WorldWideScience

Sample records for failure analysis 8-11

  1. NuSTAR spectral analysis of two bright Seyfert 1 galaxies: MCG +8-11-11 and NGC 6814

    Science.gov (United States)

    Tortosa, A.; Bianchi, S.; Marinucci, A.; Matt, G.; Middei, R.; Piconcelli, E.; Brenneman, L. W.; Cappi, M.; Dadina, M.; De Rosa, A.; Petrucci, P. O.; Ursini, F.; Walton, D. J.

    2018-01-01

    We report on the NuSTAR observations of two bright Seyfert 1 galaxies, namely MCG +8-11-11 (100 ks) and NGC 6814 (150 ks). The main goal of these observations was to investigate the Comptonization mechanisms acting in the innermost regions of an active galactic nucleus (AGN) which are believed to be responsible for the UV/X-ray emission. The spectroscopic analysis of the NuSTAR spectra of these two sources revealed that although they had different properties overall (black hole masses, luminosity and Eddington ratios), they had very similar coronal properties. Both presented a power-law spectrum with a high-energy cut-off at ∼150-200 keV, a relativistically broadened Fe K α line and the associated disc reflection component, plus a narrow iron line likely emitted in Compton thin and distant matter. The intrinsic continuum was well described by Comptonization models that show for MCG +8-11-11 a temperature of the coronal plasma of kTe ∼ 60 keV and an extrapolated optical depth τ = 1.8; for NGC 6814, the coronal temperature was kTe ∼ 45 keV with an extrapolated optical depth of τ = 2.5. We compare and discuss these values to some most common Comptonization models that aim at explaining the energy production and stability of coronae in AGNs.

  2. Failure Analysis

    International Nuclear Information System (INIS)

    Iorio, A.F.; Crespi, J.C.

    1987-01-01

    After ten years of operation at the Atucha I Nuclear Power Station a gear belonging to a pressurized heavy water reactor refuelling machine, failed. The gear box was used to operate the inlet-outlet heavy-water valve of the machine. Visual examination of the gear device showed an absence of lubricant and that several gear teeth were broken at the root. Motion was transmitted with a speed-reducing device with controlled adjustable times in order to produce a proper fitness of the valve closure. The aim of this paper is to discuss the results of the gear failure analysis in order to recommend the proper solution to prevent further failures. (Author)

  3. An analysis of ‘non-Johannine’ vocabulary in John 7:53–8:11, Part 1

    Directory of Open Access Journals (Sweden)

    John D. Punch

    2013-08-01

    Full Text Available Although scholars usually use external evidence to argue against the inclusion of John 7:53–8:11 in the Gospel of John, they frequently suggest arguments of internal evidence, mostly based on the inclusion of non-Johannine vocabulary, to support these objections. However, in contrast to the textual evidence, arguments about non-Johannine vocabulary seldom receive the necessary amount of evaluation. This article is the first of a two-part series that evaluates explanations for the appearance of various ‘non-Johannine’ terms. Both articles rebut claims of ’non-Johannine’ vocabulary in John 7:53–8:11, thereby providing opportunities for discussing Johannine features in the passage. Hoewel navorsers eksterne bewyse gebruik om teen die insluiting van Johannes 7:53–8:11 in die Evangelie van Johannes te argumenteer, maak hulle dikwels voorstelle van interne bewyse, meestal gebaseer op die insluiting van nie-Johannese terme, ter ondersteuning van sodanige besware. In teenstelling met die tekstuele bewyse, ontvang die voorstelle vir nie-Johannese terme egter selde die nodige evaluering. Hierdie artikel is die eerste van ’n tweeledige reeks wat verklarings vir die verskynsel van verskeie ‘nie-Johannese’ terme evalueer. Albei artikels weerlê die bewerings wat gemaak word ten opsigte van ‘nie-Johannese’ terme in Johannes 7:53–8:11 en skep daardeur geleentheid vir ’n bespreking van Johannese eienskappe.

  4. An analysis of ‘non-Johannine’ vocabulary in John 7:53–8:11, Part 2

    Directory of Open Access Journals (Sweden)

    John David Punch

    2013-08-01

    Full Text Available Although scholars usually use external evidence to argue against the inclusion of John 7:53–8:11 in the Gospel of John, they frequently suggest arguments of internal evidence, mostly based on the inclusion of non-Johannine vocabulary, to support their objections. However, in contrast to the textual evidence, arguments of non-Johannine vocabulary seldom receive the necessary amount of evaluation. This article is the second of a two-part series that evaluates explanations for the appearance of various ‘non-Johannine’ terms. Both articles rebut claims of ‘non-Johannine’ vocabulary in John 7:53–8:11, thereby providing opportunities for discussing Johannine features in the passage.

  5. Lessons learned from failure analysis

    International Nuclear Information System (INIS)

    Le May, I.

    2006-01-01

    Failure analysis can be a very useful tool to designers and operators of plant and equipment. It is not simply something that is done for lawyers and insurance companies, but is a tool from which lessons can be learned and by means of which the 'breed' can be improved. In this presentation, several failure investigations that have contributed to understanding will be presented. Specifically, the following cases will be discussed: 1) A fire at a refinery that occurred in a desulphurization unit. 2) The failure of a pipeline before it was even put into operation. 3) Failures in locomotive axles that took place during winter operation. The refinery fire was initially blamed on defective Type 321 seamless stainless steel tubing, but there were conflicting views between 'experts' involved as to the mechanism of failure and the writer was called upon to make an in-depth study. This showed that there were a variety of failure mechanism involved, including high temperature fracture, environmentally-induced cracking and possible manufacturing defects. The unraveling of the failure sequence is described and illustrated. The failure of an oil transmission was discovered when the line was pressure tested some months after it had been installed and before it was put into service. Repairs were made and failure occurred in another place upon the next pressure test being conducted. After several more repairs had been made the line was abandoned and a lawsuit was commenced on the basis that the steel was defective. An investigation disclosed that the material was sensitive to embrittlement and the causes of this were determined. As a result, changes were made in the microstructural control of the product to avoid similar problems in future. A series of axle failures occurred in diesel electric locomotives during winter. An investigation was made to determine the nature of the failures which were not by classical fatigue, nor did they correspond to published illustrations of Cu

  6. Failure Analysis of Fencing Blades

    Science.gov (United States)

    Kibaroglu, D.; Baydogan, M.; Cimenoglu, H.; Bas, B.; Yagsi, C.; Aliyeva, N.

    2017-05-01

    This study deals with the failure analysis of broken fencing blades (one épée and one foil). For the characterization of the broken blades, metallographic examinations, chemical analysis, hardness measurements, fracture surface examinations and tensile tests were performed. Maximum stress occurred at the outer fibres of the blades was estimated as high as 1456 MPa and 1298 MPa for épée and foil, respectively. Results showed that failure of the blades was initiated from a notch, which has been formed as the result of an impact action during training, or from the groove machined along the blade for inserting an electrical wire. In order to increase resistance of the blades against such failures, alternative blade material, modified blade geometry and a surface hardening treatment were proposed.

  7. Failure rate analysis using GLIMMIX

    International Nuclear Information System (INIS)

    Moore, L.M.; Hemphill, G.M.; Martz, H.F.

    1998-01-01

    This paper illustrates use of a recently developed SAS macro, GLIMMIX, for implementing an analysis suggested by Wolfinger and O'Connell (1993) in modeling failure count data with random as well as fixed factor effects. Interest in this software tool arose from consideration of modernizing the Failure Rate Analysis Code (FRAC), developed at Los Alamos National Laboratory in the early 1980's by Martz, Beckman and McInteer (1982). FRAC is a FORTRAN program developed to analyze Poisson distributed failure count data as a log-linear model, possibly with random as well as fixed effects. These statistical modeling assumptions are a special case of generalized linear mixed models, identified as GLMM in the current statistics literature. In the nearly 15 years since FRAC was developed, there have been considerable advances in computing capability, statistical methodology and available statistical software tools allowing worthwhile consideration of the tasks of modernizing FRAC. In this paper, the approaches to GLMM estimation implemented in GLIMMIX and in FRAC are described and a comparison of results for the two approaches is made with data on catastrophic time-dependent pump failures from a report by Martz and Whiteman (1984). Additionally, statistical and graphical model diagnostics are suggested and illustrated with the GLIMMIX analysis results

  8. Failure analysis: Status and future trends

    International Nuclear Information System (INIS)

    Anderson, R.E.; Soden, J.M.; Henderson, C.L.

    1995-01-01

    Failure analysis is a critical element in the integrated circuit manufacturing industry. This paper reviews the changing role of failure analysis and describes major techniques employed in the industry today. Several advanced failure analysis techniques that meet the challenges imposed by advancements in integrated circuit technology are described and their applications are discussed. Future trends in failure analysis needed to keep pace with the continuing advancements in integrated circuit technology are anticipated

  9. Dependent failure analysis of NPP data bases

    International Nuclear Information System (INIS)

    Cooper, S.E.; Lofgren, E.V.; Samanta, P.K.; Wong Seemeng

    1993-01-01

    A technical approach for analyzing plant-specific data bases for vulnerabilities to dependent failures has been developed and applied. Since the focus of this work is to aid in the formulation of defenses to dependent failures, rather than to quantify dependent failure probabilities, the approach of this analysis is critically different. For instance, the determination of component failure dependencies has been based upon identical failure mechanisms related to component piecepart failures, rather than failure modes. Also, component failures involving all types of component function loss (e.g., catastrophic, degraded, incipient) are equally important to the predictive purposes of dependent failure defense development. Consequently, dependent component failures are identified with a different dependent failure definition which uses a component failure mechanism categorization scheme in this study. In this context, clusters of component failures which satisfy the revised dependent failure definition are termed common failure mechanism (CFM) events. Motor-operated valves (MOVs) in two nuclear power plant data bases have been analyzed with this approach. The analysis results include seven different failure mechanism categories; identified potential CFM events; an assessment of the risk-significance of the potential CFM events using existing probabilistic risk assessments (PRAs); and postulated defenses to the identified potential CFM events. (orig.)

  10. Analysis of failures in concrete containments

    International Nuclear Information System (INIS)

    Moreno-Gonzalez, A.

    1989-09-01

    The function of Containment, in an accident event, is to avoid the release of radioactive substances into the surroundings. Containment failure, therefore, is defined as the appearance of leak paths to the external environment. These leak paths may appear either as a result of loss of leaktightness due to degradation of design conditions or structural failure with containment material break. This document is a survey of the state of the art of Containment Failure Analysis. It gives a detailed description of all failure mechanisms, indicating all the possible failure modes and their causes, right from failure resulting from degradation of the materials to structural failure and linear breake failure. Following the description of failure modes, possible failure criteria are identified, with special emphasis on structural failure criteria. These criteria have been obtained not only from existing codes but also from the latest experimental results. A chapter has been dedicated exclusively to failure criteria in conventional structures, for the purpose of evaluating the possibility of application to the case of containment. As the structural behaviour of the containment building is very complex, it is not possible to define failure through a single parameter. It is therefore advisable to define a methodology for containment failure analysis which could be applied to a particular containment. This methodology should include prevailing load and material conditions together with the behaviour of complex conditions such as the liner-anchorage-cracked concrete interaction

  11. Failure Analysis at the Kennedy Space Center

    Science.gov (United States)

    Salazar, Victoria L.; Wright, Clara

    2010-01-01

    History has shown that failures occur in every engineering endeavor, and what we learn from those failures contributes to the knowledge base to safely complete future missions. The necessity of failure analysis is at its apex at the end of one aged program (i.e. Shuttle) and at the beginning of a new and untested program (i.e. Constellation). The information that we gain through failure analysis corrects the deficiencies in the current vehicle to make the next generation of vehicles more efficient and safe. The Failure Analysis and Materials Evaluation section in the Materials Science Division at the Kennedy Space Center performs metallurgical, mechanical, electrical, and non-metallic failure analysis and accident investigations on both flight hardware and ground support equipment (GSE) for the Shuttle, International Space Station, Constellation, and Launch Services Programs. This presentation will explore a variety of failure case studies at KSC and the lessons learned that can be applied in future programs.

  12. Failure analysis of buried tanks

    International Nuclear Information System (INIS)

    Watkins, R.K.

    1994-01-01

    Failure of a buried tank can be hazardous. Failure may be a leak through which product is lost from the tank; but also through which contamination can occur. Failures are epidemic -- because buried tanks are out of sight, but also because designers of buried tanks have adopted analyses developed for pressure tanks. So why do pressure tanks fail when they are buried? Most failures of buried tanks are really soil failures. Soil compresses, or slips, or liquefies. Soil is not only a load, it is a support without which the tank deforms. A high water table adds to the load on the tank. It also reduces the strength of the soil. Based on tests, structural analyses are proposed for empty tanks buried in soils of various quality, with the water table at various levels, and with internal vacuum. Failure may be collapse tank. Such collapse is a sudden, audible inversion of the cylinder when the sidefill soil slips. Failure may be flotation. Failure may be a leak. Most leaks are fractures in the welds in overlap seams at flat spots. Flat spots are caused by a hard bedding or a heavy surface wheel load. Because the tank wall is double thick at the overlap, shearing stress in the weld is increased. Other weld failures occur when an end plate shears down past a cylinder; or when the tank is supported only at its ends like a beam. These, and other, failures can be analyzed with justifiable accuracy using basic principles of mechanics of materials. 10 figs

  13. The advent of failure analysis software technology

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, C.L. [Sandia National Labs., Albuquerque, NM (United States); Barnard, R.D. [Schlumberger Technologies, San Jose, CA (United States)

    1994-02-01

    The increasing complexity of integrated circuits demands that software tools, in addition to hardware tools, be used for successful diagnosis of failure. A series of customizable software tools have been developed that organize failure analysis information and provide expert level help to failure analysts to increase their productivity and success.

  14. Extubation Failure after Neonatal Cardiac Surgery: A Multicenter Analysis.

    Science.gov (United States)

    Mastropietro, Christopher W; Cashen, Katherine; Grimaldi, Lisa M; Narayana Gowda, Keshava Murty; Piggott, Kurt D; Wilhelm, Michael; Gradidge, Eleanor; Moser, Elizabeth A S; Benneyworth, Brian D; Costello, John M

    2017-03-01

    To describe the epidemiology of extubation failure and identify risk factors for its occurrence in a multicenter population of neonates undergoing surgery for congenital heart disease. We conducted a prospective observational study of neonates ≤30 days of age who underwent cardiac surgery at 7 centers within the US in 2015. Extubation failure was defined as reintubation within 72 hours of the first planned extubation. Risk factors were identified with the use of multivariable logistic regression analysis and reported as OR with 95% CIs. Multivariable logistic regression analysis was conducted to examine the relationship between extubation failure and worse clinical outcome, defined as hospital length of stay in the upper 25% or operative mortality. We enrolled 283 neonates, of whom 35 (12%) failed their first extubation at a median time of 7.5 hours (range 1-70 hours). In a multivariable model, use of uncuffed endotracheal tubes (OR 4.6; 95% CI 1.8-11.6) and open sternotomy of 4 days or more (OR 4.8; 95% CI 1.3-17.1) were associated independently with extubation failure. Accordingly, extubation failure was determined to be an independent risk factor for worse clinical outcome (OR 5.1; 95% CI 2-13). In this multicenter cohort of neonates who underwent surgery for congenital heart disease, extubation failure occurred in 12% of cases and was associated independently with worse clinical outcome. Use of uncuffed endotracheal tubes and prolonged open sternotomy were identified as independent and potentially modifiable risk factors for the occurrence of this precarious complication. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Wind Turbine Failures - Tackling current Problems in Failure Data Analysis

    Science.gov (United States)

    Reder, M. D.; Gonzalez, E.; Melero, J. J.

    2016-09-01

    The wind industry has been growing significantly over the past decades, resulting in a remarkable increase in installed wind power capacity. Turbine technologies are rapidly evolving in terms of complexity and size, and there is an urgent need for cost effective operation and maintenance (O&M) strategies. Especially unplanned downtime represents one of the main cost drivers of a modern wind farm. Here, reliability and failure prediction models can enable operators to apply preventive O&M strategies rather than corrective actions. In order to develop these models, the failure rates and downtimes of wind turbine (WT) components have to be understood profoundly. This paper is focused on tackling three of the main issues related to WT failure analyses. These are, the non-uniform data treatment, the scarcity of available failure analyses, and the lack of investigation on alternative data sources. For this, a modernised form of an existing WT taxonomy is introduced. Additionally, an extensive analysis of historical failure and downtime data of more than 4300 turbines is presented. Finally, the possibilities to encounter the lack of available failure data by complementing historical databases with Supervisory Control and Data Acquisition (SCADA) alarms are evaluated.

  16. Failure analysis of boiler tube

    International Nuclear Information System (INIS)

    Mehmood, K.; Siddiqui, A.R.

    2007-01-01

    Boiler tubes are energy conversion components where heat energy is used to convert water into high pressure superheated steam, which is then delivered to a turbine for electric power generation in thermal power plants or to run plant and machineries in a process or manufacturing industry. It was reported that one of the tubes of a fire-tube boiler used in a local industry had leakage after the formation of pits at the external surface of the tube. The inner side of the fire tube was working with hot flue gasses with a pressure of 10 Kg/cm/sup 2/ and temperature 225 degree C. The outside of the tube was surrounded by feed water. The purpose of this study was to determine the cause of pits developed at the external surface of the failed boiler tube sample. In the present work boiler tube samples of steel grade ASTM AI61/ASTM A192 were analyzed using metallographic analysis, chemical analysis, and mechanical testing. It was concluded that the appearance of defects on the boiler tube sample indicates cavitation type corrosion failure. Cavitation damage superficially resembled pitting, but surface appeared considerably rougher and had many closely spaced pits. (author)

  17. The interaction of NDE and failure analysis

    International Nuclear Information System (INIS)

    Nichols, R.W.

    1988-01-01

    This paper deals with the use of Non-Destructive Examination (NDE) and failure analysis for the assessment of the structural integrity. It appears that failure analysis enables to know whether NDE is required or not, and can help to direct NDE into the most useful directions by identifying the areas where it is most important that defects are absent. It also appears that failure analysis can help the operator to decide which NDE method is best suited to the component studied and provides detailed specifications for this NDE method. The interaction between failure analysis and NDE is then described. (TEC)

  18. Corrosion induced failure analysis of subsea pipelines

    International Nuclear Information System (INIS)

    Yang, Yongsheng; Khan, Faisal; Thodi, Premkumar; Abbassi, Rouzbeh

    2017-01-01

    Pipeline corrosion is one of the main causes of subsea pipeline failure. It is necessary to monitor and analyze pipeline condition to effectively predict likely failure. This paper presents an approach to analyze the observed abnormal events to assess the condition of subsea pipelines. First, it focuses on establishing a systematic corrosion failure model by Bow-Tie (BT) analysis, and subsequently the BT model is mapped into a Bayesian Network (BN) model. The BN model facilitates the modelling of interdependency of identified corrosion causes, as well as the updating of failure probabilities depending on the arrival of new information. Furthermore, an Object-Oriented Bayesian Network (OOBN) has been developed to better structure the network and to provide an efficient updating algorithm. Based on this OOBN model, probability updating and probability adaptation are performed at regular intervals to estimate the failure probabilities due to corrosion and potential consequences. This results in an interval-based condition assessment of subsea pipeline subjected to corrosion. The estimated failure probabilities would help prioritize action to prevent and control failures. Practical application of the developed model is demonstrated using a case study. - Highlights: • A Bow-Tie (BT) based corrosion failure model linking causation with the potential losses. • A novel Object-Oriented Bayesian Network (OOBN) based corrosion failure risk model. • Probability of failure updating and adaptation with respect to time using OOBN model. • Application of the proposed model to develop and test strategies to minimize failure risk.

  19. Light water reactor lower head failure analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rempe, J.L.; Chavez, S.A.; Thinnes, G.L. [EG and G Idaho, Inc., Idaho Falls, ID (United States)] [and others

    1993-10-01

    This document presents the results from a US Nuclear Regulatory Commission-sponsored research program to investigate the mode and timing of vessel lower head failure. Major objectives of the analysis were to identify plausible failure mechanisms and to develop a method for determining which failure mode would occur first in different light water reactor designs and accident conditions. Failure mechanisms, such as tube ejection, tube rupture, global vessel failure, and localized vessel creep rupture, were studied. Newly developed models and existing models were applied to predict which failure mechanism would occur first in various severe accident scenarios. So that a broader range of conditions could be considered simultaneously, calculations relied heavily on models with closed-form or simplified numerical solution techniques. Finite element techniques-were employed for analytical model verification and examining more detailed phenomena. High-temperature creep and tensile data were obtained for predicting vessel and penetration structural response.

  20. Light water reactor lower head failure analysis

    International Nuclear Information System (INIS)

    Rempe, J.L.; Chavez, S.A.; Thinnes, G.L.

    1993-10-01

    This document presents the results from a US Nuclear Regulatory Commission-sponsored research program to investigate the mode and timing of vessel lower head failure. Major objectives of the analysis were to identify plausible failure mechanisms and to develop a method for determining which failure mode would occur first in different light water reactor designs and accident conditions. Failure mechanisms, such as tube ejection, tube rupture, global vessel failure, and localized vessel creep rupture, were studied. Newly developed models and existing models were applied to predict which failure mechanism would occur first in various severe accident scenarios. So that a broader range of conditions could be considered simultaneously, calculations relied heavily on models with closed-form or simplified numerical solution techniques. Finite element techniques-were employed for analytical model verification and examining more detailed phenomena. High-temperature creep and tensile data were obtained for predicting vessel and penetration structural response

  1. Failure and damage analysis of advanced materials

    CERN Document Server

    Sadowski, Tomasz

    2015-01-01

    The papers in this volume present basic concepts and new developments in failure and damage analysis with focus on advanced materials such as composites, laminates, sandwiches and foams, and also new metallic materials. Starting from some mathematical foundations (limit surfaces, symmetry considerations, invariants) new experimental results and their analysis are shown. Finally, new concepts for failure prediction and analysis will be introduced and discussed as well as new methods of failure and damage prediction for advanced metallic and non-metallic materials. Based on experimental results the traditional methods will be revised.

  2. Software Architecture Reliability Analysis using Failure Scenarios

    NARCIS (Netherlands)

    Tekinerdogan, B.; Sözer, Hasan; Aksit, Mehmet

    2005-01-01

    We propose a Software Architecture Reliability Analysis (SARA) approach that benefits from both reliability engineering and scenario-based software architecture analysis to provide an early reliability analysis of the software architecture. SARA makes use of failure scenarios that are prioritized

  3. Failure analysis for WWER-fuel elements

    International Nuclear Information System (INIS)

    Boehmert, J.; Huettig, W.

    1986-10-01

    If the fuel defect rate proves significantly high, failure analysis has to be performed in order to trace down the defect causes, to implement corrective actions, and to take measures of failure prevention. Such analyses are work-consuming and very skill-demanding technical tasks, which require examination methods and devices excellently developed and a rich stock of experience in evaluation of features of damage. For that this work specifies the procedure of failure analyses in detail. Moreover prerequisites and experimental equipment for the investigation of WWER-type fuel elements are described. (author)

  4. 75 FR 44992 - Review of Management Directive 8.11

    Science.gov (United States)

    2010-07-30

    ... comments from the public, on what, if any, revisions should be made to the agency's internal process as... members of the public and the NRC, the NRC is soliciting comments from the public, on what, if any, revisions should be made to the agency's internal process as described in MD 8.11. DATES: Comments must be...

  5. Failure Analysis Of Industrial Boiler Pipe

    International Nuclear Information System (INIS)

    Natsir, Muhammad; Soedardjo, B.; Arhatari, Dewi; Andryansyah; Haryanto, Mudi; Triyadi, Ari

    2000-01-01

    Failure analysis of industrial boiler pipe has been done. The tested pipe material is carbon steel SA 178 Grade A refer to specification data which taken from Fertilizer Company. Steps in analysis were ; collection of background operation and material specification, visual inspection, dye penetrant test, radiography test, chemical composition test, hardness test, metallography test. From the test and analysis result, it is shown that the pipe failure caused by erosion and welding was shown porosity and incomplete penetration. The main cause of failure pipe is erosion due to cavitation, which decreases the pipe thickness. Break in pipe thickness can be done due to decreasing in pipe thickness. To anticipate this problem, the ppe will be replaced with new pipe

  6. Failure analysis of real-time systems

    International Nuclear Information System (INIS)

    Jalashgar, A.; Stoelen, K.

    1998-01-01

    This paper highlights essential aspects of real-time software systems that are strongly related to the failures and their course of propagation. The significant influence of means-oriented and goal-oriented system views in the description, understanding and analysing of those aspects is elaborated. The importance of performing failure analysis prior to reliability analysis of real-time systems is equally addressed. Problems of software reliability growth models taking the properties of such systems into account are discussed. Finally, the paper presents a preliminary study of a goal-oriented approach to model the static and dynamic characteristics of real-time systems, so that the corresponding analysis can be based on a more descriptive and informative picture of failures, their effects and the possibility of their occurrence. (author)

  7. Failure analysis of a polymer centrifugal impeller

    Directory of Open Access Journals (Sweden)

    Nikhil K. Kar

    2015-10-01

    Full Text Available A failure analysis investigation was performed on a fractured polymer impeller used in a respiratory blower. Light microscopy, scanning electron microscopy and finite element analysis techniques were utilized to characterize the mode(s of failure and fracture surfaces. A radial split down the impeller center was observed with symmetric fracture faces about the impeller bore. Fractographic analysis revealed brittle fracture features including Wallner lines, mirror, mist and hackle features stemming from the impeller bore, emanating radially outward. Crazed fibrils and faint fatigue striations suggest that intermittent load cycling led to initiation, and rapid propagation of multiple crack fronts originating along the impeller lip. Finite element analysis revealed a flexural condition induces localized stresses along the impeller lip. Significant wear features were also observed within the impeller bore, which may have contributed to premature failure of the impeller. The brittle fracture morphology and defects within the impeller bore suggest that premature failure occurred because of multiple interacting factors including: intermittently high centrifugal velocities, imbalance bore and shaft conditions, defects within the bore caused by machining, and stress concentrations along the circumference of the impeller lip.

  8. The Statistical Analysis of Failure Time Data

    CERN Document Server

    Kalbfleisch, John D

    2011-01-01

    Contains additional discussion and examples on left truncation as well as material on more general censoring and truncation patterns.Introduces the martingale and counting process formulation swil lbe in a new chapter.Develops multivariate failure time data in a separate chapter and extends the material on Markov and semi Markov formulations.Presents new examples and applications of data analysis.

  9. Sequentially linear analysis for simulating brittle failure

    NARCIS (Netherlands)

    van de Graaf, A.V.

    2017-01-01

    The numerical simulation of brittle failure at structural level with nonlinear finite
    element analysis (NLFEA) remains a challenge due to robustness issues. We attribute these problems to the dimensions of real-world structures combined with softening behavior and negative tangent stiffness at

  10. 14 CFR 417.224 - Probability of failure analysis.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Probability of failure analysis. 417.224..., DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.224 Probability of failure...) Failure. For flight safety analysis purposes, a failure occurs when a launch vehicle does not complete any...

  11. Combinatorial analysis of systems with competing failures subject to failure isolation and propagation effects

    International Nuclear Information System (INIS)

    Xing Liudong; Levitin, Gregory

    2010-01-01

    This paper considers the reliability analysis of binary-state systems, subject to propagated failures with global effect, and failure isolation phenomena. Propagated failures with global effect are common-cause failures originated from a component of a system/subsystem causing the failure of the entire system/subsystem. Failure isolation occurs when the failure of one component (referred to as a trigger component) causes other components (referred to as dependent components) within the same system to become isolated from the system. On the one hand, failure isolation makes the isolated dependent components unusable; on the other hand, it prevents the propagation of failures originated from those dependent components. However, the failure isolation effect does not exist if failures originated in the dependent components already propagate globally before the trigger component fails. In other words, there exists a competition in the time domain between the failure of the trigger component that causes failure isolation and propagated failures originated from the dependent components. This paper presents a combinatorial method for the reliability analysis of systems subject to such competing propagated failures and failure isolation effect. Based on the total probability theorem, the proposed method is analytical, exact, and has no limitation on the type of time-to-failure distributions for the system components. An illustrative example is given to demonstrate the basics and advantages of the proposed method.

  12. Failure analysis of a Francis turbine runner

    Energy Technology Data Exchange (ETDEWEB)

    Frunzaverde, D; Campian, V [Research Center in Hydraulics, Automation and Heat Transfer, ' Eftimie Murgu' University of Resita P-ta Traian Vuia 1-4, RO-320085, Resita (Romania); Muntean, S [Centre of Advanced Research in Engineering Sciences, Romanian Academy - Timisoara Branch Bv. Mihai Viteazu 24, RO-300223, Timisoara (Romania); Marginean, G [University of Applied Sciences Gelsenkirchen, Neidenburger Str. 10, 45877 Gelsenkirchen (Germany); Marsavina, L [Department of Strength, ' Politehnica' University of Timisoara, Bv. Mihai Viteazu 1, RO-300222, Timisoara (Romania); Terzi, R; Serban, V, E-mail: gabriela.marginean@fh-gelsenkirchen.d, E-mail: d.frunzaverde@uem.r [Ramnicu Valcea Subsidiary, S.C. Hidroelectrica S.A., Str. Decebal 11, RO-240255, Ramnicu Valcea (Romania)

    2010-08-15

    The variable demand on the energy market requires great flexibility in operating hydraulic turbines. Therefore, turbines are frequently operated over an extended range of regimes. Francis turbines operating at partial load present pressure fluctuations due to the vortex rope in the draft tube cone. This phenomenon generates strong vibrations and noise that may produce failures on the mechanical elements of the machine. This paper presents the failure analysis of a broken Francis turbine runner blade. The failure appeared some months after the welding repair work realized in situ on fatigue cracks initiated near to the trailing edge at the junction with the crown, where stress concentration occurs. In order to determine the causes that led to the fracture of the runner blade, the metallographic investigations on a sample obtained from the blade is carried out. The metallographic investigations included macroscopic and microscopic examinations, both performed with light and scanning electron microscopy, as well as EDX - analyses. These investigations led to the conclusion, that the cracking of the blade was caused by fatigue, initiated by the surface unevenness of the welding seam. The failure was accelerated by the hydrogen embrittlement of the filling material, which appeared as a consequence of improper welding conditions. In addition to the metallographic investigations, numerical computations with finite element analysis are performed in order to evaluate the deformation and stress distribution on blade.

  13. Failure analysis of a Francis turbine runner

    International Nuclear Information System (INIS)

    Frunzaverde, D; Campian, V; Muntean, S; Marginean, G; Marsavina, L; Terzi, R; Serban, V

    2010-01-01

    The variable demand on the energy market requires great flexibility in operating hydraulic turbines. Therefore, turbines are frequently operated over an extended range of regimes. Francis turbines operating at partial load present pressure fluctuations due to the vortex rope in the draft tube cone. This phenomenon generates strong vibrations and noise that may produce failures on the mechanical elements of the machine. This paper presents the failure analysis of a broken Francis turbine runner blade. The failure appeared some months after the welding repair work realized in situ on fatigue cracks initiated near to the trailing edge at the junction with the crown, where stress concentration occurs. In order to determine the causes that led to the fracture of the runner blade, the metallographic investigations on a sample obtained from the blade is carried out. The metallographic investigations included macroscopic and microscopic examinations, both performed with light and scanning electron microscopy, as well as EDX - analyses. These investigations led to the conclusion, that the cracking of the blade was caused by fatigue, initiated by the surface unevenness of the welding seam. The failure was accelerated by the hydrogen embrittlement of the filling material, which appeared as a consequence of improper welding conditions. In addition to the metallographic investigations, numerical computations with finite element analysis are performed in order to evaluate the deformation and stress distribution on blade.

  14. Importance analysis for the systems with common cause failures

    International Nuclear Information System (INIS)

    Pan Zhijie; Nonaka, Yasuo

    1995-01-01

    This paper extends the importance analysis technique to the research field of common cause failures to evaluate the structure importance, probability importance, and β-importance for the systems with common cause failures. These importance measures would help reliability analysts to limit the common cause failure analysis framework and find efficient defence strategies against common cause failures

  15. The application of Petri nets to failure analysis

    International Nuclear Information System (INIS)

    Liu, T.S.; Chiou, S.B.

    1997-01-01

    Unlike the technique of fault tree analysis that has been widely applied to system failure analysis in reliability engineering, this study presents a Petri net approach to failure analysis. It is essentially a graphical method for describing relations between conditions and events. The use of Petri nets in failure analysis enables to replace logic gate functions in fault trees, efficiently obtain minimal cut sets, and absorb models. It is demonstrated that for failure analysis Petri nets are more efficient than fault trees. In addition, this study devises an alternative; namely, a trapezoidal graph method in order to account for failure scenarios. Examples validate this novel method in dealing with failure analysis

  16. Recognition and Analysis of Corrosion Failure Mechanisms

    Directory of Open Access Journals (Sweden)

    Steven Suess

    2006-02-01

    Full Text Available Corrosion has a vast impact on the global and domestic economy, and currently incurs losses of nearly $300 billion annually to the U.S. economy alone. Because of the huge impact of corrosion, it is imperative to have a systematic approach to recognizing and mitigating corrosion problems as soon as possible after they become apparent. A proper failure analysis includes collection of pertinent background data and service history, followed by visual inspection, photographic documentation, material evaluation, data review and conclusion procurement. In analyzing corrosion failures, one must recognize the wide range of common corrosion mechanisms. The features of any corrosion failure give strong clues as to the most likely cause of the corrosion. This article details a proven approach to properly determining the root cause of a failure, and includes pictographic illustrations of the most common corrosion mechanisms, including general corrosion, pitting, galvanic corrosion, dealloying, crevice corrosion, microbiologically-influenced corrosion (MIC, corrosion fatigue, stress corrosion cracking (SCC, intergranular corrosion, fretting, erosion corrosion and hydrogen damage.

  17. Recognition and Analysis of Corrosion Failure Mechanisms

    OpenAIRE

    Steven Suess

    2006-01-01

    Corrosion has a vast impact on the global and domestic economy, and currently incurs losses of nearly $300 billion annually to the U.S. economy alone. Because of the huge impact of corrosion, it is imperative to have a systematic approach to recognizing and mitigating corrosion problems as soon as possible after they become apparent. A proper failure analysis includes collection of pertinent background data and service history, followed by visual inspection, photographic documentation, materi...

  18. Electrical failure analysis for root-cause determination

    International Nuclear Information System (INIS)

    Riddle, J.

    1990-01-01

    This paper outlines a practical failure analysis sequence. Several technical definitions are required. A failure is defined as a component that was operating in a system where the system malfunctioned and the replacement of the device restored system functionality. The failure mode is the malfunctioning behavior of the device. The failure mechanism is the underlying cause or source of the failure mode. The failure mechanism is the root cause of the failure mode. The failure analysis procedure needs to be adequately refined to result in the determination of the cause of failure to the degree that corrective action or design changes will prevent recurrence of the failure mode or mechanism. An example of a root-cause determination analysis performed for a nuclear power industry customer serves to illustrate the analysis methodology

  19. Failure analysis and failure prevention in electric power systems

    International Nuclear Information System (INIS)

    Rau, C.A. Jr.; Becker, D.G.; Besuner, P.M.; Cipolla, R.C.; Egan, G.R.; Gupta, P.; Johnson, D.P.; Omry, U.; Tetelman, A.S.; Rettig, T.W.; Peters, D.C.

