WorldWideScience

Sample records for failure analysis alternatives

  1. A hybrid of fuzzy FMEA-AHP to determine factors affecting alternator failure causes

    Directory of Open Access Journals (Sweden)

    Reza Kiani Aslani

    2014-09-01

    Full Text Available This paper presents a method to determine factors influencing alternator failure causes. Failure Mode and Effects Analysis (FMEA is one of the first systematic techniques for failure analysis based on three factors including Probability (P, Severity (S and Detection (D. Traditional FMEA method considers equal weights for all three factors, however, in read-world cases; one may wish to consider various weights. The proposed study develops a mathematical model to determine optimal weights based on analytical hierarchy process technique. The implementation of the proposed study has been demonstrated for a read-world case study of alternator failure causes.

  2. The application of Petri nets to failure analysis

    International Nuclear Information System (INIS)

    Liu, T.S.; Chiou, S.B.

    1997-01-01

    Unlike the technique of fault tree analysis that has been widely applied to system failure analysis in reliability engineering, this study presents a Petri net approach to failure analysis. It is essentially a graphical method for describing relations between conditions and events. The use of Petri nets in failure analysis enables to replace logic gate functions in fault trees, efficiently obtain minimal cut sets, and absorb models. It is demonstrated that for failure analysis Petri nets are more efficient than fault trees. In addition, this study devises an alternative; namely, a trapezoidal graph method in order to account for failure scenarios. Examples validate this novel method in dealing with failure analysis

  3. Analysis of the Reliability of the "Alternator- Alternator Belt" System

    Directory of Open Access Journals (Sweden)

    Ivan Mavrin

    2012-10-01

    Full Text Available Before starting and also during the exploitation of va1ioussystems, it is vety imp011ant to know how the system and itsparts will behave during operation regarding breakdowns, i.e.failures. It is possible to predict the service behaviour of a systemby determining the functions of reliability, as well as frequencyand intensity of failures.The paper considers the theoretical basics of the functionsof reliability, frequency and intensity of failures for the twomain approaches. One includes 6 equal intetvals and the other13 unequal intetvals for the concrete case taken from practice.The reliability of the "alternator- alternator belt" system installedin the buses, has been analysed, according to the empiricaldata on failures.The empitical data on failures provide empirical functionsof reliability and frequency and intensity of failures, that arepresented in tables and graphically. The first analysis perfO!med by dividing the mean time between failures into 6 equaltime intervals has given the forms of empirical functions of fa ilurefrequency and intensity that approximately cotTespond totypical functions. By dividing the failure phase into 13 unequalintetvals with two failures in each interval, these functions indicateexplicit transitions from early failure inte1val into the randomfailure interval, i.e. into the ageing intetval. Functions thusobtained are more accurate and represent a better solution forthe given case.In order to estimate reliability of these systems with greateraccuracy, a greater number of failures needs to be analysed.

  4. The analysis of failure data in the presence of critical and degraded failures

    International Nuclear Information System (INIS)

    Haugen, Knut; Hokstad, Per; Sandtorv, Helge

    1997-01-01

    Reported failures are often classified into severityclasses, e.g., as critical or degraded. The critical failures correspond to loss of function(s) and are those of main concern. The rate of critical failures is usually estimated by the number of observed critical failures divided by the exposure time, thus ignoring the observed degraded failures. In the present paper failure data are analyzed, applying an alternative estimate for the critical failure rate, also taking the number of observed degraded failures into account. The model includes two alternative failure mechanisms, one being of the shock type, immediately leading to a critical failure, another resulting in a gradual deterioration, leading to a degraded failure before the critical failure occurs. Failure data on safety valves from the OREDA (Offshore REliability DAta) data base are analyzed using this model. The estimate for the critical failure rate is obtained and compared with the standard estimate

  5. [Alternatives to conventional diuretic therapy in heart failure].

    Science.gov (United States)

    Morales-Rull, José Luis; Trullàs, Joan Carles; Formiga, Francesc

    2014-03-01

    Although treatment of acute heart failure is based primarily on the administration of intravenous loop diuretics, evidence supporting this practice is still scarce and there is uncertainty about the optimal dose. The existence of a considerable percentage of patients refractory to diuretic therapy and worsening of renal failure associated with the use of these drugs, with possible implications for medium-term mortality, have prompted the search for more effective and safer alternatives. Extracorporeal purification techniques, such as ultrafiltration, have demonstrated efficacy, although their superiority is unclear, due to the possible adverse effects associated with the procedure. The use of low-dose dopamine is not superior to conventional diuretic therapy after the first few hours of treatment. Moreover, combination with furosemide and hypertonic saline could be a valid alternative for patients with refractory congestion and depressed ejection fraction and serum creatinine ≤ 2.5mg/dL, but further studies are needed before its widespread use. The use of tolvaptan may be an effective alternative in the short-term but its use may be limited by its price. There is still controversy about whether treatment with loop diuretics is associated with higher mortality in all groups of patients with HF exacerbations. These controversies should be clarified by future clinical trials. Copyright © 2014 Elsevier España, S.L. All rights reserved.

  6. Reprioritization of failures in a system failure mode and effects analysis by decision making trial and evaluation laboratory technique

    International Nuclear Information System (INIS)

    Seyed-Hosseini, S.M.; Safaei, N.; Asgharpour, M.J.

    2006-01-01

    In this paper an effective methodology related to decision making field has been developed for reprioritization of failure modes in a system Failure Mode and Effects Analysis (FMEA) for corrective actions. The proposed methodology can cover some of inherently shortcomings of conventional Risk Priority Number (RPN) method and like. The current prioritization methods have two main deficiencies as: they have not considered indirect relations between components and are deficient for systems with many subsystems or components. The proposed method called Decision Making Trial and Evaluation Laboratory (DEMATEL) is an effective approach for analyzing relation between components of a system in respect to its type (direct/indirect) and severity. The main advantages of DEMATEL are involving indirect relations in analyze, allocating as possible as unique ranks to alternatives and clustering alternatives in large systems. The demonstrated results have shown that DEMATEL method can be an efficient, complementary and confident approach for reprioritization of failure modes in a FMEA. For verification of proposed methodology, two illustrative practical examples are solved and obtained outcomes are reported

  7. Failure analysis: Status and future trends

    International Nuclear Information System (INIS)

    Anderson, R.E.; Soden, J.M.; Henderson, C.L.

    1995-01-01

    Failure analysis is a critical element in the integrated circuit manufacturing industry. This paper reviews the changing role of failure analysis and describes major techniques employed in the industry today. Several advanced failure analysis techniques that meet the challenges imposed by advancements in integrated circuit technology are described and their applications are discussed. Future trends in failure analysis needed to keep pace with the continuing advancements in integrated circuit technology are anticipated

  8. Electrical failure analysis for root-cause determination

    International Nuclear Information System (INIS)

    Riddle, J.

    1990-01-01

    This paper outlines a practical failure analysis sequence. Several technical definitions are required. A failure is defined as a component that was operating in a system where the system malfunctioned and the replacement of the device restored system functionality. The failure mode is the malfunctioning behavior of the device. The failure mechanism is the underlying cause or source of the failure mode. The failure mechanism is the root cause of the failure mode. The failure analysis procedure needs to be adequately refined to result in the determination of the cause of failure to the degree that corrective action or design changes will prevent recurrence of the failure mode or mechanism. An example of a root-cause determination analysis performed for a nuclear power industry customer serves to illustrate the analysis methodology

  9. Laboratory and 3-D-distinct element analysis of failure mechanism of slope under external surcharge

    Science.gov (United States)

    Li, N.; Cheng, Y. M.

    2014-09-01

    Landslide is a major disaster resulting in considerable loss of human lives and property damages in hilly terrain in Hong Kong, China and many other countries. The factor of safety and the critical slip surface for slope stabilization are the main considerations for slope stability analysis in the past, while the detailed post-failure conditions of the slopes have not been considered in sufficient details. There are however increasing interest on the consequences after the initiation of failure which includes the development and propagation of the failure surfaces, the amount of failed mass and runoff and the affected region. To assess the development of slope failure in more details and to consider the potential danger of slopes after failure has initiated, the slope stability problem under external surcharge is analyzed by the distinct element method (DEM) and laboratory model test in the present research. A more refined study about the development of failure, microcosmic failure mechanism and the post-failure mechanism of slope will be carried out. The numerical modeling method and the various findings from the present work can provide an alternate method of analysis of slope failure which can give additional information not available from the classical methods of analysis.

  10. Common cause failure analysis methodology for complex systems

    International Nuclear Information System (INIS)

    Wagner, D.P.; Cate, C.L.; Fussell, J.B.

    1977-01-01

    Common cause failure analysis, also called common mode failure analysis, is an integral part of a complex system reliability analysis. This paper extends existing methods of computer aided common cause failure analysis by allowing analysis of the complex systems often encountered in practice. The methods presented here aid in identifying potential common cause failures and also address quantitative common cause failure analysis

  11. Evaluation of Acoustic Emission NDE of Composite Crew Module Service Module/Alternate Launch Abort System (CCM SM/ALAS) Test Article Failure Tests

    Science.gov (United States)

    Horne, Michael R.; Madaras, Eric I.

    2010-01-01

    Failure tests of CCM SM/ALAS (Composite Crew Module Service Module / Alternate Launch Abort System) composite panels were conducted during July 10, 2008 and July 24, 2008 at Langley Research Center. This is a report of the analysis of the Acoustic Emission (AE) data collected during those tests.

  12. Progressive Damage and Failure Analysis of Composite Laminates

    Science.gov (United States)

    Joseph, Ashith P. K.

    Composite materials are widely used in various industries for making structural parts due to higher strength to weight ratio, better fatigue life, corrosion resistance and material property tailorability. To fully exploit the capability of composites, it is required to know the load carrying capacity of the parts made of them. Unlike metals, composites are orthotropic in nature and fails in a complex manner under various loading conditions which makes it a hard problem to analyze. Lack of reliable and efficient failure analysis tools for composites have led industries to rely more on coupon and component level testing to estimate the design space. Due to the complex failure mechanisms, composite materials require a very large number of coupon level tests to fully characterize the behavior. This makes the entire testing process very time consuming and costly. The alternative is to use virtual testing tools which can predict the complex failure mechanisms accurately. This reduces the cost only to it's associated computational expenses making significant savings. Some of the most desired features in a virtual testing tool are - (1) Accurate representation of failure mechanism: Failure progression predicted by the virtual tool must be same as those observed in experiments. A tool has to be assessed based on the mechanisms it can capture. (2) Computational efficiency: The greatest advantages of a virtual tools are the savings in time and money and hence computational efficiency is one of the most needed features. (3) Applicability to a wide range of problems: Structural parts are subjected to a variety of loading conditions including static, dynamic and fatigue conditions. A good virtual testing tool should be able to make good predictions for all these different loading conditions. The aim of this PhD thesis is to develop a computational tool which can model the progressive failure of composite laminates under different quasi-static loading conditions. The analysis

  13. Isogeometric failure analysis

    NARCIS (Netherlands)

    Verhoosel, C.V.; Scott, M.A.; Borden, M.J.; Borst, de R.; Hughes, T.J.R.; Mueller-Hoeppe, D.; Loehnert, S.; Reese, S.

    2011-01-01

    Isogeometric analysis is a versatile tool for failure analysis. On the one hand, the excellent control over the inter-element continuity conditions enables a natural incorporation of continuum constitutive relations that incorporate higher-order strain gradients, as in gradient plasticity or damage.

  14. Failure Analysis

    International Nuclear Information System (INIS)

    Iorio, A.F.; Crespi, J.C.

    1987-01-01

    After ten years of operation at the Atucha I Nuclear Power Station a gear belonging to a pressurized heavy water reactor refuelling machine, failed. The gear box was used to operate the inlet-outlet heavy-water valve of the machine. Visual examination of the gear device showed an absence of lubricant and that several gear teeth were broken at the root. Motion was transmitted with a speed-reducing device with controlled adjustable times in order to produce a proper fitness of the valve closure. The aim of this paper is to discuss the results of the gear failure analysis in order to recommend the proper solution to prevent further failures. (Author)

  15. An Independent Evaluation of the FMEA/CIL Hazard Analysis Alternative Study

    Science.gov (United States)

    Ray, Paul S.

    1996-01-01

    The present instruments of safety and reliability risk control for a majority of the National Aeronautics and Space Administration (NASA) programs/projects consist of Failure Mode and Effects Analysis (FMEA), Hazard Analysis (HA), Critical Items List (CIL), and Hazard Report (HR). This extensive analytical approach was introduced in the early 1970's and was implemented for the Space Shuttle Program by NHB 5300.4 (1D-2. Since the Challenger accident in 1986, the process has been expanded considerably and resulted in introduction of similar and/or duplicated activities in the safety/reliability risk analysis. A study initiated in 1995, to search for an alternative to the current FMEA/CIL Hazard Analysis methodology generated a proposed method on April 30, 1996. The objective of this Summer Faculty Study was to participate in and conduct an independent evaluation of the proposed alternative to simplify the present safety and reliability risk control procedure.

  16. Uncertainty analysis with statistically correlated failure data

    International Nuclear Information System (INIS)

    Modarres, M.; Dezfuli, H.; Roush, M.L.

    1987-01-01

    Likelihood of occurrence of the top event of a fault tree or sequences of an event tree is estimated from the failure probability of components that constitute the events of the fault/event tree. Component failure probabilities are subject to statistical uncertainties. In addition, there are cases where the failure data are statistically correlated. At present most fault tree calculations are based on uncorrelated component failure data. This chapter describes a methodology for assessing the probability intervals for the top event failure probability of fault trees or frequency of occurrence of event tree sequences when event failure data are statistically correlated. To estimate mean and variance of the top event, a second-order system moment method is presented through Taylor series expansion, which provides an alternative to the normally used Monte Carlo method. For cases where component failure probabilities are statistically correlated, the Taylor expansion terms are treated properly. Moment matching technique is used to obtain the probability distribution function of the top event through fitting the Johnson Ssub(B) distribution. The computer program, CORRELATE, was developed to perform the calculations necessary for the implementation of the method developed. (author)

  17. Defining Business decline, failure and turnaround: A content analysis

    Directory of Open Access Journals (Sweden)

    Marius Pretorius

    2009-12-01

    Full Text Available In the past, researchers have often defined failure to suit their data. This has led to a lack of comparability in research outputs. The overriding objective of this paper is to propose a universal definition for the failure phenomenon. Clear definitions are a prerequisite for exploring major constructs, their relationship to failure and the context and processes involved. The study reports on the core definitions of the failure phenomenon and identifies core criteria for distinguishing between them. It places decline, failure and turnaround in perspective and highlights level of distress and turnaround as key moderating elements. It distinguishes the failure phenomenon from controversial synonyms such as closure, accidental bankruptcy and closure for alternative motives. Key words and phrases: business decline, failure, turnaround, level of distress

  18. Pump failure leads to alternative vertical pump condition monitoring technique

    International Nuclear Information System (INIS)

    DeVilliers, Adriaan; Glandon, Kevin

    2011-01-01

    Condition monitoring and detecting early signs of potential failure mechanisms present particular problems in vertical pumps. Most often, the majority of the pump assembly is not readily accessible for visual or audible inspection or conventional vibration monitoring techniques using accelerometers and/or proximity sensors. The root cause failure analysis of a 2-stage vertical centrifugal service-water pump at a nuclear power generating facility in the USA is presented, highlighting this long standing challenge in condition monitoring of vertical pumps. This paper will summarize the major findings of the root cause analysis (RCA), highlight the limitations of traditional monitoring techniques, and present an expanded application of motor current monitoring as a means to gain insight into the mechanical performance and condition of a pump. The 'real-world' example of failure, monitoring and correlation of the monitoring technique to a detailed pump disassembly inspection is also presented. This paper will explain some of the reasons behind well known design principles requiring natural frequency separation from known forcing frequencies, as well as explore an unexpected submerged brittle fracture failure mechanism, and how such issues may be avoided. (author)

  19. The interaction of NDE and failure analysis

    International Nuclear Information System (INIS)

    Nichols, R.W.

    1988-01-01

    This paper deals with the use of Non-Destructive Examination (NDE) and failure analysis for the assessment of the structural integrity. It appears that failure analysis enables to know whether NDE is required or not, and can help to direct NDE into the most useful directions by identifying the areas where it is most important that defects are absent. It also appears that failure analysis can help the operator to decide which NDE method is best suited to the component studied and provides detailed specifications for this NDE method. The interaction between failure analysis and NDE is then described. (TEC)

  20. The interaction of NDE and failure analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, R W

    1988-12-31

    This paper deals with the use of Non-Destructive Examination (NDE) and failure analysis for the assessment of the structural integrity. It appears that failure analysis enables to know whether NDE is required or not, and can help to direct NDE into the most useful directions by identifying the areas where it is most important that defects are absent. It also appears that failure analysis can help the operator to decide which NDE method is best suited to the component studied and provides detailed specifications for this NDE method. The interaction between failure analysis and NDE is then described. (TEC).

  1. Laboratory and 3-D distinct element analysis of the failure mechanism of a slope under external surcharge

    Science.gov (United States)

    Li, N.; Cheng, Y. M.

    2015-01-01

    Landslide is a major disaster resulting in considerable loss of human lives and property damages in hilly terrain in Hong Kong, China and many other countries. The factor of safety and the critical slip surface for slope stabilization are the main considerations for slope stability analysis in the past, while the detailed post-failure conditions of the slopes have not been considered in sufficient detail. There is however increasing interest in the consequences after the initiation of failure that includes the development and propagation of the failure surfaces, the amount of failed mass and runoff and the affected region. To assess the development of slope failure in more detail and to consider the potential danger of slopes after failure has initiated, the slope stability problem under external surcharge is analyzed by the distinct element method (DEM) and a laboratory model test in the present research. A more refined study about the development of failure, microcosmic failure mechanisms and the post-failure mechanisms of slopes will be carried out. The numerical modeling method and the various findings from the present work can provide an alternate method of analysis of slope failure, which can give additional information not available from the classical methods of analysis.

  2. Analysis of failures in concrete containments

    International Nuclear Information System (INIS)

    Moreno-Gonzalez, A.

    1989-09-01

    The function of Containment, in an accident event, is to avoid the release of radioactive substances into the surroundings. Containment failure, therefore, is defined as the appearance of leak paths to the external environment. These leak paths may appear either as a result of loss of leaktightness due to degradation of design conditions or structural failure with containment material break. This document is a survey of the state of the art of Containment Failure Analysis. It gives a detailed description of all failure mechanisms, indicating all the possible failure modes and their causes, right from failure resulting from degradation of the materials to structural failure and linear breake failure. Following the description of failure modes, possible failure criteria are identified, with special emphasis on structural failure criteria. These criteria have been obtained not only from existing codes but also from the latest experimental results. A chapter has been dedicated exclusively to failure criteria in conventional structures, for the purpose of evaluating the possibility of application to the case of containment. As the structural behaviour of the containment building is very complex, it is not possible to define failure through a single parameter. It is therefore advisable to define a methodology for containment failure analysis which could be applied to a particular containment. This methodology should include prevailing load and material conditions together with the behaviour of complex conditions such as the liner-anchorage-cracked concrete interaction

  3. A Costing Analysis for Decision Making Grid Model in Failure-Based Maintenance

    Directory of Open Access Journals (Sweden)

    Burhanuddin M. A.

    2011-01-01

    Full Text Available Background. In current economic downturn, industries have to set good control on production cost, to maintain their profit margin. Maintenance department as an imperative unit in industries should attain all maintenance data, process information instantaneously, and subsequently transform it into a useful decision. Then act on the alternative to reduce production cost. Decision Making Grid model is used to identify strategies for maintenance decision. However, the model has limitation as it consider two factors only, that is, downtime and frequency of failures. We consider third factor, cost, in this study for failure-based maintenance. The objective of this paper is to introduce the formulae to estimate maintenance cost. Methods. Fish bone analysis conducted with Ishikawa model and Decision Making Grid methods are used in this study to reveal some underlying risk factors that delay failure-based maintenance. The goal of the study is to estimate the risk factor that is, repair cost to fit in the Decision Making Grid model. Decision Making grid model consider two variables, frequency of failure and downtime in the analysis. This paper introduces third variable, repair cost for Decision Making Grid model. This approaches give better result to categorize the machines, reduce cost, and boost the earning for the manufacturing plant. Results. We collected data from one of the food processing factories in Malaysia. From our empirical result, Machine C, Machine D, Machine F, and Machine I must be in the Decision Making Grid model even though their frequency of failures and downtime are less than Machine B and Machine N, based on the costing analysis. The case study and experimental results show that the cost analysis in Decision Making Grid model gives more promising strategies in failure-based maintenance. Conclusions. The improvement of Decision Making Grid model for decision analysis with costing analysis is our contribution in this paper for

  4. Frequency-dependent failure mechanisms of nanocrystalline gold interconnect lines under general alternating current

    Science.gov (United States)

    Luo, X. M.; Zhang, B.; Zhang, G. P.

    2014-09-01

    Thermal fatigue failure of metallization interconnect lines subjected to alternating currents (AC) is becoming a severe threat to the long-term reliability of micro/nanodevices with increasing electrical current density/power. Here, thermal fatigue failure behaviors and damage mechanisms of nanocrystalline Au interconnect lines on the silicon glass substrate have been investigated by applying general alternating currents (the pure alternating current coupled with a direct current (DC) component) with different frequencies ranging from 0.05 Hz to 5 kHz. We observed both thermal fatigue damages caused by Joule heating-induced cyclic strain/stress and electromigration (EM) damages caused by the DC component. Besides, the damage formation showed a strong electrically-thermally-mechanically coupled effect and frequency dependence. At lower frequencies, thermal fatigue damages were dominant and the main damage forms were grain coarsening with grain boundary (GB) cracking/voiding and grain thinning. At higher frequencies, EM damages took over and the main damage forms were GB cracking/voiding of smaller grains and hillocks. Furthermore, the healing effect of the reversing current was considered to elucidate damage mechanisms of the nanocrystalline Au lines generated by the general AC. Lastly, a modified model was proposed to predict the lifetime of the nanocrystalline metal interconnect lines, i.e., that was a competing drift velocity-based approach based on the threshold time required for reverse diffusion/healing to occur.

  5. FRAC (failure rate analysis code): a computer program for analysis of variance of failure rates. An application user's guide

    International Nuclear Information System (INIS)

    Martz, H.F.; Beckman, R.J.; McInteer, C.R.

    1982-03-01

    Probabilistic risk assessments (PRAs) require estimates of the failure rates of various components whose failure modes appear in the event and fault trees used to quantify accident sequences. Several reliability data bases have been designed for use in providing the necessary reliability data to be used in constructing these estimates. In the nuclear industry, the Nuclear Plant Reliability Data System (NPRDS) and the In-Plant Reliability Data System (IRPDS), among others, were designed for this purpose. An important characteristic of such data bases is the selection and identification of numerous factors used to classify each component that is reported and the subsequent failures of each component. However, the presence of such factors often complicates the analysis of reliability data in the sense that it is inappropriate to group (that is, pool) data for those combinations of factors that yield significantly different failure rate values. These types of data can be analyzed by analysis of variance. FRAC (Failure Rate Analysis Code) is a computer code that performs an analysis of variance of failure rates. In addition, FRAC provides failure rate estimates

  6. Dependent failure analysis of NPP data bases

    International Nuclear Information System (INIS)

    Cooper, S.E.; Lofgren, E.V.; Samanta, P.K.; Wong Seemeng

    1993-01-01

    A technical approach for analyzing plant-specific data bases for vulnerabilities to dependent failures has been developed and applied. Since the focus of this work is to aid in the formulation of defenses to dependent failures, rather than to quantify dependent failure probabilities, the approach of this analysis is critically different. For instance, the determination of component failure dependencies has been based upon identical failure mechanisms related to component piecepart failures, rather than failure modes. Also, component failures involving all types of component function loss (e.g., catastrophic, degraded, incipient) are equally important to the predictive purposes of dependent failure defense development. Consequently, dependent component failures are identified with a different dependent failure definition which uses a component failure mechanism categorization scheme in this study. In this context, clusters of component failures which satisfy the revised dependent failure definition are termed common failure mechanism (CFM) events. Motor-operated valves (MOVs) in two nuclear power plant data bases have been analyzed with this approach. The analysis results include seven different failure mechanism categories; identified potential CFM events; an assessment of the risk-significance of the potential CFM events using existing probabilistic risk assessments (PRAs); and postulated defenses to the identified potential CFM events. (orig.)

  7. 14 CFR 417.224 - Probability of failure analysis.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Probability of failure analysis. 417.224..., DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.224 Probability of failure..., must account for launch vehicle failure probability in a consistent manner. A launch vehicle failure...

  8. Failure Analysis Of Industrial Boiler Pipe

    International Nuclear Information System (INIS)

    Natsir, Muhammad; Soedardjo, B.; Arhatari, Dewi; Andryansyah; Haryanto, Mudi; Triyadi, Ari

    2000-01-01

    Failure analysis of industrial boiler pipe has been done. The tested pipe material is carbon steel SA 178 Grade A refer to specification data which taken from Fertilizer Company. Steps in analysis were ; collection of background operation and material specification, visual inspection, dye penetrant test, radiography test, chemical composition test, hardness test, metallography test. From the test and analysis result, it is shown that the pipe failure caused by erosion and welding was shown porosity and incomplete penetration. The main cause of failure pipe is erosion due to cavitation, which decreases the pipe thickness. Break in pipe thickness can be done due to decreasing in pipe thickness. To anticipate this problem, the ppe will be replaced with new pipe

  9. Combinatorial analysis of systems with competing failures subject to failure isolation and propagation effects

    International Nuclear Information System (INIS)

    Xing Liudong; Levitin, Gregory

    2010-01-01

    This paper considers the reliability analysis of binary-state systems, subject to propagated failures with global effect, and failure isolation phenomena. Propagated failures with global effect are common-cause failures originated from a component of a system/subsystem causing the failure of the entire system/subsystem. Failure isolation occurs when the failure of one component (referred to as a trigger component) causes other components (referred to as dependent components) within the same system to become isolated from the system. On the one hand, failure isolation makes the isolated dependent components unusable; on the other hand, it prevents the propagation of failures originated from those dependent components. However, the failure isolation effect does not exist if failures originated in the dependent components already propagate globally before the trigger component fails. In other words, there exists a competition in the time domain between the failure of the trigger component that causes failure isolation and propagated failures originated from the dependent components. This paper presents a combinatorial method for the reliability analysis of systems subject to such competing propagated failures and failure isolation effect. Based on the total probability theorem, the proposed method is analytical, exact, and has no limitation on the type of time-to-failure distributions for the system components. An illustrative example is given to demonstrate the basics and advantages of the proposed method.

  10. Failure rate analysis using GLIMMIX

    International Nuclear Information System (INIS)

    Moore, L.M.; Hemphill, G.M.; Martz, H.F.

    1998-01-01

    This paper illustrates use of a recently developed SAS macro, GLIMMIX, for implementing an analysis suggested by Wolfinger and O'Connell (1993) in modeling failure count data with random as well as fixed factor effects. Interest in this software tool arose from consideration of modernizing the Failure Rate Analysis Code (FRAC), developed at Los Alamos National Laboratory in the early 1980's by Martz, Beckman and McInteer (1982). FRAC is a FORTRAN program developed to analyze Poisson distributed failure count data as a log-linear model, possibly with random as well as fixed effects. These statistical modeling assumptions are a special case of generalized linear mixed models, identified as GLMM in the current statistics literature. In the nearly 15 years since FRAC was developed, there have been considerable advances in computing capability, statistical methodology and available statistical software tools allowing worthwhile consideration of the tasks of modernizing FRAC. In this paper, the approaches to GLMM estimation implemented in GLIMMIX and in FRAC are described and a comparison of results for the two approaches is made with data on catastrophic time-dependent pump failures from a report by Martz and Whiteman (1984). Additionally, statistical and graphical model diagnostics are suggested and illustrated with the GLIMMIX analysis results

  11. Failure diagnosis and fault tree analysis

    International Nuclear Information System (INIS)

    Weber, G.

    1982-07-01

    In this report a methodology of failure diagnosis for complex systems is presented. Systems which can be represented by fault trees are considered. This methodology is based on switching algebra, failure diagnosis of digital circuits and fault tree analysis. Relations between these disciplines are shown. These relations are due to Boolean algebra and Boolean functions used throughout. It will be shown on this basis that techniques of failure diagnosis and fault tree analysis are useful to solve the following problems: 1. describe an efficient search of all failed components if the system is failed. 2. Describe an efficient search of all states which are close to a system failure if the system is still operating. The first technique will improve the availability, the second the reliability and safety. For these problems, the relation to methods of failure diagnosis for combinational circuits is required. Moreover, the techniques are demonstrated for a number of systems which can be represented by fault trees. (orig./RW) [de

  12. Failure and damage analysis of advanced materials

    CERN Document Server

    Sadowski, Tomasz

    2015-01-01

    The papers in this volume present basic concepts and new developments in failure and damage analysis with focus on advanced materials such as composites, laminates, sandwiches and foams, and also new metallic materials. Starting from some mathematical foundations (limit surfaces, symmetry considerations, invariants) new experimental results and their analysis are shown. Finally, new concepts for failure prediction and analysis will be introduced and discussed as well as new methods of failure and damage prediction for advanced metallic and non-metallic materials. Based on experimental results the traditional methods will be revised.

  13. Failure analysis of real-time systems

    International Nuclear Information System (INIS)

    Jalashgar, A.; Stoelen, K.

    1998-01-01

    This paper highlights essential aspects of real-time software systems that are strongly related to the failures and their course of propagation. The significant influence of means-oriented and goal-oriented system views in the description, understanding and analysing of those aspects is elaborated. The importance of performing failure analysis prior to reliability analysis of real-time systems is equally addressed. Problems of software reliability growth models taking the properties of such systems into account are discussed. Finally, the paper presents a preliminary study of a goal-oriented approach to model the static and dynamic characteristics of real-time systems, so that the corresponding analysis can be based on a more descriptive and informative picture of failures, their effects and the possibility of their occurrence. (author)

  14. Constructing Ontology for Knowledge Sharing of Materials Failure Analysis

    Directory of Open Access Journals (Sweden)

    Peng Shi

    2014-01-01

    Full Text Available Materials failure indicates the fault with materials or components during their performance. To avoid the reoccurrence of similar failures, materials failure analysis is executed to investigate the reasons for the failure and to propose improved strategies. The whole procedure needs sufficient domain knowledge and also produces valuable new knowledge. However, the information about the materials failure analysis is usually retained by the domain expert, and its sharing is technically difficult. This phenomenon may seriously reduce the efficiency and decrease the veracity of the failure analysis. To solve this problem, this paper adopts ontology, a novel technology from the Semantic Web, as a tool for knowledge representation and sharing and describes the construction of the ontology to obtain information concerning the failure analysis, application area, materials, and failure cases. The ontology represented information is machine-understandable and can be easily shared through the Internet. At the same time, failure case intelligent retrieval, advanced statistics, and even automatic reasoning can be accomplished based on ontology represented knowledge. Obviously this can promote the knowledge sharing of materials service safety and improve the efficiency of failure analysis. The case of a nuclear power plant area is presented to show the details and benefits of this method.

  15. Demonstration of risk-based decision analysis in remedial alternative selection and design

    International Nuclear Information System (INIS)

    Evans, E.K.; Duffield, G.M.; Massmann, J.W.; Freeze, R.A.; Stephenson, D.E.

    1993-01-01

    This study demonstrates the use of risk-based decision analysis (Massmann and Freeze 1987a, 1987b) in the selection and design of an engineering alternative for groundwater remediation at a waste site at the Savannah River Site, a US Department of Energy facility in South Carolina. The investigation focuses on the remediation and closure of the H-Area Seepage Basins, an inactive disposal site that formerly received effluent water from a nearby production facility. A previous study by Duffield et al. (1992), which used risk-based decision analysis to screen a number of ground-water remediation alternatives under consideration for this site, indicated that the most attractive remedial option is ground-water extraction by wells coupled with surface water discharge of treated effluent. The aim of the present study is to demonstrate the iterative use of risk-based decision analysis throughout the design of a particular remedial alternative. In this study, we consider the interaction between two episodes of aquifer testing over a 6-year period and the refinement of a remedial extraction well system design. Using a three-dimensional ground-water flow model, this study employs (1) geostatistics and Monte Carlo techniques to simulate hydraulic conductivity as a stochastic process and (2) Bayesian updating and conditional simulation to investigate multiple phases of aquifer testing. In our evaluation of a remedial alternative, we compute probabilistic costs associated with the failure of an alternative to completely capture a simulated contaminant plume. The results of this study demonstrate the utility of risk-based decision analysis as a tool for improving the design of a remedial alternative through the course of phased data collection at a remedial site

  16. Data needs for common cause failure analysis

    International Nuclear Information System (INIS)

    Parry, G.W.; Paula, H.M.; Rasmuson, D.; Whitehead, D.

    1990-01-01

    The procedures guide for common cause failure analysis published jointly by USNRC and EPRI requires a detailed historical event analysis. Recent work on the further development of the cause-defense picture of common cause failures introduced in that guide identified the information that is necessary to perform the detailed analysis in an objective manner. This paper summarizes these information needs

  17. Integrated failure probability estimation based on structural integrity analysis and failure data: Natural gas pipeline case

    International Nuclear Information System (INIS)

    Dundulis, Gintautas; Žutautaitė, Inga; Janulionis, Remigijus; Ušpuras, Eugenijus; Rimkevičius, Sigitas; Eid, Mohamed

    2016-01-01

    In this paper, the authors present an approach as an overall framework for the estimation of the failure probability of pipelines based on: the results of the deterministic-probabilistic structural integrity analysis (taking into account loads, material properties, geometry, boundary conditions, crack size, and defected zone thickness), the corrosion rate, the number of defects and failure data (involved into the model via application of Bayesian method). The proposed approach is applied to estimate the failure probability of a selected part of the Lithuanian natural gas transmission network. The presented approach for the estimation of integrated failure probability is a combination of several different analyses allowing us to obtain: the critical crack's length and depth, the failure probability of the defected zone thickness, dependency of the failure probability on the age of the natural gas transmission pipeline. A model's uncertainty analysis and uncertainty propagation analysis are performed, as well. - Highlights: • Degradation mechanisms of natural gas transmission pipelines. • Fracture mechanic analysis of the pipe with crack. • Stress evaluation of the pipe with critical crack. • Deterministic-probabilistic structural integrity analysis of gas pipeline. • Integrated estimation of pipeline failure probability by Bayesian method.

  18. Preliminary failure mode and effect analysis

    International Nuclear Information System (INIS)

    Addison, J.V.

    1972-01-01

    A preliminary Failure Mode and Effect Analysis (FMEA) was made on the overall 5 Kwe system. A general discussion of the system and failure effect is given in addition to the tabulated FMEA and a primary block diagram of the system. (U.S.)

  19. X-framework: Space system failure analysis framework

    Science.gov (United States)

    Newman, John Steven

    Space program and space systems failures result in financial losses in the multi-hundred million dollar range every year. In addition to financial loss, space system failures may also represent the loss of opportunity, loss of critical scientific, commercial and/or national defense capabilities, as well as loss of public confidence. The need exists to improve learning and expand the scope of lessons documented and offered to the space industry project team. One of the barriers to incorporating lessons learned include the way in which space system failures are documented. Multiple classes of space system failure information are identified, ranging from "sound bite" summaries in space insurance compendia, to articles in journals, lengthy data-oriented (what happened) reports, and in some rare cases, reports that treat not only the what, but also the why. In addition there are periodically published "corporate crisis" reports, typically issued after multiple or highly visible failures that explore management roles in the failure, often within a politically oriented context. Given the general lack of consistency, it is clear that a good multi-level space system/program failure framework with analytical and predictive capability is needed. This research effort set out to develop such a model. The X-Framework (x-fw) is proposed as an innovative forensic failure analysis approach, providing a multi-level understanding of the space system failure event beginning with the proximate cause, extending to the directly related work or operational processes and upward through successive management layers. The x-fw focus is on capability and control at the process level and examines: (1) management accountability and control, (2) resource and requirement allocation, and (3) planning, analysis, and risk management at each level of management. The x-fw model provides an innovative failure analysis approach for acquiring a multi-level perspective, direct and indirect causation of

  20. Importance analysis for the systems with common cause failures

    International Nuclear Information System (INIS)

    Pan Zhijie; Nonaka, Yasuo

    1995-01-01

    This paper extends the importance analysis technique to the research field of common cause failures to evaluate the structure importance, probability importance, and β-importance for the systems with common cause failures. These importance measures would help reliability analysts to limit the common cause failure analysis framework and find efficient defence strategies against common cause failures

  1. Goal-oriented failure analysis - a systems analysis approach to hazard identification

    International Nuclear Information System (INIS)

    Reeves, A.B.; Davies, J.; Foster, J.; Wells, G.L.

    1990-01-01

    Goal-Oriented Failure Analysis, GOFA, is a methodology which is being developed to identify and analyse the potential failure modes of a hazardous plant or process. The technique will adopt a structured top-down approach, with a particular failure goal being systematically analysed. A systems analysis approach is used, with the analysis being organised around a systems diagram of the plant or process under study. GOFA will also use checklists to supplement the analysis -these checklists will be prepared in advance of a group session and will help to guide the analysis and avoid unnecessary time being spent on identifying obvious failure modes or failing to identify certain hazards or failures. GOFA is being developed with the aim of providing a hazard identification methodology which is more efficient and stimulating than the conventional approach to HAZOP. The top-down approach should ensure that the analysis is more focused and the use of a systems diagram will help to pull the analysis together at an early stage whilst also helping to structure the sessions in a more stimulating way than the conventional techniques. GOFA will be, essentially, an extension of the HAZOP methodology. GOFA is currently being computerised using a knowledge-based systems approach for implementation. The Goldworks II expert systems development tool is being used. (author)

  2. Improved methods for dependent failure analysis in PSA

    International Nuclear Information System (INIS)

    Ballard, G.M.; Games, A.M.

    1988-01-01

    The basic design principle used in ensuring the safe operation of nuclear power plant is defence in depth. This normally takes the form of redundant equipment and systems which provide protection even if a number of equipment failures occur. Such redundancy is particularly effective in ensuring that multiple, independent equipment failures with the potential for jeopardising reactor safety will be rare events. However the achievement of high reliability has served to highlight the potentially dominant role of multiple, dependent failures of equipment and systems. Analysis of reactor operating experience has shown that dependent failure events are the major contributors to safety system failures and reactor incidents and accidents. In parallel PSA studies have shown that the results of a safety analysis are sensitive to assumptions made about the dependent failure (CCF) probability for safety systems. Thus a Westinghouse Analysis showed that increasing system dependent failure probabilities by a factor of 5 led to a factor 4 increase in core. This paper particularly refers to the engineering concepts underlying dependent failure assessment touching briefly on aspects of data. It is specifically not the intent of our work to develop a new mathematical model of CCF but to aid the use of existing models

  3. Alternative Schools and Programs for Public School Students at Risk of Educational Failure: 2007-08. First Look. NCES 2010-026

    Science.gov (United States)

    Carver, Priscilla Rouse; Lewis, Laurie; Tice, Peter

    2010-01-01

    This report provides national estimates on the availability of alternative schools and programs for students at risk of educational failure in public school districts during the 2007-08 school year. The National Center for Education Statistics (NCES) previously reported results from a similar survey of alternative schools and programs conducted…

  4. Lessons learned from failure analysis

    International Nuclear Information System (INIS)

    Le May, I.

    2006-01-01

    Failure analysis can be a very useful tool to designers and operators of plant and equipment. It is not simply something that is done for lawyers and insurance companies, but is a tool from which lessons can be learned and by means of which the 'breed' can be improved. In this presentation, several failure investigations that have contributed to understanding will be presented. Specifically, the following cases will be discussed: 1) A fire at a refinery that occurred in a desulphurization unit. 2) The failure of a pipeline before it was even put into operation. 3) Failures in locomotive axles that took place during winter operation. The refinery fire was initially blamed on defective Type 321 seamless stainless steel tubing, but there were conflicting views between 'experts' involved as to the mechanism of failure and the writer was called upon to make an in-depth study. This showed that there were a variety of failure mechanism involved, including high temperature fracture, environmentally-induced cracking and possible manufacturing defects. The unraveling of the failure sequence is described and illustrated. The failure of an oil transmission was discovered when the line was pressure tested some months after it had been installed and before it was put into service. Repairs were made and failure occurred in another place upon the next pressure test being conducted. After several more repairs had been made the line was abandoned and a lawsuit was commenced on the basis that the steel was defective. An investigation disclosed that the material was sensitive to embrittlement and the causes of this were determined. As a result, changes were made in the microstructural control of the product to avoid similar problems in future. A series of axle failures occurred in diesel electric locomotives during winter. An investigation was made to determine the nature of the failures which were not by classical fatigue, nor did they correspond to published illustrations of Cu

  5. Failure analysis for WWER-fuel elements

    International Nuclear Information System (INIS)

    Boehmert, J.; Huettig, W.

    1986-10-01

    If the fuel defect rate proves significantly high, failure analysis has to be performed in order to trace down the defect causes, to implement corrective actions, and to take measures of failure prevention. Such analyses are work-consuming and very skill-demanding technical tasks, which require examination methods and devices excellently developed and a rich stock of experience in evaluation of features of damage. For that this work specifies the procedure of failure analyses in detail. Moreover prerequisites and experimental equipment for the investigation of WWER-type fuel elements are described. (author)

  6. failure analysis of a uav flight control system using markov analysis

    African Journals Online (AJOL)

    Failure analysis of a flight control system proposed for Air Force Institute of Technology (AFIT) Unmanned Aerial Vehicle (UAV) was studied using Markov Analysis (MA). It was perceived that understanding of the number of failure states and the probability of being in those state are of paramount importance in order to ...

  7. Failure analysis of prestressed concrete beam under impact loading

    International Nuclear Information System (INIS)

    Ishikawa, N.; Sonoda, Y.; Kobayashi, N.

    1993-01-01

    This paper presents a failure analysis of prestressed concrete (PC) beam under impact loading. At first, the failure analysis of PC beam section is performed by using the discrete section element method in order to obtain the dynamic bending moment-curvature relation. Secondary, the failure analysis of PC beam is performed by using the rigid panel-spring model. Finally, the numerical calculation is executed and is compared with the experimental results. It is found that this approach can simulate well the experiments at the local and overall failure of the PC beam as well as the impact load and the displacement-time relations. (author)

  8. Micromechanics Based Failure Analysis of Heterogeneous Materials

    Science.gov (United States)

    Sertse, Hamsasew M.

    are performed for both brittle failure/high cycle fatigue (HCF) for negligible plastic strain and ductile failure/low cycle fatigue (LCF) for large plastic strain. The proposed approach is incorporated in SwiftComp and used to predict the initial failure envelope, stress-strain curve for various loading conditions, and fatigue life of heterogeneous materials. The combined effects of strain hardening and progressive fatigue damage on the effective properties of heterogeneous materials are also studied. The capability of the current approach is validated using several representative examples of heterogeneous materials including binary composites, continuous fiber-reinforced composites, particle-reinforced composites, discontinuous fiber-reinforced composites, and woven composites. The predictions of MSG are also compared with the predictions obtained using various micromechanics approaches such as Generalized Methods of Cells (GMC), Mori-Tanaka (MT), and Double Inclusions (DI) and Representative Volume Element (RVE) Analysis (called as 3-dimensional finite element analysis (3D FEA) in this document). This study demonstrates that a micromechanics based failure analysis has a great potential to rigorously and more accurately analyze initiation and progression of damage in heterogeneous materials. However, this approach requires material properties specific to damage analysis, which are needed to be independently calibrated for each constituent.

  9. Probability of Failure Analysis Standards and Guidelines for Expendable Launch Vehicles

    Science.gov (United States)

    Wilde, Paul D.; Morse, Elisabeth L.; Rosati, Paul; Cather, Corey

    2013-09-01

    Recognizing the central importance of probability of failure estimates to ensuring public safety for launches, the Federal Aviation Administration (FAA), Office of Commercial Space Transportation (AST), the National Aeronautics and Space Administration (NASA), and U.S. Air Force (USAF), through the Common Standards Working Group (CSWG), developed a guide for conducting valid probability of failure (POF) analyses for expendable launch vehicles (ELV), with an emphasis on POF analysis for new ELVs. A probability of failure analysis for an ELV produces estimates of the likelihood of occurrence of potentially hazardous events, which are critical inputs to launch risk analysis of debris, toxic, or explosive hazards. This guide is intended to document a framework for POF analyses commonly accepted in the US, and should be useful to anyone who performs or evaluates launch risk analyses for new ELVs. The CSWG guidelines provide performance standards and definitions of key terms, and are being revised to address allocation to flight times and vehicle response modes. The POF performance standard allows a launch operator to employ alternative, potentially innovative methodologies so long as the results satisfy the performance standard. Current POF analysis practice at US ranges includes multiple methodologies described in the guidelines as accepted methods, but not necessarily the only methods available to demonstrate compliance with the performance standard. The guidelines include illustrative examples for each POF analysis method, which are intended to illustrate an acceptable level of fidelity for ELV POF analyses used to ensure public safety. The focus is on providing guiding principles rather than "recipe lists." Independent reviews of these guidelines were performed to assess their logic, completeness, accuracy, self- consistency, consistency with risk analysis practices, use of available information, and ease of applicability. The independent reviews confirmed the

  10. Operating personnel error analysis during operation failures in the Kozloduj NPP

    International Nuclear Information System (INIS)

    Jonkova, A.

    1990-01-01

    The failures due to personnel errors are analyzed for 10 years period (1977-1986). Most of the results are presented in absolute values and are considered in dynamics. The indices for relative shares are compared by alternative analysis. One of the most important causes is the fluctuation of manpower. The failures distribution by months within the year and by hours of the day is given. The biggest number of failures occurred in the period April-October (without August - the month of the leaves), when the refueling and repair were taken place, and in January-February, due to heavy meteorological conditions and some fatigue and disconcentration because of multiple holidays. The failures during the day shifts had the greatest relative share - 42%, during the afternoon shifts - 26% and during the night shifts - 32% The most 'dangerous' time periods happened to be 11-12 h and 13-14 h (deteriorated attention after lunch), 20-22 h (physiological drop of the psychological activity), 0-3 h (the lowest level of physiological and psychological activity) and in the first and last hours of every shift. Three groups of causes are pointed out as the most frequent: improper actions connected with orders; improper independent actions; uncoordinated teamwork. The following measures are proposed for reducing the effect of the human factor: setting up the training centre; preliminary evaluation of the professional qualification of the operators; current dynamic control of their neuro-psychological fitness and occupational reliability. 1 fig, 2 tabs, 5 refs

  11. Debugging Nondeterministic Failures in Linux Programs through Replay Analysis

    Directory of Open Access Journals (Sweden)

    Shakaiba Majeed

    2018-01-01

    Full Text Available Reproducing a failure is the first and most important step in debugging because it enables us to understand the failure and track down its source. However, many programs are susceptible to nondeterministic failures that are hard to reproduce, which makes debugging extremely difficult. We first address the reproducibility problem by proposing an OS-level replay system for a uniprocessor environment that can capture and replay nondeterministic events needed to reproduce a failure in Linux interactive and event-based programs. We then present an analysis method, called replay analysis, based on the proposed record and replay system to diagnose concurrency bugs in such programs. The replay analysis method uses a combination of static analysis, dynamic tracing during replay, and delta debugging to identify failure-inducing memory access patterns that lead to concurrency failure. The experimental results show that the presented record and replay system has low-recording overhead and hence can be safely used in production systems to catch rarely occurring bugs. We also present few concurrency bug case studies from real-world applications to prove the effectiveness of the proposed bug diagnosis framework.

  12. Failure Modes and Effects Analysis (FMEA): A Bibliography

    Science.gov (United States)

    2000-01-01

    Failure modes and effects analysis (FMEA) is a bottom-up analytical process that identifies process hazards, which helps managers understand vulnerabilities of systems, as well as assess and mitigate risk. It is one of several engineering tools and techniques available to program and project managers aimed at increasing the likelihood of safe and successful NASA programs and missions. This bibliography references 465 documents in the NASA STI Database that contain the major concepts, failure modes or failure analysis, in either the basic index of the major subject terms.

  13. BACFIRE, Minimal Cut Sets Common Cause Failure Fault Tree Analysis

    International Nuclear Information System (INIS)

    Fussell, J.B.

    1983-01-01

    1 - Description of problem or function: BACFIRE, designed to aid in common cause failure analysis, searches among the basic events of a minimal cut set of the system logic model for common potential causes of failure. The potential cause of failure is called a qualitative failure characteristics. The algorithm searches qualitative failure characteristics (that are part of the program input) of the basic events contained in a set to find those characteristics common to all basic events. This search is repeated for all cut sets input to the program. Common cause failure analysis is thereby performed without inclusion of secondary failure in the system logic model. By using BACFIRE, a common cause failure analysis can be added to an existing system safety and reliability analysis. 2 - Method of solution: BACFIRE searches the qualitative failure characteristics of the basic events contained in the fault tree minimal cut set to find those characteristics common to all basic events by either of two criteria. The first criterion can be met if all the basic events in a minimal cut set are associated by a condition which alone may increase the probability of multiple component malfunction. The second criterion is met if all the basic events in a minimal cut set are susceptible to the same secondary failure cause and are located in the same domain for that cause of secondary failure. 3 - Restrictions on the complexity of the problem - Maxima of: 1001 secondary failure maps, 101 basic events, 10 cut sets

  14. Failure analysis of vise jaw holders for hacksaw machine

    Directory of Open Access Journals (Sweden)

    Essam Ali Al-Bahkali

    2018-01-01

    Full Text Available Failure analysis in mechanical components has been investigated in many studies in the last few years. Failure analysis and prevention are important functions in all engineering disciplines. Materials engineers are often the lead role in the analysis of failures, where a component or product fails in service or if a failure occurs during manufacturing or production processing. In any case, one must determine the cause of the failure to prevent future occurrences and/or to improve the performance of the device, component or structure. For example, the vise jaw holders of hacksaws can break due to accidental heavy loads or machine misuse. The parts that break are the stationary and movable vise jaw holders and the connecter power screw between the holders. To investigate the failure of these components, a three-dimensional finite element model for stress analysis was performed. First, the analysis identified the broken components of the hacksaw machine. In addition, the type of materials of the broken parts was identified, a CAD model was built, and the hacksaw mechanism was analyzed to determine the accurate applied loads on the broken parts. After analyzing the model using Abaqus CAE software, the results showed that the location of the high stresses was identical with the high-stress locations in the original, broken parts. Furthermore, the power screw was subjected to a high load, which deformed the power screw. Also, the stationary vise jaw holder was broken by impact because it was not touched by the power screw until the movable vise jaw holder broke. A conclusion is drawn from the failure analysis and a way to improve the design of the broken parts is suggested.

  15. Failure Propagation Modeling and Analysis via System Interfaces

    Directory of Open Access Journals (Sweden)

    Lin Zhao

    2016-01-01

    Full Text Available Safety-critical systems must be shown to be acceptably safe to deploy and use in their operational environment. One of the key concerns of developing safety-critical systems is to understand how the system behaves in the presence of failures, regardless of whether that failure is triggered by the external environment or caused by internal errors. Safety assessment at the early stages of system development involves analysis of potential failures and their consequences. Increasingly, for complex systems, model-based safety assessment is becoming more widely used. In this paper we propose an approach for safety analysis based on system interface models. By extending interaction models on the system interface level with failure modes as well as relevant portions of the physical system to be controlled, automated support could be provided for much of the failure analysis. We focus on fault modeling and on how to compute minimal cut sets. Particularly, we explore state space reconstruction strategy and bounded searching technique to reduce the number of states that need to be analyzed, which remarkably improves the efficiency of cut sets searching algorithm.

  16. Evaluation of Alternative Control for Prevention and or Mitigation of HEPA Filter Failure Accidents at Tank Farm Facilities

    International Nuclear Information System (INIS)

    GUSTAVSON, R.D.

    2000-01-01

    This study evaluates the adequacy and benefit of use of HEPA filter differential pressure limiting setpoints to initiate exhauster shut down as an alternative safety control for postulated accidents that might result in filtration failure and subsequent unfiltered release from Tank Farm primary tank ventilators

  17. Use of fuel failure correlations in accident analysis

    International Nuclear Information System (INIS)

    O'Dell, L.D.; Baars, R.E.; Waltar, A.E.

    1975-05-01

    The MELT-III code for analysis of a Transient Overpower (TOP) accident in an LMFBR is briefly described, including failure criteria currently applied in the code. Preliminary results of calculations exploring failure patterns in time and space in the reactor core are reported and compared for the two empirical fuel failure correlations employed in the code. (U.S.)

  18. Investigating for failure of central ventilation fan blade

    International Nuclear Information System (INIS)

    Koo, Jae Raeyang; Ko Woo Sig; Kim, Yeon Hwan; Park, Kwang Ha

    2002-01-01

    During the operation, central ventilation fan stopped when switch 'on' condition. When central ventilation fan disassemble, ten blades of fan fractured. We have searched cause of failure. We had modeling one of the fan blades and analysis with computer programs. Thus we have find that fracture of central ventilation fan blades is alternative stress and vibration at hub. In this paper, we have described cause of failure

  19. Advancing Alternative Analysis: Integration of Decision Science.

    Science.gov (United States)

    Malloy, Timothy F; Zaunbrecher, Virginia M; Batteate, Christina M; Blake, Ann; Carroll, William F; Corbett, Charles J; Hansen, Steffen Foss; Lempert, Robert J; Linkov, Igor; McFadden, Roger; Moran, Kelly D; Olivetti, Elsa; Ostrom, Nancy K; Romero, Michelle; Schoenung, Julie M; Seager, Thomas P; Sinsheimer, Peter; Thayer, Kristina A

    2017-06-13

    Decision analysis-a systematic approach to solving complex problems-offers tools and frameworks to support decision making that are increasingly being applied to environmental challenges. Alternatives analysis is a method used in regulation and product design to identify, compare, and evaluate the safety and viability of potential substitutes for hazardous chemicals. We assessed whether decision science may assist the alternatives analysis decision maker in comparing alternatives across a range of metrics. A workshop was convened that included representatives from government, academia, business, and civil society and included experts in toxicology, decision science, alternatives assessment, engineering, and law and policy. Participants were divided into two groups and were prompted with targeted questions. Throughout the workshop, the groups periodically came together in plenary sessions to reflect on other groups' findings. We concluded that the further incorporation of decision science into alternatives analysis would advance the ability of companies and regulators to select alternatives to harmful ingredients and would also advance the science of decision analysis. We advance four recommendations: a ) engaging the systematic development and evaluation of decision approaches and tools; b ) using case studies to advance the integration of decision analysis into alternatives analysis; c ) supporting transdisciplinary research; and d ) supporting education and outreach efforts. https://doi.org/10.1289/EHP483.

  20. Light water reactor lower head failure analysis

    International Nuclear Information System (INIS)

    Rempe, J.L.; Chavez, S.A.; Thinnes, G.L.

    1993-10-01

    This document presents the results from a US Nuclear Regulatory Commission-sponsored research program to investigate the mode and timing of vessel lower head failure. Major objectives of the analysis were to identify plausible failure mechanisms and to develop a method for determining which failure mode would occur first in different light water reactor designs and accident conditions. Failure mechanisms, such as tube ejection, tube rupture, global vessel failure, and localized vessel creep rupture, were studied. Newly developed models and existing models were applied to predict which failure mechanism would occur first in various severe accident scenarios. So that a broader range of conditions could be considered simultaneously, calculations relied heavily on models with closed-form or simplified numerical solution techniques. Finite element techniques-were employed for analytical model verification and examining more detailed phenomena. High-temperature creep and tensile data were obtained for predicting vessel and penetration structural response

  1. Light water reactor lower head failure analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rempe, J.L.; Chavez, S.A.; Thinnes, G.L. [EG and G Idaho, Inc., Idaho Falls, ID (United States)] [and others

    1993-10-01

    This document presents the results from a US Nuclear Regulatory Commission-sponsored research program to investigate the mode and timing of vessel lower head failure. Major objectives of the analysis were to identify plausible failure mechanisms and to develop a method for determining which failure mode would occur first in different light water reactor designs and accident conditions. Failure mechanisms, such as tube ejection, tube rupture, global vessel failure, and localized vessel creep rupture, were studied. Newly developed models and existing models were applied to predict which failure mechanism would occur first in various severe accident scenarios. So that a broader range of conditions could be considered simultaneously, calculations relied heavily on models with closed-form or simplified numerical solution techniques. Finite element techniques-were employed for analytical model verification and examining more detailed phenomena. High-temperature creep and tensile data were obtained for predicting vessel and penetration structural response.

  2. A streamlined failure mode and effects analysis

    International Nuclear Information System (INIS)

    Ford, Eric C.; Smith, Koren; Terezakis, Stephanie; Croog, Victoria; Gollamudi, Smitha; Gage, Irene; Keck, Jordie; DeWeese, Theodore; Sibley, Greg

    2014-01-01

    Purpose: Explore the feasibility and impact of a streamlined failure mode and effects analysis (FMEA) using a structured process that is designed to minimize staff effort. Methods: FMEA for the external beam process was conducted at an affiliate radiation oncology center that treats approximately 60 patients per day. A structured FMEA process was developed which included clearly defined roles and goals for each phase. A core group of seven people was identified and a facilitator was chosen to lead the effort. Failure modes were identified and scored according to the FMEA formalism. A risk priority number,RPN, was calculated and used to rank failure modes. Failure modes with RPN > 150 received safety improvement interventions. Staff effort was carefully tracked throughout the project. Results: Fifty-two failure modes were identified, 22 collected during meetings, and 30 from take-home worksheets. The four top-ranked failure modes were: delay in film check, missing pacemaker protocol/consent, critical structures not contoured, and pregnant patient simulated without the team's knowledge of the pregnancy. These four failure modes hadRPN > 150 and received safety interventions. The FMEA was completed in one month in four 1-h meetings. A total of 55 staff hours were required and, additionally, 20 h by the facilitator. Conclusions: Streamlined FMEA provides a means of accomplishing a relatively large-scale analysis with modest effort. One potential value of FMEA is that it potentially provides a means of measuring the impact of quality improvement efforts through a reduction in risk scores. Future study of this possibility is needed

  3. A streamlined failure mode and effects analysis.

    Science.gov (United States)

    Ford, Eric C; Smith, Koren; Terezakis, Stephanie; Croog, Victoria; Gollamudi, Smitha; Gage, Irene; Keck, Jordie; DeWeese, Theodore; Sibley, Greg

    2014-06-01

    Explore the feasibility and impact of a streamlined failure mode and effects analysis (FMEA) using a structured process that is designed to minimize staff effort. FMEA for the external beam process was conducted at an affiliate radiation oncology center that treats approximately 60 patients per day. A structured FMEA process was developed which included clearly defined roles and goals for each phase. A core group of seven people was identified and a facilitator was chosen to lead the effort. Failure modes were identified and scored according to the FMEA formalism. A risk priority number,RPN, was calculated and used to rank failure modes. Failure modes with RPN > 150 received safety improvement interventions. Staff effort was carefully tracked throughout the project. Fifty-two failure modes were identified, 22 collected during meetings, and 30 from take-home worksheets. The four top-ranked failure modes were: delay in film check, missing pacemaker protocol/consent, critical structures not contoured, and pregnant patient simulated without the team's knowledge of the pregnancy. These four failure modes had RPN > 150 and received safety interventions. The FMEA was completed in one month in four 1-h meetings. A total of 55 staff hours were required and, additionally, 20 h by the facilitator. Streamlined FMEA provides a means of accomplishing a relatively large-scale analysis with modest effort. One potential value of FMEA is that it potentially provides a means of measuring the impact of quality improvement efforts through a reduction in risk scores. Future study of this possibility is needed.

  4. A streamlined failure mode and effects analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Eric C., E-mail: eford@uw.edu; Smith, Koren; Terezakis, Stephanie; Croog, Victoria; Gollamudi, Smitha; Gage, Irene; Keck, Jordie; DeWeese, Theodore; Sibley, Greg [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD 21287 (United States)

    2014-06-15

    Purpose: Explore the feasibility and impact of a streamlined failure mode and effects analysis (FMEA) using a structured process that is designed to minimize staff effort. Methods: FMEA for the external beam process was conducted at an affiliate radiation oncology center that treats approximately 60 patients per day. A structured FMEA process was developed which included clearly defined roles and goals for each phase. A core group of seven people was identified and a facilitator was chosen to lead the effort. Failure modes were identified and scored according to the FMEA formalism. A risk priority number,RPN, was calculated and used to rank failure modes. Failure modes with RPN > 150 received safety improvement interventions. Staff effort was carefully tracked throughout the project. Results: Fifty-two failure modes were identified, 22 collected during meetings, and 30 from take-home worksheets. The four top-ranked failure modes were: delay in film check, missing pacemaker protocol/consent, critical structures not contoured, and pregnant patient simulated without the team's knowledge of the pregnancy. These four failure modes hadRPN > 150 and received safety interventions. The FMEA was completed in one month in four 1-h meetings. A total of 55 staff hours were required and, additionally, 20 h by the facilitator. Conclusions: Streamlined FMEA provides a means of accomplishing a relatively large-scale analysis with modest effort. One potential value of FMEA is that it potentially provides a means of measuring the impact of quality improvement efforts through a reduction in risk scores. Future study of this possibility is needed.

  5. Risk analysis of geothermal power plants using Failure Modes and Effects Analysis (FMEA) technique

    International Nuclear Information System (INIS)

    Feili, Hamid Reza; Akar, Navid; Lotfizadeh, Hossein; Bairampour, Mohammad; Nasiri, Sina

    2013-01-01

    Highlights: • Using Failure Modes and Effects Analysis (FMEA) to find potential failures in geothermal power plants. • We considered 5 major parts of geothermal power plants for risk analysis. • Risk Priority Number (RPN) is calculated for all failure modes. • Corrective actions are recommended to eliminate or decrease the risk of failure modes. - Abstract: Renewable energy plays a key role in the transition toward a low carbon economy and the provision of a secure supply of energy. Geothermal energy is a versatile source as a form of renewable energy that meets popular demand. Since some Geothermal Power Plants (GPPs) face various failures, the requirement of a technique for team engineering to eliminate or decrease potential failures is considerable. Because no specific published record of considering an FMEA applied to GPPs with common failure modes have been found already, in this paper, the utilization of Failure Modes and Effects Analysis (FMEA) as a convenient technique for determining, classifying and analyzing common failures in typical GPPs is considered. As a result, an appropriate risk scoring of occurrence, detection and severity of failure modes and computing the Risk Priority Number (RPN) for detecting high potential failures is achieved. In order to expedite accuracy and ability to analyze the process, XFMEA software is utilized. Moreover, 5 major parts of a GPP is studied to propose a suitable approach for developing GPPs and increasing reliability by recommending corrective actions for each failure mode

  6. Failure analysis of a helicopter's main rotor bearing

    International Nuclear Information System (INIS)

    Shahzad, M.; Qureshi, A.H.; Waqas, H.; Hussain, N.; Ali, N.

    2011-01-01

    Presented results report some of the findings of a detailed failure analysis carried out on a main rotor hub assembly, which had symptoms of burning and mechanical damage. The analysis suggests environmental degradation of the grease which causes pitting on bearing-balls. The consequent inefficient lubrication raises the temperature which leads to the smearing of cage material (brass) on the bearing-balls and ultimately causes the failure. The analysis has been supported by the microstructural studies, thermal analysis and micro-hardness testing performed on the affected main rotor bearing parts. (author)

  7. Failure probability analysis of optical grid

    Science.gov (United States)

    Zhong, Yaoquan; Guo, Wei; Sun, Weiqiang; Jin, Yaohui; Hu, Weisheng

    2008-11-01

    Optical grid, the integrated computing environment based on optical network, is expected to be an efficient infrastructure to support advanced data-intensive grid applications. In optical grid, the faults of both computational and network resources are inevitable due to the large scale and high complexity of the system. With the optical network based distributed computing systems extensive applied in the processing of data, the requirement of the application failure probability have been an important indicator of the quality of application and an important aspect the operators consider. This paper will present a task-based analysis method of the application failure probability in optical grid. Then the failure probability of the entire application can be quantified, and the performance of reducing application failure probability in different backup strategies can be compared, so that the different requirements of different clients can be satisfied according to the application failure probability respectively. In optical grid, when the application based DAG (directed acyclic graph) is executed in different backup strategies, the application failure probability and the application complete time is different. This paper will propose new multi-objective differentiated services algorithm (MDSA). New application scheduling algorithm can guarantee the requirement of the failure probability and improve the network resource utilization, realize a compromise between the network operator and the application submission. Then differentiated services can be achieved in optical grid.

  8. Launch Vehicle Failure Dynamics and Abort Triggering Analysis

    Science.gov (United States)

    Hanson, John M.; Hill, Ashely D.; Beard, Bernard B.

    2011-01-01

    Launch vehicle ascent is a time of high risk for an on-board crew. There are many types of failures that can kill the crew if the crew is still on-board when the failure becomes catastrophic. For some failure scenarios, there is plenty of time for the crew to be warned and to depart, whereas in some there is insufficient time for the crew to escape. There is a large fraction of possible failures for which time is of the essence and a successful abort is possible if the detection and action happens quickly enough. This paper focuses on abort determination based primarily on data already available from the GN&C system. This work is the result of failure analysis efforts performed during the Ares I launch vehicle development program. Derivation of attitude and attitude rate abort triggers to ensure that abort occurs as quickly as possible when needed, but that false positives are avoided, forms a major portion of the paper. Some of the potential failure modes requiring use of these triggers are described, along with analysis used to determine the success rate of getting the crew off prior to vehicle demise.

  9. Failure analysis on a ruptured petrochemical pipe

    Energy Technology Data Exchange (ETDEWEB)

    Harun, Mohd [Industrial Technology Division, Malaysian Nuclear Agency, Ministry of Science, Technology and Innovation Malaysia, Bangi, Kajang, Selangor (Malaysia); Shamsudin, Shaiful Rizam; Kamardin, A. [Univ. Malaysia Perlis, Jejawi, Arau (Malaysia). School of Materials Engineering

    2010-08-15

    The failure took place on a welded elbow pipe which exhibited a catastrophic transverse rupture. The failure was located on the welding HAZ region, parallel to the welding path. Branching cracks were detected at the edge of the rupture area. Deposits of corrosion products were also spotted. The optical microscope analysis showed the presence of transgranular failures which were related to the stress corrosion cracking (SCC) and were predominantly caused by the welding residual stress. The significant difference in hardness between the welded area and the pipe confirmed the findings. Moreover, the failure was also caused by the low Mo content in the stainless steel pipe which was detected by means of spark emission spectrometer. (orig.)

  10. Corrosion induced failure analysis of subsea pipelines

    International Nuclear Information System (INIS)

    Yang, Yongsheng; Khan, Faisal; Thodi, Premkumar; Abbassi, Rouzbeh

    2017-01-01

    Pipeline corrosion is one of the main causes of subsea pipeline failure. It is necessary to monitor and analyze pipeline condition to effectively predict likely failure. This paper presents an approach to analyze the observed abnormal events to assess the condition of subsea pipelines. First, it focuses on establishing a systematic corrosion failure model by Bow-Tie (BT) analysis, and subsequently the BT model is mapped into a Bayesian Network (BN) model. The BN model facilitates the modelling of interdependency of identified corrosion causes, as well as the updating of failure probabilities depending on the arrival of new information. Furthermore, an Object-Oriented Bayesian Network (OOBN) has been developed to better structure the network and to provide an efficient updating algorithm. Based on this OOBN model, probability updating and probability adaptation are performed at regular intervals to estimate the failure probabilities due to corrosion and potential consequences. This results in an interval-based condition assessment of subsea pipeline subjected to corrosion. The estimated failure probabilities would help prioritize action to prevent and control failures. Practical application of the developed model is demonstrated using a case study. - Highlights: • A Bow-Tie (BT) based corrosion failure model linking causation with the potential losses. • A novel Object-Oriented Bayesian Network (OOBN) based corrosion failure risk model. • Probability of failure updating and adaptation with respect to time using OOBN model. • Application of the proposed model to develop and test strategies to minimize failure risk.

