WorldWideScience

Sample records for failure analysis alternatives

  1. Failure Analysis

    International Nuclear Information System (INIS)

    Iorio, A.F.; Crespi, J.C.

    1987-01-01

    After ten years of operation at the Atucha I Nuclear Power Station a gear belonging to a pressurized heavy water reactor refuelling machine, failed. The gear box was used to operate the inlet-outlet heavy-water valve of the machine. Visual examination of the gear device showed an absence of lubricant and that several gear teeth were broken at the root. Motion was transmitted with a speed-reducing device with controlled adjustable times in order to produce a proper fitness of the valve closure. The aim of this paper is to discuss the results of the gear failure analysis in order to recommend the proper solution to prevent further failures. (Author)

  2. Isogeometric failure analysis

    NARCIS (Netherlands)

    Verhoosel, C.V.; Scott, M.A.; Borden, M.J.; Borst, de R.; Hughes, T.J.R.; Mueller-Hoeppe, D.; Loehnert, S.; Reese, S.

    2011-01-01

    Isogeometric analysis is a versatile tool for failure analysis. On the one hand, the excellent control over the inter-element continuity conditions enables a natural incorporation of continuum constitutive relations that incorporate higher-order strain gradients, as in gradient plasticity or damage.

  3. Analysis of the Reliability of the "Alternator- Alternator Belt" System

    Directory of Open Access Journals (Sweden)

    Ivan Mavrin

    2012-10-01

    Full Text Available Before starting and also during the exploitation of va1ioussystems, it is vety imp011ant to know how the system and itsparts will behave during operation regarding breakdowns, i.e.failures. It is possible to predict the service behaviour of a systemby determining the functions of reliability, as well as frequencyand intensity of failures.The paper considers the theoretical basics of the functionsof reliability, frequency and intensity of failures for the twomain approaches. One includes 6 equal intetvals and the other13 unequal intetvals for the concrete case taken from practice.The reliability of the "alternator- alternator belt" system installedin the buses, has been analysed, according to the empiricaldata on failures.The empitical data on failures provide empirical functionsof reliability and frequency and intensity of failures, that arepresented in tables and graphically. The first analysis perfO!med by dividing the mean time between failures into 6 equaltime intervals has given the forms of empirical functions of fa ilurefrequency and intensity that approximately cotTespond totypical functions. By dividing the failure phase into 13 unequalintetvals with two failures in each interval, these functions indicateexplicit transitions from early failure inte1val into the randomfailure interval, i.e. into the ageing intetval. Functions thusobtained are more accurate and represent a better solution forthe given case.In order to estimate reliability of these systems with greateraccuracy, a greater number of failures needs to be analysed.

  4. A hybrid of fuzzy FMEA-AHP to determine factors affecting alternator failure causes

    Directory of Open Access Journals (Sweden)

    Reza Kiani Aslani

    2014-09-01

    Full Text Available This paper presents a method to determine factors influencing alternator failure causes. Failure Mode and Effects Analysis (FMEA is one of the first systematic techniques for failure analysis based on three factors including Probability (P, Severity (S and Detection (D. Traditional FMEA method considers equal weights for all three factors, however, in read-world cases; one may wish to consider various weights. The proposed study develops a mathematical model to determine optimal weights based on analytical hierarchy process technique. The implementation of the proposed study has been demonstrated for a read-world case study of alternator failure causes.

  5. The application of Petri nets to failure analysis

    International Nuclear Information System (INIS)

    Liu, T.S.; Chiou, S.B.

    1997-01-01

    Unlike the technique of fault tree analysis that has been widely applied to system failure analysis in reliability engineering, this study presents a Petri net approach to failure analysis. It is essentially a graphical method for describing relations between conditions and events. The use of Petri nets in failure analysis enables to replace logic gate functions in fault trees, efficiently obtain minimal cut sets, and absorb models. It is demonstrated that for failure analysis Petri nets are more efficient than fault trees. In addition, this study devises an alternative; namely, a trapezoidal graph method in order to account for failure scenarios. Examples validate this novel method in dealing with failure analysis

  6. Lower head failure analysis

    International Nuclear Information System (INIS)

    Rempe, J.L.; Thinnes, G.L.; Allison, C.M.; Cronenberg, A.W.

    1991-01-01

    The US Nuclear Regulatory Commission is sponsoring a lower vessel head research program to investigate plausible modes of reactor vessel failure in order to determine (a) which modes have the greatest likelihood of occurrence during a severe accident and (b) the range of core debris and accident conditions that lead to these failures. This paper presents the methodology and preliminary results of an investigation of reactor designs and thermodynamic conditions using analytic closed-form approximations to assess the important governing parameters in non-dimensional form. Preliminary results illustrate the importance of vessel and tube geometrical parameters, material properties, and external boundary conditions on predicting vessel failure. Thermal analyses indicate that steady-state temperature distributions will occur in the vessel within several hours, although the exact time is dependent upon vessel thickness. In-vessel tube failure is governed by the tube-to-debris mass ratio within the lower head, where most penetrations are predicted to fail if surrounded by molten debris. Melt penetration distance is dependent upon the effective flow diameter of the tube. Molten debris is predicted to penetrate through tubes with a larger effective flow diameter, such as a boiling water reactor (BWR) drain nozzle. Ex-vessel tube failure for depressurized reactor vessels is predicted to be more likely for a BWR drain nozzle penetration because of its larger effective diameter. At high pressures (between ∼0.1 MPa and ∼12 MPa) ex-vessel tube rupture becomes a dominant failure mechanism, although tube ejection dominates control rod guide tube failure at lower temperatures. However, tube ejection and tube rupture predictions are sensitive to the vessel and tube radial gap size and material coefficients of thermal expansion

  7. Lessons learned from failure analysis

    International Nuclear Information System (INIS)

    Le May, I.

    2006-01-01

    Failure analysis can be a very useful tool to designers and operators of plant and equipment. It is not simply something that is done for lawyers and insurance companies, but is a tool from which lessons can be learned and by means of which the 'breed' can be improved. In this presentation, several failure investigations that have contributed to understanding will be presented. Specifically, the following cases will be discussed: 1) A fire at a refinery that occurred in a desulphurization unit. 2) The failure of a pipeline before it was even put into operation. 3) Failures in locomotive axles that took place during winter operation. The refinery fire was initially blamed on defective Type 321 seamless stainless steel tubing, but there were conflicting views between 'experts' involved as to the mechanism of failure and the writer was called upon to make an in-depth study. This showed that there were a variety of failure mechanism involved, including high temperature fracture, environmentally-induced cracking and possible manufacturing defects. The unraveling of the failure sequence is described and illustrated. The failure of an oil transmission was discovered when the line was pressure tested some months after it had been installed and before it was put into service. Repairs were made and failure occurred in another place upon the next pressure test being conducted. After several more repairs had been made the line was abandoned and a lawsuit was commenced on the basis that the steel was defective. An investigation disclosed that the material was sensitive to embrittlement and the causes of this were determined. As a result, changes were made in the microstructural control of the product to avoid similar problems in future. A series of axle failures occurred in diesel electric locomotives during winter. An investigation was made to determine the nature of the failures which were not by classical fatigue, nor did they correspond to published illustrations of Cu

  8. [Alternatives to conventional diuretic therapy in heart failure].

    Science.gov (United States)

    Morales-Rull, José Luis; Trullàs, Joan Carles; Formiga, Francesc

    2014-03-01

    Although treatment of acute heart failure is based primarily on the administration of intravenous loop diuretics, evidence supporting this practice is still scarce and there is uncertainty about the optimal dose. The existence of a considerable percentage of patients refractory to diuretic therapy and worsening of renal failure associated with the use of these drugs, with possible implications for medium-term mortality, have prompted the search for more effective and safer alternatives. Extracorporeal purification techniques, such as ultrafiltration, have demonstrated efficacy, although their superiority is unclear, due to the possible adverse effects associated with the procedure. The use of low-dose dopamine is not superior to conventional diuretic therapy after the first few hours of treatment. Moreover, combination with furosemide and hypertonic saline could be a valid alternative for patients with refractory congestion and depressed ejection fraction and serum creatinine ≤ 2.5mg/dL, but further studies are needed before its widespread use. The use of tolvaptan may be an effective alternative in the short-term but its use may be limited by its price. There is still controversy about whether treatment with loop diuretics is associated with higher mortality in all groups of patients with HF exacerbations. These controversies should be clarified by future clinical trials. Copyright © 2014 Elsevier España, S.L. All rights reserved.

  9. Failure rate analysis using GLIMMIX

    International Nuclear Information System (INIS)

    Moore, L.M.; Hemphill, G.M.; Martz, H.F.

    1998-01-01

    This paper illustrates use of a recently developed SAS macro, GLIMMIX, for implementing an analysis suggested by Wolfinger and O'Connell (1993) in modeling failure count data with random as well as fixed factor effects. Interest in this software tool arose from consideration of modernizing the Failure Rate Analysis Code (FRAC), developed at Los Alamos National Laboratory in the early 1980's by Martz, Beckman and McInteer (1982). FRAC is a FORTRAN program developed to analyze Poisson distributed failure count data as a log-linear model, possibly with random as well as fixed effects. These statistical modeling assumptions are a special case of generalized linear mixed models, identified as GLMM in the current statistics literature. In the nearly 15 years since FRAC was developed, there have been considerable advances in computing capability, statistical methodology and available statistical software tools allowing worthwhile consideration of the tasks of modernizing FRAC. In this paper, the approaches to GLMM estimation implemented in GLIMMIX and in FRAC are described and a comparison of results for the two approaches is made with data on catastrophic time-dependent pump failures from a report by Martz and Whiteman (1984). Additionally, statistical and graphical model diagnostics are suggested and illustrated with the GLIMMIX analysis results

  10. Pump failure leads to alternative vertical pump condition monitoring technique

    International Nuclear Information System (INIS)

    DeVilliers, Adriaan; Glandon, Kevin

    2011-01-01

    Condition monitoring and detecting early signs of potential failure mechanisms present particular problems in vertical pumps. Most often, the majority of the pump assembly is not readily accessible for visual or audible inspection or conventional vibration monitoring techniques using accelerometers and/or proximity sensors. The root cause failure analysis of a 2-stage vertical centrifugal service-water pump at a nuclear power generating facility in the USA is presented, highlighting this long standing challenge in condition monitoring of vertical pumps. This paper will summarize the major findings of the root cause analysis (RCA), highlight the limitations of traditional monitoring techniques, and present an expanded application of motor current monitoring as a means to gain insight into the mechanical performance and condition of a pump. The 'real-world' example of failure, monitoring and correlation of the monitoring technique to a detailed pump disassembly inspection is also presented. This paper will explain some of the reasons behind well known design principles requiring natural frequency separation from known forcing frequencies, as well as explore an unexpected submerged brittle fracture failure mechanism, and how such issues may be avoided. (author)

  11. GFR Decline as an Alternative End Point to Kidney Failure in Clinical Trials : A Meta-analysis of Treatment Effects From 37 Randomized Trials

    NARCIS (Netherlands)

    Inker, Lesley A.; Lambers Heerspink, Hiddo J.; Mondal, Hasi; Schmid, Christopher H.; Tighiouart, Hocine; Noubary, Farzad; Coresh, Josef; Greene, Tom; Levey, Andrew S.

    2014-01-01

    Background: There is increased interest in using alternative end points for trials of kidney disease progression. The currently established end points of end-stage renal disease and doubling of serum creatinine level, equivalent to a 57% decline in estimated glomerular filtration rate (eGFR), are

  12. Failure analysis: Status and future trends

    International Nuclear Information System (INIS)

    Anderson, R.E.; Soden, J.M.; Henderson, C.L.

    1995-01-01

    Failure analysis is a critical element in the integrated circuit manufacturing industry. This paper reviews the changing role of failure analysis and describes major techniques employed in the industry today. Several advanced failure analysis techniques that meet the challenges imposed by advancements in integrated circuit technology are described and their applications are discussed. Future trends in failure analysis needed to keep pace with the continuing advancements in integrated circuit technology are anticipated

  13. Dependent failure analysis of NPP data bases

    International Nuclear Information System (INIS)

    Cooper, S.E.; Lofgren, E.V.; Samanta, P.K.; Wong Seemeng

    1993-01-01

    A technical approach for analyzing plant-specific data bases for vulnerabilities to dependent failures has been developed and applied. Since the focus of this work is to aid in the formulation of defenses to dependent failures, rather than to quantify dependent failure probabilities, the approach of this analysis is critically different. For instance, the determination of component failure dependencies has been based upon identical failure mechanisms related to component piecepart failures, rather than failure modes. Also, component failures involving all types of component function loss (e.g., catastrophic, degraded, incipient) are equally important to the predictive purposes of dependent failure defense development. Consequently, dependent component failures are identified with a different dependent failure definition which uses a component failure mechanism categorization scheme in this study. In this context, clusters of component failures which satisfy the revised dependent failure definition are termed common failure mechanism (CFM) events. Motor-operated valves (MOVs) in two nuclear power plant data bases have been analyzed with this approach. The analysis results include seven different failure mechanism categories; identified potential CFM events; an assessment of the risk-significance of the potential CFM events using existing probabilistic risk assessments (PRAs); and postulated defenses to the identified potential CFM events. (orig.)

  14. Signal analysis for failure detection

    International Nuclear Information System (INIS)

    Parpaglione, M.C.; Perez, L.V.; Rubio, D.A.; Czibener, D.; D'Attellis, C.E.; Brudny, P.I.; Ruzzante, J.E.

    1994-01-01

    Several methods for analysis of acoustic emission signals are presented. They are mainly oriented to detection of changes in noisy signals and characterization of higher amplitude discrete pulses or bursts. The aim was to relate changes and events with failure, crack or wear in materials, being the final goal to obtain automatic means of detecting such changes and/or events. Performance evaluation was made using both simulated and laboratory test signals. The methods being presented are the following: 1. Application of the Hopfield Neural Network (NN) model for classifying faults in pipes and detecting wear of a bearing. 2. Application of the Kohonnen and Back Propagation Neural Network model for the same problem. 3. Application of Kalman filtering to determine time occurrence of bursts. 4. Application of a bank of Kalman filters (KF) for failure detection in pipes. 5. Study of amplitude distribution of signals for detecting changes in their shape. 6. Application of the entropy distance to measure differences between signals. (author). 10 refs, 11 figs

  15. Analysis of failures in concrete containments

    International Nuclear Information System (INIS)

    Moreno-Gonzalez, A.

    1989-09-01

    The function of Containment, in an accident event, is to avoid the release of radioactive substances into the surroundings. Containment failure, therefore, is defined as the appearance of leak paths to the external environment. These leak paths may appear either as a result of loss of leaktightness due to degradation of design conditions or structural failure with containment material break. This document is a survey of the state of the art of Containment Failure Analysis. It gives a detailed description of all failure mechanisms, indicating all the possible failure modes and their causes, right from failure resulting from degradation of the materials to structural failure and linear breake failure. Following the description of failure modes, possible failure criteria are identified, with special emphasis on structural failure criteria. These criteria have been obtained not only from existing codes but also from the latest experimental results. A chapter has been dedicated exclusively to failure criteria in conventional structures, for the purpose of evaluating the possibility of application to the case of containment. As the structural behaviour of the containment building is very complex, it is not possible to define failure through a single parameter. It is therefore advisable to define a methodology for containment failure analysis which could be applied to a particular containment. This methodology should include prevailing load and material conditions together with the behaviour of complex conditions such as the liner-anchorage-cracked concrete interaction

  16. Failure analysis of buried tanks

    International Nuclear Information System (INIS)

    Watkins, R.K.

    1994-01-01

    Failure of a buried tank can be hazardous. Failure may be a leak through which product is lost from the tank; but also through which contamination can occur. Failures are epidemic -- because buried tanks are out of sight, but also because designers of buried tanks have adopted analyses developed for pressure tanks. So why do pressure tanks fail when they are buried? Most failures of buried tanks are really soil failures. Soil compresses, or slips, or liquefies. Soil is not only a load, it is a support without which the tank deforms. A high water table adds to the load on the tank. It also reduces the strength of the soil. Based on tests, structural analyses are proposed for empty tanks buried in soils of various quality, with the water table at various levels, and with internal vacuum. Failure may be collapse tank. Such collapse is a sudden, audible inversion of the cylinder when the sidefill soil slips. Failure may be flotation. Failure may be a leak. Most leaks are fractures in the welds in overlap seams at flat spots. Flat spots are caused by a hard bedding or a heavy surface wheel load. Because the tank wall is double thick at the overlap, shearing stress in the weld is increased. Other weld failures occur when an end plate shears down past a cylinder; or when the tank is supported only at its ends like a beam. These, and other, failures can be analyzed with justifiable accuracy using basic principles of mechanics of materials. 10 figs

  17. Failure analysis of boiler tube

    International Nuclear Information System (INIS)

    Mehmood, K.; Siddiqui, A.R.

    2007-01-01

    Boiler tubes are energy conversion components where heat energy is used to convert water into high pressure superheated steam, which is then delivered to a turbine for electric power generation in thermal power plants or to run plant and machineries in a process or manufacturing industry. It was reported that one of the tubes of a fire-tube boiler used in a local industry had leakage after the formation of pits at the external surface of the tube. The inner side of the fire tube was working with hot flue gasses with a pressure of 10 Kg/cm/sup 2/ and temperature 225 degree C. The outside of the tube was surrounded by feed water. The purpose of this study was to determine the cause of pits developed at the external surface of the failed boiler tube sample. In the present work boiler tube samples of steel grade ASTM AI61/ASTM A192 were analyzed using metallographic analysis, chemical analysis, and mechanical testing. It was concluded that the appearance of defects on the boiler tube sample indicates cavitation type corrosion failure. Cavitation damage superficially resembled pitting, but surface appeared considerably rougher and had many closely spaced pits. (author)

  18. The analysis of failure data in the presence of critical and degraded failures

    International Nuclear Information System (INIS)

    Haugen, Knut; Hokstad, Per; Sandtorv, Helge

    1997-01-01

    Reported failures are often classified into severityclasses, e.g., as critical or degraded. The critical failures correspond to loss of function(s) and are those of main concern. The rate of critical failures is usually estimated by the number of observed critical failures divided by the exposure time, thus ignoring the observed degraded failures. In the present paper failure data are analyzed, applying an alternative estimate for the critical failure rate, also taking the number of observed degraded failures into account. The model includes two alternative failure mechanisms, one being of the shock type, immediately leading to a critical failure, another resulting in a gradual deterioration, leading to a degraded failure before the critical failure occurs. Failure data on safety valves from the OREDA (Offshore REliability DAta) data base are analyzed using this model. The estimate for the critical failure rate is obtained and compared with the standard estimate

  19. The interaction of NDE and failure analysis

    International Nuclear Information System (INIS)

    Nichols, R.W.

    1988-01-01

    This paper deals with the use of Non-Destructive Examination (NDE) and failure analysis for the assessment of the structural integrity. It appears that failure analysis enables to know whether NDE is required or not, and can help to direct NDE into the most useful directions by identifying the areas where it is most important that defects are absent. It also appears that failure analysis can help the operator to decide which NDE method is best suited to the component studied and provides detailed specifications for this NDE method. The interaction between failure analysis and NDE is then described. (TEC)

  20. The interaction of NDE and failure analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, R W

    1988-12-31

    This paper deals with the use of Non-Destructive Examination (NDE) and failure analysis for the assessment of the structural integrity. It appears that failure analysis enables to know whether NDE is required or not, and can help to direct NDE into the most useful directions by identifying the areas where it is most important that defects are absent. It also appears that failure analysis can help the operator to decide which NDE method is best suited to the component studied and provides detailed specifications for this NDE method. The interaction between failure analysis and NDE is then described. (TEC).

  1. Data needs for common cause failure analysis

    International Nuclear Information System (INIS)

    Parry, G.W.; Paula, H.M.; Rasmuson, D.; Whitehead, D.

    1990-01-01

    The procedures guide for common cause failure analysis published jointly by USNRC and EPRI requires a detailed historical event analysis. Recent work on the further development of the cause-defense picture of common cause failures introduced in that guide identified the information that is necessary to perform the detailed analysis in an objective manner. This paper summarizes these information needs

  2. Corrosion induced failure analysis of subsea pipelines

    International Nuclear Information System (INIS)

    Yang, Yongsheng; Khan, Faisal; Thodi, Premkumar; Abbassi, Rouzbeh

    2017-01-01

    Pipeline corrosion is one of the main causes of subsea pipeline failure. It is necessary to monitor and analyze pipeline condition to effectively predict likely failure. This paper presents an approach to analyze the observed abnormal events to assess the condition of subsea pipelines. First, it focuses on establishing a systematic corrosion failure model by Bow-Tie (BT) analysis, and subsequently the BT model is mapped into a Bayesian Network (BN) model. The BN model facilitates the modelling of interdependency of identified corrosion causes, as well as the updating of failure probabilities depending on the arrival of new information. Furthermore, an Object-Oriented Bayesian Network (OOBN) has been developed to better structure the network and to provide an efficient updating algorithm. Based on this OOBN model, probability updating and probability adaptation are performed at regular intervals to estimate the failure probabilities due to corrosion and potential consequences. This results in an interval-based condition assessment of subsea pipeline subjected to corrosion. The estimated failure probabilities would help prioritize action to prevent and control failures. Practical application of the developed model is demonstrated using a case study. - Highlights: • A Bow-Tie (BT) based corrosion failure model linking causation with the potential losses. • A novel Object-Oriented Bayesian Network (OOBN) based corrosion failure risk model. • Probability of failure updating and adaptation with respect to time using OOBN model. • Application of the proposed model to develop and test strategies to minimize failure risk.

  3. Common cause failure analysis methodology for complex systems

    International Nuclear Information System (INIS)

    Wagner, D.P.; Cate, C.L.; Fussell, J.B.

    1977-01-01

    Common cause failure analysis, also called common mode failure analysis, is an integral part of a complex system reliability analysis. This paper extends existing methods of computer aided common cause failure analysis by allowing analysis of the complex systems often encountered in practice. The methods presented here aid in identifying potential common cause failures and also address quantitative common cause failure analysis

  4. Preliminary failure mode and effect analysis

    International Nuclear Information System (INIS)

    Addison, J.V.

    1972-01-01

    A preliminary Failure Mode and Effect Analysis (FMEA) was made on the overall 5 Kwe system. A general discussion of the system and failure effect is given in addition to the tabulated FMEA and a primary block diagram of the system. (U.S.)

  5. Light water reactor lower head failure analysis

    International Nuclear Information System (INIS)

    Rempe, J.L.; Chavez, S.A.; Thinnes, G.L.

    1993-10-01

    This document presents the results from a US Nuclear Regulatory Commission-sponsored research program to investigate the mode and timing of vessel lower head failure. Major objectives of the analysis were to identify plausible failure mechanisms and to develop a method for determining which failure mode would occur first in different light water reactor designs and accident conditions. Failure mechanisms, such as tube ejection, tube rupture, global vessel failure, and localized vessel creep rupture, were studied. Newly developed models and existing models were applied to predict which failure mechanism would occur first in various severe accident scenarios. So that a broader range of conditions could be considered simultaneously, calculations relied heavily on models with closed-form or simplified numerical solution techniques. Finite element techniques-were employed for analytical model verification and examining more detailed phenomena. High-temperature creep and tensile data were obtained for predicting vessel and penetration structural response

  6. Light water reactor lower head failure analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rempe, J.L.; Chavez, S.A.; Thinnes, G.L. [EG and G Idaho, Inc., Idaho Falls, ID (United States)] [and others

    1993-10-01

    This document presents the results from a US Nuclear Regulatory Commission-sponsored research program to investigate the mode and timing of vessel lower head failure. Major objectives of the analysis were to identify plausible failure mechanisms and to develop a method for determining which failure mode would occur first in different light water reactor designs and accident conditions. Failure mechanisms, such as tube ejection, tube rupture, global vessel failure, and localized vessel creep rupture, were studied. Newly developed models and existing models were applied to predict which failure mechanism would occur first in various severe accident scenarios. So that a broader range of conditions could be considered simultaneously, calculations relied heavily on models with closed-form or simplified numerical solution techniques. Finite element techniques-were employed for analytical model verification and examining more detailed phenomena. High-temperature creep and tensile data were obtained for predicting vessel and penetration structural response.

  7. Failure and damage analysis of advanced materials

    CERN Document Server

    Sadowski, Tomasz

    2015-01-01

    The papers in this volume present basic concepts and new developments in failure and damage analysis with focus on advanced materials such as composites, laminates, sandwiches and foams, and also new metallic materials. Starting from some mathematical foundations (limit surfaces, symmetry considerations, invariants) new experimental results and their analysis are shown. Finally, new concepts for failure prediction and analysis will be introduced and discussed as well as new methods of failure and damage prediction for advanced metallic and non-metallic materials. Based on experimental results the traditional methods will be revised.

  8. Failure analysis of superconducting bearings

    Energy Technology Data Exchange (ETDEWEB)

    Rastogi, Amit; Campbell, A M; Coombs, T A [Department of Engineering, University of Cambridge, Cambridge CB2 1PZ (United Kingdom)

    2006-06-01

    The dynamics of superconductor bearings in a cryogenic failure scenario have been analyzed. As the superconductor warms up, the rotor goes through multiple resonance frequencies, begins to slow down and finally touches down when the superconductor goes through its transition temperature. The bearing can be modelled as a system of springs with axial, radial and cross stiffness. These springs go through various resonant modes as the temperature of the superconductor begins to rise. We have presented possible explanations for such behavio0008.

  9. FEAT - FAILURE ENVIRONMENT ANALYSIS TOOL (UNIX VERSION)

    Science.gov (United States)

    Pack, G.

    1994-01-01

    The Failure Environment Analysis Tool, FEAT, enables people to see and better understand the effects of failures in a system. FEAT uses digraph models to determine what will happen to a system if a set of failure events occurs and to identify the possible causes of a selected set of failures. Failures can be user-selected from either engineering schematic or digraph model graphics, and the effects or potential causes of the failures will be color highlighted on the same schematic or model graphic. As a design tool, FEAT helps design reviewers understand exactly what redundancies have been built into a system and where weaknesses need to be protected or designed out. A properly developed digraph will reflect how a system functionally degrades as failures accumulate. FEAT is also useful in operations, where it can help identify causes of failures after they occur. Finally, FEAT is valuable both in conceptual development and as a training aid, since digraphs can identify weaknesses in scenarios as well as hardware. Digraphs models for use with FEAT are generally built with the Digraph Editor, a Macintosh-based application which is distributed with FEAT. The Digraph Editor was developed specifically with the needs of FEAT users in mind and offers several time-saving features. It includes an icon toolbox of components required in a digraph model and a menu of functions for manipulating these components. It also offers FEAT users a convenient way to attach a formatted textual description to each digraph node. FEAT needs these node descriptions in order to recognize nodes and propagate failures within the digraph. FEAT users store their node descriptions in modelling tables using any word processing or spreadsheet package capable of saving data to an ASCII text file. From within the Digraph Editor they can then interactively attach a properly formatted textual description to each node in a digraph. Once descriptions are attached to them, a selected set of nodes can be

  10. Uncertainty analysis with statistically correlated failure data

    International Nuclear Information System (INIS)

    Modarres, M.; Dezfuli, H.; Roush, M.L.

    1987-01-01

    Likelihood of occurrence of the top event of a fault tree or sequences of an event tree is estimated from the failure probability of components that constitute the events of the fault/event tree. Component failure probabilities are subject to statistical uncertainties. In addition, there are cases where the failure data are statistically correlated. At present most fault tree calculations are based on uncorrelated component failure data. This chapter describes a methodology for assessing the probability intervals for the top event failure probability of fault trees or frequency of occurrence of event tree sequences when event failure data are statistically correlated. To estimate mean and variance of the top event, a second-order system moment method is presented through Taylor series expansion, which provides an alternative to the normally used Monte Carlo method. For cases where component failure probabilities are statistically correlated, the Taylor expansion terms are treated properly. Moment matching technique is used to obtain the probability distribution function of the top event through fitting the Johnson Ssub(B) distribution. The computer program, CORRELATE, was developed to perform the calculations necessary for the implementation of the method developed. (author)

  11. Two-Sample Statistics for Testing the Equality of Survival Functions Against Improper Semi-parametric Accelerated Failure Time Alternatives: An Application to the Analysis of a Breast Cancer Clinical Trial

    Science.gov (United States)

    BROËT, PHILIPPE; TSODIKOV, ALEXANDER; DE RYCKE, YANN; MOREAU, THIERRY

    2010-01-01

    This paper presents two-sample statistics suited for testing equality of survival functions against improper semi-parametric accelerated failure time alternatives. These tests are designed for comparing either the short- or the long-term effect of a prognostic factor, or both. These statistics are obtained as partial likelihood score statistics from a time-dependent Cox model. As a consequence, the proposed tests can be very easily implemented using widely available software. A breast cancer clinical trial is presented as an example to demonstrate the utility of the proposed tests. PMID:15293627

  12. Two-sample statistics for testing the equality of survival functions against improper semi-parametric accelerated failure time alternatives: an application to the analysis of a breast cancer clinical trial.

    Science.gov (United States)

    Broët, Philippe; Tsodikov, Alexander; De Rycke, Yann; Moreau, Thierry

    2004-06-01

    This paper presents two-sample statistics suited for testing equality of survival functions against improper semi-parametric accelerated failure time alternatives. These tests are designed for comparing either the short- or the long-term effect of a prognostic factor, or both. These statistics are obtained as partial likelihood score statistics from a time-dependent Cox model. As a consequence, the proposed tests can be very easily implemented using widely available software. A breast cancer clinical trial is presented as an example to demonstrate the utility of the proposed tests.

  13. Failure analysis for WWER-fuel elements

    International Nuclear Information System (INIS)

    Boehmert, J.; Huettig, W.

    1986-10-01

    If the fuel defect rate proves significantly high, failure analysis has to be performed in order to trace down the defect causes, to implement corrective actions, and to take measures of failure prevention. Such analyses are work-consuming and very skill-demanding technical tasks, which require examination methods and devices excellently developed and a rich stock of experience in evaluation of features of damage. For that this work specifies the procedure of failure analyses in detail. Moreover prerequisites and experimental equipment for the investigation of WWER-type fuel elements are described. (author)

  14. Failure analysis of medical Linac (LMR-15)

    International Nuclear Information System (INIS)

    Kato, Kiyotaka; Nakamura, Katsumi; Ogihara, Kiyoshi; Takahashi, Katsuhiko; Sato, Kazuhisa.

    1994-01-01

    In August 1978, Linac (LMR-15, Z4 Toshiba) was installed at our hospital and in use for 12 years up to September 1990. Recently, we completed working and failure records on this apparatus during the 12-year period, for the purpose of their analysis in the basis of reliability engineering. The results revealed operation rate of 97.85% on the average, mean time between failures (MTBF) from 40-70 hours about the beginning of its working to 280 hours for 2 years before renewal and practically satisfactory values of mean life of parts of life such as magnetron, thyratron and electron gun; the above respective values proved to be above those reported by other literature. On the other hand, we classified, by occurring system, the contents of failures in the apparatus and determined the number of failures and the temperature and humidities in case of failures to examine the correlation between the working environment and failure. The results indicated a change in humidity to gain control of failures in the dosimetric system, especially the monitoring chamber and we could back up the strength of the above correlation from a coefficient of correlation value of 0.84. (author)

  15. Failure probability analysis of optical grid

    Science.gov (United States)

    Zhong, Yaoquan; Guo, Wei; Sun, Weiqiang; Jin, Yaohui; Hu, Weisheng

    2008-11-01

    Optical grid, the integrated computing environment based on optical network, is expected to be an efficient infrastructure to support advanced data-intensive grid applications. In optical grid, the faults of both computational and network resources are inevitable due to the large scale and high complexity of the system. With the optical network based distributed computing systems extensive applied in the processing of data, the requirement of the application failure probability have been an important indicator of the quality of application and an important aspect the operators consider. This paper will present a task-based analysis method of the application failure probability in optical grid. Then the failure probability of the entire application can be quantified, and the performance of reducing application failure probability in different backup strategies can be compared, so that the different requirements of different clients can be satisfied according to the application failure probability respectively. In optical grid, when the application based DAG (directed acyclic graph) is executed in different backup strategies, the application failure probability and the application complete time is different. This paper will propose new multi-objective differentiated services algorithm (MDSA). New application scheduling algorithm can guarantee the requirement of the failure probability and improve the network resource utilization, realize a compromise between the network operator and the application submission. Then differentiated services can be achieved in optical grid.

  16. Failure analysis on a ruptured petrochemical pipe

    Energy Technology Data Exchange (ETDEWEB)

    Harun, Mohd [Industrial Technology Division, Malaysian Nuclear Agency, Ministry of Science, Technology and Innovation Malaysia, Bangi, Kajang, Selangor (Malaysia); Shamsudin, Shaiful Rizam; Kamardin, A. [Univ. Malaysia Perlis, Jejawi, Arau (Malaysia). School of Materials Engineering

    2010-08-15

    The failure took place on a welded elbow pipe which exhibited a catastrophic transverse rupture. The failure was located on the welding HAZ region, parallel to the welding path. Branching cracks were detected at the edge of the rupture area. Deposits of corrosion products were also spotted. The optical microscope analysis showed the presence of transgranular failures which were related to the stress corrosion cracking (SCC) and were predominantly caused by the welding residual stress. The significant difference in hardness between the welded area and the pipe confirmed the findings. Moreover, the failure was also caused by the low Mo content in the stainless steel pipe which was detected by means of spark emission spectrometer. (orig.)

  17. Failure Analysis Of Industrial Boiler Pipe

    International Nuclear Information System (INIS)

    Natsir, Muhammad; Soedardjo, B.; Arhatari, Dewi; Andryansyah; Haryanto, Mudi; Triyadi, Ari

    2000-01-01

    Failure analysis of industrial boiler pipe has been done. The tested pipe material is carbon steel SA 178 Grade A refer to specification data which taken from Fertilizer Company. Steps in analysis were ; collection of background operation and material specification, visual inspection, dye penetrant test, radiography test, chemical composition test, hardness test, metallography test. From the test and analysis result, it is shown that the pipe failure caused by erosion and welding was shown porosity and incomplete penetration. The main cause of failure pipe is erosion due to cavitation, which decreases the pipe thickness. Break in pipe thickness can be done due to decreasing in pipe thickness. To anticipate this problem, the ppe will be replaced with new pipe

  18. Failure analysis of real-time systems

    International Nuclear Information System (INIS)

    Jalashgar, A.; Stoelen, K.

    1998-01-01

    This paper highlights essential aspects of real-time software systems that are strongly related to the failures and their course of propagation. The significant influence of means-oriented and goal-oriented system views in the description, understanding and analysing of those aspects is elaborated. The importance of performing failure analysis prior to reliability analysis of real-time systems is equally addressed. Problems of software reliability growth models taking the properties of such systems into account are discussed. Finally, the paper presents a preliminary study of a goal-oriented approach to model the static and dynamic characteristics of real-time systems, so that the corresponding analysis can be based on a more descriptive and informative picture of failures, their effects and the possibility of their occurrence. (author)

  19. Complementary and Alternative Medicine Methods in Chronic Renal Failure

    Directory of Open Access Journals (Sweden)

    Zeynep Erdogan

    2014-08-01

    Full Text Available Despite its long history, use of complementary and alternative medicine (CAM methods has increased dramatically only after 1990s. Up to 57% of patients with chronic renal use CAM methods.These patienys use CAM methods to overcome hypertension, fatigue, constipation, leg edema, pain, cramps, anxiety, depression, sleep disorders, to cope with symptoms such as itching, to stop the progression of kidney disease and to improve their quality of life. Methods used are herbal products and food supplements, acupressure, acupuncture, homeopathy, exercise, aromatherapy, yoga and reflexology. Nephrotoxic effect of several CAM therapies used in patients with renal impairment could disturb hemodynamics by reducing the glomerular filtration rate. For this reason, health care providers should question patients about used of CAM, methods. Communication with patients should be clear and should not act judgmental. Health care personnel should learn more about CAM methods in order to avoid unwanted situations that could develop after the application of CAM methods. Patients should be informed correctly and scientifically about these methods to avoid harmful and unnecessary uses. [Archives Medical Review Journal 2014; 23(4.000: 770-786

  20. A streamlined failure mode and effects analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Eric C., E-mail: eford@uw.edu; Smith, Koren; Terezakis, Stephanie; Croog, Victoria; Gollamudi, Smitha; Gage, Irene; Keck, Jordie; DeWeese, Theodore; Sibley, Greg [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD 21287 (United States)

    2014-06-15

    Purpose: Explore the feasibility and impact of a streamlined failure mode and effects analysis (FMEA) using a structured process that is designed to minimize staff effort. Methods: FMEA for the external beam process was conducted at an affiliate radiation oncology center that treats approximately 60 patients per day. A structured FMEA process was developed which included clearly defined roles and goals for each phase. A core group of seven people was identified and a facilitator was chosen to lead the effort. Failure modes were identified and scored according to the FMEA formalism. A risk priority number,RPN, was calculated and used to rank failure modes. Failure modes with RPN > 150 received safety improvement interventions. Staff effort was carefully tracked throughout the project. Results: Fifty-two failure modes were identified, 22 collected during meetings, and 30 from take-home worksheets. The four top-ranked failure modes were: delay in film check, missing pacemaker protocol/consent, critical structures not contoured, and pregnant patient simulated without the team's knowledge of the pregnancy. These four failure modes hadRPN > 150 and received safety interventions. The FMEA was completed in one month in four 1-h meetings. A total of 55 staff hours were required and, additionally, 20 h by the facilitator. Conclusions: Streamlined FMEA provides a means of accomplishing a relatively large-scale analysis with modest effort. One potential value of FMEA is that it potentially provides a means of measuring the impact of quality improvement efforts through a reduction in risk scores. Future study of this possibility is needed.

  1. A streamlined failure mode and effects analysis

    International Nuclear Information System (INIS)

    Ford, Eric C.; Smith, Koren; Terezakis, Stephanie; Croog, Victoria; Gollamudi, Smitha; Gage, Irene; Keck, Jordie; DeWeese, Theodore; Sibley, Greg

    2014-01-01

    Purpose: Explore the feasibility and impact of a streamlined failure mode and effects analysis (FMEA) using a structured process that is designed to minimize staff effort. Methods: FMEA for the external beam process was conducted at an affiliate radiation oncology center that treats approximately 60 patients per day. A structured FMEA process was developed which included clearly defined roles and goals for each phase. A core group of seven people was identified and a facilitator was chosen to lead the effort. Failure modes were identified and scored according to the FMEA formalism. A risk priority number,RPN, was calculated and used to rank failure modes. Failure modes with RPN > 150 received safety improvement interventions. Staff effort was carefully tracked throughout the project. Results: Fifty-two failure modes were identified, 22 collected during meetings, and 30 from take-home worksheets. The four top-ranked failure modes were: delay in film check, missing pacemaker protocol/consent, critical structures not contoured, and pregnant patient simulated without the team's knowledge of the pregnancy. These four failure modes hadRPN > 150 and received safety interventions. The FMEA was completed in one month in four 1-h meetings. A total of 55 staff hours were required and, additionally, 20 h by the facilitator. Conclusions: Streamlined FMEA provides a means of accomplishing a relatively large-scale analysis with modest effort. One potential value of FMEA is that it potentially provides a means of measuring the impact of quality improvement efforts through a reduction in risk scores. Future study of this possibility is needed

  2. A streamlined failure mode and effects analysis.

    Science.gov (United States)

    Ford, Eric C; Smith, Koren; Terezakis, Stephanie; Croog, Victoria; Gollamudi, Smitha; Gage, Irene; Keck, Jordie; DeWeese, Theodore; Sibley, Greg

    2014-06-01

    Explore the feasibility and impact of a streamlined failure mode and effects analysis (FMEA) using a structured process that is designed to minimize staff effort. FMEA for the external beam process was conducted at an affiliate radiation oncology center that treats approximately 60 patients per day. A structured FMEA process was developed which included clearly defined roles and goals for each phase. A core group of seven people was identified and a facilitator was chosen to lead the effort. Failure modes were identified and scored according to the FMEA formalism. A risk priority number,RPN, was calculated and used to rank failure modes. Failure modes with RPN > 150 received safety improvement interventions. Staff effort was carefully tracked throughout the project. Fifty-two failure modes were identified, 22 collected during meetings, and 30 from take-home worksheets. The four top-ranked failure modes were: delay in film check, missing pacemaker protocol/consent, critical structures not contoured, and pregnant patient simulated without the team's knowledge of the pregnancy. These four failure modes had RPN > 150 and received safety interventions. The FMEA was completed in one month in four 1-h meetings. A total of 55 staff hours were required and, additionally, 20 h by the facilitator. Streamlined FMEA provides a means of accomplishing a relatively large-scale analysis with modest effort. One potential value of FMEA is that it potentially provides a means of measuring the impact of quality improvement efforts through a reduction in risk scores. Future study of this possibility is needed.

  3. Failure diagnosis and fault tree analysis

    International Nuclear Information System (INIS)

    Weber, G.

    1982-07-01

    In this report a methodology of failure diagnosis for complex systems is presented. Systems which can be represented by fault trees are considered. This methodology is based on switching algebra, failure diagnosis of digital circuits and fault tree analysis. Relations between these disciplines are shown. These relations are due to Boolean algebra and Boolean functions used throughout. It will be shown on this basis that techniques of failure diagnosis and fault tree analysis are useful to solve the following problems: 1. describe an efficient search of all failed components if the system is failed. 2. Describe an efficient search of all states which are close to a system failure if the system is still operating. The first technique will improve the availability, the second the reliability and safety. For these problems, the relation to methods of failure diagnosis for combinational circuits is required. Moreover, the techniques are demonstrated for a number of systems which can be represented by fault trees. (orig./RW) [de

  4. Corrosion failure analysis as related to prevention of corrosion failures

    International Nuclear Information System (INIS)

    Suss, H.

    1977-10-01

    The factors and conditions which have contributed to many of the corrosion related service failures are discussed based on a review of actual case histories. The anti-corrosion devices which developed as a result of these failure analyses are reviewed, and the method which must be adopted and used to take advantage of the available corrosion prevention techniques is discussed

  5. Micromechanics Based Failure Analysis of Heterogeneous Materials

    Science.gov (United States)

    Sertse, Hamsasew M.

    are performed for both brittle failure/high cycle fatigue (HCF) for negligible plastic strain and ductile failure/low cycle fatigue (LCF) for large plastic strain. The proposed approach is incorporated in SwiftComp and used to predict the initial failure envelope, stress-strain curve for various loading conditions, and fatigue life of heterogeneous materials. The combined effects of strain hardening and progressive fatigue damage on the effective properties of heterogeneous materials are also studied. The capability of the current approach is validated using several representative examples of heterogeneous materials including binary composites, continuous fiber-reinforced composites, particle-reinforced composites, discontinuous fiber-reinforced composites, and woven composites. The predictions of MSG are also compared with the predictions obtained using various micromechanics approaches such as Generalized Methods of Cells (GMC), Mori-Tanaka (MT), and Double Inclusions (DI) and Representative Volume Element (RVE) Analysis (called as 3-dimensional finite element analysis (3D FEA) in this document). This study demonstrates that a micromechanics based failure analysis has a great potential to rigorously and more accurately analyze initiation and progression of damage in heterogeneous materials. However, this approach requires material properties specific to damage analysis, which are needed to be independently calibrated for each constituent.

  6. The Statistical Analysis of Failure Time Data

    CERN Document Server

    Kalbfleisch, John D

    2011-01-01

    Contains additional discussion and examples on left truncation as well as material on more general censoring and truncation patterns.Introduces the martingale and counting process formulation swil lbe in a new chapter.Develops multivariate failure time data in a separate chapter and extends the material on Markov and semi Markov formulations.Presents new examples and applications of data analysis.

  7. Sequentially linear analysis for simulating brittle failure

    NARCIS (Netherlands)

    van de Graaf, A.V.

    2017-01-01

    The numerical simulation of brittle failure at structural level with nonlinear finite
    element analysis (NLFEA) remains a challenge due to robustness issues. We attribute these problems to the dimensions of real-world structures combined with softening behavior and negative tangent stiffness at

  8. Failure analysis on a chemical waste pipe

    International Nuclear Information System (INIS)

    Ambler, J.R.

    1985-01-01

    A failure analysis of a chemical waste pipe illustrates how nuclear technology can spin off metallurgical consultant services. The pipe, made of zirconium alloy (Zr-2.5 wt percent Nb, UNS 60705), had cracked in several places, all at butt welds. A combination of fractography and metallography indicated delayed hydride cracking

  9. Failure analysis of fractured dental zirconia implants.

    Science.gov (United States)

    Gahlert, M; Burtscher, D; Grunert, I; Kniha, H; Steinhauser, E

    2012-03-01

    The purpose of the present study was the macroscopic and microscopic failure analysis of fractured zirconia dental implants. Thirteen fractured one-piece zirconia implants (Z-Look3) out of 170 inserted implants with an average in situ period of 36.75±5.34 months (range from 20 to 56 months, median 38 months) were prepared for macroscopic and microscopic (scanning electron microscopy [SEM]) failure analysis. These 170 implants were inserted in 79 patients. The patient histories were compared with fracture incidences to identify the reasons for the failure of the implants. Twelve of these fractured implants had a diameter of 3.25 mm and one implant had a diameter of 4 mm. All fractured implants were located in the anterior side of the maxilla and mandibula. The patient with the fracture of the 4 mm diameter implant was adversely affected by strong bruxism. By failure analysis (SEM), it could be demonstrated that in all cases, mechanical overloading caused the fracture of the implants. Inhomogeneities and internal defects of the ceramic material could be excluded, but notches and scratches due to sandblasting of the surface led to local stress concentrations that led to the mentioned mechanical overloading by bending loads. The present study identified a fracture rate of nearly 10% within a follow-up period of 36.75 months after prosthetic loading. Ninety-two per cent of the fractured implants were so-called diameter reduced implants (diameter 3.25 mm). These diameter reduced implants cannot be recommended for further clinical use. Improvement of the ceramic material and modification of the implant geometry has to be carried out to reduce the failure rate of small-sized ceramic implants. Nevertheless, due to the lack of appropriate laboratory testing, only clinical studies will demonstrate clearly whether and how far the failure rate can be reduced. © 2011 John Wiley & Sons A/S.

  10. Dissimilar weld failure analysis and development program

    International Nuclear Information System (INIS)

    Holko, K.H.; Li, C.C.

    1982-01-01

    The problem of dissimilar weld cracking and failure is examined. This problem occurs in boiler superheater and reheater sections as well as main steam piping. Typically, a dissimilar weld joins low-alloy steel tubing such as Fe-2-1/4 Cr-1Mo to stainless steel tubing such as 321H and 304H. Cracking and failure occur in the low-alloy steel heat-affected zone very close to the weld interface. The 309 stainless steel filler previously used has been replaced with nickel-base fillers such as Inconel 132, Inconel 182, and Incoweld A. This change has extended the time to cracking and failure, but has not solved the problem. To illustrate and define the problem, the metallography of damaged and failed dissimilar welds is described. Results of mechanical tests of dissimilar welds removed from service are presented, and factors believed to be influential in causing damage and failure are discussed. In addition, the importance of dissimilar weldment service history is demonstrated, and the Dissimilar Weld Failure Analysis and Development Program is described. 15 figures

  11. Combinatorial analysis of systems with competing failures subject to failure isolation and propagation effects

    International Nuclear Information System (INIS)

    Xing Liudong; Levitin, Gregory

    2010-01-01

    This paper considers the reliability analysis of binary-state systems, subject to propagated failures with global effect, and failure isolation phenomena. Propagated failures with global effect are common-cause failures originated from a component of a system/subsystem causing the failure of the entire system/subsystem. Failure isolation occurs when the failure of one component (referred to as a trigger component) causes other components (referred to as dependent components) within the same system to become isolated from the system. On the one hand, failure isolation makes the isolated dependent components unusable; on the other hand, it prevents the propagation of failures originated from those dependent components. However, the failure isolation effect does not exist if failures originated in the dependent components already propagate globally before the trigger component fails. In other words, there exists a competition in the time domain between the failure of the trigger component that causes failure isolation and propagated failures originated from the dependent components. This paper presents a combinatorial method for the reliability analysis of systems subject to such competing propagated failures and failure isolation effect. Based on the total probability theorem, the proposed method is analytical, exact, and has no limitation on the type of time-to-failure distributions for the system components. An illustrative example is given to demonstrate the basics and advantages of the proposed method.

  12. Failure analysis of a Francis turbine runner

    Energy Technology Data Exchange (ETDEWEB)

    Frunzaverde, D; Campian, V [Research Center in Hydraulics, Automation and Heat Transfer, ' Eftimie Murgu' University of Resita P-ta Traian Vuia 1-4, RO-320085, Resita (Romania); Muntean, S [Centre of Advanced Research in Engineering Sciences, Romanian Academy - Timisoara Branch Bv. Mihai Viteazu 24, RO-300223, Timisoara (Romania); Marginean, G [University of Applied Sciences Gelsenkirchen, Neidenburger Str. 10, 45877 Gelsenkirchen (Germany); Marsavina, L [Department of Strength, ' Politehnica' University of Timisoara, Bv. Mihai Viteazu 1, RO-300222, Timisoara (Romania); Terzi, R; Serban, V, E-mail: gabriela.marginean@fh-gelsenkirchen.d, E-mail: d.frunzaverde@uem.r [Ramnicu Valcea Subsidiary, S.C. Hidroelectrica S.A., Str. Decebal 11, RO-240255, Ramnicu Valcea (Romania)

    2010-08-15

    The variable demand on the energy market requires great flexibility in operating hydraulic turbines. Therefore, turbines are frequently operated over an extended range of regimes. Francis turbines operating at partial load present pressure fluctuations due to the vortex rope in the draft tube cone. This phenomenon generates strong vibrations and noise that may produce failures on the mechanical elements of the machine. This paper presents the failure analysis of a broken Francis turbine runner blade. The failure appeared some months after the welding repair work realized in situ on fatigue cracks initiated near to the trailing edge at the junction with the crown, where stress concentration occurs. In order to determine the causes that led to the fracture of the runner blade, the metallographic investigations on a sample obtained from the blade is carried out. The metallographic investigations included macroscopic and microscopic examinations, both performed with light and scanning electron microscopy, as well as EDX - analyses. These investigations led to the conclusion, that the cracking of the blade was caused by fatigue, initiated by the surface unevenness of the welding seam. The failure was accelerated by the hydrogen embrittlement of the filling material, which appeared as a consequence of improper welding conditions. In addition to the metallographic investigations, numerical computations with finite element analysis are performed in order to evaluate the deformation and stress distribution on blade.

  13. Failure analysis of a Francis turbine runner

    International Nuclear Information System (INIS)

    Frunzaverde, D; Campian, V; Muntean, S; Marginean, G; Marsavina, L; Terzi, R; Serban, V

    2010-01-01

    The variable demand on the energy market requires great flexibility in operating hydraulic turbines. Therefore, turbines are frequently operated over an extended range of regimes. Francis turbines operating at partial load present pressure fluctuations due to the vortex rope in the draft tube cone. This phenomenon generates strong vibrations and noise that may produce failures on the mechanical elements of the machine. This paper presents the failure analysis of a broken Francis turbine runner blade. The failure appeared some months after the welding repair work realized in situ on fatigue cracks initiated near to the trailing edge at the junction with the crown, where stress concentration occurs. In order to determine the causes that led to the fracture of the runner blade, the metallographic investigations on a sample obtained from the blade is carried out. The metallographic investigations included macroscopic and microscopic examinations, both performed with light and scanning electron microscopy, as well as EDX - analyses. These investigations led to the conclusion, that the cracking of the blade was caused by fatigue, initiated by the surface unevenness of the welding seam. The failure was accelerated by the hydrogen embrittlement of the filling material, which appeared as a consequence of improper welding conditions. In addition to the metallographic investigations, numerical computations with finite element analysis are performed in order to evaluate the deformation and stress distribution on blade.

  14. Importance analysis for the systems with common cause failures

    International Nuclear Information System (INIS)

    Pan Zhijie; Nonaka, Yasuo

    1995-01-01

    This paper extends the importance analysis technique to the research field of common cause failures to evaluate the structure importance, probability importance, and β-importance for the systems with common cause failures. These importance measures would help reliability analysts to limit the common cause failure analysis framework and find efficient defence strategies against common cause failures

  15. 14 CFR 417.224 - Probability of failure analysis.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Probability of failure analysis. 417.224..., DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.224 Probability of failure..., must account for launch vehicle failure probability in a consistent manner. A launch vehicle failure...

  16. Alternative jet fuel scenario analysis report

    Science.gov (United States)

    2012-11-30

    This analysis presents a bottom up projection of the potential production of alternative aviation (jet) fuels in North America (United States, Canada, and Mexico) and the European Union in the next decade. The analysis is based on available pla...

  17. ALTERNATIVE FUNDING THECNIQUES. COMPARATIVE ANALYSIS

    Directory of Open Access Journals (Sweden)

    Elena Mihaela ILIESCU

    2018-05-01

    Full Text Available The main objective of this paper isto highlight the dynamics, diversity and especially the availability of an alternative financial market, developed outside of the traditional banking system, on online trading platforms, a market that can constitute an efficient solution, at the expense of entities open to fast funding, wide raging, with limited guaranties and minimum procedural and legislative formalities. For this purpose, we shall analyze briefly the main alternative financing methods, both empirically and qualitatively, in terms of similarities and differences between the two of them, inclusively of the amount that can be employed in this process through different methods. The current paper aims to be a practical guide meant to support those facing difficulties in obtaining financing for start-ups, implementing or/and developing business and entrepreneurship initiatives, and also a guide for those who want to be informed regarding the latest funding techniques. Another aspect to be considered is the legal framework in which this process takes place, because the regulation for these levers remains constantly behind the development process of new methods. The classic financiers should also consider reviewing the lending policy as the amounts attracted and accessed through these alternative methods increase exponentially from one year to the other, the volume of sums involved surpassing each time the forecasts, making thus possible the transformations of these paradigms from the financial sector into preponderant financial funding’s.

  18. Recognition and Analysis of Corrosion Failure Mechanisms

    Directory of Open Access Journals (Sweden)

    Steven Suess

    2006-02-01

    Full Text Available Corrosion has a vast impact on the global and domestic economy, and currently incurs losses of nearly $300 billion annually to the U.S. economy alone. Because of the huge impact of corrosion, it is imperative to have a systematic approach to recognizing and mitigating corrosion problems as soon as possible after they become apparent. A proper failure analysis includes collection of pertinent background data and service history, followed by visual inspection, photographic documentation, material evaluation, data review and conclusion procurement. In analyzing corrosion failures, one must recognize the wide range of common corrosion mechanisms. The features of any corrosion failure give strong clues as to the most likely cause of the corrosion. This article details a proven approach to properly determining the root cause of a failure, and includes pictographic illustrations of the most common corrosion mechanisms, including general corrosion, pitting, galvanic corrosion, dealloying, crevice corrosion, microbiologically-influenced corrosion (MIC, corrosion fatigue, stress corrosion cracking (SCC, intergranular corrosion, fretting, erosion corrosion and hydrogen damage.

  19. Recognition and Analysis of Corrosion Failure Mechanisms

    OpenAIRE

    Steven Suess

    2006-01-01

    Corrosion has a vast impact on the global and domestic economy, and currently incurs losses of nearly $300 billion annually to the U.S. economy alone. Because of the huge impact of corrosion, it is imperative to have a systematic approach to recognizing and mitigating corrosion problems as soon as possible after they become apparent. A proper failure analysis includes collection of pertinent background data and service history, followed by visual inspection, photographic documentation, materi...

  20. Progressive Damage and Failure Analysis of Composite Laminates

    Science.gov (United States)

    Joseph, Ashith P. K.

    Composite materials are widely used in various industries for making structural parts due to higher strength to weight ratio, better fatigue life, corrosion resistance and material property tailorability. To fully exploit the capability of composites, it is required to know the load carrying capacity of the parts made of them. Unlike metals, composites are orthotropic in nature and fails in a complex manner under various loading conditions which makes it a hard problem to analyze. Lack of reliable and efficient failure analysis tools for composites have led industries to rely more on coupon and component level testing to estimate the design space. Due to the complex failure mechanisms, composite materials require a very large number of coupon level tests to fully characterize the behavior. This makes the entire testing process very time consuming and costly. The alternative is to use virtual testing tools which can predict the complex failure mechanisms accurately. This reduces the cost only to it's associated computational expenses making significant savings. Some of the most desired features in a virtual testing tool are - (1) Accurate representation of failure mechanism: Failure progression predicted by the virtual tool must be same as those observed in experiments. A tool has to be assessed based on the mechanisms it can capture. (2) Computational efficiency: The greatest advantages of a virtual tools are the savings in time and money and hence computational efficiency is one of the most needed features. (3) Applicability to a wide range of problems: Structural parts are subjected to a variety of loading conditions including static, dynamic and fatigue conditions. A good virtual testing tool should be able to make good predictions for all these different loading conditions. The aim of this PhD thesis is to develop a computational tool which can model the progressive failure of composite laminates under different quasi-static loading conditions. The analysis

  1. Electrical failure analysis for root-cause determination

    International Nuclear Information System (INIS)

    Riddle, J.

    1990-01-01

    This paper outlines a practical failure analysis sequence. Several technical definitions are required. A failure is defined as a component that was operating in a system where the system malfunctioned and the replacement of the device restored system functionality. The failure mode is the malfunctioning behavior of the device. The failure mechanism is the underlying cause or source of the failure mode. The failure mechanism is the root cause of the failure mode. The failure analysis procedure needs to be adequately refined to result in the determination of the cause of failure to the degree that corrective action or design changes will prevent recurrence of the failure mode or mechanism. An example of a root-cause determination analysis performed for a nuclear power industry customer serves to illustrate the analysis methodology

  2. Challenges in Resolution for IC Failure Analysis

    Science.gov (United States)

    Martinez, Nick

    1999-10-01

    Resolution is becoming more and more of a challenge in the world of Failure Analysis in integrated circuits. This is a result of the ongoing size reduction in microelectronics. Determining the cause of a failure depends upon being able to find the responsible defect. The time it takes to locate a given defect is extremely important so that proper corrective actions can be taken. The limits of current microscopy tools are being pushed. With sub-micron feature sizes and even smaller killing defects, optical microscopes are becoming obsolete. With scanning electron microscopy (SEM), the resolution is high but the voltage involved can make these small defects transparent due to the large mean-free path of incident electrons. In this presentation, I will give an overview of the use of inspection methods in Failure Analysis and show example studies of my work as an Intern student at Texas Instruments. 1. Work at Texas Instruments, Stafford, TX, was supported by TI. 2. Work at Texas Tech University, was supported by NSF Grant DMR9705498.

  3. Advancing Alternative Analysis: Integration of Decision Science.

    Science.gov (United States)

    Malloy, Timothy F; Zaunbrecher, Virginia M; Batteate, Christina M; Blake, Ann; Carroll, William F; Corbett, Charles J; Hansen, Steffen Foss; Lempert, Robert J; Linkov, Igor; McFadden, Roger; Moran, Kelly D; Olivetti, Elsa; Ostrom, Nancy K; Romero, Michelle; Schoenung, Julie M; Seager, Thomas P; Sinsheimer, Peter; Thayer, Kristina A

    2017-06-13

    Decision analysis-a systematic approach to solving complex problems-offers tools and frameworks to support decision making that are increasingly being applied to environmental challenges. Alternatives analysis is a method used in regulation and product design to identify, compare, and evaluate the safety and viability of potential substitutes for hazardous chemicals. We assessed whether decision science may assist the alternatives analysis decision maker in comparing alternatives across a range of metrics. A workshop was convened that included representatives from government, academia, business, and civil society and included experts in toxicology, decision science, alternatives assessment, engineering, and law and policy. Participants were divided into two groups and were prompted with targeted questions. Throughout the workshop, the groups periodically came together in plenary sessions to reflect on other groups' findings. We concluded that the further incorporation of decision science into alternatives analysis would advance the ability of companies and regulators to select alternatives to harmful ingredients and would also advance the science of decision analysis. We advance four recommendations: a ) engaging the systematic development and evaluation of decision approaches and tools; b ) using case studies to advance the integration of decision analysis into alternatives analysis; c ) supporting transdisciplinary research; and d ) supporting education and outreach efforts. https://doi.org/10.1289/EHP483.

  4. Failure analysis and failure prevention in electric power systems

    International Nuclear Information System (INIS)

    Rau, C.A. Jr.; Becker, D.G.; Besuner, P.M.; Cipolla, R.C.; Egan, G.R.; Gupta, P.; Johnson, D.P.; Omry, U.; Tetelman, A.S.; Rettig, T.W.; Peters, D.C.

    1977-01-01

    New methods have been developed and applied to better quantify and increase the reliability, safety, and availability of electric power plants. Present and potential problem areas have been identified both by development of an improved computerized data base of malfunctions in nuclear power plants and by detailed metallurgical and mechanical failure analyses of selected problems. Significant advances in the accuracy and speed of structural analyses have been made through development and application of the boundary integral equation and influence function methods of stress and fracture mechanics analyses. The currently specified flaw evaluation procedures of the ASME Boiler and Pressure Vessel Code have been computerized. Results obtained from these procedures for evaluation of specific in-service inspection indications have been compared with results obtained utilizing the improved analytical methods. Mathematical methods have also been developed to describe and analyze the statistical variations in materials properties and in component loading, and uncertainties in the flaw size that might be passed by quality assurance systems. These new methods have been combined to develop accurate failure rate predictions based upon probabilistic fracture mechanics. Improved failure prevention strategies have been formulated by combining probabilistic fracture mechanics and cost optimization techniques. The approach has been demonstrated by optimizing the nondestructive inspection level with regard to both reliability and cost. (Auth.)

  5. On the failure modes of alternative containment designs following postulated core meltdown

    International Nuclear Information System (INIS)

    Chan, C.K.; Knee, H.E.; Okrent, D.

    1977-01-01

    The containment response to a postulated core meltdown accident in a PWR ice condenser containment, a BWR Mark III containment and a BWR non-inerted Mark I containment has been examined to see if the WASH-1400 containment failure mode judgement for the Surry large, dry containment and the Peach Bottom Mark I inerted-containment are likely to be appropriate for these alternative containment plant designs. For the PWR, the representative accident chosen for the analysis is a large cold leg break accompanied by a loss of all electric power while the BWR respresentative event chosen is a recirculation line break without adequate core cooling function. Two containment event paths are studied for each of these two cases, depending on whether or not containment vapor suppression function is assumed to be available. Both the core and the containment pressure and temperature response to the accident events are computed for the four time intervals which characterize (a) blowdown of the pipe break, (b) core melt, (c) vessel melt-through, and (d) containment foundation penetration. The calculations are based on a best esimate of the most probable sequence, but certain phenomena and events were followed down multiple tracks. It appears that the non-inerted Mark I containment is not so vulnerable to overpressurization from hydrogen burning as the Mark III; however, acceptable temperatures may be exceeded. (Auth.)

  6. Failure probability analysis on mercury target vessel

    International Nuclear Information System (INIS)

    Ishikura, Syuichi; Futakawa, Masatoshi; Kogawa, Hiroyuki; Sato, Hiroshi; Haga, Katsuhiro; Ikeda, Yujiro

    2005-03-01

    Failure probability analysis was carried out to estimate the lifetime of the mercury target which will be installed into the JSNS (Japan spallation neutron source) in J-PARC (Japan Proton Accelerator Research Complex). The lifetime was estimated as taking loading condition and materials degradation into account. Considered loads imposed on the target vessel were the static stresses due to thermal expansion and static pre-pressure on He-gas and mercury and the dynamic stresses due to the thermally shocked pressure waves generated repeatedly at 25 Hz. Materials used in target vessel will be degraded by the fatigue, neutron and proton irradiation, mercury immersion and pitting damages, etc. The imposed stresses were evaluated through static and dynamic structural analyses. The material-degradations were deduced based on published experimental data. As a result, it was quantitatively confirmed that the failure probability for the lifetime expected in the design is very much lower, 10 -11 in the safety hull, meaning that it will be hardly failed during the design lifetime. On the other hand, the beam window of mercury vessel suffered with high-pressure waves exhibits the failure probability of 12%. It was concluded, therefore, that the leaked mercury from the failed area at the beam window is adequately kept in the space between the safety hull and the mercury vessel by using mercury-leakage sensors. (author)

  7. Timing analysis of PWR fuel pin failures

    International Nuclear Information System (INIS)

    Jones, K.R.; Wade, N.L.; Katsma, K.R.; Siefken, L.J.; Straka, M.