    1977-01-01

    New methods have been developed and applied to better quantify and increase the reliability, safety, and availability of electric power plants. Present and potential problem areas have been identified both by development of an improved computerized data base of malfunctions in nuclear power plants and by detailed metallurgical and mechanical failure analyses of selected problems. Significant advances in the accuracy and speed of structural analyses have been made through development and application of the boundary integral equation and influence function methods of stress and fracture mechanics analyses. The currently specified flaw evaluation procedures of the ASME Boiler and Pressure Vessel Code have been computerized. Results obtained from these procedures for evaluation of specific in-service inspection indications have been compared with results obtained utilizing the improved analytical methods. Mathematical methods have also been developed to describe and analyze the statistical variations in materials properties and in component loading, and uncertainties in the flaw size that might be passed by quality assurance systems. These new methods have been combined to develop accurate failure rate predictions based upon probabilistic fracture mechanics. Improved failure prevention strategies have been formulated by combining probabilistic fracture mechanics and cost optimization techniques. The approach has been demonstrated by optimizing the nondestructive inspection level with regard to both reliability and cost. (Auth.)

  20. Failure Analysis of Sapphire Refractive Secondary Concentrators

    Science.gov (United States)

    Salem, Jonathan A.; Quinn, George D.

    2009-01-01

    Failure analysis was performed on two sapphire, refractive secondary concentrators (RSC) that failed during elevated temperature testing. Both concentrators failed from machining/handling damage on the lens face. The first concentrator, which failed during testing to 1300 C, exhibited a large r-plane twin extending from the lens through much of the cone. The second concentrator, which was an attempt to reduce temperature gradients and failed during testing to 649 C, exhibited a few small twins on the lens face. The twins were not located at the origin, but represent another mode of failure that needs to be considered in the design of sapphire components. In order to estimate the fracture stress from fractographic evidence, branching constants were measured on sapphire strength specimens. The fractographic analysis indicated radial tensile stresses of 44 to 65 MPa on the lens faces near the origins. Finite element analysis indicated similar stresses for the first RSC, but lower stresses for the second RSC. Better machining and handling might have prevented the fractures, however, temperature gradients and resultant thermal stresses need to be reduced to prevent twinning.

  1. BACFIRE, Minimal Cut Sets Common Cause Failure Fault Tree Analysis

    International Nuclear Information System (INIS)

    Fussell, J.B.

    1983-01-01

    1 - Description of problem or function: BACFIRE, designed to aid in common cause failure analysis, searches among the basic events of a minimal cut set of the system logic model for common potential causes of failure. The potential cause of failure is called a qualitative failure characteristics. The algorithm searches qualitative failure characteristics (that are part of the program input) of the basic events contained in a set to find those characteristics common to all basic events. This search is repeated for all cut sets input to the program. Common cause failure analysis is thereby performed without inclusion of secondary failure in the system logic model. By using BACFIRE, a common cause failure analysis can be added to an existing system safety and reliability analysis. 2 - Method of solution: BACFIRE searches the qualitative failure characteristics of the basic events contained in the fault tree minimal cut set to find those characteristics common to all basic events by either of two criteria. The first criterion can be met if all the basic events in a minimal cut set are associated by a condition which alone may increase the probability of multiple component malfunction. The second criterion is met if all the basic events in a minimal cut set are susceptible to the same secondary failure cause and are located in the same domain for that cause of secondary failure. 3 - Restrictions on the complexity of the problem - Maxima of: 1001 secondary failure maps, 101 basic events, 10 cut sets

  2. Use of fuel failure correlations in accident analysis

    International Nuclear Information System (INIS)

    O'Dell, L.D.; Baars, R.E.; Waltar, A.E.

    1975-05-01

    The MELT-III code for analysis of a Transient Overpower (TOP) accident in an LMFBR is briefly described, including failure criteria currently applied in the code. Preliminary results of calculations exploring failure patterns in time and space in the reactor core are reported and compared for the two empirical fuel failure correlations employed in the code. (U.S.)

  3. Failure propagation tests and analysis at PNC

    International Nuclear Information System (INIS)

    Tanabe, H.; Miyake, O.; Daigo, Y.; Sato, M.

    1984-01-01

    Failure propagation tests have been conducted using the Large Leak Sodium Water Reaction Test Rig (SWAT-1) and the Steam Generator Safety Test Facility (SWAT-3) at PNC in order to establish the safety design of the LMFBR prototype Monju steam generators. Test objectives are to provide data for selecting a design basis leak (DBL), data on the time history of failure propagations, data on the mechanism of the failures, and data on re-use of tubes in the steam generators that have suffered leaks. Eighteen fundamental tests have been performed in an intermediate leak region using the SWAT-1 test rig, and ten failure propagation tests have been conducted in the region from a small leak to a large leak using the SWAT-3 test facility. From the test results it was concluded that a dominant mechanism was tube wastage, and it took more than one minute until each failure propagation occurred. Also, the total leak rate in full sequence simulation tests including a water dump was far less than that of one double-ended-guillotine (DEG) failure. Using such experimental data, a computer code, LEAP (Leak Enlargement and Propagation), has been developed for the purpose of estimating the possible maximum leak rate due to failure propagation. This paper describes the results of the failure propagation tests and the model structure and validation studies of the LEAP code. (author)

  4. Early failure analysis of machining centers: a case study

    International Nuclear Information System (INIS)

    Wang Yiqiang; Jia Yazhou; Jiang Weiwei

    2001-01-01

    To eliminate the early failures and improve the reliability, nine ex-factory machining centers are traced under field conditions in workshops. Their early failure information throughout the ex-factory run-in test is collected. The field early failure database is constructed based on the collection of field early failure data and the codification of data. Early failure mode and effects analysis is performed to indicate the weak subsystem of a machining center or the troublemaker. The distribution of the time between early failures is analyzed and the optimal ex-factory run-in test time for machining center that may expose sufficiently the early failures and cost minimum is discussed. Suggestions how to arrange ex-factory run-in test and how to take actions to reduce early failures for machining center is proposed

  5. Constructing Ontology for Knowledge Sharing of Materials Failure Analysis

    Directory of Open Access Journals (Sweden)

    Peng Shi

    2014-01-01

    Full Text Available Materials failure indicates the fault with materials or components during their performance. To avoid the reoccurrence of similar failures, materials failure analysis is executed to investigate the reasons for the failure and to propose improved strategies. The whole procedure needs sufficient domain knowledge and also produces valuable new knowledge. However, the information about the materials failure analysis is usually retained by the domain expert, and its sharing is technically difficult. This phenomenon may seriously reduce the efficiency and decrease the veracity of the failure analysis. To solve this problem, this paper adopts ontology, a novel technology from the Semantic Web, as a tool for knowledge representation and sharing and describes the construction of the ontology to obtain information concerning the failure analysis, application area, materials, and failure cases. The ontology represented information is machine-understandable and can be easily shared through the Internet. At the same time, failure case intelligent retrieval, advanced statistics, and even automatic reasoning can be accomplished based on ontology represented knowledge. Obviously this can promote the knowledge sharing of materials service safety and improve the efficiency of failure analysis. The case of a nuclear power plant area is presented to show the details and benefits of this method.

  6. Uncertainty analysis with statistically correlated failure data

    International Nuclear Information System (INIS)

    Modarres, M.; Dezfuli, H.; Roush, M.L.

    1987-01-01

    Likelihood of occurrence of the top event of a fault tree or sequences of an event tree is estimated from the failure probability of components that constitute the events of the fault/event tree. Component failure probabilities are subject to statistical uncertainties. In addition, there are cases where the failure data are statistically correlated. At present most fault tree calculations are based on uncorrelated component failure data. This chapter describes a methodology for assessing the probability intervals for the top event failure probability of fault trees or frequency of occurrence of event tree sequences when event failure data are statistically correlated. To estimate mean and variance of the top event, a second-order system moment method is presented through Taylor series expansion, which provides an alternative to the normally used Monte Carlo method. For cases where component failure probabilities are statistically correlated, the Taylor expansion terms are treated properly. Moment matching technique is used to obtain the probability distribution function of the top event through fitting the Johnson Ssub(B) distribution. The computer program, CORRELATE, was developed to perform the calculations necessary for the implementation of the method developed. (author)

  7. Microcircuit failure analysis using the SEM. [Scanning Electron Microscopes

    Science.gov (United States)

    Nicolas, D. P.

    1974-01-01

    The scanning electron microscope adds a new dimension to the knowledge that can be obtained from a failed microcircuit. When used with conventional techniques, SEM assists and clarifies the analysis, but it does not replace light microscopy. The most advantageous features for microcircuit analysis are long working distances and great depth of field. Manufacturer related failure modes of microcircuits are metallization defects, poor bonding, surface and particle contamination, and design and fabrication faults. User related failure modes are caused by abuse, such as overstress. The Physics of Failure Procedure followed by the Astrionics Laboratory in failure analysis is described, which is designed to obtain maximum information available from each step.

  8. Software Architecture Reliability Analysis using Failure Scenarios

    NARCIS (Netherlands)

    Tekinerdogan, B.; Sözer, Hasan; Aksit, Mehmet

    With the increasing size and complexity of software in embedded systems, software has now become a primary threat for the reliability. Several mature conventional reliability engineering techniques exist in literature but traditionally these have primarily addressed failures in hardware components

  9. Plastic Pipe Failure, Risk, and Threat Analysis

    Science.gov (United States)

    2009-04-29

    The three primary failure modes that may be exhibited by polyethylene (PE) gas pipe materials were described in detail. The modes are: ductile rupture, slow crack growth (SCG), and rapid crack propagation (RCP). Short term mechanical tests were evalu...

  10. Structures for common-cause failure analysis

    International Nuclear Information System (INIS)

    Vaurio, J.K.

    1981-01-01

    Common-cause failure methodology and terminology have been reviewed and structured to provide a systematical basis for addressing and developing models and methods for quantification. The structure is based on (1) a specific set of definitions, (2) categories based on the way faults are attributable to a common cause, and (3) classes based on the time of entry and the time of elimination of the faults. The failure events are then characterized by their likelihood or frequency and the average residence time. The structure provides a basis for selecting computational models, collecting and evaluating data and assessing the importance of various failure types, and for developing effective defences against common-cause failure. The relationships of this and several other structures are described

  11. Frequentist methods for failure data analysis

    International Nuclear Information System (INIS)

    Lannoy, A.

    1993-07-01

    This note presents some frequentist methods for calculation of the reliability law of a component, taking into account failure data and degradation data, extracted from operation feedback data banks. (author). 10 tabs., 22 figs., 14 refs

  12. Failure analysis of multiple delaminated composite plates due to ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 24; Issue 2 ... Failure analysis; delaminated composite; bending; impact. Abstract. The present work aims at the first ply failure analysis of laminated composite plates with arbitrarily located multiple delaminations subjected to transverse static load as well as impact.

  13. User-Defined Material Model for Progressive Failure Analysis

    Science.gov (United States)

    Knight, Norman F. Jr.; Reeder, James R. (Technical Monitor)

    2006-01-01

    An overview of different types of composite material system architectures and a brief review of progressive failure material modeling methods used for structural analysis including failure initiation and material degradation are presented. Different failure initiation criteria and material degradation models are described that define progressive failure formulations. These progressive failure formulations are implemented in a user-defined material model (or UMAT) for use with the ABAQUS/Standard1 nonlinear finite element analysis tool. The failure initiation criteria include the maximum stress criteria, maximum strain criteria, the Tsai-Wu failure polynomial, and the Hashin criteria. The material degradation model is based on the ply-discounting approach where the local material constitutive coefficients are degraded. Applications and extensions of the progressive failure analysis material model address two-dimensional plate and shell finite elements and three-dimensional solid finite elements. Implementation details and use of the UMAT subroutine are described in the present paper. Parametric studies for composite structures are discussed to illustrate the features of the progressive failure modeling methods that have been implemented.

  14. Failure Analysis of Electrical Pin Connectors

    Science.gov (United States)

    Newman, John A.; Baughman, James M.; Smith, Stephen W.; Herath, Jeffrey A.

    2008-01-01

    A study was initiated to determine the root cause of failure for circuit board electrical connection pins that failed during vibRatory testing. The circuit board is part of an unmanned space probe, and the vibratory testing was performed to ensure component survival of launch loading conditions. The results of this study show that the pins failed as a result of fatigue loading.

  15. Failure Analysis of Storage Data Magnetic Systems

    Directory of Open Access Journals (Sweden)

    Ortiz–Prado A.

    2010-10-01

    Full Text Available This paper shows the conclusions about the corrosion mechanics in storage data magnetic systems (hard disk. It was done from the inspection of 198 units that were in service in nine different climatic regions characteristic for Mexico. The results allow to define trends about the failure forms and the factors that affect them. In turn, this study has analyzed the causes that led to mechanical failure and those due to deterioration by atmospheric corrosion. On the basis of the results obtained from the field sampling, demonstrates that the hard disk failure is fundamentally by mechanical effects. The deterioration by environmental effects were found in read-write heads, integrated circuits, printed circuit boards and in some of the electronic components of the controller card of the device, but not in magnetic storage surfaces. There fore, you can discard corrosion on the surface of the disk as the main kind of failure due to environmental deterioration. To avoid any inconvenience in the magnetic data storage system it is necessary to ensure sealing of the system.

  16. Computer aided approach to qualitative and quantitative common cause failure analysis for complex systems

    International Nuclear Information System (INIS)

    Cate, C.L.; Wagner, D.P.; Fussell, J.B.

    1977-01-01

    Common cause failure analysis, also called common mode failure analysis, is an integral part of a complete system reliability analysis. Existing methods of computer aided common cause failure analysis are extended by allowing analysis of the complex systems often encountered in practice. The methods aid in identifying potential common cause failures and also address quantitative common cause failure analysis

  17. Reliability analysis based on the losses from failures.

    Science.gov (United States)

    Todinov, M T

    2006-04-01

    The conventional reliability analysis is based on the premise that increasing the reliability of a system will decrease the losses from failures. On the basis of counterexamples, it is demonstrated that this is valid only if all failures are associated with the same losses. In case of failures associated with different losses, a system with larger reliability is not necessarily characterized by smaller losses from failures. Consequently, a theoretical framework and models are proposed for a reliability analysis, linking reliability and the losses from failures. Equations related to the distributions of the potential losses from failure have been derived. It is argued that the classical risk equation only estimates the average value of the potential losses from failure and does not provide insight into the variability associated with the potential losses. Equations have also been derived for determining the potential and the expected losses from failures for nonrepairable and repairable systems with components arranged in series, with arbitrary life distributions. The equations are also valid for systems/components with multiple mutually exclusive failure modes. The expected losses given failure is a linear combination of the expected losses from failure associated with the separate failure modes scaled by the conditional probabilities with which the failure modes initiate failure. On this basis, an efficient method for simplifying complex reliability block diagrams has been developed. Branches of components arranged in series whose failures are mutually exclusive can be reduced to single components with equivalent hazard rate, downtime, and expected costs associated with intervention and repair. A model for estimating the expected losses from early-life failures has also been developed. For a specified time interval, the expected losses from early-life failures are a sum of the products of the expected number of failures in the specified time intervals covering the

  18. Role of scanning electron microscope )SEM) in metal failure analysis

    International Nuclear Information System (INIS)

    Shaiful Rizam Shamsudin; Hafizal Yazid; Mohd Harun; Siti Selina Abd Hamid; Nadira Kamarudin; Zaiton Selamat; Mohd Shariff Sattar; Muhamad Jalil

    2005-01-01

    Scanning electron microscope (SEM) is a scientific instrument that uses a beam of highly energetic electrons to examine the surface and phase distribution of specimens on a micro scale through the live imaging of secondary electrons (SE) and back-scattered electrons (BSE) images. One of the main activities of SEM Laboratory at MINT is for failure analysis on metal part and components. The capability of SEM is excellent for determining the root cause of metal failures such as ductility or brittleness, stress corrosion, fatigue and other types of failures. Most of our customers that request for failure analysis are from local petrochemical plants, manufacturers of automotive components, pipeline maintenance personnel and engineers who involved in the development of metal parts and component. This paper intends to discuss some of the technical concepts in failure analysis associated with SEM. (Author)

  19. X-framework: Space system failure analysis framework

    Science.gov (United States)

    Newman, John Steven

    Space program and space systems failures result in financial losses in the multi-hundred million dollar range every year. In addition to financial loss, space system failures may also represent the loss of opportunity, loss of critical scientific, commercial and/or national defense capabilities, as well as loss of public confidence. The need exists to improve learning and expand the scope of lessons documented and offered to the space industry project team. One of the barriers to incorporating lessons learned include the way in which space system failures are documented. Multiple classes of space system failure information are identified, ranging from "sound bite" summaries in space insurance compendia, to articles in journals, lengthy data-oriented (what happened) reports, and in some rare cases, reports that treat not only the what, but also the why. In addition there are periodically published "corporate crisis" reports, typically issued after multiple or highly visible failures that explore management roles in the failure, often within a politically oriented context. Given the general lack of consistency, it is clear that a good multi-level space system/program failure framework with analytical and predictive capability is needed. This research effort set out to develop such a model. The X-Framework (x-fw) is proposed as an innovative forensic failure analysis approach, providing a multi-level understanding of the space system failure event beginning with the proximate cause, extending to the directly related work or operational processes and upward through successive management layers. The x-fw focus is on capability and control at the process level and examines: (1) management accountability and control, (2) resource and requirement allocation, and (3) planning, analysis, and risk management at each level of management. The x-fw model provides an innovative failure analysis approach for acquiring a multi-level perspective, direct and indirect causation of

  20. A quantitative method for Failure Mode and Effects Analysis

    NARCIS (Netherlands)

    Braaksma, A. J. J.; Meesters, A. J.; Klingenberg, W.; Hicks, C.

    2012-01-01

    Failure Mode and Effects Analysis (FMEA) is commonly used for designing maintenance routines by analysing potential failures, predicting their effect and facilitating preventive action. It is used to make decisions on operational and capital expenditure. The literature has reported that despite its

  1. C2 Failures: A Taxonomy and Analysis

    Science.gov (United States)

    2013-06-01

    1989, Apr. 15 United Kingdom (Sheffield, England) 96 deaths [15] Hurricane Andrew 1992, Aug. 24 United States (Florida) 26 direct deaths, 39...Victorian Bushfires Royal Commission (2010), p.8 Hurricane Andrew Response "...failure to have a single person in charge with a clear chain of command...communications infrastructure. This happened during Hurricane Andrew , 31 Hurricane Katrina, 32 and the Indian Ocean Tsunami. 33 Even if not substantially

  2. Improved methods for dependent failure analysis in PSA

    International Nuclear Information System (INIS)

    Ballard, G.M.; Games, A.M.

    1988-01-01

    The basic design principle used in ensuring the safe operation of nuclear power plant is defence in depth. This normally takes the form of redundant equipment and systems which provide protection even if a number of equipment failures occur. Such redundancy is particularly effective in ensuring that multiple, independent equipment failures with the potential for jeopardising reactor safety will be rare events. However the achievement of high reliability has served to highlight the potentially dominant role of multiple, dependent failures of equipment and systems. Analysis of reactor operating experience has shown that dependent failure events are the major contributors to safety system failures and reactor incidents and accidents. In parallel PSA studies have shown that the results of a safety analysis are sensitive to assumptions made about the dependent failure (CCF) probability for safety systems. Thus a Westinghouse Analysis showed that increasing system dependent failure probabilities by a factor of 5 led to a factor 4 increase in core. This paper particularly refers to the engineering concepts underlying dependent failure assessment touching briefly on aspects of data. It is specifically not the intent of our work to develop a new mathematical model of CCF but to aid the use of existing models

  3. Cardiotoxic heart failure in breast cancer survivors: a concept analysis.

    Science.gov (United States)

    Harrison, Jordan M; Pressler, Susan J; Friese, Christopher R

    2016-07-01

    To report an analysis of the concept of cardiotoxic heart failure in breast cancer survivors. Despite numerous studies describing cardiotoxic effects of breast cancer therapies, the literature lacks consistent terminology to describe cancer treatment-induced heart failure, defined by the authors as 'cardiotoxic heart failure'. Breast cancer survivors who develop heart failure may not fit existing conceptual models. A concept analysis of cardiotoxic heart failure in breast cancer survivors is needed to integrate previous research findings and establish the scientific foundation for future intervention research. Concept analysis. An integrative review (1999-2014) was conducted to examine aetiologies and risk factors for heart failure in female breast cancer survivors. Databases searched were CINAHL, Cochrane Library, EmBase, Medline and Scopus. Walker and Avant's method for concept analysis includes: select concept; determine purpose; identify uses; define attributes; identify model case; describe borderline, related and contrary cases; identify antecedents/consequences; define empirical referents. In the literature, substantial variation was noted in terminology for breast cancer treatment-induced cardiotoxicity. The authors define cardiotoxic heart failure in breast cancer survivors as chronic heart failure resulting from breast cancer treatment-induced cardiotoxicity among women without pre-existing heart failure diagnosis. No studies were found that described quality of life or tested interventions to preserve quality of life for this population. Prospective studies are needed to develop interventions for symptom management to improve quality of life in breast cancer survivors with heart failure. New conceptual paradigms may be needed to improve outcomes for this vulnerable population. © 2016 John Wiley & Sons Ltd.

  4. Failure Modes and Effects Analysis (FMEA) Assistant Tool

    Data.gov (United States)

    National Aeronautics and Space Administration — The FMEA Assistant tool offers a new and unique approach to assist hardware developers and safety analysts perform failure analysis by using model based systems...

  5. Robustness Analysis of Real Network Topologies Under Multiple Failure Scenarios

    DEFF Research Database (Denmark)

    Manzano, M.; Marzo, J. L.; Calle, E.

    2012-01-01

    on topological characteristics. Recently approaches also consider the services supported by such networks. In this paper we carry out a robustness analysis of five real backbone telecommunication networks under defined multiple failure scenarios, taking into account the consequences of the loss of established......Nowadays the ubiquity of telecommunication networks, which underpin and fulfill key aspects of modern day living, is taken for granted. Significant large-scale failures have occurred in the last years affecting telecommunication networks. Traditionally, network robustness analysis has been focused...... connections. Results show which networks are more robust in response to a specific type of failure....

  6. Fuzzy logic prioritization of failures in a system failure mode, effects and criticality analysis

    International Nuclear Information System (INIS)

    Bowles, John B.; Pelaez, C.E.

    1995-01-01

    This paper describes a new technique, based on fuzzy logic, for prioritizing failures for corrective actions in a Failure Mode, Effects and Criticality Analysis (FMECA). As in a traditional criticality analysis, the assessment is based on the severity, frequency of occurrence, and detectability of an item failure. However, these parameters are here represented as members of a fuzzy set, combined by matching them against rules in a rule base, evaluated with min-max inferencing, and then defuzzified to assess the riskiness of the failure. This approach resolves some of the problems in traditional methods of evaluation and it has several advantages compared to strictly numerical methods: 1) it allows the analyst to evaluate the risk associated with item failure modes directly using the linguistic terms that are employed in making the criticality assessment; 2) ambiguous, qualitative, or imprecise information, as well as quantitative data, can be used in the assessment and they are handled in a consistent manner; and 3) it gives a more flexible structure for combining the severity, occurrence, and detectability parameters. Two fuzzy logic based approaches for assessing criticality are presented. The first is based on the numerical rankings used in a conventional Risk Priority Number (RPN) calculation and uses crisp inputs gathered from the user or extracted from a reliability analysis. The second, which can be used early in the design process when less detailed information is available, allows fuzzy inputs and also illustrates the direct use of the linguistic rankings defined for the RPN calculations

  7. Failure modes and effects analysis (RADL Item 2-23)

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-04-01

    The Pilot Plant is a central receiver design concept. It is comprised of five major subsystems as shown schematically, plus a set of equipment (Plant Support Subsystem) used to support total plant operation. The failure modes and effects analysis (FMEA) is a bottom-up analysis used to identify the failure characteristics of the system (total equipment used to produce electrical power), that is, the failure of a single component is assumed and the effect of that failure upon the system is determined. The FMEA is concerned with the plant from an operational standpoint (i.e., the production of electrical power). This analysis was performed to the component level. This was interpreted as a valve, computer, measurement sensor and its associated signal conditioning, an electronic black box, etc.

  8. Failure analysis of PB-1 (EBTS Be/Cu mockup)

    International Nuclear Information System (INIS)

    Odegard, B.C. Jr.; Cadden, C.H.

    1996-11-01

    Failure analysis was done on PB-1 (series of Be tiles joined to Cu alloy) following a tile failure during a high heat flux experiment in EBTS (electron beam test system). This heat flux load simulated ambient conditions inside ITER; the Be tiles were bonded to the Cu alloy using low-temperature diffusion bonding, which is being considered for fabricating plasma facing components in ITER. Results showed differences between the EBTS failure and a failure during a room temperature tensile test. The latter occurred at the Cu-Be interface in an intermetallic phase formed by reaction of the two metals at the bonding temperature. Fracture strengths measured by these tests were over 300 MPa. The high heat flux specimens failed at the Cu-Cu diffusion bond. Fracture morphology in both cases was a mixed mode of dimple rupture and transgranular cleavage. Several explanations for this difference in failure mechanism are suggested

  9. Failure Analysis of a Service Tube

    Science.gov (United States)

    Xie, Zhongdong; Cai, Weiguo; Li, Zhenxing; Guan, YiMing; Zhang, Baocheng; Yang, XiaoTong

    2017-12-01

    One tube was cracked used in the primary reformer furnace in a fertilizer plant for two and half years. In order to find out the causes of cracking, the methods for chemical composition analysis, macro- and microstructure analysis, penetrant testing, weld analysis, crack and surface damage analysis, mechanics property analysis, high temperature endurance performance analysis, stress and wall thickness calculation were adopted. The integrated assessment results showed that the carbon content of the tube was in the lower limit of the standard range; the tube effective wall thickness was too small; local overheating leads to tube cracking in use process.

  10. 26 CFR 5c.168(f)(8)-11 - Consolidated returns. [Reserved

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 14 2010-04-01 2010-04-01 false Consolidated returns. 5c.168(f)(8)-11 Section 5c.168(f)(8)-11 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) TEMPORARY INCOME TAX REGULATIONS UNDER THE ECONOMIC RECOVERY TAX ACT OF 1981 § 5c...

  11. Analysis of failure during the manufacturing of integrated circuits

    Science.gov (United States)

    Damm, C.; Sirot, N.

    1982-09-01

    To maintain the electrical output of integrated circuits at a high and stable level, a special analysis of failure techniques is systematically applied to plates of integrated circuits that have abnormal output. Aspects discussed include: a synoptic table of operations for failure analysis; methodology; preliminary data; visual analysis of defects; demonstration of crystal defects; and electrical analysis. Some examples illustrate the advantages of the method which are the reduction of fabrication cost, and improvement of the quality and reliability of products in a comprehensive, controlled procedure.

  12. Reliability Estimation of High Voltage Ceramic Capacitor by Failure Analysis

    International Nuclear Information System (INIS)

    Yang, Seok Jun; Kim, Jin Woo; Shin, Seung Woo; Lee, Hee Jin; Shin, Seung Hun; Ryu, Dong Su; Chang, Seog Weon

    2001-01-01

    This paper presents a result of failure analysis and reliability evaluation for high voltage ceramic capacitors. The failure modes and failure mechanisms were studied in two ways in order to estimate component life and failure rate. The causes of failure mechanisms for zero resistance phenomena under withstanding voltage test in high voltage ceramic capacitors molded by epoxy resin were studied by establishing an effective root cause failure analysis. Particular emphasis was placed on breakdown phenomena at the ceramic-epoxy interface. The validity of the results in this study was confirmed by the results of accelerated testing. Thermal cycling test for high voltage ceramic capacitor mounted on a magnetron were implemented. Delamination between ceramic and epoxy, which might cause electrical short in underlying circuitry, can occur during curing or thermal cycle. The results can be conveniently used to quickly identify defective lots, determine B 10 life estimation each lot at the level of inspection, and detect major changes in the vendors processes. Also, the condition for dielectric breakdown was investigated for the estimation of failure rate with load-strength interference model

  13. [Failure mode effect analysis applied to preparation of intravenous cytostatics].

    Science.gov (United States)

    Santos-Rubio, M D; Marín-Gil, R; Muñoz-de la Corte, R; Velázquez-López, M D; Gil-Navarro, M V; Bautista-Paloma, F J

    2016-01-01

    To proactively identify risks in the preparation of intravenous cytostatic drugs, and to prioritise and establish measures to improve safety procedures. Failure Mode Effect Analysis methodology was used. A multidisciplinary team identified potential failure modes of the procedure through a brainstorming session. The impact associated with each failure mode was assessed with the Risk Priority Number (RPN), which involves three variables: occurrence, severity, and detectability. Improvement measures were established for all identified failure modes, with those with RPN>100 considered critical. The final RPN (theoretical) that would result from the proposed measures was also calculated and the process was redesigned. A total of 34 failure modes were identified. The initial accumulated RPN was 3022 (range: 3-252), and after recommended actions the final RPN was 1292 (range: 3-189). RPN scores >100 were obtained in 13 failure modes; only the dispensing sub-process was free of critical points (RPN>100). A final reduction of RPN>50% was achieved in 9 failure modes. This prospective risk analysis methodology allows the weaknesses of the procedure to be prioritised, optimize use of resources, and a substantial improvement in the safety of the preparation of cytostatic drugs through the introduction of double checking and intermediate product labelling. Copyright © 2015 SECA. Published by Elsevier Espana. All rights reserved.

  14. Root cause of failure analysis and the system engineer

    International Nuclear Information System (INIS)

    Coppock, M.S.; Hartwig, A.W.

    1990-01-01

    In an industry where ever-increasing emphasis is being placed on root cause of failure determination, it is imperative that a successful nuclear utility have an effective means of identifying failures and performing the necessary analyses. The current Institute of Nuclear Power Operations (INPO) good practice, OE-907, root-cause analysis, gives references to methodology that will help determine breakdowns in procedures, programs, or design but gives very little guidance on how or when to perform component root cause of failure analyses. The system engineers of nuclear utilities are considered the focal point for their respective systems and are required by most programs to investigate component failures. The problem that the system engineer faces in determining a component root cause of failures lies in acquisition of the necessary data to identify the need to perform the analysis and in having the techniques and equipment available to perform it. The system engineers at the Palo Verde nuclear generating station routinely perform detailed component root cause of failure analyses. The Palo Verde program provides the system engineers with the information necessary to identify when a component root cause of failure is required. Palo Verde also has the necessary equipment on-site to perform the analyses

  15. Debugging Nondeterministic Failures in Linux Programs through Replay Analysis

    Directory of Open Access Journals (Sweden)

    Shakaiba Majeed

    2018-01-01

    Full Text Available Reproducing a failure is the first and most important step in debugging because it enables us to understand the failure and track down its source. However, many programs are susceptible to nondeterministic failures that are hard to reproduce, which makes debugging extremely difficult. We first address the reproducibility problem by proposing an OS-level replay system for a uniprocessor environment that can capture and replay nondeterministic events needed to reproduce a failure in Linux interactive and event-based programs. We then present an analysis method, called replay analysis, based on the proposed record and replay system to diagnose concurrency bugs in such programs. The replay analysis method uses a combination of static analysis, dynamic tracing during replay, and delta debugging to identify failure-inducing memory access patterns that lead to concurrency failure. The experimental results show that the presented record and replay system has low-recording overhead and hence can be safely used in production systems to catch rarely occurring bugs. We also present few concurrency bug case studies from real-world applications to prove the effectiveness of the proposed bug diagnosis framework.

  16. Failure Modes and Effects Analysis (FMEA) Assistant Tool Feasibility Study

    Science.gov (United States)

    Flores, Melissa; Malin, Jane T.

    2013-01-01

    An effort to determine the feasibility of a software tool to assist in Failure Modes and Effects Analysis (FMEA) has been completed. This new and unique approach to FMEA uses model based systems engineering concepts to recommend failure modes, causes, and effects to the user after they have made several selections from pick lists about a component s functions and inputs/outputs. Recommendations are made based on a library using common failure modes identified over the course of several major human spaceflight programs. However, the tool could be adapted for use in a wide range of applications from NASA to the energy industry.

  17. [Analysis of anti-reflux surgery failure].

    Science.gov (United States)

    Cano Novillo, I; Benavent Gordo, M I; Portela Casalod, E; Delgado Muñoz, M D; Aguado Roncero, P; Vilariño Mosquera, A; Berchi García, F J

    2000-01-01

    Recurrent gastroesophageal reflux following fundoplication is a challenging problem, because it is usually refractory to medical treatment and a second, technically difficult, antireflux operation is required. Different factors that may contribute to surgery failure have been identified in children. We present 8 cases who underwent redofundoplication after failed procedures, from a total number of 96 patients operated on due to gastroesophageal reflux. Four patient's had their initial fundoplication performed at our institution. Six patients were neurologically impaired, six had chronic pulmonary disease, and two had esophageal atresia. The main presenting symptoms were recurrent vomiting (n = 8) and aspiration (n = 4). Gastroesophageal reflux was confirmed by barium swallow and endoscopy. Operative findings showed wrap breakdown in two cases, warp breakdown associated with hiatal hernia in five, wrap breakdown associated with paraesophageal hernia in two cases, and paraesophageal hernia with normal wrap in one. A second Nissen procedure were performed in five cases, whereas a Collis-Nissen gastroplasty was realized in three with a short esophagus. Six patients had a successful outcome remaining symptom free, one has severe disphagia, and one has recurrent vomiting. In our experience, patients with recurrent gastroesophageal reflux disease should undergo an antireflux procedure tailored to specific anatomic or functional abnormalities.

  18. Reconceptualising failure to rescue in midwifery: a concept analysis.

    Science.gov (United States)

    Hastings-Tolsma, Marie; Nolte, Anna G W

    2014-06-01

    to reconceptualise the concept of failure to rescue, distinguishing it from its current scientific usage as a surveillance strategy to recognise physiologic decline. failure to rescue has been consistently defined as a failure to save a patient׳s life after development of complications. The term, however, carries a richer connotation when viewed within a midwifery context. Midwives have historically believed themselves to be the vanguards of normal, physiologic processes, including birth. This philosophy mandates careful consideration of what it means to promote normal birth and the consequences of failure to rescue women from processes which challenge that outcome. the Medline, CINAHL, PsycINFO, PubMED, Web of Science and Google Scholar databases were searched from the period of 1992-2014 using the key terms of concept analysis, failure-to-rescue, childbirth, midwifery outcomes, obstetrical outcomes, suboptimal care, and patient outcomes. English language reports were used exclusively. The search yielded 45 articles which were reviewed in this paper. a critical analysis of the published literature was undertaken as a means of determining the adequacy of the concept for midwifery practice and to detail how it relates to other concepts important in development of a conceptual framework promoting normal birth processes. failure to rescue within the context of the midwifery model of care requires robust attention to a midwifery managed setting and surveillance based on a caring presence, patient protection, and midwifery partnership with patient. clarifying the definition of failure to rescue in childbirth and defining its attributes can help inform midwifery providers throughout the world of the ethical importance of considering failure to rescue in clinical practice. Relevance to midwifery care mandates use of failure to rescue as both a process and outcome measure. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Failure analysis of vise jaw holders for hacksaw machine

    Directory of Open Access Journals (Sweden)

    Essam Ali Al-Bahkali

    2018-01-01

    Full Text Available Failure analysis in mechanical components has been investigated in many studies in the last few years. Failure analysis and prevention are important functions in all engineering disciplines. Materials engineers are often the lead role in the analysis of failures, where a component or product fails in service or if a failure occurs during manufacturing or production processing. In any case, one must determine the cause of the failure to prevent future occurrences and/or to improve the performance of the device, component or structure. For example, the vise jaw holders of hacksaws can break due to accidental heavy loads or machine misuse. The parts that break are the stationary and movable vise jaw holders and the connecter power screw between the holders. To investigate the failure of these components, a three-dimensional finite element model for stress analysis was performed. First, the analysis identified the broken components of the hacksaw machine. In addition, the type of materials of the broken parts was identified, a CAD model was built, and the hacksaw mechanism was analyzed to determine the accurate applied loads on the broken parts. After analyzing the model using Abaqus CAE software, the results showed that the location of the high stresses was identical with the high-stress locations in the original, broken parts. Furthermore, the power screw was subjected to a high load, which deformed the power screw. Also, the stationary vise jaw holder was broken by impact because it was not touched by the power screw until the movable vise jaw holder broke. A conclusion is drawn from the failure analysis and a way to improve the design of the broken parts is suggested.