  11. Analysis Method of Common Cause Failure on Non-safety Digital Control System

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yun Goo; Oh, Eun Gse [KHNP, Daejeon (Korea, Republic of)

    2014-08-15

    The effects of common cause failure on safety digital instrumentation and control system had been considered in defense in depth analysis with safety analysis method. However, the effects of common cause failure on non-safety digital instrumentation and control system also should be evaluated. The common cause failure can be included in credible failure on the non-safety system. In the I and C architecture of nuclear power plant, many design feature has been applied for the functional integrity of control system. One of that is segmentation. Segmentation defenses the propagation of faults in the I and C architecture. Some of effects from common cause failure also can be limited by segmentation. Therefore, in this paper there are two type of failure mode, one is failures in one control group which is segmented, and the other is failures in multiple control group because that the segmentation cannot defense all effects from common cause failure. For each type, the worst failure scenario is needed to be determined, so the analysis method has been proposed in this paper. The evaluation can be qualitative when there is sufficient justification that the effects are bounded in previous safety analysis. When it is not bounded in previous safety analysis, additional analysis should be done with conservative assumptions method of previous safety analysis or best estimation method with realistic assumptions.

  12. Computer aided approach to qualitative and quantitative common cause failure analysis for complex systems

    International Nuclear Information System (INIS)

    Cate, C.L.; Wagner, D.P.; Fussell, J.B.

    1977-01-01

    Common cause failure analysis, also called common mode failure analysis, is an integral part of a complete system reliability analysis. Existing methods of computer aided common cause failure analysis are extended by allowing analysis of the complex systems often encountered in practice. The methods aid in identifying potential common cause failures and also address quantitative common cause failure analysis

  13. Role of scanning electron microscope )SEM) in metal failure analysis

    International Nuclear Information System (INIS)

    Shaiful Rizam Shamsudin; Hafizal Yazid; Mohd Harun; Siti Selina Abd Hamid; Nadira Kamarudin; Zaiton Selamat; Mohd Shariff Sattar; Muhamad Jalil

    2005-01-01

    Scanning electron microscope (SEM) is a scientific instrument that uses a beam of highly energetic electrons to examine the surface and phase distribution of specimens on a micro scale through the live imaging of secondary electrons (SE) and back-scattered electrons (BSE) images. One of the main activities of SEM Laboratory at MINT is for failure analysis on metal part and components. The capability of SEM is excellent for determining the root cause of metal failures such as ductility or brittleness, stress corrosion, fatigue and other types of failures. Most of our customers that request for failure analysis are from local petrochemical plants, manufacturers of automotive components, pipeline maintenance personnel and engineers who involved in the development of metal parts and component. This paper intends to discuss some of the technical concepts in failure analysis associated with SEM. (Author)

  14. Failure analysis of medical Linac (LMR-15)

    International Nuclear Information System (INIS)

    Kato, Kiyotaka; Nakamura, Katsumi; Ogihara, Kiyoshi; Takahashi, Katsuhiko; Sato, Kazuhisa.

    1994-01-01

    In August 1978, Linac (LMR-15, Z4 Toshiba) was installed at our hospital and in use for 12 years up to September 1990. Recently, we completed working and failure records on this apparatus during the 12-year period, for the purpose of their analysis in the basis of reliability engineering. The results revealed operation rate of 97.85% on the average, mean time between failures (MTBF) from 40-70 hours about the beginning of its working to 280 hours for 2 years before renewal and practically satisfactory values of mean life of parts of life such as magnetron, thyratron and electron gun; the above respective values proved to be above those reported by other literature. On the other hand, we classified, by occurring system, the contents of failures in the apparatus and determined the number of failures and the temperature and humidities in case of failures to examine the correlation between the working environment and failure. The results indicated a change in humidity to gain control of failures in the dosimetric system, especially the monitoring chamber and we could back up the strength of the above correlation from a coefficient of correlation value of 0.84. (author)

  15. Failure analysis of the boiler water-wall tube

    Directory of Open Access Journals (Sweden)

    S.W. Liu

    2017-10-01

    Full Text Available Failure analysis of the boiler water-wall tube is presented in this work. In order to examine the causes of failure, various techniques including visual inspection, chemical analysis, optical microscopy, scanning electron microscopy and energy dispersive spectroscopy were carried out. Tube wall thickness measurements were performed on the ruptured tube. The fire-facing side of the tube was observed to have experienced significant wall thinning. The composition of the matrix material of the tube meets the requirements of the relevant standards. Microscopic examinations showed that the spheroidization of pearlite is not very obvious. The failure mechanism is identified as a result of the significant localized wall thinning of the boiler water-wall tube due to oxidation.

  16. Failure analysis of the boiler water-wall tube

    OpenAIRE

    S.W. Liu; W.Z. Wang; C.J. Liu

    2017-01-01

    Failure analysis of the boiler water-wall tube is presented in this work. In order to examine the causes of failure, various techniques including visual inspection, chemical analysis, optical microscopy, scanning electron microscopy and energy dispersive spectroscopy were carried out. Tube wall thickness measurements were performed on the ruptured tube. The fire-facing side of the tube was observed to have experienced significant wall thinning. The composition of the matrix material of the tu...

  17. Fuzzy logic prioritization of failures in a system failure mode, effects and criticality analysis

    International Nuclear Information System (INIS)

    Bowles, John B.; Pelaez, C.E.

    1995-01-01

    This paper describes a new technique, based on fuzzy logic, for prioritizing failures for corrective actions in a Failure Mode, Effects and Criticality Analysis (FMECA). As in a traditional criticality analysis, the assessment is based on the severity, frequency of occurrence, and detectability of an item failure. However, these parameters are here represented as members of a fuzzy set, combined by matching them against rules in a rule base, evaluated with min-max inferencing, and then defuzzified to assess the riskiness of the failure. This approach resolves some of the problems in traditional methods of evaluation and it has several advantages compared to strictly numerical methods: 1) it allows the analyst to evaluate the risk associated with item failure modes directly using the linguistic terms that are employed in making the criticality assessment; 2) ambiguous, qualitative, or imprecise information, as well as quantitative data, can be used in the assessment and they are handled in a consistent manner; and 3) it gives a more flexible structure for combining the severity, occurrence, and detectability parameters. Two fuzzy logic based approaches for assessing criticality are presented. The first is based on the numerical rankings used in a conventional Risk Priority Number (RPN) calculation and uses crisp inputs gathered from the user or extracted from a reliability analysis. The second, which can be used early in the design process when less detailed information is available, allows fuzzy inputs and also illustrates the direct use of the linguistic rankings defined for the RPN calculations

  18. On the failure modes of alternative containment designs following postulated core meltdown

    International Nuclear Information System (INIS)

    Chan, C.K.; Knee, H.E.; Okrent, D.

    1977-01-01

    The containment response to a postulated core meltdown accident in a PWR ice condenser containment, a BWR Mark III containment and a BWR non-inerted Mark I containment has been examined to see if the WASH-1400 containment failure mode judgement for the Surry large, dry containment and the Peach Bottom Mark I inerted-containment are likely to be appropriate for these alternative containment plant designs. For the PWR, the representative accident chosen for the analysis is a large cold leg break accompanied by a loss of all electric power while the BWR respresentative event chosen is a recirculation line break without adequate core cooling function. Two containment event paths are studied for each of these two cases, depending on whether or not containment vapor suppression function is assumed to be available. Both the core and the containment pressure and temperature response to the accident events are computed for the four time intervals which characterize (a) blowdown of the pipe break, (b) core melt, (c) vessel melt-through, and (d) containment foundation penetration. The calculations are based on a best esimate of the most probable sequence, but certain phenomena and events were followed down multiple tracks. It appears that the non-inerted Mark I containment is not so vulnerable to overpressurization from hydrogen burning as the Mark III; however, acceptable temperatures may be exceeded. (Auth.)

  19. Analysis of dependent failures in the ORNL precursor study

    International Nuclear Information System (INIS)

    Ballard, G.M.

    1985-01-01

    The study of dependent failures (or common cause/mode failures) in the safety assessment of potentially hazardous plant is one of the significant areas of uncertainty in performing probabilistic safety studies. One major reason for this uncertainty is that data on dependent failures is apparently not readily available in sufficient quantity to assist in the development and validation of models. The incident reports that were compiled for the ORNL study on Precursors to Severe Core Damage Accidents (NUREG/CR-2497) provide an opportunity to look at the importance of dependent failures in the most significant incidents of recent reactor operations, to look at the success of probabilistic risk assessment (PRA) methods in accounting for the contribution of dependent failures, and to look at the dependent failure incidents with the aim of identifying the most significant problem areas. In this paper an analysis has been made of the incidents compiled in NUREG/CR-2497 and events involving multiple failures which were not independent have been identified. From this analysis it is clear that dependent failures are a very significant contributor to the precursor incidents. The method of enumeration of accident frequency used in NUREG-2497 can be shown to take account of dependent failures and this may be a significant factor contributing to the apparent difference between the precursor accident frequency and typical PRA frequencies

  20. Aluminium cables in automotive applications : Prestudy of aluminium cable uses in Scania products&Failure analysis and evaluation

    OpenAIRE

    Man, Yu

    2016-01-01

    The increasing demand of light constructed vehicles as well as soaring price of copper metal owing to limited nature resources have been promoting the use of aluminium metal as an alternative conductor of automotive cables. This thesis work is to lay theoretical foundations for further research and development regarding the introduction of new automotive cables i.e. aluminium cables. Current application of automotive aluminium cables in automotive industry as well as failure analysis and eval...

  1. Failure modes and effects analysis of fusion magnet systems

    International Nuclear Information System (INIS)

    Zimmermann, M.; Kazimi, M.S.; Siu, N.O.; Thome, R.J.

    1988-12-01

    A failure modes and consequence analysis of fusion magnet system is an important contributor towards enhancing the design by improving the reliability and reducing the risk associated with the operation of magnet systems. In the first part of this study, a failure mode analysis of a superconducting magnet system is performed. Building on the functional breakdown and the fault tree analysis of the Toroidal Field (TF) coils of the Next European Torus (NET), several subsystem levels are added and an overview of potential sources of failures in a magnet system is provided. The failure analysis is extended to the Poloidal Field (PF) magnet system. Furthermore, an extensive analysis of interactions within the fusion device caused by the operation of the PF magnets is presented in the form of an Interaction Matrix. A number of these interactions may have significant consequences for the TF magnet system particularly interactions triggered by electrical failures in the PF magnet system. In the second part of this study, two basic categories of electrical failures in the PF magnet system are examined: short circuits between the terminals of external PF coils, and faults with a constant voltage applied at external PF coil terminals. An electromagnetic model of the Compact Ignition Tokamak (CIT) is used to examine the mechanical load conditions for the PF and the TF coils resulting from these fault scenarios. It is found that shorts do not pose large threats to the PF coils. Also, the type of plasma disruption has little impact on the net forces on the PF and the TF coils. 39 refs., 30 figs., 12 tabs

  2. Failure analysis of fractured dental zirconia implants.

    Science.gov (United States)

    Gahlert, M; Burtscher, D; Grunert, I; Kniha, H; Steinhauser, E

    2012-03-01

    The purpose of the present study was the macroscopic and microscopic failure analysis of fractured zirconia dental implants. Thirteen fractured one-piece zirconia implants (Z-Look3) out of 170 inserted implants with an average in situ period of 36.75±5.34 months (range from 20 to 56 months, median 38 months) were prepared for macroscopic and microscopic (scanning electron microscopy [SEM]) failure analysis. These 170 implants were inserted in 79 patients. The patient histories were compared with fracture incidences to identify the reasons for the failure of the implants. Twelve of these fractured implants had a diameter of 3.25 mm and one implant had a diameter of 4 mm. All fractured implants were located in the anterior side of the maxilla and mandibula. The patient with the fracture of the 4 mm diameter implant was adversely affected by strong bruxism. By failure analysis (SEM), it could be demonstrated that in all cases, mechanical overloading caused the fracture of the implants. Inhomogeneities and internal defects of the ceramic material could be excluded, but notches and scratches due to sandblasting of the surface led to local stress concentrations that led to the mentioned mechanical overloading by bending loads. The present study identified a fracture rate of nearly 10% within a follow-up period of 36.75 months after prosthetic loading. Ninety-two per cent of the fractured implants were so-called diameter reduced implants (diameter 3.25 mm). These diameter reduced implants cannot be recommended for further clinical use. Improvement of the ceramic material and modification of the implant geometry has to be carried out to reduce the failure rate of small-sized ceramic implants. Nevertheless, due to the lack of appropriate laboratory testing, only clinical studies will demonstrate clearly whether and how far the failure rate can be reduced. © 2011 John Wiley & Sons A/S.

  3. Uncertainty analysis of reactor safety systems with statistically correlated failure data

    International Nuclear Information System (INIS)

    Dezfuli, H.; Modarres, M.

    1985-01-01

    The probability of occurrence of the top event of a fault tree is estimated from failure probability of components that constitute the fault tree. Component failure probabilities are subject to statistical uncertainties. In addition, there are cases where the failure data are statistically correlated. Most fault tree evaluations have so far been based on uncorrelated component failure data. The subject of this paper is the description of a method of assessing the probability intervals for the top event failure probability of fault trees when component failure data are statistically correlated. To estimate the mean and variance of the top event, a second-order system moment method is presented through Taylor series expansion, which provides an alternative to the normally used Monte-Carlo method. For cases where component failure probabilities are statistically correlated, the Taylor expansion terms are treated properly. A moment matching technique is used to obtain the probability distribution function of the top event through fitting a Johnson Ssub(B) distribution. The computer program (CORRELATE) was developed to perform the calculations necessary for the implementation of the method developed. The CORRELATE code is very efficient and consumes minimal computer time. This is primarily because it does not employ the time-consuming Monte-Carlo method. (author)

  4. Failure mode and effects analysis: an empirical comparison of failure mode scoring procedures.

    Science.gov (United States)

    Ashley, Laura; Armitage, Gerry

    2010-12-01

    To empirically compare 2 different commonly used failure mode and effects analysis (FMEA) scoring procedures with respect to their resultant failure mode scores and prioritization: a mathematical procedure, where scores are assigned independently by FMEA team members and averaged, and a consensus procedure, where scores are agreed on by the FMEA team via discussion. A multidisciplinary team undertook a Healthcare FMEA of chemotherapy administration. This included mapping the chemotherapy process, identifying and scoring failure modes (potential errors) for each process step, and generating remedial strategies to counteract them. Failure modes were scored using both an independent mathematical procedure and a team consensus procedure. Almost three-fifths of the 30 failure modes generated were scored differently by the 2 procedures, and for just more than one-third of cases, the score discrepancy was substantial. Using the Healthcare FMEA prioritization cutoff score, almost twice as many failure modes were prioritized by the consensus procedure than by the mathematical procedure. This is the first study to empirically demonstrate that different FMEA scoring procedures can score and prioritize failure modes differently. It found considerable variability in individual team members' opinions on scores, which highlights the subjective and qualitative nature of failure mode scoring. A consensus scoring procedure may be most appropriate for FMEA as it allows variability in individuals' scores and rationales to become apparent and to be discussed and resolved by the team. It may also yield team learning and communication benefits unlikely to result from a mathematical procedure.

  5. Failure analysis of stainless steel femur fixation plate.

    Science.gov (United States)

    Hussain, P B; Mohammad, M

    2004-05-01

    Failure analysis was performed to investigate the failure of the femur fixation plate which was previously fixed on the femur of a girl. Radiography, metallography, fractography and mechanical testing were conducted in this study. The results show that the failure was due to the formation of notches on the femur plate. These notches act as stress raisers from where the cracks start to propagate. Finally fracture occurred on the femur plate and subsequently, the plate failed.

  6. failure analysis of a uav flight control system using markov analysis

    African Journals Online (AJOL)

    eobe

    2016-01-01

    Jan 1, 2016 ... Tree Analysis (FTA), Dependence Diagram Analysis. (DDA) and Markov Analysis (MA) are the most widely-used methods of probabilistic safety and reliability analysis for airborne system [1]. Fault trees analysis is a backward failure searching ..... [4] Christopher Dabrowski and Fern Hunt Markov Chain.

  7. Early failure analysis of machining centers: a case study

    International Nuclear Information System (INIS)

    Wang Yiqiang; Jia Yazhou; Jiang Weiwei

    2001-01-01

    To eliminate the early failures and improve the reliability, nine ex-factory machining centers are traced under field conditions in workshops. Their early failure information throughout the ex-factory run-in test is collected. The field early failure database is constructed based on the collection of field early failure data and the codification of data. Early failure mode and effects analysis is performed to indicate the weak subsystem of a machining center or the troublemaker. The distribution of the time between early failures is analyzed and the optimal ex-factory run-in test time for machining center that may expose sufficiently the early failures and cost minimum is discussed. Suggestions how to arrange ex-factory run-in test and how to take actions to reduce early failures for machining center is proposed

  8. Business System Planning Project, Alternatives Analysis

    International Nuclear Information System (INIS)

    EVOSEVICH, S.

    2000-01-01

    The CHG Chief Information Officer (CIO) requested a study of alternatives to the current business system computing environment. This Business Systems Planning (BSP) Project Alternatives Analysis document presents an analysis of the current Project Controls, Work Management, and Business Management systems environment and alternative solutions that support the business functions. The project team has collected requirements and priorities from stakeholders in each business area and documented them in the BSP System Requirements Specification (SRS), RPP-6297. The alternatives analysis process identifies and measures possible solutions in each of the business process areas against the requirements as documented in the SRS. The team gathered input from both internal and external sources to identify and grade the possible solutions. This document captures the results of that activity and recommends a suite of software products. This study was to select the best product based on how well the product met the requirements, not to determine the platform or hardware environment that would be used. Additional analysis documentation can be found in BSP project files

  9. Reliability analysis based on the losses from failures.

    Science.gov (United States)

    Todinov, M T

    2006-04-01

    The conventional reliability analysis is based on the premise that increasing the reliability of a system will decrease the losses from failures. On the basis of counterexamples, it is demonstrated that this is valid only if all failures are associated with the same losses. In case of failures associated with different losses, a system with larger reliability is not necessarily characterized by smaller losses from failures. Consequently, a theoretical framework and models are proposed for a reliability analysis, linking reliability and the losses from failures. Equations related to the distributions of the potential losses from failure have been derived. It is argued that the classical risk equation only estimates the average value of the potential losses from failure and does not provide insight into the variability associated with the potential losses. Equations have also been derived for determining the potential and the expected losses from failures for nonrepairable and repairable systems with components arranged in series, with arbitrary life distributions. The equations are also valid for systems/components with multiple mutually exclusive failure modes. The expected losses given failure is a linear combination of the expected losses from failure associated with the separate failure modes scaled by the conditional probabilities with which the failure modes initiate failure. On this basis, an efficient method for simplifying complex reliability block diagrams has been developed. Branches of components arranged in series whose failures are mutually exclusive can be reduced to single components with equivalent hazard rate, downtime, and expected costs associated with intervention and repair. A model for estimating the expected losses from early-life failures has also been developed. For a specified time interval, the expected losses from early-life failures are a sum of the products of the expected number of failures in the specified time intervals covering the

  10. Alternatives Analysis for the Resumption of Transient Testing Program

    Energy Technology Data Exchange (ETDEWEB)

    Lee Nelson

    2013-11-01

    An alternatives analysis was performed for resumption of transient testing. The analysis considered eleven alternatives – including both US international facilities. A screening process was used to identify two viable alternatives from the original eleven. In addition, the alternatives analysis includes a no action alternative as required by the National Environmental Policy Act (NEPA). The alternatives considered in this analysis included: 1. Restart the Transient Reactor Test Facility (TREAT) 2. Modify the Annular Core Research Reactor (ACRR) which includes construction of a new hot cell and installation of a new hodoscope. 3. No Action

  11. Beyond reliability, multi-state failure analysis of satellite subsystems: A statistical approach

    International Nuclear Information System (INIS)

    Castet, Jean-Francois; Saleh, Joseph H.

    2010-01-01

    Reliability is widely recognized as a critical design attribute for space systems. In recent articles, we conducted nonparametric analyses and Weibull fits of satellite and satellite subsystems reliability for 1584 Earth-orbiting satellites launched between January 1990 and October 2008. In this paper, we extend our investigation of failures of satellites and satellite subsystems beyond the binary concept of reliability to the analysis of their anomalies and multi-state failures. In reliability analysis, the system or subsystem under study is considered to be either in an operational or failed state; multi-state failure analysis introduces 'degraded states' or partial failures, and thus provides more insights through finer resolution into the degradation behavior of an item and its progression towards complete failure. The database used for the statistical analysis in the present work identifies five states for each satellite subsystem: three degraded states, one fully operational state, and one failed state (complete failure). Because our dataset is right-censored, we calculate the nonparametric probability of transitioning between states for each satellite subsystem with the Kaplan-Meier estimator, and we derive confidence intervals for each probability of transitioning between states. We then conduct parametric Weibull fits of these probabilities using the Maximum Likelihood Estimation (MLE) approach. After validating the results, we compare the reliability versus multi-state failure analyses of three satellite subsystems: the thruster/fuel; the telemetry, tracking, and control (TTC); and the gyro/sensor/reaction wheel subsystems. The results are particularly revealing of the insights that can be gleaned from multi-state failure analysis and the deficiencies, or blind spots, of the traditional reliability analysis. In addition to the specific results provided here, which should prove particularly useful to the space industry, this work highlights the importance

  12. Extending Failure Modes and Effects Analysis Approach for Reliability Analysis at the Software Architecture Design Level

    NARCIS (Netherlands)

    Sözer, Hasan; Tekinerdogan, B.; Aksit, Mehmet; de Lemos, Rogerio; Gacek, Cristina

    2007-01-01

    Several reliability engineering approaches have been proposed to identify and recover from failures. A well-known and mature approach is the Failure Mode and Effect Analysis (FMEA) method that is usually utilized together with Fault Tree Analysis (FTA) to analyze and diagnose the causes of failures.

  13. Machinery failure analysis and troubleshooting practical machinery management for process plants

    CERN Document Server

    Bloch, Heinz P

    2012-01-01

    Solve the machinery failure problems costing you time and money with this classic, comprehensive guide to analysis and troubleshooting  Provides detailed, complete and accurate information on anticipating risk of component failure and avoiding equipment downtime Includes numerous photographs of failed parts to ensure you are familiar with the visual evidence you need to recognize Covers proven approaches to failure definition and offers failure identification and analysis methods that can be applied to virtually all problem situations Demonstr

  14. Root cause of failure analysis and the system engineer

    International Nuclear Information System (INIS)

    Coppock, M.S.; Hartwig, A.W.

    1990-01-01

    In an industry where ever-increasing emphasis is being placed on root cause of failure determination, it is imperative that a successful nuclear utility have an effective means of identifying failures and performing the necessary analyses. The current Institute of Nuclear Power Operations (INPO) good practice, OE-907, root-cause analysis, gives references to methodology that will help determine breakdowns in procedures, programs, or design but gives very little guidance on how or when to perform component root cause of failure analyses. The system engineers of nuclear utilities are considered the focal point for their respective systems and are required by most programs to investigate component failures. The problem that the system engineer faces in determining a component root cause of failures lies in acquisition of the necessary data to identify the need to perform the analysis and in having the techniques and equipment available to perform it. The system engineers at the Palo Verde nuclear generating station routinely perform detailed component root cause of failure analyses. The Palo Verde program provides the system engineers with the information necessary to identify when a component root cause of failure is required. Palo Verde also has the necessary equipment on-site to perform the analyses

  15. Process Equipment Failure Mode Analysis in a Chemical Industry

    Directory of Open Access Journals (Sweden)

    J. Nasl Seraji

    2008-04-01

    Full Text Available Background and aims   Prevention of potential accidents and safety promotion in chemical processes requires systematic safety management in them. The main objective of this study was analysis of important process equipment components failure modes and effects in H2S and CO2  isolation from extracted natural gas process.   Methods   This study was done in sweetening unit of an Iranian gas refinery. Failure Mode and Effect Analysis (FMEA used for identification of process equipments failures.   Results   Totally 30 failures identified and evaluated using FMEA. P-1 blower's blade breaking and sour gas pressure control valve bearing tight moving had maximum risk Priority number (RPN, P-1 body corrosion and increasing plug lower side angle of reach DEAlevel control valve  in tower - 1 were minimum calculated RPN.   Conclusion   By providing a reliable documentation system for equipment failures and  incidents recording, maintaining of basic information for later safety assessments would be  possible. Also, the probability of failures and effects could be minimized by conducting preventive maintenance.

  16. Dissimilar weld failure analysis and development program

    International Nuclear Information System (INIS)

    Holko, K.H.; Li, C.C.

    1982-01-01

    The problem of dissimilar weld cracking and failure is examined. This problem occurs in boiler superheater and reheater sections as well as main steam piping. Typically, a dissimilar weld joins low-alloy steel tubing such as Fe-2-1/4 Cr-1Mo to stainless steel tubing such as 321H and 304H. Cracking and failure occur in the low-alloy steel heat-affected zone very close to the weld interface. The 309 stainless steel filler previously used has been replaced with nickel-base fillers such as Inconel 132, Inconel 182, and Incoweld A. This change has extended the time to cracking and failure, but has not solved the problem. To illustrate and define the problem, the metallography of damaged and failed dissimilar welds is described. Results of mechanical tests of dissimilar welds removed from service are presented, and factors believed to be influential in causing damage and failure are discussed. In addition, the importance of dissimilar weldment service history is demonstrated, and the Dissimilar Weld Failure Analysis and Development Program is described. 15 figures

  17. Analysis of reactor trips involving balance-of-plant failures

    International Nuclear Information System (INIS)

    Seth, S.; Skinner, L.; Ettlinger, L.; Lay, R.

    1986-01-01

    The relatively high frequency of plant transients leading to reactor trips at nuclear power plants in the US is of economic and safety concern to the industry. A majority of such transients is due to failures in the balance-of-plant (BOP) systems. As a part of a study conducted for the US Nuclear Regulatory Commission, Mitre has carried out a further analysis of the BOP failures associated with reactor trips. The major objectives of the analysis were to examine plant-to-plant variations in BOP-related trips, to understand the causes of failures, and to determine the extent of any associated safety system challenges. The analysis was based on the Licensee Event Reports submitted on all commercial light water reactors during the 2-yr period, 1984-1985

  18. Study on shielded pump system failure analysis method based on Bayesian network

    International Nuclear Information System (INIS)

    Bao Yilan; Huang Gaofeng; Tong Lili; Cao Xuewu

    2012-01-01

    This paper applies Bayesian network to the system failure analysis, with an aim to improve knowledge representation of the uncertainty logic and multi-fault states in system failure analysis. A Bayesian network for shielded pump failure analysis is presented, conducting fault parameter learning, updating Bayesian network parameter based on new samples. Finally, through the Bayesian network inference, vulnerability in this system, the largest possible failure modes, and the fault probability are obtained. The powerful ability of Bayesian network to analyze system fault is illustrated by examples. (authors)

  19. Comprehensive method of common-mode failure analysis for LMFBR safety systems

    International Nuclear Information System (INIS)

    Unione, A.J.; Ritzman, R.L.; Erdmann, R.C.

    1976-01-01

    A technique is demonstrated which allows the systematic treatment of common-mode failures of safety system performance. The technique uses log analysis in the form of fault and success trees to qualitatively assess the sources of common-mode failure and quantitatively estimate the contribution to the overall risk of system failure. The analysis is applied to the secondary control rod system of an early sized LMFBR

  20. Challenges in Resolution for IC Failure Analysis

    Science.gov (United States)

    Martinez, Nick

    1999-10-01

    Resolution is becoming more and more of a challenge in the world of Failure Analysis in integrated circuits. This is a result of the ongoing size reduction in microelectronics. Determining the cause of a failure depends upon being able to find the responsible defect. The time it takes to locate a given defect is extremely important so that proper corrective actions can be taken. The limits of current microscopy tools are being pushed. With sub-micron feature sizes and even smaller killing defects, optical microscopes are becoming obsolete. With scanning electron microscopy (SEM), the resolution is high but the voltage involved can make these small defects transparent due to the large mean-free path of incident electrons. In this presentation, I will give an overview of the use of inspection methods in Failure Analysis and show example studies of my work as an Intern student at Texas Instruments. 1. Work at Texas Instruments, Stafford, TX, was supported by TI. 2. Work at Texas Tech University, was supported by NSF Grant DMR9705498.

  1. Probabilistic analysis on the failure of reactivity control for the PWR

    Science.gov (United States)

    Sony Tjahyani, D. T.; Deswandri; Sunaryo, G. R.

    2018-02-01

    The fundamental safety function of the power reactor is to control reactivity, to remove heat from the reactor, and to confine radioactive material. The safety analysis is used to ensure that each parameter is fulfilled during the design and is done by deterministic and probabilistic method. The analysis of reactivity control is important to be done because it will affect the other of fundamental safety functions. The purpose of this research is to determine the failure probability of the reactivity control and its failure contribution on a PWR design. The analysis is carried out by determining intermediate events, which cause the failure of reactivity control. Furthermore, the basic event is determined by deductive method using the fault tree analysis. The AP1000 is used as the object of research. The probability data of component failure or human error, which is used in the analysis, is collected from IAEA, Westinghouse, NRC and other published documents. The results show that there are six intermediate events, which can cause the failure of the reactivity control. These intermediate events are uncontrolled rod bank withdrawal at low power or full power, malfunction of boron dilution, misalignment of control rod withdrawal, malfunction of improper position of fuel assembly and ejection of control rod. The failure probability of reactivity control is 1.49E-03 per year. The causes of failures which are affected by human factor are boron dilution, misalignment of control rod withdrawal and malfunction of improper position for fuel assembly. Based on the assessment, it is concluded that the failure probability of reactivity control on the PWR is still within the IAEA criteria.

  2. Advancing Alternative Analysis: Integration of Decision Science

    DEFF Research Database (Denmark)

    Malloy, Timothy F; Zaunbrecher, Virginia M; Batteate, Christina

    2016-01-01

    Decision analysis-a systematic approach to solving complex problems-offers tools and frameworks to support decision making that are increasingly being applied to environmental challenges. Alternatives analysis is a method used in regulation and product design to identify, compare, and evaluate......, and civil society and included experts in toxicology, decision science, alternatives assessment, engineering, and law and policy. Participants were divided into two groups and prompted with targeted questions. Throughout the workshop, the groups periodically came together in plenary sessions to reflect......) engaging the systematic development and evaluation of decision approaches and tools; (2) using case studies to advance the integration of decision analysis into alternatives analysis; (3) supporting transdisciplinary research; and (4) supporting education and outreach efforts....

  3. A quantitative method for Failure Mode and Effects Analysis

    NARCIS (Netherlands)

    Braaksma, Anne Johannes Jan; Meesters, A.J.; Klingenberg, W.; Hicks, C.

    2012-01-01

    Failure Mode and Effects Analysis (FMEA) is commonly used for designing maintenance routines by analysing potential failures, predicting their effect and facilitating preventive action. It is used to make decisions on operational and capital expenditure. The literature has reported that despite its

  4. Failure mode analysis of a PCRV. Influence of some hypothesis

    International Nuclear Information System (INIS)

    Zimmermann, T.; Saugy, B.; Rebora, B.

    1975-01-01

    This paper is concerned with the most recent developments and results obtained using a mathematical model for the non-linear analysis of massive reinforced and prestressed concrete strucures developed by the IPEN at the Swiss Federal Institute of Technology, in Lausanne. The method is based on three-dimensional isoparametric finite elements. A linear solution is adapted step by step to the idealized behavior laws of the materials up to the failure of the structure. The laws proposed here for the non-linear behavior of concrete and steel have been described elsewhere but a simple extension to the time-dependent behavior is presented. A numerical algorithm for the superposition of creep deformations is also proposed, the basic creep law being supposed to satisfy a power expression. Time-dependent failure is discussed. The calculus of a PCRV of a helium cooled fast reactor is then performed and the influence of the liner on the failure mode is analyzed. The failure analysis under increasing internal pressure is run at the present time and the influence of an eventual pressure in the cracks is being investigated. The paper aims mainly to demonstrate the accuracy of a failure analysis by three-dimensional finite-elements and to compare it with a model test, in particular when complete deformation and failure tests of the materials are available. The proposed model has already been extensively tested on simple structures and has proved to be useful for the analysis of different simplifying hypotheses

  5. Failure analysis of a Francis turbine runner

    Energy Technology Data Exchange (ETDEWEB)

    Frunzaverde, D; Campian, V [Research Center in Hydraulics, Automation and Heat Transfer, ' Eftimie Murgu' University of Resita P-ta Traian Vuia 1-4, RO-320085, Resita (Romania); Muntean, S [Centre of Advanced Research in Engineering Sciences, Romanian Academy - Timisoara Branch Bv. Mihai Viteazu 24, RO-300223, Timisoara (Romania); Marginean, G [University of Applied Sciences Gelsenkirchen, Neidenburger Str. 10, 45877 Gelsenkirchen (Germany); Marsavina, L [Department of Strength, ' Politehnica' University of Timisoara, Bv. Mihai Viteazu 1, RO-300222, Timisoara (Romania); Terzi, R; Serban, V, E-mail: gabriela.marginean@fh-gelsenkirchen.d, E-mail: d.frunzaverde@uem.r [Ramnicu Valcea Subsidiary, S.C. Hidroelectrica S.A., Str. Decebal 11, RO-240255, Ramnicu Valcea (Romania)

    2010-08-15

    The variable demand on the energy market requires great flexibility in operating hydraulic turbines. Therefore, turbines are frequently operated over an extended range of regimes. Francis turbines operating at partial load present pressure fluctuations due to the vortex rope in the draft tube cone. This phenomenon generates strong vibrations and noise that may produce failures on the mechanical elements of the machine. This paper presents the failure analysis of a broken Francis turbine runner blade. The failure appeared some months after the welding repair work realized in situ on fatigue cracks initiated near to the trailing edge at the junction with the crown, where stress concentration occurs. In order to determine the causes that led to the fracture of the runner blade, the metallographic investigations on a sample obtained from the blade is carried out. The metallographic investigations included macroscopic and microscopic examinations, both performed with light and scanning electron microscopy, as well as EDX - analyses. These investigations led to the conclusion, that the cracking of the blade was caused by fatigue, initiated by the surface unevenness of the welding seam. The failure was accelerated by the hydrogen embrittlement of the filling material, which appeared as a consequence of improper welding conditions. In addition to the metallographic investigations, numerical computations with finite element analysis are performed in order to evaluate the deformation and stress distribution on blade.

  6. Failure analysis of a Francis turbine runner

    International Nuclear Information System (INIS)

    Frunzaverde, D; Campian, V; Muntean, S; Marginean, G; Marsavina, L; Terzi, R; Serban, V

    2010-01-01

    The variable demand on the energy market requires great flexibility in operating hydraulic turbines. Therefore, turbines are frequently operated over an extended range of regimes. Francis turbines operating at partial load present pressure fluctuations due to the vortex rope in the draft tube cone. This phenomenon generates strong vibrations and noise that may produce failures on the mechanical elements of the machine. This paper presents the failure analysis of a broken Francis turbine runner blade. The failure appeared some months after the welding repair work realized in situ on fatigue cracks initiated near to the trailing edge at the junction with the crown, where stress concentration occurs. In order to determine the causes that led to the fracture of the runner blade, the metallographic investigations on a sample obtained from the blade is carried out. The metallographic investigations included macroscopic and microscopic examinations, both performed with light and scanning electron microscopy, as well as EDX - analyses. These investigations led to the conclusion, that the cracking of the blade was caused by fatigue, initiated by the surface unevenness of the welding seam. The failure was accelerated by the hydrogen embrittlement of the filling material, which appeared as a consequence of improper welding conditions. In addition to the metallographic investigations, numerical computations with finite element analysis are performed in order to evaluate the deformation and stress distribution on blade.

  7. TU-AB-BRD-02: Failure Modes and Effects Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Huq, M. [University of Pittsburgh Medical Center (United States)

    2015-06-15

    Current quality assurance and quality management guidelines provided by various professional organizations are prescriptive in nature, focusing principally on performance characteristics of planning and delivery devices. However, published analyses of events in radiation therapy show that most events are often caused by flaws in clinical processes rather than by device failures. This suggests the need for the development of a quality management program that is based on integrated approaches to process and equipment quality assurance. Industrial engineers have developed various risk assessment tools that are used to identify and eliminate potential failures from a system or a process before a failure impacts a customer. These tools include, but are not limited to, process mapping, failure modes and effects analysis, fault tree analysis. Task Group 100 of the American Association of Physicists in Medicine has developed these tools and used them to formulate an example risk-based quality management program for intensity-modulated radiotherapy. This is a prospective risk assessment approach that analyzes potential error pathways inherent in a clinical process and then ranks them according to relative risk, typically before implementation, followed by the design of a new process or modification of the existing process. Appropriate controls are then put in place to ensure that failures are less likely to occur and, if they do, they will more likely be detected before they propagate through the process, compromising treatment outcome and causing harm to the patient. Such a prospective approach forms the basis of the work of Task Group 100 that has recently been approved by the AAPM. This session will be devoted to a discussion of these tools and practical examples of how these tools can be used in a given radiotherapy clinic to develop a risk based quality management program. Learning Objectives: Learn how to design a process map for a radiotherapy process Learn how to

  8. TU-AB-BRD-02: Failure Modes and Effects Analysis

    International Nuclear Information System (INIS)

    Huq, M.

    2015-01-01

    Current quality assurance and quality management guidelines provided by various professional organizations are prescriptive in nature, focusing principally on performance characteristics of planning and delivery devices. However, published analyses of events in radiation therapy show that most events are often caused by flaws in clinical processes rather than by device failures. This suggests the need for the development of a quality management program that is based on integrated approaches to process and equipment quality assurance. Industrial engineers have developed various risk assessment tools that are used to identify and eliminate potential failures from a system or a process before a failure impacts a customer. These tools include, but are not limited to, process mapping, failure modes and effects analysis, fault tree analysis. Task Group 100 of the American Association of Physicists in Medicine has developed these tools and used them to formulate an example risk-based quality management program for intensity-modulated radiotherapy. This is a prospective risk assessment approach that analyzes potential error pathways inherent in a clinical process and then ranks them according to relative risk, typically before implementation, followed by the design of a new process or modification of the existing process. Appropriate controls are then put in place to ensure that failures are less likely to occur and, if they do, they will more likely be detected before they propagate through the process, compromising treatment outcome and causing harm to the patient. Such a prospective approach forms the basis of the work of Task Group 100 that has recently been approved by the AAPM. This session will be devoted to a discussion of these tools and practical examples of how these tools can be used in a given radiotherapy clinic to develop a risk based quality management program. Learning Objectives: Learn how to design a process map for a radiotherapy process Learn how to

  9. Failure mode and effects analysis of software-based automation systems

    International Nuclear Information System (INIS)

    Haapanen, P.; Helminen, A.

    2002-08-01

    Failure mode and effects analysis (FMEA) is one of the well-known analysis methods having an established position in the traditional reliability analysis. The purpose of FMEA is to identify possible failure modes of the system components, evaluate their influences on system behaviour and propose proper countermeasures to suppress these effects. The generic nature of FMEA has enabled its wide use in various branches of industry reaching from business management to the design of spaceships. The popularity and diverse use of the analysis method has led to multiple interpretations, practices and standards presenting the same analysis method. FMEA is well understood at the systems and hardware levels, where the potential failure modes usually are known and the task is to analyse their effects on system behaviour. Nowadays, more and more system functions are realised on software level, which has aroused the urge to apply the FMEA methodology also on software based systems. Software failure modes generally are unknown - 'software modules do not fail, they only display incorrect behaviour' - and depend on dynamic behaviour of the application. These facts set special requirements on the FMEA of software based systems and make it difficult to realise. In this report the failure mode and effects analysis is studied for the use of reliability analysis of software-based systems. More precisely, the target system of FMEA is defined to be a safety-critical software-based automation application in a nuclear power plant, implemented on an industrial automation system platform. Through a literature study the report tries to clarify the intriguing questions related to the practical use of software failure mode and effects analysis. The study is a part of the research project 'Programmable Automation System Safety Integrity assessment (PASSI)', belonging to the Finnish Nuclear Safety Research Programme (FINNUS, 1999-2002). In the project various safety assessment methods and tools for

  10. Alternative comparison, analysis, and evaluation of solid waste and materials system alternatives

    International Nuclear Information System (INIS)

    Brothers, A.J.

    1995-09-01

    This paper presents a comprehensive analysis of the impact of solid waste technical options on values and objectives that are important to the public. It is written in support of the Solid Waste and Materials Systems Alternatives Study (WHC, 1995). Described are the values that were identified, the major programmatic risks, how the impacts were measured, the performance of alternatives, the methodology used for the analysis, and the implications of the results. Decision analysis was used to guide the collection and analysis of data and the logic of the evaluation. Decision analysis is a structured process for the analysis and evaluation of alternatives. It is theoretically grounded in a set of axioms that capture the basic principles of decision making (von Neuman and Morgenstern 1947). Decision analysis objectively specifies what factors are to be considered, how they are to be measured and evaluated, and heir relative importance. The result is an analysis in which the underlying rationale or logic upon which the decision is based is made explicit. This makes possible open discussion of the decision basis in which facts and values are clearly distinguished, resulting in a well- documented decision that can be clearly explained and justified. The strategy of decision analysis is to analyze the various components relevant to the decision separately and then integrate the individual judgments to arrive at an overall decision. This assures that all the relevant factors are identified and their relative importance is considered. The procedure for obtaining the individual judgments, and the decision rules, for combining them and evaluating alternatives, have both theoretical and empirical foundation in mathematics, economics, and psychology

  11. Improving failure analysis efficiency by combining FTA and FMEA in a recursive manner

    NARCIS (Netherlands)

    Peeters, J.F.W.; Basten, R.J.I.; Tinga, Tiedo

    2018-01-01

    When designing a maintenance programme for a capital good, especially a new one, it is of key importance to accurately understand its failure behaviour. Failure mode and effects analysis (FMEA) and fault tree analysis (FTA) are two commonly used methods for failure analysis. FMEA is a bottom-up

  12. Improving failure analysis efficiency by combining FTA and FMEA in a recursive manner

    NARCIS (Netherlands)

    Peeters, J.F.W.; Basten, R.J.I.; Tinga, T.

    When designing a maintenance programme for a capital good, especially a new one, it is of key importance to accurately understand its failure behaviour. Failure mode and effects analysis (FMEA) and fault tree analysis (FTA) are two commonly used methods for failure analysis. FMEA is a bottom-up

  13. A comparative analysis of alternative approaches for quantifying nonlinear dynamics in cardiovascular system.

    Science.gov (United States)

    Chen, Yun; Yang, Hui

    2013-01-01

    Heart rate variability (HRV) analysis has emerged as an important research topic to evaluate autonomic cardiac function. However, traditional time and frequency-domain analysis characterizes and quantify only linear and stationary phenomena. In the present investigation, we made a comparative analysis of three alternative approaches (i.e., wavelet multifractal analysis, Lyapunov exponents and multiscale entropy analysis) for quantifying nonlinear dynamics in heart rate time series. Note that these extracted nonlinear features provide information about nonlinear scaling behaviors and the complexity of cardiac systems. To evaluate the performance, we used 24-hour HRV recordings from 54 healthy subjects and 29 heart failure patients, available in PhysioNet. Three nonlinear methods are evaluated not only individually but also in combination using three classification algorithms, i.e., linear discriminate analysis, quadratic discriminate analysis and k-nearest neighbors. Experimental results show that three nonlinear methods capture nonlinear dynamics from different perspectives and the combined feature set achieves the best performance, i.e., sensitivity 97.7% and specificity 91.5%. Collectively, nonlinear HRV features are shown to have the promise to identify the disorders in autonomic cardiovascular function.

  14. Reliability Evaluation of Machine Center Components Based on Cascading Failure Analysis

    Science.gov (United States)

    Zhang, Ying-Zhi; Liu, Jin-Tong; Shen, Gui-Xiang; Long, Zhe; Sun, Shu-Guang

    2017-07-01

    In order to rectify the problems that the component reliability model exhibits deviation, and the evaluation result is low due to the overlook of failure propagation in traditional reliability evaluation of machine center components, a new reliability evaluation method based on cascading failure analysis and the failure influenced degree assessment is proposed. A direct graph model of cascading failure among components is established according to cascading failure mechanism analysis and graph theory. The failure influenced degrees of the system components are assessed by the adjacency matrix and its transposition, combined with the Pagerank algorithm. Based on the comprehensive failure probability function and total probability formula, the inherent failure probability function is determined to realize the reliability evaluation of the system components. Finally, the method is applied to a machine center, it shows the following: 1) The reliability evaluation values of the proposed method are at least 2.5% higher than those of the traditional method; 2) The difference between the comprehensive and inherent reliability of the system component presents a positive correlation with the failure influenced degree of the system component, which provides a theoretical basis for reliability allocation of machine center system.

  15. Alternatives to Aerobic Exercise Prescription in Patients with Chronic Heart Failure

    Directory of Open Access Journals (Sweden)

    Mayron F Oliveira

    2016-01-01

    Full Text Available Background: Exercise is essential for patients with heart failure as it leads to a reduction in morbidity and mortality as well as improved functional capacity and oxygen uptake (v̇O2. However, the need for an experienced physiologist and the cost of the exam may render the cardiopulmonary exercise test (CPET unfeasible. Thus, the six-minute walk test (6MWT and step test (ST may be alternatives for exercise prescription. Objective: The aim was to correlate heart rate (HR during the 6MWT and ST with HR at the anaerobic threshold (HRAT and peak HR (HRP obtained on the CPET. Methods: Eighty-three patients (58 ± 11 years with heart failure (NYHA class II were included and all subjects had optimized medication for at least 3 months. Evaluations involved CPET (v̇O2, HRAT, HRP, 6MWT (HR6MWT and ST (HRST. Results: The participants exhibited severe ventricular dysfunction (ejection fraction: 31 ± 7% and low peak v̇O2 (15.2 ± 3.1 mL.kg-1.min-1. HRP (113 ± 19 bpm was higher than HRAT (92 ± 14 bpm; p < 0.05 and HR6MWT (94 ± 13 bpm; p < 0.05. No significant difference was found between HRP and HRST. Moreover, a strong correlation was found between HRAT and HR6MWT (r = 0.81; p < 0.0001, and between HRP and HRST (r = 0.89; p < 0.0001. Conclusion: These findings suggest that, in the absence of CPET, exercise prescription can be performed by use of 6MWT and ST, based on HR6MWT and HRST

  16. Robustness Analysis of Real Network Topologies Under Multiple Failure Scenarios

    DEFF Research Database (Denmark)

    Manzano, M.; Marzo, J. L.; Calle, E.

    2012-01-01

    on topological characteristics. Recently approaches also consider the services supported by such networks. In this paper we carry out a robustness analysis of five real backbone telecommunication networks under defined multiple failure scenarios, taking into account the consequences of the loss of established......Nowadays the ubiquity of telecommunication networks, which underpin and fulfill key aspects of modern day living, is taken for granted. Significant large-scale failures have occurred in the last years affecting telecommunication networks. Traditionally, network robustness analysis has been focused...... connections. Results show which networks are more robust in response to a specific type of failure....

  17. Analysis of dependent failures in risk assessment and reliability evaluation

    International Nuclear Information System (INIS)

    Fleming, K.N.; Mosleh, A.; Kelley, A.P. Jr.; Gas-Cooled Reactors Associates, La Jolla, CA)

    1983-01-01

    The ability to estimate the risk of potential reactor accidents is largely determined by the ability to analyze statistically dependent multiple failures. The importance of dependent failures has been indicated in recent probabilistic risk assessment (PRA) studies as well as in reports of reactor operating experiences. This article highlights the importance of several different types of dependent failures from the perspective of the risk and reliability analyst and provides references to the methods and data available for their analysis. In addition to describing the current state of the art, some recent advances, pitfalls, misconceptions, and limitations of some approaches to dependent failure analysis are addressed. A summary is included of the discourse on this subject, which is presented in the Institute of Electrical and Electronics Engineers/American Nuclear Society PRA Procedures Guide

  18. Economic analysis of alternative LLW disposal methods

    International Nuclear Information System (INIS)

    Foutes, C.E.

    1987-01-01

    The Environmental Protection Agency (EPA) has evaluated the costs and benefits of alternative disposal technologies as part of its program to develop generally applicable environmental standards for the land disposal of low-level radioactive waste (LLW). Costs, population health effects and Critical Population Group (CPG) exposures resulting from alternative waste treatment and disposal methods were developed and input into the analysis. The cost-effectiveness analysis took into account a number of waste streams, hydrogeologic and climatic region settings, and waste treatment and disposal methods. Total costs of each level of a standard included costs for packaging, processing, transportation, and burial of waste. Benefits are defined in terms of reductions in the general population health risk (expected fatal cancers and genetic effects) evaluated over 10,000 years. A cost-effectiveness ratio, was calculated for each alternative standard. This paper describes the alternatives considered and preliminary results of the cost-effectiveness analysis

  19. Reliability analysis of multi-trigger binary systems subject to competing failures

    International Nuclear Information System (INIS)

    Wang, Chaonan; Xing, Liudong; Levitin, Gregory

    2013-01-01

    This paper suggests two combinatorial algorithms for the reliability analysis of multi-trigger binary systems subject to competing failure propagation and failure isolation effects. Propagated failure with global effect (PFGE) is referred to as a failure that not only causes outage to the component from which the failure originates, but also propagates through all other system components causing the entire system failure. However, the propagation effect from the PFGE can be isolated in systems with functional dependence (FDEP) behavior. This paper studies two distinct consequences of PFGE resulting from a competition in the time domain between the failure isolation and failure propagation effects. As compared to existing works on competing failures that are limited to systems with a single FDEP group, this paper considers more complicated cases where the systems have multiple dependent FDEP groups. Analysis of such systems is more challenging because both the occurrence order between the trigger failure event and PFGE from the dependent components and the occurrence order among the multiple trigger failure events have to be considered. Two combinatorial and analytical algorithms are proposed. Both of them have no limitation on the type of time-to-failure distributions for the system components. Their correctness is verified using a Markov-based method. An example of memory systems is analyzed to demonstrate and compare the applications and advantages of the two proposed algorithms. - Highlights: ► Reliability of binary systems with multiple dependent functional dependence groups is analyzed. ► Competing failure propagation and failure isolation effect is considered. ► The proposed algorithms are combinatorial and applicable to any arbitrary type of time-to-failure distributions for system components.

  20. Recognition and Analysis of Corrosion Failure Mechanisms

    Directory of Open Access Journals (Sweden)

    Steven Suess

    2006-02-01

    Full Text Available Corrosion has a vast impact on the global and domestic economy, and currently incurs losses of nearly $300 billion annually to the U.S. economy alone. Because of the huge impact of corrosion, it is imperative to have a systematic approach to recognizing and mitigating corrosion problems as soon as possible after they become apparent. A proper failure analysis includes collection of pertinent background data and service history, followed by visual inspection, photographic documentation, material evaluation, data review and conclusion procurement. In analyzing corrosion failures, one must recognize the wide range of common corrosion mechanisms. The features of any corrosion failure give strong clues as to the most likely cause of the corrosion. This article details a proven approach to properly determining the root cause of a failure, and includes pictographic illustrations of the most common corrosion mechanisms, including general corrosion, pitting, galvanic corrosion, dealloying, crevice corrosion, microbiologically-influenced corrosion (MIC, corrosion fatigue, stress corrosion cracking (SCC, intergranular corrosion, fretting, erosion corrosion and hydrogen damage.

  1. Propagated failure analysis for non-repairable systems considering both global and selective effects

    International Nuclear Information System (INIS)

    Wang Chaonan; Xing Liudong; Levitin, Gregory

    2012-01-01

    This paper proposes an algorithm for the reliability analysis of non-repairable binary systems subject to competing failure propagation and failure isolation events with both global and selective failure effects. A propagated failure that originates from a system component causes extensive damage to the rest of the system. Global effect happens when the propagated failure causes the entire system to fail; whereas selective effect happens when the propagated failure causes only failure of a subset of system components. In both cases, the failure propagation that originates from some system components (referred to as dependent components) can be isolated because of functional dependence between the dependent components and a component that prevents the failure propagation (trigger components) when the failure of the trigger component happens before the occurrence of the propagated failure. Most existing studies focus on the analysis of propagated failures with global effect. However, in many cases, propagated failures affect only a subset of system components not the entire system. Existing approaches for analyzing propagated failures with selective effect are limited to series-parallel systems. This paper proposes a combinatorial method for the propagated failure analysis considering both global and selective effects as well as the competition with the failure isolation in the time domain. The proposed method is not limited to series-parallel systems and has no limitation on the type of time-to-failure distributions for the system components. The method is verified using the Markov-based method. An example of computer memory systems is analyzed to demonstrate the application of the proposed method.

  2. Risk Analyses of Charging Pump Control Improvements for Alternative RCP Seal Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun-Chan [Korea Hydro and Nuclear Power Co. Ltd. Daejeon (Korea, Republic of)

    2015-10-15

    There are two events that significantly affect the plant risk during a TLOCCW event. One is an event in which the seal assembly of a reactor coolant pump (RCP) fails due to heating stress from the loss of cooling water; the other is an event in which the operators fail to conduct alternative cooling for the RCP seal during the accident. KHNP reviewed the replacement of the RCP seal with a qualified shutdown seal in order to remove the risk due to RCP seal failure during a TLOCCW. As an optional measure, a design improvement in the alternative cooling method for the RCP seal is being considered. This analysis presents the alternative RCP seal cooling improvement and its safety effect. K2 is a nuclear power plant with a Westinghouse design, and it has a relatively high CDF during TLOCCW events because it has a different CCW system design and difficulty in preparing alternative cooling water sources. This analysis confirmed that an operator action providing cold water to the RWST as RCP seal injection water during a TLOCCW event is very important in K2. The control circuit improvement plan for the auxiliary charging pump was established in order to reduce the failure probability of this operator action. This analysis modeled the improvement as a fault tree and evaluated the resulting CDF change. The consequence demonstrated that the RCP seal injection failure probability was reduced by 89%, and the CDF decreased by 28%.

  3. System reliability analysis using dominant failure modes identified by selective searching technique

    International Nuclear Information System (INIS)

    Kim, Dong-Seok; Ok, Seung-Yong; Song, Junho; Koh, Hyun-Moo

    2013-01-01

    The failure of a redundant structural system is often described by innumerable system failure modes such as combinations or sequences of local failures. An efficient approach is proposed to identify dominant failure modes in the space of random variables, and then perform system reliability analysis to compute the system failure probability. To identify dominant failure modes in the decreasing order of their contributions to the system failure probability, a new simulation-based selective searching technique is developed using a genetic algorithm. The system failure probability is computed by a multi-scale matrix-based system reliability (MSR) method. Lower-scale MSR analyses evaluate the probabilities of the identified failure modes and their statistical dependence. A higher-scale MSR analysis evaluates the system failure probability based on the results of the lower-scale analyses. Three illustrative examples demonstrate the efficiency and accuracy of the approach through comparison with existing methods and Monte Carlo simulations. The results show that the proposed method skillfully identifies the dominant failure modes, including those neglected by existing approaches. The multi-scale MSR method accurately evaluates the system failure probability with statistical dependence fully considered. The decoupling between the failure mode identification and the system reliability evaluation allows for effective applications to larger structural systems

  4. Advanced Post-Irradiation Examination Capabilities Alternatives Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    Jeff Bryan; Bill Landman; Porter Hill

    2012-12-01

    An alternatives analysis was performed for the Advanced Post-Irradiation Capabilities (APIEC) project in accordance with the U.S. Department of Energy (DOE) Order DOE O 413.3B, “Program and Project Management for the Acquisition of Capital Assets”. The Alternatives Analysis considered six major alternatives: ? No Action ? Modify Existing DOE Facilities – capabilities distributed among multiple locations ? Modify Existing DOE Facilities – capabilities consolidated at a few locations ? Construct New Facility ? Commercial Partnership ? International Partnerships Based on the alternatives analysis documented herein, it is recommended to DOE that the advanced post-irradiation examination capabilities be provided by a new facility constructed at the Materials and Fuels Complex at the Idaho National Laboratory.

  5. FEAT - FAILURE ENVIRONMENT ANALYSIS TOOL (UNIX VERSION)

    Science.gov (United States)

    Pack, G.

    1994-01-01

    The Failure Environment Analysis Tool, FEAT, enables people to see and better understand the effects of failures in a system. FEAT uses digraph models to determine what will happen to a system if a set of failure events occurs and to identify the possible causes of a selected set of failures. Failures can be user-selected from either engineering schematic or digraph model graphics, and the effects or potential causes of the failures will be color highlighted on the same schematic or model graphic. As a design tool, FEAT helps design reviewers understand exactly what redundancies have been built into a system and where weaknesses need to be protected or designed out. A properly developed digraph will reflect how a system functionally degrades as failures accumulate. FEAT is also useful in operations, where it can help identify causes of failures after they occur. Finally, FEAT is valuable both in conceptual development and as a training aid, since digraphs can identify weaknesses in scenarios as well as hardware. Digraphs models for use with FEAT are generally built with the Digraph Editor, a Macintosh-based application which is distributed with FEAT. The Digraph Editor was developed specifically with the needs of FEAT users in mind and offers several time-saving features. It includes an icon toolbox of components required in a digraph model and a menu of functions for manipulating these components. It also offers FEAT users a convenient way to attach a formatted textual description to each digraph node. FEAT needs these node descriptions in order to recognize nodes and propagate failures within the digraph. FEAT users store their node descriptions in modelling tables using any word processing or spreadsheet package capable of saving data to an ASCII text file. From within the Digraph Editor they can then interactively attach a properly formatted textual description to each node in a digraph. Once descriptions are attached to them, a selected set of nodes can be

  6. The study of Influencing Maintenance Factors on Failures of Two gypsum Kilns by Failure Modes and Effects Analysis (FMEA

    Directory of Open Access Journals (Sweden)

    Iraj Alimohammadi

    2014-06-01

    Full Text Available Developing technology and using equipment in Iranian industries caused that maintenance system would be more important to use. Using proper management techniques not only increase the performance of production system but also reduce the failures and costs. The aim of this study was to determine the quality of maintenance system and the effects of its components on failures of kilns in two gypsum production companies using Failure Modes and Effects Analysis (FMEA. Furthermore the costs of failures were studied. After the study of gypsum production steps in the factories, FMEA was conducted by the determination of analysis insight, information gathering, making list of kilns’ component and filling up the FMEA’s tables. The effects of failures on production, how to fail, failure rate, failure severity, and control measures were studied. The evaluation of maintenance system was studied by a check list including questions related to system components. The costs of failures were determined by refer in accounting notebooks and interview with the head of accounting department. It was found the total qualities of maintenance system in NO.1 was more than NO.2 but because of lower quality of NO.1’s kiln design, number of failures and their costs were more. In addition it was determined that repair costs in NO.2’s kiln were about one third of NO.1’s. The low severity failures caused the most costs in comparison to the moderate and low ones. The technical characteristics of kilns were appeared to be the most important factors in reducing of failures and costs.

  7. Failure criterion of concrete type material and punching failure analysis of thick mortar plate

    International Nuclear Information System (INIS)

    Ohno, T.; Kuroiwa, M.; Irobe, M.

    1979-01-01

    In this paper falure surface of concrete type material is proposed and its validity to structural analysis is examined. The study is an introductory part of evaluation for ultimate strength of reinforced and prestressed concrete structures in reactor technology. The failure surface is expressed in a linear form in terms of octahedral normal and shear stresses. Coefficient of the latter stress is given by a trigonometric series in threefold angle of similarity. Hence, its meridians are multilinear and traces of its deviatoric sections are smooth curves having periodicity of 2π/3 around space diagonal in principal stress space. The mathematical expression of the surface has an arbitraty number of parameters so that material test results are well reflected. To confirm the effectiveness of proposed failure criterion, experiment and numerical analysis by the finite element method on punching failure of thick mortar plate in axial symmetry are compared. In the numerical procedure yield surface of the material is assumed to exist mainly in compression region, since a brittle cleavage or elastic fracture occurs in the concrete type material under stress state with tension, while a ductile or plastic fracture occurs under compressive stress state. (orig.)

  8. Common Cause Failure Analysis for the Digital Plant Protection System

    International Nuclear Information System (INIS)

    Kagn, Hyun Gook; Jang, Seung Cheol

    2005-01-01

    Safety-critical systems such as nuclear power plants adopt the multiple-redundancy design in order to reduce the risk from the single component failure. The digitalized safety-signal generation system is also designed based on the multiple-redundancy strategy which consists of more redundant components. The level of the redundant design of digital systems is usually higher than those of conventional mechanical systems. This higher redundancy would clearly reduce the risk from the single failure of components, but raise the importance of the common cause failure (CCF) analysis. This research aims to develop the practical and realistic method for modeling the CCF in digital safety-critical systems. We propose a simple and practical framework for assessing the CCF probability of digital equipment. Higher level of redundancy causes the difficulty of CCF analysis because it results in impractically large number of CCF events in the fault tree model when we use conventional CCF modeling methods. We apply the simplified alpha-factor (SAF) method to the digital system CCF analysis. The precedent study has shown that SAF method is quite realistic but simple when we consider carefully system success criteria. The first step for using the SAF method is the analysis of target system for determining the function failure cases. That is, the success criteria of the system could be derived from the target system's function and configuration. Based on this analysis, we can calculate the probability of single CCF event which represents the CCF events resulting in the system failure. In addition to the application of SAF method, in order to accommodate the other characteristics of digital technology, we develop a simple concept and several equations for practical use

  9. Signal analysis for failure detection

    International Nuclear Information System (INIS)

    Parpaglione, M.C.; Perez, L.V.; Rubio, D.A.; Czibener, D.; D'Attellis, C.E.; Brudny, P.I.; Ruzzante, J.E.

    1994-01-01

    Several methods for analysis of acoustic emission signals are presented. They are mainly oriented to detection of changes in noisy signals and characterization of higher amplitude discrete pulses or bursts. The aim was to relate changes and events with failure, crack or wear in materials, being the final goal to obtain automatic means of detecting such changes and/or events. Performance evaluation was made using both simulated and laboratory test signals. The methods being presented are the following: 1. Application of the Hopfield Neural Network (NN) model for classifying faults in pipes and detecting wear of a bearing. 2. Application of the Kohonnen and Back Propagation Neural Network model for the same problem. 3. Application of Kalman filtering to determine time occurrence of bursts. 4. Application of a bank of Kalman filters (KF) for failure detection in pipes. 5. Study of amplitude distribution of signals for detecting changes in their shape. 6. Application of the entropy distance to measure differences between signals. (author). 10 refs, 11 figs

  10. NDT in failure analysis - some case studies [Paper IIIA-g

    International Nuclear Information System (INIS)

    Raj, Baldev; Bhattacharya, D.K.; Lopez, E.C.; Jayakumar, T.

    1986-01-01

    The effective uses of several non-destructive techniques in failure analysis are discussed. The techniques considered are: dye penetrant testing, radiography, ultrasonic testing, hardness measurement and in-situ metallography. A few failure cases are discussed to highlight the usefulness of the techniques. (author)

  11. [Hazard function and life table: an introduction to the failure time analysis].

    Science.gov (United States)

    Matsushita, K; Inaba, H

    1987-04-01

    Failure time analysis has become popular in demographic studies. It can be viewed as a part of regression analysis with limited dependent variables as well as a special case of event history analysis and multistate demography. The idea of hazard function and failure time analysis, however, has not been properly introduced to nor commonly discussed by demographers in Japan. The concept of hazard function in comparison with life tables is briefly described, where the force of mortality is interchangeable with the hazard rate. The basic idea of failure time analysis is summarized for the cases of exponential distribution, normal distribution, and proportional hazard models. The multiple decrement life table is also introduced as an example of lifetime data analysis with cause-specific hazard rates.

  12. A Big Data Analysis Approach for Rail Failure Risk Assessment.

    Science.gov (United States)

    Jamshidi, Ali; Faghih-Roohi, Shahrzad; Hajizadeh, Siamak; Núñez, Alfredo; Babuska, Robert; Dollevoet, Rolf; Li, Zili; De Schutter, Bart

    2017-08-01

    Railway infrastructure monitoring is a vital task to ensure rail transportation safety. A rail failure could result in not only a considerable impact on train delays and maintenance costs, but also on safety of passengers. In this article, the aim is to assess the risk of a rail failure by analyzing a type of rail surface defect called squats that are detected automatically among the huge number of records from video cameras. We propose an image processing approach for automatic detection of squats, especially severe types that are prone to rail breaks. We measure the visual length of the squats and use them to model the failure risk. For the assessment of the rail failure risk, we estimate the probability of rail failure based on the growth of squats. Moreover, we perform severity and crack growth analyses to consider the impact of rail traffic loads on defects in three different growth scenarios. The failure risk estimations are provided for several samples of squats with different crack growth lengths on a busy rail track of the Dutch railway network. The results illustrate the practicality and efficiency of the proposed approach. © 2017 The Authors Risk Analysis published by Wiley Periodicals, Inc. on behalf of Society for Risk Analysis.

  13. Failure analysis of PB-1 (EBTS Be/Cu mockup)

    International Nuclear Information System (INIS)

    Odegard, B.C. Jr.; Cadden, C.H.

    1996-11-01

    Failure analysis was done on PB-1 (series of Be tiles joined to Cu alloy) following a tile failure during a high heat flux experiment in EBTS (electron beam test system). This heat flux load simulated ambient conditions inside ITER; the Be tiles were bonded to the Cu alloy using low-temperature diffusion bonding, which is being considered for fabricating plasma facing components in ITER. Results showed differences between the EBTS failure and a failure during a room temperature tensile test. The latter occurred at the Cu-Be interface in an intermetallic phase formed by reaction of the two metals at the bonding temperature. Fracture strengths measured by these tests were over 300 MPa. The high heat flux specimens failed at the Cu-Cu diffusion bond. Fracture morphology in both cases was a mixed mode of dimple rupture and transgranular cleavage. Several explanations for this difference in failure mechanism are suggested

  14. Sequentially linear analysis for simulating brittle failure

    NARCIS (Netherlands)

    van de Graaf, A.V.

    2017-01-01

    The numerical simulation of brittle failure at structural level with nonlinear finite
    element analysis (NLFEA) remains a challenge due to robustness issues. We attribute these problems to the dimensions of real-world structures combined with softening behavior and negative tangent stiffness at

  15. Lower head failure analysis

    International Nuclear Information System (INIS)

    Rempe, J.L.; Thinnes, G.L.; Allison, C.M.; Cronenberg, A.W.

    1991-01-01

    The US Nuclear Regulatory Commission is sponsoring a lower vessel head research program to investigate plausible modes of reactor vessel failure in order to determine (a) which modes have the greatest likelihood of occurrence during a severe accident and (b) the range of core debris and accident conditions that lead to these failures. This paper presents the methodology and preliminary results of an investigation of reactor designs and thermodynamic conditions using analytic closed-form approximations to assess the important governing parameters in non-dimensional form. Preliminary results illustrate the importance of vessel and tube geometrical parameters, material properties, and external boundary conditions on predicting vessel failure. Thermal analyses indicate that steady-state temperature distributions will occur in the vessel within several hours, although the exact time is dependent upon vessel thickness. In-vessel tube failure is governed by the tube-to-debris mass ratio within the lower head, where most penetrations are predicted to fail if surrounded by molten debris. Melt penetration distance is dependent upon the effective flow diameter of the tube. Molten debris is predicted to penetrate through tubes with a larger effective flow diameter, such as a boiling water reactor (BWR) drain nozzle. Ex-vessel tube failure for depressurized reactor vessels is predicted to be more likely for a BWR drain nozzle penetration because of its larger effective diameter. At high pressures (between ∼0.1 MPa and ∼12 MPa) ex-vessel tube rupture becomes a dominant failure mechanism, although tube ejection dominates control rod guide tube failure at lower temperatures. However, tube ejection and tube rupture predictions are sensitive to the vessel and tube radial gap size and material coefficients of thermal expansion

  16. Failure analysis of buried tanks

    International Nuclear Information System (INIS)

    Watkins, R.K.

