pemen, A.J.M.; Ebert, U.M.

    2005-01-01

    Pulsed positive corona streamers in air are studied by images obtained with an intensified CCD camera. Using a switched capacitor power supply, thin streamers are observed that branch. A power supply consisting of a 4-stage transmission line transformer gives pulses of much higher current to the

  6. A search for the origins of a possible coronal mass ejection in the low corona

    Science.gov (United States)

    Neupert, Werner M.

    1988-01-01

    Evidence for coronal and chromospheric precursors of a hypothesized coronal mass ejection is sought in OSO-7 observations of a filament eruption and the subsequent flare. Large-scale changes in the corona above the active region were clearly present for at least several minutes before the flare, culminating in the activation and eruption of two widely separated filaments; the eruption of one of the preexisting filaments initiated magnetic reconnections and energy releases in the low corona, generating the observed chromospheric flare.

  7. Design of methodology for incremental compiler construction

    Directory of Open Access Journals (Sweden)

    Pavel Haluza

    2011-01-01

    Full Text Available The paper deals with possibilities of the incremental compiler construction. It represents the compiler construction possibilities for languages with a fixed set of lexical units and for languages with a variable set of lexical units, too. The methodology design for the incremental compiler construction is based on the known algorithms for standard compiler construction and derived for both groups of languages. Under the group of languages with a fixed set of lexical units there belong languages, where each lexical unit has its constant meaning, e.g., common programming languages. For this group of languages the paper tries to solve the problem of the incremental semantic analysis, which is based on incremental parsing. In the group of languages with a variable set of lexical units (e.g., professional typographic system TEX, it is possible to change arbitrarily the meaning of each character on the input file at any time during processing. The change takes effect immediately and its validity can be somehow limited or is given by the end of the input. For this group of languages this paper tries to solve the problem case when we use macros temporarily changing the category of arbitrary characters.

  8. The influence of electrohydrodynamic flow on the distribution of chemical species in positive corona

    Science.gov (United States)

    Pontiga, Francisco; Yanallah, Khelifa; Bouazza, R.; Chen, Junhong

    2015-09-01

    A numerical simulation of positive corona discharge in air, including the effect of electrohydrodynamic (EHD) motion of the gas, has been carried out. Air flow is assumed to be confined between two parallel plates, and corona discharge is produced around a thin wire, midway between the plates. Therefore, fluid dynamics equations, including electrical forces, have been solved together with the continuity equation of each neutral species. The plasma chemical model included 24 chemical reactions and ten neutral species, in addition to electrons and positive ions. The results of the simulation have shown that the influence of EHD flow on the spatial distributions of the species is quite different depending on the species. Hence, reactive species like atomic oxygen and atomic nitrogen are confined to the vicinity of the wire, and they are weakly affected by the EHD gas motion. In contrast, nitrogen oxides and ozone are efficiently dragged outside the active region of the corona discharge by the EHD flow. This work was supported by the Spanish Government Agency ``Ministerio de Ciencia e Innovación'' under Contract No. FIS2011-25161.

  9. Venus - 3D Perspective View of Latona Corona and Dali Chasma

    Science.gov (United States)

    1992-01-01

    This computer-generated perspective view of Latona Corona and Dali Chasma on Venus shows Magellan radar data superimposed on topography. The view is from the northeast and vertical exaggeration is 10 times. Exaggeration of relief is a common tool scientists use to detect relationships between structure (i.e. faults and fractures) and topography. Latona Corona, a circular feature approximately 1,000 kilometers (620 miles) in diameter whose eastern half is shown at the left of the image, has a relatively smooth, radar-bright raised rim. Bright lines or fractures within the corona appear to radiate away from its center toward the rim. The rest of the bright fractures in the area are associated with the relatively deep (approximately 3 kilometers or 1.9 miles) troughs of Dali Chasma. The Dali and Diana Chasma system consist of deep troughs that extend for 7,400 kilometers (4,588 miles) and are very distinct features on Venus. Those chasma connect the Ovda and Thetis highlands with the large volcanoes at Atla Regio and thus are considered to be the 'Scorpion Tail' of Aphrodite Terra. The broad, curving scarp resembles some of Earth's subduction zones where crustal plates are pushed over each other. The radar-bright surface at the highest elevation along the scarp is similar to surfaces in other elevated regions where some metallic mineral such as pyrite (fool's gold) may occur on the surface.

  10. 21 CFR 874.1070 - Short increment sensitivity index (SISI) adapter.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Short increment sensitivity index (SISI) adapter. 874.1070 Section 874.1070 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... increment sensitivity index (SISI) adapter. (a) Identification. A short increment sensitivity index (SISI...

  11. A Syntactic-Semantic Approach to Incremental Verification

    OpenAIRE

    Bianculli, Domenico; Filieri, Antonio; Ghezzi, Carlo; Mandrioli, Dino

    2013-01-01

    Software verification of evolving systems is challenging mainstream methodologies and tools. Formal verification techniques often conflict with the time constraints imposed by change management practices for evolving systems. Since changes in these systems are often local to restricted parts, an incremental verification approach could be beneficial. This paper introduces SiDECAR, a general framework for the definition of verification procedures, which are made incremental by the framework...

  12. EFFECTS OF FIELD-LINE TOPOLOGY ON ENERGY PROPAGATION IN THE CORONA

    Energy Technology Data Exchange (ETDEWEB)

    Candelaresi, S.; Pontin, D. I.; Hornig, G. [Division of Mathematics, University of Dundee, Dundee, DD1 4HN (United Kingdom)

    2016-12-01

    We study the effect of photospheric footpoint motions on magnetic field structures containing magnetic nulls. The footpoint motions are prescribed on the photospheric boundary as a velocity field that entangles the magnetic field. We investigate the propagation of the injected energy, the conversion of energy, emergence of current layers, and other consequences of the nontrivial magnetic field topology in this situation. These boundary motions lead initially to an increase in magnetic and kinetic energy. Following this, the energy input from the photosphere is partially dissipated and partially transported out of the domain through the Poynting flux. The presence of separatrix layers and magnetic null points fundamentally alters the propagation behavior of disturbances from the photosphere into the corona. Depending on the field-line topology close to the photosphere, the energy is either trapped or free to propagate into the corona.

  13. Experimental investigation and numerical modelling of positive corona discharge: ozone generation

    Energy Technology Data Exchange (ETDEWEB)

    Yanallah, K; Castellanos, A [Departamento de Electronica y Electromagnetismo, Universidad de Sevilla (Spain); Pontiga, F; Fernandez-Rueda, A [Departamento de FIsica Aplicada II, Universidad de Sevilla (Spain)

    2009-03-21

    The spatial distribution of the species generated in a wire-cylinder positive corona discharge in pure oxygen has been computed using a plasma chemistry model that includes the most significant reactions between electrons, ions, atoms and molecules. The plasma chemistry model is included in the continuity equations of each species, which are coupled with Poisson's equation for the electric field and the energy conservation equation for the gas temperature. The current-voltage characteristic measured in the experiments has been used as an input data to the numerical simulation. The numerical model is able to reproduce the basic structure of the positive corona discharge and highlights the importance of Joule heating on ozone generation. The average ozone density has been computed as a function of current intensity and compared with the experimental measurements of ozone concentration determined by UV absorption spectroscopy.

  14. Experimental investigation and numerical modelling of positive corona discharge: ozone generation

    International Nuclear Information System (INIS)

    Yanallah, K; Castellanos, A; Pontiga, F; Fernandez-Rueda, A

    2009-01-01

    The spatial distribution of the species generated in a wire-cylinder positive corona discharge in pure oxygen has been computed using a plasma chemistry model that includes the most significant reactions between electrons, ions, atoms and molecules. The plasma chemistry model is included in the continuity equations of each species, which are coupled with Poisson's equation for the electric field and the energy conservation equation for the gas temperature. The current-voltage characteristic measured in the experiments has been used as an input data to the numerical simulation. The numerical model is able to reproduce the basic structure of the positive corona discharge and highlights the importance of Joule heating on ozone generation. The average ozone density has been computed as a function of current intensity and compared with the experimental measurements of ozone concentration determined by UV absorption spectroscopy.

  15. Power-Law Statistics of Driven Reconnection in the Magnetically Closed Corona

    Science.gov (United States)

    Klimchuk, J. A.; DeVore, C. R.; Knizhnik, K. J.; Uritskiy, V. M.

    2018-01-01

    Numerous observations have revealed that power-law distributions are ubiquitous in energetic solar processes. Hard X-rays, soft X-rays, extreme ultraviolet radiation, and radio waves all display power-law frequency distributions. Since magnetic reconnection is the driving mechanism for many energetic solar phenomena, it is likely that reconnection events themselves display such power-law distributions. In this work, we perform numerical simulations of the solar corona driven by simple convective motions at the photospheric level. Using temperature changes, current distributions, and Poynting fluxes as proxies for heating, we demonstrate that energetic events occurring in our simulation display power-law frequency distributions, with slopes in good agreement with observations. We suggest that the braiding-associated reconnection in the corona can be understood in terms of a self-organized criticality model driven by convective rotational motions similar to those observed at the photosphere.

  16. Power-law Statistics of Driven Reconnection in the Magnetically Closed Corona

    Science.gov (United States)

    Knizhnik, K. J.; Uritsky, V. M.; Klimchuk, J. A.; DeVore, C. R.

    2018-01-01

    Numerous observations have revealed that power-law distributions are ubiquitous in energetic solar processes. Hard X-rays, soft X-rays, extreme ultraviolet radiation, and radio waves all display power-law frequency distributions. Since magnetic reconnection is the driving mechanism for many energetic solar phenomena, it is likely that reconnection events themselves display such power-law distributions. In this work, we perform numerical simulations of the solar corona driven by simple convective motions at the photospheric level. Using temperature changes, current distributions, and Poynting fluxes as proxies for heating, we demonstrate that energetic events occurring in our simulation display power-law frequency distributions, with slopes in good agreement with observations. We suggest that the braiding-associated reconnection in the corona can be understood in terms of a self-organized criticality model driven by convective rotational motions similar to those observed at the photosphere.

  17. Ozone generation by negative corona discharge: the effect of Joule heating

    International Nuclear Information System (INIS)

    Yanallah, K; Castellanos, A; Pontiga, F; Fernandez-Rueda, A; Belasri, A

    2008-01-01

    Ozone generation in pure oxygen using a wire-to-cylinder corona discharge reactor is experimentally and numerically investigated. Ozone concentration is determined by means of direct UV spectroscopy and the effects of Joule heating and ozone decomposition on the electrodes are analysed for different discharge gaps. The numerical model combines the physical processes in the corona discharge with the chemistry of ozone formation and destruction. The chemical kinetics model and the electrical model are coupled through Poisson's equation, and the current-voltage (CV) characteristic measured in experiments is used as input data to the numerical simulation. The numerical model is able to predict the radial distributions of electrons, ions, atoms and molecules for each applied voltage of the CV characteristic. In particular, the evolution of ozone density inside the discharge cell has been investigated as a function of current intensity and applied voltage

  18. Experimental investigation and numerical modelling of positive corona discharge: ozone generation

    Science.gov (United States)

    Yanallah, K; Pontiga, F; Fernández-Rueda, A; Castellanos, A

    2009-03-01

    The spatial distribution of the species generated in a wire-cylinder positive corona discharge in pure oxygen has been computed using a plasma chemistry model that includes the most significant reactions between electrons, ions, atoms and molecules. The plasma chemistry model is included in the continuity equations of each species, which are coupled with Poisson's equation for the electric field and the energy conservation equation for the gas temperature. The current-voltage characteristic measured in the experiments has been used as an input data to the numerical simulation. The numerical model is able to reproduce the basic structure of the positive corona discharge and highlights the importance of Joule heating on ozone generation. The average ozone density has been computed as a function of current intensity and compared with the experimental measurements of ozone concentration determined by UV absorption spectroscopy.

  19. Ozone generation by negative corona discharge: the effect of Joule heating

    Science.gov (United States)

    Yanallah, K.; Pontiga, F.; Fernández-Rueda, A.; Castellanos, A.; Belasri, A.

    2008-10-01

    Ozone generation in pure oxygen using a wire-to-cylinder corona discharge reactor is experimentally and numerically investigated. Ozone concentration is determined by means of direct UV spectroscopy and the effects of Joule heating and ozone decomposition on the electrodes are analysed for different discharge gaps. The numerical model combines the physical processes in the corona discharge with the chemistry of ozone formation and destruction. The chemical kinetics model and the electrical model are coupled through Poisson's equation, and the current-voltage (CV) characteristic measured in experiments is used as input data to the numerical simulation. The numerical model is able to predict the radial distributions of electrons, ions, atoms and molecules for each applied voltage of the CV characteristic. In particular, the evolution of ozone density inside the discharge cell has been investigated as a function of current intensity and applied voltage.

  20. A study on the influence of corona on currents and electromagnetic fields predicted by a nonlinear lightning return-stroke model

    Science.gov (United States)

    De Conti, Alberto; Silveira, Fernando H.; Visacro, Silvério

    2014-05-01

    This paper investigates the influence of corona on currents and electromagnetic fields predicted by a return-stroke model that represents the lightning channel as a nonuniform transmission line with time-varying (nonlinear) resistance. The corona model used in this paper allows the calculation of corona currents as a function of the radial electric field in the vicinity of the channel. A parametric study is presented to investigate the influence of corona parameters, such as the breakdown electric field and the critical electric field for the stable propagation of streamers, on predicted currents and electromagnetic fields. The results show that, regardless of the assumed corona parameters, the incorporation of corona into the nonuniform and nonlinear transmission line model under investigation modifies the model predictions so that they consistently reproduce most of the typical features of experimentally observed lightning electromagnetic fields and return-stroke speed profiles. In particular, it is shown that the proposed model leads to close vertical electric fields presenting waveforms, amplitudes, and decay with distance in good agreement with dart leader electric field changes measured in triggered lightning experiments. A comparison with popular engineering return-stroke models further confirms the model's ability to predict consistent electric field waveforms in the close vicinity of the channel. Some differences observed in the field amplitudes calculated with the different models can be related to the fact that current distortion, while present in the proposed model, is ultimately neglected in the considered engineering return-stroke models.

  1. Preliminary experiments on the growth of plants exposed to DC corona discharge in a hydroponics. Chokuryu corona hodenkadeno suiko sanbaini yoru shokubutsu seiikuno yobiteki kento

    Energy Technology Data Exchange (ETDEWEB)

    Shigemitsu, Tsukasa; Watanabe, Yasunori

    1988-01-01

    For the purpose of utilizing electrical phenomena to agriculture fields, preliminary experiments were carried out hydroponically to evaluate especially the effects of ion by DC corona discharge on the growth of plants such as lettuce or radish. The influences of various shapes of discharge electrodes on a water evaporation rate, ozone production rate and ion current change were studied, and the indirect stimulation effects on plants by more water evaporation under discharge, and the direct stimulation effects on plants with discharge by the electrode fixed 45cm above plants were studied. As a result, the water evaporation rate was 2 or 3 times more than that of control plots by positive or negative corona discharge, however, for the growth of plants, no remarkable direct or indirect stimulation effects by discharge were observed. As subjects, the clarification of water behavior change under discharge and of effects on plants in cellular level were pointed out to be necessary. (14 figs, 12 tabs, 12 refs)

  2. Revisiting single-point incremental forming and formability/failure diagrams by means of finite elements and experimentation

    DEFF Research Database (Denmark)

    Silva, M. B.; Skjødt, Martin; Bay, Niels

    2009-01-01

    framework accounts for the influence of major process parameters and their mutual interaction to be studied both qualitatively and quantitatively. It enables the conclusion to be drawn that the probable mode of material failure in SPIF is consistent with stretching, rather than shearing being the governing...... mode of deformation. The study of the morphology of the cracks combined with the experimentally observed suppression of neck formation enabled the authors to conclude that traditional forming limit curves are inapplicable for describing failure. Instead, fracture forming limit curves should be employed...... the forming limits determined by the analytical framework with experimental values. It is shown that agreement between analytical, finite element, and experimental results is good, implying that the previously proposed analytical framework can be utilized to explain the mechanics of deformation...

  3. Ignition method of corona discharge with modulation of the field in ion source of ion mobility spectrometer

    International Nuclear Information System (INIS)

    Gromov, Evgeniy

    2011-01-01

    The new method for the ignition of the corona discharge has been developed, which improves the stability of the ion mobility spectrometer and the resolution of the instrument. The system of forming a corona discharge without additional electrodes, which are used in a number of known structures for the pre-ionization, has been developed. This simplifies the design of the proposed source and an electronic control circuit. IMS technology is widely used in different civil and military fields for vapor-phase detection of explosive, narcotics, chemical warfare agents, biology molecules and so on. There are set of methods whose are used for the ionization of molecules under analysis. They are the following: radioactive ionization, ultraviolet photoionization, laser ionization, electric field ionization, corona spray ionization, electro spray ionization, roentgen ionization, and surface ionization. All these methods has their own advantages and disadvantages. A comparing of ion mobility spectra of non-polar hydrocarbons for photoionization, corona discharge ionization and 63 Ni ionization, had carried in. In our work we have investigated four types of IMS spectrometers whose use different sources for molecules under analysis ionization. They use radioactive ionization, ultraviolet photoionization, laser ionization, and roentgen ionization. The traditional explosives had investigated in experiments. In electricity, a corona discharge is an electrical discharge brought on by the ionization of a fluid surrounding a conductor, which occurs when the potential gradient (the strength of the electric field) exceeds a certain value, but conditions are insufficient to cause complete electrical breakdown or arcing.

  4. Shredder: GPU-Accelerated Incremental Storage and Computation

    OpenAIRE

    Bhatotia, Pramod; Rodrigues, Rodrigo; Verma, Akshat

    2012-01-01

    Redundancy elimination using data deduplication and incremental data processing has emerged as an important technique to minimize storage and computation requirements in data center computing. In this paper, we present the design, implementation and evaluation of Shredder, a high performance content-based chunking framework for supporting incremental storage and computation systems. Shredder exploits the massively parallel processing power of GPUs to overcome the CPU bottlenecks of content-ba...

  5. On the value of redundancy subject to common-cause failures: Toward the resolution of an on-going debate

    International Nuclear Information System (INIS)

    Hoepfer, V.M.; Saleh, J.H.; Marais, K.B.

    2009-01-01

    Common-cause failures (CCF) are one of the more critical and challenging issues for system reliability and risk analyses. Academic interest in modeling CCF, and more broadly in modeling dependent failures, has steadily grown over the years in the number of publications as well as in the sophistication of the analytical tools used. In the past few years, several influential articles have shed doubts on the relevance of redundancy arguing that 'redundancy backfires' through common-cause failures, and that the latter dominate unreliability, thus defeating the purpose of redundancy. In this work, we take issue with some of the results of these publications. In their stead, we provide a nuanced perspective on the (contingent) value of redundancy subject to common-cause failures. First, we review the incremental reliability and MTTF provided by redundancy subject to common-cause failures. Second, we introduce the concept and develop the analytics of the 'redundancy-relevance boundary': we propose this redundancy-relevance boundary as a design-aid tool that provides an answer to the following question: what level of redundancy is relevant or advantageous given a varying prevalence of common-cause failures? We investigate the conditions under which different levels of redundancy provide an incremental MTTF over that of the single component in the face of common-cause failures. Recognizing that redundancy comes at a cost, we also conduct a cost-benefit analysis of redundancy subject to common-cause failures, and demonstrate how this analysis modifies the redundancy-relevance boundary. We show how the value of redundancy is contingent on the prevalence of common-cause failures, the redundancy level considered, and the monadic cost-benefit ratio. Finally we argue that general unqualified criticism of redundancy is misguided, and efforts are better spent for example on understanding and mitigating the potential sources of common-cause failures rather than deriding the concept

  6. Waves and Turbulence in the Solar Corona: A Surplus of Sources and Sinks

    Science.gov (United States)

    Cranmer, Steven R.

    2018-06-01

    The Sun's corona is a hot, dynamic, and highly stochastic plasma environment, and we still do not yet understand how it is heated. Both the loop-filled coronal base and the extended acceleration region of the solar wind appear to be filled with waves and turbulent eddies. Models that invoke the dissipation of these magnetohydrodynamic (MHD) fluctuations have had some success in explaining the heating. In this presentation I will review some new insights about the different ways these waves are thought to be created and destroyed. For example: (1) Intergranular bright points in the photosphere are believed to extend upwards as coronal flux tubes, and their transverse oscillations are driven by the underlying convection. New high-resolution MHD simulations predict the kinetic energy spectra of the resulting coronal waves and serve as predictions for upcoming DKIST observations. (2) Magnetic reconnection in the supergranular network of the low corona can also generate MHD waves, and new Monte Carlo models of the resulting power spectra will be presented. The total integrated power in these waves is typically small in comparison to that of photosphere-driven waves, but they dominate the total spectrum at periods longer than about 30 minutes. (3) Because each magnetic field line in the corona is tied to at least one specific chromospheric footpoint (each with its own base pressure), the corona also plays host to field-aligned "density striations." These fluctuations vary with the supergranular network on timescales of roughly a day, but they also act as a spatially varying background through which the higher-frequency waves propagate. These multiple sources of space/time variability must be taken into account to properly understand off-limb measurements from CoMP and EIS/Hinode, as well as in-situ measurements from Parker Solar Probe.

  7. Ozone production by corona discharges during a convective event in DISCOVER-AQ Houston

    Science.gov (United States)

    Kotsakis, Alexander; Morris, Gary A.; Lefer, Barry; Jeon, Wonbae; Roy, Anirban; Minschwaner, Ken; Thompson, Anne M.; Choi, Yunsoo

    2017-07-01

    An ozonesonde launched near electrically active convection in Houston, TX on 5 September 2013 during the NASA DISCOVER-AQ project measured a large enhancement of ozone throughout the troposphere. A separate ozonesonde was launched from Smith Point, TX (∼58 km southeast of the Houston site) at approximately the same time as the launch from Houston and did not measure that enhancement. Furthermore, ozone profiles for the descent of both sondes agreed well with the ascending Smith Point profile, suggesting a highly localized event in both space and time in which an anomalously large enhancement of 70-100 ppbv appeared in the ascending Houston ozonesonde data. Compared to literature values, such an enhancement appears to be the largest observed to date. Potential sources of the localized ozone enhancement such as entrainment of urban or biomass burning emissions, downward transport from the stratosphere, photochemical production from lightning NOx, and direct ozone production from corona discharges were investigated using model simulations. We conclude that the most likely explanation for the large ozone enhancement is direct ozone production by corona discharges. Integrating the enhancement seen in the Houston ozone profile and using the number of electrical discharges detected by the NLDN (or HLMA), we estimate a production of 2.48 × 1028 molecules of ozone per flash which falls within the range of previously recorded values (9.89 × 1026-9.82 × 1028 molecules of ozone per flash). Since there is currently no parameterization for the direct production of ozone from corona discharges we propose the implementation of an equation into a chemical transport model. Ultimately, additional work is needed to further understand the occurrence and impact of corona discharges on tropospheric chemistry on short and long timescales.

  8. Diffusion models for corona formation in metagabbros from the Western Grenville Province, Canada

    Science.gov (United States)

    Grant, Shona M.

    1988-01-01

    Metagabbro bodies in SW Grenville Province display a variety of disequilibrium corona textures between spinel-clouded plagioclase and primary olivine or opaque oxide. Textural evidence favours a single-stage, subsolidus origin for the olivine coronas and diffusive mass transfer is believed to have been the rate-controlling process. Irreversible thermodynamics have been used to model two different garnet symplectite-bearing corona sequences in terms of steady state diffusion. In the models the flux of each component is related to the chemical potential gradients of all diffusing species by the Onsager or L-coefficients for diffusion. These coefficients are analogous to experimentally determined diffusion coefficients ( d), but relate the flux of components to chemical potential rather than concentration gradients. The major constraint on the relative values of Onsager coefficients comes from the observed mole fraction, X, of garnet in the symplectites; in (amph-gt) symplectites X {Gt/Sym}˜0.80, compared with ˜0.75 in (cpx-gt) symplectites. Several models using simple oxide components, and two different modifications of the reactant plagioclase composition, give the following qualitative results: the very low mobility of aluminium appears to control the rate of corona formation. Mg and Fe have similar mobility, and Mg can be up to 6 8 times more mobile than sodium. Determination of calcium mobility is problematical because of a proposed interaction with cross-coefficient terms reflecting “uphill” Ca-diffusion, i.e., calcium diffusing up its own chemical potential gradient. If these terms are not introduced, it is difficult to generate the required proportions of garnet in the symplectite. However, at moderate values of the cross-coefficient ratios, Mg can be up to 4 6 times more mobile than calcium ( L MgMg/LCaCaCaCa/LAlAl>3).