  20. Cost benefit analysis for failure of sewer pipelines

    Directory of Open Access Journals (Sweden)

    Elmasry Mohamed

    2017-01-01

    Full Text Available Sewer pipelines failure in sewage networks can have adverse potential impacts on socio-economic aspects in any community. Due to the fact that it’s difficult to capture the relationship between the physical and economical aspects as a result of critical sewer pipelines failure, economic concepts are used to evaluate the economic loss as a result of these failures. In this paper an analysis for the costs resulting from sewer pipelines failure and the benefits achieved from avoiding failures are presented. The costs included in the cost benefit analysis are the direct costs used to reinstate failed pipelines and the indirect costs, borne by the society and economy. In the benefits analysis, only the tangible and measurable benefits limited to the health sector and preventing diseases are addressed in this paper. It is expected that the proposed approach could help in estimating the economic losses due to sewer pipelines failure especially for the intangible factors that are difficult to measure. In addition it could help decision makers in taking necessary measures to preserve critical assets that could have adverse potential impacts on valuable natural resources such as surface and groundwater and soil surrounding failed pipelines.

  1. Using Failure Information Analysis to Detect Enterprise Zombies

    Science.gov (United States)

    Zhu, Zhaosheng; Yegneswaran, Vinod; Chen, Yan

    We propose failure information analysis as a novel strategy for uncovering malware activity and other anomalies in enterprise network traffic. A focus of our study is detecting self-propagating malware such as worms and botnets. We begin by conducting an empirical study of transport- and application-layer failure activity using a collection of long-lived malware traces. We dissect the failure activity observed in this traffic in several dimensions, finding that their failure patterns differ significantly from those of real-world applications. Based on these observations, we describe the design of a prototype system called Netfuse to automatically detect and isolate malware-like failure patterns. The system uses an SVM-based classification engine to identify suspicious systems and clustering to aggregate failure activity of related enterprise hosts. Our evaluation using several malware traces demonstrates that the Netfuse system provides an effective means to discover suspicious application failures and infected enterprise hosts. We believe it would be a useful complement to existing defenses.

  2. A Big Data Analysis Approach for Rail Failure Risk Assessment.

    Science.gov (United States)

    Jamshidi, Ali; Faghih-Roohi, Shahrzad; Hajizadeh, Siamak; Núñez, Alfredo; Babuska, Robert; Dollevoet, Rolf; Li, Zili; De Schutter, Bart

    2017-08-01

    Railway infrastructure monitoring is a vital task to ensure rail transportation safety. A rail failure could result in not only a considerable impact on train delays and maintenance costs, but also on safety of passengers. In this article, the aim is to assess the risk of a rail failure by analyzing a type of rail surface defect called squats that are detected automatically among the huge number of records from video cameras. We propose an image processing approach for automatic detection of squats, especially severe types that are prone to rail breaks. We measure the visual length of the squats and use them to model the failure risk. For the assessment of the rail failure risk, we estimate the probability of rail failure based on the growth of squats. Moreover, we perform severity and crack growth analyses to consider the impact of rail traffic loads on defects in three different growth scenarios. The failure risk estimations are provided for several samples of squats with different crack growth lengths on a busy rail track of the Dutch railway network. The results illustrate the practicality and efficiency of the proposed approach. © 2017 The Authors Risk Analysis published by Wiley Periodicals, Inc. on behalf of Society for Risk Analysis.

  3. Launch Vehicle Failure Dynamics and Abort Triggering Analysis

    Science.gov (United States)

    Hanson, John M.; Hill, Ashely D.; Beard, Bernard B.

    2011-01-01

    Launch vehicle ascent is a time of high risk for an on-board crew. There are many types of failures that can kill the crew if the crew is still on-board when the failure becomes catastrophic. For some failure scenarios, there is plenty of time for the crew to be warned and to depart, whereas in some there is insufficient time for the crew to escape. There is a large fraction of possible failures for which time is of the essence and a successful abort is possible if the detection and action happens quickly enough. This paper focuses on abort determination based primarily on data already available from the GN&C system. This work is the result of failure analysis efforts performed during the Ares I launch vehicle development program. Derivation of attitude and attitude rate abort triggers to ensure that abort occurs as quickly as possible when needed, but that false positives are avoided, forms a major portion of the paper. Some of the potential failure modes requiring use of these triggers are described, along with analysis used to determine the success rate of getting the crew off prior to vehicle demise.

  4. Process Equipment Failure Mode Analysis in a Chemical Industry

    Directory of Open Access Journals (Sweden)

    J. Nasl Seraji

    2008-04-01

    Full Text Available Background and aims   Prevention of potential accidents and safety promotion in chemical processes requires systematic safety management in them. The main objective of this study was analysis of important process equipment components failure modes and effects in H2S and CO2  isolation from extracted natural gas process.   Methods   This study was done in sweetening unit of an Iranian gas refinery. Failure Mode and Effect Analysis (FMEA used for identification of process equipments failures.   Results   Totally 30 failures identified and evaluated using FMEA. P-1 blower's blade breaking and sour gas pressure control valve bearing tight moving had maximum risk Priority number (RPN, P-1 body corrosion and increasing plug lower side angle of reach DEAlevel control valve  in tower - 1 were minimum calculated RPN.   Conclusion   By providing a reliable documentation system for equipment failures and  incidents recording, maintaining of basic information for later safety assessments would be  possible. Also, the probability of failures and effects could be minimized by conducting preventive maintenance.

  5. The quantitative failure of human reliability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, C.T.

    1995-07-01

    This philosophical treatise argues the merits of Human Reliability Analysis (HRA) in the context of the nuclear power industry. Actually, the author attacks historic and current HRA as having failed in informing policy makers who make decisions based on risk that humans contribute to systems performance. He argues for an HRA based on Bayesian (fact-based) inferential statistics, which advocates a systems analysis process that employs cogent heuristics when using opinion, and tempers itself with a rational debate over the weight given subjective and empirical probabilities.

  6. The analysis of failure data in the presence of critical and degraded failures

    International Nuclear Information System (INIS)

    Haugen, Knut; Hokstad, Per; Sandtorv, Helge

    1997-01-01

    Reported failures are often classified into severityclasses, e.g., as critical or degraded. The critical failures correspond to loss of function(s) and are those of main concern. The rate of critical failures is usually estimated by the number of observed critical failures divided by the exposure time, thus ignoring the observed degraded failures. In the present paper failure data are analyzed, applying an alternative estimate for the critical failure rate, also taking the number of observed degraded failures into account. The model includes two alternative failure mechanisms, one being of the shock type, immediately leading to a critical failure, another resulting in a gradual deterioration, leading to a degraded failure before the critical failure occurs. Failure data on safety valves from the OREDA (Offshore REliability DAta) data base are analyzed using this model. The estimate for the critical failure rate is obtained and compared with the standard estimate

  7. Failure Analysis of Space Shuttle Orbiter Valve Poppet

    Science.gov (United States)

    Russell, Rick

    2010-01-01

    The poppet failed during STS-126 due to fatigue cracking that most likely was initiated during MDC ground-testing. This failure ultimately led to the discovery that the cracking problem was a generic issue effecting numerous poppets throughout the Shuttle program's history. This presentation has focused on the laboratory analysis of the failed hardware, but this analysis was only one aspect of a comprehensive failure investigation. One critical aspect of the overall investigation was modeling of the fluid flow through this valve to determine the possible sources of cyclic loading. This work has led to the conclusion that the poppets are failing due to flow-induced vibration.

  8. Failure modes and effects analysis of fusion magnet systems

    International Nuclear Information System (INIS)

    Zimmermann, M.; Kazimi, M.S.; Siu, N.O.; Thome, R.J.

    1988-12-01

    A failure modes and consequence analysis of fusion magnet system is an important contributor towards enhancing the design by improving the reliability and reducing the risk associated with the operation of magnet systems. In the first part of this study, a failure mode analysis of a superconducting magnet system is performed. Building on the functional breakdown and the fault tree analysis of the Toroidal Field (TF) coils of the Next European Torus (NET), several subsystem levels are added and an overview of potential sources of failures in a magnet system is provided. The failure analysis is extended to the Poloidal Field (PF) magnet system. Furthermore, an extensive analysis of interactions within the fusion device caused by the operation of the PF magnets is presented in the form of an Interaction Matrix. A number of these interactions may have significant consequences for the TF magnet system particularly interactions triggered by electrical failures in the PF magnet system. In the second part of this study, two basic categories of electrical failures in the PF magnet system are examined: short circuits between the terminals of external PF coils, and faults with a constant voltage applied at external PF coil terminals. An electromagnetic model of the Compact Ignition Tokamak (CIT) is used to examine the mechanical load conditions for the PF and the TF coils resulting from these fault scenarios. It is found that shorts do not pose large threats to the PF coils. Also, the type of plasma disruption has little impact on the net forces on the PF and the TF coils. 39 refs., 30 figs., 12 tabs

  9. 7 CFR 319.8-11 - From approved areas of Mexico.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false From approved areas of Mexico. 319.8-11 Section 319.8... Conditions for the Entry of Cotton and Covers from Mexico § 319.8-11 From approved areas of Mexico. (a) Entry... in, and which were produced and handled only in approved areas of Mexico 5 may be authorized through...

  10. Reliability-based failure analysis of brittle materials

    Science.gov (United States)

    Powers, Lynn M.; Ghosn, Louis J.

    1989-01-01

    The reliability of brittle materials under a generalized state of stress is analyzed using the Batdorf model. The model is modified to include the reduction in shear due to the effect of the compressive stress on the microscopic crack faces. The combined effect of both surface and volume flaws is included. Due to the nature of fracture of brittle materials under compressive loading, the component is modeled as a series system in order to establish bounds on the probability of failure. A computer program was written to determine the probability of failure employing data from a finite element analysis. The analysis showed that for tensile loading a single crack will be the cause of total failure but under compressive loading a series of microscopic cracks must join together to form a dominant crack.

  11. Failure analysis of the boiler water-wall tube

    Directory of Open Access Journals (Sweden)

    S.W. Liu

    2017-10-01

    Full Text Available Failure analysis of the boiler water-wall tube is presented in this work. In order to examine the causes of failure, various techniques including visual inspection, chemical analysis, optical microscopy, scanning electron microscopy and energy dispersive spectroscopy were carried out. Tube wall thickness measurements were performed on the ruptured tube. The fire-facing side of the tube was observed to have experienced significant wall thinning. The composition of the matrix material of the tube meets the requirements of the relevant standards. Microscopic examinations showed that the spheroidization of pearlite is not very obvious. The failure mechanism is identified as a result of the significant localized wall thinning of the boiler water-wall tube due to oxidation.

  12. Analysis of nuclear power plant component failures

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    Items are shown that have caused 90% of the nuclear unit outages and/or deratings between 1971 and 1980 and the magnitude of the problem indicated by an estimate of power replacement cost when the units are out of service or derated. The funding EPRI has provided on these specific items for R and D and technology transfer in the past and the funding planned in the future (1982 to 1986) are shown. EPRI's R and D may help the utilities on only a small part of their nuclear unit outage problems. For example, refueling is the major cause for nuclear unit outages or deratings and the steam turbine is the second major cause for nuclear unit outages; however, these two items have been ranked fairly low on the EPRI priority list for R and D funding. Other items such as nuclear safety (NRC requirements), reactor general, reactor and safety valves and piping, and reactor fuel appear to be receiving more priority than is necessary as determined by analysis of nuclear unit outage causes.

  13. Reliability test and failure analysis of high power LED packages

    Science.gov (United States)

    Zhaohui, Chen; Qin, Zhang; Kai, Wang; Xiaobing, Luo; Sheng, Liu

    2011-01-01

    A new type application specific light emitting diode (LED) package (ASLP) with freeform polycarbonate lens for street lighting is developed, whose manufacturing processes are compatible with a typical LED packaging process. The reliability test methods and failure criterions from different vendors are reviewed and compared. It is found that test methods and failure criterions are quite different. The rapid reliability assessment standards are urgently needed for the LED industry. 85 °C/85 RH with 700 mA is used to test our LED modules with three other vendors for 1000 h, showing no visible degradation in optical performance for our modules, with two other vendors showing significant degradation. Some failure analysis methods such as C-SAM, Nano X-ray CT and optical microscope are used for LED packages. Some failure mechanisms such as delaminations and cracks are detected in the LED packages after the accelerated reliability testing. The finite element simulation method is helpful for the failure analysis and design of the reliability of the LED packaging. One example is used to show one currently used module in industry is vulnerable and may not easily pass the harsh thermal cycle testing.

  14. Risk analysis of geothermal power plants using Failure Modes and Effects Analysis (FMEA) technique

    International Nuclear Information System (INIS)

    Feili, Hamid Reza; Akar, Navid; Lotfizadeh, Hossein; Bairampour, Mohammad; Nasiri, Sina

    2013-01-01

    Highlights: • Using Failure Modes and Effects Analysis (FMEA) to find potential failures in geothermal power plants. • We considered 5 major parts of geothermal power plants for risk analysis. • Risk Priority Number (RPN) is calculated for all failure modes. • Corrective actions are recommended to eliminate or decrease the risk of failure modes. - Abstract: Renewable energy plays a key role in the transition toward a low carbon economy and the provision of a secure supply of energy. Geothermal energy is a versatile source as a form of renewable energy that meets popular demand. Since some Geothermal Power Plants (GPPs) face various failures, the requirement of a technique for team engineering to eliminate or decrease potential failures is considerable. Because no specific published record of considering an FMEA applied to GPPs with common failure modes have been found already, in this paper, the utilization of Failure Modes and Effects Analysis (FMEA) as a convenient technique for determining, classifying and analyzing common failures in typical GPPs is considered. As a result, an appropriate risk scoring of occurrence, detection and severity of failure modes and computing the Risk Priority Number (RPN) for detecting high potential failures is achieved. In order to expedite accuracy and ability to analyze the process, XFMEA software is utilized. Moreover, 5 major parts of a GPP is studied to propose a suitable approach for developing GPPs and increasing reliability by recommending corrective actions for each failure mode

  15. Evaluating wood failure in plywood shear by optical image analysis

    Science.gov (United States)

    Charles W. McMillin

    1984-01-01

    This exploratory study evaulates the potential of using an automatic image analysis method to measure percent wood failure in plywood shear specimens. The results suggest that this method my be as accurate as the visual method in tracking long-term gluebond quality. With further refinement, the method could lead to automated equipment replacing the subjective visual...

  16. Analysis and evaluation of post construction failures of airport apron ...

    African Journals Online (AJOL)

    A new apron pavement for parking aircrafts was constructed in 2014, but major depressions occurred when used by aircrafts soon after the construction. Failure analysis revealed structural design inconsistent with the United States Federal Aviation Administration Design Code AC 150-5320-6E. The methodologies for the ...

  17. Failure analysis of oil pipelines | Ajayi | Botswana Journal of ...

    African Journals Online (AJOL)

    ... the crude, but had a rather low fatigue strength (46.10N/mm2) when compared to the standard. It is suggested that welded joints in pipes be heat-treated and coated on clean substrate pipe in order to enhance material integrity in service. Keywords: Failure Analysis, Oil Pipeline, Corrosion, Environment, Photomicrograph ...

  18. Failure analysis of multiple delaminated composite plates due

    Indian Academy of Sciences (India)

    The present work aims at the first ply failure analysis of laminated composite plates with arbitrarily located multiple delaminations subjected to transverse static load as well as impact. The theoretical formulation is based on a simple multiple delamination model. Conventional first order shear deformation is assumed using ...

  19. Augmenting health care failure modes and effects analysis with simulation

    DEFF Research Database (Denmark)

    Staub-Nielsen, Ditte Emilie; Dieckmann, Peter; Mohr, Marlene

    2014-01-01

    This study explores whether simulation plays a role in health care failure mode and effects analysis (HFMEA); it does this by evaluating whether additional data are found when a traditional HFMEA is augmented with simulation. Two multidisciplinary teams identified vulnerabilities in a process by ...

  20. Service reliability assessment using failure mode and effect analysis ...

    African Journals Online (AJOL)

    Despite Failure Mode and Effect Analysis (FMEA) being a strategic technique for creation of error free service operation, detailed survey study and development of opportunity roadmap for FMEA application in service operation is limited in literature. We presented a preliminary literature survey between 1994 and 2010 that ...

  1. Next generation material failure model for impact analysis

    NARCIS (Netherlands)

    Autar, N.; Hoogeland, M.G.; Vredeveldt, A.W.

    2016-01-01

    Current practice in crash analysis on maritime structures uses rupture strain as a single parameter failure criterion. The criterion assumes a plane strain condition irrespective of the actual stress state. However ship and offshore structures, exposed to actual collisions or groundings may well

  2. Failure analysis of multiple delaminated composite plates due to ...

    Indian Academy of Sciences (India)

    Unknown

    Department of Aerospace Engineering, *Department of Civil Engineering, Indian Institute of Technology,. Kharagpur 721 302, India. Abstract. The present work aims at the first ply failure analysis of laminated composite plates with arbitrarily located multiple delaminations subjected to transverse static load as well as impact.

  3. Failure analysis of carbide fuels under transient overpower (TOP) conditions

    International Nuclear Information System (INIS)

    Nguyen, D.H.

    1980-06-01

    The failure of carbide fuels in the Fast Test Reactor (FTR) under Transient Overpower (TOP) conditions has been examined. The Beginning-of-Cycle Four (BOC-4) all-oxide base case, at $.50/sec ramp rate was selected as the reference case. A coupling between the advanced fuel performance code UNCLE-T and HCDA Code MELT-IIIA was necessary for the analysis. UNCLE-T was used to determine cladding failure and fuel preconditioning which served as initial conditions for MELT-III calculations. MELT-IIIA determined the time of molten fuel ejection from fuel pin

  4. Common Cause Failure Analysis for the Digital Plant Protection System

    International Nuclear Information System (INIS)

    Kagn, Hyun Gook; Jang, Seung Cheol

    2005-01-01

    Safety-critical systems such as nuclear power plants adopt the multiple-redundancy design in order to reduce the risk from the single component failure. The digitalized safety-signal generation system is also designed based on the multiple-redundancy strategy which consists of more redundant components. The level of the redundant design of digital systems is usually higher than those of conventional mechanical systems. This higher redundancy would clearly reduce the risk from the single failure of components, but raise the importance of the common cause failure (CCF) analysis. This research aims to develop the practical and realistic method for modeling the CCF in digital safety-critical systems. We propose a simple and practical framework for assessing the CCF probability of digital equipment. Higher level of redundancy causes the difficulty of CCF analysis because it results in impractically large number of CCF events in the fault tree model when we use conventional CCF modeling methods. We apply the simplified alpha-factor (SAF) method to the digital system CCF analysis. The precedent study has shown that SAF method is quite realistic but simple when we consider carefully system success criteria. The first step for using the SAF method is the analysis of target system for determining the function failure cases. That is, the success criteria of the system could be derived from the target system's function and configuration. Based on this analysis, we can calculate the probability of single CCF event which represents the CCF events resulting in the system failure. In addition to the application of SAF method, in order to accommodate the other characteristics of digital technology, we develop a simple concept and several equations for practical use

  5. PACC information management code for common cause failures analysis

    International Nuclear Information System (INIS)

    Ortega Prieto, P.; Garcia Gay, J.; Mira McWilliams, J.

    1987-01-01

    The purpose of this paper is to present the PACC code, which, through an adequate data management, makes the task of computerized common-mode failure analysis easier. PACC processes and generates information in order to carry out the corresponding qualitative analysis, by means of the boolean technique of transformation of variables, and the quantitative analysis either using one of several parametric methods or a direct data-base. As far as the qualitative analysis is concerned, the code creates several functional forms for the transformation equations according to the user's choice. These equations are subsequently processed by boolean manipulation codes, such as SETS. The quantitative calculations of the code can be carried out in two different ways: either starting from a common cause data-base, or through parametric methods, such as the Binomial Failure Rate Method, the Basic Parameters Method or the Multiple Greek Letter Method, among others. (orig.)

  6. TU-AB-BRD-02: Failure Modes and Effects Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Huq, M. [University of Pittsburgh Medical Center (United States)

    2015-06-15

    Current quality assurance and quality management guidelines provided by various professional organizations are prescriptive in nature, focusing principally on performance characteristics of planning and delivery devices. However, published analyses of events in radiation therapy show that most events are often caused by flaws in clinical processes rather than by device failures. This suggests the need for the development of a quality management program that is based on integrated approaches to process and equipment quality assurance. Industrial engineers have developed various risk assessment tools that are used to identify and eliminate potential failures from a system or a process before a failure impacts a customer. These tools include, but are not limited to, process mapping, failure modes and effects analysis, fault tree analysis. Task Group 100 of the American Association of Physicists in Medicine has developed these tools and used them to formulate an example risk-based quality management program for intensity-modulated radiotherapy. This is a prospective risk assessment approach that analyzes potential error pathways inherent in a clinical process and then ranks them according to relative risk, typically before implementation, followed by the design of a new process or modification of the existing process. Appropriate controls are then put in place to ensure that failures are less likely to occur and, if they do, they will more likely be detected before they propagate through the process, compromising treatment outcome and causing harm to the patient. Such a prospective approach forms the basis of the work of Task Group 100 that has recently been approved by the AAPM. This session will be devoted to a discussion of these tools and practical examples of how these tools can be used in a given radiotherapy clinic to develop a risk based quality management program. Learning Objectives: Learn how to design a process map for a radiotherapy process Learn how to

  7. Analysis of valve failures from the NUCLARR data base

    International Nuclear Information System (INIS)

    Moore, L.M.

    1997-11-01

    The Nuclear Computerized Library for Assessing Reactor Reliability (NUCLARR) contains data on component failures with categorical and qualifying information such as component design, normal operating state, system application and safety grade information which is important to the development of risk-based component surveillance testing requirements. This report presents descriptions and results of analyses of valve component failure data and covariate information available in the document Nuclear Computerized Library for Assessing Reactor Reliability Data Manual, Part 3: Hardware Component Failure Data (NUCLARR Data Manual). Although there are substantial records on valve performance, there are many categories of the corresponding descriptors and qualifying information for which specific values are missing. Consequently, this limits the data available for analysis of covariate effects. This report presents cross tabulations by different covariate categories and limited modeling of covariate effects for data subsets with substantive non-missing covariate information

  8. Sensor Failure Detection of FASSIP System using Principal Component Analysis

    Science.gov (United States)

    Sudarno; Juarsa, Mulya; Santosa, Kussigit; Deswandri; Sunaryo, Geni Rina

    2018-02-01

    In the nuclear reactor accident of Fukushima Daiichi in Japan, the damages of core and pressure vessel were caused by the failure of its active cooling system (diesel generator was inundated by tsunami). Thus researches on passive cooling system for Nuclear Power Plant are performed to improve the safety aspects of nuclear reactors. The FASSIP system (Passive System Simulation Facility) is an installation used to study the characteristics of passive cooling systems at nuclear power plants. The accuracy of sensor measurement of FASSIP system is essential, because as the basis for determining the characteristics of a passive cooling system. In this research, a sensor failure detection method for FASSIP system is developed, so the indication of sensor failures can be detected early. The method used is Principal Component Analysis (PCA) to reduce the dimension of the sensor, with the Squarred Prediction Error (SPE) and statistic Hotteling criteria for detecting sensor failure indication. The results shows that PCA method is capable to detect the occurrence of a failure at any sensor.

  9. Progressive Damage and Failure Analysis of Composite Laminates

    Science.gov (United States)

    Joseph, Ashith P. K.

    Composite materials are widely used in various industries for making structural parts due to higher strength to weight ratio, better fatigue life, corrosion resistance and material property tailorability. To fully exploit the capability of composites, it is required to know the load carrying capacity of the parts made of them. Unlike metals, composites are orthotropic in nature and fails in a complex manner under various loading conditions which makes it a hard problem to analyze. Lack of reliable and efficient failure analysis tools for composites have led industries to rely more on coupon and component level testing to estimate the design space. Due to the complex failure mechanisms, composite materials require a very large number of coupon level tests to fully characterize the behavior. This makes the entire testing process very time consuming and costly. The alternative is to use virtual testing tools which can predict the complex failure mechanisms accurately. This reduces the cost only to it's associated computational expenses making significant savings. Some of the most desired features in a virtual testing tool are - (1) Accurate representation of failure mechanism: Failure progression predicted by the virtual tool must be same as those observed in experiments. A tool has to be assessed based on the mechanisms it can capture. (2) Computational efficiency: The greatest advantages of a virtual tools are the savings in time and money and hence computational efficiency is one of the most needed features. (3) Applicability to a wide range of problems: Structural parts are subjected to a variety of loading conditions including static, dynamic and fatigue conditions. A good virtual testing tool should be able to make good predictions for all these different loading conditions. The aim of this PhD thesis is to develop a computational tool which can model the progressive failure of composite laminates under different quasi-static loading conditions. The analysis

  10. Tests and analysis on steam generator tube failure propagation

    International Nuclear Information System (INIS)

    Tanabe, Hiromi

    1990-01-01

    The understanding of leak enlargement and failure propagation behavior is essential to select a design basis leak (DBL) of LMFBR steam generators. Therefore, various series of experiments, such as self-enlargement tests, target wastage tests, failure propagation tests were conducted in a wide range of leak using test facilities of SWAT at PNC/OEC. Especially, in the large leak tests, potential of overheating failure was investigated under a prototypical steam cooling condition inside target tubes. In the small leak, the difference of wastage resistivity was clarified among several tube materials such as 9-chrome steels. In regard to an analytical approach, a computer code LEAP (Leak Enlargement and Propagation) was developed on the basis of all of these experimental results. The code was used to validate the previously selected DBL of the prototype reactor, Monju, steam generator. This approach proved to be successful in spite of somewhat over-conservatism in the analysis. Moreover, LEAP clarified the effectiveness of a rapid steam dump and an enhanced leak detection system. The code improvement toward a realistic analysis is desired, however, to lessen the DBL for a future large plant and then the re-evaluation of the experimental data such as the size of secondary failure is under way. (author). 4 refs, 8 figs, 1 tab

  11. failure analysis of a uav flight control system using markov analysis

    African Journals Online (AJOL)

    Failure analysis of a flight control system proposed for Air Force Institute of Technology (AFIT) Unmanned Aerial Vehicle (UAV) was studied using Markov Analysis (MA). It was perceived that understanding of the number of failure states and the probability of being in those state are of paramount importance in order to ...

  12. Root Cause Failure Analysis of Stator Winding Insulation failure on 6.2 MW hydropower generator

    Science.gov (United States)

    Adhi Nugroho, Agus; Widihastuti, Ida; Ary, As

    2017-04-01

    Insulation failure on generator winding insulation occurred in the Wonogiri Hydropower plant has caused stator damage since ase was short circuited to ground. The fault has made the generator stop to operate. Wonogiri Hydropower plant is one of the hydroelectric plants run by PT. Indonesia Power UBP Mrica with capacity 2 × 6.2 MW. To prevent damage to occur again on hydropower generators, an analysis is carried out using Root Cause Failure Analysis RCFA is a systematic approach to identify the root cause of the main orbasic root cause of a problem or a condition that is not wanted. There are several aspects to concerned such as: loading pattern and operations, protection systems, generator insulation resistance, vibration, the cleanliness of the air and the ambient air. Insulation damage caused by gradual inhomogeneous cooling at the surface of winding may lead in to partial discharge. In homogeneous cooling may present due to lattice hampered by dust and oil deposits. To avoid repetitive defects and unwanted condition above, it is necessary to perform major maintenance overhaul every 5000-6000 hours of operation.

  13. A review of the technology and process on integrated circuits failure analysis applied in communications products

    Science.gov (United States)

    Ming, Zhimao; Ling, Xiaodong; Bai, Xiaoshu; Zong, Bo

    2016-02-01

    The failure analysis of integrated circuits plays a very important role in the improvement of the reliability in communications products. This paper intends to mainly introduce the failure analysis technology and process of integrated circuits applied in the communication products. There are many technologies for failure analysis, include optical microscopic analysis, infrared microscopic analysis, acoustic microscopy analysis, liquid crystal hot spot detection technology, optical microscopic analysis technology, micro analysis technology, electrical measurement, microprobe technology, chemical etching technology and ion etching technology. The integrated circuit failure analysis depends on the accurate confirmation and analysis of chip failure mode, the search of the root failure cause, the summary of failure mechanism and the implement of the improvement measures. Through the failure analysis, the reliability of integrated circuit and rate of good products can improve.

  14. Failure characteristics analysis and fault diagnosis for liquid rocket engines

    CERN Document Server

    Zhang, Wei

    2016-01-01

    This book concentrates on the subject of health monitoring technology of Liquid Rocket Engine (LRE), including its failure analysis, fault diagnosis and fault prediction. Since no similar issue has been published, the failure pattern and mechanism analysis of the LRE from the system stage are of particular interest to the readers. Furthermore, application cases used to validate the efficacy of the fault diagnosis and prediction methods of the LRE are different from the others. The readers can learn the system stage modeling, analyzing and testing methods of the LRE system as well as corresponding fault diagnosis and prediction methods. This book will benefit researchers and students who are pursuing aerospace technology, fault detection, diagnostics and corresponding applications.

  15. Seismic analysis for translational failure of landfills with retaining walls.

    Science.gov (United States)

    Feng, Shi-Jin; Gao, Li-Ya

    2010-11-01

    In the seismic impact zone, seismic force can be a major triggering mechanism for translational failures of landfills. The scope of this paper is to develop a three-part wedge method for seismic analysis of translational failures of landfills with retaining walls. The approximate solution of the factor of safety can be calculated. Unlike previous conventional limit equilibrium methods, the new method is capable of revealing the effects of both the solid waste shear strength and the retaining wall on the translational failures of landfills during earthquake. Parameter studies of the developed method show that the factor of safety decreases with the increase of the seismic coefficient, while it increases quickly with the increase of the minimum friction angle beneath waste mass for various horizontal seismic coefficients. Increasing the minimum friction angle beneath the waste mass appears to be more effective than any other parameters for increasing the factor of safety under the considered condition. Thus, selecting liner materials with higher friction angle will considerably reduce the potential for translational failures of landfills during earthquake. The factor of safety gradually increases with the increase of the height of retaining wall for various horizontal seismic coefficients. A higher retaining wall is beneficial to the seismic stability of the landfill. Simply ignoring the retaining wall will lead to serious underestimation of the factor of safety. Besides, the approximate solution of the yield acceleration coefficient of the landfill is also presented based on the calculated method. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Failure Mode and Effect Analysis of Subsea Multiphase Pump Equipment

    Directory of Open Access Journals (Sweden)

    Oluwatoyin Shobowale Kafayat

    2014-07-01

    Full Text Available Finding oil and gas reserves in deep/harsh environment with challenging reservoir and field conditions, subsea multiphase pumping benefits has found its way to provide solutions to these issues. Challenges such as failure issues that are still surging the industry and with the current practice of information hiding, this issues becomes even more difficult to tackle. Although, there are some joint industry projects which are only accessible to its members, still there is a need to have a clear understanding of these equipment groups so as to know which issues to focus attention on. A failure mode and effect analysis (FMEA is a potential first aid in understanding this equipment groups. A survey questionnaire/interview was conducted with the oil and gas operating company and equipment manufacturer based on the literature review. The results indicates that these equipment’s group are similar with its onshore counterpart, but the difference is the robustness built into the equipment internal subsystems for subsea applications. The results from the manufacturer perspectives indicates that Helico-axial multiphase pump have a mean time to failure of more than 10 years, twin-screw and electrical submersible pumps are still struggling with a mean time to failure of less than 5 years.

  17. Measurement and Analysis of Failures in Computer Systems

    Science.gov (United States)

    Thakur, Anshuman

    1997-01-01

    This thesis presents a study of software failures spanning several different releases of Tandem's NonStop-UX operating system running on Tandem Integrity S2(TMR) systems. NonStop-UX is based on UNIX System V and is fully compliant with industry standards, such as the X/Open Portability Guide, the IEEE POSIX standards, and the System V Interface Definition (SVID) extensions. In addition to providing a general UNIX interface to the hardware, the operating system has built-in recovery mechanisms and audit routines that check the consistency of the kernel data structures. The analysis is based on data on software failures and repairs collected from Tandem's product report (TPR) logs for a period exceeding three years. A TPR log is created when a customer or an internal developer observes a failure in a Tandem Integrity system. This study concentrates primarily on those TPRs that report a UNIX panic that subsequently crashes the system. Approximately 200 of the TPRs fall into this category. Approximately 50% of the failures reported are from field systems, and the rest are from the testing and development sites. It has been observed by Tandem developers that fewer cases are encountered from the field than from the test centers. Thus, the data selection mechanism has introduced a slight skew.

  18. Failure analysis of boiler tubes in lakhra coal power plant

    International Nuclear Information System (INIS)

    Shah, A.; Baluch, M.M.; Ali, A.

    2010-01-01

    Present work deals with the failure analysis of a boiler tube in Lakhra fluidized bed combustion power station. Initially, visual inspection technique was adopted to analyse the fractured surface. Detailed microstructural investigations of the busted boiler tube were carried out using light optical microscope and scanning electron microscope. The hardness tests were also performed. A 50 percent decrease in hardness of intact portion of the tube material and from area adjacent to failure was measured, which was found to be in good agreement with the wall thicknesses measured of the busted boiler tube i.e. 4 mm and 2 mm from unaffected portion and ruptured area respectively. It was concluded that the major cause of failure of boiler tube is erosion of material which occurs due the coal particles strike at the surface of the tube material. Since the temperature of boiler is not maintained uniformly. The variations in boiler temperature can also affect the material and could be another reason for the failure of the tube. (author)

  19. Failure mode and effects analysis: too little for too much?

    Science.gov (United States)

    Dean Franklin, Bryony; Shebl, Nada Atef; Barber, Nick

    2012-07-01

    Failure mode and effects analysis (FMEA) is a structured prospective risk assessment method that is widely used within healthcare. FMEA involves a multidisciplinary team mapping out a high-risk process of care, identifying the failures that can occur, and then characterising each of these in terms of probability of occurrence, severity of effects and detectability, to give a risk priority number used to identify failures most in need of attention. One might assume that such a widely used tool would have an established evidence base. This paper considers whether or not this is the case, examining the evidence for the reliability and validity of its outputs, the mathematical principles behind the calculation of a risk prioirty number, and variation in how it is used in practice. We also consider the likely advantages of this approach, together with the disadvantages in terms of the healthcare professionals' time involved. We conclude that although FMEA is popular and many published studies have reported its use within healthcare, there is little evidence to support its use for the quantitative prioritisation of process failures. It lacks both reliability and validity, and is very time consuming. We would not recommend its use as a quantitative technique to prioritise, promote or study patient safety interventions. However, the stage of FMEA involving multidisciplinary mapping process seems valuable and work is now needed to identify the best way of converting this into plans for action.

  20. Defining Human Failure Events for Petroleum Risk Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ronald L. Boring; Knut Øien

    2014-06-01

    In this paper, an identification and description of barriers and human failure events (HFEs) for human reliability analysis (HRA) is performed. The barriers, called target systems, are identified from risk significant accident scenarios represented as defined situations of hazard and accident (DSHAs). This report serves as the foundation for further work to develop petroleum HFEs compatible with the SPAR-H method and intended for reuse in future HRAs.