    1994-01-01

    Failure of a buried tank can be hazardous. Failure may be a leak through which product is lost from the tank; but also through which contamination can occur. Failures are epidemic -- because buried tanks are out of sight, but also because designers of buried tanks have adopted analyses developed for pressure tanks. So why do pressure tanks fail when they are buried? Most failures of buried tanks are really soil failures. Soil compresses, or slips, or liquefies. Soil is not only a load, it is a support without which the tank deforms. A high water table adds to the load on the tank. It also reduces the strength of the soil. Based on tests, structural analyses are proposed for empty tanks buried in soils of various quality, with the water table at various levels, and with internal vacuum. Failure may be collapse tank. Such collapse is a sudden, audible inversion of the cylinder when the sidefill soil slips. Failure may be flotation. Failure may be a leak. Most leaks are fractures in the welds in overlap seams at flat spots. Flat spots are caused by a hard bedding or a heavy surface wheel load. Because the tank wall is double thick at the overlap, shearing stress in the weld is increased. Other weld failures occur when an end plate shears down past a cylinder; or when the tank is supported only at its ends like a beam. These, and other, failures can be analyzed with justifiable accuracy using basic principles of mechanics of materials. 10 figs

  17. Reliability test and failure analysis of high power LED packages

    International Nuclear Information System (INIS)

    Chen Zhaohui; Zhang Qin; Wang Kai; Luo Xiaobing; Liu Sheng

    2011-01-01

    A new type application specific light emitting diode (LED) package (ASLP) with freeform polycarbonate lens for street lighting is developed, whose manufacturing processes are compatible with a typical LED packaging process. The reliability test methods and failure criterions from different vendors are reviewed and compared. It is found that test methods and failure criterions are quite different. The rapid reliability assessment standards are urgently needed for the LED industry. 85 0 C/85 RH with 700 mA is used to test our LED modules with three other vendors for 1000 h, showing no visible degradation in optical performance for our modules, with two other vendors showing significant degradation. Some failure analysis methods such as C-SAM, Nano X-ray CT and optical microscope are used for LED packages. Some failure mechanisms such as delaminations and cracks are detected in the LED packages after the accelerated reliability testing. The finite element simulation method is helpful for the failure analysis and design of the reliability of the LED packaging. One example is used to show one currently used module in industry is vulnerable and may not easily pass the harsh thermal cycle testing. (semiconductor devices)

  18. Alternative jet fuel scenario analysis report

    Science.gov (United States)

    2012-11-30

    This analysis presents a bottom up projection of the potential production of alternative aviation (jet) fuels in North America (United States, Canada, and Mexico) and the European Union in the next decade. The analysis is based on available pla...

  19. Statistical analysis of nuclear power plant pump failure rate variability: some preliminary results

    International Nuclear Information System (INIS)

    Martz, H.F.; Whiteman, D.E.

    1984-02-01

    In-Plant Reliability Data System (IPRDS) pump failure data on over 60 selected pumps in four nuclear power plants are statistically analyzed using the Failure Rate Analysis Code (FRAC). A major purpose of the analysis is to determine which environmental, system, and operating factors adequately explain the variability in the failure data. Catastrophic, degraded, and incipient failure severity categories are considered for both demand-related and time-dependent failures. For catastrophic demand-related pump failures, the variability is explained by the following factors listed in their order of importance: system application, pump driver, operating mode, reactor type, pump type, and unidentified plant-specific influences. Quantitative failure rate adjustments are provided for the effects of these factors. In the case of catastrophic time-dependent pump failures, the failure rate variability is explained by three factors: reactor type, pump driver, and unidentified plant-specific influences. Finally, point and confidence interval failure rate estimates are provided for each selected pump by considering the influential factors. Both types of estimates represent an improvement over the estimates computed exclusively from the data on each pump

  20. PENERAPAN FUZZY ANALYTIC HIERARCHY PROCESS DALAM METODE MULTI ATTRIBUTE FAILURE MODE ANALYSIS UNTUK MENGIDENTIFIKASI PENYEBAB KEGAGALAN POTENSIAL PADA PROSES PRODUKSI

    Directory of Open Access Journals (Sweden)

    Dorina Hetharia

    2012-02-01

    and Effect Analysis (FMEA that integrates severity attribute, occurrence, and detect ability with expected cost as financial aspect.  In FMEA, determination of potential failure causal factor is done by giving weight to four attributes. Giving weight is using Analytic Hierarchy Process (AHP with fuzzy logic. Severity, occurrence, detect ability, and expected cost in MAFMA as criteria level in AHP hierarchy structure, whereas the failure causes as alternative level in that hierarchy structure. In case study at PT Pelita Cengkareng Paper & Co. shows that weight for severity criteria is 0.3461, occurrence is 0.0848, detect ability is 0.1741, and expected cost is 0.3950. The potential failure cause is chemical agglutination in weight 0.210. Keywords : AHP, fuzzy logic, MAFMA

  1. Dependency Analysis Guidance Nordic/German Working Group on Common Cause Failure analysis. Phase 2, Development of Harmonized Approach and Applications for Common Cause Failure Quantification

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Guenter; Johanson, Gunnar; Lindberg, Sandra; Vaurio, Jussi

    2009-03-15

    The Regulatory Code SSMFS 2008:1 of Swedish Radiation Safety Authority (SSM) includes requirements regarding the performance of probabilistic safety assessments (PSA), as well as PSA activities in general. Therefore, the follow-up of these activities is part of the inspection tasks of SSM. According to the SSMFS 2008:1, the safety analyses shall be based on a systematic identification and evaluation of such events, event sequences and other conditions which may lead to a radiological accident. The research report Nordic/German Working Group on Common cause Failure analysis. Phase 2 project report: Development of Harmonized Approach and Applications for Common Cause Failure Quantification has been developed under a contract with the Nordic PSA Group (NPSAG) and its German counterpart VGB, with the aim to create a common experience base for defence and analysis of dependent failures i.e. Common Cause Failures CCF. Phase 2 in this project if a deepened data analyses of CCF events and a demonstration on how the so called impact vectors can be constructed and on how CCF parameters are estimated. The word Guidance in the report title is used in order to indicate a common methodological guidance accepted by the NPSAG, based on current state of the art concerning the analysis of dependent failures and adapted to conditions relevant for Nordic sites. This will make it possible for the utilities to perform cost effective improvements and analyses. The report presents a common attempt by the authorities and the utilities to create a methodology and experience base for defence and analysis of dependent failures. The performed benchmark application has shown how important the interpretation of base data is to obtain robust CCF data and data analyses results. Good features were found in all benchmark approaches. The obtained experiences and approaches should now be used in harmonised procedures. A next step could be to develop and agree on event and formula driven impact vector

  2. Dependency Analysis Guidance Nordic/German Working Group on Common Cause Failure analysis. Phase 2, Development of Harmonized Approach and Applications for Common Cause Failure Quantification

    International Nuclear Information System (INIS)

    Becker, Guenter; Johanson, Gunnar; Lindberg, Sandra; Vaurio, Jussi

    2009-03-01

    The Regulatory Code SSMFS 2008:1 of Swedish Radiation Safety Authority (SSM) includes requirements regarding the performance of probabilistic safety assessments (PSA), as well as PSA activities in general. Therefore, the follow-up of these activities is part of the inspection tasks of SSM. According to the SSMFS 2008:1, the safety analyses shall be based on a systematic identification and evaluation of such events, event sequences and other conditions which may lead to a radiological accident. The research report Nordic/German Working Group on Common cause Failure analysis. Phase 2 project report: Development of Harmonized Approach and Applications for Common Cause Failure Quantification has been developed under a contract with the Nordic PSA Group (NPSAG) and its German counterpart VGB, with the aim to create a common experience base for defence and analysis of dependent failures i.e. Common Cause Failures CCF. Phase 2 in this project if a deepened data analyses of CCF events and a demonstration on how the so called impact vectors can be constructed and on how CCF parameters are estimated. The word Guidance in the report title is used in order to indicate a common methodological guidance accepted by the NPSAG, based on current state of the art concerning the analysis of dependent failures and adapted to conditions relevant for Nordic sites. This will make it possible for the utilities to perform cost effective improvements and analyses. The report presents a common attempt by the authorities and the utilities to create a methodology and experience base for defence and analysis of dependent failures. The performed benchmark application has shown how important the interpretation of base data is to obtain robust CCF data and data analyses results. Good features were found in all benchmark approaches. The obtained experiences and approaches should now be used in harmonised procedures. A next step could be to develop and agree on event and formula driven impact vector

  3. Failure analysis of the cement mantle in total hip arthroplasty with an efficient probabilistic method.

    Science.gov (United States)

    Kaymaz, Irfan; Bayrak, Ozgu; Karsan, Orhan; Celik, Ayhan; Alsaran, Akgun

    2014-04-01

    Accurate prediction of long-term behaviour of cemented hip implants is very important not only for patient comfort but also for elimination of any revision operation due to failure of implants. Therefore, a more realistic computer model was generated and then used for both deterministic and probabilistic analyses of the hip implant in this study. The deterministic failure analysis was carried out for the most common failure states of the cement mantle. On the other hand, most of the design parameters of the cemented hip are inherently uncertain quantities. Therefore, the probabilistic failure analysis was also carried out considering the fatigue failure of the cement mantle since it is the most critical failure state. However, the probabilistic analysis generally requires large amount of time; thus, a response surface method proposed in this study was used to reduce the computation time for the analysis of the cemented hip implant. The results demonstrate that using an efficient probabilistic approach can significantly reduce the computation time for the failure probability of the cement from several hours to minutes. The results also show that even the deterministic failure analyses do not indicate any failure of the cement mantle with high safety factors, the probabilistic analysis predicts the failure probability of the cement mantle as 8%, which must be considered during the evaluation of the success of the cemented hip implants.

  4. Tests and analysis on steam generator tube failure propagation

    International Nuclear Information System (INIS)

    Tanabe, Hiromi

    1990-01-01

    The understanding of leak enlargement and failure propagation behavior is essential to select a design basis leak (DBL) of LMFBR steam generators. Therefore, various series of experiments, such as self-enlargement tests, target wastage tests, failure propagation tests were conducted in a wide range of leak using test facilities of SWAT at PNC/OEC. Especially, in the large leak tests, potential of overheating failure was investigated under a prototypical steam cooling condition inside target tubes. In the small leak, the difference of wastage resistivity was clarified among several tube materials such as 9-chrome steels. In regard to an analytical approach, a computer code LEAP (Leak Enlargement and Propagation) was developed on the basis of all of these experimental results. The code was used to validate the previously selected DBL of the prototype reactor, Monju, steam generator. This approach proved to be successful in spite of somewhat over-conservatism in the analysis. Moreover, LEAP clarified the effectiveness of a rapid steam dump and an enhanced leak detection system. The code improvement toward a realistic analysis is desired, however, to lessen the DBL for a future large plant and then the re-evaluation of the experimental data such as the size of secondary failure is under way. (author). 4 refs, 8 figs, 1 tab

  5. Failure analysis of high strength pipeline with single and multiple corrosions

    International Nuclear Information System (INIS)

    Chen, Yanfei; Zhang, Hong; Zhang, Juan; Li, Xin; Zhou, Jing

    2015-01-01

    Highlights: • We study failure of high strength pipelines with single corrosion. • We give regression equations for failure pressure prediction. • We propose assessment procedure for pipelines with multiple corrosions. - Abstract: Corrosion will compromise safety operation of oil and gas pipelines, accurate determination of failure pressure finds importance in residual strength assessment and corrosion allowance design of onshore and offshore pipelines. This paper investigates failure pressure of high strength pipeline with single and multiple corrosions using nonlinear finite element analysis. On the basis of developed regression equations for failure pressure prediction of high strength pipeline with single corrosion, the paper proposes an assessment procedure for predicting failure pressure of high strength pipeline with multiple corrosions. Furthermore, failure pressures predicted by proposed solutions are compared with experimental results and various assessment methods available in literature, where accuracy and versatility are demonstrated

  6. Failure mode effects and criticality analysis: innovative risk assessment to identify critical areas for improvement in emergency department sepsis resuscitation.

    Science.gov (United States)

    Powell, Emilie S; O'Connor, Lanty M; Nannicelli, Anna P; Barker, Lisa T; Khare, Rahul K; Seivert, Nicholas P; Holl, Jane L; Vozenilek, John A

    2014-06-01

    Sepsis is an increasing problem in the practice of emergency medicine as the prevalence is increasing and optimal care to reduce mortality requires significant resources and time. Evidence-based septic shock resuscitation strategies exist, and rely on appropriate recognition and diagnosis, but variation in adherence to the recommendations and therefore outcomes remains. Our objective was to perform a multi-institutional prospective risk-assessment, using failure mode effects and criticality analysis (FMECA), to identify high-risk failures in ED sepsis resuscitation. We conducted a FMECA, which prospectively identifies critical areas for improvement in systems and processes of care, across three diverse hospitals. A multidisciplinary group of participants described the process of emergency department (ED) sepsis resuscitation to then create a comprehensive map and table listing all process steps and identified process failures. High-risk failures in sepsis resuscitation from each of the institutions were compiled to identify common high-risk failures. Common high-risk failures included limited availability of equipment to place the central venous catheter and conduct invasive monitoring, and cognitive overload leading to errors in decision-making. Additionally, we identified great variability in care processes across institutions. Several common high-risk failures in sepsis care exist: a disparity in resources available across hospitals, a lack of adherence to the invasive components of care, and cognitive barriers that affect expert clinicians' decision-making capabilities. Future work may concentrate on dissemination of non-invasive alternatives and overcoming cognitive barriers in diagnosis and knowledge translation.

  7. Failure analysis on a chemical waste pipe

    International Nuclear Information System (INIS)

    Ambler, J.R.

    1985-01-01

    A failure analysis of a chemical waste pipe illustrates how nuclear technology can spin off metallurgical consultant services. The pipe, made of zirconium alloy (Zr-2.5 wt percent Nb, UNS 60705), had cracked in several places, all at butt welds. A combination of fractography and metallography indicated delayed hydride cracking

  8. PACC information management code for common cause failures analysis

    International Nuclear Information System (INIS)

    Ortega Prieto, P.; Garcia Gay, J.; Mira McWilliams, J.

    1987-01-01

    The purpose of this paper is to present the PACC code, which, through an adequate data management, makes the task of computerized common-mode failure analysis easier. PACC processes and generates information in order to carry out the corresponding qualitative analysis, by means of the boolean technique of transformation of variables, and the quantitative analysis either using one of several parametric methods or a direct data-base. As far as the qualitative analysis is concerned, the code creates several functional forms for the transformation equations according to the user's choice. These equations are subsequently processed by boolean manipulation codes, such as SETS. The quantitative calculations of the code can be carried out in two different ways: either starting from a common cause data-base, or through parametric methods, such as the Binomial Failure Rate Method, the Basic Parameters Method or the Multiple Greek Letter Method, among others. (orig.)

  9. Failure mode and effects analysis and fault tree analysis of surface image guided cranial radiosurgery.

    Science.gov (United States)

    Manger, Ryan P; Paxton, Adam B; Pawlicki, Todd; Kim, Gwe-Ya

    2015-05-01

    Surface image guided, Linac-based radiosurgery (SIG-RS) is a modern approach for delivering radiosurgery that utilizes optical stereoscopic imaging to monitor the surface of the patient during treatment in lieu of using a head frame for patient immobilization. Considering the novelty of the SIG-RS approach and the severity of errors associated with delivery of large doses per fraction, a risk assessment should be conducted to identify potential hazards, determine their causes, and formulate mitigation strategies. The purpose of this work is to investigate SIG-RS using the combined application of failure modes and effects analysis (FMEA) and fault tree analysis (FTA), report on the effort required to complete the analysis, and evaluate the use of FTA in conjunction with FMEA. A multidisciplinary team was assembled to conduct the FMEA on the SIG-RS process. A process map detailing the steps of the SIG-RS was created to guide the FMEA. Failure modes were determined for each step in the SIG-RS process, and risk priority numbers (RPNs) were estimated for each failure mode to facilitate risk stratification. The failure modes were ranked by RPN, and FTA was used to determine the root factors contributing to the riskiest failure modes. Using the FTA, mitigation strategies were formulated to address the root factors and reduce the risk of the process. The RPNs were re-estimated based on the mitigation strategies to determine the margin of risk reduction. The FMEA and FTAs for the top two failure modes required an effort of 36 person-hours (30 person-hours for the FMEA and 6 person-hours for two FTAs). The SIG-RS process consisted of 13 major subprocesses and 91 steps, which amounted to 167 failure modes. Of the 91 steps, 16 were directly related to surface imaging. Twenty-five failure modes resulted in a RPN of 100 or greater. Only one of these top 25 failure modes was specific to surface imaging. The riskiest surface imaging failure mode had an overall RPN-rank of eighth

  10. Importance of competing risks in the analysis of anti-epileptic drug failure

    Directory of Open Access Journals (Sweden)

    Sander Josemir W

    2007-03-01

    Full Text Available Abstract Background Retention time (time to treatment failure is a commonly used outcome in antiepileptic drug (AED studies. Methods Two datasets are used to demonstrate the issues in a competing risks analysis of AEDs. First, data collection and follow-up considerations are discussed with reference to information from 15 monotherapy trials. Recommendations for improved data collection and cumulative incidence analysis are then illustrated using the SANAD trial dataset. The results are compared to the more common approach using standard survival analysis methods. Results A non-significant difference in overall treatment failure time between gabapentin and topiramate (logrank test statistic = 0.01, 1 degree of freedom, p-value = 0.91 masked highly significant differences in opposite directions with gabapentin resulting in fewer withdrawals due to side effects (Gray's test statistic = 11.60, 1 degree of freedom, p = 0.0007 but more due to poor seizure control (Gray's test statistic = 14.47, 1 degree of freedom, p-value = 0.0001. The significant difference in overall treatment failure time between lamotrigine and carbamazepine (logrank test statistic = 5.6, 1 degree of freedom, p-value = 0.018 was due entirely to a significant benefit of lamotrigine in terms of side effects (Gray's test statistic = 10.27, 1 degree of freedom, p = 0.001. Conclusion Treatment failure time can be measured reliably but care is needed to collect sufficient information on reasons for drug withdrawal to allow a competing risks analysis. Important differences between the profiles of AEDs may be missed unless appropriate statistical methods are used to fully investigate treatment failure time. Cumulative incidence analysis allows comparison of the probability of failure between two AEDs and is likely to be a more powerful approach than logrank analysis for most comparisons of standard and new anti-epileptic drugs.

  11. Clinical risk analysis with failure mode and effect analysis (FMEA) model in a dialysis unit.

    Science.gov (United States)

    Bonfant, Giovanna; Belfanti, Pietro; Paternoster, Giuseppe; Gabrielli, Danila; Gaiter, Alberto M; Manes, Massimo; Molino, Andrea; Pellu, Valentina; Ponzetti, Clemente; Farina, Massimo; Nebiolo, Pier E

    2010-01-01

    The aim of clinical risk management is to improve the quality of care provided by health care organizations and to assure patients' safety. Failure mode and effect analysis (FMEA) is a tool employed for clinical risk reduction. We applied FMEA to chronic hemodialysis outpatients. FMEA steps: (i) process study: we recorded phases and activities. (ii) Hazard analysis: we listed activity-related failure modes and their effects; described control measures; assigned severity, occurrence and detection scores for each failure mode and calculated the risk priority numbers (RPNs) by multiplying the 3 scores. Total RPN is calculated by adding single failure mode RPN. (iii) Planning: we performed a RPNs prioritization on a priority matrix taking into account the 3 scores, and we analyzed failure modes causes, made recommendations and planned new control measures. (iv) Monitoring: after failure mode elimination or reduction, we compared the resulting RPN with the previous one. Our failure modes with the highest RPN came from communication and organization problems. Two tools have been created to ameliorate information flow: "dialysis agenda" software and nursing datasheets. We scheduled nephrological examinations, and we changed both medical and nursing organization. Total RPN value decreased from 892 to 815 (8.6%) after reorganization. Employing FMEA, we worked on a few critical activities, and we reduced patients' clinical risk. A priority matrix also takes into account the weight of the control measures: we believe this evaluation is quick, because of simple priority selection, and that it decreases action times.

  12. Alternate design of ITER cryostat skirt support system

    International Nuclear Information System (INIS)

    Pandey, Manish Kumar; Gupta, Girish Kumar; Bhardwaj, Anil Kumar; Jha, Saroj Kumar

    2015-01-01

    The skirt support of ITER cryostat is a support system which takes all the load of cryostat cylinder and dome during normal and operational condition. The present design of skirt support has full penetration weld joints at the bottom (shell to horizontal plate joint). To fulfill the requirements of tolerances and control the welding distortions, we have proposed to change the full penetration weld into fillet weld. A detail calculation is done to check the feasibility and structural impact due to proposed design. The calculations provide the size requirements of fillet weld. To verify the structural integrity during most severe load case, finite element analysis (FEA) has been done in line with ASME section VIII division 2. By FEA 'Plastic Collapse' and 'Local Failure' modes has been assessed. 5° sector of skirt clamp has been modeled in CATIA V5 R21 and used in FEA. Fillet weld at shell to horizontal plate joint has been modeled and symmetry boundary condition at ± 2.5° applied. 'Elastic Plastic Analysis' has been performed for the most severe loading case i.e. Category IV loading. The alternate design of Cryostat Skirt support system has been found safe by analysis against Plastic collapse and Local Failure Modes with load proportionality factor 2.3. Alternate design of Cryostat skirt support system has been done and validated by FEA. As per alternate design, the proposal of fillet weld has been implemented in manufacturing. (author)

  13. Application of failure mode and effect analysis in a radiology department.

    Science.gov (United States)

    Thornton, Eavan; Brook, Olga R; Mendiratta-Lala, Mishal; Hallett, Donna T; Kruskal, Jonathan B

    2011-01-01

    With increasing deployment, complexity, and sophistication of equipment and related processes within the clinical imaging environment, system failures are more likely to occur. These failures may have varying effects on the patient, ranging from no harm to devastating harm. Failure mode and effect analysis (FMEA) is a tool that permits the proactive identification of possible failures in complex processes and provides a basis for continuous improvement. This overview of the basic principles and methodology of FMEA provides an explanation of how FMEA can be applied to clinical operations in a radiology department to reduce, predict, or prevent errors. The six sequential steps in the FMEA process are explained, and clinical magnetic resonance imaging services are used as an example for which FMEA is particularly applicable. A modified version of traditional FMEA called Healthcare Failure Mode and Effect Analysis, which was introduced by the U.S. Department of Veterans Affairs National Center for Patient Safety, is briefly reviewed. In conclusion, FMEA is an effective and reliable method to proactively examine complex processes in the radiology department. FMEA can be used to highlight the high-risk subprocesses and allows these to be targeted to minimize the future occurrence of failures, thus improving patient safety and streamlining the efficiency of the radiology department. RSNA, 2010

  14. Exact combinatorial reliability analysis of dynamic systems with sequence-dependent failures

    International Nuclear Information System (INIS)

    Xing Liudong; Shrestha, Akhilesh; Dai Yuanshun

    2011-01-01

    Many real-life fault-tolerant systems are subjected to sequence-dependent failure behavior, in which the order in which the fault events occur is important to the system reliability. Such systems can be modeled by dynamic fault trees (DFT) with priority-AND (pAND) gates. Existing approaches for the reliability analysis of systems subjected to sequence-dependent failures are typically state-space-based, simulation-based or inclusion-exclusion-based methods. Those methods either suffer from the state-space explosion problem or require long computation time especially when results with high degree of accuracy are desired. In this paper, an analytical method based on sequential binary decision diagrams is proposed. The proposed approach can analyze the exact reliability of non-repairable dynamic systems subjected to the sequence-dependent failure behavior. Also, the proposed approach is combinatorial and is applicable for analyzing systems with any arbitrary component time-to-failure distributions. The application and advantages of the proposed approach are illustrated through analysis of several examples. - Highlights: → We analyze the sequence-dependent failure behavior using combinatorial models. → The method has no limitation on the type of time-to-failure distributions. → The method is analytical and based on sequential binary decision diagrams (SBDD). → The method is computationally more efficient than existing methods.

  15. Comparative analysis of traditional and alternative energy sources

    Directory of Open Access Journals (Sweden)

    Adriana Csikósová

    2008-11-01

    Full Text Available The presented thesis with designation of Comparing analysis of traditional and alternative energy resources includes, on basisof theoretical information source, research in firm, internal data, trends in company development and market, descriptionof the problem and its application. Theoretical information source is dedicated to the traditional and alternative energy resources,reserves of it, trends in using and development, the balance of it in the world, EU and in Slovakia as well. Analysis of the thesisis reflecting profile of the company and the thermal pump market evaluation using General Electric method. While the companyis implementing, except other products, the thermal pumps on geothermal energy base and surround energy base (air, the missionof the comparing analysis is to compare traditional energy resources with thermal pump from the ecological, utility and economic sideof it. The results of the comparing analysis are resumed in to the SWOT analysis. The part of the thesis includes he questionnaire offerfor effectiveness improvement and customer satisfaction analysis, and expected possibilities of alternative energy resources assistance(benefits from the government and EU funds.

  16. Pressure Load Analysis during Severe Accidents for the Evaluation of Late Containment Failure in OPR-1000

    Energy Technology Data Exchange (ETDEWEB)

    Park, S. Y.; Ahn, K. I. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The MAAP code is a system level computer code capable of performing integral analyses of potential severe accident progressions in nuclear power plants, whose main purpose is to support a level 2 probabilistic safety assessment or severe accident management strategy developments. The code employs lots of user-options for supporting a sensitivity and uncertainty analysis. The present application is mainly focused on determining an estimate of the containment building pressure load caused by severe accident sequences. Key modeling parameters and phenomenological models employed for the present uncertainty analysis are closely related to in-vessel hydrogen generation, gas combustion in the containment, corium distribution in the containment after a reactor vessel failure, corium coolability in the reactor cavity, and molten-corium interaction with concrete. The phenomenology of severe accidents is extremely complex. In this paper, a sampling-based phenomenological uncertainty analysis was performed to statistically quantify uncertainties associated with the pressure load of a containment building for a late containment failure evaluation, based on the key modeling parameters employed in the MAAP code and random samples for those parameters. Phenomenological issues surrounding the late containment failure mode are highly complex. Included are the pressurization owing to steam generation in the cavity, molten corium-concrete interaction, late hydrogen burn in the containment, and the secondary heat removal availability. The methodology and calculation results can be applied for the optimum assessment of a late containment failure model. The accident sequences considered were a loss of coolant accidents and loss of offsite accidents expected in the OPR-1000 plant. As a result, uncertainties addressed in the pressure load of the containment building were quantified as a function of time. A realistic evaluation of the mean and variance estimates provides a more complete

  17. Efficient surrogate models for reliability analysis of systems with multiple failure modes

    International Nuclear Information System (INIS)

    Bichon, Barron J.; McFarland, John M.; Mahadevan, Sankaran

    2011-01-01

    Despite many advances in the field of computational reliability analysis, the efficient estimation of the reliability of a system with multiple failure modes remains a persistent challenge. Various sampling and analytical methods are available, but they typically require accepting a tradeoff between accuracy and computational efficiency. In this work, a surrogate-based approach is presented that simultaneously addresses the issues of accuracy, efficiency, and unimportant failure modes. The method is based on the creation of Gaussian process surrogate models that are required to be locally accurate only in the regions of the component limit states that contribute to system failure. This approach to constructing surrogate models is demonstrated to be both an efficient and accurate method for system-level reliability analysis. - Highlights: → Extends efficient global reliability analysis to systems with multiple failure modes. → Constructs locally accurate Gaussian process models of each response. → Highly efficient and accurate method for assessing system reliability. → Effectiveness is demonstrated on several test problems from the literature.

  18. Development of component failure data for seismic risk analysis

    International Nuclear Information System (INIS)

    Fray, R.R.; Moulia, T.A.

    1981-01-01

    This paper describes the quantification and utilization of seismic failure data used in the Diablo Canyon Seismic Risk Study. A single variable representation of earthquake severity that uses peak horizontal ground acceleration to characterize earthquake severity was employed. The use of a multiple variable representation would allow direct consideration of vertical accelerations and the spectral nature of earthquakes but would have added such complexity that the study would not have been feasible. Vertical accelerations and spectral nature were indirectly considered because component failure data were derived from design analyses, qualification tests and engineering judgment that did include such considerations. Two types of functions were used to describe component failure probabilities. Ramp functions were used for components, such as piping and structures, qualified by stress analysis. 'Anchor points' for ramp functions were selected by assuming a zero probability of failure at code allowable stress levels and unity probability of failure at ultimate stress levels. The accelerations corresponding to allowable and ultimate stress levels were determined by conservatively assuming a linear relationship between seismic stress and ground acceleration. Step functions were used for components, such as mechanical and electrical equipment, qualified by testing. Anchor points for step functions were selected by assuming a unity probability of failure above the qualification acceleration. (orig./HP)

  19. Timing analysis of PWR fuel pin failures

    International Nuclear Information System (INIS)

    Jones, K.R.; Wade, N.L.; Katsma, K.R.; Siefken, L.J.; Straka, M.

    1992-09-01

    Research has been conducted to develop and demonstrate a methodology for calculation of the time interval between receipt of the containment isolation signals and the first fuel pin failure for loss-of-coolant accidents (LOCAs). Demonstration calculations were performed for a Babcock and Wilcox (B ampersand W) design (Oconee) and a Westinghouse (W) four-loop design (Seabrook). Sensitivity studies were performed to assess the impacts of fuel pin bumup, axial peaking factor, break size, emergency core cooling system availability, and main coolant pump trip on these times. The analysis was performed using the following codes: FRAPCON-2, for the calculation of steady-state fuel behavior; SCDAP/RELAP5/MOD3 and TRACPF1/MOD1, for the calculation of the transient thermal-hydraulic conditions in the reactor system; and FRAP-T6, for the calculation of transient fuel behavior. In addition to the calculation of fuel pin failure timing, this analysis provides a comparison of the predicted results of SCDAP/RELAP5/MOD3 and TRAC-PFL/MOD1 for large-break LOCA analysis. Using SCDAP/RELAP5/MOD3 thermal-hydraulic data, the shortest time intervals calculated between initiation of containment isolation and fuel pin failure are 10.4 seconds and 19.1 seconds for the B ampersand W and W plants, respectively. Using data generated by TRAC-PF1/MOD1, the shortest intervals are 10.3 seconds and 29.1 seconds for the B ampersand W and W plants, respectively. These intervals are for a double-ended, offset-shear, cold leg break, using the technical specification maximum peaking factor and applied to fuel with maximum design bumup. Using peaking factors commensurate widi actual bumups would result in longer intervals for both reactor designs. This document also contains appendices A through J of this report

  20. Failure Mode and Effect Analysis for Wind Turbine Systems in China

    DEFF Research Database (Denmark)

    Zhu, Jiangsheng; Ma, Kuichao; N. Soltani, Mohsen

    2017-01-01

    This paper discusses a cost based Failure Mode and Effect Analysis (FMEA) approch for the Wind Turbine (WT) with condition monitoring system in China. Normally, the traditional FMEA uses the Risk Priority Number (RPN) to rank failure modes. But the RPN can be changed with the Condition Monitoring...... Systems (CMS) due to change of the score of detection. The cost of failure mode should also be considered because faults can be detected at an incipient level, and condition-based maintenance can be scheduled. The results show that the proposed failure mode priorities considering their cost consequences...

  1. Two-Sample Statistics for Testing the Equality of Survival Functions Against Improper Semi-parametric Accelerated Failure Time Alternatives: An Application to the Analysis of a Breast Cancer Clinical Trial

    Science.gov (United States)

    BROËT, PHILIPPE; TSODIKOV, ALEXANDER; DE RYCKE, YANN; MOREAU, THIERRY

    2010-01-01

    This paper presents two-sample statistics suited for testing equality of survival functions against improper semi-parametric accelerated failure time alternatives. These tests are designed for comparing either the short- or the long-term effect of a prognostic factor, or both. These statistics are obtained as partial likelihood score statistics from a time-dependent Cox model. As a consequence, the proposed tests can be very easily implemented using widely available software. A breast cancer clinical trial is presented as an example to demonstrate the utility of the proposed tests. PMID:15293627

  2. Two-sample statistics for testing the equality of survival functions against improper semi-parametric accelerated failure time alternatives: an application to the analysis of a breast cancer clinical trial.

    Science.gov (United States)

    Broët, Philippe; Tsodikov, Alexander; De Rycke, Yann; Moreau, Thierry

    2004-06-01

    This paper presents two-sample statistics suited for testing equality of survival functions against improper semi-parametric accelerated failure time alternatives. These tests are designed for comparing either the short- or the long-term effect of a prognostic factor, or both. These statistics are obtained as partial likelihood score statistics from a time-dependent Cox model. As a consequence, the proposed tests can be very easily implemented using widely available software. A breast cancer clinical trial is presented as an example to demonstrate the utility of the proposed tests.

  3. Economic analysis of alternative LLW disposal methods

    International Nuclear Information System (INIS)

    Foutes, C.E.; Queenan, C.J. III

    1987-01-01

    The Environmental Protection Agency (EPA) has evaluated the costs and benefits of alternative disposal technologies as part of its program to develop generally applicable environmental standards for the land disposal of low-level radioactive waste (LLW). Costs, population health effects and Critical Population Group (CPG) exposures resulting from alternative waste treatment and disposal methods were evaluated both in absolute terms and also relative to a base case (current practice). Incremental costs of the standard included costs for packaging, processing, transportation, and burial of waste. Benefits are defined in terms of reductions in the general population health risk (expected fatal cancers and genetic effects) evaluated over 10,000 years. A cost-effectiveness ratio, defined as the incremental cost per avoided health effect, was calculated for each alternative standard. The cost-effectiveness analysis took into account a number of waste streams, hydrogeologic and climatic region settings, and waste treatment and disposal methods. This paper describes the alternatives considered and preliminary results of the cost-effectiveness analysis. 15 references, 7 figures, 3 tables

  4. Analysis and Application of Reliability

    International Nuclear Information System (INIS)

    Jeong, Hae Seong; Park, Dong Ho; Kim, Jae Ju

    1999-05-01

    This book tells of analysis and application of reliability, which includes definition, importance and historical background of reliability, function of reliability and failure rate, life distribution and assumption of reliability, reliability of unrepaired system, reliability of repairable system, sampling test of reliability, failure analysis like failure analysis by FEMA and FTA, and cases, accelerated life testing such as basic conception, acceleration and acceleration factor, and analysis of accelerated life testing data, maintenance policy about alternation and inspection.

  5. Optimal tread design for agricultural lug tires determined through failure analysis

    Directory of Open Access Journals (Sweden)

    Hyun Seok Song

    2018-04-01

    Full Text Available Agricultural lug tires, commonly used in tractors, must provide safe and stable support for the body of the vehicle and bear any additional load while effectively traversing rough, poor-quality ground surfaces. Many agricultural lug tires fail unexpectedly. In this study, we optimised and validated a tread design for agricultural lug tires intended to increase their durability using failure analysis. Specifically, we identified tire failure modes using indoor driving tests and failure mode effects analysis. Next, we developed a threedimensional tire model using the Ogden material model and finite element method. Using sensitivity analysis and response surface methodology, we optimised the tread design. Finally, we evaluated the durability of the new design using a tire prototype and drum test equipment. Results indicated that the optimised tread design decreased the tire tread stress by 16% and increased its time until cracking by 38% compared to conventional agricultural lug tires.

  6. Software failure events derivation and analysis by frame-based technique

    International Nuclear Information System (INIS)

    Huang, H.-W.; Shih, C.; Yih, Swu; Chen, M.-H.

    2007-01-01

    A frame-based technique, including physical frame, logical frame, and cognitive frame, was adopted to perform digital I and C failure events derivation and analysis for generic ABWR. The physical frame was structured with a modified PCTran-ABWR plant simulation code, which was extended and enhanced on the feedwater system, recirculation system, and steam line system. The logical model is structured with MATLAB, which was incorporated into PCTran-ABWR to improve the pressure control system, feedwater control system, recirculation control system, and automated power regulation control system. As a result, the software failure of these digital control systems can be properly simulated and analyzed. The cognitive frame was simulated by the operator awareness status in the scenarios. Moreover, via an internal characteristics tuning technique, the modified PCTran-ABWR can precisely reflect the characteristics of the power-core flow. Hence, in addition to the transient plots, the analysis results can then be demonstrated on the power-core flow map. A number of postulated I and C system software failure events were derived to achieve the dynamic analyses. The basis for event derivation includes the published classification for software anomalies, the digital I and C design data for ABWR, chapter 15 accident analysis of generic SAR, and the reported NPP I and C software failure events. The case study of this research includes: (1) the software CMF analysis for the major digital control systems; and (2) postulated ABWR digital I and C software failure events derivation from the actual happening of non-ABWR digital I and C software failure events, which were reported to LER of USNRC or IRS of IAEA. These events were analyzed by PCTran-ABWR. Conflicts among plant status, computer status, and human cognitive status are successfully identified. The operator might not easily recognize the abnormal condition, because the computer status seems to progress normally. However, a well

  7. Failure mode, effect and criticality analysis (FMECA) on mechanical subsystems of diesel generator at NPP

    International Nuclear Information System (INIS)

    Kim, Tae Woon; Singh, Brijendra; Sung, Tae Yong; Park, Jin Hee; Lee, Yoon Hwan

    1996-06-01

    Largely, the RCM approach can be divided in three phases; (1) Functional failure analysis (FFA) on the selected system or subsystem, (2) Failure mode, effect and criticality analysis (FMECA) to identify the impact of failure to plant safety or economics, (3) Logical tree analysis (LTA) to select appropriate preventive maintenance and surveillance tasks. This report presents FMECA results for six mechanical subsystems of the diesel generators of nuclear power plants. The six mechanical subsystems are Starting air, Lub oil, Governor, Jacket water cooling, Fuel, and Engine subsystems. Generic and plant-specific failure and maintenance records are reviewed to identify critical components/failure modes. FMECA was performed for these critical component/failure modes. After reviewing current preventive maintenance activities of Wolsung unit 1, draft RCM recommendations are developed. 6 tabs., 16 refs. (Author)

  8. Failure mode, effect and criticality analysis (FMECA) on mechanical subsystems of diesel generator at NPP

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Woon; Singh, Brijendra; Sung, Tae Yong; Park, Jin Hee; Lee, Yoon Hwan [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-06-01

    Largely, the RCM approach can be divided in three phases; (1) Functional failure analysis (FFA) on the selected system or subsystem, (2) Failure mode, effect and criticality analysis (FMECA) to identify the impact of failure to plant safety or economics, (3) Logical tree analysis (LTA) to select appropriate preventive maintenance and surveillance tasks. This report presents FMECA results for six mechanical subsystems of the diesel generators of nuclear power plants. The six mechanical subsystems are Starting air, Lub oil, Governor, Jacket water cooling, Fuel, and Engine subsystems. Generic and plant-specific failure and maintenance records are reviewed to identify critical components/failure modes. FMECA was performed for these critical component/failure modes. After reviewing current preventive maintenance activities of Wolsung unit 1, draft RCM recommendations are developed. 6 tabs., 16 refs. (Author).

  9. The Statistical Analysis of Failure Time Data

    CERN Document Server

    Kalbfleisch, John D

    2011-01-01

    Contains additional discussion and examples on left truncation as well as material on more general censoring and truncation patterns.Introduces the martingale and counting process formulation swil lbe in a new chapter.Develops multivariate failure time data in a separate chapter and extends the material on Markov and semi Markov formulations.Presents new examples and applications of data analysis.

  10. Failure Modes and Effects Analysis (FMEA) Assistant Tool Feasibility Study

    Science.gov (United States)

    Flores, Melissa D.; Malin, Jane T.; Fleming, Land D.

    2013-09-01

    An effort to determine the feasibility of a software tool to assist in Failure Modes and Effects Analysis (FMEA) has been completed. This new and unique approach to FMEA uses model based systems engineering concepts to recommend failure modes, causes, and effects to the user after they have made several selections from pick lists about a component's functions and inputs/outputs. Recommendations are made based on a library using common failure modes identified over the course of several major human spaceflight programs. However, the tool could be adapted for use in a wide range of applications from NASA to the energy industry.

  11. Failure Modes and Effects Analysis (FMEA) Assistant Tool Feasibility Study

    Science.gov (United States)

    Flores, Melissa; Malin, Jane T.

    2013-01-01

    An effort to determine the feasibility of a software tool to assist in Failure Modes and Effects Analysis (FMEA) has been completed. This new and unique approach to FMEA uses model based systems engineering concepts to recommend failure modes, causes, and effects to the user after they have made several selections from pick lists about a component s functions and inputs/outputs. Recommendations are made based on a library using common failure modes identified over the course of several major human spaceflight programs. However, the tool could be adapted for use in a wide range of applications from NASA to the energy industry.

  12. Causes of liver failure and impact analysis of prognostic risk factors

    Directory of Open Access Journals (Sweden)

    WU Xiaoqing

    2013-04-01

    Full Text Available ObjectiveTo perform a retrospective analysis of patients with liver failure to investigate the causative factors and related risk factors that may affect patient prognosis. MethodsThe clinical, demographic, and laboratory data of 79 consecutive patients diagnosed with liver failure and treated at our hospital between January 2010 and January 2012 (58 males and 21 females; age range: 16-74 years old were collected from the medical records. To identify risk factors of liver failure, the patient variables were assessed by Student’s t-test (continuous variables or Chi-squared test (categorical variables. Multivariate logistic regression analysis was used to investigate the relation between patient outcome and independent risk factors. ResultsThe 79 cases of liver failure were grouped according to disease severity: acute liver failure (n=6; 5 died, subacute liver failure (n=35; 19 died, and chronic liver failure (n=38; 28 died. The overall rate of death was 66%. The majority of cases (81% were related to hepatitis B virus infection. While the three groups of liver failure severity did not show significant differences in sex, mean age, occupation, presence of potassium disorder, total bilirubin (TBil or total cholesterol (CHO at admission, or lowest recorded level of CHO during hospitalization, there were significant intergroup differences in highest recorded TBil level, prothrombin activity (PTA at admission, and highest and lowest recorded PTA, and highest recorded level of CHO. Five independent risk factors were identified: the highest recorded TBil level during hospitalization, presence of infection, hepatorenal syndrome, gastrointestinal bleeding, and hepatic encephalopathy. ConclusionThe major cause of liver failure in this cohort of patients was hepatitis infection, and common biomarkers of liver function, such as TBil, CHO and PTA, may indicate patients with poor prognosis despite clinical intervention. Complications should be addressed as

  13. Failure analysis a practical guide for manufacturers of electronic components and systems

    CERN Document Server

    Bâzu, Marius

    2011-01-01

    Failure analysis is the preferred method to investigate product or process reliability and to ensure optimum performance of electrical components and systems. The physics-of-failure approach is the only internationally accepted solution for continuously improving the reliability of materials, devices and processes. The models have been developed from the physical and chemical phenomena that are responsible for degradation or failure of electronic components and materials and now replace popular distribution models for failure mechanisms such as Weibull or lognormal. Reliability engineers nee

  14. Analysis of the failure of a vacuum spin-pit drive turbine spindle shaft

    OpenAIRE

    Pettitt, Jason M.

    2005-01-01

    The Naval Postgraduate School's Rotor Spin Research Facility experienced a failure in the Spring of 2005 in which the rotor dropped from the drive turbine and caused extensive damage. A failure analysis of the drive turbine spindle shaft was conducted in order to determine the cause of failure: whether due to a material or design flaw. Also, a dynamic analysis was conducted in order to determine the natural modes present in the system and the associated frequencies that could have contributed...

  15. Regulatory analysis for the resolution of generic issue C---8, main steam isolation valve leakage and LCS [leakage control system] failure

    International Nuclear Information System (INIS)

    Graves, C.C.

    1990-06-01

    Generic Issue C-8 deals with staff concerns about public risk because of the incidence of leak test failures reported for main steam isolation valves (MSIVs) at boiling water reactors and the limitations of the leakage control systems (LCSs) for mitigating the consequences of leakage from these valves. If the MSIV leakage is greatly in excess of the allowable value in the technical specifications, the LCS would be unavailable because of design limitations. The issue was initiated in 1983 to assess (1) the causes of MSIV leakage failures, (2) the effectiveness of the LCS and alternative mitigation paths, and (3) the need for additional regulatory action to reduce public risk. This report presents the regulatory analysis for Generic Issue C-8 and concludes that no new regulatory requirements are warranted

  16. Statistical analysis of events related to emergency diesel generators failures in the nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Kančev, Duško, E-mail: dusko.kancev@ec.europa.eu [European Commission, DG-JRC, Institute for Energy and Transport, P.O. Box 2, NL-1755 ZG Petten (Netherlands); Duchac, Alexander; Zerger, Benoit [European Commission, DG-JRC, Institute for Energy and Transport, P.O. Box 2, NL-1755 ZG Petten (Netherlands); Maqua, Michael [Gesellschaft für Anlagen-und-Reaktorsicherheit (GRS) mbH, Schwetnergasse 1, 50667 Köln (Germany); Wattrelos, Didier [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), BP 17 - 92262 Fontenay-aux-Roses Cedex (France)

    2014-07-01

    Highlights: • Analysis of operating experience related to emergency diesel generators events at NPPs. • Four abundant operating experience databases screened. • Delineating important insights and conclusions based on the operating experience. - Abstract: This paper is aimed at studying the operating experience related to emergency diesel generators (EDGs) events at nuclear power plants collected from the past 20 years. Events related to EDGs failures and/or unavailability as well as all the supporting equipment are in the focus of the analysis. The selected operating experience was analyzed in detail in order to identify the type of failures, attributes that contributed to the failure, failure modes potential or real, discuss risk relevance, summarize important lessons learned, and provide recommendations. The study in this particular paper is tightly related to the performing of statistical analysis of the operating experience. For the purpose of this study EDG failure is defined as EDG failure to function on demand (i.e. fail to start, fail to run) or during testing, or an unavailability of an EDG, except of unavailability due to regular maintenance. The Gesellschaft für Anlagen und Reaktorsicherheit mbH (GRS) and Institut de Radioprotection et de Sûreté Nucléaire (IRSN) databases as well as the operating experience contained in the IAEA/NEA International Reporting System for Operating Experience and the U.S. Licensee Event Reports were screened. The screening methodology applied for each of the four different databases is presented. Further on, analysis aimed at delineating the causes, root causes, contributing factors and consequences are performed. A statistical analysis was performed related to the chronology of events, types of failures, the operational circumstances of detection of the failure and the affected components/subsystems. The conclusions and results of the statistical analysis are discussed. The main findings concerning the testing

  17. Statistical analysis of events related to emergency diesel generators failures in the nuclear industry

    International Nuclear Information System (INIS)

    Kančev, Duško; Duchac, Alexander; Zerger, Benoit; Maqua, Michael; Wattrelos, Didier

    2014-01-01

    Highlights: • Analysis of operating experience related to emergency diesel generators events at NPPs. • Four abundant operating experience databases screened. • Delineating important insights and conclusions based on the operating experience. - Abstract: This paper is aimed at studying the operating experience related to emergency diesel generators (EDGs) events at nuclear power plants collected from the past 20 years. Events related to EDGs failures and/or unavailability as well as all the supporting equipment are in the focus of the analysis. The selected operating experience was analyzed in detail in order to identify the type of failures, attributes that contributed to the failure, failure modes potential or real, discuss risk relevance, summarize important lessons learned, and provide recommendations. The study in this particular paper is tightly related to the performing of statistical analysis of the operating experience. For the purpose of this study EDG failure is defined as EDG failure to function on demand (i.e. fail to start, fail to run) or during testing, or an unavailability of an EDG, except of unavailability due to regular maintenance. The Gesellschaft für Anlagen und Reaktorsicherheit mbH (GRS) and Institut de Radioprotection et de Sûreté Nucléaire (IRSN) databases as well as the operating experience contained in the IAEA/NEA International Reporting System for Operating Experience and the U.S. Licensee Event Reports were screened. The screening methodology applied for each of the four different databases is presented. Further on, analysis aimed at delineating the causes, root causes, contributing factors and consequences are performed. A statistical analysis was performed related to the chronology of events, types of failures, the operational circumstances of detection of the failure and the affected components/subsystems. The conclusions and results of the statistical analysis are discussed. The main findings concerning the testing

  18. Failure analysis of motor bearing of sea water pump in nuclear power plant

    International Nuclear Information System (INIS)

    Bian Chunhua; Zhang Wei

    2015-01-01

    The motor bearing of sea water pump in Qinshan Phase II Nuclear Power plant broke after only one year's using. This paper introduces failure analysis process of the motor bearing. Chemical composition analysis, metallic phase analysis, micrographic examination, and hardness analysis, dimension analysis of each part of the bearing, as well as the high temperature and low temperature performance analysis of lubricating grease are performed. According to the analysis above mentioned, the failure mode of the bearing is wearing, and the reason of wearing is inappropriate installation of the bearing. (authors)

  19. Elk Valley Rancheria Energy Efficiency and Alternatives Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ed Wait, Elk Valley Rancheria; Frank Ziano & Associates, Inc.

    2011-11-30

    Elk Valley Rancheria; Tribe; renewable energy; energy options analysis. The Elk Valley Rancheria, California ('Tribe') is a federally recognized Indian tribe located in Del Norte County, California, in the northwestern corner of California. The Tribe, its members and Tribal enterprises are challenged by increasing energy costs and undeveloped local energy resources. The Tribe currently lacks an energy program. The Tribal government lacked sufficient information to make informed decisions about potential renewable energy resources, energy alternatives and other energy management issues. To meet this challenge efficiently, the Tribe contracted with Frank Zaino and Associates, Inc. to help become more energy self-sufficient, by reducing their energy costs and promoting energy alternatives that stimulate economic development. Frank Zaino & Associates, Inc. provided a high level economic screening analysis based on anticipated electric and natural gas rates. This was in an effort to determine which alternative energy system will performed at a higher level so the Tribe could reduce their energy model by 30% from alternative fuel sources. The feasibility study will identify suitable energy alternatives and conservation methods that will benefit the Tribe and tribal community through important reductions in cost. The lessons learned from these conservation efforts will yield knowledge that will serve a wider goal of executing energy efficiency measures and practices in Tribal residences and business facilities. Pacific Power is the provider of electrical power to the four properties under review at $ 0.08 per Kilowatt-hour (KWH). This is a very low energy cost compared to alternative energy sources. The Tribe used baseline audits to assess current and historic energy usage at four Rancheria owned facilities. Past electric and gas billing statements were retained for review for the four buildings that will be audited. A comparative assessment of the various

  20. Failure modes of laminate structures

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, L.B.; Druce, R.L.; Wilson, M.J.

    1987-06-01

    Laminate structures composed of alternating thin layers of conductor and dielectric material are commonly used in energy storage and transmission components. The failure of the dielectric layers in regions of high field stress, with applied 60 Hz ac, dc and impulse voltages, was studied. Several geometries were compared, including staggered and flush edges. Electrical trees developed between the laminated dielectric layers. The visual characteristics and growth rates of the electrical trees under ac, dc and impulse stresses were different. Partial discharge detection and analysis was used to measure the inception voltage and discharge activity at the conductor edge voids, to observe tree formation and growth, and to predict impending failure due to dielectric erosion. Electric field distributions were modeled and partial discharge inception levels were estimated from known void geometries. The staggered edge geometry appears to enhance the electric field stress at the recessed electrode.

  1. Failure analysis of parameter-induced simulation crashes in climate models

    Science.gov (United States)

    Lucas, D. D.; Klein, R.; Tannahill, J.; Ivanova, D.; Brandon, S.; Domyancic, D.; Zhang, Y.

    2013-08-01

    Simulations using IPCC (Intergovernmental Panel on Climate Change)-class climate models are subject to fail or crash for a variety of reasons. Quantitative analysis of the failures can yield useful insights to better understand and improve the models. During the course of uncertainty quantification (UQ) ensemble simulations to assess the effects of ocean model parameter uncertainties on climate simulations, we experienced a series of simulation crashes within the Parallel Ocean Program (POP2) component of the Community Climate System Model (CCSM4). About 8.5% of our CCSM4 simulations failed for numerical reasons at combinations of POP2 parameter values. We applied support vector machine (SVM) classification from machine learning to quantify and predict the probability of failure as a function of the values of 18 POP2 parameters. A committee of SVM classifiers readily predicted model failures in an independent validation ensemble, as assessed by the area under the receiver operating characteristic (ROC) curve metric (AUC > 0.96). The causes of the simulation failures were determined through a global sensitivity analysis. Combinations of 8 parameters related to ocean mixing and viscosity from three different POP2 parameterizations were the major sources of the failures. This information can be used to improve POP2 and CCSM4 by incorporating correlations across the relevant parameters. Our method can also be used to quantify, predict, and understand simulation crashes in other complex geoscientific models.

  2. Patterns of Failure After MammoSite Brachytherapy Partial Breast Irradiation: A Detailed Analysis

    International Nuclear Information System (INIS)

    Chen, Sea; Dickler, Adam; Kirk, Michael; Shah, Anand; Jokich, Peter; Solmos, Gene; Strauss, Jonathan; Dowlatshahi, Kambiz; Nguyen, Cam; Griem, Katherine

    2007-01-01

    Purpose: To report the results of a detailed analysis of treatment failures after MammoSite breast brachytherapy for partial breast irradiation from our single-institution experience. Methods and Materials: Between October 14, 2002 and October 23, 2006, 78 patients with early-stage breast cancer were treated with breast-conserving surgery and accelerated partial breast irradiation using the MammoSite brachytherapy applicator. We identified five treatment failures in the 70 patients with >6 months' follow-up. Pathologic data, breast imaging, and radiation treatment plans were reviewed. For in-breast failures more than 2 cm away from the original surgical bed, the doses delivered to the areas of recurrence by partial breast irradiation were calculated. Results: At a median follow-up time of 26.1 months, five treatment failures were identified. There were three in-breast failures more than 2 cm away from the original surgical bed, one failure directly adjacent to the original surgical bed, and one failure in the axilla with synchronous distant metastases. The crude failure rate was 7.1% (5 of 70), and the crude local failure rate was 5.7% (4 of 70). Estimated progression-free survival at 48 months was 89.8% (standard error 4.5%). Conclusions: Our case series of 70 patients with >6 months' follow-up and a median follow-up of 26 months is the largest single-institution report to date with detailed failure analysis associated with MammoSite brachytherapy. Our failure data emphasize the importance of patient selection when offering partial breast irradiation

  3. The distributed failure probability approach to dependent failure analysis, and its application

    International Nuclear Information System (INIS)

    Hughes, R.P.

    1989-01-01

    The Distributed Failure Probability (DFP) approach to the problem of dependent failures in systems is presented. The basis of the approach is that the failure probability of a component is a variable. The source of this variability is the change in the 'environment' of the component, where the term 'environment' is used to mean not only obvious environmental factors such as temperature etc., but also such factors as the quality of maintenance and manufacture. The failure probability is distributed among these various 'environments' giving rise to the Distributed Failure Probability method. Within the framework which this method represents, modelling assumptions can be made, based both on engineering judgment and on the data directly. As such, this DFP approach provides a soundly based and scrutable technique by which dependent failures can be quantitatively assessed. (orig.)

  4. Failure analysis of multiple delaminated composite plates due

    Indian Academy of Sciences (India)

    The present work aims at the first ply failure analysis of laminated composite plates with arbitrarily located multiple delaminations subjected to transverse static load as well as impact. The theoretical formulation is based on a simple multiple delamination model. Conventional first order shear deformation is assumed using ...

  5. Fuel failure detection and location methods in CAGRs

    International Nuclear Information System (INIS)

    Harris, A.M.

    1982-06-01

    The release of fission products from AGR fuel failures and the way in which the signals from such failures must be detected against the background signal from uranium contamination of the fuel is considered. Theoretical assessments of failure detection are used to show the limitations of the existing Electrostatic Wire Precipitator Burst Can Detection system (BCD) and how its operating parameters can be optimised. Two promising alternative methods, the 'split count' technique and the use of iodine measurements, are described. The results of a detailed study of the mechanical and electronic performance of the present BCD trolleys are given. The limited experience of detection and location of two fuel failures in CAGR using conventional and alternative methods is reviewed. The larger failure was detected and located using the conventional BCD equipment with a high confidence level. It is shown that smaller failures may not be easy to detect and locate using the current BCD equipment, and the second smaller failure probably remained in the reactor for about a year before it was discharged. The split count technique used with modified BCD equipment was able to detect the smaller failure after careful inspection of the data. (author)

  6. Exploitation of a component event data bank for common cause failure analysis

    International Nuclear Information System (INIS)

    Games, A.M.; Amendola, A.; Martin, P.

    1985-01-01

    Investigations into using the European Reliability Data System Component Event Data Bank for common cause failure analysis have been carried out. Starting from early exercises where data were analyzed without computer aid, different types of linked multiple failures have been identified. A classification system is proposed based on this experience. It defines a multiple failure event space wherein each category defines causal, modal, temporal and structural links between failures. It is shown that a search algorithm which incorporates the specific interrogative procedures of the data bank can be developed in conjunction with this classification system. It is concluded that the classification scheme and the search algorithm are useful organizational tools in the field of common cause failures studies. However, it is also suggested that the use of the term common cause failure should be avoided since it embodies to many different types of linked multiple failures

  7. Sensor Failure Detection of FASSIP System using Principal Component Analysis

    Science.gov (United States)

    Sudarno; Juarsa, Mulya; Santosa, Kussigit; Deswandri; Sunaryo, Geni Rina

    2018-02-01

    In the nuclear reactor accident of Fukushima Daiichi in Japan, the damages of core and pressure vessel were caused by the failure of its active cooling system (diesel generator was inundated by tsunami). Thus researches on passive cooling system for Nuclear Power Plant are performed to improve the safety aspects of nuclear reactors. The FASSIP system (Passive System Simulation Facility) is an installation used to study the characteristics of passive cooling systems at nuclear power plants. The accuracy of sensor measurement of FASSIP system is essential, because as the basis for determining the characteristics of a passive cooling system. In this research, a sensor failure detection method for FASSIP system is developed, so the indication of sensor failures can be detected early. The method used is Principal Component Analysis (PCA) to reduce the dimension of the sensor, with the Squarred Prediction Error (SPE) and statistic Hotteling criteria for detecting sensor failure indication. The results shows that PCA method is capable to detect the occurrence of a failure at any sensor.

  8. Finite Element Creep-Fatigue Analysis of a Welded Furnace Roll for Identifying Failure Root Cause

    Science.gov (United States)

    Yang, Y. P.; Mohr, W. C.

    2015-11-01

    Creep-fatigue induced failures are often observed in engineering components operating under high temperature and cyclic loading. Understanding the creep-fatigue damage process and identifying failure root cause are very important for preventing such failures and improving the lifetime of engineering components. Finite element analyses including a heat transfer analysis and a creep-fatigue analysis were conducted to model the cyclic thermal and mechanical process of a furnace roll in a continuous hot-dip coating line. Typically, the roll has a short life, modeling heat convection from hot air inside the furnace. The creep-fatigue analysis was performed by inputting the predicted temperature history and applying mechanical loads. The analysis results showed that the failure was resulted from a creep-fatigue mechanism rather than a creep mechanism. The difference of material properties between the filler metal and the base metal is the root cause for the roll failure, which induces higher creep strain and stress in the interface between the weld and the HAZ.

  9. A pragmatic approach to estimate alpha factors for common cause failure analysis

    International Nuclear Information System (INIS)

    Hassija, Varun; Senthil Kumar, C.; Velusamy, K.

    2014-01-01

    Highlights: • Estimation of coefficients in alpha factor model for common cause analysis. • A derivation of plant specific alpha factors is demonstrated. • We examine sensitivity of common cause contribution to total system failure. • We compare beta factor and alpha factor models for various redundant configurations. • The use of alpha factors is preferable, especially for large redundant systems. - Abstract: Most of the modern technological systems are deployed with high redundancy but still they fail mainly on account of common cause failures (CCF). Various models such as Beta Factor, Multiple Greek Letter, Binomial Failure Rate and Alpha Factor exists for estimation of risk from common cause failures. Amongst all, alpha factor model is considered most suitable for high redundant systems as it arrives at common cause failure probabilities from a set of ratios of failures and the total component failure probability Q T . In the present study, alpha factor model is applied for the assessment of CCF of safety systems deployed at two nuclear power plants. A method to overcome the difficulties in estimation of the coefficients viz., alpha factors in the model, importance of deriving plant specific alpha factors and sensitivity of common cause contribution to the total system failure probability with respect to hazard imposed by various CCF events is highlighted. An approach described in NUREG/CR-5500 is extended in this study to provide more explicit guidance for a statistical approach to derive plant specific coefficients for CCF analysis especially for high redundant systems. The procedure is expected to aid regulators for independent safety assessment

  10. A statistical analysis of pellet-clad interaction failures in water reactor fuel

    International Nuclear Information System (INIS)

    McDonald, S.G.; Fardo, R.D.; Sipush, P.J.; Kaiser, R.S.

    1981-01-01

    The primary objective of the statistical analysis was to develop a mathematical function that would predict PCI fuel rod failures as a function of the imposed operating conditions. Linear discriminant analysis of data from both test and commercial reactors was performed. The initial data base used encompassed 713 data points (117 failures and 596 non-failures) representing a wide variety of water cooled reactor fuel (PWR, BWR, CANDU, and SGHWR). When applied on a best-estimate basis, the resulting function simultaneously predicts approximately 80 percent of both the failure and non-failure data correctly. One of the most significant predictions of the analysis is that relatively large changes in power can be tolerated when the pre-ramp irradiation power is low, but that only small changes in power can be tolerated when the pre-ramp irradiation power is high. However, it is also predicted that fuel rods irradiated at low power will fail at lower final powers than those irradiated at high powers. Other results of the analysis are that fuel rods with high clad operating temperatures can withstand larger power increases that fuel rods with low clad operating temperatures, and that burnup has only a minimal effect on PCI performance after levels of approximately 10000 MWD/MTU have been exceeded. These trends in PCI performance and the operating parameters selected are believed to be consistent with mechanistic considerations. Published PCI data indicate that BWR fuel usually operates at higher local powers and changes in power, lower clad temperatures, and higher local ramp rates than PWR fuel

  11. Analysis of valve failures from the NUCLARR data base

    International Nuclear Information System (INIS)

    Moore, L.M.

    1997-11-01

    The Nuclear Computerized Library for Assessing Reactor Reliability (NUCLARR) contains data on component failures with categorical and qualifying information such as component design, normal operating state, system application and safety grade information which is important to the development of risk-based component surveillance testing requirements. This report presents descriptions and results of analyses of valve component failure data and covariate information available in the document Nuclear Computerized Library for Assessing Reactor Reliability Data Manual, Part 3: Hardware Component Failure Data (NUCLARR Data Manual). Although there are substantial records on valve performance, there are many categories of the corresponding descriptors and qualifying information for which specific values are missing. Consequently, this limits the data available for analysis of covariate effects. This report presents cross tabulations by different covariate categories and limited modeling of covariate effects for data subsets with substantive non-missing covariate information

  12. Quantitative Approach to Failure Mode and Effect Analysis for Linear Accelerator Quality Assurance

    Energy Technology Data Exchange (ETDEWEB)

    O' Daniel, Jennifer C., E-mail: jennifer.odaniel@duke.edu; Yin, Fang-Fang

    2017-05-01

    Purpose: To determine clinic-specific linear accelerator quality assurance (QA) TG-142 test frequencies, to maximize physicist time efficiency and patient treatment quality. Methods and Materials: A novel quantitative approach to failure mode and effect analysis is proposed. Nine linear accelerator-years of QA records provided data on failure occurrence rates. The severity of test failure was modeled by introducing corresponding errors into head and neck intensity modulated radiation therapy treatment plans. The relative risk of daily linear accelerator QA was calculated as a function of frequency of test performance. Results: Although the failure severity was greatest for daily imaging QA (imaging vs treatment isocenter and imaging positioning/repositioning), the failure occurrence rate was greatest for output and laser testing. The composite ranking results suggest that performing output and lasers tests daily, imaging versus treatment isocenter and imaging positioning/repositioning tests weekly, and optical distance indicator and jaws versus light field tests biweekly would be acceptable for non-stereotactic radiosurgery/stereotactic body radiation therapy linear accelerators. Conclusions: Failure mode and effect analysis is a useful tool to determine the relative importance of QA tests from TG-142. Because there are practical time limitations on how many QA tests can be performed, this analysis highlights which tests are the most important and suggests the frequency of testing based on each test's risk priority number.

  13. Quantitative Approach to Failure Mode and Effect Analysis for Linear Accelerator Quality Assurance.

    Science.gov (United States)

    O'Daniel, Jennifer C; Yin, Fang-Fang

    2017-05-01

    To determine clinic-specific linear accelerator quality assurance (QA) TG-142 test frequencies, to maximize physicist time efficiency and patient treatment quality. A novel quantitative approach to failure mode and effect analysis is proposed. Nine linear accelerator-years of QA records provided data on failure occurrence rates. The severity of test failure was modeled by introducing corresponding errors into head and neck intensity modulated radiation therapy treatment plans. The relative risk of daily linear accelerator QA was calculated as a function of frequency of test performance. Although the failure severity was greatest for daily imaging QA (imaging vs treatment isocenter and imaging positioning/repositioning), the failure occurrence rate was greatest for output and laser testing. The composite ranking results suggest that performing output and lasers tests daily, imaging versus treatment isocenter and imaging positioning/repositioning tests weekly, and optical distance indicator and jaws versus light field tests biweekly would be acceptable for non-stereotactic radiosurgery/stereotactic body radiation therapy linear accelerators. Failure mode and effect analysis is a useful tool to determine the relative importance of QA tests from TG-142. Because there are practical time limitations on how many QA tests can be performed, this analysis highlights which tests are the most important and suggests the frequency of testing based on each test's risk priority number. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Simulation and Failure Analysis of Car Bumper Made of Pineapple Leaf Fiber Reinforced Composite

    Science.gov (United States)

    Arbintarso, E. S.; Muslim, M.; Rusianto, T.

    2018-02-01

    The bumper car made of the Pineapple Leaf Fiber Reinforced Composite (PLFRC) is possible to be produced with the advantage of easy to get, and cheap. Pineapple leaf fiber has chosen as a natural fiber, which the maximum of the strength of 368 MPa. The objective of this study was to determine the maximum capability of front car bumpers using Pineapple Leaf Fiber Reinforced Composite materials through the process of simulating stress analysis with Solidworks 2014 software. The aim also to know the distribution of loads that occur on the front car bumper and predict the critical point position on the design of the bumper. The result will use to develop the alternative lightweight, cheap and environmentally friendly materials in general and the development of the use of pineapple fiber for automotive purposes in particular. Simulations and failure analysis have been conducted and showed an increased impact speed in line with increased displacement, strain, and stress that occur on the surface of the bumper. The bumper can withstand collisions at a speed of less than 70 kph.

  15. Probabilistic analysis of ''common mode failures''

    International Nuclear Information System (INIS)

    Easterling, R.G.

    1978-01-01

    Common mode failure is a topic of considerable interest in reliability and safety analyses of nuclear reactors. Common mode failures are often discussed in terms of examples: two systems fail simultaneously due to an external event such as an earthquake; two components in redundant channels fail because of a common manufacturing defect; two systems fail because a component common to both fails; the failure of one system increases the stress on other systems and they fail. The common thread running through these is a dependence of some sort--statistical or physical--among multiple failure events. However, the nature of the dependence is not the same in all these examples. An attempt is made to model situations, such as the above examples, which have been termed ''common mode failures.'' In doing so, it is found that standard probability concepts and terms, such as statistically dependent and independent events, and conditional and unconditional probabilities, suffice. Thus, it is proposed that the term ''common mode failures'' be dropped, at least from technical discussions of these problems. A corollary is that the complementary term, ''random failures,'' should also be dropped. The mathematical model presented may not cover all situations which have been termed ''common mode failures,'' but provides insight into the difficulty of obtaining estimates of the probabilities of these events

  16. Statistical Analysis Of Failure Strength Of Material Using Weibull Distribution

    International Nuclear Information System (INIS)

    Entin Hartini; Mike Susmikanti; Antonius Sitompul

    2008-01-01

    In evaluation of ceramic and glass materials strength a statistical approach is necessary Strength of ceramic and glass depend on its measure and size distribution of flaws in these material. The distribution of strength for ductile material is narrow and close to a Gaussian distribution while strength of brittle materials as ceramic and glass following Weibull distribution. The Weibull distribution is an indicator of the failure of material strength resulting from a distribution of flaw size. In this paper, cumulative probability of material strength to failure probability, cumulative probability of failure versus fracture stress and cumulative probability of reliability of material were calculated. Statistical criteria calculation supporting strength analysis of Silicon Nitride material were done utilizing MATLAB. (author)

  17. Failure analysis and modeling of a multicomputer system. M.S. Thesis

    Science.gov (United States)

    Subramani, Sujatha Srinivasan

    1990-01-01

    This thesis describes the results of an extensive measurement-based analysis of real error data collected from a 7-machine DEC VaxCluster multicomputer system. In addition to evaluating basic system error and failure characteristics, we develop reward models to analyze the impact of failures and errors on the system. The results show that, although 98 percent of errors in the shared resources recover, they result in 48 percent of all system failures. The analysis of rewards shows that the expected reward rate for the VaxCluster decreases to 0.5 in 100 days for a 3 out of 7 model, which is well over a 100 times that for a 7-out-of-7 model. A comparison of the reward rates for a range of k-out-of-n models indicates that the maximum increase in reward rate (0.25) occurs in going from the 6-out-of-7 model to the 5-out-of-7 model. The analysis also shows that software errors have the lowest reward (0.2 vs. 0.91 for network errors). The large loss in reward rate for software errors is due to the fact that a large proportion (94 percent) of software errors lead to failure. In comparison, the high reward rate for network errors is due to fast recovery from a majority of these errors (median recovery duration is 0 seconds).