  9. Pulsed positive corona streamer propagation and branching

    International Nuclear Information System (INIS)

    Veldhuizen, E.M. van; Rutgers, W.R.

    2002-01-01

    The propagation and branching of pulsed positive corona streamers in a short gap is observed with high resolution in space and time. The appearance of the pre-breakdown phenomena can be controlled by the electrode configuration, the gas composition and the impedance of the pulsed power circuit. In a point-wire gap the positive corona shows much more branching than in the parallel plane gap with a protrusion. In air, the branching is more pronounced than in argon. The pulsed power circuit appears to operate in two modes, either as an inductive circuit creating a lower number of thick streamers or as a resistive circuit giving a higher number of thin streamers. A possible cause for branching is electrostatic repulsion of two parts of the streamer head. The electric field at the streamer head is limited, the maximum values found are ∼170 kV cm -1 in air and ∼100 kV cm -1 in argon. At these maximum field strengths, the electrons have 5-10 eV energy, so the ionization is dominated by two-step processes. Differences between argon and ambient air in the field strength at which streamers propagate are ascribed to the difference in de-excitation processes in noble and molecular gases. The fact that the pulsed power circuit can control the streamer structure is important for applications, but this effect must also be taken into account in fundamental studies of streamer propagation and branching. (author)

  10. Pulsed positive corona streamer propagation and branching

    Energy Technology Data Exchange (ETDEWEB)

    Veldhuizen, E.M. van [Department of Physics, Technische Universiteit Eindhoven, Eindhoven (Netherlands)]. E-mail: e.m.v.veldhuizen@tue.nl; Rutgers, W.R. [Department of Physics, Technische Universiteit Eindhoven, Eindhoven (Netherlands)

    2002-09-07

    The propagation and branching of pulsed positive corona streamers in a short gap is observed with high resolution in space and time. The appearance of the pre-breakdown phenomena can be controlled by the electrode configuration, the gas composition and the impedance of the pulsed power circuit. In a point-wire gap the positive corona shows much more branching than in the parallel plane gap with a protrusion. In air, the branching is more pronounced than in argon. The pulsed power circuit appears to operate in two modes, either as an inductive circuit creating a lower number of thick streamers or as a resistive circuit giving a higher number of thin streamers. A possible cause for branching is electrostatic repulsion of two parts of the streamer head. The electric field at the streamer head is limited, the maximum values found are {approx}170 kV cm{sup -1} in air and {approx}100 kV cm{sup -1} in argon. At these maximum field strengths, the electrons have 5-10 eV energy, so the ionization is dominated by two-step processes. Differences between argon and ambient air in the field strength at which streamers propagate are ascribed to the difference in de-excitation processes in noble and molecular gases. The fact that the pulsed power circuit can control the streamer structure is important for applications, but this effect must also be taken into account in fundamental studies of streamer propagation and branching. (author)

  11. Integrated 3D printing and corona poling process of PVDF piezoelectric films for pressure sensor application

    Science.gov (United States)

    Kim, Hoejin; Torres, Fernando; Wu, Yanyu; Villagran, Dino; Lin, Yirong; Tseng, Tzu-Liang(Bill

    2017-08-01

    This paper presents a novel process to fabricate piezoelectric films from polyvinylidene fluoride (PVDF) polymer using integrated fused deposition modeling (FDM) 3D printing and corona poling technique. Corona poling is one of many effective poling processes that has received attention to activate PVDF as a piezoelectric responsive material. The corona poling process occurs when a PVDF polymer is exposed to a high electric field created and controlled through an electrically charged needle and a grid electrode under heating environment. FDM 3D printing has seen extensive progress in fabricating thermoplastic materials and structures, including PVDF. However, post processing techniques such as poling is needed to align the dipoles in order to gain piezoelectric properties. To further simplify the piezoelectric sensors and structures fabrication process, this paper proposes an integrated 3D printing process with corona poling to fabricate piezoelectric PVDF sensors without post poling process. This proposed process, named ‘Integrated 3D Printing and Corona poling process’ (IPC), uses the 3D printer’s nozzle and heating bed as anode and cathode, respectively, to create poling electric fields in a controlled heating environment. The nozzle travels along the programmed path with fixed distance between nozzle tip and sample’s top surface. Simultaneously, the electric field between the nozzle and bottom heating pad promotes the alignment of dipole moment of PVDF molecular chains. The crystalline phase transformation and output current generated by printed samples under different electric fields in this process were characterized by a Fourier transform infrared spectroscopy and through fatigue load frame. It is demonstrated that piezoelectric PVDF films with enhanced β-phase percentage can be fabricated using the IPC process. In addition, mechanical properties of printed PVDF was investigated by tensile testing. It is expected to expand the use of additive

  12. Real-time monitoring system for improving corona electrostatic separation in the process of recovering waste printed circuit boards.

    Science.gov (United States)

    Li, Jia; Zhou, Quan; Xu, Zhenming

    2014-12-01

    Although corona electrostatic separation is successfully used in recycling waste printed circuit boards in industrial applications, there are problems that cannot be resolved completely, such as nonmetal particle aggregation and spark discharge. Both of these problems damage the process of separation and are not easy to identify during the process of separation in industrial applications. This paper provides a systematic study on a real-time monitoring system. Weight monitoring systems were established to continuously monitor the separation process. A Virtual Instrumentation program written by LabVIEW was utilized to sample and analyse the mass increment of the middling product. It includes four modules: historical data storage, steady-state analysis, data computing and alarm. Three kinds of operating conditions were used to verify the applicability of the monitoring system. It was found that the system achieved the goal of monitoring during the separation process and realized the function of real-time analysis of the received data. The system also gave comprehensible feedback on the accidents of material blockages in the feed inlet and high-voltage spark discharge. With the warning function of the alarm system, the whole monitoring system could save the human cost and help the new technology to be more easily applied in industry. © The Author(s) 2014.

  13. Destruction of Sun-Grazing Comet C-2011 N3 (SOHO) Within the Low Solar Corona

    Science.gov (United States)

    Schrijver, C. J.; Brown, J. C.; Battams, K.; Saint-Hilaire, P.; Liu, W.; Hudson, H.; Pesnell, W. D.

    2012-01-01

    Observations of comets in Sun-grazing orbits that survive solar insolation long enough to penetrate into the Suns inner corona provide information on the solar atmosphere and magnetic field as well as on the makeup of the comet. On 6 July 2011, the Solar Dynamics Observatory (SDO) observed the demise of comet C2011 N3 (SOHO) within the low solar corona in five wavelength bands in the extreme ultraviolet (EUV). The comet penetrated to within 0.146 solarradius (100,000 kilometers) of the solar surface before its EUV signal disappeared.

  14. Ozone generation by negative corona discharge: the effect of Joule heating

    Energy Technology Data Exchange (ETDEWEB)

    Yanallah, K; Castellanos, A [Departamento de Electronica y Electromagnetismo, Universidad de Sevilla (Spain); Pontiga, F; Fernandez-Rueda, A [Departamento de Fisica Aplicada II, Universidad de Sevilla (Spain); Belasri, A [Laboratoire de Physique des Plasmas, des Materiaux Conducteur et Leurs Applications, Universite d' Oran (Algeria)

    2008-10-07

    Ozone generation in pure oxygen using a wire-to-cylinder corona discharge reactor is experimentally and numerically investigated. Ozone concentration is determined by means of direct UV spectroscopy and the effects of Joule heating and ozone decomposition on the electrodes are analysed for different discharge gaps. The numerical model combines the physical processes in the corona discharge with the chemistry of ozone formation and destruction. The chemical kinetics model and the electrical model are coupled through Poisson's equation, and the current-voltage (CV) characteristic measured in experiments is used as input data to the numerical simulation. The numerical model is able to predict the radial distributions of electrons, ions, atoms and molecules for each applied voltage of the CV characteristic. In particular, the evolution of ozone density inside the discharge cell has been investigated as a function of current intensity and applied voltage.

  15. The nonuniform magnetohydrodynamic nature of the solar corona. III. Cylindrical geometry

    International Nuclear Information System (INIS)

    De ville, A.; Priest, E.R.

    1989-01-01

    The method developed by Priest in 1988 for modeling steady MHD disturbances in the solar corona is extended to a cylindrical geometry, which is more realistic for three-dimensional structures, such as plumes and coronal holes, which are observed in the corona. Both axial symmetric and nonaxial magnetic fields are treated. The basic characteristics of the axisymmetric solutions are found to be similar to the previous Cartesian case. Quantitatively, the interactions are stronger in the central region and weaker at the outer boundary. Pressure gradients are also found to be smaller. Solutions dependent on all three spatial variables exhibit an asymmetry because of the angular dependence. They depend upon the azimuthal magnetic field imposed at the coronal base. The solutions found in this paper may be useful in interpreting the physics of MHD interactions observed in numerical experiments and also in the solar atmosphere

  16. Magnetic tornadoes as energy channels into the solar corona.

    Science.gov (United States)

    Wedemeyer-Böhm, Sven; Scullion, Eamon; Steiner, Oskar; van der Voort, Luc Rouppe; de la Cruz Rodriguez, Jaime; Fedun, Viktor; Erdélyi, Robert

    2012-06-27

    Heating the outer layers of the magnetically quiet solar atmosphere to more than one million kelvin and accelerating the solar wind requires an energy flux of approximately 100 to 300 watts per square metre, but how this energy is transferred and dissipated there is a puzzle and several alternative solutions have been proposed. Braiding and twisting of magnetic field structures, which is caused by the convective flows at the solar surface, was suggested as an efficient mechanism for atmospheric heating. Convectively driven vortex flows that harbour magnetic fields are observed to be abundant in the photosphere (the visible surface of the Sun). Recently, corresponding swirling motions have been discovered in the chromosphere, the atmospheric layer sandwiched between the photosphere and the corona. Here we report the imprints of these chromospheric swirls in the transition region and low corona, and identify them as observational signatures of rapidly rotating magnetic structures. These ubiquitous structures, which resemble super-tornadoes under solar conditions, reach from the convection zone into the upper solar atmosphere and provide an alternative mechanism for channelling energy from the lower into the upper solar atmosphere.

  17. Simulation and comparison of perturb and observe and incremental ...

    Indian Academy of Sciences (India)

    Perturb and Observe (P & O) algorithm and Incremental conductance algorithm. ... Keywords. Solar array; insolation; MPPT; modelling, P & O; incremental conductance. 1. .... voltage level. It is also ..... Int. J. Advances in Eng. Technol. 133–148.

  18. Efficient incremental relaying

    KAUST Repository

    Fareed, Muhammad Mehboob

    2013-07-01

    We propose a novel relaying scheme which improves the spectral efficiency of cooperative diversity systems by utilizing limited feedback from destination. Our scheme capitalizes on the fact that relaying is only required when direct transmission suffers deep fading. We calculate the packet error rate for the proposed efficient incremental relaying scheme with both amplify and forward and decode and forward relaying. Numerical results are also presented to verify their analytical counterparts. © 2013 IEEE.

  19. New Techniques Used in Modeling the 2017 Total Solar Eclipse: Energizing and Heating the Large-Scale Corona

    Science.gov (United States)

    Downs, Cooper; Mikic, Zoran; Linker, Jon A.; Caplan, Ronald M.; Lionello, Roberto; Torok, Tibor; Titov, Viacheslav; Riley, Pete; Mackay, Duncan; Upton, Lisa

    2017-08-01

    Over the past two decades, our group has used a magnetohydrodynamic (MHD) model of the corona to predict the appearance of total solar eclipses. In this presentation we detail recent innovations and new techniques applied to our prediction model for the August 21, 2017 total solar eclipse. First, we have developed a method for capturing the large-scale energized fields typical of the corona, namely the sheared/twisted fields built up through long-term processes of differential rotation and flux-emergence/cancellation. Using inferences of the location and chirality of filament channels (deduced from a magnetofrictional model driven by the evolving photospheric field produced by the Advective Flux Transport model), we tailor a customized boundary electric field profile that will emerge shear along the desired portions of polarity inversion lines (PILs) and cancel flux to create long twisted flux systems low in the corona. This method has the potential to improve the morphological shape of streamers in the low solar corona. Second, we apply, for the first time in our eclipse prediction simulations, a new wave-turbulence-dissipation (WTD) based model for coronal heating. This model has substantially fewer free parameters than previous empirical heating models, but is inherently sensitive to the 3D geometry and connectivity of the coronal field---a key property for modeling/predicting the thermal-magnetic structure of the solar corona. Overall, we will examine the effect of these considerations on white-light and EUV observables from the simulations, and present them in the context of our final 2017 eclipse prediction model.Research supported by NASA's Heliophysics Supporting Research and Living With a Star Programs.

  20. Dynamics of the transition corona

    International Nuclear Information System (INIS)

    Masson, Sophie; McCauley, Patrick; Golub, Leon; Reeves, Katharine K.; DeLuca, Edward E.

    2014-01-01

    Magnetic reconnection between the open and closed magnetic fields in the corona is believed to play a crucial role in the corona/heliosphere coupling. At large scale, the exchange of open/closed connectivity is expected to occur in pseudo-streamer (PS) structures. However, there is neither clear observational evidence of how such coupling occurs in PSs, nor evidence for how the magnetic reconnection evolves. Using a newly developed technique, we enhance the off-limb magnetic fine structures observed with the Atmospheric Imaging Assembly and identify a PS-like feature located close to the northern coronal hole. We first identify that the magnetic topology associated with the observation is a PS, null-point (NP) related topology bounded by the open field. By comparing the magnetic field configuration with the EUV emission regions, we determined that most of the magnetic flux associated with plasma emission are small loops below the PS basic NP and open field bounding the PS topology. In order to interpret the evolution of the PS, we referred to a three-dimensional MHD interchange reconnection modeling the exchange of connectivity between small closed loops and the open field. The observed PS fine structures follow the dynamics of the magnetic field before and after reconnecting at the NP obtained by the interchange model. Moreover, the pattern of the EUV plasma emission is the same as the shape of the expected plasma emission location derived from the simulation. These morphological and dynamical similarities between the PS observations and the results from the simulation strongly suggest that the evolution of the PS, and in particular the opening/closing of the field, occurs via interchange/slipping reconnection at the basic NP of the PS. Besides identifying the mechanism at work in the large-scale coupling between the open and closed fields, our results highlight that interchange reconnection in PSs is a gradual physical process that differs from the impulsive

  1. Analysis of euv limb-brightening observations from ATM. I. Model for the transition layer and the corona

    Energy Technology Data Exchange (ETDEWEB)

    Mariska, J T; Withbroe, G L [Harvard Coll. Observatory, Cambridge, Mass. (USA)

    1975-09-01

    Limb-brightening curves for euv resonance lines of O VI and Mg X have been constructed from spectroheliograms (5 sec resolution) of quiet limb regions observed with the Harvard experiment on Skylab. The observations are interpreted with a simple model for the transition layer and the corona. A comparison of theoretical and observed limb-brightening curves indicates that the lower boundary of the corona, where T/sub e/ = 10/sup 6/K, is at a height of about 8000 km in typical quiet areas. For 1.01 R(sun) approximately = to or < r < 1.25(sun), the corona can be represented by a homogeneous model in hydrostatic equilibrium with a temperature of 10/sup 6/K for 1.01 R(sun) approximately = to or < r < 1.1 R(sun) and 1.1x10/sup 6/K for r > approximately = to 1.1 R(sun). The model for the transition layer is inhomogeneous, with the temperature gradient a factor of 3 shallower in the network than in the intranetwork regions. It appears that spicules should be included in the model in order to account for the penetration into the corona of cool (T/sub e/ < 10/sup 6/K) euv-emitting material to heights up to 20000 km above the limb.

  2. Electrons in the solar corona. Pt. 3. Coronal streamers analysis from balloon-borne coronagraph

    Energy Technology Data Exchange (ETDEWEB)

    Dollfus, A; Mouradian, Z [Observatoire de Paris, Section de Meudon, 92 (France)

    1981-03-01

    During a balloon flight in France on September 13, 1971, at altitude 32 000 m, the solar corona was cinematographed from 2 to 5 Rsub(sun) during 5 hr, with an externally occulted coronagraph. Motions in coronal features, when they occur, exhibit deformations of structures with velocities not exceeding a few 10 km s/sup -1/; several streamers were often involved simultaneously; these variations are compatible with magnetic changes or sudden reorganizations of lines of forces. Intensity and polarization measurements give the electron density with height in the quiet corona above the equator. Electron density gradient for one of the streamers gives a temperature of 1.6 x 10/sup 6/ K and comparisons with the on-board Apollo 16 coronal observation of 31 July, 1971 are compatible with the extension of this temperature up to 25 Rsub(sun). Three-dimensional structures and localizations of the streamers are deduced from combined photometry, polarimetry and ground-based K coronametry. Three of the four coronal streamers analysed have their axis bent with height towards the direction of the solar rotation, as if the upper corona has a rotation slightly faster than the chromosphere.

  3. A high-current rail-type gas switch with preionization by an additional corona discharge

    Energy Technology Data Exchange (ETDEWEB)

    Antipov, E. I.; Belozerov, O. S.; Krastelev, E. G., E-mail: ekrastelev@yandex.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation)

    2016-12-15

    The characteristics of a high-current rail-type gas switch with preionization of the gas (air) in a spark gap by an additional corona discharge are investigated. The experiments were performed in a voltage range of 10–45 kV using a two-electrode switch consisting of two cylindrical electrodes with a diameter of 22 mm and a length of 100 mm and a set of laterally located corona-discharge needles. The requirements for the position and size of the needles are defined for which a corona discharge is ignited before a breakdown of the main gap and does not change to a sparking form, and the entire length of the rail electrodes is efficiently used. The fulfillment of these requirements ensures stable operation of the switch with a small variation of the pulse breakdown voltage, which is not more than 1% for a fixed voltage-pulse rise time in the range from 150 ns to 3.5 μs. A short delay time of the switch breakdown makes it possible to control the two-electrode switch by an overvoltage pulse of nanosecond duration.

  4. A high-current rail-type gas switch with preionization by an additional corona discharge

    International Nuclear Information System (INIS)

    Antipov, E. I.; Belozerov, O. S.; Krastelev, E. G.

    2016-01-01

    The characteristics of a high-current rail-type gas switch with preionization of the gas (air) in a spark gap by an additional corona discharge are investigated. The experiments were performed in a voltage range of 10–45 kV using a two-electrode switch consisting of two cylindrical electrodes with a diameter of 22 mm and a length of 100 mm and a set of laterally located corona-discharge needles. The requirements for the position and size of the needles are defined for which a corona discharge is ignited before a breakdown of the main gap and does not change to a sparking form, and the entire length of the rail electrodes is efficiently used. The fulfillment of these requirements ensures stable operation of the switch with a small variation of the pulse breakdown voltage, which is not more than 1% for a fixed voltage-pulse rise time in the range from 150 ns to 3.5 μs. A short delay time of the switch breakdown makes it possible to control the two-electrode switch by an overvoltage pulse of nanosecond duration.

  5. Calculation of the Incremental Conditional Core Damage Probability on the Extension of Allowed Outage Time

    International Nuclear Information System (INIS)

    Kang, Dae Il; Han, Sang Hoon

    2006-01-01

    RG 1.177 requires that the conditional risk (incremental conditional core damage probability and incremental conditional large early release probability: ICCDP and ICLERP), given that a specific component is out of service (OOS), be quantified for a permanent change of the allowed outage time (AOT) of a safety system. An AOT is the length of time that a particular component or system is permitted to be OOS while the plant is operating. The ICCDP is defined as: ICCDP = [(conditional CDF with the subject equipment OOS)- (baseline CDF with nominal expected equipment unavailabilities)] [duration of the single AOT under consideration]. Any event enabling the component OOS can initiate the time clock for the limiting condition of operation for a nuclear power plant. Thus, the largest ICCDP among the ICCDPs estimated from any occurrence of the basic events for the component fault tree should be selected for determining whether the AOT can be extended or not. If the component is under a preventive maintenance, the conditional risk can be straightforwardly calculated without changing the CCF probability. The main concern is the estimations of the CCF probability because there are the possibilities of the failures of other similar components due to the same root causes. The quantifications of the risk, given that a subject equipment is in a failed state, are performed by setting the identified event of subject equipment to TRUE. The CCF probabilities are also changed according to the identified failure cause. In the previous studies, however, the ICCDP was quantified with the consideration of the possibility of a simultaneous occurrence of two CCF events. Based on the above, we derived the formulas of the CCF probabilities for the cases where a specific component is in a failed state and we presented sample calculation results of the ICCDP for the low pressure safety injection system (LPSIS) of Ulchin Unit 3

  6. Entity versus incremental theories predict older adults' memory performance.

    Science.gov (United States)

    Plaks, Jason E; Chasteen, Alison L

    2013-12-01

    The authors examined whether older adults' implicit theories regarding the modifiability of memory in particular (Studies 1 and 3) and abilities in general (Study 2) would predict memory performance. In Study 1, individual differences in older adults' endorsement of the "entity theory" (a belief that one's ability is fixed) or "incremental theory" (a belief that one's ability is malleable) of memory were measured using a version of the Implicit Theories Measure (Dweck, 1999). Memory performance was assessed with a free-recall task. Results indicated that the higher the endorsement of the incremental theory, the better the free recall. In Study 2, older and younger adults' theories were measured using a more general version of the Implicit Theories Measure that focused on the modifiability of abilities in general. Again, for older adults, the higher the incremental endorsement, the better the free recall. Moreover, as predicted, implicit theories did not predict younger adults' memory performance. In Study 3, participants read mock news articles reporting evidence in favor of either the entity or incremental theory. Those in the incremental condition outperformed those in the entity condition on reading span and free-recall tasks. These effects were mediated by pretask worry such that, for those in the entity condition, higher worry was associated with lower performance. Taken together, these studies suggest that variation in entity versus incremental endorsement represents a key predictor of older adults' memory performance. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  7. Interpretation of zircon coronae textures from metapelitic granulites of the Ivrea–Verbano Zone, northern Italy: two-stage decomposition of Fe–Ti oxides

    Directory of Open Access Journals (Sweden)

    E. Kovaleva

    2017-07-01

    Full Text Available In this study, we report the occurrence of zircon coronae textures in metapelitic granulites of the Ivrea–Verbano Zone. Unusual zircon textures are spatially associated with Fe–Ti oxides and occur as (1 vermicular-shaped aggregates 50–200 µm long and 5–20 µm thick and as (2 zircon coronae and fine-grained chains, hundreds of micrometers long and ≤ 1 µm thick, spatially associated with the larger zircon grains. Formation of such textures is a result of zircon precipitation during cooling after peak metamorphic conditions, which involved: (1 decomposition of Zr-rich ilmenite to Zr-bearing rutile, and formation of the vermicular-shaped zircon during retrograde metamorphism and hydration; and (2 recrystallization of Zr-bearing rutile to Zr-depleted rutile intergrown with quartz, and precipitation of the submicron-thick zircon coronae during further exhumation and cooling. We also observed hat-shaped grains that are composed of preexisting zircon overgrown by zircon coronae during stage (2. Formation of vermicular zircon (1 preceded ductile and brittle deformation of the host rock, as vermicular zircon is found both plastically and cataclastically deformed. Formation of thin zircon coronae (2 was coeval with, or immediately after, brittle deformation as coronae are found to fill fractures in the host rock. The latter is evidence of local, fluid-aided mobility of Zr. This study demonstrates that metamorphic zircon can nucleate and grow as a result of hydration reactions and mineral breakdown during cooling after granulite-facies metamorphism. Zircon coronae textures indicate metamorphic reactions in the host rock and establish the direction of the reaction front.

  8. Enhanced stiffness of silk-like fibers by loop formation in the corona leads to stronger gels.

    Science.gov (United States)

    Rombouts, Wolf H; Domeradzka, Natalia E; Werten, Marc W T; Leermakers, Frans A M; de Vries, Renko J; de Wolf, Frits A; van der Gucht, Jasper

    2016-11-01

    We study the self-assembly of protein polymers consisting of a silk-like block flanked by two hydrophilic blocks, with a cysteine residue attached to the C-terminal end. The silk blocks self-assemble to form fibers while the hydrophilic blocks form a stabilizing corona. Entanglement of the fibers leads to the formation of hydrogels. Under oxidizing conditions the cysteine residues form disulfide bridges, effectively connecting two corona chains at their ends to form a loop. We find that this leads to a significant increase in the elastic modulus of the gels. Using atomic force microscopy, we show that this stiffening is due to an increase of the persistence length of the fibers. Self-consistent-field calculations indicate a slight decrease of the lateral pressure in the corona upon loop formation. We argue that this small decrease in the repulsive interactions affects the stacking of the silk-like blocks in the core, resulting in a more rigid fiber. © 2016 Wiley Periodicals, Inc.