  1. Failure analysis of dissimilar weld in heat exchanger

    Directory of Open Access Journals (Sweden)

    Carlos R. Corleto

    2017-10-01

    Full Text Available The failure analysis of a dissimilar weld in a heat exchanger has been conducted. Within hours of being placed in service, the circumferential weld joining the carbon steel shell to the duplex stainless steel tubesheet experienced partial cracking as H2S was being introduced into the exchanger. The cracking of the weld was determined to be associated with sulfide-stress corrosion cracking facilitated by high weld hardness levels and local dilution of chemistry in the weld.

  2. PV System Component Fault and Failure Compilation and Analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Klise, Geoffrey Taylor; Lavrova, Olga; Gooding, Renee Lynne

    2018-02-01

    This report describes data collection and analysis of solar photovoltaic (PV) equipment events, which consist of faults and fa ilures that occur during the normal operation of a distributed PV system or PV power plant. We present summary statistics from locations w here maintenance data is being collected at various intervals, as well as reliability statistics gathered from that da ta, consisting of fault/failure distributions and repair distributions for a wide range of PV equipment types.

  3. Diffusion of cis-5,8,11,14,17-eicosapentaenoic acid (1); carbon dioxide (2)

    Science.gov (United States)

    Winkelmann, J.

    This document is part of Subvolume A `Gases in Gases, Liquids and their Mixtures' of Volume 15 `Diffusion in Gases, Liquids and Electrolytes' of Landolt-Börnstein Group IV `Physical Chemistry'. It is part of the chapter of the chapter `Diffusion in Pure Gases' and contains data on diffusion of (1) cis-5,8,11,14,17-eicosapentaenoic acid; (2) carbon dioxide

  4. Failure mode and effects analysis outputs: are they valid?

    Directory of Open Access Journals (Sweden)

    Shebl Nada

    2012-06-01

    Full Text Available Abstract Background Failure Mode and Effects Analysis (FMEA is a prospective risk assessment tool that has been widely used within the aerospace and automotive industries and has been utilised within healthcare since the early 1990s. The aim of this study was to explore the validity of FMEA outputs within a hospital setting in the United Kingdom. Methods Two multidisciplinary teams each conducted an FMEA for the use of vancomycin and gentamicin. Four different validity tests were conducted: · Face validity: by comparing the FMEA participants’ mapped processes with observational work. · Content validity: by presenting the FMEA findings to other healthcare professionals. · Criterion validity: by comparing the FMEA findings with data reported on the trust’s incident report database. · Construct validity: by exploring the relevant mathematical theories involved in calculating the FMEA risk priority number. Results Face validity was positive as the researcher documented the same processes of care as mapped by the FMEA participants. However, other healthcare professionals identified potential failures missed by the FMEA teams. Furthermore, the FMEA groups failed to include failures related to omitted doses; yet these were the failures most commonly reported in the trust’s incident database. Calculating the RPN by multiplying severity, probability and detectability scores was deemed invalid because it is based on calculations that breach the mathematical properties of the scales used. Conclusion There are significant methodological challenges in validating FMEA. It is a useful tool to aid multidisciplinary groups in mapping and understanding a process of care; however, the results of our study cast doubt on its validity. FMEA teams are likely to need different sources of information, besides their personal experience and knowledge, to identify potential failures. As for FMEA’s methodology for scoring failures, there were discrepancies

  5. Failure of Emperion modular femoral stem with implant analysis

    Directory of Open Access Journals (Sweden)

    Benjamin M. Stronach, MD, MS

    2016-03-01

    Full Text Available Modularity in total hip arthroplasty provides multiple benefits to the surgeon in restoring the appropriate alignment and position to a previously damaged hip joint. The vast majority of modern implants incorporate modularity into their design with some implants having multiple modular interfaces. There is the potential for failure at modular junctions because of fretting and crevice corrosion in combination with mechanical loading. This case report details the failure of an Emperion (Smith and Nephew, Memphis, TN femoral stem in a 67-year-old male patient 6 years after total hip replacement. Analysis of the implant revealed mechanically assisted crevice corrosion that likely accelerated fatigue crack initiation in the hip stem. The benefits of modularity come with the potential drawback of a combination of fretting and crevice corrosion at the modular junction, which may accelerate fatigue, crack initiation and ultimately reduce the hip longevity.

  6. The study of Influencing Maintenance Factors on Failures of Two gypsum Kilns by Failure Modes and Effects Analysis (FMEA

    Directory of Open Access Journals (Sweden)

    Iraj Alimohammadi

    2014-06-01

    Full Text Available Developing technology and using equipment in Iranian industries caused that maintenance system would be more important to use. Using proper management techniques not only increase the performance of production system but also reduce the failures and costs. The aim of this study was to determine the quality of maintenance system and the effects of its components on failures of kilns in two gypsum production companies using Failure Modes and Effects Analysis (FMEA. Furthermore the costs of failures were studied. After the study of gypsum production steps in the factories, FMEA was conducted by the determination of analysis insight, information gathering, making list of kilns’ component and filling up the FMEA’s tables. The effects of failures on production, how to fail, failure rate, failure severity, and control measures were studied. The evaluation of maintenance system was studied by a check list including questions related to system components. The costs of failures were determined by refer in accounting notebooks and interview with the head of accounting department. It was found the total qualities of maintenance system in NO.1 was more than NO.2 but because of lower quality of NO.1’s kiln design, number of failures and their costs were more. In addition it was determined that repair costs in NO.2’s kiln were about one third of NO.1’s. The low severity failures caused the most costs in comparison to the moderate and low ones. The technical characteristics of kilns were appeared to be the most important factors in reducing of failures and costs.

  7. Radiation effects microscopy for failure analysis of microelectronic devices

    International Nuclear Information System (INIS)

    Doyle, Barney Lee; Dodd, Paul Emerson; Vizkelethy, Gyorgy; Shaneyfelt, Marty Ray; Brice, David Kenneth; Schwank, James Ralph

    2004-01-01

    Microelectronic devices in satellites and spacecraft are exposed to high energy cosmic radiation. Furthermore, Earth-based electronics can be affected by terrestrial radiation. The radiation causes a variety of Single Event Effects (SEE) that can lead to failure of the devices. High energy heavy ion beams are being used to simulate both the cosmic and terrestrial radiation to study radiation effects and to ensure the reliability of electronic devices. Broad beam experiments can provide a measure of the radiation hardness of a device (SEE cross section) but they are unable to pinpoint the failing components in the circuit. A nuclear microbeam is an ideal tool to map SEE on a microscopic scale and find the circuit elements (transistors, capacitors, etc.) that are responsible for the failure of the device. In this paper a review of the latest radiation effects microscopy (REM) work at Sandia will be given. Different SEE mechanisms (Single Event Upset, Single Event Transient, etc.) and the methods to study them (Ion Beam Induced Charge (IBIC), Single Event Upset mapping, etc.) will be discussed. Several examples of using REM to study the basic effects of radiation in electronic devices and failure analysis of integrated circuits will be given

  8. Improving failure analysis efficiency by combining FTA and FMEA in a recursive manner

    NARCIS (Netherlands)

    Peeters, J.F.W.; Basten, R.J.I.; Tinga, Tiedo

    2018-01-01

    When designing a maintenance programme for a capital good, especially a new one, it is of key importance to accurately understand its failure behaviour. Failure mode and effects analysis (FMEA) and fault tree analysis (FTA) are two commonly used methods for failure analysis. FMEA is a bottom-up

  9. Evaluating DSL Service Quality Using Fuzzy Failure Modes and Effects Analysis and Data Envelopment Analysis

    Directory of Open Access Journals (Sweden)

    mahshid abadian

    2013-01-01

    Full Text Available DSL technology services are regarded as a key factor for fast access to data in the large part of population. In this research, a new methodology is presented using fuzzy failure modes and effect analysis and data envelopment analysis to identify the failures of DSL services. The innovation of research includes the application of FMEA in services. Fuzzy logic has been used to contrast with the ambiguity of the evaluations. Therefore, the failure modes in the field of DSL in one of the ISPs have been identified and evaluated by RPN at multiplicative risk. Finally based on the ranking, the most important failures have been identified. The ranking of failure modes indicates that the drop in line speed is the top priority due to high traffic, limited bandwidth of infrastructure companies, viral systems and the problem of internal line.

  10. The distributed failure probability approach to dependent failure analysis, and its application

    International Nuclear Information System (INIS)

    Hughes, R.P.

    1989-01-01

    The Distributed Failure Probability (DFP) approach to the problem of dependent failures in systems is presented. The basis of the approach is that the failure probability of a component is a variable. The source of this variability is the change in the 'environment' of the component, where the term 'environment' is used to mean not only obvious environmental factors such as temperature etc., but also such factors as the quality of maintenance and manufacture. The failure probability is distributed among these various 'environments' giving rise to the Distributed Failure Probability method. Within the framework which this method represents, modelling assumptions can be made, based both on engineering judgment and on the data directly. As such, this DFP approach provides a soundly based and scrutable technique by which dependent failures can be quantitatively assessed. (orig.)

  11. Failure and Reliability Analysis for the Master Pump Shutdown System

    Energy Technology Data Exchange (ETDEWEB)

    BEVINS, R.R.

    2000-09-05

    The Master Pump Shutdown System (MPSS) will be installed in the 200 Areas of the Hanford Site to monitor and control the transfer of liquid waste between tank farms and between the 200 West and 200 East areas through the Cross-Site Transfer Line. The Safety Function provided by the MPSS is to shutdown any waste transfer process within or between tank farms if a waste leak should occur along the selected transfer route. The MPSS, which provides this Safety Class Function, is composed of Programmable Logic Controllers (PLCs), interconnecting wires, relays, Human to Machine Interfaces (HMI), and software. These components are defined as providing a Safety Class Function and will be designated in this report as MPSS/PLC. Input signals to the MPSS/PLC are provided by leak detection systems from each of the tank farm leak detector locations along the waste transfer route. The combination of the MPSS/PLC, leak detection system, and transfer pump controller system will be referred to as MPSS/SYS. The components addressed in this analysis are associated with the MPSS/SYS. The purpose of this failure and reliability analysis is to address the following design issues of the Project Development Specification (PDS) for the MPSS/SYS (HNF 2000a): (1) Single Component Failure Criterion, (2) System Status Upon Loss of Electrical Power, (3) Physical Separation of Safety Class cables, (4) Physical Isolation of Safety Class Wiring from General Service Wiring, and (5) Meeting the MPSS/PLC Option 1b (RPP 1999) Reliability estimate. The failure and reliability analysis examined the system on a component level basis and identified any hardware or software elements that could fail and/or prevent the system from performing its intended safety function.

  12. Failure analysis of axle shaft of a fork lift

    Directory of Open Access Journals (Sweden)

    Souvik Das

    2015-04-01

    Full Text Available An axle shaft of fork lift failed at operation within 296 h of service. The shaft transmits torque from discrepancy to wheel through planetary gear arrangement. A section of fractured axle shaft made of induction-hardened steel was analyzed to determine the root cause of the failure. Optical microscopies as well as field emission gun scanning electron microscopy (FEG-SEM along with energy dispersive spectroscopy (EDS were carried out to characterize the microstructure. Hardness profile throughout the cross-section was evaluated by micro-hardness measurements. Chemical analysis indicated that the shaft was made of 42CrMo4 steel grade as per specification. Microstructural analysis and micro-hardness profile revealed that the shaft was improperly heat treated resulting in a brittle case, where crack was found to initiate from the case in a brittle mode in contrast to ductile mode within the core. This behaviour was related to differences in microstructure, which was observed to be martensitic within the case with a micro-hardness equivalent to 735 HV, and a mixture of non-homogeneous structure of pearlite and ferrite within the core with a hardness of 210 HV. The analysis suggests that the fracture initiated from the martensitic case as brittle mode due to improper heat treatment process (high hardness. Moreover the inclusions along the hot working direction i.e. in the longitudinal axis made the component more susceptible to failure.

  13. Association of adiposity measures with blood lipids and blood pressure in children aged 8-11 years.

    Science.gov (United States)

    Vizcaíno, Vicente Martínez; Aguilar, Fernando Salcedo; Martínez, Montserrat Solera; López, Mairena Sánchez; Gutiérrez, Ricardo Franquelo; Rodríguez-Artalejo, Fernando

    2007-09-01

    To examine the association of body mass index (BMI), triceps skinfold thickness (TST) and percentage body fat (%BF) from bioelectrical impedance analysis (BIA) with blood lipids, systolic blood pressure (SBP) and diastolic blood pressure (DBP) in children. Cross-sectional study was conducted on 1280 schoolchildren aged 8-11 years from the Cuenca province (Spain). Data collection was conducted under standardized conditions, taking several measurements of each variable to enhance accuracy. Analyses were performed using age-adjusted correlation coefficients, and multiple linear regression adjusted for age, BMI, TST and %BF. Correlations between %BF and apolipoprotein (apo) B, total cholesterol, low-density lipoprotein cholesterol (LDL-c), total cholesterol/HDL-c ratio and DBP were higher than those for BMI and TST. In contrast, the correlations between BMI, and apo A-I and SBP were higher than those for %BF and TST. The results were similar across the sexes. The correlations between each of the three measures of body fatness, and blood lipids and blood pressure were highest in children with greatest BMI and %BF. When analyses were adjusted for the three body fatness measures, %BF showed stronger associations than did BMI or TST with blood lipids and blood pressure, with the exception of apo A-I and SBP, which were more closely associated with BMI. %BF from BIA is more strongly associated than either BMI or TST with most of the blood lipid fractions in schoolchildren aged 8-11 years.

  14. Failure Analysis of Nonvolatile Residue (NVR) Analyzer Model SP-1000

    Science.gov (United States)

    Potter, Joseph C.

    2011-01-01

    National Aeronautics and Space Administration (NASA) subcontractor Wiltech contacted the NASA Electrical Lab (NE-L) and requested a failure analysis of a Solvent Purity Meter; model SP-IOOO produced by the VerTis Instrument Company. The meter, used to measure the contaminate in a solvent to determine the relative contamination on spacecraft flight hardware and ground servicing equipment, had been inoperable and in storage for an unknown amount of time. NE-L was asked to troubleshoot the unit and make a determination on what may be required to make the unit operational. Through the use of general troubleshooting processes and the review of a unit in service at the time of analysis, the unit was found to be repairable but would need the replacement of multiple components.

  15. Corrosion failure analysis of hearing aid battery-spring contacts

    DEFF Research Database (Denmark)

    Gudla, Visweswara Chakravarthy; Ambat, Rajan

    2017-01-01

    Reliability of low power electrical contacts such as those in hearing aid battery-spring systems is a very critical aspect for the overall performance of the device. These systems are exposed to certain harsh environments like high humidity and elevated temperatures, and often in combination...... the susceptibility of these systems to galvanic corrosion. In this study, traditional behind the ear (BTE) hearing aid systems, which failed during service were analysed. Failure analysis was performed on the dome type battery-spring contact systems. The morphology of the contact areas was observed using scanning...... electron microscopy, and the compositional analysis of the corrosion products and contaminants was performed using energy dispersive X-ray spectroscopy. Wear track morphology was observed on the contact points, and the top coating on the dome was worn out exposing the substrate spring material...

  16. A failure modes, mechanisms, and effects analysis (FMMEA) of lithium-ion batteries

    Science.gov (United States)

    Hendricks, Christopher; Williard, Nick; Mathew, Sony; Pecht, Michael

    2015-11-01

    Lithium-ion batteries are popular energy storage devices for a wide variety of applications. As batteries have transitioned from being used in portable electronics to being used in longer lifetime and more safety-critical applications, such as electric vehicles (EVs) and aircraft, the cost of failure has become more significant both in terms of liability as well as the cost of replacement. Failure modes, mechanisms, and effects analysis (FMMEA) provides a rigorous framework to define the ways in which lithium-ion batteries can fail, how failures can be detected, what processes cause the failures, and how to model failures for failure prediction. This enables a physics-of-failure (PoF) approach to battery life prediction that takes into account life cycle conditions, multiple failure mechanisms, and their effects on battery health and safety. This paper presents an FMMEA of battery failure and describes how this process enables improved battery failure mitigation control strategies.

  17. Machinery failure analysis and troubleshooting practical machinery management for process plants

    CERN Document Server

    Bloch, Heinz P

    2012-01-01

    Solve the machinery failure problems costing you time and money with this classic, comprehensive guide to analysis and troubleshooting  Provides detailed, complete and accurate information on anticipating risk of component failure and avoiding equipment downtime Includes numerous photographs of failed parts to ensure you are familiar with the visual evidence you need to recognize Covers proven approaches to failure definition and offers failure identification and analysis methods that can be applied to virtually all problem situations Demonstr

  18. Standard guide for corrosion-related failure analysis

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2000-01-01

    1.1 This guide covers key issues to be considered when examining metallic failures when corrosion is suspected as either a major or minor causative factor. 1.2 Corrosion-related failures could include one or more of the following: change in surface appearance (for example, tarnish, rust, color change), pin hole leak, catastrophic structural failure (for example, collapse, explosive rupture, implosive rupture, cracking), weld failure, loss of electrical continuity, and loss of functionality (for example, seizure, galling, spalling, swelling). 1.3 Issues covered include overall failure site conditions, operating conditions at the time of failure, history of equipment and its operation, corrosion product sampling, environmental sampling, metallurgical and electrochemical factors, morphology (mode) or failure, and by considering the preceding, deducing the cause(s) of corrosion failure. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibili...

  19. Seasonal variations in growth and body composition of 8-11-year-old Danish children

    DEFF Research Database (Denmark)

    Dalskov, Stine-Mathilde; Ritz, Christian; Larnkjær, Anni

    2016-01-01

    BACKGROUND: Earlier studies on seasonality in growth reported the largest height gains during spring and largest body weight gains during autumn. We examined seasonality in height, body weight, BMI, fat mass index (FMI) and fat-free mass index (FFMI) among contemporary Danish 8-11-year-olds. METH...... suggest seasonality in growth and body composition of Danish children. We recovered the well-known height velocity peak during spring time, but unlike earlier studies we found coincident peaks in body weight, BMI, and FFMI velocities.Pediatric Research (2015); doi:10.1038/pr.2015.206....

  20. Failure analysis of collector circuits associated with wind farms

    Directory of Open Access Journals (Sweden)

    Clifton Ashley P.

    2017-01-01

    Full Text Available Wind farm collector circuits generally comprise several wind turbine generators (WTG’s. WTG’s are connected in parallel to a substation. This connection acts as the point-of-connection to the national electricity grid. The electrical load in these circuits is close to component (power cables and accessories ratings. The objective of this paper is to identify cable joint failure paths; and, develop an understanding of specific contributing factors. All findings presented were established from literature review involving data analysis and discussion with industry experts working across the wind industry. Application of forces, inadequate workmanship, incorrect thermal resistance or other contributing factors, all contribute to high conductor operating temperatures. High conductor operating temperatures highlight issues including insufficient environmental heat transfer due to the use of inadequate cable trenching materials. This in turn results in the imbalanced application of force, experienced at the cable joint, as a direct result of frequent thermal expansion and contraction. For most cable joint failures, the root cause is insulation breakdown due to sustained deterioration of the cross-linked polyethylene insulation. This is a direct result from excessive operating temperatures.

  1. Survival analysis of heart failure patients: A case study.

    Directory of Open Access Journals (Sweden)

    Tanvir Ahmad

    Full Text Available This study was focused on survival analysis of heart failure patients who were admitted to Institute of Cardiology and Allied hospital Faisalabad-Pakistan during April-December (2015. All the patients were aged 40 years or above, having left ventricular systolic dysfunction, belonging to NYHA class III and IV. Cox regression was used to model mortality considering age, ejection fraction, serum creatinine, serum sodium, anemia, platelets, creatinine phosphokinase, blood pressure, gender, diabetes and smoking status as potentially contributing for mortality. Kaplan Meier plot was used to study the general pattern of survival which showed high intensity of mortality in the initial days and then a gradual increase up to the end of study. Martingale residuals were used to assess functional form of variables. Results were validated computing calibration slope and discrimination ability of model via bootstrapping. For graphical prediction of survival probability, a nomogram was constructed. Age, renal dysfunction, blood pressure, ejection fraction and anemia were found as significant risk factors for mortality among heart failure patients.

  2. Ayame/PAM-D apogee kick motor nozzle failure analysis

    Science.gov (United States)

    1981-01-01

    The failure of two communication satellites during firing sequence were examined. The correlation/comparison of the circumstances of the Ayame incidents and the failure of the STAR 48 (DM-2) motor are reviewed. The massive nozzle failure of the AKM to determine the impact on spacecraft performance is examined. It is recommended that a closer watch is kept on systems techniques,

  3. How Analysis Informs Regulation:Success and Failure of ...

    Science.gov (United States)

    How Analysis Informs Regulation:Success and Failure of Evolving Approaches to Polyfluoroalkyl Acid Contamination The National Exposure Research Laboratory (NERL) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in support of EPA mission to protect human health and the environment. HEASD research program supports Goal 1 (Clean Air) and Goal 4 (Healthy People) of EPA strategic plan. More specifically, our division conducts research to characterize the movement of pollutants from the source to contact with humans. Our multidisciplinary research program produces Methods, Measurements, and Models to identify relationships between and characterize processes that link source emissions, environmental concentrations, human exposures, and target-tissue dose. The impact of these tools is improved regulatory programs and policies for EPA.

  4. Prestudy - Development of trend analysis of component failure

    International Nuclear Information System (INIS)

    Poern, K.

    1995-04-01

    The Bayesian trend analysis model that has been used for the computation of initiating event intensities (I-book) is based on the number of events that have occurred during consecutive time intervals. The model itself is a Poisson process with time-dependent intensity. For the analysis of aging it is often more relevant to use times between failures for a given component as input, where by 'time' is meant a quantity that best characterizes the age of the component (calendar time, operating time, number of activations etc). Therefore, it has been considered necessary to extend the model and the computer code to allow trend analysis of times between events, and also of several sequences of times between events. This report describes this model extension as well as an application on an introductory ageing analysis of centrifugal pumps defined in Table 5 of the T-book. The application in turn directs the attention to the need for further development of both the trend model and the data base. Figs

  5. Defining Business decline, failure and turnaround: A content analysis

    Directory of Open Access Journals (Sweden)

    Marius Pretorius

    2009-12-01

    Full Text Available In the past, researchers have often defined failure to suit their data. This has led to a lack of comparability in research outputs. The overriding objective of this paper is to propose a universal definition for the failure phenomenon. Clear definitions are a prerequisite for exploring major constructs, their relationship to failure and the context and processes involved. The study reports on the core definitions of the failure phenomenon and identifies core criteria for distinguishing between them. It places decline, failure and turnaround in perspective and highlights level of distress and turnaround as key moderating elements. It distinguishes the failure phenomenon from controversial synonyms such as closure, accidental bankruptcy and closure for alternative motives. Key words and phrases: business decline, failure, turnaround, level of distress

  6. ANALYSIS OF RELIABILITY OF NONRECTORABLE REDUNDANT POWER SYSTEMS TAKING INTO ACCOUNT COMMON FAILURES

    Directory of Open Access Journals (Sweden)

    V. A. Anischenko

    2014-01-01

    Full Text Available Reliability Analysis of nonrestorable redundant power Systems of industrial plants and other consumers of electric energy was carried out. The main attention was paid to numbers failures influence, caused by failures of all elements of System due to one general reason. Noted the main possible reasons of common failures formation. Two main indicators of reliability of non-restorable systems are considered: average time of no-failure operation and mean probability of no-failure operation. Modeling of failures were carried out by mean of division of investigated system into two in-series connected subsystems, one of them indicated independent failures, but the other indicated common failures. Due to joined modeling of single and common failures resulting intensity of failures is the amount incompatible components: intensity statistically independent failures and intensity of common failures of elements and system in total.It is shown the influence of common failures of elements on average time of no-failure operation of system. There is built the scale of preference of systems according to criterion of  average time maximum of no-failure operation, depending on portion of common failures. It is noticed that such common failures don’t influence on the scale of preference, but  change intervals of time, determining the moments of systems failures and excepting them from the number of comparators. There were discussed two problems  of conditionally optimization of  systems’  reservation choice, taking into account their reliability and cost. The first problem is solved due to criterion of minimum cost of system providing mean probability of no-failure operation, the second problem is solved due to criterion of maximum of mean probability of no-failure operation with cost limitation of system.

  7. IUTAM Symposium on Statistical Energy Analysis, 8-11 July 1997, Programme

    Science.gov (United States)

    1997-01-01

    typically consists of two layers of plasterboard attached to some form of frame. There may or may not be absorption in the cavity and in cases where...sound transmission is important two separate frames may be used In most cases a common frame is used and plasterboard is attached to the frame either...there may be a non-diffuse sound field. An alternative method of modelling the coupling is to assume that the connection between the plasterboard

  8. Changing things around: Dramatic aspect in the Pericope Adulterae (Jn 7:53–8:11

    Directory of Open Access Journals (Sweden)

    Piet van Staden

    2015-09-01

    Full Text Available In this article the transactional model of narrative as expounded by Louise Rosenblatt, supported by an analysis in terms of dramatic aspect, is employed to show how the interpolated scene in John 7:53–8:11 (known as the Pericope Adulterae and hereafter referred to as PA functions as a pivot of power in the gospel. The content of the scene, as well as its placement within the gospel, serves to promote an aesthetic reading that focusses attention on the experience during the reading event. Awareness of sensations, images, feelings and ideas from past experiences, as well as the sounds and rhythms of the words become important. The reader responds to the aesthetic transaction, the various elements of total experience, rather than simply to the text, during and after the reading event.

  9. The Reconstruction and Failure Analysis of The Space Shuttle Columbia

    Science.gov (United States)

    Russell, Richard W.

    2010-01-01

    This viewgraph presentation describes a very detailed reconstruction plan and failure analysis of The Space Shuttle Columbia accident. The contents include: 1) STS-107 Timeline; 2) Foam Impact; 3) Recovery; 4) Reconstruction; 5) Reconstruction Plan; 6) Reconstruction Hanger; 7) Pathfinders; 8) Aluminum Pathfinder; 9) Early Analysis - Left MLG Door Area; 10) Emphasis Switched to Left Hand Wing Leading Edge; 11) Wing Leading Edge Subsystem (LESS); 12) 3D Reconstruction of Left WLE; 13) Left Wing Tile Table; 14) LESS Observations; 15) Left Hand Wing Debris Points to RCC 8/9 - Slumped Tile; 16) Reconstructed View of LC/P 9 tile with I/B Tile; 17) Reconstructed View of Lower C/P 9 Tile; 18) Carrier Panel 8 - Upper; 19) Left Hand Wing Debris Points to RCC 8/9 - Erosion and RCC with attach hole intact; 20) Erosion on Panel 8 Upper Outboard Rib; 21) RCC Panels 8 & 9 Erosion Features; 22) Slumping Source for Carrier Panel 9 Tile was Revealed; 23) Debris Indicated Highest Probability Initiation Site; 24) Left Hand Wing Debris Points to RCC 8/9- Metallic Deposits; 25) Relative Metallic Deposition on L/H Wing Materials; 26) Metallic Deposit Example, LH RCC 8; 27) High Level Questions; 28) Analysis Plan Challenges; 29) Analysis Techniques; 30) Analysis Approach; 31) RCC Panel 8 Erosion Features; 32) Radiographic Features; 33) Radiography WLE LH Panel 8; 34) LH RCC 8 Upper Apex; 35) LH RCC 8 - Deposit Feature: Thick Tear Shaped; 36) LH RCC 8 - Deposit Feature: Thick Globules; 37) LH RCC 8 - Deposit Feature: Spheroids; 38) LH RCC 8 - Deposit Feature: Uniform Deposit; 39) Significant Findings - Sampling All Other panels; 40) Proposed Breach Location and Plasma Flow; 41) Corroborating Information - RCC Panel Debris Locations; 42) Corroborating Information - LH OMS Pod Analysis; 43) Corroborating Information - Impact Testing; and 44) Overall Forensic Conclusions.

  10. Failure Analysis in Space: International Space Station (ISS) Starboard Solar Alpha Rotary Joint (SARJ) Debris Analysis

    Science.gov (United States)

    Long, V. S.; Wright, M. C.; McDanels, S. J.; Lubas, D.; Tucker, B.; Marciniak, P. J.

    2010-01-01

    This slide presentation reviews the debris analysis of the Starboard Solar Alpha Rotary Joint (SARJ), a mechanism that is designed to keep the solar arrays facing the sun. The goal of this was to identify the failure mechanism based on surface morphology and to determine the source of debris through elemental and particle analysis.

  11. Bayesian analysis of repairable systems showing a bounded failure intensity

    International Nuclear Information System (INIS)

    Guida, Maurizio; Pulcini, Gianpaolo

    2006-01-01

    The failure pattern of repairable mechanical equipment subject to deterioration phenomena sometimes shows a finite bound for the increasing failure intensity. A non-homogeneous Poisson process with bounded increasing failure intensity is then illustrated and its characteristics are discussed. A Bayesian procedure, based on prior information on model-free quantities, is developed in order to allow technical information on the failure process to be incorporated into the inferential procedure and to improve the inference accuracy. Posterior estimation of the model-free quantities and of other quantities of interest (such as the optimal replacement interval) is provided, as well as prediction on the waiting time to the next failure and on the number of failures in a future time interval is given. Finally, numerical examples are given to illustrate the proposed inferential procedure

  12. Observations on analysis, testing and failure of prestressed concrete containments

    International Nuclear Information System (INIS)

    Murray, D.W.

    1984-01-01

    The paper reviews the mechanics which indicate that a bursting failure with large energy release is the failure mechanism to be expected from ductile lined containment structures pressurized to failure. It reviews a study which shows that, because of leakage, this is not the case for unlined prestressed containments. It argues that current practice, since it does not specifically address the bursting failure problem for lined prestressed containments, is inadequate to ensure that this type of failure could not occur. It concludes that, in view of the inadequacy of the current state-of-the-art to predict leakage from lined structures, the logical remedy is to eliminate all possibility of bursting failure by making provision for venting of containments. (orig.)

  13. System reliability analysis using dominant failure modes identified by selective searching technique

    International Nuclear Information System (INIS)

    Kim, Dong-Seok; Ok, Seung-Yong; Song, Junho; Koh, Hyun-Moo

    2013-01-01

    The failure of a redundant structural system is often described by innumerable system failure modes such as combinations or sequences of local failures. An efficient approach is proposed to identify dominant failure modes in the space of random variables, and then perform system reliability analysis to compute the system failure probability. To identify dominant failure modes in the decreasing order of their contributions to the system failure probability, a new simulation-based selective searching technique is developed using a genetic algorithm. The system failure probability is computed by a multi-scale matrix-based system reliability (MSR) method. Lower-scale MSR analyses evaluate the probabilities of the identified failure modes and their statistical dependence. A higher-scale MSR analysis evaluates the system failure probability based on the results of the lower-scale analyses. Three illustrative examples demonstrate the efficiency and accuracy of the approach through comparison with existing methods and Monte Carlo simulations. The results show that the proposed method skillfully identifies the dominant failure modes, including those neglected by existing approaches. The multi-scale MSR method accurately evaluates the system failure probability with statistical dependence fully considered. The decoupling between the failure mode identification and the system reliability evaluation allows for effective applications to larger structural systems

  14. Data analysis using the Binomial Failure Rate common cause model

    International Nuclear Information System (INIS)

    Atwood, C.L.

    1983-09-01

    This report explains how to use the Binomial Failure Rate (BFR) method to estimate common cause failure rates. The entire method is described, beginning with the conceptual model, and covering practical issues of data preparation, treatment of variation in the failure rates, Bayesian estimation of the quantities of interest, checking the model assumptions for lack of fit to the data, and the ultimate application of the answers

  15. Space Shuttle Stiffener Ring Foam Failure Analysis, a Non-Conventional Approach

    Science.gov (United States)

    Howard, Philip M.

    2015-01-01

    The Space Shuttle Program made use of the excellent properties of rigid polyurethane foam for cryogenic tank insulation and as structural protection on the solid rocket boosters. When foam applications de-bond, classical methods of failure analysis did not provide root cause of the failure of the foam. Realizing that foam is the ideal media to document and preserve its own mode of failure, thin sectioning was seen as a logical approach for foam failure analysis to observe the three dimensional morphology of the foam cells. The cell foam morphology provided a much greater understanding of the failure modes than previously achieved.

  16. Web-based Dietary Assessment for 8-11 Year Old School-children

    DEFF Research Database (Denmark)

    Biltoft-Jensen, Anja Pia

    DASC the children’s school lunch was photographed and weighed before and after lunch. During the week after the baseline food- and activity recording fasting blood samples were taken. The acceptability of WebDASC was assessed with a questionnaire. Energy intake (EI) estimated with WebDASC was evaluated against......Background and aim The potential health effects of a New Nordic Diet (NND) are to be tested in the Danish OPUS (Optimal well-being, development and health for Danish children through a healthy New Nordic Diet) School Meal study among 8-11- year-old school-children. Valid and reliable dietary...... assessment methods are essential for identifying how eating habits may change in response to the intervention and for identifying the impact of the children’s dietary habits on their health and weight status. Several challenges are connected to collecting dietary data from children including their cognitive...

  17. [Failure mode and effects analysis on computerized drug prescriptions].

    Science.gov (United States)

    Paredes-Atenciano, J A; Roldán-Aviña, J P; González-García, Mercedes; Blanco-Sánchez, M C; Pinto-Melero, M A; Pérez-Ramírez, C; Calvo Rubio-Burgos, Miguel; Osuna-Navarro, F J; Jurado-Carmona, A M

    2015-01-01

    To identify and analyze errors in drug prescriptions of patients treated in a "high resolution" hospital by applying a Failure mode and effects analysis (FMEA).Material and methods A multidisciplinary group of medical specialties and nursing analyzed medical records where drug prescriptions were held in free text format. An FMEA was developed in which the risk priority index (RPI) was obtained from a cross-sectional observational study using an audit of the medical records, carried out in 2 phases: 1) Pre-intervention testing, and (2) evaluation of improvement actions after the first analysis. An audit sample size of 679 medical records from a total of 2,096 patients was calculated using stratified sampling and random selection of clinical events. Prescription errors decreased by 22.2% in the second phase. FMEA showed a greater RPI in "unspecified route of administration" and "dosage unspecified", with no significant decreases observed in the second phase, although it did detect, "incorrect dosing time", "contraindication due to drug allergy", "wrong patient" or "duplicate prescription", which resulted in the improvement of prescriptions. Drug prescription errors have been identified and analyzed by FMEA methodology, improving the clinical safety of these prescriptions. This tool allows updates of electronic prescribing to be monitored. To avoid such errors would require the mandatory completion of all sections of a prescription. Copyright © 2014 SECA. Published by Elsevier Espana. All rights reserved.

  18. Analysis of transient fuel failure mechanisms: selected ANL programs

    International Nuclear Information System (INIS)

    Deitrich, L.W.

    1975-01-01

    Analytical programs at Argonne National Laboratory related to fuel pin failure mechanisms in fast-reactor accident transients are described. The studies include transient fuel pin mechanics, mechanics of unclad fuel, and mechanical effects concerning potential fuel failure propagation. (U.S.).

  19. A big data analysis approach for rail failure risk assessment

    NARCIS (Netherlands)

    Jamshidi, A.; Faghih Roohi, S.; Hajizadeh, S.; Nunez Vicencio, Alfredo; Babuska, R.; Dollevoet, R.P.B.J.; Li, Z.; De Schutter, B.H.K.