  18. Failure characteristics analysis and fault diagnosis for liquid rocket engines

    CERN Document Server

    Zhang, Wei

    2016-01-01

    This book concentrates on the subject of health monitoring technology of Liquid Rocket Engine (LRE), including its failure analysis, fault diagnosis and fault prediction. Since no similar issue has been published, the failure pattern and mechanism analysis of the LRE from the system stage are of particular interest to the readers. Furthermore, application cases used to validate the efficacy of the fault diagnosis and prediction methods of the LRE are different from the others. The readers can learn the system stage modeling, analyzing and testing methods of the LRE system as well as corresponding fault diagnosis and prediction methods. This book will benefit researchers and students who are pursuing aerospace technology, fault detection, diagnostics and corresponding applications.

  19. 77 FR 14587 - FY 2012 Discretionary Livability Funding Opportunity: Alternatives Analysis Program

    Science.gov (United States)

    2012-03-12

    ... alternatives analysis or to support additional technical tasks in an on-going alternatives analysis that will.... FTA will consider proposals for all areas of technical work that can better develop information about... analysis, or for work performed after the Locally Preferred Alternative (LPA) has been selected. There is...

  20. Advanced approaches to failure mode and effect analysis (FMEA applications

    Directory of Open Access Journals (Sweden)

    D. Vykydal

    2015-10-01

    Full Text Available The present paper explores advanced approaches to the FMEA method (Failure Mode and Effect Analysis which take into account the costs associated with occurrence of failures during the manufacture of a product. Different approaches are demonstrated using an example FMEA application to production of drawn wire. Their purpose is to determine risk levels, while taking account of the above-mentioned costs. Finally, the resulting priority levels are compared for developing actions mitigating the risks.

  1. Failure analysis of storage tank component in LNG regasification unit using fault tree analysis method (FTA)

    Science.gov (United States)

    Mulyana, Cukup; Muhammad, Fajar; Saad, Aswad H.; Mariah, Riveli, Nowo

    2017-03-01

    Storage tank component is the most critical component in LNG regasification terminal. It has the risk of failure and accident which impacts to human health and environment. Risk assessment is conducted to detect and reduce the risk of failure in storage tank. The aim of this research is determining and calculating the probability of failure in regasification unit of LNG. In this case, the failure is caused by Boiling Liquid Expanding Vapor Explosion (BLEVE) and jet fire in LNG storage tank component. The failure probability can be determined by using Fault Tree Analysis (FTA). Besides that, the impact of heat radiation which is generated is calculated. Fault tree for BLEVE and jet fire on storage tank component has been determined and obtained with the value of failure probability for BLEVE of 5.63 × 10-19 and for jet fire of 9.57 × 10-3. The value of failure probability for jet fire is high enough and need to be reduced by customizing PID scheme of regasification LNG unit in pipeline number 1312 and unit 1. The value of failure probability after customization has been obtained of 4.22 × 10-6.

  2. An Alternative Front End Analysis Strategy for Complex Systems

    Science.gov (United States)

    2014-12-01

    missile ( ABM ) system . Patriot is employed in the field through a battalion echelon organizational structure. The line battery is the basic building...Research Report 1981 An Alternative Front End Analysis Strategy for Complex Systems M. Glenn Cobb U.S. Army Research Institute...NUMBER W5J9CQ11D0003 An Alternative Front End Analysis Strategy for Complex Systems 5b. PROGRAM ELEMENT NUMBER 633007 6

  3. 1988 failure rate screening data for fusion reliability and risk analysis

    International Nuclear Information System (INIS)

    Cadwallader, L.C.; Piet, S.J.

    1988-01-01

    This document contains failure rate screening data for application to fusion components. The screening values are generally fission or aerospace industry failure rate estimates that can be extrapolated for use by fusion system designers, reliability engineers and risk analysts. Failure rate estimates for tritium-bearing systems, liquid metal-cooled systems, gas-cooled systems, water-cooled systems and containment systems are given. Preliminary system availability estimates and selected initiating event frequency estimates are presented. This first edition document is valuable to design and safety analysis for the Compact Ignition Tokamak and the International Thermonuclear Experimental Reactor. 20 refs., 28 tabs

  4. Analysis approach for common cause failure on non-safety digital control system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yun Goo; Oh, Eungse [Korea Hydro and Nuclear Power Co. Ltd., Daejeon (Korea, Republic of)

    2014-05-15

    The effects of common cause failure (CCF) on safety digital instrumentation and control (I and C) system had been considered in defense in depth and diversity coping analysis with safety analysis method. For the non-safety system, single failure had been considered for safety analysis. IEEE Std. 603-1991, Clause 5.6.3.1(2), 'Isolation' states that no credible failure on the non-safety side of an isolation device shall prevent any portion of a safety system from meeting its minimum performance requirements during and following any design basis event requiring that safety function. The software CCF is one of the credible failure on the non-safety side. In advanced digital I and C system, same hardware component is used for different control system and the defect in manufacture or common external event can generate CCF. Moreover, the non-safety I and C system uses complex software for its various function and software quality assurance for the development process is less severe than safety software for the cost effective design. Therefore the potential defects in software cannot be ignored and the effect of software CCF on non-safety I and C system is needed to be evaluated. This paper proposes the general process and considerations for the analysis of CCF on non-safety I and C system.

  5. Phenomenological uncertainty analysis of early containment failure at severe accident of nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Su Won

    2011-02-15

    The severe accident has inherently significant uncertainty due to wide range of conditions and performing experiments, validation and practical application are extremely difficult because of its high temperature and pressure. Although internal and external researches were put into practice, the reference used in Korean nuclear plants were foreign data of 1980s and safety analysis as the probabilistic safety assessment has not applied the newest methodology. Also, it is applied to containment pressure formed into point value as results of thermal hydraulic analysis to identify the probability of containment failure in level 2 PSA. In this paper, the uncertainty analysis methods for phenomena of severe accident influencing early containment failure were developed, the uncertainty analysis that apply Korean nuclear plants using the MELCOR code was performed and it is a point of view to present the distribution of containment pressure as a result of uncertainty analysis. Because early containment failure is important factor of Large Early Release Frequency(LERF) that is used as representative criteria of decision-making in nuclear power plants, it was selected in this paper among various modes of containment failure. Important phenomena of early containment failure at severe accident based on previous researches were comprehended and methodology of 7th steps to evaluate uncertainty was developed. The MELCOR input for analysis of the severe accident reflected natural circulation flow was developed and the accident scenario for station black out that was representative initial event of early containment failure was determined. By reviewing the internal model and correlation for MELCOR model relevant important phenomena of early containment failure, the uncertainty factors which could affect on the uncertainty were founded and the major factors were finally identified through the sensitivity analysis. In order to determine total number of MELCOR calculations which can

  6. Sensitivity analysis of fuel pin failure performance under slow-ramp type transient overpower condition by using a fuel performance analysis code FEMAXI-FBR

    International Nuclear Information System (INIS)

    Tsuboi, Yasushi; Ninokata, Hisashi; Endo, Hiroshi; Ishizu, Tomoko; Tatewaki, Isao; Saito, Hiroaki

    2012-01-01

    The FEMAXI-FBR is a fuel performance analysis code and has been developed as one module of core disruptive evaluation system, the ASTERIA-FBR. The FEMAXI-FBR has reproduced the failure pin behavior during slow transient overpower. The axial location of pin failure affects the power and reactivity behavior during core disruptive accident, and failure model of which pin failure occurs at upper part of pin is used by reflecting the results of the CABRI-2 test. By using the FEMAXI-FBR, sensitivity analysis of uncertainty of design parameters such as irradiation conditions and fuel fabrication tolerances was performed to clarify the effect on axial location of pin failure during slow transient overpower. The sensitivity analysis showed that the uncertainty of design parameters does not affect the failure location. It suggests that the failure model with which locations of failure occur at upper part of pin can be adopted for core disruptive calculation by taking into consideration of design uncertainties. (author)

  7. Competing failure analysis in phased-mission systems with functional dependence in one of phases

    International Nuclear Information System (INIS)

    Wang, Chaonan; Xing, Liudong; Levitin, Gregory

    2012-01-01

    This paper proposes an algorithm for the reliability analysis of non-repairable phased-mission systems (PMS) subject to competing failure propagation and isolation effects. A failure originating from a system component which causes extensive damage to other system components is a propagated failure. When the propagated failure affects all the system components, causing the entire system failure, a propagated failure with global effect (PFGE) is said to occur. However, the failure propagation can be isolated in systems subject to functional dependence (FDEP) behavior, where the failure of a component (referred to as trigger component) causes some other components (referred to as dependent components) to become inaccessible or unusable (isolated from the system), and thus further failures from these dependent components have no effect on the system failure behavior. On the other hand, if any PFGE from dependent components occurs before the trigger failure, the failure propagation effect takes place, causing the overall system failure. In summary, there are two distinct consequences of a PFGE due to the competition between the failure isolation and failure propagation effects in the time domain. Existing works on such competing failures focus only on single-phase systems. However, many real-world systems are phased-mission systems (PMS), which involve multiple, consecutive and non-overlapping phases of operations or tasks. Consideration of competing failures for PMS is a challenging and difficult task because PMS exhibit dynamics in the system configuration and component behavior as well as statistical dependencies across phases for a given component. This paper proposes a combinatorial method to address the competing failure effects in the reliability analysis of binary non-repairable PMS. The proposed method is verified using a Markov-based method through a numerical example. Different from the Markov-based approach that is limited to exponential distribution, the

  8. Preliminary failure modes and effects analysis on Korean HCCR TBS to be tested in ITER

    International Nuclear Information System (INIS)

    Ahn, Mu-Young; Cho, Seungyon; Jin, Hyung Gon; Lee, Dong Won; Park, Yi-Hyun; Lee, Youngmin

    2015-01-01

    Highlights: • Postulated initiating events are identified through failure modes and effects analysis on the current HCCR TBS design. • A set of postulated initiating events are selected for consideration of deterministic analysis. • Accident evolutions on the selected postualted initiating events are qualitatively described for deterministic analysis. - Abstract: Korean Helium cooled ceramic reflector (HCCR) Test blanket system (TBS), which comprises Test blanket module (TBM) and ancillary systems in various locations of ITER building, is operated at high temperature and pressure with decay heat. Therefore, safety is utmost concern in design process and it is required to demonstrate that the HCCR TBS is designed to comply with the safety requirements and guidelines of ITER. Due to complexity of the system with many interfaces with ITER, a systematic approach is necessary for safety analysis. This paper presents preliminary failure modes and effects analysis (FMEA) study performed for the HCCR TBS. FMEA is a systematic methodology in which failure modes for components in the system and their consequences are studied from the bottom-up. Over eighty failure modes have been investigated on the HCCR TBS. The failure modes that have similar consequences are grouped as postulated initiating events (PIEs) and total seven reference accident scenarios are derived from FMEA study for deterministic accident analysis. Failure modes not covered here due to evolving design of the HCCR TBS and uncertainty in maintenance procedures will be studied further in near future.

  9. Preliminary failure modes and effects analysis on Korean HCCR TBS to be tested in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Mu-Young, E-mail: myahn74@nfri.re.kr [National Fusion Research Institute, Daejeon (Korea, Republic of); Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of); Jin, Hyung Gon; Lee, Dong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Yi-Hyun; Lee, Youngmin [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Highlights: • Postulated initiating events are identified through failure modes and effects analysis on the current HCCR TBS design. • A set of postulated initiating events are selected for consideration of deterministic analysis. • Accident evolutions on the selected postualted initiating events are qualitatively described for deterministic analysis. - Abstract: Korean Helium cooled ceramic reflector (HCCR) Test blanket system (TBS), which comprises Test blanket module (TBM) and ancillary systems in various locations of ITER building, is operated at high temperature and pressure with decay heat. Therefore, safety is utmost concern in design process and it is required to demonstrate that the HCCR TBS is designed to comply with the safety requirements and guidelines of ITER. Due to complexity of the system with many interfaces with ITER, a systematic approach is necessary for safety analysis. This paper presents preliminary failure modes and effects analysis (FMEA) study performed for the HCCR TBS. FMEA is a systematic methodology in which failure modes for components in the system and their consequences are studied from the bottom-up. Over eighty failure modes have been investigated on the HCCR TBS. The failure modes that have similar consequences are grouped as postulated initiating events (PIEs) and total seven reference accident scenarios are derived from FMEA study for deterministic accident analysis. Failure modes not covered here due to evolving design of the HCCR TBS and uncertainty in maintenance procedures will be studied further in near future.

  10. Reliability of emergency alternating-current power systems at nuclear power plants: a discussion of NUREG/CR-2989

    International Nuclear Information System (INIS)

    Battle, R.E.

    1985-01-01

    The reliability of emergency alternating-current power systems typical of most nuclear power plants was estimated by using fault-tree analysis of selected typical designs. The failure probabilities used in the fault trees were calculated from extensive historical data collected from Licensee Event Reports and from operating experience information obtained from nuclear plant licensees. Trends of diesel generator independent failure on demand are included. No one or two improvements can be made at all plants to increase significantly the industry-average emergency alternating-current power system reliability; the most beneficial improvements are varied and plant specific

  11. An analysis of human maintenance failures of a nuclear power plant

    International Nuclear Information System (INIS)

    Pyy, P.

    2000-01-01

    In the report, a study of faults caused by maintenance activities is presented. The objective of the study was to draw conclusions on the unplanned effects of maintenance on nuclear power plant safety and system availability. More than 4400 maintenance history reports from the years 1992-1994 of Olkiluoto BWR nuclear power plant (NPP) were analysed together with the maintenance personnel. The human action induced faults were classified, e.g., according to their multiplicity and effects. This paper presents and discusses the results of a statistical analysis of the data. Instrumentation and electrical components appeared to be especially prone to human failures. Many human failures were found in safety related systems. Several failures also remained latent from outages to power operation. However, the safety significance of failures was generally small. Modifications were an important source of multiple human failures. Plant maintenance data is a good source of human reliability data and it should be used more in the future. (orig.)

  12. Pre-mRNA mis-splicing of sarcomeric genes in heart failure.

    Science.gov (United States)

    Zhu, Chaoqun; Chen, Zhilong; Guo, Wei

    2017-08-01

    Pre-mRNA splicing is an important biological process that allows production of multiple proteins from a single gene in the genome, and mainly contributes to protein diversity in eukaryotic organisms. Alternative splicing is commonly governed by RNA binding proteins to meet the ever-changing demands of the cell. However, the mis-splicing may lead to human diseases. In the heart of human, mis-regulation of alternative splicing has been associated with heart failure. In this short review, we focus on alternative splicing of sarcomeric genes and review mis-splicing related heart failure with relatively well studied Sarcomeric genes and splicing mechanisms with identified regulatory factors. The perspective of alternative splicing based therapeutic strategies in heart failure has also been discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Standard guide for corrosion-related failure analysis

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2000-01-01

    1.1 This guide covers key issues to be considered when examining metallic failures when corrosion is suspected as either a major or minor causative factor. 1.2 Corrosion-related failures could include one or more of the following: change in surface appearance (for example, tarnish, rust, color change), pin hole leak, catastrophic structural failure (for example, collapse, explosive rupture, implosive rupture, cracking), weld failure, loss of electrical continuity, and loss of functionality (for example, seizure, galling, spalling, swelling). 1.3 Issues covered include overall failure site conditions, operating conditions at the time of failure, history of equipment and its operation, corrosion product sampling, environmental sampling, metallurgical and electrochemical factors, morphology (mode) or failure, and by considering the preceding, deducing the cause(s) of corrosion failure. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibili...

  14. Local buckling failure analysis of high-strength pipelines

    Institute of Scientific and Technical Information of China (English)

    Yan Li; Jian Shuai; Zhong-Li Jin; Ya-Tong Zhao; Kui Xu

    2017-01-01

    Pipelines in geological disaster regions typically suffer the risk of local buckling failure because of slender structure and complex load.This paper is meant to reveal the local buckling behavior of buried pipelines with a large diameter and high strength,which are under different conditions,including pure bending and bending combined with internal pressure.Finite element analysis was built according to previous data to study local buckling behavior of pressurized and unpressurized pipes under bending conditions and their differences in local buckling failure modes.In parametric analysis,a series of parameters,including pipe geometrical dimension,pipe material properties and internal pressure,were selected to study their influences on the critical bending moment,critical compressive stress and critical compressive strain of pipes.Especially the hardening exponent of pipe material was introduced to the parameter analysis by using the Ramberg-Osgood constitutive model.Results showed that geometrical dimensions,material and internal pressure can exert similar effects on the critical bending moment and critical compressive stress,which have different,even reverse effects on the critical compressive strain.Based on these analyses,more accurate design models of critical bending moment and critical compressive stress have been proposed for high-strength pipelines under bending conditions,which provide theoretical methods for highstrength pipeline engineering.

  15. Recognition and Analysis of Corrosion Failure Mechanisms

    OpenAIRE

    Steven Suess

    2006-01-01

    Corrosion has a vast impact on the global and domestic economy, and currently incurs losses of nearly $300 billion annually to the U.S. economy alone. Because of the huge impact of corrosion, it is imperative to have a systematic approach to recognizing and mitigating corrosion problems as soon as possible after they become apparent. A proper failure analysis includes collection of pertinent background data and service history, followed by visual inspection, photographic documentation, materi...

  16. A meta-analysis of the effects of β-adrenergic blockers in chronic heart failure.

    Science.gov (United States)

    Zhang, Xiaojian; Shen, Chengwu; Zhai, Shujun; Liu, Yukun; Yue, Wen-Wei; Han, Li

    2016-10-01

    Adrenergic β-blockers are drugs that bind to, but do not activate β-adrenergic receptors. Instead they block the actions of β-adrenergic agonists and are used for the treatment of various diseases such as cardiac arrhythmias, angina pectoris, myocardial infarction, hypertension, headache, migraines, stress, anxiety, prostate cancer, and heart failure. Several meta-analysis studies have shown that β-blockers improve the heart function and reduce the risks of cardiovascular events, rate of mortality, and sudden death through chronic heart failure (CHF) of patients. The present study identified results from recent meta-analyses of β-adrenergic blockers and their usefulness in CHF. Databases including Medline/Embase/Cochrane Central Register of Controlled Trials (CENTRAL), and PubMed were searched for the periods May, 1985 to March, 2011 and June, 2013 to August, 2015, and a number of studies identified. Results of those studies showed that use of β-blockers was associated with decreased sudden cardiac death in patients with heart failure. However, contradictory results have also been reported. The present meta-analysis aimed to determine the efficacy of β-blockers on mortality and morbidity in patients with heart failure. The results showed that mortality was significantly reduced by β-blocker treatment prior to the surgery of heart failure patients. The results from the meta-analysis studies showed that β-blocker treatment in heart failure patients correlated with a significant decrease in long-term mortality, even in patients that meet one or more exclusion criteria of the MERIT-HF study. In summary, the findings of the current meta-analysis revealed beneficial effects different β-blockers have on patients with heart failure or related heart disease.

  17. Analysis of risk factors for cluster behavior of dental implant failures.

    Science.gov (United States)

    Chrcanovic, Bruno Ramos; Kisch, Jenö; Albrektsson, Tomas; Wennerberg, Ann

    2017-08-01

    Some studies indicated that implant failures are commonly concentrated in few patients. To identify and analyze cluster behavior of dental implant failures among subjects of a retrospective study. This retrospective study included patients receiving at least three implants only. Patients presenting at least three implant failures were classified as presenting a cluster behavior. Univariate and multivariate logistic regression models and generalized estimating equations analysis evaluated the effect of explanatory variables on the cluster behavior. There were 1406 patients with three or more implants (8337 implants, 592 failures). Sixty-seven (4.77%) patients presented cluster behavior, with 56.8% of all implant failures. The intake of antidepressants and bruxism were identified as potential negative factors exerting a statistically significant influence on a cluster behavior at the patient-level. The negative factors at the implant-level were turned implants, short implants, poor bone quality, age of the patient, the intake of medicaments to reduce the acid gastric production, smoking, and bruxism. A cluster pattern among patients with implant failure is highly probable. Factors of interest as predictors for implant failures could be a number of systemic and local factors, although a direct causal relationship cannot be ascertained. © 2017 Wiley Periodicals, Inc.

  18. Corrosion failure analysis as related to prevention of corrosion failures

    International Nuclear Information System (INIS)

    Suss, H.

    1977-10-01

    The factors and conditions which have contributed to many of the corrosion related service failures are discussed based on a review of actual case histories. The anti-corrosion devices which developed as a result of these failure analyses are reviewed, and the method which must be adopted and used to take advantage of the available corrosion prevention techniques is discussed

  19. Failure probability analysis on mercury target vessel

    International Nuclear Information System (INIS)

    Ishikura, Syuichi; Futakawa, Masatoshi; Kogawa, Hiroyuki; Sato, Hiroshi; Haga, Katsuhiro; Ikeda, Yujiro

    2005-03-01

    Failure probability analysis was carried out to estimate the lifetime of the mercury target which will be installed into the JSNS (Japan spallation neutron source) in J-PARC (Japan Proton Accelerator Research Complex). The lifetime was estimated as taking loading condition and materials degradation into account. Considered loads imposed on the target vessel were the static stresses due to thermal expansion and static pre-pressure on He-gas and mercury and the dynamic stresses due to the thermally shocked pressure waves generated repeatedly at 25 Hz. Materials used in target vessel will be degraded by the fatigue, neutron and proton irradiation, mercury immersion and pitting damages, etc. The imposed stresses were evaluated through static and dynamic structural analyses. The material-degradations were deduced based on published experimental data. As a result, it was quantitatively confirmed that the failure probability for the lifetime expected in the design is very much lower, 10 -11 in the safety hull, meaning that it will be hardly failed during the design lifetime. On the other hand, the beam window of mercury vessel suffered with high-pressure waves exhibits the failure probability of 12%. It was concluded, therefore, that the leaked mercury from the failed area at the beam window is adequately kept in the space between the safety hull and the mercury vessel by using mercury-leakage sensors. (author)

  20. Dam failure analysis for the Lago El Guineo Dam, Orocovis, Puerto Rico

    Science.gov (United States)

    Gómez-Fragoso, Julieta; Heriberto Torres-Sierra,

    2016-08-09

    The U.S. Geological Survey, in cooperation with the Puerto Rico Electric Power Authority, completed hydrologic and hydraulic analyses to assess the potential hazard to human life and property associated with the hypothetical failure of the Lago El Guineo Dam. The Lago El Guineo Dam is within the headwaters of the Río Grande de Manatí and impounds a drainage area of about 4.25 square kilometers.The hydrologic assessment was designed to determine the outflow hydrographs and peak discharges for Lago El Guineo and other subbasins in the Río Grande de Manatí hydrographic basin for three extreme rainfall events: (1) a 6-hour probable maximum precipitation event, (2) a 24-hour probable maximum precipitation event, and (3) a 24-hour, 100-year recurrence rainfall event. The hydraulic study simulated a dam failure of Lago El Guineo Dam using flood hydrographs generated from the hydrologic study. The simulated dam failure generated a hydrograph that was routed downstream from Lago El Guineo Dam through the lower reaches of the Río Toro Negro and the Río Grande de Manatí to determine water-surface profiles developed from the event-based hydrologic scenarios and “sunny day” conditions. The Hydrologic Engineering Center’s Hydrologic Modeling System (HEC–HMS) and Hydrologic Engineering Center’s River Analysis System (HEC–RAS) computer programs, developed by the U.S. Army Corps of Engineers, were used for the hydrologic and hydraulic modeling, respectively. The flow routing in the hydraulic analyses was completed using the unsteady flow module available in the HEC–RAS model.Above the Lago El Guineo Dam, the simulated inflow peak discharges from HEC–HMS resulted in about 550 and 414 cubic meters per second for the 6- and 24-hour probable maximum precipitation events, respectively. The 24-hour, 100-year recurrence storm simulation resulted in a peak discharge of about 216 cubic meters per second. For the hydrologic analysis, no dam failure conditions are

  1. Risk assessment of the emergency processes: Healthcare failure mode and effect analysis.

    Science.gov (United States)

    Taleghani, Yasamin Molavi; Rezaei, Fatemeh; Sheikhbardsiri, Hojat

    2016-01-01

    Ensuring about the patient's safety is the first vital step in improving the quality of care and the emergency ward is known as a high-risk area in treatment health care. The present study was conducted to evaluate the selected risk processes of emergency surgery department of a treatment-educational Qaem center in Mashhad by using analysis method of the conditions and failure effects in health care. In this study, in combination (qualitative action research and quantitative cross-sectional), failure modes and effects of 5 high-risk procedures of the emergency surgery department were identified and analyzed according to Healthcare Failure Mode and Effects Analysis (HFMEA). To classify the failure modes from the "nursing errors in clinical management model (NECM)", the classification of the effective causes of error from "Eindhoven model" and determination of the strategies to improve from the "theory of solving problem by an inventive method" were used. To analyze the quantitative data of descriptive statistics (total points) and to analyze the qualitative data, content analysis and agreement of comments of the members were used. In 5 selected processes by "voting method using rating", 23 steps, 61 sub-processes and 217 potential failure modes were identified by HFMEA. 25 (11.5%) failure modes as the high risk errors were detected and transferred to the decision tree. The most and the least failure modes were placed in the categories of care errors (54.7%) and knowledge and skill (9.5%), respectively. Also, 29.4% of preventive measures were in the category of human resource management strategy. "Revision and re-engineering of processes", "continuous monitoring of the works", "preparation and revision of operating procedures and policies", "developing the criteria for evaluating the performance of the personnel", "designing a suitable educational content for needs of employee", "training patients", "reducing the workload and power shortage", "improving team

  2. Development of severe accident analysis code - Development of a finite element code for lower head failure analysis

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Hoon; Lee, Choong Ho; Choi, Tae Hoon; Kim, Hyun Sup; Kim, Se Ho; Kang, Woo Jong; Seo, Chong Kwan [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-08-01

    The study concerns the development of analysis models and computer codes for lower head failure analysis when a severe accident occurs in a nuclear reactor system. Although the lower head failure modes consists of several failure modes, the study this year was focused on the global rupture with the collapse pressure and mode by limit analysis and elastic deformation. The behavior of molten core causes elevation of temperature in the reactor vessel wall and deterioration of load-carrying capacity of a reactor vessel. The behavior of molten core and the heat transfer modes were, therefore, postulated in several types and the temperature distributions according to the assumed heat flux modes were calculated. The collapse pressure of a nuclear reactor lower head decreases rapidly with elevation of temperature as time passes. The calculation shows the safety of a nuclear reactor is enhanced with the lager collapse pressure when the hot spot is located far from the pole. 42 refs., 2 tabs., 31 figs. (author)

  3. Analysis of Failure Causes and the Criticality Degree of Elements of Motor Vehicle’s Drum Brakes

    Directory of Open Access Journals (Sweden)

    D. Ćatić

    2014-09-01

    Full Text Available The introduction of the paper gives the basic concepts, historical development of methods of Fault Tree Analysis - FTA and Failure Modes, Effects and Criticality Analysis - FMECA for analysis of the reliability and safety of technical systems and importance of applying this method is highlighted. Failure analysis is particularly important for systems whose failures lead to the endangerment of people safety, such as, for example, the braking system of motor vehicles. For the failure analysis of the considered device, it is necessary to know the structure, functioning, working conditions and all factors that have a greater or less influence on its reliability. By formation of the fault tree of drum brakes in braking systems of commercial vehicles, it was established a causal relation between the different events that lead to a reduction in performance or complete failure of the braking system. Based on data from exploitation, using FMECA methods, determination of the criticality degree of drum brake’s elements on the reliable and safe operation of the braking system is performed.

  4. [Examination of safety improvement by failure record analysis that uses reliability engineering].

    Science.gov (United States)

    Kato, Kyoichi; Sato, Hisaya; Abe, Yoshihisa; Ishimori, Yoshiyuki; Hirano, Hiroshi; Higashimura, Kyoji; Amauchi, Hiroshi; Yanakita, Takashi; Kikuchi, Kei; Nakazawa, Yasuo

    2010-08-20

    How the maintenance checks of the medical treatment system, including start of work check and the ending check, was effective for preventive maintenance and the safety improvement was verified. In this research, date on the failure of devices in multiple facilities was collected, and the data of the trouble repair record was analyzed by the technique of reliability engineering. An analysis of data on the system (8 general systems, 6 Angio systems, 11 CT systems, 8 MRI systems, 8 RI systems, and the radiation therapy system 9) used in eight hospitals was performed. The data collection period assumed nine months from April to December 2008. Seven items were analyzed. (1) Mean time between failures (MTBF) (2) Mean time to repair (MTTR) (3) Mean down time (MDT) (4) Number found by check in morning (5) Failure generation time according to modality. The classification of the breakdowns per device, the incidence, and the tendency could be understood by introducing reliability engineering. Analysis, evaluation, and feedback on the failure generation history are useful to keep downtime to a minimum and to ensure safety.

  5. Statistical trend analysis methodology for rare failures in changing technical systems

    International Nuclear Information System (INIS)

    Ott, K.O.; Hoffmann, H.J.

    1983-07-01

    A methodology for a statistical trend analysis (STA) in failure rates is presented. It applies primarily to relatively rare events in changing technologies or components. The formulation is more general and the assumptions are less restrictive than in a previously published version. Relations of the statistical analysis and probabilistic assessment (PRA) are discussed in terms of categorization of decisions for action following particular failure events. The significance of tentatively identified trends is explored. In addition to statistical tests for trend significance, a combination of STA and PRA results quantifying the trend complement is proposed. The STA approach is compared with other concepts for trend characterization. (orig.)

  6. Prediction of hospital failure: a post-PPS analysis.

    Science.gov (United States)

    Gardiner, L R; Oswald, S L; Jahera, J S

    1996-01-01

    This study investigates the ability of discriminant analysis to provide accurate predictions of hospital failure. Using data from the period following the introduction of the Prospective Payment System, we developed discriminant functions for each of two hospital ownership categories: not-for-profit and proprietary. The resulting discriminant models contain six and seven variables, respectively. For each ownership category, the variables represent four major aspects of financial health (liquidity, leverage, profitability, and efficiency) plus county marketshare and length of stay. The proportion of closed hospitals misclassified as open one year before closure does not exceed 0.05 for either ownership type. Our results show that discriminant functions based on a small set of financial and nonfinancial variables provide the capability to predict hospital failure reliably for both not-for-profit and proprietary hospitals.

  7. Examination of pump failure data in the nuclear power industry

    International Nuclear Information System (INIS)

    Casada, D.

    1996-01-01

    There are several elements that are critical to any program which is used to optimize the availability and reliability of process equipment. Perhaps the most important elements are routine monitoring and predictive maintenance elements. In order to optimize equipment monitoring and predictive maintenance, it is necessary to fundamentally and thoroughly understand the principal failure modes for the equipment and the effectiveness of alternative monitoring methods. While these observations are general in nature, they are certainly true for the open-quotes heartclose quotes of fluid systems - pumps. In recent years, particularly within the last decade, the capabilities and ease of use of previously existing pump diagnostic technologies, such as vibration monitoring and oil analysis, have improved dramatically. Newer technologies, such as thermal imaging, have been found effective at detecting certain undesirable or degraded conditions, such as misalignment and overheated bearings or packing. The ASME Code and NRC regulatory requirements have been, like essentially all similar code and regulatory bodies, conservative in their adoption or endorsement of newer technologies. The requirements prescribed by the Code and endorsed by the NRC have, in their essence, changed only minimally over more than a dozen years. As a follow-on to studies of check valve failure experience in the nuclear industry that have proven useful in identifying the effectiveness of alternative monitoring methods, a study of nuclear industry pump failure data has been conducted. The results of this study, conducted for the NRC by Oak Ridge National Laboratory, are presented. The historical effectiveness of both regulatory required and voluntarily implemented pump monitoring programs are shown. The distribution of pump failures by application, affected area, and level of significance are indicated. Apparent strengths and weaknesses of alternative monitoring methods are discussed

  8. Examination of pump failure data in the nuclear power industry

    Energy Technology Data Exchange (ETDEWEB)

    Casada, D. [Oak Ridge National Lab., TN (United States)

    1996-12-01

    There are several elements that are critical to any program which is used to optimize the availability and reliability of process equipment. Perhaps the most important elements are routine monitoring and predictive maintenance elements. In order to optimize equipment monitoring and predictive maintenance, it is necessary to fundamentally and thoroughly understand the principal failure modes for the equipment and the effectiveness of alternative monitoring methods. While these observations are general in nature, they are certainly true for the {open_quotes}heart{close_quotes} of fluid systems - pumps. In recent years, particularly within the last decade, the capabilities and ease of use of previously existing pump diagnostic technologies, such as vibration monitoring and oil analysis, have improved dramatically. Newer technologies, such as thermal imaging, have been found effective at detecting certain undesirable or degraded conditions, such as misalignment and overheated bearings or packing. The ASME Code and NRC regulatory requirements have been, like essentially all similar code and regulatory bodies, conservative in their adoption or endorsement of newer technologies. The requirements prescribed by the Code and endorsed by the NRC have, in their essence, changed only minimally over more than a dozen years. As a follow-on to studies of check valve failure experience in the nuclear industry that have proven useful in identifying the effectiveness of alternative monitoring methods, a study of nuclear industry pump failure data has been conducted. The results of this study, conducted for the NRC by Oak Ridge National Laboratory, are presented. The historical effectiveness of both regulatory required and voluntarily implemented pump monitoring programs are shown. The distribution of pump failures by application, affected area, and level of significance are indicated. Apparent strengths and weaknesses of alternative monitoring methods are discussed.

  9. Analysis of failure and maintenance experiences of motor operated valves in a Finnish nuclear power plant

    International Nuclear Information System (INIS)

    Simola, K.; Laakso, K.

    1992-01-01

    Operating experiences from 1981 up to 1989 of totally 104 motor operated closing valves (MOV) in different safety systems at TVO I and II nuclear power units were analysed in a systematic way. The qualitative methods used were failure mode and effects analysis (FMEA) and maintenance effects and criticality analysis (MECA). The failure descriptions were obtained from power plant's computerized failure reporting system. The reported 181 failure events were reanalysed and sorted according to specific classifications developed for the MOV function. Filled FMEA and MECA sheets on individual valves were stored in a microcomputer data base for further analyses. Analyses were performed for the failed mechanical and electrical valve parts, ways of detection of failure modes, failure effects, and repair and unavailability times

  10. Application of failure mode and effect analysis in an assisted reproduction technology laboratory.

    Science.gov (United States)

    Intra, Giulia; Alteri, Alessandra; Corti, Laura; Rabellotti, Elisa; Papaleo, Enrico; Restelli, Liliana; Biondo, Stefania; Garancini, Maria Paola; Candiani, Massimo; Viganò, Paola

    2016-08-01

    Assisted reproduction technology laboratories have a very high degree of complexity. Mismatches of gametes or embryos can occur, with catastrophic consequences for patients. To minimize the risk of error, a multi-institutional working group applied failure mode and effects analysis (FMEA) to each critical activity/step as a method of risk assessment. This analysis led to the identification of the potential failure modes, together with their causes and effects, using the risk priority number (RPN) scoring system. In total, 11 individual steps and 68 different potential failure modes were identified. The highest ranked failure modes, with an RPN score of 25, encompassed 17 failures and pertained to "patient mismatch" and "biological sample mismatch". The maximum reduction in risk, with RPN reduced from 25 to 5, was mostly related to the introduction of witnessing. The critical failure modes in sample processing were improved by 50% in the RPN by focusing on staff training. Three indicators of FMEA success, based on technical skill, competence and traceability, have been evaluated after FMEA implementation. Witnessing by a second human operator should be introduced in the laboratory to avoid sample mix-ups. These findings confirm that FMEA can effectively reduce errors in assisted reproduction technology laboratories. Copyright © 2016 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  11. Modeling of fast reactor cladding failure for hypothetical accident transient analysis

    International Nuclear Information System (INIS)

    Kramer, J.M.; DiMelfi, R.J.; Hughes, T.H.; Deitrich, L.W.

    1979-01-01

    An analysis is made of burst experiments performed on neutron irradiated cladding tubes. This is done by employing a generalized Voce equation to describe the mechanical deformation of type 316 stainless steel, combined with an empirical creep crack growth law, each modified to account for the effects of irradiation matrix hardening, and irradiation induced grain boundary embrittlement, respectively. The results of this analysis indicate that for large initial hoop stress, failure occurs at relatively low temperature and is controlled by the onset of plastic instability. The increase in failure temperature of irradiated material, in this low temperature region, is due to irradiation strengthening. Failure in the case of relatively small initial hoop stress occurs at high temperature where the Voce equation reduces to a power law creep formula. The ductility of irradiated material, in this high temperature region, is adequately described through the use of an empirical intergranular crack growth law used in conjunction with the creep law. The effect of neutron irradiation is to reduce the activation energy for crack propagation from the value for creep to some lower value correlated to independent Dorn rupture parameter measurements. The result is a predicted reduced ductility which translates into a reduction in failure temperature at a given hoop stress value for irradiated material. (orig.)

  12. Elastic-plastic failure analysis of pressure burst tests of thin toroidal shells

    International Nuclear Information System (INIS)

    Jones, D.P.; Holliday, J.E.; Larson, L.D.

    1998-07-01

    This paper provides a comparison between test and analysis results for bursting of thin toroidal shells. Testing was done by pressurizing two toroidal shells until failure by bursting. An analytical criterion for bursting is developed based on good agreement between structural instability predicted by large strain-large displacement elastic-plastic finite element analysis and observed burst pressure obtained from test. The failures were characterized by loss of local stability of the membrane section of the shells consistent with the predictions from the finite element analysis. Good agreement between measured and predicted burst pressure suggests that incipient structural instability as calculated by an elastic-plastic finite element analysis is a reasonable way to calculate the bursting pressure of thin membrane structures

  13. Failure analysis of carbide fuels under transient overpower (TOP) conditions

    International Nuclear Information System (INIS)

    Nguyen, D.H.

    1980-06-01

    The failure of carbide fuels in the Fast Test Reactor (FTR) under Transient Overpower (TOP) conditions has been examined. The Beginning-of-Cycle Four (BOC-4) all-oxide base case, at $.50/sec ramp rate was selected as the reference case. A coupling between the advanced fuel performance code UNCLE-T and HCDA Code MELT-IIIA was necessary for the analysis. UNCLE-T was used to determine cladding failure and fuel preconditioning which served as initial conditions for MELT-III calculations. MELT-IIIA determined the time of molten fuel ejection from fuel pin

  14. Failure analysis of boiler tubes in lakhra coal power plant

    International Nuclear Information System (INIS)

    Shah, A.; Baluch, M.M.; Ali, A.

    2010-01-01

    Present work deals with the failure analysis of a boiler tube in Lakhra fluidized bed combustion power station. Initially, visual inspection technique was adopted to analyse the fractured surface. Detailed microstructural investigations of the busted boiler tube were carried out using light optical microscope and scanning electron microscope. The hardness tests were also performed. A 50 percent decrease in hardness of intact portion of the tube material and from area adjacent to failure was measured, which was found to be in good agreement with the wall thicknesses measured of the busted boiler tube i.e. 4 mm and 2 mm from unaffected portion and ruptured area respectively. It was concluded that the major cause of failure of boiler tube is erosion of material which occurs due the coal particles strike at the surface of the tube material. Since the temperature of boiler is not maintained uniformly. The variations in boiler temperature can also affect the material and could be another reason for the failure of the tube. (author)

  15. [Retrieval and failure analysis of surgical implants in Brazil: the need for proper regulation].

    Science.gov (United States)

    Azevedo, Cesar R de Farias; Hippert, Eduardo

    2002-01-01

    This paper summarizes several cases of metallurgical failure analysis of surgical implants conducted at the Laboratory of Failure Analysis, Instituto de Pesquisas Tecnológicas (IPT), in Brazil. Failures with two stainless steel femoral compression plates, one stainless steel femoral nail plate, one Ti-6Al-4V alloy maxillary reconstruction plate, and five Nitinol wires were investigated. The results showed that the implants were not in accordance with ISO standards and presented evidence of corrosion-assisted fracture. Furthermore, some of the implants presented manufacturing/processing defects which also contributed to their premature failure. Implantation of materials that are not biocompatible may cause several types of adverse effects in the human body and lead to premature implant failure. A review of prevailing health legislation is needed in Brazil, along with the adoption of regulatory mechanisms to assure the quality of surgical implants on the market, providing for compulsory procedures in the reporting and investigation of surgical implants which have failed in service.

  16. Failure mode and effects analysis outputs: are they valid?

    Science.gov (United States)

    Shebl, Nada Atef; Franklin, Bryony Dean; Barber, Nick

    2012-06-10

    Failure Mode and Effects Analysis (FMEA) is a prospective risk assessment tool that has been widely used within the aerospace and automotive industries and has been utilised within healthcare since the early 1990s. The aim of this study was to explore the validity of FMEA outputs within a hospital setting in the United Kingdom. Two multidisciplinary teams each conducted an FMEA for the use of vancomycin and gentamicin. Four different validity tests were conducted: Face validity: by comparing the FMEA participants' mapped processes with observational work. Content validity: by presenting the FMEA findings to other healthcare professionals. Criterion validity: by comparing the FMEA findings with data reported on the trust's incident report database. Construct validity: by exploring the relevant mathematical theories involved in calculating the FMEA risk priority number. Face validity was positive as the researcher documented the same processes of care as mapped by the FMEA participants. However, other healthcare professionals identified potential failures missed by the FMEA teams. Furthermore, the FMEA groups failed to include failures related to omitted doses; yet these were the failures most commonly reported in the trust's incident database. Calculating the RPN by multiplying severity, probability and detectability scores was deemed invalid because it is based on calculations that breach the mathematical properties of the scales used. There are significant methodological challenges in validating FMEA. It is a useful tool to aid multidisciplinary groups in mapping and understanding a process of care; however, the results of our study cast doubt on its validity. FMEA teams are likely to need different sources of information, besides their personal experience and knowledge, to identify potential failures. As for FMEA's methodology for scoring failures, there were discrepancies between the teams' estimates and similar incidents reported on the trust's incident

  17. Structures for common-cause failure analysis

    International Nuclear Information System (INIS)

    Vaurio, J.K.

    1981-01-01

    Common-cause failure methodology and terminology have been reviewed and structured to provide a systematical basis for addressing and developing models and methods for quantification. The structure is based on (1) a specific set of definitions, (2) categories based on the way faults are attributable to a common cause, and (3) classes based on the time of entry and the time of elimination of the faults. The failure events are then characterized by their likelihood or frequency and the average residence time. The structure provides a basis for selecting computational models, collecting and evaluating data and assessing the importance of various failure types, and for developing effective defences against common-cause failure. The relationships of this and several other structures are described

  18. Why has the introduction of natural gas vehicles failed in Germany?—Lessons on the role of market failure in markets for alternative fuel vehicles

    International Nuclear Information System (INIS)

    Peters von Rosenstiel, Dirk; Heuermann, Daniel F.; Hüsig, Stefan

    2015-01-01

    Despite private investments exceeding two billion Euros and tax incentives of more than 500 million Euros, the market share of natural gas vehicles (NGVs) in Germany has lagged far behind expectations and behind market developments in other countries. With total cost of ownership being on average lower for NGVs than for gasoline and diesel vehicles this raises the question of the existence of market failure in the German NGV-market. We use a case study approach where we combine quantitative data with insights from a multi-industry expert panel and in-depth interviews with experts from industry, government and civil society in order to examine whether and how different types of market failure contribute to the status quo in the German market for NGVs. We conclude that coordination failure in complementary markets, an artificially created monopoly of service stations at motorways, imperfect information, bounded consumer rationality, and principle-agent-problems are the most prominent market failures inhibiting the development of a functioning market for NGVs. Our results are instructive for the design of effective public policies and investor strategies aiming to create markets for alternative fuel vehicles. - Highlights: • We analyze market failure in the German market for natural gas vehicles. • Coordination failure is the most important reason for market failure to arise. • Minor factors: regulatory deficits, imperfect information, bounded rationality. • Policies encompass stabilizing expectations and supporting actor coordination. • Our results are instructive for policies and investor strategies in AFV-markets

  19. ANALYSIS OF RELIABILITY OF NONRECTORABLE REDUNDANT POWER SYSTEMS TAKING INTO ACCOUNT COMMON FAILURES

    Directory of Open Access Journals (Sweden)

    V. A. Anischenko

    2014-01-01

    Full Text Available Reliability Analysis of nonrestorable redundant power Systems of industrial plants and other consumers of electric energy was carried out. The main attention was paid to numbers failures influence, caused by failures of all elements of System due to one general reason. Noted the main possible reasons of common failures formation. Two main indicators of reliability of non-restorable systems are considered: average time of no-failure operation and mean probability of no-failure operation. Modeling of failures were carried out by mean of division of investigated system into two in-series connected subsystems, one of them indicated independent failures, but the other indicated common failures. Due to joined modeling of single and common failures resulting intensity of failures is the amount incompatible components: intensity statistically independent failures and intensity of common failures of elements and system in total.It is shown the influence of common failures of elements on average time of no-failure operation of system. There is built the scale of preference of systems according to criterion of  average time maximum of no-failure operation, depending on portion of common failures. It is noticed that such common failures don’t influence on the scale of preference, but  change intervals of time, determining the moments of systems failures and excepting them from the number of comparators. There were discussed two problems  of conditionally optimization of  systems’  reservation choice, taking into account their reliability and cost. The first problem is solved due to criterion of minimum cost of system providing mean probability of no-failure operation, the second problem is solved due to criterion of maximum of mean probability of no-failure operation with cost limitation of system.

  20. Quantification of a decision-making failure probability of the accident management using cognitive analysis model

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Yoshitaka; Ohtani, Masanori [Institute of Nuclear Safety System, Inc., Mihama, Fukui (Japan); Fujita, Yushi [TECNOVA Corp., Tokyo (Japan)

    2002-09-01

    In the nuclear power plant, much knowledge is acquired through probabilistic safety assessment (PSA) of a severe accident, and accident management (AM) is prepared. It is necessary to evaluate the effectiveness of AM using the decision-making failure probability of an emergency organization, operation failure probability of operators, success criteria of AM and reliability of AM equipments in PSA. However, there has been no suitable qualification method for PSA so far to obtain the decision-making failure probability, because the decision-making failure of an emergency organization treats the knowledge based error. In this work, we developed a new method for quantification of the decision-making failure probability of an emergency organization using cognitive analysis model, which decided an AM strategy, in a nuclear power plant at the severe accident, and tried to apply it to a typical pressurized water reactor (PWR) plant. As a result: (1) It could quantify the decision-making failure probability adjusted to PSA for general analysts, who do not necessarily possess professional human factors knowledge, by choosing the suitable value of a basic failure probability and an error-factor. (2) The decision-making failure probabilities of six AMs were in the range of 0.23 to 0.41 using the screening evaluation method and in the range of 0.10 to 0.19 using the detailed evaluation method as the result of trial evaluation based on severe accident analysis of a typical PWR plant, and a result of sensitivity analysis of the conservative assumption, failure probability decreased about 50%. (3) The failure probability using the screening evaluation method exceeded that using detailed evaluation method by 99% of probability theoretically, and the failure probability of AM in this study exceeded 100%. From this result, it was shown that the decision-making failure probability was more conservative than the detailed evaluation method, and the screening evaluation method satisfied

  1. Quantification of a decision-making failure probability of the accident management using cognitive analysis model

    International Nuclear Information System (INIS)

    Yoshida, Yoshitaka; Ohtani, Masanori; Fujita, Yushi

    2002-01-01

    In the nuclear power plant, much knowledge is acquired through probabilistic safety assessment (PSA) of a severe accident, and accident management (AM) is prepared. It is necessary to evaluate the effectiveness of AM using the decision-making failure probability of an emergency organization, operation failure probability of operators, success criteria of AM and reliability of AM equipments in PSA. However, there has been no suitable qualification method for PSA so far to obtain the decision-making failure probability, because the decision-making failure of an emergency organization treats the knowledge based error. In this work, we developed a new method for quantification of the decision-making failure probability of an emergency organization using cognitive analysis model, which decided an AM strategy, in a nuclear power plant at the severe accident, and tried to apply it to a typical pressurized water reactor (PWR) plant. As a result: (1) It could quantify the decision-making failure probability adjusted to PSA for general analysts, who do not necessarily possess professional human factors knowledge, by choosing the suitable value of a basic failure probability and an error-factor. (2) The decision-making failure probabilities of six AMs were in the range of 0.23 to 0.41 using the screening evaluation method and in the range of 0.10 to 0.19 using the detailed evaluation method as the result of trial evaluation based on severe accident analysis of a typical PWR plant, and a result of sensitivity analysis of the conservative assumption, failure probability decreased about 50%. (3) The failure probability using the screening evaluation method exceeded that using detailed evaluation method by 99% of probability theoretically, and the failure probability of AM in this study exceeded 100%. From this result, it was shown that the decision-making failure probability was more conservative than the detailed evaluation method, and the screening evaluation method satisfied

  2. Safety Management in an Oil Company through Failure Mode Effects and Critical Analysis

    Directory of Open Access Journals (Sweden)

    Benedictus Rahardjo

    2016-06-01

    Full Text Available This study attempts to apply Failure Mode Effects and Criticality Analysis (FMECA to improve the safety of a production system, specifically the production process of an oil company. Since food processing is a worldwide issue and self-management of a food company is more important than relying on government regulations, therefore this study focused on that matter. The initial step of this study is to identify and analyze the criticality of the potential failure modes of the production process. Furthermore, take corrective action to minimize the probability of repeating the same failure mode, followed by a re-analysis of its criticality. The results of corrective actions were compared with those before improvement conditions by testing the significance of the difference using two sample t-test. The final measured result is the Criticality Priority Number (CPN, which refers to the severity category of the failure mode and the probability of occurrence of the same failure mode. The recommended actions proposed by the FMECA significantly reduce the CPN compared with the value before improvement, with increases of 38.46% for the palm olein case study.

  3. Preliminary Failure Modes and Effects Analysis of the US DCLL Test Blanket Module

    Energy Technology Data Exchange (ETDEWEB)

    Lee C. Cadwallader

    2010-06-01

    This report presents the results of a preliminary failure modes and effects analysis (FMEA) of a small tritium-breeding test blanket module design for the International Thermonuclear Experimental Reactor. The FMEA was quantified with “generic” component failure rate data, and the failure events are binned into postulated initiating event families and frequency categories for safety assessment. An appendix to this report contains repair time data to support an occupational radiation exposure assessment for test blanket module maintenance.

  4. Preliminary Failure Modes and Effects Analysis of the US DCLL Test Blanket Module

    Energy Technology Data Exchange (ETDEWEB)

    Lee C. Cadwallader

    2007-08-01

    This report presents the results of a preliminary failure modes and effects analysis (FMEA) of a small tritium-breeding test blanket module design for the International Thermonuclear Experimental Reactor. The FMEA was quantified with “generic” component failure rate data, and the failure events are binned into postulated initiating event families and frequency categories for safety assessment. An appendix to this report contains repair time data to support an occupational radiation exposure assessment for test blanket module maintenance.

  5. Preliminary Failure Modes and Effects Analysis of the US DCLL Test Blanket Module

    International Nuclear Information System (INIS)

    Lee C. Cadwallader

    2007-01-01

    This report presents the results of a preliminary failure modes and effects analysis (FMEA) of a small tritium-breeding test blanket module design for the International Thermonuclear Experimental Reactor. The FMEA was quantified with 'generic' component failure rate data, and the failure events are binned into postulated initiating event families and frequency categories for safety assessment. An appendix to this report contains repair time data to support an occupational radiation exposure assessment for test blanket module maintenance

  6. Preliminary Analysis of the Common Cause Failure Events for Domestic Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kang, Daeil; Han, Sanghoon

    2007-01-01

    It is known that the common cause failure (CCF) events have a great effect on the safety and probabilistic safety assessment (PSA) results of nuclear power plants (NPPs). However, the domestic studies have been mainly focused on the analysis method and modeling of CCF events. Thus, the analysis of the CCF events for domestic NPPs were performed to establish a domestic database for the CCF events and to deliver them to the operation office of the international common cause failure data exchange (ICDE) project. This paper presents the analysis results of the CCF events for domestic nuclear power plants

  7. A model-based prognostic approach to predict interconnect failure using impedance analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Dae Il; Yoon, Jeong Ah [Dept. of System Design and Control Engineering. Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2016-10-15

    The reliability of electronic assemblies is largely affected by the health of interconnects, such as solder joints, which provide mechanical, electrical and thermal connections between circuit components. During field lifecycle conditions, interconnects are often subjected to a DC open circuit, one of the most common interconnect failure modes, due to cracking. An interconnect damaged by cracking is sometimes extremely hard to detect when it is a part of a daisy-chain structure, neighboring with other healthy interconnects that have not yet cracked. This cracked interconnect may seem to provide a good electrical contact due to the compressive load applied by the neighboring healthy interconnects, but it can cause the occasional loss of electrical continuity under operational and environmental loading conditions in field applications. Thus, cracked interconnects can lead to the intermittent failure of electronic assemblies and eventually to permanent failure of the product or the system. This paper introduces a model-based prognostic approach to quantitatively detect and predict interconnect failure using impedance analysis and particle filtering. Impedance analysis was previously reported as a sensitive means of detecting incipient changes at the surface of interconnects, such as cracking, based on the continuous monitoring of RF impedance. To predict the time to failure, particle filtering was used as a prognostic approach using the Paris model to address the fatigue crack growth. To validate this approach, mechanical fatigue tests were conducted with continuous monitoring of RF impedance while degrading the solder joints under test due to fatigue cracking. The test results showed the RF impedance consistently increased as the solder joints were degraded due to the growth of cracks, and particle filtering predicted the time to failure of the interconnects similarly to their actual timesto- failure based on the early sensitivity of RF impedance.

  8. Studies on failure kind analysis of the radiologic medical equipment in general hospital

    International Nuclear Information System (INIS)

    Lee, Woo Cheul; Kim, Jeong Lae

    1999-01-01

    This paper included a data analysis of the unit of medical devices using maintenance recording card that had medical devices of unit failure mode, hospital of failure mode and MTBF. The results of the analysis were as follows : 1. Medical devices of unit failure mode was the highest in QC/PM such A hospital as 33.9%, B hospital 30.9%, C hospital 30.3%, second degree was the Electrical and Electronic failure such A hospital as 23.5%, B hospital 25.3%, C hospital 28%, third degree was mechanical failure such A hospital as 19.6%, B hospital 22.5%, C hospital 25.4%. 2. Hospital of failure mode was the highest in Mobile X-ray device(A hospital 62.5%, B hospital 69.5%, C hospital 37.4%), and was the lowest in Sono devices(A hospital 16.76%, B hospital 8.4%, C hospital 7%). 3. Mean time between failures(MTBT) was the highest in SONO devices and was the lowest in Mobile X-ray devices which have 200 - 400 failure hours. 4. Average failure ratio was the highest in Mobile X-ray devices(A hospital 31.3%, B hospital 34.8%, C hospital 18.7%), and was the lowest in Sono(Ultrasound) devices (A hospital 8.4%, B hospital 4.2%, C hospital 3.5%). 5. Failure ratio results of medical devices according to QC/PM part of unit failure mode were as follows ; A hospital was the highest part of QC/PM (50%) in Mamo X-ray device and was the lowest part of QC/PM(26.4%) in Gastro X-ray. B hospital was the highest part of QC/PM(56%) in Mobile X-ray device, and the lowest part of QC/PM(12%) in Gastro X-ray. C hospital was the highest part of QC/PM(60%) in R/F X-ray device, and the lowest a part of QC/PM(21%) in Universal X-ray. It was found that the units responsible for most failure decreased by systematic management. We made the preventive maintenance schedule focusing on adjustment of operating and dust removal

  9. Advanced composites structural concepts and materials technologies for primary aircraft structures: Structural response and failure analysis

    Science.gov (United States)

    Dorris, William J.; Hairr, John W.; Huang, Jui-Tien; Ingram, J. Edward; Shah, Bharat M.

    1992-01-01

    Non-linear analysis methods were adapted and incorporated in a finite element based DIAL code. These methods are necessary to evaluate the global response of a stiffened structure under combined in-plane and out-of-plane loading. These methods include the Arc Length method and target point analysis procedure. A new interface material model was implemented that can model elastic-plastic behavior of the bond adhesive. Direct application of this method is in skin/stiffener interface failure assessment. Addition of the AML (angle minus longitudinal or load) failure procedure and Hasin's failure criteria provides added capability in the failure predictions. Interactive Stiffened Panel Analysis modules were developed as interactive pre-and post-processors. Each module provides the means of performing self-initiated finite elements based analysis of primary structures such as a flat or curved stiffened panel; a corrugated flat sandwich panel; and a curved geodesic fuselage panel. This module brings finite element analysis into the design of composite structures without the requirement for the user to know much about the techniques and procedures needed to actually perform a finite element analysis from scratch. An interactive finite element code was developed to predict bolted joint strength considering material and geometrical non-linearity. The developed method conducts an ultimate strength failure analysis using a set of material degradation models.

  10. Comprehensive Deployment Method for Technical Characteristics Base on Multi-failure Modes Correlation Analysis

    Science.gov (United States)

    Zheng, W.; Gao, J. M.; Wang, R. X.; Chen, K.; Jiang, Y.

    2017-12-01

    This paper put forward a new method of technical characteristics deployment based on Reliability Function Deployment (RFD) by analysing the advantages and shortages of related research works on mechanical reliability design. The matrix decomposition structure of RFD was used to describe the correlative relation between failure mechanisms, soft failures and hard failures. By considering the correlation of multiple failure modes, the reliability loss of one failure mode to the whole part was defined, and a calculation and analysis model for reliability loss was presented. According to the reliability loss, the reliability index value of the whole part was allocated to each failure mode. On the basis of the deployment of reliability index value, the inverse reliability method was employed to acquire the values of technology characteristics. The feasibility and validity of proposed method were illustrated by a development case of machining centre’s transmission system.

  11. Statistical analysis of human maintenance failures of a nuclear power plant

    International Nuclear Information System (INIS)

    Pyy, P.

    2000-01-01

    In this paper, a statistical study of faults caused by maintenance activities is presented. The objective of the study was to draw conclusions on the unplanned effects of maintenance on nuclear power plant safety and system availability. More than 4400 maintenance history reports from the years 1992-1994 of Olkiluoto BWR nuclear power plant (NPP) were analysed together with the maintenance personnel. The human action induced faults were classified, e.g., according to their multiplicity and effects. This paper presents and discusses the results of a statistical analysis of the data. Instrumentation and electrical components are especially prone to human failures. Many human failures were found in safety related systems. Similarly, several failures remained latent from outages to power operation. The safety significance was generally small. Modifications are an important source of multiple human failures. Plant maintenance data is a good source of human reliability data and it should be used more, in future. (orig.)

  12. FAILURE ANALYSIS IN TUBING OF AIR PREHEATER OF BOILER FROM A SUGARCANE MILL

    Directory of Open Access Journals (Sweden)

    Joner Oliveira Alves

    2014-10-01

    Full Text Available The increased demand for energy from sugarcane bagasse has made the sugar and alcohol mills search alternatives to reduce maintenance of the boilers, releasing more time to the production. The stainless steel use has become one of the main tools for such reduction. However, specification errors can lead to premature failures. This work reports the factors that led tubes of AISI 409 stainless steel fail after half season when applied in a air preheater of boiler from a sugarcane mill. In such application, the AISI 304 lasts about 15 seasons and the carbon steel about 3. A tube sent by the sugar mill was characterized by wet chemical analysis, optical microscopy and EDS. Results indicated chloride formation on the internal walls of the tube, which combined with the environment, accelerated the corrosion process. The carbon steel showed high lifetime due to a 70% higher thickness. Due to the work condictions is recommended the use of stainless steels with higher corrosion resistance, such as the traditional AISI 304 or the ferritic AISI 444, the last presents better thermal exchange.

  13. Failure propagation tests and analysis at PNC

    International Nuclear Information System (INIS)

    Tanabe, H.; Miyake, O.; Daigo, Y.; Sato, M.

    1984-01-01

    Failure propagation tests have been conducted using the Large Leak Sodium Water Reaction Test Rig (SWAT-1) and the Steam Generator Safety Test Facility (SWAT-3) at PNC in order to establish the safety design of the LMFBR prototype Monju steam generators. Test objectives are to provide data for selecting a design basis leak (DBL), data on the time history of failure propagations, data on the mechanism of the failures, and data on re-use of tubes in the steam generators that have suffered leaks. Eighteen fundamental tests have been performed in an intermediate leak region using the SWAT-1 test rig, and ten failure propagation tests have been conducted in the region from a small leak to a large leak using the SWAT-3 test facility. From the test results it was concluded that a dominant mechanism was tube wastage, and it took more than one minute until each failure propagation occurred. Also, the total leak rate in full sequence simulation tests including a water dump was far less than that of one double-ended-guillotine (DEG) failure. Using such experimental data, a computer code, LEAP (Leak Enlargement and Propagation), has been developed for the purpose of estimating the possible maximum leak rate due to failure propagation. This paper describes the results of the failure propagation tests and the model structure and validation studies of the LEAP code. (author)

  14. Failure case of a garage door opener

    Directory of Open Access Journals (Sweden)

    Habib, K.

    2005-12-01

    Full Text Available A failure analysis of a garage door opener was conducted for determination of the cause of the failure. The analysis included visual inspections of broken parts as well as electron microscopy examinations of the fracture surface. The visual inspections showed that a bolt connected to the inner trolley of the garage opener assembly was initially fractured. Also, the results of electron microscopy examinations revealed that the broken bolt failed by fatigue damage phenomenon, due to alternating torsional stresses throughout 25 years of an operational life of the garage opener. In addition, a mathematical model corresponding to the failure mechanism was derived along the failure analysis. The model comprises of both design philosophy and fracture mechanics approaches.

    Se analizó el fallo del mecanismo de apertura de una puerta de garaje con el fin de determinar sus causas. El análisis incluyó una inspección visual de las piezas rotas así como un examen mediante microscopía de la superficie de fractura. La inspección visual reveló que primero se fracturó un perno conectado al carro interior del mecanismo de apertura. Los resultados del análisis por microscopía electrónica también mostraron que el perno roto falló debido a fenómenos de daño por fatiga, debido a los esfuerzos torsionales alternos a la largo de 25 años de vida en servicio del mecanismo de apertura. Por otra parte, se construyó un modelo matemático correspondiente al mecanismo de rotura durante el análisis del mismo. Este modelo comprende enfoques, tanto de la filosofía de diseño como de la mecánica de fractura.

  15. Failure analysis of radioisotopic heat source capsules tested under multi-axial conditions

    International Nuclear Information System (INIS)

    Zielinski, R.E.; Stacy, E.; Burgan, C.E.

    In order to qualify small radioisotopic heat sources for a 25-yr design life, multi-axial mechanical tests were performed on the structural components of the heat source. The results of these tests indicated that failure predominantly occurred in the middle of the weld ramp-down zone. Examination of the failure zone by standard metallographic techniques failed to indicate the true cause of failure. A modified technique utilizing chemical etching, scanning electron microscopy, and energy dispersive x-ray analysis was employed and dramatically indicated the true cause of failure, impurity concentration in the ramp-down zone. As a result of the initial investigation, weld parameters for the heat sources were altered. Example welds made with a pulse arc technique did not have this impurity buildup in the ramp-down zone

  16. Photovoltaic module reliability improvement through application testing and failure analysis

    Science.gov (United States)

    Dumas, L. N.; Shumka, A.

    1982-01-01

    During the first four years of the U.S. Department of Energy (DOE) National Photovoltatic Program, the Jet Propulsion Laboratory Low-Cost Solar Array (LSA) Project purchased about 400 kW of photovoltaic modules for test and experiments. In order to identify, report, and analyze test and operational problems with the Block Procurement modules, a problem/failure reporting and analysis system was implemented by the LSA Project with the main purpose of providing manufacturers with feedback from test and field experience needed for the improvement of product performance and reliability. A description of the more significant types of failures is presented, taking into account interconnects, cracked cells, dielectric breakdown, delamination, and corrosion. Current design practices and reliability evaluations are also discussed. The conducted evaluation indicates that current module designs incorporate damage-resistant and fault-tolerant features which address field failure mechanisms observed to date.

  17. Failure trend analysis for safety related components of Korean standard NPPs

    International Nuclear Information System (INIS)

    Choi, Sun Yeong; Han, Sang Hoon

    2005-01-01

    The component reliability data of Korean NPP that reflects the plant specific characteristics is required necessarily for PSA of Korean nuclear power plants. We have performed a project to develop the component reliability database (KIND, Korea Integrated Nuclear Reliability Database) and S/W for database management and component reliability analysis. Based on the system, we have collected the component operation data and failure/repair data during from plant operation date to 2002 for YGN 3, 4 and UCN 3, 4 plants. Recently, we provided the component failure rate data for UCN 3, 4 standard PSA model from the KIND. We evaluated the components that have high-ranking failure rates with the component reliability data from plant operation date to 1998 and 2000 for YGN 3,4 and UCN 3, 4 respectively. We also identified their failure mode that occurred frequently. In this study, we analyze the component failure trend and perform site comparison based on the generic data by using the component reliability data which is extended to 2002 for UCN 3, 4 and YGN 3, 4 respectively. We focus on the major safety related rotating components such as pump, EDG etc

  18. Failure Analysis of PRDS Pipe in a Thermal Power Plant Boiler

    Science.gov (United States)

    Ghosh, Debashis; Ray, Subrata; Mandal, Jiten; Mandal, Nilrudra; Shukla, Awdhesh Kumar

    2018-04-01

    The pressure reducer desuperheater (PRDS) pipeline is used for reducing the pressure and desuperheating of the steam in different auxiliary pipeline. When the PRDS pipeline is failed, the reliability of the boiler is affected. This paper investigates the probable cause/causes of failure of the PRDS tapping line. In that context, visual inspection, outside diameter and wall thickness measurement, chemical analysis, metallographic examination and hardness measurement are conducted as part of the investigative studies. Apart from these tests, mechanical testing and fractographic analysis are also conducted as supplements. Finally, it has been concluded that the PRDS pipeline has mainly failed due to graphitization due to prolonged exposure of the pipe at higher temperature. The improper material used is mainly responsible for premature failure of the pipe.

  19. A quantitative impact analysis of sensor failures on human operator's decision making in nuclear power plants

    International Nuclear Information System (INIS)

    Seong, Poong Hyun

    2004-01-01

    In emergency or accident situations in nuclear power plants, human operators take important roles in generating appropriate control signals to mitigate accident situation. In human reliability analysis (HRA) in the framework of probabilistic safety assessment (PSA), the failure probabilities of such appropriate actions are estimated and used for the safety analysis of nuclear power plants. Even though understanding the status of the plant is basically the process of information seeking and processing by human operators, it seems that conventional HRA methods such as THERP, HCR, and ASEP does not pay a lot of attention to the possibilities of providing wrong information to human operators. In this paper, a quantitative impact analysis of providing wrong information to human operators due to instrument faults or sensor failures is performed. The quantitative impact analysis is performed based on a quantitative situation assessment model. By comparing the situation in which there are sensor failures and the situation in which there are not sensor failures, the impact of sensor failures can be evaluated quantitatively. It is concluded that the impact of sensor failures are quite significant at the initial stages, but the impact is gradually reduced as human operators make more and more observations. Even though the impact analysis is highly dependent on the situation assessment model, it is expected that the conclusions made based on other situation assessment models with be consistent with the conclusion made in this paper. (author)

  20. Gearbox Reliability Collaborative Gearbox 1 Failure Analysis Report: December 2010 - January 2011

    Energy Technology Data Exchange (ETDEWEB)

    Errichello, R.; Muller, J.

    2012-02-01

    Unintended gearbox failures have a significant impact on the cost of wind farm operations. In 2007, NREL initiated the Gearbox Reliability Collaborative (GRC). The project combines analysis, field testing, dynamometer testing, condition monitoring, and the development and population of a gearbox failure database in a multi-pronged approach to determine why wind turbine gearboxes do not achieve their expected design life. The collaborative of manufacturers, owners, researchers, and consultants focuses on gearbox testing and modeling and the development of a gearbox failure database. Collaborative members also investigate gearbox condition monitoring techniques. Data gained from the GRC will enable designers, developers, and manufacturers to improve gearbox designs and testing standards and create more robust modeling tools. GRC project essentials include the development of two identical, heavily instrumented representative gearbox designs. Knowledge gained from the field and dynamometer tests conducted on these gearboxes builds an understanding of how the selected loads and events translate into bearing and gear response. This report contains the analysis of the first gearbox design.