  9. A Spectroscopic Study of the Energy Deposition in the Low Corona: Connecting Global Modeling to Observations

    Science.gov (United States)

    Szente, J.; Landi, E.; Toth, G.; Manchester, W.; van der Holst, B.; Gombosi, T. I.

    2017-12-01

    We are looking for signatures of coronal heating process using a physically consistent 3D MHD model of the global corona. Our approach is based on the Alfvén Wave Solar atmosphere Model (AWSoM), with a domain ranging from the upper chromosphere (50,000K) to the outer corona, and the solar wind is self-consistently heated and accelerated by the dissipation of low-frequency Alfvén waves. Taking into account separate electron and anisotropic proton heating, we model the coronal plasma at the same time and location as observed by Hinode/EIS, and calculate the synthetic spectra that we compare with the observations. With the obtained synthetic spectra, we are able to directly calculate line intensities, line width, thermal and nonthermal motions, line centroids, Doppler shift distributions and compare our predictions to real measurements. Our results directly test the extent to which Alfvénic heating is present in the low corona.

  10. Experimental study on uniaxial ratcheting deformation and failure behavior of 304 stainless steel

    International Nuclear Information System (INIS)

    Yang Xianjie; Gao Qing; Cai Lixun; Liu Yujie

    2004-01-01

    In the paper, the tests of cyclic strain ratcheting and low cycle fatigue for 304 stainless steel under uniaxial cyclic straining were carried out to systematically explore the deformation and failure behavior of the material. The experimental study shows that the cyclic strain ratcheting deformation behavior of the material is different from either the uniaxial monotonic tensile one or the cyclic deformation one under the symmetrical cyclic straining with the same strain amplitude, and the strain ratcheting deformation and failure behaviors depend on both the plastic strain amplitude and the strain increment at the cyclic maximum strain. Some significant results were observed

  11. Temporal and spatial evolution of EHD particle flow onset in air in a needle-to-plate negative DC corona discharge

    International Nuclear Information System (INIS)

    Mizeraczyk, J; Berendt, A; Podlinski, J

    2016-01-01

    In this paper we present images showing the temporal and spatial evolution of the electrohydrodynamic (EHD) flow of dust particles (cigarette smoke) suspended in still air in a needle-to-plate negative DC corona discharge arrangement just after the corona onset, i.e. in the first stage of development of the EHD particle flow. The experimental apparatus for our study of the EHD flow onset consisted of a needle-to-plate electrode arrangement, high voltage power supply and time-resolved EHD imaging system based on 2D time-resolved particle image velocimetry equipment. The time-resolved flow images clearly show the formation of a ball-like flow structure at the needle tip just after the corona discharge onset, and its evolution into a mushroom-like object moving to the collecting electrode. After a certain time, when the mushroom-like object is still present in the interelectrode gap a second mushroom-like object forms near the needle electrode and starts to move towards the collecting electrode. Before the first mushroom-like object reaches the collecting electrode several similar mushroom-like objects can be formed and presented simultaneously in the interelectrode gap. They look like a series of mushroom-like minijets shot from the needle electrode vicinity towards the collecting electrode. The simultaneous presence of mushroom-like minijets in the interelectrode gap in the corona discharge in particle-seeded air resembles the negative-ion-charged ‘clouds’ (induced by the Trichel pulses) traversing simultaneously the interelectrode gap of the corona discharge in air, predicted a long time ago by Loeb, and Lama and Gallo and recently by Dordizadeh et al . Analysing the time behaviours of the mushroom-like minijets and current waveform in the corona discharge in particle-seeded air, we found that the Trichel pulse trains, formed just after the corona onset initiates the mushroom-like minijets. The first stage of development of the EHD particle flow, the area of

  12. Numerical and Experimental Study of Amplitude Modulated Positive Corona Discharge

    Directory of Open Access Journals (Sweden)

    Pablo Martín GOMEZ

    2014-12-01

    Full Text Available The electrical behavior of a modulated positive corona discharge loudspeaker was studied. A coaxial transducer in air was built using a central copper wire of 75 mm radius (inner electrode and a perforated tube of 11 mm (outer electrode. A high voltage DC supply provided the bias current and a sinusoidal signal was superimposed to measure the discharge admittance. The experimental results could not be matched to previously reported equivalent circuits with fixed components. Using the basic equations that describe the ion motion, a numerical model was proposed. The computed values matched well the experimental data and suggested an equivalent circuit composed of frequency dependent conductance and capacitance. This dependence is closely related to the ion travel time between electrodes (transit time. Simulations carried out at several inter-electrode distances could be synthesized in a single plot where the different results overlap and further emphasize the role of the transit time. This numerical model proved to be an efficient tool to simulate and design modulated corona transducers.

  13. Lifetime costs of lung transplantation : Estimation of incremental costs

    NARCIS (Netherlands)

    VanEnckevort, PJ; Koopmanschap, MA; Tenvergert, EM; VanderBij, W; Rutten, FFH

    1997-01-01

    Despite an expanding number of centres which provide lung transplantation, information about the incremental costs of lung transplantation is scarce. From 1991 until 1995, in The Netherlands a technology assessment was performed which provided information about the incremental costs of lung

  14. Green corona, geomagnetic activity and radar meteor rates

    International Nuclear Information System (INIS)

    Prikryl, P.

    1979-01-01

    The short-term dependence of radar meteor rates on geomagnetic activity and/or central meridian passage (CMP) of bright or faint green corona regions is studied. A superimposed-epoch analysis was applied to radar meteor observations from the Ottawa patrol radar (Springhill, Ont.) and Ksub(p)-indices of geomagnetic activity for the period 1963 to 1967. During the minimum of solar activity (1963 to 1965) the CMP of bright coronal regions was followed by the maximum in the daily rates of persistent meteor echoes (>=4s), and the minimum in the daily sums of Ksub(p)-indices whereas the minimum or the maximum, respectively, occurs after the CMP of faint coronal regions. The time delay between the CMP of coronal structures and the corresponding maxima or minima is found to be 3 to 4 days. However, for the period immediately after the minimum of solar activity (1966 to 1967) the above correlation with the green corona is void both for the geomagnetic activity and radar meteor rates. An inverse correlation was found between the radar meteor rates and the geomagnetic activity irrespective of the solar activity. The observed effect can be ascribed to the solar-wind-induced ''geomagnetic'' heating of the upper atmosphere and to the subsequent change in the density gradient in the meteor zone. (author)

  15. Plasma chemical and electrical modelling of a negative DC corona in pure oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Soria, C [Departamento de Electronica y Electromagnetismo, Universidad de Sevilla, Av. Reina Mercedes s/n, 41012 Sevilla (Spain); Pontiga, F [Departamento de FIsica Aplicada II, Universidad de Sevilla, Av. Reina Mercedes s/n, 41012 Sevilla (Spain); Castellanos, A [Departamento de Electronica y Electromagnetismo, Universidad de Sevilla, Av. Reina Mercedes s/n, 41012 Sevilla (Spain)

    2004-02-01

    A complex plasma chemical and electrical model of a negative stationary wire-to-cylinder corona discharge in pure oxygen is presented. The corona discharge is assumed to have axial and azimuthal symmetry. The experimental current-voltage characteristic is required as input data, but there are no other adjustable or empirical parameters. The experimental validation of the results of the model comes from its prediction of the ozone concentration. The role played by different reactions and species is analysed in detail using the results of the simulation. The effect of the gas temperature and of the decomposition of ozone at the electrodes is also investigated. The agreement between the model and the experiments is excellent when the effect of ozone decomposition at the electrodes is taken into account.

  16. Plasma chemical and electrical modelling of a negative DC corona in pure oxygen

    International Nuclear Information System (INIS)

    Soria, C; Pontiga, F; Castellanos, A

    2004-01-01

    A complex plasma chemical and electrical model of a negative stationary wire-to-cylinder corona discharge in pure oxygen is presented. The corona discharge is assumed to have axial and azimuthal symmetry. The experimental current-voltage characteristic is required as input data, but there are no other adjustable or empirical parameters. The experimental validation of the results of the model comes from its prediction of the ozone concentration. The role played by different reactions and species is analysed in detail using the results of the simulation. The effect of the gas temperature and of the decomposition of ozone at the electrodes is also investigated. The agreement between the model and the experiments is excellent when the effect of ozone decomposition at the electrodes is taken into account

  17. Nanoparticle electrostatic loss within corona needle charger during particle-charging process

    International Nuclear Information System (INIS)

    Huang Chenghsiung; Alonso, Manuel

    2011-01-01

    A numerical investigation has been carried out to examine the electrostatic loss of nanoparticles in a corona needle charger. Two-dimensional flow field, electric field, particle charge, and particle trajectory were simulated to obtain the electrostatic deposition loss at different conditions. Simulation of particle trajectories shows that the number of charges per particle during the charging process depends on the particle diameter, radial position from the symmetry axis, applied voltage, Reynolds number, and axial distance along the charger. The numerical results of nanoparticle electrostatic loss agreed fairly well with available experimental data. The results reveal that the electrostatic loss of nanoparticles increases with increasing applied voltage and electrical mobility of particles; and with decreasing particle diameter and Reynolds number. A regression equation closely fitted the obtained numerical results for different conditions. The equation is useful for directly calculating the electrostatic loss of nanoparticles in the corona needle charger during particle-charging process.

  18. Pulsed Corona Plasma Technology for Treating VOC Emissions from Pulp Mills

    International Nuclear Information System (INIS)

    Fridman, Alexander A.; Gutsol, Alexander; Kennedy, Lawrence A.; Saveliev, Alexei V.; Korobtsev, Sergey V.; Shiryaevsky, Valery L.; Medvedev, Dmitry

    2004-01-01

    Under the DOE Office of Industrial Technologies Forest Products program various plasma technologies were evaluated under project FWP 49885 ''Experimental Assessment of Low-Temperature Plasma Technologies for Treating Volatile Organic Compound Emissions from Pulp Mills and Wood Products Plants''. The heterogeneous pulsed corona discharge was chosen as the best non-equilibrium plasma technology for control of the vent emissions from HVLC Brownstock Washers. The technology for removal of Volatile Organic Compounds (VOCs) from gas emissions with conditions typical of the exhausts of the paper industry by means of pulsed corona plasma techniques presented in this work. For the compounds of interest in this study (methanol, acetone, dimethyl sulfide and ? -pinene), high removal efficiencies were obtained with power levels competitive with the present technologies for the VOCs removal. Laboratory experiments were made using installation with the average power up to 20 W. Pilot plant prepared for on-site test has average plasma power up to 6.4 kW. The model of the Pilot Plant operation is presented

  19. Ozone formation by gaseous corona discharge generated above aqueous solution

    Czech Academy of Sciences Publication Activity Database

    Lukeš, Petr; Člupek, Martin; Babický, Václav; Šunka, Pavel

    2004-01-01

    Roč. 54, suppl. C (2004), C909-C913 ISSN 0011-4626. [Symposium on Plasma Physics and Technology /21st/. Praha, 14.06.2004-17.06.2004] R&D Projects: GA ČR GA202/02/1026 Keywords : corona discharg, ozone Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.292, year: 2004

  20. Defense Agencies Initiative Increment 2 (DAI Inc 2)

    Science.gov (United States)

    2016-03-01

    module. In an ADM dated September 23, 2013, the MDA established Increment 2 as a MAIS program to include budget formulation; grants financial...2016 Major Automated Information System Annual Report Defense Agencies Initiative Increment 2 (DAI Inc 2) Defense Acquisition Management...President’s Budget RDT&E - Research, Development, Test, and Evaluation SAE - Service Acquisition Executive TBD - To Be Determined TY - Then

  1. Biometrics Enabling Capability Increment 1 (BEC Inc 1)

    Science.gov (United States)

    2016-03-01

    modal biometrics submissions to include iris, face, palm and finger prints from biometrics collection devices, which will support the Warfighter in...2016 Major Automated Information System Annual Report Biometrics Enabling Capability Increment 1 (BEC Inc 1) Defense Acquisition Management...Phone: 227-3119 DSN Fax: Date Assigned: July 15, 2015 Program Information Program Name Biometrics Enabling Capability Increment 1 (BEC Inc 1) DoD

  2. 76 FR 53763 - Immigration Benefits Business Transformation, Increment I

    Science.gov (United States)

    2011-08-29

    ..., 100, et al. Immigration Benefits Business Transformation, Increment I; Final Rule #0;#0;Federal... Benefits Business Transformation, Increment I AGENCY: U.S. Citizenship and Immigration Services, DHS... USCIS is engaged in an enterprise-wide transformation effort to implement new business processes and to...

  3. Periodicities in the X-ray Emission from the Solar Corona: SphinX and SOXS Observations

    Science.gov (United States)

    Steślicki, M.; Awasthi, A. K.; Gryciuk, M.; Jain, R.

    The structure and evolution of the solar magnetic field is driven by a magnetohydrodynamic dynamo operating in the solar interior, which induces various solar activities that exhibit periodic variations on different timescales. Therefore, probing the periodic nature of emission originating from the solar corona may provide insights of the convection-zone-photosphere-corona coupling processes. We present the study of the mid-range periodicities, between rotation period (˜27 days) and the Schwabe cycle period (˜11 yr), in the solar soft X-ray emission, based on the data obtained by two instruments: SphinX and SOXS in various energy bands.

  4. Shakedown analysis by finite element incremental procedures

    International Nuclear Information System (INIS)

    Borkowski, A.; Kleiber, M.

    1979-01-01

    It is a common occurence in many practical problems that external loads are variable and the exact time-dependent history of loading is unknown. Instead of it load is characterized by a given loading domain: a convex polyhedron in the n-dimensional space of load parameters. The problem is then to check whether a structure shakes down, i.e. responds elastically after a few elasto-plastic cycles, or not to a variable loading as defined above. Such check can be performed by an incremental procedure. One should reproduce incrementally a simple cyclic process which consists of proportional load paths that connect the origin of the load space with the corners of the loading domain. It was proved that if a structure shakes down to such loading history then it is able to adopt itself to an arbitrary load path contained in the loading domain. The main advantage of such approach is the possibility to use existing incremental finite-element computer codes. (orig.)

  5. Implications of the Hemodynamic Optimization Approach Guided by Right Heart Catheterization in Patients with Severe Heart Failure

    Directory of Open Access Journals (Sweden)

    Luís E. Rohde

    2002-03-01

    Full Text Available OBJECTIVE: To report the hemodynamic and functional responses obtained with clinical optimization guided by hemodynamic parameters in patients with severe and refractory heart failure. METHODS: Invasive hemodynamic monitoring using right heart catheterization aimed to reach low filling pressures and peripheral resistance. Frequent adjustments of intravenous diuretics and vasodilators were performed according to the hemodynamic measurements. RESULTS: We assessed 19 patients (age = 48±12 years and ejection fraction = 21±5% with severe heart failure. The intravenous use of diuretics and vasodilators reduced by 12 mm Hg (relative reduction of 43% pulmonary artery occlusion pressure (P<0.001, with a concomitant increment of 6 mL per beat in stroke volume (relative increment of 24%, P<0.001. We observed significant associations between pulmonary artery occlusion pressure and mean pulmonary artery pressure (r=0.76; P<0.001 and central venous pressure (r=0.63; P<0.001. After clinical optimization, improvement in functional class occurred (P< 0.001, with a tendency towards improvement in ejection fraction and no impairment to renal function. CONCLUSION: Optimization guided by hemodynamic parameters in patients with refractory heart failure provides a significant improvement in the hemodynamic profile with concomitant improvement in functional class. This study emphasizes that adjustments in blood volume result in imme-diate benefits for patients with severe heart failure.

  6. NEOCE: a new external occulting coronagraph experiment for ultimate observations of the chromosphere, corona and interface

    Science.gov (United States)

    Damé, Luc; Fineschi, Silvano; Kuzin, Sergey; Von Fay-Siebenburgen, Erdélyi Robert

    Several ground facilities and space missions are currently dedicated to the study of the Sun at high resolution and of the solar corona in particular. However, and despite significant progress with the advent of space missions and UV, EUV and XUV direct observations of the hot chromosphere and million-degrees coronal plasma, much is yet to be achieved in the understanding of these high temperatures, fine dynamic dissipative structures and of the coronal heating in general. Recent missions have shown the definite role of a wide range of waves and of the magnetic field deep in the inner corona, at the chromosphere-corona interface, where dramatic and physically fundamental changes occur. The dynamics of the chromosphere and corona is controlled and governed by the emerging magnetic field. Accordingly, the direct measurement of the chromospheric and coronal magnetic fields is of prime importance. The solar corona consists of many localised loop-like structures or threads with the plasmas brightening and fading independently. The plasma evolution in each thread is believed to be related to the formation of filaments, each one being dynamic, in a non-equilibrium state. The mechanism sustaining this dynamics, oscillations or waves (Alfvén or other magneto-plasma waves), requires both very high-cadence, multi-spectral observations, and high resolution and coronal magnetometry. This is foreseen in the future Space Mission NEOCE (New External Occulting Coronagraph Experiment), the ultimate new generation high-resolution coronagraphic heliospheric mission, to be proposed for ESA M4. NEOCE, an evolution of the HiRISE mission, is ideally placed at the L5 Lagrangian point (for a better follow-up of CMEs), and provides FUV imaging and spectro-imaging, EUV and XUV imaging and spectroscopy, and ultimate coronagraphy by a remote external occulter (two satellites in formation flying 375 m apart minimizing scattered light) allowing to characterize temperature, densities and

  7. Nonlinearity and instability in stellar coronae

    International Nuclear Information System (INIS)

    Martens, P.C.H.

    1983-01-01

    This thesis is mainly concerned with time dependent processes occurring in the hot and teneous plasma - about 1 million degrees and higher and less than 10 10 cm density - that forms the outer envelopes of many stars including the sun. These envelopes - coronae - emit X-rays and indirectly in the ultraviolet and are therefore mainly observed by satellite techniques. Part I consists of a general introduction to the work and an overview of the non-linear methods that are used in the following. Part II and part III are concerned with respectively open and closed coronal structures. There is great similarity in the physics of these two systems, but the open structures are somewhat more complicated. (Auth.)

  8. Mathieu functions for fermions generated in magnetar’s corona

    Science.gov (United States)

    Dariescu, Marina-Aura; Dariescu, Ciprian

    2017-10-01

    This work deals with the behavior of fermions in a configuration supposed to exist in magnetar’s corona. For a static magnetic induction parallel to a time-harmonic electric field, the solution to the U(1)-gauge invariant Dirac equation is expressed in terms of Laguerre polynomials and Mathieu’s functions of complex parameter. Using the Fourier series valid before the branching point, we are computing the conserved current density components.

  9. Comparison of pulsed corona plasma and pulsed electric fields for the decontamination of water containing Legionella pneumophila as model organism.

    Science.gov (United States)

    Banaschik, Robert; Burchhardt, Gerhard; Zocher, Katja; Hammerschmidt, Sven; Kolb, Juergen F; Weltmann, Klaus-Dieter

    2016-12-01

    Pulsed corona plasma and pulsed electric fields were assessed for their capacity to kill Legionella pneumophila in water. Electrical parameters such as in particular dissipated energy were equal for both treatments. This was accomplished by changing the polarity of the applied high voltage pulses in a coaxial electrode geometry resulting in the generation of corona plasma or an electric field. For corona plasma, generated by high voltage pulses with peak voltages of +80kV, Legionella were completely killed, corresponding to a log-reduction of 5.4 (CFU/ml) after a treatment time of 12.5min. For the application of pulsed electric fields from peak voltages of -80kV a survival of log 2.54 (CFU/ml) was still detectable after this treatment time. Scanning electron microscopy images of L. pneumophila showed rupture of cells after plasma treatment. In contrast, the morphology of bacteria seems to be intact after application of pulsed electric fields. The more efficient killing for the same energy input observed for pulsed corona plasma is likely due to induced chemical processes and the generation of reactive species as indicated by the evolution of hydrogen peroxide. This suggests that the higher efficacy and efficiency of pulsed corona plasma is primarily associated with the combined effect of the applied electric fields and the promoted reaction chemistry. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Low-level NOx removal in ambient air by pulsed corona technology

    NARCIS (Netherlands)

    Beckers, F.J.C.M.; Hoeben, W.F.L.M.; Pemen, A.J.M.; Heesch, van E.J.M.

    2013-01-01

    Although removal of NOx by (pulsed) corona discharges has been thoroughly investigated for high concentrations of NOx in flue gas, removal of low levels in ambient air proves to be a difficult task. (Sub) ppm NOx levels exist in traffic tunnels due to accumulation of exhaust gases. The application

  11. Automatic incrementalization of Prolog based static analyses

    DEFF Research Database (Denmark)

    Eichberg, Michael; Kahl, Matthias; Saha, Diptikalyan

    2007-01-01

    Modem development environments integrate various static analyses into the build process. Analyses that analyze the whole project whenever the project changes are impractical in this context. We present an approach to automatic incrementalization of analyses that are specified as tabled logic...... programs and evaluated using incremental tabled evaluation, a technique for efficiently updating memo tables in response to changes in facts and rules. The approach has been implemented and integrated into the Eclipse IDE. Our measurements show that this technique is effective for automatically...

  12. NOx removal characteristics of corona radical shower with ammonia and methylamine radical injections

    Energy Technology Data Exchange (ETDEWEB)

    Urashima, K.; Ara, M.; Chang, J.S. [McMaster Univ., Hamilton, ON (Canada). Dept. of Engineering Physics; Uchida, Y. [Aichi Inst. of Technology, (Japan). Dept. of Engineering

    2010-07-01

    Air pollutants such as nitrogen oxides (NOx) and sulfur oxides (SOx) are the major cause of acid rain. There are different types of NOx and SOx conversion techniques such as wet scrubber, selective catalytic reactor, sorbent injection, and low NOx burner. Non-thermal plasma techniques have also been utilized in commercial plants, but the energy efficiency of the non-thermal plasma reactors have not yet been optimized. The direct plasma treatments of flue gases including, the electron beam, barrier discharge and pulsed corona reactors, may lose input energy to activate unwanted components of flue gases such as carbon dioxide (CO{sub 2}) and nitrogen (N{sub 2}). The corona discharge ammonia radical shower system has demonstrated significant NOx removal with higher energy efficiency for large bench scale and pilot plant tests for combustion exhausts. An experiment has also demonstrated that methane can replace ammonia as an injection gas with less NOx removal efficiency. This paper presented an experimental investigation that compared methylamine radical injection with traditional ammonia and methane radical injections. The paper discussed the bench scale test facilities and corona radical shower plasma reactor. It was concluded that the processes to form ammonium nitrate could be observed from trace white solid particles deposited on the reactor wall as observed by scanning electron microscopy pictures. 10 refs., 5 figs., 2 appendices.

  13. Signatures of Slow Solar Wind Streams from Active Regions in the Inner Corona

    Science.gov (United States)

    Slemzin, V.; Harra, L.; Urnov, A.; Kuzin, S.; Goryaev, F.; Berghmans, D.

    2013-08-01

    The identification of solar-wind sources is an important question in solar physics. The existing solar-wind models ( e.g., the Wang-Sheeley-Arge model) provide the approximate locations of the solar wind sources based on magnetic field extrapolations. It has been suggested recently that plasma outflows observed at the edges of active regions may be a source of the slow solar wind. To explore this we analyze an isolated active region (AR) adjacent to small coronal hole (CH) in July/August 2009. On 1 August, Hinode/EUV Imaging Spectrometer observations showed two compact outflow regions in the corona. Coronal rays were observed above the active-region coronal hole (ARCH) region on the eastern limb on 31 July by STEREO-A/EUVI and at the western limb on 7 August by CORONAS- Photon/TESIS telescopes. In both cases the coronal rays were co-aligned with open magnetic-field lines given by the potential field source surface model, which expanded into the streamer. The solar-wind parameters measured by STEREO-B, ACE, Wind, and STEREO-A confirmed the identification of the ARCH as a source region of the slow solar wind. The results of the study support the suggestion that coronal rays can represent signatures of outflows from ARs propagating in the inner corona along open field lines into the heliosphere.

  14. Empirical models of the Solar Wind : Extrapolations from the Helios & Ulysses observations back to the corona

    Science.gov (United States)

    Maksimovic, M.; Zaslavsky, A.

    2017-12-01

    We will present extrapolation of the HELIOS & Ulysses proton density, temperature & bulk velocities back to the corona. Using simple mass flux conservations we show a very good agreement between these extrapolations and the current state knowledge of these parameters in the corona, based on SOHO mesurements. These simple extrapolations could potentially be very useful for the science planning of both the Parker Solar Probe and Solar Orbiter missions. Finally will also present some modelling considerations, based on simple energy balance equations which arise from these empirical observationnal models.