    2017-01-01

    Railway infrastructure monitoring is a vital task to ensure rail transportation safety. A rail failure could result in not only a considerable impact on train delays and maintenance costs, but also on safety of passengers. In this article, the aim is to assess the risk of a rail failure by

  20. Metallized Film Capacitor Lifetime Evaluation and Failure Mode Analysis

    CERN Document Server

    Gallay, R.

    2015-06-15

    One of the main concerns for power electronic engineers regarding capacitors is to predict their remaining lifetime in order to anticipate costly failures or system unavailability. This may be achieved using a Weibull statistical law combined with acceleration factors for the temperature, the voltage, and the humidity. This paper discusses the different capacitor failure modes and their effects and consequences.

  1. Progressive failure analysis of fibrous composite materials and structures

    Science.gov (United States)

    Bahei-El-din, Yehia A.

    1990-01-01

    A brief description is given of the modifications implemented in the PAFAC finite element program for the simulation of progressive failure in fibrous composite materials and structures. Details of the memory allocation, input data, and the new subroutines are given. Also, built-in failure criteria for homogeneous and fibrous composite materials are described.

  2. Letter report seismic shutdown system failure mode and effect analysis

    International Nuclear Information System (INIS)

    KECK, R.D.

    1999-01-01

    The Supply Ventilation System Seismic Shutdown ensures that the 234-52 building supply fans, the dry air process fans and vertical development calciner are shutdown following a seismic event. This evaluates the failure modes and determines the effects of the failure modes

  3. Production of 8,11-dihydroxy and 8-hydroxy unsaturated fatty acids from unsaturated fatty acids by recombinant Escherichia coli expressing 8,11-linoleate diol synthase from Penicillium chrysogenum.

    Science.gov (United States)

    Kim, Min-Ji; Seo, Min-Ju; Shin, Kyung-Chul; Oh, Deok-Kun

    2017-03-01

    Hydroxy unsaturated fatty acids can be used as antimicrobial surfactants. 8,11-Linoleate diol synthase (8,11-LDS) catalyzes the conversion of unsaturated fatty acid to 8-hydroperoxy unsaturated fatty acid, and it is subsequently isomerized to 8,11-dihydroxy unsaturated fatty acid by the enzyme. The optimal reaction conditions of recombinant Escherichia coli expressing Penicillium chrysogenum 8,11-LDS for the production of 8,11-dihydroxy-9,12(Z,Z)-octadecadienoic acid (8,11-DiHODE), 8,11-dihydroxy-9,12,15(Z,Z,Z)-octadecatrienoic acid (8,11-DiHOTrE), 8-hydroxy-9(Z)-hexadecenoic acid (8-HHME), and 8-hydroxy-9(Z)-octadecenoic acid (8-HOME) were pH 7.0, 25°C, 10 g/L linoleic acid, and 20 g/L cells; pH 6.0, 25°C, 6 g/L α-linolenic acid, and 60 g/L cells; pH 7.0, 25°C, 8 g/L palmitoleic acid, and 25 g/L cells; and pH 8.5, 30°C, 6 g/L oleic acid, and 25 g/L cells, respectively. Under these optimized conditions, the recombinant cells produced 6.0 g/L 8,11-DiHODE for 60 min, with a conversion of 60% (w/w) and a productivity of 6.0 g/L/h; 4.3 g/L 8,11-DiHOTrE for 60 min, with a conversion of 72% (w/w) and a productivity of 4.3 g/L/h; 4.3 g/L 8-HHME acid for 60 min, with a conversion of 54% (w/w) and a productivity of 4.3 g/L/h; and 0.9 g/L 8-HOME for 30 min, with a conversion of 15% (w/w) and a productivity of 1.8 g/L/h. To best of our knowledge, this is the first report on the biotechnological production of 8,11-DiHODE, 8,11-DiHOTrE, 8-HHME, and 8-HOME. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:390-396, 2017. © 2017 American Institute of Chemical Engineers.

  4. Women's Experiences With Flap Failure After Autologous Breast Reconstruction: A Qualitative Analysis.

    Science.gov (United States)

    Higgins, Kristen S; Gillis, Joshua; Williams, Jason G; LeBlanc, Martin; Bezuhly, Michael; Chorney, Jill M

    2017-05-01

    Clinical experience suggests that flap failure after autologous breast reconstruction can be a devastating experience for women. Previous research has examined women's experiences with autologous breast reconstruction with and without complications, and patients' experiences with suboptimal outcomes from other medical procedures. The authors aimed to examine the psychosocial experience of flap failure from the patient's perspective. Seven women who had experienced unilateral flap failure after deep inferior epigastric perforator flap surgery in the past 12 years completed semistructured interviews about their breast cancer treatments, their experiences with flap failure, the impact of flap failure on their lives, and the coping strategies they used. Interpretive phenomenological analysis, a type of qualitative analysis that provides an in-depth account of participant's experiences and their meanings, was used to analyze the interview data. From these data, patient-derived recommendations were developed for surgeons caring for women who have experienced flap failure. Three main themes (6 subthemes) emerged: coming to terms with flap failure (coping with emotions, body dissatisfaction); making meaning of flap failure experience (questioning, relationship with surgeon); and care providers acknowledging the emotional experience of flap failure (experience of being treated "mechanically," suggestions for improvement). In conclusion, flap failure in breast reconstruction is an emotionally difficult experience for women. Although there are similarities to other populations of patients experiencing suboptimal outcomes from medical procedures, there are also unique aspects of the flap failure experience. A better understanding of women's experiences with flap failure will assist in providing more appropriate supports.

  5. Failure analysis of the cement mantle in total hip arthroplasty with an efficient probabilistic method.

    Science.gov (United States)

    Kaymaz, Irfan; Bayrak, Ozgu; Karsan, Orhan; Celik, Ayhan; Alsaran, Akgun

    2014-04-01

    Accurate prediction of long-term behaviour of cemented hip implants is very important not only for patient comfort but also for elimination of any revision operation due to failure of implants. Therefore, a more realistic computer model was generated and then used for both deterministic and probabilistic analyses of the hip implant in this study. The deterministic failure analysis was carried out for the most common failure states of the cement mantle. On the other hand, most of the design parameters of the cemented hip are inherently uncertain quantities. Therefore, the probabilistic failure analysis was also carried out considering the fatigue failure of the cement mantle since it is the most critical failure state. However, the probabilistic analysis generally requires large amount of time; thus, a response surface method proposed in this study was used to reduce the computation time for the analysis of the cemented hip implant. The results demonstrate that using an efficient probabilistic approach can significantly reduce the computation time for the failure probability of the cement from several hours to minutes. The results also show that even the deterministic failure analyses do not indicate any failure of the cement mantle with high safety factors, the probabilistic analysis predicts the failure probability of the cement mantle as 8%, which must be considered during the evaluation of the success of the cemented hip implants.

  6. Going South: Analysis of an Historic Project Engineering Failure

    Science.gov (United States)

    Scott, John H.

    2009-01-01

    NASA's successful conduct of the Apollo Program greatly enhanced the prestige of the United States and remains broadly accepted as America's gift to all Mankind. NASA's accomplishments continue to amaze the world. With the Vision for Space Exploration (VSE) Americans once again tasked NASA to carry out a project that is expected to provide inspiration and economic stimulus to the United States and to the world. In preparation NASA has thoroughly examined space program precedents. There is, however, another precedent which has not been examined in this context but whose scope and environment in many ways parallel the VSE. This project was initiated by a team that had, ten years before, successfully completed an effort that, at a cost of $173 billion (in 2008 dollars), had pushed the envelope of technology, brought economic growth, established their country as the world leader in engineering, and been broadly accepted as that country's gift to all Mankind. The new project was again inspired by popular desire to enhance national prestige and make yet another major contribution to Humanity. This effort was predicted to require eight years and $156 billion (2008 dollars). However, after nine years and expenditures of 96% beyond the baseline, the project collapsed amid bankruptcy, political scandal, and criminal prosecution. This paper applies current project management metrics, such as earned value analysis, to review the strategic decisions in this historic failure and describe its ultimate collapse. Key mistakes are identified, and lessons are drawn which may prove useful in guiding the VSE.

  7. Failure analysis and seal life prediction for contacting mechanical seals

    Science.gov (United States)

    Sun, J. J.; He, X. Y.; Wei, L.; Feng, X.

    2008-11-01

    Fault tree analysis method was applied to quantitatively investigate the causes of the leakage failure of mechanical seals. It is pointed out that the change of the surface topography is the main reasons causing the leakage of mechanical seals under the condition of constant preloads. Based on the fractal geometry theory, the relationship between the surface topography and working time were investigated by experiments, and the effects of unit load acting on seal face on leakage path in a mechanical seal were analyzed. The model of predicting seal life of mechanical seals was established on the basis of the relationship between the surface topography and working time and allowable leakage. The seal life of 108 mechanical seal operating at the system of diesel fuel storage and transportation was predicted and the problem of the condition monitoring for the long-period operation of mechanical seal was discussed by this method. The research results indicate that the method of predicting seal life of mechanical seals is feasible, and also is foundation to make scheduled maintenance time and to achieve safe-reliability and low-cost operation for industrial devices.

  8. Analysis of grouped data from field-failure reporting systems

    International Nuclear Information System (INIS)

    Coit, David W.; Dey, Kieron A.

    1999-01-01

    Observed reliability data from fielded systems is highly desirable because they implicitly account for all actual usage and environmental stresses. Many companies and large organizations have instituted automated field-failure reporting systems to organize and disseminate these data. Despite these advantages, field data must be used with caution because they often lack sufficient detail. Specifically, the precise times-to-failure are often not recorded and only cumulative failure quantities and operating times are available. When only data of this type are available, it is difficult to determine whether component or system hazard function varies with time or is constant (i.e., exponential distribution). Analysts often use the exponential distribution to model time-to-failure because the distribution parameter can be estimated with just the merged data. However, this can be dangerous if the exponential distribution is not appropriate. An approach is presented in this paper for Type II censored data, with and without replacement, to evaluate this assumption even when individual times-to-failure are not available. A hypothesis test is presented to test the suitability of the exponential distribution for a particular data set composed of multiple merged data records. Two examples are presented to demonstrate the approach. The hypothesis test readily rejects an exponential distribution assumption when the data originate from a Weibull distribution. This is a very important result because it has generally been assumed that time-to-failure data were always required to evaluate the suitability of specific time-to-failure distributions

  9. Crown fracture: Failure load, stress distribution, and fractographic analysis.

    Science.gov (United States)

    Campos, Roberto E; Soares, Paulo V; Versluis, Antheunis; de O Júnior, Osmir Batista; Ambrosano, Gláucia M B; Nunes, Isabella Ferola

    2015-09-01

    The outcomes from load-to-failure tests may not be applicable to clinical situations. The purpose of this study was to critically evaluate the efficacy of load-to-failure tests in the investigation of the fracture load and pattern of metal-free crowns. Four groups were formed from 128 bovine roots restored with metal posts, resin cores, and feldspathic, leucite, or lithium disilicate ceramic systems or polymer crowns. Each group was divided into 4 (n=8) according to the cement: zinc phosphate, self-adhesive resin, autopolymerizing resin, and glass ionomer. Mean fracture loads from compressive tests were submitted to ANOVA and Tukey HSD test. Finite element and fractographic analyses were performed and associated with the fracture load and pattern. Significantly higher fracture load values were obtained for the lithium disilicate ceramic, but finite element and fractographic analyses showed that the cement effect could not be determined. The finite element analysis showed the cement likely affected the fracture pattern, confirmed that stresses in the cements were little affected by the crown materials, and found that the stressed conditions were lowest in the lithium disilicate compared with other crowns for all cement combinations. The stressed conditions in the crowns depended more on the adhesive properties than on the elastic modulus of the cement materials. The level of the stressed condition in the crowns at the occlusal surface was about the same or higher than along their cement interface, consistent with the fractography, which indicated fractures starting at the load point. Higher stress levels in the crowns corresponded with a lower number of catastrophic fractures, and higher stresses in the cements seemed to reduce the number of catastrophic fracture patterns. The highest stressed conditions occurred along the occlusal surface for crown materials with a low elastic modulus or in combination with adhesive cements. The method used was not appropriate

  10. Analysis of the failure of a vacuum spin-pit drive turbine spindle shaft

    OpenAIRE

    Pettitt, Jason M.

    2005-01-01

    The Naval Postgraduate School's Rotor Spin Research Facility experienced a failure in the Spring of 2005 in which the rotor dropped from the drive turbine and caused extensive damage. A failure analysis of the drive turbine spindle shaft was conducted in order to determine the cause of failure: whether due to a material or design flaw. Also, a dynamic analysis was conducted in order to determine the natural modes present in the system and the associated frequencies that could have contributed...

  11. The failure analysis of the holder of a crusher moving knife

    Directory of Open Access Journals (Sweden)

    M. Pástor

    2017-01-01

    Full Text Available The paper deal s with the analysis of the causes of knife holder failure. The holder is a part of the car tyre shredding equipment. Based on the evaluation of the operating conditions of the machine, examination of the condition of the knife holder after the failure, analysis of the fractured surface, as well as the material properties of the examined structural elements, it was possible to draw conclusions as to the reasons of eventual failures.

  12. Failure Analysis: Crop production on the Lunar surface

    OpenAIRE

    Chard, Julie K.; Akula, Giridhar; Bugbee, Bruce

    2002-01-01

    We have sought to optimize conditions for crop yield for many years, but optimal conditions will not always be cost effective. More importantly, environmental control systems routinely fail, and we need to learn how to gracefully recover from these failures. Failures of the power supply system are among the most common and most detrimental of all system failures. A battery back-up could supply a small amount of power during a power outage, but we need to know how to best utilize the back-u...

  13. Analysis of contaminated field failure data for repairable systems

    DEFF Research Database (Denmark)

    Hansen, Christian Kornerup; Thyregod, Poul

    1991-01-01

    A simple model for electronic systems with repair, and a method for analyzing recorded field failure data for such systems are presented. The work performed has resulted in analytical results that may be used for assessing the product reliability. The method was originally developed for use under...... ideal circumstances, but it has been adapted for use with contaminated data (i.e., data where the failure times are observed embedded by noise). A simple model for the noise that enables an analytical solution for the mean cumulative number of failures is proposed. The method is illustrated...... by an example of industrial failure data. The effect caused by contamination in this data is investigated under a worst case assumption. The example indicates that the model is robust to contamination...

  14. Failure Analysis of Heavy-Ion-Irradiated Schottky Diodes

    Science.gov (United States)

    Casey, Megan C.; Lauenstein, Jean-Marie; Wilcox, Edward P.; Topper, Alyson D.; Campola, Michael J.; Label, Kenneth A.

    2017-01-01

    In this work, we use high- and low-magnitude optical microscope images, infrared camera images, and scanning electron microscope images to identify and describe the failure locations in heavy-ion-irradiated Schottky diodes.

  15. Failure Analysis of High-Power Piezoelectric Transducers

    National Research Council Canada - National Science Library

    Gabrielson, T. B

    2005-01-01

    ... and stress in a piezoelectric material. For a transducer operated near resonance, there will be "hot spots" or regions of locally intense stress and electric field that precipitate premature failure...

  16. Forensic analysis of asphaltic pavement failures in Ghana: case histories

    CSIR Research Space (South Africa)

    Ampadu, SIK

    2015-08-01

    Full Text Available Many newly constructed asphaltic pavements in Ghana have suffered premature failures shortly after opening to traffic. In all cases, available records from the road agencies appeared to show that the roads were constructed in accordance...

  17. Reliability analysis of multi-trigger binary systems subject to competing failures

    International Nuclear Information System (INIS)

    Wang, Chaonan; Xing, Liudong; Levitin, Gregory

    2013-01-01

    This paper suggests two combinatorial algorithms for the reliability analysis of multi-trigger binary systems subject to competing failure propagation and failure isolation effects. Propagated failure with global effect (PFGE) is referred to as a failure that not only causes outage to the component from which the failure originates, but also propagates through all other system components causing the entire system failure. However, the propagation effect from the PFGE can be isolated in systems with functional dependence (FDEP) behavior. This paper studies two distinct consequences of PFGE resulting from a competition in the time domain between the failure isolation and failure propagation effects. As compared to existing works on competing failures that are limited to systems with a single FDEP group, this paper considers more complicated cases where the systems have multiple dependent FDEP groups. Analysis of such systems is more challenging because both the occurrence order between the trigger failure event and PFGE from the dependent components and the occurrence order among the multiple trigger failure events have to be considered. Two combinatorial and analytical algorithms are proposed. Both of them have no limitation on the type of time-to-failure distributions for the system components. Their correctness is verified using a Markov-based method. An example of memory systems is analyzed to demonstrate and compare the applications and advantages of the two proposed algorithms. - Highlights: ► Reliability of binary systems with multiple dependent functional dependence groups is analyzed. ► Competing failure propagation and failure isolation effect is considered. ► The proposed algorithms are combinatorial and applicable to any arbitrary type of time-to-failure distributions for system components.

  18. Metallized Film Capacitor Lifetime Evaluation and Failure Mode Analysis

    OpenAIRE

    Gallay, R.

    2016-01-01

    One of the main concerns for power electronic engineers regarding capacitors is to predict their remaining lifetime in order to anticipate costly failures or system unavailability. This may be achieved using a Weibull statistical law combined with acceleration factors for the temperature, the voltage, and the humidity. This paper discusses the different capacitor failure modes and their effects and consequences. One of the main concerns for power electronic engineers regarding capacitors i...

  19. A Panel Analysis Of UK Industrial Company Failure

    OpenAIRE

    Natalia Isachenkova; John Hunter

    2002-01-01

    We examine the failure determinants for large quoted UK industrials using a panel data set comprising 539 firms observed over the period 1988-93. The empirical design employs data from company accounts and is based on Chamberlain’s conditional binomial logit model, which allows for unobservable, firm-specific, time-invariant factors associated with failure risk. We find a noticeable degree of heterogeneity across the sample companies. Our panel results show that, after controll...

  20. Constructing an effective prevention mechanism for MSW lifecycle using failure mode and effects analysis.

    Science.gov (United States)

    Chen, Ying-Chu; Wu, Wen-Fang

    2015-12-01

    Municipal solid waste in Taiwan is a valuable source of renewable energy. Phases of municipal solid waste lifecycle (classification, disposal, storage, collection and transportation) before incineration or landfilled face various potential failures. Applying a proper technique to eliminate or decrease potential failures is desirable and needed. Failure Modes and Effects Analysis to municipal solid waste lifecycle was found in literature. This study utilized the Failure Modes and Effects Analysis as a convenient technique for determining, classifying and analyzing common failures in the municipal solid waste lifecycle. As a result, an appropriate risk scoring of severity, occurrence, and detection of failure modes and computing the Risk Priority Number for identifying the high potential failure modes were made. Nineteen failure modes were identified, and nine of them were ranked as the priority items for improvement. Recommended actions for all failure modes were suggested. Occurrences of failures were remarkably reduced after implementing the procedure for six months. The results of this study have minimized potential failures and brought continuous improvement, thus achieving a better protection of the environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. An engineering approach to common mode failure analysis

    International Nuclear Information System (INIS)

    Gangloff, W.C.; Franke, T.H.

    1975-01-01

    Safety systems for nuclear reactors can be designed using standard reliability engineering techniques such that system failure due to random component faults is extremely unlikely. However, the common-mode failure where several components fail together from a common cause is not susceptible to prevention by the usual tactics. In systems where a high degree of redundancy has been employed, the actual reliability of the system in service may be limited by common-mode failures. A methodical and thorough procedure for evaluation of system vulnerability to common-mode failures is presented. This procedure was developed for use in nuclear reactor safety systems and has been applied specifically to reactor protection. The method offers a qualitative assessment of a system whereby weak points can be identified and the resistance to common-mode failure can be judged. It takes into account all factors influencing system performance including design, manufacturing, installation, operation, testing, and maintenance. It is not a guarantee or sure solution, but rather a practical tool which can provide good assurance that the probability of common-mode protection failure has been made acceptably low. (author)

  2. Failure analysis of high strength pipeline with single and multiple corrosions

    International Nuclear Information System (INIS)

    Chen, Yanfei; Zhang, Hong; Zhang, Juan; Li, Xin; Zhou, Jing

    2015-01-01

    Highlights: • We study failure of high strength pipelines with single corrosion. • We give regression equations for failure pressure prediction. • We propose assessment procedure for pipelines with multiple corrosions. - Abstract: Corrosion will compromise safety operation of oil and gas pipelines, accurate determination of failure pressure finds importance in residual strength assessment and corrosion allowance design of onshore and offshore pipelines. This paper investigates failure pressure of high strength pipeline with single and multiple corrosions using nonlinear finite element analysis. On the basis of developed regression equations for failure pressure prediction of high strength pipeline with single corrosion, the paper proposes an assessment procedure for predicting failure pressure of high strength pipeline with multiple corrosions. Furthermore, failure pressures predicted by proposed solutions are compared with experimental results and various assessment methods available in literature, where accuracy and versatility are demonstrated

  3. Modular titanium alloy neck adapter failures in hip replacement - failure mode analysis and influence of implant material

    Directory of Open Access Journals (Sweden)

    Bloemer Wilhelm

    2010-01-01

    Full Text Available Abstract Background Modular neck adapters for hip arthroplasty stems allow the surgeon to modify CCD angle, offset and femoral anteversion intraoperatively. Fretting or crevice corrosion may lead to failure of such a modular device due to high loads or surface contamination inside the modular coupling. Unfortunately we have experienced such a failure of implants and now report our clinical experience with the failures in order to advance orthopaedic material research and joint replacement surgery. The failed neck adapters were implanted between August 2004 and November 2006 a total of about 5000 devices. After this period, the titanium neck adapters were replaced by adapters out of cobalt-chromium. Until the end of 2008 in total 1.4% (n = 68 of the implanted titanium alloy neck adapters failed with an average time of 2.0 years (0.7 to 4.0 years postoperatively. All, but one, patients were male, their average age being 57.4 years (36 to 75 years and the average weight 102.3 kg (75 to 130 kg. The failures of neck adapters were divided into 66% with small CCD of 130° and 60% with head lengths of L or larger. Assuming an average time to failure of 2.8 years, the cumulative failure rate was calculated with 2.4%. Methods A series of adapter failures of titanium alloy modular neck adapters in combination with a titanium alloy modular short hip stem was investigated. For patients having received this particular implant combination risk factors were identified which were associated with the occurence of implant failure. A Kaplan-Meier survival-failure-analysis was conducted. The retrieved implants were analysed using microscopic and chemical methods. Modes of failure were simulated in biomechanical tests. Comparative tests included modular neck adapters made of titanium alloy and cobalt chrome alloy material. Results Retrieval examinations and biomechanical simulation revealed that primary micromotions initiated fretting within the modular tapered neck

  4. Modular titanium alloy neck adapter failures in hip replacement--failure mode analysis and influence of implant material.

    Science.gov (United States)

    Grupp, Thomas M; Weik, Thomas; Bloemer, Wilhelm; Knaebel, Hanns-Peter

    2010-01-04

    Modular neck adapters for hip arthroplasty stems allow the surgeon to modify CCD angle, offset and femoral anteversion intraoperatively. Fretting or crevice corrosion may lead to failure of such a modular device due to high loads or surface contamination inside the modular coupling. Unfortunately we have experienced such a failure of implants and now report our clinical experience with the failures in order to advance orthopaedic material research and joint replacement surgery.The failed neck adapters were implanted between August 2004 and November 2006 a total of about 5000 devices. After this period, the titanium neck adapters were replaced by adapters out of cobalt-chromium. Until the end of 2008 in total 1.4% (n = 68) of the implanted titanium alloy neck adapters failed with an average time of 2.0 years (0.7 to 4.0 years) postoperatively. All, but one, patients were male, their average age being 57.4 years (36 to 75 years) and the average weight 102.3 kg (75 to 130 kg). The failures of neck adapters were divided into 66% with small CCD of 130 degrees and 60% with head lengths of L or larger. Assuming an average time to failure of 2.8 years, the cumulative failure rate was calculated with 2.4%. A series of adapter failures of titanium alloy modular neck adapters in combination with a titanium alloy modular short hip stem was investigated. For patients having received this particular implant combination risk factors were identified which were associated with the occurRence of implant failure. A Kaplan-Meier survival-failure-analysis was conducted. The retrieved implants were analysed using microscopic and chemical methods. Modes of failure were simulated in biomechanical tests. Comparative tests included modular neck adapters made of titanium alloy and cobalt chrome alloy material. Retrieval examinations and biomechanical simulation revealed that primary micromotions initiated fretting within the modular tapered neck connection. A continuous abrasion and

  5. Analysis of failure and maintenance experiences of motor operated valves in a Finnish nuclear power plant

    International Nuclear Information System (INIS)

    Simola, K.; Laakso, K.

    1992-01-01

    Operating experiences from 1981 up to 1989 of totally 104 motor operated closing valves (MOV) in different safety systems at TVO I and II nuclear power units were analysed in a systematic way. The qualitative methods used were failure mode and effects analysis (FMEA) and maintenance effects and criticality analysis (MECA). The failure descriptions were obtained from power plant's computerized failure reporting system. The reported 181 failure events were reanalysed and sorted according to specific classifications developed for the MOV function. Filled FMEA and MECA sheets on individual valves were stored in a microcomputer data base for further analyses. Analyses were performed for the failed mechanical and electrical valve parts, ways of detection of failure modes, failure effects, and repair and unavailability times

  6. Subjective well-being and cardiometabolic health: An 8-11year study of midlife adults.

    Science.gov (United States)

    Boehm, Julia K; Chen, Ying; Williams, David R; Ryff, Carol D; Kubzansky, Laura D

    2016-06-01

    Individuals who are satisfied and experience frequent positive emotions tend to have reduced risk for coronary heart disease (CHD). However, conflicting evidence exists and little research has investigated whether well-being is associated with early-warning indicators of biological risk that precede CHD. We investigated whether life satisfaction and positive emotions longitudinally predicted reduced risk of incident cardiometabolic conditions and healthier cardiometabolic risk scores, which may provide insight into underlying mechanisms and novel prevention targets. Initially healthy men and women (N=754-854) reported their baseline life satisfaction and positive emotions. During follow-up, presence of manifest cardiometabolic conditions was assessed and a separate cardiometabolic risk score was constructed from eight biomarkers. Poisson and linear regression analyses tested whether life satisfaction and positive emotions were associated with reduced incident disease risk and lower cardiometabolic risk scores 8-11years later. Life satisfaction and positive emotions were each prospectively associated with reduced risk of manifest conditions, controlling for demographics and family history of CHD. Associations were attenuated for positive emotions after adjusting for depressive symptoms and for life satisfaction after adjusting for health behaviors. Life satisfaction was associated with lower cardiometabolic risk scores until adding health behaviors, but positive emotions were not (regardless of the included covariates). Well-being, particularly life satisfaction, is associated with reduced risk for incident cardiometabolic conditions in minimally-adjusted models. However, accounting for underlying behavioral pathways attenuates the association. Low levels of life satisfaction (but not positive emotions) may also provide early warning of cardiometabolic risk prior to disease development. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Review and analysis of check valve failure data

    International Nuclear Information System (INIS)

    Todd, M.D.; Casada, D.A.

    1992-01-01

    Check valve operating problems in recent years have resulted in significant operating transients, increased cost and decreased system availability. There has been, in response, additional attention given to check valves by utilities, as well as the US Nuclear Regulatory Commission and the American Society of Mechanical Engineers Operation and Maintenance Committee. All these organizations have the fundamental goal of ensuring reliable operation of check valves. A key ingredient to an engineering-oriented reliability improvement effort is a thorough understanding of relevant historical experience. Oak Ridge National Laboratory is currently conducting a detailed review of historical failure data available through the Institute of Nuclear Power Operation's Nuclear Plant Reliability Data System. The focus of the review is on check valve failures that have involved significant degradation of the valve internal parts. A variety of parameters are being considered during the review, including size, age, system of service, method of failure discovery, the affected valve parts, attributed causes, and corrective actions

  8. Statistical analysis of nuclear power plant pump failure rate variability: some preliminary results

    International Nuclear Information System (INIS)

    Martz, H.F.; Whiteman, D.E.

    1984-02-01

    In-Plant Reliability Data System (IPRDS) pump failure data on over 60 selected pumps in four nuclear power plants are statistically analyzed using the Failure Rate Analysis Code (FRAC). A major purpose of the analysis is to determine which environmental, system, and operating factors adequately explain the variability in the failure data. Catastrophic, degraded, and incipient failure severity categories are considered for both demand-related and time-dependent failures. For catastrophic demand-related pump failures, the variability is explained by the following factors listed in their order of importance: system application, pump driver, operating mode, reactor type, pump type, and unidentified plant-specific influences. Quantitative failure rate adjustments are provided for the effects of these factors. In the case of catastrophic time-dependent pump failures, the failure rate variability is explained by three factors: reactor type, pump driver, and unidentified plant-specific influences. Finally, point and confidence interval failure rate estimates are provided for each selected pump by considering the influential factors. Both types of estimates represent an improvement over the estimates computed exclusively from the data on each pump

  9. Competing failure analysis in phased-mission systems with functional dependence in one of phases

    International Nuclear Information System (INIS)

    Wang, Chaonan; Xing, Liudong; Levitin, Gregory

    2012-01-01

    This paper proposes an algorithm for the reliability analysis of non-repairable phased-mission systems (PMS) subject to competing failure propagation and isolation effects. A failure originating from a system component which causes extensive damage to other system components is a propagated failure. When the propagated failure affects all the system components, causing the entire system failure, a propagated failure with global effect (PFGE) is said to occur. However, the failure propagation can be isolated in systems subject to functional dependence (FDEP) behavior, where the failure of a component (referred to as trigger component) causes some other components (referred to as dependent components) to become inaccessible or unusable (isolated from the system), and thus further failures from these dependent components have no effect on the system failure behavior. On the other hand, if any PFGE from dependent components occurs before the trigger failure, the failure propagation effect takes place, causing the overall system failure. In summary, there are two distinct consequences of a PFGE due to the competition between the failure isolation and failure propagation effects in the time domain. Existing works on such competing failures focus only on single-phase systems. However, many real-world systems are phased-mission systems (PMS), which involve multiple, consecutive and non-overlapping phases of operations or tasks. Consideration of competing failures for PMS is a challenging and difficult task because PMS exhibit dynamics in the system configuration and component behavior as well as statistical dependencies across phases for a given component. This paper proposes a combinatorial method to address the competing failure effects in the reliability analysis of binary non-repairable PMS. The proposed method is verified using a Markov-based method through a numerical example. Different from the Markov-based approach that is limited to exponential distribution, the

  10. Embedded mechatronic systems 1 analysis of failures, predictive reliability

    CERN Document Server

    El Hami, Abdelkhalak

    2015-01-01

    In operation, mechatronics embedded systems are stressed by loads of different causes: climate (temperature, humidity), vibration, electrical and electromagnetic. These stresses in components which induce failure mechanisms should be identified and modeled for better control. AUDACE is a collaborative project of the cluster Mov'eo that address issues specific to mechatronic reliability embedded systems. AUDACE means analyzing the causes of failure of components of mechatronic systems onboard. The goal of the project is to optimize the design of mechatronic devices by reliability. The projec

  11. Statistical failure analysis of adhesive resin cement bonded dental ceramics

    Science.gov (United States)

    Wang, Yaou; Katsube, Noriko; Seghi, Robert R; Rokhlin, Stanislav I.

    2007-01-01

    The goal of this work is to quantitatively examine the effect of adhesive resin cement on the probability of crack initiation from the internal surface of ceramic dental restorations. The possible crack bridging mechanism and residual stress effect of the resin cement on the ceramic surface are examined. Based on the fracture-mechanics-based failure probability model, we predict the failure probability of glass-ceramic disks bonded to simulated dentin subjected to indentation loads. The theoretical predictions match experimental data suggesting that both resin bridging and shrinkage plays an important role and need to be considered for accurate prognostics to occur. PMID:18670583

  12. Computer-tomography and its use in failure analysis; Computertomographie und deren Anwendung in der Schadensanalytik

    Energy Technology Data Exchange (ETDEWEB)

    Panzenboeck, Michael; Freitag, Caroline [Montanuniv. Leoben (Austria). Dept. Metallkunde und Werkstoffpruefung; Borchert, Marlies [Materials Center Leoben (Austria)

    2017-04-15

    In the last fifteen years computer-tomography has proven to be a valuable aid in the fields of medicine, materials technology and forensics. Nowadays it is hard to image non-destructive testing being carried out without its use. This article serves to demonstrate the power of the technique within the field of failure analysis with reference to two chosen case studies. The first case concerns the failure of magnetic valves, the second case focusses on the failure of corrosion resistant screws.

  13. Preliminary Failure Modes and Effects Analysis of the US DCLL Test Blanket Module

    Energy Technology Data Exchange (ETDEWEB)

    Lee C. Cadwallader

    2010-06-01

    This report presents the results of a preliminary failure modes and effects analysis (FMEA) of a small tritium-breeding test blanket module design for the International Thermonuclear Experimental Reactor. The FMEA was quantified with “generic” component failure rate data, and the failure events are binned into postulated initiating event families and frequency categories for safety assessment. An appendix to this report contains repair time data to support an occupational radiation exposure assessment for test blanket module maintenance.

  14. Preliminary Failure Modes and Effects Analysis of the US DCLL Test Blanket Module

    Energy Technology Data Exchange (ETDEWEB)

    Lee C. Cadwallader

    2007-08-01

    This report presents the results of a preliminary failure modes and effects analysis (FMEA) of a small tritium-breeding test blanket module design for the International Thermonuclear Experimental Reactor. The FMEA was quantified with “generic” component failure rate data, and the failure events are binned into postulated initiating event families and frequency categories for safety assessment. An appendix to this report contains repair time data to support an occupational radiation exposure assessment for test blanket module maintenance.

  15. Preliminary Failure Modes and Effects Analysis of the US Massive Gas Injection Disruption Mitigation System Design

    Energy Technology Data Exchange (ETDEWEB)

    Cadwallader, Lee C. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2013-10-01

    This report presents the results of a preliminary failure modes and effects analysis (FMEA) of a candidate design for the ITER Disruption Mitigation System. This candidate is the Massive Gas Injection System that provides machine protection in a plasma disruption event. The FMEA was quantified with “generic” component failure rate data as well as some data calculated from operating facilities, and the failure events were ranked for their criticality to system operation.

  16. Cytological analysis of the oral cells of chronic renal failure patients: a cytomorphometric study

    OpenAIRE

    TOZOĞLU, Ümmühan; KELEŞ, Mustafa; ÜNAL, Deniz; UYANIK, Abdullah

    2011-01-01

    The aim of this study was to cytologically analyze the tongue mucosa, buccal mucosa, and floor of the mouth of patients with chronic renal failure and healthy volunteers to determine what cellular changes are caused by uremic diseases. Materials and methods: In order to evaluate cellular changes induced by chronic renal failure, exfoliative cytology was used for the analysis of the tongue mucosa, buccal mucosa, and floor of the mouth of 20 uremic patients with chronic renal failure and 20 he...

  17. Failure analysis of multiple delaminated composite plates due to ...

    Indian Academy of Sciences (India)

    Unknown

    loading, the failure process of laminates is very complex. Large differences in strength and stiffness values of the fibre and the matrix lead to various forms of defect/ damage caused during manufacturing process as well as service conditions. Delamination or separation of two adjacent plies in a composite laminate is one of ...

  18. Risk analysis of power supply failure of LNQ system

    International Nuclear Information System (INIS)

    Si Xianguo; Kuang Bo; Shang Youming

    2008-01-01

    This article introduces 220 V uninterrupted AC supply system (called LNQ system) of conventional island in NPQJVC, and analyses the aftermath and potential in- fluence to unit due to the failure of LNQ system, so as to find out corresponding countermeasures for operator's to adopt appropriate operation to reduce the consequence. (authors)

  19. Crash Causation In Nigerian Roads – Failure Mode Analysis | Dike ...

    African Journals Online (AJOL)

    The results of many researches on the causes of road traffic accidents have always resolved around three main factors, the human, environmental and vehicular factors. In this study, emphasis was placed on the vehicular factor in road traffic accident. It looked into detail on those vehicle components whose failures result in ...