    1992-09-01

    Research has been conducted to develop and demonstrate a methodology for calculation of the time interval between receipt of the containment isolation signals and the first fuel pin failure for loss-of-coolant accidents (LOCAs). Demonstration calculations were performed for a Babcock and Wilcox (B ampersand W) design (Oconee) and a Westinghouse (W) four-loop design (Seabrook). Sensitivity studies were performed to assess the impacts of fuel pin bumup, axial peaking factor, break size, emergency core cooling system availability, and main coolant pump trip on these times. The analysis was performed using the following codes: FRAPCON-2, for the calculation of steady-state fuel behavior; SCDAP/RELAP5/MOD3 and TRACPF1/MOD1, for the calculation of the transient thermal-hydraulic conditions in the reactor system; and FRAP-T6, for the calculation of transient fuel behavior. In addition to the calculation of fuel pin failure timing, this analysis provides a comparison of the predicted results of SCDAP/RELAP5/MOD3 and TRAC-PFL/MOD1 for large-break LOCA analysis. Using SCDAP/RELAP5/MOD3 thermal-hydraulic data, the shortest time intervals calculated between initiation of containment isolation and fuel pin failure are 10.4 seconds and 19.1 seconds for the B ampersand W and W plants, respectively. Using data generated by TRAC-PF1/MOD1, the shortest intervals are 10.3 seconds and 29.1 seconds for the B ampersand W and W plants, respectively. These intervals are for a double-ended, offset-shear, cold leg break, using the technical specification maximum peaking factor and applied to fuel with maximum design bumup. Using peaking factors commensurate widi actual bumups would result in longer intervals for both reactor designs. This document also contains appendices A through J of this report

  8. Economic analysis of alternative LLW disposal methods

    International Nuclear Information System (INIS)

    Foutes, C.E.

    1987-01-01

    The Environmental Protection Agency (EPA) has evaluated the costs and benefits of alternative disposal technologies as part of its program to develop generally applicable environmental standards for the land disposal of low-level radioactive waste (LLW). Costs, population health effects and Critical Population Group (CPG) exposures resulting from alternative waste treatment and disposal methods were developed and input into the analysis. The cost-effectiveness analysis took into account a number of waste streams, hydrogeologic and climatic region settings, and waste treatment and disposal methods. Total costs of each level of a standard included costs for packaging, processing, transportation, and burial of waste. Benefits are defined in terms of reductions in the general population health risk (expected fatal cancers and genetic effects) evaluated over 10,000 years. A cost-effectiveness ratio, was calculated for each alternative standard. This paper describes the alternatives considered and preliminary results of the cost-effectiveness analysis

  9. Advancing Alternative Analysis: Integration of Decision Science

    DEFF Research Database (Denmark)

    Malloy, Timothy F; Zaunbrecher, Virginia M; Batteate, Christina

    2016-01-01

    Decision analysis-a systematic approach to solving complex problems-offers tools and frameworks to support decision making that are increasingly being applied to environmental challenges. Alternatives analysis is a method used in regulation and product design to identify, compare, and evaluate......, and civil society and included experts in toxicology, decision science, alternatives assessment, engineering, and law and policy. Participants were divided into two groups and prompted with targeted questions. Throughout the workshop, the groups periodically came together in plenary sessions to reflect......) engaging the systematic development and evaluation of decision approaches and tools; (2) using case studies to advance the integration of decision analysis into alternatives analysis; (3) supporting transdisciplinary research; and (4) supporting education and outreach efforts....

  10. Defining Business decline, failure and turnaround: A content analysis

    Directory of Open Access Journals (Sweden)

    Marius Pretorius

    2009-12-01

    Full Text Available In the past, researchers have often defined failure to suit their data. This has led to a lack of comparability in research outputs. The overriding objective of this paper is to propose a universal definition for the failure phenomenon. Clear definitions are a prerequisite for exploring major constructs, their relationship to failure and the context and processes involved. The study reports on the core definitions of the failure phenomenon and identifies core criteria for distinguishing between them. It places decline, failure and turnaround in perspective and highlights level of distress and turnaround as key moderating elements. It distinguishes the failure phenomenon from controversial synonyms such as closure, accidental bankruptcy and closure for alternative motives. Key words and phrases: business decline, failure, turnaround, level of distress

  11. Frequency-dependent failure mechanisms of nanocrystalline gold interconnect lines under general alternating current

    Science.gov (United States)

    Luo, X. M.; Zhang, B.; Zhang, G. P.

    2014-09-01

    Thermal fatigue failure of metallization interconnect lines subjected to alternating currents (AC) is becoming a severe threat to the long-term reliability of micro/nanodevices with increasing electrical current density/power. Here, thermal fatigue failure behaviors and damage mechanisms of nanocrystalline Au interconnect lines on the silicon glass substrate have been investigated by applying general alternating currents (the pure alternating current coupled with a direct current (DC) component) with different frequencies ranging from 0.05 Hz to 5 kHz. We observed both thermal fatigue damages caused by Joule heating-induced cyclic strain/stress and electromigration (EM) damages caused by the DC component. Besides, the damage formation showed a strong electrically-thermally-mechanically coupled effect and frequency dependence. At lower frequencies, thermal fatigue damages were dominant and the main damage forms were grain coarsening with grain boundary (GB) cracking/voiding and grain thinning. At higher frequencies, EM damages took over and the main damage forms were GB cracking/voiding of smaller grains and hillocks. Furthermore, the healing effect of the reversing current was considered to elucidate damage mechanisms of the nanocrystalline Au lines generated by the general AC. Lastly, a modified model was proposed to predict the lifetime of the nanocrystalline metal interconnect lines, i.e., that was a competing drift velocity-based approach based on the threshold time required for reverse diffusion/healing to occur.

  12. Evaluation of Acoustic Emission NDE of Composite Crew Module Service Module/Alternate Launch Abort System (CCM SM/ALAS) Test Article Failure Tests

    Science.gov (United States)

    Horne, Michael R.; Madaras, Eric I.

    2010-01-01

    Failure tests of CCM SM/ALAS (Composite Crew Module Service Module / Alternate Launch Abort System) composite panels were conducted during July 10, 2008 and July 24, 2008 at Langley Research Center. This is a report of the analysis of the Acoustic Emission (AE) data collected during those tests.

  13. Use of fuel failure correlations in accident analysis

    International Nuclear Information System (INIS)

    O'Dell, L.D.; Baars, R.E.; Waltar, A.E.

    1975-05-01

    The MELT-III code for analysis of a Transient Overpower (TOP) accident in an LMFBR is briefly described, including failure criteria currently applied in the code. Preliminary results of calculations exploring failure patterns in time and space in the reactor core are reported and compared for the two empirical fuel failure correlations employed in the code. (U.S.)

  14. BACFIRE, Minimal Cut Sets Common Cause Failure Fault Tree Analysis

    International Nuclear Information System (INIS)

    Fussell, J.B.

    1983-01-01

    1 - Description of problem or function: BACFIRE, designed to aid in common cause failure analysis, searches among the basic events of a minimal cut set of the system logic model for common potential causes of failure. The potential cause of failure is called a qualitative failure characteristics. The algorithm searches qualitative failure characteristics (that are part of the program input) of the basic events contained in a set to find those characteristics common to all basic events. This search is repeated for all cut sets input to the program. Common cause failure analysis is thereby performed without inclusion of secondary failure in the system logic model. By using BACFIRE, a common cause failure analysis can be added to an existing system safety and reliability analysis. 2 - Method of solution: BACFIRE searches the qualitative failure characteristics of the basic events contained in the fault tree minimal cut set to find those characteristics common to all basic events by either of two criteria. The first criterion can be met if all the basic events in a minimal cut set are associated by a condition which alone may increase the probability of multiple component malfunction. The second criterion is met if all the basic events in a minimal cut set are susceptible to the same secondary failure cause and are located in the same domain for that cause of secondary failure. 3 - Restrictions on the complexity of the problem - Maxima of: 1001 secondary failure maps, 101 basic events, 10 cut sets

  15. Business System Planning Project, Alternatives Analysis

    International Nuclear Information System (INIS)

    EVOSEVICH, S.

    2000-01-01

    The CHG Chief Information Officer (CIO) requested a study of alternatives to the current business system computing environment. This Business Systems Planning (BSP) Project Alternatives Analysis document presents an analysis of the current Project Controls, Work Management, and Business Management systems environment and alternative solutions that support the business functions. The project team has collected requirements and priorities from stakeholders in each business area and documented them in the BSP System Requirements Specification (SRS), RPP-6297. The alternatives analysis process identifies and measures possible solutions in each of the business process areas against the requirements as documented in the SRS. The team gathered input from both internal and external sources to identify and grade the possible solutions. This document captures the results of that activity and recommends a suite of software products. This study was to select the best product based on how well the product met the requirements, not to determine the platform or hardware environment that would be used. Additional analysis documentation can be found in BSP project files

  16. Probabilistic analysis of ''common mode failures''

    International Nuclear Information System (INIS)

    Easterling, R.G.

    1978-01-01

    Common mode failure is a topic of considerable interest in reliability and safety analyses of nuclear reactors. Common mode failures are often discussed in terms of examples: two systems fail simultaneously due to an external event such as an earthquake; two components in redundant channels fail because of a common manufacturing defect; two systems fail because a component common to both fails; the failure of one system increases the stress on other systems and they fail. The common thread running through these is a dependence of some sort--statistical or physical--among multiple failure events. However, the nature of the dependence is not the same in all these examples. An attempt is made to model situations, such as the above examples, which have been termed ''common mode failures.'' In doing so, it is found that standard probability concepts and terms, such as statistically dependent and independent events, and conditional and unconditional probabilities, suffice. Thus, it is proposed that the term ''common mode failures'' be dropped, at least from technical discussions of these problems. A corollary is that the complementary term, ''random failures,'' should also be dropped. The mathematical model presented may not cover all situations which have been termed ''common mode failures,'' but provides insight into the difficulty of obtaining estimates of the probabilities of these events

  17. Failure propagation tests and analysis at PNC

    International Nuclear Information System (INIS)

    Tanabe, H.; Miyake, O.; Daigo, Y.; Sato, M.

    1984-01-01

    Failure propagation tests have been conducted using the Large Leak Sodium Water Reaction Test Rig (SWAT-1) and the Steam Generator Safety Test Facility (SWAT-3) at PNC in order to establish the safety design of the LMFBR prototype Monju steam generators. Test objectives are to provide data for selecting a design basis leak (DBL), data on the time history of failure propagations, data on the mechanism of the failures, and data on re-use of tubes in the steam generators that have suffered leaks. Eighteen fundamental tests have been performed in an intermediate leak region using the SWAT-1 test rig, and ten failure propagation tests have been conducted in the region from a small leak to a large leak using the SWAT-3 test facility. From the test results it was concluded that a dominant mechanism was tube wastage, and it took more than one minute until each failure propagation occurred. Also, the total leak rate in full sequence simulation tests including a water dump was far less than that of one double-ended-guillotine (DEG) failure. Using such experimental data, a computer code, LEAP (Leak Enlargement and Propagation), has been developed for the purpose of estimating the possible maximum leak rate due to failure propagation. This paper describes the results of the failure propagation tests and the model structure and validation studies of the LEAP code. (author)

  18. Laboratory and 3-D-distinct element analysis of failure mechanism of slope under external surcharge

    Science.gov (United States)

    Li, N.; Cheng, Y. M.

    2014-09-01

    Landslide is a major disaster resulting in considerable loss of human lives and property damages in hilly terrain in Hong Kong, China and many other countries. The factor of safety and the critical slip surface for slope stabilization are the main considerations for slope stability analysis in the past, while the detailed post-failure conditions of the slopes have not been considered in sufficient details. There are however increasing interest on the consequences after the initiation of failure which includes the development and propagation of the failure surfaces, the amount of failed mass and runoff and the affected region. To assess the development of slope failure in more details and to consider the potential danger of slopes after failure has initiated, the slope stability problem under external surcharge is analyzed by the distinct element method (DEM) and laboratory model test in the present research. A more refined study about the development of failure, microcosmic failure mechanism and the post-failure mechanism of slope will be carried out. The numerical modeling method and the various findings from the present work can provide an alternate method of analysis of slope failure which can give additional information not available from the classical methods of analysis.

  19. Early failure analysis of machining centers: a case study

    International Nuclear Information System (INIS)

    Wang Yiqiang; Jia Yazhou; Jiang Weiwei

    2001-01-01

    To eliminate the early failures and improve the reliability, nine ex-factory machining centers are traced under field conditions in workshops. Their early failure information throughout the ex-factory run-in test is collected. The field early failure database is constructed based on the collection of field early failure data and the codification of data. Early failure mode and effects analysis is performed to indicate the weak subsystem of a machining center or the troublemaker. The distribution of the time between early failures is analyzed and the optimal ex-factory run-in test time for machining center that may expose sufficiently the early failures and cost minimum is discussed. Suggestions how to arrange ex-factory run-in test and how to take actions to reduce early failures for machining center is proposed

  20. Constructing Ontology for Knowledge Sharing of Materials Failure Analysis

    Directory of Open Access Journals (Sweden)

    Peng Shi

    2014-01-01

    Full Text Available Materials failure indicates the fault with materials or components during their performance. To avoid the reoccurrence of similar failures, materials failure analysis is executed to investigate the reasons for the failure and to propose improved strategies. The whole procedure needs sufficient domain knowledge and also produces valuable new knowledge. However, the information about the materials failure analysis is usually retained by the domain expert, and its sharing is technically difficult. This phenomenon may seriously reduce the efficiency and decrease the veracity of the failure analysis. To solve this problem, this paper adopts ontology, a novel technology from the Semantic Web, as a tool for knowledge representation and sharing and describes the construction of the ontology to obtain information concerning the failure analysis, application area, materials, and failure cases. The ontology represented information is machine-understandable and can be easily shared through the Internet. At the same time, failure case intelligent retrieval, advanced statistics, and even automatic reasoning can be accomplished based on ontology represented knowledge. Obviously this can promote the knowledge sharing of materials service safety and improve the efficiency of failure analysis. The case of a nuclear power plant area is presented to show the details and benefits of this method.

  1. Integrated failure probability estimation based on structural integrity analysis and failure data: Natural gas pipeline case

    International Nuclear Information System (INIS)

    Dundulis, Gintautas; Žutautaitė, Inga; Janulionis, Remigijus; Ušpuras, Eugenijus; Rimkevičius, Sigitas; Eid, Mohamed

    2016-01-01

    In this paper, the authors present an approach as an overall framework for the estimation of the failure probability of pipelines based on: the results of the deterministic-probabilistic structural integrity analysis (taking into account loads, material properties, geometry, boundary conditions, crack size, and defected zone thickness), the corrosion rate, the number of defects and failure data (involved into the model via application of Bayesian method). The proposed approach is applied to estimate the failure probability of a selected part of the Lithuanian natural gas transmission network. The presented approach for the estimation of integrated failure probability is a combination of several different analyses allowing us to obtain: the critical crack's length and depth, the failure probability of the defected zone thickness, dependency of the failure probability on the age of the natural gas transmission pipeline. A model's uncertainty analysis and uncertainty propagation analysis are performed, as well. - Highlights: • Degradation mechanisms of natural gas transmission pipelines. • Fracture mechanic analysis of the pipe with crack. • Stress evaluation of the pipe with critical crack. • Deterministic-probabilistic structural integrity analysis of gas pipeline. • Integrated estimation of pipeline failure probability by Bayesian method.

  2. Failure analysis of prestressed concrete beam under impact loading

    International Nuclear Information System (INIS)

    Ishikawa, N.; Sonoda, Y.; Kobayashi, N.

    1993-01-01

    This paper presents a failure analysis of prestressed concrete (PC) beam under impact loading. At first, the failure analysis of PC beam section is performed by using the discrete section element method in order to obtain the dynamic bending moment-curvature relation. Secondary, the failure analysis of PC beam is performed by using the rigid panel-spring model. Finally, the numerical calculation is executed and is compared with the experimental results. It is found that this approach can simulate well the experiments at the local and overall failure of the PC beam as well as the impact load and the displacement-time relations. (author)

  3. Economic analysis of alternative LLW disposal methods

    International Nuclear Information System (INIS)

    Foutes, C.E.; Queenan, C.J. III

    1987-01-01

    The Environmental Protection Agency (EPA) has evaluated the costs and benefits of alternative disposal technologies as part of its program to develop generally applicable environmental standards for the land disposal of low-level radioactive waste (LLW). Costs, population health effects and Critical Population Group (CPG) exposures resulting from alternative waste treatment and disposal methods were evaluated both in absolute terms and also relative to a base case (current practice). Incremental costs of the standard included costs for packaging, processing, transportation, and burial of waste. Benefits are defined in terms of reductions in the general population health risk (expected fatal cancers and genetic effects) evaluated over 10,000 years. A cost-effectiveness ratio, defined as the incremental cost per avoided health effect, was calculated for each alternative standard. The cost-effectiveness analysis took into account a number of waste streams, hydrogeologic and climatic region settings, and waste treatment and disposal methods. This paper describes the alternatives considered and preliminary results of the cost-effectiveness analysis. 15 references, 7 figures, 3 tables

  4. Structures for common-cause failure analysis

    International Nuclear Information System (INIS)

    Vaurio, J.K.

    1981-01-01

    Common-cause failure methodology and terminology have been reviewed and structured to provide a systematical basis for addressing and developing models and methods for quantification. The structure is based on (1) a specific set of definitions, (2) categories based on the way faults are attributable to a common cause, and (3) classes based on the time of entry and the time of elimination of the faults. The failure events are then characterized by their likelihood or frequency and the average residence time. The structure provides a basis for selecting computational models, collecting and evaluating data and assessing the importance of various failure types, and for developing effective defences against common-cause failure. The relationships of this and several other structures are described

  5. Failure mode and effects analysis: an empirical comparison of failure mode scoring procedures.

    Science.gov (United States)

    Ashley, Laura; Armitage, Gerry

    2010-12-01

    To empirically compare 2 different commonly used failure mode and effects analysis (FMEA) scoring procedures with respect to their resultant failure mode scores and prioritization: a mathematical procedure, where scores are assigned independently by FMEA team members and averaged, and a consensus procedure, where scores are agreed on by the FMEA team via discussion. A multidisciplinary team undertook a Healthcare FMEA of chemotherapy administration. This included mapping the chemotherapy process, identifying and scoring failure modes (potential errors) for each process step, and generating remedial strategies to counteract them. Failure modes were scored using both an independent mathematical procedure and a team consensus procedure. Almost three-fifths of the 30 failure modes generated were scored differently by the 2 procedures, and for just more than one-third of cases, the score discrepancy was substantial. Using the Healthcare FMEA prioritization cutoff score, almost twice as many failure modes were prioritized by the consensus procedure than by the mathematical procedure. This is the first study to empirically demonstrate that different FMEA scoring procedures can score and prioritize failure modes differently. It found considerable variability in individual team members' opinions on scores, which highlights the subjective and qualitative nature of failure mode scoring. A consensus scoring procedure may be most appropriate for FMEA as it allows variability in individuals' scores and rationales to become apparent and to be discussed and resolved by the team. It may also yield team learning and communication benefits unlikely to result from a mathematical procedure.

  6. Failure analysis of stainless steel femur fixation plate.

    Science.gov (United States)

    Hussain, P B; Mohammad, M

    2004-05-01

    Failure analysis was performed to investigate the failure of the femur fixation plate which was previously fixed on the femur of a girl. Radiography, metallography, fractography and mechanical testing were conducted in this study. The results show that the failure was due to the formation of notches on the femur plate. These notches act as stress raisers from where the cracks start to propagate. Finally fracture occurred on the femur plate and subsequently, the plate failed.

  7. Reprioritization of failures in a system failure mode and effects analysis by decision making trial and evaluation laboratory technique

    International Nuclear Information System (INIS)

    Seyed-Hosseini, S.M.; Safaei, N.; Asgharpour, M.J.

    2006-01-01

    In this paper an effective methodology related to decision making field has been developed for reprioritization of failure modes in a system Failure Mode and Effects Analysis (FMEA) for corrective actions. The proposed methodology can cover some of inherently shortcomings of conventional Risk Priority Number (RPN) method and like. The current prioritization methods have two main deficiencies as: they have not considered indirect relations between components and are deficient for systems with many subsystems or components. The proposed method called Decision Making Trial and Evaluation Laboratory (DEMATEL) is an effective approach for analyzing relation between components of a system in respect to its type (direct/indirect) and severity. The main advantages of DEMATEL are involving indirect relations in analyze, allocating as possible as unique ranks to alternatives and clustering alternatives in large systems. The demonstrated results have shown that DEMATEL method can be an efficient, complementary and confident approach for reprioritization of failure modes in a FMEA. For verification of proposed methodology, two illustrative practical examples are solved and obtained outcomes are reported

  8. Failure analysis of tubes with wastages

    International Nuclear Information System (INIS)

    Prachuktam, S.; Reich, M.; Rajan, J.

    1979-01-01

    A finite element method for large strain calculation using the constitutive relation due to Hill was developed. This constitutive relation relates the co-rotational rate of the Kirchoff stress and deformation rate tensor which leads to a symmetric structure stiffness. This method is used to calculate failure pressures of degraded tubes

  9. Numerical Analysis of Solids at Failure

    Science.gov (United States)

    2011-08-20

    vector fields, leading to singular distributions of the fluid contents (fluid accumulation and drainage along the failure surface) while the fluid...and Environmental Engineering, University of Illinois at Urbana - Champaign, September 29 2008. Final Report, FA9550-08-1-0410 19 6. “Finite Elements

  10. Failure Analysis of Storage Data Magnetic Systems

    Directory of Open Access Journals (Sweden)

    Ortiz–Prado A.

    2010-10-01

    Full Text Available This paper shows the conclusions about the corrosion mechanics in storage data magnetic systems (hard disk. It was done from the inspection of 198 units that were in service in nine different climatic regions characteristic for Mexico. The results allow to define trends about the failure forms and the factors that affect them. In turn, this study has analyzed the causes that led to mechanical failure and those due to deterioration by atmospheric corrosion. On the basis of the results obtained from the field sampling, demonstrates that the hard disk failure is fundamentally by mechanical effects. The deterioration by environmental effects were found in read-write heads, integrated circuits, printed circuit boards and in some of the electronic components of the controller card of the device, but not in magnetic storage surfaces. There fore, you can discard corrosion on the surface of the disk as the main kind of failure due to environmental deterioration. To avoid any inconvenience in the magnetic data storage system it is necessary to ensure sealing of the system.

  11. Lecture notes: meantime to failure analysis

    International Nuclear Information System (INIS)

    Hanlen, R.C.

    1976-01-01

    A method is presented which affects the Quality Assurance Engineer's place in management decision making by giving him a working parameter to base sound engineering and management decisions. The theory used in Reliability Engineering to determine the mean-time-to-failure of a component or system is reviewed. The method presented derives the probability density function for the parameter of the exponential distribution. The exponential distribution is commonly used by industry to determine the reliability of a component or system when the failure rate is assumed to be constant. Some examples of N Reactor performance data are used. To be specific: The ball system data with 4.9 x 10 6 unit hours of service and 7 individual failures indicates a demonstrated 98.8 percent reliability at a 95 percent confidence level for a 12 month mission period, and the diesel starts data with 7.2 x 10 5 unit hours of service and 1 failure indicates a demonstrated 94.4 percent reliability at a 95 percent confidence level for a 12 month mission period

  12. Reliability analysis based on the losses from failures.

    Science.gov (United States)

    Todinov, M T

    2006-04-01

    The conventional reliability analysis is based on the premise that increasing the reliability of a system will decrease the losses from failures. On the basis of counterexamples, it is demonstrated that this is valid only if all failures are associated with the same losses. In case of failures associated with different losses, a system with larger reliability is not necessarily characterized by smaller losses from failures. Consequently, a theoretical framework and models are proposed for a reliability analysis, linking reliability and the losses from failures. Equations related to the distributions of the potential losses from failure have been derived. It is argued that the classical risk equation only estimates the average value of the potential losses from failure and does not provide insight into the variability associated with the potential losses. Equations have also been derived for determining the potential and the expected losses from failures for nonrepairable and repairable systems with components arranged in series, with arbitrary life distributions. The equations are also valid for systems/components with multiple mutually exclusive failure modes. The expected losses given failure is a linear combination of the expected losses from failure associated with the separate failure modes scaled by the conditional probabilities with which the failure modes initiate failure. On this basis, an efficient method for simplifying complex reliability block diagrams has been developed. Branches of components arranged in series whose failures are mutually exclusive can be reduced to single components with equivalent hazard rate, downtime, and expected costs associated with intervention and repair. A model for estimating the expected losses from early-life failures has also been developed. For a specified time interval, the expected losses from early-life failures are a sum of the products of the expected number of failures in the specified time intervals covering the

  13. Computer aided approach to qualitative and quantitative common cause failure analysis for complex systems

    International Nuclear Information System (INIS)

    Cate, C.L.; Wagner, D.P.; Fussell, J.B.

    1977-01-01

    Common cause failure analysis, also called common mode failure analysis, is an integral part of a complete system reliability analysis. Existing methods of computer aided common cause failure analysis are extended by allowing analysis of the complex systems often encountered in practice. The methods aid in identifying potential common cause failures and also address quantitative common cause failure analysis

  14. Role of scanning electron microscope )SEM) in metal failure analysis

    International Nuclear Information System (INIS)

    Shaiful Rizam Shamsudin; Hafizal Yazid; Mohd Harun; Siti Selina Abd Hamid; Nadira Kamarudin; Zaiton Selamat; Mohd Shariff Sattar; Muhamad Jalil

    2005-01-01

    Scanning electron microscope (SEM) is a scientific instrument that uses a beam of highly energetic electrons to examine the surface and phase distribution of specimens on a micro scale through the live imaging of secondary electrons (SE) and back-scattered electrons (BSE) images. One of the main activities of SEM Laboratory at MINT is for failure analysis on metal part and components. The capability of SEM is excellent for determining the root cause of metal failures such as ductility or brittleness, stress corrosion, fatigue and other types of failures. Most of our customers that request for failure analysis are from local petrochemical plants, manufacturers of automotive components, pipeline maintenance personnel and engineers who involved in the development of metal parts and component. This paper intends to discuss some of the technical concepts in failure analysis associated with SEM. (Author)

  15. X-framework: Space system failure analysis framework

    Science.gov (United States)

    Newman, John Steven

    Space program and space systems failures result in financial losses in the multi-hundred million dollar range every year. In addition to financial loss, space system failures may also represent the loss of opportunity, loss of critical scientific, commercial and/or national defense capabilities, as well as loss of public confidence. The need exists to improve learning and expand the scope of lessons documented and offered to the space industry project team. One of the barriers to incorporating lessons learned include the way in which space system failures are documented. Multiple classes of space system failure information are identified, ranging from "sound bite" summaries in space insurance compendia, to articles in journals, lengthy data-oriented (what happened) reports, and in some rare cases, reports that treat not only the what, but also the why. In addition there are periodically published "corporate crisis" reports, typically issued after multiple or highly visible failures that explore management roles in the failure, often within a politically oriented context. Given the general lack of consistency, it is clear that a good multi-level space system/program failure framework with analytical and predictive capability is needed. This research effort set out to develop such a model. The X-Framework (x-fw) is proposed as an innovative forensic failure analysis approach, providing a multi-level understanding of the space system failure event beginning with the proximate cause, extending to the directly related work or operational processes and upward through successive management layers. The x-fw focus is on capability and control at the process level and examines: (1) management accountability and control, (2) resource and requirement allocation, and (3) planning, analysis, and risk management at each level of management. The x-fw model provides an innovative failure analysis approach for acquiring a multi-level perspective, direct and indirect causation of

  16. A quantitative method for Failure Mode and Effects Analysis

    NARCIS (Netherlands)

    Braaksma, Anne Johannes Jan; Meesters, A.J.; Klingenberg, W.; Hicks, C.

    2012-01-01

    Failure Mode and Effects Analysis (FMEA) is commonly used for designing maintenance routines by analysing potential failures, predicting their effect and facilitating preventive action. It is used to make decisions on operational and capital expenditure. The literature has reported that despite its

  17. Analysis of dependent failures in the ORNL precursor study

    International Nuclear Information System (INIS)

    Ballard, G.M.

    1985-01-01

    The study of dependent failures (or common cause/mode failures) in the safety assessment of potentially hazardous plant is one of the significant areas of uncertainty in performing probabilistic safety studies. One major reason for this uncertainty is that data on dependent failures is apparently not readily available in sufficient quantity to assist in the development and validation of models. The incident reports that were compiled for the ORNL study on Precursors to Severe Core Damage Accidents (NUREG/CR-2497) provide an opportunity to look at the importance of dependent failures in the most significant incidents of recent reactor operations, to look at the success of probabilistic risk assessment (PRA) methods in accounting for the contribution of dependent failures, and to look at the dependent failure incidents with the aim of identifying the most significant problem areas. In this paper an analysis has been made of the incidents compiled in NUREG/CR-2497 and events involving multiple failures which were not independent have been identified. From this analysis it is clear that dependent failures are a very significant contributor to the precursor incidents. The method of enumeration of accident frequency used in NUREG-2497 can be shown to take account of dependent failures and this may be a significant factor contributing to the apparent difference between the precursor accident frequency and typical PRA frequencies

  18. Improved methods for dependent failure analysis in PSA

    International Nuclear Information System (INIS)

    Ballard, G.M.; Games, A.M.

    1988-01-01

    The basic design principle used in ensuring the safe operation of nuclear power plant is defence in depth. This normally takes the form of redundant equipment and systems which provide protection even if a number of equipment failures occur. Such redundancy is particularly effective in ensuring that multiple, independent equipment failures with the potential for jeopardising reactor safety will be rare events. However the achievement of high reliability has served to highlight the potentially dominant role of multiple, dependent failures of equipment and systems. Analysis of reactor operating experience has shown that dependent failure events are the major contributors to safety system failures and reactor incidents and accidents. In parallel PSA studies have shown that the results of a safety analysis are sensitive to assumptions made about the dependent failure (CCF) probability for safety systems. Thus a Westinghouse Analysis showed that increasing system dependent failure probabilities by a factor of 5 led to a factor 4 increase in core. This paper particularly refers to the engineering concepts underlying dependent failure assessment touching briefly on aspects of data. It is specifically not the intent of our work to develop a new mathematical model of CCF but to aid the use of existing models

  19. Alternatives to Aerobic Exercise Prescription in Patients with Chronic Heart Failure

    Directory of Open Access Journals (Sweden)

    Mayron F Oliveira

    2016-01-01

    Full Text Available Background: Exercise is essential for patients with heart failure as it leads to a reduction in morbidity and mortality as well as improved functional capacity and oxygen uptake (v̇O2. However, the need for an experienced physiologist and the cost of the exam may render the cardiopulmonary exercise test (CPET unfeasible. Thus, the six-minute walk test (6MWT and step test (ST may be alternatives for exercise prescription. Objective: The aim was to correlate heart rate (HR during the 6MWT and ST with HR at the anaerobic threshold (HRAT and peak HR (HRP obtained on the CPET. Methods: Eighty-three patients (58 ± 11 years with heart failure (NYHA class II were included and all subjects had optimized medication for at least 3 months. Evaluations involved CPET (v̇O2, HRAT, HRP, 6MWT (HR6MWT and ST (HRST. Results: The participants exhibited severe ventricular dysfunction (ejection fraction: 31 ± 7% and low peak v̇O2 (15.2 ± 3.1 mL.kg-1.min-1. HRP (113 ± 19 bpm was higher than HRAT (92 ± 14 bpm; p < 0.05 and HR6MWT (94 ± 13 bpm; p < 0.05. No significant difference was found between HRP and HRST. Moreover, a strong correlation was found between HRAT and HR6MWT (r = 0.81; p < 0.0001, and between HRP and HRST (r = 0.89; p < 0.0001. Conclusion: These findings suggest that, in the absence of CPET, exercise prescription can be performed by use of 6MWT and ST, based on HR6MWT and HRST

  20. Safety relief valve alternate analysis method

    International Nuclear Information System (INIS)

    Adams, R.H.; Javid, A.; Khatua, T.P.

    1981-01-01

    An experimental test program was started in the United States in 1976 to define and quantify Safety Relief Valve (SRV) phenomena in General Electric Mark I Suppression Chambers. The testing considered several discharged devices and was used to correlate SRV load prediction models. The program was funded by utilities with Mark I containments and has resulted in a detailed SRV load definition as a portion of the Mark I containment program Load Definition Report (LDR). The (USNRC) has reviewed and approved the LDR SRV load definition. In addition, the USNRC has permitted calibration of structural models used for predicting torus response to SRV loads. Model calibration is subject to confirmatory in-plant testing. The SRV methodology given in the LDR requires that transient dynamic pressures be applied to a torus structural model that includes a fluid added mass matrix. Preliminary evaluations of torus response have indicated order of magnitude conservatisms, with respect to test results, which could result in unrealistic containment modifications. In addition, structural response trends observed in full-scale tests between cold pipe, first valve actuation and hot pipe, subsequent valve actuation conditions have not been duplicated using current analysis methods. It was suggested by others that an energy approach using current fluid models be utilized to define loads. An alternate SRV analysis method is defined to correct suppression chamber structural response to a level that permits economical but conservative design. Simple analogs are developed for the purpose of correcting the analytical response obtained from LDR analysis methods. Analogs evaluated considered forced vibration and free vibration structural response. The corrected response correlated well with in-plant test response. The correlation of the analytical model at test conditions permits application of the alternate analysis method at design conditions. (orig./HP)

  1. Fuzzy logic prioritization of failures in a system failure mode, effects and criticality analysis

    International Nuclear Information System (INIS)

    Bowles, John B.; Pelaez, C.E.

    1995-01-01

    This paper describes a new technique, based on fuzzy logic, for prioritizing failures for corrective actions in a Failure Mode, Effects and Criticality Analysis (FMECA). As in a traditional criticality analysis, the assessment is based on the severity, frequency of occurrence, and detectability of an item failure. However, these parameters are here represented as members of a fuzzy set, combined by matching them against rules in a rule base, evaluated with min-max inferencing, and then defuzzified to assess the riskiness of the failure. This approach resolves some of the problems in traditional methods of evaluation and it has several advantages compared to strictly numerical methods: 1) it allows the analyst to evaluate the risk associated with item failure modes directly using the linguistic terms that are employed in making the criticality assessment; 2) ambiguous, qualitative, or imprecise information, as well as quantitative data, can be used in the assessment and they are handled in a consistent manner; and 3) it gives a more flexible structure for combining the severity, occurrence, and detectability parameters. Two fuzzy logic based approaches for assessing criticality are presented. The first is based on the numerical rankings used in a conventional Risk Priority Number (RPN) calculation and uses crisp inputs gathered from the user or extracted from a reliability analysis. The second, which can be used early in the design process when less detailed information is available, allows fuzzy inputs and also illustrates the direct use of the linguistic rankings defined for the RPN calculations

  2. Robustness Analysis of Real Network Topologies Under Multiple Failure Scenarios

    DEFF Research Database (Denmark)

    Manzano, M.; Marzo, J. L.; Calle, E.

    2012-01-01

    on topological characteristics. Recently approaches also consider the services supported by such networks. In this paper we carry out a robustness analysis of five real backbone telecommunication networks under defined multiple failure scenarios, taking into account the consequences of the loss of established......Nowadays the ubiquity of telecommunication networks, which underpin and fulfill key aspects of modern day living, is taken for granted. Significant large-scale failures have occurred in the last years affecting telecommunication networks. Traditionally, network robustness analysis has been focused...... connections. Results show which networks are more robust in response to a specific type of failure....

  3. Failure Modes and Effects Analysis (FMEA): A Bibliography

    Science.gov (United States)

    2000-01-01

    Failure modes and effects analysis (FMEA) is a bottom-up analytical process that identifies process hazards, which helps managers understand vulnerabilities of systems, as well as assess and mitigate risk. It is one of several engineering tools and techniques available to program and project managers aimed at increasing the likelihood of safe and successful NASA programs and missions. This bibliography references 465 documents in the NASA STI Database that contain the major concepts, failure modes or failure analysis, in either the basic index of the major subject terms.

  4. Failure analysis of the boiler water-wall tube

    OpenAIRE

    S.W. Liu; W.Z. Wang; C.J. Liu

    2017-01-01

    Failure analysis of the boiler water-wall tube is presented in this work. In order to examine the causes of failure, various techniques including visual inspection, chemical analysis, optical microscopy, scanning electron microscopy and energy dispersive spectroscopy were carried out. Tube wall thickness measurements were performed on the ruptured tube. The fire-facing side of the tube was observed to have experienced significant wall thinning. The composition of the matrix material of the tu...

  5. Evaluation of Alternative Control for Prevention and or Mitigation of HEPA Filter Failure Accidents at Tank Farm Facilities

    International Nuclear Information System (INIS)

    GUSTAVSON, R.D.

    2000-01-01

    This study evaluates the adequacy and benefit of use of HEPA filter differential pressure limiting setpoints to initiate exhauster shut down as an alternative safety control for postulated accidents that might result in filtration failure and subsequent unfiltered release from Tank Farm primary tank ventilators

  6. Alternatives Analysis for the Resumption of Transient Testing Program

    Energy Technology Data Exchange (ETDEWEB)

    Lee Nelson

    2013-11-01

    An alternatives analysis was performed for resumption of transient testing. The analysis considered eleven alternatives – including both US international facilities. A screening process was used to identify two viable alternatives from the original eleven. In addition, the alternatives analysis includes a no action alternative as required by the National Environmental Policy Act (NEPA). The alternatives considered in this analysis included: 1. Restart the Transient Reactor Test Facility (TREAT) 2. Modify the Annular Core Research Reactor (ACRR) which includes construction of a new hot cell and installation of a new hodoscope. 3. No Action

  7. Failure analysis of PB-1 (EBTS Be/Cu mockup)

    International Nuclear Information System (INIS)

    Odegard, B.C. Jr.; Cadden, C.H.

    1996-11-01

    Failure analysis was done on PB-1 (series of Be tiles joined to Cu alloy) following a tile failure during a high heat flux experiment in EBTS (electron beam test system). This heat flux load simulated ambient conditions inside ITER; the Be tiles were bonded to the Cu alloy using low-temperature diffusion bonding, which is being considered for fabricating plasma facing components in ITER. Results showed differences between the EBTS failure and a failure during a room temperature tensile test. The latter occurred at the Cu-Be interface in an intermetallic phase formed by reaction of the two metals at the bonding temperature. Fracture strengths measured by these tests were over 300 MPa. The high heat flux specimens failed at the Cu-Cu diffusion bond. Fracture morphology in both cases was a mixed mode of dimple rupture and transgranular cleavage. Several explanations for this difference in failure mechanism are suggested

  8. Hydrogen as alternative clean fuel: Economic analysis

    International Nuclear Information System (INIS)

    Coiante, D.

    1995-03-01

    In analogy to biofuel production from biomasses, the electrolytic conversion of other renewable energies into hydrogen as an alternative clean fuel is considered. This solution allows the intermittent renewable energy sources, as photovoltaics and wind energy, to enhance their development and enlarge the role into conventional fuel market. A rough economic analysis of hydrogen production line shows the costs, added by electrolysis and storage stages, can be recovered by properly accounting for social and environmental costs due to whole cycle of conventional fuels, from production to use. So, in a perspective of attaining the economic competitiveness of renewable energy, the hydrogen, arising from intermittent renewable energy sources, will be able to compete in the energy market with conventional fuels, making sure that their substitution will occur in a significant amount and the corresponding environment

  9. FRAC (failure rate analysis code): a computer program for analysis of variance of failure rates. An application user's guide

    International Nuclear Information System (INIS)

    Martz, H.F.; Beckman, R.J.; McInteer, C.R.

    1982-03-01

    Probabilistic risk assessments (PRAs) require estimates of the failure rates of various components whose failure modes appear in the event and fault trees used to quantify accident sequences. Several reliability data bases have been designed for use in providing the necessary reliability data to be used in constructing these estimates. In the nuclear industry, the Nuclear Plant Reliability Data System (NPRDS) and the In-Plant Reliability Data System (IRPDS), among others, were designed for this purpose. An important characteristic of such data bases is the selection and identification of numerous factors used to classify each component that is reported and the subsequent failures of each component. However, the presence of such factors often complicates the analysis of reliability data in the sense that it is inappropriate to group (that is, pool) data for those combinations of factors that yield significantly different failure rate values. These types of data can be analyzed by analysis of variance. FRAC (Failure Rate Analysis Code) is a computer code that performs an analysis of variance of failure rates. In addition, FRAC provides failure rate estimates

  10. Root cause of failure analysis and the system engineer

    International Nuclear Information System (INIS)

    Coppock, M.S.; Hartwig, A.W.

    1990-01-01

    In an industry where ever-increasing emphasis is being placed on root cause of failure determination, it is imperative that a successful nuclear utility have an effective means of identifying failures and performing the necessary analyses. The current Institute of Nuclear Power Operations (INPO) good practice, OE-907, root-cause analysis, gives references to methodology that will help determine breakdowns in procedures, programs, or design but gives very little guidance on how or when to perform component root cause of failure analyses. The system engineers of nuclear utilities are considered the focal point for their respective systems and are required by most programs to investigate component failures. The problem that the system engineer faces in determining a component root cause of failures lies in acquisition of the necessary data to identify the need to perform the analysis and in having the techniques and equipment available to perform it. The system engineers at the Palo Verde nuclear generating station routinely perform detailed component root cause of failure analyses. The Palo Verde program provides the system engineers with the information necessary to identify when a component root cause of failure is required. Palo Verde also has the necessary equipment on-site to perform the analyses

  11. Failure analysis of a helicopter's main rotor bearing

    International Nuclear Information System (INIS)

    Shahzad, M.; Qureshi, A.H.; Waqas, H.; Hussain, N.; Ali, N.

    2011-01-01

    Presented results report some of the findings of a detailed failure analysis carried out on a main rotor hub assembly, which had symptoms of burning and mechanical damage. The analysis suggests environmental degradation of the grease which causes pitting on bearing-balls. The consequent inefficient lubrication raises the temperature which leads to the smearing of cage material (brass) on the bearing-balls and ultimately causes the failure. The analysis has been supported by the microstructural studies, thermal analysis and micro-hardness testing performed on the affected main rotor bearing parts. (author)

  12. Failure mode analysis of a PCRV. Influence of some hypothesis

    International Nuclear Information System (INIS)

    Zimmermann, T.; Saugy, B.; Rebora, B.

    1975-01-01

    This paper is concerned with the most recent developments and results obtained using a mathematical model for the non-linear analysis of massive reinforced and prestressed concrete strucures developed by the IPEN at the Swiss Federal Institute of Technology, in Lausanne. The method is based on three-dimensional isoparametric finite elements. A linear solution is adapted step by step to the idealized behavior laws of the materials up to the failure of the structure. The laws proposed here for the non-linear behavior of concrete and steel have been described elsewhere but a simple extension to the time-dependent behavior is presented. A numerical algorithm for the superposition of creep deformations is also proposed, the basic creep law being supposed to satisfy a power expression. Time-dependent failure is discussed. The calculus of a PCRV of a helium cooled fast reactor is then performed and the influence of the liner on the failure mode is analyzed. The failure analysis under increasing internal pressure is run at the present time and the influence of an eventual pressure in the cracks is being investigated. The paper aims mainly to demonstrate the accuracy of a failure analysis by three-dimensional finite-elements and to compare it with a model test, in particular when complete deformation and failure tests of the materials are available. The proposed model has already been extensively tested on simple structures and has proved to be useful for the analysis of different simplifying hypotheses

  13. Debugging Nondeterministic Failures in Linux Programs through Replay Analysis

    Directory of Open Access Journals (Sweden)

    Shakaiba Majeed

    2018-01-01

    Full Text Available Reproducing a failure is the first and most important step in debugging because it enables us to understand the failure and track down its source. However, many programs are susceptible to nondeterministic failures that are hard to reproduce, which makes debugging extremely difficult. We first address the reproducibility problem by proposing an OS-level replay system for a uniprocessor environment that can capture and replay nondeterministic events needed to reproduce a failure in Linux interactive and event-based programs. We then present an analysis method, called replay analysis, based on the proposed record and replay system to diagnose concurrency bugs in such programs. The replay analysis method uses a combination of static analysis, dynamic tracing during replay, and delta debugging to identify failure-inducing memory access patterns that lead to concurrency failure. The experimental results show that the presented record and replay system has low-recording overhead and hence can be safely used in production systems to catch rarely occurring bugs. We also present few concurrency bug case studies from real-world applications to prove the effectiveness of the proposed bug diagnosis framework.

  14. Failure Modes and Effects Analysis (FMEA) Assistant Tool Feasibility Study

    Science.gov (United States)

    Flores, Melissa; Malin, Jane T.

    2013-01-01

    An effort to determine the feasibility of a software tool to assist in Failure Modes and Effects Analysis (FMEA) has been completed. This new and unique approach to FMEA uses model based systems engineering concepts to recommend failure modes, causes, and effects to the user after they have made several selections from pick lists about a component s functions and inputs/outputs. Recommendations are made based on a library using common failure modes identified over the course of several major human spaceflight programs. However, the tool could be adapted for use in a wide range of applications from NASA to the energy industry.

  15. Failure Modes and Effects Analysis (FMEA) Assistant Tool Feasibility Study

    Science.gov (United States)

    Flores, Melissa D.; Malin, Jane T.; Fleming, Land D.

    2013-09-01

    An effort to determine the feasibility of a software tool to assist in Failure Modes and Effects Analysis (FMEA) has been completed. This new and unique approach to FMEA uses model based systems engineering concepts to recommend failure modes, causes, and effects to the user after they have made several selections from pick lists about a component's functions and inputs/outputs. Recommendations are made based on a library using common failure modes identified over the course of several major human spaceflight programs. However, the tool could be adapted for use in a wide range of applications from NASA to the energy industry.

  16. Analysis of dependent failures in risk assessment and reliability evaluation

    International Nuclear Information System (INIS)

    Fleming, K.N.; Mosleh, A.; Kelley, A.P. Jr.; Gas-Cooled Reactors Associates, La Jolla, CA)

    1983-01-01

    The ability to estimate the risk of potential reactor accidents is largely determined by the ability to analyze statistically dependent multiple failures. The importance of dependent failures has been indicated in recent probabilistic risk assessment (PRA) studies as well as in reports of reactor operating experiences. This article highlights the importance of several different types of dependent failures from the perspective of the risk and reliability analyst and provides references to the methods and data available for their analysis. In addition to describing the current state of the art, some recent advances, pitfalls, misconceptions, and limitations of some approaches to dependent failure analysis are addressed. A summary is included of the discourse on this subject, which is presented in the Institute of Electrical and Electronics Engineers/American Nuclear Society PRA Procedures Guide

  17. Creep failure analysis of butt welded tubes

    International Nuclear Information System (INIS)

    Browne, R.J.; Parker, J.D.; Walters, D.J.

    1981-01-01

    As part of a major research programme to investigate the influence of butt welds on the life expectancy of tubular components, a series of internal-pressure, stress-rupture tests have been carried out. Thick walled 1/2Cr 1/2Mo 1/4V tube specimens were welded with mild steel, 1Cr 1/2Mo steel, 2 1/4Cr 1Mo steel or nominally matching 1/2Cr 1/2Mo 1/4V steel to give a wide range of weld metal creep strengths relative to the parent tube. The weldments were tested at 565 0 C at two values of internal pressure, and gave failure lives of up to 44,000 hrs. Finite element techniques have been used to determine the stationary state stress distribution in the weldment which was represented by a three material model. Significant stress redistribution was indicated and these results enabled the position and orientation of cracking and the rupture life to be predicted. The theoretical and experimental results have been used to highlight the limitations of current design methods which are based on the application of the mean diameter hoop stress to the parent material stress rupture data. (author)

  18. Advanced approaches to failure mode and effect analysis (FMEA applications

    Directory of Open Access Journals (Sweden)

    D. Vykydal

    2015-10-01

    Full Text Available The present paper explores advanced approaches to the FMEA method (Failure Mode and Effect Analysis which take into account the costs associated with occurrence of failures during the manufacture of a product. Different approaches are demonstrated using an example FMEA application to production of drawn wire. Their purpose is to determine risk levels, while taking account of the above-mentioned costs. Finally, the resulting priority levels are compared for developing actions mitigating the risks.

  19. Failure analysis of vise jaw holders for hacksaw machine

    Directory of Open Access Journals (Sweden)

    Essam Ali Al-Bahkali

    2018-01-01

    Full Text Available Failure analysis in mechanical components has been investigated in many studies in the last few years. Failure analysis and prevention are important functions in all engineering disciplines. Materials engineers are often the lead role in the analysis of failures, where a component or product fails in service or if a failure occurs during manufacturing or production processing. In any case, one must determine the cause of the failure to prevent future occurrences and/or to improve the performance of the device, component or structure. For example, the vise jaw holders of hacksaws can break due to accidental heavy loads or machine misuse. The parts that break are the stationary and movable vise jaw holders and the connecter power screw between the holders. To investigate the failure of these components, a three-dimensional finite element model for stress analysis was performed. First, the analysis identified the broken components of the hacksaw machine. In addition, the type of materials of the broken parts was identified, a CAD model was built, and the hacksaw mechanism was analyzed to determine the accurate applied loads on the broken parts. After analyzing the model using Abaqus CAE software, the results showed that the location of the high stresses was identical with the high-stress locations in the original, broken parts. Furthermore, the power screw was subjected to a high load, which deformed the power screw. Also, the stationary vise jaw holder was broken by impact because it was not touched by the power screw until the movable vise jaw holder broke. A conclusion is drawn from the failure analysis and a way to improve the design of the broken parts is suggested.

  20. Extending Failure Modes and Effects Analysis Approach for Reliability Analysis at the Software Architecture Design Level

    NARCIS (Netherlands)

    Sözer, Hasan; Tekinerdogan, B.; Aksit, Mehmet; de Lemos, Rogerio; Gacek, Cristina

    2007-01-01

    Several reliability engineering approaches have been proposed to identify and recover from failures. A well-known and mature approach is the Failure Mode and Effect Analysis (FMEA) method that is usually utilized together with Fault Tree Analysis (FTA) to analyze and diagnose the causes of failures.

  1. The quantitative failure of human reliability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, C.T.

    1995-07-01

    This philosophical treatise argues the merits of Human Reliability Analysis (HRA) in the context of the nuclear power industry. Actually, the author attacks historic and current HRA as having failed in informing policy makers who make decisions based on risk that humans contribute to systems performance. He argues for an HRA based on Bayesian (fact-based) inferential statistics, which advocates a systems analysis process that employs cogent heuristics when using opinion, and tempers itself with a rational debate over the weight given subjective and empirical probabilities.

  2. A Big Data Analysis Approach for Rail Failure Risk Assessment.

    Science.gov (United States)

    Jamshidi, Ali; Faghih-Roohi, Shahrzad; Hajizadeh, Siamak; Núñez, Alfredo; Babuska, Robert; Dollevoet, Rolf; Li, Zili; De Schutter, Bart

    2017-08-01

    Railway infrastructure monitoring is a vital task to ensure rail transportation safety. A rail failure could result in not only a considerable impact on train delays and maintenance costs, but also on safety of passengers. In this article, the aim is to assess the risk of a rail failure by analyzing a type of rail surface defect called squats that are detected automatically among the huge number of records from video cameras. We propose an image processing approach for automatic detection of squats, especially severe types that are prone to rail breaks. We measure the visual length of the squats and use them to model the failure risk. For the assessment of the rail failure risk, we estimate the probability of rail failure based on the growth of squats. Moreover, we perform severity and crack growth analyses to consider the impact of rail traffic loads on defects in three different growth scenarios. The failure risk estimations are provided for several samples of squats with different crack growth lengths on a busy rail track of the Dutch railway network. The results illustrate the practicality and efficiency of the proposed approach. © 2017 The Authors Risk Analysis published by Wiley Periodicals, Inc. on behalf of Society for Risk Analysis.

  3. Process Equipment Failure Mode Analysis in a Chemical Industry

    Directory of Open Access Journals (Sweden)

    J. Nasl Seraji

    2008-04-01

    Full Text Available Background and aims   Prevention of potential accidents and safety promotion in chemical processes requires systematic safety management in them. The main objective of this study was analysis of important process equipment components failure modes and effects in H2S and CO2  isolation from extracted natural gas process.   Methods   This study was done in sweetening unit of an Iranian gas refinery. Failure Mode and Effect Analysis (FMEA used for identification of process equipments failures.   Results   Totally 30 failures identified and evaluated using FMEA. P-1 blower's blade breaking and sour gas pressure control valve bearing tight moving had maximum risk Priority number (RPN, P-1 body corrosion and increasing plug lower side angle of reach DEAlevel control valve  in tower - 1 were minimum calculated RPN.   Conclusion   By providing a reliable documentation system for equipment failures and  incidents recording, maintaining of basic information for later safety assessments would be  possible. Also, the probability of failures and effects could be minimized by conducting preventive maintenance.

  4. Launch Vehicle Failure Dynamics and Abort Triggering Analysis

    Science.gov (United States)

    Hanson, John M.; Hill, Ashely D.; Beard, Bernard B.

    2011-01-01

    Launch vehicle ascent is a time of high risk for an on-board crew. There are many types of failures that can kill the crew if the crew is still on-board when the failure becomes catastrophic. For some failure scenarios, there is plenty of time for the crew to be warned and to depart, whereas in some there is insufficient time for the crew to escape. There is a large fraction of possible failures for which time is of the essence and a successful abort is possible if the detection and action happens quickly enough. This paper focuses on abort determination based primarily on data already available from the GN&C system. This work is the result of failure analysis efforts performed during the Ares I launch vehicle development program. Derivation of attitude and attitude rate abort triggers to ensure that abort occurs as quickly as possible when needed, but that false positives are avoided, forms a major portion of the paper. Some of the potential failure modes requiring use of these triggers are described, along with analysis used to determine the success rate of getting the crew off prior to vehicle demise.

  5. Analysis of reactor trips involving balance-of-plant failures

    International Nuclear Information System (INIS)

    Seth, S.; Skinner, L.; Ettlinger, L.; Lay, R.

    1986-01-01

    The relatively high frequency of plant transients leading to reactor trips at nuclear power plants in the US is of economic and safety concern to the industry. A majority of such transients is due to failures in the balance-of-plant (BOP) systems. As a part of a study conducted for the US Nuclear Regulatory Commission, Mitre has carried out a further analysis of the BOP failures associated with reactor trips. The major objectives of the analysis were to examine plant-to-plant variations in BOP-related trips, to understand the causes of failures, and to determine the extent of any associated safety system challenges. The analysis was based on the Licensee Event Reports submitted on all commercial light water reactors during the 2-yr period, 1984-1985

  6. Failure Propagation Modeling and Analysis via System Interfaces

    Directory of Open Access Journals (Sweden)

    Lin Zhao

    2016-01-01

    Full Text Available Safety-critical systems must be shown to be acceptably safe to deploy and use in their operational environment. One of the key concerns of developing safety-critical systems is to understand how the system behaves in the presence of failures, regardless of whether that failure is triggered by the external environment or caused by internal errors. Safety assessment at the early stages of system development involves analysis of potential failures and their consequences. Increasingly, for complex systems, model-based safety assessment is becoming more widely used. In this paper we propose an approach for safety analysis based on system interface models. By extending interaction models on the system interface level with failure modes as well as relevant portions of the physical system to be controlled, automated support could be provided for much of the failure analysis. We focus on fault modeling and on how to compute minimal cut sets. Particularly, we explore state space reconstruction strategy and bounded searching technique to reduce the number of states that need to be analyzed, which remarkably improves the efficiency of cut sets searching algorithm.

  7. Failure modes and effects analysis of fusion magnet systems

    International Nuclear Information System (INIS)

    Zimmermann, M.; Kazimi, M.S.; Siu, N.O.; Thome, R.J.

    1988-12-01

    A failure modes and consequence analysis of fusion magnet system is an important contributor towards enhancing the design by improving the reliability and reducing the risk associated with the operation of magnet systems. In the first part of this study, a failure mode analysis of a superconducting magnet system is performed. Building on the functional breakdown and the fault tree analysis of the Toroidal Field (TF) coils of the Next European Torus (NET), several subsystem levels are added and an overview of potential sources of failures in a magnet system is provided. The failure analysis is extended to the Poloidal Field (PF) magnet system. Furthermore, an extensive analysis of interactions within the fusion device caused by the operation of the PF magnets is presented in the form of an Interaction Matrix. A number of these interactions may have significant consequences for the TF magnet system particularly interactions triggered by electrical failures in the PF magnet system. In the second part of this study, two basic categories of electrical failures in the PF magnet system are examined: short circuits between the terminals of external PF coils, and faults with a constant voltage applied at external PF coil terminals. An electromagnetic model of the Compact Ignition Tokamak (CIT) is used to examine the mechanical load conditions for the PF and the TF coils resulting from these fault scenarios. It is found that shorts do not pose large threats to the PF coils. Also, the type of plasma disruption has little impact on the net forces on the PF and the TF coils. 39 refs., 30 figs., 12 tabs

  8. Development of component failure data for seismic risk analysis

    International Nuclear Information System (INIS)

    Fray, R.R.; Moulia, T.A.

    1981-01-01

    This paper describes the quantification and utilization of seismic failure data used in the Diablo Canyon Seismic Risk Study. A single variable representation of earthquake severity that uses peak horizontal ground acceleration to characterize earthquake severity was employed. The use of a multiple variable representation would allow direct consideration of vertical accelerations and the spectral nature of earthquakes but would have added such complexity that the study would not have been feasible. Vertical accelerations and spectral nature were indirectly considered because component failure data were derived from design analyses, qualification tests and engineering judgment that did include such considerations. Two types of functions were used to describe component failure probabilities. Ramp functions were used for components, such as piping and structures, qualified by stress analysis. 'Anchor points' for ramp functions were selected by assuming a zero probability of failure at code allowable stress levels and unity probability of failure at ultimate stress levels. The accelerations corresponding to allowable and ultimate stress levels were determined by conservatively assuming a linear relationship between seismic stress and ground acceleration. Step functions were used for components, such as mechanical and electrical equipment, qualified by testing. Anchor points for step functions were selected by assuming a unity probability of failure above the qualification acceleration. (orig./HP)

  9. Failure analysis of the boiler water-wall tube

    Directory of Open Access Journals (Sweden)

    S.W. Liu

    2017-10-01

    Full Text Available Failure analysis of the boiler water-wall tube is presented in this work. In order to examine the causes of failure, various techniques including visual inspection, chemical analysis, optical microscopy, scanning electron microscopy and energy dispersive spectroscopy were carried out. Tube wall thickness measurements were performed on the ruptured tube. The fire-facing side of the tube was observed to have experienced significant wall thinning. The composition of the matrix material of the tube meets the requirements of the relevant standards. Microscopic examinations showed that the spheroidization of pearlite is not very obvious. The failure mechanism is identified as a result of the significant localized wall thinning of the boiler water-wall tube due to oxidation.

  10. A Costing Analysis for Decision Making Grid Model in Failure-Based Maintenance

    Directory of Open Access Journals (Sweden)

    Burhanuddin M. A.

    2011-01-01

    Full Text Available Background. In current economic downturn, industries have to set good control on production cost, to maintain their profit margin. Maintenance department as an imperative unit in industries should attain all maintenance data, process information instantaneously, and subsequently transform it into a useful decision. Then act on the alternative to reduce production cost. Decision Making Grid model is used to identify strategies for maintenance decision. However, the model has limitation as it consider two factors only, that is, downtime and frequency of failures. We consider third factor, cost, in this study for failure-based maintenance. The objective of this paper is to introduce the formulae to estimate maintenance cost. Methods. Fish bone analysis conducted with Ishikawa model and Decision Making Grid methods are used in this study to reveal some underlying risk factors that delay failure-based maintenance. The goal of the study is to estimate the risk factor that is, repair cost to fit in the Decision Making Grid model. Decision Making grid model consider two variables, frequency of failure and downtime in the analysis. This paper introduces third variable, repair cost for Decision Making Grid model. This approaches give better result to categorize the machines, reduce cost, and boost the earning for the manufacturing plant. Results. We collected data from one of the food processing factories in Malaysia. From our empirical result, Machine C, Machine D, Machine F, and Machine I must be in the Decision Making Grid model even though their frequency of failures and downtime are less than Machine B and Machine N, based on the costing analysis. The case study and experimental results show that the cost analysis in Decision Making Grid model gives more promising strategies in failure-based maintenance. Conclusions. The improvement of Decision Making Grid model for decision analysis with costing analysis is our contribution in this paper for

  11. Failure modes and effects analysis (FMEA) for Gamma Knife radiosurgery.

    Science.gov (United States)

    Xu, Andy Yuanguang; Bhatnagar, Jagdish; Bednarz, Greg; Flickinger, John; Arai, Yoshio; Vacsulka, Jonet; Feng, Wenzheng; Monaco, Edward; Niranjan, Ajay; Lunsford, L Dade; Huq, M Saiful

    2017-11-01

    Gamma Knife radiosurgery is a highly precise and accurate treatment technique for treating brain diseases with low risk of serious error that nevertheless could potentially be reduced. We applied the AAPM Task Group 100 recommended failure modes and effects analysis (FMEA) tool to develop a risk-based quality management program for Gamma Knife radiosurgery. A team consisting of medical physicists, radiation oncologists, neurosurgeons, radiation safety officers, nurses, operating room technologists, and schedulers at our institution and an external physicist expert on Gamma Knife was formed for the FMEA study. A process tree and a failure mode table were created for the Gamma Knife radiosurgery procedures using the Leksell Gamma Knife Perfexion and 4C units. Three scores for the probability of occurrence (O), the severity (S), and the probability of no detection for failure mode (D) were assigned to each failure mode by 8 professionals on a scale from 1 to 10. An overall risk priority number (RPN) for each failure mode was then calculated from the averaged O, S, and D scores. The coefficient of variation for each O, S, or D score was also calculated. The failure modes identified were prioritized in terms of both the RPN scores and the severity scores. The established process tree for Gamma Knife radiosurgery consists of 10 subprocesses and 53 steps, including a subprocess for frame placement and 11 steps that are directly related to the frame-based nature of the Gamma Knife radiosurgery. Out of the 86 failure modes identified, 40 Gamma Knife specific failure modes were caused by the potential for inappropriate use of the radiosurgery head frame, the imaging fiducial boxes, the Gamma Knife helmets and plugs, the skull definition tools as well as other features of the GammaPlan treatment planning system. The other 46 failure modes are associated with the registration, imaging, image transfer, contouring processes that are common for all external beam radiation therapy

  12. Rooting out causes in failure analysis; Risk analysis

    Energy Technology Data Exchange (ETDEWEB)

    Keith, Graeme

    2010-07-01

    The Deepwater Horizon disaster was a terrible reminder of the consequences of equipment failure on facilities operating in challenging environments. Thankfully catastrophes on the scale of the Deepwater Horizon are rare, but equipment failure is a daily occurrence on installations around the globe. The consequences range from short unexpected downtime, to a total stop on production. from a brief burst of flaring to lasting environmental damage and from the momentary discomfiture of a worker to incapability or death. (Author)

  13. Reliability test and failure analysis of high power LED packages

    International Nuclear Information System (INIS)

    Chen Zhaohui; Zhang Qin; Wang Kai; Luo Xiaobing; Liu Sheng

    2011-01-01

    A new type application specific light emitting diode (LED) package (ASLP) with freeform polycarbonate lens for street lighting is developed, whose manufacturing processes are compatible with a typical LED packaging process. The reliability test methods and failure criterions from different vendors are reviewed and compared. It is found that test methods and failure criterions are quite different. The rapid reliability assessment standards are urgently needed for the LED industry. 85 0 C/85 RH with 700 mA is used to test our LED modules with three other vendors for 1000 h, showing no visible degradation in optical performance for our modules, with two other vendors showing significant degradation. Some failure analysis methods such as C-SAM, Nano X-ray CT and optical microscope are used for LED packages. Some failure mechanisms such as delaminations and cracks are detected in the LED packages after the accelerated reliability testing. The finite element simulation method is helpful for the failure analysis and design of the reliability of the LED packaging. One example is used to show one currently used module in industry is vulnerable and may not easily pass the harsh thermal cycle testing. (semiconductor devices)

  14. Failure criterion of concrete type material and punching failure analysis of thick mortar plate

    International Nuclear Information System (INIS)

    Ohno, T.; Kuroiwa, M.; Irobe, M.