  15. Mission Planning System Increment 5 (MPS Inc 5)

    Science.gov (United States)

    2016-03-01

    2016 Major Automated Information System Annual Report Mission Planning System Increment 5 (MPS Inc 5) Defense Acquisition Management Information...President’s Budget RDT&E - Research, Development, Test, and Evaluation SAE - Service Acquisition Executive TBD - To Be Determined TY - Then Year...Phone: 845-9625 DSN Fax: Date Assigned: May 19, 2014 Program Information Program Name Mission Planning System Increment 5 (MPS Inc 5) DoD

  16. MRI: Modular reasoning about interference in incremental programming

    OpenAIRE

    Oliveira, Bruno C. D. S; Schrijvers, Tom; Cook, William R

    2012-01-01

    Incremental Programming (IP) is a programming style in which new program components are defined as increments of other components. Examples of IP mechanisms include: Object-oriented programming (OOP) inheritance, aspect-oriented programming (AOP) advice and feature-oriented programming (FOP). A characteristic of IP mechanisms is that, while individual components can be independently defined, the composition of components makes those components become tightly coupled, sh...

  17. Incremental short daily home hemodialysis: a case series

    OpenAIRE

    Toth-Manikowski, Stephanie M.; Mullangi, Surekha; Hwang, Seungyoung; Shafi, Tariq

    2017-01-01

    Background Patients starting dialysis often have substantial residual kidney function. Incremental hemodialysis provides a hemodialysis prescription that supplements patients? residual kidney function while maintaining total (residual + dialysis) urea clearance (standard Kt/Vurea) targets. We describe our experience with incremental hemodialysis in patients using NxStage System One for home hemodialysis. Case presentation From 2011 to 2015, we initiated 5 incident hemodialysis patients on an ...

  18. Electrical and spectroscopic analysis of mono- and multi-tip pulsed corona discharges in air at atmospheric pressure

    Science.gov (United States)

    Mraihi, A.; Merbahi, N.; Yousfi, M.; Abahazem, A.; Eichwald, O.

    2011-12-01

    This work is devoted to the analysis of experimental results obtained in dry air at atmospheric pressure in a positive point-to-plane corona discharge under a pulsed applied voltage in the cases of anodic mono- and multi-tips. In the mono-tip case, the peak corona current is analysed as a function of several experimental parameters such as magnitude, frequency and duration of pulsed voltage and gap distance. The variation of the corona discharge current is correlated with the ozone production. Then in the multi-tip case, the electrical behaviour is analysed as a function of the distance between two contiguous tips and the tip number in order to highlight the region of creation active species for the lowest dissipated power. Intensified charge-coupled device pictures and electric field calculations as a function of inter-tip distance are performed to analyse the mutual effect between two contiguous tips. The optical emission spectra are measured in the UV-visible-NIR wavelength range between 200 nm and 800 nm, in order to identify the main excited species formed in an air corona discharge such as the usual first and second positive systems with first negative systems of molecular nitrogen. The identification of atomic species (O triplet and N) and the quenching of NOγ emission bands are also emphasized.

  19. Electrical and spectroscopic analysis of mono- and multi-tip pulsed corona discharges in air at atmospheric pressure

    International Nuclear Information System (INIS)

    Mraihi, A; Merbahi, N; Yousfi, M; Abahazem, A; Eichwald, O

    2011-01-01

    This work is devoted to the analysis of experimental results obtained in dry air at atmospheric pressure in a positive point-to-plane corona discharge under a pulsed applied voltage in the cases of anodic mono- and multi-tips. In the mono-tip case, the peak corona current is analysed as a function of several experimental parameters such as magnitude, frequency and duration of pulsed voltage and gap distance. The variation of the corona discharge current is correlated with the ozone production. Then in the multi-tip case, the electrical behaviour is analysed as a function of the distance between two contiguous tips and the tip number in order to highlight the region of creation active species for the lowest dissipated power. Intensified charge-coupled device pictures and electric field calculations as a function of inter-tip distance are performed to analyse the mutual effect between two contiguous tips. The optical emission spectra are measured in the UV–visible–NIR wavelength range between 200 nm and 800 nm, in order to identify the main excited species formed in an air corona discharge such as the usual first and second positive systems with first negative systems of molecular nitrogen. The identification of atomic species (O triplet and N) and the quenching of NOγ emission bands are also emphasized.

  20. Volatilities, Traded Volumes, and Price Increments in Derivative Securities

    Science.gov (United States)

    Kim, Kyungsik; Lim, Gyuchang; Kim, Soo Yong; Scalas, Enrico

    2007-03-01

    We apply the detrended fluctuation analysis (DFA) to the statistics of the Korean treasury bond (KTB) futures from which the logarithmic increments, volatilities, and traded volumes are estimated over a specific time lag. For our case, the logarithmic increment of futures prices has no long-memory property, while the volatility and the traded volume exhibit the existence of long-memory property. To analyze and calculate whether the volatility clustering is due to the inherent higher-order correlation not detected by applying directly the DFA to logarithmic increments of the KTB futures, it is of importance to shuffle the original tick data of futures prices and to generate the geometric Brownian random walk with the same mean and standard deviation. It is really shown from comparing the three tick data that the higher-order correlation inherent in logarithmic increments makes the volatility clustering. Particularly, the result of the DFA on volatilities and traded volumes may be supported the hypothesis of price changes.

  1. Space-time quantitative source apportionment of soil heavy metal concentration increments.

    Science.gov (United States)

    Yang, Yong; Christakos, George; Guo, Mingwu; Xiao, Lu; Huang, Wei

    2017-04-01

    Assessing the space-time trends and detecting the sources of heavy metal accumulation in soils have important consequences in the prevention and treatment of soil heavy metal pollution. In this study, we collected soil samples in the eastern part of the Qingshan district, Wuhan city, Hubei Province, China, during the period 2010-2014. The Cd, Cu, Pb and Zn concentrations in soils exhibited a significant accumulation during 2010-2014. The spatiotemporal Kriging technique, based on a quantitative characterization of soil heavy metal concentration variations in terms of non-separable variogram models, was employed to estimate the spatiotemporal soil heavy metal distribution in the study region. Our findings showed that the Cd, Cu, and Zn concentrations have an obvious incremental tendency from the southwestern to the central part of the study region. However, the Pb concentrations exhibited an obvious tendency from the northern part to the central part of the region. Then, spatial overlay analysis was used to obtain absolute and relative concentration increments of adjacent 1- or 5-year periods during 2010-2014. The spatial distribution of soil heavy metal concentration increments showed that the larger increments occurred in the center of the study region. Lastly, the principal component analysis combined with the multiple linear regression method were employed to quantify the source apportionment of the soil heavy metal concentration increments in the region. Our results led to the conclusion that the sources of soil heavy metal concentration increments should be ascribed to industry, agriculture and traffic. In particular, 82.5% of soil heavy metal concentration increment during 2010-2014 was ascribed to industrial/agricultural activities sources. Using STK and SOA to obtain the spatial distribution of heavy metal concentration increments in soils. Using PCA-MLR to quantify the source apportionment of soil heavy metal concentration increments. Copyright © 2017

  2. Warm gas towards young stellar objects in Corona Australis

    DEFF Research Database (Denmark)

    Lindberg, Johan; Jørgensen, Jes Kristian; D. Green, Joel

    2014-01-01

    The effects of external irradiation on the chemistry and physics in the protostellar envelope around low-mass young stellar objects are poorly understood. The Corona Australis star-forming region contains the R CrA dark cloud, comprising several low-mass protostellar cores irradiated by an interm......The effects of external irradiation on the chemistry and physics in the protostellar envelope around low-mass young stellar objects are poorly understood. The Corona Australis star-forming region contains the R CrA dark cloud, comprising several low-mass protostellar cores irradiated...... by an intermediate-mass young star. We study the effects on the warm gas and dust in a group of low-mass young stellar objects from the irradiation by the young luminous Herbig Be star R CrA. Herschel/PACS far-infrared datacubes of two low-mass star-forming regions in the R CrA dark cloud are presented...... Be star R CrA. Our results show that a nearby luminous star does not increase the molecular excitation temperatures in the warm gas around a young stellar object (YSO). However, the emission from photodissociation products of H2O, such as OH and O, is enhanced in the warm gas associated...

  3. Mass ejections from the solar corona into interplanetary space

    International Nuclear Information System (INIS)

    Hildner, E.

    1977-01-01

    Mass ejections from the corona are common occurrances, as observations with the High Altitude Observatory's white light coronagraph aboard Skylab showed. During 227 days of operation in 1973 and 1974 at least 77 mass ejections were observed and as many more probably occurred unobserved. It is suggested that the frequency of ejections varies with the solar cycle and that ejections may contribute 10 percent or more of the total solar mass efflux to the interplanetary medium at solar maximum. Since ejections are confined to relatively low latitudes, their fractional mass flux contribution is greater near the ecliptic than far from it. From the behavior of ejecta, we can estimate the magnitude of the force driving them through the corona. It is also suggested that loop-shaped ejection - the largest fraction of ejections - are driven, primarily, by magnetic forces. By comparison, gas pressure forces are negligible, and forces due to wave pressure are completely inadequate. That magnetic forces are important is consistent with observation that ejections seem to come, primarily, from regions where the magnetic field is more intense and more complex than elsewhere. Indeed, ejections are associated with phenomena (flares and eruptive prominences) which occur over lines separating regions of opposite polarities. (Auth.)

  4. Corona-producing ice clouds: A case study of a cold mid-latitude cirrus layer

    International Nuclear Information System (INIS)

    Sassen, K.; Mace, G.G.; Hallett, J.; Poellot, M.R.

    1998-01-01

    A high (14.0-km), cold (-71.0thinsp degree C) cirrus cloud was studied by ground-based polarization lidar and millimeter radar and aircraft probes on the night of 19 April 1994 from the Cloud and Radiation Testbed site in northern Oklahoma. A rare cirrus cloud lunar corona was generated by this 1 - 2-km-deep cloud, thus providing an opportunity to measure the composition in situ, which had previously been assumed only on the basis of lidar depolarization data and simple diffraction theory for spheres. In this case, corona ring analysis indicated an effective particle diameter of ∼22 μm. A variety of in situ data corroborates the approximate ice-particle size derived from the passive retrieval method, especially near the cloud top, where impacted cloud samples show simple solid crystals. The homogeneous freezing of sulfuric acid droplets of stratospheric origin is assumed to be the dominant ice-particle nucleation mode acting in corona-producing cirrus clouds. It is speculated that this process results in a previously unrecognized mode of acid-contaminated ice-particle growth and that such small-particle cold cirrus clouds are potentially a radiatively distinct type of cloud. copyright 1998 Optical Society of America

  5. Support vector machine incremental learning triggered by wrongly predicted samples

    Science.gov (United States)

    Tang, Ting-long; Guan, Qiu; Wu, Yi-rong

    2018-05-01

    According to the classic Karush-Kuhn-Tucker (KKT) theorem, at every step of incremental support vector machine (SVM) learning, the newly adding sample which violates the KKT conditions will be a new support vector (SV) and migrate the old samples between SV set and non-support vector (NSV) set, and at the same time the learning model should be updated based on the SVs. However, it is not exactly clear at this moment that which of the old samples would change between SVs and NSVs. Additionally, the learning model will be unnecessarily updated, which will not greatly increase its accuracy but decrease the training speed. Therefore, how to choose the new SVs from old sets during the incremental stages and when to process incremental steps will greatly influence the accuracy and efficiency of incremental SVM learning. In this work, a new algorithm is proposed to select candidate SVs and use the wrongly predicted sample to trigger the incremental processing simultaneously. Experimental results show that the proposed algorithm can achieve good performance with high efficiency, high speed and good accuracy.

  6. Average-case analysis of incremental topological ordering

    DEFF Research Database (Denmark)

    Ajwani, Deepak; Friedrich, Tobias

    2010-01-01

    Many applications like pointer analysis and incremental compilation require maintaining a topological ordering of the nodes of a directed acyclic graph (DAG) under dynamic updates. All known algorithms for this problem are either only analyzed for worst-case insertion sequences or only evaluated...... experimentally on random DAGs. We present the first average-case analysis of incremental topological ordering algorithms. We prove an expected runtime of under insertion of the edges of a complete DAG in a random order for the algorithms of Alpern et al. (1990) [4], Katriel and Bodlaender (2006) [18], and Pearce...

  7. Skylab and solar exploration. [chromosphere-corona structure, energy production and heat transport processes

    Science.gov (United States)

    Von Puttkamer, J.

    1973-01-01

    Review of some of the findings concerning solar structure, energy production, and heat transport obtained with the aid of the manned Skylab space station observatory launched on May 14, 1973. Among the topics discussed are the observation of thermonuclear fusion processes which cannot be simulated on earth, the observation of short-wave solar radiation not visible to observers on earth, and the investigation of energy-transport processes occurring in the photosphere, chromosphere, and corona. An apparent paradox is noted in that the cooler chromosphere is heating the hotter corona, seemingly in defiance of the second law of thermodynamics, thus suggesting that a nonthermal mechanism underlies the energy transport. Understanding of this nonthermal mechanism is regarded as an indispensable prerequisite for future development of plasma systems for terrestrial applications.

  8. Motion-Induced Blindness Using Increments and Decrements of Luminance

    Directory of Open Access Journals (Sweden)

    Stine Wm Wren

    2017-10-01

    Full Text Available Motion-induced blindness describes the disappearance of stationary elements of a scene when other, perhaps non-overlapping, elements of the scene are in motion. We measured the effects of increment (200.0 cd/m2 and decrement targets (15.0 cd/m2 and masks presented on a grey background (108.0 cd/m2, tapping into putative ON- and OFF-channels, on the rate of target disappearance psychophysically. We presented two-frame motion, which has coherent motion energy, and dynamic Glass patterns and dynamic anti-Glass patterns, which do not have coherent motion energy. Using the method of constant stimuli, participants viewed stimuli of varying durations (3.1 s, 4.6 s, 7.0 s, 11 s, or 16 s in a given trial and then indicated whether or not the targets vanished during that trial. Psychometric function midpoints were used to define absolute threshold mask duration for the disappearance of the target. 95% confidence intervals for threshold disappearance times were estimated using a bootstrap technique for each of the participants across two experiments. Decrement masks were more effective than increment masks with increment targets. Increment targets were easier to mask than decrement targets. Distinct mask pattern types had no effect, suggesting that perceived coherence contributes to the effectiveness of the mask. The ON/OFF dichotomy clearly carries its influence to the level of perceived motion coherence. Further, the asymmetry in the effects of increment and decrement masks on increment and decrement targets might lead one to speculate that they reflect the ‘importance’ of detecting decrements in the environment.

  9. Logistics Modernization Program Increment 2 (LMP Inc 2)

    Science.gov (United States)

    2016-03-01

    Sections 3 and 4 of the LMP Increment 2 Business Case, ADM), key functional requirements, Critical Design Review (CDR) Reports, and Economic ...from the 2013 version of the LMP Increment 2 Economic Analysis and replace it with references to the Economic Analysis that will be completed...of ( inbound /outbound) IDOCs into the system. LMP must be able to successfully process 95% of ( inbound /outbound) IDOCs into the system. Will meet

  10. Synergistic effect of pulsed corona discharges and ozonation on decolourization of methylene blue in water

    CERN Document Server

    Malik, M A; Ghaffar, A; Ahmed, K

    2002-01-01

    The effect of O sub 2 and O sub 3 bubbling on decolourization of methylene blue by pulsed corona discharges in water was studied. The pulsed corona discharges were produced by charging an 80 pF capacitor with a 40 kV DC source, through a 100 M OMEGA resistor, and discharging it into a needle-plate type reactor at 60 Hz through a rotating spark gap switch. A 20 ml sample of 13.25 mg l sup - sup 1 methylene blue in distilled water was decolourized in 120 min. Bubbling O sub 2 at 10 ml min sup - sup 1 through the discharge region reduced the decolourization time to 25 min. Bubbling O sub 2 containing 1500 mu mol O sub 3 l sup - sup 1 at 10 ml min sup - sup 1 reduced the decolourization time to 8 min. The O sub 3 was produced by fractionating input energy between a water treatment reactor and a O sub 3 generator, i.e. no additional energy was consumed for O sub 3 production. Under the same experimental conditions methylene blue solution in tap water was decolourized in >210 min by corona discharge in solution, in...

  11. Incremental Tensor Principal Component Analysis for Handwritten Digit Recognition

    Directory of Open Access Journals (Sweden)

    Chang Liu

    2014-01-01

    Full Text Available To overcome the shortcomings of traditional dimensionality reduction algorithms, incremental tensor principal component analysis (ITPCA based on updated-SVD technique algorithm is proposed in this paper. This paper proves the relationship between PCA, 2DPCA, MPCA, and the graph embedding framework theoretically and derives the incremental learning procedure to add single sample and multiple samples in detail. The experiments on handwritten digit recognition have demonstrated that ITPCA has achieved better recognition performance than that of vector-based principal component analysis (PCA, incremental principal component analysis (IPCA, and multilinear principal component analysis (MPCA algorithms. At the same time, ITPCA also has lower time and space complexity.

  12. Synchronized observations of bright points from the solar photosphere to the corona

    Science.gov (United States)

    Tavabi, Ehsan

    2018-05-01

    One of the most important features in the solar atmosphere is the magnetic network and its relationship to the transition region (TR) and coronal brightness. It is important to understand how energy is transported into the corona and how it travels along the magnetic field lines between the deep photosphere and chromosphere through the TR and corona. An excellent proxy for transportation is the Interface Region Imaging Spectrograph (IRIS) raster scans and imaging observations in near-ultraviolet (NUV) and far-ultraviolet (FUV) emission channels, which have high time, spectral and spatial resolutions. In this study, we focus on the quiet Sun as observed with IRIS. The data with a high signal-to-noise ratio in the Si IV, C II and Mg II k lines and with strong emission intensities show a high correlation with TR bright network points. The results of the IRIS intensity maps and dopplergrams are compared with those of the Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager (HMI) instruments onboard the Solar Dynamical Observatory (SDO). The average network intensity profiles show a strong correlation with AIA coronal channels. Furthermore, we applied simultaneous observations of the magnetic network from HMI and found a strong relationship between the network bright points in all levels of the solar atmosphere. These features in the network elements exhibited regions of high Doppler velocity and strong magnetic signatures. Plenty of corona bright points emission, accompanied by the magnetic origins in the photosphere, suggest that magnetic field concentrations in the network rosettes could help to couple the inner and outer solar atmosphere.

  13. Synoptic, Global Mhd Model For The Solar Corona

    Science.gov (United States)

    Cohen, Ofer; Sokolov, I. V.; Roussev, I. I.; Gombosi, T. I.

    2007-05-01

    The common techniques for mimic the solar corona heating and the solar wind acceleration in global MHD models are as follow. 1) Additional terms in the momentum and energy equations derived from the WKB approximation for the Alfv’en wave turbulence; 2) some empirical heat source in the energy equation; 3) a non-uniform distribution of the polytropic index, γ, used in the energy equation. In our model, we choose the latter approach. However, in order to get a more realistic distribution of γ, we use the empirical Wang-Sheeley-Arge (WSA) model to constrain the MHD solution. The WSA model provides the distribution of the asymptotic solar wind speed from the potential field approximation; therefore it also provides the distribution of the kinetic energy. Assuming that far from the Sun the total energy is dominated by the energy of the bulk motion and assuming the conservation of the Bernoulli integral, we can trace the total energy along a magnetic field line to the solar surface. On the surface the gravity is known and the kinetic energy is negligible. Therefore, we can get the surface distribution of γ as a function of the final speed originating from this point. By interpolation γ to spherically uniform value on the source surface, we use this spatial distribution of γ in the energy equation to obtain a self-consistent, steady state MHD solution for the solar corona. We present the model result for different Carrington Rotations.

  14. Corona magnetic field over sunspots estimated by m-wave observation

    International Nuclear Information System (INIS)

    Kurihara, Masahiro

    1974-01-01

    The shape of the magnetic field in corona was estimated from the observation of the type I storm occurred in the last decade of August, 1971. It was found from the observation with a 160 MHz interferometer at Mt. Nobeyama that at most three storm sources, which are called radio wave source, were produced. The radio wave sources were fixed above sunspots. The height of the radio wave sources was estimated to be 0.45 R from the photosphere. The sunspots under the radio wave sources can be classified to four sub-groups. Weakening of the magnetic field on the photosphere was found from the reduction of the area of some sub-group. The relation between the activity of type I storm and the intensity of the magnetic field of sunspots is qualitatively suggested. It is considered that the radio wave sources and the sunspots were connected by common magnetic force lines. The probable magnetic field in corona was presumed and is shown in a figure. An interesting point is that the direction of magnetic force lines inclined by about 30 0 outward to the vertical line to the photosphere surface. (Kato, T.)

  15. Anomalous energy transport in hot plasmas: solar corona and Tokamak

    International Nuclear Information System (INIS)

    Beaufume, P.

    1992-04-01

    Anomalous energy transport is studied in two hot plasmas and appears to be associated with a heating of the solar corona and with a plasma deconfining process in tokamaks. The magnetic structure is shown to play a fundamental role in this phenomenon through small scale instabilities which are modelized by means of a nonlinear dynamical system: the Beasts' Model. Four behavior classes are found for this system, which are automatically classified in the parameter space thanks to a neural network. We use a compilation of experimental results relative to the solar corona to discuss current-based heating processes. We find that a simple Joule effect cannot provide the required heating rates, and therefore propose a dimensional model involving a resistive reconnective instability which leads to an efficient and discontinuous heating mechanism. Results are in good agreement with the observations. We give an analytical expression for a diffusion coefficient in tokamaks when magnetic turbulence is perturbing the topology, which we validate thanks to the standard mapping. A realistic version of the Beasts' Model allows to test a candidate to anomalous transport: the thermal filamentation instability

  16. Gamma rays in L-B coordinates at CORONAS-I altitude

    Directory of Open Access Journals (Sweden)

    I. N. Myagkova

    2005-09-01

    Full Text Available We present here observations of gamma rays in the energy range between 3.0 and 8.3 MeV gathered by the SONG instrument aboard low-altitude polar-orbiting satellite CORONAS-I throughout the period March-June 1994. We concentrate on the emissions related to the trapped particles and organize CORONAS-I measurements in the magnetic L–B coordinate system. The spatial distribution of the average gamma-ray counts reveals that the most intense fluxes were observed under the inner radiation belt, at L<2, and that they are exclusively confined into the region of stably trapped particles, where daughter gamma rays could result from the interactions within the spacecraft and instrumental matter. In the outer radiation zone (L~4, the enhanced gamma radiation, also detected outside the stably trapping region, shows pronounced longitudinal variations. The observed eastward increase in the gamma-ray count rate suggests quasi-traped energetic (megavolt electrons as a source of the gamma rays both in the upper atmosphere and in the satellite matter, most likely, through the bremsstrahlung process in the studied energy domain. Keywords. Magnetospheric physics (Energetic particles, precipitating; Energetic particles, trapped; Magnetosphereionosphere interactions

  17. Validation of the periodicity of growth increment deposition in ...

    African Journals Online (AJOL)

    Validation of the periodicity of growth increment deposition in otoliths from the larval and early juvenile stages of two cyprinids from the Orange–Vaal river ... Linear regression models were fitted to the known age post-fertilisation and the age estimated using increment counts to test the correspondence between the two for ...

  18. Creating Helical Tool Paths for Single Point Incremental Forming

    DEFF Research Database (Denmark)

    Skjødt, Martin; Hancock, Michael H.; Bay, Niels

    2007-01-01

    Single point incremental forming (SPIF) is a relatively new sheet forming process. A sheet is clamped in a rig and formed incrementally using a rotating single point tool in the form of a rod with a spherical end. The process is often performed on a CNC milling machine and the tool movement...

  19. Martingales, nonstationary increments, and the efficient market hypothesis

    Science.gov (United States)

    McCauley, Joseph L.; Bassler, Kevin E.; Gunaratne, Gemunu H.

    2008-06-01

    We discuss the deep connection between nonstationary increments, martingales, and the efficient market hypothesis for stochastic processes x(t) with arbitrary diffusion coefficients D(x,t). We explain why a test for a martingale is generally a test for uncorrelated increments. We explain why martingales look Markovian at the level of both simple averages and 2-point correlations. But while a Markovian market has no memory to exploit and cannot be beaten systematically, a martingale admits memory that might be exploitable in higher order correlations. We also use the analysis of this paper to correct a misstatement of the ‘fair game’ condition in terms of serial correlations in Fama’s paper on the EMH. We emphasize that the use of the log increment as a variable in data analysis generates spurious fat tails and spurious Hurst exponents.

  20. Comparison of biochemical failure definitions for permanent prostate brachytherapy

    International Nuclear Information System (INIS)

    Kuban, Deborah A.; Levy, Larry B.; Potters, Louis; Beyer, David C.; Blasko, John C.; Moran, Brian J.; Ciezki, Jay P.; Zietman, Anthony L.; Zelefsky, Michael J.; Pisansky, Thomas M.; Elshaikh, Mohamed; Horwitz, Eric M.