  20. Failure analysis fundamentals and applications in mechanical components

    CERN Document Server

    Otegui, Jose Luis

    2014-01-01

    This book addresses the failures of structural elements, i.e. those components whose primary mission is to withstand mechanical loads. The book is intended as a self-contained source for those with different technical grades, engineers and scientists but also technicians in the field can benefit from its reading.

  1. Analysis of fuel operational reliability and fuel failures

    International Nuclear Information System (INIS)

    Smiesko, I.

    1999-01-01

    In this lecture the fuel failure (loss of fuel rod (cladding) integrity, corruption of second barrier for fission product release from duel and their consequences (increase of primary coolant activity; increase of fission product releases to environment; increase of rad-waste activities and potential increase of personnel exposure) are discussed

  2. Photovoltaic Properties of 1,4,8,11,15,18,22,25-Octaalkylphthalocyanine Doped Polymer Bulk Heterojunction Solar Cells

    Science.gov (United States)

    Masuda, Tetsuya; Hori, Tetsuro; Fukumura, Kaoru; Miyake, Yasuo; Quang Duy, Dao; Hayashi, Takeshi; Kamikado, Toshiya; Yoshida, Hiroyuki; Fujii, Akihiko; Shimizu, Yo; Ozaki, Masanori

    2012-02-01

    The effects of doping a liquid crystalline phthalocyanine derivative, 1,4,8,11,15,18,22,25-octaalkylphthalocyanine (CnPcH2, n = 6, 7), into bulk heterojunction organic thin-film solar cells based on poly(3-hexylthiophene) (P3HT) and 1-(3-methoxy-carbonyl)-propyl-1-1-phenyl-(6,6)C61 (PCBM) were studied. The absorbance spectra and external quantum efficiency spectra in the near-infrared region corresponding to the Q-band of CnPcH2 were improved by doping C6PcH2 or C7PcH2. On the basis of the characteristics of CnPcH2, obtained optical properties, and results of analysis of X-ray diffraction of the composite films of P3HT:CnPcH2:PCBM, we discussed the photovoltaic properties of solar cells with CnPcH2 by taking the micro phase separation in the active layers into consideration.

  3. Quantification of a decision-making failure probability of the accident management using cognitive analysis model

    International Nuclear Information System (INIS)

    Yoshida, Yoshitaka; Ohtani, Masanori; Fujita, Yushi

    2002-01-01

    In the nuclear power plant, much knowledge is acquired through probabilistic safety assessment (PSA) of a severe accident, and accident management (AM) is prepared. It is necessary to evaluate the effectiveness of AM using the decision-making failure probability of an emergency organization, operation failure probability of operators, success criteria of AM and reliability of AM equipments in PSA. However, there has been no suitable qualification method for PSA so far to obtain the decision-making failure probability, because the decision-making failure of an emergency organization treats the knowledge based error. In this work, we developed a new method for quantification of the decision-making failure probability of an emergency organization using cognitive analysis model, which decided an AM strategy, in a nuclear power plant at the severe accident, and tried to apply it to a typical pressurized water reactor (PWR) plant. As a result: (1) It could quantify the decision-making failure probability adjusted to PSA for general analysts, who do not necessarily possess professional human factors knowledge, by choosing the suitable value of a basic failure probability and an error-factor. (2) The decision-making failure probabilities of six AMs were in the range of 0.23 to 0.41 using the screening evaluation method and in the range of 0.10 to 0.19 using the detailed evaluation method as the result of trial evaluation based on severe accident analysis of a typical PWR plant, and a result of sensitivity analysis of the conservative assumption, failure probability decreased about 50%. (3) The failure probability using the screening evaluation method exceeded that using detailed evaluation method by 99% of probability theoretically, and the failure probability of AM in this study exceeded 100%. From this result, it was shown that the decision-making failure probability was more conservative than the detailed evaluation method, and the screening evaluation method satisfied

  4. Analysis of Machine Learning Techniques for Heart Failure Readmissions.

    Science.gov (United States)

    Mortazavi, Bobak J; Downing, Nicholas S; Bucholz, Emily M; Dharmarajan, Kumar; Manhapra, Ajay; Li, Shu-Xia; Negahban, Sahand N; Krumholz, Harlan M

    2016-11-01

    The current ability to predict readmissions in patients with heart failure is modest at best. It is unclear whether machine learning techniques that address higher dimensional, nonlinear relationships among variables would enhance prediction. We sought to compare the effectiveness of several machine learning algorithms for predicting readmissions. Using data from the Telemonitoring to Improve Heart Failure Outcomes trial, we compared the effectiveness of random forests, boosting, random forests combined hierarchically with support vector machines or logistic regression (LR), and Poisson regression against traditional LR to predict 30- and 180-day all-cause readmissions and readmissions because of heart failure. We randomly selected 50% of patients for a derivation set, and a validation set comprised the remaining patients, validated using 100 bootstrapped iterations. We compared C statistics for discrimination and distributions of observed outcomes in risk deciles for predictive range. In 30-day all-cause readmission prediction, the best performing machine learning model, random forests, provided a 17.8% improvement over LR (mean C statistics, 0.628 and 0.533, respectively). For readmissions because of heart failure, boosting improved the C statistic by 24.9% over LR (mean C statistic 0.678 and 0.543, respectively). For 30-day all-cause readmission, the observed readmission rates in the lowest and highest deciles of predicted risk with random forests (7.8% and 26.2%, respectively) showed a much wider separation than LR (14.2% and 16.4%, respectively). Machine learning methods improved the prediction of readmission after hospitalization for heart failure compared with LR and provided the greatest predictive range in observed readmission rates. © 2016 American Heart Association, Inc.

  5. Analysis of Mechanical Failure of Polymer Microneedles by Axial Force

    Science.gov (United States)

    Park, Jung-Hwan; Prausnitz, Mark R.

    2010-01-01

    A polymeric microneedle has been developed for drug delivery applications. The ultimate goal of the polymeric microneedle is insertion into the specified region without failure for effective transdermal drug delivery. Mechanical failure of various geometries of microneedles by axial load was modeled using the Euler formula and the Johnson formula to predict the failure force of tapered-column microneedles. These formulas were compared with measured data to identify the mechanical behavior of microneedles by determining the critical factors including the actual length and end-fixed factor. The comparison of the two formulas with the data showed good agreement at the end-fixity (K) of 0.7. This value means that a microneedle column has one fixed end and one pinned end, and that part of the microneedle was overloaded by axial load. When the aspect ratio of length to equivalent diameter is 12:1 at 3 GPa of Young’s modulus, there is a transition from the Euler region to the Johnson region by the decreased length and increased base diameter of the microneedle. A polymer having less than 3 GPa of stiffness would follow the Euler formula. A 12:1 aspect ratio of length to equivalent diameter of the microneedle was the mechanical indicator determining the failure mode between elastic buckling and inelastic buckling at less than 3 GPa of Young’s modulus of polymer. Microneedles with below a 12:1 aspect ratio of length-to-equivalent diameter and more than 3 GPa of Young’s were recommended for reducing sudden failure by buckling and for successfully inserting the microneedle into the skin. PMID:21218133

  6. Failure Mode and Effect Analysis for Wind Turbine Systems in China

    DEFF Research Database (Denmark)

    Zhu, Jiangsheng; Ma, Kuichao; N. Soltani, Mohsen

    2017-01-01

    This paper discusses a cost based Failure Mode and Effect Analysis (FMEA) approch for the Wind Turbine (WT) with condition monitoring system in China. Normally, the traditional FMEA uses the Risk Priority Number (RPN) to rank failure modes. But the RPN can be changed with the Condition Monitoring...... Systems (CMS) due to change of the score of detection. The cost of failure mode should also be considered because faults can be detected at an incipient level, and condition-based maintenance can be scheduled. The results show that the proposed failure mode priorities considering their cost consequences...

  7. Failure analysis of energy storage spring in automobile composite brake chamber

    Science.gov (United States)

    Luo, Zai; Wei, Qing; Hu, Xiaofeng

    2015-02-01

    This paper set energy storage spring of parking brake cavity, part of automobile composite brake chamber, as the research object. And constructed the fault tree model of energy storage spring which caused parking brake failure based on the fault tree analysis method. Next, the parking brake failure model of energy storage spring was established by analyzing the working principle of composite brake chamber. Finally, the data of working load and the push rod stroke measured by comprehensive test-bed valve was used to validate the failure model above. The experimental result shows that the failure model can distinguish whether the energy storage spring is faulted.

  8. Failure analysis a practical guide for manufacturers of electronic components and systems

    CERN Document Server

    Bâzu, Marius

    2011-01-01

    Failure analysis is the preferred method to investigate product or process reliability and to ensure optimum performance of electrical components and systems. The physics-of-failure approach is the only internationally accepted solution for continuously improving the reliability of materials, devices and processes. The models have been developed from the physical and chemical phenomena that are responsible for degradation or failure of electronic components and materials and now replace popular distribution models for failure mechanisms such as Weibull or lognormal. Reliability engineers nee

  9. Application of the cubic polynomial strength criterion to the failure analysis of composite materials

    Science.gov (United States)

    Tennyson, R. C.; Nanyaro, A. P.; Wharram, G. E.

    1980-01-01

    A comparative failure analysis is presented based on the application of quadratic and cubic forms of the tensor polynomial lamina strength criterion to various composite structural configurations in a plane stress state. Failure loads have been predicted for off-angle laminates under simple loading conditions and for symmetric-balanced laminates subject to varying degrees of biaxial tension, including configurations subject to multimode failures. Some experimental data are also provided to support these calculations. From these results, the necessity of employing a cubic strength criterion to accurately predict the failure of composite laminae is demonstrated.

  10. Development of an automated technique for failure modes and effect analysis

    DEFF Research Database (Denmark)

    Blanke, M.; Borch, Ole; Bagnoli, F.

    implementing an automated technique for Failure Modes and Effects Analysis (FMEA). This technique is based on the matrix formulation of FMEA for the investigation of failure propagation through a system. As main result, this technique will provide the design engineer with decision tables for fault handling...

  11. Development of an Automated Technique for Failure Modes and Effect Analysis

    DEFF Research Database (Denmark)

    Blanke, M.; Borch, Ole; Allasia, G.

    1999-01-01

    implementing an automated technique for Failure Modes and Effects Analysis (FMEA). This technique is based on the matrix formulation of FMEA for the investigation of failure propagation through a system. As main result, this technique will provide the design engineer with decision tables for fault handling...

  12. Comprehensive Deployment Method for Technical Characteristics Base on Multi-failure Modes Correlation Analysis

    Science.gov (United States)

    Zheng, W.; Gao, J. M.; Wang, R. X.; Chen, K.; Jiang, Y.

    2017-12-01

    This paper put forward a new method of technical characteristics deployment based on Reliability Function Deployment (RFD) by analysing the advantages and shortages of related research works on mechanical reliability design. The matrix decomposition structure of RFD was used to describe the correlative relation between failure mechanisms, soft failures and hard failures. By considering the correlation of multiple failure modes, the reliability loss of one failure mode to the whole part was defined, and a calculation and analysis model for reliability loss was presented. According to the reliability loss, the reliability index value of the whole part was allocated to each failure mode. On the basis of the deployment of reliability index value, the inverse reliability method was employed to acquire the values of technology characteristics. The feasibility and validity of proposed method were illustrated by a development case of machining centre’s transmission system.

  13. Reliability Evaluation of Machine Center Components Based on Cascading Failure Analysis

    Science.gov (United States)

    Zhang, Ying-Zhi; Liu, Jin-Tong; Shen, Gui-Xiang; Long, Zhe; Sun, Shu-Guang

    2017-07-01

    In order to rectify the problems that the component reliability model exhibits deviation, and the evaluation result is low due to the overlook of failure propagation in traditional reliability evaluation of machine center components, a new reliability evaluation method based on cascading failure analysis and the failure influenced degree assessment is proposed. A direct graph model of cascading failure among components is established according to cascading failure mechanism analysis and graph theory. The failure influenced degrees of the system components are assessed by the adjacency matrix and its transposition, combined with the Pagerank algorithm. Based on the comprehensive failure probability function and total probability formula, the inherent failure probability function is determined to realize the reliability evaluation of the system components. Finally, the method is applied to a machine center, it shows the following: 1) The reliability evaluation values of the proposed method are at least 2.5% higher than those of the traditional method; 2) The difference between the comprehensive and inherent reliability of the system component presents a positive correlation with the failure influenced degree of the system component, which provides a theoretical basis for reliability allocation of machine center system.

  14. Summary of failure analysis activities at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Cowgill, M.G.; Czajkowski, C.J.; Franz, E.M.

    1996-10-01

    Brookhaven National Laboratory has for many years conducted examinations related to the failures of nuclear materials and components. These examinations included the confirmation of root cause analyses, the determination of the causes of failure, identification of the species that accelerate corrosion, and comparison of the results of nondestructive examinations with those obtained by destructive examination. The results of those examinations, which had previously appeared in various formats (formal and informal reports, journal articles, etc.), have been collected together and summarized in the present report. The report is divided into sections according to the general subject matter (for example, corrosion, fatigue, etc.). Each section presents summaries of the information contained in specific reports and publications, all of which are fully identified as to title, authors, report number or journal reference, date of publication, and FIN number under which the work was performed.

  15. Failure Mode and Effects Analysis (FMEA) Introductory Overview

    Science.gov (United States)

    2012-06-14

    effects based on how severe they are, how often they might occur, and how easily we can find them. 3. Effects: the consequences of failure. The...Actions ! 0 l!1 .. requirE-ments ~ l=ailure 1-’rP.vP.ntion .., llP.tP.c::tion Completion Dato Action• Taken P. il "’ ; · .. "’ = 0 i;r= ~ ~ " S pnrg

  16. Analysis for the cause of the condensate pump bearing failure

    International Nuclear Information System (INIS)

    Cheng Yiyan

    2012-01-01

    This paper discussed the influence of the foreign matters for the rolling bearing's service life, analyzed the reason, way and harm of soft foreign matters disabling the bearings. And some measures were brought forward to improve the maintenance quality, which could be used for reference to enhance the ability of estimating the failure of the motor's rolling bearings, and to improve the level of the maintenance work. (author)

  17. Endochronic theory for inelasticity and failure analysis of concrete structures

    Energy Technology Data Exchange (ETDEWEB)

    Bazant, Z.P.; Bhat, P.D.; Shieh, C.L.

    1976-12-01

    A gradual accumulation of inelastic strain can be most conveniently described in terms of the so-called intrinsic time, whose increment depends on the time increment as well as the strain increments. This approach, which gives a particularly simple description of irreversibility of strain at unloading and cyclic loading, was previously developed for metals and is extended herein to concrete by introducing the hydrostatic pressure sensitivity of inelastic strain, the inelastic dilatancy produced by deviator strains, and the strain-softening tendency at high stress. Failure envelopes are obtained as a collection of the peaks of stress-strain diagrams. By comparison with experimental data from the literature, it is demonstrated that the proposed model predicts quite closely: stress-strain diagrams for concretes of different strength; uniaxial, biaxial and triaxial stress-strain diagrams and failure envelopes; failure envelopes for combined torsion and compression, lateral strains and volume expansion in uniaxial and biaxial tests; the behavior of spirally confined concrete; hysteresis loops or repeated high compression; cyclic creep up to 10/sup 6/ cycles; the strain rate effect; the decrease of long time strength; and the increase of short-time strength due to low stress creep.

  18. Endochronic theory for inelasticity and failure analysis of concrete structures

    International Nuclear Information System (INIS)

    Bazant, Z.P.; Bhat, P.D.; Shieh, C.L.

    1976-12-01

    A gradual accumulation of inelastic strain can be most conveniently described in terms of the so-called intrinsic time, whose increment depends on the time increment as well as the strain increments. This approach, which gives a particularly simple description of irreversibility of strain at unloading and cyclic loading, was previously developed for metals and is extended herein to concrete by introducing the hydrostatic pressure sensitivity of inelastic strain, the inelastic dilatancy produced by deviator strains, and the strain-softening tendency at high stress. Failure envelopes are obtained as a collection of the peaks of stress-strain diagrams. By comparison with experimental data from the literature, it is demonstrated that the proposed model predicts quite closely: stress-strain diagrams for concretes of different strength; uniaxial, biaxial and triaxial stress-strain diagrams and failure envelopes; failure envelopes for combined torsion and compression, lateral strains and volume expansion in uniaxial and biaxial tests; the behavior of spirally confined concrete; hysteresis loops or repeated high compression; cyclic creep up to 10 6 cycles; the strain rate effect; the decrease of long time strength; and the increase of short-time strength due to low stress creep

  19. 77 FR 5857 - Common-Cause Failure Analysis in Event and Condition Assessment: Guidance and Research, Draft...

    Science.gov (United States)

    2012-02-06

    ... COMMISSION Common-Cause Failure Analysis in Event and Condition Assessment: Guidance and Research, Draft... comment Draft NUREG, ``Common- Cause Failure Analysis in Event and Condition Assessment: Guidance and... NUREG, ``Common-Cause Failure Analysis in Event and Condition Assessment: Guidance and Research.'' The...

  20. Genome-wide occupancy profile of mediator and the Srb8-11 module reveals interactions with coding regions

    DEFF Research Database (Denmark)

    Zhu, Xuefeng; Wirén, Marianna; Sinha, Indranil

    2006-01-01

    to investigate genome-wide localization of Mediator and the Srb8-11 module in fission yeast. Mediator and the Srb8-11 module display similar binding patterns, and interactions with promoters and upstream activating sequences correlate with increased transcription activity. Unexpectedly, Mediator also interacts...... with the downstream coding region of many genes. These interactions display a negative bias for positions closer to the 5' ends of open reading frames (ORFs) and appear functionally important, because downregulation of transcription in a temperature-sensitive med17 mutant strain correlates with increased Mediator...

  1. Coupled Mechanical-Electrochemical-Thermal Analysis of Failure Propagation in Lithium-ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chao; Santhanagopalan, Shriram; Pesaran, Ahmad

    2016-07-28

    This is a presentation given at the 12th World Congress for Computational Mechanics on coupled mechanical-electrochemical-thermal analysis of failure propagation in lithium-ion batteries for electric vehicles.

  2. Patterns of Failure After MammoSite Brachytherapy Partial Breast Irradiation: A Detailed Analysis

    International Nuclear Information System (INIS)

    Chen, Sea; Dickler, Adam; Kirk, Michael; Shah, Anand; Jokich, Peter; Solmos, Gene; Strauss, Jonathan; Dowlatshahi, Kambiz; Nguyen, Cam; Griem, Katherine

    2007-01-01

    Purpose: To report the results of a detailed analysis of treatment failures after MammoSite breast brachytherapy for partial breast irradiation from our single-institution experience. Methods and Materials: Between October 14, 2002 and October 23, 2006, 78 patients with early-stage breast cancer were treated with breast-conserving surgery and accelerated partial breast irradiation using the MammoSite brachytherapy applicator. We identified five treatment failures in the 70 patients with >6 months' follow-up. Pathologic data, breast imaging, and radiation treatment plans were reviewed. For in-breast failures more than 2 cm away from the original surgical bed, the doses delivered to the areas of recurrence by partial breast irradiation were calculated. Results: At a median follow-up time of 26.1 months, five treatment failures were identified. There were three in-breast failures more than 2 cm away from the original surgical bed, one failure directly adjacent to the original surgical bed, and one failure in the axilla with synchronous distant metastases. The crude failure rate was 7.1% (5 of 70), and the crude local failure rate was 5.7% (4 of 70). Estimated progression-free survival at 48 months was 89.8% (standard error 4.5%). Conclusions: Our case series of 70 patients with >6 months' follow-up and a median follow-up of 26 months is the largest single-institution report to date with detailed failure analysis associated with MammoSite brachytherapy. Our failure data emphasize the importance of patient selection when offering partial breast irradiation

  3. Approach of a failure analysis for the MYRRHA linac

    International Nuclear Information System (INIS)

    Carneiro, J.P.; Medeiros-Romao, L.; Salemne, R.; Vandeplassche, D.; Biarotte, J.L.; Bouly, F.; Uriot, D.

    2015-01-01

    The MYRRHA project currently under development at SCK-CEN (Mol, Belgium) is a subcritical research reactor that requires a 600 MeV proton accelerator as a driver. This linac is expected to produce a beam power of 1.5 MW onto a spallation target for the reactor to deliver a thermal power around 70 MW. Thermomechanical considerations of the spallation target set stringent requirements on the beam trip rate which should not exceed 40 trips/year for interruptions longer than three seconds. The 3 underlying principles in the design of the MYRRHA linac are elements redundancy (like the dual-injector), elements operation at de-rated values (like cavities operating at about 30% from their nominal operating points) and the fault tolerance concept, which allows the failure of a beamline component to be compensated by its neighbouring elements. Studies presented in this document show that in the event of a failure of the first cryo-module or the first quadrupole doublet the linac can resume nominal operation with a re-matched lattice. Since the fault tolerance procedure is expected to work more efficiently at higher energies (due to lower space charge effects) we can extrapolate from our studies that the MYRRHA linac is expected to operate with the failure of any cryo-module or quadrupole doublet in the main linac. A virtual accelerator-based control system is mandatory for the operation of the MYRRHA linac to ensure the very fast implementation (<3 seconds) of the fault tolerance procedure. The virtual accelerator uses a beam dynamics code (like TRACEWIN or TRACK) to compute the model of the real accelerator in operation and interacts with this later through the accelerator control command

  4. Failure cause analysis and improvement for magnetic component cabinet

    International Nuclear Information System (INIS)

    Ge Bing

    1999-01-01

    The magnetic component cabinet is an important thermal control device fitted on the nuclear power. Because it used a self-saturation amplifier as a primary component, the magnetic component cabinet has some boundness. For increasing the operation safety on the nuclear power, the author describes a new scheme. In order that the magnetic component cabinet can be replaced, the new type component cabinet is developed. Integrate circuit will replace the magnetic components of every function parts. The author has analyzed overall failure cause for magnetic component cabinet and adopted some measures

  5. Weld failure analysis of 2205 duplex stainless steel nozzle

    Directory of Open Access Journals (Sweden)

    Jingqiang Yang

    2014-10-01

    Full Text Available Failure analyses of weld joint between the nozzle and the head of the reactor made of 2205 duplex stainless steel was performed by optical microscopy (OM and scanning electron microscopy (SEM. Cracks were found in HAZ of the weld. The depth of the cracks is equal to the thickness of the inner weld. Localized uneven distribution of ferrite/austenite with 80–90% ferrite in weld is found. Results show that the cracks occurred along columnar granular with cleavage fracture. Poor weld process probably results in these cracks.

  6. Weld failure analysis of 2205 duplex stainless steel nozzle

    OpenAIRE

    Jingqiang Yang; Qiongqi Wang; Zhongkun Wei; Kaishu Guan

    2014-01-01

    Failure analyses of weld joint between the nozzle and the head of the reactor made of 2205 duplex stainless steel was performed by optical microscopy (OM) and scanning electron microscopy (SEM). Cracks were found in HAZ of the weld. The depth of the cracks is equal to the thickness of the inner weld. Localized uneven distribution of ferrite/austenite with 80–90% ferrite in weld is found. Results show that the cracks occurred along columnar granular with cleavage fracture. Poor weld process pr...

  7. Failure and sensitivity analysis of a reconfigurable vibrating screen using finite element analysis

    Directory of Open Access Journals (Sweden)

    Boitumelo Ramatsetse

    2017-10-01

    Full Text Available In mineral processing industries vibrating screens operate under high structural loading and continuous vibrations. In this regard, this may result in high strain rates, which may often lead to structural failure or damage to the screen. In order to lessen the possibility of failure occurring, theories and techniques for analyzing machine structures are investigated and applied to perform a sensitivity study of a newly developed vibrating screen. Structural strength and stability of a vibrating screen is essential to insure that failure doesn’t occur during production. In this paper a finite element analysis (FEA on a reconfigurable vibrating screen (RVS is carried out to determine whether the structure will perform as desired under extreme working conditions at the different configurations of 305 mm × 610 mm, 305 mm × 1220 mm and 610 mm × 1220 mm. This process is aimed at eliminating unplanned shutdowns and minimizes maintenance cost of the equipment. Each component of a screen structure is analyzed separately, stress and displacement parameters are determined based on dynamic analysis. In addition, a modal analysis was carried out for the first three (3 modes at frequency f of 18.756 Hz, 32.676 Hz and 39.619 Hz respectively. The results from the analysis showed weak points on the side plates of screen structure. Further improvements were incorporated to effectively optimize the RVS structure after undergoing an industrial investigation of similar machines.

  8. Using the failure mode and effects analysis model to improve parathyroid hormone and adrenocorticotropic hormone testing

    Directory of Open Access Journals (Sweden)

    Magnezi R

    2016-12-01

    Full Text Available Racheli Magnezi,1 Asaf Hemi,1 Rina Hemi2 1Department of Management, Public Health and Health Systems Management Program, Bar Ilan University, Ramat Gan, 2Endocrine Service Unit, Sheba Medical Center, Tel Aviv, Israel Background: Risk management in health care systems applies to all hospital employees and directors as they deal with human life and emergency routines. There is a constant need to decrease risk and increase patient safety in the hospital environment. The purpose of this article is to review the laboratory testing procedures for parathyroid hormone and adrenocorticotropic hormone (which are characterized by short half-lives and to track failure modes and risks, and offer solutions to prevent them. During a routine quality improvement review at the Endocrine Laboratory in Tel Hashomer Hospital, we discovered these tests are frequently repeated unnecessarily due to multiple failures. The repetition of the tests inconveniences patients and leads to extra work for the laboratory and logistics personnel as well as the nurses and doctors who have to perform many tasks with limited resources.Methods: A team of eight staff members accompanied by the Head of the Endocrine Laboratory formed the team for analysis. The failure mode and effects analysis model (FMEA was used to analyze the laboratory testing procedure and was designed to simplify the process steps and indicate and rank possible failures.Results: A total of 23 failure modes were found within the process, 19 of which were ranked by level of severity. The FMEA model prioritizes failures by their risk priority number (RPN. For example, the most serious failure was the delay after the samples were collected from the department (RPN =226.1.Conclusion: This model helped us to visualize the process in a simple way. After analyzing the information, solutions were proposed to prevent failures, and a method to completely avoid the top four problems was also developed. Keywords: failure mode

  9. Preliminary failure modes and effects analysis on Korean HCCR TBS to be tested in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Mu-Young, E-mail: myahn74@nfri.re.kr [National Fusion Research Institute, Daejeon (Korea, Republic of); Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of); Jin, Hyung Gon; Lee, Dong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Yi-Hyun; Lee, Youngmin [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Highlights: • Postulated initiating events are identified through failure modes and effects analysis on the current HCCR TBS design. • A set of postulated initiating events are selected for consideration of deterministic analysis. • Accident evolutions on the selected postualted initiating events are qualitatively described for deterministic analysis. - Abstract: Korean Helium cooled ceramic reflector (HCCR) Test blanket system (TBS), which comprises Test blanket module (TBM) and ancillary systems in various locations of ITER building, is operated at high temperature and pressure with decay heat. Therefore, safety is utmost concern in design process and it is required to demonstrate that the HCCR TBS is designed to comply with the safety requirements and guidelines of ITER. Due to complexity of the system with many interfaces with ITER, a systematic approach is necessary for safety analysis. This paper presents preliminary failure modes and effects analysis (FMEA) study performed for the HCCR TBS. FMEA is a systematic methodology in which failure modes for components in the system and their consequences are studied from the bottom-up. Over eighty failure modes have been investigated on the HCCR TBS. The failure modes that have similar consequences are grouped as postulated initiating events (PIEs) and total seven reference accident scenarios are derived from FMEA study for deterministic accident analysis. Failure modes not covered here due to evolving design of the HCCR TBS and uncertainty in maintenance procedures will be studied further in near future.

  10. Failure analysis of a carbon steel roller shaft of continuous pad steam machine

    Directory of Open Access Journals (Sweden)

    Santosh D. Dalvi

    2017-10-01

    Full Text Available This paper presents the failure analysis of carbon steel roller shaft of continuous pad steam machine used in textile industry. The fracture position was located at a stepped diameter. The failed component was the shaft made of carbon steel AISI 1040. Standard procedure for failure analysis was employed in this investigation. Visual examination, chemical analysis, hardness and tensile strength measurements, microstructural characterization, fractography analysis by Scanning Electron Microscopy (SEM and Finite Element Analysis (FEA were used for the failure analysis. Using this failure analysis approach, we pinpointed the root cause of failure and developed a means of solving this type of failure in the future. Firstly, the chemical composition of the shaft is done by an Optical Emission Spectroscopy (OES method, the found chemical composition was matching with required standard value. Mechanical testing consists of two test i.e. tensile test and hardness test and it was found out that the strength and hardness of specimens were within the required capacity. For metallurgical analysis, the microstructure of the shaft was developed by using an optical microstructure. Equal distribution of ferrite perlite shows that heat treatment was performed well and carbon percentage in a material is satisfying the standard values. Thus, it proves that the material used was of good quality and indicates that failure is not due to material property. Further for the fractography, the fractured surface was examined by SEM. The cross-section was taken in a quarter segments and divided into four regions i.e. A, B, C, and D. Fractography morphology mainly showed that the failure of roller shaft was caused due to fatigue. To examine the stress distribution at the fractured surface the Finite Element Method (FEM was also carried out. Based on the shaft size, a precise ANSYS model was developed. The result of FEM shows that stress concentration was significant at roller

  11. Reliability Analysis of Fatigue Failure of Cast Components for Wind Turbines

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei; Sørensen, John Dalsgaard

    2015-01-01

    and a limit state equation for fatigue failure based on the SN-curve approach and Miner’s rule is presented. The statistical analysis of the fatigue data is performed using the Maximum Likelihood Method which also gives an estimate of the statistical uncertainties. Finally, illustrative examples are presented......Fatigue failure is one of the main failure modes for wind turbine drivetrain components made of cast iron. The wind turbine drivetrain consists of a variety of heavily loaded components, like the main shaft, the main bearings, the gearbox and the generator. The failure of each component will lead...... are different for offshore and onshore wind turbines. Moreover, uncertainties about the fatigue strength play an important role in modeling and assessment of the reliability of the components. In this paper, a generic stochastic model for fatigue failure of cast iron components based on fatigue test data...

  12. Analysis of Failures of High Speed Shaft Bearing System in a Wind Turbine

    Science.gov (United States)

    Wasilczuk, Michał; Gawarkiewicz, Rafał; Bastian, Bartosz

    2018-01-01

    During the operation of wind turbines with gearbox of traditional configuration, consisting of one planetary stage and two helical stages high failure rate of high speed shaft bearings is observed. Such a high failures frequency is not reflected in the results of standard calculations of bearing durability. Most probably it can be attributed to atypical failure mechanism. The authors studied problems in 1.5 MW wind turbines of one of Polish wind farms. The analysis showed that the problems of high failure rate are commonly met all over the world and that the statistics for the analysed turbines were very similar. After the study of potential failure mechanism and its potential reasons, modification of the existing bearing system was proposed. Various options, with different bearing types were investigated. Different versions were examined for: expected durability increase, extent of necessary gearbox modifications and possibility to solve existing problems in operation.

  13. An analysis of human maintenance failures of a nuclear power plant

    International Nuclear Information System (INIS)

    Pyy, P.

    2000-01-01

    In the report, a study of faults caused by maintenance activities is presented. The objective of the study was to draw conclusions on the unplanned effects of maintenance on nuclear power plant safety and system availability. More than 4400 maintenance history reports from the years 1992-1994 of Olkiluoto BWR nuclear power plant (NPP) were analysed together with the maintenance personnel. The human action induced faults were classified, e.g., according to their multiplicity and effects. This paper presents and discusses the results of a statistical analysis of the data. Instrumentation and electrical components appeared to be especially prone to human failures. Many human failures were found in safety related systems. Several failures also remained latent from outages to power operation. However, the safety significance of failures was generally small. Modifications were an important source of multiple human failures. Plant maintenance data is a good source of human reliability data and it should be used more in the future. (orig.)

  14. Comparison of stress-based and strain-based creep failure criteria for severe accident analysis

    International Nuclear Information System (INIS)

    Chavez, S.A.; Kelly, D.L.; Witt, R.J.; Stirn, D.P.

    1995-01-01

    We conducted a parametic analysis of stress-based and strain-based creep failure criteria to determine if there is a significant difference between the two criteria for SA533B vessel steel under severe accident conditions. Parametric variables include debris composition, system pressure, and creep strain histories derived from different testing programs and mathematically fit, with and without tertiary creep. Results indicate significant differences between the two criteria. Stress gradient plays an important role in determining which criterion will predict failure first. Creep failure was not very sensitive to different creep strain histories, except near the transition temperature of the vessel steel (900K to 1000K). Statistical analyses of creep failure data of four independent sources indicate that these data may be pooled, with a spline point at 1000K. We found the Manson-Haferd parameter to have better failure predictive capability than the Larson-Miller parameter for the data studied. (orig.)

  15. Piping failure analysis for the Korean nuclear piping including the effect of in-service inspection

    Energy Technology Data Exchange (ETDEWEB)

    Choi, S.Y. [Korea Atomic Energy Research Inst.(KAERI), Daejeon (Korea); Choi, Y.H. [Korea Inst. of Nuclear Safety(KINS), Daejeon (Korea)

    2004-07-01

    The purposes of this paper are to perform piping failure analysis for the failed safety class piping in Korean nuclear power plants(NPPs) and evaluate the effect of an in-service inspection(ISI) on the piping failure probability. For data collection, a database for piping failure events was constructed with 135 data fields including population data, event data, and service history data. A total of 6 kinds of events with 25 failure cases up to June 30, 2003 were identified from Korean NPPs. The failed systems were main feedwater system, CVCS, primary sampling system, essential service water system, and CANDU purification system. Piping failure analyses such as evaluation of the impact on nuclear safety and piping integrity and the root cause analysis were performed and the piping failure frequencies for the failed piping were calculated by using population data. The result showed that although the integrity was not maintained in the failed piping, the safety of the plants was maintained for all the events. And the root causes of the events were analyzed as FAC, vibration, thermal fatigue, corrosion, and/or an improper weld joint. The piping failure frequencies ranged from 6.08E-5/Cr-Yr to 1.15E-3/Cr-Yr for the events. According to the ASME Code sec. XI requirements, the small bore piping less than the nominal diameter of 4 inch is exempt from ISI. There, however, were many piping failures reported in the small bore piping. The effect of ISI considering the pipe size on the piping failure probability was investigated by using the Win-PRAISE program based on probabilistic fracture mechanics. The results showed that there is no significant difference between the small and large bore piping from the viewpoint of the ISI effect on the piping failure probability. It means that ISI for a small bore piping is recommended as well as the large bore piping. (orig.)

  16. IMPACT STRENGTH AND FAILURE ANALYSIS OF WELDED DAMASCUS STEEL

    Directory of Open Access Journals (Sweden)

    Rastislav Mintách

    2012-01-01

    Full Text Available The aim of this work was the experimental research of damascus steel from point of view of the structural analyze, impact strength and failure analyzes. The damascus steel was produced by method of forged welding from STN 41 4260 spring steel and STN 41 9312 tool steel. The damascus steel consisted of both 84 and 168 layers. The impact strength was experimentally determined for original steels and damascus steels after heat treatment in dependence on temperature in the range from -60 to 160 °C. It has been found that the impact strength of experimental steels decreased with decreasing temperature behind with correlated change of damage mode. In the case of experimental tests performed at high temperature ductile fracture was revealed and with decreasing temperature proportion of cleavage facets increased. Only the STN 41 9312 steel did not show considerable difference in values of the impact strength with changing temperature.