  1. Advances on the Failure Analysis of the Dam—Foundation Interface of Concrete Dams

    Directory of Open Access Journals (Sweden)

    Luis Altarejos-García

    2015-12-01

    Full Text Available Failure analysis of the dam-foundation interface in concrete dams is characterized by complexity, uncertainties on models and parameters, and a strong non-linear softening behavior. In practice, these uncertainties are dealt with a well-structured mixture of experience, best practices and prudent, conservative design approaches based on the safety factor concept. Yet, a sound, deep knowledge of some aspects of this failure mode remain unveiled, as they have been offset in practical applications by the use of this conservative approach. In this paper we show a strategy to analyse this failure mode under a reliability-based approach. The proposed methodology of analysis integrates epistemic uncertainty on spatial variability of strength parameters and data from dam monitoring. The purpose is to produce meaningful and useful information regarding the probability of occurrence of this failure mode that can be incorporated in risk-informed dam safety reviews. In addition, relationships between probability of failure and factors of safety are obtained. This research is supported by a more than a decade of intensive professional practice on real world cases and its final purpose is to bring some clarity, guidance and to contribute to the improvement of current knowledge and best practices on such an important dam safety concern.

  2. Failure mode and effects analysis of witnessing protocols for ensuring traceability during IVF.

    Science.gov (United States)

    Rienzi, Laura; Bariani, Fiorenza; Dalla Zorza, Michela; Romano, Stefania; Scarica, Catello; Maggiulli, Roberta; Nanni Costa, Alessandro; Ubaldi, Filippo Maria

    2015-10-01

    Traceability of cells during IVF is a fundamental aspect of treatment, and involves witnessing protocols. Failure mode and effects analysis (FMEA) is a method of identifying real or potential breakdowns in processes, and allows strategies to mitigate risks to be developed. To examine the risks associated with witnessing protocols, an FMEA was carried out in a busy IVF centre, before and after implementation of an electronic witnessing system (EWS). A multidisciplinary team was formed and moderated by human factors specialists. Possible causes of failures, and their potential effects, were identified and risk priority number (RPN) for each failure calculated. A second FMEA analysis was carried out after implementation of an EWS. The IVF team identified seven main process phases, 19 associated process steps and 32 possible failure modes. The highest RPN was 30, confirming the relatively low risk that mismatches may occur in IVF when a manual witnessing system is used. The introduction of the EWS allowed a reduction in the moderate-risk failure mode by two-thirds (highest RPN = 10). In our experience, FMEA is effective in supporting multidisciplinary IVF groups to understand the witnessing process, identifying critical steps and planning changes in practice to enable safety to be enhanced. Copyright © 2015 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  3. Reliability analysis for the creep rupture mode of failure

    International Nuclear Information System (INIS)

    Vaidyanathan, S.

    1975-01-01

    An analytical study has been carried out to relate the factors of safety employed in the design of a component to the probability of failure in the thermal creep rupture mode. The analysis considers the statistical variations in the operating temperature, stress and rupture time, and applies the life fraction damage criterion as the indicator of failure. Typical results for solution annealed type 304-stainless steel material for the temperature and stress variations expected in an LMFBR environment have been obtained. The analytical problem was solved by considering the joint distribution of the independent variables and deriving the distribution for the function associated with the probability of failure by integrating over proper regions as dictated by the deterministic design rule. This leads to a triple integral for the final probability of failure where the coefficients of variation associated with the temperature, stress and rupture time distributions can be specified by the user. The derivation is general, and can be used for time varying stress histories and the case of irradiated material where the rupture time varies with accumulated fluence. Example calculations applied to solution annealed type 304 stainless steel material have been carried out for an assumed coefficient of variation of 2% for temperature and 6% for stress. The results show that the probability of failure associated with dependent stress intensity limits specified in the ASME Boiler and Pressure Vessel Section III Code Case 1592 is less than 5x10 -8 . Rupture under thermal creep conditions is a highly complicated phenomenon. It is believed that the present study will help in quantizing the reliability to be expected with deterministic design factors of safety

  4. Common-Cause Failure Analysis in Event Assessment

    International Nuclear Information System (INIS)

    Rasmuson, D.M.; Kelly, D.L.

    2008-01-01

    This paper reviews the basic concepts of modeling common-cause failures (CCFs) in reliability and risk studies and then applies these concepts to the treatment of CCF in event assessment. The cases of a failed component (with and without shared CCF potential) and a component being unavailable due to preventive maintenance or testing are addressed. The treatment of two related failure modes (e.g. failure to start and failure to run) is a new feature of this paper, as is the treatment of asymmetry within a common-cause component group

  5. SU-F-T-246: Evaluation of Healthcare Failure Mode And Effect Analysis For Risk Assessment

    International Nuclear Information System (INIS)

    Harry, T; Manger, R; Cervino, L; Pawlicki, T

    2016-01-01

    Purpose: To evaluate the differences between the Veteran Affairs Healthcare Failure Modes and Effect Analysis (HFMEA) and the AAPM Task Group 100 Failure and Effect Analysis (FMEA) risk assessment techniques in the setting of a stereotactic radiosurgery (SRS) procedure were compared respectively. Understanding the differences in the techniques methodologies and outcomes will provide further insight into the applicability and utility of risk assessments exercises in radiation therapy. Methods: HFMEA risk assessment analysis was performed on a stereotactic radiosurgery procedure. A previous study from our institution completed a FMEA of our SRS procedure and the process map generated from this work was used for the HFMEA. The process of performing the HFMEA scoring was analyzed, and the results from both analyses were compared. Results: The key differences between the two risk assessments are the scoring criteria for failure modes and identifying critical failure modes for potential hazards. The general consensus among the team performing the analyses was that scoring for the HFMEA was simpler and more intuitive then the FMEA. The FMEA identified 25 critical failure modes while the HFMEA identified 39. Seven of the FMEA critical failure modes were not identified by the HFMEA and 21 of the HFMEA critical failure modes were not identified by the FMEA. HFMEA as described by the Veteran Affairs provides guidelines on which failure modes to address first. Conclusion: HFMEA is a more efficient model for identifying gross risks in a process than FMEA. Clinics with minimal staff, time and resources can benefit from this type of risk assessment to eliminate or mitigate high risk hazards with nominal effort. FMEA can provide more in depth details but at the cost of elevated effort.

  6. SU-F-T-246: Evaluation of Healthcare Failure Mode And Effect Analysis For Risk Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Harry, T [Oregon State University, Corvallis, OR (United States); University of California, San Diego, La Jolla, CA (United States); Manger, R; Cervino, L; Pawlicki, T [University of California, San Diego, La Jolla, CA (United States)

    2016-06-15

    Purpose: To evaluate the differences between the Veteran Affairs Healthcare Failure Modes and Effect Analysis (HFMEA) and the AAPM Task Group 100 Failure and Effect Analysis (FMEA) risk assessment techniques in the setting of a stereotactic radiosurgery (SRS) procedure were compared respectively. Understanding the differences in the techniques methodologies and outcomes will provide further insight into the applicability and utility of risk assessments exercises in radiation therapy. Methods: HFMEA risk assessment analysis was performed on a stereotactic radiosurgery procedure. A previous study from our institution completed a FMEA of our SRS procedure and the process map generated from this work was used for the HFMEA. The process of performing the HFMEA scoring was analyzed, and the results from both analyses were compared. Results: The key differences between the two risk assessments are the scoring criteria for failure modes and identifying critical failure modes for potential hazards. The general consensus among the team performing the analyses was that scoring for the HFMEA was simpler and more intuitive then the FMEA. The FMEA identified 25 critical failure modes while the HFMEA identified 39. Seven of the FMEA critical failure modes were not identified by the HFMEA and 21 of the HFMEA critical failure modes were not identified by the FMEA. HFMEA as described by the Veteran Affairs provides guidelines on which failure modes to address first. Conclusion: HFMEA is a more efficient model for identifying gross risks in a process than FMEA. Clinics with minimal staff, time and resources can benefit from this type of risk assessment to eliminate or mitigate high risk hazards with nominal effort. FMEA can provide more in depth details but at the cost of elevated effort.

  7. Failure analysis and failure prevention in electric power systems

    International Nuclear Information System (INIS)

    Rau, C.A. Jr.; Becker, D.G.; Besuner, P.M.; Cipolla, R.C.; Egan, G.R.; Gupta, P.; Johnson, D.P.; Omry, U.; Tetelman, A.S.; Rettig, T.W.; Peters, D.C.

    1977-01-01

    New methods have been developed and applied to better quantify and increase the reliability, safety, and availability of electric power plants. Present and potential problem areas have been identified both by development of an improved computerized data base of malfunctions in nuclear power plants and by detailed metallurgical and mechanical failure analyses of selected problems. Significant advances in the accuracy and speed of structural analyses have been made through development and application of the boundary integral equation and influence function methods of stress and fracture mechanics analyses. The currently specified flaw evaluation procedures of the ASME Boiler and Pressure Vessel Code have been computerized. Results obtained from these procedures for evaluation of specific in-service inspection indications have been compared with results obtained utilizing the improved analytical methods. Mathematical methods have also been developed to describe and analyze the statistical variations in materials properties and in component loading, and uncertainties in the flaw size that might be passed by quality assurance systems. These new methods have been combined to develop accurate failure rate predictions based upon probabilistic fracture mechanics. Improved failure prevention strategies have been formulated by combining probabilistic fracture mechanics and cost optimization techniques. The approach has been demonstrated by optimizing the nondestructive inspection level with regard to both reliability and cost. (Auth.)

  8. Failure mode analysis using state variables derived from fault trees with application

    International Nuclear Information System (INIS)

    Bartholomew, R.J.

    1982-01-01

    Fault Tree Analysis (FTA) is used extensively to assess both the qualitative and quantitative reliability of engineered nuclear power systems employing many subsystems and components. FTA is very useful, but the method is limited by its inability to account for failure mode rate-of-change interdependencies (coupling) of statistically independent failure modes. The state variable approach (using FTA-derived failure modes as states) overcomes these difficulties and is applied to the determination of the lifetime distribution function for a heat pipe-thermoelectric nuclear power subsystem. Analyses are made using both Monte Carlo and deterministic methods and compared with a Markov model of the same subsystem

  9. Alternative right ventricular pacing sites.

    Science.gov (United States)

    Łuciuk, Dariusz; Łuciuk, Marek; Gajek, Jacek

    2015-01-01

    The main adverse effect of chronic stimulation is stimulation-induced heart failure in case of ventricular contraction dyssynchrony. Because of this fact, new techniques of stimulation should be considered to optimize electrotherapy. One of these methods is pacing from alternative right ventricular sites. The purpose of this article is to review currently accumulated data about alternative sites of cardiac pacing. Medline and PubMed bases were used to search English and Polish reports published recently. Recent studies report a deleterious effect of long term apical pacing. It is suggested that permanent apical stimulation, by omitting physiological conduction pattern with His-Purkinie network, may lead to electrical and mechanical dyssynchrony of heart muscle contraction. In the long term this pathological situation can lead to severe heart failure and death. Because of this, scientists began to search for some alternative sites of cardiac pacing to reduce the deleterious effect of stimulation. Based on current accumulated data, it is suggested that the right ventricular outflow tract, right ventricular septum, direct His-bundle or biventricular pacing are better alternatives due to more physiological electrical impulse propagation within the heart and the reduction of the dyssynchrony effect. These methods should preserve a better left ventricular function and prevent the development of heart failure in permanent paced patients. As there is still not enough, long-term, randomized, prospective, cross-over and multicenter studies, further research is required to validate the benefits of using this kind of therapy. The article should pay attention to new sites of cardiac stimulation as a better and safer method of treatment.

  10. Does Bruxism Contribute to Dental Implant Failure? A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Zhou, Yi; Gao, Jinxia; Luo, Le; Wang, Yining

    2016-04-01

    Bruxism was usually considered as a contraindication for oral implanting. The causal relationship between bruxism and dental implant failure was remained controversial in existing literatures. This meta-analysis was performed to investigate the relationship between them. This review conducted an electronic systematic literature search in MEDLINE (PubMed) and EmBase in November 2013 without time and language restrictions. Meanwhile, a hand searching for all the relevant references of included studies was also conducted. Study information extraction and methodological quality assessments were accomplished by two reviewers independently. A discussion ensued if any disagreement occurred, and unresolved issues were solved by consulting a third reviewer. Methodological quality was assessed by using the Newcastle-Ottawa Scale tool. Odds ratio (OR) with 95% confidence interval (CI) was pooled to estimate the relative effect of bruxism on dental implant failures. Fixed effects model was used initially; if the heterogeneity was high, random effects model was chosen for meta-analysis. Statistical analyses were carried out by using Review Manager 5.1. In this meta-analysis review, extracted data were classified into two groups based on different units. Units were based on the number of prostheses (group A) and the number of patients (group B). In group A, the total pooled OR of bruxers versus nonbruxers for all subgroups was 4.72 (95% CI: 2.66-8.36, p = .07). In group B, the total pooled OR of bruxers versus nonbruxers for all subgroups was 3.83 (95% CI: 2.12-6.94, p = .22). This meta-analysis was performed to evaluate the relationship between bruxism and dental implant failure. In contrast to nonbruxers, prostheses in bruxers had a higher failure rate. It suggests that bruxism is a contributing factor of causing the occurrence of dental implant technical/biological complications and plays a role in dental implant failure. © 2015 Wiley Periodicals, Inc.

  11. Evaluation and comparison of estimation methods for failure rates and probabilities

    Energy Technology Data Exchange (ETDEWEB)

    Vaurio, Jussi K. [Fortum Power and Heat Oy, P.O. Box 23, 07901 Loviisa (Finland)]. E-mail: jussi.vaurio@fortum.com; Jaenkaelae, Kalle E. [Fortum Nuclear Services, P.O. Box 10, 00048 Fortum (Finland)

    2006-02-01

    An updated parametric robust empirical Bayes (PREB) estimation methodology is presented as an alternative to several two-stage Bayesian methods used to assimilate failure data from multiple units or plants. PREB is based on prior-moment matching and avoids multi-dimensional numerical integrations. The PREB method is presented for failure-truncated and time-truncated data. Erlangian and Poisson likelihoods with gamma prior are used for failure rate estimation, and Binomial data with beta prior are used for failure probability per demand estimation. Combined models and assessment uncertainties are accounted for. One objective is to compare several methods with numerical examples and show that PREB works as well if not better than the alternative more complex methods, especially in demanding problems of small samples, identical data and zero failures. False claims and misconceptions are straightened out, and practical applications in risk studies are presented.

  12. Random safety auditing, root cause analysis, failure mode and effects analysis.

    Science.gov (United States)

    Ursprung, Robert; Gray, James

    2010-03-01

    Improving quality and safety in health care is a major concern for health care providers, the general public, and policy makers. Errors and quality issues are leading causes of morbidity and mortality across the health care industry. There is evidence that patients in the neonatal intensive care unit (NICU) are at high risk for serious medical errors. To facilitate compliance with safe practices, many institutions have established quality-assurance monitoring procedures. Three techniques that have been found useful in the health care setting are failure mode and effects analysis, root cause analysis, and random safety auditing. When used together, these techniques are effective tools for system analysis and redesign focused on providing safe delivery of care in the complex NICU system. Copyright 2010 Elsevier Inc. All rights reserved.

  13. Failure mode and effects analysis outputs: are they valid?

    Directory of Open Access Journals (Sweden)

    Shebl Nada

    2012-06-01

    Full Text Available Abstract Background Failure Mode and Effects Analysis (FMEA is a prospective risk assessment tool that has been widely used within the aerospace and automotive industries and has been utilised within healthcare since the early 1990s. The aim of this study was to explore the validity of FMEA outputs within a hospital setting in the United Kingdom. Methods Two multidisciplinary teams each conducted an FMEA for the use of vancomycin and gentamicin. Four different validity tests were conducted: · Face validity: by comparing the FMEA participants’ mapped processes with observational work. · Content validity: by presenting the FMEA findings to other healthcare professionals. · Criterion validity: by comparing the FMEA findings with data reported on the trust’s incident report database. · Construct validity: by exploring the relevant mathematical theories involved in calculating the FMEA risk priority number. Results Face validity was positive as the researcher documented the same processes of care as mapped by the FMEA participants. However, other healthcare professionals identified potential failures missed by the FMEA teams. Furthermore, the FMEA groups failed to include failures related to omitted doses; yet these were the failures most commonly reported in the trust’s incident database. Calculating the RPN by multiplying severity, probability and detectability scores was deemed invalid because it is based on calculations that breach the mathematical properties of the scales used. Conclusion There are significant methodological challenges in validating FMEA. It is a useful tool to aid multidisciplinary groups in mapping and understanding a process of care; however, the results of our study cast doubt on its validity. FMEA teams are likely to need different sources of information, besides their personal experience and knowledge, to identify potential failures. As for FMEA’s methodology for scoring failures, there were discrepancies

  14. Failure analysis of boiler tube

    International Nuclear Information System (INIS)

    Mehmood, K.; Siddiqui, A.R.

    2007-01-01

    Boiler tubes are energy conversion components where heat energy is used to convert water into high pressure superheated steam, which is then delivered to a turbine for electric power generation in thermal power plants or to run plant and machineries in a process or manufacturing industry. It was reported that one of the tubes of a fire-tube boiler used in a local industry had leakage after the formation of pits at the external surface of the tube. The inner side of the fire tube was working with hot flue gasses with a pressure of 10 Kg/cm/sup 2/ and temperature 225 degree C. The outside of the tube was surrounded by feed water. The purpose of this study was to determine the cause of pits developed at the external surface of the failed boiler tube sample. In the present work boiler tube samples of steel grade ASTM AI61/ASTM A192 were analyzed using metallographic analysis, chemical analysis, and mechanical testing. It was concluded that the appearance of defects on the boiler tube sample indicates cavitation type corrosion failure. Cavitation damage superficially resembled pitting, but surface appeared considerably rougher and had many closely spaced pits. (author)

  15. PSA bounces after neoadjuvant androgen deprivation and external beam radiation: Impact on definitions of failure

    International Nuclear Information System (INIS)

    Zietman, Anthony L.; Christodouleas, John P.; Shipley, William U.

    2005-01-01

    Purpose: To determine the characteristics of prostate specific antigen (PSA) bounces after external beam radiation therapy (EBRT) with neoadjuvant androgen deprivation and their impact on definitions of biochemical failure. Methods and Materials: Characteristics of bounce were calculated for all patients treated by EBRT with neoadjuvant androgen deprivation at our institution between 1992 and 1998 (preexclusion analysis). Calculations were repeated for the subgroup that satisfied additional inclusion/exclusion criteria (postexclusion analysis). The percentage of bounces scoring as false positives according to the ASTRO definition of biochemical failure was compared with those for three alternative definitions (Vancouver, Nadir-plus-two, and Nadir-plus-three) using McNemar's tests. Results: Thirty-nine percent (preexclusion cohort) and 56% (postexclusion cohort) of patients demonstrated a PSA bounce. Twenty percent (preexclusion analysis) and 25% (postexclusion analysis) of these bounces scored as biochemical failure according to the ASTRO definition. The Nadir-plus-three definition scored the smallest percentage of bounces as failure, but the difference between this definition and the ASTRO definition reached statistical significance in neither preexclusion nor postexclusion analyses (p ≥ 0.070). Conclusions: A substantial proportion of patients treated by EBRT with neoadjuvant deprivation experienced a PSA bounce. A large percentage of these bounces scored as biochemical failure according to the ASTRO definition. The Nadir-plus-three definition is less vulnerable to this bias

  16. Systematic review and meta-analysis of left ventricular endocardial pacing in advanced heart failure: Clinically efficacious but at what cost?

    Science.gov (United States)

    Graham, Adam J; Providenica, Rui; Honarbakhsh, Shohreh; Srinivasan, Neil; Sawhney, Vinit; Hunter, Ross; Lambiase, Pier

    2018-04-01

    Cardiac resynchronization using a left ventricular (LV) epicardial lead placed in the coronary sinus is now routinely used in the management of heart failure patients. LV endocardial pacing is an alternative when this is not feasible, with outcomes data sparse. To review the available evidence on the efficacy and safety of endocardial LV pacing via meta-analysis. EMBASE, MEDLINE, and COCHRANE databases with the search term "endocardial biventricular pacing" or "endocardial cardiac resynchronization" or "left ventricular endocardial" or "endocardial left ventricular." Comparisons of pre-and post-QRS width, LV ejection fraction (LVEF), and New York Heart Association (NYHA) functional classification was performed, and mean differences (and respective 95% confidence interval [CI]) applied as a measurement of treatment effect. Fifteen studies, including 362 patients, were selected. During a mean follow-up of 40 ± 24.5 months, death occurred in 72 patients (11 per 100 patient-years). Significant improvements in LVEF (mean difference 7.9%, 95% CI 5-10%, P < 0.0001; I 2  = 73%), QRS width (mean difference: -41% 95% -75 to -7%; P < 0.0001; I 2  = 94%), and NYHA class (mean difference: -1.06, 95% CI -1.2 to -0.9, P < 0.0001; I 2  = 60%), (all P < 0.0001) occurred. Stroke rate was 3.3-4.2 per 100 patient-years, which is higher than equivalent heart failure trial populations and recent meta-analysis that included small case series. LV endocardial lead implantation is a potentially efficacious alternative to CS lead placement, but preliminary data suggest a potentially higher risk of stroke during follow-up when compared to the expected incidence of stroke in similar cohorts of patients. © 2018 Wiley Periodicals, Inc.

  17. BILAM: a composite laminate failure-analysis code using bilinear stress-strain approximations

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, P.V. Jr.; Dasgupta, A.; Chun, Y.W.

    1980-10-01

    The BILAM code which uses constant strain laminate analysis to generate in-plane load/deformation or stress/strain history of composite laminates to the point of laminate failure is described. The program uses bilinear stress-strain curves to model layer stress-strain behavior. Composite laminates are used for flywheels. The use of this computer code will help to develop data on the behavior of fiber composite materials which can be used by flywheel designers. In this program the stress-strain curves are modelled by assuming linear response in axial tension while using bilinear approximations (2 linear segments) for stress-strain response to axial compressive, transverse tensile, transverse compressive and axial shear loadings. It should be noted that the program attempts to empirically simulate the effects of the phenomena which cause nonlinear stress-strain behavior, instead of mathematically modelling the micromechanics involved. This code, therefore, performs a bilinear laminate analysis, and, in conjunction with several user-defined failure interaction criteria, is designed to provide sequential information on all layer failures up to and including the first fiber failure. The modus operandi is described. Code BILAM can be used to: predict the load-deformation/stress-strain behavior of a composite laminate subjected to a given combination of in-plane loads, and make analytical predictions of laminate strength.

  18. Analysis of Service Recovery Failure: From Minority Perspective

    OpenAIRE

    Yasemin Öcal Atınç

    2016-01-01

    We investigate the service failures towards diverse customer groups for the purpose to bring insightful proposals to the managers to recover from these failures. Previous literature provided insights regarding the perception of service failures by minorities and the challenge of recovery due to racial implications driven from the failure, however lacked to propose suggestions for the managers so that they can take either corrective steps toward service failure recovery or prevent service fail...

  19. [Failure mode and effects analysis (FMEA) of insulin in a mother-child university-affiliated health center].

    Science.gov (United States)

    Berruyer, M; Atkinson, S; Lebel, D; Bussières, J-F

    2016-01-01

    Insulin is a high-alert drug. The main objective of this descriptive cross-sectional study was to evaluate the risks associated with insulin use in healthcare centers. The secondary objective was to propose corrective measures to reduce the main risks associated with the most critical failure modes in the analysis. We conducted a failure mode and effects analysis (FMEA) in obstetrics-gynecology, neonatology and pediatrics. Five multidisciplinary meetings occurred in August 2013. A total of 44 out of 49 failure modes were analyzed. Nine out of 44 (20%) failure modes were deemed critical, with a criticality score ranging from 540 to 720. Following the multidisciplinary meetings, everybody agreed that an FMEA was a useful tool to identify failure modes and their relative importance. This approach identified many corrective measures. This shared experience increased awareness of safety issues with insulin in our mother-child center. This study identified the main failure modes and associated corrective measures. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  20. Failure Analysis of a Modern High Performance Diesel Engine Cylinder Head

    Directory of Open Access Journals (Sweden)

    Bingbin Guo

    2014-05-01

    Full Text Available This paper presents a failure analysis on a modern high performance diesel engine cylinder head made of gray cast iron. Cracks appeared intensively at the intersection of two exhaust passages in the cylinder head. The metallurgical examination was conducted in the crack origin zone and other zones. Meanwhile, the load state of the failure part of the cylinder head was determined through the Finite Element Analysis. The results showed that both the point of the maximum temperature and the point of the maximum thermal-mechanical coupling stress were not in the crack position. The excessive load was not the main cause of the failure. The large cooling rate in the casting process created an abnormal graphite zone that existed below the surface of the exhaust passage (about 1.1 mm depth, which led to the fracture of the cylinder head. In the fractured area, there were a large number of casting defects (dip sand, voids, etc. and inferior graphite structure (type D, type E which caused stress concentration. Moreover, high temperature gas entered the cracks, which caused material corrosion, material oxidization, and crack propagation. Finally, premature fracture of the cylinder head took place.

  1. Root cause analysis of SI line-seated thermal sleeve separation failures

    International Nuclear Information System (INIS)

    Jo, Jong Chull; Jhung, Myung Jo; Kim, Hho Jung

    2004-01-01

    At conventional pressurized water reactors, a thermal sleeve (named simply 'sleeve' hereafter) is seated inside the nozzle part of each Safety Injection (SI) branch pipe to prevent and relieve potential excessive transient thermal stress in the nozzle wall when a cold water is injected during the safety injection mode Recently, mechanical failures that the sleeves are separated from the SI branch pipe and fall into the connected cold leg main pipe were occurred in sequence at Yonggwang units 5 and 6 and Ulchin unit 5. There were many activities and efforts to figure out the causes of those failures with experts' reasoning, but the proposed causes were derived from superficial views rather than physically concrete grounds or analysis results. The prerequisites to find out the root causes of failure mechanism will be to identify the flow situation in the pipe junction area connecting the cold leg with the SI pipe and to know the vibration characteristics of sleeves. This paper investigates the flow field in the pipe junction thru a numerical simulation and vibration characteristics of thermal sleeves thru a modal analysis, from which the root causes of sleeve separation mechanism are analyzed

  2. Failure modes and effects analysis (FMEA) for Gamma Knife radiosurgery.

    Science.gov (United States)

    Xu, Andy Yuanguang; Bhatnagar, Jagdish; Bednarz, Greg; Flickinger, John; Arai, Yoshio; Vacsulka, Jonet; Feng, Wenzheng; Monaco, Edward; Niranjan, Ajay; Lunsford, L Dade; Huq, M Saiful

    2017-11-01

    Gamma Knife radiosurgery is a highly precise and accurate treatment technique for treating brain diseases with low risk of serious error that nevertheless could potentially be reduced. We applied the AAPM Task Group 100 recommended failure modes and effects analysis (FMEA) tool to develop a risk-based quality management program for Gamma Knife radiosurgery. A team consisting of medical physicists, radiation oncologists, neurosurgeons, radiation safety officers, nurses, operating room technologists, and schedulers at our institution and an external physicist expert on Gamma Knife was formed for the FMEA study. A process tree and a failure mode table were created for the Gamma Knife radiosurgery procedures using the Leksell Gamma Knife Perfexion and 4C units. Three scores for the probability of occurrence (O), the severity (S), and the probability of no detection for failure mode (D) were assigned to each failure mode by 8 professionals on a scale from 1 to 10. An overall risk priority number (RPN) for each failure mode was then calculated from the averaged O, S, and D scores. The coefficient of variation for each O, S, or D score was also calculated. The failure modes identified were prioritized in terms of both the RPN scores and the severity scores. The established process tree for Gamma Knife radiosurgery consists of 10 subprocesses and 53 steps, including a subprocess for frame placement and 11 steps that are directly related to the frame-based nature of the Gamma Knife radiosurgery. Out of the 86 failure modes identified, 40 Gamma Knife specific failure modes were caused by the potential for inappropriate use of the radiosurgery head frame, the imaging fiducial boxes, the Gamma Knife helmets and plugs, the skull definition tools as well as other features of the GammaPlan treatment planning system. The other 46 failure modes are associated with the registration, imaging, image transfer, contouring processes that are common for all external beam radiation therapy

  3. Failure analysis of top nozzle holddown spring screw for nuclear fuel assembly

    International Nuclear Information System (INIS)

    Koh, S. K.; Ryu, C. H.; Na, E. G.; Baek, T. H.; Jeon, K. L.

    2003-01-01

    A failure analysis of holddown spring screw was performed using fracture mechanics approach. The spring screw was designed such that it was capable of sustaining the loads imposed by the initial tensile preload and operational loads. In order to investigate the cause of failure, a stress analysis of the top nozzle spring assembly was done using finite element analysis and a life prediction of the screw was made using a fracture mechanics approach. The elastic-plastic finite element analysis showed that the local stresses at the critical regions of head-shank fillet and thread root significantly exceeded than the yield strength of the screw material, resulting in local plastic deformation. Primary water stress corrosion cracking life of the Inconel 600 screw was predicted by using integration of the Scott model and resulted in 1.42 years, which was fairly close to the actual service life of the holddown spring screw

  4. Analysis of Reactor Vessel Lower Head Penetration Tube Failure

    International Nuclear Information System (INIS)

    Stempniewicz, Marek

    1999-01-01

    This paper presents results of two studies, performed to investigate the behavior of the reactor vessel penetration tubes in case of relocation of molten material into the tubes. The first study is on the CORVIS drain line experiment 03/1. Results of pre-test calculations are presented, and compared to the later obtained experimental data. The timing of the drain line melting and the velocity of the debris flowing inside the drain line were predicted correctly, but the penetration depth was clearly underestimated. If the calculations are done using different correlation for the melt-to-wall convective heat transfer, the results are closer to the experiment. It cannot however be concluded that the alternative correlation is more appropriate until other uncertainties are clarified. The second study presents calculations performed for GKN Dodewaard CRD, instrument tubes and drain line. Calculations were performed to estimate whether the tubes have a chance to withstand the first attack of the melt and thus postpone vessel failure until the water in the lower plenum evaporates. Calculations were performed assuming that the melt can move into the tubes without any resistance, e.g. presence of water in the tubes was not taken into account. The results indicate that the critical penetration of the GKN vessel, which is most likely to fail, is the drain line. Results also indicate that external flooding should prevent early tube failure, at least in case of low vessel pressure. (author)

  5. Modular titanium alloy neck adapter failures in hip replacement - failure mode analysis and influence of implant material

    Directory of Open Access Journals (Sweden)

    Bloemer Wilhelm

    2010-01-01

    Full Text Available Abstract Background Modular neck adapters for hip arthroplasty stems allow the surgeon to modify CCD angle, offset and femoral anteversion intraoperatively. Fretting or crevice corrosion may lead to failure of such a modular device due to high loads or surface contamination inside the modular coupling. Unfortunately we have experienced such a failure of implants and now report our clinical experience with the failures in order to advance orthopaedic material research and joint replacement surgery. The failed neck adapters were implanted between August 2004 and November 2006 a total of about 5000 devices. After this period, the titanium neck adapters were replaced by adapters out of cobalt-chromium. Until the end of 2008 in total 1.4% (n = 68 of the implanted titanium alloy neck adapters failed with an average time of 2.0 years (0.7 to 4.0 years postoperatively. All, but one, patients were male, their average age being 57.4 years (36 to 75 years and the average weight 102.3 kg (75 to 130 kg. The failures of neck adapters were divided into 66% with small CCD of 130° and 60% with head lengths of L or larger. Assuming an average time to failure of 2.8 years, the cumulative failure rate was calculated with 2.4%. Methods A series of adapter failures of titanium alloy modular neck adapters in combination with a titanium alloy modular short hip stem was investigated. For patients having received this particular implant combination risk factors were identified which were associated with the occurence of implant failure. A Kaplan-Meier survival-failure-analysis was conducted. The retrieved implants were analysed using microscopic and chemical methods. Modes of failure were simulated in biomechanical tests. Comparative tests included modular neck adapters made of titanium alloy and cobalt chrome alloy material. Results Retrieval examinations and biomechanical simulation revealed that primary micromotions initiated fretting within the modular tapered neck

  6. FAILURE MODE AND EFFECT ANALYSIS (FMEA OF BUTTERFLY VALVE IN OIL AND GAS INDUSTRY

    Directory of Open Access Journals (Sweden)

    MUHAMMAD AMIRUL BIN YUSOF

    2016-04-01

    Full Text Available Butterfly valves are mostly used in various industries such as oil and gas plant. This valve operates with rotating motion using pneumatic system. Rotating actuator turns the disc either parallel or perpendicular to the flow. When the valve is fully open, the disc is rotated a quarter turn so that it allows free passage of the fluid and when fully closed, the disc rotated a quarter turns to block the fluid. The primary failure modes for valves are the valve leaks to environment through flanges, seals on the valve body, valve stem packing not properly protected, over tightened packing nuts, the valve cracks and leaks over the seat. To identify the failure of valve Failure Mode and Effects Analysis has been chosen. FMEA is the one of technique to perform failure analysis. It involves reviewing as many components to identify failure modes, and their causes and effects. For each component, the failure modes and their resulting effects on the rest of the system are recorded in a specific FMEA form. Risk priority number, severity, detection, occurrence are the factor determined in this studies. Risk priority number helps to find out the highest hazardous activities which need more attention than the other activity. The highest score of risk priority number in this research is seat. Action plan was proposed to reduce the risk priority number and so that potential failures also will be reduced.

  7. Selection of remedial alternatives for mine sites: a multicriteria decision analysis approach.

    Science.gov (United States)

    Betrie, Getnet D; Sadiq, Rehan; Morin, Kevin A; Tesfamariam, Solomon

    2013-04-15

    The selection of remedial alternatives for mine sites is a complex task because it involves multiple criteria and often with conflicting objectives. However, an existing framework used to select remedial alternatives lacks multicriteria decision analysis (MCDA) aids and does not consider uncertainty in the selection of alternatives. The objective of this paper is to improve the existing framework by introducing deterministic and probabilistic MCDA methods. The Preference Ranking Organization Method for Enrichment Evaluation (PROMETHEE) methods have been implemented in this study. The MCDA analysis involves processing inputs to the PROMETHEE methods that are identifying the alternatives, defining the criteria, defining the criteria weights using analytical hierarchical process (AHP), defining the probability distribution of criteria weights, and conducting Monte Carlo Simulation (MCS); running the PROMETHEE methods using these inputs; and conducting a sensitivity analysis. A case study was presented to demonstrate the improved framework at a mine site. The results showed that the improved framework provides a reliable way of selecting remedial alternatives as well as quantifying the impact of different criteria on selecting alternatives. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Developmental problems and their solution for the Space Shuttle main engine alternate liquid oxygen high-pressure turbopump: Anomaly or failure investigation the key

    Science.gov (United States)

    Ryan, R.; Gross, L. A.

    1995-05-01

    The Space Shuttle main engine (SSME) alternate high-pressure liquid oxygen pump experienced synchronous vibration and ball bearing life problems that were program threatening. The success of the program hinged on the ability to solve these development problems. The design and solutions to these problems are engirded in the lessons learned and experiences from prior programs, technology programs, and the ability to properly conduct failure or anomaly investigations. The failure investigation determines the problem cause and is the basis for recommending design solutions. For a complex problem, a comprehensive solution requires that formal investigation procedures be used, including fault trees, resolution logic, and action items worked through a concurrent engineering-multidiscipline team. The normal tendency to use an intuitive, cut-and-try approach will usually prove to be costly, both in money and time and will reach a less than optimum, poorly understood answer. The SSME alternate high-pressure oxidizer turbopump development has had two complex problems critical to program success: (1) high synchronous vibrations and (2) excessive ball bearing wear. This paper will use these two problems as examples of this formal failure investigation approach. The results of the team's investigation provides insight into the complexity of the turbomachinery technical discipline interacting/sensitivities and the fine balance of competing investigations required to solve problems and guarantee program success. It is very important to the solution process that maximum use be made of the resources that both the contractor and Government can bring to the problem in a supporting and noncompeting way. There is no place for the not-invented-here attitude. The resources include, but are not limited to: (1) specially skilled professionals; (2) supporting technologies; (3) computational codes and capabilities; and (4) test and manufacturing facilities.

  9. Reliability Analysis of Fatigue Failure of Cast Components for Wind Turbines

    Directory of Open Access Journals (Sweden)

    Hesam Mirzaei Rafsanjani

    2015-04-01

    Full Text Available Fatigue failure is one of the main failure modes for wind turbine drivetrain components made of cast iron. The wind turbine drivetrain consists of a variety of heavily loaded components, like the main shaft, the main bearings, the gearbox and the generator. The failure of each component will lead to substantial economic losses such as cost of lost energy production and cost of repairs. During the design lifetime, the drivetrain components are exposed to variable loads from winds and waves and other sources of loads that are uncertain and have to be modeled as stochastic variables. The types of loads are different for offshore and onshore wind turbines. Moreover, uncertainties about the fatigue strength play an important role in modeling and assessment of the reliability of the components. In this paper, a generic stochastic model for fatigue failure of cast iron components based on fatigue test data and a limit state equation for fatigue failure based on the SN-curve approach and Miner’s rule is presented. The statistical analysis of the fatigue data is performed using the Maximum Likelihood Method which also gives an estimate of the statistical uncertainties. Finally, illustrative examples are presented with reliability analyses depending on various stochastic models and partial safety factors.

  10. Geotechnical Failure of a Concrete Crown Wall on a Rubble Mound Breakwater Considering Sliding Failure and Rupture Failure of Foundation

    DEFF Research Database (Denmark)

    Christiani, E.; Burcharth, H. F.; Sørensen, John Dalsgaard

    1995-01-01

    Sliding and rupture failure in the rubble mound are considered in this paper. In order to describe these failure modes the wave breaking forces have to be accounted for. Wave breaking forces on a crown wall are determined from Burcharth's wave force formula Burcharth (1992). Overtopping rates...... are calculated for a given design by Bradbury et al. (1988a,b) and compared to acceptable overtopping rates, prior to a determininstic design. The method of foundation stability analysis is presented by the example of a translation slip failure involving kinematically correct slip surfaces and failure zones...... in friction based soil. Rupture failure modes for a crown wall with a plane base and a crown wall with an extended leg on the seaward side will be formulated. The failure modes are described by limit state functions. This allows a deterministic analysis to be performed....

  11. Failure Mode and Effect Analysis of Subsea Multiphase Pump Equipment

    Directory of Open Access Journals (Sweden)

    Oluwatoyin Shobowale Kafayat

    2014-07-01

    Full Text Available Finding oil and gas reserves in deep/harsh environment with challenging reservoir and field conditions, subsea multiphase pumping benefits has found its way to provide solutions to these issues. Challenges such as failure issues that are still surging the industry and with the current practice of information hiding, this issues becomes even more difficult to tackle. Although, there are some joint industry projects which are only accessible to its members, still there is a need to have a clear understanding of these equipment groups so as to know which issues to focus attention on. A failure mode and effect analysis (FMEA is a potential first aid in understanding this equipment groups. A survey questionnaire/interview was conducted with the oil and gas operating company and equipment manufacturer based on the literature review. The results indicates that these equipment’s group are similar with its onshore counterpart, but the difference is the robustness built into the equipment internal subsystems for subsea applications. The results from the manufacturer perspectives indicates that Helico-axial multiphase pump have a mean time to failure of more than 10 years, twin-screw and electrical submersible pumps are still struggling with a mean time to failure of less than 5 years.

  12. Reliability analysis of Markov history-dependent repairable systems with neglected failures

    International Nuclear Information System (INIS)

    Du, Shijia; Zeng, Zhiguo; Cui, Lirong; Kang, Rui

    2017-01-01

    Markov history-dependent repairable systems refer to the Markov repairable systems in which some states are changeable and dependent on recent evolutional history of the system. In practice, many Markov history-dependent repairable systems are subjected to neglected failures, i.e., some failures do not affect system performances if they can be repaired promptly. In this paper, we develop a model based on the theory of aggregated stochastic processes to describe the history-dependent behavior and the effect of neglected failures on the Markov history-dependent repairable systems. Based on the developed model, instantaneous and steady-state availabilities are derived to characterize the reliability of the system. Four reliability-related time distributions, i.e., distribution for the k th working period, distribution for the k th failure period, distribution for the real working time in an effective working period, distribution for the neglected failure time in an effective working period, are also derived to provide a more comprehensive description of the system's reliability. Thanks to the power of the theory of aggregated stochastic processes, closed-form expressions are obtained for all the reliability indexes and time distributions. Finally, the developed indexes and analysis methods are demonstrated by a numerical example. - Highlights: • Markovian history-dependent repairable systems with neglected failures is modeled. • Aggregated stochastic processes are used to derive reliability indexes and time distributions. • Closed-form expressions are derived for the considered indexes and distributions.

  13. Rooting out causes in failure analysis; Risk analysis

    Energy Technology Data Exchange (ETDEWEB)

    Keith, Graeme

    2010-07-01

    The Deepwater Horizon disaster was a terrible reminder of the consequences of equipment failure on facilities operating in challenging environments. Thankfully catastrophes on the scale of the Deepwater Horizon are rare, but equipment failure is a daily occurrence on installations around the globe. The consequences range from short unexpected downtime, to a total stop on production. from a brief burst of flaring to lasting environmental damage and from the momentary discomfiture of a worker to incapability or death. (Author)

  14. WE-H-BRC-02: Failure Mode and Effect Analysis of Liver Stereotactic Body Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Rusu, I; Thomas, T; Roeske, J; Price, J; Perino, C; Surucu, M [Loyola University Chicago, Maywood, IL (United States); Mescioglu, I [Lewis University, Romeoville, IL (United States)

    2016-06-15

    Purpose: To identify areas of improvement in our liver stereotactic body radiation therapy (SBRT) program, using failure mode and effect analysis (FMEA). Methods: A multidisciplinary group consisting of one physician, three physicists, one dosimetrist and two therapists was formed. A process map covering 10 major stages of the liver SBRT program from the initial diagnosis to post treatment follow-up was generated. A total of 102 failure modes, together with their causes and effects, were identified. The occurrence (O), severity (S) and lack of detectability (D) were independently scored. The ranking was done using the risk probability number (RPN) defined as the product of average O, S and D numbers for each mode. The scores were normalized to remove inter-observer variability, while preserving individual ranking order. Further, a correlation analysis on the overall agreement on rank order of all failure modes resulted in positive values for successive pairs of evaluators. The failure modes with the highest RPN value were considered for further investigation. Results: The average normalized RPN values for all modes were 39 with a range of 9 to 103. The FMEA analysis resulted in the identification of the top 10 critical failures modes as: Incorrect CT-MR registration, MR scan not performed in treatment position, patient movement between CBCT acquisition and treatment, daily IGRT QA not verified, incorrect or incomplete ITV delineation, OAR contours not verified, inaccurate normal liver effective dose (Veff) calculation, failure of bolus tracking for 4D CT scan, setup instructions not followed for treatment and plan evaluation metrics missed. Conclusion: The application of FMEA to our liver SBRT program led to the identification and possible improvement of areas affecting patient safety.

  15. WE-H-BRC-02: Failure Mode and Effect Analysis of Liver Stereotactic Body Radiotherapy

    International Nuclear Information System (INIS)

    Rusu, I; Thomas, T; Roeske, J; Price, J; Perino, C; Surucu, M; Mescioglu, I

    2016-01-01

    Purpose: To identify areas of improvement in our liver stereotactic body radiation therapy (SBRT) program, using failure mode and effect analysis (FMEA). Methods: A multidisciplinary group consisting of one physician, three physicists, one dosimetrist and two therapists was formed. A process map covering 10 major stages of the liver SBRT program from the initial diagnosis to post treatment follow-up was generated. A total of 102 failure modes, together with their causes and effects, were identified. The occurrence (O), severity (S) and lack of detectability (D) were independently scored. The ranking was done using the risk probability number (RPN) defined as the product of average O, S and D numbers for each mode. The scores were normalized to remove inter-observer variability, while preserving individual ranking order. Further, a correlation analysis on the overall agreement on rank order of all failure modes resulted in positive values for successive pairs of evaluators. The failure modes with the highest RPN value were considered for further investigation. Results: The average normalized RPN values for all modes were 39 with a range of 9 to 103. The FMEA analysis resulted in the identification of the top 10 critical failures modes as: Incorrect CT-MR registration, MR scan not performed in treatment position, patient movement between CBCT acquisition and treatment, daily IGRT QA not verified, incorrect or incomplete ITV delineation, OAR contours not verified, inaccurate normal liver effective dose (Veff) calculation, failure of bolus tracking for 4D CT scan, setup instructions not followed for treatment and plan evaluation metrics missed. Conclusion: The application of FMEA to our liver SBRT program led to the identification and possible improvement of areas affecting patient safety.

  16. Lecture notes: meantime to failure analysis

    International Nuclear Information System (INIS)

    Hanlen, R.C.

    1976-01-01

    A method is presented which affects the Quality Assurance Engineer's place in management decision making by giving him a working parameter to base sound engineering and management decisions. The theory used in Reliability Engineering to determine the mean-time-to-failure of a component or system is reviewed. The method presented derives the probability density function for the parameter of the exponential distribution. The exponential distribution is commonly used by industry to determine the reliability of a component or system when the failure rate is assumed to be constant. Some examples of N Reactor performance data are used. To be specific: The ball system data with 4.9 x 10 6 unit hours of service and 7 individual failures indicates a demonstrated 98.8 percent reliability at a 95 percent confidence level for a 12 month mission period, and the diesel starts data with 7.2 x 10 5 unit hours of service and 1 failure indicates a demonstrated 94.4 percent reliability at a 95 percent confidence level for a 12 month mission period

  17. Failure probabilistic model of CNC lathes

    International Nuclear Information System (INIS)

    Wang Yiqiang; Jia Yazhou; Yu Junyi; Zheng Yuhua; Yi Shangfeng

    1999-01-01

    A field failure analysis of computerized numerical control (CNC) lathes is described. Field failure data was collected over a period of two years on approximately 80 CNC lathes. A coding system to code failure data was devised and a failure analysis data bank of CNC lathes was established. The failure position and subsystem, failure mode and cause were analyzed to indicate the weak subsystem of a CNC lathe. Also, failure probabilistic model of CNC lathes was analyzed by fuzzy multicriteria comprehensive evaluation

  18. Failure mode and effect analysis: improving intensive care unit risk management processes.

    Science.gov (United States)

    Askari, Roohollah; Shafii, Milad; Rafiei, Sima; Abolhassani, Mohammad Sadegh; Salarikhah, Elaheh

    2017-04-18

    Purpose Failure modes and effects analysis (FMEA) is a practical tool to evaluate risks, discover failures in a proactive manner and propose corrective actions to reduce or eliminate potential risks. The purpose of this paper is to apply FMEA technique to examine the hazards associated with the process of service delivery in intensive care unit (ICU) of a tertiary hospital in Yazd, Iran. Design/methodology/approach This was a before-after study conducted between March 2013 and December 2014. By forming a FMEA team, all potential hazards associated with ICU services - their frequency and severity - were identified. Then risk priority number was calculated for each activity as an indicator representing high priority areas that need special attention and resource allocation. Findings Eight failure modes with highest priority scores including endotracheal tube defect, wrong placement of endotracheal tube, EVD interface, aspiration failure during suctioning, chest tube failure, tissue injury and deep vein thrombosis were selected for improvement. Findings affirmed that improvement strategies were generally satisfying and significantly decreased total failures. Practical implications Application of FMEA in ICUs proved to be effective in proactively decreasing the risk of failures and corrected the control measures up to acceptable levels in all eight areas of function. Originality/value Using a prospective risk assessment approach, such as FMEA, could be beneficial in dealing with potential failures through proposing preventive actions in a proactive manner. The method could be used as a tool for healthcare continuous quality improvement so that the method identifies both systemic and human errors, and offers practical advice to deal effectively with them.

  19. Competing failure analysis in phased-mission systems with multiple functional dependence groups

    International Nuclear Information System (INIS)

    Wang, Chaonan; Xing, Liudong; Peng, Rui; Pan, Zhusheng

    2017-01-01

    A phased-mission system (PMS) involves multiple, consecutive, non-overlapping phases of operation. The system structure function and component failure behavior in a PMS can change from phase to phase, posing big challenges to the system reliability analysis. Further complicating the problem is the functional dependence (FDEP) behavior where the failure of certain component(s) causes other component(s) to become unusable or inaccessible or isolated. Previous studies have shown that FDEP can cause competitions between failure propagation and failure isolation in the time domain. While such competing failure effects have been well addressed in single-phase systems, only little work has focused on PMSs with a restrictive assumption that a single FDEP group exists in one phase of the mission. Many practical systems (e.g., computer systems and networks), however may involve multiple FDEP groups during the mission. Moreover, different FDEP groups can be dependent due to sharing some common components; they may appear in a single phase or multiple phases. This paper makes new contributions by modeling and analyzing reliability of PMSs subject to multiple FDEP groups through a Markov chain-based methodology. Propagated failures with both global and selective effects are considered. Four case studies are presented to demonstrate application of the proposed method. - Highlights: • Reliability of phased-mission systems subject to competing failure propagation and isolation effects is modeled. • Multiple independent or dependent functional dependence groups are considered. • Propagated failures with global effects and selective effects are studied. • Four case studies demonstrate generality and application of the proposed Markov-based method.

  20. Construct validity of the Heart Failure Screening Tool (Heart-FaST) to identify heart failure patients at risk of poor self-care: Rasch analysis.

    Science.gov (United States)

    Reynolds, Nicholas A; Ski, Chantal F; McEvedy, Samantha M; Thompson, David R; Cameron, Jan

    2018-02-14

    The aim of this study was to psychometrically evaluate the Heart Failure Screening Tool (Heart-FaST) via: (1) examination of internal construct validity; (2) testing of scale function in accordance with design; and (3) recommendation for change/s, if items are not well adjusted, to improve psychometric credential. Self-care is vital to the management of heart failure. The Heart-FaST may provide a prospective assessment of risk, regarding the likelihood that patients with heart failure will engage in self-care. Psychometric validation of the Heart-FaST using Rasch analysis. The Heart-FaST was administered to 135 patients (median age = 68, IQR = 59-78 years; 105 males) enrolled in a multidisciplinary heart failure management program. The Heart-FaST is a nurse-administered tool for screening patients with HF at risk of poor self-care. A Rasch analysis of responses was conducted which tested data against Rasch model expectations, including whether items serve as unbiased, non-redundant indicators of risk and measure a single construct and that rating scales operate as intended. The results showed that data met Rasch model expectations after rescoring or deleting items due to poor discrimination, disordered thresholds, differential item functioning, or response dependence. There was no evidence of multidimensionality which supports the use of total scores from Heart-FaST as indicators of risk. Aggregate scores from this modified screening tool rank heart failure patients according to their "risk of poor self-care" demonstrating that the Heart-FaST items constitute a meaningful scale to identify heart failure patients at risk of poor engagement in heart failure self-care. © 2018 John Wiley & Sons Ltd.

  1. Hydrogeologic analysis of remedial alternatives for the solar ponds plume, RFETS

    International Nuclear Information System (INIS)

    McLane, C.F. III; Whidden, J.A.; Hopkins, J.K.

    1998-01-01

    The focus of this paper is to develop a conceptual model and a hydrogeologic analysis plan for remedial alternatives being considered for the remediation of a ground water contaminant plume consisting of chiefly nitrate and uranium. The initial step in this process was to determine the adequacy of the existing data from the vast database of site information. Upon concluding that the existing database was sufficient to allow for the development of a conceptual model and then constructing the conceptual model, a hydrogeologic analysis plan was developed to evaluate several alternatives for plume remediation. The plan will be implemented using a combination of analytical and simple numerical ground water flow and contaminant transport models. This allows each portion of the study to be addressed using the appropriate tool, without having to develop a large three-dimensional numerical ground water flow and transport model, thereby reducing project costs. The analysis plan will consist of a preliminary phase of screening analyses for each of the remedial alternative scenarios, and a second phase of more comprehensive and in-depth analyses on a selected subset of remedial alternative scenarios. One of the alternatives which will be analyzed is phytoremediation (remediation of soil and ground water via uptake of chemicals by plants) because of the potential for relatively low capital and operation and maintenance costs, passive nature, and potential to provide long-term protection of the surface water. The results of these hydrogeological analyses will be factored into the selection of the preferred remedial alternative, or combination of alternatives, for the contaminant plume

  2. Slip initiation in alternative and slip-resistant footwear.

    Science.gov (United States)

    Chander, Harish; Wade, Chip; Garner, John C; Knight, Adam C

    2017-12-01

    Slips occur as a result of failure of normal locomotion. The purpose of this study is to analyze the impact of alternative footwear (Crocs™, flip-flops) and an industry standard low-top slip-resistant shoe (SRS) under multiple gait trials (normal dry, unexpected slip, alert slip and expected slip) on lower extremity joint kinematics, kinetics and muscle activity. Eighteen healthy male participants (age: 22.28 ± 2.2 years; height: 177.66 ± 6.9 cm; mass: 79.27 ± 7.6 kg) completed the study. Kinematic, kinetic and muscle activity variables were analyzed using a 3(footwear) × 4(gait trials) repeated-measures analysis of variance at p = 0.05. Greater plantar flexion angles, lower ground reaction forces and greater muscle activity were seen on slip trials with the alternative footwear. During slip events, SRS closely resembled normal dry biomechanics, suggesting it to be a safer footwear choice compared with alternative footwear.

  3. Failure modes and effects criticality analysis and accelerated life testing of LEDs for medical applications

    Science.gov (United States)

    Sawant, M.; Christou, A.

    2012-12-01

    While use of LEDs in Fiber Optics and lighting applications is common, their use in medical diagnostic applications is not very extensive. Since the precise value of light intensity will be used to interpret patient results, understanding failure modes [1-4] is very important. We used the Failure Modes and Effects Criticality Analysis (FMECA) tool to identify the critical failure modes of the LEDs. FMECA involves identification of various failure modes, their effects on the system (LED optical output in this context), their frequency of occurrence, severity and the criticality of the failure modes. The competing failure modes/mechanisms were degradation of: active layer (where electron-hole recombination occurs to emit light), electrodes (provides electrical contact to the semiconductor chip), Indium Tin Oxide (ITO) surface layer (used to improve current spreading and light extraction), plastic encapsulation (protective polymer layer) and packaging failures (bond wires, heat sink separation). A FMECA table is constructed and the criticality is calculated by estimating the failure effect probability (β), failure mode ratio (α), failure rate (λ) and the operating time. Once the critical failure modes were identified, the next steps were generation of prior time to failure distribution and comparing with our accelerated life test data. To generate the prior distributions, data and results from previous investigations were utilized [5-33] where reliability test results of similar LEDs were reported. From the graphs or tabular data, we extracted the time required for the optical power output to reach 80% of its initial value. This is our failure criterion for the medical diagnostic application. Analysis of published data for different LED materials (AlGaInP, GaN, AlGaAs), the Semiconductor Structures (DH, MQW) and the mode of testing (DC, Pulsed) was carried out. The data was categorized according to the materials system and LED structure such as AlGaInP-DH-DC, Al

  4. Failure mode and effect analysis-based quality assurance for dynamic MLC tracking systems

    Energy Technology Data Exchange (ETDEWEB)

    Sawant, Amit; Dieterich, Sonja; Svatos, Michelle; Keall, Paul [Stanford University, Stanford, California 94394 (United States); Varian Medical Systems, Palo Alto, California 94304 (United States); Stanford University, Stanford, California 94394 (United States)

    2010-12-15

    Purpose: To develop and implement a failure mode and effect analysis (FMEA)-based commissioning and quality assurance framework for dynamic multileaf collimator (DMLC) tumor tracking systems. Methods: A systematic failure mode and effect analysis was performed for a prototype real-time tumor tracking system that uses implanted electromagnetic transponders for tumor position monitoring and a DMLC for real-time beam adaptation. A detailed process tree of DMLC tracking delivery was created and potential tracking-specific failure modes were identified. For each failure mode, a risk probability number (RPN) was calculated from the product of the probability of occurrence, the severity of effect, and the detectibility of the failure. Based on the insights obtained from the FMEA, commissioning and QA procedures were developed to check (i) the accuracy of coordinate system transformation, (ii) system latency, (iii) spatial and dosimetric delivery accuracy, (iv) delivery efficiency, and (v) accuracy and consistency of system response to error conditions. The frequency of testing for each failure mode was determined from the RPN value. Results: Failures modes with RPN{>=}125 were recommended to be tested monthly. Failure modes with RPN<125 were assigned to be tested during comprehensive evaluations, e.g., during commissioning, annual quality assurance, and after major software/hardware upgrades. System latency was determined to be {approx}193 ms. The system showed consistent and accurate response to erroneous conditions. Tracking accuracy was within 3%-3 mm gamma (100% pass rate) for sinusoidal as well as a wide variety of patient-derived respiratory motions. The total time taken for monthly QA was {approx}35 min, while that taken for comprehensive testing was {approx}3.5 h. Conclusions: FMEA proved to be a powerful and flexible tool to develop and implement a quality management (QM) framework for DMLC tracking. The authors conclude that the use of FMEA-based QM ensures

  5. Failure mode and effect analysis-based quality assurance for dynamic MLC tracking systems.

    Science.gov (United States)

    Sawant, Amit; Dieterich, Sonja; Svatos, Michelle; Keall, Paul

    2010-12-01

    To develop and implement a failure mode and effect analysis (FMEA)-based commissioning and quality assurance framework for dynamic multileaf collimator (DMLC) tumor tracking systems. A systematic failure mode and effect analysis was performed for a prototype real-time tumor tracking system that uses implanted electromagnetic transponders for tumor position monitoring and a DMLC for real-time beam adaptation. A detailed process tree of DMLC tracking delivery was created and potential tracking-specific failure modes were identified. For each failure mode, a risk probability number (RPN) was calculated from the product of the probability of occurrence, the severity of effect, and the detectibility of the failure. Based on the insights obtained from the FMEA, commissioning and QA procedures were developed to check (i) the accuracy of coordinate system transformation, (ii) system latency, (iii) spatial and dosimetric delivery accuracy, (iv) delivery efficiency, and (v) accuracy and consistency of system response to error conditions. The frequency of testing for each failure mode was determined from the RPN value. Failures modes with RPN > or = 125 were recommended to be tested monthly. Failure modes with RPN < 125 were assigned to be tested during comprehensive evaluations, e.g., during commissioning, annual quality assurance, and after major software/hardware upgrades. System latency was determined to be approximately 193 ms. The system showed consistent and accurate response to erroneous conditions. Tracking accuracy was within 3%-3 mm gamma (100% pass rate) for sinusoidal as well as a wide variety of patient-derived respiratory motions. The total time taken for monthly QA was approximately 35 min, while that taken for comprehensive testing was approximately 3.5 h. FMEA proved to be a powerful and flexible tool to develop and implement a quality management (QM) framework for DMLC tracking. The authors conclude that the use of FMEA-based QM ensures efficient allocation

  6. Failure mode and effect analysis-based quality assurance for dynamic MLC tracking systems

    International Nuclear Information System (INIS)

    Sawant, Amit; Dieterich, Sonja; Svatos, Michelle; Keall, Paul

    2010-01-01

    Purpose: To develop and implement a failure mode and effect analysis (FMEA)-based commissioning and quality assurance framework for dynamic multileaf collimator (DMLC) tumor tracking systems. Methods: A systematic failure mode and effect analysis was performed for a prototype real-time tumor tracking system that uses implanted electromagnetic transponders for tumor position monitoring and a DMLC for real-time beam adaptation. A detailed process tree of DMLC tracking delivery was created and potential tracking-specific failure modes were identified. For each failure mode, a risk probability number (RPN) was calculated from the product of the probability of occurrence, the severity of effect, and the detectibility of the failure. Based on the insights obtained from the FMEA, commissioning and QA procedures were developed to check (i) the accuracy of coordinate system transformation, (ii) system latency, (iii) spatial and dosimetric delivery accuracy, (iv) delivery efficiency, and (v) accuracy and consistency of system response to error conditions. The frequency of testing for each failure mode was determined from the RPN value. Results: Failures modes with RPN≥125 were recommended to be tested monthly. Failure modes with RPN<125 were assigned to be tested during comprehensive evaluations, e.g., during commissioning, annual quality assurance, and after major software/hardware upgrades. System latency was determined to be ∼193 ms. The system showed consistent and accurate response to erroneous conditions. Tracking accuracy was within 3%-3 mm gamma (100% pass rate) for sinusoidal as well as a wide variety of patient-derived respiratory motions. The total time taken for monthly QA was ∼35 min, while that taken for comprehensive testing was ∼3.5 h. Conclusions: FMEA proved to be a powerful and flexible tool to develop and implement a quality management (QM) framework for DMLC tracking. The authors conclude that the use of FMEA-based QM ensures efficient allocation

  7. Analysis of Moderator System Failure Accidents by Using New Method for Wolsong-1 CANDU 6 Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Dongsik; Kim, Jonghyun; Cho, Cheonhwey [Atomic Creative Technology Co., Ltd., Daejeon (Korea, Republic of); Kim, Sungmin [Korea Hydro and Nuclear Power Co., Ltd., Daejeon (Korea, Republic of)

    2013-05-15

    To reconfirm the safety of moderator system failure accidents, the safety analysis by using the reactor physics code, RFSP-IST, coupled with the thermal hydraulics code, CATHENA is performed additionally. In the present paper, the newly developed analysis method is briefly described and the results obtained from the moderator system failure accident simulations for Wolsong-1 CANDU 6 reactor by using the new method are summarized. The safety analysis of the moderator system failure accidents for Wolsong-1 CANDU 6 reactor was carried out by using the new code system, i. e., CATHENA and RFSP-IST, instead of the non-IST old codes, namely, SMOKIN G-2 and MODSTBOIL. The analysis results by using the new method revealed as same with the results by using the old method that the fuel integrity is warranted because the localized power peak remained well below the limits and, most importantly, the reactor operation enters into the self-shutdown mode due to the substantial loss of moderator D{sub 2}O inventory from the moderator system. In the analysis results obtained by using the old method, it was predicted that the ROP trip conditions occurred for the transient cases which are also studied in the present paper. But, in the new method, it was found that the ROP trip conditions did not occur. Consequently, in the safety analysis performed additionally by using the new method, the safety of moderator system failure accidents was reassured. In the future, the new analysis method by using the IST codes instead of the non-IST old codes for the moderator system failure accidents is strongly recommended.

  8. Potential failure mode and effects analysis for the ITER NB injector

    International Nuclear Information System (INIS)

    Boldrin, M.; De Lorenzi, A.; Fiorentin, A.; Grando, L.; Marcuzzi, D.; Peruzzo, S.; Pomaro, N.; Rigato, W.; Serianni, G.

    2009-01-01

    The failure mode and effects analysis (FMEA) is a widely used analytical technique that helps in identifying and reducing the risks of failure in a system, component or process. The application of a systematic method like the FMEA was deemed necessary and adequate to support the design process of the ITER NBI (neutral beam injector). The approach adopted was to develop a FMEA at a general 'system level', focusing the study on the main functions of the system and ensuring that all the interfaces and interactions are covered among the various subsystems. The FMEA was extended to the whole NBI system taking into account the present design status. The FMEA procedure will be then applied to the detailed design phase at the component level, in particular to identify (or define) the ITER Class of Risk. Several important failure modes were evidenced, and estimates of subsystems and components reliability are now available. FMEA procedure resulted essential to identify and confirm the diagnostic systems required for protection and control, and the outcome of this analysis will represent the baseline document for the design of the NBI and NBTF integrated protection system. In the paper, rationale and background of the FMEA for ITER NBI are presented, methods employed are described and most interesting results are reported and discussed.

  9. Failure behavior investigation of a unidirectional carbon–carbon composite

    International Nuclear Information System (INIS)

    Cheng, Jing; Li, He-jun; Zhang, Shou-yang; Xue, Li-zhen; Luo, Wen-fei; Li, Wei

    2014-01-01

    Highlights: • One unidirectional carbon-carbon composite was manufactured by ICVI. • Failure behavior of the composite material can be described as three stages. • Two kinds of cracks alternately result in deformation evolution of the composite. • Interfacial bonding and cracks orientation play key roles to failure behavior. - Abstract: The failure behavior and morphology of a carbon–carbon composite (C–C composite) manufactured by isothermal chemical vapor infiltration was studied by three-point bending tests, polarized light microscope and scanning electron microscope, respectively. The C–C composite was reinforced by PAN-based carbon fiber aligned in only one direction. Flexural strength and modulus of the composite were 200.9 MPa and 50.5 GPa, respectively. Failure behavior of the unidirectional C–C composite can be described as three stages including brittle fracture behavior at beginning, quasi-ductile behavior finally, and fluctuation behavior between them. Two main kinds of cracks, namely cracks parallel and perpendicular to loading direction alternately resulted in deformation evolution of the composite. The strength of interfacial bonding and cracks orientation played key roles to failure behavior of C–C composite

  10. Failure Mode and Effect Analysis using Soft Set Theory and COPRAS Method

    Directory of Open Access Journals (Sweden)

    Ze-Ling Wang

    2017-01-01

    Full Text Available Failure mode and effect analysis (FMEA is a risk management technique frequently applied to enhance the system performance and safety. In recent years, many researchers have shown an intense interest in improving FMEA due to inherent weaknesses associated with the classical risk priority number (RPN method. In this study, we develop a new risk ranking model for FMEA based on soft set theory and COPRAS method, which can deal with the limitations and enhance the performance of the conventional FMEA. First, trapezoidal fuzzy soft set is adopted to manage FMEA team membersr linguistic assessments on failure modes. Then, a modified COPRAS method is utilized for determining the ranking order of the failure modes recognized in FMEA. Especially, we treat the risk factors as interdependent and employ the Choquet integral to obtain the aggregate risk of failures in the new FMEA approach. Finally, a practical FMEA problem is analyzed via the proposed approach to demonstrate its applicability and effectiveness. The result shows that the FMEA model developed in this study outperforms the traditional RPN method and provides a more reasonable risk assessment of failure modes.

  11. Coupled Mechanical-Electrochemical-Thermal Analysis of Failure Propagation in Lithium-ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chao; Santhanagopalan, Shriram; Pesaran, Ahmad

    2016-07-28

    This is a presentation given at the 12th World Congress for Computational Mechanics on coupled mechanical-electrochemical-thermal analysis of failure propagation in lithium-ion batteries for electric vehicles.

  12. The failure trace archive : enabling comparative analysis of failures in diverse distributed systems

    NARCIS (Netherlands)

    Kondo, D.; Javadi, B.; Iosup, A.; Epema, D.H.J.

    2010-01-01

    With the increasing functionality and complexity of distributed systems, resource failures are inevitable. While numerous models and algorithms for dealing with failures exist, the lack of public trace data sets and tools has prevented meaningful comparisons. To facilitate the design, validation,

  13. Failure Mode and Effect Analysis in Increasing the Revenue of Emergency Department

    Directory of Open Access Journals (Sweden)

    Farhad Rahmati

    2015-02-01

    Full Text Available Introduction: Successful performance of emergency department(ED is one of the important indications of increasing the satisfaction among referees. The insurance of such successful performance is fiscal discipline and avoiding from non-beneficial activities in this department. Therefore, the increasing revenue of emergency department is one of the interested goals of hospital management system. According to above-mentioned, the researchers assessed problems lead to loss the revenue of ED and eliminate them by using failure mode and effects analysis (FMEA.Methods: This was the prospective cohort study performed during 18 months, set in 6 phases. In the first phase, the failures were determined and some solutions suggested to eliminate them. During 2-5 phases, based on the prioritizing the problems, solutions were performed. In the sixth phase, final assessment of the study was done. Finally, the feedback of system’s revenue was evaluated and data analyzed using repeated measure ANOVA.Results: Lack of recording the consuming instrument and attribution of separate codes for emergency services of hospitalized patients were the most important failures that lead to decrease the revenue of ED. Such elimination caused to 75.9% increase in revenue within a month (df = 1.6; F = 84.0; p<0.0001.  Totally, 18 months following the eliminating of failures caused to 328.2% increase in the revenue of ED (df = 15.9; F = 215; p<0.0001.Conclusion: The findings of the present study shows that failure mode and effect analysis, can be used as a safe and effected method to reduce the expenses of ED and increase its revenue.

  14. Sensitivity analysis of repairable redundant system with switching failure and geometric reneging

    Directory of Open Access Journals (Sweden)

    Chandra Shekhar

    2017-09-01

    Full Text Available This study deals with the performance modeling and reliability analysis of a redundant machining system composed of several functional machines. To analyze the more realistic scenarios, the concepts of switching failure and geometric reneging are included. The time-to-breakdown and repair time of operating and standby machines are assumed to follow the exponential distribution. For the quantitative assessment of the machine interference problem, various performance measures such as mean-time-to-failure, reliability, reneging rate, etc. have been formulated. To show the practicability of the developed model, a numerical illustration has been presented. For the practical justification and validity of the results established, the sensitivity analysis of reliability indices has been presented by varying different system descriptors.