    2006-01-01

    Purpose: To assess prostate-specific antigen (PSA) failure definitions for patients with Stage T1-T2 prostate cancer treated by permanent prostate brachytherapy. Methods and Materials: A total of 2,693 patients treated with radioisotopic implant as solitary treatment for T1-T2 prostatic adenocarcinoma were studied. All patients had a pretreatment PSA, were treated at least 5 years before analysis, 1988 to 1998, and did not receive hormonal therapy before recurrence. Multiple PSA failure definitions were tested for their ability to predict clinical failure. Results: Definitions which determined failure by a certain increment of PSA rise above the lowest PSA level to date (nadir + x ng/mL) were more sensitive and specific than failure definitions based on PSA doubling time or a certain number of PSA rises. The sensitivity and specificity for the nadir + 2 definition were 72% and 83%, vs. 51% and 81% for 3 PSA rises. The surgical type definitions (PSA exceeding an absolute value) could match this sensitivity and specificity but only when failure was defined as exceeding a PSA level in the 1-3 ng/mL range and only when patients were allowed adequate time to nadir. When failure definitions were compared by time varying covariate regression analysis, nadir + 2 ng/mL retained the best fit. Conclusions: For patients treated by permanent radioisotopic implant for prostate cancer, the definition nadir + 2 ng/mL provides the best surrogate for failure throughout the entire follow-up period, similar to patients treated by external beam radiotherapy. Therefore, the same PSA failure definition could be used for both modalities. For brachytherapy patients with long-term follow-up, at least 6 years, defining failure as exceeding an absolute PSA level in the 0.5 ng/mL range may be reasonable

  1. Ionization and Corona Discharges from Stressed Rocks

    Science.gov (United States)

    Winnick, M. J.; Kulahci, I.; Cyr, G.; Tregloan-Reed, J.; Freund, F. T.

    2008-12-01

    Pre-earthquake signals have long been observed and documented, though they have not been adequately explained scientifically. These signals include air ionization, occasional flashes of light from the ground, radio frequency emissions, and effects on the ionosphere that occur hours or even days before large earthquakes. The theory that rocks function as p-type semiconductors when deviatoric stresses are applied offers a mechanism for this group of earthquake precursors. When an igneous or high-grade metamorphic rock is subjected to deviatoric stresses, peroxy bonds that exist in the rock's minerals as point defects dissociate, releasing positive hole charge carriers. The positive holes travel by phonon-assisted electron hopping from the stressed into and through the unstressed rock volume and build up a positive surface charge. At sufficiently large electric fields, especially along edges and sharp points of the rock, air molecules become field-ionized, loosing an electron to the rock surface and turning into airborne positive ions. This in turn can lead to corona discharges, which manifest themselves by flashes of light and radio frequency emissions. We applied concentrated stresses to one end of a block of gabbro, 30 x 15 x 10 cm3, inside a shielded Faraday cage and observed positive ion currents through an air gap about 25 cm from the place where the stresses were applied, punctuated by short bursts, accompanied by flashes of light and radio frequency emissions characteristic of a corona discharge. These observations may serve to explain a range of pre-earthquake signals, in particular changes in air conductivity, luminous phenomena, radio frequency noise, and ionospheric perturbations.

  2. Incremental Learning for Place Recognition in Dynamic Environments

    OpenAIRE

    Luo, Jie; Pronobis, Andrzej; Caputo, Barbara; Jensfelt, Patric

    2007-01-01

    This paper proposes a discriminative approach to template-based Vision-based place recognition is a desirable feature for an autonomous mobile system. In order to work in realistic scenarios, visual recognition algorithms should be adaptive, i.e. should be able to learn from experience and adapt continuously to changes in the environment. This paper presents a discriminative incremental learning approach to place recognition. We use a recently introduced version of the incremental SVM, which ...

  3. On the instability increments of a stationary pinch

    International Nuclear Information System (INIS)

    Bud'ko, A.B.

    1989-01-01

    The stability of stationary pinch to helical modes is numerically studied. It is shown that in the case of a rather fast plasma pressure decrease to the pinch boundary, for example, for an isothermal diffusion pinch with Gauss density distribution instabilities with m=0 modes are the most quickly growing. Instability increments are calculated. A simple analytical expression of a maximum increment of growth of sausage instability for automodel Gauss profiles is obtained

  4. Incremental Trust in Grid Computing

    DEFF Research Database (Denmark)

    Brinkløv, Michael Hvalsøe; Sharp, Robin

    2007-01-01

    This paper describes a comparative simulation study of some incremental trust and reputation algorithms for handling behavioural trust in large distributed systems. Two types of reputation algorithm (based on discrete and Bayesian evaluation of ratings) and two ways of combining direct trust and ...... of Grid computing systems....

  5. Convergent systems vs. incremental stability

    NARCIS (Netherlands)

    Rüffer, B.S.; Wouw, van de N.; Mueller, M.

    2013-01-01

    Two similar stability notions are considered; one is the long established notion of convergent systems, the other is the younger notion of incremental stability. Both notions require that any two solutions of a system converge to each other. Yet these stability concepts are different, in the sense

  6. The role of photoionization in negative corona discharge

    Directory of Open Access Journals (Sweden)

    B. X. Lu

    2016-09-01

    Full Text Available The effect of photoionization on the negative corona discharge was simulated based on the needle to plane air gaps. The Trichel pulse, pulse train, electron density and the distribution of electric field will be discussed in this manuscript. Effect of photoionization on the magnitude and interval of the first pulse will be discussed for different applied voltages. It is demonstrated that the peak of the first pulse current could be weakened by photoionization and a critical voltage of the first pulse interval influenced by photoionization was given.

  7. An alternative mass model for galactic dark coronae

    Directory of Open Access Journals (Sweden)

    Ninković S.

    2001-01-01

    Full Text Available A spherically symmetric mass distribution with two scale parameters for the dark corona of a (spiral galaxy as an alternative to the usually applied quasi-isothermal sphere is considered. Examinations of the rotation curve produced by this distribution over a limited interval of the distance to the rotation axis show that it can be a successful alternative to the usual approximation of the quasiisothermal sphere. This is important taking into account that the potential formula considered in the present paper can be easily generalized towards axial symmetry.

  8. Fragmentation of electric currents in the solar corona by plasma flows

    Czech Academy of Sciences Publication Activity Database

    Nickeler, Dieter Horst; Karlický, Marian; Wiegelmann, T.; Kraus, Michaela

    2013-01-01

    Roč. 556, August (2013), A61/1-A61/12 ISSN 0004-6361 R&D Projects: GA ČR GAP209/12/0103; GA ČR GA13-24782S Institutional support: RVO:67985815 Keywords : magnetohydrodynamics * Sun flares * Sun corona Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.479, year: 2013

  9. Application of electric corona discharge for grain seeds treatment before sowing

    Science.gov (United States)

    Porsev, E. G.; Malozyomov, B. V.; Rozhkova, M. V.

    2017-10-01

    The paper overviews directions for electrotechnology treatment of grain seeds before sowing. The hypothesis of the germination enhancement of seeds if treated with corona discharge is presented here. Besides, the description of electrotechnology installation and facilities for it including manufacturing process quality obtained as a result of scientific tests are also provided in the paper.

  10. A Compact Source of Flash-Corona Discharge for Biomedical Applications

    Science.gov (United States)

    Moshkunov, S. I.; Khomich, V. Yu.; Shershunova, E. A.

    2018-01-01

    A compact source of low-temperature plasma for biological and medical applications is proposed, which operates at kilohertz frequencies in the regime of flash-corona discharge with an energy of 0.1 mJ/pulse. The plasma source was tested in application to plasma pretreatment of green salad seeds. Plasma-treated seeds exhibited increased (by about 25%) germination speed as compared to that in the untreated control.

  11. Power calculation of linear and angular incremental encoders

    Science.gov (United States)

    Prokofev, Aleksandr V.; Timofeev, Aleksandr N.; Mednikov, Sergey V.; Sycheva, Elena A.

    2016-04-01

    Automation technology is constantly expanding its role in improving the efficiency of manufacturing and testing processes in all branches of industry. More than ever before, the mechanical movements of linear slides, rotary tables, robot arms, actuators, etc. are numerically controlled. Linear and angular incremental photoelectric encoders measure mechanical motion and transmit the measured values back to the control unit. The capabilities of these systems are undergoing continual development in terms of their resolution, accuracy and reliability, their measuring ranges, and maximum speeds. This article discusses the method of power calculation of linear and angular incremental photoelectric encoders, to find the optimum parameters for its components, such as light emitters, photo-detectors, linear and angular scales, optical components etc. It analyzes methods and devices that permit high resolutions in the order of 0.001 mm or 0.001°, as well as large measuring lengths of over 100 mm. In linear and angular incremental photoelectric encoders optical beam is usually formulated by a condenser lens passes through the measuring unit changes its value depending on the movement of a scanning head or measuring raster. Past light beam is converting into an electrical signal by the photo-detecter's block for processing in the electrical block. Therefore, for calculating the energy source is a value of the desired value of the optical signal at the input of the photo-detecter's block, which reliably recorded and processed in the electronic unit of linear and angular incremental optoelectronic encoders. Automation technology is constantly expanding its role in improving the efficiency of manufacturing and testing processes in all branches of industry. More than ever before, the mechanical movements of linear slides, rotary tables, robot arms, actuators, etc. are numerically controlled. Linear and angular incremental photoelectric encoders measure mechanical motion and

  12. Breakdown of methylene blue and methyl orange by pulsed corona discharge

    Science.gov (United States)

    Grabowski, L. R.; van Veldhuizen, E. M.; Pemen, A. J. M.; Rutgers, W. R.

    2007-05-01

    The recently developed corona above water technique is applied to water containing 10 mg l-1 methylene blue (MB) or methyl orange (MO). The corona discharge pulses are created with a spark gap switched capacitor followed by a transmission line transformer. The pulse amplitude is 40 kV; its duration is 50 ns. At a pulse repetition rate of 10 Hz this leads to an average power of 0.6 W into the discharge. MB and MO are completely decolourized in ~20 min. This corresponds to a yield of ~4.5 gr kW-1h-1, which is much higher than obtained with other discharge techniques or sonoluminescence. The high yield is reflected in the observed temperature increase of only ~1 K. Tests with additional chemicals show that the initial speed of the conversion can be influenced but the total time required for total decolourization is constant. Further, it follows that the main oxidation path of the dyes is by direct ozone attack and the conversion products are strong acids.

  13. Breakdown of methylene blue and methyl orange by pulsed corona discharge

    Energy Technology Data Exchange (ETDEWEB)

    Grabowski, L R [Department of Applied Physics, Technische Universiteit Eindhoven (Netherlands); Veldhuizen, E M van [Department of Applied Physics, Technische Universiteit Eindhoven (Netherlands); Pemen, A J M [Department of Electrical Engineering, Technische Universiteit Eindhoven (Netherlands); Rutgers, W R [Department of Applied Physics, Technische Universiteit Eindhoven (Netherlands)

    2007-05-15

    The recently developed corona above water technique is applied to water containing 10 mg l{sup -1} methylene blue (MB) or methyl orange (MO). The corona discharge pulses are created with a spark gap switched capacitor followed by a transmission line transformer. The pulse amplitude is 40 kV; its duration is 50 ns. At a pulse repetition rate of 10 Hz this leads to an average power of 0.6 W into the discharge. MB and MO are completely decolourized in {approx}20 min. This corresponds to a yield of {approx}4.5 gr kW{sup -1}h{sup -1}, which is much higher than obtained with other discharge techniques or sonoluminescence. The high yield is reflected in the observed temperature increase of only {approx}1 K. Tests with additional chemicals show that the initial speed of the conversion can be influenced but the total time required for total decolourization is constant. Further, it follows that the main oxidation path of the dyes is by direct ozone attack and the conversion products are strong acids.

  14. Modeling of hazardous air pollutant removal in the pulsed corona discharge

    International Nuclear Information System (INIS)

    Derakhshesh, Marzie; Abedi, Jalal; Omidyeganeh, Mohammad

    2009-01-01

    This study investigated the effects of two parts of the performance equation of the pulsed corona reactor, which is one of the non-thermal plasma processing tools of atmospheric pressure for eliminating pollutant streams. First, the effect of axial dispersion in the diffusion term and then the effect of different orders of the reaction in the decomposition rate term were considered. The mathematical model was primarily developed to predict the effluent concentration of the pulsed corona reactor using mass balance, and considering axial dispersion, linear velocity and decomposition rate of pollutant. The steady state form of this equation was subsequently solved assuming different reaction orders. For the derivation of the performance equation of the reactor, it was assumed that the decomposition rate of the pollutant was directly proportional to discharge power and the concentration of the pollutant. The results were validated and compared with another predicted model using their experimental data. The model developed in this study was also validated with two other experimental data in the literature for N 2 O

  15. Breakdown of methylene blue and methyl orange by pulsed corona discharge

    International Nuclear Information System (INIS)

    Grabowski, L R; Veldhuizen, E M van; Pemen, A J M; Rutgers, W R

    2007-01-01

    The recently developed corona above water technique is applied to water containing 10 mg l -1 methylene blue (MB) or methyl orange (MO). The corona discharge pulses are created with a spark gap switched capacitor followed by a transmission line transformer. The pulse amplitude is 40 kV; its duration is 50 ns. At a pulse repetition rate of 10 Hz this leads to an average power of 0.6 W into the discharge. MB and MO are completely decolourized in ∼20 min. This corresponds to a yield of ∼4.5 gr kW -1 h -1 , which is much higher than obtained with other discharge techniques or sonoluminescence. The high yield is reflected in the observed temperature increase of only ∼1 K. Tests with additional chemicals show that the initial speed of the conversion can be influenced but the total time required for total decolourization is constant. Further, it follows that the main oxidation path of the dyes is by direct ozone attack and the conversion products are strong acids

  16. Making context explicit for explanation and incremental knowledge acquisition

    Energy Technology Data Exchange (ETDEWEB)

    Brezillon, P. [Univ. Paris (France)

    1996-12-31

    Intelligent systems may be improved by making context explicit in problem solving. This is a lesson drawn from a study of the reasons why a number of knowledge-based systems (KBSs) failed. We discuss the interest to make context explicit in explanation generation and incremental knowledge acquisition, two important aspects of intelligent systems that aim to cooperate with users. We show how context can be used to better explain and incrementally acquire knowledge. The advantages of using context in explanation and incremental knowledge acquisition are discussed through SEPIT, an expert system for supporting diagnosis and explanation through simulation of power plants. We point out how the limitations of such systems may be overcome by making context explicit.

  17. Oxidative degradation of toluene and limonene in air by pulsed corona technology

    NARCIS (Netherlands)

    Hoeben, W.F.L.M.; Beckers, F.J.C.M.; Pemen, A.J.M.; Heesch, van E.J.M.; Kling, W.L.

    2012-01-01

    The oxidative degradation of two volatile organic compounds, i.e. toluene (fossil fuel based VOC) and limonene (biogenic VOC), has been studied. A hybrid pulsed power corona reactor with adjustable energy density has been utilized for degradation of ppm level target compounds in large air flows. The

  18. Surface oxide formation during corona discharge treatment of AA 1050 aluminium surfaces

    DEFF Research Database (Denmark)

    Minzari, Daniel; Møller, Per; Kingshott, Peter

    2008-01-01

    process modifies aluminium AA 1050 surface, the oxide growth and resulting corrosion properties. The corona treatment is carried out in atmospheric air. Treated surfaces are characterized using XPS, SEM/EDS, and FIB-FESEM and results suggest that an oxide layer is grown, consisting of mixture of oxide...

  19. Efficiency of ozone production by pulsed positive corona discharge in synthetic air

    Energy Technology Data Exchange (ETDEWEB)

    Simek, Milan [Institute of Plasma Physics, Department of Pulsed Plasma Systems, Academy of Sciences of the Czech Republic, Prague (Czech Republic)]. E-mail: simek@ipp.cas.cz; Clupek, Martin [Institute of Plasma Physics, Department of Pulsed Plasma Systems, Academy of Sciences of the Czech Republic, Prague (Czech Republic)

    2002-06-07

    We have studied the efficiency of ozone production by pulsed positive corona discharge in coaxial wire-cylinder geometry at atmospheric pressure. A corona discharge was generated by short ({approx}150 ns) high voltage pulses applied between a silver coated copper wire anode and stainless steel cylinder cathode in synthetic air. A pyrex probe and Teflon tube was used for collecting discharge products and an ozone concentration was monitored outside of the discharge chamber by a non-dispersive UV absorption technique. The production of ozone was investigated as a function of energy density (10{sup -4}-3x10{sup -1} Wh l{sup -1}) delivered to the discharge volume by combining the discharge frequency (0.1-10 Hz) and airflow rate (1-32 l min{sup -1}). From ozone concentration measurements we have evaluated the ozone production, yield and production energy cost. The ozone production yield and cost vary in the range of 15-55 g kWh{sup -1} and 35-110 eV/molecule. (author)

  20. Three routes forward for biofuels: Incremental, leapfrog, and transitional

    International Nuclear Information System (INIS)

    Morrison, Geoff M.; Witcover, Julie; Parker, Nathan C.; Fulton, Lew

    2016-01-01

    This paper examines three technology routes for lowering the carbon intensity of biofuels: (1) a leapfrog route that focuses on major technological breakthroughs in lignocellulosic pathways at new, stand-alone biorefineries; (2) an incremental route in which improvements are made to existing U.S. corn ethanol and soybean biodiesel biorefineries; and (3) a transitional route in which biotechnology firms gain experience growing, handling, or chemically converting lignocellulosic biomass in a lower-risk fashion than leapfrog biorefineries by leveraging existing capital stock. We find the incremental route is likely to involve the largest production volumes and greenhouse gas benefits until at least the mid-2020s, but transitional and leapfrog biofuels together have far greater long-term potential. We estimate that the Renewable Fuel Standard, California's Low Carbon Fuel Standard, and federal tax credits provided an incentive of roughly $1.5–2.5 per gallon of leapfrog biofuel between 2012 and 2015, but that regulatory elements in these policies mostly incentivize lower-risk incremental investments. Adjustments in policy may be necessary to bring a greater focus on transitional technologies that provide targeted learning and cost reduction opportunities for leapfrog biofuels. - Highlights: • Three technological pathways are compared that lower carbon intensity of biofuels. • Incremental changes lead to faster greenhouse gas reductions. • Leapfrog changes lead to greatest long-term potential. • Two main biofuel policies (RFS and LCFS) are largely incremental in nature. • Transitional biofuels offer medium-risk, medium reward pathway.

  1. Reconstructed and analyzed X-ray computed tomography data of investment-cast and additive-manufactured aluminum foam for visualizing ligament failure mechanisms and regions of contact during a compression test

    Directory of Open Access Journals (Sweden)

    Kristoffer E. Matheson

    2018-02-01

    Full Text Available Three stochastic open-cell aluminum foam samples were incrementally compressed and imaged using X-ray Computed Tomography (CT. One of the samples was created using conventional investment casting methods and the other two were replicas of the same foam that were made using laser powder bed fusion. The reconstructed CT data were then examined in Paraview to identify and highlight the types of failure of individual ligaments. The accompanying sets of Paraview state files and STL files highlight the different ligament failure modes incrementally during compression for each foam. Ligament failure was classified as either “Fracture” (red or “Collapse” (blue. Also, regions of neighboring ligaments that came into contact that were not originally touching were colored yellow. For further interpretation and discussion of the data, please refer to Matheson et al. (2017 [1].

  2. Heating of the quiet solar corona from measurements of the FET/TESIS instrument on-board the KORONAS-FOTON satellite

    Science.gov (United States)

    Rybák, J.; Gömöry, P.; Benz, A.; Bogachev, P.; Brajša, R.

    2010-12-01

    The paper presents the first results of the observations of time evolution of the quiet solar corona brightenings obtained due to very rapid photography of the corona with full-disk EUV telescopes of the FET/TESIS instrument onboard the KORONA FOTON satellite. The measurements were performed simultaneously in the emission of the Fe IX / X 17.1 and Fe VIII 13.1 spectral lines with 10 second temporal cadence and spatial scale of 1.7 arc seconds within one hour. This test observation, carried out on 15 July 2009, was analyzed in order to determine whether this type of observation can be used to identify individual microevents in the solar corona heating that are above the tresholds of spatial and temporal resolutions of the observations of non-active regions in the solar atmosphere. For this purpose, a simple method was used involving cross-correlation of the plasma emission time evolution at different temperatures, each time from observations of identical elements. The results obtained are confronted with the expected observable manifestations of the corona heating via nanoflares. TESIS is a set of instruments for the Sun photography developed in the Lebedev Physics Institute of the Russian Academy of Sciences that was launched into orbit in January 2009.

  3. Piezoelectric and dielectric characterization of corona and contact poled PZT-epoxy-MWCNT bulk composites

    Science.gov (United States)

    Banerjee, S.; Cook-Chennault, K. A.; Du, W.; Sundar, U.; Halim, H.; Tang, A.

    2016-11-01

    Three-phase lead zirconate titanate (PZT, PbZr0.52Ti0.48O3)-epoxy-multi-walled carbon nanotube (MWCNT) bulk composites were prepared, where the volume fraction of PZT was held constant at 30%, while the volume fraction of the MWCNTs was varied from 1.0%-10%. The samples were poled using either a parallel plate contact or contactless (corona) poling technique. The piezoelectric strain coefficient (d33), dielectric constant (ɛ), and dielectric loss tangent (tan δ) of the samples were measured at 110 Hz, and compared as a function of poling technique and volume fraction of MWCNTs. The highest values for dielectric constant and piezoelectric strain coefficients were 465.82 and 18.87 pC/N for MWCNT volume fractions of 10% and 6%, respectively. These values were obtained for samples that were poled using the corona contactless method. The impedance and dielectric spectra of the composites were recorded over a frequency range of 100 Hz-20 MHz. The impedance values observed for parallel-plate contact poled samples are higher than that of corona poled composites. The fractured surface morphology and distribution of the PZT particles and MWCNTs were observed with the aid of electron dispersion spectroscopy and a scanning electron microscope. The surface morphology of the MWCNTs was observed with the aid of a field emission transmission electron microscope.

  4. Corona performance of a compact 230-kV line

    International Nuclear Information System (INIS)

    Chartier, V.L.; Blair, D.E.

    1994-01-01

    Permitting requirements and the acquisition of new rights-of-way for transmission facilities has in recent years become increasingly difficult for most utilities, including Puget Sound Power and Light Company. In order to maintain a high degree of reliability of service while being responsive to public concerns regarding the siting of high voltage (HV) transmission facilities, Puget Power has found it necessary to more heavily rely upon the use of compact lines in franchise corridors. Compaction does, however, precipitant increased levels of audible noise (AN) and radio and TV interference (RI and TVI) due to corona on the conductors and insulator assemblies. Puget Power relies upon the Bonneville Power Administration (BPA) Corona and Field Effects computer program to calculate AN and RI for new lines. Since there was some question of the program's ability to accurately represent quiet 230-kV compact designs, a joint project was undertaken with BPA to verify the program's algorithms. Long-term measurements made on an operating Puget Power 230-kV compact line confirmed the accuracy of BPA's AN model; however, the RI measurements were much lower than predicted by the BPA computer and other programs. This paper also describes how the BPA computer program can be used to calculate the voltage needed to expose insulator assemblies to the correct electric field in single test setups in HV laboratories

  5. Incrementality in naming and reading complex numerals: Evidence from eyetracking

    NARCIS (Netherlands)

    Korvorst, M.H.W.; Roelofs, A.P.A.; Levelt, W.J.M.

    2006-01-01

    Individuals speak incrementally when they interleave planning and articulation. Eyetracking, along with the measurement of speech onset latencies, can be used to gain more insight into the degree of incrementality adopted by speakers. In the current article, two eyetracking experiments are reported

  6. Energetics of small electron acceleration episodes in the solar corona from radio noise storm observations

    Science.gov (United States)

    James, Tomin; Subramanian, Prasad

    2018-05-01

    Observations of radio noise storms can act as sensitive probes of nonthermal electrons produced in small acceleration events in the solar corona. We use data from noise storm episodes observed jointly by the Giant Metrewave Radio Telescope (GMRT) and the Nancay Radioheliograph (NRH) to study characteristics of the nonthermal electrons involved in the emission. We find that the electrons carry 1021 to 1024 erg/s, and that the energy contained in the electrons producing a representative noise storm burst ranges from 1020 to 1023 ergs. These results are a direct probe of the energetics involved in ubiquitous, small-scale electron acceleration episodes in the corona, and could be relevant to a nanoflare-like scenario for coronal heating.