  17. Failure Analysis and Regeneration Performances Evaluation on Engine Lubricating Oil

    Science.gov (United States)

    Wang, X. L.; Zhang, G. N.; Zhang, J. Y.; Yin, Y. L.; Xu, Y.

    To investigate the behavior of failure and recycling of lubricating oils, three sorts of typical 10w-40 lubricating oils used in heavy-load vehicle including the new oil, waste oil and regeneration oil regenerated by self-researched green regeneration technology were selected. The tribology properties were tested by four-ball friction wear tester as well. The results indicated that the performance of anti-extreme pressure of regeneration oil increase by 34.1% compared with the waste one and its load- carrying ability is close to the new oil; the feature of wear spot are better than those of the waste oil and frictional coefficient almost reach the level of the new oil's. As a result, the performance of anti-wear and friction reducing are getting better obviously.

  18. Application of multi attribute failure mode analysis of milk production using analytical hierarchy process method

    Science.gov (United States)

    Rucitra, A. L.

    2018-03-01

    Pusat Koperasi Induk Susu (PKIS) Sekar Tanjung, East Java is one of the modern dairy industries producing Ultra High Temperature (UHT) milk. A problem that often occurs in the production process in PKIS Sekar Tanjung is a mismatch between the production process and the predetermined standard. The purpose of applying Analytical Hierarchy Process (AHP) was to identify the most potential cause of failure in the milk production process. Multi Attribute Failure Mode Analysis (MAFMA) method was used to eliminate or reduce the possibility of failure when viewed from the failure causes. This method integrates the severity, occurrence, detection, and expected cost criteria obtained from depth interview with the head of the production department as an expert. The AHP approach was used to formulate the priority ranking of the cause of failure in the milk production process. At level 1, the severity has the highest weight of 0.41 or 41% compared to other criteria. While at level 2, identifying failure in the UHT milk production process, the most potential cause was the average mixing temperature of more than 70 °C which was higher than the standard temperature (≤70 ° C). This failure cause has a contributes weight of 0.47 or 47% of all criteria Therefore, this study suggested the company to control the mixing temperature to minimise or eliminate the failure in this process.

  19. Random safety auditing, root cause analysis, failure mode and effects analysis.

    Science.gov (United States)

    Ursprung, Robert; Gray, James

    2010-03-01

    Improving quality and safety in health care is a major concern for health care providers, the general public, and policy makers. Errors and quality issues are leading causes of morbidity and mortality across the health care industry. There is evidence that patients in the neonatal intensive care unit (NICU) are at high risk for serious medical errors. To facilitate compliance with safe practices, many institutions have established quality-assurance monitoring procedures. Three techniques that have been found useful in the health care setting are failure mode and effects analysis, root cause analysis, and random safety auditing. When used together, these techniques are effective tools for system analysis and redesign focused on providing safe delivery of care in the complex NICU system. Copyright 2010 Elsevier Inc. All rights reserved.

  20. Fault tree and failure mode and effects analysis of a digital safety function

    International Nuclear Information System (INIS)

    Maskuniitty, M.; Pulkkinen, U.

    1995-01-01

    The principles of fault tree and failure mode and effects analysis (FMEA) for the analysis of digital safety functions of nuclear power plants are discussed. Based on experiences from a case study, a proposal for a full scale analysis is presented. The feasibility and applicability the above mentioned reliability engineering methods are discussed. (author). 13 refs, 1 fig., 2 tabs

  1. Probabilistic Analysis of Failures Mechanisms of Large Dams

    NARCIS (Netherlands)

    Shams Ghahfarokhi, G.

    2014-01-01

    Risk and reliability analysis is presently being performed in almost all fields of engineering depending upon the specific field and its particular area. Probabilistic risk analysis (PRA), also called quantitative risk analysis (QRA) is a central feature of hydraulic engineering structural design.

  2. Probabilistic analysis on the failure of reactivity control for the PWR

    Science.gov (United States)

    Sony Tjahyani, D. T.; Deswandri; Sunaryo, G. R.

    2018-02-01

    The fundamental safety function of the power reactor is to control reactivity, to remove heat from the reactor, and to confine radioactive material. The safety analysis is used to ensure that each parameter is fulfilled during the design and is done by deterministic and probabilistic method. The analysis of reactivity control is important to be done because it will affect the other of fundamental safety functions. The purpose of this research is to determine the failure probability of the reactivity control and its failure contribution on a PWR design. The analysis is carried out by determining intermediate events, which cause the failure of reactivity control. Furthermore, the basic event is determined by deductive method using the fault tree analysis. The AP1000 is used as the object of research. The probability data of component failure or human error, which is used in the analysis, is collected from IAEA, Westinghouse, NRC and other published documents. The results show that there are six intermediate events, which can cause the failure of the reactivity control. These intermediate events are uncontrolled rod bank withdrawal at low power or full power, malfunction of boron dilution, misalignment of control rod withdrawal, malfunction of improper position of fuel assembly and ejection of control rod. The failure probability of reactivity control is 1.49E-03 per year. The causes of failures which are affected by human factor are boron dilution, misalignment of control rod withdrawal and malfunction of improper position for fuel assembly. Based on the assessment, it is concluded that the failure probability of reactivity control on the PWR is still within the IAEA criteria.

  3. FAILURE MODE AND EFFECT ANALYSIS (FMEA OF BUTTERFLY VALVE IN OIL AND GAS INDUSTRY

    Directory of Open Access Journals (Sweden)

    MUHAMMAD AMIRUL BIN YUSOF

    2016-04-01

    Full Text Available Butterfly valves are mostly used in various industries such as oil and gas plant. This valve operates with rotating motion using pneumatic system. Rotating actuator turns the disc either parallel or perpendicular to the flow. When the valve is fully open, the disc is rotated a quarter turn so that it allows free passage of the fluid and when fully closed, the disc rotated a quarter turns to block the fluid. The primary failure modes for valves are the valve leaks to environment through flanges, seals on the valve body, valve stem packing not properly protected, over tightened packing nuts, the valve cracks and leaks over the seat. To identify the failure of valve Failure Mode and Effects Analysis has been chosen. FMEA is the one of technique to perform failure analysis. It involves reviewing as many components to identify failure modes, and their causes and effects. For each component, the failure modes and their resulting effects on the rest of the system are recorded in a specific FMEA form. Risk priority number, severity, detection, occurrence are the factor determined in this studies. Risk priority number helps to find out the highest hazardous activities which need more attention than the other activity. The highest score of risk priority number in this research is seat. Action plan was proposed to reduce the risk priority number and so that potential failures also will be reduced.

  4. Advanced composites structural concepts and materials technologies for primary aircraft structures: Structural response and failure analysis

    Science.gov (United States)

    Dorris, William J.; Hairr, John W.; Huang, Jui-Tien; Ingram, J. Edward; Shah, Bharat M.

    1992-01-01

    Non-linear analysis methods were adapted and incorporated in a finite element based DIAL code. These methods are necessary to evaluate the global response of a stiffened structure under combined in-plane and out-of-plane loading. These methods include the Arc Length method and target point analysis procedure. A new interface material model was implemented that can model elastic-plastic behavior of the bond adhesive. Direct application of this method is in skin/stiffener interface failure assessment. Addition of the AML (angle minus longitudinal or load) failure procedure and Hasin's failure criteria provides added capability in the failure predictions. Interactive Stiffened Panel Analysis modules were developed as interactive pre-and post-processors. Each module provides the means of performing self-initiated finite elements based analysis of primary structures such as a flat or curved stiffened panel; a corrugated flat sandwich panel; and a curved geodesic fuselage panel. This module brings finite element analysis into the design of composite structures without the requirement for the user to know much about the techniques and procedures needed to actually perform a finite element analysis from scratch. An interactive finite element code was developed to predict bolted joint strength considering material and geometrical non-linearity. The developed method conducts an ultimate strength failure analysis using a set of material degradation models.

  5. 1988 failure rate screening data for fusion reliability and risk analysis

    International Nuclear Information System (INIS)

    Cadwallader, L.C.; Piet, S.J.

    1988-01-01

    This document contains failure rate screening data for application to fusion components. The screening values are generally fission or aerospace industry failure rate estimates that can be extrapolated for use by fusion system designers, reliability engineers and risk analysts. Failure rate estimates for tritium-bearing systems, liquid metal-cooled systems, gas-cooled systems, water-cooled systems and containment systems are given. Preliminary system availability estimates and selected initiating event frequency estimates are presented. This first edition document is valuable to design and safety analysis for the Compact Ignition Tokamak and the International Thermonuclear Experimental Reactor. 20 refs., 28 tabs

  6. Failure Modes Analysis for the MSU-RIA Driver Linac

    CERN Document Server

    Wu, Xiaoyu; Gorelov, Dmitry; Grimm, Terry L; Marti, Felix; York, Richard

    2005-01-01

    Previous end-to-end beam dynamics simulation studies* using experimentally-based input beams including alignment and rf errors and variation in charge-stripping foil thickness have indicated that the Rare Isotope Accelerator (RIA) driver linac proposed by MSU has adequate transverse and longitudinal acceptances to accelerate light and heavy ions to final energies of at least 400 MeV/u with beam powers of 100 to 400 kW. During linac operation, equipment loss due to, for example, cavity contamination, availability of cryogens, or failure of rf or power supply systems, will lead to at least a temporary loss of some of the cavities and focusing elements. To achieve high facility availability, each segment of the linac should be capable of adequate performance even with failed elements. Beam dynamics studies were performed to evaluate the linac performance under various scenarios of failed cavities and focusing elements with proper correction schemes, in order to prove the flexibility and robustness of the driver ...

  7. Identification of hidden failures in process control systems through function-oriented system analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jalashgar, A.

    1997-05-01

    The main subject of this thesis is to identify hidden failures in process control systems by developing and using a function-oriented system analysis method. Qualitative failure analysis and the characteristics of the classical failure analysis methods and function-oriented modelling methods are covered. The general limitations of the methods in connection with the identification and representation of hidden failures are discussed. The discussion has led to the justification of developing and using a function-oriented system analysis method to identify and represent the capabilities of the system components, which realize different sets of functions in connection with different sets of goals that the system must achieve. A terminology is introduced to define the basic aspects of technical systems including goals, functions, capabilities and physical structure. A function-oriented system analysis method using this terminology and a tailored combination of the two function-oriented modelling approaches, is also introduced. It is then explained how the method can be applied in the identification and representation of hidden failures. The building blocks of a knowledge-oriented system to perform the diagnosis on the basis of the developed method are equally described. A prototype of the knowledge-based system is developed to demonstrate the applicability of the function-oriented system analysis method and the knowledge-based system. The prototype is implemented within the object-oriented software environment G2. (au) 65 ills., 32 refs.

  8. Causes of liver failure and impact analysis of prognostic risk factors

    Directory of Open Access Journals (Sweden)

    WU Xiaoqing

    2013-04-01

    Full Text Available ObjectiveTo perform a retrospective analysis of patients with liver failure to investigate the causative factors and related risk factors that may affect patient prognosis. MethodsThe clinical, demographic, and laboratory data of 79 consecutive patients diagnosed with liver failure and treated at our hospital between January 2010 and January 2012 (58 males and 21 females; age range: 16-74 years old were collected from the medical records. To identify risk factors of liver failure, the patient variables were assessed by Student’s t-test (continuous variables or Chi-squared test (categorical variables. Multivariate logistic regression analysis was used to investigate the relation between patient outcome and independent risk factors. ResultsThe 79 cases of liver failure were grouped according to disease severity: acute liver failure (n=6; 5 died, subacute liver failure (n=35; 19 died, and chronic liver failure (n=38; 28 died. The overall rate of death was 66%. The majority of cases (81% were related to hepatitis B virus infection. While the three groups of liver failure severity did not show significant differences in sex, mean age, occupation, presence of potassium disorder, total bilirubin (TBil or total cholesterol (CHO at admission, or lowest recorded level of CHO during hospitalization, there were significant intergroup differences in highest recorded TBil level, prothrombin activity (PTA at admission, and highest and lowest recorded PTA, and highest recorded level of CHO. Five independent risk factors were identified: the highest recorded TBil level during hospitalization, presence of infection, hepatorenal syndrome, gastrointestinal bleeding, and hepatic encephalopathy. ConclusionThe major cause of liver failure in this cohort of patients was hepatitis infection, and common biomarkers of liver function, such as TBil, CHO and PTA, may indicate patients with poor prognosis despite clinical intervention. Complications should be addressed as

  9. Cognitive Impairment and Heart Failure: Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Cannon, Jane A; Moffitt, Peter; Perez-Moreno, Ana Cristina; Walters, Matthew R; Broomfield, Niall M; McMurray, John J V; Quinn, Terence J

    2017-06-01

    Cognitive impairment and dementia are associated with a range of cardiovascular conditions, including hypertension, coronary artery disease, and atrial fibrillation. We aimed to describe the association with heart failure, summarizing published data to give estimates of prevalence, incidence, and relative risk of cognitive impairment/dementia in heart failure. We searched multidisciplinary databases including MEDLINE (OVID), EMBASE (OVID), CINAHL (EBSCO), PsychINFO (EBSCO), Web of Science (Thomson Reuters), and CENTRAL (Cochrane Library) from inception until May 31, 2015. All relevant studies looking at cognitive impairment/dementia in heart failure were included. Studies were selected by 2 independent reviewers using prespecified inclusion/exclusion criteria. Where data allowed, we performed meta-analysis and pooled results using random effects models. From 18,000 titles, 37 studies were eligible (n = 8411 participants). Data from 4 prospective cohorts (n = 2513 participants) suggest greater cognitive decline in heart failure compared with non-heart failure over the longer term. These data were not suitable for meta-analysis. In case control studies describing those with and without heart failure (n = 4 papers, 1414 participants) the odds ratio for cognitive impairment in the heart failure population was 1.67 (95% confidence interval 1.15-2.42). Prevalence of cognitive impairment in heart failure cohorts (n = 26 studies, 4176 participants) was 43% (95% confidence interval 30-55). This review suggests a substantial proportion of patients with heart failure have concomitant cognitive problems. This has implications for planning treatment and services. These data do not allow us to comment on causation, and further work is needed to describe the underlying pathophysiology. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Analysis of Failure to Finish a Race in a Cohort of Thoroughbred Racehorses in New Zealand

    Directory of Open Access Journals (Sweden)

    Jasmine Tanner

    2016-05-01

    Full Text Available The objective was to describe the incidence of failure to finish a race in flat-racing Thoroughbreds in New Zealand as these are summary indicators of falls, injuries and poor performance. Retrospective data on six complete flat racing seasons (n = 188,615 race starts of all Thoroughbred flat race starts from 1 August 2005 to 31 July 2011 were obtained. The incidence of failure to finish events and binomial exact 95% confidence intervals were calculated per 1000 horse starts. The association between horse-, rider- and race-level variables with the outcomes failure to finish, pulled-up/fell and lost rider were examined with a mixed effects Poisson regression model. A total of 544 horses failed to finish in 188,615 race starts with an overall incidence of 2.88 per 1000 horse starts (95% CI 2.64–3.12. The incidence of failure to finish horses across each race year showed little variability. In the univariable analysis race distance, larger field size, season, and ratings bands showed association with failing to finish a race. The overall failure to finish outcome was associated with season, race distance and ratings bands (horse experience and success ranking criteria. In the multivariable analysis, race distance and ratings bands were associated with horses that pulled-up/fell; season, apprentice allowances and ratings bands were associated with the outcome lost rider. The failure to finish rate was lower than international figures for race day catastrophic injury. Racing and environmental variables were associated with failure to finish a race highlighting the multifactorial nature of race-day events. Further investigation of risk factors for failure to finish is required to better understand the reasons for a low failure to finish rate in Thoroughbred flat races in New Zealand.

  11. Failure mode effect analysis and fault tree analysis as a combined methodology in risk management

    Science.gov (United States)

    Wessiani, N. A.; Yoshio, F.

    2018-04-01

    There have been many studies reported the implementation of Failure Mode Effect Analysis (FMEA) and Fault Tree Analysis (FTA) as a method in risk management. However, most of the studies usually only choose one of these two methods in their risk management methodology. On the other side, combining these two methods will reduce the drawbacks of each methods when implemented separately. This paper aims to combine the methodology of FMEA and FTA in assessing risk. A case study in the metal company will illustrate how this methodology can be implemented. In the case study, this combined methodology will assess the internal risks that occur in the production process. Further, those internal risks should be mitigated based on their level of risks.

  12. Quantitative Approach to Failure Mode and Effect Analysis for Linear Accelerator Quality Assurance.

    Science.gov (United States)

    O'Daniel, Jennifer C; Yin, Fang-Fang

    2017-05-01

    To determine clinic-specific linear accelerator quality assurance (QA) TG-142 test frequencies, to maximize physicist time efficiency and patient treatment quality. A novel quantitative approach to failure mode and effect analysis is proposed. Nine linear accelerator-years of QA records provided data on failure occurrence rates. The severity of test failure was modeled by introducing corresponding errors into head and neck intensity modulated radiation therapy treatment plans. The relative risk of daily linear accelerator QA was calculated as a function of frequency of test performance. Although the failure severity was greatest for daily imaging QA (imaging vs treatment isocenter and imaging positioning/repositioning), the failure occurrence rate was greatest for output and laser testing. The composite ranking results suggest that performing output and lasers tests daily, imaging versus treatment isocenter and imaging positioning/repositioning tests weekly, and optical distance indicator and jaws versus light field tests biweekly would be acceptable for non-stereotactic radiosurgery/stereotactic body radiation therapy linear accelerators. Failure mode and effect analysis is a useful tool to determine the relative importance of QA tests from TG-142. Because there are practical time limitations on how many QA tests can be performed, this analysis highlights which tests are the most important and suggests the frequency of testing based on each test's risk priority number. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Quantitative Approach to Failure Mode and Effect Analysis for Linear Accelerator Quality Assurance

    Energy Technology Data Exchange (ETDEWEB)

    O' Daniel, Jennifer C., E-mail: jennifer.odaniel@duke.edu; Yin, Fang-Fang

    2017-05-01

    Purpose: To determine clinic-specific linear accelerator quality assurance (QA) TG-142 test frequencies, to maximize physicist time efficiency and patient treatment quality. Methods and Materials: A novel quantitative approach to failure mode and effect analysis is proposed. Nine linear accelerator-years of QA records provided data on failure occurrence rates. The severity of test failure was modeled by introducing corresponding errors into head and neck intensity modulated radiation therapy treatment plans. The relative risk of daily linear accelerator QA was calculated as a function of frequency of test performance. Results: Although the failure severity was greatest for daily imaging QA (imaging vs treatment isocenter and imaging positioning/repositioning), the failure occurrence rate was greatest for output and laser testing. The composite ranking results suggest that performing output and lasers tests daily, imaging versus treatment isocenter and imaging positioning/repositioning tests weekly, and optical distance indicator and jaws versus light field tests biweekly would be acceptable for non-stereotactic radiosurgery/stereotactic body radiation therapy linear accelerators. Conclusions: Failure mode and effect analysis is a useful tool to determine the relative importance of QA tests from TG-142. Because there are practical time limitations on how many QA tests can be performed, this analysis highlights which tests are the most important and suggests the frequency of testing based on each test's risk priority number.

  14. Analysis of ultrafiltration failure in peritoneal dialysis patients by means of standard peritoneal permeability analysis.

    Science.gov (United States)

    Ho-dac-Pannekeet, M M; Atasever, B; Struijk, D G; Krediet, R T

    1997-01-01

    Ultrafiltration failure (UFF) is a complication of peritoneal dialysis (PD) treatment that occurs especially in long-term patients. Etiological factors include a large effective peritoneal surface area [measured as high mass transfer area coefficient (MTAC) of creatinine], a high effective lymphatic absorption rate (ELAR), a large residual volume, or combinations. The prevalence and etiology of UFF were studied and the contribution of transcellular water transport (TCWT) was analyzed. A new definition of UFF and guidelines for the analysis of its etiology were derived from the results. Peritoneal dialysis unit in the Academic Medical Center in Amsterdam. Cross-sectional study of standard peritoneal permeability analyses (4-hr dwells, dextran 70 as volume marker) with 1.36% glucose in 68 PD patients. Patients with negative net UF (change in intraperitoneal volume, dIPV rate (TCUFR) were lower (p lower residual volume (p = 0.03), and lower TCUFR (p = 0.01). Ultrafiltration failure was associated with a high MTAC creatinine in 3 patients, a high ELAR in 4 patients, and a combination of factors in one. As an additional possible cause, TCWT was studied, using the sodium gradient in the first hour of the dwell, corrected for diffusion (dNA). Five patients had dNA > 5 mmol/L, indicating normal TCWT. The 3 patients with dNA lower TCUFR (p = 0.04). A smaller difference was found between dIPV 3.86% and 1.36% (p = 0.04) compared to the dNA > 5 mmol/L group, but no differences were present for MTAC creatinine, ELAR, residual volume, or glucose absorption. In addition to known factors, impairment of TCWT can be a cause of UFF. A standardized dwell with 1.36% glucose overestimates UFF. Therefore, 3.86% glucose should be used for identification of patients with UFF, especially because it provides additional information on TCWT. Ultrafiltration failure can be defined as net UF exchange.

  15. Analysis of viral testing in nonacetaminophen pediatric acute liver failure.

    Science.gov (United States)

    Schwarz, Kathleen B; Dell Olio, Dominic; Lobritto, Steven J; Lopez, M James; Rodriguez-Baez, Norberto; Yazigi, Nada A; Belle, Steven H; Zhang, Song; Squires, Robert H

    2014-11-01

    Viral infections are often suspected to cause pediatric acute liver failure (PALF), but large-scale studies have not been performed. We analyzed the results of viral testing among nonacetaminophen PALF study participants. Participants were enrolled in the PALF registry. Diagnostic evaluation and final diagnosis were determined by the site investigator and methods for viral testing by local standard of care. Viruses were classified as either causative viruses (CVs) or associated viruses (AVs). Supplemental testing for CV was performed if not done clinically and serum was available. Final diagnoses included "viral," "indeterminate," and "other." Of 860 participants, 820 had at least 1 test result for a CV or AV. A positive viral test was found in 166/820 (20.2%) participants and distributed among "viral" (66/80 [82.5%]), "indeterminate" (52/420 [12.4%]), and "other" (48/320 [15.0%]) diagnoses. CVs accounted for 81/166 (48.8%) positive tests. Herpes simplex virus (HSV) was positive in 39/335 (11.6%) who were tested 26/103 (25.2%) and 13/232 (5.6%) among infants 0 to 6 and >6 months, respectively. HSV was not tested in 61.0% and 53% of the overall cohort and those 0 to 6 months, respectively. Supplemental testing yielded 17 positive, including 5 HSV. Viral testing in PALF occurs frequently but is often incomplete. The evidence for acute viral infection was found in 20.2% of those tested for viruses. HSV is an important viral cause for PALF in all age groups. The etiopathogenic role of CV and AV in PALF requires further investigation.

  16. Analysis of risk factors for cluster behavior of dental implant failures.

    Science.gov (United States)

    Chrcanovic, Bruno Ramos; Kisch, Jenö; Albrektsson, Tomas; Wennerberg, Ann

    2017-08-01

    Some studies indicated that implant failures are commonly concentrated in few patients. To identify and analyze cluster behavior of dental implant failures among subjects of a retrospective study. This retrospective study included patients receiving at least three implants only. Patients presenting at least three implant failures were classified as presenting a cluster behavior. Univariate and multivariate logistic regression models and generalized estimating equations analysis evaluated the effect of explanatory variables on the cluster behavior. There were 1406 patients with three or more implants (8337 implants, 592 failures). Sixty-seven (4.77%) patients presented cluster behavior, with 56.8% of all implant failures. The intake of antidepressants and bruxism were identified as potential negative factors exerting a statistically significant influence on a cluster behavior at the patient-level. The negative factors at the implant-level were turned implants, short implants, poor bone quality, age of the patient, the intake of medicaments to reduce the acid gastric production, smoking, and bruxism. A cluster pattern among patients with implant failure is highly probable. Factors of interest as predictors for implant failures could be a number of systemic and local factors, although a direct causal relationship cannot be ascertained. © 2017 Wiley Periodicals, Inc.

  17. Electromechanical actuators affected by multiple failures: Prognostic method based on spectral analysis techniques

    Science.gov (United States)

    Belmonte, D.; Vedova, M. D. L. Dalla; Ferro, C.; Maggiore, P.

    2017-06-01

    The proposal of prognostic algorithms able to identify precursors of incipient failures of primary flight command electromechanical actuators (EMA) is beneficial for the anticipation of the incoming failure: an early and correct interpretation of the failure degradation pattern, in fact, can trig an early alert of the maintenance crew, who can properly schedule the servomechanism replacement. An innovative prognostic model-based approach, able to recognize the EMA progressive degradations before his anomalous behaviors become critical, is proposed: the Fault Detection and Identification (FDI) of the considered incipient failures is performed analyzing proper system operational parameters, able to put in evidence the corresponding degradation path, by means of a numerical algorithm based on spectral analysis techniques. Subsequently, these operational parameters will be correlated with the actual EMA health condition by means of failure maps created by a reference monitoring model-based algorithm. In this work, the proposed method has been tested in case of EMA affected by combined progressive failures: in particular, partial stator single phase turn to turn short-circuit and rotor static eccentricity are considered. In order to evaluate the prognostic method, a numerical test-bench has been conceived. Results show that the method exhibit adequate robustness and a high degree of confidence in the ability to early identify an eventual malfunctioning, minimizing the risk of fake alarms or unannounced failures.

  18. SU-F-T-246: Evaluation of Healthcare Failure Mode And Effect Analysis For Risk Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Harry, T [Oregon State University, Corvallis, OR (United States); University of California, San Diego, La Jolla, CA (United States); Manger, R; Cervino, L; Pawlicki, T [University of California, San Diego, La Jolla, CA (United States)

    2016-06-15

    Purpose: To evaluate the differences between the Veteran Affairs Healthcare Failure Modes and Effect Analysis (HFMEA) and the AAPM Task Group 100 Failure and Effect Analysis (FMEA) risk assessment techniques in the setting of a stereotactic radiosurgery (SRS) procedure were compared respectively. Understanding the differences in the techniques methodologies and outcomes will provide further insight into the applicability and utility of risk assessments exercises in radiation therapy. Methods: HFMEA risk assessment analysis was performed on a stereotactic radiosurgery procedure. A previous study from our institution completed a FMEA of our SRS procedure and the process map generated from this work was used for the HFMEA. The process of performing the HFMEA scoring was analyzed, and the results from both analyses were compared. Results: The key differences between the two risk assessments are the scoring criteria for failure modes and identifying critical failure modes for potential hazards. The general consensus among the team performing the analyses was that scoring for the HFMEA was simpler and more intuitive then the FMEA. The FMEA identified 25 critical failure modes while the HFMEA identified 39. Seven of the FMEA critical failure modes were not identified by the HFMEA and 21 of the HFMEA critical failure modes were not identified by the FMEA. HFMEA as described by the Veteran Affairs provides guidelines on which failure modes to address first. Conclusion: HFMEA is a more efficient model for identifying gross risks in a process than FMEA. Clinics with minimal staff, time and resources can benefit from this type of risk assessment to eliminate or mitigate high risk hazards with nominal effort. FMEA can provide more in depth details but at the cost of elevated effort.

  19. Studies on failure kind analysis of the radiologic medical equipment in general hospital

    International Nuclear Information System (INIS)

    Lee, Woo Cheul; Kim, Jeong Lae

    1999-01-01

    This paper included a data analysis of the unit of medical devices using maintenance recording card that had medical devices of unit failure mode, hospital of failure mode and MTBF. The results of the analysis were as follows : 1. Medical devices of unit failure mode was the highest in QC/PM such A hospital as 33.9%, B hospital 30.9%, C hospital 30.3%, second degree was the Electrical and Electronic failure such A hospital as 23.5%, B hospital 25.3%, C hospital 28%, third degree was mechanical failure such A hospital as 19.6%, B hospital 22.5%, C hospital 25.4%. 2. Hospital of failure mode was the highest in Mobile X-ray device(A hospital 62.5%, B hospital 69.5%, C hospital 37.4%), and was the lowest in Sono devices(A hospital 16.76%, B hospital 8.4%, C hospital 7%). 3. Mean time between failures(MTBT) was the highest in SONO devices and was the lowest in Mobile X-ray devices which have 200 - 400 failure hours. 4. Average failure ratio was the highest in Mobile X-ray devices(A hospital 31.3%, B hospital 34.8%, C hospital 18.7%), and was the lowest in Sono(Ultrasound) devices (A hospital 8.4%, B hospital 4.2%, C hospital 3.5%). 5. Failure ratio results of medical devices according to QC/PM part of unit failure mode were as follows ; A hospital was the highest part of QC/PM (50%) in Mamo X-ray device and was the lowest part of QC/PM(26.4%) in Gastro X-ray. B hospital was the highest part of QC/PM(56%) in Mobile X-ray device, and the lowest part of QC/PM(12%) in Gastro X-ray. C hospital was the highest part of QC/PM(60%) in R/F X-ray device, and the lowest a part of QC/PM(21%) in Universal X-ray. It was found that the units responsible for most failure decreased by systematic management. We made the preventive maintenance schedule focusing on adjustment of operating and dust removal

  20. Failure analysis and life prediction of a large, complex plate fin heat exchanger

    CSIR Research Space (South Africa)

    Carter, P

    1996-03-01

    Full Text Available Failure analysis and life prediction of a large, complex fin plate heat exchanger required metallurgical analysis, at the beginning of 1993, inter-stream leaks were found in two aluminium plate fin heat exchangers in parallel operation at a...

  1. Dependency Analysis Guidance Nordic/German Working Group on Common Cause Failure analysis. Phase 2, Development of Harmonized Approach and Applications for Common Cause Failure Quantification

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Guenter; Johanson, Gunnar; Lindberg, Sandra; Vaurio, Jussi

    2009-03-15

    The Regulatory Code SSMFS 2008:1 of Swedish Radiation Safety Authority (SSM) includes requirements regarding the performance of probabilistic safety assessments (PSA), as well as PSA activities in general. Therefore, the follow-up of these activities is part of the inspection tasks of SSM. According to the SSMFS 2008:1, the safety analyses shall be based on a systematic identification and evaluation of such events, event sequences and other conditions which may lead to a radiological accident. The research report Nordic/German Working Group on Common cause Failure analysis. Phase 2 project report: Development of Harmonized Approach and Applications for Common Cause Failure Quantification has been developed under a contract with the Nordic PSA Group (NPSAG) and its German counterpart VGB, with the aim to create a common experience base for defence and analysis of dependent failures i.e. Common Cause Failures CCF. Phase 2 in this project if a deepened data analyses of CCF events and a demonstration on how the so called impact vectors can be constructed and on how CCF parameters are estimated. The word Guidance in the report title is used in order to indicate a common methodological guidance accepted by the NPSAG, based on current state of the art concerning the analysis of dependent failures and adapted to conditions relevant for Nordic sites. This will make it possible for the utilities to perform cost effective improvements and analyses. The report presents a common attempt by the authorities and the utilities to create a methodology and experience base for defence and analysis of dependent failures. The performed benchmark application has shown how important the interpretation of base data is to obtain robust CCF data and data analyses results. Good features were found in all benchmark approaches. The obtained experiences and approaches should now be used in harmonised procedures. A next step could be to develop and agree on event and formula driven impact vector

  2. Application of failure mode and effect analysis in an assisted reproduction technology laboratory.

    Science.gov (United States)

    Intra, Giulia; Alteri, Alessandra; Corti, Laura; Rabellotti, Elisa; Papaleo, Enrico; Restelli, Liliana; Biondo, Stefania; Garancini, Maria Paola; Candiani, Massimo; Viganò, Paola

    2016-08-01

    Assisted reproduction technology laboratories have a very high degree of complexity. Mismatches of gametes or embryos can occur, with catastrophic consequences for patients. To minimize the risk of error, a multi-institutional working group applied failure mode and effects analysis (FMEA) to each critical activity/step as a method of risk assessment. This analysis led to the identification of the potential failure modes, together with their causes and effects, using the risk priority number (RPN) scoring system. In total, 11 individual steps and 68 different potential failure modes were identified. The highest ranked failure modes, with an RPN score of 25, encompassed 17 failures and pertained to "patient mismatch" and "biological sample mismatch". The maximum reduction in risk, with RPN reduced from 25 to 5, was mostly related to the introduction of witnessing. The critical failure modes in sample processing were improved by 50% in the RPN by focusing on staff training. Three indicators of FMEA success, based on technical skill, competence and traceability, have been evaluated after FMEA implementation. Witnessing by a second human operator should be introduced in the laboratory to avoid sample mix-ups. These findings confirm that FMEA can effectively reduce errors in assisted reproduction technology laboratories. Copyright © 2016 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  3. Exact combinatorial reliability analysis of dynamic systems with sequence-dependent failures

    International Nuclear Information System (INIS)

    Xing Liudong; Shrestha, Akhilesh; Dai Yuanshun

    2011-01-01

    Many real-life fault-tolerant systems are subjected to sequence-dependent failure behavior, in which the order in which the fault events occur is important to the system reliability. Such systems can be modeled by dynamic fault trees (DFT) with priority-AND (pAND) gates. Existing approaches for the reliability analysis of systems subjected to sequence-dependent failures are typically state-space-based, simulation-based or inclusion-exclusion-based methods. Those methods either suffer from the state-space explosion problem or require long computation time especially when results with high degree of accuracy are desired. In this paper, an analytical method based on sequential binary decision diagrams is proposed. The proposed approach can analyze the exact reliability of non-repairable dynamic systems subjected to the sequence-dependent failure behavior. Also, the proposed approach is combinatorial and is applicable for analyzing systems with any arbitrary component time-to-failure distributions. The application and advantages of the proposed approach are illustrated through analysis of several examples. - Highlights: → We analyze the sequence-dependent failure behavior using combinatorial models. → The method has no limitation on the type of time-to-failure distributions. → The method is analytical and based on sequential binary decision diagrams (SBDD). → The method is computationally more efficient than existing methods.

  4. Evaluation of Safety in a Radiation Oncology Setting Using Failure Mode and Effects Analysis

    International Nuclear Information System (INIS)

    Ford, Eric C.; Gaudette, Ray; Myers, Lee; Vanderver, Bruce; Engineer, Lilly; Zellars, Richard; Song, Danny Y.; Wong, John; DeWeese, Theodore L.

    2009-01-01

    Purpose: Failure mode and effects analysis (FMEA) is a widely used tool for prospectively evaluating safety and reliability. We report our experiences in applying FMEA in the setting of radiation oncology. Methods and Materials: We performed an FMEA analysis for our external beam radiation therapy service, which consisted of the following tasks: (1) create a visual map of the process, (2) identify possible failure modes; assign risk probability numbers (RPN) to each failure mode based on tabulated scores for the severity, frequency of occurrence, and detectability, each on a scale of 1 to 10; and (3) identify improvements that are both feasible and effective. The RPN scores can span a range of 1 to 1000, with higher scores indicating the relative importance of a given failure mode. Results: Our process map consisted of 269 different nodes. We identified 127 possible failure modes with RPN scores ranging from 2 to 160. Fifteen of the top-ranked failure modes were considered for process improvements, representing RPN scores of 75 and more. These specific improvement suggestions were incorporated into our practice with a review and implementation by each department team responsible for the process. Conclusions: The FMEA technique provides a systematic method for finding vulnerabilities in a process before they result in an error. The FMEA framework can naturally incorporate further quantification and monitoring. A general-use system for incident and near miss reporting would be useful in this regard.