    1979-01-01

    In this paper falure surface of concrete type material is proposed and its validity to structural analysis is examined. The study is an introductory part of evaluation for ultimate strength of reinforced and prestressed concrete structures in reactor technology. The failure surface is expressed in a linear form in terms of octahedral normal and shear stresses. Coefficient of the latter stress is given by a trigonometric series in threefold angle of similarity. Hence, its meridians are multilinear and traces of its deviatoric sections are smooth curves having periodicity of 2π/3 around space diagonal in principal stress space. The mathematical expression of the surface has an arbitraty number of parameters so that material test results are well reflected. To confirm the effectiveness of proposed failure criterion, experiment and numerical analysis by the finite element method on punching failure of thick mortar plate in axial symmetry are compared. In the numerical procedure yield surface of the material is assumed to exist mainly in compression region, since a brittle cleavage or elastic fracture occurs in the concrete type material under stress state with tension, while a ductile or plastic fracture occurs under compressive stress state. (orig.)

  15. Laboratory and 3-D distinct element analysis of the failure mechanism of a slope under external surcharge

    Science.gov (United States)

    Li, N.; Cheng, Y. M.

    2015-01-01

    Landslide is a major disaster resulting in considerable loss of human lives and property damages in hilly terrain in Hong Kong, China and many other countries. The factor of safety and the critical slip surface for slope stabilization are the main considerations for slope stability analysis in the past, while the detailed post-failure conditions of the slopes have not been considered in sufficient detail. There is however increasing interest in the consequences after the initiation of failure that includes the development and propagation of the failure surfaces, the amount of failed mass and runoff and the affected region. To assess the development of slope failure in more detail and to consider the potential danger of slopes after failure has initiated, the slope stability problem under external surcharge is analyzed by the distinct element method (DEM) and a laboratory model test in the present research. A more refined study about the development of failure, microcosmic failure mechanisms and the post-failure mechanisms of slopes will be carried out. The numerical modeling method and the various findings from the present work can provide an alternate method of analysis of slope failure, which can give additional information not available from the classical methods of analysis.

  16. Evaluating wood failure in plywood shear by optical image analysis

    Science.gov (United States)

    Charles W. McMillin

    1984-01-01

    This exploratory study evaulates the potential of using an automatic image analysis method to measure percent wood failure in plywood shear specimens. The results suggest that this method my be as accurate as the visual method in tracking long-term gluebond quality. With further refinement, the method could lead to automated equipment replacing the subjective visual...

  17. Failure analysis of multiple delaminated composite plates due

    Indian Academy of Sciences (India)

    The present work aims at the first ply failure analysis of laminated composite plates with arbitrarily located multiple delaminations subjected to transverse static load as well as impact. The theoretical formulation is based on a simple multiple delamination model. Conventional first order shear deformation is assumed using ...

  18. Risk analysis of geothermal power plants using Failure Modes and Effects Analysis (FMEA) technique

    International Nuclear Information System (INIS)

    Feili, Hamid Reza; Akar, Navid; Lotfizadeh, Hossein; Bairampour, Mohammad; Nasiri, Sina

    2013-01-01

    Highlights: • Using Failure Modes and Effects Analysis (FMEA) to find potential failures in geothermal power plants. • We considered 5 major parts of geothermal power plants for risk analysis. • Risk Priority Number (RPN) is calculated for all failure modes. • Corrective actions are recommended to eliminate or decrease the risk of failure modes. - Abstract: Renewable energy plays a key role in the transition toward a low carbon economy and the provision of a secure supply of energy. Geothermal energy is a versatile source as a form of renewable energy that meets popular demand. Since some Geothermal Power Plants (GPPs) face various failures, the requirement of a technique for team engineering to eliminate or decrease potential failures is considerable. Because no specific published record of considering an FMEA applied to GPPs with common failure modes have been found already, in this paper, the utilization of Failure Modes and Effects Analysis (FMEA) as a convenient technique for determining, classifying and analyzing common failures in typical GPPs is considered. As a result, an appropriate risk scoring of occurrence, detection and severity of failure modes and computing the Risk Priority Number (RPN) for detecting high potential failures is achieved. In order to expedite accuracy and ability to analyze the process, XFMEA software is utilized. Moreover, 5 major parts of a GPP is studied to propose a suitable approach for developing GPPs and increasing reliability by recommending corrective actions for each failure mode

  19. Failure analysis of carbide fuels under transient overpower (TOP) conditions

    International Nuclear Information System (INIS)

    Nguyen, D.H.

    1980-06-01

    The failure of carbide fuels in the Fast Test Reactor (FTR) under Transient Overpower (TOP) conditions has been examined. The Beginning-of-Cycle Four (BOC-4) all-oxide base case, at $.50/sec ramp rate was selected as the reference case. A coupling between the advanced fuel performance code UNCLE-T and HCDA Code MELT-IIIA was necessary for the analysis. UNCLE-T was used to determine cladding failure and fuel preconditioning which served as initial conditions for MELT-III calculations. MELT-IIIA determined the time of molten fuel ejection from fuel pin

  20. Failure mode and effects analysis outputs: are they valid?

    Science.gov (United States)

    Shebl, Nada Atef; Franklin, Bryony Dean; Barber, Nick

    2012-06-10

    Failure Mode and Effects Analysis (FMEA) is a prospective risk assessment tool that has been widely used within the aerospace and automotive industries and has been utilised within healthcare since the early 1990s. The aim of this study was to explore the validity of FMEA outputs within a hospital setting in the United Kingdom. Two multidisciplinary teams each conducted an FMEA for the use of vancomycin and gentamicin. Four different validity tests were conducted: Face validity: by comparing the FMEA participants' mapped processes with observational work. Content validity: by presenting the FMEA findings to other healthcare professionals. Criterion validity: by comparing the FMEA findings with data reported on the trust's incident report database. Construct validity: by exploring the relevant mathematical theories involved in calculating the FMEA risk priority number. Face validity was positive as the researcher documented the same processes of care as mapped by the FMEA participants. However, other healthcare professionals identified potential failures missed by the FMEA teams. Furthermore, the FMEA groups failed to include failures related to omitted doses; yet these were the failures most commonly reported in the trust's incident database. Calculating the RPN by multiplying severity, probability and detectability scores was deemed invalid because it is based on calculations that breach the mathematical properties of the scales used. There are significant methodological challenges in validating FMEA. It is a useful tool to aid multidisciplinary groups in mapping and understanding a process of care; however, the results of our study cast doubt on its validity. FMEA teams are likely to need different sources of information, besides their personal experience and knowledge, to identify potential failures. As for FMEA's methodology for scoring failures, there were discrepancies between the teams' estimates and similar incidents reported on the trust's incident

  1. Common Cause Failure Analysis for the Digital Plant Protection System

    International Nuclear Information System (INIS)

    Kagn, Hyun Gook; Jang, Seung Cheol

    2005-01-01

    Safety-critical systems such as nuclear power plants adopt the multiple-redundancy design in order to reduce the risk from the single component failure. The digitalized safety-signal generation system is also designed based on the multiple-redundancy strategy which consists of more redundant components. The level of the redundant design of digital systems is usually higher than those of conventional mechanical systems. This higher redundancy would clearly reduce the risk from the single failure of components, but raise the importance of the common cause failure (CCF) analysis. This research aims to develop the practical and realistic method for modeling the CCF in digital safety-critical systems. We propose a simple and practical framework for assessing the CCF probability of digital equipment. Higher level of redundancy causes the difficulty of CCF analysis because it results in impractically large number of CCF events in the fault tree model when we use conventional CCF modeling methods. We apply the simplified alpha-factor (SAF) method to the digital system CCF analysis. The precedent study has shown that SAF method is quite realistic but simple when we consider carefully system success criteria. The first step for using the SAF method is the analysis of target system for determining the function failure cases. That is, the success criteria of the system could be derived from the target system's function and configuration. Based on this analysis, we can calculate the probability of single CCF event which represents the CCF events resulting in the system failure. In addition to the application of SAF method, in order to accommodate the other characteristics of digital technology, we develop a simple concept and several equations for practical use

  2. PACC information management code for common cause failures analysis

    International Nuclear Information System (INIS)

    Ortega Prieto, P.; Garcia Gay, J.; Mira McWilliams, J.

    1987-01-01

    The purpose of this paper is to present the PACC code, which, through an adequate data management, makes the task of computerized common-mode failure analysis easier. PACC processes and generates information in order to carry out the corresponding qualitative analysis, by means of the boolean technique of transformation of variables, and the quantitative analysis either using one of several parametric methods or a direct data-base. As far as the qualitative analysis is concerned, the code creates several functional forms for the transformation equations according to the user's choice. These equations are subsequently processed by boolean manipulation codes, such as SETS. The quantitative calculations of the code can be carried out in two different ways: either starting from a common cause data-base, or through parametric methods, such as the Binomial Failure Rate Method, the Basic Parameters Method or the Multiple Greek Letter Method, among others. (orig.)

  3. TU-AB-BRD-02: Failure Modes and Effects Analysis

    International Nuclear Information System (INIS)

    Huq, M.

    2015-01-01

    Current quality assurance and quality management guidelines provided by various professional organizations are prescriptive in nature, focusing principally on performance characteristics of planning and delivery devices. However, published analyses of events in radiation therapy show that most events are often caused by flaws in clinical processes rather than by device failures. This suggests the need for the development of a quality management program that is based on integrated approaches to process and equipment quality assurance. Industrial engineers have developed various risk assessment tools that are used to identify and eliminate potential failures from a system or a process before a failure impacts a customer. These tools include, but are not limited to, process mapping, failure modes and effects analysis, fault tree analysis. Task Group 100 of the American Association of Physicists in Medicine has developed these tools and used them to formulate an example risk-based quality management program for intensity-modulated radiotherapy. This is a prospective risk assessment approach that analyzes potential error pathways inherent in a clinical process and then ranks them according to relative risk, typically before implementation, followed by the design of a new process or modification of the existing process. Appropriate controls are then put in place to ensure that failures are less likely to occur and, if they do, they will more likely be detected before they propagate through the process, compromising treatment outcome and causing harm to the patient. Such a prospective approach forms the basis of the work of Task Group 100 that has recently been approved by the AAPM. This session will be devoted to a discussion of these tools and practical examples of how these tools can be used in a given radiotherapy clinic to develop a risk based quality management program. Learning Objectives: Learn how to design a process map for a radiotherapy process Learn how to

  4. TU-AB-BRD-02: Failure Modes and Effects Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Huq, M. [University of Pittsburgh Medical Center (United States)

    2015-06-15

    Current quality assurance and quality management guidelines provided by various professional organizations are prescriptive in nature, focusing principally on performance characteristics of planning and delivery devices. However, published analyses of events in radiation therapy show that most events are often caused by flaws in clinical processes rather than by device failures. This suggests the need for the development of a quality management program that is based on integrated approaches to process and equipment quality assurance. Industrial engineers have developed various risk assessment tools that are used to identify and eliminate potential failures from a system or a process before a failure impacts a customer. These tools include, but are not limited to, process mapping, failure modes and effects analysis, fault tree analysis. Task Group 100 of the American Association of Physicists in Medicine has developed these tools and used them to formulate an example risk-based quality management program for intensity-modulated radiotherapy. This is a prospective risk assessment approach that analyzes potential error pathways inherent in a clinical process and then ranks them according to relative risk, typically before implementation, followed by the design of a new process or modification of the existing process. Appropriate controls are then put in place to ensure that failures are less likely to occur and, if they do, they will more likely be detected before they propagate through the process, compromising treatment outcome and causing harm to the patient. Such a prospective approach forms the basis of the work of Task Group 100 that has recently been approved by the AAPM. This session will be devoted to a discussion of these tools and practical examples of how these tools can be used in a given radiotherapy clinic to develop a risk based quality management program. Learning Objectives: Learn how to design a process map for a radiotherapy process Learn how to

  5. Statistical Analysis Of Failure Strength Of Material Using Weibull Distribution

    International Nuclear Information System (INIS)

    Entin Hartini; Mike Susmikanti; Antonius Sitompul

    2008-01-01

    In evaluation of ceramic and glass materials strength a statistical approach is necessary Strength of ceramic and glass depend on its measure and size distribution of flaws in these material. The distribution of strength for ductile material is narrow and close to a Gaussian distribution while strength of brittle materials as ceramic and glass following Weibull distribution. The Weibull distribution is an indicator of the failure of material strength resulting from a distribution of flaw size. In this paper, cumulative probability of material strength to failure probability, cumulative probability of failure versus fracture stress and cumulative probability of reliability of material were calculated. Statistical criteria calculation supporting strength analysis of Silicon Nitride material were done utilizing MATLAB. (author)

  6. Analysis of valve failures from the NUCLARR data base

    International Nuclear Information System (INIS)

    Moore, L.M.

    1997-11-01

    The Nuclear Computerized Library for Assessing Reactor Reliability (NUCLARR) contains data on component failures with categorical and qualifying information such as component design, normal operating state, system application and safety grade information which is important to the development of risk-based component surveillance testing requirements. This report presents descriptions and results of analyses of valve component failure data and covariate information available in the document Nuclear Computerized Library for Assessing Reactor Reliability Data Manual, Part 3: Hardware Component Failure Data (NUCLARR Data Manual). Although there are substantial records on valve performance, there are many categories of the corresponding descriptors and qualifying information for which specific values are missing. Consequently, this limits the data available for analysis of covariate effects. This report presents cross tabulations by different covariate categories and limited modeling of covariate effects for data subsets with substantive non-missing covariate information

  7. Photovoltaic module reliability improvement through application testing and failure analysis

    Science.gov (United States)

    Dumas, L. N.; Shumka, A.

    1982-01-01

    During the first four years of the U.S. Department of Energy (DOE) National Photovoltatic Program, the Jet Propulsion Laboratory Low-Cost Solar Array (LSA) Project purchased about 400 kW of photovoltaic modules for test and experiments. In order to identify, report, and analyze test and operational problems with the Block Procurement modules, a problem/failure reporting and analysis system was implemented by the LSA Project with the main purpose of providing manufacturers with feedback from test and field experience needed for the improvement of product performance and reliability. A description of the more significant types of failures is presented, taking into account interconnects, cracked cells, dielectric breakdown, delamination, and corrosion. Current design practices and reliability evaluations are also discussed. The conducted evaluation indicates that current module designs incorporate damage-resistant and fault-tolerant features which address field failure mechanisms observed to date.

  8. Sensor Failure Detection of FASSIP System using Principal Component Analysis

    Science.gov (United States)

    Sudarno; Juarsa, Mulya; Santosa, Kussigit; Deswandri; Sunaryo, Geni Rina

    2018-02-01

    In the nuclear reactor accident of Fukushima Daiichi in Japan, the damages of core and pressure vessel were caused by the failure of its active cooling system (diesel generator was inundated by tsunami). Thus researches on passive cooling system for Nuclear Power Plant are performed to improve the safety aspects of nuclear reactors. The FASSIP system (Passive System Simulation Facility) is an installation used to study the characteristics of passive cooling systems at nuclear power plants. The accuracy of sensor measurement of FASSIP system is essential, because as the basis for determining the characteristics of a passive cooling system. In this research, a sensor failure detection method for FASSIP system is developed, so the indication of sensor failures can be detected early. The method used is Principal Component Analysis (PCA) to reduce the dimension of the sensor, with the Squarred Prediction Error (SPE) and statistic Hotteling criteria for detecting sensor failure indication. The results shows that PCA method is capable to detect the occurrence of a failure at any sensor.

  9. Spent Nuclear Fuel Alternative Technology Decision Analysis

    International Nuclear Information System (INIS)

    Shedrow, C.B.

    1999-01-01

    The Westinghouse Savannah River Company (WSRC) made a FY98 commitment to the Department of Energy (DOE) to recommend a technology for the disposal of aluminum-based spent nuclear fuel (SNF) at the Savannah River Site (SRS). The two technologies being considered, direct co-disposal and melt and dilute, had been previously selected from a group of eleven potential SNF management technologies by the Research Reactor Spent Nuclear Fuel Task Team chartered by the DOE''s Office of Spent Fuel Management. To meet this commitment, WSRC organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and ultimately provide a WSRC recommendation to DOE on a preferred SNF alternative management technology

  10. Spent Nuclear Fuel Alternative Technology Decision Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Shedrow, C.B.

    1999-11-29

    The Westinghouse Savannah River Company (WSRC) made a FY98 commitment to the Department of Energy (DOE) to recommend a technology for the disposal of aluminum-based spent nuclear fuel (SNF) at the Savannah River Site (SRS). The two technologies being considered, direct co-disposal and melt and dilute, had been previously selected from a group of eleven potential SNF management technologies by the Research Reactor Spent Nuclear Fuel Task Team chartered by the DOE''s Office of Spent Fuel Management. To meet this commitment, WSRC organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and ultimately provide a WSRC recommendation to DOE on a preferred SNF alternative management technology.

  11. Tests and analysis on steam generator tube failure propagation

    International Nuclear Information System (INIS)

    Tanabe, Hiromi

    1990-01-01

    The understanding of leak enlargement and failure propagation behavior is essential to select a design basis leak (DBL) of LMFBR steam generators. Therefore, various series of experiments, such as self-enlargement tests, target wastage tests, failure propagation tests were conducted in a wide range of leak using test facilities of SWAT at PNC/OEC. Especially, in the large leak tests, potential of overheating failure was investigated under a prototypical steam cooling condition inside target tubes. In the small leak, the difference of wastage resistivity was clarified among several tube materials such as 9-chrome steels. In regard to an analytical approach, a computer code LEAP (Leak Enlargement and Propagation) was developed on the basis of all of these experimental results. The code was used to validate the previously selected DBL of the prototype reactor, Monju, steam generator. This approach proved to be successful in spite of somewhat over-conservatism in the analysis. Moreover, LEAP clarified the effectiveness of a rapid steam dump and an enhanced leak detection system. The code improvement toward a realistic analysis is desired, however, to lessen the DBL for a future large plant and then the re-evaluation of the experimental data such as the size of secondary failure is under way. (author). 4 refs, 8 figs, 1 tab

  12. Alternatives to Center of Gravity Analysis

    Science.gov (United States)

    2013-04-04

    20 Figure 11. SWOT Analysis ...COMPARISON BETWEEN COG ANALYSIS AND SMTS ......................................................22 Benefits of using SMT in COG Analysis ...Opportunities, and Threats ( SWOT ) analysis . SWOT identifies external and internal factors that impinge on the business (Figure 11). SWOT can be as

  13. failure analysis of a uav flight control system using markov analysis

    African Journals Online (AJOL)

    Failure analysis of a flight control system proposed for Air Force Institute of Technology (AFIT) Unmanned Aerial Vehicle (UAV) was studied using Markov Analysis (MA). It was perceived that understanding of the number of failure states and the probability of being in those state are of paramount importance in order to ...

  14. Failure characteristics analysis and fault diagnosis for liquid rocket engines

    CERN Document Server

    Zhang, Wei

    2016-01-01

    This book concentrates on the subject of health monitoring technology of Liquid Rocket Engine (LRE), including its failure analysis, fault diagnosis and fault prediction. Since no similar issue has been published, the failure pattern and mechanism analysis of the LRE from the system stage are of particular interest to the readers. Furthermore, application cases used to validate the efficacy of the fault diagnosis and prediction methods of the LRE are different from the others. The readers can learn the system stage modeling, analyzing and testing methods of the LRE system as well as corresponding fault diagnosis and prediction methods. This book will benefit researchers and students who are pursuing aerospace technology, fault detection, diagnostics and corresponding applications.

  15. Failure mode and effects analysis: too little for too much?

    Science.gov (United States)

    Dean Franklin, Bryony; Shebl, Nada Atef; Barber, Nick

    2012-07-01

    Failure mode and effects analysis (FMEA) is a structured prospective risk assessment method that is widely used within healthcare. FMEA involves a multidisciplinary team mapping out a high-risk process of care, identifying the failures that can occur, and then characterising each of these in terms of probability of occurrence, severity of effects and detectability, to give a risk priority number used to identify failures most in need of attention. One might assume that such a widely used tool would have an established evidence base. This paper considers whether or not this is the case, examining the evidence for the reliability and validity of its outputs, the mathematical principles behind the calculation of a risk prioirty number, and variation in how it is used in practice. We also consider the likely advantages of this approach, together with the disadvantages in terms of the healthcare professionals' time involved. We conclude that although FMEA is popular and many published studies have reported its use within healthcare, there is little evidence to support its use for the quantitative prioritisation of process failures. It lacks both reliability and validity, and is very time consuming. We would not recommend its use as a quantitative technique to prioritise, promote or study patient safety interventions. However, the stage of FMEA involving multidisciplinary mapping process seems valuable and work is now needed to identify the best way of converting this into plans for action.

  16. Failure Mode and Effect Analysis of Subsea Multiphase Pump Equipment

    Directory of Open Access Journals (Sweden)

    Oluwatoyin Shobowale Kafayat

    2014-07-01

    Full Text Available Finding oil and gas reserves in deep/harsh environment with challenging reservoir and field conditions, subsea multiphase pumping benefits has found its way to provide solutions to these issues. Challenges such as failure issues that are still surging the industry and with the current practice of information hiding, this issues becomes even more difficult to tackle. Although, there are some joint industry projects which are only accessible to its members, still there is a need to have a clear understanding of these equipment groups so as to know which issues to focus attention on. A failure mode and effect analysis (FMEA is a potential first aid in understanding this equipment groups. A survey questionnaire/interview was conducted with the oil and gas operating company and equipment manufacturer based on the literature review. The results indicates that these equipment’s group are similar with its onshore counterpart, but the difference is the robustness built into the equipment internal subsystems for subsea applications. The results from the manufacturer perspectives indicates that Helico-axial multiphase pump have a mean time to failure of more than 10 years, twin-screw and electrical submersible pumps are still struggling with a mean time to failure of less than 5 years.

  17. Seismic analysis for translational failure of landfills with retaining walls.

    Science.gov (United States)

    Feng, Shi-Jin; Gao, Li-Ya

    2010-11-01

    In the seismic impact zone, seismic force can be a major triggering mechanism for translational failures of landfills. The scope of this paper is to develop a three-part wedge method for seismic analysis of translational failures of landfills with retaining walls. The approximate solution of the factor of safety can be calculated. Unlike previous conventional limit equilibrium methods, the new method is capable of revealing the effects of both the solid waste shear strength and the retaining wall on the translational failures of landfills during earthquake. Parameter studies of the developed method show that the factor of safety decreases with the increase of the seismic coefficient, while it increases quickly with the increase of the minimum friction angle beneath waste mass for various horizontal seismic coefficients. Increasing the minimum friction angle beneath the waste mass appears to be more effective than any other parameters for increasing the factor of safety under the considered condition. Thus, selecting liner materials with higher friction angle will considerably reduce the potential for translational failures of landfills during earthquake. The factor of safety gradually increases with the increase of the height of retaining wall for various horizontal seismic coefficients. A higher retaining wall is beneficial to the seismic stability of the landfill. Simply ignoring the retaining wall will lead to serious underestimation of the factor of safety. Besides, the approximate solution of the yield acceleration coefficient of the landfill is also presented based on the calculated method. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Failure analysis of boiler tubes in lakhra coal power plant

    International Nuclear Information System (INIS)

    Shah, A.; Baluch, M.M.; Ali, A.

    2010-01-01

    Present work deals with the failure analysis of a boiler tube in Lakhra fluidized bed combustion power station. Initially, visual inspection technique was adopted to analyse the fractured surface. Detailed microstructural investigations of the busted boiler tube were carried out using light optical microscope and scanning electron microscope. The hardness tests were also performed. A 50 percent decrease in hardness of intact portion of the tube material and from area adjacent to failure was measured, which was found to be in good agreement with the wall thicknesses measured of the busted boiler tube i.e. 4 mm and 2 mm from unaffected portion and ruptured area respectively. It was concluded that the major cause of failure of boiler tube is erosion of material which occurs due the coal particles strike at the surface of the tube material. Since the temperature of boiler is not maintained uniformly. The variations in boiler temperature can also affect the material and could be another reason for the failure of the tube. (author)

  19. PV System Component Fault and Failure Compilation and Analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Klise, Geoffrey Taylor; Lavrova, Olga; Gooding, Renee Lynne

    2018-02-01

    This report describes data collection and analysis of solar photovoltaic (PV) equipment events, which consist of faults and fa ilures that occur during the normal operation of a distributed PV system or PV power plant. We present summary statistics from locations w here maintenance data is being collected at various intervals, as well as reliability statistics gathered from that da ta, consisting of fault/failure distributions and repair distributions for a wide range of PV equipment types.

  20. Summary: analysis of alternative FBR development strategies

    International Nuclear Information System (INIS)

    Burnham, J.B.

    1981-12-01

    This report summarizes the comparative evaluation of alternative strategies for the development of the commercial fast breeder reactor (FBR) in the United States. For planning purposes, a range of possible FBR development paths called strategies were selected for evaluation. These strategies, designed to be technically and economically feasible, were expressed in terms of the timing and nature of facilities/research and development programs required to reach full power operation of the first commercial FBR. Four of the seven strategies resulted in a large (1457 MWe) FBR as an end point, the other three in a 1000-MWe plant. Probability distributions were calculated for total strategy costs and time to completion. For the seven strategies analyzed, the costs (discounted 1980 dollars) ranged from $1.8 billion to $4.9 billion; the completion times ranged from 24 to 55 years

  1. Reliability analysis for the creep rupture mode of failure

    International Nuclear Information System (INIS)

    Vaidyanathan, S.

    1975-01-01

    An analytical study has been carried out to relate the factors of safety employed in the design of a component to the probability of failure in the thermal creep rupture mode. The analysis considers the statistical variations in the operating temperature, stress and rupture time, and applies the life fraction damage criterion as the indicator of failure. Typical results for solution annealed type 304-stainless steel material for the temperature and stress variations expected in an LMFBR environment have been obtained. The analytical problem was solved by considering the joint distribution of the independent variables and deriving the distribution for the function associated with the probability of failure by integrating over proper regions as dictated by the deterministic design rule. This leads to a triple integral for the final probability of failure where the coefficients of variation associated with the temperature, stress and rupture time distributions can be specified by the user. The derivation is general, and can be used for time varying stress histories and the case of irradiated material where the rupture time varies with accumulated fluence. Example calculations applied to solution annealed type 304 stainless steel material have been carried out for an assumed coefficient of variation of 2% for temperature and 6% for stress. The results show that the probability of failure associated with dependent stress intensity limits specified in the ASME Boiler and Pressure Vessel Section III Code Case 1592 is less than 5x10 -8 . Rupture under thermal creep conditions is a highly complicated phenomenon. It is believed that the present study will help in quantizing the reliability to be expected with deterministic design factors of safety

  2. Failure mode and effects analysis outputs: are they valid?

    Directory of Open Access Journals (Sweden)

    Shebl Nada

    2012-06-01

    Full Text Available Abstract Background Failure Mode and Effects Analysis (FMEA is a prospective risk assessment tool that has been widely used within the aerospace and automotive industries and has been utilised within healthcare since the early 1990s. The aim of this study was to explore the validity of FMEA outputs within a hospital setting in the United Kingdom. Methods Two multidisciplinary teams each conducted an FMEA for the use of vancomycin and gentamicin. Four different validity tests were conducted: · Face validity: by comparing the FMEA participants’ mapped processes with observational work. · Content validity: by presenting the FMEA findings to other healthcare professionals. · Criterion validity: by comparing the FMEA findings with data reported on the trust’s incident report database. · Construct validity: by exploring the relevant mathematical theories involved in calculating the FMEA risk priority number. Results Face validity was positive as the researcher documented the same processes of care as mapped by the FMEA participants. However, other healthcare professionals identified potential failures missed by the FMEA teams. Furthermore, the FMEA groups failed to include failures related to omitted doses; yet these were the failures most commonly reported in the trust’s incident database. Calculating the RPN by multiplying severity, probability and detectability scores was deemed invalid because it is based on calculations that breach the mathematical properties of the scales used. Conclusion There are significant methodological challenges in validating FMEA. It is a useful tool to aid multidisciplinary groups in mapping and understanding a process of care; however, the results of our study cast doubt on its validity. FMEA teams are likely to need different sources of information, besides their personal experience and knowledge, to identify potential failures. As for FMEA’s methodology for scoring failures, there were discrepancies

  3. Analysis of Reactor Vessel Lower Head Penetration Tube Failure

    International Nuclear Information System (INIS)

    Stempniewicz, Marek

    1999-01-01

    This paper presents results of two studies, performed to investigate the behavior of the reactor vessel penetration tubes in case of relocation of molten material into the tubes. The first study is on the CORVIS drain line experiment 03/1. Results of pre-test calculations are presented, and compared to the later obtained experimental data. The timing of the drain line melting and the velocity of the debris flowing inside the drain line were predicted correctly, but the penetration depth was clearly underestimated. If the calculations are done using different correlation for the melt-to-wall convective heat transfer, the results are closer to the experiment. It cannot however be concluded that the alternative correlation is more appropriate until other uncertainties are clarified. The second study presents calculations performed for GKN Dodewaard CRD, instrument tubes and drain line. Calculations were performed to estimate whether the tubes have a chance to withstand the first attack of the melt and thus postpone vessel failure until the water in the lower plenum evaporates. Calculations were performed assuming that the melt can move into the tubes without any resistance, e.g. presence of water in the tubes was not taken into account. The results indicate that the critical penetration of the GKN vessel, which is most likely to fail, is the drain line. Results also indicate that external flooding should prevent early tube failure, at least in case of low vessel pressure. (author)

  4. Failure of Emperion modular femoral stem with implant analysis

    Directory of Open Access Journals (Sweden)

    Benjamin M. Stronach, MD, MS

    2016-03-01

    Full Text Available Modularity in total hip arthroplasty provides multiple benefits to the surgeon in restoring the appropriate alignment and position to a previously damaged hip joint. The vast majority of modern implants incorporate modularity into their design with some implants having multiple modular interfaces. There is the potential for failure at modular junctions because of fretting and crevice corrosion in combination with mechanical loading. This case report details the failure of an Emperion (Smith and Nephew, Memphis, TN femoral stem in a 67-year-old male patient 6 years after total hip replacement. Analysis of the implant revealed mechanically assisted crevice corrosion that likely accelerated fatigue crack initiation in the hip stem. The benefits of modularity come with the potential drawback of a combination of fretting and crevice corrosion at the modular junction, which may accelerate fatigue, crack initiation and ultimately reduce the hip longevity.

  5. Prediction of hospital failure: a post-PPS analysis.

    Science.gov (United States)

    Gardiner, L R; Oswald, S L; Jahera, J S

    1996-01-01

    This study investigates the ability of discriminant analysis to provide accurate predictions of hospital failure. Using data from the period following the introduction of the Prospective Payment System, we developed discriminant functions for each of two hospital ownership categories: not-for-profit and proprietary. The resulting discriminant models contain six and seven variables, respectively. For each ownership category, the variables represent four major aspects of financial health (liquidity, leverage, profitability, and efficiency) plus county marketshare and length of stay. The proportion of closed hospitals misclassified as open one year before closure does not exceed 0.05 for either ownership type. Our results show that discriminant functions based on a small set of financial and nonfinancial variables provide the capability to predict hospital failure reliably for both not-for-profit and proprietary hospitals.

  6. Failure mode and effects analysis on typical reactor trip system

    International Nuclear Information System (INIS)

    Eisawy, E.A.

    2010-01-01

    An updated failure mode and effects analysis, FMEA , has been performed on a typical reactor trip system. This upgrade helps to avoid system damage and ,as a result, extends the system service life. It also provides for simplified maintenance and surveillance testing. The operating conditions under which the system is to carry out its function and the operational profile expected for the system have been determined. The results of the FMEA have been given in terms of operating states of the subsystem.The results are given in form of table which is set up such that for a given failure one can read across it and determine which items remain operating in the system. From this data one can identify the number of components operating in the system for monitors pressure exceeds the setpoint pressure.

  7. Failure analysis of electrolyte-supported solid oxide fuel cells

    Science.gov (United States)

    Fleischhauer, Felix; Tiefenauer, Andreas; Graule, Thomas; Danzer, Robert; Mai, Andreas; Kuebler, Jakob

    2014-07-01

    For solid oxide fuel cells (SOFCs) one key aspect is the structural integrity of the cell and hence its thermo mechanical long term behaviour. The present study investigates the failure mechanisms and the actual causes for fracture of electrolyte supported SOFCs which were run using the current μ-CHP system of Hexis AG, Winterthur - Switzerland under lab conditions or at customer sites for up to 40,000 h. In a first step several operated stacks were demounted for post-mortem inspection, followed by a fractographic evaluation of the failed cells. The respective findings are then set into a larger picture including an analysis of the present stresses acting on the cell like thermal and residual stresses and the measurements regarding the temperature dependent electrolyte strength. For all investigated stacks, the mechanical failure of individual cells can be attributed to locally acting bending loads, which rise due to an inhomogeneous and uneven contact between the metallic interconnect and the cell.

  8. Uncertainty Analysis via Failure Domain Characterization: Unrestricted Requirement Functions

    Science.gov (United States)

    Crespo, Luis G.; Kenny, Sean P.; Giesy, Daniel P.

    2011-01-01

    This paper proposes an uncertainty analysis framework based on the characterization of the uncertain parameter space. This characterization enables the identification of worst-case uncertainty combinations and the approximation of the failure and safe domains with a high level of accuracy. Because these approximations are comprised of subsets of readily computable probability, they enable the calculation of arbitrarily tight upper and lower bounds to the failure probability. The methods developed herein, which are based on nonlinear constrained optimization, are applicable to requirement functions whose functional dependency on the uncertainty is arbitrary and whose explicit form may even be unknown. Some of the most prominent features of the methodology are the substantial desensitization of the calculations from the assumed uncertainty model (i.e., the probability distribution describing the uncertainty) as well as the accommodation for changes in such a model with a practically insignificant amount of computational effort.

  9. Uncertainty Analysis via Failure Domain Characterization: Polynomial Requirement Functions

    Science.gov (United States)

    Crespo, Luis G.; Munoz, Cesar A.; Narkawicz, Anthony J.; Kenny, Sean P.; Giesy, Daniel P.

    2011-01-01

    This paper proposes an uncertainty analysis framework based on the characterization of the uncertain parameter space. This characterization enables the identification of worst-case uncertainty combinations and the approximation of the failure and safe domains with a high level of accuracy. Because these approximations are comprised of subsets of readily computable probability, they enable the calculation of arbitrarily tight upper and lower bounds to the failure probability. A Bernstein expansion approach is used to size hyper-rectangular subsets while a sum of squares programming approach is used to size quasi-ellipsoidal subsets. These methods are applicable to requirement functions whose functional dependency on the uncertainty is a known polynomial. Some of the most prominent features of the methodology are the substantial desensitization of the calculations from the uncertainty model assumed (i.e., the probability distribution describing the uncertainty) as well as the accommodation for changes in such a model with a practically insignificant amount of computational effort.

  10. Dam failure analysis/calibration using NWS models on dam failure in Alton, New Hampshire

    International Nuclear Information System (INIS)

    Capone, E.J.

    1998-01-01

    The State of New Hampshire Water Resources Board, the United States Geological Service, and private concerns have compiled data on the cause of a catastrophic failure of the Bergeron Dam in Alton, New Hampshire in March of 1996. Data collected related to the cause of the breach, the breach parameters, the soil characteristics of the failed section, and the limits of downstream flooding. Dam break modeling software was used to calibrate and verify the simulated flood-wave caused by the Bergeron Dam breach. Several scenarios were modeled, using different degrees of detail concerning the topography/channel-geometry of the affected areas. A sensitivity analysis of the important output parameters was completed. The relative importance of model parameters on the results was assessed against the background of observed historical events

  11. Self-analysis, an alternative to theorizing?

    Directory of Open Access Journals (Sweden)

    Nicolas Donin

    2015-09-01

    Full Text Available In addition to the renowned treatises and articles written by composer-theorists of the twentieth century (e.g., Schoenberg, Boulez or Lachenmann there is a category of writings by composers that is less known and familiar: self-analysis. We distinguish these texts for their openly subjective/introspective, descriptive character situated in the context of a work or specific project. Unlike theoretical texts that develop formal, general (or generalizable theses, independent of all the particularities of works, self-analysis proposes foremost, accounts of or commentaries on the creative experience of the composer. Through this paper, we introduce and discuss a number of these texts that cover various genres and formats: analysis of the composer’s own music, work diary, and philosophical dialogue. Finally, we question its theoretical potential and relationship to the current development of "research in art".

  12. The study of Influencing Maintenance Factors on Failures of Two gypsum Kilns by Failure Modes and Effects Analysis (FMEA

    Directory of Open Access Journals (Sweden)

    Iraj Alimohammadi

    2014-06-01

    Full Text Available Developing technology and using equipment in Iranian industries caused that maintenance system would be more important to use. Using proper management techniques not only increase the performance of production system but also reduce the failures and costs. The aim of this study was to determine the quality of maintenance system and the effects of its components on failures of kilns in two gypsum production companies using Failure Modes and Effects Analysis (FMEA. Furthermore the costs of failures were studied. After the study of gypsum production steps in the factories, FMEA was conducted by the determination of analysis insight, information gathering, making list of kilns’ component and filling up the FMEA’s tables. The effects of failures on production, how to fail, failure rate, failure severity, and control measures were studied. The evaluation of maintenance system was studied by a check list including questions related to system components. The costs of failures were determined by refer in accounting notebooks and interview with the head of accounting department. It was found the total qualities of maintenance system in NO.1 was more than NO.2 but because of lower quality of NO.1’s kiln design, number of failures and their costs were more. In addition it was determined that repair costs in NO.2’s kiln were about one third of NO.1’s. The low severity failures caused the most costs in comparison to the moderate and low ones. The technical characteristics of kilns were appeared to be the most important factors in reducing of failures and costs.

  13. An Alternative Front End Analysis Strategy for Complex Systems

    Science.gov (United States)

    2014-12-01

    missile ( ABM ) system . Patriot is employed in the field through a battalion echelon organizational structure. The line battery is the basic building...Research Report 1981 An Alternative Front End Analysis Strategy for Complex Systems M. Glenn Cobb U.S. Army Research Institute...NUMBER W5J9CQ11D0003 An Alternative Front End Analysis Strategy for Complex Systems 5b. PROGRAM ELEMENT NUMBER 633007 6

  14. An Independent Evaluation of the FMEA/CIL Hazard Analysis Alternative Study

    Science.gov (United States)

    Ray, Paul S.

    1996-01-01

    The present instruments of safety and reliability risk control for a majority of the National Aeronautics and Space Administration (NASA) programs/projects consist of Failure Mode and Effects Analysis (FMEA), Hazard Analysis (HA), Critical Items List (CIL), and Hazard Report (HR). This extensive analytical approach was introduced in the early 1970's and was implemented for the Space Shuttle Program by NHB 5300.4 (1D-2. Since the Challenger accident in 1986, the process has been expanded considerably and resulted in introduction of similar and/or duplicated activities in the safety/reliability risk analysis. A study initiated in 1995, to search for an alternative to the current FMEA/CIL Hazard Analysis methodology generated a proposed method on April 30, 1996. The objective of this Summer Faculty Study was to participate in and conduct an independent evaluation of the proposed alternative to simplify the present safety and reliability risk control procedure.

  15. Alternative Schools and Programs for Public School Students at Risk of Educational Failure: 2007-08. First Look. NCES 2010-026

    Science.gov (United States)

    Carver, Priscilla Rouse; Lewis, Laurie; Tice, Peter

    2010-01-01

    This report provides national estimates on the availability of alternative schools and programs for students at risk of educational failure in public school districts during the 2007-08 school year. The National Center for Education Statistics (NCES) previously reported results from a similar survey of alternative schools and programs conducted…

  16. Operating personnel error analysis during operation failures in the Kozloduj NPP

    International Nuclear Information System (INIS)

    Jonkova, A.

    1990-01-01

    The failures due to personnel errors are analyzed for 10 years period (1977-1986). Most of the results are presented in absolute values and are considered in dynamics. The indices for relative shares are compared by alternative analysis. One of the most important causes is the fluctuation of manpower. The failures distribution by months within the year and by hours of the day is given. The biggest number of failures occurred in the period April-October (without August - the month of the leaves), when the refueling and repair were taken place, and in January-February, due to heavy meteorological conditions and some fatigue and disconcentration because of multiple holidays. The failures during the day shifts had the greatest relative share - 42%, during the afternoon shifts - 26% and during the night shifts - 32% The most 'dangerous' time periods happened to be 11-12 h and 13-14 h (deteriorated attention after lunch), 20-22 h (physiological drop of the psychological activity), 0-3 h (the lowest level of physiological and psychological activity) and in the first and last hours of every shift. Three groups of causes are pointed out as the most frequent: improper actions connected with orders; improper independent actions; uncoordinated teamwork. The following measures are proposed for reducing the effect of the human factor: setting up the training centre; preliminary evaluation of the professional qualification of the operators; current dynamic control of their neuro-psychological fitness and occupational reliability. 1 fig, 2 tabs, 5 refs

  17. failure analysis of a uav flight control system using markov analysis

    African Journals Online (AJOL)

    eobe

    2016-01-01

    Jan 1, 2016 ... Tree Analysis (FTA), Dependence Diagram Analysis. (DDA) and Markov Analysis (MA) are the most widely-used methods of probabilistic safety and reliability analysis for airborne system [1]. Fault trees analysis is a backward failure searching ..... [4] Christopher Dabrowski and Fern Hunt Markov Chain.

  18. Propensity Score Analysis: An Alternative Statistical Approach for HRD Researchers

    Science.gov (United States)

    Keiffer, Greggory L.; Lane, Forrest C.

    2016-01-01

    Purpose: This paper aims to introduce matching in propensity score analysis (PSA) as an alternative statistical approach for researchers looking to make causal inferences using intact groups. Design/methodology/approach: An illustrative example demonstrated the varying results of analysis of variance, analysis of covariance and PSA on a heuristic…

  19. Alternatives Analysis For Selecting ET 3 Site

    International Nuclear Information System (INIS)

    Collard, L.; Hamm, L.

    2012-01-01

    Engineered trenches (ETs) are considered to be a cost-effective method for disposing Low Level Waste (LLW). Based on waste forecasts from waste generators, the last engineered trench in operation (ET No.2) is anticipated to close in FY14, requiring development of a new ET. Solid Waste requested that SRNL develop an assessment report that reviews four disposal options for this new ET (ET No.3) and determine which option would provide the 'best' Performance Assessment (PA) disposal limits for LLW (Appendix A). Those four options (see option footprint locations in Figure 1-1) are: (1) Disposal at grade on TRU Pads 7-13 where soil would be mounded over waste packages; (2) Excavation at a slightly modified SLIT No.13 location - near the Used Equipment Storage Area; (3) Excavation at a modified SLIT No.12 location - near the 643-26E Naval Reactor Component Disposal Area; and (4) Excavation east of TRU Pad No.26 that replaces northeast portions of four slit trench (ST) disposal units in the eastern set of STs. The assessment consisted of both quantitative and qualitative analyses. The quantitative analysis captured key aspects that were readily quantifiable and had predictable impacts on limits and doses. A simplified modeling strategy stemming from current Special Analysis (SA) practices was employed. Both inventory capacity for a specific nuclide (a quasi-inventory limit) and overall performance for specified inventory mixtures (doses resulting from historical inventories) were considered. The qualitative analysis evaluated other key aspects based on engineering judgment in the form of pros and cons.

  20. Improving failure analysis efficiency by combining FTA and FMEA in a recursive manner

    NARCIS (Netherlands)

    Peeters, J.F.W.; Basten, R.J.I.; Tinga, Tiedo

    2018-01-01

    When designing a maintenance programme for a capital good, especially a new one, it is of key importance to accurately understand its failure behaviour. Failure mode and effects analysis (FMEA) and fault tree analysis (FTA) are two commonly used methods for failure analysis. FMEA is a bottom-up

  1. Improving failure analysis efficiency by combining FTA and FMEA in a recursive manner

    NARCIS (Netherlands)

    Peeters, J.F.W.; Basten, R.J.I.; Tinga, T.

    When designing a maintenance programme for a capital good, especially a new one, it is of key importance to accurately understand its failure behaviour. Failure mode and effects analysis (FMEA) and fault tree analysis (FTA) are two commonly used methods for failure analysis. FMEA is a bottom-up

  2. Advanced Post-Irradiation Examination Capabilities Alternatives Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    Jeff Bryan; Bill Landman; Porter Hill

    2012-12-01

    An alternatives analysis was performed for the Advanced Post-Irradiation Capabilities (APIEC) project in accordance with the U.S. Department of Energy (DOE) Order DOE O 413.3B, “Program and Project Management for the Acquisition of Capital Assets”. The Alternatives Analysis considered six major alternatives: ? No Action ? Modify Existing DOE Facilities – capabilities distributed among multiple locations ? Modify Existing DOE Facilities – capabilities consolidated at a few locations ? Construct New Facility ? Commercial Partnership ? International Partnerships Based on the alternatives analysis documented herein, it is recommended to DOE that the advanced post-irradiation examination capabilities be provided by a new facility constructed at the Materials and Fuels Complex at the Idaho National Laboratory.

  3. The distributed failure probability approach to dependent failure analysis, and its application

    International Nuclear Information System (INIS)

    Hughes, R.P.

    1989-01-01

    The Distributed Failure Probability (DFP) approach to the problem of dependent failures in systems is presented. The basis of the approach is that the failure probability of a component is a variable. The source of this variability is the change in the 'environment' of the component, where the term 'environment' is used to mean not only obvious environmental factors such as temperature etc., but also such factors as the quality of maintenance and manufacture. The failure probability is distributed among these various 'environments' giving rise to the Distributed Failure Probability method. Within the framework which this method represents, modelling assumptions can be made, based both on engineering judgment and on the data directly. As such, this DFP approach provides a soundly based and scrutable technique by which dependent failures can be quantitatively assessed. (orig.)

  4. Failure and Reliability Analysis for the Master Pump Shutdown System

    International Nuclear Information System (INIS)

    BEVINS, R.R.

    2000-01-01

    The Master Pump Shutdown System (MPSS) will be installed in the 200 Areas of the Hanford Site to monitor and control the transfer of liquid waste between tank farms and between the 200 West and 200 East areas through the Cross-Site Transfer Line. The Safety Function provided by the MPSS is to shutdown any waste transfer process within or between tank farms if a waste leak should occur along the selected transfer route. The MPSS, which provides this Safety Class Function, is composed of Programmable Logic Controllers (PLCs), interconnecting wires, relays, Human to Machine Interfaces (HMI), and software. These components are defined as providing a Safety Class Function and will be designated in this report as MPSS/PLC. Input signals to the MPSS/PLC are provided by leak detection systems from each of the tank farm leak detector locations along the waste transfer route. The combination of the MPSS/PLC, leak detection system, and transfer pump controller system will be referred to as MPSS/SYS. The components addressed in this analysis are associated with the MPSS/SYS. The purpose of this failure and reliability analysis is to address the following design issues of the Project Development Specification (PDS) for the MPSS/SYS (HNF 2000a): (1) Single Component Failure Criterion, (2) System Status Upon Loss of Electrical Power, (3) Physical Separation of Safety Class cables, (4) Physical Isolation of Safety Class Wiring from General Service Wiring, and (5) Meeting the MPSS/PLC Option 1b (RPP 1999) Reliability estimate. The failure and reliability analysis examined the system on a component level basis and identified any hardware or software elements that could fail and/or prevent the system from performing its intended safety function

  5. Alternative comparison, analysis, and evaluation of solid waste and materials system alternatives

    International Nuclear Information System (INIS)

    Brothers, A.J.

    1995-09-01

    This paper presents a comprehensive analysis of the impact of solid waste technical options on values and objectives that are important to the public. It is written in support of the Solid Waste and Materials Systems Alternatives Study (WHC, 1995). Described are the values that were identified, the major programmatic risks, how the impacts were measured, the performance of alternatives, the methodology used for the analysis, and the implications of the results. Decision analysis was used to guide the collection and analysis of data and the logic of the evaluation. Decision analysis is a structured process for the analysis and evaluation of alternatives. It is theoretically grounded in a set of axioms that capture the basic principles of decision making (von Neuman and Morgenstern 1947). Decision analysis objectively specifies what factors are to be considered, how they are to be measured and evaluated, and heir relative importance. The result is an analysis in which the underlying rationale or logic upon which the decision is based is made explicit. This makes possible open discussion of the decision basis in which facts and values are clearly distinguished, resulting in a well- documented decision that can be clearly explained and justified. The strategy of decision analysis is to analyze the various components relevant to the decision separately and then integrate the individual judgments to arrive at an overall decision. This assures that all the relevant factors are identified and their relative importance is considered. The procedure for obtaining the individual judgments, and the decision rules, for combining them and evaluating alternatives, have both theoretical and empirical foundation in mathematics, economics, and psychology

  6. Risk analysis of alternative energy sources

    International Nuclear Information System (INIS)

    Kazmer, D.R.

    1982-01-01

    The author explores two points raised by Miller Spangler in a January 1981 issue: public perception of risks involving nuclear power plants relative to those of conventional plants and criteria for evaluating the way risk analyses are made. On the first point, he concludes that translating public attitudes into the experts' language of probability and risk could provide better information and understanding of both the attitudes and the risks. Viewing risk analysis methodologies as filters which help to test historical change, he suggests that the lack of information favors a lay jury approach for energy decisions. Spangler responds that Congress is an example of lay decision making, but that a lay jury, given public disinterest and polarization, would probably not improve social justice on the nuclear issue. 5 references, 4 figures

  7. Application of micropolar plasticity to post failure analysis in geomechanics

    Science.gov (United States)

    Manzari, Majid T.

    2004-08-01

    A micropolar elastoplastic model for soils is formulated and a series of finite element analyses are employed to demonstrate the use of a micropolar continuum in overcoming the numerical difficulties encountered in application of finite element method in standard Cauchy-Boltzmann continuum. Three examples of failure analysis involving a deep excavation, shallow foundation, and a retaining wall are presented. In all these cases, it is observed that the length scale introduced in the polar continuum regularizes the incremental boundary value problem and allows the numerical simulation to be continued until a clear collapse mechanism is achieved. The issue of grain size effect is also discussed. Copyright

  8. Augmenting health care failure modes and effects analysis with simulation

    DEFF Research Database (Denmark)

    Staub-Nielsen, Ditte Emilie; Dieckmann, Peter; Mohr, Marlene

    2014-01-01

    This study explores whether simulation plays a role in health care failure mode and effects analysis (HFMEA); it does this by evaluating whether additional data are found when a traditional HFMEA is augmented with simulation. Two multidisciplinary teams identified vulnerabilities in a process...... by brainstorming, followed by simulation. Two means of adding simulation were investigated as follows: just simulating the process and interrupting the simulation between substeps of the process. By adding simulation to a traditional HFMEA, both multidisciplinary teams identified additional data that were relevant...

  9. Local buckling failure analysis of high-strength pipelines

    Institute of Scientific and Technical Information of China (English)

    Yan Li; Jian Shuai; Zhong-Li Jin; Ya-Tong Zhao; Kui Xu

    2017-01-01

    Pipelines in geological disaster regions typically suffer the risk of local buckling failure because of slender structure and complex load.This paper is meant to reveal the local buckling behavior of buried pipelines with a large diameter and high strength,which are under different conditions,including pure bending and bending combined with internal pressure.Finite element analysis was built according to previous data to study local buckling behavior of pressurized and unpressurized pipes under bending conditions and their differences in local buckling failure modes.In parametric analysis,a series of parameters,including pipe geometrical dimension,pipe material properties and internal pressure,were selected to study their influences on the critical bending moment,critical compressive stress and critical compressive strain of pipes.Especially the hardening exponent of pipe material was introduced to the parameter analysis by using the Ramberg-Osgood constitutive model.Results showed that geometrical dimensions,material and internal pressure can exert similar effects on the critical bending moment and critical compressive stress,which have different,even reverse effects on the critical compressive strain.Based on these analyses,more accurate design models of critical bending moment and critical compressive stress have been proposed for high-strength pipelines under bending conditions,which provide theoretical methods for highstrength pipeline engineering.

  10. Failure analysis of axle shaft of a fork lift

    Directory of Open Access Journals (Sweden)

    Souvik Das

    2015-04-01

    Full Text Available An axle shaft of fork lift failed at operation within 296 h of service. The shaft transmits torque from discrepancy to wheel through planetary gear arrangement. A section of fractured axle shaft made of induction-hardened steel was analyzed to determine the root cause of the failure. Optical microscopies as well as field emission gun scanning electron microscopy (FEG-SEM along with energy dispersive spectroscopy (EDS were carried out to characterize the microstructure. Hardness profile throughout the cross-section was evaluated by micro-hardness measurements. Chemical analysis indicated that the shaft was made of 42CrMo4 steel grade as per specification. Microstructural analysis and micro-hardness profile revealed that the shaft was improperly heat treated resulting in a brittle case, where crack was found to initiate from the case in a brittle mode in contrast to ductile mode within the core. This behaviour was related to differences in microstructure, which was observed to be martensitic within the case with a micro-hardness equivalent to 735 HV, and a mixture of non-homogeneous structure of pearlite and ferrite within the core with a hardness of 210 HV. The analysis suggests that the fracture initiated from the martensitic case as brittle mode due to improper heat treatment process (high hardness. Moreover the inclusions along the hot working direction i.e. in the longitudinal axis made the component more susceptible to failure.

  11. Analysis of Service Recovery Failure: From Minority Perspective

    OpenAIRE

    Yasemin Öcal Atınç

    2016-01-01

    We investigate the service failures towards diverse customer groups for the purpose to bring insightful proposals to the managers to recover from these failures. Previous literature provided insights regarding the perception of service failures by minorities and the challenge of recovery due to racial implications driven from the failure, however lacked to propose suggestions for the managers so that they can take either corrective steps toward service failure recovery or prevent service fail...

  12. The failure trace archive : enabling comparative analysis of failures in diverse distributed systems

    NARCIS (Netherlands)

    Kondo, D.; Javadi, B.; Iosup, A.; Epema, D.H.J.

    2010-01-01

    With the increasing functionality and complexity of distributed systems, resource failures are inevitable. While numerous models and algorithms for dealing with failures exist, the lack of public trace data sets and tools has prevented meaningful comparisons. To facilitate the design, validation,

  13. Failure analysis and success analysis: roles in plant aging assessments

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.

    1985-06-01

    Component aging investigations are an important element in NRC's Nuclear Plant Aging Research (NPAR) strategy. Potential sources of components include plants in decommissioning and commercial plant, both for in situ tests and for examination of equipment removed from service. Nuclear utilities currently have voluntary programs addressing aspects of equipment reliability, such as root cause analysis for safety-related equipment that malfunctions, and trending analysis to follow the course of both successful and abnormal equipment performance. Properly coordinated, the NPAR and utility programs offer an important approach to establish the data base necessary for life extension of nuclear electrical generating plants

  14. Corrosion failure analysis of hearing aid battery-spring contacts

    DEFF Research Database (Denmark)

    Gudla, Visweswara Chakravarthy; Ambat, Rajan

    2017-01-01

    the susceptibility of these systems to galvanic corrosion. In this study, traditional behind the ear (BTE) hearing aid systems, which failed during service were analysed. Failure analysis was performed on the dome type battery-spring contact systems. The morphology of the contact areas was observed using scanning......Reliability of low power electrical contacts such as those in hearing aid battery-spring systems is a very critical aspect for the overall performance of the device. These systems are exposed to certain harsh environments like high humidity and elevated temperatures, and often in combination...... electron microscopy, and the compositional analysis of the corrosion products and contaminants was performed using energy dispersive X-ray spectroscopy. Wear track morphology was observed on the contact points, and the top coating on the dome was worn out exposing the substrate spring material...

  15. Failure Analysis of Nonvolatile Residue (NVR) Analyzer Model SP-1000

    Science.gov (United States)

    Potter, Joseph C.

    2011-01-01

    National Aeronautics and Space Administration (NASA) subcontractor Wiltech contacted the NASA Electrical Lab (NE-L) and requested a failure analysis of a Solvent Purity Meter; model SP-IOOO produced by the VerTis Instrument Company. The meter, used to measure the contaminate in a solvent to determine the relative contamination on spacecraft flight hardware and ground servicing equipment, had been inoperable and in storage for an unknown amount of time. NE-L was asked to troubleshoot the unit and make a determination on what may be required to make the unit operational. Through the use of general troubleshooting processes and the review of a unit in service at the time of analysis, the unit was found to be repairable but would need the replacement of multiple components.

  16. Probability of Failure Analysis Standards and Guidelines for Expendable Launch Vehicles

    Science.gov (United States)

    Wilde, Paul D.; Morse, Elisabeth L.; Rosati, Paul; Cather, Corey

    2013-09-01

    Recognizing the central importance of probability of failure estimates to ensuring public safety for launches, the Federal Aviation Administration (FAA), Office of Commercial Space Transportation (AST), the National Aeronautics and Space Administration (NASA), and U.S. Air Force (USAF), through the Common Standards Working Group (CSWG), developed a guide for conducting valid probability of failure (POF) analyses for expendable launch vehicles (ELV), with an emphasis on POF analysis for new ELVs. A probability of failure analysis for an ELV produces estimates of the likelihood of occurrence of potentially hazardous events, which are critical inputs to launch risk analysis of debris, toxic, or explosive hazards. This guide is intended to document a framework for POF analyses commonly accepted in the US, and should be useful to anyone who performs or evaluates launch risk analyses for new ELVs. The CSWG guidelines provide performance standards and definitions of key terms, and are being revised to address allocation to flight times and vehicle response modes. The POF performance standard allows a launch operator to employ alternative, potentially innovative methodologies so long as the results satisfy the performance standard. Current POF analysis practice at US ranges includes multiple methodologies described in the guidelines as accepted methods, but not necessarily the only methods available to demonstrate compliance with the performance standard. The guidelines include illustrative examples for each POF analysis method, which are intended to illustrate an acceptable level of fidelity for ELV POF analyses used to ensure public safety. The focus is on providing guiding principles rather than "recipe lists." Independent reviews of these guidelines were performed to assess their logic, completeness, accuracy, self- consistency, consistency with risk analysis practices, use of available information, and ease of applicability. The independent reviews confirmed the

  17. Failure mode effects and criticality analysis: innovative risk assessment to identify critical areas for improvement in emergency department sepsis resuscitation.

    Science.gov (United States)

    Powell, Emilie S; O'Connor, Lanty M; Nannicelli, Anna P; Barker, Lisa T; Khare, Rahul K; Seivert, Nicholas P; Holl, Jane L; Vozenilek, John A

    2014-06-01

    Sepsis is an increasing problem in the practice of emergency medicine as the prevalence is increasing and optimal care to reduce mortality requires significant resources and time. Evidence-based septic shock resuscitation strategies exist, and rely on appropriate recognition and diagnosis, but variation in adherence to the recommendations and therefore outcomes remains. Our objective was to perform a multi-institutional prospective risk-assessment, using failure mode effects and criticality analysis (FMECA), to identify high-risk failures in ED sepsis resuscitation. We conducted a FMECA, which prospectively identifies critical areas for improvement in systems and processes of care, across three diverse hospitals. A multidisciplinary group of participants described the process of emergency department (ED) sepsis resuscitation to then create a comprehensive map and table listing all process steps and identified process failures. High-risk failures in sepsis resuscitation from each of the institutions were compiled to identify common high-risk failures. Common high-risk failures included limited availability of equipment to place the central venous catheter and conduct invasive monitoring, and cognitive overload leading to errors in decision-making. Additionally, we identified great variability in care processes across institutions. Several common high-risk failures in sepsis care exist: a disparity in resources available across hospitals, a lack of adherence to the invasive components of care, and cognitive barriers that affect expert clinicians' decision-making capabilities. Future work may concentrate on dissemination of non-invasive alternatives and overcoming cognitive barriers in diagnosis and knowledge translation.

  18. Failure analysis of storage tank component in LNG regasification unit using fault tree analysis method (FTA)

    Science.gov (United States)

    Mulyana, Cukup; Muhammad, Fajar; Saad, Aswad H.; Mariah, Riveli, Nowo

    2017-03-01

    Storage tank component is the most critical component in LNG regasification terminal. It has the risk of failure and accident which impacts to human health and environment. Risk assessment is conducted to detect and reduce the risk of failure in storage tank. The aim of this research is determining and calculating the probability of failure in regasification unit of LNG. In this case, the failure is caused by Boiling Liquid Expanding Vapor Explosion (BLEVE) and jet fire in LNG storage tank component. The failure probability can be determined by using Fault Tree Analysis (FTA). Besides that, the impact of heat radiation which is generated is calculated. Fault tree for BLEVE and jet fire on storage tank component has been determined and obtained with the value of failure probability for BLEVE of 5.63 × 10-19 and for jet fire of 9.57 × 10-3. The value of failure probability for jet fire is high enough and need to be reduced by customizing PID scheme of regasification LNG unit in pipeline number 1312 and unit 1. The value of failure probability after customization has been obtained of 4.22 × 10-6.

  19. Standard guide for corrosion-related failure analysis

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2000-01-01

    1.1 This guide covers key issues to be considered when examining metallic failures when corrosion is suspected as either a major or minor causative factor. 1.2 Corrosion-related failures could include one or more of the following: change in surface appearance (for example, tarnish, rust, color change), pin hole leak, catastrophic structural failure (for example, collapse, explosive rupture, implosive rupture, cracking), weld failure, loss of electrical continuity, and loss of functionality (for example, seizure, galling, spalling, swelling). 1.3 Issues covered include overall failure site conditions, operating conditions at the time of failure, history of equipment and its operation, corrosion product sampling, environmental sampling, metallurgical and electrochemical factors, morphology (mode) or failure, and by considering the preceding, deducing the cause(s) of corrosion failure. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibili...

  20. Machinery failure analysis and troubleshooting practical machinery management for process plants

    CERN Document Server

    Bloch, Heinz P

    2012-01-01

    Solve the machinery failure problems costing you time and money with this classic, comprehensive guide to analysis and troubleshooting  Provides detailed, complete and accurate information on anticipating risk of component failure and avoiding equipment downtime Includes numerous photographs of failed parts to ensure you are familiar with the visual evidence you need to recognize Covers proven approaches to failure definition and offers failure identification and analysis methods that can be applied to virtually all problem situations Demonstr

  1. Failure analysis of collector circuits associated with wind farms

    Directory of Open Access Journals (Sweden)

    Clifton Ashley P.

    2017-01-01

    Full Text Available Wind farm collector circuits generally comprise several wind turbine generators (WTG’s. WTG’s are connected in parallel to a substation. This connection acts as the point-of-connection to the national electricity grid. The electrical load in these circuits is close to component (power cables and accessories ratings. The objective of this paper is to identify cable joint failure paths; and, develop an understanding of specific contributing factors. All findings presented were established from literature review involving data analysis and discussion with industry experts working across the wind industry. Application of forces, inadequate workmanship, incorrect thermal resistance or other contributing factors, all contribute to high conductor operating temperatures. High conductor operating temperatures highlight issues including insufficient environmental heat transfer due to the use of inadequate cable trenching materials. This in turn results in the imbalanced application of force, experienced at the cable joint, as a direct result of frequent thermal expansion and contraction. For most cable joint failures, the root cause is insulation breakdown due to sustained deterioration of the cross-linked polyethylene insulation. This is a direct result from excessive operating temperatures.

  2. Survival analysis of heart failure patients: A case study.

    Directory of Open Access Journals (Sweden)

    Tanvir Ahmad

    Full Text Available This study was focused on survival analysis of heart failure patients who were admitted to Institute of Cardiology and Allied hospital Faisalabad-Pakistan during April-December (2015. All the patients were aged 40 years or above, having left ventricular systolic dysfunction, belonging to NYHA class III and IV. Cox regression was used to model mortality considering age, ejection fraction, serum creatinine, serum sodium, anemia, platelets, creatinine phosphokinase, blood pressure, gender, diabetes and smoking status as potentially contributing for mortality. Kaplan Meier plot was used to study the general pattern of survival which showed high intensity of mortality in the initial days and then a gradual increase up to the end of study. Martingale residuals were used to assess functional form of variables. Results were validated computing calibration slope and discrimination ability of model via bootstrapping. For graphical prediction of survival probability, a nomogram was constructed. Age, renal dysfunction, blood pressure, ejection fraction and anemia were found as significant risk factors for mortality among heart failure patients.