  7. FORMATION AND RECONNECTION OF THREE-DIMENSIONAL CURRENT SHEETS IN THE SOLAR CORONA

    International Nuclear Information System (INIS)

    Edmondson, J. K.; Antiochos, S. K.; DeVore, C. R.; Zurbuchen, T. H.

    2010-01-01

    Current-sheet formation and magnetic reconnection are believed to be the basic physical processes responsible for much of the activity observed in astrophysical plasmas, such as the Sun's corona. We investigate these processes for a magnetic configuration consisting of a uniform background field and an embedded line dipole, a topology that is expected to be ubiquitous in the corona. This magnetic system is driven by a uniform horizontal flow applied at the line-tied photosphere. Although both the initial field and the driver are translationally symmetric, the resulting evolution is calculated using a fully three-dimensional (3D) magnetohydrodynamic simulation with adaptive mesh refinement that resolves the current sheet and reconnection dynamics in detail. The advantage of our approach is that it allows us to directly apply the vast body of knowledge gained from the many studies of two-dimensional (2D) reconnection to the fully 3D case. We find that a current sheet forms in close analogy to the classic Syrovatskii 2D mechanism, but the resulting evolution is different than expected. The current sheet is globally stable, showing no evidence for a disruption or a secondary instability even for aspect ratios as high as 80:1. The global evolution generally follows the standard Sweet-Parker 2D reconnection model except for an accelerated reconnection rate at a very thin current sheet, due to the tearing instability and the formation of magnetic islands. An interesting conclusion is that despite the formation of fully 3D structures at small scales, the system remains close to 2D at global scales. We discuss the implications of our results for observations of the solar corona.

  8. Atmospheric response to Saharan dust deduced from ECMWF reanalysis increments

    Science.gov (United States)

    Kishcha, P.; Alpert, P.; Barkan, J.; Kirchner, I.; Machenhauer, B.

    2003-04-01

    This study focuses on the atmospheric temperature response to dust deduced from a new source of data - the European Reanalysis (ERA) increments. These increments are the systematic errors of global climate models, generated in reanalysis procedure. The model errors result not only from the lack of desert dust but also from a complex combination of many kinds of model errors. Over the Sahara desert the dust radiative effect is believed to be a predominant model defect which should significantly affect the increments. This dust effect was examined by considering correlation between the increments and remotely-sensed dust. Comparisons were made between April temporal variations of the ERA analysis increments and the variations of the Total Ozone Mapping Spectrometer aerosol index (AI) between 1979 and 1993. The distinctive structure was identified in the distribution of correlation composed of three nested areas with high positive correlation (> 0.5), low correlation, and high negative correlation (Forecast(ECMWF) suggests that the PCA (NCA) corresponds mainly to anticyclonic (cyclonic) flow, negative (positive) vorticity, and downward (upward) airflow. These facts indicate an interaction between dust-forced heating /cooling and atmospheric circulation. The April correlation results are supported by the analysis of vertical distribution of dust concentration, derived from the 24-hour dust prediction system at Tel Aviv University (website: http://earth.nasa.proj.ac.il/dust/current/). For other months the analysis is more complicated because of the essential increasing of humidity along with the northward progress of the ITCZ and the significant impact on the increments.

  9. OXYGEN UPTAKE KINETICS DURING INCREMENTAL- AND DECREMENTAL-RAMP CYCLE ERGOMETRY

    Directory of Open Access Journals (Sweden)

    Fadıl Özyener

    2011-09-01

    Full Text Available The pulmonary oxygen uptake (VO2 response to incremental-ramp cycle ergometry typically demonstrates lagged-linear first-order kinetics with a slope of ~10-11 ml·min-1·W-1, both above and below the lactate threshold (ӨL, i.e. there is no discernible VO2 slow component (or "excess" VO2 above ӨL. We were interested in determining whether a reverse ramp profile would yield the same response dynamics. Ten healthy males performed a maximum incremental -ramp (15-30 W·min-1, depending on fitness. On another day, the work rate (WR was increased abruptly to the incremental maximum and then decremented at the same rate of 15-30 W.min-1 (step-decremental ramp. Five subjects also performed a sub-maximal ramp-decremental test from 90% of ӨL. VO2 was determined breath-by-breath from continuous monitoring of respired volumes (turbine and gas concentrations (mass spectrometer. The incremental-ramp VO2-WR slope was 10.3 ± 0.7 ml·min-1·W-1, whereas that of the descending limb of the decremental ramp was 14.2 ± 1.1 ml·min-1·W-1 (p < 0.005. The sub-maximal decremental-ramp slope, however, was only 9. 8 ± 0.9 ml·min-1·W-1: not significantly different from that of the incremental-ramp. This suggests that the VO2 response in the supra-ӨL domain of incremental-ramp exercise manifest not actual, but pseudo, first-order kinetics

  10. A review of self generated B-field in ICF corona

    International Nuclear Information System (INIS)

    Jha, L.N.

    1989-07-01

    Self generated high order magnetic field in the corona of Inertial Confinement Fusion Plasma plays a very important role in the design of fusion target because of its strong influence on the transport of thermal flux from the critical density region to the ablation layer. A review of the generation of megagauss magnetic field both experimental, theoretical and simulation studies has been presented. (author). 28 refs, 5 figs, 1 tab

  11. Surface motion and confinement potential for a microwave confined corona

    International Nuclear Information System (INIS)

    Ensley, D.L.

    1979-07-01

    Approximate time dependent solutions for surface velocities and potentials are given for a plane polarized microwave field confining a hot, over-dense plasma corona. Steady state solutions to Poissons' equation can be applied to the time dependent case, provided transit time effects are included. The product of ion pressure and potential wave (surface) velocity gives an average heating rate approx. 7/32 NKT 0 V/sub theta/ directly to the ions

  12. SIMULATIONS OF THE KELVIN–HELMHOLTZ INSTABILITY DRIVEN BY CORONAL MASS EJECTIONS IN THE TURBULENT CORONA

    Energy Technology Data Exchange (ETDEWEB)

    Gómez, Daniel O.; DeLuca, Edward E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St, Cambridge, MA 02138 (United States); Mininni, Pablo D. [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Física de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires (Argentina)

    2016-02-20

    Recent high-resolution Atmospheric Imaging Assembly/Solar Dynamics Observatory images show evidence of the development of the Kelvin–Helmholtz (KH) instability, as coronal mass ejections (CMEs) expand in the ambient corona. A large-scale magnetic field mostly tangential to the interface is inferred, both on the CME and on the background sides. However, the magnetic field component along the shear flow is not strong enough to quench the instability. There is also observational evidence that the ambient corona is in a turbulent regime, and therefore the criteria for the development of the instability are a priori expected to differ from the laminar case. To study the evolution of the KH instability with a turbulent background, we perform three-dimensional simulations of the incompressible magnetohydrodynamic equations. The instability is driven by a velocity profile tangential to the CME–corona interface, which we simulate through a hyperbolic tangent profile. The turbulent background is generated by the application of a stationary stirring force. We compute the instability growth rate for different values of the turbulence intensity, and find that the role of turbulence is to attenuate the growth. The fact that KH instability is observed sets an upper limit on the correlation length of the coronal background turbulence.

  13. Ozone generation in positive and negative corona discharge fed by humid oxygen and carbon dioxide

    International Nuclear Information System (INIS)

    Skalny, J D; Orszagh, J; MatejcIk, S; Mason, N J

    2008-01-01

    The effect of humidity on ozone generation of positive and negative corona discharges fed by O 2 and CO 2 has been studied in the humidity range of 100-20 000 ppm. The experiments were carried out at an ambient temperature and pressure of 100 kPa. The increase in humidity of CO 2 conspicuously suppressed the ozone generation in negative corona discharge at all values of the input energy densities into the discharge. The effect was less pronounced in oxygen. In contrast to decrease of ozone concentration observed in negative corona discharge, the presence of water both in O 2 and CO 2 acts catalytically. The ozone concentration has been found to increase remarkably (approximately 10 times) in oxygen, if the humidity was increased from 100 to 20 000 ppm. The dependence of ozone concentration on the gas humidity exhibited an extreme. The increase observed at humidity up to approximately 5000 ppm was followed by the marginal reduction in ozone concentration. Anyway, the values of this were considerably higher than those found in dry CO 2 . The effect of humidity on ozone concentration will be discussed in relation to plasma chemical processes in studied discharges and their macroscopic parameters.

  14. Finance for incremental housing: current status and prospects for expansion

    NARCIS (Netherlands)

    Ferguson, B.; Smets, P.G.S.M.

    2010-01-01

    Appropriate finance can greatly increase the speed and lower the cost of incremental housing - the process used by much of the low/moderate-income majority of most developing countries to acquire shelter. Informal finance continues to dominate the funding of incremental housing. However, new sources

  15. One Step at a Time: SBM as an Incremental Process.

    Science.gov (United States)

    Conrad, Mark

    1995-01-01

    Discusses incremental SBM budgeting and answers questions regarding resource equity, bookkeeping requirements, accountability, decision-making processes, and purchasing. Approaching site-based management as an incremental process recognizes that every school system engages in some level of site-based decisions. Implementation can be gradual and…

  16. History Matters: Incremental Ontology Reasoning Using Modules

    Science.gov (United States)

    Cuenca Grau, Bernardo; Halaschek-Wiener, Christian; Kazakov, Yevgeny

    The development of ontologies involves continuous but relatively small modifications. Existing ontology reasoners, however, do not take advantage of the similarities between different versions of an ontology. In this paper, we propose a technique for incremental reasoning—that is, reasoning that reuses information obtained from previous versions of an ontology—based on the notion of a module. Our technique does not depend on a particular reasoning calculus and thus can be used in combination with any reasoner. We have applied our results to incremental classification of OWL DL ontologies and found significant improvement over regular classification time on a set of real-world ontologies.

  17. 2D simulation of active species and ozone production in a multi-tip DC air corona discharge

    Science.gov (United States)

    Meziane, M.; Eichwald, O.; Sarrette, J. P.; Ducasse, O.; Yousfi, M.

    2011-11-01

    The present paper shows for the first time in the literature a complete 2D simulation of the ozone production in a DC positive multi-tip to plane corona discharge reactor crossed by a dry air flow at atmospheric pressure. The simulation is undertaken until 1 ms and involves tens of successive discharge and post-discharge phases. The air flow is stressed by several monofilament corona discharges generated by a maximum of four anodic tips distributed along the reactor. The nonstationary hydrodynamics model for reactive gas mixture is solved using the commercial FLUENT software. During each discharge phase, thermal and vibrational energies as well as densities of radical and metastable excited species are locally injected as source terms in the gas medium surrounding each tip. The chosen chemical model involves 10 neutral species reacting following 24 reactions. The obtained results allow us to follow the cartography of the temperature and the ozone production inside the corona reactor as a function of the number of high voltage anodic tips.

  18. Numerical simulation of Trichel pulses of negative DC corona discharge based on a plasma chemical model

    Science.gov (United States)

    Chen, Xiaoyue; Lan, Lei; Lu, Hailiang; Wang, Yu; Wen, Xishan; Du, Xinyu; He, Wangling

    2017-10-01

    A numerical simulation method of negative direct current (DC) corona discharge based on a plasma chemical model is presented, and a coaxial cylindrical gap is adopted. There were 15 particle species and 61 kinds of collision reactions electrons involved, and 22 kinds of reactions between ions are considered in plasma chemical reactions. Based on this method, continuous Trichel pulses are calculated on about a 100 us timescale, and microcosmic physicochemical process of negative DC corona discharge in three different periods is discussed. The obtained results show that the amplitude of Trichel pulses is between 1-2 mA, and that pulse interval is in the order of 10-5 s. The positive ions produced by avalanche ionization enhanced the electric field near the cathode at the beginning of the pulse, then disappeared from the surface of cathode. The electric field decreases and the pulse ceases to develop. The negative ions produced by attachment slowly move away from the cathode, and the electric field increases gradually until the next pulse begins to develop. The positive and negative ions with the highest density during the corona discharge process are O4+ and O3- , respectively.

  19. Mechanism for negative corona current pulse in CO sub 2 -SF sub 6 mixtures

    CERN Document Server

    Zahoranova, A; Simor, M; Cernak, M

    2003-01-01

    Current waveforms of first negative corona pulses have been measured in CO sub 2 -SF sub 6 mixtures over a pressure range extending from 6.65 to 50 kPa and various overvoltages. Effects of changing cathode secondary electron emission were studied using a copper cathode coated by CuI and graphite. For a given set of experimental conditions it is concluded that in the mixtures containing up to 30% of SF sub 6 the negative corona pulse is associated with the formation of a cathode-directed streamer-like ionizing wave in the immediate vicinity of the cathode. This is in contrast to the discharge behaviour in air-SF sub 6 and N sub 2 -SF sub 6 mixtures, where in similar conditions the discharge develops according to a multi-avalanche Townsend mechanism. (rapid communication)

  20. Polyester composites reinforced with corona-treated fibers from pine, eucalyptus and sugarcane bagasse

    Science.gov (United States)

    This study aims to evaluate plant fibers that were surface activated with NaOH and corona discharge before incorporating in ortho unsaturated polyester-based fiber composites. It demonstrates the potential use of lignocellulosic particles, especially eucalyptus that presented the higher values for a...

  1. 76 FR 73475 - Immigration Benefits Business Transformation, Increment I; Correction

    Science.gov (United States)

    2011-11-29

    ... Benefits Business Transformation, Increment I, 76 FR 53764 (Aug. 29, 2011). The final rule removed form... [CIS No. 2481-09; Docket No. USCIS-2009-0022] RIN 1615-AB83 Immigration Benefits Business Transformation, Increment I; Correction AGENCY: U.S. Citizenship and Immigration Services, DHS. ACTION: Final...

  2. Comparative study of the loss cone-driven instabilities in the low solar corona

    International Nuclear Information System (INIS)

    Sharma, R.R.; Vlahos, L.

    1984-01-01

    A comparative study of the loss cone--driven instabilities in the low solar corona is undertaken. The instailities considered are the electron maser, the whistler, and the electrostatic upper hybrid. We show that the first-harmonic extraordinary mode of the electron cyclotron maser instability is the fastest growing mode for strongly magnetized plasma (ω/sub e//Ω/sub e/ 1.0, no direct electromagnetic radiation is expected since other instabilities, which do not escape directly, saturate the electron cyclotron maser (the whistler or the electrostatic upper hybrid waves). We also show that the second-harmonic electron cyclotron maser emission never grows to an appreciable level. Thus, we suggest that the electron cyclotron maser instability can be the explanation for intense radio bursts only when the first harmonic escapes from the low corona. We propose a possible explanation for the escape of the first harmonic from a flaring loop

  3. EIT: Solar corona synoptic observations from SOHO with an Extreme-ultraviolet Imaging Telescope

    Science.gov (United States)

    Delaboudiniere, J. P.; Gabriel, A. H.; Artzner, G. E.; Michels, D. J.; Dere, K. P.; Howard, R. A.; Catura, R.; Stern, R.; Lemen, J.; Neupert, W.

    1988-01-01

    The Extreme-ultraviolet Imaging Telescope (EIT) of SOHO (solar and heliospheric observatory) will provide full disk images in emission lines formed at temperatures that map solar structures ranging from the chromospheric network to the hot magnetically confined plasma in the corona. Images in four narrow bandpasses will be obtained using normal incidence multilayered optics deposited on quadrants of a Ritchey-Chretien telescope. The EIT is capable of providing a uniform one arc second resolution over its entire 50 by 50 arc min field of view. Data from the EIT will be extremely valuable for identifying and interpreting the spatial and temperature fine structures of the solar atmosphere. Temporal analysis will provide information on the stability of these structures and identify dynamical processes. EIT images, issued daily, will provide the global corona context for aid in unifying the investigations and in forming the observing plans for SOHO coronal instruments.

  4. Short-term load forecasting with increment regression tree

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jingfei; Stenzel, Juergen [Darmstadt University of Techonology, Darmstadt 64283 (Germany)

    2006-06-15

    This paper presents a new regression tree method for short-term load forecasting. Both increment and non-increment tree are built according to the historical data to provide the data space partition and input variable selection. Support vector machine is employed to the samples of regression tree nodes for further fine regression. Results of different tree nodes are integrated through weighted average method to obtain the comprehensive forecasting result. The effectiveness of the proposed method is demonstrated through its application to an actual system. (author)

  5. La corona radiata de Helios-Sol como símbolo de poder en la Cultura Visual Romana

    Directory of Open Access Journals (Sweden)

    Jorge Tomás García

    2017-12-01

    Full Text Available El presente trabajo pretende analizar la presencia del motivo iconográfico de la corona radiata en la cultura visual romana como símbolo de poder. Para ello, analizaremos la figura mitológica de Helios, y sus múltiples variantes en las fuentes clásicas, especialmente aquellas que más la relacionan con la divinidad del Sol en el mundo romano. Las principales categorías de interpretación de la iconografía del Sol en la cultura visual romana enriquecen las variantes iconológicas de la presencia de la corona radiata. Así, pretendemos analizar la naturaleza real o simbólica de este atributo iconográfico tan presente desde la época de Augusto como símbolo de poder y luz ligado a la realía imperial. This article aims to analyze the presence of the iconographic motif of the corona radiata in the Roman visual culture as a symbol of power. For this, we will analyze the mythological figure of Helios, and its multiple variants in the classical sources, especially those that relate more to the divinity of the Sun in the Roman world. e main categories of interpretation of the Sun's iconography in the Roman visual culture enrich the iconological variants of the presence of the corona radiata. us, we intend to analyze the real or symbolic nature of this iconographic attribute so present since the time of Augustus as a symbol of power and light linked to the imperial realia.

  6. Angiotensin receptor-neprilysin inhibitors: clinical potential in heart failure and beyond

    Directory of Open Access Journals (Sweden)

    Singh JSS

    2015-06-01

    Full Text Available Jagdeep SS Singh, Chim C Lang Division of Cardiovascular and Diabetes Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK Abstract: Heart failure remains a major concern across the globe as life expectancies and delivery of health care continue to improve. There has been a dearth of new developments in heart failure therapies in the last decade until last year, with the release of the results from the PARADIGM-HF Trial heralding the arrival of a promising new class of drug, ie, the angiotensin receptor-neprilysin inhibitor. In this review, we discuss the evolution of our incremental understanding of the neurohormonal mechanisms involved in the pathophysiology of heart failure, which has led to our success in modulating its various pathways. We start by examining the renin-angiotensin-aldosterone system, followed by the challenges of modulating the natriuretic peptide system. We then delve deeper into the pharmacology and mechanisms by which angiotensin receptor-neprilysin inhibitors achieve their significant cardiovascular benefits. Finally, we also consider the potential application of this new class of drug in other areas, such as heart failure with preserved ejection fraction, hypertension, patients with renal impairment, and following myocardial infarction. Keywords: heart failure, angiotensin receptor-neprilysin inhibitor, heart failure with preserved ejection fraction, nesiritide, candoxatril, omapatrilat, hypertension, renal impairment, myocardial infarction

  7. The Funnel Geometry of Open Flux Tubes in the Low Solar Corona Constrained by O VI and Ne VIII Outflow

    Science.gov (United States)

    Byhring, Hanne S.; Esser, Ruth; Lie-Svendsen, Oystein

    2008-01-01

    Model calculations show that observed outflow velocities of order 7-10 km/s of C IV and O VI ions, and 15-20 km/s of Ne VIII ions, are not only consistent with models of the solar wind from coronas holes, but also place unique constraints on the degree of flow tube expansion as well as the location of the expansion in the transition region/lower corona.

  8. ANALYTICAL MODELING OF INNOVATIVE SENSOR PLACEMENT STRATEGY FOR CORONA-BASED WIRELESS SENSOR NETWORKS

    Directory of Open Access Journals (Sweden)

    HASSAN H. EKAL

    2017-09-01

    Full Text Available Wireless Sensor Networks (WSNs applications are increasing rapidly, thanks to their broad potential in ecological monitoring, biomedical health monitoring, data gathering and many others. Imbalance energy of sensors causes significant reduction in the lifetime of the network. In many-to-one communication (corona WSNs, sensor nodes located nearby the data collector (sink forward data sensed data received from other nodes, hence, having heavier workloads. These nodes consume more energy than the others, leading to quicker energy depletion.Consequently, this results in energy hole problem, where the network becomes separate islands, which affect the lifetime of the network negatively. When this situation occurs, the sensed data will not be forwarded to the intended sink; accordingly, the network will not be able to completely fulfil its required tasks. In this paper, an effective sensors placement strategy is proposed to avoid or alleviate energy hole problem in such type of WSNs. The proposed strategy aims to improve, scale, and balance the energy consumption among sensor nodes and to maximize the network lifetime, by sustaining the network coverage and connectivity. To achieve this aim, the number of sensors should be optimized to create sub-balanced coronas in the sense of energy consumption, while satisfying the network coverage and connectivity requirements. The theoretical design and modelling of the proposed sensors placement strategy promise a considerable improvement in the lifetime of corona-based networks. The Experimental evaluation results have shown that the proposed sensors placement strategy is capable to increase the network lifetime considerably compared to conventional uniform strategy.

  9. SUPRATHERMAL ELECTRONS IN THE SOLAR CORONA: CAN NONLOCAL TRANSPORT EXPLAIN HELIOSPHERIC CHARGE STATES?

    International Nuclear Information System (INIS)

    Cranmer, Steven R.

    2014-01-01

    There have been several ideas proposed to explain how the Sun's corona is heated and how the solar wind is accelerated. Some models assume that open magnetic field lines are heated by Alfvén waves driven by photospheric motions and dissipated after undergoing a turbulent cascade. Other models posit that much of the solar wind's mass and energy is injected via magnetic reconnection from closed coronal loops. The latter idea is motivated by observations of reconnecting jets and also by similarities of ion composition between closed loops and the slow wind. Wave/turbulence models have also succeeded in reproducing observed trends in ion composition signatures versus wind speed. However, the absolute values of the charge-state ratios predicted by those models tended to be too low in comparison with observations. This Letter refines these predictions by taking better account of weak Coulomb collisions for coronal electrons, whose thermodynamic properties determine the ion charge states in the low corona. A perturbative description of nonlocal electron transport is applied to an existing set of wave/turbulence models. The resulting electron velocity distributions in the low corona exhibit mild suprathermal tails characterized by ''kappa'' exponents between 10 and 25. These suprathermal electrons are found to be sufficiently energetic to enhance the charge states of oxygen ions, while maintaining the same relative trend with wind speed that was found when the distribution was assumed to be Maxwellian. The updated wave/turbulence models are in excellent agreement with solar wind ion composition measurements

  10. The Time Course of Incremental Word Processing during Chinese Reading

    Science.gov (United States)

    Zhou, Junyi; Ma, Guojie; Li, Xingshan; Taft, Marcus

    2018-01-01

    In the current study, we report two eye movement experiments investigating how Chinese readers process incremental words during reading. These are words where some of the component characters constitute another word (an embedded word). In two experiments, eye movements were monitored while the participants read sentences with incremental words…

  11. Switch-mode High Voltage Drivers for Dielectric Electro Active Polymer (DEAP) Incremental Actuators

    DEFF Research Database (Denmark)

    Thummala, Prasanth

    voltage DC-DC converters for driving the DEAP based incremental actuators. The DEAP incremental actuator technology has the potential to be used in various industries, e.g., automotive, space and medicine. The DEAP incremental actuator consists of three electrically isolated and mechanically connected...

  12. Efficient Incremental Checkpointing of Java Programs

    DEFF Research Database (Denmark)

    Lawall, Julia Laetitia; Muller, Gilles

    2000-01-01

    This paper investigates the optimization of language-level checkpointing of Java programs. First, we describe how to systematically associate incremental checkpoints with Java classes. While being safe, the genericness of this solution induces substantial execution overhead. Second, to solve...

  13. Single Point Incremental Forming to increase material knowledge and production flexibility

    Science.gov (United States)

    Habraken, A. M.

    2016-08-01

    Nowadays, manufactured pieces can be divided into two groups: mass production and production of low volume number of parts. Within the second group (prototyping or small batch production), an emerging solution relies on Incremental Sheet Forming or ISF. ISF refers to processes where the plastic deformation occurs by repeated contact with a relatively small tool. More specifically, many publications over the past decade investigate Single Point Incremental Forming (SPIF) where the final shape is determined only by the tool movement. This manufacturing process is characterized by the forming of sheets by means of a CNC controlled generic tool stylus, with the sheets clamped by means of a non-workpiece-specific clamping system and in absence of a partial or a full die. The advantage is no tooling requirements and often enhanced formability, however it poses a challenge in term of process control and accuracy assurance. Note that the most commonly used materials in incremental forming are aluminum and steel alloys however other alloys are also used especially for medical industry applications, such as cobalt and chromium alloys, stainless steel and titanium alloys. Some scientists have applied incremental forming on PVC plates and other on sandwich panels composed of propylene with mild steel and aluminum metallic foams with aluminum sheet metal. Micro incremental forming of thin foils has also been developed. Starting from the scattering of the results of Finite Element (FE) simulations, when one tries to predict the tool force (see SPIF benchmark of 2014 Numisheet conference), we will see how SPIF and even micro SPIF (process applied on thin metallic sheet with a few grains within the thickness) allow investigating the material behavior. This lecture will focus on the identification of constitutive laws, on the SPIF forming mechanisms and formability as well as the failure mechanism. Different hypotheses have been proposed to explain SPIF formability, they will be

  14. Single Point Incremental Forming to increase material knowledge and production flexibility

    International Nuclear Information System (INIS)

    Habraken, A.M.