  15. Adaptive Failure Identification for Healthcare Risk Analysis and Its Application on E-Healthcare

    Directory of Open Access Journals (Sweden)

    Kuo-Chung Chu

    2014-01-01

    Full Text Available To satisfy the requirement for diverse risk preferences, we propose a generic risk priority number (GRPN function that assigns a risk weight to each parameter such that they represent individual organization/department/process preferences for the parameters. This research applies GRPN function-based model to differentiate the types of risk, and primary data are generated through simulation. We also conduct sensitivity analysis on correlation and regression to compare it with the traditional RPN (TRPN. The proposed model outperforms the TRPN model and provides a practical, effective, and adaptive method for risk evaluation. In particular, the defined GRPN function offers a new method to prioritize failure modes in failure mode and effect analysis (FMEA. The different risk preferences considered in the healthcare example show that the modified FMEA model can take into account the various risk factors and prioritize failure modes more accurately. In addition, the model also can apply to a generic e-healthcare service environment with a hierarchical architecture.

  16. Using the failure mode and effects analysis model to improve parathyroid hormone and adrenocorticotropic hormone testing

    Directory of Open Access Journals (Sweden)

    Magnezi R

    2016-12-01

    Full Text Available Racheli Magnezi,1 Asaf Hemi,1 Rina Hemi2 1Department of Management, Public Health and Health Systems Management Program, Bar Ilan University, Ramat Gan, 2Endocrine Service Unit, Sheba Medical Center, Tel Aviv, Israel Background: Risk management in health care systems applies to all hospital employees and directors as they deal with human life and emergency routines. There is a constant need to decrease risk and increase patient safety in the hospital environment. The purpose of this article is to review the laboratory testing procedures for parathyroid hormone and adrenocorticotropic hormone (which are characterized by short half-lives and to track failure modes and risks, and offer solutions to prevent them. During a routine quality improvement review at the Endocrine Laboratory in Tel Hashomer Hospital, we discovered these tests are frequently repeated unnecessarily due to multiple failures. The repetition of the tests inconveniences patients and leads to extra work for the laboratory and logistics personnel as well as the nurses and doctors who have to perform many tasks with limited resources.Methods: A team of eight staff members accompanied by the Head of the Endocrine Laboratory formed the team for analysis. The failure mode and effects analysis model (FMEA was used to analyze the laboratory testing procedure and was designed to simplify the process steps and indicate and rank possible failures.Results: A total of 23 failure modes were found within the process, 19 of which were ranked by level of severity. The FMEA model prioritizes failures by their risk priority number (RPN. For example, the most serious failure was the delay after the samples were collected from the department (RPN =226.1.Conclusion: This model helped us to visualize the process in a simple way. After analyzing the information, solutions were proposed to prevent failures, and a method to completely avoid the top four problems was also developed. Keywords: failure mode

  17. WWER expert system for fuel failure analysis using the RTOP-CA code

    International Nuclear Information System (INIS)

    Likhanskii, V.; Evdokimov, I.; Sorokin, A.; Khromov, A.; Kanukova, V.; Apollonova, O.; Ugryumov, A.

    2008-01-01

    The computer expert system for fuel failure analysis of WWER during operation is presented. The diagnostics is based on the measurement of specific activity of reference nuclides in reactor primary coolant and application of a computer code for the data interpretation. The data analysis includes an evaluation of tramp uranium mass in reactor core, detection of failures by iodine and caesium spikes, evaluation of burnup of defective fuel. Evaluation of defective fuel burnup was carried out by applying the relation of caesium nuclides activity in spikes and relations of activities of gaseous fission products for steady state operational conditions. The method of burnup evaluation of defective fuel by use of fission gas activity is presented in details. The neural-network analysis is performed for determination of failed fuel rod number and defect size. Results of the expert system application are illustrated for several fuel campaigns on operating WWER NPPs. (authors)

  18. Failure rate of inferior alveolar nerve block among dental students and interns.

    Science.gov (United States)

    AlHindi, Maryam; Rashed, Bayan; AlOtaibi, Noura

    2016-01-01

    To report the failure rate of inferior alveolar nerve block (IANB) among dental students and interns, causes of failure, investigate awareness of different IANB techniques, and to report IANB-associated complications.   A 3-page questionnaire containing 13 questions was distributed to a random sample of 350 third to fifth years students and interns at the College of Dentistry, King Saud University, Riyadh, Saudi Arabia on January 2011. It included demographic questions (age, gender, and academic level) and questions on IANB failure frequency and reasons, actions taken to overcome the failure, and awareness of different anesthetic techniques, supplementary techniques, and complications.   Of the 250 distributed questionnaires, 238 were returned (68% response rate). Most (85.7%) of surveyed sample had experienced IANB failure once or twice. The participants attributed the failures most commonly (66.45%) to anatomical variations. The most common alternative technique used was intraligamentary injection (57.1%), although 42.8% of the sample never attempted any alternatives. Large portion of the samples stated that they either lacked both knowledge of and training for other techniques (44.9%), or that they had knowledge of them but not enough training to perform them (45.8%).  To  decrease IANB failure rates for dental students and interns, knowledge of landmarks, anatomical variation and their training in alternatives to IANB, such as the Gow-Gates and Akinosi techniques, both theoretically and clinically in the dental curriculum should be enhanced.

  19. Failure rate of inferior alveolar nerve block among dental students and interns

    Directory of Open Access Journals (Sweden)

    Maryam AlHindi

    2016-01-01

    Full Text Available Objectives: To report the failure rate of inferior alveolar nerve block (IANB among dental students and interns, causes of failure, investigate awareness of different IANB techniques, and to report IANB-associated complications. Methods: A 3-page questionnaire containing 13 questions was distributed to a random sample of 350 third to fifth years students and interns at the College of Dentistry, King Saud University, Riyadh, Saudi Arabia on January 2011. It included demographic questions (age, gender, and academic level and questions on IANB failure frequency and reasons, actions taken to overcome the failure, and awareness of different anesthetic techniques, supplementary techniques, and complications. Results: Of the 250 distributed questionnaires, 238 were returned (68% response rate. Most (85.7% of surveyed sample had experienced IANB failure once or twice. The participants attributed the failures most commonly (66.45% to anatomical variations. The most common alternative technique used was intraligamentary injection (57.1%, although 42.8% of the sample never attempted any alternatives. Large portion of the samples stated that they either lacked both knowledge of and training for other techniques (44.9%, or that they had knowledge of them but not enough training to perform them (45.8%. Conclusion: To decrease IANB failure rates for dental students and interns, knowledge of landmarks, anatomical variation and their training in alternatives to IANB, such as the Gow-Gates and Akinosi techniques, both theoretically and clinically in the dental curriculum should be enhanced.

  20. Evaluation of Safety in a Radiation Oncology Setting Using Failure Mode and Effects Analysis

    International Nuclear Information System (INIS)

    Ford, Eric C.; Gaudette, Ray; Myers, Lee; Vanderver, Bruce; Engineer, Lilly; Zellars, Richard; Song, Danny Y.; Wong, John; DeWeese, Theodore L.

    2009-01-01

    Purpose: Failure mode and effects analysis (FMEA) is a widely used tool for prospectively evaluating safety and reliability. We report our experiences in applying FMEA in the setting of radiation oncology. Methods and Materials: We performed an FMEA analysis for our external beam radiation therapy service, which consisted of the following tasks: (1) create a visual map of the process, (2) identify possible failure modes; assign risk probability numbers (RPN) to each failure mode based on tabulated scores for the severity, frequency of occurrence, and detectability, each on a scale of 1 to 10; and (3) identify improvements that are both feasible and effective. The RPN scores can span a range of 1 to 1000, with higher scores indicating the relative importance of a given failure mode. Results: Our process map consisted of 269 different nodes. We identified 127 possible failure modes with RPN scores ranging from 2 to 160. Fifteen of the top-ranked failure modes were considered for process improvements, representing RPN scores of 75 and more. These specific improvement suggestions were incorporated into our practice with a review and implementation by each department team responsible for the process. Conclusions: The FMEA technique provides a systematic method for finding vulnerabilities in a process before they result in an error. The FMEA framework can naturally incorporate further quantification and monitoring. A general-use system for incident and near miss reporting would be useful in this regard.

  1. Failure analysis of re-bars during bending operations

    Directory of Open Access Journals (Sweden)

    Souvik Das

    2014-10-01

    Full Text Available Thermo-mechanical treated (TMT rebar is suitable material for reinforcing concrete structures on accounts of similarity in thermal expansion, ability to bond well with concrete and, above all the ability to shoulder most of the tensile stress acting on the structure and also steel manufacturing industry has successfully developed a corrosion-resistant variety of rebar for the construction industry. As the TMT is the finish product thus proper control of rolling parameters and water box is needed to achieve adequate property. Water box plays an important role for achieving the final structure and property of the rebars. Water box is responsible for outer rim formation and which helps to achieve the yield strength of the material. The present paper highlights failure investigation of a failed rebar during bending operations. From fractography and microstructural analysis it is confirmed that the rebar sample failed in brittle manner due to through harden martensitic structure and which indicates that there is some anomaly in water box resulting in these premature failures.

  2. Failure and Reliability Analysis for the Master Pump Shutdown System

    International Nuclear Information System (INIS)

    BEVINS, R.R.

    2000-01-01

    The Master Pump Shutdown System (MPSS) will be installed in the 200 Areas of the Hanford Site to monitor and control the transfer of liquid waste between tank farms and between the 200 West and 200 East areas through the Cross-Site Transfer Line. The Safety Function provided by the MPSS is to shutdown any waste transfer process within or between tank farms if a waste leak should occur along the selected transfer route. The MPSS, which provides this Safety Class Function, is composed of Programmable Logic Controllers (PLCs), interconnecting wires, relays, Human to Machine Interfaces (HMI), and software. These components are defined as providing a Safety Class Function and will be designated in this report as MPSS/PLC. Input signals to the MPSS/PLC are provided by leak detection systems from each of the tank farm leak detector locations along the waste transfer route. The combination of the MPSS/PLC, leak detection system, and transfer pump controller system will be referred to as MPSS/SYS. The components addressed in this analysis are associated with the MPSS/SYS. The purpose of this failure and reliability analysis is to address the following design issues of the Project Development Specification (PDS) for the MPSS/SYS (HNF 2000a): (1) Single Component Failure Criterion, (2) System Status Upon Loss of Electrical Power, (3) Physical Separation of Safety Class cables, (4) Physical Isolation of Safety Class Wiring from General Service Wiring, and (5) Meeting the MPSS/PLC Option 1b (RPP 1999) Reliability estimate. The failure and reliability analysis examined the system on a component level basis and identified any hardware or software elements that could fail and/or prevent the system from performing its intended safety function

  3. Continuum Damage Mechanics Models for the Analysis of Progressive Failure in Open-Hole Tension Laminates

    Science.gov (United States)

    Song, Kyonchan; Li, Yingyong; Rose, Cheryl A.

    2011-01-01

    The performance of a state-of-the-art continuum damage mechanics model for interlaminar damage, coupled with a cohesive zone model for delamination is examined for failure prediction of quasi-isotropic open-hole tension laminates. Limitations of continuum representations of intra-ply damage and the effect of mesh orientation on the analysis predictions are discussed. It is shown that accurate prediction of matrix crack paths and stress redistribution after cracking requires a mesh aligned with the fiber orientation. Based on these results, an aligned mesh is proposed for analysis of the open-hole tension specimens consisting of different meshes within the individual plies, such that the element edges are aligned with the ply fiber direction. The modeling approach is assessed by comparison of analysis predictions to experimental data for specimen configurations in which failure is dominated by complex interactions between matrix cracks and delaminations. It is shown that the different failure mechanisms observed in the tests are well predicted. In addition, the modeling approach is demonstrated to predict proper trends in the effect of scaling on strength and failure mechanisms of quasi-isotropic open-hole tension laminates.

  4. Association of sleep bruxism with ceramic restoration failure: A systematic review and meta-analysis.

    Science.gov (United States)

    de Souza Melo, Gilberto; Batistella, Elis Ângela; Bertazzo-Silveira, Eduardo; Simek Vega Gonçalves, Thais Marques; Mendes de Souza, Beatriz Dulcineia; Porporatti, André Luís; Flores-Mir, Carlos; De Luca Canto, Graziela

    2018-03-01

    Ceramic restorations are popular because of their excellent optical properties. However, failures are still a major concern, and dentists are confronted with the following question: is sleep bruxism (SB) associated with an increased frequency of ceramic restoration failures? The purpose of this systematic review and meta-analysis was to assess whether the presence of SB is associated with increased ceramic restoration failure. Observational studies and clinical trials that evaluated the short- and long-term survival rate of ceramic restorations in SB participants were selected. Sleep bruxism diagnostic criteria must have included at least 1 of the following: questionnaire, clinical evaluation, or polysomnography. Seven databases, in addition to 3 nonpeer-reviewed literature databases, were searched. The risk of bias was assessed by using the meta-analysis of statistics assessment and review instrument (MAStARI) checklist. Eight studies were included for qualitative synthesis, but only 5 for the meta-analysis. Three studies were categorized as moderate risk and 5 as high risk of bias. Clinical and methodological heterogeneity across studies were considered high. Increased hazard ratio (HR=7.74; 95% confidence interval [CI]=2.50 to 23.95) and odds ratio (OR=2.52; 95% CI=1.24 to 5.12) were observed considering only anterior ceramic veneers. Nevertheless, limited data from the meta-analysis and from the restricted number of included studies suggested that differences in the overall odds of failure concerning SB and other types of ceramic restorations did not favor or disfavor any association (OR=1.10; 95% CI=0.43 to 2.8). The overall quality of evidence was considered very low according to the GRADE criteria. Within the limitations of this systematic review, the overall result from the meta-analysis did not favor any association between SB and increased odds of failure for ceramic restorations. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry

  5. An estimation method of system failure frequency using both structure and component failure data

    International Nuclear Information System (INIS)

    Takaragi, Kazuo; Sasaki, Ryoichi; Shingai, Sadanori; Tominaga, Kenji

    1981-01-01

    In recent years, the importance of reliability analysis is appreciated for large systems such as nuclear power plants. A reliability analysis method is described for a whole system, using structure failure data for its main working subsystem and component failure data for its safety protection subsystem. The subsystem named main working system operates normally, and the subsystem named safety protection system acts as standby or protection. Thus the main and the protection systems are given mutually different failure data; then, between the subsystems, there exists common mode failure, i.e. the component failure affecting the reliability of both two. A calculation formula for sytem failure frequency is first derived. Then, a calculation method with digraphs is proposed for conditional system failure probability. Finally the results of numerical calculation are given for the purpose of explanation. (J.P.N.)

  6. Safety relief valve alternate analysis method

    International Nuclear Information System (INIS)

    Adams, R.H.; Javid, A.; Khatua, T.P.

    1981-01-01

    An experimental test program was started in the United States in 1976 to define and quantify Safety Relief Valve (SRV) phenomena in General Electric Mark I Suppression Chambers. The testing considered several discharged devices and was used to correlate SRV load prediction models. The program was funded by utilities with Mark I containments and has resulted in a detailed SRV load definition as a portion of the Mark I containment program Load Definition Report (LDR). The (USNRC) has reviewed and approved the LDR SRV load definition. In addition, the USNRC has permitted calibration of structural models used for predicting torus response to SRV loads. Model calibration is subject to confirmatory in-plant testing. The SRV methodology given in the LDR requires that transient dynamic pressures be applied to a torus structural model that includes a fluid added mass matrix. Preliminary evaluations of torus response have indicated order of magnitude conservatisms, with respect to test results, which could result in unrealistic containment modifications. In addition, structural response trends observed in full-scale tests between cold pipe, first valve actuation and hot pipe, subsequent valve actuation conditions have not been duplicated using current analysis methods. It was suggested by others that an energy approach using current fluid models be utilized to define loads. An alternate SRV analysis method is defined to correct suppression chamber structural response to a level that permits economical but conservative design. Simple analogs are developed for the purpose of correcting the analytical response obtained from LDR analysis methods. Analogs evaluated considered forced vibration and free vibration structural response. The corrected response correlated well with in-plant test response. The correlation of the analytical model at test conditions permits application of the alternate analysis method at design conditions. (orig./HP)

  7. How can the examination failure rate be stabilised?

    Science.gov (United States)

    Colberg, Anders Barli; Vatn, Daniel; Standal, Rune; Radtke, Maria; Slørdahl, Tobias S

    2017-10-31

    The study programme in medicine at the Norwegian University of Science and Technology (NTNU) holds written examinations once annually. The limit to achieving a pass grade is at least 65 % correct answers. The failure rate varies from one year to the next. Our hypothesis was that the variations in the failure rate were caused by a varying degree of difficulty in the examination questions. We investigated whether relative standard-setting methods would reduce the variation in the failure rate without lowering the average limit for a pass grade. Cohen’s relative standard-setting methods correct for the degree of difficulty in the examination questions. They are easy to apply and provide an alternative to setting an absolute limit of 65 % for a pass grade. We used data from 34 examinations for medical studies at the Norwegian University of Science and Technology (NTNU) from the period 2010–2015 and compared the failure rates estimated using the existing assessment method with those produced by Cohen’s methods. Using the existing 65 % limit for a pass grade, the failure rate varied from 0 % to 13.7 %, with a falling rate at later stages of the studies. With the exception of the examination held in the first year of study, the failure rate was lower and there was less variation in the failure rate with the original as well as the modified Cohen method when compared to the existing method. One of the Cohen methods resulted in a failure rate of 0 % to 10.4 % In our data material, an absolute limit of 65 % for a pass grade can be defended because the failure rate was generally low. Cohen’s methods could be an alternative in medical schools that have a high failure rate or where there are major variations in the failure rate from one year to the next in the same examination in the course of study.

  8. Uncertainty Analysis via Failure Domain Characterization: Unrestricted Requirement Functions

    Science.gov (United States)

    Crespo, Luis G.; Kenny, Sean P.; Giesy, Daniel P.

    2011-01-01

    This paper proposes an uncertainty analysis framework based on the characterization of the uncertain parameter space. This characterization enables the identification of worst-case uncertainty combinations and the approximation of the failure and safe domains with a high level of accuracy. Because these approximations are comprised of subsets of readily computable probability, they enable the calculation of arbitrarily tight upper and lower bounds to the failure probability. The methods developed herein, which are based on nonlinear constrained optimization, are applicable to requirement functions whose functional dependency on the uncertainty is arbitrary and whose explicit form may even be unknown. Some of the most prominent features of the methodology are the substantial desensitization of the calculations from the assumed uncertainty model (i.e., the probability distribution describing the uncertainty) as well as the accommodation for changes in such a model with a practically insignificant amount of computational effort.

  9. Failure of Emperion modular femoral stem with implant analysis

    Directory of Open Access Journals (Sweden)

    Benjamin M. Stronach, MD, MS

    2016-03-01

    Full Text Available Modularity in total hip arthroplasty provides multiple benefits to the surgeon in restoring the appropriate alignment and position to a previously damaged hip joint. The vast majority of modern implants incorporate modularity into their design with some implants having multiple modular interfaces. There is the potential for failure at modular junctions because of fretting and crevice corrosion in combination with mechanical loading. This case report details the failure of an Emperion (Smith and Nephew, Memphis, TN femoral stem in a 67-year-old male patient 6 years after total hip replacement. Analysis of the implant revealed mechanically assisted crevice corrosion that likely accelerated fatigue crack initiation in the hip stem. The benefits of modularity come with the potential drawback of a combination of fretting and crevice corrosion at the modular junction, which may accelerate fatigue, crack initiation and ultimately reduce the hip longevity.

  10. Failure analysis of axle shaft of a fork lift

    Directory of Open Access Journals (Sweden)

    Souvik Das

    2015-04-01

    Full Text Available An axle shaft of fork lift failed at operation within 296 h of service. The shaft transmits torque from discrepancy to wheel through planetary gear arrangement. A section of fractured axle shaft made of induction-hardened steel was analyzed to determine the root cause of the failure. Optical microscopies as well as field emission gun scanning electron microscopy (FEG-SEM along with energy dispersive spectroscopy (EDS were carried out to characterize the microstructure. Hardness profile throughout the cross-section was evaluated by micro-hardness measurements. Chemical analysis indicated that the shaft was made of 42CrMo4 steel grade as per specification. Microstructural analysis and micro-hardness profile revealed that the shaft was improperly heat treated resulting in a brittle case, where crack was found to initiate from the case in a brittle mode in contrast to ductile mode within the core. This behaviour was related to differences in microstructure, which was observed to be martensitic within the case with a micro-hardness equivalent to 735 HV, and a mixture of non-homogeneous structure of pearlite and ferrite within the core with a hardness of 210 HV. The analysis suggests that the fracture initiated from the martensitic case as brittle mode due to improper heat treatment process (high hardness. Moreover the inclusions along the hot working direction i.e. in the longitudinal axis made the component more susceptible to failure.

  11. Success as Failure and Failure as Success: The Cultural Literacy of E. D. Hirsch, Jr.

    Science.gov (United States)

    Sledd, Andrew E.; Sledd, James H.

    1989-01-01

    Examines the logic and rhetoric of E. D. Hirsch, Jr., in "Cultural Literacy." Attempts to answer the question of how intellectual failure guarantees success in the marketplace. Concludes with an alternative vision of the American society that Hirsch describes and the suggestion that Hirsch's cultural literacy is cross-cultural…

  12. A statistical analysis on failure-to open/close probability of pneumatic valve in sodium cooling systems

    International Nuclear Information System (INIS)

    Kurisaka, Kenichi

    1999-11-01

    The objective of this study is to develop fundamental data for examination on efficiency of preventive maintenance and surveillance test from the standpoint of failure probability. In this study, as a major standby component, a pneumatic valve in sodium cooling systems was selected. A statistical analysis was made about a trend of valve in sodium cooling systems was selected. A statistical analysis was made about a trend of valve failure-to-open/close (FTOC) probability depending on number of demands ('n'), time since installation ('t') and standby time since last open/close action ('T'). The analysis is based on the field data of operating- and failure-experiences stored in the Component Reliability Database and Statistical Analysis System for LMFBR's (CORDS). In the analysis, the FTOC probability ('P') was expressed as follows: P=1-exp{-C-En-F/n-λT-aT(t-T/2)-AT 2 /2}. The functional parameters, 'C', 'E', 'F', 'λ', 'a' and 'A', were estimated with the maximum likelihood estimation method. As a result, the FTOC probability is almost expressed with the failure probability being derived from the failure rate under assumption of the Poisson distribution only when valve cycle (i.e. open-close-open cycle) exceeds about 100 days. When the valve cycle is shorter than about 100 days, the FTOC probability can be adequately estimated with the parameter model proposed in this study. The results obtained from this study may make it possible to derive an adequate frequency of surveillance test for a given target of the FTOC probability. (author)

  13. A mid-layer model for human reliability analysis: understanding the cognitive causes of human failure events

    International Nuclear Information System (INIS)

    Shen, Song-Hua; Chang, James Y.H.; Boring, Ronald L.; Whaley, April M.; Lois, Erasmia; Langfitt Hendrickson, Stacey M.; Oxstrand, Johanna H.; Forester, John Alan; Kelly, Dana L.; Mosleh, Ali

    2010-01-01

    The Office of Nuclear Regulatory Research (RES) at the US Nuclear Regulatory Commission (USNRC) is sponsoring work in response to a Staff Requirements Memorandum (SRM) directing an effort to establish a single human reliability analysis (HRA) method for the agency or guidance for the use of multiple methods. As part of this effort an attempt to develop a comprehensive HRA qualitative approach is being pursued. This paper presents a draft of the method's middle layer, a part of the qualitative analysis phase that links failure mechanisms to performance shaping factors. Starting with a Crew Response Tree (CRT) that has identified human failure events, analysts identify potential failure mechanisms using the mid-layer model. The mid-layer model presented in this paper traces the identification of the failure mechanisms using the Information-Diagnosis/Decision-Action (IDA) model and cognitive models from the psychological literature. Each failure mechanism is grouped according to a phase of IDA. Under each phase of IDA, the cognitive models help identify the relevant performance shaping factors for the failure mechanism. The use of IDA and cognitive models can be traced through fault trees, which provide a detailed complement to the CRT.

  14. A Mid-Layer Model for Human Reliability Analysis: Understanding the Cognitive Causes of Human Failure Events

    Energy Technology Data Exchange (ETDEWEB)

    Stacey M. L. Hendrickson; April M. Whaley; Ronald L. Boring; James Y. H. Chang; Song-Hua Shen; Ali Mosleh; Johanna H. Oxstrand; John A. Forester; Dana L. Kelly; Erasmia L. Lois

    2010-06-01

    The Office of Nuclear Regulatory Research (RES) is sponsoring work in response to a Staff Requirements Memorandum (SRM) directing an effort to establish a single human reliability analysis (HRA) method for the agency or guidance for the use of multiple methods. As part of this effort an attempt to develop a comprehensive HRA qualitative approach is being pursued. This paper presents a draft of the method’s middle layer, a part of the qualitative analysis phase that links failure mechanisms to performance shaping factors. Starting with a Crew Response Tree (CRT) that has identified human failure events, analysts identify potential failure mechanisms using the mid-layer model. The mid-layer model presented in this paper traces the identification of the failure mechanisms using the Information-Diagnosis/Decision-Action (IDA) model and cognitive models from the psychological literature. Each failure mechanism is grouped according to a phase of IDA. Under each phase of IDA, the cognitive models help identify the relevant performance shaping factors for the failure mechanism. The use of IDA and cognitive models can be traced through fault trees, which provide a detailed complement to the CRT.

  15. Failures to further developing orphan medicinal products after designation granted in Europe: an analysis of marketing authorisation failures and abandoned drugs.

    Science.gov (United States)

    Giannuzzi, Viviana; Landi, Annalisa; Bosone, Enrico; Giannuzzi, Floriana; Nicotri, Stefano; Torrent-Farnell, Josep; Bonifazi, Fedele; Felisi, Mariagrazia; Bonifazi, Donato; Ceci, Adriana

    2017-09-11

    The research and development process in the field of rare diseases is characterised by many well-known difficulties, and a large percentage of orphan medicinal products do not reach the marketing approval.This work aims at identifying orphan medicinal products that failed the developmental process and investigating reasons for and possible factors influencing failures. Drugs designated in Europe under Regulation (European Commission) 141/2000 in the period 2000-2012 were investigated in terms of the following failures: (1) marketing authorisation failures (refused or withdrawn) and (2) drugs abandoned by sponsors during development.Possible risk factors for failure were analysed using statistically validated methods. This study points out that 437 out of 788 designations are still under development, while 219 failed the developmental process. Among the latter, 34 failed the marketing authorisation process and 185 were abandoned during the developmental process. In the first group of drugs (marketing authorisation failures), 50% reached phase II, 47% reached phase III and 3% reached phase I, while in the second group (abandoned drugs), the majority of orphan medicinal products apparently never started the development process, since no data on 48.1% of them were published and the 3.2% did not progress beyond the non-clinical stage.The reasons for failures of marketing authorisation were: efficacy/safety issues (26), insufficient data (12), quality issues (7), regulatory issues on trials (4) and commercial reasons (1). The main causes for abandoned drugs were efficacy/safety issues (reported in 54 cases), inactive companies (25.4%), change of company strategy (8.1%) and drug competition (10.8%). No information concerning reasons for failure was available for 23.2% of the analysed products. This analysis shows that failures occurred in 27.8% of all designations granted in Europe, the main reasons being safety and efficacy issues. Moreover, the stage of development

  16. Evaluating wood failure in plywood shear by optical image analysis

    Science.gov (United States)

    Charles W. McMillin

    1984-01-01

    This exploratory study evaulates the potential of using an automatic image analysis method to measure percent wood failure in plywood shear specimens. The results suggest that this method my be as accurate as the visual method in tracking long-term gluebond quality. With further refinement, the method could lead to automated equipment replacing the subjective visual...

  17. Cost-effectiveness analysis of timely dialysis referral after renal transplant failure in Spain

    Directory of Open Access Journals (Sweden)

    Villa Guillermo

    2012-08-01

    Full Text Available Abstract Background A cost-effectiveness analysis of timely dialysis referral after renal transplant failure was undertaken from the perspective of the Public Administration. The current Spanish situation, where all the patients undergoing graft function loss are referred back to dialysis in a late manner, was compared to an ideal scenario where all the patients are timely referred. Methods A Markov model was developed in which six health states were defined: hemodialysis, peritoneal dialysis, kidney transplantation, late referral hemodialysis, late referral peritoneal dialysis and death. The model carried out a simulation of the progression of renal disease for a hypothetical cohort of 1,000 patients aged 40, who were observed in a lifetime temporal horizon of 45 years. In depth sensitivity analyses were performed in order to ensure the robustness of the results obtained. Results Considering a discount rate of 3 %, timely referral showed an incremental cost of 211 €, compared to late referral. This cost increase was however a consequence of the incremental survival observed. The incremental effectiveness was 0.0087 quality-adjusted life years (QALY. When comparing both scenarios, an incremental cost-effectiveness ratio of 24,390 €/QALY was obtained, meaning that timely dialysis referral might be an efficient alternative if a willingness-to-pay threshold of 45,000 €/QALY is considered. This result proved to be independent of the proportion of late referral patients observed. The acceptance probability of timely referral was 61.90 %, while late referral was acceptable in 38.10 % of the simulations. If we however restrict the analysis to those situations not involving any loss of effectiveness, the acceptance probability of timely referral was 70.10 %, increasing twofold that of late referral (29.90 %. Conclusions Timely dialysis referral after graft function loss might be an efficient alternative in Spain, improving both

  18. Cost-effectiveness analysis of timely dialysis referral after renal transplant failure in Spain.

    Science.gov (United States)

    Villa, Guillermo; Sánchez-Álvarez, Emilio; Cuervo, Jesús; Fernández-Ortiz, Lucía; Rebollo, Pablo; Ortega, Francisco

    2012-08-16

    A cost-effectiveness analysis of timely dialysis referral after renal transplant failure was undertaken from the perspective of the Public Administration. The current Spanish situation, where all the patients undergoing graft function loss are referred back to dialysis in a late manner, was compared to an ideal scenario where all the patients are timely referred. A Markov model was developed in which six health states were defined: hemodialysis, peritoneal dialysis, kidney transplantation, late referral hemodialysis, late referral peritoneal dialysis and death. The model carried out a simulation of the progression of renal disease for a hypothetical cohort of 1,000 patients aged 40, who were observed in a lifetime temporal horizon of 45 years. In depth sensitivity analyses were performed in order to ensure the robustness of the results obtained. Considering a discount rate of 3 %, timely referral showed an incremental cost of 211 €, compared to late referral. This cost increase was however a consequence of the incremental survival observed. The incremental effectiveness was 0.0087 quality-adjusted life years (QALY). When comparing both scenarios, an incremental cost-effectiveness ratio of 24,390 €/QALY was obtained, meaning that timely dialysis referral might be an efficient alternative if a willingness-to-pay threshold of 45,000 €/QALY is considered. This result proved to be independent of the proportion of late referral patients observed. The acceptance probability of timely referral was 61.90 %, while late referral was acceptable in 38.10 % of the simulations. If we however restrict the analysis to those situations not involving any loss of effectiveness, the acceptance probability of timely referral was 70.10 %, increasing twofold that of late referral (29.90 %). Timely dialysis referral after graft function loss might be an efficient alternative in Spain, improving both patients' survival rates and health-related quality of life at an

  19. Failure analysis – basic step of applying Reliability Centered Maintenance in general aviation

    Directory of Open Access Journals (Sweden)

    Martin BUGAJ

    2012-01-01

    Full Text Available Performing a reliability analysis on a product or system can actually include a number of different analyses to determine how reliable the product or system is. A reliability centered maintenance program consists of a set of scheduled tasks generated on the basis of specific reliability characteristics of the equipment they are designed to protect. Complex equipment is composed of a vast number of parts and assemblies. All these items can be expected to fail at one time or another, but some of the failures have more serious consequences than others. Certain kinds of failures have a direct effect on operating safety, and others affect the operational capability of the equipment. The consequences of a particular failure depend on the design of the item and the equipment in which it is installed. Although the environment in which the equipment is operated is sometimes an additional factor, the impact of failures on the equipment, and hence their consequences for the operating organization, are established primarily by the equipment designer. Failure consequences are therefore a primary inherent reliability characteristic.

  20. Alternative fuels in fire debris analysis: biodiesel basics.

    Science.gov (United States)

    Stauffer, Eric; Byron, Doug

    2007-03-01

    Alternative fuels are becoming more prominent on the market today and, soon, fire debris analysts will start seeing them in liquid samples or in fire debris samples. Biodiesel fuel is one of the most common alternative fuels and is now readily available in many parts of the United States and around the world. This article introduces biodiesel to fire debris analysts. Biodiesel fuel is manufactured from vegetable oils and/or animal oils/fats. It is composed of fatty acid methyl esters (FAMEs) and is sold pure or as a blend with diesel fuel. When present in fire debris samples, it is recommended to extract the debris using passive headspace concentration on activated charcoal, possibly followed by a solvent extraction. The gas chromatographic analysis of the extract is first carried out with the same program as for regular ignitable liquid residues, and second with a program adapted to the analysis of FAMEs.

  1. A COCAP program for the statistical analysis of common cause failure parameters

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Baehyeuk; Jae, Moosung [Hanyang Univ., Seoul (Korea, Republic of). Dept. of Nuclear Engineering

    2016-03-15

    Probabilistic Safety Assessment (PSA) based applications and regulations are becoming more important in the field of nuclear energy. According to the results of a PSA in Korea, the common cause failure evaluates CDF (Core Damage Frequency) as one of the significant factors affecting redundancy of NPPs. The purpose of the study is to develop a COCAP (Common Cause Failure parameter Analysis for PSA) program for the accurate use of the alpha factor model parameter data provided by other countries and for obtaining the indigenous CCF data of NPPs in Korea through Bayesian updating.

  2. On the failure analysis of bondlines: Stress or energy based fracture criteria?

    DEFF Research Database (Denmark)

    Anyfantis, Konstantinos

    2014-01-01

    that characterizes a given bondline, both its cohesive strength and fracture toughness material parameters must be experimentally defined. Based on these properties, failure analysis of the bondline can be done either through stress- or energy-based criteria. The aim of this work is to investigate the effectiveness...... to classify the wide range of bondlines with respect to the failure theory that best describes the debonding process. Cohesive length scale effects are first demonstrated by modeling end notch flexure geometries and later by modeling double strap joint geometries within the framework of a wide numerical...

  3. Statistical analysis on failure-to-open/close probability of motor-operated valve in sodium system

    International Nuclear Information System (INIS)

    Kurisaka, Kenichi

    1998-08-01

    The objective of this work is to develop basic data for examination on efficiency of preventive maintenance and actuation test from the standpoint of failure probability. This work consists of a statistical trend analysis of valve failure probability in a failure-to-open/close mode on time since installation and time since last open/close action, based on the field data of operating- and failure-experience. In this work, the terms both dependent and independent on time were considered in the failure probability. The linear aging model was modified and applied to the first term. In this model there are two terms with both failure rates in proportion to time since installation and to time since last open/close-demand. Because of sufficient statistical population, motor-operated valves (MOV's) in sodium system were selected to be analyzed from the CORDS database which contains operating data and failure data of components in the fast reactors and sodium test facilities. According to these data, the functional parameters were statistically estimated to quantify the valve failure probability in a failure-to-open/close mode, with consideration of uncertainty. (J.P.N.)

  4. A relation to predict the failure of materials and potential application to volcanic eruptions and landslides.

    Science.gov (United States)

    Hao, Shengwang; Liu, Chao; Lu, Chunsheng; Elsworth, Derek

    2016-06-16

    A theoretical explanation of a time-to-failure relation is presented, with this relationship then used to describe the failure of materials. This provides the potential to predict timing (tf - t) immediately before failure by extrapolating the trajectory as it asymptotes to zero with no need to fit unknown exponents as previously proposed in critical power law behaviors. This generalized relation is verified by comparison with approaches to criticality for volcanic eruptions and creep failure. A new relation based on changes with stress is proposed as an alternative expression of Voight's relation, which is widely used to describe the accelerating precursory signals before material failure and broadly applied to volcanic eruptions, landslides and other phenomena. The new generalized relation reduces to Voight's relation if stress is limited to increase at a constant rate with time. This implies that the time-derivatives in Voight's analysis may be a subset of a more general expression connecting stress derivatives, and thus provides a potential method for forecasting these events.

  5. Identifying novel phenotypes of acute heart failure using cluster analysis of clinical variables.

    Science.gov (United States)

    Horiuchi, Yu; Tanimoto, Shuzou; Latif, A H M Mahbub; Urayama, Kevin Y; Aoki, Jiro; Yahagi, Kazuyuki; Okuno, Taishi; Sato, Yu; Tanaka, Tetsu; Koseki, Keita; Komiyama, Kota; Nakajima, Hiroyoshi; Hara, Kazuhiro; Tanabe, Kengo

    2018-07-01

    Acute heart failure (AHF) is a heterogeneous disease caused by various cardiovascular (CV) pathophysiology and multiple non-CV comorbidities. We aimed to identify clinically important subgroups to improve our understanding of the pathophysiology of AHF and inform clinical decision-making. We evaluated detailed clinical data of 345 consecutive AHF patients using non-hierarchical cluster analysis of 77 variables, including age, sex, HF etiology, comorbidities, physical findings, laboratory data, electrocardiogram, echocardiogram and treatment during hospitalization. Cox proportional hazards regression analysis was performed to estimate the association between the clusters and clinical outcomes. Three clusters were identified. Cluster 1 (n=108) represented "vascular failure". This cluster had the highest average systolic blood pressure at admission and lung congestion with type 2 respiratory failure. Cluster 2 (n=89) represented "cardiac and renal failure". They had the lowest ejection fraction (EF) and worst renal function. Cluster 3 (n=148) comprised mostly older patients and had the highest prevalence of atrial fibrillation and preserved EF. Death or HF hospitalization within 12-month occurred in 23% of Cluster 1, 36% of Cluster 2 and 36% of Cluster 3 (p=0.034). Compared with Cluster 1, risk of death or HF hospitalization was 1.74 (95% CI, 1.03-2.95, p=0.037) for Cluster 2 and 1.82 (95% CI, 1.13-2.93, p=0.014) for Cluster 3. Cluster analysis may be effective in producing clinically relevant categories of AHF, and may suggest underlying pathophysiology and potential utility in predicting clinical outcomes. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Identification of Modeling Approaches To Support Common-Cause Failure Analysis

    International Nuclear Information System (INIS)

    Korsah, Kofi; Wood, Richard Thomas

    2015-01-01

    Experience with applying current guidance and practices for common-cause failure (CCF) mitigation to digital instrumentation and control (I&C) systems has proven problematic, and the regulatory environment has been unpredictable. The impact of CCF vulnerability is to inhibit I&C modernization and, thereby, challenge the long-term sustainability of existing plants. For new plants and advanced reactor concepts, the issue of CCF vulnerability for highly integrated digital I&C systems imposes a design burden resulting in higher costs and increased complexity. The regulatory uncertainty regarding which mitigation strategies are acceptable (e.g., what diversity is needed and how much is sufficient) drives designers to adopt complicated, costly solutions devised for existing plants. The conditions that constrain the transition to digital I&C technology by the U.S. nuclear industry require crosscutting research to resolve uncertainty, demonstrate necessary characteristics, and establish an objective basis for qualification of digital technology for usage in Nuclear Power Plant (NPP) I&C applications. To fulfill this research need, Oak Ridge National Laboratory is conducting an investigation into mitigation of CCF vulnerability for nuclear-qualified applications. The outcome of this research is expected to contribute to a fundamentally sound, comprehensive technical basis for establishing the qualification of digital technology for nuclear power applications. This report documents the investigation of modeling approaches for representing failure of I&C systems. Failure models are used when there is a need to analyze how the probability of success (or failure) of a system depends on the success (or failure) of individual elements. If these failure models are extensible to represent CCF, then they can be employed to support analysis of CCF vulnerabilities and mitigation strategies. Specifically, the research findings documented in this report identify modeling approaches that

  7. Identification of Modeling Approaches To Support Common-Cause Failure Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Korsah, Kofi [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wood, Richard Thomas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-06-01

    Experience with applying current guidance and practices for common-cause failure (CCF) mitigation to digital instrumentation and control (I&C) systems has proven problematic, and the regulatory environment has been unpredictable. The impact of CCF vulnerability is to inhibit I&C modernization and, thereby, challenge the long-term sustainability of existing plants. For new plants and advanced reactor concepts, the issue of CCF vulnerability for highly integrated digital I&C systems imposes a design burden resulting in higher costs and increased complexity. The regulatory uncertainty regarding which mitigation strategies are acceptable (e.g., what diversity is needed and how much is sufficient) drives designers to adopt complicated, costly solutions devised for existing plants. The conditions that constrain the transition to digital I&C technology by the U.S. nuclear industry require crosscutting research to resolve uncertainty, demonstrate necessary characteristics, and establish an objective basis for qualification of digital technology for usage in Nuclear Power Plant (NPP) I&C applications. To fulfill this research need, Oak Ridge National Laboratory is conducting an investigation into mitigation of CCF vulnerability for nuclear-qualified applications. The outcome of this research is expected to contribute to a fundamentally sound, comprehensive technical basis for establishing the qualification of digital technology for nuclear power applications. This report documents the investigation of modeling approaches for representing failure of I&C systems. Failure models are used when there is a need to analyze how the probability of success (or failure) of a system depends on the success (or failure) of individual elements. If these failure models are extensible to represent CCF, then they can be employed to support analysis of CCF vulnerabilities and mitigation strategies. Specifically, the research findings documented in this report identify modeling approaches that

  8. Propensity Score Analysis: An Alternative Statistical Approach for HRD Researchers

    Science.gov (United States)

    Keiffer, Greggory L.; Lane, Forrest C.

    2016-01-01

    Purpose: This paper aims to introduce matching in propensity score analysis (PSA) as an alternative statistical approach for researchers looking to make causal inferences using intact groups. Design/methodology/approach: An illustrative example demonstrated the varying results of analysis of variance, analysis of covariance and PSA on a heuristic…

  9. Fast neutron reactor noise analysis: beginning failure detection and physical parameter estimation

    International Nuclear Information System (INIS)

    Le Guillou, G.

    1975-01-01

    The analysis of the signals fluctuations coming from a power nuclear reactor (a breeder), by correlation methods and spectral analysis has two principal applications: on line estimation of physical parameters (reactivity coefficients); beginning failures (little boiling, abnormal mechanic vibrations). These two applications give important informations to the reactor core control and permit a good diagnosis [fr

  10. Utility of the Instability Severity Index Score in Predicting Failure After Arthroscopic Anterior Stabilization of the Shoulder.

    Science.gov (United States)

    Phadnis, Joideep; Arnold, Christine; Elmorsy, Ahmed; Flannery, Mark

    2015-08-01

    The redislocation rate after arthroscopic stabilization for anterior glenohumeral instability is up to 30%. The Instability Severity Index Score (ISIS) was developed to preoperatively rationalize the risk of failure, but it has not yet been validated by an independent group. To assess the utility of the ISIS in predicting failure of arthroscopic anterior shoulder stabilization and to identify other preoperative factors for failure. Case-control study; Level of evidence, 3. A case-control study was performed on 141 consecutive patients, comparing those who suffered failure of arthroscopic stabilization with those who had successful arthroscopic stabilization. The mean follow-up time was 47 months (range, 24-132 months). The ISIS was applied retrospectively, and an analysis was performed to establish independent risk factors for failure. A receiver operator coefficient curve was constructed to set a threshold ISIS for considering alternative surgery. Of 141 patients, 19 (13.5%) suffered recurrent instability. The mean ISIS of the failed stabilization group was higher than that of the successful stabilization group (5.1 vs 1.7; P surgery (P < .001), age at first dislocation (P = .01), competitive-level participation in sports (P < .001), and participation in contact or overhead sports (P = .03). The presence of glenoid bone loss carried the highest risk of failure (70%). There was a 70% risk of failure if the ISIS was ≥4, as opposed to a 4% risk of failure if the ISIS was <4. This is the first completely independent study to confirm that the ISIS is a useful preoperative tool. It is recommended that surgeons consider alternative forms of stabilization if the ISIS is ≥4. © 2015 The Author(s).

  11. Numerical Analysis on Failure Modes and Mechanisms of Mine Pillars under Shear Loading

    Directory of Open Access Journals (Sweden)

    Tianhui Ma

    2016-01-01

    Full Text Available Severe damage occurs frequently in mine pillars subjected to shear stresses. The empirical design charts or formulas for mine pillars are not applicable to orebodies under shear. In this paper, the failure process of pillars under shear stresses was investigated by numerical simulations using the rock failure process analysis (RFPA 2D software. The numerical simulation results indicate that the strength of mine pillars and the corresponding failure mode vary with different width-to-height ratios and dip angles. With increasing dip angle, stress concentration first occurs at the intersection between the pillar and the roof, leading to formation of microcracks. Damage gradually develops from the surface to the core of the pillar. The damage process is tracked with acoustic emission monitoring. The study in this paper can provide an effective means for understanding the failure mechanism, planning, and design of mine pillars.

  12. Common cause failure analysis of the rodded scram system of the Arkansas Nuclear One-Unit 1 Plant

    International Nuclear Information System (INIS)

    Montague, D.F.; Campbell, D.J.; Flanagan, G.F.

    1986-10-01

    This study demonstrates the use of a formal method for common cause failure analysis in a reliability analysis of the Arkansas Nuclear One - Unit 1 rodded scram system. The scram system failure of interest is loss of capability of the system to shut the reactor down when required. The results of this analysis support the ATWS program sponsored by the US Nuclear Regulatory Commission. The methods used in this analysis support the NRC's Risk Methods Integration and Evaluation Program (RMIEP)

  13. Computer-tomography and its use in failure analysis; Computertomographie und deren Anwendung in der Schadensanalytik

    Energy Technology Data Exchange (ETDEWEB)

    Panzenboeck, Michael; Freitag, Caroline [Montanuniv. Leoben (Austria). Dept. Metallkunde und Werkstoffpruefung; Borchert, Marlies [Materials Center Leoben (Austria)

    2017-04-15

    In the last fifteen years computer-tomography has proven to be a valuable aid in the fields of medicine, materials technology and forensics. Nowadays it is hard to image non-destructive testing being carried out without its use. This article serves to demonstrate the power of the technique within the field of failure analysis with reference to two chosen case studies. The first case concerns the failure of magnetic valves, the second case focusses on the failure of corrosion resistant screws.

  14. An engineering approach to common mode failure analysis

    International Nuclear Information System (INIS)

    Gangloff, W.C.; Franke, T.H.

    1975-01-01

    Safety systems for nuclear reactors can be designed using standard reliability engineering techniques such that system failure due to random component faults is extremely unlikely. However, the common-mode failure where several components fail together from a common cause is not susceptible to prevention by the usual tactics. In systems where a high degree of redundancy has been employed, the actual reliability of the system in service may be limited by common-mode failures. A methodical and thorough procedure for evaluation of system vulnerability to common-mode failures is presented. This procedure was developed for use in nuclear reactor safety systems and has been applied specifically to reactor protection. The method offers a qualitative assessment of a system whereby weak points can be identified and the resistance to common-mode failure can be judged. It takes into account all factors influencing system performance including design, manufacturing, installation, operation, testing, and maintenance. It is not a guarantee or sure solution, but rather a practical tool which can provide good assurance that the probability of common-mode protection failure has been made acceptably low. (author)

  15. Failure mode and effects analysis: too little for too much?

    Science.gov (United States)

    Dean Franklin, Bryony; Shebl, Nada Atef; Barber, Nick

    2012-07-01

    Failure mode and effects analysis (FMEA) is a structured prospective risk assessment method that is widely used within healthcare. FMEA involves a multidisciplinary team mapping out a high-risk process of care, identifying the failures that can occur, and then characterising each of these in terms of probability of occurrence, severity of effects and detectability, to give a risk priority number used to identify failures most in need of attention. One might assume that such a widely used tool would have an established evidence base. This paper considers whether or not this is the case, examining the evidence for the reliability and validity of its outputs, the mathematical principles behind the calculation of a risk prioirty number, and variation in how it is used in practice. We also consider the likely advantages of this approach, together with the disadvantages in terms of the healthcare professionals' time involved. We conclude that although FMEA is popular and many published studies have reported its use within healthcare, there is little evidence to support its use for the quantitative prioritisation of process failures. It lacks both reliability and validity, and is very time consuming. We would not recommend its use as a quantitative technique to prioritise, promote or study patient safety interventions. However, the stage of FMEA involving multidisciplinary mapping process seems valuable and work is now needed to identify the best way of converting this into plans for action.

  16. Failure mode and effects analysis on typical reactor trip system

    International Nuclear Information System (INIS)

    Eisawy, E.A.

    2010-01-01

    An updated failure mode and effects analysis, FMEA , has been performed on a typical reactor trip system. This upgrade helps to avoid system damage and ,as a result, extends the system service life. It also provides for simplified maintenance and surveillance testing. The operating conditions under which the system is to carry out its function and the operational profile expected for the system have been determined. The results of the FMEA have been given in terms of operating states of the subsystem.The results are given in form of table which is set up such that for a given failure one can read across it and determine which items remain operating in the system. From this data one can identify the number of components operating in the system for monitors pressure exceeds the setpoint pressure.

  17. Why an entrepreneur needs three failures before success:entrepreneurial learning after failure

    OpenAIRE

    Haapala, S. (Sami)

    2016-01-01

    Abstract This thesis aims to give an understanding of what is behind a failure in a startup industry. To understand why failures are needed for a success, the serial entrepreneur process has to be clarified at an individual level. In the failure process, under analysis are the main phases of turning a failure into a success and the outcomes which should be used as the next venture foundations. This study also aims to give b...

  18. Non-destructive failure analysis and measurement for molded devices and complex assemblies with X-ray CT and 3D image processing techniques

    International Nuclear Information System (INIS)

    Yin, Xiaoming; Liew, Seaw Jia; Jiang, Ting Ying; Xu, Jian; Kakarala, Ramakrishna

    2013-01-01

    In both automotive and healthcare sectors, reliable failure analysis and accurate measurement of molded devices and complex assemblies are important. Current methods of failure analysis and measurement require these molded parts to be cross-sectioned so that internal features or dimensions can be accessible. As a result, the parts are deemed unusable and additional failure introduced by sectioning may cause misinterpretation of the results. X-ray CT and 3D image processing techniques provide a new nondestructive solution for failure analysis and measurement of molded devices and complex assemblies. These techniques simplify failure analysis and measurement of molded devices and assemblies, and improve the productivity of molding manufacturing significantly.

  19. Uncertainty Analysis via Failure Domain Characterization: Polynomial Requirement Functions

    Science.gov (United States)

    Crespo, Luis G.; Munoz, Cesar A.; Narkawicz, Anthony J.; Kenny, Sean P.; Giesy, Daniel P.

    2011-01-01

    This paper proposes an uncertainty analysis framework based on the characterization of the uncertain parameter space. This characterization enables the identification of worst-case uncertainty combinations and the approximation of the failure and safe domains with a high level of accuracy. Because these approximations are comprised of subsets of readily computable probability, they enable the calculation of arbitrarily tight upper and lower bounds to the failure probability. A Bernstein expansion approach is used to size hyper-rectangular subsets while a sum of squares programming approach is used to size quasi-ellipsoidal subsets. These methods are applicable to requirement functions whose functional dependency on the uncertainty is a known polynomial. Some of the most prominent features of the methodology are the substantial desensitization of the calculations from the uncertainty model assumed (i.e., the probability distribution describing the uncertainty) as well as the accommodation for changes in such a model with a practically insignificant amount of computational effort.

  20. Survival analysis of heart failure patients: A case study.

    Science.gov (United States)

    Ahmad, Tanvir; Munir, Assia; Bhatti, Sajjad Haider; Aftab, Muhammad; Raza, Muhammad Ali

    2017-01-01

    This study was focused on survival analysis of heart failure patients who were admitted to Institute of Cardiology and Allied hospital Faisalabad-Pakistan during April-December (2015). All the patients were aged 40 years or above, having left ventricular systolic dysfunction, belonging to NYHA class III and IV. Cox regression was used to model mortality considering age, ejection fraction, serum creatinine, serum sodium, anemia, platelets, creatinine phosphokinase, blood pressure, gender, diabetes and smoking status as potentially contributing for mortality. Kaplan Meier plot was used to study the general pattern of survival which showed high intensity of mortality in the initial days and then a gradual increase up to the end of study. Martingale residuals were used to assess functional form of variables. Results were validated computing calibration slope and discrimination ability of model via bootstrapping. For graphical prediction of survival probability, a nomogram was constructed. Age, renal dysfunction, blood pressure, ejection fraction and anemia were found as significant risk factors for mortality among heart failure patients.

  1. Failure analysis of electrolyte-supported solid oxide fuel cells

    Science.gov (United States)

    Fleischhauer, Felix; Tiefenauer, Andreas; Graule, Thomas; Danzer, Robert; Mai, Andreas; Kuebler, Jakob

    2014-07-01

    For solid oxide fuel cells (SOFCs) one key aspect is the structural integrity of the cell and hence its thermo mechanical long term behaviour. The present study investigates the failure mechanisms and the actual causes for fracture of electrolyte supported SOFCs which were run using the current μ-CHP system of Hexis AG, Winterthur - Switzerland under lab conditions or at customer sites for up to 40,000 h. In a first step several operated stacks were demounted for post-mortem inspection, followed by a fractographic evaluation of the failed cells. The respective findings are then set into a larger picture including an analysis of the present stresses acting on the cell like thermal and residual stresses and the measurements regarding the temperature dependent electrolyte strength. For all investigated stacks, the mechanical failure of individual cells can be attributed to locally acting bending loads, which rise due to an inhomogeneous and uneven contact between the metallic interconnect and the cell.

  2. Dependency Defence and Dependency Analysis Guidance. Volume 2: Appendix 3-8. How to analyse and protect against dependent failures. Summary report of the Nordic Working Group on Common Cause Failure Analysis

    International Nuclear Information System (INIS)

    Johanson, Gunnar; Hellstroem, Per; Makamo, Tuomas; Bento, Jean-Pierre; Knochenhauer, Michael; Poern, Kurt

    2003-10-01

    The safety systems in Nordic nuclear power plants are characterised by substantial redundancy and/or diversification in safety critical functions, as well as by physical separation of critical safety systems, including their support functions. Viewed together with the evident additional fact, that the single failure criterion has been systematically applied in the design of safety systems, this means that the plant risk profile as calculated in existing PSA:s is usually strongly dominated by failures caused by dependencies resulting in the loss of more than one system sub. The overall objective with the working group is to support safety by studying potential and real CCF events, process statistical data and report conclusions and recommendations that can improve the understanding of these events eventually resulting in increased safety. The result is intended for application in NPP operation, maintenance, inspection and risk assessments. The NAFCS project is part of the activities of the Nordic PSA Group (NPSAG), and is financed jointly by the Nordic utilities and authorities. The work is divided into one quantitative and one qualitative part with the following specific objectives: Qualitative objectives-The goal with the qualitative analysis is to compile experience data and generate insights in terms of relevant failure mechanisms and effective CCF protection measures. The results shall be presented as a guide with checklists and recommendations on how to identify current CCF protection standard and improvement possibilities regarding CCF defences decreasing the CCF vulnerability. Quantitative objectives-The goal with the quantitative analysis is to prepare a Nordic C-book where quantitative insights as Impact Vectors and CCF parameters for different redundancy levels are presented. Uncertainties in CCF data shall be reduced as much as possible. The high redundancy systems sensitivity to CCF events demand a well structured quantitative analysis in support of

  3. Transient analysis for alternating over-current characteristics of HTSC power transmission cable

    Science.gov (United States)

    Lim, S. H.; Hwang, S. D.

    2006-10-01

    In this paper, the transient analysis for the alternating over-current distribution in case that the over-current was applied for a high-TC superconducting (HTSC) power transmission cable was performed. The transient analysis for the alternating over-current characteristics of HTSC power transmission cable with multi-layer is required to estimate the redistribution of the over-current between its conducting layers and to protect the cable system from the over-current in case that the quench in one or two layers of the HTSC power cable happens. For its transient analysis, the resistance generation of the conducting layers for the alternating over-current was reflected on its equivalent circuit, based on the resistance equation obtained by applying discrete Fourier transform (DFT) for the voltage and the current waveforms of the HTSC tape, which comprises each layer of the HTSC power transmission cable. It was confirmed through the numerical analysis on its equivalent circuit that after the current redistribution from the outermost layer into the inner layers first happened, the fast current redistribution between the inner layers developed as the amplitude of the alternating over-current increased.

  4. Low-level waste management alternatives and analysis in DOE`s programmatic environmental impact statement

    Energy Technology Data Exchange (ETDEWEB)

    Gerstein, J.S. [Dept. of Energy, Washington, DC (United States). Office of Environmental Restoration and Waste Management

    1993-03-01

    The Department of Energy is preparing a Programmatic Environmental Impact Statement (PEIS) for the Environmental Restoration and Waste Management Program. The PEIS has been divided into an Environmental Restoration section and a Waste Management section. Each section has a unique set of alternatives. This paper will focus on the waste management alternatives and analysis. The set of alternatives for waste management has been divided into waste categories. These categories are: high-level waste, transuranic waste, low-level waste, low-level mixed waste, greater-than-class C and low-level waste from commercial sources, hazardous waste, and spent nuclear fuel. This paper will discuss the alternatives and analytical approach that will be used to evaluate these alternatives for the low-level waste section. Although the same alternatives will be considered for all waste types, the analysis will be performed separately for each waste type. In the sections that follow, information will be provided on waste management configurations, the analysis of waste management alternatives, waste types and locations, facility and transportation activities, the facility and transportation impacts assessment, and the compilation of impacts.

  5. Comparison of stress-based and strain-based creep failure criteria for severe accident analysis

    International Nuclear Information System (INIS)

    Chavez, S.A.; Kelly, D.L.; Witt, R.J.; Stirn, D.P.

    1995-01-01

    We conducted a parametic analysis of stress-based and strain-based creep failure criteria to determine if there is a significant difference between the two criteria for SA533B vessel steel under severe accident conditions. Parametric variables include debris composition, system pressure, and creep strain histories derived from different testing programs and mathematically fit, with and without tertiary creep. Results indicate significant differences between the two criteria. Stress gradient plays an important role in determining which criterion will predict failure first. Creep failure was not very sensitive to different creep strain histories, except near the transition temperature of the vessel steel (900K to 1000K). Statistical analyses of creep failure data of four independent sources indicate that these data may be pooled, with a spline point at 1000K. We found the Manson-Haferd parameter to have better failure predictive capability than the Larson-Miller parameter for the data studied. (orig.)

  6. Tradeoff Analysis for Combat Service Support Wireless Communications Alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Burnette, John R.; Thibodeau, Christopher C.; Greitzer, Frank L.

    2002-02-28

    As the Army moves toward more mobile and agile forces and continued sustainment of numerous high-cost legacy logistics management systems, the requirement for wireless connectivity and a wireless network to supporting organizations has become ever more critical. There are currently several Army communications initiatives underway to resolve this wireless connectivity issue. However, to fully appreciate and understand the value of these initiatives, a Tradeoff Analysis is needed. The present study seeks to identify and assess solutions. The analysis identified issues that impede Interim Brigade Combat Team (IBCT) communication system integration and outlined core requirements for sharing of logistics data between the field and Army battle command systems. Then, the analysis examined wireless communication alternatives as possible solutions for IBCT logistics communications problems. The current baseline system was compared with possible alternatives involving tactical radio systems, wireless/near term digital radio, cellular satellite, and third-generation (3G) wireless technologies. Cellular satellite and 3G wireless technologies offer clear advantages and should be considered for later IBCTs.

  7. BWR Steam Dryer Alternating Stress Assessment Procedures

    Energy Technology Data Exchange (ETDEWEB)

    Morante, R. J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hambric, S. A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ziada, S. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-12-01

    This report presents an overview of Boiling Water Reactor (BWR) steam dryer design; the fatigue cracking failures that occurred at the Quad Cities (QC) plants and their root causes; a history of BWR Extended Power Uprates (EPUs) in the USA; and a discussion of steam dryer modifications/replacements, alternating stress mechanisms on steam dryers, and structural integrity evaluations (static and alternating stress).

  8. Launch Vehicle Abort Analysis for Failures Leading to Loss of Control

    Science.gov (United States)

    Hanson, John M.; Hill, Ashley D.; Beard, Bernard B.

    2013-01-01

    Launch vehicle ascent is a time of high risk for an onboard crew. There is a large fraction of possible failures for which time is of the essence and a successful abort is possible if the detection and action happens quickly enough. This paper focuses on abort determination based on data already available from the Guidance, Navigation, and Control system. This work is the result of failure analysis efforts performed during the Ares I launch vehicle development program. The two primary areas of focus are the derivation of abort triggers to ensure that abort occurs as quickly as possible when needed, but that false aborts are avoided, and evaluation of success in aborting off the failing launch vehicle.

  9. PV System Component Fault and Failure Compilation and Analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Klise, Geoffrey Taylor; Lavrova, Olga; Gooding, Renee Lynne

    2018-02-01

    This report describes data collection and analysis of solar photovoltaic (PV) equipment events, which consist of faults and fa ilures that occur during the normal operation of a distributed PV system or PV power plant. We present summary statistics from locations w here maintenance data is being collected at various intervals, as well as reliability statistics gathered from that da ta, consisting of fault/failure distributions and repair distributions for a wide range of PV equipment types.

  10. Prestudy - Development of trend analysis of component failure

    International Nuclear Information System (INIS)

    Poern, K.

    1995-04-01

    The Bayesian trend analysis model that has been used for the computation of initiating event intensities (I-book) is based on the number of events that have occurred during consecutive time intervals. The model itself is a Poisson process with time-dependent intensity. For the analysis of aging it is often more relevant to use times between failures for a given component as input, where by 'time' is meant a quantity that best characterizes the age of the component (calendar time, operating time, number of activations etc). Therefore, it has been considered necessary to extend the model and the computer code to allow trend analysis of times between events, and also of several sequences of times between events. This report describes this model extension as well as an application on an introductory ageing analysis of centrifugal pumps defined in Table 5 of the T-book. The application in turn directs the attention to the need for further development of both the trend model and the data base. Figs

  11. Enhancing the discussion of alternatives in EIA using principle component analysis leads to improved public involvement

    International Nuclear Information System (INIS)

    Kamijo, Tetsuya; Huang, Guangwei

    2017-01-01

    The purpose of this study is to show the effectiveness of principle component analysis (PCA) as a method of alternatives analysis useful for improving the discussion of alternatives and public involvement. This study examined public consultations by applying quantitative text analysis (QTA) to the minutes of meetings and showed a positive correlation between the discussion of alternatives and the sense of public involvement. The discussion of alternatives may improve public involvement. A table of multiple criteria analysis for alternatives with detailed scores may exclude the public from involvement due to the general public's limited capacity to understand the mathematical algorithm and to process too much information. PCA allowed for the reduction of multiple criteria down to a small number of uncorrelated variables (principle components), a display of the merits and demerits of the alternatives, and potentially made the identification of preferable alternatives by the stakeholders easier. PCA is likely to enhance the discussion of alternatives and as a result, lead to improved public involvement.

  12. Failure analysis for ultrasound machines in a radiology department after implementation of predictive maintenance method

    Directory of Open Access Journals (Sweden)

    Greg Chu

    2018-01-01

    Full Text Available Objective: The objective of the study was to perform quantitative failure and fault analysis to the diagnostic ultrasound (US scanners in a radiology department after the implementation of the predictive maintenance (PdM method; to study the reduction trend of machine failure; to understand machine operating parameters affecting the failure; to further optimize the method to maximize the machine clinically service time. Materials and Methods: The PdM method has been implemented to the 5 US machines since 2013. Log books were used to record machine failures and their root causes together with the time spent on repair, all of which were retrieved, categorized, and analyzed for the period between 2013 and 2016. Results: There were a total of 108 cases of failure occurred in these 5 US machines during the 4-year study period. The average number of failure per month for all these machines was 2.4. Failure analysis showed that there were 33 cases (30.5% due to software, 44 cases (40.7% due to hardware, and 31 cases (28.7% due to US probe. There was a statistically significant negative correlation between the time spent on regular quality assurance (QA by hospital physicists with the time spent on faulty parts replacement over the study period (P = 0.007. However, there was no statistically significant correlation between regular QA time and total yearly breakdown case (P = 0.12, although there has been a decreasing trend observed in the yearly total breakdown. Conclusion: There has been a significant improvement on the machine failure of US machines attributed to the concerted effort of sonographers and physicists in our department to practice the PdM method, in that system component repair time has been reduced, and a decreasing trend in the number of system breakdown has been observed.

  13. Alternative protections for loss of coolant accidents

    International Nuclear Information System (INIS)

    Estevez, E.A.

    1997-01-01

    One way to mitigate a small loss of coolant accident (LOCA) is by depressurizing the primary system, in order to turn the accident into a sequence where water is fed to a low pressure system. It can be achieved by two different ways: by incorporating a valve system (ADS - Automatic Depressurization System) to the design, which helps to diminish the pressure, obtaining a bigger LOCA, or by extracting heat from the system. Our analysis is centered in integrated reactors. The first characterization performed was on CAREM reactor. The idea was then to observe its behavior with LOCAs for different thermal power relations, water volume and rupture area. A simple depressurization model is presented, which enables us to find the parameter relationships which characterize this process, from which some particular cases will arise. ADS implementation is then analyzed, giving the criteria for the triggering time. A study on its reliability and the probability of a spurious opening is made, taking into account independent and dependent failures. An analysis on heat extraction as alternative for depressurizing is also made. Finally, the different reasons to choose between ADS or heat extraction as alternative are given, and the meaning of the parameters found are discussed. An alternative to classify LOCAs, instead of the traditional classification, by fracture size, is suggested. (author)

  14. An analysis of molten-corium-induced failure of drain pipes in BWR Mark 2 containments

    International Nuclear Information System (INIS)

    Taleyarkhan, R.P.; Podowski, M.Z.

    1991-01-01

    This study has focused on mechanistic simulation and analysis of potential failure modes for inpedestal drywell drain pipes in the Limerick boiling water reactor (BWR) Mark 2 containment. Physical phenomena related to surface tension breakdown, heatup, melting, ablation, crust formation and failure, and core material relocation into drain pipes with simultaneous melting of pipe walls were modeled and analyzed. The results of analysis have been used to assess the possibility of drain pipe failure and the resultant loss of pressure-suppression capability. Estimates have been made for the timing and amount of molten corium released to the wetwell. The study has revealed that significantly different melt progression sequences can result depending upon the failure characteristics of the frozen metallic crust which forms over the drain cover during the initial stages of debris pour. Another important result is that it can take several days for the molten fuel to ablate the frozen metallic debris layer -- if the frozen layer has cooled below 1100 K before fuel attack. 10 refs., 3 figs., 4 tabs

  15. Fault tree and failure mode and effects analysis of a digital safety function

    International Nuclear Information System (INIS)

    Maskuniitty, M.; Pulkkinen, U.

    1995-01-01

    The principles of fault tree and failure mode and effects analysis (FMEA) for the analysis of digital safety functions of nuclear power plants are discussed. Based on experiences from a case study, a proposal for a full scale analysis is presented. The feasibility and applicability the above mentioned reliability engineering methods are discussed. (author). 13 refs, 1 fig., 2 tabs

  16. Effects of catheter-based renal denervation on heart failure with reduced ejection fraction: a systematic review and meta-analysis.

    Science.gov (United States)

    Fukuta, Hidekatsu; Goto, Toshihiko; Wakami, Kazuaki; Ohte, Nobuyuki

    2017-11-01

    Despite the recent advances in the management of heart failure, the mortality of heart failure patients remains high. It is of urgent need to develop new therapy for heart failure. Heart failure is characterized by increased sympathetic activity, and chronic sympathetic activation is involved in the maintenance of the pathological state. Catheter-based renal denervation (RDN) has emerged as an invasive but safe approach that can reduce sympathetic activation. Studies have reported inconsistent results regarding the effect of RDN in heart failure patients due to limited power with small sample sizes. We aimed to conduct a meta-analysis of the effect of RDN on heart failure patients with reduced left ventricular (LV) ejection fraction (EF). An electronic search for studies examining the effect of RDN on LV function in heart failure patients with reduced EF was conducted. Two controlled (80 patients) and 2 uncontrolled studies (21 patients) were included in this meta-analysis. In the pooled analysis, 6 months after RDN, there was a greater increase in EF (weighted mean difference [95% CI] = 8.63 [6.02, 11.24] %) and a greater decrease in LV end-diastolic diameter (-0.58 [-0.83, -0.34] cm) in RDN group than in control group. No serious adverse events such as acute renal artery stenosis and dissection occurred. Our meta-analysis of feasibility studies suggests that RDN may improve LV function in heart failure patients with reduced EF, providing the rationale to conduct next phase trials to confirm the observed potential benefits of RDN.