  3. Survival analysis of heart failure patients: A case study.

    Science.gov (United States)

    Ahmad, Tanvir; Munir, Assia; Bhatti, Sajjad Haider; Aftab, Muhammad; Raza, Muhammad Ali

    2017-01-01

    This study was focused on survival analysis of heart failure patients who were admitted to Institute of Cardiology and Allied hospital Faisalabad-Pakistan during April-December (2015). All the patients were aged 40 years or above, having left ventricular systolic dysfunction, belonging to NYHA class III and IV. Cox regression was used to model mortality considering age, ejection fraction, serum creatinine, serum sodium, anemia, platelets, creatinine phosphokinase, blood pressure, gender, diabetes and smoking status as potentially contributing for mortality. Kaplan Meier plot was used to study the general pattern of survival which showed high intensity of mortality in the initial days and then a gradual increase up to the end of study. Martingale residuals were used to assess functional form of variables. Results were validated computing calibration slope and discrimination ability of model via bootstrapping. For graphical prediction of survival probability, a nomogram was constructed. Age, renal dysfunction, blood pressure, ejection fraction and anemia were found as significant risk factors for mortality among heart failure patients.

  4. Failure analysis of re-bars during bending operations

    Directory of Open Access Journals (Sweden)

    Souvik Das

    2014-10-01

    Full Text Available Thermo-mechanical treated (TMT rebar is suitable material for reinforcing concrete structures on accounts of similarity in thermal expansion, ability to bond well with concrete and, above all the ability to shoulder most of the tensile stress acting on the structure and also steel manufacturing industry has successfully developed a corrosion-resistant variety of rebar for the construction industry. As the TMT is the finish product thus proper control of rolling parameters and water box is needed to achieve adequate property. Water box plays an important role for achieving the final structure and property of the rebars. Water box is responsible for outer rim formation and which helps to achieve the yield strength of the material. The present paper highlights failure investigation of a failed rebar during bending operations. From fractography and microstructural analysis it is confirmed that the rebar sample failed in brittle manner due to through harden martensitic structure and which indicates that there is some anomaly in water box resulting in these premature failures.

  5. Ayame/PAM-D apogee kick motor nozzle failure analysis

    Science.gov (United States)

    1981-01-01

    The failure of two communication satellites during firing sequence were examined. The correlation/comparison of the circumstances of the Ayame incidents and the failure of the STAR 48 (DM-2) motor are reviewed. The massive nozzle failure of the AKM to determine the impact on spacecraft performance is examined. It is recommended that a closer watch is kept on systems techniques,

  6. Clinical risk analysis with failure mode and effect analysis (FMEA) model in a dialysis unit.

    Science.gov (United States)

    Bonfant, Giovanna; Belfanti, Pietro; Paternoster, Giuseppe; Gabrielli, Danila; Gaiter, Alberto M; Manes, Massimo; Molino, Andrea; Pellu, Valentina; Ponzetti, Clemente; Farina, Massimo; Nebiolo, Pier E

    2010-01-01

    The aim of clinical risk management is to improve the quality of care provided by health care organizations and to assure patients' safety. Failure mode and effect analysis (FMEA) is a tool employed for clinical risk reduction. We applied FMEA to chronic hemodialysis outpatients. FMEA steps: (i) process study: we recorded phases and activities. (ii) Hazard analysis: we listed activity-related failure modes and their effects; described control measures; assigned severity, occurrence and detection scores for each failure mode and calculated the risk priority numbers (RPNs) by multiplying the 3 scores. Total RPN is calculated by adding single failure mode RPN. (iii) Planning: we performed a RPNs prioritization on a priority matrix taking into account the 3 scores, and we analyzed failure modes causes, made recommendations and planned new control measures. (iv) Monitoring: after failure mode elimination or reduction, we compared the resulting RPN with the previous one. Our failure modes with the highest RPN came from communication and organization problems. Two tools have been created to ameliorate information flow: "dialysis agenda" software and nursing datasheets. We scheduled nephrological examinations, and we changed both medical and nursing organization. Total RPN value decreased from 892 to 815 (8.6%) after reorganization. Employing FMEA, we worked on a few critical activities, and we reduced patients' clinical risk. A priority matrix also takes into account the weight of the control measures: we believe this evaluation is quick, because of simple priority selection, and that it decreases action times.

  7. Goal-oriented failure analysis - a systems analysis approach to hazard identification

    International Nuclear Information System (INIS)

    Reeves, A.B.; Davies, J.; Foster, J.; Wells, G.L.

    1990-01-01

    Goal-Oriented Failure Analysis, GOFA, is a methodology which is being developed to identify and analyse the potential failure modes of a hazardous plant or process. The technique will adopt a structured top-down approach, with a particular failure goal being systematically analysed. A systems analysis approach is used, with the analysis being organised around a systems diagram of the plant or process under study. GOFA will also use checklists to supplement the analysis -these checklists will be prepared in advance of a group session and will help to guide the analysis and avoid unnecessary time being spent on identifying obvious failure modes or failing to identify certain hazards or failures. GOFA is being developed with the aim of providing a hazard identification methodology which is more efficient and stimulating than the conventional approach to HAZOP. The top-down approach should ensure that the analysis is more focused and the use of a systems diagram will help to pull the analysis together at an early stage whilst also helping to structure the sessions in a more stimulating way than the conventional techniques. GOFA will be, essentially, an extension of the HAZOP methodology. GOFA is currently being computerised using a knowledge-based systems approach for implementation. The Goldworks II expert systems development tool is being used. (author)

  8. Aluminium cables in automotive applications : Prestudy of aluminium cable uses in Scania products&Failure analysis and evaluation

    OpenAIRE

    Man, Yu

    2016-01-01

    The increasing demand of light constructed vehicles as well as soaring price of copper metal owing to limited nature resources have been promoting the use of aluminium metal as an alternative conductor of automotive cables. This thesis work is to lay theoretical foundations for further research and development regarding the introduction of new automotive cables i.e. aluminium cables. Current application of automotive aluminium cables in automotive industry as well as failure analysis and eval...

  9. How Analysis Informs Regulation:Success and Failure of ...

    Science.gov (United States)

    How Analysis Informs Regulation:Success and Failure of Evolving Approaches to Polyfluoroalkyl Acid Contamination The National Exposure Research Laboratory (NERL) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in support of EPA mission to protect human health and the environment. HEASD research program supports Goal 1 (Clean Air) and Goal 4 (Healthy People) of EPA strategic plan. More specifically, our division conducts research to characterize the movement of pollutants from the source to contact with humans. Our multidisciplinary research program produces Methods, Measurements, and Models to identify relationships between and characterize processes that link source emissions, environmental concentrations, human exposures, and target-tissue dose. The impact of these tools is improved regulatory programs and policies for EPA.

  10. Failure analysis of the fractured wires in sternal perichronal loops.

    Science.gov (United States)

    Chao, Jesús; Voces, Roberto; Peña, Carmen

    2011-10-01

    We report failure analysis of sternal wires in two cases in which a perichronal fixation technique was used to close the sternotomy. Various characteristics of the retrieved wires were compared to those of unused wires of the same grade and same manufacturer and with surgical wire specifications. In both cases, wire fracture was un-branched and transgranular and proceeded by a high cycle fatigue process, apparently in the absence of corrosion. However, stress anlysis indicates that the effective stress produced during strong coughing is lower than the yield strength. Our findings suggest that in order to reduce the risk for sternal dehiscence, the diameter of the wire used should be increased. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Prestudy - Development of trend analysis of component failure

    International Nuclear Information System (INIS)

    Poern, K.

    1995-04-01

    The Bayesian trend analysis model that has been used for the computation of initiating event intensities (I-book) is based on the number of events that have occurred during consecutive time intervals. The model itself is a Poisson process with time-dependent intensity. For the analysis of aging it is often more relevant to use times between failures for a given component as input, where by 'time' is meant a quantity that best characterizes the age of the component (calendar time, operating time, number of activations etc). Therefore, it has been considered necessary to extend the model and the computer code to allow trend analysis of times between events, and also of several sequences of times between events. This report describes this model extension as well as an application on an introductory ageing analysis of centrifugal pumps defined in Table 5 of the T-book. The application in turn directs the attention to the need for further development of both the trend model and the data base. Figs

  12. Failure mode and effects analysis and fault tree analysis of surface image guided cranial radiosurgery.

    Science.gov (United States)

    Manger, Ryan P; Paxton, Adam B; Pawlicki, Todd; Kim, Gwe-Ya

    2015-05-01

    Surface image guided, Linac-based radiosurgery (SIG-RS) is a modern approach for delivering radiosurgery that utilizes optical stereoscopic imaging to monitor the surface of the patient during treatment in lieu of using a head frame for patient immobilization. Considering the novelty of the SIG-RS approach and the severity of errors associated with delivery of large doses per fraction, a risk assessment should be conducted to identify potential hazards, determine their causes, and formulate mitigation strategies. The purpose of this work is to investigate SIG-RS using the combined application of failure modes and effects analysis (FMEA) and fault tree analysis (FTA), report on the effort required to complete the analysis, and evaluate the use of FTA in conjunction with FMEA. A multidisciplinary team was assembled to conduct the FMEA on the SIG-RS process. A process map detailing the steps of the SIG-RS was created to guide the FMEA. Failure modes were determined for each step in the SIG-RS process, and risk priority numbers (RPNs) were estimated for each failure mode to facilitate risk stratification. The failure modes were ranked by RPN, and FTA was used to determine the root factors contributing to the riskiest failure modes. Using the FTA, mitigation strategies were formulated to address the root factors and reduce the risk of the process. The RPNs were re-estimated based on the mitigation strategies to determine the margin of risk reduction. The FMEA and FTAs for the top two failure modes required an effort of 36 person-hours (30 person-hours for the FMEA and 6 person-hours for two FTAs). The SIG-RS process consisted of 13 major subprocesses and 91 steps, which amounted to 167 failure modes. Of the 91 steps, 16 were directly related to surface imaging. Twenty-five failure modes resulted in a RPN of 100 or greater. Only one of these top 25 failure modes was specific to surface imaging. The riskiest surface imaging failure mode had an overall RPN-rank of eighth

  13. ANALYSIS OF RELIABILITY OF NONRECTORABLE REDUNDANT POWER SYSTEMS TAKING INTO ACCOUNT COMMON FAILURES

    Directory of Open Access Journals (Sweden)

    V. A. Anischenko

    2014-01-01

    Full Text Available Reliability Analysis of nonrestorable redundant power Systems of industrial plants and other consumers of electric energy was carried out. The main attention was paid to numbers failures influence, caused by failures of all elements of System due to one general reason. Noted the main possible reasons of common failures formation. Two main indicators of reliability of non-restorable systems are considered: average time of no-failure operation and mean probability of no-failure operation. Modeling of failures were carried out by mean of division of investigated system into two in-series connected subsystems, one of them indicated independent failures, but the other indicated common failures. Due to joined modeling of single and common failures resulting intensity of failures is the amount incompatible components: intensity statistically independent failures and intensity of common failures of elements and system in total.It is shown the influence of common failures of elements on average time of no-failure operation of system. There is built the scale of preference of systems according to criterion of  average time maximum of no-failure operation, depending on portion of common failures. It is noticed that such common failures don’t influence on the scale of preference, but  change intervals of time, determining the moments of systems failures and excepting them from the number of comparators. There were discussed two problems  of conditionally optimization of  systems’  reservation choice, taking into account their reliability and cost. The first problem is solved due to criterion of minimum cost of system providing mean probability of no-failure operation, the second problem is solved due to criterion of maximum of mean probability of no-failure operation with cost limitation of system.

  14. Demonstration of risk-based decision analysis in remedial alternative selection and design

    International Nuclear Information System (INIS)

    Evans, E.K.; Duffield, G.M.; Massmann, J.W.; Freeze, R.A.; Stephenson, D.E.

    1993-01-01

    This study demonstrates the use of risk-based decision analysis (Massmann and Freeze 1987a, 1987b) in the selection and design of an engineering alternative for groundwater remediation at a waste site at the Savannah River Site, a US Department of Energy facility in South Carolina. The investigation focuses on the remediation and closure of the H-Area Seepage Basins, an inactive disposal site that formerly received effluent water from a nearby production facility. A previous study by Duffield et al. (1992), which used risk-based decision analysis to screen a number of ground-water remediation alternatives under consideration for this site, indicated that the most attractive remedial option is ground-water extraction by wells coupled with surface water discharge of treated effluent. The aim of the present study is to demonstrate the iterative use of risk-based decision analysis throughout the design of a particular remedial alternative. In this study, we consider the interaction between two episodes of aquifer testing over a 6-year period and the refinement of a remedial extraction well system design. Using a three-dimensional ground-water flow model, this study employs (1) geostatistics and Monte Carlo techniques to simulate hydraulic conductivity as a stochastic process and (2) Bayesian updating and conditional simulation to investigate multiple phases of aquifer testing. In our evaluation of a remedial alternative, we compute probabilistic costs associated with the failure of an alternative to completely capture a simulated contaminant plume. The results of this study demonstrate the utility of risk-based decision analysis as a tool for improving the design of a remedial alternative through the course of phased data collection at a remedial site

  15. Costs and returns analysis of improved and alternative cassava ...

    African Journals Online (AJOL)

    The specific objectives of the study was an analysis of the costs and returns of improved and alternative technologies available in the study area by farmers and their level of adoption of the new technologies. Data were collected from a random sample of 250 farmers and 30 extension Staff in the three (3) agricultural zones ...

  16. 76 FR 11310 - Alternatives Analysis Program Discretionary Funding Allocations

    Science.gov (United States)

    2011-03-01

    ... information on the Alternatives Analysis Program, contact Kenneth Cervenka, Office of Planning and Environment... Island, and Vermont. Mexico and Texas. Brigid Hynes-Cherin, Regional Mokhtee Ahmad, Regional............ City of Minneapolis...... Nicollet-Central Urban 900,000 Circulator. MN D2010-ALTA-09005...

  17. Analysis of Millstone Unit 1 system failure and maintenance data

    International Nuclear Information System (INIS)

    Bickel, J.H.; Beveridge, R.L.; Jain, N.K.; Owens, D.B.; Radder, J.A.

    1985-01-01

    As a result of a task force plan developed four years ago at Northeast Utilities, plant-specific probabilistic safety analysis models are being developed for all Northeast Utilities operating nuclear plants. An essential feature of these models is their reliance on plant-specific reliability information to the maximum extent possible. This assures that future design efforts and decisions on backfitting or procedure changes are made with full knowledge of existing plant reliability. The use of plant-specific reliability data assures that the impacts of problem components are given appropriate attention and that proper credit is given for those components, which because of plant-specific maintenance practices, have exhibited better than industry average performance. A case study of a portion of the Millstone-1 cooling system demonstrates differing results obtained by fault tree analysis and a reliability analysis using plant-specific failure data. When risk assessment techniques are being applied in resource allocation, usage of plant data clearly becomes essential for sound decision making

  18. Propagated failure analysis for non-repairable systems considering both global and selective effects

    International Nuclear Information System (INIS)

    Wang Chaonan; Xing Liudong; Levitin, Gregory

    2012-01-01

    This paper proposes an algorithm for the reliability analysis of non-repairable binary systems subject to competing failure propagation and failure isolation events with both global and selective failure effects. A propagated failure that originates from a system component causes extensive damage to the rest of the system. Global effect happens when the propagated failure causes the entire system to fail; whereas selective effect happens when the propagated failure causes only failure of a subset of system components. In both cases, the failure propagation that originates from some system components (referred to as dependent components) can be isolated because of functional dependence between the dependent components and a component that prevents the failure propagation (trigger components) when the failure of the trigger component happens before the occurrence of the propagated failure. Most existing studies focus on the analysis of propagated failures with global effect. However, in many cases, propagated failures affect only a subset of system components not the entire system. Existing approaches for analyzing propagated failures with selective effect are limited to series-parallel systems. This paper proposes a combinatorial method for the propagated failure analysis considering both global and selective effects as well as the competition with the failure isolation in the time domain. The proposed method is not limited to series-parallel systems and has no limitation on the type of time-to-failure distributions for the system components. The method is verified using the Markov-based method. An example of computer memory systems is analyzed to demonstrate the application of the proposed method.

  19. Bayesian analysis of repairable systems showing a bounded failure intensity

    International Nuclear Information System (INIS)

    Guida, Maurizio; Pulcini, Gianpaolo

    2006-01-01

    The failure pattern of repairable mechanical equipment subject to deterioration phenomena sometimes shows a finite bound for the increasing failure intensity. A non-homogeneous Poisson process with bounded increasing failure intensity is then illustrated and its characteristics are discussed. A Bayesian procedure, based on prior information on model-free quantities, is developed in order to allow technical information on the failure process to be incorporated into the inferential procedure and to improve the inference accuracy. Posterior estimation of the model-free quantities and of other quantities of interest (such as the optimal replacement interval) is provided, as well as prediction on the waiting time to the next failure and on the number of failures in a future time interval is given. Finally, numerical examples are given to illustrate the proposed inferential procedure

  20. Analysis of acetal toilet fill valve supply line nut failure

    Directory of Open Access Journals (Sweden)

    Anthony Timpanaro

    2017-10-01

    Full Text Available In recent years, there has been a rise in the number of product liability cases involving the failure of toilet water supply line acetal plastic nuts. These nuts can fail in service, causing water leaks that result in significant property and financial losses. This study examines three possible failure modes of acetal plastic toilet water supply nuts. The three failure modes tested were all due to over load failure of the acetal nut and are as follows: (1 Overtightening of the supply line acetal nut, (2 Supply line lateral pull and, (3 Embrittled supply line lateral pull. Additionally, a “hand-tight” torque survey was conducted. The fracture surfaces and characteristics of these failure tests were examined with Stereo Microscopy and Scanning Electron Microscopy (SEM. The failure modes were compared and contrasted to provide guidance in determination of cause in these investigations.

  1. Observations on analysis, testing and failure of prestressed concrete containments

    International Nuclear Information System (INIS)

    Murray, D.W.

    1984-01-01

    The paper reviews the mechanics which indicate that a bursting failure with large energy release is the failure mechanism to be expected from ductile lined containment structures pressurized to failure. It reviews a study which shows that, because of leakage, this is not the case for unlined prestressed containments. It argues that current practice, since it does not specifically address the bursting failure problem for lined prestressed containments, is inadequate to ensure that this type of failure could not occur. It concludes that, in view of the inadequacy of the current state-of-the-art to predict leakage from lined structures, the logical remedy is to eliminate all possibility of bursting failure by making provision for venting of containments. (orig.)

  2. Failure mode and effects analysis: A community practice perspective.

    Science.gov (United States)

    Schuller, Bradley W; Burns, Angi; Ceilley, Elizabeth A; King, Alan; LeTourneau, Joan; Markovic, Alexander; Sterkel, Lynda; Taplin, Brigid; Wanner, Jennifer; Albert, Jeffrey M

    2017-11-01

    To report our early experiences with failure mode and effects analysis (FMEA) in a community practice setting. The FMEA facilitator received extensive training at the AAPM Summer School. Early efforts focused on department education and emphasized the need for process evaluation in the context of high profile radiation therapy accidents. A multidisciplinary team was assembled with representation from each of the major department disciplines. Stereotactic radiosurgery (SRS) was identified as the most appropriate treatment technique for the first FMEA evaluation, as it is largely self-contained and has the potential to produce high impact failure modes. Process mapping was completed using breakout sessions, and then compiled into a simple electronic format. Weekly sessions were used to complete the FMEA evaluation. Risk priority number (RPN) values > 100 or severity scores of 9 or 10 were considered high risk. The overall time commitment was also tracked. The final SRS process map contained 15 major process steps and 183 subprocess steps. Splitting the process map into individual assignments was a successful strategy for our group. The process map was designed to contain enough detail such that another radiation oncology team would be able to perform our procedures. Continuous facilitator involvement helped maintain consistent scoring during FMEA. Practice changes were made responding to the highest RPN scores, and new resulting RPN scores were below our high-risk threshold. The estimated person-hour equivalent for project completion was 258 hr. This report provides important details on the initial steps we took to complete our first FMEA, providing guidance for community practices seeking to incorporate this process into their quality assurance (QA) program. Determining the feasibility of implementing complex QA processes into different practice settings will take on increasing significance as the field of radiation oncology transitions into the new TG-100 QA

  3. Physicochemical characterization and failure analysis of military coating systems

    Science.gov (United States)

    Keene, Lionel Thomas

    Modern military coating systems, as fielded by all branches of the U.S. military, generally consist of a diverse array of organic and inorganic components that can complicate their physicochemical analysis. These coating systems consist of VOC-solvent/waterborne automotive grade polyurethane matrix containing a variety of inorganic pigments and flattening agents. The research presented here was designed to overcome the practical difficulties regarding the study of such systems through the combined application of several cross-disciplinary techniques, including vibrational spectroscopy, electron microscopy, microtomy, ultra-fast laser ablation and optical interferometry. The goal of this research has been to determine the degree and spatial progression of weathering-induced alteration of military coating systems as a whole, as well as to determine the failure modes involved, and characterizing the impact of these failures on the physical barrier performance of the coatings. Transmission-mode Fourier Transform Infrared (FTIR) spectroscopy has been applied to cross-sections of both baseline and artificially weathered samples to elucidate weathering-induced spatial gradients to the baseline chemistry of the coatings. A large discrepancy in physical durability (as indicated by the spatial progression of these gradients) has been found between older and newer generation coatings. Data will be shown implicating silica fillers (previously considered inert) as the probable cause for this behavioral divergence. A case study is presented wherein the application of the aforementioned FTIR technique fails to predict the durability of the coating system as a whole. The exploitation of the ultra-fast optical phenomenon of femtosecond (10-15S) laser ablation is studied as a potential tool to facilitate spectroscopic depth profiling of composite materials. Finally, the interferometric technique of Phase Shifting was evaluated as a potential high-sensitivity technique applied to the

  4. Comparative analysis of traditional and alternative energy sources

    Directory of Open Access Journals (Sweden)

    Adriana Csikósová

    2008-11-01

    Full Text Available The presented thesis with designation of Comparing analysis of traditional and alternative energy resources includes, on basisof theoretical information source, research in firm, internal data, trends in company development and market, descriptionof the problem and its application. Theoretical information source is dedicated to the traditional and alternative energy resources,reserves of it, trends in using and development, the balance of it in the world, EU and in Slovakia as well. Analysis of the thesisis reflecting profile of the company and the thermal pump market evaluation using General Electric method. While the companyis implementing, except other products, the thermal pumps on geothermal energy base and surround energy base (air, the missionof the comparing analysis is to compare traditional energy resources with thermal pump from the ecological, utility and economic sideof it. The results of the comparing analysis are resumed in to the SWOT analysis. The part of the thesis includes he questionnaire offerfor effectiveness improvement and customer satisfaction analysis, and expected possibilities of alternative energy resources assistance(benefits from the government and EU funds.

  5. Data analysis using the Binomial Failure Rate common cause model

    International Nuclear Information System (INIS)

    Atwood, C.L.

    1983-09-01

    This report explains how to use the Binomial Failure Rate (BFR) method to estimate common cause failure rates. The entire method is described, beginning with the conceptual model, and covering practical issues of data preparation, treatment of variation in the failure rates, Bayesian estimation of the quantities of interest, checking the model assumptions for lack of fit to the data, and the ultimate application of the answers

  6. Analysis and prevention of human failure in nuclear power plants

    International Nuclear Information System (INIS)

    Liu Xinshuan

    2001-01-01

    Based on the performances in Daya Bay Nuclear Power Plant and the common experience from the world nuclear industry, the features and usual kinds of human failures in nuclear power plants are highlighted and the prominent factors on the personal, external and decision problems which might cause the human failures are analyzed. Effective preventive measures have been proposed respectively. Some successful human-failure-prevention practices applied in the Daya Bay Nuclear Power Plant are illustrated specifically

  7. System reliability analysis using dominant failure modes identified by selective searching technique

    International Nuclear Information System (INIS)

    Kim, Dong-Seok; Ok, Seung-Yong; Song, Junho; Koh, Hyun-Moo

    2013-01-01

    The failure of a redundant structural system is often described by innumerable system failure modes such as combinations or sequences of local failures. An efficient approach is proposed to identify dominant failure modes in the space of random variables, and then perform system reliability analysis to compute the system failure probability. To identify dominant failure modes in the decreasing order of their contributions to the system failure probability, a new simulation-based selective searching technique is developed using a genetic algorithm. The system failure probability is computed by a multi-scale matrix-based system reliability (MSR) method. Lower-scale MSR analyses evaluate the probabilities of the identified failure modes and their statistical dependence. A higher-scale MSR analysis evaluates the system failure probability based on the results of the lower-scale analyses. Three illustrative examples demonstrate the efficiency and accuracy of the approach through comparison with existing methods and Monte Carlo simulations. The results show that the proposed method skillfully identifies the dominant failure modes, including those neglected by existing approaches. The multi-scale MSR method accurately evaluates the system failure probability with statistical dependence fully considered. The decoupling between the failure mode identification and the system reliability evaluation allows for effective applications to larger structural systems

  8. Common-Cause Failure Analysis in Event Assessment

    International Nuclear Information System (INIS)

    Rasmuson, D.M.; Kelly, D.L.

    2008-01-01

    This paper reviews the basic concepts of modeling common-cause failures (CCFs) in reliability and risk studies and then applies these concepts to the treatment of CCF in event assessment. The cases of a failed component (with and without shared CCF potential) and a component being unavailable due to preventive maintenance or testing are addressed. The treatment of two related failure modes (e.g. failure to start and failure to run) is a new feature of this paper, as is the treatment of asymmetry within a common-cause component group

  9. Computational analysis of the SRS Phase III salt disposition alternatives

    International Nuclear Information System (INIS)

    Dimenna, R.A.

    2000-01-01

    In late 1997, the In-Tank Precipitation (ITP), facility was shut down and an evaluation of alternative methods to process the liquid high-level waste stored in the Savannah River Site High-Level Waste storage tanks was begun. The objective was to determine whether another process might avoid the operational difficulties encountered with ITP for a lower cost than modifying the existing structured approach to evaluating proposed alternatives on a common basis to identify the best one. Results from the computational analysis were a key part of the input used to select a primary and a secondary salt disposition alternative. This paper describes the process by which the computation needs were identified, addressed, and accomplished with a limited staff under stringent schedule constraints

  10. Alternative financial institutions? Sustainability, development, social reproduction, and gender analysis.

    Science.gov (United States)

    Kidder, T

    1999-08-01

    This paper proposes a conceptual framework for alternative financial institutions in Nicaragua. The article includes a discussion on innovative services and policies, which differentiate CARUNA (National Savings and Credit Cooperative ¿Caja Rural¿), and other financial institutions from conventional banks. It further examines theories that have altered the way development practitioners think about the economy, poverty reduction, and the positions of men and women in the society. These theories are the feminist economic theory and alternative development theories. Specific ways to incorporate the concepts of alternative and feminist economic theories in the design of financial institutions include open credit, savings, and remittance mechanisms, and coordinating councils. The gender analysis approach was used to evaluate the design of financial institutions.

  11. [Failure mode and effects analysis on computerized drug prescriptions].

    Science.gov (United States)

    Paredes-Atenciano, J A; Roldán-Aviña, J P; González-García, Mercedes; Blanco-Sánchez, M C; Pinto-Melero, M A; Pérez-Ramírez, C; Calvo Rubio-Burgos, Miguel; Osuna-Navarro, F J; Jurado-Carmona, A M

    2015-01-01

    To identify and analyze errors in drug prescriptions of patients treated in a "high resolution" hospital by applying a Failure mode and effects analysis (FMEA).Material and methods A multidisciplinary group of medical specialties and nursing analyzed medical records where drug prescriptions were held in free text format. An FMEA was developed in which the risk priority index (RPI) was obtained from a cross-sectional observational study using an audit of the medical records, carried out in 2 phases: 1) Pre-intervention testing, and (2) evaluation of improvement actions after the first analysis. An audit sample size of 679 medical records from a total of 2,096 patients was calculated using stratified sampling and random selection of clinical events. Prescription errors decreased by 22.2% in the second phase. FMEA showed a greater RPI in "unspecified route of administration" and "dosage unspecified", with no significant decreases observed in the second phase, although it did detect, "incorrect dosing time", "contraindication due to drug allergy", "wrong patient" or "duplicate prescription", which resulted in the improvement of prescriptions. Drug prescription errors have been identified and analyzed by FMEA methodology, improving the clinical safety of these prescriptions. This tool allows updates of electronic prescribing to be monitored. To avoid such errors would require the mandatory completion of all sections of a prescription. Copyright © 2014 SECA. Published by Elsevier Espana. All rights reserved.

  12. Analysis Method of Common Cause Failure on Non-safety Digital Control System

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yun Goo; Oh, Eun Gse [KHNP, Daejeon (Korea, Republic of)

    2014-08-15

    The effects of common cause failure on safety digital instrumentation and control system had been considered in defense in depth analysis with safety analysis method. However, the effects of common cause failure on non-safety digital instrumentation and control system also should be evaluated. The common cause failure can be included in credible failure on the non-safety system. In the I and C architecture of nuclear power plant, many design feature has been applied for the functional integrity of control system. One of that is segmentation. Segmentation defenses the propagation of faults in the I and C architecture. Some of effects from common cause failure also can be limited by segmentation. Therefore, in this paper there are two type of failure mode, one is failures in one control group which is segmented, and the other is failures in multiple control group because that the segmentation cannot defense all effects from common cause failure. For each type, the worst failure scenario is needed to be determined, so the analysis method has been proposed in this paper. The evaluation can be qualitative when there is sufficient justification that the effects are bounded in previous safety analysis. When it is not bounded in previous safety analysis, additional analysis should be done with conservative assumptions method of previous safety analysis or best estimation method with realistic assumptions.

  13. Prioritization of sediment management alternatives using stochastic multicriteria acceptability analysis

    International Nuclear Information System (INIS)

    Alvarez-Guerra, Manuel; Canis, Laure; Voulvoulis, Nikolaos; Viguri, Javier R.; Linkov, Igor

    2010-01-01

    Decision-making for sediment management is a complex task that requires the consideration of temporal and spatial impacts of several remedial alternatives as well as the associated economic, social and political impact. Multicriteria decision analysis (MCDA) is becoming increasingly recognized as an important environmental management tool that can be used to support the selection of suitable remediation alternatives and prioritization of management units in space and time. This paper proposes an MCDA framework for prioritizing sediment management alternatives. This framework involves identifying of a set of feasible options, as well as defining and evaluating criteria which integrate relevant technical, economic, social and environmental aspects of remedies. The methodology allows an explicit consideration of uncertainty in criteria scores and weights by assigning probability distributions and analyzing subsequent Monte-Carlo simulations. The consideration of different stakeholder simulated values is used to assess the robustness of alternative rankings and to guide the selection of remediation options. An application of this methodology to a case study in the Bay of Santander, Spain, is presented. An assessment is conducted for the case of unknown preferences as well as for hypothetical preferences profiles for four types of stakeholders: Idealist, Politician, Environmentalist and Balanced. The results are used to visualize stakeholder positions and potential disagreements, allowing for the identification of a group of least preferred alternatives for each stakeholder. Stakeholder involvement has the potential to ease the remedy selection process during all stages of the decision-making process and to eventually remedy implementation.

  14. Economic analysis of waste management alternatives for reprocessing wastes

    International Nuclear Information System (INIS)

    McKee, R.W.; Clark, L.L.; Daling, P.M.; Nesbitt, J.F.; Swanson, J.L.

    1984-02-01

    This study describes the results of a cost analysis of a broad range of alternatives for management of reprocessing wastes that would require geologic repository disposal. The intent was to identify cost-effective alternatives and the costs of potential repository performance requirements. Four integrated treatment facility alternatives for transuranic (TRU) wastes are described and compared. These include no treatment, compaction, incineration, and hulls melting. The advantages of reducing high-level wastes (HLW) volume are also evaluated as are waste transportation alternatives and several performance-related alternatives for emplacing waste in a basalt repository. Results show (1) that system costs for disposal of reprocessing waste are likely to be higher than those for disposal of spent fuel; (2) that volume reduction is cost-effective for both remote-handled (RH) TRU wastes and HLW, and that rail transport for HLW is more cost-effective than truck transport; (3) that coemplacement of RH-TRU wastes with HLW does not have a large cost advantage in a basalt repository; and (4) that, relative to performance requirements, the cost impact for elimination of combustibles is about 5%, long-lived containers for RH-TRU wastes can increase repository costs 10% to 20%, and immediate backfill compared to delayed backfill (bentonite/basalt) around the HLW canisters would increase repository costs up to 10% or overall system costs up to about 5%. 13 references, 4 figures, 12 tables

  15. A big data analysis approach for rail failure risk assessment

    NARCIS (Netherlands)

    Jamshidi, A.; Faghih Roohi, S.; Hajizadeh, S.; Nunez Vicencio, Alfredo; Babuska, R.; Dollevoet, R.P.B.J.; Li, Z.; De Schutter, B.H.K.

    2017-01-01

    Railway infrastructure monitoring is a vital task to ensure rail transportation safety. A rail failure could result in not only a considerable impact on train delays and maintenance costs, but also on safety of passengers. In this article, the aim is to assess the risk of a rail failure by

  16. Metallized Film Capacitor Lifetime Evaluation and Failure Mode Analysis

    CERN Document Server

    Gallay, R.

    2015-06-15

    One of the main concerns for power electronic engineers regarding capacitors is to predict their remaining lifetime in order to anticipate costly failures or system unavailability. This may be achieved using a Weibull statistical law combined with acceleration factors for the temperature, the voltage, and the humidity. This paper discusses the different capacitor failure modes and their effects and consequences.

  17. Analysis of transient fuel failure mechanisms: selected ANL programs

    International Nuclear Information System (INIS)

    Deitrich, L.W.

    1975-01-01

    Analytical programs at Argonne National Laboratory related to fuel pin failure mechanisms in fast-reactor accident transients are described. The studies include transient fuel pin mechanics, mechanics of unclad fuel, and mechanical effects concerning potential fuel failure propagation. (U.S.).

  18. Letter report seismic shutdown system failure mode and effect analysis

    International Nuclear Information System (INIS)

    KECK, R.D.

    1999-01-01

    The Supply Ventilation System Seismic Shutdown ensures that the 234-52 building supply fans, the dry air process fans and vertical development calciner are shutdown following a seismic event. This evaluates the failure modes and determines the effects of the failure modes

  19. Failure analysis of the cement mantle in total hip arthroplasty with an efficient probabilistic method.

    Science.gov (United States)

    Kaymaz, Irfan; Bayrak, Ozgu; Karsan, Orhan; Celik, Ayhan; Alsaran, Akgun

    2014-04-01

    Accurate prediction of long-term behaviour of cemented hip implants is very important not only for patient comfort but also for elimination of any revision operation due to failure of implants. Therefore, a more realistic computer model was generated and then used for both deterministic and probabilistic analyses of the hip implant in this study. The deterministic failure analysis was carried out for the most common failure states of the cement mantle. On the other hand, most of the design parameters of the cemented hip are inherently uncertain quantities. Therefore, the probabilistic failure analysis was also carried out considering the fatigue failure of the cement mantle since it is the most critical failure state. However, the probabilistic analysis generally requires large amount of time; thus, a response surface method proposed in this study was used to reduce the computation time for the analysis of the cemented hip implant. The results demonstrate that using an efficient probabilistic approach can significantly reduce the computation time for the failure probability of the cement from several hours to minutes. The results also show that even the deterministic failure analyses do not indicate any failure of the cement mantle with high safety factors, the probabilistic analysis predicts the failure probability of the cement mantle as 8%, which must be considered during the evaluation of the success of the cemented hip implants.

  20. Going South: Analysis of an Historic Project Engineering Failure

    Science.gov (United States)

    Scott, John H.

    2009-01-01

    NASA's successful conduct of the Apollo Program greatly enhanced the prestige of the United States and remains broadly accepted as America's gift to all Mankind. NASA's accomplishments continue to amaze the world. With the Vision for Space Exploration (VSE) Americans once again tasked NASA to carry out a project that is expected to provide inspiration and economic stimulus to the United States and to the world. In preparation NASA has thoroughly examined space program precedents. There is, however, another precedent which has not been examined in this context but whose scope and environment in many ways parallel the VSE. This project was initiated by a team that had, ten years before, successfully completed an effort that, at a cost of $173 billion (in 2008 dollars), had pushed the envelope of technology, brought economic growth, established their country as the world leader in engineering, and been broadly accepted as that country's gift to all Mankind. The new project was again inspired by popular desire to enhance national prestige and make yet another major contribution to Humanity. This effort was predicted to require eight years and $156 billion (2008 dollars). However, after nine years and expenditures of 96% beyond the baseline, the project collapsed amid bankruptcy, political scandal, and criminal prosecution. This paper applies current project management metrics, such as earned value analysis, to review the strategic decisions in this historic failure and describe its ultimate collapse. Key mistakes are identified, and lessons are drawn which may prove useful in guiding the VSE.

  1. Failure analysis and seal life prediction for contacting mechanical seals

    Science.gov (United States)

    Sun, J. J.; He, X. Y.; Wei, L.; Feng, X.

    2008-11-01

    Fault tree analysis method was applied to quantitatively investigate the causes of the leakage failure of mechanical seals. It is pointed out that the change of the surface topography is the main reasons causing the leakage of mechanical seals under the condition of constant preloads. Based on the fractal geometry theory, the relationship between the surface topography and working time were investigated by experiments, and the effects of unit load acting on seal face on leakage path in a mechanical seal were analyzed. The model of predicting seal life of mechanical seals was established on the basis of the relationship between the surface topography and working time and allowable leakage. The seal life of 108 mechanical seal operating at the system of diesel fuel storage and transportation was predicted and the problem of the condition monitoring for the long-period operation of mechanical seal was discussed by this method. The research results indicate that the method of predicting seal life of mechanical seals is feasible, and also is foundation to make scheduled maintenance time and to achieve safe-reliability and low-cost operation for industrial devices.

  2. Alternatives Generation Analysis Long Length Contaminated Equipment Removal System Storage

    International Nuclear Information System (INIS)

    BOGER, R.M.

    1999-01-01

    Major pieces of Characterization sampling equipment are currently stored outdoors. This includes the Long Length Contaminated Equipment receiver trailer and transportation trailer. A decision is required to determine the preferred alternative for facilities to store and maintain this equipment. The Long Length Contaminated Equipment Removal System (LLCERS) consists of many tools, mechanisms, and controllers currently stored in various locations. Much of this equipment should be protected from the elements while being stored. Some of the LLCERS equipment should be protected with some kind of roof cover. This decision analysis is to determine the best alternative for weather protection for the large equipment requiring a cover. Additional details are included in Sections 2.0 and 5.0. Key assumptions used in this analysis are detailed in Section 3.2

  3. Alternative fuels in fire debris analysis: biodiesel basics.

    Science.gov (United States)

    Stauffer, Eric; Byron, Doug

    2007-03-01

    Alternative fuels are becoming more prominent on the market today and, soon, fire debris analysts will start seeing them in liquid samples or in fire debris samples. Biodiesel fuel is one of the most common alternative fuels and is now readily available in many parts of the United States and around the world. This article introduces biodiesel to fire debris analysts. Biodiesel fuel is manufactured from vegetable oils and/or animal oils/fats. It is composed of fatty acid methyl esters (FAMEs) and is sold pure or as a blend with diesel fuel. When present in fire debris samples, it is recommended to extract the debris using passive headspace concentration on activated charcoal, possibly followed by a solvent extraction. The gas chromatographic analysis of the extract is first carried out with the same program as for regular ignitable liquid residues, and second with a program adapted to the analysis of FAMEs.

  4. Analysis of grouped data from field-failure reporting systems

    International Nuclear Information System (INIS)

    Coit, David W.; Dey, Kieron A.

    1999-01-01

    Observed reliability data from fielded systems is highly desirable because they implicitly account for all actual usage and environmental stresses. Many companies and large organizations have instituted automated field-failure reporting systems to organize and disseminate these data. Despite these advantages, field data must be used with caution because they often lack sufficient detail. Specifically, the precise times-to-failure are often not recorded and only cumulative failure quantities and operating times are available. When only data of this type are available, it is difficult to determine whether component or system hazard function varies with time or is constant (i.e., exponential distribution). Analysts often use the exponential distribution to model time-to-failure because the distribution parameter can be estimated with just the merged data. However, this can be dangerous if the exponential distribution is not appropriate. An approach is presented in this paper for Type II censored data, with and without replacement, to evaluate this assumption even when individual times-to-failure are not available. A hypothesis test is presented to test the suitability of the exponential distribution for a particular data set composed of multiple merged data records. Two examples are presented to demonstrate the approach. The hypothesis test readily rejects an exponential distribution assumption when the data originate from a Weibull distribution. This is a very important result because it has generally been assumed that time-to-failure data were always required to evaluate the suitability of specific time-to-failure distributions

  5. Why has the introduction of natural gas vehicles failed in Germany?—Lessons on the role of market failure in markets for alternative fuel vehicles

    International Nuclear Information System (INIS)

    Peters von Rosenstiel, Dirk; Heuermann, Daniel F.; Hüsig, Stefan

    2015-01-01

    Despite private investments exceeding two billion Euros and tax incentives of more than 500 million Euros, the market share of natural gas vehicles (NGVs) in Germany has lagged far behind expectations and behind market developments in other countries. With total cost of ownership being on average lower for NGVs than for gasoline and diesel vehicles this raises the question of the existence of market failure in the German NGV-market. We use a case study approach where we combine quantitative data with insights from a multi-industry expert panel and in-depth interviews with experts from industry, government and civil society in order to examine whether and how different types of market failure contribute to the status quo in the German market for NGVs. We conclude that coordination failure in complementary markets, an artificially created monopoly of service stations at motorways, imperfect information, bounded consumer rationality, and principle-agent-problems are the most prominent market failures inhibiting the development of a functioning market for NGVs. Our results are instructive for the design of effective public policies and investor strategies aiming to create markets for alternative fuel vehicles. - Highlights: • We analyze market failure in the German market for natural gas vehicles. • Coordination failure is the most important reason for market failure to arise. • Minor factors: regulatory deficits, imperfect information, bounded rationality. • Policies encompass stabilizing expectations and supporting actor coordination. • Our results are instructive for policies and investor strategies in AFV-markets

  6. Pressure Load Analysis during Severe Accidents for the Evaluation of Late Containment Failure in OPR-1000

    Energy Technology Data Exchange (ETDEWEB)

    Park, S. Y.; Ahn, K. I. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The MAAP code is a system level computer code capable of performing integral analyses of potential severe accident progressions in nuclear power plants, whose main purpose is to support a level 2 probabilistic safety assessment or severe accident management strategy developments. The code employs lots of user-options for supporting a sensitivity and uncertainty analysis. The present application is mainly focused on determining an estimate of the containment building pressure load caused by severe accident sequences. Key modeling parameters and phenomenological models employed for the present uncertainty analysis are closely related to in-vessel hydrogen generation, gas combustion in the containment, corium distribution in the containment after a reactor vessel failure, corium coolability in the reactor cavity, and molten-corium interaction with concrete. The phenomenology of severe accidents is extremely complex. In this paper, a sampling-based phenomenological uncertainty analysis was performed to statistically quantify uncertainties associated with the pressure load of a containment building for a late containment failure evaluation, based on the key modeling parameters employed in the MAAP code and random samples for those parameters. Phenomenological issues surrounding the late containment failure mode are highly complex. Included are the pressurization owing to steam generation in the cavity, molten corium-concrete interaction, late hydrogen burn in the containment, and the secondary heat removal availability. The methodology and calculation results can be applied for the optimum assessment of a late containment failure model. The accident sequences considered were a loss of coolant accidents and loss of offsite accidents expected in the OPR-1000 plant. As a result, uncertainties addressed in the pressure load of the containment building were quantified as a function of time. A realistic evaluation of the mean and variance estimates provides a more complete

  7. Failure analysis of burst tested fuel tube samples

    International Nuclear Information System (INIS)

    Padmaprabu, C.; Ramana Rao, S.V.; Srivatsava, R.K.

    2005-01-01

    The Total Circumferential Elongation (TCE) is an important parameter for evaluation of ductility of the Zircaloy-4 fuel tubes for the PHWR reactors. The TCE values of the fuel tubes were obtained using the burst testing technique. In some lots there is a variation in the values of the TCE. To investigate the reasons for such a large variation in the TCE, samples were selected at appropriate intervals and sectioned at the fractured portion. The surface morphology of the fractured surfaces was examined under Scanning Electron Microscope (SEM) equipped with Energy Dispersive Spectrometer (EDS). The morphologies show segregation of elements at specific locations. Energy dispersive spectra was obtained from those segregated particles. According to the magnitude of TCE value the samples were classified into low, intermediate and high ductility. Low ductility samples were found to contain large amount of segregations along the thickness direction of the tube. This forms a brittle region and a path for the easy crack growth along thickness direction. In the case of intermediate samples the segregation occurred in fewer locations compared to low ductile samples and also confined to the circumferential direction of the outside surface of the tube. Due to this, probability of crack formation at the surface of the tube could be high. But crack growth would be slower in the ductile matrix along the thickness direction resulting in the enhancement of TCE value compared to the low ductile sample. In the high ductile samples, the segregations were very scarce and found to be isolated and embedded in the ductile matrix. The mode of failure in these types of samples was found to be purely ductile. Cracks were found to originate solely from the micro voids in the material. As the probability of crack formation and its propagation is low, very high TCE values were observed in these samples. Microstructural observations of fractured surfaces and EDAX analysis was able to identify the

  8. Complementary and alternative exercise for fibromyalgia: a meta-analysis

    OpenAIRE

    Mist, Scott; Firestone,Kari; Jones,Kim Dupree

    2013-01-01

    Scott David Mist, Kari Firestone, Kim Dupree Jones Fibromyalgia Research and Treatment Group, School of Nursing, Oregon Health and Science University, Portland, OR, USA Abstract: Complementary and alternative medicine includes a number of exercise modalities, such as tai chi, qigong, yoga, and a variety of lesser-known movement therapies. A meta-analysis of the current literature was conducted estimating the effect size of the different modalities, study quality and bias, and adverse events....

  9. Elk Valley Rancheria Energy Efficiency and Alternatives Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ed Wait, Elk Valley Rancheria; Frank Ziano & Associates, Inc.

    2011-11-30

    Elk Valley Rancheria; Tribe; renewable energy; energy options analysis. The Elk Valley Rancheria, California ('Tribe') is a federally recognized Indian tribe located in Del Norte County, California, in the northwestern corner of California. The Tribe, its members and Tribal enterprises are challenged by increasing energy costs and undeveloped local energy resources. The Tribe currently lacks an energy program. The Tribal government lacked sufficient information to make informed decisions about potential renewable energy resources, energy alternatives and other energy management issues. To meet this challenge efficiently, the Tribe contracted with Frank Zaino and Associates, Inc. to help become more energy self-sufficient, by reducing their energy costs and promoting energy alternatives that stimulate economic development. Frank Zaino & Associates, Inc. provided a high level economic screening analysis based on anticipated electric and natural gas rates. This was in an effort to determine which alternative energy system will performed at a higher level so the Tribe could reduce their energy model by 30% from alternative fuel sources. The feasibility study will identify suitable energy alternatives and conservation methods that will benefit the Tribe and tribal community through important reductions in cost. The lessons learned from these conservation efforts will yield knowledge that will serve a wider goal of executing energy efficiency measures and practices in Tribal residences and business facilities. Pacific Power is the provider of electrical power to the four properties under review at $ 0.08 per Kilowatt-hour (KWH). This is a very low energy cost compared to alternative energy sources. The Tribe used baseline audits to assess current and historic energy usage at four Rancheria owned facilities. Past electric and gas billing statements were retained for review for the four buildings that will be audited. A comparative assessment of the various

  10. Study on shielded pump system failure analysis method based on Bayesian network

    International Nuclear Information System (INIS)

    Bao Yilan; Huang Gaofeng; Tong Lili; Cao Xuewu

    2012-01-01

    This paper applies Bayesian network to the system failure analysis, with an aim to improve knowledge representation of the uncertainty logic and multi-fault states in system failure analysis. A Bayesian network for shielded pump failure analysis is presented, conducting fault parameter learning, updating Bayesian network parameter based on new samples. Finally, through the Bayesian network inference, vulnerability in this system, the largest possible failure modes, and the fault probability are obtained. The powerful ability of Bayesian network to analyze system fault is illustrated by examples. (authors)

  11. Comprehensive method of common-mode failure analysis for LMFBR safety systems

    International Nuclear Information System (INIS)

    Unione, A.J.; Ritzman, R.L.; Erdmann, R.C.

    1976-01-01

    A technique is demonstrated which allows the systematic treatment of common-mode failures of safety system performance. The technique uses log analysis in the form of fault and success trees to qualitatively assess the sources of common-mode failure and quantitatively estimate the contribution to the overall risk of system failure. The analysis is applied to the secondary control rod system of an early sized LMFBR

  12. Analysis of the failure of a vacuum spin-pit drive turbine spindle shaft

    OpenAIRE

    Pettitt, Jason M.

    2005-01-01

    The Naval Postgraduate School's Rotor Spin Research Facility experienced a failure in the Spring of 2005 in which the rotor dropped from the drive turbine and caused extensive damage. A failure analysis of the drive turbine spindle shaft was conducted in order to determine the cause of failure: whether due to a material or design flaw. Also, a dynamic analysis was conducted in order to determine the natural modes present in the system and the associated frequencies that could have contributed...

  13. Failure Analysis of Heavy-Ion-Irradiated Schottky Diodes

    Science.gov (United States)

    Casey, Megan C.; Lauenstein, Jean-Marie; Wilcox, Edward P.; Topper, Alyson D.; Campola, Michael J.; Label, Kenneth A.

    2017-01-01

    In this work, we use high- and low-magnitude optical microscope images, infrared camera images, and scanning electron microscope images to identify and describe the failure locations in heavy-ion-irradiated Schottky diodes.

  14. Failure Analysis of High-Power Piezoelectric Transducers

    National Research Council Canada - National Science Library

    Gabrielson, T. B

    2005-01-01

    ... and stress in a piezoelectric material. For a transducer operated near resonance, there will be "hot spots" or regions of locally intense stress and electric field that precipitate premature failure...

  15. Failure Analysis of Alumina Reinforced Aluminum Microtruss and Tube Composites

    Science.gov (United States)

    Chien, Hsueh Fen (Karen)

    The energy absorption capacity of cellular materials can be dramatically increased by applying a structural coating. This thesis examined the failure mechanisms of alumina reinforced 3003 aluminum alloy microtrusses and tubes. Alumina coatings were produced by hard anodizing and by plasma electrolytic oxidation (PEO). The relatively thin and discontinuous oxide coating at the hinge acted as a localized weak spot which triggered a chain reaction of failure, including oxide fracture, oxide spallation, oxide penetration to the aluminum core and severe local plastic deformation of the core. For the PEO microtrusses, delamination occurred within the oxide coating resulting in a global strut buckling failure mode. A new failure mode for the anodized tubes was observed: (i) axisymmetric folding of the aluminum core, (ii) longitudinal fracture, and (iii) alumina pulverization. Overall, the alumina coating enhanced the buckling resistance of the composites, while the aluminum core supported the oxide during the damage propagation.

  16. Service reliability assessment using failure mode and effect analysis ...

    African Journals Online (AJOL)

    user

    Statistical Process Control Teng and Ho (1996) .... are still remaining left on modelling the interaction between impact of internal service failure and ..... Design error proofing: development of automated error-proofing information systems, Proceedings of.

  17. A Panel Analysis Of UK Industrial Company Failure

    OpenAIRE

    Natalia Isachenkova; John Hunter

    2002-01-01

    We examine the failure determinants for large quoted UK industrials using a panel data set comprising 539 firms observed over the period 1988-93. The empirical design employs data from company accounts and is based on Chamberlain’s conditional binomial logit model, which allows for unobservable, firm-specific, time-invariant factors associated with failure risk. We find a noticeable degree of heterogeneity across the sample companies. Our panel results show that, after controll...

  18. Reliability analysis of multi-trigger binary systems subject to competing failures

    International Nuclear Information System (INIS)

    Wang, Chaonan; Xing, Liudong; Levitin, Gregory

    2013-01-01

    This paper suggests two combinatorial algorithms for the reliability analysis of multi-trigger binary systems subject to competing failure propagation and failure isolation effects. Propagated failure with global effect (PFGE) is referred to as a failure that not only causes outage to the component from which the failure originates, but also propagates through all other system components causing the entire system failure. However, the propagation effect from the PFGE can be isolated in systems with functional dependence (FDEP) behavior. This paper studies two distinct consequences of PFGE resulting from a competition in the time domain between the failure isolation and failure propagation effects. As compared to existing works on competing failures that are limited to systems with a single FDEP group, this paper considers more complicated cases where the systems have multiple dependent FDEP groups. Analysis of such systems is more challenging because both the occurrence order between the trigger failure event and PFGE from the dependent components and the occurrence order among the multiple trigger failure events have to be considered. Two combinatorial and analytical algorithms are proposed. Both of them have no limitation on the type of time-to-failure distributions for the system components. Their correctness is verified using a Markov-based method. An example of memory systems is analyzed to demonstrate and compare the applications and advantages of the two proposed algorithms. - Highlights: ► Reliability of binary systems with multiple dependent functional dependence groups is analyzed. ► Competing failure propagation and failure isolation effect is considered. ► The proposed algorithms are combinatorial and applicable to any arbitrary type of time-to-failure distributions for system components.

  19. An engineering approach to common mode failure analysis

    International Nuclear Information System (INIS)

    Gangloff, W.C.; Franke, T.H.

    1975-01-01

    Safety systems for nuclear reactors can be designed using standard reliability engineering techniques such that system failure due to random component faults is extremely unlikely. However, the common-mode failure where several components fail together from a common cause is not susceptible to prevention by the usual tactics. In systems where a high degree of redundancy has been employed, the actual reliability of the system in service may be limited by common-mode failures. A methodical and thorough procedure for evaluation of system vulnerability to common-mode failures is presented. This procedure was developed for use in nuclear reactor safety systems and has been applied specifically to reactor protection. The method offers a qualitative assessment of a system whereby weak points can be identified and the resistance to common-mode failure can be judged. It takes into account all factors influencing system performance including design, manufacturing, installation, operation, testing, and maintenance. It is not a guarantee or sure solution, but rather a practical tool which can provide good assurance that the probability of common-mode protection failure has been made acceptably low. (author)

  20. Trend analysis of cables failure events at nuclear power plants

    International Nuclear Information System (INIS)

    Fushimi, Yasuyuki

    2007-01-01

    In this study, 152 failure events related with cables at overseas nuclear power plants are selected from Nuclear Information Database, which is owned by The Institute of Nuclear Safety System, and these events are analyzed in view of occurrence, causal factor, and so on. And 15 failure events related with cables at domestic nuclear power plants are selected from Nuclear Information Archives, which is owned by JANTI, and these events are analyzed by the same manner. As a result of comparing both trends, it is revealed following; 1) A cable insulator failure rate is lower at domestic nuclear power plants than at foreign ones. It is thought that a deterioration diagnosis is performed broadly in Japan. 2) Many buried cables failure events have been occupied a significant portion of cables failure events during work activity at overseas plants, however none has been occurred at domestic plants. It is thought that sufficient survey is conducted before excavating activity in Japan. 3) A domestic age related cables failure rate in service is lower than the overseas one and domestic improper maintenance rate is higher than the overseas one. Maintenance worker' a skill improvement is expected in order to reduce improper maintenance. (author)

  1. Failure mode, effect and criticality analysis (FMECA) on mechanical subsystems of diesel generator at NPP

    International Nuclear Information System (INIS)

    Kim, Tae Woon; Singh, Brijendra; Sung, Tae Yong; Park, Jin Hee; Lee, Yoon Hwan

    1996-06-01

    Largely, the RCM approach can be divided in three phases; (1) Functional failure analysis (FFA) on the selected system or subsystem, (2) Failure mode, effect and criticality analysis (FMECA) to identify the impact of failure to plant safety or economics, (3) Logical tree analysis (LTA) to select appropriate preventive maintenance and surveillance tasks. This report presents FMECA results for six mechanical subsystems of the diesel generators of nuclear power plants. The six mechanical subsystems are Starting air, Lub oil, Governor, Jacket water cooling, Fuel, and Engine subsystems. Generic and plant-specific failure and maintenance records are reviewed to identify critical components/failure modes. FMECA was performed for these critical component/failure modes. After reviewing current preventive maintenance activities of Wolsung unit 1, draft RCM recommendations are developed. 6 tabs., 16 refs. (Author)

  2. Failure mode, effect and criticality analysis (FMECA) on mechanical subsystems of diesel generator at NPP

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Woon; Singh, Brijendra; Sung, Tae Yong; Park, Jin Hee; Lee, Yoon Hwan [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-06-01

    Largely, the RCM approach can be divided in three phases; (1) Functional failure analysis (FFA) on the selected system or subsystem, (2) Failure mode, effect and criticality analysis (FMECA) to identify the impact of failure to plant safety or economics, (3) Logical tree analysis (LTA) to select appropriate preventive maintenance and surveillance tasks. This report presents FMECA results for six mechanical subsystems of the diesel generators of nuclear power plants. The six mechanical subsystems are Starting air, Lub oil, Governor, Jacket water cooling, Fuel, and Engine subsystems. Generic and plant-specific failure and maintenance records are reviewed to identify critical components/failure modes. FMECA was performed for these critical component/failure modes. After reviewing current preventive maintenance activities of Wolsung unit 1, draft RCM recommendations are developed. 6 tabs., 16 refs. (Author).

  3. Complementary and alternative exercise for fibromyalgia: a meta-analysis

    Directory of Open Access Journals (Sweden)

    Mist SD

    2013-03-01

    Full Text Available Scott David Mist, Kari Firestone, Kim Dupree Jones Fibromyalgia Research and Treatment Group, School of Nursing, Oregon Health and Science University, Portland, OR, USA Abstract: Complementary and alternative medicine includes a number of exercise modalities, such as tai chi, qigong, yoga, and a variety of lesser-known movement therapies. A meta-analysis of the current literature was conducted estimating the effect size of the different modalities, study quality and bias, and adverse events. The level of research has been moderately weak to date, but most studies report a medium-to-high effect size in pain reduction. Given the lack of adverse events, there is little risk in recommending these modalities as a critical component in a multimodal treatment plan, which is often required for fibromyalgia management. Keywords: fibromyalgia, exercise, complementary and alternative, efficacy, safety

  4. Failure analysis of high strength pipeline with single and multiple corrosions

    International Nuclear Information System (INIS)

    Chen, Yanfei; Zhang, Hong; Zhang, Juan; Li, Xin; Zhou, Jing

    2015-01-01

    Highlights: • We study failure of high strength pipelines with single corrosion. • We give regression equations for failure pressure prediction. • We propose assessment procedure for pipelines with multiple corrosions. - Abstract: Corrosion will compromise safety operation of oil and gas pipelines, accurate determination of failure pressure finds importance in residual strength assessment and corrosion allowance design of onshore and offshore pipelines. This paper investigates failure pressure of high strength pipeline with single and multiple corrosions using nonlinear finite element analysis. On the basis of developed regression equations for failure pressure prediction of high strength pipeline with single corrosion, the paper proposes an assessment procedure for predicting failure pressure of high strength pipeline with multiple corrosions. Furthermore, failure pressures predicted by proposed solutions are compared with experimental results and various assessment methods available in literature, where accuracy and versatility are demonstrated

  5. Exploitation of a component event data bank for common cause failure analysis

    International Nuclear Information System (INIS)

    Games, A.M.; Amendola, A.; Martin, P.

    1985-01-01

    Investigations into using the European Reliability Data System Component Event Data Bank for common cause failure analysis have been carried out. Starting from early exercises where data were analyzed without computer aid, different types of linked multiple failures have been identified. A classification system is proposed based on this experience. It defines a multiple failure event space wherein each category defines causal, modal, temporal and structural links between failures. It is shown that a search algorithm which incorporates the specific interrogative procedures of the data bank can be developed in conjunction with this classification system. It is concluded that the classification scheme and the search algorithm are useful organizational tools in the field of common cause failures studies. However, it is also suggested that the use of the term common cause failure should be avoided since it embodies to many different types of linked multiple failures

  6. PENERAPAN FUZZY ANALYTIC HIERARCHY PROCESS DALAM METODE MULTI ATTRIBUTE FAILURE MODE ANALYSIS UNTUK MENGIDENTIFIKASI PENYEBAB KEGAGALAN POTENSIAL PADA PROSES PRODUKSI

    Directory of Open Access Journals (Sweden)

    Dorina Hetharia

    2012-02-01

    and Effect Analysis (FMEA that integrates severity attribute, occurrence, and detect ability with expected cost as financial aspect.  In FMEA, determination of potential failure causal factor is done by giving weight to four attributes. Giving weight is using Analytic Hierarchy Process (AHP with fuzzy logic. Severity, occurrence, detect ability, and expected cost in MAFMA as criteria level in AHP hierarchy structure, whereas the failure causes as alternative level in that hierarchy structure. In case study at PT Pelita Cengkareng Paper & Co. shows that weight for severity criteria is 0.3461, occurrence is 0.0848, detect ability is 0.1741, and expected cost is 0.3950. The potential failure cause is chemical agglutination in weight 0.210. Keywords : AHP, fuzzy logic, MAFMA

  7. Frequency Analysis of Failure Scenarios from Shale Gas Development.

    Science.gov (United States)

    Abualfaraj, Noura; Gurian, Patrick L; Olson, Mira S

    2018-04-29

    This study identified and prioritized potential failure scenarios for natural gas drilling operations through an elicitation of people who work in the industry. A list of twelve failure scenarios of concern was developed focusing on specific events that may occur during the shale gas extraction process involving an operational failure or a violation of regulations. Participants prioritized the twelve scenarios based on their potential impact on the health and welfare of the general public, potential impact on worker safety, how well safety guidelines protect against their occurrence, and how frequently they occur. Illegal dumping of flowback water, while rated as the least frequently occurring scenario, was considered the scenario least protected by safety controls and the one of most concern to the general public. In terms of worker safety, the highest concern came from improper or inadequate use of personal protective equipment (PPE). While safety guidelines appear to be highly protective regarding PPE usage, inadequate PPE is the most directly witnessed failure scenario. Spills of flowback water due to equipment failure are of concern both with regards to the welfare of the general public and worker safety as they occur more frequently than any other scenario examined in this study.

  8. Modular titanium alloy neck adapter failures in hip replacement - failure mode analysis and influence of implant material

    Directory of Open Access Journals (Sweden)

    Bloemer Wilhelm

    2010-01-01

    Full Text Available Abstract Background Modular neck adapters for hip arthroplasty stems allow the surgeon to modify CCD angle, offset and femoral anteversion intraoperatively. Fretting or crevice corrosion may lead to failure of such a modular device due to high loads or surface contamination inside the modular coupling. Unfortunately we have experienced such a failure of implants and now report our clinical experience with the failures in order to advance orthopaedic material research and joint replacement surgery. The failed neck adapters were implanted between August 2004 and November 2006 a total of about 5000 devices. After this period, the titanium neck adapters were replaced by adapters out of cobalt-chromium. Until the end of 2008 in total 1.4% (n = 68 of the implanted titanium alloy neck adapters failed with an average time of 2.0 years (0.7 to 4.0 years postoperatively. All, but one, patients were male, their average age being 57.4 years (36 to 75 years and the average weight 102.3 kg (75 to 130 kg. The failures of neck adapters were divided into 66% with small CCD of 130° and 60% with head lengths of L or larger. Assuming an average time to failure of 2.8 years, the cumulative failure rate was calculated with 2.4%. Methods A series of adapter failures of titanium alloy modular neck adapters in combination with a titanium alloy modular short hip stem was investigated. For patients having received this particular implant combination risk factors were identified which were associated with the occurence of implant failure. A Kaplan-Meier survival-failure-analysis was conducted. The retrieved implants were analysed using microscopic and chemical methods. Modes of failure were simulated in biomechanical tests. Comparative tests included modular neck adapters made of titanium alloy and cobalt chrome alloy material. Results Retrieval examinations and biomechanical simulation revealed that primary micromotions initiated fretting within the modular tapered neck

  9. Failure characteristic analysis of a component on standby state

    International Nuclear Information System (INIS)

    Shin, Sungmin; Kang, Hyungook

    2013-01-01

    Periodic operations for a specific type of component, however, can accelerate aging effects which increase component unavailability. For the other type of components, the aging effect caused by operation can be ignored. Therefore frequent operations can decrease component unavailability. Thus, to get optimum unavailability proper operation period and method should be studied considering the failure characteristics of each component. The information of component failure is given according to the main causes of failure depending on time flow. However, to get the optimal unavailability, proper interval of operation for inspection should be decided considering the time dependent and independent causes together. According to this study, gradually shorter operation interval for inspection is better to get the optimal component unavailability than that of specific period

  10. Review and analysis of check valve failure data

    International Nuclear Information System (INIS)

    Todd, M.D.; Casada, D.A.