    2016-01-01

    Nowadays, manufactured pieces can be divided into two groups: mass production and production of low volume number of parts. Within the second group (prototyping or small batch production), an emerging solution relies on Incremental Sheet Forming or ISF. ISF refers to processes where the plastic deformation occurs by repeated contact with a relatively small tool. More specifically, many publications over the past decade investigate Single Point Incremental Forming (SPIF) where the final shape is determined only by the tool movement. This manufacturing process is characterized by the forming of sheets by means of a CNC controlled generic tool stylus, with the sheets clamped by means of a non-workpiece-specific clamping system and in absence of a partial or a full die. The advantage is no tooling requirements and often enhanced formability, however it poses a challenge in term of process control and accuracy assurance. Note that the most commonly used materials in incremental forming are aluminum and steel alloys however other alloys are also used especially for medical industry applications, such as cobalt and chromium alloys, stainless steel and titanium alloys. Some scientists have applied incremental forming on PVC plates and other on sandwich panels composed of propylene with mild steel and aluminum metallic foams with aluminum sheet metal. Micro incremental forming of thin foils has also been developed. Starting from the scattering of the results of Finite Element (FE) simulations, when one tries to predict the tool force (see SPIF benchmark of 2014 Numisheet conference), we will see how SPIF and even micro SPIF (process applied on thin metallic sheet with a few grains within the thickness) allow investigating the material behavior. This lecture will focus on the identification of constitutive laws, on the SPIF forming mechanisms and formability as well as the failure mechanism. Different hypotheses have been proposed to explain SPIF formability, they will be

  15. Dimensional analysis of detrimental ozone generation by positive wire-to-plate corona discharge in air

    Science.gov (United States)

    Bo, Z.; Chen, J. H.

    2010-02-01

    The dimensional analysis technique is used to formulate a correlation between ozone generation rate and various parameters that are important in the design and operation of positive wire-to-plate corona discharges in indoor air. The dimensionless relation is determined by linear regression analysis based on the results from 36 laboratory-scale experiments. The derived equation is validated by experimental data and a numerical model published in the literature. Applications of such derived equation are illustrated through an example selection of the appropriate set of operating conditions in the design/operation of a photocopier to follow the federal regulations of ozone emission. Finally, a new current-voltage characteristic equation is proposed for positive wire-to-plate corona discharges based on the derived dimensionless equation.

  16. Dimensional analysis of detrimental ozone generation by positive wire-to-plate corona discharge in air

    International Nuclear Information System (INIS)

    Bo, Z; Chen, J H

    2010-01-01

    The dimensional analysis technique is used to formulate a correlation between ozone generation rate and various parameters that are important in the design and operation of positive wire-to-plate corona discharges in indoor air. The dimensionless relation is determined by linear regression analysis based on the results from 36 laboratory-scale experiments. The derived equation is validated by experimental data and a numerical model published in the literature. Applications of such derived equation are illustrated through an example selection of the appropriate set of operating conditions in the design/operation of a photocopier to follow the federal regulations of ozone emission. Finally, a new current-voltage characteristic equation is proposed for positive wire-to-plate corona discharges based on the derived dimensionless equation.

  17. Complex Incremental Product Innovation in Established Service Firms: A Micro Institutional Perspective

    OpenAIRE

    Vermeulen, Patrick; Bosch, Frans; Volberda, Henk

    2007-01-01

    textabstractMany product innovation studies have described key determinants that should lead to successful incremental product innovation. Despite numerous studies suggesting how incremental product innovation should be successfully undertaken, many firms still struggle with this type of innovation. In this paper, we use an institutional perspective to investigate why established firms in the financial services industry struggle with their complex incremental product innovation efforts. We ar...

  18. Efficiency of ozone production by pulsed positive corona discharge in synthetic air

    Czech Academy of Sciences Publication Activity Database

    Šimek, Milan; Člupek, Martin

    2002-01-01

    Roč. 35, č. 11 (2002), s. 1171-1175 ISSN 0022-3727 R&D Projects: GA AV ČR IAA1043102; GA ČR GA202/99/1298 Institutional research plan: CEZ:AV0Z2043910 Keywords : corona, synthetic air Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.366, year: 2002

  19. Incremental Innovation and Competitive Pressure in the Presence of Discrete Innovation

    DEFF Research Database (Denmark)

    Ghosh, Arghya; Kato, Takao; Morita, Hodaka

    2017-01-01

    Technical progress consists of improvements made upon the existing technology (incremental innovation) and innovative activities aiming at entirely new technology (discrete innovation). Incremental innovation is often of limited relevance to the new technology invented by successful discrete...

  20. Calculation of the increment reduction in spruce stands by charcoal smoke

    Energy Technology Data Exchange (ETDEWEB)

    Guede, J

    1954-01-01

    Chronic damage to spruce trees by charcoal smoke, often hardly noticeable from outward appearance but causing marked reductions of wood increment can be determined by means of a calculation by increment cores. Sulfurous acid anhydride causes the closure of the stomates of needles by which the circulation of water is checked. The assimilation and the wood increment are reduced. The cores are taken from uninjured trees belonging to the dominant class. These trees are liable to irregular variations in the trend of growth only by atmospheric influences and disturbances in the circulation of water. The decrease of increment of a stand can be judged by the trend of growth of the basal area of sample trees. Two methods are applied: in the first method, the difference between the mean total increment before the damage has been caused and that after it is calculated by the yield table in deriving the site quality classes from the basal area growth of dominant stems. This is possible by using the mean diameter of each age class and the frequency curve of basal area for each site class. In the other method, the reduction of basal area increment of sample trees is measured directly. The total reduction of a stand can be judged by the share of the dominant class of stem in the total current growth of the basal area of a sound stand and by the percent of reduction of the sample trees.

  1. IMAGING COMET ISON C/2012 S1 IN THE INNER CORONA AT PERIHELION

    Energy Technology Data Exchange (ETDEWEB)

    Druckmüller, Miloslav [Faculty of Mechanical Engineering, Brno University of Technology, 616 69 Brno (Czech Republic); Habbal, Shadia Rifai [Institute for Astronomy, University of Hawaii, Honolulu 96822, Hawaii (United States); Aniol, Peter [ASTELCO Systems GmbH, D-82152 Martinsried (Germany); Ding, Adalbert [Institute of Optics and Atomic Physics, Technische Universitaet Berlin, and Institute of Technical Physics, Berlin (Germany); Morgan, Huw [Institute of Mathematics, Physics and Computer Science, Aberystwyth University, Ceredigion, Cymru SY23 3BZ (United Kingdom)

    2014-04-01

    Much anticipation and speculation were building around comet ISON, or C/2012 S1, discovered on 2012 September 21 by the International Scientific Optical Network telescope in Russia, and bound for the Sun on 2013 November 28, with a closest heliocentric approach distance of 2.7 R {sub ☉}. Here we present the first white light image of the comet's trail through the inner corona. The image was taken with a wide field Lyot-type coronagraph from the Mees Observatory on Haleakala at 19:12 UT, past its perihelion passage at 18:45 UT. The perfect match between the comet's trail captured in the inner corona and the trail that had persisted across the field of view of 2-6 R {sub ☉} of the Solar and Heliospheric Observatory Large Angle and Spectrometric Coronagraph Experiment/C2 coronagraph at 19:12 UT demonstrates that the comet survived its perihelion passage.

  2. Do otolith increments allow correct inferences about age and growth of coral reef fishes?

    Science.gov (United States)

    Booth, D. J.

    2014-03-01

    Otolith increment structure is widely used to estimate age and growth of marine fishes. Here, I test the accuracy of the long-term otolith increment analysis of the lemon damselfish Pomacentrus moluccensis to describe age and growth characteristics. I compare the number of putative annual otolith increments (as a proxy for actual age) and widths of these increments (as proxies for somatic growth) with actual tagged fish-length data, based on a 6-year dataset, the longest time course for a coral reef fish. Estimated age from otoliths corresponded closely with actual age in all cases, confirming annual increment formation. However, otolith increment widths were poor proxies for actual growth in length [linear regression r 2 = 0.44-0.90, n = 6 fish] and were clearly of limited value in estimating annual growth. Up to 60 % of the annual growth variation was missed using otolith increments, suggesting the long-term back calculations of otolith growth characteristics of reef fish populations should be interpreted with caution.

  3. The Dark Side of Malleability: Incremental Theory Promotes Immoral Behaviors.

    Science.gov (United States)

    Huang, Niwen; Zuo, Shijiang; Wang, Fang; Cai, Pan; Wang, Fengxiang

    2017-01-01

    Implicit theories drastically affect an individual's processing of social information, decision making, and action. The present research focuses on whether individuals who hold the implicit belief that people's moral character is fixed (entity theorists) and individuals who hold the implicit belief that people's moral character is malleable (incremental theorists) make different choices when facing a moral decision. Incremental theorists are less likely to make the fundamental attribution error (FAE), rarely make moral judgment based on traits and show more tolerance to immorality, relative to entity theorists, which might decrease the possibility of undermining the self-image when they engage in immoral behaviors, and thus we posit that incremental beliefs facilitate immorality. Four studies were conducted to explore the effect of these two types of implicit theories on immoral intention or practice. The association between implicit theories and immoral behavior was preliminarily examined from the observer perspective in Study 1, and the results showed that people tended to associate immoral behaviors (including everyday immoral intention and environmental destruction) with an incremental theorist rather than an entity theorist. Then, the relationship was further replicated from the actor perspective in Studies 2-4. In Study 2, implicit theories, which were measured, positively predicted the degree of discrimination against carriers of the hepatitis B virus. In Study 3, implicit theories were primed through reading articles, and the participants in the incremental condition showed more cheating than those in the entity condition. In Study 4, implicit theories were primed through a new manipulation, and the participants in the unstable condition (primed incremental theory) showed more discrimination than those in the other three conditions. Taken together, the results of our four studies were consistent with our hypotheses.

  4. The Dark Side of Malleability: Incremental Theory Promotes Immoral Behaviors

    Directory of Open Access Journals (Sweden)

    Niwen Huang

    2017-08-01

    Full Text Available Implicit theories drastically affect an individual’s processing of social information, decision making, and action. The present research focuses on whether individuals who hold the implicit belief that people’s moral character is fixed (entity theorists and individuals who hold the implicit belief that people’s moral character is malleable (incremental theorists make different choices when facing a moral decision. Incremental theorists are less likely to make the fundamental attribution error (FAE, rarely make moral judgment based on traits and show more tolerance to immorality, relative to entity theorists, which might decrease the possibility of undermining the self-image when they engage in immoral behaviors, and thus we posit that incremental beliefs facilitate immorality. Four studies were conducted to explore the effect of these two types of implicit theories on immoral intention or practice. The association between implicit theories and immoral behavior was preliminarily examined from the observer perspective in Study 1, and the results showed that people tended to associate immoral behaviors (including everyday immoral intention and environmental destruction with an incremental theorist rather than an entity theorist. Then, the relationship was further replicated from the actor perspective in Studies 2–4. In Study 2, implicit theories, which were measured, positively predicted the degree of discrimination against carriers of the hepatitis B virus. In Study 3, implicit theories were primed through reading articles, and the participants in the incremental condition showed more cheating than those in the entity condition. In Study 4, implicit theories were primed through a new manipulation, and the participants in the unstable condition (primed incremental theory showed more discrimination than those in the other three conditions. Taken together, the results of our four studies were consistent with our hypotheses.

  5. Dental caries increments and related factors in children with type 1 diabetes mellitus.

    Science.gov (United States)

    Siudikiene, J; Machiulskiene, V; Nyvad, B; Tenovuo, J; Nedzelskiene, I

    2008-01-01

    The aim of this study was to analyse possible associations between caries increments and selected caries determinants in children with type 1 diabetes mellitus and their age- and sex-matched non-diabetic controls, over 2 years. A total of 63 (10-15 years old) diabetic and non-diabetic pairs were examined for dental caries, oral hygiene and salivary factors. Salivary flow rates, buffer effect, concentrations of mutans streptococci, lactobacilli, yeasts, total IgA and IgG, protein, albumin, amylase and glucose were analysed. Means of 2-year decayed/missing/filled surface (DMFS) increments were similar in diabetics and their controls. Over the study period, both unstimulated and stimulated salivary flow rates remained significantly lower in diabetic children compared to controls. No differences were observed in the counts of lactobacilli, mutans streptococci or yeast growth during follow-up, whereas salivary IgA, protein and glucose concentrations were higher in diabetics than in controls throughout the 2-year period. Multivariable linear regression analysis showed that children with higher 2-year DMFS increments were older at baseline and had higher salivary glucose concentrations than children with lower 2-year DMFS increments. Likewise, higher 2-year DMFS increments in diabetics versus controls were associated with greater increments in salivary glucose concentrations in diabetics. Higher increments in active caries lesions in diabetics versus controls were associated with greater increments of dental plaque and greater increments of salivary albumin. Our results suggest that, in addition to dental plaque as a common caries risk factor, diabetes-induced changes in salivary glucose and albumin concentrations are indicative of caries development among diabetics. Copyright 2008 S. Karger AG, Basel.

  6. Study of a dual frequency atmospheric pressure corona plasma

    International Nuclear Information System (INIS)

    Kim, Dan Bee; Moon, S. Y.; Jung, H.; Gweon, B.; Choe, Wonho

    2010-01-01

    Radio frequency mixing of 2 and 13.56 MHz was investigated by performing experimental measurements on the atmospheric pressure corona plasma. As a result of the dual frequency, length, current density, and electron excitation temperature of the plasma were increased, while the gas temperature was maintained at roughly the same level when compared to the respective single frequency plasmas. Moreover, observation of time-resolved images revealed that the dual frequency plasma has a discharge mode of 2 MHz positive streamer, 2 MHz negative glow, and 13.56 MHz continuous glow.

  7. Toxic Gas Removal by Dielectric Discharge with Corona Effect

    International Nuclear Information System (INIS)

    Moreno, H.; Pacheco, M.; Mercado, A.; Cruz, A.; Pacheco, J.; Yousfi, M.; Eichwald, O.; Benhenni, M.

    2006-01-01

    In this work, a theoretical and experimental study on SO2 and NOx removal by non-thermal plasma technology, more specifically a dielectric barrier (DBD) discharge combined with the Corona effect, is presented. Results obtained from a theoretical study describe the chemical kinetic model of SO2 and NOx removal processes; the effect of OH radicals in removal of both gases is noteworthy. Experimental results of de-SO2 process are reported. Also, optical emission spectroscopy study was applied on some atomic helium lines to obtain temperature of electrons in the non-thermal plasma

  8. WHAT IS THE SHELL AROUND R CORONAE BOREALIS?

    Energy Technology Data Exchange (ETDEWEB)

    Montiel, Edward J.; Clayton, Geoffrey C.; Marcello, Dominic C. [Dept. of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Lockman, Felix J., E-mail: emonti2@lsu.edu, E-mail: gclayton@fenway.phys.lsu.edu, E-mail: dmarce1@tigers.lsu.edu, E-mail: jlockman@nrao.edu [National Radio Astronomy Observatory, Green Bank, WV 24944 (United States)

    2015-07-15

    The hydrogen-deficient, carbon-rich R Coronae Borealis (RCB) stars are known for being prolific producers of dust which causes their large iconic declines in brightness. Several RCB stars, including R Coronae Borealis (R CrB), itself, have large extended dust shells seen in the far-infrared. The origin of these shells is uncertain but they may give us clues to the evolution of the RCB stars. The shells could form in three possible ways. (1) They are fossil Planetary Nebula (PN) shells, which would exist if RCB stars are the result of a final, helium-shell flash, (2) they are material left over from a white-dwarf (WD) merger event which formed the RCB stars, or (3) they are material lost from the star during the RCB phase. Arecibo 21 cm observations establish an upper limit on the column density of H I in the R CrB shell implying a maximum shell mass of ≲0.3 M{sub ☉}. A low-mass fossil PN shell is still a possible source of the shell although it may not contain enough dust. The mass of gas lost during a WD merger event will not condense enough dust to produce the observed shell, assuming a reasonable gas-to-dust ratio. The third scenario where the shell around R CrB has been produced during the star’s RCB phase seems most likely to produce the observed mass of dust and the observed size of the shell. But this means that R CrB has been in its RCB phase for ∼10{sup 4} years.

  9. Chlorinated organic compound removal by gas phase pulsed streamer corona electrical discharge with reticulated vitreous carbon electrodes

    International Nuclear Information System (INIS)

    Kirkpatrick, M.J.; Finney, W.C.; Locke, B. R.

    2002-01-01

    Trichloroethylene (TCE) and vinyl chloride removal by pulsed corona discharge was investigated with attention to energy efficiency and byproduct identification. Approximately, 50 to 95 percent removal of TCE and vinyl chloride was observed depending on the energy density applied to the gas. Water vapor had no significant effect on TCE removal. Evidence was found for post-corona reactions leading to removal of vinyl chloride downstream of the plasma discharge. Energy efficiencies of 100-900 g/kw-hr in the case of 1000 ppm feed of TCE and efficiencies of 2-24 g/kw-hr for a 100 ppm feed of vinyl chloride were found. In TCE experiments, the formation of dichloroacetyl chloride was observed, while chloro-ethane formation was found for vinyl chloride. In both cases, Cl- was measured downstream of the pulsed corona reactor in a water trap using an ion-selective electrode, although measured amounts varied widely due to condensation in the gas lines between the reactor and the water trap. The addition of a platinum-rhodium coated electrode was found only to reduce the downstream removal of vinyl chloride at low energy density. (author)

  10. Enabling Incremental Query Re-Optimization.

    Science.gov (United States)

    Liu, Mengmeng; Ives, Zachary G; Loo, Boon Thau

    2016-01-01

    As declarative query processing techniques expand to the Web, data streams, network routers, and cloud platforms, there is an increasing need to re-plan execution in the presence of unanticipated performance changes. New runtime information may affect which query plan we prefer to run. Adaptive techniques require innovation both in terms of the algorithms used to estimate costs , and in terms of the search algorithm that finds the best plan. We investigate how to build a cost-based optimizer that recomputes the optimal plan incrementally given new cost information, much as a stream engine constantly updates its outputs given new data. Our implementation especially shows benefits for stream processing workloads. It lays the foundations upon which a variety of novel adaptive optimization algorithms can be built. We start by leveraging the recently proposed approach of formulating query plan enumeration as a set of recursive datalog queries ; we develop a variety of novel optimization approaches to ensure effective pruning in both static and incremental cases. We further show that the lessons learned in the declarative implementation can be equally applied to more traditional optimizer implementations.

  11. Ionized Absorbers as Evidence for Supernova-driven Cooling of the Lower Galactic Corona

    NARCIS (Netherlands)

    Fraternali, Filippo; Marasco, Antonino; Marinacci, Federico; Binney, James

    2013-01-01

    We show that the ultraviolet absorption features, newly discovered in Hubble Space Telescope spectra, are consistent with being formed in a layer that extends a few kpc above the disk of the Milky Way. In this interface between the disk and the Galactic corona, high-metallicity gas ejected from the

  12. Investigation of some properties of Nylon-6 surface treated by corona discharge in helium

    International Nuclear Information System (INIS)

    Dumitrascu, N.; Surdu, S.; Popa, Gh.; Raileanu, D.

    1996-01-01

    In this work an easy and less expensive method of treatment has been used by corona discharge. This allows to modify the surface properties and especially to improve the compatibility of polymers with biological tissue. The Nylon-6 as a test material was chosen. A scanning electron microscope to visualize the morphology of the morphology of the surface and an IR spectrophotometer able to identify the amide groups and other as well, have been used. Morphology of the treated surface by corona discharge emphasis an etching an etching and/or a crosslinking of amorphous domains, generally important to improve the properties as wetting, dyeing, adhesion, etc. Over all treated surface there is significant blood compatible properties without the need of heparinization of surface. The treated surface influences the biological behaviour of micro-organisms, respectively, that surface is a favourable medium for division of cells and may increase their lifetime. (authors)

  13. Annual Properties of Transverse Waves in the Corona over most of Solar Cycle 24

    Science.gov (United States)

    Weberg, M. J.; Morton, R. J.; McLaughlin, J. A.

    2017-12-01

    Waves are an omnipresent feature in heliophysical plasmas. In particular, transverse (or "Alfvénic") waves have been observed at a wide range of spatial and temporal scales within the corona and solar wind. These waves play a key role in transporting energy through the solar atmosphere and are also thought to contribute to the heating and acceleration of the solar wind. Previous studies of low-frequency (automated detection and measurement of low-frequency transverse waves with over 7 years of SDO / AIA data to provide a detailed picture of coronal transverse waves in polar plumes and, for the first time, begin to examine their long-term behaviour. We measure waves at three different heights in each of eight, four-hour periods spanning May 2010 - May 2017. We find that the bulk wave parameters within these 24 regions are largely consistent over most of a solar cycle. However, there is some evidence for smaller-scale variations both with height and over time periods of a few years. We also discuss total energy flux estimations based on the full wave power spectra, which yields a more nuanced picture than previous values based on summary statistics. Overall, this work expands our view of wave processes in the corona and is relevant to both theoretical and modelling considerations of energy transport within the solar atmosphere. Crucially, these initial results suggest that the energy flux provided by the low-frequency transverse waves varies little over the solar cycle, potentially indicating that the waves provide a consistent source of energy to the corona and beyond.

  14. Modelling of pulsed RF corona discharges in high-pressure air

    International Nuclear Information System (INIS)

    Auzas, F; Makarov, M; Naidis, G V

    2012-01-01

    An approach to description of pulsed RF corona discharges in high-pressure air is developed, based on the model of a filamentary discharge sustained by an electromagnetic wave guided along the plasma filament. Results of numerical simulation of spatial-temporal discharge dynamics at the quasi-stationary stage are obtained for various values of gas pressure and wave frequency. Experimental data on the discharge length versus the power absorbed by the discharge are presented. Their comparison with simulation results is given. (paper)

  15. Corona mortis: an anatomical variation with clinical relevance. Case report.

    Directory of Open Access Journals (Sweden)

    Guillermo Adrián Rivera-Cardona

    2010-12-01

    Full Text Available The obturator artery is one of the parietal branches arising from the internal iliac artery, the anatomical variation from which this artery originates is called “The corona mortis”, generally from the external iliac artery or the inferior epigastric artery. This finding was observed bilaterally in a male cadaver during a pelvis dissection. Clinical consideration of the anatomical variation in the obturator artery, during surgical procedures, is of great importance due to the risk of pelvic hemorrhage.

  16. Stationary Magnetohydrodynamic Models of Three-Dimensional Rigidly Rotating Magnetized Coronae

    International Nuclear Information System (INIS)

    Al-Salti, Nasser; Neukirch, Thomas

    2009-01-01

    Example solutions of a theory for stationary 3D non-potential solutions of the MHD equations (in the co-rotating frame of reference) are presented. As a first step we present solutions for the mathematically simpler case of a massive central cylinder, but the theory can also be applied to spherical bodies. The fundamental equation of the theory is linear and in the cylindrical case it can be solved using standard methods. Possible application is the structure of coronae of (fast) rotating stars.

  17. Context-dependent incremental timing cells in the primate hippocampus.

    Science.gov (United States)

    Sakon, John J; Naya, Yuji; Wirth, Sylvia; Suzuki, Wendy A

    2014-12-23

    We examined timing-related signals in primate hippocampal cells as animals performed an object-place (OP) associative learning task. We found hippocampal cells with firing rates that incrementally increased or decreased across the memory delay interval of the task, which we refer to as incremental timing cells (ITCs). Three distinct categories of ITCs were identified. Agnostic ITCs did not distinguish between different trial types. The remaining two categories of cells signaled time and trial context together: One category of cells tracked time depending on the behavioral action required for a correct response (i.e., early vs. late release), whereas the other category of cells tracked time only for those trials cued with a specific OP combination. The context-sensitive ITCs were observed more often during sessions where behavioral learning was observed and exhibited reduced incremental firing on incorrect trials. Thus, single primate hippocampal cells signal information about trial timing, which can be linked with trial type/context in a learning-dependent manner.