  17. Bearing failure detection of micro wind turbine via power spectral density analysis for stator current signals spectrum

    Science.gov (United States)

    Mahmood, Faleh H.; Kadhim, Hussein T.; Resen, Ali K.; Shaban, Auday H.

    2018-05-01

    The failure such as air gap weirdness, rubbing, and scrapping between stator and rotor generator arise unavoidably and may cause extremely terrible results for a wind turbine. Therefore, we should pay more attention to detect and identify its cause-bearing failure in wind turbine to improve the operational reliability. The current paper tends to use of power spectral density analysis method of detecting internal race and external race bearing failure in micro wind turbine by estimation stator current signal of the generator. The failure detector method shows that it is well suited and effective for bearing failure detection.

  18. Spectral Electroencephalogram Analysis for the Evaluation of Encephalopathy Grade in Children With Acute Liver Failure.

    Science.gov (United States)

    Press, Craig A; Morgan, Lindsey; Mills, Michele; Stack, Cynthia V; Goldstein, Joshua L; Alonso, Estella M; Wainwright, Mark S

    2017-01-01

    Spectral electroencephalogram analysis is a method for automated analysis of electroencephalogram patterns, which can be performed at the bedside. We sought to determine the utility of spectral electroencephalogram for grading hepatic encephalopathy in children with acute liver failure. Retrospective cohort study. Tertiary care pediatric hospital. Patients between 0 and 18 years old who presented with acute liver failure and were admitted to the PICU. None. Electroencephalograms were analyzed by spectral analysis including total power, relative δ, relative θ, relative α, relative β, θ-to-Δ ratio, and α-to-Δ ratio. Normal values and ranges were first derived using normal electroencephalograms from 70 children of 0-18 years old. Age had a significant effect on each variable measured (p liver failure were available for spectral analysis. The median age was 4.3 years, 14 of 33 were male, and the majority had an indeterminate etiology of acute liver failure. Neuroimaging was performed in 26 cases and was normal in 20 cases (77%). The majority (64%) survived, and 82% had a good outcome with a score of 1-3 on the Pediatric Glasgow Outcome Scale-Extended at the time of discharge. Hepatic encephalopathy grade correlated with the qualitative visual electroencephalogram scores assigned by blinded neurophysiologists (rs = 0.493; p encephalopathy was correlated with a total power of less than or equal to 50% of normal for children 0-3 years old, and with a relative θ of less than or equal to 50% normal for children more than 3 years old (p > 0.05). Spectral electroencephalogram classification correlated with outcome (p encephalopathy and correlates with outcome. Spectral electroencephalogram may allow improved quantitative and reproducible assessment of hepatic encephalopathy grade in children with acute liver failure.

  19. Modelling of Diffuse Failure and Fluidization in geo materials and Geo structures

    International Nuclear Information System (INIS)

    Pastor, M.

    2013-01-01

    Failure of geo structures is caused by changes in effective stresses induced by external loads (earthquakes, for instance), change in the pore pressures (rain), in the geometry (erosion), or in materials properties (chemical attack, degradation, weathering). Landslides can by analysed as the failure of a geo structure, the slope. There exist many alternative classifications of landslides can be analyzed as the failure of a geo structure, the slope. There exist many alternative classifications of landslides, but we will consider here a simple classification into slides and flows. In the case of slides, the failure consists on the movement of a part of the slope with deformations which concentrate in a narrow zone, the failure surface. This can be idealized as localized failure, and it is typical of over consolidated or dense materials exhibiting softening. On the other hand, flows are made of fluidized materials, flowing in a fluid like manner. This mechanism of failure is known as diffuse failure, and has received much less attention by researchers. Modelling of diffuse failure of slopes is complex, because there appear difficulties in the mathematical, constitutive and numerical models, which have to account for a phase transition. This work deals with modeling, and we will present here some tools recently developed by the author and the group to which he belongs. (Author)

  20. Failure Analysis and Magnetic Evaluation of Tertiary Superheater Tube Used in Gas-Fired Boiler

    Science.gov (United States)

    Mohapatra, J. N.; Patil, Sujay; Sah, Rameshwar; Krishna, P. C.; Eswarappa, B.

    2018-02-01

    Failure analysis was carried out on a prematurely failed tertiary superheater tube used in gas-fired boiler. The analysis includes a comparative study of visual examination, chemical composition, hardness and microstructure at failed region, adjacent and far to failure as well as on fresh tube. The chemistry was found matching to the standard specification, whereas the hardness was low in failed tube compared to the fish mouth opening region and the fresh tube. Microscopic examination of failed sample revealed the presence of spheroidal carbides of Cr and Mo predominantly along the grain boundaries. The primary cause of failure is found to be localized heating. Magnetic hysteresis loop (MHL) measurements were carried out to correlate the magnetic parameters with microstructure and mechanical properties to establish a possible non-destructive evaluation (NDE) for health monitoring of the tubes. The coercivity of the MHL showed a very good correlation with microstructure and mechanical properties deterioration enabling a possible NDE technique for the health monitoring of the tubes.

  1. A meta-analysis of the association between diabetic patients and AVF failure in dialysis.

    Science.gov (United States)

    Yan, Yan; Ye, Dan; Yang, Liu; Ye, Wen; Zhan, Dandan; Zhang, Li; Xiao, Jun; Zeng, Yan; Chen, Qinkai

    2018-11-01

    The most preferable vascular access for patients with end-stage renal failure needing hemodialysis is native arteriovenous fistula (AVF) on account of its access longevity, patient morbidity, hospitalization costs, lower risks of infection and fewer incidence of thrombotic complications. Meanwhile, according to National Kidney Foundation (NKF)̸Dialysis Out-comes Quality Initiative (DOQI) guidelines, AVF is more used than before. However, a significant percentage of AVF fails to support dialysis therapy due to lack of adequate maturity. Among all factors, the presence of diabetes mellitus was shown to be one of the risk factors for the development of vascular access failure by some authors. Therefore, this review evaluates the current evidence concerning the correlation of diabetes and AVF failure. A search was conducted using MEDLINE, SCIENCE DIRECT, SPRINGER, WILEY-BLACKWELL, KARGER, EMbase, CNKI and WanFang Data from the establishment time of databases to January 2016. The analysis involved studies that contained subgroups of diabetic patients and compared their outcomes with those of non-diabetic adults. In total, 23 articles were retrieved and included in the review. The meta-analysis revealed a statistically significantly higher rate of AVF failure in diabetic patients compared with non-diabetic patients (OR = 1.682; 95% CI, 1.429-1.981, Test of OR = 1: z = 6.25, p <.001). This review found an increased risk of AVF failure in diabetes patients. If confirmed by further prospective studies, preventive measure should be considered when planning AVF in diabetic patients.

  2. Vulnerability Identification and Design-Improvement-Feedback using Failure Analysis of Digital Control System Designs

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eunchan; Bae, Yeonkyoung [Korea Hydro and Nuclear Power Co., Ltd., Daejeon (Korea, Republic of)

    2013-05-15

    Fault tree analyses let analysts establish the failure sequences of components as a logical model and confirm the result at the plant level. These two analyses provide insights regarding what improvements are needed to increase availability because it expresses the quantified design attribute of the system as minimal cut sets and availability value interfaced with component reliability data in the fault trees. This combined failure analysis method helps system users understand system characteristics including its weakness and strength in relation to faults in the design stage before system operation. This study explained why a digital system could have weaknesses in methods to transfer control signals or data and how those vulnerabilities could cause unexpected outputs. In particular, the result of the analysis confirmed that complex optical communication was not recommended for digital data transmission in the critical systems of nuclear power plants. Regarding loop controllers in Design A, a logic configuration should be changed to prevent spurious actuation due to a single failure, using hardware or software improvements such as cross checking between redundant modules, or diagnosis of the output signal integrity. Unavailability calculations support these insights from the failure analyses of the systems. In the near future, KHNP will perform failure mode and effect analyses in the design stage before purchasing non-safety-related digital system packages. In addition, the design requirements of the system will be confirmed based on evaluation of overall system availability or unavailability.

  3. Economic analysis of alternatives for optimizing energy use in manufacturing companies

    International Nuclear Information System (INIS)

    Méndez-Piñero, Mayra Ivelisse; Colón-Vázquez, Melitza

    2013-01-01

    The manufacturing companies are one of the main consumers of energy. The increment in global warming and the instability in the petroleum oil market have motivated companies to find alternatives to reduce energy use. In the academic literature several researchers have demonstrated that optimization models can be successfully used to reduce energy use. This research presents the use of an optimization model to identify feasible economic alternatives to reduce energy use. The economic analysis methods used were the payback and the internal rate of return. The optimization model developed in this research was applied and validated using an electronic manufacturing company case study. The results demonstrate that the main variables affecting the economic feasibility of the alternatives are the economic analysis method and the initial implementation costs. Several scenarios were analyzed and the best results show that the manufacturing company could save up to $78,000 in three years if the recommendations based on the optimization model results are implemented. - Highlights: • Evaluate top consumers of energy in manufacturing: A/C, compressed air, and lighting • Economic analysis of alternatives to optimize energy used in manufacturing • Comparison of payback method and internal rate of return method with real data • Results demonstrate that the company could generate savings in energy use

  4. Application of Pyrolysis - Gas Chromatography/Mass Spectrometry in Failure Analysis in the Automotive Industry

    OpenAIRE

    Kusch, Peter (Dr.)

    2015-01-01

    This book chapter describes application examples of gas chromatography/mass spectrometry and pyrolysis – gas chromatography/mass spectrometry in failure analysis for the identification of chemical materials like mineral oils and nitrile rubber gaskets. Furthermore, failure cases demanding identification of polymers/copolymers in fouling on the compressor wall of a car air conditioner and identification of fouling on the surface of a bearing race from the automotive industry are demonstr...

  5. Analysis of bank failures during financial tumult in Africa-Zimbabwe: A historical review

    Directory of Open Access Journals (Sweden)

    Shewangu Dzomira

    2014-09-01

    Full Text Available The paper describes the analysis of the bank failures phenomenon in Africa with a deep analysis of Zimbabwe scenario. The paper is based on historical research design which used analytical and comparative research approaches to study the bank failures phenomenon. To obtain the historical evidence the researcher consulted primary sources, secondary sources and running records. It was discovered and concluded that the failing of banks was attributed to liquidity and solvency problems as a result of flawed corporate governance standards, inadequate risk management, high levels of non-performing loans and speculative activities among a confluence of factors. It was therefore recommended that enterprise-wide risk management framework should be implemented without failing and adoption of Basel II/III on banking supervision and surveillance.

  6. Failure mode and effects analysis in a dual-product microsphere brachytherapy environment.

    Science.gov (United States)

    Younge, Kelly Cooper; Lee, Choonik; Moran, Jean M; Feng, Mary; Novelli, Paula; Prisciandaro, Joann I

    We performed a failure mode and effects analysis (FMEA) during the addition of a new microspheres product into our existing microsphere brachytherapy program to identify areas for safety improvements. A diverse group of team members from the microsphere program participated in the project to create a process map, identify and score failure modes, and discuss programmatic changes to address the highest ranking items. We developed custom severity ranking scales for staff- and institution-related failure modes to encompass possible risks that may exist outside of patient-based effects. Between both types of microsphere products, 173 failure mode/effect pairs were identified: 90 for patients, 35 for staff, and 48 for the institution. The SIR-Spheres program was ranked separately from the TheraSphere program because of significant differences in workflow during dose calculation, preparation, and delivery. High-ranking failure modes in each category were addressed with programmatic changes. The FMEA aided in identifying potential risk factors in our microsphere program and allowed a theoretically safer and more efficient design of the workflow and quality assurance for both our new SIR-Spheres program and our existing TheraSphere program. As new guidelines are made available, and our experience with the SIR-Spheres program increases, we will update the FMEA as an efficient starting point for future improvements. Copyright © 2016 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  7. Prophylactic antibiotic regimen and dental implant failure: a meta-analysis.

    Science.gov (United States)

    Chrcanovic, B R; Albrektsson, T; Wennerberg, A

    2014-12-01

    The aim of this meta-analysis was to investigate whether there are any positive effects of prophylactic antibiotic regimen on implant failure rates and post-operative infection when performing dental implant treatment in healthy individuals. An electronic search without time or language restrictions was undertaken in March 2014. Eligibility criteria included clinical human studies, either randomised or not. The search strategy resulted in 14 publications. The I(2) statistic was used to express the percentage of the total variation across studies due to heterogeneity. The inverse variance method was used with a fixed- or random-effects model, depending on the heterogeneity. The estimates of relative effect were expressed in risk ratio (RR) with 95% confidence interval. Six studies were judged to be at high risk of bias, whereas one study was considered at moderate risk, and six studies were considered at low risk of bias. The test for overall effect showed that the difference between the procedures (use versus non-use of antibiotics) significantly affected the implant failure rates (P = 0.0002), with a RR of 0.55 (95% CI 0.41-0.75). The number needed to treat (NNT) to prevent one patient having an implant failure was 50 (95% CI 33-100). There were no apparent significant effects of prophylactic antibiotics on the occurrence of post-operative infections in healthy patients receiving implants (P = 0.520). A sensitivity analysis did not reveal difference when studies judged as having high risk of bias were not considered. The results have to be interpreted with caution due to the presence of several confounding factors in the included studies. © 2014 John Wiley & Sons Ltd.

  8. A Report on Simulation-Driven Reliability and Failure Analysis of Large-Scale Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Lipeng [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wang, Feiyi [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Oral, H. Sarp [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Vazhkudai, Sudharshan S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cao, Qing [Univ. of Tennessee, Knoxville, TN (United States)

    2014-11-01

    High-performance computing (HPC) storage systems provide data availability and reliability using various hardware and software fault tolerance techniques. Usually, reliability and availability are calculated at the subsystem or component level using limited metrics such as, mean time to failure (MTTF) or mean time to data loss (MTTDL). This often means settling on simple and disconnected failure models (such as exponential failure rate) to achieve tractable and close-formed solutions. However, such models have been shown to be insufficient in assessing end-to-end storage system reliability and availability. We propose a generic simulation framework aimed at analyzing the reliability and availability of storage systems at scale, and investigating what-if scenarios. The framework is designed for an end-to-end storage system, accommodating the various components and subsystems, their interconnections, failure patterns and propagation, and performs dependency analysis to capture a wide-range of failure cases. We evaluate the framework against a large-scale storage system that is in production and analyze its failure projections toward and beyond the end of lifecycle. We also examine the potential operational impact by studying how different types of components affect the overall system reliability and availability, and present the preliminary results

  9. SU-E-T-627: Failure Modes and Effect Analysis for Monthly Quality Assurance of Linear Accelerator

    International Nuclear Information System (INIS)

    Xie, J; Xiao, Y; Wang, J; Peng, J; Lu, S; Hu, W

    2014-01-01

    Purpose: To develop and implement a failure mode and effect analysis (FMEA) on routine monthly Quality Assurance (QA) tests (physical tests part) of linear accelerator. Methods: A systematic failure mode and effect analysis method was performed for monthly QA procedures. A detailed process tree of monthly QA was created and potential failure modes were defined. Each failure mode may have many influencing factors. For each factor, a risk probability number (RPN) was calculated from the product of probability of occurrence (O), the severity of effect (S), and detectability of the failure (D). The RPN scores are in a range of 1 to 1000, with higher scores indicating stronger correlation to a given influencing factor of a failure mode. Five medical physicists in our institution were responsible to discuss and to define the O, S, D values. Results: 15 possible failure modes were identified and all RPN scores of all influencing factors of these 15 failue modes were from 8 to 150, and the checklist of FMEA in monthly QA was drawn. The system showed consistent and accurate response to erroneous conditions. Conclusion: The influencing factors of RPN greater than 50 were considered as highly-correlated factors of a certain out-oftolerance monthly QA test. FMEA is a fast and flexible tool to develop an implement a quality management (QM) frame work of monthly QA, which improved the QA efficiency of our QA team. The FMEA work may incorporate more quantification and monitoring fuctions in future

  10. Seismic analysis for translational failure of landfills with retaining walls.

    Science.gov (United States)

    Feng, Shi-Jin; Gao, Li-Ya

    2010-11-01

    In the seismic impact zone, seismic force can be a major triggering mechanism for translational failures of landfills. The scope of this paper is to develop a three-part wedge method for seismic analysis of translational failures of landfills with retaining walls. The approximate solution of the factor of safety can be calculated. Unlike previous conventional limit equilibrium methods, the new method is capable of revealing the effects of both the solid waste shear strength and the retaining wall on the translational failures of landfills during earthquake. Parameter studies of the developed method show that the factor of safety decreases with the increase of the seismic coefficient, while it increases quickly with the increase of the minimum friction angle beneath waste mass for various horizontal seismic coefficients. Increasing the minimum friction angle beneath the waste mass appears to be more effective than any other parameters for increasing the factor of safety under the considered condition. Thus, selecting liner materials with higher friction angle will considerably reduce the potential for translational failures of landfills during earthquake. The factor of safety gradually increases with the increase of the height of retaining wall for various horizontal seismic coefficients. A higher retaining wall is beneficial to the seismic stability of the landfill. Simply ignoring the retaining wall will lead to serious underestimation of the factor of safety. Besides, the approximate solution of the yield acceleration coefficient of the landfill is also presented based on the calculated method. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Failure Analysis of Storage Data Magnetic Systems

    Directory of Open Access Journals (Sweden)

    Ortiz–Prado A.

    2010-10-01

    Full Text Available This paper shows the conclusions about the corrosion mechanics in storage data magnetic systems (hard disk. It was done from the inspection of 198 units that were in service in nine different climatic regions characteristic for Mexico. The results allow to define trends about the failure forms and the factors that affect them. In turn, this study has analyzed the causes that led to mechanical failure and those due to deterioration by atmospheric corrosion. On the basis of the results obtained from the field sampling, demonstrates that the hard disk failure is fundamentally by mechanical effects. The deterioration by environmental effects were found in read-write heads, integrated circuits, printed circuit boards and in some of the electronic components of the controller card of the device, but not in magnetic storage surfaces. There fore, you can discard corrosion on the surface of the disk as the main kind of failure due to environmental deterioration. To avoid any inconvenience in the magnetic data storage system it is necessary to ensure sealing of the system.

  12. Failure Analysis in Magnetic Tunnel Junction Nanopillar with Interfacial Perpendicular Magnetic Anisotropy

    Directory of Open Access Journals (Sweden)

    Weisheng Zhao

    2016-01-01

    Full Text Available Magnetic tunnel junction nanopillar with interfacial perpendicular magnetic anisotropy (PMA-MTJ becomes a promising candidate to build up spin transfer torque magnetic random access memory (STT-MRAM for the next generation of non-volatile memory as it features low spin transfer switching current, fast speed, high scalability, and easy integration into conventional complementary metal oxide semiconductor (CMOS circuits. However, this device suffers from a number of failure issues, such as large process variation and tunneling barrier breakdown. The large process variation is an intrinsic issue for PMA-MTJ as it is based on the interfacial effects between ultra-thin films with few layers of atoms; the tunneling barrier breakdown is due to the requirement of an ultra-thin tunneling barrier (e.g., <1 nm to reduce the resistance area for the spin transfer torque switching in the nanopillar. These failure issues limit the research and development of STT-MRAM to widely achieve commercial products. In this paper, we give a full analysis of failure mechanisms for PMA-MTJ and present some eventual solutions from device fabrication to system level integration to optimize the failure issues.

  13. Dependent failure analysis research for the US NRC Risk Methods Integration and Evaluation Program

    International Nuclear Information System (INIS)

    Bohn, M.P.; Stack, D.W.; Campbell, D.J.; Rooney, J.J.; Rasmuson, D.M.

    1985-01-01

    The Risk Methods Integration and Evaluation Program (RMIEP), which is being performed for the Nuclear Regulatory Commission by Sandia National Laboratories, has the goals of developing new risk assessment methods and integrating the new and existing methods in a uniform procedure for performing an in-depth probabilistic risk assessment (PRA) with consistent levels of analysis for internal, external, and dependent failure scenarios. An important part of RMIEP is the recognition of the crucial importance of dependent common cause failures (CCFs) and the pressing need to develop effective methods for analyzing CCFs as part of a PRA. The NRC-sponsored Integrated Dependent Failure Methodology Program at Sandia is addressing this need. This paper presents a preliminary approach for analyzing CCFs as part of a PRA. A nine-step procedure for efficiently screening and analyzing dependent failure scenarios is presented, and each step is discussed

  14. Failure analysis of a repairable system: The case study of a cam-driven reciprocating pump

    Science.gov (United States)

    Dudenhoeffer, Donald D.

    1994-09-01

    This thesis supplies a statistical and economic tool for analysis of the failure characteristics of one typical piece of equipment under evaluation: a cam-driven reciprocating pump used in the submarine's distillation system. Comprehensive statistical techniques and parametric modeling are employed to identify and quantify pump failure characteristics. Specific areas of attention include: the derivation of an optimal maximum replacement interval based on costs, an evaluation of the mission reliability for the pump as a function of pump age, and a calculation of the expected times between failures. The purpose of this analysis is to evaluate current maintenance practices of time-based replacement and examine the consequences of different replacement intervals in terms of costs and mission reliability. Tradeoffs exist between cost savings and system reliability that must be fully understood prior to making any policy decisions.

  15. The root cause analysis of 9DVN002ZV fan failure in Daya Bay Nuclear Power Station

    International Nuclear Information System (INIS)

    Guan Jianjun; Zhang Mingjia

    2005-01-01

    Extensive investigations and detailed analysis of the failure reason of 9DVN002ZV fan in Daya Bay Nuclear Power Station showed that the fan destroy was caused by the failure of non-drive end bear. The direct cause of this bearing' failure was its improper assembly caused by improper maintenance procedure, and the root cause was too small internal radial clearance after mounting. The factor affecting bearing internal radial clearance, the relationship between clearance and operating life time and fan failure process were discussed. (authors)

  16. Mechanics and complications of reverse shoulder arthroplasty: morse taper failure analysis and prospective rectification

    International Nuclear Information System (INIS)

    Hoskin, HLD; Furie, E; Ganey, TM; Schlatterer, DR; Collins, W

    2017-01-01

    Since Sir John Charnley began his monumental hip arthroplasty work in 1958, clinical researchers have been incrementally improving longevity and functionality of total joint systems, although implant failure occurs on occasion. The purpose of this study is to report the fracture of the humeral tray Morse taper of a reverse total shoulder system (RTSS), which to date has not been reported with metallurgic analysis for any RTSS. There was no reported antecedent fall, motor vehicle collision, or other traumatic event prior to implant fracture in this case. Analysis was performed on the retrieved failed implant by Scanning Electron Microscopy (SEM) and Electron Dispersion Spectroscopy (EDS) in an attempt to determine the failure method, as well as to offer improvements for future implants. At the time of revision surgery all explants were retained from the left shoulder of a 61-year old male who underwent a non-complicated RTSS 4 years prior. The explants, particularly the cracked humeral tray, were processed as required for SEM and EDS. Analysis was performed on the failure sites in order to determine the chemical composition of the different parts of the implant, discover the chemical composition of the filler metal used during the electron beam welding process, and to detect any foreign elements that could suggest corrosion or other evidence of failure etiology. Gross visual inspection of all explants revealed that implant failure was a result of dissociation of the taper from the humeral tray at the weld, leaving the Morse taper embedded in the humeral stem while the tray floated freely in the patient’s shoulder. SEM further confirmed the jagged edges noted grossly at the weld fracture site, both suggesting failure due to torsional forces. EDS detected elevated levels of carbon and oxygen at the fracture site on the taper only and not on the humeral tray. In order to determine the origin of the high levels of C and O, it was considered that in titanium alloys, C

  17. Analysis of Failure to Finish a Race in a Cohort of Thoroughbred Racehorses in New Zealand

    Directory of Open Access Journals (Sweden)

    Jasmine Tanner

    2016-05-01

    Full Text Available The objective was to describe the incidence of failure to finish a race in flat-racing Thoroughbreds in New Zealand as these are summary indicators of falls, injuries and poor performance. Retrospective data on six complete flat racing seasons (n = 188,615 race starts of all Thoroughbred flat race starts from 1 August 2005 to 31 July 2011 were obtained. The incidence of failure to finish events and binomial exact 95% confidence intervals were calculated per 1000 horse starts. The association between horse-, rider- and race-level variables with the outcomes failure to finish, pulled-up/fell and lost rider were examined with a mixed effects Poisson regression model. A total of 544 horses failed to finish in 188,615 race starts with an overall incidence of 2.88 per 1000 horse starts (95% CI 2.64–3.12. The incidence of failure to finish horses across each race year showed little variability. In the univariable analysis race distance, larger field size, season, and ratings bands showed association with failing to finish a race. The overall failure to finish outcome was associated with season, race distance and ratings bands (horse experience and success ranking criteria. In the multivariable analysis, race distance and ratings bands were associated with horses that pulled-up/fell; season, apprentice allowances and ratings bands were associated with the outcome lost rider. The failure to finish rate was lower than international figures for race day catastrophic injury. Racing and environmental variables were associated with failure to finish a race highlighting the multifactorial nature of race-day events. Further investigation of risk factors for failure to finish is required to better understand the reasons for a low failure to finish rate in Thoroughbred flat races in New Zealand.

  18. Molecular Adsorbent Recirculating System Can Reduce Short-Term Mortality Among Patients With Acute-on-Chronic Liver Failure-A Retrospective Analysis.

    Science.gov (United States)

    Gerth, Hans U; Pohlen, Michele; Thölking, Gerold; Pavenstädt, Hermann; Brand, Marcus; Hüsing-Kabar, Anna; Wilms, Christian; Maschmeier, Miriam; Kabar, Iyad; Torner, Josep; Pavesi, Marco; Arroyo, Vicente; Banares, Rafael; Schmidt, Hartmut H J

    2017-10-01

    Acute-on-chronic liver failure is associated with numerous consecutive organ failures and a high short-term mortality rate. Molecular adsorbent recirculating system therapy has demonstrated beneficial effects on the distinct symptoms, but the associated mortality data remain controversial. Retrospective analysis of acute-on-chronic liver failure patients receiving either standard medical treatment or standard medical treatment and molecular adsorbent recirculating system. Secondary analysis of data from the prospective randomized Recompensation of Exacerbated Liver Insufficiency with Hyperbilirubinemia and/or Encephalopathy and/or Renal Failure trial by applying the recently introduced Chronic Liver Failure-criteria. Medical Departments of University Hospital Muenster (Germany). This analysis was conducted in two parts. First, 101 patients with acute-on-chronic liver failure grades 1-3 and Chronic Liver Failure-C-Organ Failure liver subscore equals to 3 but stable pulmonary function were identified and received either standard medical treatment (standard medical treatment, n = 54) or standard medical treatment and molecular adsorbent recirculating system (n = 47) at the University Hospital Muenster. Second, the results of this retrospective analysis were tested against the Recompensation of Exacerbated Liver Insufficiency with Hyperbilirubinemia and/or Encephalopathy and/or Renal Failure trial. Standard medical treatment and molecular adsorbent recirculating system. Additionally to improved laboratory variables (bilirubin and creatinine), the short-term mortality (up to day 14) of the molecular adsorbent recirculating system group was significantly reduced compared with standard medical treatment. A reduced 14-day mortality rate was observed in the molecular adsorbent recirculating system group (9.5% vs 50.0% with standard medical treatment; p = 0.004), especially in patients with multiple organ failure (acute-on-chronic liver failure grade 2-3). Concerning the

  19. A framework of analysis for field experiments with alternative materials in road construction.

    Science.gov (United States)

    François, D; Jullien, A

    2009-01-01

    In France, a wide variety of alternative materials is produced or exists in the form of stockpiles built up over time. Such materials are distributed over various regions of the territory depending on local industrial development and urbanisation trends. The use of alternative materials at a national scale implies sharing local knowledge and experience. Building a national database on alternative materials for road construction is useful in gathering and sharing information. An analysis of feedback from onsite experiences (back analysis) is essential to improve knowledge on alternative material use in road construction. Back analysis of field studies has to be conducted in accordance with a single common framework. This could enable drawing comparisons between alternative materials and between road applications. A framework for the identification and classification of data used in back analyses is proposed. Since the road structure is an open system, this framework has been based on a stress-response approach at both the material and structural levels and includes a description of external factors applying during the road service life. The proposal has been shaped from a review of the essential characteristics of road materials and structures, as well as from the state of knowledge specific to alternative material characterisation.

  20. Failure analysis and evaluation of a six cylinders crankshaft for marine diesel generator

    Science.gov (United States)

    Khaeroman, Haryadi, Gunawan Dwi; Ismail, R.; Kim, Seon Jin

    2017-01-01

    This paper discusses the failure of a diesel engine crankshaft of a four stroke 6 cylinders, used in a marine diesel generator. A correct analysis and evaluation of the dimension of the crankshaft are very essential to prevent failure of the crankshaft fracture and cracks. The crankshaft is liable to deformation due to misalignment of the main journals bearings. This article presents the result of crankshaft failure analysis by measuring the mean diameter of the rod journal and the main journal, on the wear, out of roundness, taper, etc. The measurement results must be compared with the acceptable value in the engine specification and manual service and also should follow the American Bureau of Shipping (ABS) guidance notes on propulsion shafting alignment. The measurement results of this study show that the main journal diameter of the third cylinder exhibits an excessive wear, 1.35 % above the permissible lowest rate. It also has a taper for 0.23 mm and out of roundness of 0.13 mm. The diameter of the rod journal indicates excessive wear, 1.06 % higher than the permissible lowest rate, the taper of 0.41 mm and out of roundness of 0.65 mm. The crankshaft warpage or run-out journal, the analysis of the crank web deflection are also evaluated and presented in this paper.

  1. Analysis of micro-failure behaviors in artificial muscles based on fishing line and sewing thread

    Science.gov (United States)

    Xu, J. B.; Cheng, K. F.; Tu, S. L.; He, X. M.; Ma, C.; Jin, Y. Z.; Kang, X. N.; Sun, T.; Zhang, Y.

    2017-06-01

    The aim of the present study was to discuss a new and effective method for testing artificial muscles based on micro-failure behaviors analysis. Thermo-mechanical actuators based on fishing line and sewing thread, also, the capability of responding to ambient temperature variations producing a large amount of shrinkage ratio of a resulting variation in longitudinal length. The minimum micro-failure value is 0.02μm and the maximum value is 1.72μm with nylon twist pattern. The discovery of an innovative effective testing of artificial muscles based on polymeric fibers specimens on micro-failure, rupture, slippage, etc. This research finds out a micro-failure behavior analysis of thermo-mechanical actuators based on fishing line and sewing thread. The specimens show large deformations when heated together with warping performance in terms of shrinkage of energy and densities. With the purpose of providing useful analysis data for the further technology applications, we attempt micrometre-sized artificial muscles which were also tested was readily accessible and also can be applied to other polymeric fibers. Effective use of this technique achievement relies on rotate speed, temperature and tensile direction. The results of the tensile testing experiments were outstanding with respect to some important issues related to the response of micro-structure, twisted polymeric fibers and shrinkage ratio.

  2. Application of failure mode and effects analysis in a clinical chemistry laboratory.

    Science.gov (United States)

    Jiang, Yuanyuan; Jiang, Hongmin; Ding, Siyi; Liu, Qin

    2015-08-25

    Timely delivery of correct results has long been considered as the goal of quality management in clinical laboratory. With increasing workload as well as complexities of laboratory testing and patient care, the traditional technical adopted like internal quality control (IQC) and external quality assessment (EQA) may not enough to cope with quality management problems for clinical laboratories. We applied failure mode and effects analysis (FMEA), a proactive tool, to reduce errors associated with the process beginning with sample collection and ending with a test report in a clinical chemistry laboratory. Our main objection was to investigate the feasibility of FMEA in a real-world situation, namely the working environment of hospital. A team of 8 people (3 laboratory workers, 2 couriers, 2 nurses, and 1 physician) from different departments who were involved in the testing process were recruited and trained. Their main responsibility was to analyze and score all possible clinical chemistry laboratory failures based on three aspects: the severity of the outcome (S), the likeliness of occurrence (O), and the probability of being detected (D). These three parameters were multiplied to calculate risk priority numbers (RPNs), which were used to prioritize remedial measures. Failure modes with RPN≥200 were deemed as high risk, meaning that they needed immediate corrective action. After modifications that were put, we compared the resulting RPN with the previous one. A total of 33 failure modes were identified. Many of the failure modes, including the one with the highest RPN (specimen hemolysis) appeared in the pre-analytic phase, whereas no high-risk failure modes (RPN≥200) were found during the analytic phase. High-priority risks were "sample hemolysis" (RPN, 336), "sample delivery delay" (RPN, 225), "sample volume error" (RPN, 210), "failure to release results in a timely manner" (RPN, 210), and "failure to identify or report critical results" (RPN, 200). The

  3. An Alternative View of Some FIA Sample Design and Analysis Issues

    Science.gov (United States)

    Paul C. Van Deusen

    2005-01-01

    Sample design and analysis decisions are the result of compromises and inputs from many sources. The end result would likely change if different individuals or groups were involved in the planning process. Discussed here are some alternatives to the procedures that are currently being used for the annual inventory. The purpose is to indicate that alternatives exist and...

  4. Sedation for pediatric radiological procedures: analysis of potential causes of sedation failure and paradoxical reactions

    International Nuclear Information System (INIS)

    Karian, V.E.; Burrows, P.E.; Connor, L.; Zurakowski, D.; Mason, K.P.

    1999-01-01

    Background. Sedation for diagnostic imaging and interventional radiologic procedures in pediatrics has greatly increased over the past decade. With appropriate patient selection and monitoring, serious adverse effects are infrequent, but failure to sedate and paradoxical reactions do occur. Objective. The purpose of this study was to determine, among patients undergoing sedation for radiologic procedures, the incidence of sedation failure and paradoxical reaction to pentobarbital and to identify potentially correctable causes. Materials and methods. Records of 1665 patients who were sedated in the radiology department from 1 November 1997 to 1 July 1998 were reviewed. Patients failing sedation or experiencing paradoxical reaction were compared with respect to sex, age group, diagnosis, scan type, time of day, NPO status, use of IV contrast and type of sedation agent using the Fisher exact test, Pearson chi-square, analysis of variance (ANOVA), the Student t-test, and logistic regression. Results. Data analysis revealed a sedation failure rate of 1 % and paradoxical reaction rate of 1.2 %. Stepwise multiple logistic regression revealed that the only significant independent multivariate predictor of failure was the need for the administration of a combination of pentobarbital, fentanyl, and midazolam IV. Conclusion. The low rate of sedation failure and paradoxical reactions to pentobarbital was near optimal and probably cannot be improved with the currently available sedatives. (orig.)

  5. Sedation for pediatric radiological procedures: analysis of potential causes of sedation failure and paradoxical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Karian, V.E.; Burrows, P.E.; Connor, L. [Dept. of Radiology, Children' s Hospital, Boston, MA (United States); Zurakowski, D. [Dept. of Biostatistics, Children' s Hospital, Boston, MA (United States); Mason, K.P. [Dept. of Anesthesiology, Children' s Hospital, Boston, MA (United States)

    1999-11-01

    Background. Sedation for diagnostic imaging and interventional radiologic procedures in pediatrics has greatly increased over the past decade. With appropriate patient selection and monitoring, serious adverse effects are infrequent, but failure to sedate and paradoxical reactions do occur. Objective. The purpose of this study was to determine, among patients undergoing sedation for radiologic procedures, the incidence of sedation failure and paradoxical reaction to pentobarbital and to identify potentially correctable causes. Materials and methods. Records of 1665 patients who were sedated in the radiology department from 1 November 1997 to 1 July 1998 were reviewed. Patients failing sedation or experiencing paradoxical reaction were compared with respect to sex, age group, diagnosis, scan type, time of day, NPO status, use of IV contrast and type of sedation agent using the Fisher exact test, Pearson chi-square, analysis of variance (ANOVA), the Student t-test, and logistic regression. Results. Data analysis revealed a sedation failure rate of 1 % and paradoxical reaction rate of 1.2 %. Stepwise multiple logistic regression revealed that the only significant independent multivariate predictor of failure was the need for the administration of a combination of pentobarbital, fentanyl, and midazolam IV. Conclusion. The low rate of sedation failure and paradoxical reactions to pentobarbital was near optimal and probably cannot be improved with the currently available sedatives. (orig.)

  6. An improved method for risk evaluation in failure modes and effects analysis of CNC lathe

    Science.gov (United States)

    Rachieru, N.; Belu, N.; Anghel, D. C.

    2015-11-01

    Failure mode and effects analysis (FMEA) is one of the most popular reliability analysis tools for identifying, assessing and eliminating potential failure modes in a wide range of industries. In general, failure modes in FMEA are evaluated and ranked through the risk priority number (RPN), which is obtained by the multiplication of crisp values of the risk factors, such as the occurrence (O), severity (S), and detection (D) of each failure mode. However, the crisp RPN method has been criticized to have several deficiencies. In this paper, linguistic variables, expressed in Gaussian, trapezoidal or triangular fuzzy numbers, are used to assess the ratings and weights for the risk factors S, O and D. A new risk assessment system based on the fuzzy set theory and fuzzy rule base theory is to be applied to assess and rank risks associated to failure modes that could appear in the functioning of Turn 55 Lathe CNC. Two case studies have been shown to demonstrate the methodology thus developed. It is illustrated a parallel between the results obtained by the traditional method and fuzzy logic for determining the RPNs. The results show that the proposed approach can reduce duplicated RPN numbers and get a more accurate, reasonable risk assessment. As a result, the stability of product and process can be assured.

  7. Cost analysis of Navy acquisition alternatives for the NAVSTAR Global Positioning System

    Science.gov (United States)

    Darcy, T. F.; Smith, G. P.

    1982-12-01

    This research analyzes the life cycle cost (LCC) of the Navy's current and two hypothetical procurement alternatives for NAVSTAR Global Positioning System (GPS) user equipment. Costs are derived by the ARINC Research Corporation ACBEN cost estimating system. Data presentation is in a comparative format describing individual alternative LCC and differential costs between alternatives. Sensitivity analysis explores the impact receiver-processor unit (RPU) first unit production cost has on individual alternative LCC, as well as cost differentials between each alternative. Several benefits are discussed that might provide sufficient cost savings and/or system effectiveness improvements to warrant a procurement strategy other than the existing proposal.

  8. Medication management strategies used by older adults with heart failure: A systems-based analysis.

    Science.gov (United States)

    Mickelson, Robin S; Holden, Richard J

    2017-09-01

    Older adults with heart failure use strategies to cope with the constraining barriers impeding medication management. Strategies are behavioral adaptations that allow goal achievement despite these constraining conditions. When strategies do not exist, are ineffective or maladaptive, medication performance and health outcomes are at risk. While constraints to medication adherence are described in literature, strategies used by patients to manage medications are less well-described or understood. Guided by cognitive engineering concepts, the aim of this study was to describe and analyze the strategies used by older adults with heart failure to achieve their medication management goals. This mixed methods study employed an empirical strategies analysis method to elicit medication management strategies used by older adults with heart failure. Observation and interview data collected from 61 older adults with heart failure and 31 caregivers were analyzed using qualitative content analysis to derive categories, patterns and themes within and across cases. Data derived thematic sub-categories described planned and ad hoc methods of strategic adaptations. Stable strategies proactively adjusted the medication management process, environment, or the patients themselves. Patients applied situational strategies (planned or ad hoc) to irregular or unexpected situations. Medication non-adherence was a strategy employed when life goals conflicted with medication adherence. The health system was a source of constraints without providing commensurate strategies. Patients strived to control their medication system and achieve goals using adaptive strategies. Future patient self-mangement research can benefit from methods and theories used to study professional work, such as strategies analysis.

  9. Failure Modes and Effects Analysis (FMEA) of the Residual Heat Removal System

    International Nuclear Information System (INIS)

    Eggleston, F.T.

    1976-01-01

    The Residual Heat Removal System (RHRS) transfer heat from the Reactor Coolant System (RCS) to the reactor plant Component Cooling System (CCS) to reduce the temperature of the RCS at a controlled rate during the second part of normal plant cooldown and maintains the desired temperature until the plant is restarted. By the use of an analytic tool, the Failure Modes and Effects Analysis, it is shown that the RHRS, because of its redundant two train design, is able to accommodate any credible component single failure with the only effect being an extension in the required cooldown time, thus demonstrating the reliability of the RHRS to perform its intended function

  10. Survival analysis of heart failure patients: A case study.

    Directory of Open Access Journals (Sweden)

    Tanvir Ahmad

    Full Text Available This study was focused on survival analysis of heart failure patients who were admitted to Institute of Cardiology and Allied hospital Faisalabad-Pakistan during April-December (2015. All the patients were aged 40 years or above, having left ventricular systolic dysfunction, belonging to NYHA class III and IV. Cox regression was used to model mortality considering age, ejection fraction, serum creatinine, serum sodium, anemia, platelets, creatinine phosphokinase, blood pressure, gender, diabetes and smoking status as potentially contributing for mortality. Kaplan Meier plot was used to study the general pattern of survival which showed high intensity of mortality in the initial days and then a gradual increase up to the end of study. Martingale residuals were used to assess functional form of variables. Results were validated computing calibration slope and discrimination ability of model via bootstrapping. For graphical prediction of survival probability, a nomogram was constructed. Age, renal dysfunction, blood pressure, ejection fraction and anemia were found as significant risk factors for mortality among heart failure patients.

  11. 76 FR 11310 - Alternatives Analysis Program Discretionary Funding Allocations

    Science.gov (United States)

    2011-03-01

    ... information on the Alternatives Analysis Program, contact Kenneth Cervenka, Office of Planning and Environment... Island, and Vermont. Mexico and Texas. Brigid Hynes-Cherin, Regional Mokhtee Ahmad, Regional............ City of Minneapolis...... Nicollet-Central Urban 900,000 Circulator. MN D2010-ALTA-09005...

  12. One Size Does Not Fit All: Human Failure Event Decomposition and Task Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ronald Laurids Boring, PhD

    2014-09-01

    In the probabilistic safety assessments (PSAs) used in the nuclear industry, human failure events (HFEs) are determined as a subset of hardware failures, namely those hardware failures that could be triggered or exacerbated by human action or inaction. This approach is top-down, starting with hardware faults and deducing human contributions to those faults. Elsewhere, more traditionally human factors driven approaches would tend to look at opportunities for human errors first in a task analysis and then identify which of those errors is risk significant. The intersection of top-down and bottom-up approaches to defining HFEs has not been carefully studied. Ideally, both approaches should arrive at the same set of HFEs. This question remains central as human reliability analysis (HRA) methods are generalized to new domains like oil and gas. The HFEs used in nuclear PSAs tend to be top-down—defined as a subset of the PSA—whereas the HFEs used in petroleum quantitative risk assessments (QRAs) are more likely to be bottom-up—derived from a task analysis conducted by human factors experts. The marriage of these approaches is necessary in order to ensure that HRA methods developed for top-down HFEs are also sufficient for bottom-up applications. In this paper, I first review top-down and bottom-up approaches for defining HFEs and then present a seven-step guideline to ensure a task analysis completed as part of human error identification decomposes to a level suitable for use as HFEs. This guideline illustrates an effective way to bridge the bottom-up approach with top-down requirements.

  13. Using pattern analysis methods to do fast detection of manufacturing pattern failures

    Science.gov (United States)

    Zhao, Evan; Wang, Jessie; Sun, Mason; Wang, Jeff; Zhang, Yifan; Sweis, Jason; Lai, Ya-Chieh; Ding, Hua

    2016-03-01

    At the advanced technology node, logic design has become extremely complex and is getting more challenging as the pattern geometry size decreases. The small sizes of layout patterns are becoming very sensitive to process variations. Meanwhile, the high pressure of yield ramp is always there due to time-to-market competition. The company that achieves patterning maturity earlier than others will have a great advantage and a better chance to realize maximum profit margins. For debugging silicon failures, DFT diagnostics can identify which nets or cells caused the yield loss. But normally, a long time period is needed with many resources to identify which failures are due to one common layout pattern or structure. This paper will present a new yield diagnostic flow, based on preliminary EFA results, to show how pattern analysis can more efficiently detect pattern related systematic defects. Increased visibility on design pattern related failures also allows more precise yield loss estimation.

  14. A Treatment Program for Failure to Thrive: A Cost-Effectiveness Analysis.

    Science.gov (United States)

    Karniski, Walt; And Others

    1986-01-01

    Analysis of treatment of infants suffering from Failure to Thrive placed in foster medical placement homes (MPH, N=17) or admitted to hospitals (N=18) revealed that the MPH infants grew more than hospitalized infants and parents of MPH children had advantages of education and support. The MPH program cost less than 25 percent of hospital care.…

  15. Evaluating the operational risks of biomedical waste using failure mode and effects analysis.

    Science.gov (United States)

    Chen, Ying-Chu; Tsai, Pei-Yi

    2017-06-01

    The potential problems and risks of biomedical waste generation have become increasingly apparent in recent years. This study applied a failure mode and effects analysis to evaluate the operational problems and risks of biomedical waste. The microbiological contamination of biomedical waste seldom receives the attention of researchers. In this study, the biomedical waste lifecycle was divided into seven processes: Production, classification, packaging, sterilisation, weighing, storage, and transportation. Twenty main failure modes were identified in these phases and risks were assessed based on their risk priority numbers. The failure modes in the production phase accounted for the highest proportion of the risk priority number score (27.7%). In the packaging phase, the failure mode 'sharp articles not placed in solid containers' had the highest risk priority number score, mainly owing to its high severity rating. The sterilisation process is the main difference in the treatment of infectious and non-infectious biomedical waste. The failure modes in the sterilisation phase were mainly owing to human factors (mostly related to operators). This study increases the understanding of the potential problems and risks associated with biomedical waste, thereby increasing awareness of how to improve the management of biomedical waste to better protect workers, the public, and the environment.

  16. STRESS AND FAILURE ANALYSIS OF RAPIDLY ROTATING ASTEROID (29075) 1950 DA

    International Nuclear Information System (INIS)

    Hirabayashi, Masatoshi; Scheeres, Daniel J.

    2015-01-01

    Rozitis et al. recently reported that near-Earth asteroid (29075) 1950 DA, whose bulk density ranges from 1.0 g cm –3 to 2.4 g cm –3 , is a rubble pile and requires a cohesive strength of at least 44-76 Pa to keep from failing due to its fast spin period. Since their technique for giving failure conditions required the averaged stress over the whole volume, it discarded information about the asteroid's failure mode and internal stress condition. This paper develops a finite element model and revisits the stress and failure analysis of 1950 DA. For the modeling, we do not consider material hardening and softening. Under the assumption of an associated flow rule and uniform material distribution, we identify the deformation process of 1950 DA when its constant cohesion reaches the lowest value that keeps its current shape. The results show that to avoid structural failure the internal core requires a cohesive strength of at least 75-85 Pa. It suggests that for the failure mode of this body, the internal core first fails structurally, followed by the surface region. This implies that if cohesion is constant over the whole volume, the equatorial ridge of 1950 DA results from a material flow going outward along the equatorial plane in the internal core, but not from a landslide as has been hypothesized. This has additional implications for the likely density of the interior of the body

  17. Alternatives generation and analysis for phase I intermediate waste feed staging system design requirements

    Energy Technology Data Exchange (ETDEWEB)

    Britton, M.D.

    1996-10-02

    This document provides; a decision analysis summary; problem statement; constraints, requirements, and assumptions; decision criteria; intermediate waste feed staging system options and alternatives generation and screening; intermediate waste feed staging system design concepts; intermediate waste feed staging system alternative evaluation and analysis; and open issues and actions.

  18. Top-down and bottom-up definitions of human failure events in human reliability analysis

    International Nuclear Information System (INIS)

    Boring, Ronald Laurids

    2014-01-01

    In the probabilistic risk assessments (PRAs) used in the nuclear industry, human failure events (HFEs) are determined as a subset of hardware failures, namely those hardware failures that could be triggered by human action or inaction. This approach is top-down, starting with hardware faults and deducing human contributions to those faults. Elsewhere, more traditionally human factors driven approaches would tend to look at opportunities for human errors first in a task analysis and then identify which of those errors is risk significant. The intersection of top-down and bottom-up approaches to defining HFEs has not been carefully studied. Ideally, both approaches should arrive at the same set of HFEs. This question is crucial, however, as human reliability analysis (HRA) methods are generalized to new domains like oil and gas. The HFEs used in nuclear PRAs tend to be top-down - defined as a subset of the PRA - whereas the HFEs used in petroleum quantitative risk assessments (QRAs) often tend to be bottom-up - derived from a task analysis conducted by human factors experts. The marriage of these approaches is necessary in order to ensure that HRA methods developed for top-down HFEs are also sufficient for bottom-up applications.

  19. Root cause analysis of pump valve failures of three membrane pump systems

    NARCIS (Netherlands)

    Buijs, L.J.; Eijk, A.; Hooft, L. van

    2014-01-01

    This paper will present the root cause analysis and the solution of fatigue failures of the pump valves of three membrane pump systems installed on a chemical plant of Momentive in Pernis, the Netherlands. The membrane pumps were installed approximately 30 years ago. Each system has encountered

  20. Causes analysis on the failure of government environmental responsibility—Based on the perspective of law and economics

    Science.gov (United States)

    Fa, L. N.

    2017-11-01

    As the important Environmental Interests of Subjects, government behooves to undertake the corresponding responsibility of Pollution Control and Environmental Protection. The current situations in our country, however, appear as government environmental responsibility failure. Based on the analysis of law and economics, this article reaches the conclusion through game analysis, principle-agency relationship and utility theory that the prisoners dilemma of environmental interest game between government and enterprise, and the inherent defect of the principal-agency relationship between central government and local government are the inherent causes of government environmental responsibility failure. Many officials tends to graft and corrupt to maximum their own benefit, thus leading to the government failure among environmental pollution treatment and the environmental responsibility to undertake.

  1. Direct renin inhibition in addition to or as an alternative to angiotensin converting enzyme inhibition in patients with chronic systolic heart failure: rationale and design of the Aliskiren Trial to Minimize OutcomeS in Patients with HEart failuRE (ATMOSPHERE) study

    DEFF Research Database (Denmark)

    Krum, Henry; Massie, Barry; Abraham, William T

    2011-01-01

    S for Patients with HEart failuRE (ATMOSPHERE) study is to evaluate the effect of both aliskiren and enalapril monotherapy and aliskiren/enalapril combination therapy on cardiovascular death and HF hospitalization in patients with chronic systolic HF, NYHA functional class II-IV symptoms, and elevated plasma......-inferior to enalapril monotherapy on this endpoint. Perspective The ATMOSPHERE study will definitively determine the role of a DRI strategy additional to or as an alternative to conventional RAAS blockade in patients with chronic systolic HF....

  2. Failure mode and effects analysis applied to the administration of liquid medication by oral syringes

    Directory of Open Access Journals (Sweden)

    Eva María Guerra-Alia

    2017-11-01

    Full Text Available To carry out a Failure Mode and Effects Analysis (FMEA to the use of oral syringes. Methods: A multidisciplinary team was assembled within the Safety Committee. The stages of oral administration process of liquid medication were analysed, identifying the most critical and establishing the potential modes of failure that can cause errors. The impact associated with each mode of failure was calculated using the Risk Priority Number (RPN. Preventive actions were proposed. Results: Five failure modes were identified, all classified as high risk (RPN> 100. Seven of the eight preventive actions were implemented. Conclusions: The FMEA methodology was a useful tool. It has allowed to know the risks, analyse the causes that cause them, their effects on patient safety and the measures to reduce them

  3. Bruxism and dental implant failures: a multilevel mixed effects parametric survival analysis approach.

    Science.gov (United States)

    Chrcanovic, B R; Kisch, J; Albrektsson, T; Wennerberg, A

    2016-11-01

    Recent studies have suggested that the insertion of dental implants in patients being diagnosed with bruxism negatively affected the implant failure rates. The aim of the present study was to investigate the association between the bruxism and the risk of dental implant failure. This retrospective study is based on 2670 patients who received 10 096 implants at one specialist clinic. Implant- and patient-related data were collected. Descriptive statistics were used to describe the patients and implants. Multilevel mixed effects parametric survival analysis was used to test the association between bruxism and risk of implant failure adjusting for several potential confounders. Criteria from a recent international consensus (Lobbezoo et al., J Oral Rehabil, 40, 2013, 2) and from the International Classification of Sleep Disorders (International classification of sleep disorders, revised: diagnostic and coding manual, American Academy of Sleep Medicine, Chicago, 2014) were used to define and diagnose the condition. The number of implants with information available for all variables totalled 3549, placed in 994 patients, with 179 implants reported as failures. The implant failure rates were 13·0% (24/185) for bruxers and 4·6% (155/3364) for non-bruxers (P bruxism was a statistically significantly risk factor to implant failure (HR 3·396; 95% CI 1·314, 8·777; P = 0·012), as well as implant length, implant diameter, implant surface, bone quantity D in relation to quantity A, bone quality 4 in relation to quality 1 (Lekholm and Zarb classification), smoking and the intake of proton pump inhibitors. It is suggested that the bruxism may be associated with an increased risk of dental implant failure. © 2016 John Wiley & Sons Ltd.

  4. Application of multi attribute failure mode analysis of milk production using analytical hierarchy process method

    Science.gov (United States)

    Rucitra, A. L.

    2018-03-01

    Pusat Koperasi Induk Susu (PKIS) Sekar Tanjung, East Java is one of the modern dairy industries producing Ultra High Temperature (UHT) milk. A problem that often occurs in the production process in PKIS Sekar Tanjung is a mismatch between the production process and the predetermined standard. The purpose of applying Analytical Hierarchy Process (AHP) was to identify the most potential cause of failure in the milk production process. Multi Attribute Failure Mode Analysis (MAFMA) method was used to eliminate or reduce the possibility of failure when viewed from the failure causes. This method integrates the severity, occurrence, detection, and expected cost criteria obtained from depth interview with the head of the production department as an expert. The AHP approach was used to formulate the priority ranking of the cause of failure in the milk production process. At level 1, the severity has the highest weight of 0.41 or 41% compared to other criteria. While at level 2, identifying failure in the UHT milk production process, the most potential cause was the average mixing temperature of more than 70 °C which was higher than the standard temperature (≤70 ° C). This failure cause has a contributes weight of 0.47 or 47% of all criteria Therefore, this study suggested the company to control the mixing temperature to minimise or eliminate the failure in this process.

  5. Development of an Automated Technique for Failure Modes and Effect Analysis

    DEFF Research Database (Denmark)

    Blanke, M.; Borch, Ole; Allasia, G.

    1999-01-01

    Advances in automation have provided integration of monitoring and control functions to enhance the operator's overview and ability to take remedy actions when faults occur. Automation in plant supervision is technically possible with integrated automation systems as platforms, but new design...... methods are needed to cope efficiently with the complexity and to ensure that the functionality of a supervisor is correct and consistent. In particular these methods are expected to significantly improve fault tolerance of the designed systems. The purpose of this work is to develop a software module...... implementing an automated technique for Failure Modes and Effects Analysis (FMEA). This technique is based on the matrix formulation of FMEA for the investigation of failure propagation through a system. As main result, this technique will provide the design engineer with decision tables for fault handling...

  6. Development of an automated technique for failure modes and effect analysis

    DEFF Research Database (Denmark)

    Blanke, Mogens; Borch, Ole; Bagnoli, F.

    1999-01-01

    Advances in automation have provided integration of monitoring and control functions to enhance the operator's overview and ability to take remedy actions when faults occur. Automation in plant supervision is technically possible with integrated automation systems as platforms, but new design...... methods are needed to cope efficiently with the complexity and to ensure that the functionality of a supervisor is correct and consistent. In particular these methods are expected to significantly improve fault tolerance of the designed systems. The purpose of this work is to develop a software module...... implementing an automated technique for Failure Modes and Effects Analysis (FMEA). This technique is based on the matrix formulation of FMEA for the investigation of failure propagation through a system. As main result, this technique will provide the design engineer with decision tables for fault handling...

  7. Performance and sensitivity analysis of the generalized likelihood ratio method for failure detection. M.S. Thesis

    Science.gov (United States)

    Bueno, R. A.

    1977-01-01

    Results of the generalized likelihood ratio (GLR) technique for the detection of failures in aircraft application are presented, and its relationship to the properties of the Kalman-Bucy filter is examined. Under the assumption that the system is perfectly modeled, the detectability and distinguishability of four failure types are investigated by means of analysis and simulations. Detection of failures is found satisfactory, but problems in identifying correctly the mode of a failure may arise. These issues are closely examined as well as the sensitivity of GLR to modeling errors. The advantages and disadvantages of this technique are discussed, and various modifications are suggested to reduce its limitations in performance and computational complexity.

  8. Association between left ventricular dysfunction, anemia, and chronic renal failure. Analysis of the Heart Failure Prevalence and Predictors in Turkey (HAPPY) cohort.

    Science.gov (United States)

    Kepez, A; Mutlu, B; Degertekin, M; Erol, C

    2015-06-01

    Anemia and chronic renal failure (CRF) are frequent comorbidities in patients with heart failure (HF), and they have been reported to be associated with increased mortality and hospitalization rates. HF, anemia, and CRF have been reported to interact with each other forming a vicious cycle termed cardio-renal-anemia syndrome. The aim of the present study was to evaluate the association of HF, anemia, and CRF using data from the large-scale"Heart Failure Prevalence and Predictors in Turkey (HAPPY)" study. Among the HAPPY cohort, 3,369 subjects who had either left ventricular dysfunction (LVD) or normal left ventricular function on echocardiography or normal serum NT-proBNP levels were included in this analysis. The prevalence of anemia and CRF was significantly higher in patients with LVD compared with subjects with normal ventricular function (20.7 % vs. 4.0 % and 19.0 % vs. 3.7 %, respectively; p renal-anemia syndrome and the necessity of treating these comorbidities in patients with HF.

  9. Visibility graph analysis of heart rate time series and bio-marker of congestive heart failure

    Science.gov (United States)

    Bhaduri, Anirban; Bhaduri, Susmita; Ghosh, Dipak

    2017-09-01

    Study of RR interval time series for Congestive Heart Failure had been an area of study with different methods including non-linear methods. In this article the cardiac dynamics of heart beat are explored in the light of complex network analysis, viz. visibility graph method. Heart beat (RR Interval) time series data taken from Physionet database [46, 47] belonging to two groups of subjects, diseased (congestive heart failure) (29 in number) and normal (54 in number) are analyzed with the technique. The overall results show that a quantitative parameter can significantly differentiate between the diseased subjects and the normal subjects as well as different stages of the disease. Further, the data when split into periods of around 1 hour each and analyzed separately, also shows the same consistent differences. This quantitative parameter obtained using the visibility graph analysis thereby can be used as a potential bio-marker as well as a subsequent alarm generation mechanism for predicting the onset of Congestive Heart Failure.

  10. Characterization of the behavior of three definitions of prostate-specific antigen-based biochemical failure in relation to detection and follow-up biases: comparison with the American Society for Therapeutic Radiology and Oncology consensus definition.

    Science.gov (United States)

    Williams, Scott G

    2006-03-01

    To examine the impact of detection biases on three prostate cancer biochemical failure (bF) definitions in comparison with the existing American Society for Therapeutic Radiology and Oncology Consensus Definition (ACD). Three alternative bF definitions were tested against the ACD: three rises in prostate-specific antigen (PSA) level without backdating, nadir plus 2 ng/mL, and a threshold PSA level of >3 ng/mL, according to data from 1050 men. The mean time between PSA tests (MTBT), regularity of collection, and calendar year of analysis were examined in each bF definition. The MTBT produced a statistically significant difference in the derived hazard ratio for identification of bF in all definitions. The influence of test regularity was statistically significant beyond the median level of regularity in all definitions. The year of analysis impacted greatly on the ACD, whereas the three alternative definitions exhibited minor follow-up duration variations by comparison. The alternative definitions had reliable follow-up when the crude median time to censoring was at least 1.6 times greater than that of failure. Detection biases will always be a significant issue in defining bF. A number of alternative failure definitions have more predictable interactions with these biases than the existing ACD.

  11. Characterization of the behavior of three definitions of prostate-specific antigen-based biochemical failure in relation to detection and follow-up biases: Comparison with the American Society for Therapeutic Radiology and Oncology consensus definition

    International Nuclear Information System (INIS)

    Williams, Scott G.

    2006-01-01

    Purpose: To examine the impact of detection biases on three prostate cancer biochemical failure (bF) definitions in comparison with the existing American Society for Therapeutic Radiology and Oncology Consensus Definition (ACD). Methods and Materials: Three alternative bF definitions were tested against the ACD: three rises in prostate-specific antigen (PSA) level without backdating, nadir plus 2 ng/mL, and a threshold PSA level of >3 ng/mL, according to data from 1050 men. The mean time between PSA tests (MTBT), regularity of collection, and calendar year of analysis were examined in each bF definition. Results: The MTBT produced a statistically significant difference in the derived hazard ratio for identification of bF in all definitions. The influence of test regularity was statistically significant beyond the median level of regularity in all definitions. The year of analysis impacted greatly on the ACD, whereas the three alternative definitions exhibited minor follow-up duration variations by comparison. The alternative definitions had reliable follow-up when the crude median time to censoring was at least 1.6 times greater than that of failure. Conclusions: Detection biases will always be a significant issue in defining bF. A number of alternative failure definitions have more predictable interactions with these biases than the existing ACD

  12. Failure Analysis Of The Bolt From Turn Table Tightening On The Heavy Lifting Equipment System

    International Nuclear Information System (INIS)

    Hatta, IIham

    2000-01-01

    This paper provides the results of failure analysis of the bolt from the turn table tightening which usually using on the heavy lifting equipment or as a equipment tor the material handling with the maximum load about 25 ton. The process of the failure analysis from the series of laboratory testing such as chemical composition, tensile testing, hardness, fracture surtace and microstructure. The results of the analysis we see this bolt have suffered fatigue failure and the initiation, cracking from the manufacture defect. This defect in the form like the folding on the screw surface which maybe happen at the screw forming process. This folding as a part of metal which not bonding together, so could act as a initial crack, and got the creasing of the strength too which cause from oxidation and decarburization at the moment of heat treatment process. So this material got the changein the strength too which oxidation and decarburization at the moment of heat treatment process. So this material got the change in the microstructure, from the martensite temper to the coarse ferrite and finally reduces the strength of the bolt

  13. Economic analysis of waste management alternatives for reprocessing wastes

    International Nuclear Information System (INIS)

    McKee, R.W.; Clark, L.L.; Daling, P.M.; Nesbitt, J.F.; Swanson, J.L.

    1984-02-01

    This study describes the results of a cost analysis of a broad range of alternatives for management of reprocessing wastes that would require geologic repository disposal. The intent was to identify cost-effective alternatives and the costs of potential repository performance requirements. Four integrated treatment facility alternatives for transuranic (TRU) wastes are described and compared. These include no treatment, compaction, incineration, and hulls melting. The advantages of reducing high-level wastes (HLW) volume are also evaluated as are waste transportation alternatives and several performance-related alternatives for emplacing waste in a basalt repository. Results show (1) that system costs for disposal of reprocessing waste are likely to be higher than those for disposal of spent fuel; (2) that volume reduction is cost-effective for both remote-handled (RH) TRU wastes and HLW, and that rail transport for HLW is more cost-effective than truck transport; (3) that coemplacement of RH-TRU wastes with HLW does not have a large cost advantage in a basalt repository; and (4) that, relative to performance requirements, the cost impact for elimination of combustibles is about 5%, long-lived containers for RH-TRU wastes can increase repository costs 10% to 20%, and immediate backfill compared to delayed backfill (bentonite/basalt) around the HLW canisters would increase repository costs up to 10% or overall system costs up to about 5%. 13 references, 4 figures, 12 tables

  14. Computational analysis of the SRS Phase III salt disposition alternatives

    International Nuclear Information System (INIS)

    Dimenna, R.A.

    2000-01-01

    In late 1997, the In-Tank Precipitation (ITP), facility was shut down and an evaluation of alternative methods to process the liquid high-level waste stored in the Savannah River Site High-Level Waste storage tanks was begun. The objective was to determine whether another process might avoid the operational difficulties encountered with ITP for a lower cost than modifying the existing structured approach to evaluating proposed alternatives on a common basis to identify the best one. Results from the computational analysis were a key part of the input used to select a primary and a secondary salt disposition alternative. This paper describes the process by which the computation needs were identified, addressed, and accomplished with a limited staff under stringent schedule constraints

  15. Alternative financial institutions? Sustainability, development, social reproduction, and gender analysis.

    Science.gov (United States)

    Kidder, T

    1999-08-01

    This paper proposes a conceptual framework for alternative financial institutions in Nicaragua. The article includes a discussion on innovative services and policies, which differentiate CARUNA (National Savings and Credit Cooperative ¿Caja Rural¿), and other financial institutions from conventional banks. It further examines theories that have altered the way development practitioners think about the economy, poverty reduction, and the positions of men and women in the society. These theories are the feminist economic theory and alternative development theories. Specific ways to incorporate the concepts of alternative and feminist economic theories in the design of financial institutions include open credit, savings, and remittance mechanisms, and coordinating councils. The gender analysis approach was used to evaluate the design of financial institutions.

  16. Failure Mode and Effect Analysis of the Application Software of the Safety-critical I and C System in APR1400

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Koheun; Kim, Yong geul; Choi, Woong seok; Sohn, Se do [KEPCO Engineering and Construction, Daejeon (Korea, Republic of)

    2016-10-15

    In APR1400, the computer software hazard analysis is performed by hazard and operability analysis (HAZOP) method. Meanwhile, HAZOP has its limitation and cannot be considered better than fault tree analysis (FTA) or failure mode and effect (FMEA) analysis. HAZOP assumes that the system has been carefully studied, and all possible hazards, their effects or consequences and remedies are incorporated in the system. But incorporating every possible event in the design is impossible. In this light, this paper attempts to use FMEA method for evaluating the risk for safety-critical instrumentation and control (I and C) system software for NPP which is more practically than HAZOP. It is possible because the software failures are due to systematic faults that causing simultaneous failure in multiple division when the triggering event happens. This analysis is applied to safety-critical system of Shin-Hanul units 1 and 2 NPP, i.e., APR1400. Through SFMEA, the critical software failure modes and tasks that could result in CCF are identified and also evaluated to determine the associated risk level (e.g. high or intermediate or low) based on the failure effect. Biggest benefit from this analysis comparing with HAZOP is it can reveal the possible weak points and provide the guidance to the V and V team by helping to generate the test cases.

  17. SU-E-T-420: Failure Effects Mode Analysis for Trigeminal Neuralgia Frameless Radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Howe, J [Associates In Medical Physics, Louisville, KY (United States)

    2015-06-15

    Purpose: Functional radiosurgery has been used successfully in the treatment of trigeminal neuralgia but presents significant challenges to ensuring the high prescription dose is delivered accurately. A review of existing practice should help direct the focus of quality improvement for this treatment regime. Method: Failure modes and effects analysis was used to identify the processes in preparing radiosurgery treatment for TN. The map was developed by a multidisciplinary team including: neurosurgeon, radiation oncology, physicist and therapist. Potential failure modes were identified for each step in the process map as well as potential causes and end effect. A risk priority number was assigned to each cause. Results: The process map identified 66 individual steps (see attached supporting document). Corrective actions were developed for areas of high risk priority number. Wrong site treatment is at higher risk for trigeminal neuralgia treatment due to the lack of site specific pathologic imaging on MR and CT – additional site specific checks were implemented to minimize the risk of wrong site treatment. Failed collision checks resulted from an insufficient collision model in the treatment planning system and a plan template was developed to address this problem. Conclusion: Failure modes and effects analysis is an effective tool for developing quality improvement in high risk radiotherapy procedures such as functional radiosurgery.