    1992-01-01

    Check valve operating problems in recent years have resulted in significant operating transients, increased cost and decreased system availability. There has been, in response, additional attention given to check valves by utilities, as well as the US Nuclear Regulatory Commission and the American Society of Mechanical Engineers Operation and Maintenance Committee. All these organizations have the fundamental goal of ensuring reliable operation of check valves. A key ingredient to an engineering-oriented reliability improvement effort is a thorough understanding of relevant historical experience. Oak Ridge National Laboratory is currently conducting a detailed review of historical failure data available through the Institute of Nuclear Power Operation's Nuclear Plant Reliability Data System. The focus of the review is on check valve failures that have involved significant degradation of the valve internal parts. A variety of parameters are being considered during the review, including size, age, system of service, method of failure discovery, the affected valve parts, attributed causes, and corrective actions

  11. Analysis of failure and maintenance experiences of motor operated valves in a Finnish nuclear power plant

    International Nuclear Information System (INIS)

    Simola, K.; Laakso, K.

    1992-01-01

    Operating experiences from 1981 up to 1989 of totally 104 motor operated closing valves (MOV) in different safety systems at TVO I and II nuclear power units were analysed in a systematic way. The qualitative methods used were failure mode and effects analysis (FMEA) and maintenance effects and criticality analysis (MECA). The failure descriptions were obtained from power plant's computerized failure reporting system. The reported 181 failure events were reanalysed and sorted according to specific classifications developed for the MOV function. Filled FMEA and MECA sheets on individual valves were stored in a microcomputer data base for further analyses. Analyses were performed for the failed mechanical and electrical valve parts, ways of detection of failure modes, failure effects, and repair and unavailability times

  12. Embedded mechatronic systems 1 analysis of failures, predictive reliability

    CERN Document Server

    El Hami, Abdelkhalak

    2015-01-01

    In operation, mechatronics embedded systems are stressed by loads of different causes: climate (temperature, humidity), vibration, electrical and electromagnetic. These stresses in components which induce failure mechanisms should be identified and modeled for better control. AUDACE is a collaborative project of the cluster Mov'eo that address issues specific to mechatronic reliability embedded systems. AUDACE means analyzing the causes of failure of components of mechatronic systems onboard. The goal of the project is to optimize the design of mechatronic devices by reliability. The projec

  13. Statistical analysis of nuclear power plant pump failure rate variability: some preliminary results

    International Nuclear Information System (INIS)

    Martz, H.F.; Whiteman, D.E.

    1984-02-01

    In-Plant Reliability Data System (IPRDS) pump failure data on over 60 selected pumps in four nuclear power plants are statistically analyzed using the Failure Rate Analysis Code (FRAC). A major purpose of the analysis is to determine which environmental, system, and operating factors adequately explain the variability in the failure data. Catastrophic, degraded, and incipient failure severity categories are considered for both demand-related and time-dependent failures. For catastrophic demand-related pump failures, the variability is explained by the following factors listed in their order of importance: system application, pump driver, operating mode, reactor type, pump type, and unidentified plant-specific influences. Quantitative failure rate adjustments are provided for the effects of these factors. In the case of catastrophic time-dependent pump failures, the failure rate variability is explained by three factors: reactor type, pump driver, and unidentified plant-specific influences. Finally, point and confidence interval failure rate estimates are provided for each selected pump by considering the influential factors. Both types of estimates represent an improvement over the estimates computed exclusively from the data on each pump

  14. Competing failure analysis in phased-mission systems with functional dependence in one of phases

    International Nuclear Information System (INIS)

    Wang, Chaonan; Xing, Liudong; Levitin, Gregory

    2012-01-01

    This paper proposes an algorithm for the reliability analysis of non-repairable phased-mission systems (PMS) subject to competing failure propagation and isolation effects. A failure originating from a system component which causes extensive damage to other system components is a propagated failure. When the propagated failure affects all the system components, causing the entire system failure, a propagated failure with global effect (PFGE) is said to occur. However, the failure propagation can be isolated in systems subject to functional dependence (FDEP) behavior, where the failure of a component (referred to as trigger component) causes some other components (referred to as dependent components) to become inaccessible or unusable (isolated from the system), and thus further failures from these dependent components have no effect on the system failure behavior. On the other hand, if any PFGE from dependent components occurs before the trigger failure, the failure propagation effect takes place, causing the overall system failure. In summary, there are two distinct consequences of a PFGE due to the competition between the failure isolation and failure propagation effects in the time domain. Existing works on such competing failures focus only on single-phase systems. However, many real-world systems are phased-mission systems (PMS), which involve multiple, consecutive and non-overlapping phases of operations or tasks. Consideration of competing failures for PMS is a challenging and difficult task because PMS exhibit dynamics in the system configuration and component behavior as well as statistical dependencies across phases for a given component. This paper proposes a combinatorial method to address the competing failure effects in the reliability analysis of binary non-repairable PMS. The proposed method is verified using a Markov-based method through a numerical example. Different from the Markov-based approach that is limited to exponential distribution, the

  15. Preliminary Failure Modes and Effects Analysis of the US DCLL Test Blanket Module

    Energy Technology Data Exchange (ETDEWEB)

    Lee C. Cadwallader

    2010-06-01

    This report presents the results of a preliminary failure modes and effects analysis (FMEA) of a small tritium-breeding test blanket module design for the International Thermonuclear Experimental Reactor. The FMEA was quantified with “generic” component failure rate data, and the failure events are binned into postulated initiating event families and frequency categories for safety assessment. An appendix to this report contains repair time data to support an occupational radiation exposure assessment for test blanket module maintenance.

  16. Preliminary Failure Modes and Effects Analysis of the US DCLL Test Blanket Module

    Energy Technology Data Exchange (ETDEWEB)

    Lee C. Cadwallader

    2007-08-01

    This report presents the results of a preliminary failure modes and effects analysis (FMEA) of a small tritium-breeding test blanket module design for the International Thermonuclear Experimental Reactor. The FMEA was quantified with “generic” component failure rate data, and the failure events are binned into postulated initiating event families and frequency categories for safety assessment. An appendix to this report contains repair time data to support an occupational radiation exposure assessment for test blanket module maintenance.

  17. Preliminary Failure Modes and Effects Analysis of the US DCLL Test Blanket Module

    International Nuclear Information System (INIS)

    Lee C. Cadwallader

    2007-01-01

    This report presents the results of a preliminary failure modes and effects analysis (FMEA) of a small tritium-breeding test blanket module design for the International Thermonuclear Experimental Reactor. The FMEA was quantified with 'generic' component failure rate data, and the failure events are binned into postulated initiating event families and frequency categories for safety assessment. An appendix to this report contains repair time data to support an occupational radiation exposure assessment for test blanket module maintenance

  18. Computer-tomography and its use in failure analysis; Computertomographie und deren Anwendung in der Schadensanalytik

    Energy Technology Data Exchange (ETDEWEB)

    Panzenboeck, Michael; Freitag, Caroline [Montanuniv. Leoben (Austria). Dept. Metallkunde und Werkstoffpruefung; Borchert, Marlies [Materials Center Leoben (Austria)

    2017-04-15

    In the last fifteen years computer-tomography has proven to be a valuable aid in the fields of medicine, materials technology and forensics. Nowadays it is hard to image non-destructive testing being carried out without its use. This article serves to demonstrate the power of the technique within the field of failure analysis with reference to two chosen case studies. The first case concerns the failure of magnetic valves, the second case focusses on the failure of corrosion resistant screws.

  19. Tradeoff Analysis for Combat Service Support Wireless Communications Alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Burnette, John R.; Thibodeau, Christopher C.; Greitzer, Frank L.

    2002-02-28

    As the Army moves toward more mobile and agile forces and continued sustainment of numerous high-cost legacy logistics management systems, the requirement for wireless connectivity and a wireless network to supporting organizations has become ever more critical. There are currently several Army communications initiatives underway to resolve this wireless connectivity issue. However, to fully appreciate and understand the value of these initiatives, a Tradeoff Analysis is needed. The present study seeks to identify and assess solutions. The analysis identified issues that impede Interim Brigade Combat Team (IBCT) communication system integration and outlined core requirements for sharing of logistics data between the field and Army battle command systems. Then, the analysis examined wireless communication alternatives as possible solutions for IBCT logistics communications problems. The current baseline system was compared with possible alternatives involving tactical radio systems, wireless/near term digital radio, cellular satellite, and third-generation (3G) wireless technologies. Cellular satellite and 3G wireless technologies offer clear advantages and should be considered for later IBCTs.

  20. Complementary and alternative exercise for fibromyalgia: a meta-analysis.

    Science.gov (United States)

    Mist, Scott David; Firestone, Kari A; Jones, Kim Dupree

    2013-01-01

    Complementary and alternative medicine includes a number of exercise modalities, such as tai chi, qigong, yoga, and a variety of lesser-known movement therapies. A meta-analysis of the current literature was conducted estimating the effect size of the different modalities, study quality and bias, and adverse events. The level of research has been moderately weak to date, but most studies report a medium-to-high effect size in pain reduction. Given the lack of adverse events, there is little risk in recommending these modalities as a critical component in a multimodal treatment plan, which is often required for fibromyalgia management.

  1. Conflict analysis and management alternative for the Manayunk Canal

    International Nuclear Information System (INIS)

    Chadderton, R.A.

    1989-01-01

    The solution of a water resource allocation problem by an alternative social arrangement is presented. Classical Austrian economic theory and the new resources economics provide both theoretical and practical evidence to support the development of well-defined, private property rights to the water resource in question. A conflict analysis demonstrates that management of the Manayunk Canal by a firm would reconcile existing confrontations through compromise use of the water resource. Benefit and cost calculations show that a compromise among industrial and recreational interests, currently competing in the political arena, would increase social benefits

  2. Analysis of alternatives for immobilized low activity waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Burbank, D.A.

    1997-10-28

    This report presents a study of alternative disposal system architectures and implementation strategies to provide onsite near-surface disposal capacity to receive the immobilized low-activity waste produced by the private vendors. The analysis shows that a flexible unit strategy that provides a suite of design solutions tailored to the characteristics of the immobilized low-activity waste will provide a disposal system that best meets the program goals of reducing the environmental, health, and safety impacts; meeting the schedule milestones; and minimizing the life-cycle cost of the program.

  3. Analysis of alternatives for immobilized low-activity waste disposal

    International Nuclear Information System (INIS)

    Burbank, D.A.

    1997-01-01

    This report presents a study of alternative disposal system architectures and implementation strategies to provide onsite near-surface disposal capacity to receive the immobilized low-activity waste produced by the private vendors. The analysis shows that a flexible unit strategy that provides a suite of design solutions tailored to the characteristics of the immobilized low-activity waste will provide a disposal system that best meets the program goals of reducing the environmental, health, and safety impacts; meeting the schedule milestones; and minimizing the life-cycle cost of the program

  4. Beyond reliability, multi-state failure analysis of satellite subsystems: A statistical approach

    International Nuclear Information System (INIS)

    Castet, Jean-Francois; Saleh, Joseph H.

    2010-01-01

    Reliability is widely recognized as a critical design attribute for space systems. In recent articles, we conducted nonparametric analyses and Weibull fits of satellite and satellite subsystems reliability for 1584 Earth-orbiting satellites launched between January 1990 and October 2008. In this paper, we extend our investigation of failures of satellites and satellite subsystems beyond the binary concept of reliability to the analysis of their anomalies and multi-state failures. In reliability analysis, the system or subsystem under study is considered to be either in an operational or failed state; multi-state failure analysis introduces 'degraded states' or partial failures, and thus provides more insights through finer resolution into the degradation behavior of an item and its progression towards complete failure. The database used for the statistical analysis in the present work identifies five states for each satellite subsystem: three degraded states, one fully operational state, and one failed state (complete failure). Because our dataset is right-censored, we calculate the nonparametric probability of transitioning between states for each satellite subsystem with the Kaplan-Meier estimator, and we derive confidence intervals for each probability of transitioning between states. We then conduct parametric Weibull fits of these probabilities using the Maximum Likelihood Estimation (MLE) approach. After validating the results, we compare the reliability versus multi-state failure analyses of three satellite subsystems: the thruster/fuel; the telemetry, tracking, and control (TTC); and the gyro/sensor/reaction wheel subsystems. The results are particularly revealing of the insights that can be gleaned from multi-state failure analysis and the deficiencies, or blind spots, of the traditional reliability analysis. In addition to the specific results provided here, which should prove particularly useful to the space industry, this work highlights the importance

  5. Iron deficiency in chronic heart failure : An international pooled analysis

    NARCIS (Netherlands)

    Klip, IJsbrand T.; Comin-Colet, Josep; Voors, Adriaan A.; Ponikowski, Piotr; Enjuanes, Cristina; Banasiak, Waldemar; Lok, Dirk J.; Rosentryt, Piotr; Torrens, Ainhoa; Polonski, Lech; van Veldhuisen, Dirk J.; van der Meer, Peter; Jankowska, Ewa A.

    Background Iron deficiency (ID) is an emerging problem in patients with chronic heart failure (HF) and can be a potential therapeutic target. However, not much is known about the prevalence, predictors, and prognosis of ID in patients with chronic HF. Methods In an international pooled cohort

  6. Failure analysis of multiple delaminated composite plates due to ...

    Indian Academy of Sciences (India)

    Unknown

    plates are assumed to contain both single and multiple delaminations. For the case of impact, ... delamination on the first ply failure of the laminate is scarce. ..... 1 in the bottom layer, it was of the opposite sign for the top layer. The plots for ...

  7. Crash Causation In Nigerian Roads – Failure Mode Analysis | Dike ...

    African Journals Online (AJOL)

    The results of many researches on the causes of road traffic accidents have always resolved around three main factors, the human, environmental and vehicular factors. In this study, emphasis was placed on the vehicular factor in road traffic accident. It looked into detail on those vehicle components whose failures result in ...

  8. Analysis of soft rock mineral components and roadway failure mechanism

    Institute of Scientific and Technical Information of China (English)

    陈杰

    2001-01-01

    The mineral components and microstructure of soft rock sampled from roadway floor inXiagou pit are determined by X-ray diffraction and scanning electron microscope. Ccmbined withthe test of expansion and water softening property of the soft rock, the roadway failure mechanism is analyzed, and the reasonable repair supporting principle of roadway is put forward.

  9. Analysis of fuel operational reliability and fuel failures

    International Nuclear Information System (INIS)

    Smiesko, I.

    1999-01-01

    In this lecture the fuel failure (loss of fuel rod (cladding) integrity, corruption of second barrier for fission product release from duel and their consequences (increase of primary coolant activity; increase of fission product releases to environment; increase of rad-waste activities and potential increase of personnel exposure) are discussed

  10. Quantification of a decision-making failure probability of the accident management using cognitive analysis model

    International Nuclear Information System (INIS)

    Yoshida, Yoshitaka; Ohtani, Masanori; Fujita, Yushi

    2002-01-01

    In the nuclear power plant, much knowledge is acquired through probabilistic safety assessment (PSA) of a severe accident, and accident management (AM) is prepared. It is necessary to evaluate the effectiveness of AM using the decision-making failure probability of an emergency organization, operation failure probability of operators, success criteria of AM and reliability of AM equipments in PSA. However, there has been no suitable qualification method for PSA so far to obtain the decision-making failure probability, because the decision-making failure of an emergency organization treats the knowledge based error. In this work, we developed a new method for quantification of the decision-making failure probability of an emergency organization using cognitive analysis model, which decided an AM strategy, in a nuclear power plant at the severe accident, and tried to apply it to a typical pressurized water reactor (PWR) plant. As a result: (1) It could quantify the decision-making failure probability adjusted to PSA for general analysts, who do not necessarily possess professional human factors knowledge, by choosing the suitable value of a basic failure probability and an error-factor. (2) The decision-making failure probabilities of six AMs were in the range of 0.23 to 0.41 using the screening evaluation method and in the range of 0.10 to 0.19 using the detailed evaluation method as the result of trial evaluation based on severe accident analysis of a typical PWR plant, and a result of sensitivity analysis of the conservative assumption, failure probability decreased about 50%. (3) The failure probability using the screening evaluation method exceeded that using detailed evaluation method by 99% of probability theoretically, and the failure probability of AM in this study exceeded 100%. From this result, it was shown that the decision-making failure probability was more conservative than the detailed evaluation method, and the screening evaluation method satisfied

  11. Quantification of a decision-making failure probability of the accident management using cognitive analysis model

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Yoshitaka; Ohtani, Masanori [Institute of Nuclear Safety System, Inc., Mihama, Fukui (Japan); Fujita, Yushi [TECNOVA Corp., Tokyo (Japan)

    2002-09-01

    In the nuclear power plant, much knowledge is acquired through probabilistic safety assessment (PSA) of a severe accident, and accident management (AM) is prepared. It is necessary to evaluate the effectiveness of AM using the decision-making failure probability of an emergency organization, operation failure probability of operators, success criteria of AM and reliability of AM equipments in PSA. However, there has been no suitable qualification method for PSA so far to obtain the decision-making failure probability, because the decision-making failure of an emergency organization treats the knowledge based error. In this work, we developed a new method for quantification of the decision-making failure probability of an emergency organization using cognitive analysis model, which decided an AM strategy, in a nuclear power plant at the severe accident, and tried to apply it to a typical pressurized water reactor (PWR) plant. As a result: (1) It could quantify the decision-making failure probability adjusted to PSA for general analysts, who do not necessarily possess professional human factors knowledge, by choosing the suitable value of a basic failure probability and an error-factor. (2) The decision-making failure probabilities of six AMs were in the range of 0.23 to 0.41 using the screening evaluation method and in the range of 0.10 to 0.19 using the detailed evaluation method as the result of trial evaluation based on severe accident analysis of a typical PWR plant, and a result of sensitivity analysis of the conservative assumption, failure probability decreased about 50%. (3) The failure probability using the screening evaluation method exceeded that using detailed evaluation method by 99% of probability theoretically, and the failure probability of AM in this study exceeded 100%. From this result, it was shown that the decision-making failure probability was more conservative than the detailed evaluation method, and the screening evaluation method satisfied

  12. A Comprehensive Analysis of Alternative Splicing in Paleopolyploid Maize

    Directory of Open Access Journals (Sweden)

    Wenbin Mei

    2017-05-01

    Full Text Available Identifying and characterizing alternative splicing (AS enables our understanding of the biological role of transcript isoform diversity. This study describes the use of publicly available RNA-Seq data to identify and characterize the global diversity of AS isoforms in maize using the inbred lines B73 and Mo17, and a related species, sorghum. Identification and characterization of AS within maize tissues revealed that genes expressed in seed exhibit the largest differential AS relative to other tissues examined. Additionally, differences in AS between the two genotypes B73 and Mo17 are greatest within genes expressed in seed. We demonstrate that changes in the level of alternatively spliced transcripts (intron retention and exon skipping do not solely reflect differences in total transcript abundance, and we present evidence that intron retention may act to fine-tune gene expression across seed development stages. Furthermore, we have identified temperature sensitive AS in maize and demonstrate that drought-induced changes in AS involve distinct sets of genes in reproductive and vegetative tissues. Examining our identified AS isoforms within B73 × Mo17 recombinant inbred lines (RILs identified splicing QTL (sQTL. The 43.3% of cis-sQTL regulated junctions are actually identified as alternatively spliced junctions in our analysis, while 10 Mb windows on each side of 48.2% of trans-sQTLs overlap with splicing related genes. Using sorghum as an out-group enabled direct examination of loss or conservation of AS between homeologous genes representing the two subgenomes of maize. We identify several instances where AS isoforms that are conserved between one maize homeolog and its sorghum ortholog are absent from the second maize homeolog, suggesting that these AS isoforms may have been lost after the maize whole genome duplication event. This comprehensive analysis provides new insights into the complexity of AS in maize.

  13. Failure Mode and Effect Analysis for Wind Turbine Systems in China

    DEFF Research Database (Denmark)

    Zhu, Jiangsheng; Ma, Kuichao; N. Soltani, Mohsen

    2017-01-01

    This paper discusses a cost based Failure Mode and Effect Analysis (FMEA) approch for the Wind Turbine (WT) with condition monitoring system in China. Normally, the traditional FMEA uses the Risk Priority Number (RPN) to rank failure modes. But the RPN can be changed with the Condition Monitoring...... Systems (CMS) due to change of the score of detection. The cost of failure mode should also be considered because faults can be detected at an incipient level, and condition-based maintenance can be scheduled. The results show that the proposed failure mode priorities considering their cost consequences...

  14. Failure analysis a practical guide for manufacturers of electronic components and systems

    CERN Document Server

    Bâzu, Marius

    2011-01-01

    Failure analysis is the preferred method to investigate product or process reliability and to ensure optimum performance of electrical components and systems. The physics-of-failure approach is the only internationally accepted solution for continuously improving the reliability of materials, devices and processes. The models have been developed from the physical and chemical phenomena that are responsible for degradation or failure of electronic components and materials and now replace popular distribution models for failure mechanisms such as Weibull or lognormal. Reliability engineers nee

  15. Analysis of Alternatives for Risk Assessment Methodologies and Tools

    Energy Technology Data Exchange (ETDEWEB)

    Nachtigal, Noel M. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). System Analytics; Fruetel, Julia A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Systems Research and Analysis; Gleason, Nathaniel J. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Systems Research and Analysis; Helms, Jovana [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Systems Research and Analysis; Imbro, Dennis Raymond [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Systems Research and Analysis; Sumner, Matthew C. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Systems Research and Analysis

    2013-10-01

    The purpose of this document is to provide a basic overview and understanding of risk assessment methodologies and tools from the literature and to assess the suitability of these methodologies and tools for cyber risk assessment. Sandia National Laboratories (SNL) performed this review in support of risk modeling activities performed for the Stakeholder Engagement and Cyber Infrastructure Resilience (SECIR) division of the Department of Homeland Security (DHS) Office of Cybersecurity and Communications (CS&C). The set of methodologies and tools covered in this document is not intended to be exhaustive; instead, it focuses on those that are commonly used in the risk assessment community. The classification of methodologies and tools was performed by a group of analysts with experience in risk analysis and cybersecurity, and the resulting analysis of alternatives has been tailored to address the needs of a cyber risk assessment.

  16. NDT in failure analysis - some case studies [Paper IIIA-g

    International Nuclear Information System (INIS)

    Raj, Baldev; Bhattacharya, D.K.; Lopez, E.C.; Jayakumar, T.

    1986-01-01

    The effective uses of several non-destructive techniques in failure analysis are discussed. The techniques considered are: dye penetrant testing, radiography, ultrasonic testing, hardness measurement and in-situ metallography. A few failure cases are discussed to highlight the usefulness of the techniques. (author)

  17. Comprehensive Deployment Method for Technical Characteristics Base on Multi-failure Modes Correlation Analysis

    Science.gov (United States)

    Zheng, W.; Gao, J. M.; Wang, R. X.; Chen, K.; Jiang, Y.

    2017-12-01

    This paper put forward a new method of technical characteristics deployment based on Reliability Function Deployment (RFD) by analysing the advantages and shortages of related research works on mechanical reliability design. The matrix decomposition structure of RFD was used to describe the correlative relation between failure mechanisms, soft failures and hard failures. By considering the correlation of multiple failure modes, the reliability loss of one failure mode to the whole part was defined, and a calculation and analysis model for reliability loss was presented. According to the reliability loss, the reliability index value of the whole part was allocated to each failure mode. On the basis of the deployment of reliability index value, the inverse reliability method was employed to acquire the values of technology characteristics. The feasibility and validity of proposed method were illustrated by a development case of machining centre’s transmission system.

  18. Life-Cycle Analysis of Alternative Aviation Fuels in GREET

    Energy Technology Data Exchange (ETDEWEB)

    Elgowainy, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Han, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, M. [Argonne National Lab. (ANL), Argonne, IL (United States); Carter, N. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Stratton, R. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Hileman, J. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Malwitz, A. [Volpe National Transportation Systems Center, Cambridge, MA (United States); Balasubramanian, S. [Volpe National Transportation Systems Center, Cambridge, MA (United States)

    2012-06-01

    The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, developed at Argonne National Laboratory, has been expanded to include well-to-wake (WTWa) analysis of aviation fuels and aircraft. This report documents the key WTWa stages and assumptions for fuels that represent alternatives to petroleum jet fuel. The aviation module in GREET consists of three spreadsheets that present detailed characterizations of well-to-pump and pump-to-wake parameters and WTWa results. By using the expanded GREET version (GREET1_2011), we estimate WTWa results for energy use (total, fossil, and petroleum energy) and greenhouse gas (GHG) emissions (carbon dioxide, methane, and nitrous oxide) for (1) each unit of energy (lower heating value) consumed by the aircraft or(2) each unit of distance traveled/ payload carried by the aircraft. The fuel pathways considered in this analysis include petroleum-based jet fuel from conventional and unconventional sources (i.e., oil sands); Fisher-Tropsch (FT) jet fuel from natural gas, coal, and biomass; bio-jet fuel from fast pyrolysis of cellulosic biomass; and bio-jet fuel from vegetable and algal oils, which falls under the American Society for Testing and Materials category of hydroprocessed esters and fatty acids. For aircraft operation, we considered six passenger aircraft classes and four freight aircraft classes in this analysis. Our analysis revealed that, depending on the feedstock source, the fuel conversion technology, and the allocation or displacement credit methodology applied to co-products, alternative bio-jet fuel pathways have the potential to reduce life-cycle GHG emissions by 55–85 percent compared with conventional (petroleum-based) jet fuel. Although producing FT jet fuel from fossil feedstock sources — such as natural gas and coal — could greatly reduce dependence on crude oil, production from such sources (especially coal) produces greater WTWa GHG emissions compared with petroleum jet

  19. Life-cycle analysis of alternative aviation fuels in GREET

    Energy Technology Data Exchange (ETDEWEB)

    Elgowainy, A.; Han, J.; Wang, M.; Carter, N.; Stratton, R.; Hileman, J.; Malwitz, A.; Balasubramanian, S. (Energy Systems)

    2012-07-23

    The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, developed at Argonne National Laboratory, has been expanded to include well-to-wake (WTWa) analysis of aviation fuels and aircraft. This report documents the key WTWa stages and assumptions for fuels that represent alternatives to petroleum jet fuel. The aviation module in GREET consists of three spreadsheets that present detailed characterizations of well-to-pump and pump-to-wake parameters and WTWa results. By using the expanded GREET version (GREET1{_}2011), we estimate WTWa results for energy use (total, fossil, and petroleum energy) and greenhouse gas (GHG) emissions (carbon dioxide, methane, and nitrous oxide) for (1) each unit of energy (lower heating value) consumed by the aircraft or (2) each unit of distance traveled/ payload carried by the aircraft. The fuel pathways considered in this analysis include petroleum-based jet fuel from conventional and unconventional sources (i.e., oil sands); Fisher-Tropsch (FT) jet fuel from natural gas, coal, and biomass; bio-jet fuel from fast pyrolysis of cellulosic biomass; and bio-jet fuel from vegetable and algal oils, which falls under the American Society for Testing and Materials category of hydroprocessed esters and fatty acids. For aircraft operation, we considered six passenger aircraft classes and four freight aircraft classes in this analysis. Our analysis revealed that, depending on the feedstock source, the fuel conversion technology, and the allocation or displacement credit methodology applied to co-products, alternative bio-jet fuel pathways have the potential to reduce life-cycle GHG emissions by 55-85 percent compared with conventional (petroleum-based) jet fuel. Although producing FT jet fuel from fossil feedstock sources - such as natural gas and coal - could greatly reduce dependence on crude oil, production from such sources (especially coal) produces greater WTWa GHG emissions compared with petroleum jet

  20. A comparative analysis of alternative approaches for quantifying nonlinear dynamics in cardiovascular system.

    Science.gov (United States)

    Chen, Yun; Yang, Hui

    2013-01-01

    Heart rate variability (HRV) analysis has emerged as an important research topic to evaluate autonomic cardiac function. However, traditional time and frequency-domain analysis characterizes and quantify only linear and stationary phenomena. In the present investigation, we made a comparative analysis of three alternative approaches (i.e., wavelet multifractal analysis, Lyapunov exponents and multiscale entropy analysis) for quantifying nonlinear dynamics in heart rate time series. Note that these extracted nonlinear features provide information about nonlinear scaling behaviors and the complexity of cardiac systems. To evaluate the performance, we used 24-hour HRV recordings from 54 healthy subjects and 29 heart failure patients, available in PhysioNet. Three nonlinear methods are evaluated not only individually but also in combination using three classification algorithms, i.e., linear discriminate analysis, quadratic discriminate analysis and k-nearest neighbors. Experimental results show that three nonlinear methods capture nonlinear dynamics from different perspectives and the combined feature set achieves the best performance, i.e., sensitivity 97.7% and specificity 91.5%. Collectively, nonlinear HRV features are shown to have the promise to identify the disorders in autonomic cardiovascular function.

  1. Reliability Evaluation of Machine Center Components Based on Cascading Failure Analysis

    Science.gov (United States)

    Zhang, Ying-Zhi; Liu, Jin-Tong; Shen, Gui-Xiang; Long, Zhe; Sun, Shu-Guang

    2017-07-01

    In order to rectify the problems that the component reliability model exhibits deviation, and the evaluation result is low due to the overlook of failure propagation in traditional reliability evaluation of machine center components, a new reliability evaluation method based on cascading failure analysis and the failure influenced degree assessment is proposed. A direct graph model of cascading failure among components is established according to cascading failure mechanism analysis and graph theory. The failure influenced degrees of the system components are assessed by the adjacency matrix and its transposition, combined with the Pagerank algorithm. Based on the comprehensive failure probability function and total probability formula, the inherent failure probability function is determined to realize the reliability evaluation of the system components. Finally, the method is applied to a machine center, it shows the following: 1) The reliability evaluation values of the proposed method are at least 2.5% higher than those of the traditional method; 2) The difference between the comprehensive and inherent reliability of the system component presents a positive correlation with the failure influenced degree of the system component, which provides a theoretical basis for reliability allocation of machine center system.

  2. Summary of failure analysis activities at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Cowgill, M.G.; Czajkowski, C.J.; Franz, E.M.

    1996-10-01

    Brookhaven National Laboratory has for many years conducted examinations related to the failures of nuclear materials and components. These examinations included the confirmation of root cause analyses, the determination of the causes of failure, identification of the species that accelerate corrosion, and comparison of the results of nondestructive examinations with those obtained by destructive examination. The results of those examinations, which had previously appeared in various formats (formal and informal reports, journal articles, etc.), have been collected together and summarized in the present report. The report is divided into sections according to the general subject matter (for example, corrosion, fatigue, etc.). Each section presents summaries of the information contained in specific reports and publications, all of which are fully identified as to title, authors, report number or journal reference, date of publication, and FIN number under which the work was performed

  3. Experimental and theoretical analysis of shear wall failure

    International Nuclear Information System (INIS)

    Gantenbein, F.; Queval, J.C.; Dalbera, J.

    1993-01-01

    Thirteen walls with and without openings have been tested under seismic loading up to collapse and the test results have already been reported. A global model has been developed for the description of the hysteretic behaviour; it is based on the use of secant stiffness up to the steel yielding and on a slip model after yielding. Applications of this model to the walls with and without openings will be shown and the calculated top displacement will be compared with the measured one. The input load level leading to the failure is calculated with this non-linear model and the results are compared with the experimental values. The safety margin, which is defined as the ratio of the experimental load level leading to the failure to that obtained by linear calculation, will be given as a function of the mean excitation frequency

  4. Pathway analysis for alternate low-level waste disposal methods

    International Nuclear Information System (INIS)

    Rao, R.R.; Kozak, M.W.; McCord, J.T.; Olague, N.E.

    1992-01-01

    The purpose of this paper is to evaluate a complete set of environmental pathways for disposal options and conditions that the Nuclear Regulatory Commission (NRC) may analyze for a low-level radioactive waste (LLW) license application. The regulations pertaining In the past, shallow-land burial has been used for the disposal of low-level radioactive waste. However, with the advent of the State Compact system of LLW disposal, many alternative technologies may be used. The alternative LLW disposal facilities include below- ground vault, tumulus, above-ground vault, shaft, and mine disposal This paper will form the foundation of an update of the previously developed Sandia National Laboratories (SNL)/NRC LLW performance assessment methodology. Based on the pathway assessment for alternative disposal methods, a determination will be made about whether the current methodology can satisfactorily analyze the pathways and phenomena likely to be important for the full range of potential disposal options. We have attempted to be conservative in keeping pathways in the lists that may usually be of marginal importance. In this way we can build confidence that we have spanned the range of cases likely to be encountered at a real site. Results of the pathway assessment indicate that disposal methods can be categorized in groupings based on their depth of disposal. For the deep disposal options of shaft and mine disposal, the key pathways are identical. The shallow disposal options, such as tumulus, shallow-land, and below-ground vault disposal also may be grouped together from a pathway analysis perspective. Above-ground vault disposal cannot be grouped with any of the other disposal options. The pathway analysis shows a definite trend concerning depth of disposal. The above-ground option has the largest number of significant pathways. As the waste becomes more isolated, the number of significant pathways is reduced. Similar to shallow-land burial, it was found that for all

  5. Alternating chain with Hubbard-type interactions: renormalization group analysis

    International Nuclear Information System (INIS)

    Buzatu, F. D.; Jackeli, G.

    1998-01-01

    A large amount of work has been devoted to the study of alternating chains for a better understanding of the high-T c superconductivity mechanism. The same phenomenon renewed the interest in the Hubbard model and in its one-dimensional extensions. In this work we investigate, using the Renormalization Group (RG) method, the effect of the Hubbard-type interactions on the ground-state properties of a chain with alternating on-site atomic energies. The one-particle Hamiltonian in the tight binding approximation corresponding to an alternating chain with two nonequivalent sites per unit cell can be diagonalized by a canonical transformation; one gets a two band model. The Hubbard-type interactions give rise to both intra- and inter-band couplings; however, if the gap between the two bands is sufficiently large and the system is more than half-filled, as for the CuO 3 chain occurring in high-T c superconductors, the last ones can be neglected in describing the low energy physics. We restrict our considerations to the Hubbard-type interactions (upper band) in the particular case of alternating on-site energies and equal hopping amplitudes. The standard RG analysis (second order) is done in terms of the g-constants describing the elementary processes of forward, backward and Umklapp scatterings: their expressions are obtained by evaluating the Hubbard-type interactions (upper band) at the Fermi points. Using the scaling to the exact soluble models Tomonaga-Luttinger and Luther-Emery, we can predict the low energy physics of our system. The ground-state phase diagrams in terms of the model parameters and at arbitrary band filling are determined, where four types of instabilities have been considered: Charge Density Waves (CDW), Spin Density Waves (SDW), Singlet Superconductivity (SS) and Triplet Superconductivity (TS). The 3/4-filled case in terms of some renormalized Hubbard constants is presented. The relevance of our analysis to the case of the undistorted 3/4-filled Cu

  6. Detecting failure events in buildings: a numerical and experimental analysis

    OpenAIRE

    Heckman, V. M.; Kohler, M. D.; Heaton, T. H.

    2010-01-01

    A numerical method is used to investigate an approach for detecting the brittle fracture of welds associated with beam -column connections in instrumented buildings in real time through the use of time-reversed Green’s functions and wave propagation reciprocity. The approach makes use of a prerecorded catalog of Green’s functions for an instrumented building to detect failure events in the building during a later seismic event by screening continuous data for the presence of wavef...

  7. Failure analysis of a barrel exposed to high temperature

    International Nuclear Information System (INIS)

    Usman, A.; Salam, I.; Rizvi, S.A.; Qasir, S.

    2005-01-01

    The paper deals with the study of a tank gun barrel which had failed after firing only a few rounds. The failure was in the form of bulging at the muzzle end (ME). The material of the barrel was characterized using different techniques including chemical and mechanical testing, optical microscopy and electron microscopy. Study disclosed that the barrel was subjected to excessively high temperature that resulted in its softening and consequent bulging under high pressure of the round. (author)

  8. Analysis for the cause of the condensate pump bearing failure

    International Nuclear Information System (INIS)

    Cheng Yiyan

    2012-01-01

    This paper discussed the influence of the foreign matters for the rolling bearing's service life, analyzed the reason, way and harm of soft foreign matters disabling the bearings. And some measures were brought forward to improve the maintenance quality, which could be used for reference to enhance the ability of estimating the failure of the motor's rolling bearings, and to improve the level of the maintenance work. (author)

  9. Endochronic theory for inelasticity and failure analysis of concrete structures

    Energy Technology Data Exchange (ETDEWEB)

    Bazant, Z.P.; Bhat, P.D.; Shieh, C.L.

    1976-12-01

    A gradual accumulation of inelastic strain can be most conveniently described in terms of the so-called intrinsic time, whose increment depends on the time increment as well as the strain increments. This approach, which gives a particularly simple description of irreversibility of strain at unloading and cyclic loading, was previously developed for metals and is extended herein to concrete by introducing the hydrostatic pressure sensitivity of inelastic strain, the inelastic dilatancy produced by deviator strains, and the strain-softening tendency at high stress. Failure envelopes are obtained as a collection of the peaks of stress-strain diagrams. By comparison with experimental data from the literature, it is demonstrated that the proposed model predicts quite closely: stress-strain diagrams for concretes of different strength; uniaxial, biaxial and triaxial stress-strain diagrams and failure envelopes; failure envelopes for combined torsion and compression, lateral strains and volume expansion in uniaxial and biaxial tests; the behavior of spirally confined concrete; hysteresis loops or repeated high compression; cyclic creep up to 10/sup 6/ cycles; the strain rate effect; the decrease of long time strength; and the increase of short-time strength due to low stress creep.

  10. Endochronic theory for inelasticity and failure analysis of concrete structures

    International Nuclear Information System (INIS)

    Bazant, Z.P.; Bhat, P.D.; Shieh, C.L.

    1976-12-01

    A gradual accumulation of inelastic strain can be most conveniently described in terms of the so-called intrinsic time, whose increment depends on the time increment as well as the strain increments. This approach, which gives a particularly simple description of irreversibility of strain at unloading and cyclic loading, was previously developed for metals and is extended herein to concrete by introducing the hydrostatic pressure sensitivity of inelastic strain, the inelastic dilatancy produced by deviator strains, and the strain-softening tendency at high stress. Failure envelopes are obtained as a collection of the peaks of stress-strain diagrams. By comparison with experimental data from the literature, it is demonstrated that the proposed model predicts quite closely: stress-strain diagrams for concretes of different strength; uniaxial, biaxial and triaxial stress-strain diagrams and failure envelopes; failure envelopes for combined torsion and compression, lateral strains and volume expansion in uniaxial and biaxial tests; the behavior of spirally confined concrete; hysteresis loops or repeated high compression; cyclic creep up to 10 6 cycles; the strain rate effect; the decrease of long time strength; and the increase of short-time strength due to low stress creep

  11. S Tank Farm SL-119 saltwell piping failure analysis report

    International Nuclear Information System (INIS)

    Carlos, W.C.

    1994-01-01

    On January 24, 1992, while pressure testing saltwell line SL-119 in the 241-S Tank Farm, water was observed spraying out of heat trace enclosure. The SL-115, SL-116, SN-215, and SN-216 saltwell lines also recently failed pressure testing because of leaks. This study documents the pertinent facts about the SL-119 line and discusses the cause of the failures. The inspection of the SL-119 failure revealed two through-the-wall holes in the top center of the pipeline. The inspection also strongly suggests that the heat tracing system is directly responsible for causing the SL-119 failure. Poor design of the heat tracing system allowed water to enter, condense, and collect in the electric metallic tubing (EMT) carbon steel conduits. Water flowed to the bottom of the elbow of the conduit and corroded out the elbow. The design also allowed drifting desert sand to enter into the conduit and fall to the bottom (elbow) of the conduit. The sand became wet and aided in the corrosion of the elbow of the conduit. After the EMT conduits corroded though, the water dripped from the corroded ends of the EMT conduits onto the top of the saltwell pipe, corroding the two holes into the top of the line. If the heat tracing hot splice box had not allowed moisture to enter the EMT conduits, the saltwell piping would not have corroded and caused SL-119 to fail

  12. Uncertainty analysis of reactor safety systems with statistically correlated failure data

    International Nuclear Information System (INIS)

    Dezfuli, H.; Modarres, M.

    1985-01-01

    The probability of occurrence of the top event of a fault tree is estimated from failure probability of components that constitute the fault tree. Component failure probabilities are subject to statistical uncertainties. In addition, there are cases where the failure data are statistically correlated. Most fault tree evaluations have so far been based on uncorrelated component failure data. The subject of this paper is the description of a method of assessing the probability intervals for the top event failure probability of fault trees when component failure data are statistically correlated. To estimate the mean and variance of the top event, a second-order system moment method is presented through Taylor series expansion, which provides an alternative to the normally used Monte-Carlo method. For cases where component failure probabilities are statistically correlated, the Taylor expansion terms are treated properly. A moment matching technique is used to obtain the probability distribution function of the top event through fitting a Johnson Ssub(B) distribution. The computer program (CORRELATE) was developed to perform the calculations necessary for the implementation of the method developed. The CORRELATE code is very efficient and consumes minimal computer time. This is primarily because it does not employ the time-consuming Monte-Carlo method. (author)

  13. Failure analysis of motor bearing of sea water pump in nuclear power plant

    International Nuclear Information System (INIS)

    Bian Chunhua; Zhang Wei

    2015-01-01

    The motor bearing of sea water pump in Qinshan Phase II Nuclear Power plant broke after only one year's using. This paper introduces failure analysis process of the motor bearing. Chemical composition analysis, metallic phase analysis, micrographic examination, and hardness analysis, dimension analysis of each part of the bearing, as well as the high temperature and low temperature performance analysis of lubricating grease are performed. According to the analysis above mentioned, the failure mode of the bearing is wearing, and the reason of wearing is inappropriate installation of the bearing. (authors)

  14. Simulation and Failure Analysis of Car Bumper Made of Pineapple Leaf Fiber Reinforced Composite

    Science.gov (United States)

    Arbintarso, E. S.; Muslim, M.; Rusianto, T.

    2018-02-01

    The bumper car made of the Pineapple Leaf Fiber Reinforced Composite (PLFRC) is possible to be produced with the advantage of easy to get, and cheap. Pineapple leaf fiber has chosen as a natural fiber, which the maximum of the strength of 368 MPa. The objective of this study was to determine the maximum capability of front car bumpers using Pineapple Leaf Fiber Reinforced Composite materials through the process of simulating stress analysis with Solidworks 2014 software. The aim also to know the distribution of loads that occur on the front car bumper and predict the critical point position on the design of the bumper. The result will use to develop the alternative lightweight, cheap and environmentally friendly materials in general and the development of the use of pineapple fiber for automotive purposes in particular. Simulations and failure analysis have been conducted and showed an increased impact speed in line with increased displacement, strain, and stress that occur on the surface of the bumper. The bumper can withstand collisions at a speed of less than 70 kph.

  15. 77 FR 14587 - FY 2012 Discretionary Livability Funding Opportunity: Alternatives Analysis Program

    Science.gov (United States)

    2012-03-12

    ... alternatives analysis or to support additional technical tasks in an on-going alternatives analysis that will.... FTA will consider proposals for all areas of technical work that can better develop information about... analysis, or for work performed after the Locally Preferred Alternative (LPA) has been selected. There is...

  16. Statistical analysis of events related to emergency diesel generators failures in the nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Kančev, Duško, E-mail: dusko.kancev@ec.europa.eu [European Commission, DG-JRC, Institute for Energy and Transport, P.O. Box 2, NL-1755 ZG Petten (Netherlands); Duchac, Alexander; Zerger, Benoit [European Commission, DG-JRC, Institute for Energy and Transport, P.O. Box 2, NL-1755 ZG Petten (Netherlands); Maqua, Michael [Gesellschaft für Anlagen-und-Reaktorsicherheit (GRS) mbH, Schwetnergasse 1, 50667 Köln (Germany); Wattrelos, Didier [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), BP 17 - 92262 Fontenay-aux-Roses Cedex (France)

    2014-07-01

    Highlights: • Analysis of operating experience related to emergency diesel generators events at NPPs. • Four abundant operating experience databases screened. • Delineating important insights and conclusions based on the operating experience. - Abstract: This paper is aimed at studying the operating experience related to emergency diesel generators (EDGs) events at nuclear power plants collected from the past 20 years. Events related to EDGs failures and/or unavailability as well as all the supporting equipment are in the focus of the analysis. The selected operating experience was analyzed in detail in order to identify the type of failures, attributes that contributed to the failure, failure modes potential or real, discuss risk relevance, summarize important lessons learned, and provide recommendations. The study in this particular paper is tightly related to the performing of statistical analysis of the operating experience. For the purpose of this study EDG failure is defined as EDG failure to function on demand (i.e. fail to start, fail to run) or during testing, or an unavailability of an EDG, except of unavailability due to regular maintenance. The Gesellschaft für Anlagen und Reaktorsicherheit mbH (GRS) and Institut de Radioprotection et de Sûreté Nucléaire (IRSN) databases as well as the operating experience contained in the IAEA/NEA International Reporting System for Operating Experience and the U.S. Licensee Event Reports were screened. The screening methodology applied for each of the four different databases is presented. Further on, analysis aimed at delineating the causes, root causes, contributing factors and consequences are performed. A statistical analysis was performed related to the chronology of events, types of failures, the operational circumstances of detection of the failure and the affected components/subsystems. The conclusions and results of the statistical analysis are discussed. The main findings concerning the testing

  17. Statistical analysis of events related to emergency diesel generators failures in the nuclear industry

    International Nuclear Information System (INIS)

    Kančev, Duško; Duchac, Alexander; Zerger, Benoit; Maqua, Michael; Wattrelos, Didier

    2014-01-01

    Highlights: • Analysis of operating experience related to emergency diesel generators events at NPPs. • Four abundant operating experience databases screened. • Delineating important insights and conclusions based on the operating experience. - Abstract: This paper is aimed at studying the operating experience related to emergency diesel generators (EDGs) events at nuclear power plants collected from the past 20 years. Events related to EDGs failures and/or unavailability as well as all the supporting equipment are in the focus of the analysis. The selected operating experience was analyzed in detail in order to identify the type of failures, attributes that contributed to the failure, failure modes potential or real, discuss risk relevance, summarize important lessons learned, and provide recommendations. The study in this particular paper is tightly related to the performing of statistical analysis of the operating experience. For the purpose of this study EDG failure is defined as EDG failure to function on demand (i.e. fail to start, fail to run) or during testing, or an unavailability of an EDG, except of unavailability due to regular maintenance. The Gesellschaft für Anlagen und Reaktorsicherheit mbH (GRS) and Institut de Radioprotection et de Sûreté Nucléaire (IRSN) databases as well as the operating experience contained in the IAEA/NEA International Reporting System for Operating Experience and the U.S. Licensee Event Reports were screened. The screening methodology applied for each of the four different databases is presented. Further on, analysis aimed at delineating the causes, root causes, contributing factors and consequences are performed. A statistical analysis was performed related to the chronology of events, types of failures, the operational circumstances of detection of the failure and the affected components/subsystems. The conclusions and results of the statistical analysis are discussed. The main findings concerning the testing

  18. Approach of a failure analysis for the MYRRHA linac

    International Nuclear Information System (INIS)

    Carneiro, J.P.; Medeiros-Romao, L.; Salemne, R.; Vandeplassche, D.; Biarotte, J.L.; Bouly, F.; Uriot, D.

    2015-01-01

    The MYRRHA project currently under development at SCK-CEN (Mol, Belgium) is a subcritical research reactor that requires a 600 MeV proton accelerator as a driver. This linac is expected to produce a beam power of 1.5 MW onto a spallation target for the reactor to deliver a thermal power around 70 MW. Thermomechanical considerations of the spallation target set stringent requirements on the beam trip rate which should not exceed 40 trips/year for interruptions longer than three seconds. The 3 underlying principles in the design of the MYRRHA linac are elements redundancy (like the dual-injector), elements operation at de-rated values (like cavities operating at about 30% from their nominal operating points) and the fault tolerance concept, which allows the failure of a beamline component to be compensated by its neighbouring elements. Studies presented in this document show that in the event of a failure of the first cryo-module or the first quadrupole doublet the linac can resume nominal operation with a re-matched lattice. Since the fault tolerance procedure is expected to work more efficiently at higher energies (due to lower space charge effects) we can extrapolate from our studies that the MYRRHA linac is expected to operate with the failure of any cryo-module or quadrupole doublet in the main linac. A virtual accelerator-based control system is mandatory for the operation of the MYRRHA linac to ensure the very fast implementation (<3 seconds) of the fault tolerance procedure. The virtual accelerator uses a beam dynamics code (like TRACEWIN or TRACK) to compute the model of the real accelerator in operation and interacts with this later through the accelerator control command

  19. Coupled Mechanical-Electrochemical-Thermal Analysis of Failure Propagation in Lithium-ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chao; Santhanagopalan, Shriram; Pesaran, Ahmad

    2016-07-28

    This is a presentation given at the 12th World Congress for Computational Mechanics on coupled mechanical-electrochemical-thermal analysis of failure propagation in lithium-ion batteries for electric vehicles.

  20. Failure cause analysis and improvement for magnetic component cabinet

    International Nuclear Information System (INIS)

    Ge Bing

    1999-01-01

    The magnetic component cabinet is an important thermal control device fitted on the nuclear power. Because it used a self-saturation amplifier as a primary component, the magnetic component cabinet has some boundness. For increasing the operation safety on the nuclear power, the author describes a new scheme. In order that the magnetic component cabinet can be replaced, the new type component cabinet is developed. Integrate circuit will replace the magnetic components of every function parts. The author has analyzed overall failure cause for magnetic component cabinet and adopted some measures

  1. Analysis of alternative light water reactor (LWR) fuel cycles

    International Nuclear Information System (INIS)

    Heeb, C.M.; Aaberg, R.L.; Boegel, A.J.; Jenquin, U.P.; Kottwitz, D.A.; Lewallen, M.A.; Merrill, E.T.; Nolan, A.M.

    1979-12-01

    Nine alternative LWR fuel cycles are analyzed in terms of the isotopic content of the fuel material, the relative amounts of primary and recycled material, the uranium and thorium requirements, the fuel cycle costs and the fraction of energy which must be generated at secured sites. The fuel materials include low-enriched uranium (LEU), plutonium-uranium (MOX), highly-enriched uranium-thorium (HEU-Th), denatured uranium-thorium (DU-Th) and plutonium-thorium (Pu-Th). The analysis is based on tracing the material requirements of a generic pressurized water reactor (PWR) for a 30-year period at constant annual energy output. During this time period all the created fissile material is recycled unless its reactivity worth is less than 0.2% uranium enrichment plant tails

  2. Alternative Approaches to the Analysis of Multidimensional Contingency Tables

    Directory of Open Access Journals (Sweden)

    Iva Pecáková

    2011-12-01

    Full Text Available The practical analyses of interactions between categorical variables in various areas (such as public opinion research or marketing research are often only applications of chi-square tests in two-way contingency tables. However, in many situations it is impossible to use large-sample approximations to sampling distributions when theiradequacy can be in doubt. It is known, that these approximations may be very poor when the contingency table contains very small expected frequencies. However, recent work has shown that these approximations can be very poor when the contingency table contains both small and large expected frequencies. Of course, the rule of thumb of a minimum expected frequency is not met either in the case of sparse table. The article deals with alternative approaches to the data analysis in such cases. It points out other possibilities and shows that thanks to the development of computer technology exact methods previously only difficult usable are available for this purpose.

  3. Patterns of Failure After MammoSite Brachytherapy Partial Breast Irradiation: A Detailed Analysis

    International Nuclear Information System (INIS)

    Chen, Sea; Dickler, Adam; Kirk, Michael; Shah, Anand; Jokich, Peter; Solmos, Gene; Strauss, Jonathan; Dowlatshahi, Kambiz; Nguyen, Cam; Griem, Katherine

    2007-01-01

    Purpose: To report the results of a detailed analysis of treatment failures after MammoSite breast brachytherapy for partial breast irradiation from our single-institution experience. Methods and Materials: Between October 14, 2002 and October 23, 2006, 78 patients with early-stage breast cancer were treated with breast-conserving surgery and accelerated partial breast irradiation using the MammoSite brachytherapy applicator. We identified five treatment failures in the 70 patients with >6 months' follow-up. Pathologic data, breast imaging, and radiation treatment plans were reviewed. For in-breast failures more than 2 cm away from the original surgical bed, the doses delivered to the areas of recurrence by partial breast irradiation were calculated. Results: At a median follow-up time of 26.1 months, five treatment failures were identified. There were three in-breast failures more than 2 cm away from the original surgical bed, one failure directly adjacent to the original surgical bed, and one failure in the axilla with synchronous distant metastases. The crude failure rate was 7.1% (5 of 70), and the crude local failure rate was 5.7% (4 of 70). Estimated progression-free survival at 48 months was 89.8% (standard error 4.5%). Conclusions: Our case series of 70 patients with >6 months' follow-up and a median follow-up of 26 months is the largest single-institution report to date with detailed failure analysis associated with MammoSite brachytherapy. Our failure data emphasize the importance of patient selection when offering partial breast irradiation

  4. Nutrient analysis of the Beef Alternative Merchandising cuts.

    Science.gov (United States)

    Desimone, T L; Acheson, R A; Woerner, D R; Engle, T E; Douglass, L W; Belk, K E

    2013-03-01

    The objective of this study was to generate raw and cooked nutrient composition data to identify Quality Grade differences in proximate values for eight Beef Alternative Merchandising (BAM) cuts. The data generated will be used to update the nutrient data in the USDA National Nutrient Database for Standard Reference (SR). Beef Rib, Oven-Prepared, Beef Loin, Strip Loin, and Beef Loin, Top Sirloin Butt subprimals were collected from a total of 24 carcasses from four packing plants. The carcasses were a combination of USDA Yield Grades 2 (n=12) and 3 (n=12), USDA Quality Grades upper two-thirds Choice (n=8), low Choice (n=8), and Select (n=8), and two genders, steer (n=16) and heifer (n=8). After aging, subprimals were fabricated into the BAM cuts, dissected, and nutrient analysis was performed. Sample homogenates from each animal were homogenized and composited for analysis of the following: proximate analysis, long chain and trans-fatty acids, conjugated linoleic acid, total cholesterol, vitamin B-12, and selenium. This study identified seven BAM cuts from all three Quality Grades that qualify for USDA Lean; seven Select cuts that qualify for USDA Extra Lean; and three Select cuts that qualify for the American Heart Association's Heart Healthy Check. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Fatigue failure analysis of V-4Ti-4Cr alloy

    International Nuclear Information System (INIS)

    Aglan, H.; Gan, Y.X.; Grossbeck, M.

    1999-01-01

    In the present work, the fatigue fracture and failure behavior of a V-4Ti-4Cr has been studied. Static tests were conducted to study the overloading behavior and to select the magnitude of the stress level for the fatigue studies. Fatigue tests were performed using single edge notched (SEN) specimens under tension-tension load control conditions. Fatigue crack propagation (FCP) data such as the crack length, number of cycles, and hysteresis loops were recorded to calculate the crack speed, the energy release rate, and the change in work expended on damage formation and dissipative processes within the material. Parameters characterizing the fatigue fracture resistance of V-4Ti-4Cr alloy, namely the specific energy of damage (γ'), and the dissipative coefficient (β'), were determined from the fatigue data using the modified crack layer (MCL) theory. Fracture surface examination using scanning electron microscopy (SEM) revealed ductile failure mechanisms under tensile overloading conditions. The fatigue fracture surface of the V-4Ti-4Cr consists of three distinct regions, corresponding to the threshold, stable and unstable crack propagation stages. (orig.)

  6. Using the failure mode and effects analysis model to improve parathyroid hormone and adrenocorticotropic hormone testing

    Directory of Open Access Journals (Sweden)

    Magnezi R

    2016-12-01

    Full Text Available Racheli Magnezi,1 Asaf Hemi,1 Rina Hemi2 1Department of Management, Public Health and Health Systems Management Program, Bar Ilan University, Ramat Gan, 2Endocrine Service Unit, Sheba Medical Center, Tel Aviv, Israel Background: Risk management in health care systems applies to all hospital employees and directors as they deal with human life and emergency routines. There is a constant need to decrease risk and increase patient safety in the hospital environment. The purpose of this article is to review the laboratory testing procedures for parathyroid hormone and adrenocorticotropic hormone (which are characterized by short half-lives and to track failure modes and risks, and offer solutions to prevent them. During a routine quality improvement review at the Endocrine Laboratory in Tel Hashomer Hospital, we discovered these tests are frequently repeated unnecessarily due to multiple failures. The repetition of the tests inconveniences patients and leads to extra work for the laboratory and logistics personnel as well as the nurses and doctors who have to perform many tasks with limited resources.Methods: A team of eight staff members accompanied by the Head of the Endocrine Laboratory formed the team for analysis. The failure mode and effects analysis model (FMEA was used to analyze the laboratory testing procedure and was designed to simplify the process steps and indicate and rank possible failures.Results: A total of 23 failure modes were found within the process, 19 of which were ranked by level of severity. The FMEA model prioritizes failures by their risk priority number (RPN. For example, the most serious failure was the delay after the samples were collected from the department (RPN =226.1.Conclusion: This model helped us to visualize the process in a simple way. After analyzing the information, solutions were proposed to prevent failures, and a method to completely avoid the top four problems was also developed. Keywords: failure mode

  7. Preliminary failure modes and effects analysis on Korean HCCR TBS to be tested in ITER

    International Nuclear Information System (INIS)

    Ahn, Mu-Young; Cho, Seungyon; Jin, Hyung Gon; Lee, Dong Won; Park, Yi-Hyun; Lee, Youngmin

    2015-01-01

    Highlights: • Postulated initiating events are identified through failure modes and effects analysis on the current HCCR TBS design. • A set of postulated initiating events are selected for consideration of deterministic analysis. • Accident evolutions on the selected postualted initiating events are qualitatively described for deterministic analysis. - Abstract: Korean Helium cooled ceramic reflector (HCCR) Test blanket system (TBS), which comprises Test blanket module (TBM) and ancillary systems in various locations of ITER building, is operated at high temperature and pressure with decay heat. Therefore, safety is utmost concern in design process and it is required to demonstrate that the HCCR TBS is designed to comply with the safety requirements and guidelines of ITER. Due to complexity of the system with many interfaces with ITER, a systematic approach is necessary for safety analysis. This paper presents preliminary failure modes and effects analysis (FMEA) study performed for the HCCR TBS. FMEA is a systematic methodology in which failure modes for components in the system and their consequences are studied from the bottom-up. Over eighty failure modes have been investigated on the HCCR TBS. The failure modes that have similar consequences are grouped as postulated initiating events (PIEs) and total seven reference accident scenarios are derived from FMEA study for deterministic accident analysis. Failure modes not covered here due to evolving design of the HCCR TBS and uncertainty in maintenance procedures will be studied further in near future.

  8. Preliminary failure modes and effects analysis on Korean HCCR TBS to be tested in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Mu-Young, E-mail: myahn74@nfri.re.kr [National Fusion Research Institute, Daejeon (Korea, Republic of); Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of); Jin, Hyung Gon; Lee, Dong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Yi-Hyun; Lee, Youngmin [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Highlights: • Postulated initiating events are identified through failure modes and effects analysis on the current HCCR TBS design. • A set of postulated initiating events are selected for consideration of deterministic analysis. • Accident evolutions on the selected postualted initiating events are qualitatively described for deterministic analysis. - Abstract: Korean Helium cooled ceramic reflector (HCCR) Test blanket system (TBS), which comprises Test blanket module (TBM) and ancillary systems in various locations of ITER building, is operated at high temperature and pressure with decay heat. Therefore, safety is utmost concern in design process and it is required to demonstrate that the HCCR TBS is designed to comply with the safety requirements and guidelines of ITER. Due to complexity of the system with many interfaces with ITER, a systematic approach is necessary for safety analysis. This paper presents preliminary failure modes and effects analysis (FMEA) study performed for the HCCR TBS. FMEA is a systematic methodology in which failure modes for components in the system and their consequences are studied from the bottom-up. Over eighty failure modes have been investigated on the HCCR TBS. The failure modes that have similar consequences are grouped as postulated initiating events (PIEs) and total seven reference accident scenarios are derived from FMEA study for deterministic accident analysis. Failure modes not covered here due to evolving design of the HCCR TBS and uncertainty in maintenance procedures will be studied further in near future.

  9. An analysis of human maintenance failures of a nuclear power plant

    International Nuclear Information System (INIS)

    Pyy, P.

    2000-01-01

    In the report, a study of faults caused by maintenance activities is presented. The objective of the study was to draw conclusions on the unplanned effects of maintenance on nuclear power plant safety and system availability. More than 4400 maintenance history reports from the years 1992-1994 of Olkiluoto BWR nuclear power plant (NPP) were analysed together with the maintenance personnel. The human action induced faults were classified, e.g., according to their multiplicity and effects. This paper presents and discusses the results of a statistical analysis of the data. Instrumentation and electrical components appeared to be especially prone to human failures. Many human failures were found in safety related systems. Several failures also remained latent from outages to power operation. However, the safety significance of failures was generally small. Modifications were an important source of multiple human failures. Plant maintenance data is a good source of human reliability data and it should be used more in the future. (orig.)

  10. Comparison of stress-based and strain-based creep failure criteria for severe accident analysis

    International Nuclear Information System (INIS)

    Chavez, S.A.; Kelly, D.L.; Witt, R.J.; Stirn, D.P.

    1995-01-01

    We conducted a parametic analysis of stress-based and strain-based creep failure criteria to determine if there is a significant difference between the two criteria for SA533B vessel steel under severe accident conditions. Parametric variables include debris composition, system pressure, and creep strain histories derived from different testing programs and mathematically fit, with and without tertiary creep. Results indicate significant differences between the two criteria. Stress gradient plays an important role in determining which criterion will predict failure first. Creep failure was not very sensitive to different creep strain histories, except near the transition temperature of the vessel steel (900K to 1000K). Statistical analyses of creep failure data of four independent sources indicate that these data may be pooled, with a spline point at 1000K. We found the Manson-Haferd parameter to have better failure predictive capability than the Larson-Miller parameter for the data studied. (orig.)

  11. Physics of failure based analysis of aluminium electrolytic capacitor

    International Nuclear Information System (INIS)

    Sahoo, Satya Ranjan; Behera, S.K.; Kumar, Sachin; Varde, P.V.; Ravi Kumar, G.

    2016-01-01

    Electrolytic capacitors are one of the important devices in various power electronic systems, such as motor drives, uninterruptible power supply, electric vehicles and dc power supply. Electrolytic capacitors are also the integral part of many other electronic devices. One of the primary function of electrolytic capacitors is the smoothing of voltage ripple and storing electrical energy. However, the electrolytic capacitor has the shortest lifespan of components in power electronics. Past experiences show that electrolytic capacitor tends to degrade and fail faster under high electrical or thermal stress conditions during operations. The primary failure mechanism of an electrolytic capacitor is the evaporation of the electrolyte due to electrical or thermal overstress. This leads to the drift in the values of two important parameters-capacitance and equivalent series resistance (ESR) of the electrolytic capacitor. An attempt has been made to age the electrolytic capacitor and validate the results. The overall goal is to derive the accurate degradation model of the electrolytic capacitor. (author)

  12. IMPACT STRENGTH AND FAILURE ANALYSIS OF WELDED DAMASCUS STEEL

    Directory of Open Access Journals (Sweden)

    Rastislav Mintách

    2012-01-01

    Full Text Available The aim of this work was the experimental research of damascus steel from point of view of the structural analyze, impact strength and failure analyzes. The damascus steel was produced by method of forged welding from STN 41 4260 spring steel and STN 41 9312 tool steel. The damascus steel consisted of both 84 and 168 layers. The impact strength was experimentally determined for original steels and damascus steels after heat treatment in dependence on temperature in the range from -60 to 160 °C. It has been found that the impact strength of experimental steels decreased with decreasing temperature behind with correlated change of damage mode. In the case of experimental tests performed at high temperature ductile fracture was revealed and with decreasing temperature proportion of cleavage facets increased. Only the STN 41 9312 steel did not show considerable difference in values of the impact strength with changing temperature.