  18. Statistics of wind direction and its increments

    International Nuclear Information System (INIS)

    Doorn, Eric van; Dhruva, Brindesh; Sreenivasan, Katepalli R.; Cassella, Victor

    2000-01-01

    We study some elementary statistics of wind direction fluctuations in the atmosphere for a wide range of time scales (10 -4 sec to 1 h), and in both vertical and horizontal planes. In the plane parallel to the ground surface, the direction time series consists of two parts: a constant drift due to large weather systems moving with the mean wind speed, and fluctuations about this drift. The statistics of the direction fluctuations show a rough similarity to Brownian motion but depend, in detail, on the wind speed. This dependence manifests itself quite clearly in the statistics of wind-direction increments over various intervals of time. These increments are intermittent during periods of low wind speeds but Gaussian-like during periods of high wind speeds. (c) 2000 American Institute of Physics

  19. RADIO DIAGNOSTICS OF ELECTRON ACCELERATION SITES DURING THE ERUPTION OF A FLUX ROPE IN THE SOLAR CORONA

    Energy Technology Data Exchange (ETDEWEB)

    Carley, Eoin P.; Gallagher, Peter T. [Astrophysics Research Group, School of Physics, Trinity College Dublin, Dublin 2 (Ireland); Vilmer, Nicole, E-mail: eoin.carley@obspm.fr [LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cité, 5 place Jules Janssen, F-92195 Meudon (France)

    2016-12-10

    Electron acceleration in the solar corona is often associated with flares and the eruption of twisted magnetic structures known as flux ropes. However, the locations and mechanisms of such particle acceleration during the flare and eruption are still subject to much investigation. Observing the exact sites of particle acceleration can help confirm how the flare and eruption are initiated and how they evolve. Here we use the Atmospheric Imaging Assembly to analyze a flare and erupting flux rope on 2014 April 18, while observations from the Nançay Radio Astronomy Facility allow us to diagnose the sites of electron acceleration during the eruption. Our analysis shows evidence of a pre-formed flux rope that slowly rises and becomes destabilized at the time of a C-class flare, plasma jet, and the escape of ≳75 keV electrons from the rope center into the corona. As the eruption proceeds, continued acceleration of electrons with energies of ∼5 keV occurs above the flux rope for a period over 5 minutes. At the flare peak, one site of electron acceleration is located close to the flare site, while another is driven by the erupting flux rope into the corona at speeds of up to 400 km s{sup −1}. Energetic electrons then fill the erupting volume, eventually allowing the flux rope legs to be clearly imaged from radio sources at 150–445 MHz. Following the analysis of Joshi et al. (2015), we conclude that the sites of energetic electrons are consistent with flux rope eruption via a tether cutting or flux cancellation scenario inside a magnetic fan-spine structure. In total, our radio observations allow us to better understand the evolution of a flux rope eruption and its associated electron acceleration sites, from eruption initiation to propagation into the corona.

  20. Incremental Beliefs of Ability, Achievement Emotions and Learning of Singapore Students

    Science.gov (United States)

    Luo, Wenshu; Lee, Kerry; Ng, Pak Tee; Ong, Joanne Xiao Wei

    2014-01-01

    This study investigated the relationships of students' incremental beliefs of math ability to their achievement emotions, classroom engagement and math achievement. A sample of 273 secondary students in Singapore were administered measures of incremental beliefs of math ability, math enjoyment, pride, boredom and anxiety, as well as math classroom…

  1. Baseline Hemodynamics and Response to Contrast Media During Diagnostic Cardiac Catheterization Predict Adverse Events in Heart Failure Patients.

    Science.gov (United States)

    Denardo, Scott J; Vock, David M; Schmalfuss, Carsten M; Young, Gregory D; Tcheng, James E; O'Connor, Christopher M

    2016-07-01

    Contrast media administered during cardiac catheterization can affect hemodynamic variables. However, little is documented about the effects of contrast on hemodynamics in heart failure patients or the prognostic value of baseline and changes in hemodynamics for predicting subsequent adverse events. In this prospective study of 150 heart failure patients, we measured hemodynamics at baseline and after administration of iodixanol or iopamidol contrast. One-year Kaplan-Meier estimates of adverse event-free survival (death, heart failure hospitalization, and rehospitalization) were generated, grouping patients by baseline measures of pulmonary capillary wedge pressure (PCWP) and cardiac index (CI), and by changes in those measures after contrast administration. We used Cox proportional hazards modeling to assess sequentially adding baseline PCWP and change in CI to 5 validated risk models (Seattle Heart Failure Score, ESCAPE [Evaluation Study of Congestive Heart Failure and Pulmonary Artery Catheterization Effectiveness], CHARM [Candesartan in Heart Failure: Assessment of Reduction in Mortality and Morbidity], CORONA [Controlled Rosuvastatin Multinational Trial in Heart Failure], and MAGGIC [Meta-Analysis Global Group in Chronic Heart Failure]). Median contrast volume was 109 mL. Both contrast media caused similarly small but statistically significant changes in most hemodynamic variables. There were 39 adverse events (26.0%). Adverse event rates increased using the composite metric of baseline PCWP and change in CI (Pcontrast correlated with the poorest prognosis. Adding both baseline PCWP and change in CI to the 5 risk models universally improved their predictive value (P≤0.02). In heart failure patients, the administration of contrast causes small but significant changes in hemodynamics. Calculating baseline PCWP with change in CI after contrast predicts adverse events and increases the predictive value of existing models. Patients with elevated baseline PCWP and

  2. Analysis of Mancos shale failure in light of localization theory for transversely isotropic materials.

    Science.gov (United States)

    Ingraham, M. D.; Dewers, T. A.; Heath, J. E.

    2016-12-01

    Utilizing the localization conditions laid out in Rudnicki 2002, the failure of a series of tests performed on Mancos shale has been analyzed. Shale specimens were tested under constant mean stress conditions in an axisymmetric stress state, with specimens cored both parallel and perpendicular to bedding. Failure data indicates that for the range of pressures tested the failure surface is well represented by a Mohr- Coulomb failure surface with a friction angle of 34.4 for specimens cored parallel to bedding, and 26.5 for specimens cored perpendicular to bedding. There is no evidence of a yield cap up to 200 MPa mean stress. Comparison with the theory shows that the best agreement in terms of band angles comes from assuming normality of the plastic strain increment. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  3. Implante transalveolar en sustitución de una corona espiga de pronóstico dudoso*

    Directory of Open Access Journals (Sweden)

    Josefina Fajardo Puig

    Full Text Available La sustitución de los dientes perdidos en la región estética presenta un complejo desafío debido a la dificultad en la reforma de la apariencia natural y de la anatomía papilar. Se Presenta un caso clínico donde se sustituyó un diente con corona espiga de pronóstico dudoso, por un implante inmediato Avanza. Se trata de una paciente de 24 años de edad atendida en la consulta multidisciplinaria de Implantología de la Clínica Docente de Prótesis de Marianao. Tenía una corona espiga en el incisivo central superior derecho, con cambio de coloración que le afectaba su estética. Además se le caía constantemente y estaba ligeramente inflamada por vestibular, lo cual le producía dolor. Después de una evaluación multidisciplinaria y el consentimiento de la paciente, se procede a la retirada de la corona espiga y exodoncia de la raíz del 11 mediante la técnica de colgajo. Inmediatamente se colocó el implante Avanza y se rehabilitó con una prótesis parcial acrílica removible por razones estéticas. Con este tratamiento, la paciente mantuvo el contorno de los tejidos blandos y la altura ósea de la zona intervenida, necesarios para alcanzar excelentes resultados estéticos.

  4. The Cognitive Underpinnings of Incremental Rehearsal

    Science.gov (United States)

    Varma, Sashank; Schleisman, Katrina B.

    2014-01-01

    Incremental rehearsal (IR) is a flashcard technique that has been developed and evaluated by school psychologists. We discuss potential learning and memory effects from cognitive psychology that may explain the observed superiority of IR over other flashcard techniques. First, we propose that IR is a form of "spaced practice" that…

  5. A Simple Analytical Model for Predicting the Detectable Ion Current in Ion Mobility Spectrometry Using Corona Discharge Ionization Sources

    Science.gov (United States)

    Kirk, Ansgar Thomas; Kobelt, Tim; Spehlbrink, Hauke; Zimmermann, Stefan

    2018-05-01

    Corona discharge ionization sources are often used in ion mobility spectrometers (IMS) when a non-radioactive ion source with high ion currents is required. Typically, the corona discharge is followed by a reaction region where analyte ions are formed from the reactant ions. In this work, we present a simple yet sufficiently accurate model for predicting the ion current available at the end of this reaction region when operating at reduced pressure as in High Kinetic Energy Ion Mobility Spectrometers (HiKE-IMS) or most IMS-MS instruments. It yields excellent qualitative agreement with measurement results and is even able to calculate the ion current within an error of 15%. Additional interesting findings of this model are the ion current at the end of the reaction region being independent from the ion current generated by the corona discharge and the ion current in High Kinetic Energy Ion Mobility Spectrometers (HiKE-IMS) growing quadratically when scaling down the length of the reaction region. [Figure not available: see fulltext.

  6. A new search for R Coronae Borealis stars in the SMC

    Directory of Open Access Journals (Sweden)

    Nikzat Fatemeh

    2017-01-01

    Full Text Available R Coronae Borealis (RCB stars are rare, and their evolutionary origin is not well understood. Since they are obscured due to formation of carbon dust around the star during their mass loss events, RCB stars can be classified as self-eclipsing variable stars. The purpose of this work is to present a new search for RCB stars in the Small Magellanic Cloud (SMC, by analysing VI data from the OGLE project.

  7. Study of Corona Discharge on 160 KeV, 10 mA Electron Accelerator Facility Using FEM

    International Nuclear Information System (INIS)

    Ghazali, Abu Bakar Mhd; Sobri, Rokiah Mohd

    2008-01-01

    This paper describes a method to verify the overall design of our electron accelerator. It is free from corona or spark discharge phenomenon. This locally designed electron accelerator facility is located at Nuclear Malaysia Complex, Bangi, Selangor. In this study, we describe the geometry of the pressure vessel filled with SF 6 gas at 2 atm to enclose the high voltage area of the accelerating tube. The Poisson's equation is used to calculate the contours of the electric field that is created between the cathode of -160 kV maximum and the wall of the vessel. The nearest sharp edge between the cathode and the pressure wall is 163 mm apart. The calculation is based on finite element method (FEM) for electrostatic charges in order to obtain an electric field contour in two-dimensional plane. We found that the surface charge density of the cathode is 1.1x10 -5 C/m 2 for the corona glowing seen at -90 kV. Moreover, the highest electric field near to (about 5 mm from) the sharp edge is about 2.7 MV/m, which is less than the dielectric strength of SF 6 gas, i.e. 6 MV/m and therefore, it proved that our design of the pressure vessel is save from corona or spark discharges

  8. Study of Corona Discharge on 160 KeV, 10 mA Electron Accelerator Facility Using FEM

    Science.gov (United States)

    Ghazali, Abu Bakar Mhd; Sobri, Rokiah Mohd

    2008-05-01

    This paper describes a method to verify the overall design of our electron accelerator. It is free from corona or spark discharge phenomenon. This locally designed electron accelerator facility is located at Nuclear Malaysia Complex, Bangi, Selangor. In this study, we describe the geometry of the pressure vessel filled with SF6 gas at 2 atm to enclose the high voltage area of the accelerating tube. The Poisson's equation is used to calculate the contours of the electric field that is created between the cathode of -160 kV maximum and the wall of the vessel. The nearest sharp edge between the cathode and the pressure wall is 163 mm apart. The calculation is based on finite element method (FEM) for electrostatic charges in order to obtain an electric field contour in two-dimensional plane. We found that the surface charge density of the cathode is 1.1×10-5 C/m2 for the corona glowing seen at -90 kV. Moreover, the highest electric field near to (about 5 mm from) the sharp edge is about 2.7 MV/m, which is less than the dielectric strength of SF6 gas, i.e. 6 MV/m and therefore, it proved that our design of the pressure vessel is save from corona or spark discharges.

  9. Kinetic model of vibrational relaxation in a humid-air pulsed corona discharge

    International Nuclear Information System (INIS)

    Komuro, Atsushi; Ono, Ryo; Oda, Tetsuji

    2010-01-01

    The effect of humidity on the vibrational relaxation of O 2 (v) and N 2 (v) in a humid-air pulsed corona discharge is studied using a kinetic model. We previously showed that humidity markedly increases the vibration-to-translation (V-T) rate of molecules in a humid-air pulsed corona discharge by measuring O 2 (v) density (Ono et al 2010 Plasma Sources Sci. Technol. 19 015009). In this paper, we numerically calculate the vibrational kinetics of O 2 , N 2 and H 2 O to study the reason behind the acceleration of V-T in the presence of humidity. The calculation closely reproduces the measured acceleration of V-T due to humidity, and shows that the increase in the V-T rate is caused by the fast vibration-to-vibration (V-V) processes of O 2 -H 2 O and N 2 -H 2 O and the subsequent rapid V-T process of H 2 O-H 2 O. In addition, it is shown that O atom density is also important in the vibrational kinetics owing to the rapid V-T process of O 2 -O.

  10. Anchialine fauna of the Corona lava tunnel (Lanzarote,Canary Islands): diversity, endemism and distribution

    DEFF Research Database (Denmark)

    Martínez, Alexandro; Palmero, A M; Brito, M C

    2009-01-01

    A checklist of 77 taxa recorded from the anchialine sections of the Corona lava tube is provided, including information on habitats, faunal distribution within the cave, and main references. Of the nine major groups recorded, Crustacea shows the highest diversity with 31 species and the highest d...

  11. ENVIRONMENTAL CHANGES ANALYSIS IN BUCHAREST CITY USING CORONA, SPOT HRV AND IKONOS IMAGES

    Directory of Open Access Journals (Sweden)

    I. Noaje

    2012-08-01

    Full Text Available Bucharest, capital of Romania, deals with serious difficulties as a result of urban politics: influx of people due to industrialization and development of dormitory areas, lack of a modern infrastructure, absence of coherent and long term urban development politics, continuous depletion of environment. This paper presents a multisensor study relying on multiple data sets, both analogical and digital: satellite images (Corona – 1964 panchromatic, SPOT HRV – 1994 multispctral and panchromatic, IKONOS – 2007 multispectral, aerial photographs – 1994, complementary products (topographic and thematic maps. Georeferenced basis needs to be generated to highlight changes detection. The digital elevation model is generated from aerial photography 1:5,000 scaled, acquired in 1994. First a height correction is required followed by an affine transformation to the ground control points identified both in aerial photographs and IKONOS image. SPOT-HRV pansharpened satellite image has been rectified on georeferenced IKONOS image, by an affine transformation method. The Corona panoramic negative film was scanned and rubber sheeting method is used for rectification. The first 25 years of the study period (1964–1989 are characterized by growth of industrial areas, high density apartment buildings residential areas and leisure green areas by demolition of cultural heritage areas (hundred years old churches and architectural monuments. Changes between the imagery were determined partially through visual interpretation, using elements such as location, size, shape, shadow, tone, texture, and pattern (Corona image, partially using unsupervised classification (SPOT HRV and IKONOS. The second period of 18 years (1989–2007 highlighted considerable growth of residential areas in the city neighborhood, simultaneously with the diminish of green areas and massive deforestation in confiscated areas before and returned to the original owners.

  12. Flares on A-Type Stars: Evidence for Heating of Solar Corona by Nanoflares?

    Czech Academy of Sciences Publication Activity Database

    Švanda, Michal; Karlický, Marian

    2016-01-01

    Roč. 831, č. 1 (2016), 9/1-9/7 ISSN 0004-637X R&D Projects: GA ČR GAP209/12/0103 Grant - others:GA ČR(CZ) GA15-02112S Institutional support: RVO:67985815 Keywords : stars * activity * coronae Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.533, year: 2016

  13. An MHD simulation model of time-dependent global solar corona with temporally varying solar-surface magnetic field maps

    Science.gov (United States)

    Hayashi, K.

    2013-11-01

    We present a model of a time-dependent three-dimensional magnetohydrodynamics simulation of the sub-Alfvenic solar corona and super-Alfvenic solar wind with temporally varying solar-surface boundary magnetic field data. To (i) accommodate observational data with a somewhat arbitrarily evolving solar photospheric magnetic field as the boundary value and (ii) keep the divergence-free condition, we developed a boundary model, here named Confined Differential Potential Field model, that calculates the horizontal components of the magnetic field, from changes in the vertical component, as a potential field confined in a thin shell. The projected normal characteristic method robustly simulates the solar corona and solar wind, in response to the temporal variation of the boundary Br. We conduct test MHD simulations for two periods, from Carrington Rotation number 2009 to 2010 and from Carrington Rotation 2074 to 2075 at solar maximum and minimum of Cycle 23, respectively. We obtained several coronal features that a fixed boundary condition cannot yield, such as twisted magnetic field lines at the lower corona and the transition from an open-field coronal hole to a closed-field streamer. We also obtained slight improvements of the interplanetary magnetic field, including the latitudinal component, at Earth.

  14. The Dark Side of Malleability: Incremental Theory Promotes Immoral Behaviors

    OpenAIRE

    Huang, Niwen; Zuo, Shijiang; Wang, Fang; Cai, Pan; Wang, Fengxiang

    2017-01-01

    Implicit theories drastically affect an individual’s processing of social information, decision making, and action. The present research focuses on whether individuals who hold the implicit belief that people’s moral character is fixed (entity theorists) and individuals who hold the implicit belief that people’s moral character is malleable (incremental theorists) make different choices when facing a moral decision. Incremental theorists are less likely to make the fundamental attribution err...

  15. Organization Strategy and Structural Differences for Radical Versus Incremental Innovation

    OpenAIRE

    John E. Ettlie; William P. Bridges; Robert D. O'Keefe

    1984-01-01

    The purpose of this study was to test a model of the organizational innovation process that suggests that the strategy-structure causal sequence is differentiated by radical versus incremental innovation. That is, unique strategy and structure will be required for radical innovation, especially process adoption, while more traditional strategy and structure arrangements tend to support new product introduction and incremental process adoption. This differentiated theory is strongly supported ...

  16. Development of a short pulsed corona discharge ionization source for ion mobility spectrometry

    International Nuclear Information System (INIS)

    An Yuan; Aliaga-Rossel, R.; Choi, Peter; Gilles, Jean-Paul

    2005-01-01

    The development of a pulsed corona discharge ionization source and its use in ion mobility spectrometry (IMS) is presented. In a point-plane electrode geometry, an electrical pulse up to 12 kV, 150 ns rise time and 500 ns pulse width was used to generate a corona discharge in air. A single positive high voltage pulse was able to generate about 1.6x10 10 ions at energy consumption of 22 μJ. Since the temporal distribution of ions is in a pulsed form, the possibility of removal the ion gate has been investigated. By purposely arranging the interface between discharge field and drift field, nearly 10 7 positive ions were drawn into the drift region with absence of the ion gate after every single discharge. The positive spectrum of acetone dimer (working at room temperature) was obtained with a resolving power of 20 by using this configuration. The advantages of this new scheme are the low power consumption compared with the dc method as well as the simplicity of the IMS cell structure

  17. A Study of Electromagnetic Radiation of Corona Discharge Near 500-Kv Electric Installations

    International Nuclear Information System (INIS)

    Korzhov, A. V.; Okrainskaya, I. S.; Sidorov, A. I.; Kufel'd, V. D.

    2004-01-01

    Data on the spectral composition and intensity of electromagnetic radiation of corona discharge are obtained in an experimental study performed on the outdoor switchgear of the Shagol 500-kV substation of the Chelyabinsk Enterprise of Trunk Transmission Grids and under a 500-kV Shagol - Kozyrevo overhead transmission line. The electromagnetic environment on the territory of the 500-kV outdoor switchgear is shown to be determined by narrow-band radiations (harmonics of the frequency of electric supply) and wide-band radiations due to corona discharges of high-voltage sources. This means that the personnel experience the action of a commercial-frequency electric field and electromagnetic radiation of a quite wide range, which is not allowed for by the existing guidelines. It is recommended to continue the study in cooperation with medical institutions in order to create guidelines that would allow for the joint action of commercial-frequency electric field and electromagnetic radiation and for the voltage in the line, the current load, the meteorological situation, and other factors

  18. Incremental deformation: A literature review

    Directory of Open Access Journals (Sweden)

    Nasulea Daniel

    2017-01-01

    Full Text Available Nowadays the customer requirements are in permanent changing and according with them the tendencies in the modern industry is to implement flexible manufacturing processes. In the last decades, metal forming gained attention of the researchers and considerable changes has occurred. Because for a small number of parts, the conventional metal forming processes are expensive and time-consuming in terms of designing and manufacturing preparation, the manufacturers and researchers became interested in flexible processes. One of the most investigated flexible processes in metal forming is incremental sheet forming (ISF. ISF is an advanced flexible manufacturing process which allows to manufacture complex 3D products without expensive dedicated tools. In most of the cases it is needed for an ISF process the following: a simple tool, a fixing device for sheet metal blank and a universal CNC machine. Using this process it can be manufactured axis-symmetric parts, usually using a CNC lathe but also complex asymmetrical parts using CNC milling machines, robots or dedicated equipment. This paper aim to present the current status of incremental sheet forming technologies in terms of process parameters and their influences, wall thickness distribution, springback effect, formability, surface quality and the current main research directions.

  19. Observation of enhanced ozone in an electrically active storm over Socorro, NM: Implications for ozone production from corona discharges

    Science.gov (United States)

    Minschwaner, K.; Kalnajs, L. E.; Dubey, M. K.; Avallone, L. M.; Sawaengphokai, P. C.; Edens, H. E.; Winn, W. P.

    2008-09-01

    Enhancements in ozone were observed between about 3 and 10 km altitude within an electrically active storm in central New Mexico. Measurements from satellite sensors and ground-based radar show cloud top pressures between 300 and 150 mb in the vicinity of an ozonesonde launched from Socorro, NM, and heavy precipitation with radar reflectivities exceeding 50 dBZ. Data from a lightning mapping array and a surface electric field mill show a large amount of electrical activity within this thunderstorm. The observed ozone enhancements are large (50% above the mean) and could have resulted from a number of possible processes, including the advection of polluted air from the urban environments of El Paso and Juarez, photochemical production by lightning-generated NOx from aged thunderstorm outflow, downward mixing of stratospheric air, or local production from within the thunderstorm. We find that a large fraction of the ozone enhancement is consistent with local production from corona discharges, either from cloud particles or by corona associated with lightning. The implied global source of ozone from thunderstorm corona discharge is estimated to be 110 Tg O3 a-1 with a range between 40 and 180 Tg O3 a-1. This value is about 21% as large as the estimated ozone production rate from lightning NOx, and about 3% as large as the total chemical production rate of tropospheric ozone. Thus while the estimated corona-induced production of ozone may be significant on local scales, it is unlikely to be as important to the global ozone budget as other sources.

  20. Expression patterns of Passiflora edulis APETALA1/FRUITFULL homologues shed light onto tendril and corona identities

    Directory of Open Access Journals (Sweden)

    Livia C. T. Scorza

    2017-02-01

    Full Text Available Abstract Background Passiflora (passionflowers makes an excellent model for studying plant evolutionary development. They are mostly perennial climbers that display axillary tendrils, which are believed to be modifications of the inflorescence. Passionflowers are also recognized by their unique flower features, such as the extra whorls of floral organs composed of corona filaments and membranes enclosing the nectary. Although some work on Passiflora organ ontogeny has been done, the developmental identity of both Passiflora tendrils and the corona is still controversial. Here, we combined ultrastructural analysis and expression patterns of the flower meristem and floral organ identity genes of the MADS-box AP1/FUL clade to reveal a possible role for these genes in the generation of evolutionary novelties in Passiflora. Results We followed the development of structures arising from the axillary meristem from juvenile to adult phase in P. edulis. We further assessed the expression pattern of P. edulis AP1/FUL homologues (PeAP1 and PeFUL, by RT-qPCR and in situ hybridization in several tissues, correlating it with the developmental stages of P. edulis. PeAP1 is expressed only in the reproductive stage, and it is highly expressed in tendrils and in flower meristems from the onset of their development. PeAP1 is also expressed in sepals, petals and in corona filaments, suggesting a novel role for PeAP1 in floral organ diversification. PeFUL presented a broad expression pattern in both vegetative and reproductive tissues, and it is also expressed in fruits. Conclusions Our results provide new molecular insights into the morphological diversity in the genus Passiflora. Here, we bring new evidence that tendrils are part of the Passiflora inflorescence. This points to the convergence of similar developmental processes involving the recruitment of genes related to flower identity in the origin of tendrils in different plant families. The data obtained also