  18. SU-E-T-420: Failure Effects Mode Analysis for Trigeminal Neuralgia Frameless Radiosurgery

    International Nuclear Information System (INIS)

    Howe, J

    2015-01-01

    Purpose: Functional radiosurgery has been used successfully in the treatment of trigeminal neuralgia but presents significant challenges to ensuring the high prescription dose is delivered accurately. A review of existing practice should help direct the focus of quality improvement for this treatment regime. Method: Failure modes and effects analysis was used to identify the processes in preparing radiosurgery treatment for TN. The map was developed by a multidisciplinary team including: neurosurgeon, radiation oncology, physicist and therapist. Potential failure modes were identified for each step in the process map as well as potential causes and end effect. A risk priority number was assigned to each cause. Results: The process map identified 66 individual steps (see attached supporting document). Corrective actions were developed for areas of high risk priority number. Wrong site treatment is at higher risk for trigeminal neuralgia treatment due to the lack of site specific pathologic imaging on MR and CT – additional site specific checks were implemented to minimize the risk of wrong site treatment. Failed collision checks resulted from an insufficient collision model in the treatment planning system and a plan template was developed to address this problem. Conclusion: Failure modes and effects analysis is an effective tool for developing quality improvement in high risk radiotherapy procedures such as functional radiosurgery

  19. Gamma prior distribution selection for Bayesian analysis of failure rate and reliability

    International Nuclear Information System (INIS)

    Waler, R.A.; Johnson, M.M.; Waterman, M.S.; Martz, H.F. Jr.

    1977-01-01

    It is assumed that the phenomenon under study is such that the time-to-failure may be modeled by an exponential distribution with failure-rate parameter, lambda. For Bayesian analyses of the assumed model, the family of gamma distributions provides conjugate prior models for lambda. Thus, an experimenter needs to select a particular gamma model to conduct a Bayesian reliability analysis. The purpose of this paper is to present a methodology which can be used to translate engineering information, experience, and judgment into a choice of a gamma prior distribution. The proposed methodology assumes that the practicing engineer can provide percentile data relating to either the failure rate or the reliability of the phenomenon being investigated. For example, the methodology will select the gamma prior distribution which conveys an engineer's belief that the failure rate, lambda, simultaneously satisfies the probability statements, P(lambda less than 1.0 x 10 -3 ) = 0.50 and P(lambda less than 1.0 x 10 -5 ) = 0.05. That is, two percentiles provided by an engineer are used to determine a gamma prior model which agrees with the specified percentiles. For those engineers who prefer to specify reliability percentiles rather than the failure-rate percentiles illustrated above, one can use the induced negative-log gamma prior distribution which satisfies the probability statements, P(R(t 0 ) less than 0.99) = 0.50 and P(R(t 0 ) less than 0.99999) = 0.95 for some operating time t 0 . Also, the paper includes graphs for selected percentiles which assist an engineer in applying the methodology

  20. Common cause failure data collection and analysis for safety-related components of TRIGA SSR-14MW Pitesti, Romania

    International Nuclear Information System (INIS)

    Radu, G.; Mladin, D.

    2003-01-01

    This paper presents a study performed on the set of common cause failures (CCF) of safety-related components of the research reactor TRIGA SSR-14 MW Pitesti. The data collected cover a period of 20 years, from 1979 to 2000. The sources of data are Shift Supervisor Reports, Work Authorizations, and Reactor Log Books. Events collected are analyzed by failure mode and degrees of failure. Qualitative analysis of root causes, coupling factors and corrective actions and quantitative analysis of CCF events are studied. The objective of this work is to develop qualitative insights in the nature of the reported events and to build a site-specific common cause events database. (author)

  1. Trend and pattern analysis of failures of main feedwater system components in United States commercial nuclear power plants

    International Nuclear Information System (INIS)

    Gentillon, C.D.; Meachum, T.R.; Brady, B.M.

    1987-01-01

    The goal of the trend and pattern analysis of MFW (main feedwater) component failure data is to identify component attributes that are associated with relatively high incidences of failure. Manufacturer, valve type, and pump rotational speed are examples of component attributes under study; in addition, the pattern of failures among NPP units is studied. A series of statistical methods is applied to identify trends and patterns in failures and trends in occurrences in time with regard to these component attributes or variables. This process is followed by an engineering evaluation of the statistical results. In the remainder of this paper, the characteristics of the NPRDS that facilitate its use in reliability and risk studies are highlighted, the analysis methods are briefly described, and the lessons learned thus far for improving MFW system availability and reliability are summarized (orig./GL)

  2. Respiratory failure due to tracheobronchomalacia.

    Science.gov (United States)

    Collard, P.; Freitag, L.; Reynaert, M. S.; Rodenstein, D. O.; Francis, C.

    1996-01-01

    A case is described of tracheobronchomegaly progressing to extensive tracheomalacia, complicated by episodic choking, recurrent pulmonary infections, and irreversible hypercapnic respiratory failure. A Y-shaped tracheobronchial stent was placed endoscopically to splint the trachea open, with excellent clinical and physiological improvement. New stent designs may provide long term palliation in selected cases of diffuse tracheal collapse or stenosis, and offer an alternative to surgical repair. PMID:8711665

  3. Respiratory failure due to tracheobronchomalacia.

    OpenAIRE

    Collard, P.; Freitag, L.; Reynaert, M. S.; Rodenstein, D. O.; Francis, C.

    1996-01-01

    A case is described of tracheobronchomegaly progressing to extensive tracheomalacia, complicated by episodic choking, recurrent pulmonary infections, and irreversible hypercapnic respiratory failure. A Y-shaped tracheobronchial stent was placed endoscopically to splint the trachea open, with excellent clinical and physiological improvement. New stent designs may provide long term palliation in selected cases of diffuse tracheal collapse or stenosis, and offer an alternative to surgical repair.

  4. Individual patient data meta-analysis of organ failure in acute pancreatitis: protocol of the PANCREA II study.

    Science.gov (United States)

    Das, Stephanie L M; Papachristou, George I; De Campos, Tercio; Panek, Jozefa; Poves Prim, Ignasi; Serrablo, Alejandro; Parks, Rowan W; Uomo, Generoso; Windsor, John A; Petrov, Maxim S

    2013-09-10

    Organ failure is a major determinant of mortality in patients with acute pancreatitis. These patients usually require admission to high dependency or intensive care units and consume considerable health care resources. Given a low incidence rate of organ failure and a lack of large non-interventional studies in the field of acute pancreatitis, the characteristics of organ failure that influence outcomes of patients with acute pancreatitis remain largely unknown. Therefore, the Pancreatitis Across Nations Clinical Research and Education Alliance (PANCREA) aims to conduct a meta-analysis of individual patient data from prospective non-interventional studies to determine the influence of timing, duration, sequence, and combination of different organ failures on mortality in patients with acute pancreatitis. Pancreatologists currently active with acute pancreatitis clinical research will be invited to contribute. To be eligible for inclusion patients will have to meet the criteria of acute pancreatitis, develop at least one organ failure during the first week of hospitalization, and not be enrolled into an intervention study. Raw data will then be collated and checked. Individual patient data analysis based on a logistic regression model with adjustment for confounding variables will be done. For all analyses, corresponding 95% confidence intervals and P values will be reported. This collaborative individual patient data meta-analysis will answer important clinical questions regarding patients with acute pancreatitis that develop organ failure. Information derived from this study will be used to optimize routine clinical management and improve care strategies. It can also help validate outcome definitions, allow comparability of results and form a more accurate basis for patient allocation in further clinical studies.

  5. Ayame/PAM-D apogee kick motor nozzle failure analysis

    Science.gov (United States)

    1981-01-01

    The failure of two communication satellites during firing sequence were examined. The correlation/comparison of the circumstances of the Ayame incidents and the failure of the STAR 48 (DM-2) motor are reviewed. The massive nozzle failure of the AKM to determine the impact on spacecraft performance is examined. It is recommended that a closer watch is kept on systems techniques,

  6. [The law of quotas for people with disabilities in Brazilian companies: the impact and possible alternatives].

    Science.gov (United States)

    Zanitelli, Leandro Martins

    2013-07-01

    This paper consists of a theoretical analysis of the impact of the Brazilian law establishing quotas for people with disabilities in companies with one hundred or more employees, as well as the possible impact of some alternative legal measures: incentives (fiscal incentives and tradable rights) and information disclosure policies. The analysis is based on work regarding the efficacy of legal norms in general, and particularly the literature concerning the cost and cognitive effects of those norms. Given its exclusively theoretical character, the paper does not affirm the superiority of any regulatory strategy over the current law, but draws attention to the likely reasons for the failure of the quota system and for the potential and inconveniences of its proposed alternatives.

  7. Theoretical and experimental analysis of inverter fed induction motor system under DC link capacitor failure

    Directory of Open Access Journals (Sweden)

    Hadeed A. Sher

    2017-04-01

    Full Text Available In this paper theoretical and experimental analysis of an AC–DC–AC inverter under DC link capacitor failure is presented. The failure study conducted for this paper is the open circuit of the DC link capacitor. The presented analysis incorporates the results for both single and three phase AC input. It has been observed that the higher ripple frequency provides better ride through capability for this fault. Furthermore, the effects of this fault on electrical characteristics of AC–DC–AC inverter and mechanical properties of the induction motor are also presented. Moreover, the effect of pulsating torque as a result of an open circuited DC link capacitor is also taken into consideration. Theoretical analysis is supported by computer aided simulation as well as with a real time experimental prototype.

  8. Alternatives Generation Analysis Long Length Contaminated Equipment Removal System Storage

    International Nuclear Information System (INIS)

    BOGER, R.M.

    1999-01-01

    Major pieces of Characterization sampling equipment are currently stored outdoors. This includes the Long Length Contaminated Equipment receiver trailer and transportation trailer. A decision is required to determine the preferred alternative for facilities to store and maintain this equipment. The Long Length Contaminated Equipment Removal System (LLCERS) consists of many tools, mechanisms, and controllers currently stored in various locations. Much of this equipment should be protected from the elements while being stored. Some of the LLCERS equipment should be protected with some kind of roof cover. This decision analysis is to determine the best alternative for weather protection for the large equipment requiring a cover. Additional details are included in Sections 2.0 and 5.0. Key assumptions used in this analysis are detailed in Section 3.2

  9. Cost Based Failure Modes and Effects Analysis (FMEA) for Systems of Accelerator Magnets

    International Nuclear Information System (INIS)

    Spencer, Cherrill M

    2003-01-01

    The proposed Next Linear Collider (NLC) has a proposed 85% overall availability goal, the availability specifications for all its 7200 magnets and their 6167 power supplies are 97.5% each. Thus all of the electromagnets and their power supplies must be highly reliable or quickly repairable. Improved reliability or repairability comes at a higher cost. We have developed a set of analysis procedures for magnet designers to use as they decide how much effort to exert, i.e. how much money to spend, to improve the reliability of a particular style of magnet. We show these procedures being applied to a standard SLAC electromagnet design in order to make it reliable enough to meet the NLC availability specs. First, empirical data from SLAC's accelerator failure database plus design experience are used to calculate MTBF for failure modes identified through a FMEA. Availability for one particular magnet can be calculated. Next, labor and material costs to repair magnet failures are used in a Monte Carlo simulation to calculate the total cost of all failures over a 30-year lifetime. Opportunity costs are included. Engineers choose from amongst various designs by comparing lifecycle costs

  10. Using failure mode and effect analysis in identification of components sensitive to ageing

    International Nuclear Information System (INIS)

    Nitoi, Mirela; Turcu, Ilie; Apostol, Minodora; Farcasiu, Mita; Popa, Adrian; Florescu, Gheorghe; Pavelescu, Margarit

    2008-01-01

    Ageing represents a phenomenon of concern since any degradation that may occur in time could lower a component performance and so reduce its reliability. If the phenomenon is left unchecked and unmitigated, the ageing could increase the risk associated with the facility operation. To understand the ageing degradation of a component, it is first necessary to identify and understand the ageing processes. Since these processes involve constituent materials, parts and the service conditions of components, it is necessary to know the design, materials, service conditions, performance requirements, operating experience (operation, surveillance and maintenance histories) and relevant research results for the component of interest. The purpose of the Ageing Failure Mode and Effect Analysis (AFMEA) is to study the results or effects of item failure caused by ageing, on system operation and to classify each potential failure according to its severity The paper will present the advantages of using AFMEA in identification of most sensitive to ageing components, as the results obtained for a particular case. For each component analyzed, the stressors will be established, the corresponding ageing mechanisms will be identified, as the failure modes induced by the ageing mechanisms. (authors)

  11. Failure Modes and Effects Analysis on ITER DFLL-TBM system

    International Nuclear Information System (INIS)

    Hu Liqin; Yuan Run; Chen Hongli; Bai Yunqing

    2012-01-01

    As required for licensing process, accident analyses of International Thermonuclear Experimental Reactor (ITER) accounting for site specifications and design changes will be updated. Chinese Dual-Functional Lithium-Lead-Test Blanket Module (DFLL-TBM) system is a key safety-related component of ITER, its detailed safety analysis, which was designated to demonstrate the integrated technologies of both Helium single coolant (SLL) blanket and Helium-LiPb dual coolant (DLL) blanket, was performed. Failure Modes and Effects Analysis (FMEA) was applied to perform the safety analysis of DFLL-TBM. This study described the process of FMEA studies on DFLL-TBM system. All safety-related Postulated Initiating Events (PIEs) was identified. And a set of PIEs recommended to be taken into account in the further deterministic transient analyses were defined for both SLL and DLL blanket concepts separately.

  12. Failure Analysis for Composition of Web Services Represented as Labeled Transition Systems

    Science.gov (United States)

    Nadkarni, Dinanath; Basu, Samik; Honavar, Vasant; Lutz, Robyn

    The Web service composition problem involves the creation of a choreographer that provides the interaction between a set of component services to realize a goal service. Several methods have been proposed and developed to address this problem. In this paper, we consider those scenarios where the composition process may fail due to incomplete specification of goal service requirements or due to the fact that the user is unaware of the functionality provided by the existing component services. In such cases, it is desirable to have a composition algorithm that can provide feedback to the user regarding the cause of failure in the composition process. Such feedback will help guide the user to re-formulate the goal service and iterate the composition process. We propose a failure analysis technique for composition algorithms that views Web service behavior as multiple sequences of input/output events. Our technique identifies the possible cause of composition failure and suggests possible recovery options to the user. We discuss our technique using a simple e-Library Web service in the context of the MoSCoE Web service composition framework.

  13. Radiology of renal failure

    International Nuclear Information System (INIS)

    Griffiths, H.J.

    1990-01-01

    This book covers most aspects of imaging studies in patients with renal failure. The initial chapter provides basic information on contrast agents, intravenous urography, and imaging findings in the urinary tract disorders responsible for renal failure and in patients who have undergone transplantation. It illustrates common gastro-intestinal abnormalities seen on barium studies in patients with renal failure. It illustrates the cardiopulmonary complications of renal failure and offers advice for radiologic differentiation. It details different aspects of skeletal changes in renal failure, including a basic description of the pathophysiology of the changes; many excellent illustrations of classic bone changes, arthritis, avascular necrosis, and soft-tissue calcifications; and details of bone mineral analysis

  14. How Analysis Informs Regulation:Success and Failure of ...

    Science.gov (United States)

    How Analysis Informs Regulation:Success and Failure of Evolving Approaches to Polyfluoroalkyl Acid Contamination The National Exposure Research Laboratory (NERL) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in support of EPA mission to protect human health and the environment. HEASD research program supports Goal 1 (Clean Air) and Goal 4 (Healthy People) of EPA strategic plan. More specifically, our division conducts research to characterize the movement of pollutants from the source to contact with humans. Our multidisciplinary research program produces Methods, Measurements, and Models to identify relationships between and characterize processes that link source emissions, environmental concentrations, human exposures, and target-tissue dose. The impact of these tools is improved regulatory programs and policies for EPA.

  15. Risk factors of extubation failure in extremely low birth weight infants: a five year retrospective analysis.

    Science.gov (United States)

    Lee, Chao-Yi; Su, Bai-Horng; Lin, Tsung-Wen; Lin, Hung-Chih; Li, Tsai-Chung; Wang, Nai-Phon

    2002-01-01

    Extubation failure is one of the most serious complications in extremely low birth weight infants (ELBWI) on mechanical ventilation therapy. We performed a 5-year retrospective analysis to realize the status of extubation failure in ELBWI. Extubation failure was defined as requirements of re-intubation within 72 hours after extubation. The extubation failure rate was 21% (29/138). The mean birth body weight was 808.3 +/- 140.4 gm. The mean gestational age was 25.8 +/- 1.2 wks. The incidence of chronic lung disease (CLD) in infants with extubation failure was 100% (29/29). Apnea of prematurity 49% (14/29) and post-extubation atelectasis 39% (11/29) were the most common reasons for reintubation. The major microbiology findings which correlated with nosocomial pneumonia in infants with extubation failure were Acinetobacter baumanni (21%), Klebsiella pneumonia (21%), Pseudomonas aeroginosa (14%), and Methicillin resistant staphylococcus aureus (14%). In conclusion, post-extubation atelectasis and apnea were the most common reasons for reintubation. ELBWI with extubation failure had higher incidences of post-extubation atelectasis, CLD, and nosocomial pneumonia. Further prospective studies are needed in order to clarify the appropriate extubation program for ELBWI and to prevent post-extubation atelectasis and nosocomial pneumonia.

  16. Failure analysis of collector circuits associated with wind farms

    Directory of Open Access Journals (Sweden)

    Clifton Ashley P.

    2017-01-01

    Full Text Available Wind farm collector circuits generally comprise several wind turbine generators (WTG’s. WTG’s are connected in parallel to a substation. This connection acts as the point-of-connection to the national electricity grid. The electrical load in these circuits is close to component (power cables and accessories ratings. The objective of this paper is to identify cable joint failure paths; and, develop an understanding of specific contributing factors. All findings presented were established from literature review involving data analysis and discussion with industry experts working across the wind industry. Application of forces, inadequate workmanship, incorrect thermal resistance or other contributing factors, all contribute to high conductor operating temperatures. High conductor operating temperatures highlight issues including insufficient environmental heat transfer due to the use of inadequate cable trenching materials. This in turn results in the imbalanced application of force, experienced at the cable joint, as a direct result of frequent thermal expansion and contraction. For most cable joint failures, the root cause is insulation breakdown due to sustained deterioration of the cross-linked polyethylene insulation. This is a direct result from excessive operating temperatures.

  17. Interfacing LabVIEW With Instrumentation for Electronic Failure Analysis and Beyond

    Science.gov (United States)

    Buchanan, Randy K.; Bryan, Coleman; Ludwig, Larry

    1996-01-01

    The Laboratory Virtual Instrumentation Engineering Workstation (LabVIEW) software is designed such that equipment and processes related to control systems can be operationally lined and controlled by the use of a computer. Various processes within the failure analysis laboratories of NASA's Kennedy Space Center (KSC) demonstrate the need for modernization and, in some cases, automation, using LabVIEW. An examination of procedures and practices with the Failure Analaysis Laboratory resulted in the conclusion that some device was necessary to elevate the potential users of LabVIEW to an operational level in minimum time. This paper outlines the process involved in creating a tutorial application to enable personnel to apply LabVIEW to their specific projects. Suggestions for furthering the extent to which LabVIEW is used are provided in the areas of data acquisition and process control.

  18. Observations on analysis, testing and failure of prestressed concrete containments

    International Nuclear Information System (INIS)

    Murray, D.W.

    1984-01-01

    The paper reviews the mechanics which indicate that a bursting failure with large energy release is the failure mechanism to be expected from ductile lined containment structures pressurized to failure. It reviews a study which shows that, because of leakage, this is not the case for unlined prestressed containments. It argues that current practice, since it does not specifically address the bursting failure problem for lined prestressed containments, is inadequate to ensure that this type of failure could not occur. It concludes that, in view of the inadequacy of the current state-of-the-art to predict leakage from lined structures, the logical remedy is to eliminate all possibility of bursting failure by making provision for venting of containments. (orig.)

  19. 4. Nuclear power plant component failures

    International Nuclear Information System (INIS)

    1990-01-01

    Nuclear power plant component failures are dealt with in relation to reliability in nuclear power engineering. The topics treated include classification of failures, analysis of their causes and impacts, nuclear power plant failure data acquisition and processing, interdependent failures, and human factor reliability in nuclear power engineering. (P.A.). 8 figs., 7 tabs., 23 refs

  20. A preliminary analysis of the reactor-based plutonium disposition alternative deployment schedules

    International Nuclear Information System (INIS)

    Zurn, R.M.

    1997-09-01

    This paper discusses the preliminary analysis of the implementation schedules of the reactor-based plutonium disposition alternatives. These schedule analyses are a part of a larger process to examine the nine decision criteria used to determine the most appropriate method of disposing of U.S. surplus weapons plutonium. The preliminary analysis indicates that the mission durations for the reactor-based alternatives range from eleven years to eighteen years and the initial mission fuel assemblies containing surplus weapons-usable plutonium could be loaded into the reactors between nine and fourteen years after the Record of Decision

  1. Seismic ratchet-fatigue failure of piping systems

    International Nuclear Information System (INIS)

    Severud, L.K.; Anderson, M.J.; Lindquist, M.R.; Weiner, E.O.

    1986-01-01

    Failures of piping systems during earthquakes have been rare. Those that have failed were either made of brittle material such as cast iron, were rigid systems between major components where component relative seismic motions tore the pipe out of the component, or were high pressure systems where a ratchet-fatigue fracture followed a local bulging of the pipe diameter. Tests to failure of an unpressurized 3-in. and a pressurized 6-in. diameter carbon steel nuclear pipe systems subjected to high level shaking have been accomplished. Failure analyses of these tests are presented and correlated to the test results. It was found that failure of the unpressurized system could be correlated well with standard ASME type fatigue analysis predictions. Moreover, the pressurized system failure occurred in significantly less load cycles than predicted by standard fatigue analysis. However, a ratchet-fatigue and ductility exhaustion analysis of the pressurized system did correlate very well. These findings indicate modifications to design analysis methods and the present ASME Code piping design rules may be appropriate to cover the ratchet-fatigue failure mode

  2. Analysis of factors affecting failure of glass cermet tunnel restorations in a multi-center study.

    Science.gov (United States)

    Pilebro, C E; van Dijken, J W

    2001-06-01

    The aim of this study was to analyze factors influencing the failures of tunnel restorations performed with a glass cermet cement (Ketac Silver). Caries activity, lesion size, tunnel cavity opening size, partial or total tunnel, composite lamination or operating time showed no significant correlation to failure rate. Twelve dentists in eight clinics clinically experienced and familiar with the tunnel technique placed 374 restorations. The occlusal sections of fifty percent of the restorations were laminated with hybrid resin composite. The results of the yearly clinical and radiographic evaluations over the course of 3 years were correlated to factors that could influence the failure rate using logistic regression analysis. At the 3-year recall a cumulative number of 305 restorations were available. The cumulative replacement rate was 20%. The main reasons for replacement were marginal ridge fracture (14%) and dentin caries (3%). Another 7% of the restorations which had not been replaced were classified as failures because of untreated dentin caries. The only significant variable observed was the individual failure rate of the participating dentists varying between 9 and 50% (p=0.013).

  3. Dam failure analysis/calibration using NWS models on dam failure in Alton, New Hampshire

    International Nuclear Information System (INIS)

    Capone, E.J.

    1998-01-01

    The State of New Hampshire Water Resources Board, the United States Geological Service, and private concerns have compiled data on the cause of a catastrophic failure of the Bergeron Dam in Alton, New Hampshire in March of 1996. Data collected related to the cause of the breach, the breach parameters, the soil characteristics of the failed section, and the limits of downstream flooding. Dam break modeling software was used to calibrate and verify the simulated flood-wave caused by the Bergeron Dam breach. Several scenarios were modeled, using different degrees of detail concerning the topography/channel-geometry of the affected areas. A sensitivity analysis of the important output parameters was completed. The relative importance of model parameters on the results was assessed against the background of observed historical events

  4. Failure Mode and Effect Analysis for remote handling transfer systems of ITER

    International Nuclear Information System (INIS)

    Pinna, T.; Caporali, R.; Tesini, A.

    2008-01-01

    A Failure Mode and Effect Analysis (FMEA) at component level was done to study safety-relevant implications arising from possible failures in performing remote handling (RH) operations at ITER facility . Autonomous air cushion transporter, pallet, sealed casks and tractor movers needed for port plug mounting/dismantling operation were analysed. For each sub-system, the breakdown of significant components was outlined and, for each component, possible failure modes have been investigated pointing out possible causes, possible actions to prevent the causes, consequences and actions to prevent or mitigate consequences. Off-normal events which may result in hazardous consequences to the public and the environment have been defined as Postulated Initiating Events (PIEs). Two safety-relevant PIEs have been defined by assessing elementary failures related to the analysed system. Each PIE has been discussed in order to qualitatively identify accident sequences arising from each of them. As an output of this FMEA study, possible incidental scenarios, where the intervention of rescue RH equipments is required to overcome critical situations determined by fault of RH components, were defined as well. Being rescue scenarios of main concern for ITER remote handling activities, such families could be helpful in defining the design requirements of port handling systems in general and on RH transfer system in particular. Furthermore, they could be useful in defining casks and vehicles to be used for rescue activities

  5. Analysis of grouped data from field-failure reporting systems

    International Nuclear Information System (INIS)

    Coit, David W.; Dey, Kieron A.

    1999-01-01

    Observed reliability data from fielded systems is highly desirable because they implicitly account for all actual usage and environmental stresses. Many companies and large organizations have instituted automated field-failure reporting systems to organize and disseminate these data. Despite these advantages, field data must be used with caution because they often lack sufficient detail. Specifically, the precise times-to-failure are often not recorded and only cumulative failure quantities and operating times are available. When only data of this type are available, it is difficult to determine whether component or system hazard function varies with time or is constant (i.e., exponential distribution). Analysts often use the exponential distribution to model time-to-failure because the distribution parameter can be estimated with just the merged data. However, this can be dangerous if the exponential distribution is not appropriate. An approach is presented in this paper for Type II censored data, with and without replacement, to evaluate this assumption even when individual times-to-failure are not available. A hypothesis test is presented to test the suitability of the exponential distribution for a particular data set composed of multiple merged data records. Two examples are presented to demonstrate the approach. The hypothesis test readily rejects an exponential distribution assumption when the data originate from a Weibull distribution. This is a very important result because it has generally been assumed that time-to-failure data were always required to evaluate the suitability of specific time-to-failure distributions

  6. Bayesian analysis of repairable systems showing a bounded failure intensity

    International Nuclear Information System (INIS)

    Guida, Maurizio; Pulcini, Gianpaolo

    2006-01-01

    The failure pattern of repairable mechanical equipment subject to deterioration phenomena sometimes shows a finite bound for the increasing failure intensity. A non-homogeneous Poisson process with bounded increasing failure intensity is then illustrated and its characteristics are discussed. A Bayesian procedure, based on prior information on model-free quantities, is developed in order to allow technical information on the failure process to be incorporated into the inferential procedure and to improve the inference accuracy. Posterior estimation of the model-free quantities and of other quantities of interest (such as the optimal replacement interval) is provided, as well as prediction on the waiting time to the next failure and on the number of failures in a future time interval is given. Finally, numerical examples are given to illustrate the proposed inferential procedure

  7. ANALISIS IDENTIFIKASI MASALAH DENGAN MENGGUNAKAN METODE FAILURE MODE AND EFFECT ANALYSIS (FMEA DAN RISK PRIORITY NUMBER (RPN PADA SUB ASSEMBLY LINE (Studi Kasus : PT. Toyota Motor Manufacturing Indonesia

    Directory of Open Access Journals (Sweden)

    Nia Budi Puspitasari

    2017-07-01

    Abstract The failure rate is a problem that has always attempted to be minimized by a company in order to improve the quality of products, and also were conducted by oleh Toyota Motor Manufacturing Indonesia (PT. TMMIN which is consistent in producting a quality product.  Knowing that in 2016 there is a defect GAP at 50 ppm, PT. TMMIN needs to identify the failures that occur in their company. FMEA is a method to identify and analyze the failure modes in detail that can able to know the cause and impact of each failures, so we get the proper repairment. FMEA that is used in PT. TMMIN case study indicate various modes of failure in assembly-line, then known the alternatives to repair for any prioritize failures. The priorities failures can be seen in the Risk Priority Number (RPN. Based on the RPN resulting, we can obtain the priority failures in  assembly-line of PT. TMMIN that are about the part installation errors, failures due to foreign objects in the part, and the failure of the piston assembly errors.

  8. Do antibiotics decrease implant failure and postoperative infections? A systematic review and meta-analysis.

    Science.gov (United States)

    Ata-Ali, J; Ata-Ali, F; Ata-Ali, F

    2014-01-01

    The purpose of this study was to systematically review and perform a comprehensive meta-analysis of the current literature to answer the following question: among patients receiving dental implants, does the use of antibiotics, when compared with a control group, reduce the frequency of implant failure and postoperative infection? A manual and electronic PubMed search of the literature was made to identify randomized controlled trials (RCTs) on the efficacy of antibiotics compared with a control group (not receiving antibiotics or receiving placebo). Four RCTs were included in the final review. These four RCTs grouped a total of 2063 implants and a total of 1002 patients. Antibiotic use significantly lowered the implant failure rate (P = 0.003), with an odds ratio of 0.331, implying that antibiotic treatment reduced the odds of failure by 66.9%. The number needed to treat (NNT) to prevent one patient from having an implant failure was 48 (95% confidence interval 31-109). In contrast, antibiotic use did not significantly reduce the incidence of postoperative infection (P = 0.754). Based on the results of this meta-analysis, and pending further research in the field, it can be concluded that there is evidence in favour of systematic antibiotic use in patients receiving dental implants, since such treatment significantly reduces implant failure. In contrast, antibiotic use does not exert a significant preventive effect against postoperative infection. Our recommendations for future research focus on the performance of large-scale RCTs to identify the best choice of antibiotic, timing of administration, and dose. Increased effort is also required to reach consensus and define the most effective antibiotic treatment protocol for patients who are allergic to beta-lactams and for those who are not. Copyright © 2013 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  9. Alternatives Generation and Analysis for Phase 1 High-Level Waste Feed Tanks Selection

    International Nuclear Information System (INIS)

    CRAWFORD, T.W.

    1999-01-01

    A recent revision of the US Department of Energy privatization contract for the immobilization of high-level waste (HLW) at Hanford necessitates the investigation of alternative waste feed sources to meet contractual feed requirements. This analysis identifies wastes to be considered as HLW feeds and develops and conducts alternative analyses to comply with established criteria. A total of 12,426 cases involving 72 waste streams are evaluated and ranked in three cost-based alternative models. Additional programmatic criteria are assessed against leading alternative options to yield an optimum blended waste feed stream

  10. Creep-Fatigue Failure Diagnosis

    Science.gov (United States)

    Holdsworth, Stuart

    2015-01-01

    Failure diagnosis invariably involves consideration of both associated material condition and the results of a mechanical analysis of prior operating history. This Review focuses on these aspects with particular reference to creep-fatigue failure diagnosis. Creep-fatigue cracking can be due to a spectrum of loading conditions ranging from pure cyclic to mainly steady loading with infrequent off-load transients. These require a range of mechanical analysis approaches, a number of which are reviewed. The microstructural information revealing material condition can vary with alloy class. In practice, the detail of the consequent cracking mechanism(s) can be camouflaged by oxidation at high temperatures, although the presence of oxide on fracture surfaces can be used to date events leading to failure. Routine laboratory specimen post-test examination is strongly recommended to characterise the detail of deformation and damage accumulation under known and well-controlled loading conditions to improve the effectiveness and efficiency of failure diagnosis. PMID:28793676

  11. Molecular analysis of alternative transcripts of equine AXL receptor tyrosine kinase gene.

    Science.gov (United States)

    Park, Jeong-Woong; Song, Ki-Duk; Kim, Nam Young; Choi, Jae-Young; Hong, Seul A; Oh, Jin Hyeog; Kim, Si Won; Lee, Jeong Hyo; Park, Tae Sub; Kim, Jin-Kyoo; Kim, Jong Geun; Cho, Byung-Wook

    2017-10-01

    Since athletic performance is a most importance trait in horses, most research focused on physiological and physical studies of horse athletic abilities. In contrast, the molecular analysis as well as the regulatory pathway studies remain insufficient for evaluation and prediction of horse athletic abilities. In our previous study, we identified AXL receptor tyrosine kinase ( AXL ) gene which was expressed as alternative spliced isoforms in skeletal muscle during exercise. In the present study, we validated two AXL alternative splicing transcripts (named as AXLa for long form and AXLb for short form) in equine skeletal muscle to gain insight(s) into the role of each alternative transcript during exercise. We validated two isoforms of AXL transcripts in horse tissues by reverse transcriptase polymerase chain reaction (RT-PCR), and then cloned the transcripts to confirm the alternative locus and its sequences. Additionally, we examined the expression patterns of AXLa and AXLb transcripts in horse tissues by quantitative RT-PCR (qRT-PCR). Both of AXLa and AXLb transcripts were expressed in horse skeletal muscle and the expression levels were significantly increased after exercise. The sequencing analysis showed that there was an alternative splicing event at exon 11 between AXLa and AXLb transcripts. 3-dimentional (3D) prediction of the alternative protein structures revealed that the structural distance of the connective region between fibronectin type 3 (FN3) and immunoglobin (Ig) domain was different between two alternative isoforms. It is assumed that the expression patterns of AXLa and AXLb transcripts would be involved in regulation of exercise-induced stress in horse muscle possibly through an NF-κB signaling pathway. Further study is necessary to uncover biological function(s) and significance of the alternative splicing isoforms in race horse skeletal muscle.

  12. Molecular analysis of alternative transcripts of equine AXL receptor tyrosine kinase gene

    Directory of Open Access Journals (Sweden)

    Jeong-Woong Park

    2017-10-01

    Full Text Available Objective Since athletic performance is a most importance trait in horses, most research focused on physiological and physical studies of horse athletic abilities. In contrast, the molecular analysis as well as the regulatory pathway studies remain insufficient for evaluation and prediction of horse athletic abilities. In our previous study, we identified AXL receptor tyrosine kinase (AXL gene which was expressed as alternative spliced isoforms in skeletal muscle during exercise. In the present study, we validated two AXL alternative splicing transcripts (named as AXLa for long form and AXLb for short form in equine skeletal muscle to gain insight(s into the role of each alternative transcript during exercise. Methods We validated two isoforms of AXL transcripts in horse tissues by reverse transcriptase polymerase chain reaction (RT-PCR, and then cloned the transcripts to confirm the alternative locus and its sequences. Additionally, we examined the expression patterns of AXLa and AXLb transcripts in horse tissues by quantitative RT-PCR (qRT-PCR. Results Both of AXLa and AXLb transcripts were expressed in horse skeletal muscle and the expression levels were significantly increased after exercise. The sequencing analysis showed that there was an alternative splicing event at exon 11 between AXLa and AXLb transcripts. 3-dimentional (3D prediction of the alternative protein structures revealed that the structural distance of the connective region between fibronectin type 3 (FN3 and immunoglobin (Ig domain was different between two alternative isoforms. Conclusion It is assumed that the expression patterns of AXLa and AXLb transcripts would be involved in regulation of exercise-induced stress in horse muscle possibly through an NF-κB signaling pathway. Further study is necessary to uncover biological function(s and significance of the alternative splicing isoforms in race horse skeletal muscle.

  13. Failure cause and failure rate evaluation on pumps of BWR plants in PSA. Hypothesis testing for typical or plant specific failure rate of pumps

    International Nuclear Information System (INIS)

    Sanada, Takahiro; Nakamura, Makoto

    2009-01-01

    In support of domestic nuclear industry effort to gather and analyze failure data of components concerning nuclear power plants, Nuclear Information Archives (NUCIA) are published for useful information to help PSA. This report focuses on NUCIA pertaining to pumps in domestic nuclear power plants, and provides the reliable estimation on failure rate of pumps resulting from failure cause analysis and hypothesis testing of classified and plant specific failure rate of pumps for improving quality in PSA. The classified and plant specific failure rate of pumps are estimated by analyzing individual domestic nuclear power plant's data of 26 Boiling Water Reactors (BWRs) concerning functionally structurally classified pump failures reported from beginning of commercial operation to March 31, 2007. (author)

  14. Gamma prior distribution selection for Bayesian analysis of failure rate and reliability

    International Nuclear Information System (INIS)

    Waller, R.A.; Johnson, M.M.; Waterman, M.S.; Martz, H.F. Jr.

    1976-07-01

    It is assumed that the phenomenon under study is such that the time-to-failure may be modeled by an exponential distribution with failure rate lambda. For Bayesian analyses of the assumed model, the family of gamma distributions provides conjugate prior models for lambda. Thus, an experimenter needs to select a particular gamma model to conduct a Bayesian reliability analysis. The purpose of this report is to present a methodology that can be used to translate engineering information, experience, and judgment into a choice of a gamma prior distribution. The proposed methodology assumes that the practicing engineer can provide percentile data relating to either the failure rate or the reliability of the phenomenon being investigated. For example, the methodology will select the gamma prior distribution which conveys an engineer's belief that the failure rate lambda simultaneously satisfies the probability statements, P(lambda less than 1.0 x 10 -3 ) equals 0.50 and P(lambda less than 1.0 x 10 -5 ) equals 0.05. That is, two percentiles provided by an engineer are used to determine a gamma prior model which agrees with the specified percentiles. For those engineers who prefer to specify reliability percentiles rather than the failure rate percentiles illustrated above, it is possible to use the induced negative-log gamma prior distribution which satisfies the probability statements, P(R(t 0 ) less than 0.99) equals 0.50 and P(R(t 0 ) less than 0.99999) equals 0.95, for some operating time t 0 . The report also includes graphs for selected percentiles which assist an engineer in applying the procedure. 28 figures, 16 tables

  15. Seismic ratchet-fatigue failure of piping systems

    International Nuclear Information System (INIS)

    Severud, L.K.; Anderson, M.J.; Lindquist, M.R.; Weiner, E.O.

    1987-01-01

    Failures of piping systems during earthquakes have been rare. Those that have failed were either made of brittle material such as cast iron, were rigid systems between major components where component relative seismic motions tore the pipe out of the component, or were high pressure systems where a ratchet-fatigue fracture followed a local bulging of the pipe diameter. Tests to failure of an unpressurized 3-inch and a pressurized 6-inch diameter carbon steel nuclear pipe systems subjected to high-level shaking have been accomplished. The high-level shaking loads needed to cause failure were much higher than ASME Code rules would permit with present design limits. Failure analyses of these tests are presented and correlated to the test results. It was found that failure of the unpressurized system could be correlated well with standard ASME type fatigue analysis predictions. Moreover, the pressurized system failure occured in significantly less load cycles than predicted by standard fatigue analysis. However, a ratchet-fatigue and ductility exhaustion analysis of the pressurized system did correlate reasonably well. These findings indicate modifications to design analysis methods and the present ASME Code piping design rules to reduce unneeded conservatisms and to cover the ratchet-fatigue failure mode may be appropriate

  16. Failure rate modeling using fault tree analysis and Bayesian network: DEMO pulsed operation turbine study case

    International Nuclear Information System (INIS)

    Dongiovanni, Danilo Nicola; Iesmantas, Tomas

    2016-01-01

    Highlights: • RAMI (Reliability, Availability, Maintainability and Inspectability) assessment of secondary heat transfer loop for a DEMO nuclear fusion plant. • Definition of a fault tree for a nuclear steam turbine operated in pulsed mode. • Turbine failure rate models update by mean of a Bayesian network reflecting the fault tree analysis in the considered scenario. • Sensitivity analysis on system availability performance. - Abstract: Availability will play an important role in the Demonstration Power Plant (DEMO) success from an economic and safety perspective. Availability performance is commonly assessed by Reliability Availability Maintainability Inspectability (RAMI) analysis, strongly relying on the accurate definition of system components failure modes (FM) and failure rates (FR). Little component experience is available in fusion application, therefore requiring the adaptation of literature FR to fusion plant operating conditions, which may differ in several aspects. As a possible solution to this problem, a new methodology to extrapolate/estimate components failure rate under different operating conditions is presented. The DEMO Balance of Plant nuclear steam turbine component operated in pulse mode is considered as study case. The methodology moves from the definition of a fault tree taking into account failure modes possibly enhanced by pulsed operation. The fault tree is then translated into a Bayesian network. A statistical model for the turbine system failure rate in terms of subcomponents’ FR is hence obtained, allowing for sensitivity analyses on the structured mixture of literature and unknown FR data for which plausible value intervals are investigated to assess their impact on the whole turbine system FR. Finally, the impact of resulting turbine system FR on plant availability is assessed exploiting a Reliability Block Diagram (RBD) model for a typical secondary cooling system implementing a Rankine cycle. Mean inherent availability

  17. Failure rate modeling using fault tree analysis and Bayesian network: DEMO pulsed operation turbine study case

    Energy Technology Data Exchange (ETDEWEB)

    Dongiovanni, Danilo Nicola, E-mail: danilo.dongiovanni@enea.it [ENEA, Nuclear Fusion and Safety Technologies Department, via Enrico Fermi 45, Frascati 00040 (Italy); Iesmantas, Tomas [LEI, Breslaujos str. 3 Kaunas (Lithuania)

    2016-11-01

    Highlights: • RAMI (Reliability, Availability, Maintainability and Inspectability) assessment of secondary heat transfer loop for a DEMO nuclear fusion plant. • Definition of a fault tree for a nuclear steam turbine operated in pulsed mode. • Turbine failure rate models update by mean of a Bayesian network reflecting the fault tree analysis in the considered scenario. • Sensitivity analysis on system availability performance. - Abstract: Availability will play an important role in the Demonstration Power Plant (DEMO) success from an economic and safety perspective. Availability performance is commonly assessed by Reliability Availability Maintainability Inspectability (RAMI) analysis, strongly relying on the accurate definition of system components failure modes (FM) and failure rates (FR). Little component experience is available in fusion application, therefore requiring the adaptation of literature FR to fusion plant operating conditions, which may differ in several aspects. As a possible solution to this problem, a new methodology to extrapolate/estimate components failure rate under different operating conditions is presented. The DEMO Balance of Plant nuclear steam turbine component operated in pulse mode is considered as study case. The methodology moves from the definition of a fault tree taking into account failure modes possibly enhanced by pulsed operation. The fault tree is then translated into a Bayesian network. A statistical model for the turbine system failure rate in terms of subcomponents’ FR is hence obtained, allowing for sensitivity analyses on the structured mixture of literature and unknown FR data for which plausible value intervals are investigated to assess their impact on the whole turbine system FR. Finally, the impact of resulting turbine system FR on plant availability is assessed exploiting a Reliability Block Diagram (RBD) model for a typical secondary cooling system implementing a Rankine cycle. Mean inherent availability

  18. Application of Failure Mode Effect and Criticality Analysis (FMECA to a Computer Integrated Manufacturing (CIM Conveyor Belt

    Directory of Open Access Journals (Sweden)

    I. Elbadawi

    2018-06-01

    Full Text Available Fault finding and failure predicting techniques in manufacturing and production systems often involve forecasting failures, their effects, and occurrences. The majority of these techniques predict failures that may appear during the regular system production time. However, they do not estimate the failure modes and they require extensive source code instrumentation. In this study, we suggest an approach for predicting failure occurrences and modes during system production time intervals at the University of Hail (UoH. The aim of this project is to implement failure mode effect and criticality analysis (FMECA on computer integrated manufacturing (CIM conveyors to determine the effect of various failures on the CIM conveyor belt by ranking and prioritizing each failure according to its risk priority number (RPN. We incorporated the results of FMECA in the development of formal specifications of fail-safe CIM conveyor belt systems. The results show that the highest RPN values are for motor over current failure (450, conveyor chase of vibration (400, belt run off at the head pulley (200, accumulated dirt (180, and Bowed belt (150. The study concludes that performing FMECA is highly effective in improving CIM conveyor belt reliability and safety in the mechanical engineering workshop at UoH.

  19. Ductile failure analysis of API X65 pipes with notch-type defects using a local fracture criterion

    International Nuclear Information System (INIS)

    Oh, Chang-Kyun; Kim, Yun-Jae; Baek, Jong-Hyun; Kim, Young-Pyo; Kim, Woo-Sik

    2007-01-01

    A local failure criterion for API X65 steel is applied to predict ductile failure of full-scale API X65 pipes with simulated corrosion and gouge defects under internal pressure. The local failure criterion is the stress-modified fracture strain as a function of the stress triaxiality (defined by the ratio of the hydrostatic stress to the effective stress). Based on detailed finite element (FE) analyses with the proposed local failure criterion, burst pressures of defective pipes are estimated and compared with experimental data. For pipes with simulated corrosion defects, FE analysis with the proposed local fracture criterion indicates that predicted failure takes place after the defective pipes attain maximum loads for all cases, possibly due to the fact that the material has sufficient ductility. For pipes with simulated gouge defects, on the other hand, it is found that predicted failure takes place before global instability, and the predicted burst pressures are in good agreement with experimental data, providing confidence in the present approach

  20. Nuclear reactor component populations, reliability data bases, and their relationship to failure rate estimation and uncertainty analysis

    International Nuclear Information System (INIS)

    Martz, H.F.; Beckman, R.J.

    1981-12-01

    Probabilistic risk analyses are used to assess the risks inherent in the operation of existing and proposed nuclear power reactors. In performing such risk analyses the failure rates of various components which are used in a variety of reactor systems must be estimated. These failure rate estimates serve as input to fault trees and event trees used in the analyses. Component failure rate estimation is often based on relevant field failure data from different reliability data sources such as LERs, NPRDS, and the In-Plant Data Program. Various statistical data analysis and estimation methods have been proposed over the years to provide the required estimates of the component failure rates. This report discusses the basis and extent to which statistical methods can be used to obtain component failure rate estimates. The report is expository in nature and focuses on the general philosophical basis for such statistical methods. Various terms and concepts are defined and illustrated by means of numerous simple examples

  1. Corrosion failure analysis of hearing aid battery-spring contacts

    DEFF Research Database (Denmark)

    Gudla, Visweswara Chakravarthy; Ambat, Rajan

    2017-01-01

    the susceptibility of these systems to galvanic corrosion. In this study, traditional behind the ear (BTE) hearing aid systems, which failed during service were analysed. Failure analysis was performed on the dome type battery-spring contact systems. The morphology of the contact areas was observed using scanning......Reliability of low power electrical contacts such as those in hearing aid battery-spring systems is a very critical aspect for the overall performance of the device. These systems are exposed to certain harsh environments like high humidity and elevated temperatures, and often in combination...... electron microscopy, and the compositional analysis of the corrosion products and contaminants was performed using energy dispersive X-ray spectroscopy. Wear track morphology was observed on the contact points, and the top coating on the dome was worn out exposing the substrate spring material...

  2. A clinical analysis of 500 medico-legal claims evaluating the causes and assessing the potential benefit of alternative dispute resolution.

    Science.gov (United States)

    B-Lynch, C; Coker, A; Dua, J A

    1996-12-01

    1. To evaluate the common causes of medico-legal dispute in obstetrics and gynaecology. 2. To assess the potential benefit of early alternative dispute resolution. A prospective analysis of over 500 cases submitted from over 100 solicitors between 1984 and 1994 for medical expert opinion on potential medico-legal claims. Five hundred consecutive cases that met the inclusion criteria: 488 from the United Kingdom and 12 from abroad (Hong Kong, Republic of Ireland). The main principles underlining medico-legal disputes and causes of such claims. Analysis of 500 claims show 46% were misguided allegations, 19% incompetent care, 12% error of judgement, 9% lack of expertise, 7% failure of communication, 6% poor supervision and 1% inadequate staffing. Of the misguided allegations 119/225 cases (59%) were obstetric and 111/275 (40%) cases were gynaecological. The most common cause of obstetric dispute was "cerebral palsy' (22%), while the commonest cause of gynaecological dispute was failed sterilisation (19%). Settled claims were under-reported by solicitors. Because of the high percentage (46%) of misguided allegations, an alternative course of dispute resolution must be a realistic way forward. This course of action, combined with improved communication, could result in a major reduction in the costs of potential medical litigation. Early alternative dispute resolution should be considered in an attempt to reduce the escalating quantum of damages and costs. We recommend recruiting independent, experienced and unbiased consultants in active practice within the appropriate specialty to review such cases at the level of hospital complaints management as an in house review procedure, particularly for small and moderate-sized claims, as a means whereby doctors can retain control of medico-legal disputes, in contrast to control by the legal profession.

  3. WE-G-BRA-08: Failure Modes and Effects Analysis (FMEA) for Gamma Knife Radiosurgery

    International Nuclear Information System (INIS)

    Xu, Y; Bhatnagar, J; Bednarz, G; Flickinger, J; Arai, Y; Huq, M Saiful; Vacsulka, J; Monaco, E; Niranjan, A; Lunsford, L Dade; Feng, W

    2015-01-01

    Purpose: To perform a failure modes and effects analysis (FMEA) study for Gamma Knife (GK) radiosurgery processes at our institution based on our experience with the treatment of more than 13,000 patients. Methods: A team consisting of medical physicists, nurses, radiation oncologists, neurosurgeons at the University of Pittsburgh Medical Center and an external physicist expert was formed for the FMEA study. A process tree and a failure mode table were created for the GK procedures using the Leksell GK Perfexion and 4C units. Three scores for the probability of occurrence (O), the severity (S), and the probability of no detection (D) for failure modes were assigned to each failure mode by each professional on a scale from 1 to 10. The risk priority number (RPN) for each failure mode was then calculated (RPN = OxSxD) as the average scores from all data sets collected. Results: The established process tree for GK radiosurgery consists of 10 sub-processes and 53 steps, including a sub-process for frame placement and 11 steps that are directly related to the frame-based nature of the GK radiosurgery. Out of the 86 failure modes identified, 40 failure modes are GK specific, caused by the potential for inappropriate use of the radiosurgery head frame, the imaging fiducial boxes, the GK helmets and plugs, and the GammaPlan treatment planning system. The other 46 failure modes are associated with the registration, imaging, image transfer, contouring processes that are common for all radiation therapy techniques. The failure modes with the highest hazard scores are related to imperfect frame adaptor attachment, bad fiducial box assembly, overlooked target areas, inaccurate previous treatment information and excessive patient movement during MRI scan. Conclusion: The implementation of the FMEA approach for Gamma Knife radiosurgery enabled deeper understanding of the overall process among all professionals involved in the care of the patient and helped identify potential

  4. Analysis of acetal toilet fill valve supply line nut failure

    Directory of Open Access Journals (Sweden)

    Anthony Timpanaro

    2017-10-01

    Full Text Available In recent years, there has been a rise in the number of product liability cases involving the failure of toilet water supply line acetal plastic nuts. These nuts can fail in service, causing water leaks that result in significant property and financial losses. This study examines three possible failure modes of acetal plastic toilet water supply nuts. The three failure modes tested were all due to over load failure of the acetal nut and are as follows: (1 Overtightening of the supply line acetal nut, (2 Supply line lateral pull and, (3 Embrittled supply line lateral pull. Additionally, a “hand-tight” torque survey was conducted. The fracture surfaces and characteristics of these failure tests were examined with Stereo Microscopy and Scanning Electron Microscopy (SEM. The failure modes were compared and contrasted to provide guidance in determination of cause in these investigations.

  5. Micromechanical Failure Analyses for Finite Element Polymer Modeling

    Energy Technology Data Exchange (ETDEWEB)

    CHAMBERS,ROBERT S.; REEDY JR.,EARL DAVID; LO,CHI S.; ADOLF,DOUGLAS B.; GUESS,TOMMY R.

    2000-11-01

    Polymer stresses around sharp corners and in constrained geometries of encapsulated components can generate cracks leading to system failures. Often, analysts use maximum stresses as a qualitative indicator for evaluating the strength of encapsulated component designs. Although this approach has been useful for making relative comparisons screening prospective design changes, it has not been tied quantitatively to failure. Accurate failure models are needed for analyses to predict whether encapsulated components meet life cycle requirements. With Sandia's recently developed nonlinear viscoelastic polymer models, it has been possible to examine more accurately the local stress-strain distributions in zones of likely failure initiation looking for physically based failure mechanisms and continuum metrics that correlate with the cohesive failure event. This study has identified significant differences between rubbery and glassy failure mechanisms that suggest reasonable alternatives for cohesive failure criteria and metrics. Rubbery failure seems best characterized by the mechanisms of finite extensibility and appears to correlate with maximum strain predictions. Glassy failure, however, seems driven by cavitation and correlates with the maximum hydrostatic tension. Using these metrics, two three-point bending geometries were tested and analyzed under variable loading rates, different temperatures and comparable mesh resolution (i.e., accuracy) to make quantitative failure predictions. The resulting predictions and observations agreed well suggesting the need for additional research. In a separate, additional study, the asymptotically singular stress state found at the tip of a rigid, square inclusion embedded within a thin, linear elastic disk was determined for uniform cooling. The singular stress field is characterized by a single stress intensity factor K{sub a} and the applicable K{sub a} calibration relationship has been determined for both fully bonded and

  6. A high quality Arabidopsis transcriptome for accurate transcript-level analysis of alternative splicing

    KAUST Repository

    Zhang, Runxuan

    2017-04-05

    Alternative splicing generates multiple transcript and protein isoforms from the same gene and thus is important in gene expression regulation. To date, RNA-sequencing (RNA-seq) is the standard method for quantifying changes in alternative splicing on a genome-wide scale. Understanding the current limitations of RNA-seq is crucial for reliable analysis and the lack of high quality, comprehensive transcriptomes for most species, including model organisms such as Arabidopsis, is a major constraint in accurate quantification of transcript isoforms. To address this, we designed a novel pipeline with stringent filters and assembled a comprehensive Reference Transcript Dataset for Arabidopsis (AtRTD2) containing 82,190 non-redundant transcripts from 34 212 genes. Extensive experimental validation showed that AtRTD2 and its modified version, AtRTD2-QUASI, for use in Quantification of Alternatively Spliced Isoforms, outperform other available transcriptomes in RNA-seq analysis. This strategy can be implemented in other species to build a pipeline for transcript-level expression and alternative splicing analyses.

  7. A high quality Arabidopsis transcriptome for accurate transcript-level analysis of alternative splicing

    KAUST Repository

    Zhang, Runxuan; Calixto, Cristiane  P.  G.; Marquez, Yamile; Venhuizen, Peter; Tzioutziou, Nikoleta A.; Guo, Wenbin; Spensley, Mark; Entizne, Juan Carlos; Lewandowska, Dominika; ten  Have, Sara; Frei  dit  Frey, Nicolas; Hirt, Heribert; James, Allan B.; Nimmo, Hugh G.; Barta, Andrea; Kalyna, Maria; Brown, John  W.  S.

    2017-01-01

    Alternative splicing generates multiple transcript and protein isoforms from the same gene and thus is important in gene expression regulation. To date, RNA-sequencing (RNA-seq) is the standard method for quantifying changes in alternative splicing on a genome-wide scale. Understanding the current limitations of RNA-seq is crucial for reliable analysis and the lack of high quality, comprehensive transcriptomes for most species, including model organisms such as Arabidopsis, is a major constraint in accurate quantification of transcript isoforms. To address this, we designed a novel pipeline with stringent filters and assembled a comprehensive Reference Transcript Dataset for Arabidopsis (AtRTD2) containing 82,190 non-redundant transcripts from 34 212 genes. Extensive experimental validation showed that AtRTD2 and its modified version, AtRTD2-QUASI, for use in Quantification of Alternatively Spliced Isoforms, outperform other available transcriptomes in RNA-seq analysis. This strategy can be implemented in other species to build a pipeline for transcript-level expression and alternative splicing analyses.

  8. Augmenting health care failure modes and effects analysis with simulation

    DEFF Research Database (Denmark)

    Staub-Nielsen, Ditte Emilie; Dieckmann, Peter; Mohr, Marlene

    2014-01-01

    This study explores whether simulation plays a role in health care failure mode and effects analysis (HFMEA); it does this by evaluating whether additional data are found when a traditional HFMEA is augmented with simulation. Two multidisciplinary teams identified vulnerabilities in a process...... by brainstorming, followed by simulation. Two means of adding simulation were investigated as follows: just simulating the process and interrupting the simulation between substeps of the process. By adding simulation to a traditional HFMEA, both multidisciplinary teams identified additional data that were relevant...

  9. Full-scale experimentations on alternative materials in roads: analysis of study practices.

    Science.gov (United States)

    François, D; Jullien, A; Kerzreho, J P; Chateau, L

    2009-03-01

    In France beginning in the 1990s, the topic of road construction using various alternative materials has given rise to several studies aimed at clarifying the technical and environmental feasibility of such an option. Although crucial to understanding and forecasting their behaviour in the field, an analysis of feedback from onsite experiences (back analysis) of roads built with alternative materials has not yet been carried out. The aim of the CAREX project (2003-2005) has been to fill this gap at the national scale. Based on a stress-response approach applied to both the alternative material and the road structure and including the description of external factors, a dedicated standardised framework for field data classification and analysis was adopted. To carry out this analysis, a set of 17 documented field experiments was identified through a specific national survey. It appears that a great heterogeneity exists in data processing procedures among studies. The description of material is acceptable while it is generally poor regarding external factors and structure responses. Structure monitoring is usually brief and mechanical loads too weak, which limits the significance of field testing. For future full-scale experiments, strengthening the realism within the testing conditions would be appropriate.

  10. Benefit-cost-risk analysis of alternatives for greater-confinement disposal of radioactive waste

    International Nuclear Information System (INIS)

    Gilbert, T.L.; Luner, C.; Peterson, J.M.

    1983-01-01

    Seven alternatives are included in the analysis: near-surface disposal; improved waste form; below-ground engineered structure; augered shaft; shale fracturing; shallow geologic repository; and high-level waste repository. These alternatives are representative generic facilities that span the range from low-level waste disposal practice to high-level waste disposal practice, tentatively ordered according to an expected increasing cost and/or effectiveness of confinement. They have been chosen to enable an assessment of the degree of confinement that represents an appropriate balance between public health and safety requirements and costs rather than identification of a specific preferred facility design. The objective of the analysis is to provide a comparative ranking of the alternatives on the basis of benefit-cost-risk considerations

  11. Risk-based decision making to manage water quality failures caused by combined sewer overflows

    Science.gov (United States)

    Sriwastava, A. K.; Torres-Matallana, J. A.; Tait, S.; Schellart, A.

    2017-12-01

    Regulatory authorities set certain environmental permit for water utilities such that the combined sewer overflows (CSO) managed by these companies conform to the regulations. These utility companies face the risk of paying penalty or negative publicity in case they breach the environmental permit. These risks can be addressed by designing appropriate solutions such as investing in additional infrastructure which improve the system capacity and reduce the impact of CSO spills. The performance of these solutions is often estimated using urban drainage models. Hence, any uncertainty in these models can have a significant effect on the decision making process. This study outlines a risk-based decision making approach to address water quality failure caused by CSO spills. A calibrated lumped urban drainage model is used to simulate CSO spill quality in Haute-Sûre catchment in Luxembourg. Uncertainty in rainfall and model parameters is propagated through Monte Carlo simulations to quantify uncertainty in the concentration of ammonia in the CSO spill. A combination of decision alternatives such as the construction of a storage tank at the CSO and the reduction in the flow contribution of catchment surfaces are selected as planning measures to avoid the water quality failure. Failure is defined as exceedance of a concentration-duration based threshold based on Austrian emission standards for ammonia (De Toffol, 2006) with a certain frequency. For each decision alternative, uncertainty quantification results into a probability distribution of the number of annual CSO spill events which exceed the threshold. For each alternative, a buffered failure probability as defined in Rockafellar & Royset (2010), is estimated. Buffered failure probability (pbf) is a conservative estimate of failure probability (pf), however, unlike failure probability, it includes information about the upper tail of the distribution. A pareto-optimal set of solutions is obtained by performing mean

  12. Reliability of mechanical components subjected to combined alternating and mean stresses with a nonconstant stress ratio

    International Nuclear Information System (INIS)

    Kececioglu, D.; Lamarre, G.B.

    1979-01-01

    The reliability of reactor mechanical components and structural members, submitted to external loads which induce alternating bending stresses and mean shear stresses at the critical section where failure has a high probability of occurring, is predicted assuming that the ratio of the distributed alternating stress to the mean stress is also distributed and yields a bivariate failure-governing, combined alternating and mean, stress distribution. A computer programmed methodology is developed to calculate the reliability under these conditions given the associated distributional Goodman diagram for a reactor component or structural member. (orig.)

  13. Forecasting overhaul or replacement intervals based on estimated system failure intensity

    Science.gov (United States)

    Gannon, James M.

    1994-12-01

    System reliability can be expressed in terms of the pattern of failure events over time. Assuming a nonhomogeneous Poisson process and Weibull intensity function for complex repairable system failures, the degree of system deterioration can be approximated. Maximum likelihood estimators (MLE's) for the system Rate of Occurrence of Failure (ROCOF) function are presented. Evaluating the integral of the ROCOF over annual usage intervals yields the expected number of annual system failures. By associating a cost of failure with the expected number of failures, budget and program policy decisions can be made based on expected future maintenance costs. Monte Carlo simulation is used to estimate the range and the distribution of the net present value and internal rate of return of alternative cash flows based on the distributions of the cost inputs and confidence intervals of the MLE's.

  14. The Efficacy of Hospitalization of Nonorganic Failure-to-Thrive Children: A Meta-Analysis.

    Science.gov (United States)

    Fryer, George E., Jr.

    1988-01-01

    A meta-analysis of eight studies, involving 192 subjects, was performed to ascertain the efficacy of hospitalization of children with nonorganic failure to thrive. Hospitalization was found to approximately double the probability of catch-up physical growth for the children, but psychosocial development was only modestly hastened by…

  15. RIP INPUT TABLES FROM WAPDEG FOR LA DESIGN SELECTION: ENHANCED DESIGN ALTERNATIVE V

    International Nuclear Information System (INIS)

    K. Mon

    1999-01-01

    The purpose of this calculation is to document (1) the Waste Package Degradation (WAPDEG) version 3.09 (CRWMS M and O 1998b, Software Routine Report for WAPDEG (Version 3.09)) simulations used to analyze degradation and failure of 2-cm thick titanium grade 7 corrosion resistant material (CRM) drip shields (that are placed over waste packages composed of a 2-cm thick Alloy 22 corrosion resistant material (CRM) as the outer barrier and an unspecified material to provide structural support as the inner barrier) as well as degradation and failure of the waste packages themselves, and (2) post-processing of these results into tables of drip shield/waste package degradation time histories suitable for use as input into the Integrated Probabilistic Simulator for Environmental Systems (RIP) version 5.19.01 (Golder Associates 1998) computer code. Performance credit of the inner barrier material is not taken in this calculation. This calculation supports Performance Assessment analysis of the License Application Design Selection (LADS) Enhanced Design Alternative V. Additional details concerning the Enhanced Design Alternative V are provided in a Design Input Request (CRWMS M and O 1999e, Design Input Request for LADS Phase II EDA Evaluations, Item 3)

  16. Numerical analysis oriented biaxial stress-strain relation and failure criterion of plain concrete

    International Nuclear Information System (INIS)

    Link, J.

    1975-01-01

    A biaxial stress-strain relation and failure criterion is proposed, which is applicable to structural analysis methods. The formulation of material behavior of plain concrete in biaxial stress-state was developed. A nonlinear elastic, anisotropic stress-strain relation was derived with two moduli of elasticity, E 1 , E 2 and Poisson's ratios, ν 1 , ν 2 , which depend on the prevailing biaxial stress state. The stress-strain relation is valid in the whole biaxial stress field, that means with a smooth transition between the domains of tension/tension, tension/compression and compression/compression. The stress-dependent moduli E 1 , E 2 and the Poisson's ratios ν 1 , ν 2 are approximated by polynomials, trigonometrical and exponential functions. A failure criterion was defined by approximating the test results of the biaxial ultimate concrete strength with a 7th degree polynomial, which is also valid in the whole biaxial stress domain. The definition of the state of failure is given as a function of stresses as well as strains. Initial parameters of the formulation of the biaxial material behavior are the uniaxial cylindrical strength of concrete and the initial values of Young's modulus and Poisson's ratio. A simple expansion of this formulation makes it applicable not only to normal but also to light-weight concrete. Comparison of numerically calculated stress-strain curves up to the ultimate biaxial stresses which indicate the failure criteria with those obtained from tests show a very good agreement. It is shown, that the biaxial stress-strain relation can be extended for use in cases of triaxial tension/tension/compression stress state. Numerical examples of analysis of concrete slabs show the importance of incorporation of a realistic material behavior for better safety estimations

  17. Failure Analysis of Nonvolatile Residue (NVR) Analyzer Model SP-1000

    Science.gov (United States)

    Potter, Joseph C.

    2011-01-01

    National Aeronautics and Space Administration (NASA) subcontractor Wiltech contacted the NASA Electrical Lab (NE-L) and requested a failure analysis of a Solvent Purity Meter; model SP-IOOO produced by the VerTis Instrument Company. The meter, used to measure the contaminate in a solvent to determine the relative contamination on spacecraft flight hardware and ground servicing equipment, had been inoperable and in storage for an unknown amount of time. NE-L was asked to troubleshoot the unit and make a determination on what may be required to make the unit operational. Through the use of general troubleshooting processes and the review of a unit in service at the time of analysis, the unit was found to be repairable but would need the replacement of multiple components.

  18. Comprehensive Analysis of Gene Expression Profiles of Sepsis-Induced Multiorgan Failure Identified Its Valuable Biomarkers.

    Science.gov (United States)

    Wang, Yumei; Yin, Xiaoling; Yang, Fang

    2018-02-01

    Sepsis is an inflammatory-related disease, and severe sepsis would induce multiorgan dysfunction, which is the most common cause of death of patients in noncoronary intensive care units. Progression of novel therapeutic strategies has proven to be of little impact on the mortality of severe sepsis, and unfortunately, its mechanisms still remain poorly understood. In this study, we analyzed gene expression profiles of severe sepsis with failure of lung, kidney, and liver for the identification of potential biomarkers. We first downloaded the gene expression profiles from the Gene Expression Omnibus and performed preprocessing of raw microarray data sets and identification of differential expression genes (DEGs) through the R programming software; then, significantly enriched functions of DEGs in lung, kidney, and liver failure sepsis samples were obtained from the Database for Annotation, Visualization, and Integrated Discovery; finally, protein-protein interaction network was constructed for DEGs based on the STRING database, and network modules were also obtained through the MCODE cluster method. As a result, lung failure sepsis has the highest number of DEGs of 859, whereas the number of DEGs in kidney and liver failure sepsis samples is 178 and 175, respectively. In addition, 17 overlaps were obtained among the three lists of DEGs. Biological processes related to immune and inflammatory response were found to be significantly enriched in DEGs. Network and module analysis identified four gene clusters in which all or most of genes were upregulated. The expression changes of Icam1 and Socs3 were further validated through quantitative PCR analysis. This study should shed light on the development of sepsis and provide potential therapeutic targets for sepsis-induced multiorgan failure.

  19. Costs and returns analysis of improved and alternative cassava ...

    African Journals Online (AJOL)

    The specific objectives of the study was an analysis of the costs and returns of improved and alternative technologies available in the study area by farmers and their level of adoption of the new technologies. Data were collected from a random sample of 250 farmers and 30 extension Staff in the three (3) agricultural zones ...

  20. Is age a factor in the success or failure of remote monitoring in heart failure? Telemonitoring and structured telephone support in elderly heart failure patients.

    Science.gov (United States)

    Inglis, Sally C; Conway, Aaron; Cleland, John Gf; Clark, Robyn A

    2015-06-01

    There are few data regarding the effectiveness of remote monitoring for older people with heart failure. We conducted a post-hoc sub-analysis of a previously published large Cochrane systematic review and meta-analysis of relevant randomized controlled trials to determine whether structured telephone support and telemonitoring were effective in this population. A post hoc sub-analysis of a systematic review and meta-analysis that applied the Cochrane methodology was conducted. Meta-analyses of all-cause mortality, all-cause hospitalizations and heart failure-related hospitalizations were performed for studies where the mean or median age of participants was 70 or more years. The mean or median age of participants was 70 or more years in eight of the 16 (n=2659/5613; 47%) structured telephone support studies and four of the 11 (n=894/2710; 33%) telemonitoring studies. Structured telephone support (RR 0.80; 95% CI=0.63-1.00) and telemonitoring (RR 0.56; 95% CI=0.41-0.76) interventions reduced mortality. Structured telephone support interventions reduced heart failure-related hospitalizations (RR 0.81; 95% CI=0.67-0.99). Despite a systematic bias towards recruitment of individuals younger than the epidemiological average into the randomized controlled trials, older people with heart failure did benefit from structured telephone support and telemonitoring. These post-hoc sub-analysis results were similar to overall effects observed in the main meta-analysis. While further research is required to confirm these observational findings, the evidence at hand indicates that discrimination by age alone may be not be appropriate when inviting participation in a remote monitoring service for heart failure. © The European Society of Cardiology 2014.