  13. Development of contact failure analysis technology - first year(2000) report -

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung Kyu; Yoon, Kyung Ho; Kang, Heung Seok; Song, Kee Nam

    2001-01-01

    Contact tractions are affected by the geometry of contacting bodies. In the present research, square punch, wedge and cylinders are considered as the geometry. Among the geometry, a square punch with rounded corners is basically used. Normal traction profile is obtained in the case of the rounded punch, and shear tractions are evaluated under the partial slip regime by using the influence function method. Multiplication of the shear traction and slip displacement in the slip region of the contact provides the friction energy dissipation from the contact. Since the trace of the shear force influences the amount of the dissipated energy, a desirable trace of the shear force may be supposed to reduce the energy dissipation. Internal stresses are evaluated from the contact normal and shear tractions, which are to be used for calculating the stress intensity factors of a surface breaking crack emanated from the contact surface. The stress intensity factors, K{sub I} and K{sub II}, are investigated during the cyclic shear. It is found that a period of crack opening exists during a shear cycle, which is effective for crack growing. So, to reduce the period can be a method for restraining the cracking failure. On the other hand, there can exist a desirable shape of the contacting body, which can restrain the cracking failure. In the experiment, fretting wear tester is used with the specially designed specimen. Wear of the contact surface are observed in detail, which shows typical shape following the partial and gross slip regimes. An algorithm for evaluating the wear volume is newly developed using the signal processing technique and the Fast Fourier Transform (FFT)

  14. Development of contact failure analysis technology - first year(2000) report -

    International Nuclear Information System (INIS)

    Kim, Hyung Kyu; Yoon, Kyung Ho; Kang, Heung Seok; Song, Kee Nam

    2001-01-01

    Contact tractions are affected by the geometry of contacting bodies. In the present research, square punch, wedge and cylinders are considered as the geometry. Among the geometry, a square punch with rounded corners is basically used. Normal traction profile is obtained in the case of the rounded punch, and shear tractions are evaluated under the partial slip regime by using the influence function method. Multiplication of the shear traction and slip displacement in the slip region of the contact provides the friction energy dissipation from the contact. Since the trace of the shear force influences the amount of the dissipated energy, a desirable trace of the shear force may be supposed to reduce the energy dissipation. Internal stresses are evaluated from the contact normal and shear tractions, which are to be used for calculating the stress intensity factors of a surface breaking crack emanated from the contact surface. The stress intensity factors, K I and K II , are investigated during the cyclic shear. It is found that a period of crack opening exists during a shear cycle, which is effective for crack growing. So, to reduce the period can be a method for restraining the cracking failure. On the other hand, there can exist a desirable shape of the contacting body, which can restrain the cracking failure. In the experiment, fretting wear tester is used with the specially designed specimen. Wear of the contact surface are observed in detail, which shows typical shape following the partial and gross slip regimes. An algorithm for evaluating the wear volume is newly developed using the signal processing technique and the Fast Fourier Transform (FFT)

  15. A quantitative impact analysis of sensor failures on human operator's decision making in nuclear power plants

    International Nuclear Information System (INIS)

    Seong, Poong Hyun

    2004-01-01

    In emergency or accident situations in nuclear power plants, human operators take important roles in generating appropriate control signals to mitigate accident situation. In human reliability analysis (HRA) in the framework of probabilistic safety assessment (PSA), the failure probabilities of such appropriate actions are estimated and used for the safety analysis of nuclear power plants. Even though understanding the status of the plant is basically the process of information seeking and processing by human operators, it seems that conventional HRA methods such as THERP, HCR, and ASEP does not pay a lot of attention to the possibilities of providing wrong information to human operators. In this paper, a quantitative impact analysis of providing wrong information to human operators due to instrument faults or sensor failures is performed. The quantitative impact analysis is performed based on a quantitative situation assessment model. By comparing the situation in which there are sensor failures and the situation in which there are not sensor failures, the impact of sensor failures can be evaluated quantitatively. It is concluded that the impact of sensor failures are quite significant at the initial stages, but the impact is gradually reduced as human operators make more and more observations. Even though the impact analysis is highly dependent on the situation assessment model, it is expected that the conclusions made based on other situation assessment models with be consistent with the conclusion made in this paper. (author)

  16. FAILURE ANALYSIS IN TUBING OF AIR PREHEATER OF BOILER FROM A SUGARCANE MILL

    Directory of Open Access Journals (Sweden)

    Joner Oliveira Alves

    2014-10-01

    Full Text Available The increased demand for energy from sugarcane bagasse has made the sugar and alcohol mills search alternatives to reduce maintenance of the boilers, releasing more time to the production. The stainless steel use has become one of the main tools for such reduction. However, specification errors can lead to premature failures. This work reports the factors that led tubes of AISI 409 stainless steel fail after half season when applied in a air preheater of boiler from a sugarcane mill. In such application, the AISI 304 lasts about 15 seasons and the carbon steel about 3. A tube sent by the sugar mill was characterized by wet chemical analysis, optical microscopy and EDS. Results indicated chloride formation on the internal walls of the tube, which combined with the environment, accelerated the corrosion process. The carbon steel showed high lifetime due to a 70% higher thickness. Due to the work condictions is recommended the use of stainless steels with higher corrosion resistance, such as the traditional AISI 304 or the ferritic AISI 444, the last presents better thermal exchange.

  17. [Hazard function and life table: an introduction to the failure time analysis].

    Science.gov (United States)

    Matsushita, K; Inaba, H

    1987-04-01

    Failure time analysis has become popular in demographic studies. It can be viewed as a part of regression analysis with limited dependent variables as well as a special case of event history analysis and multistate demography. The idea of hazard function and failure time analysis, however, has not been properly introduced to nor commonly discussed by demographers in Japan. The concept of hazard function in comparison with life tables is briefly described, where the force of mortality is interchangeable with the hazard rate. The basic idea of failure time analysis is summarized for the cases of exponential distribution, normal distribution, and proportional hazard models. The multiple decrement life table is also introduced as an example of lifetime data analysis with cause-specific hazard rates.

  18. Application of multi attribute failure mode analysis of milk production using analytical hierarchy process method

    Science.gov (United States)

    Rucitra, A. L.

    2018-03-01

    Pusat Koperasi Induk Susu (PKIS) Sekar Tanjung, East Java is one of the modern dairy industries producing Ultra High Temperature (UHT) milk. A problem that often occurs in the production process in PKIS Sekar Tanjung is a mismatch between the production process and the predetermined standard. The purpose of applying Analytical Hierarchy Process (AHP) was to identify the most potential cause of failure in the milk production process. Multi Attribute Failure Mode Analysis (MAFMA) method was used to eliminate or reduce the possibility of failure when viewed from the failure causes. This method integrates the severity, occurrence, detection, and expected cost criteria obtained from depth interview with the head of the production department as an expert. The AHP approach was used to formulate the priority ranking of the cause of failure in the milk production process. At level 1, the severity has the highest weight of 0.41 or 41% compared to other criteria. While at level 2, identifying failure in the UHT milk production process, the most potential cause was the average mixing temperature of more than 70 °C which was higher than the standard temperature (≤70 ° C). This failure cause has a contributes weight of 0.47 or 47% of all criteria Therefore, this study suggested the company to control the mixing temperature to minimise or eliminate the failure in this process.

  19. Random safety auditing, root cause analysis, failure mode and effects analysis.

    Science.gov (United States)

    Ursprung, Robert; Gray, James

    2010-03-01

    Improving quality and safety in health care is a major concern for health care providers, the general public, and policy makers. Errors and quality issues are leading causes of morbidity and mortality across the health care industry. There is evidence that patients in the neonatal intensive care unit (NICU) are at high risk for serious medical errors. To facilitate compliance with safe practices, many institutions have established quality-assurance monitoring procedures. Three techniques that have been found useful in the health care setting are failure mode and effects analysis, root cause analysis, and random safety auditing. When used together, these techniques are effective tools for system analysis and redesign focused on providing safe delivery of care in the complex NICU system. Copyright 2010 Elsevier Inc. All rights reserved.

  20. Fault tree and failure mode and effects analysis of a digital safety function

    International Nuclear Information System (INIS)

    Maskuniitty, M.; Pulkkinen, U.

    1995-01-01

    The principles of fault tree and failure mode and effects analysis (FMEA) for the analysis of digital safety functions of nuclear power plants are discussed. Based on experiences from a case study, a proposal for a full scale analysis is presented. The feasibility and applicability the above mentioned reliability engineering methods are discussed. (author). 13 refs, 1 fig., 2 tabs

  1. Probabilistic Analysis of Failures Mechanisms of Large Dams

    NARCIS (Netherlands)

    Shams Ghahfarokhi, G.

    2014-01-01

    Risk and reliability analysis is presently being performed in almost all fields of engineering depending upon the specific field and its particular area. Probabilistic risk analysis (PRA), also called quantitative risk analysis (QRA) is a central feature of hydraulic engineering structural design.

  2. Literature research of FMEA (Failure Mode and Effects Analysis) methodology

    International Nuclear Information System (INIS)

    Hustak, S.

    1999-01-01

    The potential of the FMEA applications is demonstrated. Some approaches can be used for system analysis or immediately for PSA, in particular, for obtaining background information for fault tree analysis in the area of component modelling and, to a lesser extent, for identification of the initiating events. On the other hand, other FMEA applications, such as criticality analysis, are unusable in PSA. (author)

  3. Failure modes and effects criticality analysis and accelerated life testing of LEDs for medical applications

    Science.gov (United States)

    Sawant, M.; Christou, A.

    2012-12-01

    While use of LEDs in Fiber Optics and lighting applications is common, their use in medical diagnostic applications is not very extensive. Since the precise value of light intensity will be used to interpret patient results, understanding failure modes [1-4] is very important. We used the Failure Modes and Effects Criticality Analysis (FMECA) tool to identify the critical failure modes of the LEDs. FMECA involves identification of various failure modes, their effects on the system (LED optical output in this context), their frequency of occurrence, severity and the criticality of the failure modes. The competing failure modes/mechanisms were degradation of: active layer (where electron-hole recombination occurs to emit light), electrodes (provides electrical contact to the semiconductor chip), Indium Tin Oxide (ITO) surface layer (used to improve current spreading and light extraction), plastic encapsulation (protective polymer layer) and packaging failures (bond wires, heat sink separation). A FMECA table is constructed and the criticality is calculated by estimating the failure effect probability (β), failure mode ratio (α), failure rate (λ) and the operating time. Once the critical failure modes were identified, the next steps were generation of prior time to failure distribution and comparing with our accelerated life test data. To generate the prior distributions, data and results from previous investigations were utilized [5-33] where reliability test results of similar LEDs were reported. From the graphs or tabular data, we extracted the time required for the optical power output to reach 80% of its initial value. This is our failure criterion for the medical diagnostic application. Analysis of published data for different LED materials (AlGaInP, GaN, AlGaAs), the Semiconductor Structures (DH, MQW) and the mode of testing (DC, Pulsed) was carried out. The data was categorized according to the materials system and LED structure such as AlGaInP-DH-DC, Al

  4. Probabilistic analysis on the failure of reactivity control for the PWR

    Science.gov (United States)

    Sony Tjahyani, D. T.; Deswandri; Sunaryo, G. R.

    2018-02-01

    The fundamental safety function of the power reactor is to control reactivity, to remove heat from the reactor, and to confine radioactive material. The safety analysis is used to ensure that each parameter is fulfilled during the design and is done by deterministic and probabilistic method. The analysis of reactivity control is important to be done because it will affect the other of fundamental safety functions. The purpose of this research is to determine the failure probability of the reactivity control and its failure contribution on a PWR design. The analysis is carried out by determining intermediate events, which cause the failure of reactivity control. Furthermore, the basic event is determined by deductive method using the fault tree analysis. The AP1000 is used as the object of research. The probability data of component failure or human error, which is used in the analysis, is collected from IAEA, Westinghouse, NRC and other published documents. The results show that there are six intermediate events, which can cause the failure of the reactivity control. These intermediate events are uncontrolled rod bank withdrawal at low power or full power, malfunction of boron dilution, misalignment of control rod withdrawal, malfunction of improper position of fuel assembly and ejection of control rod. The failure probability of reactivity control is 1.49E-03 per year. The causes of failures which are affected by human factor are boron dilution, misalignment of control rod withdrawal and malfunction of improper position for fuel assembly. Based on the assessment, it is concluded that the failure probability of reactivity control on the PWR is still within the IAEA criteria.

  5. FAILURE MODE AND EFFECT ANALYSIS (FMEA OF BUTTERFLY VALVE IN OIL AND GAS INDUSTRY

    Directory of Open Access Journals (Sweden)

    MUHAMMAD AMIRUL BIN YUSOF

    2016-04-01

    Full Text Available Butterfly valves are mostly used in various industries such as oil and gas plant. This valve operates with rotating motion using pneumatic system. Rotating actuator turns the disc either parallel or perpendicular to the flow. When the valve is fully open, the disc is rotated a quarter turn so that it allows free passage of the fluid and when fully closed, the disc rotated a quarter turns to block the fluid. The primary failure modes for valves are the valve leaks to environment through flanges, seals on the valve body, valve stem packing not properly protected, over tightened packing nuts, the valve cracks and leaks over the seat. To identify the failure of valve Failure Mode and Effects Analysis has been chosen. FMEA is the one of technique to perform failure analysis. It involves reviewing as many components to identify failure modes, and their causes and effects. For each component, the failure modes and their resulting effects on the rest of the system are recorded in a specific FMEA form. Risk priority number, severity, detection, occurrence are the factor determined in this studies. Risk priority number helps to find out the highest hazardous activities which need more attention than the other activity. The highest score of risk priority number in this research is seat. Action plan was proposed to reduce the risk priority number and so that potential failures also will be reduced.

  6. Advanced composites structural concepts and materials technologies for primary aircraft structures: Structural response and failure analysis

    Science.gov (United States)

    Dorris, William J.; Hairr, John W.; Huang, Jui-Tien; Ingram, J. Edward; Shah, Bharat M.

    1992-01-01

    Non-linear analysis methods were adapted and incorporated in a finite element based DIAL code. These methods are necessary to evaluate the global response of a stiffened structure under combined in-plane and out-of-plane loading. These methods include the Arc Length method and target point analysis procedure. A new interface material model was implemented that can model elastic-plastic behavior of the bond adhesive. Direct application of this method is in skin/stiffener interface failure assessment. Addition of the AML (angle minus longitudinal or load) failure procedure and Hasin's failure criteria provides added capability in the failure predictions. Interactive Stiffened Panel Analysis modules were developed as interactive pre-and post-processors. Each module provides the means of performing self-initiated finite elements based analysis of primary structures such as a flat or curved stiffened panel; a corrugated flat sandwich panel; and a curved geodesic fuselage panel. This module brings finite element analysis into the design of composite structures without the requirement for the user to know much about the techniques and procedures needed to actually perform a finite element analysis from scratch. An interactive finite element code was developed to predict bolted joint strength considering material and geometrical non-linearity. The developed method conducts an ultimate strength failure analysis using a set of material degradation models.

  7. Failure mode analysis using state variables derived from fault trees with application

    International Nuclear Information System (INIS)

    Bartholomew, R.J.

    1982-01-01

    Fault Tree Analysis (FTA) is used extensively to assess both the qualitative and quantitative reliability of engineered nuclear power systems employing many subsystems and components. FTA is very useful, but the method is limited by its inability to account for failure mode rate-of-change interdependencies (coupling) of statistically independent failure modes. The state variable approach (using FTA-derived failure modes as states) overcomes these difficulties and is applied to the determination of the lifetime distribution function for a heat pipe-thermoelectric nuclear power subsystem. Analyses are made using both Monte Carlo and deterministic methods and compared with a Markov model of the same subsystem

  8. 1988 failure rate screening data for fusion reliability and risk analysis

    International Nuclear Information System (INIS)

    Cadwallader, L.C.; Piet, S.J.

    1988-01-01

    This document contains failure rate screening data for application to fusion components. The screening values are generally fission or aerospace industry failure rate estimates that can be extrapolated for use by fusion system designers, reliability engineers and risk analysts. Failure rate estimates for tritium-bearing systems, liquid metal-cooled systems, gas-cooled systems, water-cooled systems and containment systems are given. Preliminary system availability estimates and selected initiating event frequency estimates are presented. This first edition document is valuable to design and safety analysis for the Compact Ignition Tokamak and the International Thermonuclear Experimental Reactor. 20 refs., 28 tabs

  9. Failure Modes Analysis for the MSU-RIA Driver Linac

    CERN Document Server

    Wu, Xiaoyu; Gorelov, Dmitry; Grimm, Terry L; Marti, Felix; York, Richard

    2005-01-01

    Previous end-to-end beam dynamics simulation studies* using experimentally-based input beams including alignment and rf errors and variation in charge-stripping foil thickness have indicated that the Rare Isotope Accelerator (RIA) driver linac proposed by MSU has adequate transverse and longitudinal acceptances to accelerate light and heavy ions to final energies of at least 400 MeV/u with beam powers of 100 to 400 kW. During linac operation, equipment loss due to, for example, cavity contamination, availability of cryogens, or failure of rf or power supply systems, will lead to at least a temporary loss of some of the cavities and focusing elements. To achieve high facility availability, each segment of the linac should be capable of adequate performance even with failed elements. Beam dynamics studies were performed to evaluate the linac performance under various scenarios of failed cavities and focusing elements with proper correction schemes, in order to prove the flexibility and robustness of the driver ...

  10. Peridynamics for analysis of failure in advanced composite materials

    KAUST Repository

    Askari, A.; Azdoud, Yan; Han, Fei; Lubineau, Gilles; Silling, S.

    2015-01-01

    Peridynamics has been recently introduced as a way to simulate the initiation and propagation of multiple discontinuities (e.g. cracks). It is an alternative to classical continuum damage mechanics and fracture mechanics and is based on a nonlocal rewriting of the equilibrium equation. This new technique is particularly promising in the case of composite materials, in which very complex mechanisms of degradation must be described. We present here some fundamental aspects of peridynamics models for composite materials, and especially laminates. We also propose an approach to couple peridynamics domains with classical continuum mechanics (which relies on the concept of contact forces) by the use of a recently introduced coupling technique: the morphing technique, that appears to be a very versatile and powerful tool for coupling local to nonlocal descriptions.

  11. Peridynamics for analysis of failure in advanced composite materials

    KAUST Repository

    Askari, A.

    2015-08-14

    Peridynamics has been recently introduced as a way to simulate the initiation and propagation of multiple discontinuities (e.g. cracks). It is an alternative to classical continuum damage mechanics and fracture mechanics and is based on a nonlocal rewriting of the equilibrium equation. This new technique is particularly promising in the case of composite materials, in which very complex mechanisms of degradation must be described. We present here some fundamental aspects of peridynamics models for composite materials, and especially laminates. We also propose an approach to couple peridynamics domains with classical continuum mechanics (which relies on the concept of contact forces) by the use of a recently introduced coupling technique: the morphing technique, that appears to be a very versatile and powerful tool for coupling local to nonlocal descriptions.

  12. Application of Pyrolysis - Gas Chromatography/Mass Spectrometry in Failure Analysis in the Automotive Industry

    OpenAIRE

    Kusch, Peter (Dr.)

    2015-01-01

    This book chapter describes application examples of gas chromatography/mass spectrometry and pyrolysis – gas chromatography/mass spectrometry in failure analysis for the identification of chemical materials like mineral oils and nitrile rubber gaskets. Furthermore, failure cases demanding identification of polymers/copolymers in fouling on the compressor wall of a car air conditioner and identification of fouling on the surface of a bearing race from the automotive industry are demonstr...

  13. Alternative method for intramuscular fat analysis using common laboratory equipment.

    Science.gov (United States)

    Segura, J; Calvo, L; Óvilo, C; González-Bulnes, A; Olivares, A; Cambero, M I; López-Bote, C J

    2015-05-01

    A procedure to quantify intramuscular fat was developed using common inexpensive laboratory equipment. Three homogenization methods of lyophilized muscle samples (Ball-mill, Grinder and Mortar) and two extraction methods (Ball-mill or Vortex) were used in turkey meat and pork. Two-hundred mg of lyophilized and homogenized samples were accurately weighed and mixed with 1.5 mL of dichloromethane-methanol (8:2) and shaken either in a Mixer Mill (MM400, Retsch Technology) or in a Vortex. The final mixture was separated by centrifugation. Solvent was evaporated under a nitrogen stream and lipid content was gravimetrically determined. Besides, it was checked that the fatty acid profile was not altered by the protocol used. Moreover, the analysis of 4 replicas from the same sample showed different variation coefficients (16-29%) for the new procedures proposed over a wide range of IMF content. The combination of Grinder and Vortex methodologies can be proposed as a simple and inexpensive alternative to previous ones. Copyright © 2015. Published by Elsevier Ltd.

  14. Isogeometric analysis for modelling of failure in advanced composite materials

    NARCIS (Netherlands)

    Remmers, Joris; Verhoosel, Clemens; de Borst, René; Hallett, S.R.

    2015-01-01

    Isogeometric analysis (IGA) has recently received much attention in the computational mechanics community. The basic idea is to use splines as the basis functions for finite-element calculations. This enables the integration of computer-aided design and numerical analysis and allows for an exact

  15. Causes of liver failure and impact analysis of prognostic risk factors

    Directory of Open Access Journals (Sweden)

    WU Xiaoqing

    2013-04-01

    Full Text Available ObjectiveTo perform a retrospective analysis of patients with liver failure to investigate the causative factors and related risk factors that may affect patient prognosis. MethodsThe clinical, demographic, and laboratory data of 79 consecutive patients diagnosed with liver failure and treated at our hospital between January 2010 and January 2012 (58 males and 21 females; age range: 16-74 years old were collected from the medical records. To identify risk factors of liver failure, the patient variables were assessed by Student’s t-test (continuous variables or Chi-squared test (categorical variables. Multivariate logistic regression analysis was used to investigate the relation between patient outcome and independent risk factors. ResultsThe 79 cases of liver failure were grouped according to disease severity: acute liver failure (n=6; 5 died, subacute liver failure (n=35; 19 died, and chronic liver failure (n=38; 28 died. The overall rate of death was 66%. The majority of cases (81% were related to hepatitis B virus infection. While the three groups of liver failure severity did not show significant differences in sex, mean age, occupation, presence of potassium disorder, total bilirubin (TBil or total cholesterol (CHO at admission, or lowest recorded level of CHO during hospitalization, there were significant intergroup differences in highest recorded TBil level, prothrombin activity (PTA at admission, and highest and lowest recorded PTA, and highest recorded level of CHO. Five independent risk factors were identified: the highest recorded TBil level during hospitalization, presence of infection, hepatorenal syndrome, gastrointestinal bleeding, and hepatic encephalopathy. ConclusionThe major cause of liver failure in this cohort of patients was hepatitis infection, and common biomarkers of liver function, such as TBil, CHO and PTA, may indicate patients with poor prognosis despite clinical intervention. Complications should be addressed as

  16. Analysis of Failure to Finish a Race in a Cohort of Thoroughbred Racehorses in New Zealand

    Directory of Open Access Journals (Sweden)

    Jasmine Tanner

    2016-05-01

    Full Text Available The objective was to describe the incidence of failure to finish a race in flat-racing Thoroughbreds in New Zealand as these are summary indicators of falls, injuries and poor performance. Retrospective data on six complete flat racing seasons (n = 188,615 race starts of all Thoroughbred flat race starts from 1 August 2005 to 31 July 2011 were obtained. The incidence of failure to finish events and binomial exact 95% confidence intervals were calculated per 1000 horse starts. The association between horse-, rider- and race-level variables with the outcomes failure to finish, pulled-up/fell and lost rider were examined with a mixed effects Poisson regression model. A total of 544 horses failed to finish in 188,615 race starts with an overall incidence of 2.88 per 1000 horse starts (95% CI 2.64–3.12. The incidence of failure to finish horses across each race year showed little variability. In the univariable analysis race distance, larger field size, season, and ratings bands showed association with failing to finish a race. The overall failure to finish outcome was associated with season, race distance and ratings bands (horse experience and success ranking criteria. In the multivariable analysis, race distance and ratings bands were associated with horses that pulled-up/fell; season, apprentice allowances and ratings bands were associated with the outcome lost rider. The failure to finish rate was lower than international figures for race day catastrophic injury. Racing and environmental variables were associated with failure to finish a race highlighting the multifactorial nature of race-day events. Further investigation of risk factors for failure to finish is required to better understand the reasons for a low failure to finish rate in Thoroughbred flat races in New Zealand.

  17. The Failure of Legalization in Education: Alternative Dispute Resolution and the Education for All Handicapped Children Act of 1975.

    Science.gov (United States)

    Goldberg, Steven S.

    1989-01-01

    A federal statute provided that parents may use the judicial process to challenge educators' decisions. Describes the intent of legalization; how reaction to an adversarial system led to the use of mediation in most states; and why this alternative model is not appropriate for resolving education questions. (MLF)

  18. Quantitative Approach to Failure Mode and Effect Analysis for Linear Accelerator Quality Assurance

    Energy Technology Data Exchange (ETDEWEB)

    O' Daniel, Jennifer C., E-mail: jennifer.odaniel@duke.edu; Yin, Fang-Fang

    2017-05-01

    Purpose: To determine clinic-specific linear accelerator quality assurance (QA) TG-142 test frequencies, to maximize physicist time efficiency and patient treatment quality. Methods and Materials: A novel quantitative approach to failure mode and effect analysis is proposed. Nine linear accelerator-years of QA records provided data on failure occurrence rates. The severity of test failure was modeled by introducing corresponding errors into head and neck intensity modulated radiation therapy treatment plans. The relative risk of daily linear accelerator QA was calculated as a function of frequency of test performance. Results: Although the failure severity was greatest for daily imaging QA (imaging vs treatment isocenter and imaging positioning/repositioning), the failure occurrence rate was greatest for output and laser testing. The composite ranking results suggest that performing output and lasers tests daily, imaging versus treatment isocenter and imaging positioning/repositioning tests weekly, and optical distance indicator and jaws versus light field tests biweekly would be acceptable for non-stereotactic radiosurgery/stereotactic body radiation therapy linear accelerators. Conclusions: Failure mode and effect analysis is a useful tool to determine the relative importance of QA tests from TG-142. Because there are practical time limitations on how many QA tests can be performed, this analysis highlights which tests are the most important and suggests the frequency of testing based on each test's risk priority number.

  19. Quantitative Approach to Failure Mode and Effect Analysis for Linear Accelerator Quality Assurance.

    Science.gov (United States)

    O'Daniel, Jennifer C; Yin, Fang-Fang

    2017-05-01

    To determine clinic-specific linear accelerator quality assurance (QA) TG-142 test frequencies, to maximize physicist time efficiency and patient treatment quality. A novel quantitative approach to failure mode and effect analysis is proposed. Nine linear accelerator-years of QA records provided data on failure occurrence rates. The severity of test failure was modeled by introducing corresponding errors into head and neck intensity modulated radiation therapy treatment plans. The relative risk of daily linear accelerator QA was calculated as a function of frequency of test performance. Although the failure severity was greatest for daily imaging QA (imaging vs treatment isocenter and imaging positioning/repositioning), the failure occurrence rate was greatest for output and laser testing. The composite ranking results suggest that performing output and lasers tests daily, imaging versus treatment isocenter and imaging positioning/repositioning tests weekly, and optical distance indicator and jaws versus light field tests biweekly would be acceptable for non-stereotactic radiosurgery/stereotactic body radiation therapy linear accelerators. Failure mode and effect analysis is a useful tool to determine the relative importance of QA tests from TG-142. Because there are practical time limitations on how many QA tests can be performed, this analysis highlights which tests are the most important and suggests the frequency of testing based on each test's risk priority number. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Failure mode effect analysis and fault tree analysis as a combined methodology in risk management

    Science.gov (United States)

    Wessiani, N. A.; Yoshio, F.

    2018-04-01

    There have been many studies reported the implementation of Failure Mode Effect Analysis (FMEA) and Fault Tree Analysis (FTA) as a method in risk management. However, most of the studies usually only choose one of these two methods in their risk management methodology. On the other side, combining these two methods will reduce the drawbacks of each methods when implemented separately. This paper aims to combine the methodology of FMEA and FTA in assessing risk. A case study in the metal company will illustrate how this methodology can be implemented. In the case study, this combined methodology will assess the internal risks that occur in the production process. Further, those internal risks should be mitigated based on their level of risks.

  1. Models and analysis for multivariate failure time data

    Science.gov (United States)

    Shih, Joanna Huang

    The goal of this research is to develop and investigate models and analytic methods for multivariate failure time data. We compare models in terms of direct modeling of the margins, flexibility of dependency structure, local vs. global measures of association, and ease of implementation. In particular, we study copula models, and models produced by right neutral cumulative hazard functions and right neutral hazard functions. We examine the changes of association over time for families of bivariate distributions induced from these models by displaying their density contour plots, conditional density plots, correlation curves of Doksum et al, and local cross ratios of Oakes. We know that bivariate distributions with same margins might exhibit quite different dependency structures. In addition to modeling, we study estimation procedures. For copula models, we investigate three estimation procedures. the first procedure is full maximum likelihood. The second procedure is two-stage maximum likelihood. At stage 1, we estimate the parameters in the margins by maximizing the marginal likelihood. At stage 2, we estimate the dependency structure by fixing the margins at the estimated ones. The third procedure is two-stage partially parametric maximum likelihood. It is similar to the second procedure, but we estimate the margins by the Kaplan-Meier estimate. We derive asymptotic properties for these three estimation procedures and compare their efficiency by Monte-Carlo simulations and direct computations. For models produced by right neutral cumulative hazards and right neutral hazards, we derive the likelihood and investigate the properties of the maximum likelihood estimates. Finally, we develop goodness of fit tests for the dependency structure in the copula models. We derive a test statistic and its asymptotic properties based on the test of homogeneity of Zelterman and Chen (1988), and a graphical diagnostic procedure based on the empirical Bayes approach. We study the

  2. Analysis of ultrafiltration failure in peritoneal dialysis patients by means of standard peritoneal permeability analysis.

    Science.gov (United States)

    Ho-dac-Pannekeet, M M; Atasever, B; Struijk, D G; Krediet, R T

    1997-01-01

    Ultrafiltration failure (UFF) is a complication of peritoneal dialysis (PD) treatment that occurs especially in long-term patients. Etiological factors include a large effective peritoneal surface area [measured as high mass transfer area coefficient (MTAC) of creatinine], a high effective lymphatic absorption rate (ELAR), a large residual volume, or combinations. The prevalence and etiology of UFF were studied and the contribution of transcellular water transport (TCWT) was analyzed. A new definition of UFF and guidelines for the analysis of its etiology were derived from the results. Peritoneal dialysis unit in the Academic Medical Center in Amsterdam. Cross-sectional study of standard peritoneal permeability analyses (4-hr dwells, dextran 70 as volume marker) with 1.36% glucose in 68 PD patients. Patients with negative net UF (change in intraperitoneal volume, dIPV rate (TCUFR) were lower (p lower residual volume (p = 0.03), and lower TCUFR (p = 0.01). Ultrafiltration failure was associated with a high MTAC creatinine in 3 patients, a high ELAR in 4 patients, and a combination of factors in one. As an additional possible cause, TCWT was studied, using the sodium gradient in the first hour of the dwell, corrected for diffusion (dNA). Five patients had dNA > 5 mmol/L, indicating normal TCWT. The 3 patients with dNA lower TCUFR (p = 0.04). A smaller difference was found between dIPV 3.86% and 1.36% (p = 0.04) compared to the dNA > 5 mmol/L group, but no differences were present for MTAC creatinine, ELAR, residual volume, or glucose absorption. In addition to known factors, impairment of TCWT can be a cause of UFF. A standardized dwell with 1.36% glucose overestimates UFF. Therefore, 3.86% glucose should be used for identification of patients with UFF, especially because it provides additional information on TCWT. Ultrafiltration failure can be defined as net UF exchange.

  3. Preliminary Analysis of the Common Cause Failure Events for Domestic Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kang, Daeil; Han, Sanghoon

    2007-01-01

    It is known that the common cause failure (CCF) events have a great effect on the safety and probabilistic safety assessment (PSA) results of nuclear power plants (NPPs). However, the domestic studies have been mainly focused on the analysis method and modeling of CCF events. Thus, the analysis of the CCF events for domestic NPPs were performed to establish a domestic database for the CCF events and to deliver them to the operation office of the international common cause failure data exchange (ICDE) project. This paper presents the analysis results of the CCF events for domestic nuclear power plants

  4. Analysis of risk factors for cluster behavior of dental implant failures.

    Science.gov (United States)

    Chrcanovic, Bruno Ramos; Kisch, Jenö; Albrektsson, Tomas; Wennerberg, Ann

    2017-08-01

    Some studies indicated that implant failures are commonly concentrated in few patients. To identify and analyze cluster behavior of dental implant failures among subjects of a retrospective study. This retrospective study included patients receiving at least three implants only. Patients presenting at least three implant failures were classified as presenting a cluster behavior. Univariate and multivariate logistic regression models and generalized estimating equations analysis evaluated the effect of explanatory variables on the cluster behavior. There were 1406 patients with three or more implants (8337 implants, 592 failures). Sixty-seven (4.77%) patients presented cluster behavior, with 56.8% of all implant failures. The intake of antidepressants and bruxism were identified as potential negative factors exerting a statistically significant influence on a cluster behavior at the patient-level. The negative factors at the implant-level were turned implants, short implants, poor bone quality, age of the patient, the intake of medicaments to reduce the acid gastric production, smoking, and bruxism. A cluster pattern among patients with implant failure is highly probable. Factors of interest as predictors for implant failures could be a number of systemic and local factors, although a direct causal relationship cannot be ascertained. © 2017 Wiley Periodicals, Inc.

  5. Risk factors of extubation failure in extremely low birth weight infants: a five year retrospective analysis.

    Science.gov (United States)

    Lee, Chao-Yi; Su, Bai-Horng; Lin, Tsung-Wen; Lin, Hung-Chih; Li, Tsai-Chung; Wang, Nai-Phon

    2002-01-01

    Extubation failure is one of the most serious complications in extremely low birth weight infants (ELBWI) on mechanical ventilation therapy. We performed a 5-year retrospective analysis to realize the status of extubation failure in ELBWI. Extubation failure was defined as requirements of re-intubation within 72 hours after extubation. The extubation failure rate was 21% (29/138). The mean birth body weight was 808.3 +/- 140.4 gm. The mean gestational age was 25.8 +/- 1.2 wks. The incidence of chronic lung disease (CLD) in infants with extubation failure was 100% (29/29). Apnea of prematurity 49% (14/29) and post-extubation atelectasis 39% (11/29) were the most common reasons for reintubation. The major microbiology findings which correlated with nosocomial pneumonia in infants with extubation failure were Acinetobacter baumanni (21%), Klebsiella pneumonia (21%), Pseudomonas aeroginosa (14%), and Methicillin resistant staphylococcus aureus (14%). In conclusion, post-extubation atelectasis and apnea were the most common reasons for reintubation. ELBWI with extubation failure had higher incidences of post-extubation atelectasis, CLD, and nosocomial pneumonia. Further prospective studies are needed in order to clarify the appropriate extubation program for ELBWI and to prevent post-extubation atelectasis and nosocomial pneumonia.

  6. SU-F-T-246: Evaluation of Healthcare Failure Mode And Effect Analysis For Risk Assessment

    International Nuclear Information System (INIS)

    Harry, T; Manger, R; Cervino, L; Pawlicki, T

    2016-01-01

    Purpose: To evaluate the differences between the Veteran Affairs Healthcare Failure Modes and Effect Analysis (HFMEA) and the AAPM Task Group 100 Failure and Effect Analysis (FMEA) risk assessment techniques in the setting of a stereotactic radiosurgery (SRS) procedure were compared respectively. Understanding the differences in the techniques methodologies and outcomes will provide further insight into the applicability and utility of risk assessments exercises in radiation therapy. Methods: HFMEA risk assessment analysis was performed on a stereotactic radiosurgery procedure. A previous study from our institution completed a FMEA of our SRS procedure and the process map generated from this work was used for the HFMEA. The process of performing the HFMEA scoring was analyzed, and the results from both analyses were compared. Results: The key differences between the two risk assessments are the scoring criteria for failure modes and identifying critical failure modes for potential hazards. The general consensus among the team performing the analyses was that scoring for the HFMEA was simpler and more intuitive then the FMEA. The FMEA identified 25 critical failure modes while the HFMEA identified 39. Seven of the FMEA critical failure modes were not identified by the HFMEA and 21 of the HFMEA critical failure modes were not identified by the FMEA. HFMEA as described by the Veteran Affairs provides guidelines on which failure modes to address first. Conclusion: HFMEA is a more efficient model for identifying gross risks in a process than FMEA. Clinics with minimal staff, time and resources can benefit from this type of risk assessment to eliminate or mitigate high risk hazards with nominal effort. FMEA can provide more in depth details but at the cost of elevated effort.

  7. SU-F-T-246: Evaluation of Healthcare Failure Mode And Effect Analysis For Risk Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Harry, T [Oregon State University, Corvallis, OR (United States); University of California, San Diego, La Jolla, CA (United States); Manger, R; Cervino, L; Pawlicki, T [University of California, San Diego, La Jolla, CA (United States)

    2016-06-15

    Purpose: To evaluate the differences between the Veteran Affairs Healthcare Failure Modes and Effect Analysis (HFMEA) and the AAPM Task Group 100 Failure and Effect Analysis (FMEA) risk assessment techniques in the setting of a stereotactic radiosurgery (SRS) procedure were compared respectively. Understanding the differences in the techniques methodologies and outcomes will provide further insight into the applicability and utility of risk assessments exercises in radiation therapy. Methods: HFMEA risk assessment analysis was performed on a stereotactic radiosurgery procedure. A previous study from our institution completed a FMEA of our SRS procedure and the process map generated from this work was used for the HFMEA. The process of performing the HFMEA scoring was analyzed, and the results from both analyses were compared. Results: The key differences between the two risk assessments are the scoring criteria for failure modes and identifying critical failure modes for potential hazards. The general consensus among the team performing the analyses was that scoring for the HFMEA was simpler and more intuitive then the FMEA. The FMEA identified 25 critical failure modes while the HFMEA identified 39. Seven of the FMEA critical failure modes were not identified by the HFMEA and 21 of the HFMEA critical failure modes were not identified by the FMEA. HFMEA as described by the Veteran Affairs provides guidelines on which failure modes to address first. Conclusion: HFMEA is a more efficient model for identifying gross risks in a process than FMEA. Clinics with minimal staff, time and resources can benefit from this type of risk assessment to eliminate or mitigate high risk hazards with nominal effort. FMEA can provide more in depth details but at the cost of elevated effort.

  8. Studies on failure kind analysis of the radiologic medical equipment in general hospital

    International Nuclear Information System (INIS)

    Lee, Woo Cheul; Kim, Jeong Lae

    1999-01-01

    This paper included a data analysis of the unit of medical devices using maintenance recording card that had medical devices of unit failure mode, hospital of failure mode and MTBF. The results of the analysis were as follows : 1. Medical devices of unit failure mode was the highest in QC/PM such A hospital as 33.9%, B hospital 30.9%, C hospital 30.3%, second degree was the Electrical and Electronic failure such A hospital as 23.5%, B hospital 25.3%, C hospital 28%, third degree was mechanical failure such A hospital as 19.6%, B hospital 22.5%, C hospital 25.4%. 2. Hospital of failure mode was the highest in Mobile X-ray device(A hospital 62.5%, B hospital 69.5%, C hospital 37.4%), and was the lowest in Sono devices(A hospital 16.76%, B hospital 8.4%, C hospital 7%). 3. Mean time between failures(MTBT) was the highest in SONO devices and was the lowest in Mobile X-ray devices which have 200 - 400 failure hours. 4. Average failure ratio was the highest in Mobile X-ray devices(A hospital 31.3%, B hospital 34.8%, C hospital 18.7%), and was the lowest in Sono(Ultrasound) devices (A hospital 8.4%, B hospital 4.2%, C hospital 3.5%). 5. Failure ratio results of medical devices according to QC/PM part of unit failure mode were as follows ; A hospital was the highest part of QC/PM (50%) in Mamo X-ray device and was the lowest part of QC/PM(26.4%) in Gastro X-ray. B hospital was the highest part of QC/PM(56%) in Mobile X-ray device, and the lowest part of QC/PM(12%) in Gastro X-ray. C hospital was the highest part of QC/PM(60%) in R/F X-ray device, and the lowest a part of QC/PM(21%) in Universal X-ray. It was found that the units responsible for most failure decreased by systematic management. We made the preventive maintenance schedule focusing on adjustment of operating and dust removal

  9. Developmental problems and their solution for the Space Shuttle main engine alternate liquid oxygen high-pressure turbopump: Anomaly or failure investigation the key

    Science.gov (United States)

    Ryan, R.; Gross, L. A.

    1995-05-01

    The Space Shuttle main engine (SSME) alternate high-pressure liquid oxygen pump experienced synchronous vibration and ball bearing life problems that were program threatening. The success of the program hinged on the ability to solve these development problems. The design and solutions to these problems are engirded in the lessons learned and experiences from prior programs, technology programs, and the ability to properly conduct failure or anomaly investigations. The failure investigation determines the problem cause and is the basis for recommending design solutions. For a complex problem, a comprehensive solution requires that formal investigation procedures be used, including fault trees, resolution logic, and action items worked through a concurrent engineering-multidiscipline team. The normal tendency to use an intuitive, cut-and-try approach will usually prove to be costly, both in money and time and will reach a less than optimum, poorly understood answer. The SSME alternate high-pressure oxidizer turbopump development has had two complex problems critical to program success: (1) high synchronous vibrations and (2) excessive ball bearing wear. This paper will use these two problems as examples of this formal failure investigation approach. The results of the team's investigation provides insight into the complexity of the turbomachinery technical discipline interacting/sensitivities and the fine balance of competing investigations required to solve problems and guarantee program success. It is very important to the solution process that maximum use be made of the resources that both the contractor and Government can bring to the problem in a supporting and noncompeting way. There is no place for the not-invented-here attitude. The resources include, but are not limited to: (1) specially skilled professionals; (2) supporting technologies; (3) computational codes and capabilities; and (4) test and manufacturing facilities.

  10. Dependency Analysis Guidance Nordic/German Working Group on Common Cause Failure analysis. Phase 2, Development of Harmonized Approach and Applications for Common Cause Failure Quantification

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Guenter; Johanson, Gunnar; Lindberg, Sandra; Vaurio, Jussi

    2009-03-15

    The Regulatory Code SSMFS 2008:1 of Swedish Radiation Safety Authority (SSM) includes requirements regarding the performance of probabilistic safety assessments (PSA), as well as PSA activities in general. Therefore, the follow-up of these activities is part of the inspection tasks of SSM. According to the SSMFS 2008:1, the safety analyses shall be based on a systematic identification and evaluation of such events, event sequences and other conditions which may lead to a radiological accident. The research report Nordic/German Working Group on Common cause Failure analysis. Phase 2 project report: Development of Harmonized Approach and Applications for Common Cause Failure Quantification has been developed under a contract with the Nordic PSA Group (NPSAG) and its German counterpart VGB, with the aim to create a common experience base for defence and analysis of dependent failures i.e. Common Cause Failures CCF. Phase 2 in this project if a deepened data analyses of CCF events and a demonstration on how the so called impact vectors can be constructed and on how CCF parameters are estimated. The word Guidance in the report title is used in order to indicate a common methodological guidance accepted by the NPSAG, based on current state of the art concerning the analysis of dependent failures and adapted to conditions relevant for Nordic sites. This will make it possible for the utilities to perform cost effective improvements and analyses. The report presents a common attempt by the authorities and the utilities to create a methodology and experience base for defence and analysis of dependent failures. The performed benchmark application has shown how important the interpretation of base data is to obtain robust CCF data and data analyses results. Good features were found in all benchmark approaches. The obtained experiences and approaches should now be used in harmonised procedures. A next step could be to develop and agree on event and formula driven impact vector

  11. Dependency Analysis Guidance Nordic/German Working Group on Common Cause Failure analysis. Phase 2, Development of Harmonized Approach and Applications for Common Cause Failure Quantification

    International Nuclear Information System (INIS)

    Becker, Guenter; Johanson, Gunnar; Lindberg, Sandra; Vaurio, Jussi

    2009-03-01

    The Regulatory Code SSMFS 2008:1 of Swedish Radiation Safety Authority (SSM) includes requirements regarding the performance of probabilistic safety assessments (PSA), as well as PSA activities in general. Therefore, the follow-up of these activities is part of the inspection tasks of SSM. According to the SSMFS 2008:1, the safety analyses shall be based on a systematic identification and evaluation of such events, event sequences and other conditions which may lead to a radiological accident. The research report Nordic/German Working Group on Common cause Failure analysis. Phase 2 project report: Development of Harmonized Approach and Applications for Common Cause Failure Quantification has been developed under a contract with the Nordic PSA Group (NPSAG) and its German counterpart VGB, with the aim to create a common experience base for defence and analysis of dependent failures i.e. Common Cause Failures CCF. Phase 2 in this project if a deepened data analyses of CCF events and a demonstration on how the so called impact vectors can be constructed and on how CCF parameters are estimated. The word Guidance in the report title is used in order to indicate a common methodological guidance accepted by the NPSAG, based on current state of the art concerning the analysis of dependent failures and adapted to conditions relevant for Nordic sites. This will make it possible for the utilities to perform cost effective improvements and analyses. The report presents a common attempt by the authorities and the utilities to create a methodology and experience base for defence and analysis of dependent failures. The performed benchmark application has shown how important the interpretation of base data is to obtain robust CCF data and data analyses results. Good features were found in all benchmark approaches. The obtained experiences and approaches should now be used in harmonised procedures. A next step could be to develop and agree on event and formula driven impact vector

  12. Fast neutron reactor noise analysis: beginning failure detection and physical parameter estimation

    International Nuclear Information System (INIS)

    Le Guillou, G.

    1975-01-01

    The analysis of the signals fluctuations coming from a power nuclear reactor (a breeder), by correlation methods and spectral analysis has two principal applications: on line estimation of physical parameters (reactivity coefficients); beginning failures (little boiling, abnormal mechanic vibrations). These two applications give important informations to the reactor core control and permit a good diagnosis [fr

  13. Analysis of the impact of alternative enterprise interventions on ...

    African Journals Online (AJOL)

    interventions of the REP have impacted rural livelihoods and poverty. The ... African Review of Economics and Finance | ISSN 2042-1478 | Volume 8 | Issue 2 ... with failures of governments' urban-biased public policies and ill-designed ... practices, focusing on agricultural production activities alone cannot engender.

  14. Application of failure mode and effect analysis in an assisted reproduction technology laboratory.

    Science.gov (United States)

    Intra, Giulia; Alteri, Alessandra; Corti, Laura; Rabellotti, Elisa; Papaleo, Enrico; Restelli, Liliana; Biondo, Stefania; Garancini, Maria Paola; Candiani, Massimo; Viganò, Paola

    2016-08-01

    Assisted reproduction technology laboratories have a very high degree of complexity. Mismatches of gametes or embryos can occur, with catastrophic consequences for patients. To minimize the risk of error, a multi-institutional working group applied failure mode and effects analysis (FMEA) to each critical activity/step as a method of risk assessment. This analysis led to the identification of the potential failure modes, together with their causes and effects, using the risk priority number (RPN) scoring system. In total, 11 individual steps and 68 different potential failure modes were identified. The highest ranked failure modes, with an RPN score of 25, encompassed 17 failures and pertained to "patient mismatch" and "biological sample mismatch". The maximum reduction in risk, with RPN reduced from 25 to 5, was mostly related to the introduction of witnessing. The critical failure modes in sample processing were improved by 50% in the RPN by focusing on staff training. Three indicators of FMEA success, based on technical skill, competence and traceability, have been evaluated after FMEA implementation. Witnessing by a second human operator should be introduced in the laboratory to avoid sample mix-ups. These findings confirm that FMEA can effectively reduce errors in assisted reproduction technology laboratories. Copyright © 2016 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  15. Evaluation of Safety in a Radiation Oncology Setting Using Failure Mode and Effects Analysis

    International Nuclear Information System (INIS)

    Ford, Eric C.; Gaudette, Ray; Myers, Lee; Vanderver, Bruce; Engineer, Lilly; Zellars, Richard; Song, Danny Y.; Wong, John; DeWeese, Theodore L.

    2009-01-01

    Purpose: Failure mode and effects analysis (FMEA) is a widely used tool for prospectively evaluating safety and reliability. We report our experiences in applying FMEA in the setting of radiation oncology. Methods and Materials: We performed an FMEA analysis for our external beam radiation therapy service, which consisted of the following tasks: (1) create a visual map of the process, (2) identify possible failure modes; assign risk probability numbers (RPN) to each failure mode based on tabulated scores for the severity, frequency of occurrence, and detectability, each on a scale of 1 to 10; and (3) identify improvements that are both feasible and effective. The RPN scores can span a range of 1 to 1000, with higher scores indicating the relative importance of a given failure mode. Results: Our process map consisted of 269 different nodes. We identified 127 possible failure modes with RPN scores ranging from 2 to 160. Fifteen of the top-ranked failure modes were considered for process improvements, representing RPN scores of 75 and more. These specific improvement suggestions were incorporated into our practice with a review and implementation by each department team responsible for the process. Conclusions: The FMEA technique provides a systematic method for finding vulnerabilities in a process before they result in an error. The FMEA framework can naturally incorporate further quantification and monitoring. A general-use system for incident and near miss reporting would be useful in this regard.

  16. Application of failure mode and effect analysis in a radiology department.

    Science.gov (United States)

    Thornton, Eavan; Brook, Olga R; Mendiratta-Lala, Mishal; Hallett, Donna T; Kruskal, Jonathan B

    2011-01-01

    With increasing deployment, complexity, and sophistication of equipment and related processes within the clinical imaging environment, system failures are more likely to occur. These failures may have varying effects on the patient, ranging from no harm to devastating harm. Failure mode and effect analysis (FMEA) is a tool that permits the proactive identification of possible failures in complex processes and provides a basis for continuous improvement. This overview of the basic principles and methodology of FMEA provides an explanation of how FMEA can be applied to clinical operations in a radiology department to reduce, predict, or prevent errors. The six sequential steps in the FMEA process are explained, and clinical magnetic resonance imaging services are used as an example for which FMEA is particularly applicable. A modified version of traditional FMEA called Healthcare Failure Mode and Effect Analysis, which was introduced by the U.S. Department of Veterans Affairs National Center for Patient Safety, is briefly reviewed. In conclusion, FMEA is an effective and reliable method to proactively examine complex processes in the radiology department. FMEA can be used to highlight the high-risk subprocesses and allows these to be targeted to minimize the future occurrence of failures, thus improving patient safety and streamlining the efficiency of the radiology department. RSNA, 2010

  17. Exact combinatorial reliability analysis of dynamic systems with sequence-dependent failures

    International Nuclear Information System (INIS)

    Xing Liudong; Shrestha, Akhilesh; Dai Yuanshun

    2011-01-01

    Many real-life fault-tolerant systems are subjected to sequence-dependent failure behavior, in which the order in which the fault events occur is important to the system reliability. Such systems can be modeled by dynamic fault trees (DFT) with priority-AND (pAND) gates. Existing approaches for the reliability analysis of systems subjected to sequence-dependent failures are typically state-space-based, simulation-based or inclusion-exclusion-based methods. Those methods either suffer from the state-space explosion problem or require long computation time especially when results with high degree of accuracy are desired. In this paper, an analytical method based on sequential binary decision diagrams is proposed. The proposed approach can analyze the exact reliability of non-repairable dynamic systems subjected to the sequence-dependent failure behavior. Also, the proposed approach is combinatorial and is applicable for analyzing systems with any arbitrary component time-to-failure distributions. The application and advantages of the proposed approach are illustrated through analysis of several examples. - Highlights: → We analyze the sequence-dependent failure behavior using combinatorial models. → The method has no limitation on the type of time-to-failure distributions. → The method is analytical and based on sequential binary decision diagrams (SBDD). → The method is computationally more efficient than existing methods.

  18. WE-G-BRA-08: Failure Modes and Effects Analysis (FMEA) for Gamma Knife Radiosurgery

    International Nuclear Information System (INIS)

    Xu, Y; Bhatnagar, J; Bednarz, G; Flickinger, J; Arai, Y; Huq, M Saiful; Vacsulka, J; Monaco, E; Niranjan, A; Lunsford, L Dade; Feng, W

    2015-01-01

    Purpose: To perform a failure modes and effects analysis (FMEA) study for Gamma Knife (GK) radiosurgery processes at our institution based on our experience with the treatment of more than 13,000 patients. Methods: A team consisting of medical physicists, nurses, radiation oncologists, neurosurgeons at the University of Pittsburgh Medical Center and an external physicist expert was formed for the FMEA study. A process tree and a failure mode table were created for the GK procedures using the Leksell GK Perfexion and 4C units. Three scores for the probability of occurrence (O), the severity (S), and the probability of no detection (D) for failure modes were assigned to each failure mode by each professional on a scale from 1 to 10. The risk priority number (RPN) for each failure mode was then calculated (RPN = OxSxD) as the average scores from all data sets collected. Results: The established process tree for GK radiosurgery consists of 10 sub-processes and 53 steps, including a sub-process for frame placement and 11 steps that are directly related to the frame-based nature of the GK radiosurgery. Out of the 86 failure modes identified, 40 failure modes are GK specific, caused by the potential for inappropriate use of the radiosurgery head frame, the imaging fiducial boxes, the GK helmets and plugs, and the GammaPlan treatment planning system. The other 46 failure modes are associated with the registration, imaging, image transfer, contouring processes that are common for all radiation therapy techniques. The failure modes with the highest hazard scores are related to imperfect frame adaptor attachment, bad fiducial box assembly, overlooked target areas, inaccurate previous treatment information and excessive patient movement during MRI scan. Conclusion: The implementation of the FMEA approach for Gamma Knife radiosurgery enabled deeper understanding of the overall process among all professionals involved in the care of the patient and helped identify potential

  19. Failure analysis of radioisotopic heat source capsules tested under multi-axial conditions

    International Nuclear Information System (INIS)

    Zielinski, R.E.; Stacy, E.; Burgan, C.E.

    In order to qualify small radioisotopic heat sources for a 25-yr design life, multi-axial mechanical tests were performed on the structural components of the heat source. The results of these tests indicated that failure predominantly occurred in the middle of the weld ramp-down zone. Examination of the failure zone by standard metallographic techniques failed to indicate the true cause of failure. A modified technique utilizing chemical etching, scanning electron microscopy, and energy dispersive x-ray analysis was employed and dramatically indicated the true cause of failure, impurity concentration in the ramp-down zone. As a result of the initial investigation, weld parameters for the heat sources were altered. Example welds made with a pulse arc technique did not have this impurity buildup in the ramp-down zone

  20. Failure mode and effects analysis applied to the administration of liquid medication by oral syringes

    Directory of Open Access Journals (Sweden)

    Eva María Guerra-Alia

    2017-11-01

    Full Text Available To carry out a Failure Mode and Effects Analysis (FMEA to the use of oral syringes. Methods: A multidisciplinary team was assembled within the Safety Committee. The stages of oral administration process of liquid medication were analysed, identifying the most critical and establishing the potential modes of failure that can cause errors. The impact associated with each mode of failure was calculated using the Risk Priority Number (RPN. Preventive actions were proposed. Results: Five failure modes were identified, all classified as high risk (RPN> 100. Seven of the eight preventive actions were implemented. Conclusions: The FMEA methodology was a useful tool. It has allowed to know the risks, analyse the causes that cause them, their effects on patient safety and the measures to reduce them

  1. Numerical Analysis on Failure Modes and Mechanisms of Mine Pillars under Shear Loading

    Directory of Open Access Journals (Sweden)

    Tianhui Ma

    2016-01-01

    Full Text Available Severe damage occurs frequently in mine pillars subjected to shear stresses. The empirical design charts or formulas for mine pillars are not applicable to orebodies under shear. In this paper, the failure process of pillars under shear stresses was investigated by numerical simulations using the rock failure process analysis (RFPA 2D software. The numerical simulation results indicate that the strength of mine pillars and the corresponding failure mode vary with different width-to-height ratios and dip angles. With increasing dip angle, stress concentration first occurs at the intersection between the pillar and the roof, leading to formation of microcracks. Damage gradually develops from the surface to the core of the pillar. The damage process is tracked with acoustic emission monitoring. The study in this paper can provide an effective means for understanding the failure mechanism, planning, and design of mine pillars.

  2. Statistical analysis of human maintenance failures of a nuclear power plant

    International Nuclear Information System (INIS)

    Pyy, P.

    2000-01-01

    In this paper, a statistical study of faults caused by maintenance activities is presented. The objective of the study was to draw conclusions on the unplanned effects of maintenance on nuclear power plant safety and system availability. More than 4400 maintenance history reports from the years 1992-1994 of Olkiluoto BWR nuclear power plant (NPP) were analysed together with the maintenance personnel. The human action induced faults were classified, e.g., according to their multiplicity and effects. This paper presents and discusses the results of a statistical analysis of the data. Instrumentation and electrical components are especially prone to human failures. Many human failures were found in safety related systems. Similarly, several failures remained latent from outages to power operation. The safety significance was generally small. Modifications are an important source of multiple human failures. Plant maintenance data is a good source of human reliability data and it should be used more, in future. (orig.)

  3. Dependent failure analysis research for the US NRC Risk Methods Integration and Evaluation Program

    International Nuclear Information System (INIS)

    Bohn, M.P.; Stack, D.W.; Campbell, D.J.; Rooney, J.J.; Rasmuson, D.M.

    1985-01-01

    The Risk Methods Integration and Evaluation Program (RMIEP), which is being performed for the Nuclear Regulatory Commission by Sandia National Laboratories, has the goals of developing new risk assessment methods and integrating the new and existing methods in a uniform procedure for performing an in-depth probabilistic risk assessment (PRA) with consistent levels of analysis for internal, external, and dependent failure scenarios. An important part of RMIEP is the recognition of the crucial importance of dependent common cause failures (CCFs) and the pressing need to develop effective methods for analyzing CCFs as part of a PRA. The NRC-sponsored Integrated Dependent Failure Methodology Program at Sandia is addressing this need. This paper presents a preliminary approach for analyzing CCFs as part of a PRA. A nine-step procedure for efficiently screening and analyzing dependent failure scenarios is presented, and each step is discussed

  4. Prevention is better: the case of the underutilized failure mode effect analysis in patient safety

    Directory of Open Access Journals (Sweden)

    Lewis Goodrum

    2017-02-01

    Full Text Available Abstract Prospective hazard analysis methodologies, like failure modes and effects analysis (FMEA, have been tried and tested in the engineering industry and are more recently gaining momentum in healthcare. Considering FMEA’s evidence based successes, this commentary makes the case that healthcare is underutilizing the methodology by relying on retrospective hazard analysis. Healthcare leaders should determine where prospective hazard analysis principles could be better built into care delivery planning and processes that will enhance patient safety.

  5. Remote-Handled Low Level Waste Disposal Project Alternatives Analysis

    Energy Technology Data Exchange (ETDEWEB)

    David Duncan

    2010-10-01

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  6. Analysis of disposition alternatives for radioactively contaminated scrap metal

    International Nuclear Information System (INIS)

    Nieves, L.A.; Chen, S.Y.; Kohout, E.J.; Nabelssi, B.; Tilbrook, R.W.; Wilson, S.E.

    1997-01-01

    Millions of tonnes of slightly radioactive, scrap iron and steel, stainless steel, and copper are likely to become available as nuclear and other facilities and equipment are withdrawn from service. Disposition of this material is an international policy issue under consideration currently. The major alternatives for managing this material are to either develop a regulatory process for decontamination and recycling that will safeguard human health or to dispose of the scrap and replace the metal stocks. To evaluate the alternatives, we estimate quantities of scrap arising from nuclear power plant decommissioning, evaluate potential price impacts of recycling on regional markets, and assess the health and environmental impacts of the management alternatives. We conclude that decontaminating and recycling the scrap is the superior alternative

  7. Cost-benefit analysis of alternative fuels and motive designs.

    Science.gov (United States)

    2013-04-01

    This project was funded by the Federal Railroad Administration to better understand the potential cost and benefits of using alternative fuels for U.S. freight and passenger locomotive operations. The framework for a decision model was developed by T...

  8. Cost-effectiveness analysis of timely dialysis referral after renal transplant failure in Spain

    Directory of Open Access Journals (Sweden)

    Villa Guillermo

    2012-08-01

    Full Text Available Abstract Background A cost-effectiveness analysis of timely dialysis referral after renal transplant failure was undertaken from the perspective of the Public Administration. The current Spanish situation, where all the patients undergoing graft function loss are referred back to dialysis in a late manner, was compared to an ideal scenario where all the patients are timely referred. Methods A Markov model was developed in which six health states were defined: hemodialysis, peritoneal dialysis, kidney transplantation, late referral hemodialysis, late referral peritoneal dialysis and death. The model carried out a simulation of the progression of renal disease for a hypothetical cohort of 1,000 patients aged 40, who were observed in a lifetime temporal horizon of 45 years. In depth sensitivity analyses were performed in order to ensure the robustness of the results obtained. Results Considering a discount rate of 3 %, timely referral showed an incremental cost of 211 €, compared to late referral. This cost increase was however a consequence of the incremental survival observed. The incremental effectiveness was 0.0087 quality-adjusted life years (QALY. When comparing both scenarios, an incremental cost-effectiveness ratio of 24,390 €/QALY was obtained, meaning that timely dialysis referral might be an efficient alternative if a willingness-to-pay threshold of 45,000 €/QALY is considered. This result proved to be independent of the proportion of late referral patients observed. The acceptance probability of timely referral was 61.90 %, while late referral was acceptable in 38.10 % of the simulations. If we however restrict the analysis to those situations not involving any loss of effectiveness, the acceptance probability of timely referral was 70.10 %, increasing twofold that of late referral (29.90 %. Conclusions Timely dialysis referral after graft function loss might be an efficient alternative in Spain, improving both

  9. Cost-effectiveness analysis of timely dialysis referral after renal transplant failure in Spain.

    Science.gov (United States)

    Villa, Guillermo; Sánchez-Álvarez, Emilio; Cuervo, Jesús; Fernández-Ortiz, Lucía; Rebollo, Pablo; Ortega, Francisco

    2012-08-16

    A cost-effectiveness analysis of timely dialysis referral after renal transplant failure was undertaken from the perspective of the Public Administration. The current Spanish situation, where all the patients undergoing graft function loss are referred back to dialysis in a late manner, was compared to an ideal scenario where all the patients are timely referred. A Markov model was developed in which six health states were defined: hemodialysis, peritoneal dialysis, kidney transplantation, late referral hemodialysis, late referral peritoneal dialysis and death. The model carried out a simulation of the progression of renal disease for a hypothetical cohort of 1,000 patients aged 40, who were observed in a lifetime temporal horizon of 45 years. In depth sensitivity analyses were performed in order to ensure the robustness of the results obtained. Considering a discount rate of 3 %, timely referral showed an incremental cost of 211 €, compared to late referral. This cost increase was however a consequence of the incremental survival observed. The incremental effectiveness was 0.0087 quality-adjusted life years (QALY). When comparing both scenarios, an incremental cost-effectiveness ratio of 24,390 €/QALY was obtained, meaning that timely dialysis referral might be an efficient alternative if a willingness-to-pay threshold of 45,000 €/QALY is considered. This result proved to be independent of the proportion of late referral patients observed. The acceptance probability of timely referral was 61.90 %, while late referral was acceptable in 38.10 % of the simulations. If we however restrict the analysis to those situations not involving any loss of effectiveness, the acceptance probability of timely referral was 70.10 %, increasing twofold that of late referral (29.90 %). Timely dialysis referral after graft function loss might be an efficient alternative in Spain, improving both patients' survival rates and health-related quality of life at an

  10. Finite Element Creep-Fatigue Analysis of a Welded Furnace Roll for Identifying Failure Root Cause

    Science.gov (United States)

    Yang, Y. P.; Mohr, W. C.

    2015-11-01

    Creep-fatigue induced failures are often observed in engineering components operating under high temperature and cyclic loading. Understanding the creep-fatigue damage process and identifying failure root cause are very important for preventing such failures and improving the lifetime of engineering components. Finite element analyses including a heat transfer analysis and a creep-fatigue analysis were conducted to model the cyclic thermal and mechanical process of a furnace roll in a continuous hot-dip coating line. Typically, the roll has a short life, modeling heat convection from hot air inside the furnace. The creep-fatigue analysis was performed by inputting the predicted temperature history and applying mechanical loads. The analysis results showed that the failure was resulted from a creep-fatigue mechanism rather than a creep mechanism. The difference of material properties between the filler metal and the base metal is the root cause for the roll failure, which induces higher creep strain and stress in the interface between the weld and the HAZ.

  11. Long-term-consequence analysis of no action alternative 2

    International Nuclear Information System (INIS)

    Buck, J.W.; Bagaasen, L.M.; Staven, L.H.; Serne, R.J.

    1996-07-01

    This report is a supplement to the Waste Isolation Pilot Plant (WIPP) Disposal-Phase Supplemental Environmental Impact Statement. Data and information is described which pertains to estimated impacts from postulated long-term release of radionuclides and hazardous constituents from alpha-bearing wastes stored at major generator/storage sites after loss of institutional control (no action alternative 2). Under this alternative, wastes would remain at the generator sites and not be emplaced at WIPP

  12. Analysis of quantile regression as alternative to ordinary least squares

    OpenAIRE

    Ibrahim Abdullahi; Abubakar Yahaya

    2015-01-01

    In this article, an alternative to ordinary least squares (OLS) regression based on analytical solution in the Statgraphics software is considered, and this alternative is no other than quantile regression (QR) model. We also present goodness of fit statistic as well as approximate distributions of the associated test statistics for the parameters. Furthermore, we suggest a goodness of fit statistic called the least absolute deviation (LAD) coefficient of determination. The procedure is well ...

  13. A meta-analysis of the effects of β-adrenergic blockers in chronic heart failure.

    Science.gov (United States)

    Zhang, Xiaojian; Shen, Chengwu; Zhai, Shujun; Liu, Yukun; Yue, Wen-Wei; Han, Li

    2016-10-01

    Adrenergic β-blockers are drugs that bind to, but do not activate β-adrenergic receptors. Instead they block the actions of β-adrenergic agonists and are used for the treatment of various diseases such as cardiac arrhythmias, angina pectoris, myocardial infarction, hypertension, headache, migraines, stress, anxiety, prostate cancer, and heart failure. Several meta-analysis studies have shown that β-blockers improve the heart function and reduce the risks of cardiovascular events, rate of mortality, and sudden death through chronic heart failure (CHF) of patients. The present study identified results from recent meta-analyses of β-adrenergic blockers and their usefulness in CHF. Databases including Medline/Embase/Cochrane Central Register of Controlled Trials (CENTRAL), and PubMed were searched for the periods May, 1985 to March, 2011 and June, 2013 to August, 2015, and a number of studies identified. Results of those studies showed that use of β-blockers was associated with decreased sudden cardiac death in patients with heart failure. However, contradictory results have also been reported. The present meta-analysis aimed to determine the efficacy of β-blockers on mortality and morbidity in patients with heart failure. The results showed that mortality was significantly reduced by β-blocker treatment prior to the surgery of heart failure patients. The results from the meta-analysis studies showed that β-blocker treatment in heart failure patients correlated with a significant decrease in long-term mortality, even in patients that meet one or more exclusion criteria of the MERIT-HF study. In summary, the findings of the current meta-analysis revealed beneficial effects different β-blockers have on patients with heart failure or related heart disease.

  14. Failure analysis for ultrasound machines in a radiology department after implementation of predictive maintenance method

    Directory of Open Access Journals (Sweden)

    Greg Chu

    2018-01-01

    Full Text Available Objective: The objective of the study was to perform quantitative failure and fault analysis to the diagnostic ultrasound (US scanners in a radiology department after the implementation of the predictive maintenance (PdM method; to study the reduction trend of machine failure; to understand machine operating parameters affecting the failure; to further optimize the method to maximize the machine clinically service time. Materials and Methods: The PdM method has been implemented to the 5 US machines since 2013. Log books were used to record machine failures and their root causes together with the time spent on repair, all of which were retrieved, categorized, and analyzed for the period between 2013 and 2016. Results: There were a total of 108 cases of failure occurred in these 5 US machines during the 4-year study period. The average number of failure per month for all these machines was 2.4. Failure analysis showed that there were 33 cases (30.5% due to software, 44 cases (40.7% due to hardware, and 31 cases (28.7% due to US probe. There was a statistically significant negative correlation between the time spent on regular quality assurance (QA by hospital physicists with the time spent on faulty parts replacement over the study period (P = 0.007. However, there was no statistically significant correlation between regular QA time and total yearly breakdown case (P = 0.12, although there has been a decreasing trend observed in the yearly total breakdown. Conclusion: There has been a significant improvement on the machine failure of US machines attributed to the concerted effort of sonographers and physicists in our department to practice the PdM method, in that system component repair time has been reduced, and a decreasing trend in the number of system breakdown has been observed.

  15. A pragmatic approach to estimate alpha factors for common cause failure analysis

    International Nuclear Information System (INIS)

    Hassija, Varun; Senthil Kumar, C.; Velusamy, K.

    2014-01-01

    Highlights: • Estimation of coefficients in alpha factor model for common cause analysis. • A derivation of plant specific alpha factors is demonstrated. • We examine sensitivity of common cause contribution to total system failure. • We compare beta factor and alpha factor models for various redundant configurations. • The use of alpha factors is preferable, especially for large redundant systems. - Abstract: Most of the modern technological systems are deployed with high redundancy but still they fail mainly on account of common cause failures (CCF). Various models such as Beta Factor, Multiple Greek Letter, Binomial Failure Rate and Alpha Factor exists for estimation of risk from common cause failures. Amongst all, alpha factor model is considered most suitable for high redundant systems as it arrives at common cause failure probabilities from a set of ratios of failures and the total component failure probability Q T . In the present study, alpha factor model is applied for the assessment of CCF of safety systems deployed at two nuclear power plants. A method to overcome the difficulties in estimation of the coefficients viz., alpha factors in the model, importance of deriving plant specific alpha factors and sensitivity of common cause contribution to the total system failure probability with respect to hazard imposed by various CCF events is highlighted. An approach described in NUREG/CR-5500 is extended in this study to provide more explicit guidance for a statistical approach to derive plant specific coefficients for CCF analysis especially for high redundant systems. The procedure is expected to aid regulators for independent safety assessment

  16. Optimal tread design for agricultural lug tires determined through failure analysis

    Directory of Open Access Journals (Sweden)

    Hyun Seok Song

    2018-04-01

    Full Text Available Agricultural lug tires, commonly used in tractors, must provide safe and stable support for the body of the vehicle and bear any additional load while effectively traversing rough, poor-quality ground surfaces. Many agricultural lug tires fail unexpectedly. In this study, we optimised and validated a tread design for agricultural lug tires intended to increase their durability using failure analysis. Specifically, we identified tire failure modes using indoor driving tests and failure mode effects analysis. Next, we developed a threedimensional tire model using the Ogden material model and finite element method. Using sensitivity analysis and response surface methodology, we optimised the tread design. Finally, we evaluated the durability of the new design using a tire prototype and drum test equipment. Results indicated that the optimised tread design decreased the tire tread stress by 16% and increased its time until cracking by 38% compared to conventional agricultural lug tires.

  17. [Survival analysis with competing risks: estimating failure probability].

    Science.gov (United States)

    Llorca, Javier; Delgado-Rodríguez, Miguel

    2004-01-01

    To show the impact of competing risks of death on survival analysis. We provide an example of survival time without chronic rejection after heart transplantation, where death before rejection acts as a competing risk. Using a computer simulation, we compare the Kaplan-Meier estimator and the multiple decrement model. The Kaplan-Meier method overestimated the probability of rejection. Next, we illustrate the use of the multiple decrement model to analyze secondary end points (in our example: death after rejection). Finally, we discuss Kaplan-Meier assumptions and why they fail in the presence of competing risks. Survival analysis should be adjusted for competing risks of death to avoid overestimation of the risk of rejection produced with the Kaplan-Meier method.

  18. Failure Analysis of a Helicopter External Fuel-Tank Pylon

    Science.gov (United States)

    Newman, John A.; Piascik, Robert S.; Lindenberg, Richard A.

    2002-01-01

    An eight-inch-long (0.2 m) crack was found in an external fuel-tank pylon of a U.S. Coast Guard HH-60 helicopter. The damaged pylon was removed from service and destructively examined at NASA Langley Research Center (LaRC) to determine the cause of the crack. Results of the analysis revealed that crack initiation occurred at corrosion pits in a fastener hole and crack propagation was a result of cyclic loading.

  19. Stability and failure analysis of steering tie-rod

    Science.gov (United States)

    Jiang, GongFeng; Zhang, YiLiang; Xu, XueDong; Ding, DaWei

    2008-11-01

    A new car in operation of only 8,000 km, because of malfunction, resulting in lost control and rammed into the edge of the road, and then the basic vehicle scrapped. According to the investigation of the site, it was found that the tie-rod of the car had been broken. For the subjective analysis of the accident and identifying the true causes of rupture of the tierod, a series of studies, from the angle of theory to experiment on the bended broken tie-rod, were conducted. The mechanical model was established; the stability of the defective tie-rod was simulated based on ANSYS software. Meanwhile, the process of the accident was simulated considering the effect of destabilization of different vehicle speed and direction of the impact. Simultaneously, macro graphic test, chemical composition analysis, microstructure analysis and SEM analysis of the fracture were implemented. The results showed that: 1) the toughness of the tie-rod is at a normal level, but there is some previous flaws. One quarter of the fracture surface has been cracked before the accident. However, there is no relationship between the flaw and this incident. The direct cause is the dynamic instability leading to the large deformation of impact loading. 2) The declining safety factor of the tie-rod greatly due to the previous flaws; the result of numerical simulation shows that previous flaw is the vital factor of structure instability, on the basis of the comparison of critical loads of the accident tie-rod and normal. The critical load can decrease by 51.3% when the initial defect increases 19.54% on the cross-sectional area, which meets the Theory of Koiter.

  20. Importance of competing risks in the analysis of anti-epileptic drug failure

    Directory of Open Access Journals (Sweden)

    Sander Josemir W

    2007-03-01

    Full Text Available Abstract Background Retention time (time to treatment failure is a commonly used outcome in antiepileptic drug (AED studies. Methods Two datasets are used to demonstrate the issues in a competing risks analysis of AEDs. First, data collection and follow-up considerations are discussed with reference to information from 15 monotherapy trials. Recommendations for improved data collection and cumulative incidence analysis are then illustrated using the SANAD trial dataset. The results are compared to the more common approach using standard survival analysis methods. Results A non-significant difference in overall treatment failure time between gabapentin and topiramate (logrank test statistic = 0.01, 1 degree of freedom, p-value = 0.91 masked highly significant differences in opposite directions with gabapentin resulting in fewer withdrawals due to side effects (Gray's test statistic = 11.60, 1 degree of freedom, p = 0.0007 but more due to poor seizure control (Gray's test statistic = 14.47, 1 degree of freedom, p-value = 0.0001. The significant difference in overall treatment failure time between lamotrigine and carbamazepine (logrank test statistic = 5.6, 1 degree of freedom, p-value = 0.018 was due entirely to a significant benefit of lamotrigine in terms of side effects (Gray's test statistic = 10.27, 1 degree of freedom, p = 0.001. Conclusion Treatment failure time can be measured reliably but care is needed to collect sufficient information on reasons for drug withdrawal to allow a competing risks analysis. Important differences between the profiles of AEDs may be missed unless appropriate statistical methods are used to fully investigate treatment failure time. Cumulative incidence analysis allows comparison of the probability of failure between two AEDs and is likely to be a more powerful approach than logrank analysis for most comparisons of standard and new anti-epileptic drugs.

  1. Phenomenological uncertainty analysis of early containment failure at severe accident of nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Su Won

    2011-02-15

    The severe accident has inherently significant uncertainty due to wide range of conditions and performing experiments, validation and practical application are extremely difficult because of its high temperature and pressure. Although internal and external researches were put into practice, the reference used in Korean nuclear plants were foreign data of 1980s and safety analysis as the probabilistic safety assessment has not applied the newest methodology. Also, it is applied to containment pressure formed into point value as results of thermal hydraulic analysis to identify the probability of containment failure in level 2 PSA. In this paper, the uncertainty analysis methods for phenomena of severe accident influencing early containment failure were developed, the uncertainty analysis that apply Korean nuclear plants using the MELCOR code was performed and it is a point of view to present the distribution of containment pressure as a result of uncertainty analysis. Because early containment failure is important factor of Large Early Release Frequency(LERF) that is used as representative criteria of decision-making in nuclear power plants, it was selected in this paper among various modes of containment failure. Important phenomena of early containment failure at severe accident based on previous researches were comprehended and methodology of 7th steps to evaluate uncertainty was developed. The MELCOR input for analysis of the severe accident reflected natural circulation flow was developed and the accident scenario for station black out that was representative initial event of early containment failure was determined. By reviewing the internal model and correlation for MELCOR model relevant important phenomena of early containment failure, the uncertainty factors which could affect on the uncertainty were founded and the major factors were finally identified through the sensitivity analysis. In order to determine total number of MELCOR calculations which can

  2. Statistical trend analysis methodology for rare failures in changing technical systems

    International Nuclear Information System (INIS)

    Ott, K.O.; Hoffmann, H.J.

    1983-07-01

    A methodology for a statistical trend analysis (STA) in failure rates is presented. It applies primarily to relatively rare events in changing technologies or components. The formulation is more general and the assumptions are less restrictive than in a previously published version. Relations of the statistical analysis and probabilistic assessment (PRA) are discussed in terms of categorization of decisions for action following particular failure events. The significance of tentatively identified trends is explored. In addition to statistical tests for trend significance, a combination of STA and PRA results quantifying the trend complement is proposed. The STA approach is compared with other concepts for trend characterization. (orig.)

  3. Failure Analysis of Main Flame Deflector Nelson Studs

    Science.gov (United States)

    Long, Victoria

    2009-01-01

    NASA Structures engineers submitted two Nelson refractory studs from the main flame deflector at Launch Complex (LC) 39 A for analysis when they were observed to be missing a significant amount of material after launch. The damaged stud and an unused comparative stud were analyzed by macroscopic and microscopic examination along with metallographic evaluation of the microstructure. The stud lost material due to a combination of erosion and corrosion. Plain carbon steel readily forms an oxide layer in the coastal launch environment at Kennedy Space Center. The blast during a launch removes this brittle oxide layer, which then forms again post-launch, thereby further removing material. No indications of melting were observed.

  4. Risk assessment of the emergency processes: Healthcare failure mode and effect analysis.

    Science.gov (United States)

    Taleghani, Yasamin Molavi; Rezaei, Fatemeh; Sheikhbardsiri, Hojat

    2016-01-01

    Ensuring about the patient's safety is the first vital step in improving the quality of care and the emergency ward is known as a high-risk area in treatment health care. The present study was conducted to evaluate the selected risk processes of emergency surgery department of a treatment-educational Qaem center in Mashhad by using analysis method of the conditions and failure effects in health care. In this study, in combination (qualitative action research and quantitative cross-sectional), failure modes and effects of 5 high-risk procedures of the emergency surgery department were identified and analyzed according to Healthcare Failure Mode and Effects Analysis (HFMEA). To classify the failure modes from the "nursing errors in clinical management model (NECM)", the classification of the effective causes of error from "Eindhoven model" and determination of the strategies to improve from the "theory of solving problem by an inventive method" were used. To analyze the quantitative data of descriptive statistics (total points) and to analyze the qualitative data, content analysis and agreement of comments of the members were used. In 5 selected processes by "voting method using rating", 23 steps, 61 sub-processes and 217 potential failure modes were identified by HFMEA. 25 (11.5%) failure modes as the high risk errors were detected and transferred to the decision tree. The most and the least failure modes were placed in the categories of care errors (54.7%) and knowledge and skill (9.5%), respectively. Also, 29.4% of preventive measures were in the category of human resource management strategy. "Revision and re-engineering of processes", "continuous monitoring of the works", "preparation and revision of operating procedures and policies", "developing the criteria for evaluating the performance of the personnel", "designing a suitable educational content for needs of employee", "training patients", "reducing the workload and power shortage", "improving team

  5. Competing approaches to analysis of failure times with competing risks.

    Science.gov (United States)

    Farley, T M; Ali, M M; Slaymaker, E

    2001-12-15

    For the analysis of time to event data in contraceptive studies when individuals are subject to competing causes for discontinuation, some authors have recently advocated the use of the cumulative incidence rate as a more appropriate measure to summarize data than the complement of the Kaplan-Meier estimate of discontinuation. The former method estimates the rate of discontinuation in the presence of competing causes, while the latter is a hypothetical rate that would be observed if discontinuations for the other reasons could not occur. The difference between the two methods of analysis is the continuous time equivalent of a debate that took place in the contraceptive literature in the 1960s, when several authors advocated the use of net (adjusted or single decrement life table rates) rates in preference to crude rates (multiple decrement life table rates). A small simulation study illustrates the interpretation of the two types of estimate - the complement of the Kaplan-Meier estimate corresponds to a hypothetical rate where discontinuations for other reasons did not occur, while the cumulative incidence gives systematically lower estimates. The Kaplan-Meier estimates are more appropriate when estimating the effectiveness of a contraceptive method, but the cumulative incidence estimates are more appropriate when making programmatic decisions regarding contraceptive methods. Other areas of application, such as cancer studies, may prefer to use the cumulative incidence estimates, but their use should be determined according to the application. Copyright 2001 John Wiley & Sons, Ltd.

  6. Failure analysis of edge discoloration of galvanized fuel tank

    Directory of Open Access Journals (Sweden)

    Jitendra Mathur

    2015-10-01

    Full Text Available A peculiar type of edge discoloration defect on the surface of some galvanized fuel tank was observed, causing significant appearance problems. In the present study, the surface defect was characterized by visual inspection, optical microscopy, scanning electron microscopy and energy dispersive spectroscopic analysis to understand the source and mechanism of the defect. In the visual inspection, these peculiar surface appearances were observed in fuel tank at three distinct locations. The SEM examination exhibited two distinct regions on the surface apart from the normal galvanized surface: (1 galvannealed, (2 mixture of galvanized and galvannealed texture. The energy dispersive spectroscopic analysis of galvannealed region indicated enrichment of Zn and Al whereas in the region of galvanized majorly Zn was observed. Surface texture of galvannealed region showed majorly zeta crystals along with skin pass marks; whereas no such zeta crystals were observed in case of galvanized regions. Based on the preliminary results, the following hypothesis was made: Coil processed during galvanizing to galvannealing transition. Thickness and width changed to wider and thicker section, which resulted into lower line speed. Due to the lower Al content, lower speed and thicker section combination resulted in formation of partial GA in the coil owing to the internal heat content of the coil. This paper presents the results of the investigation.

  7. Learning from Trending, Precursor Analysis, and System Failures

    Energy Technology Data Exchange (ETDEWEB)

    Youngblood, R. W. [Idaho National Laboratory, Idaho Falls, ID (United States); Duffey, R. B. [Idaho National Laboratory, Idaho Falls, ID (United States)

    2015-11-01

    Models of reliability growth relate current system unreliability to currently accumulated experience. But “experience” comes in different forms. Looking back after a major accident, one is sometimes able to identify previous events or measurable performance trends that were, in some sense, signaling the potential for that major accident: potential that could have been recognized and acted upon, but was not recognized until the accident occurred. This could be a previously unrecognized cause of accidents, or underestimation of the likelihood that a recognized potential cause would actually operate. Despite improvements in the state of practice of modeling of risk and reliability, operational experience still has a great deal to teach us, and work has been going on in several industries to try to do a better job of learning from experience before major accidents occur. It is not enough to say that we should review operating experience; there is too much “experience” for such general advice to be considered practical. The paper discusses the following: 1. The challenge of deciding what to focus on in analysis of operating experience. 2. Comparing what different models of learning and reliability growth imply about trending and precursor analysis.

  8. A Report on Simulation-Driven Reliability and Failure Analysis of Large-Scale Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Lipeng [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wang, Feiyi [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Oral, H. Sarp [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Vazhkudai, Sudharshan S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cao, Qing [Univ. of Tennessee, Knoxville, TN (United States)

    2014-11-01

    High-performance computing (HPC) storage systems provide data availability and reliability using various hardware and software fault tolerance techniques. Usually, reliability and availability are calculated at the subsystem or component level using limited metrics such as, mean time to failure (MTTF) or mean time to data loss (MTTDL). This often means settling on simple and disconnected failure models (such as exponential failure rate) to achieve tractable and close-formed solutions. However, such models have been shown to be insufficient in assessing end-to-end storage system reliability and availability. We propose a generic simulation framework aimed at analyzing the reliability and availability of storage systems at scale, and investigating what-if scenarios. The framework is designed for an end-to-end storage system, accommodating the various components and subsystems, their interconnections, failure patterns and propagation, and performs dependency analysis to capture a wide-range of failure cases. We evaluate the framework against a large-scale storage system that is in production and analyze its failure projections toward and beyond the end of lifecycle. We also examine the potential operational impact by studying how different types of components affect the overall system reliability and availability, and present the preliminary results

  9. Reliability analysis of Markov history-dependent repairable systems with neglected failures

    International Nuclear Information System (INIS)

    Du, Shijia; Zeng, Zhiguo; Cui, Lirong; Kang, Rui

    2017-01-01

    Markov history-dependent repairable systems refer to the Markov repairable systems in which some states are changeable and dependent on recent evolutional history of the system. In practice, many Markov history-dependent repairable systems are subjected to neglected failures, i.e., some failures do not affect system performances if they can be repaired promptly. In this paper, we develop a model based on the theory of aggregated stochastic processes to describe the history-dependent behavior and the effect of neglected failures on the Markov history-dependent repairable systems. Based on the developed model, instantaneous and steady-state availabilities are derived to characterize the reliability of the system. Four reliability-related time distributions, i.e., distribution for the k th working period, distribution for the k th failure period, distribution for the real working time in an effective working period, distribution for the neglected failure time in an effective working period, are also derived to provide a more comprehensive description of the system's reliability. Thanks to the power of the theory of aggregated stochastic processes, closed-form expressions are obtained for all the reliability indexes and time distributions. Finally, the developed indexes and analysis methods are demonstrated by a numerical example. - Highlights: • Markovian history-dependent repairable systems with neglected failures is modeled. • Aggregated stochastic processes are used to derive reliability indexes and time distributions. • Closed-form expressions are derived for the considered indexes and distributions.

  10. Failure mode and effect analysis: improving intensive care unit risk management processes.

    Science.gov (United States)

    Askari, Roohollah; Shafii, Milad; Rafiei, Sima; Abolhassani, Mohammad Sadegh; Salarikhah, Elaheh

    2017-04-18

    Purpose Failure modes and effects analysis (FMEA) is a practical tool to evaluate risks, discover failures in a proactive manner and propose corrective actions to reduce or eliminate potential risks. The purpose of this paper is to apply FMEA technique to examine the hazards associated with the process of service delivery in intensive care unit (ICU) of a tertiary hospital in Yazd, Iran. Design/methodology/approach This was a before-after study conducted between March 2013 and December 2014. By forming a FMEA team, all potential hazards associated with ICU services - their frequency and severity - were identified. Then risk priority number was calculated for each activity as an indicator representing high priority areas that need special attention and resource allocation. Findings Eight failure modes with highest priority scores including endotracheal tube defect, wrong placement of endotracheal tube, EVD interface, aspiration failure during suctioning, chest tube failure, tissue injury and deep vein thrombosis were selected for improvement. Findings affirmed that improvement strategies were generally satisfying and significantly decreased total failures. Practical implications Application of FMEA in ICUs proved to be effective in proactively decreasing the risk of failures and corrected the control measures up to acceptable levels in all eight areas of function. Originality/value Using a prospective risk assessment approach, such as FMEA, could be beneficial in dealing with potential failures through proposing preventive actions in a proactive manner. The method could be used as a tool for healthcare continuous quality improvement so that the method identifies both systemic and human errors, and offers practical advice to deal effectively with them.

  11. Competing failure analysis in phased-mission systems with multiple functional dependence groups

    International Nuclear Information System (INIS)

    Wang, Chaonan; Xing, Liudong; Peng, Rui; Pan, Zhusheng

    2017-01-01

    A phased-mission system (PMS) involves multiple, consecutive, non-overlapping phases of operation. The system structure function and component failure behavior in a PMS can change from phase to phase, posing big challenges to the system reliability analysis. Further complicating the problem is the functional dependence (FDEP) behavior where the failure of certain component(s) causes other component(s) to become unusable or inaccessible or isolated. Previous studies have shown that FDEP can cause competitions between failure propagation and failure isolation in the time domain. While such competing failure effects have been well addressed in single-phase systems, only little work has focused on PMSs with a restrictive assumption that a single FDEP group exists in one phase of the mission. Many practical systems (e.g., computer systems and networks), however may involve multiple FDEP groups during the mission. Moreover, different FDEP groups can be dependent due to sharing some common components; they may appear in a single phase or multiple phases. This paper makes new contributions by modeling and analyzing reliability of PMSs subject to multiple FDEP groups through a Markov chain-based methodology. Propagated failures with both global and selective effects are considered. Four case studies are presented to demonstrate application of the proposed method. - Highlights: • Reliability of phased-mission systems subject to competing failure propagation and isolation effects is modeled. • Multiple independent or dependent functional dependence groups are considered. • Propagated failures with global effects and selective effects are studied. • Four case studies demonstrate generality and application of the proposed Markov-based method.

  12. Failure analysis of a repairable system: The case study of a cam-driven reciprocating pump

    Science.gov (United States)

    Dudenhoeffer, Donald D.

    1994-09-01

    This thesis supplies a statistical and economic tool for analysis of the failure characteristics of one typical piece of equipment under evaluation: a cam-driven reciprocating pump used in the submarine's distillation system. Comprehensive statistical techniques and parametric modeling are employed to identify and quantify pump failure characteristics. Specific areas of attention include: the derivation of an optimal maximum replacement interval based on costs, an evaluation of the mission reliability for the pump as a function of pump age, and a calculation of the expected times between failures. The purpose of this analysis is to evaluate current maintenance practices of time-based replacement and examine the consequences of different replacement intervals in terms of costs and mission reliability. Tradeoffs exist between cost savings and system reliability that must be fully understood prior to making any policy decisions.

  13. Analysis of High Power IGBT Short Circuit Failures

    Energy Technology Data Exchange (ETDEWEB)

    Pappas, G.

    2005-02-11

    The Next Linear Collider (NLC) accelerator proposal at SLAC requires a highly efficient and reliable, low cost, pulsed-power modulator to drive the klystrons. A solid-state induction modulator has been developed at SLAC to power the klystrons; this modulator uses commercial high voltage and high current Insulated Gate Bipolar Transistor (IGBT) modules. Testing of these IGBT modules under pulsed conditions was very successful; however, the IGBTs failed when tests were performed into a low inductance short circuit. The internal electrical connections of a commercial IGBT module have been analyzed to extract self and mutual partial inductances for the main current paths as well as for the gate structure. The IGBT module, together with the partial inductances, has been modeled using PSpice. Predictions for electrical paths that carry the highest current correlate with the sites of failed die under short circuit tests. A similar analysis has been carried out for a SLAC proposal for an IGBT module layout. This paper discusses the mathematical model of the IGBT module geometry and presents simulation results.

  14. A model-based prognostic approach to predict interconnect failure using impedance analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Dae Il; Yoon, Jeong Ah [Dept. of System Design and Control Engineering. Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2016-10-15

    The reliability of electronic assemblies is largely affected by the health of interconnects, such as solder joints, which provide mechanical, electrical and thermal connections between circuit components. During field lifecycle conditions, interconnects are often subjected to a DC open circuit, one of the most common interconnect failure modes, due to cracking. An interconnect damaged by cracking is sometimes extremely hard to detect when it is a part of a daisy-chain structure, neighboring with other healthy interconnects that have not yet cracked. This cracked interconnect may seem to provide a good electrical contact due to the compressive load applied by the neighboring healthy interconnects, but it can cause the occasional loss of electrical continuity under operational and environmental loading conditions in field applications. Thus, cracked interconnects can lead to the intermittent failure of electronic assemblies and eventually to permanent failure of the product or the system. This paper introduces a model-based prognostic approach to quantitatively detect and predict interconnect failure using impedance analysis and particle filtering. Impedance analysis was previously reported as a sensitive means of detecting incipient changes at the surface of interconnects, such as cracking, based on the continuous monitoring of RF impedance. To predict the time to failure, particle filtering was used as a prognostic approach using the Paris model to address the fatigue crack growth. To validate this approach, mechanical fatigue tests were conducted with continuous monitoring of RF impedance while degrading the solder joints under test due to fatigue cracking. The test results showed the RF impedance consistently increased as the solder joints were degraded due to the growth of cracks, and particle filtering predicted the time to failure of the interconnects similarly to their actual timesto- failure based on the early sensitivity of RF impedance.

  15. Analysis of Moderator System Failure Accidents by Using New Method for Wolsong-1 CANDU 6 Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Dongsik; Kim, Jonghyun; Cho, Cheonhwey [Atomic Creative Technology Co., Ltd., Daejeon (Korea, Republic of); Kim, Sungmin [Korea Hydro and Nuclear Power Co., Ltd., Daejeon (Korea, Republic of)

    2013-05-15

    To reconfirm the safety of moderator system failure accidents, the safety analysis by using the reactor physics code, RFSP-IST, coupled with the thermal hydraulics code, CATHENA is performed additionally. In the present paper, the newly developed analysis method is briefly described and the results obtained from the moderator system failure accident simulations for Wolsong-1 CANDU 6 reactor by using the new method are summarized. The safety analysis of the moderator system failure accidents for Wolsong-1 CANDU 6 reactor was carried out by using the new code system, i. e., CATHENA and RFSP-IST, instead of the non-IST old codes, namely, SMOKIN G-2 and MODSTBOIL. The analysis results by using the new method revealed as same with the results by using the old method that the fuel integrity is warranted because the localized power peak remained well below the limits and, most importantly, the reactor operation enters into the self-shutdown mode due to the substantial loss of moderator D{sub 2}O inventory from the moderator system. In the analysis results obtained by using the old method, it was predicted that the ROP trip conditions occurred for the transient cases which are also studied in the present paper. But, in the new method, it was found that the ROP trip conditions did not occur. Consequently, in the safety analysis performed additionally by using the new method, the safety of moderator system failure accidents was reassured. In the future, the new analysis method by using the IST codes instead of the non-IST old codes for the moderator system failure accidents is strongly recommended.

  16. An alternative method for performing pressurized thermal shock analysis

    International Nuclear Information System (INIS)

    Bishop, B.A.; Meyer, T.A.; Carter, R.G.; Gamble, R.M.

    1997-01-01

    This paper describes how Probability of Crack Initiation and acceptable Pressurized Thermal Shock frequency were correlated with a c and summarizes several example applications, including evaluation of potential plant modifications. Plans for an industry supported pilot-plant application of the alternative Probabilistic Fracture Mechanics method for RG 1.154 are also discussed. 9 refs, 4 figs, 1 tab

  17. Apprenticeships: Useful Alternative, Tough to Implement. Policy Analysis No. 805

    Science.gov (United States)

    Heriot, Gail

    2016-01-01

    A college education is not everyone's cup of tea. The United States needs other ways to instill job skills in the younger generation. The German apprenticeship system is sometimes viewed as an appealing alternative. But substantially increasing apprenticeship opportunities in the United States may not be as easy or inviting as it sounds. The…

  18. Alternative Nonvolatile Residue Analysis with Contaminant Identification Project

    Science.gov (United States)

    Loftin, Kathleen (Compiler); Summerfield, Burton (Compiler); Thompson, Karen (Compiler); Mullenix, Pamela (Compiler); Zeitlin, Nancy (Compiler)

    2015-01-01

    Cleanliness verification is required in numerous industries including spaceflight ground support, electronics, medical and aerospace. Currently at KSC requirement for cleanliness verification use solvents that environmentally unfriendly. This goal of this project is to produce an alternative cleanliness verification technique that is both environmentally friendly and more cost effective.

  19. An alternative method for performing pressurized thermal shock analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, B A; Meyer, T A [Westinghouse Energy Systems, Pittsburgh, PA (United States); Carter, R G [Electric Power Research Inst., Charlotte, NC (United States); Gamble, R M [Sartrex Corp., Rockville, MD (United States)

    1997-09-01

    This paper describes how Probability of Crack Initiation and acceptable Pressurized Thermal Shock frequency were correlated with a{sub c} and summarizes several example applications, including evaluation of potential plant modifications. Plans for an industry supported pilot-plant application of the alternative Probabilistic Fracture Mechanics method for RG 1.154 are also discussed. 9 refs, 4 figs, 1 tab.

  20. Sedation for pediatric radiological procedures: analysis of potential causes of sedation failure and paradoxical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Karian, V.E.; Burrows, P.E.; Connor, L. [Dept. of Radiology, Children' s Hospital, Boston, MA (United States); Zurakowski, D. [Dept. of Biostatistics, Children' s Hospital, Boston, MA (United States); Mason, K.P. [Dept. of Anesthesiology, Children' s Hospital, Boston, MA (United States)

    1999-11-01

    Background. Sedation for diagnostic imaging and interventional radiologic procedures in pediatrics has greatly increased over the past decade. With appropriate patient selection and monitoring, serious adverse effects are infrequent, but failure to sedate and paradoxical reactions do occur. Objective. The purpose of this study was to determine, among patients undergoing sedation for radiologic procedures, the incidence of sedation failure and paradoxical reaction to pentobarbital and to identify potentially correctable causes. Materials and methods. Records of 1665 patients who were sedated in the radiology department from 1 November 1997 to 1 July 1998 were reviewed. Patients failing sedation or experiencing paradoxical reaction were compared with respect to sex, age group, diagnosis, scan type, time of day, NPO status, use of IV contrast and type of sedation agent using the Fisher exact test, Pearson chi-square, analysis of variance (ANOVA), the Student t-test, and logistic regression. Results. Data analysis revealed a sedation failure rate of 1 % and paradoxical reaction rate of 1.2 %. Stepwise multiple logistic regression revealed that the only significant independent multivariate predictor of failure was the need for the administration of a combination of pentobarbital, fentanyl, and midazolam IV. Conclusion. The low rate of sedation failure and paradoxical reactions to pentobarbital was near optimal and probably cannot be improved with the currently available sedatives. (orig.)

  1. [Retrieval and failure analysis of surgical implants in Brazil: the need for proper regulation].

    Science.gov (United States)

    Azevedo, Cesar R de Farias; Hippert, Eduardo

    2002-01-01

    This paper summarizes several cases of metallurgical failure analysis of surgical implants conducted at the Laboratory of Failure Analysis, Instituto de Pesquisas Tecnológicas (IPT), in Brazil. Failures with two stainless steel femoral compression plates, one stainless steel femoral nail plate, one Ti-6Al-4V alloy maxillary reconstruction plate, and five Nitinol wires were investigated. The results showed that the implants were not in accordance with ISO standards and presented evidence of corrosion-assisted fracture. Furthermore, some of the implants presented manufacturing/processing defects which also contributed to their premature failure. Implantation of materials that are not biocompatible may cause several types of adverse effects in the human body and lead to premature implant failure. A review of prevailing health legislation is needed in Brazil, along with the adoption of regulatory mechanisms to assure the quality of surgical implants on the market, providing for compulsory procedures in the reporting and investigation of surgical implants which have failed in service.

  2. Sedation for pediatric radiological procedures: analysis of potential causes of sedation failure and paradoxical reactions

    International Nuclear Information System (INIS)

    Karian, V.E.; Burrows, P.E.; Connor, L.; Zurakowski, D.; Mason, K.P.

    1999-01-01

    Background. Sedation for diagnostic imaging and interventional radiologic procedures in pediatrics has greatly increased over the past decade. With appropriate patient selection and monitoring, serious adverse effects are infrequent, but failure to sedate and paradoxical reactions do occur. Objective. The purpose of this study was to determine, among patients undergoing sedation for radiologic procedures, the incidence of sedation failure and paradoxical reaction to pentobarbital and to identify potentially correctable causes. Materials and methods. Records of 1665 patients who were sedated in the radiology department from 1 November 1997 to 1 July 1998 were reviewed. Patients failing sedation or experiencing paradoxical reaction were compared with respect to sex, age group, diagnosis, scan type, time of day, NPO status, use of IV contrast and type of sedation agent using the Fisher exact test, Pearson chi-square, analysis of variance (ANOVA), the Student t-test, and logistic regression. Results. Data analysis revealed a sedation failure rate of 1 % and paradoxical reaction rate of 1.2 %. Stepwise multiple logistic regression revealed that the only significant independent multivariate predictor of failure was the need for the administration of a combination of pentobarbital, fentanyl, and midazolam IV. Conclusion. The low rate of sedation failure and paradoxical reactions to pentobarbital was near optimal and probably cannot be improved with the currently available sedatives. (orig.)

  3. Failure analysis of parameter-induced simulation crashes in climate models

    Science.gov (United States)

    Lucas, D. D.; Klein, R.; Tannahill, J.; Ivanova, D.; Brandon, S.; Domyancic, D.; Zhang, Y.

    2013-08-01

    Simulations using IPCC (Intergovernmental Panel on Climate Change)-class climate models are subject to fail or crash for a variety of reasons. Quantitative analysis of the failures can yield useful insights to better understand and improve the models. During the course of uncertainty quantification (UQ) ensemble simulations to assess the effects of ocean model parameter uncertainties on climate simulations, we experienced a series of simulation crashes within the Parallel Ocean Program (POP2) component of the Community Climate System Model (CCSM4). About 8.5% of our CCSM4 simulations failed for numerical reasons at combinations of POP2 parameter values. We applied support vector machine (SVM) classification from machine learning to quantify and predict the probability of failure as a function of the values of 18 POP2 parameters. A committee of SVM classifiers readily predicted model failures in an independent validation ensemble, as assessed by the area under the receiver operating characteristic (ROC) curve metric (AUC > 0.96). The causes of the simulation failures were determined through a global sensitivity analysis. Combinations of 8 parameters related to ocean mixing and viscosity from three different POP2 parameterizations were the major sources of the failures. This information can be used to improve POP2 and CCSM4 by incorporating correlations across the relevant parameters. Our method can also be used to quantify, predict, and understand simulation crashes in other complex geoscientific models.

  4. Failure mode and effects analysis of witnessing protocols for ensuring traceability during IVF.

    Science.gov (United States)

    Rienzi, Laura; Bariani, Fiorenza; Dalla Zorza, Michela; Romano, Stefania; Scarica, Catello; Maggiulli, Roberta; Nanni Costa, Alessandro; Ubaldi, Filippo Maria

    2015-10-01

    Traceability of cells during IVF is a fundamental aspect of treatment, and involves witnessing protocols. Failure mode and effects analysis (FMEA) is a method of identifying real or potential breakdowns in processes, and allows strategies to mitigate risks to be developed. To examine the risks associated with witnessing protocols, an FMEA was carried out in a busy IVF centre, before and after implementation of an electronic witnessing system (EWS). A multidisciplinary team was formed and moderated by human factors specialists. Possible causes of failures, and their potential effects, were identified and risk priority number (RPN) for each failure calculated. A second FMEA analysis was carried out after implementation of an EWS. The IVF team identified seven main process phases, 19 associated process steps and 32 possible failure modes. The highest RPN was 30, confirming the relatively low risk that mismatches may occur in IVF when a manual witnessing system is used. The introduction of the EWS allowed a reduction in the moderate-risk failure mode by two-thirds (highest RPN = 10). In our experience, FMEA is effective in supporting multidisciplinary IVF groups to understand the witnessing process, identifying critical steps and planning changes in practice to enable safety to be enhanced. Copyright © 2015 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  5. Advances on the Failure Analysis of the Dam—Foundation Interface of Concrete Dams

    Directory of Open Access Journals (Sweden)

    Luis Altarejos-García

    2015-12-01

    Full Text Available Failure analysis of the dam-foundation interface in concrete dams is characterized by complexity, uncertainties on models and parameters, and a strong non-linear softening behavior. In practice, these uncertainties are dealt with a well-structured mixture of experience, best practices and prudent, conservative design approaches based on the safety factor concept. Yet, a sound, deep knowledge of some aspects of this failure mode remain unveiled, as they have been offset in practical applications by the use of this conservative approach. In this paper we show a strategy to analyse this failure mode under a reliability-based approach. The proposed methodology of analysis integrates epistemic uncertainty on spatial variability of strength parameters and data from dam monitoring. The purpose is to produce meaningful and useful information regarding the probability of occurrence of this failure mode that can be incorporated in risk-informed dam safety reviews. In addition, relationships between probability of failure and factors of safety are obtained. This research is supported by a more than a decade of intensive professional practice on real world cases and its final purpose is to bring some clarity, guidance and to contribute to the improvement of current knowledge and best practices on such an important dam safety concern.

  6. An improved method for risk evaluation in failure modes and effects analysis of CNC lathe

    Science.gov (United States)

    Rachieru, N.; Belu, N.; Anghel, D. C.

    2015-11-01

    Failure mode and effects analysis (FMEA) is one of the most popular reliability analysis tools for identifying, assessing and eliminating potential failure modes in a wide range of industries. In general, failure modes in FMEA are evaluated and ranked through the risk priority number (RPN), which is obtained by the multiplication of crisp values of the risk factors, such as the occurrence (O), severity (S), and detection (D) of each failure mode. However, the crisp RPN method has been criticized to have several deficiencies. In this paper, linguistic variables, expressed in Gaussian, trapezoidal or triangular fuzzy numbers, are used to assess the ratings and weights for the risk factors S, O and D. A new risk assessment system based on the fuzzy set theory and fuzzy rule base theory is to be applied to assess and rank risks associated to failure modes that could appear in the functioning of Turn 55 Lathe CNC. Two case studies have been shown to demonstrate the methodology thus developed. It is illustrated a parallel between the results obtained by the traditional method and fuzzy logic for determining the RPNs. The results show that the proposed approach can reduce duplicated RPN numbers and get a more accurate, reasonable risk assessment. As a result, the stability of product and process can be assured.

  7. Safety Management in an Oil Company through Failure Mode Effects and Critical Analysis

    Directory of Open Access Journals (Sweden)

    Benedictus Rahardjo

    2016-06-01

    Full Text Available This study attempts to apply Failure Mode Effects and Criticality Analysis (FMECA to improve the safety of a production system, specifically the production process of an oil company. Since food processing is a worldwide issue and self-management of a food company is more important than relying on government regulations, therefore this study focused on that matter. The initial step of this study is to identify and analyze the criticality of the potential failure modes of the production process. Furthermore, take corrective action to minimize the probability of repeating the same failure mode, followed by a re-analysis of its criticality. The results of corrective actions were compared with those before improvement conditions by testing the significance of the difference using two sample t-test. The final measured result is the Criticality Priority Number (CPN, which refers to the severity category of the failure mode and the probability of occurrence of the same failure mode. The recommended actions proposed by the FMECA significantly reduce the CPN compared with the value before improvement, with increases of 38.46% for the palm olein case study.

  8. Vulnerability Identification and Design-Improvement-Feedback using Failure Analysis of Digital Control System Designs

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eunchan; Bae, Yeonkyoung [Korea Hydro and Nuclear Power Co., Ltd., Daejeon (Korea, Republic of)

    2013-05-15

    Fault tree analyses let analysts establish the failure sequences of components as a logical model and confirm the result at the plant level. These two analyses provide insights regarding what improvements are needed to increase availability because it expresses the quantified design attribute of the system as minimal cut sets and availability value interfaced with component reliability data in the fault trees. This combined failure analysis method helps system users understand system characteristics including its weakness and strength in relation to faults in the design stage before system operation. This study explained why a digital system could have weaknesses in methods to transfer control signals or data and how those vulnerabilities could cause unexpected outputs. In particular, the result of the analysis confirmed that complex optical communication was not recommended for digital data transmission in the critical systems of nuclear power plants. Regarding loop controllers in Design A, a logic configuration should be changed to prevent spurious actuation due to a single failure, using hardware or software improvements such as cross checking between redundant modules, or diagnosis of the output signal integrity. Unavailability calculations support these insights from the failure analyses of the systems. In the near future, KHNP will perform failure mode and effect analyses in the design stage before purchasing non-safety-related digital system packages. In addition, the design requirements of the system will be confirmed based on evaluation of overall system availability or unavailability.

  9. Ship operation and failure mode analysis using a maneuver simulator

    Science.gov (United States)

    Cabrerizo-Morales, Miguel Angel; Molina, Rafael; de los Santos, Francisco; Camarero, Alberto

    2013-04-01

    In a ship or floating structure operation the agents that contribute to the systems behaviour are not only those derived from fluid-structure interaction, but also the ones linked to mooring-control line set-up evolution and human interaction. Therefore, the analysis of such systems is affected by boundary conditions that change during a complete operation. Frequently, monitoring techniques in laboratory (model) and field (prototype) are based in different instrumental techniques adding difficulty to data comparison and, in some cases, inducing precision and repeatability errors. For this reason, the main aim of this study is to develop the methods and tools to achieve a deep knowledge of those floating systems and obtain capabilities to optimize their operationally thresholds. This abstract presents a methodology and an instrumental system applicable both in field and laboratory: SRECMOCOS Project (Small scale REal-time Caisson MOnitoring and COntrol System). SRECMOCOS compiles three modules. For the monitoring and control of the structure it has been developed a synchronized open and modular microcontroller-based electronic system that comprises sensors, to monitor agents and reactions, and actuators to perform pertinent actions after processing the sensors' data. A secondary objective has been to design and implement a global scaled simulator (1:22), at the 3D basin of The Harbour Research Lab at Technical University of Madrid, in which climatic agents and those derived from the rig/maneuvering setup and the structural design were included. The particular case of Campamento's drydock, in Algeciras Bay (Spain), has been used to apply and validate the methodology. SRECMOCOS Project conjugates control, monitoring and wireless communication systems in a real time basis, offering the possibility to register and simulate all the parameters involved in port operations. This approach offers a step forward into a monitoring strategy to be included in monitoring

  10. ESREF 98 - 9th European Symposium on Reliability of Electron Devices, Failure Physics and Analysis

    Science.gov (United States)

    1998-10-19

    Experimental Setup established techniques for failure analysis like the fluorescent microthermal imaging technique [5]. topography data This calculated... Microthermal Imaging. Proceedings of the 2 2nd ISTFA (1996) 55- 62. [6] Balk L J, Maywald M and Pylkki R J, Nanoscopic detection of the thermal conductivity

  11. Analysis approach for common cause failure on non-safety digital control system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yun Goo; Oh, Eungse [Korea Hydro and Nuclear Power Co. Ltd., Daejeon (Korea, Republic of)

    2014-05-15

    The effects of common cause failure (CCF) on safety digital instrumentation and control (I and C) system had been considered in defense in depth and diversity coping analysis with safety analysis method. For the non-safety system, single failure had been considered for safety analysis. IEEE Std. 603-1991, Clause 5.6.3.1(2), 'Isolation' states that no credible failure on the non-safety side of an isolation device shall prevent any portion of a safety system from meeting its minimum performance requirements during and following any design basis event requiring that safety function. The software CCF is one of the credible failure on the non-safety side. In advanced digital I and C system, same hardware component is used for different control system and the defect in manufacture or common external event can generate CCF. Moreover, the non-safety I and C system uses complex software for its various function and software quality assurance for the development process is less severe than safety software for the cost effective design. Therefore the potential defects in software cannot be ignored and the effect of software CCF on non-safety I and C system is needed to be evaluated. This paper proposes the general process and considerations for the analysis of CCF on non-safety I and C system.

  12. Failure mode and effect analysis in asset maintenance : a multiple case study in the process industry

    NARCIS (Netherlands)

    Braaksma, Jan; Klingenberg, W.; Veldman, J.

    2013-01-01

    Failure mode and effect analysis (FMEA) is an important method for designing and prioritising preventive maintenance activities and is often used as the basis for preventive maintenance planning. Although FMEA was studied extensively, most of the published work so far covers FMEA concept design.

  13. Failure mode and effect analysis in asset maintenance: a multiple case study in the process industry

    NARCIS (Netherlands)

    Braaksma, Anne Johannes Jan; Klingenberg, W.; Veldman, Jasper

    2013-01-01

    Failure mode and effect analysis (FMEA) is an important method for designing and prioritising preventive maintenance activities and is often used as the basis for preventive maintenance planning. Although FMEA was studied extensively, most of the published work so far covers FMEA concept design.

  14. The Efficacy of Hospitalization of Nonorganic Failure-to-Thrive Children: A Meta-Analysis.

    Science.gov (United States)

    Fryer, George E., Jr.

    1988-01-01

    A meta-analysis of eight studies, involving 192 subjects, was performed to ascertain the efficacy of hospitalization of children with nonorganic failure to thrive. Hospitalization was found to approximately double the probability of catch-up physical growth for the children, but psychosocial development was only modestly hastened by…

  15. A Treatment Program for Failure to Thrive: A Cost-Effectiveness Analysis.

    Science.gov (United States)

    Karniski, Walt; And Others

    1986-01-01

    Analysis of treatment of infants suffering from Failure to Thrive placed in foster medical placement homes (MPH, N=17) or admitted to hospitals (N=18) revealed that the MPH infants grew more than hospitalized infants and parents of MPH children had advantages of education and support. The MPH program cost less than 25 percent of hospital care.…

  16. Root cause analysis of pump valve failures of three membrane pump systems

    NARCIS (Netherlands)

    Buijs, L.J.; Eijk, A.; Hooft, L. van

    2014-01-01

    This paper will present the root cause analysis and the solution of fatigue failures of the pump valves of three membrane pump systems installed on a chemical plant of Momentive in Pernis, the Netherlands. The membrane pumps were installed approximately 30 years ago. Each system has encountered

  17. Risk Assessment Planning for Airborne Systems: An Information Assurance Failure Mode, Effects and Criticality Analysis Methodology

    Science.gov (United States)

    2012-06-01

    Visa Investigate Data Breach March 30, 2012 Visa and MasterCard are investigating whether a data security breach at one of the main companies that...30). MasterCard and Visa Investigate Data Breach . New York Times . Stamatis, D. (2003). Failure Mode Effect Analysis: FMEA from Theory to Execution

  18. Low Carbon-Oriented Optimal Reliability Design with Interval Product Failure Analysis and Grey Correlation Analysis

    Directory of Open Access Journals (Sweden)

    Yixiong Feng

    2017-03-01

    Full Text Available The problem of large amounts of carbon emissions causes wide concern across the world, and it has become a serious threat to the sustainable development of the manufacturing industry. The intensive research into technologies and methodologies for green product design has significant theoretical meaning and practical value in reducing the emissions of the manufacturing industry. Therefore, a low carbon-oriented product reliability optimal design model is proposed in this paper: (1 The related expert evaluation information was prepared in interval numbers; (2 An improved product failure analysis considering the uncertain carbon emissions of the subsystem was performed to obtain the subsystem weight taking the carbon emissions into consideration. The interval grey correlation analysis was conducted to obtain the subsystem weight taking the uncertain correlations inside the product into consideration. Using the above two kinds of subsystem weights and different caution indicators of the decision maker, a series of product reliability design schemes is available; (3 The interval-valued intuitionistic fuzzy sets (IVIFSs were employed to select the optimal reliability and optimal design scheme based on three attributes, namely, low carbon, correlation and functions, and economic cost. The case study of a vertical CNC lathe proves the superiority and rationality of the proposed method.

  19. Hygrothermal Analysis and Failure Analysis of Composite Beams under Moving Loads

    Science.gov (United States)

    Hanif, Moiz

    Excellent combination of high structural stiffness and low weight are the qualities of composite material leading to the extensive work on such materials. In order to achieve the desired performance requirements, the designer has to take into consideration the structural requirements and the functional characteristics. Thus, in this study, the effect of hygrothermal conditions on fiber reinforced composite laminates with moving loads have been extensively studied and has been carried out that accompanies Classical Laminate Plate Theory (CLPT) as well as First Order Shear Deformation Theory (FSDT) on MATLAB. A glass/epoxy composite system has been chosen for study with which similar results may be expected for other laminated composites. The hygrothermal effect is incorporated by adjusting the stiffness coefficients of the laminate to its level of moisture concentration using empirical relations. The failure analysis is done using the maximum normal stress criterion and the factor of safety for the lamina calculated and compared with respect to the corresponding maximum stresses and strengths. Different fiber volume fraction with varying fiber orientation of the plies in the laminate were modeled and studied. The results presented show the effect of stresses and strains in dry conditions, whereas for hygrothermal analysis, they also indicate that not all the laminates behave in a similar fashion and so it is possible by selecting the proper laminate configuration, the effect of moisture can be reduced. Also deducing, that due to hygrothermal effects, changes in the stiffness coefficients of a laminate do not appear to affect the deflection results significantly.

  20. Alternatives generation and analysis for phase I intermediate waste feed staging system design requirements

    Energy Technology Data Exchange (ETDEWEB)

    Britton, M.D.

    1996-10-02

    This document provides; a decision analysis summary; problem statement; constraints, requirements, and assumptions; decision criteria; intermediate waste feed staging system options and alternatives generation and screening; intermediate waste feed staging system design concepts; intermediate waste feed staging system alternative evaluation and analysis; and open issues and actions.

  1. Failure rate modeling using fault tree analysis and Bayesian network: DEMO pulsed operation turbine study case

    Energy Technology Data Exchange (ETDEWEB)

    Dongiovanni, Danilo Nicola, E-mail: danilo.dongiovanni@enea.it [ENEA, Nuclear Fusion and Safety Technologies Department, via Enrico Fermi 45, Frascati 00040 (Italy); Iesmantas, Tomas [LEI, Breslaujos str. 3 Kaunas (Lithuania)

    2016-11-01

    Highlights: • RAMI (Reliability, Availability, Maintainability and Inspectability) assessment of secondary heat transfer loop for a DEMO nuclear fusion plant. • Definition of a fault tree for a nuclear steam turbine operated in pulsed mode. • Turbine failure rate models update by mean of a Bayesian network reflecting the fault tree analysis in the considered scenario. • Sensitivity analysis on system availability performance. - Abstract: Availability will play an important role in the Demonstration Power Plant (DEMO) success from an economic and safety perspective. Availability performance is commonly assessed by Reliability Availability Maintainability Inspectability (RAMI) analysis, strongly relying on the accurate definition of system components failure modes (FM) and failure rates (FR). Little component experience is available in fusion application, therefore requiring the adaptation of literature FR to fusion plant operating conditions, which may differ in several aspects. As a possible solution to this problem, a new methodology to extrapolate/estimate components failure rate under different operating conditions is presented. The DEMO Balance of Plant nuclear steam turbine component operated in pulse mode is considered as study case. The methodology moves from the definition of a fault tree taking into account failure modes possibly enhanced by pulsed operation. The fault tree is then translated into a Bayesian network. A statistical model for the turbine system failure rate in terms of subcomponents’ FR is hence obtained, allowing for sensitivity analyses on the structured mixture of literature and unknown FR data for which plausible value intervals are investigated to assess their impact on the whole turbine system FR. Finally, the impact of resulting turbine system FR on plant availability is assessed exploiting a Reliability Block Diagram (RBD) model for a typical secondary cooling system implementing a Rankine cycle. Mean inherent availability

  2. WE-H-BRC-02: Failure Mode and Effect Analysis of Liver Stereotactic Body Radiotherapy

    International Nuclear Information System (INIS)

    Rusu, I; Thomas, T; Roeske, J; Price, J; Perino, C; Surucu, M; Mescioglu, I

    2016-01-01

    Purpose: To identify areas of improvement in our liver stereotactic body radiation therapy (SBRT) program, using failure mode and effect analysis (FMEA). Methods: A multidisciplinary group consisting of one physician, three physicists, one dosimetrist and two therapists was formed. A process map covering 10 major stages of the liver SBRT program from the initial diagnosis to post treatment follow-up was generated. A total of 102 failure modes, together with their causes and effects, were identified. The occurrence (O), severity (S) and lack of detectability (D) were independently scored. The ranking was done using the risk probability number (RPN) defined as the product of average O, S and D numbers for each mode. The scores were normalized to remove inter-observer variability, while preserving individual ranking order. Further, a correlation analysis on the overall agreement on rank order of all failure modes resulted in positive values for successive pairs of evaluators. The failure modes with the highest RPN value were considered for further investigation. Results: The average normalized RPN values for all modes were 39 with a range of 9 to 103. The FMEA analysis resulted in the identification of the top 10 critical failures modes as: Incorrect CT-MR registration, MR scan not performed in treatment position, patient movement between CBCT acquisition and treatment, daily IGRT QA not verified, incorrect or incomplete ITV delineation, OAR contours not verified, inaccurate normal liver effective dose (Veff) calculation, failure of bolus tracking for 4D CT scan, setup instructions not followed for treatment and plan evaluation metrics missed. Conclusion: The application of FMEA to our liver SBRT program led to the identification and possible improvement of areas affecting patient safety.

  3. WE-H-BRC-02: Failure Mode and Effect Analysis of Liver Stereotactic Body Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Rusu, I; Thomas, T; Roeske, J; Price, J; Perino, C; Surucu, M [Loyola University Chicago, Maywood, IL (United States); Mescioglu, I [Lewis University, Romeoville, IL (United States)

    2016-06-15

    Purpose: To identify areas of improvement in our liver stereotactic body radiation therapy (SBRT) program, using failure mode and effect analysis (FMEA). Methods: A multidisciplinary group consisting of one physician, three physicists, one dosimetrist and two therapists was formed. A process map covering 10 major stages of the liver SBRT program from the initial diagnosis to post treatment follow-up was generated. A total of 102 failure modes, together with their causes and effects, were identified. The occurrence (O), severity (S) and lack of detectability (D) were independently scored. The ranking was done using the risk probability number (RPN) defined as the product of average O, S and D numbers for each mode. The scores were normalized to remove inter-observer variability, while preserving individual ranking order. Further, a correlation analysis on the overall agreement on rank order of all failure modes resulted in positive values for successive pairs of evaluators. The failure modes with the highest RPN value were considered for further investigation. Results: The average normalized RPN values for all modes were 39 with a range of 9 to 103. The FMEA analysis resulted in the identification of the top 10 critical failures modes as: Incorrect CT-MR registration, MR scan not performed in treatment position, patient movement between CBCT acquisition and treatment, daily IGRT QA not verified, incorrect or incomplete ITV delineation, OAR contours not verified, inaccurate normal liver effective dose (Veff) calculation, failure of bolus tracking for 4D CT scan, setup instructions not followed for treatment and plan evaluation metrics missed. Conclusion: The application of FMEA to our liver SBRT program led to the identification and possible improvement of areas affecting patient safety.

  4. Failure rate modeling using fault tree analysis and Bayesian network: DEMO pulsed operation turbine study case

    International Nuclear Information System (INIS)

    Dongiovanni, Danilo Nicola; Iesmantas, Tomas

    2016-01-01

    Highlights: • RAMI (Reliability, Availability, Maintainability and Inspectability) assessment of secondary heat transfer loop for a DEMO nuclear fusion plant. • Definition of a fault tree for a nuclear steam turbine operated in pulsed mode. • Turbine failure rate models update by mean of a Bayesian network reflecting the fault tree analysis in the considered scenario. • Sensitivity analysis on system availability performance. - Abstract: Availability will play an important role in the Demonstration Power Plant (DEMO) success from an economic and safety perspective. Availability performance is commonly assessed by Reliability Availability Maintainability Inspectability (RAMI) analysis, strongly relying on the accurate definition of system components failure modes (FM) and failure rates (FR). Little component experience is available in fusion application, therefore requiring the adaptation of literature FR to fusion plant operating conditions, which may differ in several aspects. As a possible solution to this problem, a new methodology to extrapolate/estimate components failure rate under different operating conditions is presented. The DEMO Balance of Plant nuclear steam turbine component operated in pulse mode is considered as study case. The methodology moves from the definition of a fault tree taking into account failure modes possibly enhanced by pulsed operation. The fault tree is then translated into a Bayesian network. A statistical model for the turbine system failure rate in terms of subcomponents’ FR is hence obtained, allowing for sensitivity analyses on the structured mixture of literature and unknown FR data for which plausible value intervals are investigated to assess their impact on the whole turbine system FR. Finally, the impact of resulting turbine system FR on plant availability is assessed exploiting a Reliability Block Diagram (RBD) model for a typical secondary cooling system implementing a Rankine cycle. Mean inherent availability

  5. Cost analysis of Navy acquisition alternatives for the NAVSTAR Global Positioning System

    Science.gov (United States)

    Darcy, T. F.; Smith, G. P.

    1982-12-01

    This research analyzes the life cycle cost (LCC) of the Navy's current and two hypothetical procurement alternatives for NAVSTAR Global Positioning System (GPS) user equipment. Costs are derived by the ARINC Research Corporation ACBEN cost estimating system. Data presentation is in a comparative format describing individual alternative LCC and differential costs between alternatives. Sensitivity analysis explores the impact receiver-processor unit (RPU) first unit production cost has on individual alternative LCC, as well as cost differentials between each alternative. Several benefits are discussed that might provide sufficient cost savings and/or system effectiveness improvements to warrant a procurement strategy other than the existing proposal.

  6. A COCAP program for the statistical analysis of common cause failure parameters

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Baehyeuk; Jae, Moosung [Hanyang Univ., Seoul (Korea, Republic of). Dept. of Nuclear Engineering

    2016-03-15

    Probabilistic Safety Assessment (PSA) based applications and regulations are becoming more important in the field of nuclear energy. According to the results of a PSA in Korea, the common cause failure evaluates CDF (Core Damage Frequency) as one of the significant factors affecting redundancy of NPPs. The purpose of the study is to develop a COCAP (Common Cause Failure parameter Analysis for PSA) program for the accurate use of the alpha factor model parameter data provided by other countries and for obtaining the indigenous CCF data of NPPs in Korea through Bayesian updating.

  7. Failure Modes and Effects Analysis (FMEA) of the Residual Heat Removal System

    International Nuclear Information System (INIS)

    Eggleston, F.T.

    1976-01-01

    The Residual Heat Removal System (RHRS) transfer heat from the Reactor Coolant System (RCS) to the reactor plant Component Cooling System (CCS) to reduce the temperature of the RCS at a controlled rate during the second part of normal plant cooldown and maintains the desired temperature until the plant is restarted. By the use of an analytic tool, the Failure Modes and Effects Analysis, it is shown that the RHRS, because of its redundant two train design, is able to accommodate any credible component single failure with the only effect being an extension in the required cooldown time, thus demonstrating the reliability of the RHRS to perform its intended function

  8. On the failure analysis of bondlines: Stress or energy based fracture criteria?

    DEFF Research Database (Denmark)

    Anyfantis, Konstantinos

    2014-01-01

    that characterizes a given bondline, both its cohesive strength and fracture toughness material parameters must be experimentally defined. Based on these properties, failure analysis of the bondline can be done either through stress- or energy-based criteria. The aim of this work is to investigate the effectiveness...... to classify the wide range of bondlines with respect to the failure theory that best describes the debonding process. Cohesive length scale effects are first demonstrated by modeling end notch flexure geometries and later by modeling double strap joint geometries within the framework of a wide numerical...

  9. An alternative bifurcation analysis of the Rose-Hindmarsh model

    International Nuclear Information System (INIS)

    Nikolov, Svetoslav

    2005-01-01

    The paper presents an alternative study of the bifurcation behavior of the Rose-Hindmarsh model using Lyapunov-Andronov's theory. This is done on the basis of the obtained analytical formula expressing the first Lyapunov's value (this is not Lyapunov exponent) at the boundary of stability. From the obtained results the following new conclusions are made: Transition to chaos and the occurrence of chaotic oscillations in the Rose-Hindmarsh system take place under hard stability loss

  10. ANALYSIS OF ALTERNATIVE PAYMENT DESIGNS FOR FARMLAND DEVELOPMENT RIGHTS

    OpenAIRE

    Hanson, Steven D.

    1999-01-01

    Four alternative payment rules were examined to evaluate their ability to accomplish the objectives of the development rights purchase program. Paying the true economic value for the development rights does not allow the program to target high quality agricultural land. Modifying the payment strategy by offering a minimum payment will provide some extra incentive for high quality agricultural land in areas with little development pressure, but will provide little help in areas with high devel...

  11. Bruxism and dental implant failures: a multilevel mixed effects parametric survival analysis approach.

    Science.gov (United States)

    Chrcanovic, B R; Kisch, J; Albrektsson, T; Wennerberg, A

    2016-11-01

    Recent studies have suggested that the insertion of dental implants in patients being diagnosed with bruxism negatively affected the implant failure rates. The aim of the present study was to investigate the association between the bruxism and the risk of dental implant failure. This retrospective study is based on 2670 patients who received 10 096 implants at one specialist clinic. Implant- and patient-related data were collected. Descriptive statistics were used to describe the patients and implants. Multilevel mixed effects parametric survival analysis was used to test the association between bruxism and risk of implant failure adjusting for several potential confounders. Criteria from a recent international consensus (Lobbezoo et al., J Oral Rehabil, 40, 2013, 2) and from the International Classification of Sleep Disorders (International classification of sleep disorders, revised: diagnostic and coding manual, American Academy of Sleep Medicine, Chicago, 2014) were used to define and diagnose the condition. The number of implants with information available for all variables totalled 3549, placed in 994 patients, with 179 implants reported as failures. The implant failure rates were 13·0% (24/185) for bruxers and 4·6% (155/3364) for non-bruxers (P bruxism was a statistically significantly risk factor to implant failure (HR 3·396; 95% CI 1·314, 8·777; P = 0·012), as well as implant length, implant diameter, implant surface, bone quantity D in relation to quantity A, bone quality 4 in relation to quality 1 (Lekholm and Zarb classification), smoking and the intake of proton pump inhibitors. It is suggested that the bruxism may be associated with an increased risk of dental implant failure. © 2016 John Wiley & Sons Ltd.

  12. Application of Failure Mode and Effects Analysis to Intraoperative Radiation Therapy Using Mobile Electron Linear Accelerators

    International Nuclear Information System (INIS)

    Ciocca, Mario; Cantone, Marie-Claire; Veronese, Ivan; Cattani, Federica; Pedroli, Guido; Molinelli, Silvia; Vitolo, Viviana; Orecchia, Roberto

    2012-01-01

    Purpose: Failure mode and effects analysis (FMEA) represents a prospective approach for risk assessment. A multidisciplinary working group of the Italian Association for Medical Physics applied FMEA to electron beam intraoperative radiation therapy (IORT) delivered using mobile linear accelerators, aiming at preventing accidental exposures to the patient. Methods and Materials: FMEA was applied to the IORT process, for the stages of the treatment delivery and verification, and consisted of three steps: 1) identification of the involved subprocesses; 2) identification and ranking of the potential failure modes, together with their causes and effects, using the risk probability number (RPN) scoring system, based on the product of three parameters (severity, frequency of occurrence and detectability, each ranging from 1 to 10); 3) identification of additional safety measures to be proposed for process quality and safety improvement. RPN upper threshold for little concern of risk was set at 125. Results: Twenty-four subprocesses were identified. Ten potential failure modes were found and scored, in terms of RPN, in the range of 42–216. The most critical failure modes consisted of internal shield misalignment, wrong Monitor Unit calculation and incorrect data entry at treatment console. Potential causes of failure included shield displacement, human errors, such as underestimation of CTV extension, mainly because of lack of adequate training and time pressures, failure in the communication between operators, and machine malfunctioning. The main effects of failure were represented by CTV underdose, wrong dose distribution and/or delivery, unintended normal tissue irradiation. As additional safety measures, the utilization of a dedicated staff for IORT, double-checking of MU calculation and data entry and finally implementation of in vivo dosimetry were suggested. Conclusions: FMEA appeared as a useful tool for prospective evaluation of patient safety in radiotherapy

  13. Association of sleep bruxism with ceramic restoration failure: A systematic review and meta-analysis.

    Science.gov (United States)

    de Souza Melo, Gilberto; Batistella, Elis Ângela; Bertazzo-Silveira, Eduardo; Simek Vega Gonçalves, Thais Marques; Mendes de Souza, Beatriz Dulcineia; Porporatti, André Luís; Flores-Mir, Carlos; De Luca Canto, Graziela

    2018-03-01

    Ceramic restorations are popular because of their excellent optical properties. However, failures are still a major concern, and dentists are confronted with the following question: is sleep bruxism (SB) associated with an increased frequency of ceramic restoration failures? The purpose of this systematic review and meta-analysis was to assess whether the presence of SB is associated with increased ceramic restoration failure. Observational studies and clinical trials that evaluated the short- and long-term survival rate of ceramic restorations in SB participants were selected. Sleep bruxism diagnostic criteria must have included at least 1 of the following: questionnaire, clinical evaluation, or polysomnography. Seven databases, in addition to 3 nonpeer-reviewed literature databases, were searched. The risk of bias was assessed by using the meta-analysis of statistics assessment and review instrument (MAStARI) checklist. Eight studies were included for qualitative synthesis, but only 5 for the meta-analysis. Three studies were categorized as moderate risk and 5 as high risk of bias. Clinical and methodological heterogeneity across studies were considered high. Increased hazard ratio (HR=7.74; 95% confidence interval [CI]=2.50 to 23.95) and odds ratio (OR=2.52; 95% CI=1.24 to 5.12) were observed considering only anterior ceramic veneers. Nevertheless, limited data from the meta-analysis and from the restricted number of included studies suggested that differences in the overall odds of failure concerning SB and other types of ceramic restorations did not favor or disfavor any association (OR=1.10; 95% CI=0.43 to 2.8). The overall quality of evidence was considered very low according to the GRADE criteria. Within the limitations of this systematic review, the overall result from the meta-analysis did not favor any association between SB and increased odds of failure for ceramic restorations. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry

  14. Failure mode and effect analysis-based quality assurance for dynamic MLC tracking systems

    International Nuclear Information System (INIS)

    Sawant, Amit; Dieterich, Sonja; Svatos, Michelle; Keall, Paul

    2010-01-01

    Purpose: To develop and implement a failure mode and effect analysis (FMEA)-based commissioning and quality assurance framework for dynamic multileaf collimator (DMLC) tumor tracking systems. Methods: A systematic failure mode and effect analysis was performed for a prototype real-time tumor tracking system that uses implanted electromagnetic transponders for tumor position monitoring and a DMLC for real-time beam adaptation. A detailed process tree of DMLC tracking delivery was created and potential tracking-specific failure modes were identified. For each failure mode, a risk probability number (RPN) was calculated from the product of the probability of occurrence, the severity of effect, and the detectibility of the failure. Based on the insights obtained from the FMEA, commissioning and QA procedures were developed to check (i) the accuracy of coordinate system transformation, (ii) system latency, (iii) spatial and dosimetric delivery accuracy, (iv) delivery efficiency, and (v) accuracy and consistency of system response to error conditions. The frequency of testing for each failure mode was determined from the RPN value. Results: Failures modes with RPN≥125 were recommended to be tested monthly. Failure modes with RPN<125 were assigned to be tested during comprehensive evaluations, e.g., during commissioning, annual quality assurance, and after major software/hardware upgrades. System latency was determined to be ∼193 ms. The system showed consistent and accurate response to erroneous conditions. Tracking accuracy was within 3%-3 mm gamma (100% pass rate) for sinusoidal as well as a wide variety of patient-derived respiratory motions. The total time taken for monthly QA was ∼35 min, while that taken for comprehensive testing was ∼3.5 h. Conclusions: FMEA proved to be a powerful and flexible tool to develop and implement a quality management (QM) framework for DMLC tracking. The authors conclude that the use of FMEA-based QM ensures efficient allocation

  15. Failure mode and effect analysis-based quality assurance for dynamic MLC tracking systems

    Energy Technology Data Exchange (ETDEWEB)

    Sawant, Amit; Dieterich, Sonja; Svatos, Michelle; Keall, Paul [Stanford University, Stanford, California 94394 (United States); Varian Medical Systems, Palo Alto, California 94304 (United States); Stanford University, Stanford, California 94394 (United States)

    2010-12-15

    Purpose: To develop and implement a failure mode and effect analysis (FMEA)-based commissioning and quality assurance framework for dynamic multileaf collimator (DMLC) tumor tracking systems. Methods: A systematic failure mode and effect analysis was performed for a prototype real-time tumor tracking system that uses implanted electromagnetic transponders for tumor position monitoring and a DMLC for real-time beam adaptation. A detailed process tree of DMLC tracking delivery was created and potential tracking-specific failure modes were identified. For each failure mode, a risk probability number (RPN) was calculated from the product of the probability of occurrence, the severity of effect, and the detectibility of the failure. Based on the insights obtained from the FMEA, commissioning and QA procedures were developed to check (i) the accuracy of coordinate system transformation, (ii) system latency, (iii) spatial and dosimetric delivery accuracy, (iv) delivery efficiency, and (v) accuracy and consistency of system response to error conditions. The frequency of testing for each failure mode was determined from the RPN value. Results: Failures modes with RPN{>=}125 were recommended to be tested monthly. Failure modes with RPN<125 were assigned to be tested during comprehensive evaluations, e.g., during commissioning, annual quality assurance, and after major software/hardware upgrades. System latency was determined to be {approx}193 ms. The system showed consistent and accurate response to erroneous conditions. Tracking accuracy was within 3%-3 mm gamma (100% pass rate) for sinusoidal as well as a wide variety of patient-derived respiratory motions. The total time taken for monthly QA was {approx}35 min, while that taken for comprehensive testing was {approx}3.5 h. Conclusions: FMEA proved to be a powerful and flexible tool to develop and implement a quality management (QM) framework for DMLC tracking. The authors conclude that the use of FMEA-based QM ensures

  16. Failure mode and effect analysis-based quality assurance for dynamic MLC tracking systems.

    Science.gov (United States)

    Sawant, Amit; Dieterich, Sonja; Svatos, Michelle; Keall, Paul

    2010-12-01

    To develop and implement a failure mode and effect analysis (FMEA)-based commissioning and quality assurance framework for dynamic multileaf collimator (DMLC) tumor tracking systems. A systematic failure mode and effect analysis was performed for a prototype real-time tumor tracking system that uses implanted electromagnetic transponders for tumor position monitoring and a DMLC for real-time beam adaptation. A detailed process tree of DMLC tracking delivery was created and potential tracking-specific failure modes were identified. For each failure mode, a risk probability number (RPN) was calculated from the product of the probability of occurrence, the severity of effect, and the detectibility of the failure. Based on the insights obtained from the FMEA, commissioning and QA procedures were developed to check (i) the accuracy of coordinate system transformation, (ii) system latency, (iii) spatial and dosimetric delivery accuracy, (iv) delivery efficiency, and (v) accuracy and consistency of system response to error conditions. The frequency of testing for each failure mode was determined from the RPN value. Failures modes with RPN > or = 125 were recommended to be tested monthly. Failure modes with RPN < 125 were assigned to be tested during comprehensive evaluations, e.g., during commissioning, annual quality assurance, and after major software/hardware upgrades. System latency was determined to be approximately 193 ms. The system showed consistent and accurate response to erroneous conditions. Tracking accuracy was within 3%-3 mm gamma (100% pass rate) for sinusoidal as well as a wide variety of patient-derived respiratory motions. The total time taken for monthly QA was approximately 35 min, while that taken for comprehensive testing was approximately 3.5 h. FMEA proved to be a powerful and flexible tool to develop and implement a quality management (QM) framework for DMLC tracking. The authors conclude that the use of FMEA-based QM ensures efficient allocation

  17. Failure analysis of top nozzle holddown spring screw for nuclear fuel assembly

    International Nuclear Information System (INIS)

    Koh, S. K.; Ryu, C. H.; Na, E. G.; Baek, T. H.; Jeon, K. L.

    2003-01-01

    A failure analysis of holddown spring screw was performed using fracture mechanics approach. The spring screw was designed such that it was capable of sustaining the loads imposed by the initial tensile preload and operational loads. In order to investigate the cause of failure, a stress analysis of the top nozzle spring assembly was done using finite element analysis and a life prediction of the screw was made using a fracture mechanics approach. The elastic-plastic finite element analysis showed that the local stresses at the critical regions of head-shank fillet and thread root significantly exceeded than the yield strength of the screw material, resulting in local plastic deformation. Primary water stress corrosion cracking life of the Inconel 600 screw was predicted by using integration of the Scott model and resulted in 1.42 years, which was fairly close to the actual service life of the holddown spring screw

  18. Elastic-plastic failure analysis of pressure burst tests of thin toroidal shells

    International Nuclear Information System (INIS)

    Jones, D.P.; Holliday, J.E.; Larson, L.D.

    1998-07-01

    This paper provides a comparison between test and analysis results for bursting of thin toroidal shells. Testing was done by pressurizing two toroidal shells until failure by bursting. An analytical criterion for bursting is developed based on good agreement between structural instability predicted by large strain-large displacement elastic-plastic finite element analysis and observed burst pressure obtained from test. The failures were characterized by loss of local stability of the membrane section of the shells consistent with the predictions from the finite element analysis. Good agreement between measured and predicted burst pressure suggests that incipient structural instability as calculated by an elastic-plastic finite element analysis is a reasonable way to calculate the bursting pressure of thin membrane structures

  19. Containment failure modes preliminary analysis for Atucha-I nuclear power plant during severe accidents

    International Nuclear Information System (INIS)

    Baron, J.; Caballero, C.; Zarate, S.M.

    1997-01-01

    The present work has the objective to analyze the containment behavior of the Atucha-I nuclear power plant during a severe accident, as part of a probabilistic safety assessment (PSA). Initially, a generic description of the containment failure modes considered in other PSAs is performed. Then, the possible containment failure modes for Atucha I are qualitatively analyzed, according to it design peculiarities. These failure modes involve some substantial differences from other PSAs, due to the particular design of Atucha I. Among others, it is studied the influence of: moderator/coolant separation, existence of cooling Zircaloy channels, existence of filling bodies inside the pressure vessel, reactor cavity geometry, on-line refueling mode, and existence of a double shell containment (steel and concrete) with an annular separation room. As a functions of the before mentioning analysis, a series of parameters to be taken into account is defined, on a preliminary basis, for definition of the plant damage states. (author) [es

  20. Using pattern analysis methods to do fast detection of manufacturing pattern failures

    Science.gov (United States)

    Zhao, Evan; Wang, Jessie; Sun, Mason; Wang, Jeff; Zhang, Yifan; Sweis, Jason; Lai, Ya-Chieh; Ding, Hua

    2016-03-01

    At the advanced technology node, logic design has become extremely complex and is getting more challenging as the pattern geometry size decreases. The small sizes of layout patterns are becoming very sensitive to process variations. Meanwhile, the high pressure of yield ramp is always there due to time-to-market competition. The company that achieves patterning maturity earlier than others will have a great advantage and a better chance to realize maximum profit margins. For debugging silicon failures, DFT diagnostics can identify which nets or cells caused the yield loss. But normally, a long time period is needed with many resources to identify which failures are due to one common layout pattern or structure. This paper will present a new yield diagnostic flow, based on preliminary EFA results, to show how pattern analysis can more efficiently detect pattern related systematic defects. Increased visibility on design pattern related failures also allows more precise yield loss estimation.

  1. Factors influencing patient compliance with therapeutic regimens in chronic heart failure: A critical incident technique analysis.

    Science.gov (United States)

    Strömberg, A; Broström, A; Dahlström, U; Fridlund, B

    1999-01-01

    The aim of this study was to identify factors influencing compliance with prescribed treatment in patients with chronic heart failure. A qualitative design with a critical incident technique was used. Incidents were collected through interviews with 25 patients with heart failure strategically selected from a primary health care clinic, a medical ward, and a specialist clinic. Two hundred sixty critical incidents were identified in the interviews and 2 main areas emerged in the analysis: inward factors and outward factors. The inward factors described how compliance was influenced by the personality of the patient, the disease, and the treatment. The outward factors described how compliance was influenced by social activities, social relationships, and health care professionals. By identifying the inward and outward factors influencing patients with chronic heart failure, health care professionals can assess whether intervention is needed to increase compliance.

  2. Medication management strategies used by older adults with heart failure: A systems-based analysis.

    Science.gov (United States)

    Mickelson, Robin S; Holden, Richard J

    2017-09-01

    Older adults with heart failure use strategies to cope with the constraining barriers impeding medication management. Strategies are behavioral adaptations that allow goal achievement despite these constraining conditions. When strategies do not exist, are ineffective or maladaptive, medication performance and health outcomes are at risk. While constraints to medication adherence are described in literature, strategies used by patients to manage medications are less well-described or understood. Guided by cognitive engineering concepts, the aim of this study was to describe and analyze the strategies used by older adults with heart failure to achieve their medication management goals. This mixed methods study employed an empirical strategies analysis method to elicit medication management strategies used by older adults with heart failure. Observation and interview data collected from 61 older adults with heart failure and 31 caregivers were analyzed using qualitative content analysis to derive categories, patterns and themes within and across cases. Data derived thematic sub-categories described planned and ad hoc methods of strategic adaptations. Stable strategies proactively adjusted the medication management process, environment, or the patients themselves. Patients applied situational strategies (planned or ad hoc) to irregular or unexpected situations. Medication non-adherence was a strategy employed when life goals conflicted with medication adherence. The health system was a source of constraints without providing commensurate strategies. Patients strived to control their medication system and achieve goals using adaptive strategies. Future patient self-mangement research can benefit from methods and theories used to study professional work, such as strategies analysis.

  3. Failure analysis and modeling of a multicomputer system. M.S. Thesis

    Science.gov (United States)

    Subramani, Sujatha Srinivasan

    1990-01-01

    This thesis describes the results of an extensive measurement-based analysis of real error data collected from a 7-machine DEC VaxCluster multicomputer system. In addition to evaluating basic system error and failure characteristics, we develop reward models to analyze the impact of failures and errors on the system. The results show that, although 98 percent of errors in the shared resources recover, they result in 48 percent of all system failures. The analysis of rewards shows that the expected reward rate for the VaxCluster decreases to 0.5 in 100 days for a 3 out of 7 model, which is well over a 100 times that for a 7-out-of-7 model. A comparison of the reward rates for a range of k-out-of-n models indicates that the maximum increase in reward rate (0.25) occurs in going from the 6-out-of-7 model to the 5-out-of-7 model. The analysis also shows that software errors have the lowest reward (0.2 vs. 0.91 for network errors). The large loss in reward rate for software errors is due to the fact that a large proportion (94 percent) of software errors lead to failure. In comparison, the high reward rate for network errors is due to fast recovery from a majority of these errors (median recovery duration is 0 seconds).

  4. Continuum Damage Mechanics Models for the Analysis of Progressive Failure in Open-Hole Tension Laminates

    Science.gov (United States)

    Song, Kyonchan; Li, Yingyong; Rose, Cheryl A.

    2011-01-01

    The performance of a state-of-the-art continuum damage mechanics model for interlaminar damage, coupled with a cohesive zone model for delamination is examined for failure prediction of quasi-isotropic open-hole tension laminates. Limitations of continuum representations of intra-ply damage and the effect of mesh orientation on the analysis predictions are discussed. It is shown that accurate prediction of matrix crack paths and stress redistribution after cracking requires a mesh aligned with the fiber orientation. Based on these results, an aligned mesh is proposed for analysis of the open-hole tension specimens consisting of different meshes within the individual plies, such that the element edges are aligned with the ply fiber direction. The modeling approach is assessed by comparison of analysis predictions to experimental data for specimen configurations in which failure is dominated by complex interactions between matrix cracks and delaminations. It is shown that the different failure mechanisms observed in the tests are well predicted. In addition, the modeling approach is demonstrated to predict proper trends in the effect of scaling on strength and failure mechanisms of quasi-isotropic open-hole tension laminates.

  5. Analysis of micro-failure behaviors in artificial muscles based on fishing line and sewing thread

    Science.gov (United States)

    Xu, J. B.; Cheng, K. F.; Tu, S. L.; He, X. M.; Ma, C.; Jin, Y. Z.; Kang, X. N.; Sun, T.; Zhang, Y.

    2017-06-01

    The aim of the present study was to discuss a new and effective method for testing artificial muscles based on micro-failure behaviors analysis. Thermo-mechanical actuators based on fishing line and sewing thread, also, the capability of responding to ambient temperature variations producing a large amount of shrinkage ratio of a resulting variation in longitudinal length. The minimum micro-failure value is 0.02μm and the maximum value is 1.72μm with nylon twist pattern. The discovery of an innovative effective testing of artificial muscles based on polymeric fibers specimens on micro-failure, rupture, slippage, etc. This research finds out a micro-failure behavior analysis of thermo-mechanical actuators based on fishing line and sewing thread. The specimens show large deformations when heated together with warping performance in terms of shrinkage of energy and densities. With the purpose of providing useful analysis data for the further technology applications, we attempt micrometre-sized artificial muscles which were also tested was readily accessible and also can be applied to other polymeric fibers. Effective use of this technique achievement relies on rotate speed, temperature and tensile direction. The results of the tensile testing experiments were outstanding with respect to some important issues related to the response of micro-structure, twisted polymeric fibers and shrinkage ratio.

  6. Efficient surrogate models for reliability analysis of systems with multiple failure modes

    International Nuclear Information System (INIS)

    Bichon, Barron J.; McFarland, John M.; Mahadevan, Sankaran

    2011-01-01

    Despite many advances in the field of computational reliability analysis, the efficient estimation of the reliability of a system with multiple failure modes remains a persistent challenge. Various sampling and analytical methods are available, but they typically require accepting a tradeoff between accuracy and computational efficiency. In this work, a surrogate-based approach is presented that simultaneously addresses the issues of accuracy, efficiency, and unimportant failure modes. The method is based on the creation of Gaussian process surrogate models that are required to be locally accurate only in the regions of the component limit states that contribute to system failure. This approach to constructing surrogate models is demonstrated to be both an efficient and accurate method for system-level reliability analysis. - Highlights: → Extends efficient global reliability analysis to systems with multiple failure modes. → Constructs locally accurate Gaussian process models of each response. → Highly efficient and accurate method for assessing system reliability. → Effectiveness is demonstrated on several test problems from the literature.

  7. Analisis Potensi Kecelakaan Kerja Pada CV. Automotive Workshop Dengan Metode Failure Mode and Effect Analysis

    OpenAIRE

    Syauqi, Qiqi Azwani; Susanty, Aries

    2016-01-01

    [Potential Analysis of Work Accidents at CV. Automotive Workshop using Failure Mode and Effect Analysis Method] Nowadays the global automotive industry, especially in developing countries has increased along with the increasing number of internet users and mobile penetration, the GDP rate increase of the developing countries and the growth of middle class-society, which makes the car sales in these countries increased anually. According to Carmudi, Semarang was the second-highest of the car l...

  8. Analysis of factors affecting failure of glass cermet tunnel restorations in a multi-center study.

    Science.gov (United States)

    Pilebro, C E; van Dijken, J W

    2001-06-01

    The aim of this study was to analyze factors influencing the failures of tunnel restorations performed with a glass cermet cement (Ketac Silver). Caries activity, lesion size, tunnel cavity opening size, partial or total tunnel, composite lamination or operating time showed no significant correlation to failure rate. Twelve dentists in eight clinics clinically experienced and familiar with the tunnel technique placed 374 restorations. The occlusal sections of fifty percent of the restorations were laminated with hybrid resin composite. The results of the yearly clinical and radiographic evaluations over the course of 3 years were correlated to factors that could influence the failure rate using logistic regression analysis. At the 3-year recall a cumulative number of 305 restorations were available. The cumulative replacement rate was 20%. The main reasons for replacement were marginal ridge fracture (14%) and dentin caries (3%). Another 7% of the restorations which had not been replaced were classified as failures because of untreated dentin caries. The only significant variable observed was the individual failure rate of the participating dentists varying between 9 and 50% (p=0.013).

  9. Failure analysis – basic step of applying Reliability Centered Maintenance in general aviation

    Directory of Open Access Journals (Sweden)

    Martin BUGAJ

    2012-01-01

    Full Text Available Performing a reliability analysis on a product or system can actually include a number of different analyses to determine how reliable the product or system is. A reliability centered maintenance program consists of a set of scheduled tasks generated on the basis of specific reliability characteristics of the equipment they are designed to protect. Complex equipment is composed of a vast number of parts and assemblies. All these items can be expected to fail at one time or another, but some of the failures have more serious consequences than others. Certain kinds of failures have a direct effect on operating safety, and others affect the operational capability of the equipment. The consequences of a particular failure depend on the design of the item and the equipment in which it is installed. Although the environment in which the equipment is operated is sometimes an additional factor, the impact of failures on the equipment, and hence their consequences for the operating organization, are established primarily by the equipment designer. Failure consequences are therefore a primary inherent reliability characteristic.

  10. Reliability Analysis of Fatigue Failure of Cast Components for Wind Turbines

    Directory of Open Access Journals (Sweden)

    Hesam Mirzaei Rafsanjani

    2015-04-01

    Full Text Available Fatigue failure is one of the main failure modes for wind turbine drivetrain components made of cast iron. The wind turbine drivetrain consists of a variety of heavily loaded components, like the main shaft, the main bearings, the gearbox and the generator. The failure of each component will lead to substantial economic losses such as cost of lost energy production and cost of repairs. During the design lifetime, the drivetrain components are exposed to variable loads from winds and waves and other sources of loads that are uncertain and have to be modeled as stochastic variables. The types of loads are different for offshore and onshore wind turbines. Moreover, uncertainties about the fatigue strength play an important role in modeling and assessment of the reliability of the components. In this paper, a generic stochastic model for fatigue failure of cast iron components based on fatigue test data and a limit state equation for fatigue failure based on the SN-curve approach and Miner’s rule is presented. The statistical analysis of the fatigue data is performed using the Maximum Likelihood Method which also gives an estimate of the statistical uncertainties. Finally, illustrative examples are presented with reliability analyses depending on various stochastic models and partial safety factors.

  11. Evaluating the operational risks of biomedical waste using failure mode and effects analysis.

    Science.gov (United States)

    Chen, Ying-Chu; Tsai, Pei-Yi

    2017-06-01

    The potential problems and risks of biomedical waste generation have become increasingly apparent in recent years. This study applied a failure mode and effects analysis to evaluate the operational problems and risks of biomedical waste. The microbiological contamination of biomedical waste seldom receives the attention of researchers. In this study, the biomedical waste lifecycle was divided into seven processes: Production, classification, packaging, sterilisation, weighing, storage, and transportation. Twenty main failure modes were identified in these phases and risks were assessed based on their risk priority numbers. The failure modes in the production phase accounted for the highest proportion of the risk priority number score (27.7%). In the packaging phase, the failure mode 'sharp articles not placed in solid containers' had the highest risk priority number score, mainly owing to its high severity rating. The sterilisation process is the main difference in the treatment of infectious and non-infectious biomedical waste. The failure modes in the sterilisation phase were mainly owing to human factors (mostly related to operators). This study increases the understanding of the potential problems and risks associated with biomedical waste, thereby increasing awareness of how to improve the management of biomedical waste to better protect workers, the public, and the environment.

  12. Failure mode and effects analysis in a dual-product microsphere brachytherapy environment.

    Science.gov (United States)

    Younge, Kelly Cooper; Lee, Choonik; Moran, Jean M; Feng, Mary; Novelli, Paula; Prisciandaro, Joann I

    We performed a failure mode and effects analysis (FMEA) during the addition of a new microspheres product into our existing microsphere brachytherapy program to identify areas for safety improvements. A diverse group of team members from the microsphere program participated in the project to create a process map, identify and score failure modes, and discuss programmatic changes to address the highest ranking items. We developed custom severity ranking scales for staff- and institution-related failure modes to encompass possible risks that may exist outside of patient-based effects. Between both types of microsphere products, 173 failure mode/effect pairs were identified: 90 for patients, 35 for staff, and 48 for the institution. The SIR-Spheres program was ranked separately from the TheraSphere program because of significant differences in workflow during dose calculation, preparation, and delivery. High-ranking failure modes in each category were addressed with programmatic changes. The FMEA aided in identifying potential risk factors in our microsphere program and allowed a theoretically safer and more efficient design of the workflow and quality assurance for both our new SIR-Spheres program and our existing TheraSphere program. As new guidelines are made available, and our experience with the SIR-Spheres program increases, we will update the FMEA as an efficient starting point for future improvements. Copyright © 2016 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  13. ADM guidance-Ceramics: guidance to the use of fractography in failure analysis of brittle materials.

    Science.gov (United States)

    Scherrer, Susanne S; Lohbauer, Ulrich; Della Bona, Alvaro; Vichi, Alessandro; Tholey, Michael J; Kelly, J Robert; van Noort, Richard; Cesar, Paulo Francisco

    2017-06-01

    To provide background information and guidance as to how to use fractography accurately, a powerful tool for failure analysis of dental ceramic structures. An extended palette of qualitative and quantitative fractography is provided, both for in vivo and in vitro fracture surface analyses. As visual support, this guidance document will provide micrographs of typical critical ceramic processing flaws, differentiating between pre- versus post sintering cracks, grinding damage related failures and occlusal contact wear origins and of failures due to surface degradation. The documentation emphasizes good labeling of crack features, precise indication of the direction of crack propagation (dcp), identification of the fracture origin, the use of fractographic photomontage of critical flaws or flaw labeling on strength data graphics. A compilation of recommendations for specific applications of fractography in Dentistry is also provided. This guidance document will contribute to a more accurate use of fractography and help researchers to better identify, describe and understand the causes of failure, for both clinical and laboratory-scale situations. If adequately performed at a large scale, fractography will assist in optimizing the methods of processing and designing of restorative materials and components. Clinical failures may be better understood and consequently reduced by sending out the correct message regarding the fracture origin in clinical trials. Copyright © 2017 The Academy of Dental Materials. All rights reserved.

  14. Failure trend analysis for safety related components of Korean standard NPPs

    International Nuclear Information System (INIS)

    Choi, Sun Yeong; Han, Sang Hoon

    2005-01-01

    The component reliability data of Korean NPP that reflects the plant specific characteristics is required necessarily for PSA of Korean nuclear power plants. We have performed a project to develop the component reliability database (KIND, Korea Integrated Nuclear Reliability Database) and S/W for database management and component reliability analysis. Based on the system, we have collected the component operation data and failure/repair data during from plant operation date to 2002 for YGN 3, 4 and UCN 3, 4 plants. Recently, we provided the component failure rate data for UCN 3, 4 standard PSA model from the KIND. We evaluated the components that have high-ranking failure rates with the component reliability data from plant operation date to 1998 and 2000 for YGN 3,4 and UCN 3, 4 respectively. We also identified their failure mode that occurred frequently. In this study, we analyze the component failure trend and perform site comparison based on the generic data by using the component reliability data which is extended to 2002 for UCN 3, 4 and YGN 3, 4 respectively. We focus on the major safety related rotating components such as pump, EDG etc

  15. Failure Mode and Effect Analysis using Soft Set Theory and COPRAS Method

    Directory of Open Access Journals (Sweden)

    Ze-Ling Wang

    2017-01-01

    Full Text Available Failure mode and effect analysis (FMEA is a risk management technique frequently applied to enhance the system performance and safety. In recent years, many researchers have shown an intense interest in improving FMEA due to inherent weaknesses associated with the classical risk priority number (RPN method. In this study, we develop a new risk ranking model for FMEA based on soft set theory and COPRAS method, which can deal with the limitations and enhance the performance of the conventional FMEA. First, trapezoidal fuzzy soft set is adopted to manage FMEA team membersr linguistic assessments on failure modes. Then, a modified COPRAS method is utilized for determining the ranking order of the failure modes recognized in FMEA. Especially, we treat the risk factors as interdependent and employ the Choquet integral to obtain the aggregate risk of failures in the new FMEA approach. Finally, a practical FMEA problem is analyzed via the proposed approach to demonstrate its applicability and effectiveness. The result shows that the FMEA model developed in this study outperforms the traditional RPN method and provides a more reasonable risk assessment of failure modes.

  16. Bearing failure detection of micro wind turbine via power spectral density analysis for stator current signals spectrum

    Science.gov (United States)

    Mahmood, Faleh H.; Kadhim, Hussein T.; Resen, Ali K.; Shaban, Auday H.

    2018-05-01

    The failure such as air gap weirdness, rubbing, and scrapping between stator and rotor generator arise unavoidably and may cause extremely terrible results for a wind turbine. Therefore, we should pay more attention to detect and identify its cause-bearing failure in wind turbine to improve the operational reliability. The current paper tends to use of power spectral density analysis method of detecting internal race and external race bearing failure in micro wind turbine by estimation stator current signal of the generator. The failure detector method shows that it is well suited and effective for bearing failure detection.

  17. Failure mode and effects analysis of software-based automation systems

    International Nuclear Information System (INIS)

    Haapanen, P.; Helminen, A.

    2002-08-01

    Failure mode and effects analysis (FMEA) is one of the well-known analysis methods having an established position in the traditional reliability analysis. The purpose of FMEA is to identify possible failure modes of the system components, evaluate their influences on system behaviour and propose proper countermeasures to suppress these effects. The generic nature of FMEA has enabled its wide use in various branches of industry reaching from business management to the design of spaceships. The popularity and diverse use of the analysis method has led to multiple interpretations, practices and standards presenting the same analysis method. FMEA is well understood at the systems and hardware levels, where the potential failure modes usually are known and the task is to analyse their effects on system behaviour. Nowadays, more and more system functions are realised on software level, which has aroused the urge to apply the FMEA methodology also on software based systems. Software failure modes generally are unknown - 'software modules do not fail, they only display incorrect behaviour' - and depend on dynamic behaviour of the application. These facts set special requirements on the FMEA of software based systems and make it difficult to realise. In this report the failure mode and effects analysis is studied for the use of reliability analysis of software-based systems. More precisely, the target system of FMEA is defined to be a safety-critical software-based automation application in a nuclear power plant, implemented on an industrial automation system platform. Through a literature study the report tries to clarify the intriguing questions related to the practical use of software failure mode and effects analysis. The study is a part of the research project 'Programmable Automation System Safety Integrity assessment (PASSI)', belonging to the Finnish Nuclear Safety Research Programme (FINNUS, 1999-2002). In the project various safety assessment methods and tools for

  18. Does Bruxism Contribute to Dental Implant Failure? A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Zhou, Yi; Gao, Jinxia; Luo, Le; Wang, Yining

    2016-04-01

    Bruxism was usually considered as a contraindication for oral implanting. The causal relationship between bruxism and dental implant failure was remained controversial in existing literatures. This meta-analysis was performed to investigate the relationship between them. This review conducted an electronic systematic literature search in MEDLINE (PubMed) and EmBase in November 2013 without time and language restrictions. Meanwhile, a hand searching for all the relevant references of included studies was also conducted. Study information extraction and methodological quality assessments were accomplished by two reviewers independently. A discussion ensued if any disagreement occurred, and unresolved issues were solved by consulting a third reviewer. Methodological quality was assessed by using the Newcastle-Ottawa Scale tool. Odds ratio (OR) with 95% confidence interval (CI) was pooled to estimate the relative effect of bruxism on dental implant failures. Fixed effects model was used initially; if the heterogeneity was high, random effects model was chosen for meta-analysis. Statistical analyses were carried out by using Review Manager 5.1. In this meta-analysis review, extracted data were classified into two groups based on different units. Units were based on the number of prostheses (group A) and the number of patients (group B). In group A, the total pooled OR of bruxers versus nonbruxers for all subgroups was 4.72 (95% CI: 2.66-8.36, p = .07). In group B, the total pooled OR of bruxers versus nonbruxers for all subgroups was 3.83 (95% CI: 2.12-6.94, p = .22). This meta-analysis was performed to evaluate the relationship between bruxism and dental implant failure. In contrast to nonbruxers, prostheses in bruxers had a higher failure rate. It suggests that bruxism is a contributing factor of causing the occurrence of dental implant technical/biological complications and plays a role in dental implant failure. © 2015 Wiley Periodicals, Inc.

  19. Spectral Electroencephalogram Analysis for the Evaluation of Encephalopathy Grade in Children With Acute Liver Failure.

    Science.gov (United States)

    Press, Craig A; Morgan, Lindsey; Mills, Michele; Stack, Cynthia V; Goldstein, Joshua L; Alonso, Estella M; Wainwright, Mark S

    2017-01-01

    Spectral electroencephalogram analysis is a method for automated analysis of electroencephalogram patterns, which can be performed at the bedside. We sought to determine the utility of spectral electroencephalogram for grading hepatic encephalopathy in children with acute liver failure. Retrospective cohort study. Tertiary care pediatric hospital. Patients between 0 and 18 years old who presented with acute liver failure and were admitted to the PICU. None. Electroencephalograms were analyzed by spectral analysis including total power, relative δ, relative θ, relative α, relative β, θ-to-Δ ratio, and α-to-Δ ratio. Normal values and ranges were first derived using normal electroencephalograms from 70 children of 0-18 years old. Age had a significant effect on each variable measured (p liver failure were available for spectral analysis. The median age was 4.3 years, 14 of 33 were male, and the majority had an indeterminate etiology of acute liver failure. Neuroimaging was performed in 26 cases and was normal in 20 cases (77%). The majority (64%) survived, and 82% had a good outcome with a score of 1-3 on the Pediatric Glasgow Outcome Scale-Extended at the time of discharge. Hepatic encephalopathy grade correlated with the qualitative visual electroencephalogram scores assigned by blinded neurophysiologists (rs = 0.493; p encephalopathy was correlated with a total power of less than or equal to 50% of normal for children 0-3 years old, and with a relative θ of less than or equal to 50% normal for children more than 3 years old (p > 0.05). Spectral electroencephalogram classification correlated with outcome (p encephalopathy and correlates with outcome. Spectral electroencephalogram may allow improved quantitative and reproducible assessment of hepatic encephalopathy grade in children with acute liver failure.

  20. A statistical analysis of pellet-clad interaction failures in water reactor fuel

    International Nuclear Information System (INIS)

    McDonald, S.G.; Fardo, R.D.; Sipush, P.J.; Kaiser, R.S.

    1981-01-01

    The primary objective of the statistical analysis was to develop a mathematical function that would predict PCI fuel rod failures as a function of the imposed operating conditions. Linear discriminant analysis of data from both test and commercial reactors was performed. The initial data base used encompassed 713 data points (117 failures and 596 non-failures) representing a wide variety of water cooled reactor fuel (PWR, BWR, CANDU, and SGHWR). When applied on a best-estimate basis, the resulting function simultaneously predicts approximately 80 percent of both the failure and non-failure data correctly. One of the most significant predictions of the analysis is that relatively large changes in power can be tolerated when the pre-ramp irradiation power is low, but that only small changes in power can be tolerated when the pre-ramp irradiation power is high. However, it is also predicted that fuel rods irradiated at low power will fail at lower final powers than those irradiated at high powers. Other results of the analysis are that fuel rods with high clad operating temperatures can withstand larger power increases that fuel rods with low clad operating temperatures, and that burnup has only a minimal effect on PCI performance after levels of approximately 10000 MWD/MTU have been exceeded. These trends in PCI performance and the operating parameters selected are believed to be consistent with mechanistic considerations. Published PCI data indicate that BWR fuel usually operates at higher local powers and changes in power, lower clad temperatures, and higher local ramp rates than PWR fuel

  1. Application of failure mode and effects analysis in a clinical chemistry laboratory.

    Science.gov (United States)

    Jiang, Yuanyuan; Jiang, Hongmin; Ding, Siyi; Liu, Qin

    2015-08-25

    Timely delivery of correct results has long been considered as the goal of quality management in clinical laboratory. With increasing workload as well as complexities of laboratory testing and patient care, the traditional technical adopted like internal quality control (IQC) and external quality assessment (EQA) may not enough to cope with quality management problems for clinical laboratories. We applied failure mode and effects analysis (FMEA), a proactive tool, to reduce errors associated with the process beginning with sample collection and ending with a test report in a clinical chemistry laboratory. Our main objection was to investigate the feasibility of FMEA in a real-world situation, namely the working environment of hospital. A team of 8 people (3 laboratory workers, 2 couriers, 2 nurses, and 1 physician) from different departments who were involved in the testing process were recruited and trained. Their main responsibility was to analyze and score all possible clinical chemistry laboratory failures based on three aspects: the severity of the outcome (S), the likeliness of occurrence (O), and the probability of being detected (D). These three parameters were multiplied to calculate risk priority numbers (RPNs), which were used to prioritize remedial measures. Failure modes with RPN≥200 were deemed as high risk, meaning that they needed immediate corrective action. After modifications that were put, we compared the resulting RPN with the previous one. A total of 33 failure modes were identified. Many of the failure modes, including the one with the highest RPN (specimen hemolysis) appeared in the pre-analytic phase, whereas no high-risk failure modes (RPN≥200) were found during the analytic phase. High-priority risks were "sample hemolysis" (RPN, 336), "sample delivery delay" (RPN, 225), "sample volume error" (RPN, 210), "failure to release results in a timely manner" (RPN, 210), and "failure to identify or report critical results" (RPN, 200). The

  2. Theoretical and experimental analysis of inverter fed induction motor system under DC link capacitor failure

    Directory of Open Access Journals (Sweden)

    Hadeed A. Sher

    2017-04-01

    Full Text Available In this paper theoretical and experimental analysis of an AC–DC–AC inverter under DC link capacitor failure is presented. The failure study conducted for this paper is the open circuit of the DC link capacitor. The presented analysis incorporates the results for both single and three phase AC input. It has been observed that the higher ripple frequency provides better ride through capability for this fault. Furthermore, the effects of this fault on electrical characteristics of AC–DC–AC inverter and mechanical properties of the induction motor are also presented. Moreover, the effect of pulsating torque as a result of an open circuited DC link capacitor is also taken into consideration. Theoretical analysis is supported by computer aided simulation as well as with a real time experimental prototype.

  3. WWER expert system for fuel failure analysis using the RTOP-CA code

    International Nuclear Information System (INIS)

    Likhanskii, V.; Evdokimov, I.; Sorokin, A.; Khromov, A.; Kanukova, V.; Apollonova, O.; Ugryumov, A.

    2008-01-01

    The computer expert system for fuel failure analysis of WWER during operation is presented. The diagnostics is based on the measurement of specific activity of reference nuclides in reactor primary coolant and application of a computer code for the data interpretation. The data analysis includes an evaluation of tramp uranium mass in reactor core, detection of failures by iodine and caesium spikes, evaluation of burnup of defective fuel. Evaluation of defective fuel burnup was carried out by applying the relation of caesium nuclides activity in spikes and relations of activities of gaseous fission products for steady state operational conditions. The method of burnup evaluation of defective fuel by use of fission gas activity is presented in details. The neural-network analysis is performed for determination of failed fuel rod number and defect size. Results of the expert system application are illustrated for several fuel campaigns on operating WWER NPPs. (authors)

  4. Analysis of alternative flow sheets for the hybrid chlorine cycle

    Energy Technology Data Exchange (ETDEWEB)

    Gooding, Charles H. [Department of Chemical and Biomolecular Engineering, 209 Earle Hall, Clemson University, Clemson, SC 29634-0909 (United States)

    2009-05-15

    This paper reports the results of the most complete conceptual study conducted to date on hydrogen production using the hybrid chlorine cycle. Three alternative process flow sheets were developed, each capable of producing hydrogen at 35 C (308 K) and 21 bar. The alternative approaches differ primarily in the way HCl is isolated and converted to hydrogen and chlorine gases. Aspen Plus trademark simulation software was used to model the unit processes, supplemented where necessary by custom Excel spreadsheets. Major equipment was sized for a 200-million kg/yr plant; feasible materials of construction were identified; fixed capital investments and variable costs were estimated. Estimated net thermal efficiencies of the flow sheets range from 30% to 36%, based on the lower heating value of the hydrogen produced. With electrical power valued at $0.05/kWh, the cost of hydrogen produced by the hybrid chlorine cycle would be at least $3/kg. These results indicate that direct electrolysis of water is a more attractive way to produce hydrogen than any presently conceived version of the hybrid chlorine cycle. (author)

  5. Analysis of alternative methods and price politic of icewine production

    Directory of Open Access Journals (Sweden)

    V. Ostapenko

    2017-06-01

    Full Text Available The artificial methods of must concentration were discussed in current study: the microwave vacuum dehydration, reverse osmosis and cryoextraction. The main factor of using of alternative ways is deficiently low temperatures in winter period that are necessary for freezing grapes on vine according to the classical technology. The benefits and disadvantages of using of non-classic processes to obtain sweet musts were shown. The physical, chemical and sensory characteristics of wine made from grapes previously frozen by alternative and natural ways were analyzed. Indicators influencing on price of icewines and dessert wines bottle including agricultural climatic, technological and marketing factors were determined.  Detailed indicators highlight specificity of used technology and represent consumer preferences. Producers of winemaking regions of Argentina, New Zealand, Israel, Ukraine and Australia adhere to provisions that are inconsistent with the standards of Canada and the European countries regarding the icewine output. These instruments determine the processing of grapes and parameters reflect on parameters of the finished product.

  6. PENERAPAN FUZZY ANALYTIC HIERARCHY PROCESS DALAM METODE MULTI ATTRIBUTE FAILURE MODE ANALYSIS UNTUK MENGIDENTIFIKASI PENYEBAB KEGAGALAN POTENSIAL PADA PROSES PRODUKSI

    OpenAIRE

    Dorina Hetharia

    2012-01-01

    Banyak metode dalam Total Quality Management (TQM) yang dapat digunakan untuk melakukan perbaikan kualitas produk dan jasa. Salah satunya adalah Multi Attribute Failure Mode Analysis (MAFMA), yang dapat digunakan untuk mengeliminasi atau mengurangi kemungkinan terjadinya kegagalan bila dilihat dari faktor penyebabnya, sehingga dapat mencegah terulang kembali kegagalan tersebut. MAFMA merupakan pengembangan dari Failure Mode and Effect Analysis (FMEA), yang mengintegrasikan atribut severity, o...

  7. [Examination of safety improvement by failure record analysis that uses reliability engineering].

    Science.gov (United States)

    Kato, Kyoichi; Sato, Hisaya; Abe, Yoshihisa; Ishimori, Yoshiyuki; Hirano, Hiroshi; Higashimura, Kyoji; Amauchi, Hiroshi; Yanakita, Takashi; Kikuchi, Kei; Nakazawa, Yasuo

    2010-08-20

    How the maintenance checks of the medical treatment system, including start of work check and the ending check, was effective for preventive maintenance and the safety improvement was verified. In this research, date on the failure of devices in multiple facilities was collected, and the data of the trouble repair record was analyzed by the technique of reliability engineering. An analysis of data on the system (8 general systems, 6 Angio systems, 11 CT systems, 8 MRI systems, 8 RI systems, and the radiation therapy system 9) used in eight hospitals was performed. The data collection period assumed nine months from April to December 2008. Seven items were analyzed. (1) Mean time between failures (MTBF) (2) Mean time to repair (MTTR) (3) Mean down time (MDT) (4) Number found by check in morning (5) Failure generation time according to modality. The classification of the breakdowns per device, the incidence, and the tendency could be understood by introducing reliability engineering. Analysis, evaluation, and feedback on the failure generation history are useful to keep downtime to a minimum and to ensure safety.

  8. Modeling of fast reactor cladding failure for hypothetical accident transient analysis

    International Nuclear Information System (INIS)

    Kramer, J.M.; DiMelfi, R.J.; Hughes, T.H.; Deitrich, L.W.

    1979-01-01

    An analysis is made of burst experiments performed on neutron irradiated cladding tubes. This is done by employing a generalized Voce equation to describe the mechanical deformation of type 316 stainless steel, combined with an empirical creep crack growth law, each modified to account for the effects of irradiation matrix hardening, and irradiation induced grain boundary embrittlement, respectively. The results of this analysis indicate that for large initial hoop stress, failure occurs at relatively low temperature and is controlled by the onset of plastic instability. The increase in failure temperature of irradiated material, in this low temperature region, is due to irradiation strengthening. Failure in the case of relatively small initial hoop stress occurs at high temperature where the Voce equation reduces to a power law creep formula. The ductility of irradiated material, in this high temperature region, is adequately described through the use of an empirical intergranular crack growth law used in conjunction with the creep law. The effect of neutron irradiation is to reduce the activation energy for crack propagation from the value for creep to some lower value correlated to independent Dorn rupture parameter measurements. The result is a predicted reduced ductility which translates into a reduction in failure temperature at a given hoop stress value for irradiated material. (orig.)

  9. BILAM: a composite laminate failure-analysis code using bilinear stress-strain approximations

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, P.V. Jr.; Dasgupta, A.; Chun, Y.W.

    1980-10-01

    The BILAM code which uses constant strain laminate analysis to generate in-plane load/deformation or stress/strain history of composite laminates to the point of laminate failure is described. The program uses bilinear stress-strain curves to model layer stress-strain behavior. Composite laminates are used for flywheels. The use of this computer code will help to develop data on the behavior of fiber composite materials which can be used by flywheel designers. In this program the stress-strain curves are modelled by assuming linear response in axial tension while using bilinear approximations (2 linear segments) for stress-strain response to axial compressive, transverse tensile, transverse compressive and axial shear loadings. It should be noted that the program attempts to empirically simulate the effects of the phenomena which cause nonlinear stress-strain behavior, instead of mathematically modelling the micromechanics involved. This code, therefore, performs a bilinear laminate analysis, and, in conjunction with several user-defined failure interaction criteria, is designed to provide sequential information on all layer failures up to and including the first fiber failure. The modus operandi is described. Code BILAM can be used to: predict the load-deformation/stress-strain behavior of a composite laminate subjected to a given combination of in-plane loads, and make analytical predictions of laminate strength.

  10. An analysis of molten-corium-induced failure of drain pipes in BWR Mark 2 containments

    International Nuclear Information System (INIS)

    Taleyarkhan, R.P.; Podowski, M.Z.

    1991-01-01

    This study has focused on mechanistic simulation and analysis of potential failure modes for inpedestal drywell drain pipes in the Limerick boiling water reactor (BWR) Mark 2 containment. Physical phenomena related to surface tension breakdown, heatup, melting, ablation, crust formation and failure, and core material relocation into drain pipes with simultaneous melting of pipe walls were modeled and analyzed. The results of analysis have been used to assess the possibility of drain pipe failure and the resultant loss of pressure-suppression capability. Estimates have been made for the timing and amount of molten corium released to the wetwell. The study has revealed that significantly different melt progression sequences can result depending upon the failure characteristics of the frozen metallic crust which forms over the drain cover during the initial stages of debris pour. Another important result is that it can take several days for the molten fuel to ablate the frozen metallic debris layer -- if the frozen layer has cooled below 1100 K before fuel attack. 10 refs., 3 figs., 4 tabs

  11. Construct validity of the Heart Failure Screening Tool (Heart-FaST) to identify heart failure patients at risk of poor self-care: Rasch analysis.

    Science.gov (United States)

    Reynolds, Nicholas A; Ski, Chantal F; McEvedy, Samantha M; Thompson, David R; Cameron, Jan

    2018-02-14

    The aim of this study was to psychometrically evaluate the Heart Failure Screening Tool (Heart-FaST) via: (1) examination of internal construct validity; (2) testing of scale function in accordance with design; and (3) recommendation for change/s, if items are not well adjusted, to improve psychometric credential. Self-care is vital to the management of heart failure. The Heart-FaST may provide a prospective assessment of risk, regarding the likelihood that patients with heart failure will engage in self-care. Psychometric validation of the Heart-FaST using Rasch analysis. The Heart-FaST was administered to 135 patients (median age = 68, IQR = 59-78 years; 105 males) enrolled in a multidisciplinary heart failure management program. The Heart-FaST is a nurse-administered tool for screening patients with HF at risk of poor self-care. A Rasch analysis of responses was conducted which tested data against Rasch model expectations, including whether items serve as unbiased, non-redundant indicators of risk and measure a single construct and that rating scales operate as intended. The results showed that data met Rasch model expectations after rescoring or deleting items due to poor discrimination, disordered thresholds, differential item functioning, or response dependence. There was no evidence of multidimensionality which supports the use of total scores from Heart-FaST as indicators of risk. Aggregate scores from this modified screening tool rank heart failure patients according to their "risk of poor self-care" demonstrating that the Heart-FaST items constitute a meaningful scale to identify heart failure patients at risk of poor engagement in heart failure self-care. © 2018 John Wiley & Sons Ltd.

  12. Using functional analysis in archival appraisal a practical and effective alternative to traditional appraisal methodologies

    CERN Document Server

    Robyns, Marcus C

    2014-01-01

    In an age of scarcity and the challenge of electronic records, can archivists and records managers continue to rely upon traditional methodology essentially unchanged since the early 1950s? Using Functional Analysis in Archival Appraisal: A Practical and Effective Alternative to Traditional Appraisal Methodologies shows how archivists in other countries are already using functional analysis, which offers a better, more effective, and imminently more practical alternative to traditional appraisal methodologies that rely upon an analysis of the records themselves.

  13. Fidelity Failures in Brief Strategic Family Therapy for Adolescent Drug Abuse: A Clinical Analysis.

    Science.gov (United States)

    Lebensohn-Chialvo, Florencia; Rohrbaugh, Michael J; Hasler, Brant P

    2018-04-30

    As evidence-based family treatments for adolescent substance use and conduct problems gain traction, cutting edge research moves beyond randomized efficacy trials to address questions such as how these treatments work and how best to disseminate them to community settings. A key factor in effective dissemination is treatment fidelity, which refers to implementing an intervention in a manner consistent with an established manual. While most fidelity research is quantitative, this study offers a qualitative clinical analysis of fidelity failures in a large, multisite effectiveness trial of Brief Strategic Family Therapy (BSFT) for adolescent drug abuse, where BSFT developers trained community therapists to administer this intervention in their own agencies. Using case notes and video recordings of therapy sessions, an independent expert panel first rated 103 cases on quantitative fidelity scales grounded in the BSFT manual and the broader structural-strategic framework that informs BSFT intervention. Because fidelity was generally low, the panel reviewed all cases qualitatively to identify emergent types or categories of fidelity failure. Ten categories of failures emerged, characterized by therapist omissions (e.g., failure to engage key family members, failure to think in threes) and commissions (e.g., off-model, nonsystemic formulations/interventions). Of these, "failure to think in threes" appeared basic and particularly problematic, reflecting the central place of this idea in structural theory and therapy. Although subject to possible bias, our observations highlight likely stumbling blocks in exporting a complex family treatment like BSFT to community settings. These findings also underscore the importance of treatment fidelity in family therapy research. © 2018 Family Process Institute.

  14. Identification of Modeling Approaches To Support Common-Cause Failure Analysis

    International Nuclear Information System (INIS)

    Korsah, Kofi; Wood, Richard Thomas

    2015-01-01

    Experience with applying current guidance and practices for common-cause failure (CCF) mitigation to digital instrumentation and control (I&C) systems has proven problematic, and the regulatory environment has been unpredictable. The impact of CCF vulnerability is to inhibit I&C modernization and, thereby, challenge the long-term sustainability of existing plants. For new plants and advanced reactor concepts, the issue of CCF vulnerability for highly integrated digital I&C systems imposes a design burden resulting in higher costs and increased complexity. The regulatory uncertainty regarding which mitigation strategies are acceptable (e.g., what diversity is needed and how much is sufficient) drives designers to adopt complicated, costly solutions devised for existing plants. The conditions that constrain the transition to digital I&C technology by the U.S. nuclear industry require crosscutting research to resolve uncertainty, demonstrate necessary characteristics, and establish an objective basis for qualification of digital technology for usage in Nuclear Power Plant (NPP) I&C applications. To fulfill this research need, Oak Ridge National Laboratory is conducting an investigation into mitigation of CCF vulnerability for nuclear-qualified applications. The outcome of this research is expected to contribute to a fundamentally sound, comprehensive technical basis for establishing the qualification of digital technology for nuclear power applications. This report documents the investigation of modeling approaches for representing failure of I&C systems. Failure models are used when there is a need to analyze how the probability of success (or failure) of a system depends on the success (or failure) of individual elements. If these failure models are extensible to represent CCF, then they can be employed to support analysis of CCF vulnerabilities and mitigation strategies. Specifically, the research findings documented in this report identify modeling approaches that

  15. Identification of Modeling Approaches To Support Common-Cause Failure Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Korsah, Kofi [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wood, Richard Thomas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-06-01

    Experience with applying current guidance and practices for common-cause failure (CCF) mitigation to digital instrumentation and control (I&C) systems has proven problematic, and the regulatory environment has been unpredictable. The impact of CCF vulnerability is to inhibit I&C modernization and, thereby, challenge the long-term sustainability of existing plants. For new plants and advanced reactor concepts, the issue of CCF vulnerability for highly integrated digital I&C systems imposes a design burden resulting in higher costs and increased complexity. The regulatory uncertainty regarding which mitigation strategies are acceptable (e.g., what diversity is needed and how much is sufficient) drives designers to adopt complicated, costly solutions devised for existing plants. The conditions that constrain the transition to digital I&C technology by the U.S. nuclear industry require crosscutting research to resolve uncertainty, demonstrate necessary characteristics, and establish an objective basis for qualification of digital technology for usage in Nuclear Power Plant (NPP) I&C applications. To fulfill this research need, Oak Ridge National Laboratory is conducting an investigation into mitigation of CCF vulnerability for nuclear-qualified applications. The outcome of this research is expected to contribute to a fundamentally sound, comprehensive technical basis for establishing the qualification of digital technology for nuclear power applications. This report documents the investigation of modeling approaches for representing failure of I&C systems. Failure models are used when there is a need to analyze how the probability of success (or failure) of a system depends on the success (or failure) of individual elements. If these failure models are extensible to represent CCF, then they can be employed to support analysis of CCF vulnerabilities and mitigation strategies. Specifically, the research findings documented in this report identify modeling approaches that

  16. Alternative pseudodifferential analysis with an application to modular forms

    CERN Document Server

    Unterberger, André

    2008-01-01

    This volume introduces an entirely new pseudodifferential analysis on the line, the opposition of which to the usual (Weyl-type) analysis can be said to reflect that, in representation theory, between the representations from the discrete and from the (full, non-unitary) series, or that between modular forms of the holomorphic and substitute for the usual Moyal-type brackets. This pseudodifferential analysis relies on the one-dimensional case of the recently introduced anaplectic representation and analysis, a competitor of the metaplectic representation and usual analysis. Besides researchers and graduate students interested in pseudodifferential analysis and in modular forms, the book may also appeal to analysts and physicists, for its concepts making possible the transformation of creation-annihilation operators into automorphisms, simultaneously changing the usual scalar product into an indefinite but still non-degenerate one.

  17. Analysis of Alternatives (AoA) Process Improvement Study

    Science.gov (United States)

    2016-12-01

    currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED...analysis, cost analysis, sustainment considerations, early systems engineering analyses, threat projections, and market research. UNCLASSIFIED CAA...primarily the Equipping (EE), Sustaining (SS) and Training (TT) Program Evaluation Groups (PEGs) and Long-range Investment Requirements Analysis

  18. Summary of Plutonium-238 Production Alternatives Analysis Final Report

    Energy Technology Data Exchange (ETDEWEB)

    James Werner; Wade E. Bickford; David B. Lord; Chadwick D. Barklay

    2013-03-01

    The Team implemented a two-phase evaluation process. During the first phase, a wide variety of past and new candidate facilities and processing methods were assessed against the criteria established by DOE for this assessment. Any system or system element selected for consideration as an alternative within the project to reestablish domestic production of Pu-238 must meet the following minimum criteria: Any required source material must be readily available in the United States, without requiring the development of reprocessing technologies or investments in systems to separate material from identified sources. It must be cost, schedule, and risk competitive with existing baseline technology. Any identified facilities required to support the concept must be available to the program for the entire project life cycle (notionally 35 years, unless the concept is so novel as to require a shorter duration). It must present a solution that can generate at least 1.5 Kg of Pu-238 oxide per year, for at least 35 years. It must present a low-risk, near-term solution to the National Aeronautics and Space Administration’s urgent mission need. DOE has implemented this requirement by eliminating from project consideration any alternative with key technologies at less than Technology Readiness Level 5. The Team evaluated the options meeting these criteria using a more detailed assessment of the reasonable facility variations and compared them to the preferred option, which consists of target irradiation at the Advanced Test Reactor (ATR) and the High Flux Isotope Reactor (HFIR), target fabrication and chemical separations processing at the ORNL Radiochemical Engineering Development Center, and neptunium 237 storage at the Materials and Fuels Complex at INL. This preferred option is consistent with the Records of Decision from the earlier National Environmental Policy Act (NEPA) documentation

  19. Efficiency analysis of alternative refrigerants for ejector cooling cycles

    International Nuclear Information System (INIS)

    Gil, Bartosz; Kasperski, Jacek

    2015-01-01

    Highlights: • Advantages of using alternative refrigerants as ejector refrigerants were presumed. • Computer software basing on theoretical model of Huang et al. (1999) was prepared. • Optimal temperature range of primary vapor for each working fluid was calculated. - Abstract: Computer software, basing on the theoretical model of Huang et al. with thermodynamic properties of selected refrigerants, was prepared. Investigation was focused on alternative refrigerants that belong to two groups of substances: common solvents (acetone, benzene, cyclopentane, cyclohexane and toluene) and non-flammable synthetic refrigerants applied in Organic Rankine Cycle (ORC) (R236ea, R236fa, R245ca, R245fa, R365mfc and RC318). Refrigerants were selected to detect a possibility to use them in ejector cooling system powered by a high-temperature heat source. A series of calculations were carried out for the generator temperature between 70 and 200 °C, with assumed temperatures of evaporation 10 °C and condensation 40 °C. Investigation revealed that there is no single refrigerant that ensures efficient operation of the system in the investigated temperature range of primary vapor. Each substance has its own maximum entrainment ratio and COP at its individual temperature of the optimum. The use of non-flammable synthetic refrigerants allows obtaining higher COP in the low primary vapor temperature range. R236fa was the most beneficial among the non-flammable synthetic refrigerants tested. The use of organic solvents can be justified only for high values of motive steam temperature. Among the solvents, the highest values of entrainment ratio and COP throughout the range of motive temperature were noted for cyclopentane. Toluene was found to be an unattractive refrigerant from the ejector cooling point of view

  20. Mechanics and complications of reverse shoulder arthroplasty: morse taper failure analysis and prospective rectification

    International Nuclear Information System (INIS)

    Hoskin, HLD; Furie, E; Ganey, TM; Schlatterer, DR; Collins, W

    2017-01-01

    Since Sir John Charnley began his monumental hip arthroplasty work in 1958, clinical researchers have been incrementally improving longevity and functionality of total joint systems, although implant failure occurs on occasion. The purpose of this study is to report the fracture of the humeral tray Morse taper of a reverse total shoulder system (RTSS), which to date has not been reported with metallurgic analysis for any RTSS. There was no reported antecedent fall, motor vehicle collision, or other traumatic event prior to implant fracture in this case. Analysis was performed on the retrieved failed implant by Scanning Electron Microscopy (SEM) and Electron Dispersion Spectroscopy (EDS) in an attempt to determine the failure method, as well as to offer improvements for future implants. At the time of revision surgery all explants were retained from the left shoulder of a 61-year old male who underwent a non-complicated RTSS 4 years prior. The explants, particularly the cracked humeral tray, were processed as required for SEM and EDS. Analysis was performed on the failure sites in order to determine the chemical composition of the different parts of the implant, discover the chemical composition of the filler metal used during the electron beam welding process, and to detect any foreign elements that could suggest corrosion or other evidence of failure etiology. Gross visual inspection of all explants revealed that implant failure was a result of dissociation of the taper from the humeral tray at the weld, leaving the Morse taper embedded in the humeral stem while the tray floated freely in the patient’s shoulder. SEM further confirmed the jagged edges noted grossly at the weld fracture site, both suggesting failure due to torsional forces. EDS detected elevated levels of carbon and oxygen at the fracture site on the taper only and not on the humeral tray. In order to determine the origin of the high levels of C and O, it was considered that in titanium alloys, C