  5. WE-G-BRA-08: Failure Modes and Effects Analysis (FMEA) for Gamma Knife Radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Y; Bhatnagar, J; Bednarz, G; Flickinger, J; Arai, Y; Huq, M Saiful [Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA (United States); Vacsulka, J; Monaco, E; Niranjan, A; Lunsford, L Dade [Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Feng, W [Dept of Radiation Oncology, New York Presbyterian Hospital/Columbia Univ Medical Center, New York, NY (United States)

    2015-06-15

    Purpose: To perform a failure modes and effects analysis (FMEA) study for Gamma Knife (GK) radiosurgery processes at our institution based on our experience with the treatment of more than 13,000 patients. Methods: A team consisting of medical physicists, nurses, radiation oncologists, neurosurgeons at the University of Pittsburgh Medical Center and an external physicist expert was formed for the FMEA study. A process tree and a failure mode table were created for the GK procedures using the Leksell GK Perfexion and 4C units. Three scores for the probability of occurrence (O), the severity (S), and the probability of no detection (D) for failure modes were assigned to each failure mode by each professional on a scale from 1 to 10. The risk priority number (RPN) for each failure mode was then calculated (RPN = OxSxD) as the average scores from all data sets collected. Results: The established process tree for GK radiosurgery consists of 10 sub-processes and 53 steps, including a sub-process for frame placement and 11 steps that are directly related to the frame-based nature of the GK radiosurgery. Out of the 86 failure modes identified, 40 failure modes are GK specific, caused by the potential for inappropriate use of the radiosurgery head frame, the imaging fiducial boxes, the GK helmets and plugs, and the GammaPlan treatment planning system. The other 46 failure modes are associated with the registration, imaging, image transfer, contouring processes that are common for all radiation therapy techniques. The failure modes with the highest hazard scores are related to imperfect frame adaptor attachment, bad fiducial box assembly, overlooked target areas, inaccurate previous treatment information and excessive patient movement during MRI scan. Conclusion: The implementation of the FMEA approach for Gamma Knife radiosurgery enabled deeper understanding of the overall process among all professionals involved in the care of the patient and helped identify potential

  6. WE-G-BRA-08: Failure Modes and Effects Analysis (FMEA) for Gamma Knife Radiosurgery

    International Nuclear Information System (INIS)

    Xu, Y; Bhatnagar, J; Bednarz, G; Flickinger, J; Arai, Y; Huq, M Saiful; Vacsulka, J; Monaco, E; Niranjan, A; Lunsford, L Dade; Feng, W

    2015-01-01

    Purpose: To perform a failure modes and effects analysis (FMEA) study for Gamma Knife (GK) radiosurgery processes at our institution based on our experience with the treatment of more than 13,000 patients. Methods: A team consisting of medical physicists, nurses, radiation oncologists, neurosurgeons at the University of Pittsburgh Medical Center and an external physicist expert was formed for the FMEA study. A process tree and a failure mode table were created for the GK procedures using the Leksell GK Perfexion and 4C units. Three scores for the probability of occurrence (O), the severity (S), and the probability of no detection (D) for failure modes were assigned to each failure mode by each professional on a scale from 1 to 10. The risk priority number (RPN) for each failure mode was then calculated (RPN = OxSxD) as the average scores from all data sets collected. Results: The established process tree for GK radiosurgery consists of 10 sub-processes and 53 steps, including a sub-process for frame placement and 11 steps that are directly related to the frame-based nature of the GK radiosurgery. Out of the 86 failure modes identified, 40 failure modes are GK specific, caused by the potential for inappropriate use of the radiosurgery head frame, the imaging fiducial boxes, the GK helmets and plugs, and the GammaPlan treatment planning system. The other 46 failure modes are associated with the registration, imaging, image transfer, contouring processes that are common for all radiation therapy techniques. The failure modes with the highest hazard scores are related to imperfect frame adaptor attachment, bad fiducial box assembly, overlooked target areas, inaccurate previous treatment information and excessive patient movement during MRI scan. Conclusion: The implementation of the FMEA approach for Gamma Knife radiosurgery enabled deeper understanding of the overall process among all professionals involved in the care of the patient and helped identify potential

  7. Statistical analysis of human maintenance failures of a nuclear power plant

    International Nuclear Information System (INIS)

    Pyy, P.

    2000-01-01

    In this paper, a statistical study of faults caused by maintenance activities is presented. The objective of the study was to draw conclusions on the unplanned effects of maintenance on nuclear power plant safety and system availability. More than 4400 maintenance history reports from the years 1992-1994 of Olkiluoto BWR nuclear power plant (NPP) were analysed together with the maintenance personnel. The human action induced faults were classified, e.g., according to their multiplicity and effects. This paper presents and discusses the results of a statistical analysis of the data. Instrumentation and electrical components are especially prone to human failures. Many human failures were found in safety related systems. Similarly, several failures remained latent from outages to power operation. The safety significance was generally small. Modifications are an important source of multiple human failures. Plant maintenance data is a good source of human reliability data and it should be used more, in future. (orig.)

  8. Failure analysis of radioisotopic heat source capsules tested under multi-axial conditions

    International Nuclear Information System (INIS)

    Zielinski, R.E.; Stacy, E.; Burgan, C.E.

    In order to qualify small radioisotopic heat sources for a 25-yr design life, multi-axial mechanical tests were performed on the structural components of the heat source. The results of these tests indicated that failure predominantly occurred in the middle of the weld ramp-down zone. Examination of the failure zone by standard metallographic techniques failed to indicate the true cause of failure. A modified technique utilizing chemical etching, scanning electron microscopy, and energy dispersive x-ray analysis was employed and dramatically indicated the true cause of failure, impurity concentration in the ramp-down zone. As a result of the initial investigation, weld parameters for the heat sources were altered. Example welds made with a pulse arc technique did not have this impurity buildup in the ramp-down zone

  9. Failure mode and effects analysis applied to the administration of liquid medication by oral syringes

    Directory of Open Access Journals (Sweden)

    Eva María Guerra-Alia

    2017-11-01

    Full Text Available To carry out a Failure Mode and Effects Analysis (FMEA to the use of oral syringes. Methods: A multidisciplinary team was assembled within the Safety Committee. The stages of oral administration process of liquid medication were analysed, identifying the most critical and establishing the potential modes of failure that can cause errors. The impact associated with each mode of failure was calculated using the Risk Priority Number (RPN. Preventive actions were proposed. Results: Five failure modes were identified, all classified as high risk (RPN> 100. Seven of the eight preventive actions were implemented. Conclusions: The FMEA methodology was a useful tool. It has allowed to know the risks, analyse the causes that cause them, their effects on patient safety and the measures to reduce them

  10. Failure analysis of Mark 1A lithium/iron sulfide battery

    Science.gov (United States)

    Kolba, V. M.; Battles, J. E.; Geller, J. D.; Gentry, K.

    1980-10-01

    During startup heating prior to electrical testing, a short circuit developed in one of the modules, which resulted in a progressive failure of the cells. The other module, which was alongside and connected in series, was unaffected by the failure. The initial indication of difficulty was a small drop in the voltage of several cells, followed by short circuits in the balance of the cells and localized temperatures above 1000 C. A team consisting of ANL and Eagle-Picher personnel conducted a detailed failure analysis as the failed module was disassembled. The other module was also examined for purposes of comparison. The general conclusion was that the short circuit was initiated by electrolyte leakage and resulting corrosion in the nearby region which formed metallic bridges between cells and the cell ray, or arcing between cells and the cell tray through the butt joints in the electrical insulation. The above two mechanisms were also believed to be responsible for the failure propagation.

  11. Multi-factor analysis of failure of renal replacement therapy in acute renal failure developed after cardiac surgery.

    Science.gov (United States)

    Nawrocki, Pawel; Szwedo, Ireneusz; Tyc, Joanna; Hawrysz, Anna; Janiak, Kamila; Cichoń, Romuald

    2015-09-01

    Acute renal failure (ARF) is a rare (2-15%), but severe complication of cardiac surgery with overall mortality reaching 40-80%. In order to save patients' lives they are treated with renal replacement therapy (RRT). The aim of our study was to assess the impact of different perioperative factors on mortality among patients treated with RRT because of acute renal failure, which occurred as a complication of a heart surgery. Retrospective analysis included 45 patients, operated in the years 2009-2013, who underwent renal replacement therapy in order to treat postoperative ARF. The perioperative factors were analysed in two groups: group 1 - patients who died before discharge; and group 2 - those who survived until hospital discharge. Forty-five of 3509 cardiac surgical patients (1.25%) required RRT after the surgery. A total of 23 (51.11%) died before discharge (group 1). Patients in group 1 were characterised by older age (70.21 vs. 67 years), higher mean EuroSCORE value (9.28 vs. 7.15) (p < 0.05), higher percentage of concomitant surgery (63.63% vs. 28.57%) (p < 0.05) and of admission of catecholamines in the postoperative period (100% vs. 68.42%) (p < 0.005), and higher mean urea blood level prior to RRT initiation (156.65 vs. 102.54 mg/dl) (p < 0.05). The statistically relevant death predictors proved to be: high EuroSCORE, concomitant surgery, and high urea level at RRT initiation and admission of catecholamines in the postoperative period. After conformation in further studies, those factors may prove useful in stratification of death risk among surgical patients requiring RRT.

  12. A meta-analysis of the effects of β-adrenergic blockers in chronic heart failure.

    Science.gov (United States)

    Zhang, Xiaojian; Shen, Chengwu; Zhai, Shujun; Liu, Yukun; Yue, Wen-Wei; Han, Li

    2016-10-01

    Adrenergic β-blockers are drugs that bind to, but do not activate β-adrenergic receptors. Instead they block the actions of β-adrenergic agonists and are used for the treatment of various diseases such as cardiac arrhythmias, angina pectoris, myocardial infarction, hypertension, headache, migraines, stress, anxiety, prostate cancer, and heart failure. Several meta-analysis studies have shown that β-blockers improve the heart function and reduce the risks of cardiovascular events, rate of mortality, and sudden death through chronic heart failure (CHF) of patients. The present study identified results from recent meta-analyses of β-adrenergic blockers and their usefulness in CHF. Databases including Medline/Embase/Cochrane Central Register of Controlled Trials (CENTRAL), and PubMed were searched for the periods May, 1985 to March, 2011 and June, 2013 to August, 2015, and a number of studies identified. Results of those studies showed that use of β-blockers was associated with decreased sudden cardiac death in patients with heart failure. However, contradictory results have also been reported. The present meta-analysis aimed to determine the efficacy of β-blockers on mortality and morbidity in patients with heart failure. The results showed that mortality was significantly reduced by β-blocker treatment prior to the surgery of heart failure patients. The results from the meta-analysis studies showed that β-blocker treatment in heart failure patients correlated with a significant decrease in long-term mortality, even in patients that meet one or more exclusion criteria of the MERIT-HF study. In summary, the findings of the current meta-analysis revealed beneficial effects different β-blockers have on patients with heart failure or related heart disease.

  13. Smoking, Radiotherapy, Diabetes and Osteoporosis as Risk Factors for Dental Implant Failure: A Meta-Analysis

    Science.gov (United States)

    Chen, Hui; Liu, Nizhou; Xu, Xinchen; Qu, Xinhua; Lu, Eryi

    2013-01-01

    Background There are conflicting reports as to the association between smoking, radiotherapy, diabetes and osteoporosis and the risk of dental implant failure. We undertook a meta-analysis to evaluate the association between smoking, radiotherapy, diabetes and osteoporosis and the risk of dental implant failure. Methods A comprehensive research on MEDLINE and EMBASE, up to January 2013, was conducted to identify potential studies. References of relevant studies were also searched. Screening, data extraction and quality assessment were conducted independently and in duplicate. A random-effects meta-analysis was used to pool estimates of relative risks (RRs) with 95% confidence intervals (CIs). Results A total of 51 studies were identified in this meta-analysis, with more than 40,000 dental implants placed under risk-threatening conditions. The pooled RRs showed a direct association between smoking (n = 33; RR = 1.92; 95% CI, 1.67–2.21) and radiotherapy (n = 16; RR = 2.28; 95% CI, 1.49–3.51) and the risk of dental implant failure, whereas no inverse impact of diabetes (n = 5; RR = 0.90; 95% CI, 0.62–1.32) on the risk of dental implant failure was found. The influence of osteoporosis on the risk of dental implant failure was direct but not significant (n = 4; RR = 1.09; 95% CI, 0.79–1.52). The subgroup analysis indicated no influence of study design, geographical location, length of follow-up, sample size, or mean age of recruited patients. Conclusions Smoking and radiotherapy were associated with an increased risk of dental implant failure. The relationship between diabetes and osteoporosis and the risk of implant failure warrant further study. PMID:23940794

  14. Smoking, radiotherapy, diabetes and osteoporosis as risk factors for dental implant failure: a meta-analysis.

    Directory of Open Access Journals (Sweden)

    Hui Chen

    Full Text Available BACKGROUND: There are conflicting reports as to the association between smoking, radiotherapy, diabetes and osteoporosis and the risk of dental implant failure. We undertook a meta-analysis to evaluate the association between smoking, radiotherapy, diabetes and osteoporosis and the risk of dental implant failure. METHODS: A comprehensive research on MEDLINE and EMBASE, up to January 2013, was conducted to identify potential studies. References of relevant studies were also searched. Screening, data extraction and quality assessment were conducted independently and in duplicate. A random-effects meta-analysis was used to pool estimates of relative risks (RRs with 95% confidence intervals (CIs. RESULTS: A total of 51 studies were identified in this meta-analysis, with more than 40,000 dental implants placed under risk-threatening conditions. The pooled RRs showed a direct association between smoking (n = 33; RR = 1.92; 95% CI, 1.67-2.21 and radiotherapy (n = 16; RR = 2.28; 95% CI, 1.49-3.51 and the risk of dental implant failure, whereas no inverse impact of diabetes (n = 5; RR = 0.90; 95% CI, 0.62-1.32 on the risk of dental implant failure was found. The influence of osteoporosis on the risk of dental implant failure was direct but not significant (n = 4; RR = 1.09; 95% CI, 0.79-1.52. The subgroup analysis indicated no influence of study design, geographical location, length of follow-up, sample size, or mean age of recruited patients. CONCLUSIONS: Smoking and radiotherapy were associated with an increased risk of dental implant failure. The relationship between diabetes and osteoporosis and the risk of implant failure warrant further study.

  15. Failure analysis for ultrasound machines in a radiology department after implementation of predictive maintenance method

    Directory of Open Access Journals (Sweden)

    Greg Chu

    2018-01-01

    Full Text Available Objective: The objective of the study was to perform quantitative failure and fault analysis to the diagnostic ultrasound (US scanners in a radiology department after the implementation of the predictive maintenance (PdM method; to study the reduction trend of machine failure; to understand machine operating parameters affecting the failure; to further optimize the method to maximize the machine clinically service time. Materials and Methods: The PdM method has been implemented to the 5 US machines since 2013. Log books were used to record machine failures and their root causes together with the time spent on repair, all of which were retrieved, categorized, and analyzed for the period between 2013 and 2016. Results: There were a total of 108 cases of failure occurred in these 5 US machines during the 4-year study period. The average number of failure per month for all these machines was 2.4. Failure analysis showed that there were 33 cases (30.5% due to software, 44 cases (40.7% due to hardware, and 31 cases (28.7% due to US probe. There was a statistically significant negative correlation between the time spent on regular quality assurance (QA by hospital physicists with the time spent on faulty parts replacement over the study period (P = 0.007. However, there was no statistically significant correlation between regular QA time and total yearly breakdown case (P = 0.12, although there has been a decreasing trend observed in the yearly total breakdown. Conclusion: There has been a significant improvement on the machine failure of US machines attributed to the concerted effort of sonographers and physicists in our department to practice the PdM method, in that system component repair time has been reduced, and a decreasing trend in the number of system breakdown has been observed.

  16. A pragmatic approach to estimate alpha factors for common cause failure analysis

    International Nuclear Information System (INIS)

    Hassija, Varun; Senthil Kumar, C.; Velusamy, K.

    2014-01-01

    Highlights: • Estimation of coefficients in alpha factor model for common cause analysis. • A derivation of plant specific alpha factors is demonstrated. • We examine sensitivity of common cause contribution to total system failure. • We compare beta factor and alpha factor models for various redundant configurations. • The use of alpha factors is preferable, especially for large redundant systems. - Abstract: Most of the modern technological systems are deployed with high redundancy but still they fail mainly on account of common cause failures (CCF). Various models such as Beta Factor, Multiple Greek Letter, Binomial Failure Rate and Alpha Factor exists for estimation of risk from common cause failures. Amongst all, alpha factor model is considered most suitable for high redundant systems as it arrives at common cause failure probabilities from a set of ratios of failures and the total component failure probability Q T . In the present study, alpha factor model is applied for the assessment of CCF of safety systems deployed at two nuclear power plants. A method to overcome the difficulties in estimation of the coefficients viz., alpha factors in the model, importance of deriving plant specific alpha factors and sensitivity of common cause contribution to the total system failure probability with respect to hazard imposed by various CCF events is highlighted. An approach described in NUREG/CR-5500 is extended in this study to provide more explicit guidance for a statistical approach to derive plant specific coefficients for CCF analysis especially for high redundant systems. The procedure is expected to aid regulators for independent safety assessment

  17. Optimal tread design for agricultural lug tires determined through failure analysis

    Directory of Open Access Journals (Sweden)

    Hyun Seok Song

    2018-04-01

    Full Text Available Agricultural lug tires, commonly used in tractors, must provide safe and stable support for the body of the vehicle and bear any additional load while effectively traversing rough, poor-quality ground surfaces. Many agricultural lug tires fail unexpectedly. In this study, we optimised and validated a tread design for agricultural lug tires intended to increase their durability using failure analysis. Specifically, we identified tire failure modes using indoor driving tests and failure mode effects analysis. Next, we developed a threedimensional tire model using the Ogden material model and finite element method. Using sensitivity analysis and response surface methodology, we optimised the tread design. Finally, we evaluated the durability of the new design using a tire prototype and drum test equipment. Results indicated that the optimised tread design decreased the tire tread stress by 16% and increased its time until cracking by 38% compared to conventional agricultural lug tires.

  18. Modern Material Analysis Instruments Add a New Dimension to Materials Characterization and Failure Analysis

    Science.gov (United States)

    Panda, Binayak

    2009-01-01

    Modern analytical tools can yield invaluable results during materials characterization and failure analysis. Scanning electron microscopes (SEMs) provide significant analytical capabilities, including angstrom-level resolution. These systems can be equipped with a silicon drift detector (SDD) for very fast yet precise analytical mapping of phases, as well as electron back-scattered diffraction (EBSD) units to map grain orientations, chambers that admit large samples, variable pressure for wet samples, and quantitative analysis software to examine phases. Advanced solid-state electronics have also improved surface and bulk analysis instruments: Secondary ion mass spectroscopy (SIMS) can quantitatively determine and map light elements such as hydrogen, lithium, and boron - with their isotopes. Its high sensitivity detects impurities at parts per billion (ppb) levels. X-ray photo-electron spectroscopy (XPS) can determine oxidation states of elements, as well as identifying polymers and measuring film thicknesses on coated composites. This technique is also known as electron spectroscopy for chemical analysis (ESCA). Scanning Auger electron spectroscopy (SAM) combines surface sensitivity, spatial lateral resolution (10 nm), and depth profiling capabilities to describe elemental compositions of near and below surface regions down to the chemical state of an atom.

  19. Failure analysis of woven and braided fabric reinforced composites

    Science.gov (United States)

    Naik, Rajiv A.

    1994-01-01

    A general purpose micromechanics analysis that discretely models the yarn architecture within the textile repeating unit cell was developed to predict overall, three dimensional, thermal and mechanical properties, damage initiation and progression, and strength. This analytical technique was implemented in a user-friendly, personal computer-based, menu-driven code called Textile Composite Analysis for Design (TEXCAD). TEXCAD was used to analyze plain weave and 2x2, 2-D triaxial braided composites. The calculated tension, compression, and shear strengths correlated well with available test data for both woven and braided composites. Parametric studies were performed on both woven and braided architectures to investigate the effects of parameters such as yarn size, yarn spacing, yarn crimp, braid angle, and overall fiber volume fraction on the strength properties of the textile composite.

  20. Failure mode analysis of silicon-based intracortical microelectrode arrays in non-human primates

    Science.gov (United States)

    Barrese, James C.; Rao, Naveen; Paroo, Kaivon; Triebwasser, Corey; Vargas-Irwin, Carlos; Franquemont, Lachlan; Donoghue, John P.

    2013-12-01

    Objective. Brain-computer interfaces (BCIs) using chronically implanted intracortical microelectrode arrays (MEAs) have the potential to restore lost function to people with disabilities if they work reliably for years. Current sensors fail to provide reliably useful signals over extended periods of time for reasons that are not clear. This study reports a comprehensive retrospective analysis from a large set of implants of a single type of intracortical MEA in a single species, with a common set of measures in order to evaluate failure modes. Approach. Since 1996, 78 silicon MEAs were implanted in 27 monkeys (Macaca mulatta). We used two approaches to find reasons for sensor failure. First, we classified the time course leading up to complete recording failure as acute (abrupt) or chronic (progressive). Second, we evaluated the quality of electrode recordings over time based on signal features and electrode impedance. Failure modes were divided into four categories: biological, material, mechanical, and unknown. Main results. Recording duration ranged from 0 to 2104 days (5.75 years), with a mean of 387 days and a median of 182 days (n = 78). Sixty-two arrays failed completely with a mean time to failure of 332 days (median = 133 days) while nine array experiments were electively terminated for experimental reasons (mean = 486 days). Seven remained active at the close of this study (mean = 753 days). Most failures (56%) occurred within a year of implantation, with acute mechanical failures the most common class (48%), largely because of connector issues (83%). Among grossly observable biological failures (24%), a progressive meningeal reaction that separated the array from the parenchyma was most prevalent (14.5%). In the absence of acute interruptions, electrode recordings showed a slow progressive decline in spike amplitude, noise amplitude, and number of viable channels that predicts complete signal loss by about eight years. Impedance measurements showed

  1. Evaluation of Progressive Failure Analysis and Modeling of Impact Damage in Composite Pressure Vessels

    Science.gov (United States)

    Sanchez, Christopher M.

    2011-01-01

    NASA White Sands Test Facility (WSTF) is leading an evaluation effort in advanced destructive and nondestructive testing of composite pressure vessels and structures. WSTF is using progressive finite element analysis methods for test design and for confirmation of composite pressure vessel performance. Using composite finite element analysis models and failure theories tested in the World-Wide Failure Exercise, WSTF is able to estimate the static strength of composite pressure vessels. Additionally, test and evaluation on composites that have been impact damaged is in progress so that models can be developed to estimate damage tolerance and the degradation in static strength.

  2. Statistical trend analysis methodology for rare failures in changing technical systems

    International Nuclear Information System (INIS)

    Ott, K.O.; Hoffmann, H.J.

    1983-07-01

    A methodology for a statistical trend analysis (STA) in failure rates is presented. It applies primarily to relatively rare events in changing technologies or components. The formulation is more general and the assumptions are less restrictive than in a previously published version. Relations of the statistical analysis and probabilistic assessment (PRA) are discussed in terms of categorization of decisions for action following particular failure events. The significance of tentatively identified trends is explored. In addition to statistical tests for trend significance, a combination of STA and PRA results quantifying the trend complement is proposed. The STA approach is compared with other concepts for trend characterization. (orig.)

  3. Risk assessment of the emergency processes: Healthcare failure mode and effect analysis.

    Science.gov (United States)

    Taleghani, Yasamin Molavi; Rezaei, Fatemeh; Sheikhbardsiri, Hojat

    2016-01-01

    Ensuring about the patient's safety is the first vital step in improving the quality of care and the emergency ward is known as a high-risk area in treatment health care. The present study was conducted to evaluate the selected risk processes of emergency surgery department of a treatment-educational Qaem center in Mashhad by using analysis method of the conditions and failure effects in health care. In this study, in combination (qualitative action research and quantitative cross-sectional), failure modes and effects of 5 high-risk procedures of the emergency surgery department were identified and analyzed according to Healthcare Failure Mode and Effects Analysis (HFMEA). To classify the failure modes from the "nursing errors in clinical management model (NECM)", the classification of the effective causes of error from "Eindhoven model" and determination of the strategies to improve from the "theory of solving problem by an inventive method" were used. To analyze the quantitative data of descriptive statistics (total points) and to analyze the qualitative data, content analysis and agreement of comments of the members were used. In 5 selected processes by "voting method using rating", 23 steps, 61 sub-processes and 217 potential failure modes were identified by HFMEA. 25 (11.5%) failure modes as the high risk errors were detected and transferred to the decision tree. The most and the least failure modes were placed in the categories of care errors (54.7%) and knowledge and skill (9.5%), respectively. Also, 29.4% of preventive measures were in the category of human resource management strategy. "Revision and re-engineering of processes", "continuous monitoring of the works", "preparation and revision of operating procedures and policies", "developing the criteria for evaluating the performance of the personnel", "designing a suitable educational content for needs of employee", "training patients", "reducing the workload and power shortage", "improving team

  4. Failure Analysis of Main Flame Deflector Nelson Studs

    Science.gov (United States)

    Long, Victoria

    2009-01-01

    NASA Structures engineers submitted two Nelson refractory studs from the main flame deflector at Launch Complex (LC) 39 A for analysis when they were observed to be missing a significant amount of material after launch. The damaged stud and an unused comparative stud were analyzed by macroscopic and microscopic examination along with metallographic evaluation of the microstructure. The stud lost material due to a combination of erosion and corrosion. Plain carbon steel readily forms an oxide layer in the coastal launch environment at Kennedy Space Center. The blast during a launch removes this brittle oxide layer, which then forms again post-launch, thereby further removing material. No indications of melting were observed.

  5. Learning from Trending, Precursor Analysis, and System Failures

    Energy Technology Data Exchange (ETDEWEB)

    Youngblood, R. W. [Idaho National Laboratory, Idaho Falls, ID (United States); Duffey, R. B. [Idaho National Laboratory, Idaho Falls, ID (United States)

    2015-11-01

    Models of reliability growth relate current system unreliability to currently accumulated experience. But “experience” comes in different forms. Looking back after a major accident, one is sometimes able to identify previous events or measurable performance trends that were, in some sense, signaling the potential for that major accident: potential that could have been recognized and acted upon, but was not recognized until the accident occurred. This could be a previously unrecognized cause of accidents, or underestimation of the likelihood that a recognized potential cause would actually operate. Despite improvements in the state of practice of modeling of risk and reliability, operational experience still has a great deal to teach us, and work has been going on in several industries to try to do a better job of learning from experience before major accidents occur. It is not enough to say that we should review operating experience; there is too much “experience” for such general advice to be considered practical. The paper discusses the following: 1. The challenge of deciding what to focus on in analysis of operating experience. 2. Comparing what different models of learning and reliability growth imply about trending and precursor analysis.

  6. Reliability analysis of Markov history-dependent repairable systems with neglected failures

    International Nuclear Information System (INIS)

    Du, Shijia; Zeng, Zhiguo; Cui, Lirong; Kang, Rui

    2017-01-01

    Markov history-dependent repairable systems refer to the Markov repairable systems in which some states are changeable and dependent on recent evolutional history of the system. In practice, many Markov history-dependent repairable systems are subjected to neglected failures, i.e., some failures do not affect system performances if they can be repaired promptly. In this paper, we develop a model based on the theory of aggregated stochastic processes to describe the history-dependent behavior and the effect of neglected failures on the Markov history-dependent repairable systems. Based on the developed model, instantaneous and steady-state availabilities are derived to characterize the reliability of the system. Four reliability-related time distributions, i.e., distribution for the k th working period, distribution for the k th failure period, distribution for the real working time in an effective working period, distribution for the neglected failure time in an effective working period, are also derived to provide a more comprehensive description of the system's reliability. Thanks to the power of the theory of aggregated stochastic processes, closed-form expressions are obtained for all the reliability indexes and time distributions. Finally, the developed indexes and analysis methods are demonstrated by a numerical example. - Highlights: • Markovian history-dependent repairable systems with neglected failures is modeled. • Aggregated stochastic processes are used to derive reliability indexes and time distributions. • Closed-form expressions are derived for the considered indexes and distributions.

  7. A Report on Simulation-Driven Reliability and Failure Analysis of Large-Scale Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Lipeng [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wang, Feiyi [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Oral, H. Sarp [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Vazhkudai, Sudharshan S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cao, Qing [Univ. of Tennessee, Knoxville, TN (United States)

    2014-11-01

    High-performance computing (HPC) storage systems provide data availability and reliability using various hardware and software fault tolerance techniques. Usually, reliability and availability are calculated at the subsystem or component level using limited metrics such as, mean time to failure (MTTF) or mean time to data loss (MTTDL). This often means settling on simple and disconnected failure models (such as exponential failure rate) to achieve tractable and close-formed solutions. However, such models have been shown to be insufficient in assessing end-to-end storage system reliability and availability. We propose a generic simulation framework aimed at analyzing the reliability and availability of storage systems at scale, and investigating what-if scenarios. The framework is designed for an end-to-end storage system, accommodating the various components and subsystems, their interconnections, failure patterns and propagation, and performs dependency analysis to capture a wide-range of failure cases. We evaluate the framework against a large-scale storage system that is in production and analyze its failure projections toward and beyond the end of lifecycle. We also examine the potential operational impact by studying how different types of components affect the overall system reliability and availability, and present the preliminary results

  8. Fluctuation Analysis of Peak Expiratory Flow and Its Association with Treatment Failure in Asthma.

    Science.gov (United States)

    Kaminsky, David A; Wang, Lucy L; Bates, Jason H T; Thamrin, Cindy; Shade, David M; Dixon, Anne E; Wise, Robert A; Peters, Stephen; Irvin, Charles G

    2017-04-15

    Temporal fluctuations have been demonstrated in lung function and asthma control, but the effect of controller therapy on these fluctuations is unknown. To determine if fluctuations in peak expiratory flow (PEF) are predictive of subsequent treatment failure and may be modified by controller therapy. We applied detrended fluctuation analysis to once-daily PEF data from 493 participants in the LOCCS (Leukotriene Modifier Corticosteroid or Corticosteroid-Salmeterol) trial of the American Lung Association Airways Clinical Research Centers. We evaluated the coefficient of variation of PEF (CVpef) and the scaling exponent α, reflecting self-similarity of PEF, in relation to treatment failure from the run-in period of open-label inhaled fluticasone, and the treatment periods for subjects randomized to (1) continued twice daily fluticasone (F), (2) once daily fluticasone plus salmeterol (F + S), or (3) once daily oral montelukast (M). The CVpef was higher in those with treatment failure in the F and F + S groups in the run-in phase, and all three groups in the treatment phase. α was similar between those with and without treatment failure in all three groups during the run-in phase but was higher among those with treatment failure in the F and F + S groups during the treatment phase. Participants in all three groups showed variable patterns of change in α leading up to treatment failure. We conclude that increased temporal self-similarity (α) of more variable lung function (CVpef) is associated with treatment failure, but the pattern of change in self-similarity leading up to treatment failure is variable across individuals.

  9. Failure mode and effect analysis: improving intensive care unit risk management processes.

    Science.gov (United States)

    Askari, Roohollah; Shafii, Milad; Rafiei, Sima; Abolhassani, Mohammad Sadegh; Salarikhah, Elaheh

    2017-04-18

    Purpose Failure modes and effects analysis (FMEA) is a practical tool to evaluate risks, discover failures in a proactive manner and propose corrective actions to reduce or eliminate potential risks. The purpose of this paper is to apply FMEA technique to examine the hazards associated with the process of service delivery in intensive care unit (ICU) of a tertiary hospital in Yazd, Iran. Design/methodology/approach This was a before-after study conducted between March 2013 and December 2014. By forming a FMEA team, all potential hazards associated with ICU services - their frequency and severity - were identified. Then risk priority number was calculated for each activity as an indicator representing high priority areas that need special attention and resource allocation. Findings Eight failure modes with highest priority scores including endotracheal tube defect, wrong placement of endotracheal tube, EVD interface, aspiration failure during suctioning, chest tube failure, tissue injury and deep vein thrombosis were selected for improvement. Findings affirmed that improvement strategies were generally satisfying and significantly decreased total failures. Practical implications Application of FMEA in ICUs proved to be effective in proactively decreasing the risk of failures and corrected the control measures up to acceptable levels in all eight areas of function. Originality/value Using a prospective risk assessment approach, such as FMEA, could be beneficial in dealing with potential failures through proposing preventive actions in a proactive manner. The method could be used as a tool for healthcare continuous quality improvement so that the method identifies both systemic and human errors, and offers practical advice to deal effectively with them.

  10. Competing failure analysis in phased-mission systems with multiple functional dependence groups

    International Nuclear Information System (INIS)

    Wang, Chaonan; Xing, Liudong; Peng, Rui; Pan, Zhusheng

    2017-01-01

    A phased-mission system (PMS) involves multiple, consecutive, non-overlapping phases of operation. The system structure function and component failure behavior in a PMS can change from phase to phase, posing big challenges to the system reliability analysis. Further complicating the problem is the functional dependence (FDEP) behavior where the failure of certain component(s) causes other component(s) to become unusable or inaccessible or isolated. Previous studies have shown that FDEP can cause competitions between failure propagation and failure isolation in the time domain. While such competing failure effects have been well addressed in single-phase systems, only little work has focused on PMSs with a restrictive assumption that a single FDEP group exists in one phase of the mission. Many practical systems (e.g., computer systems and networks), however may involve multiple FDEP groups during the mission. Moreover, different FDEP groups can be dependent due to sharing some common components; they may appear in a single phase or multiple phases. This paper makes new contributions by modeling and analyzing reliability of PMSs subject to multiple FDEP groups through a Markov chain-based methodology. Propagated failures with both global and selective effects are considered. Four case studies are presented to demonstrate application of the proposed method. - Highlights: • Reliability of phased-mission systems subject to competing failure propagation and isolation effects is modeled. • Multiple independent or dependent functional dependence groups are considered. • Propagated failures with global effects and selective effects are studied. • Four case studies demonstrate generality and application of the proposed Markov-based method.

  11. Failure analysis of ParaPost drills that fractured in service: a retrieval analysis study.

    Science.gov (United States)

    Al Jabbari, Youssef S; Fournelle, Raymond; Al Qhatani, Mirae; Zinelis, Spiros

    2016-10-01

    The aim was to determine the fracture mechanism of two clinically failed ParaPost drills. First, the fracture planes were analyzed by scanning electron microscopy (SEM). The drill end of one of the fractured pieces of each drill was then embedded in resin and after being metallographically ground and polished, was chemically etched. The microstructure and elemental composition were then examined by SEM/EDS analysis while hardness was determined with a Vickers testing device. Fractographic analysis revealed that both drills failed in a brittle manner and showed a pattern characteristic of a quasi-cleavage fracture mode. SEM and EDS analysis revealed a random distribution of a second phase enriched in Mo, W, and V, probably appended to (Mo, W, V)×C carbides, while the alloy composition is similar to M3 tool steel, a high-speed molybdenum tool steel. The microhardness of a ParaPost Drill #1 was found to be HV 862±29 and that for a Drill #2 was 846±16, with no significant differences (p>0.05). In both cases, fracture originated from surface points acting as stress concentrators and facilitating brittle fracture in the quasi-cleavage mode indicating that failure rate might be further minimized by a better instrument design.

  12. The analysis of repeated failures of pipelines in Kal'chinskoe oil field

    Science.gov (United States)

    Shavlov, E. N.; Brusnik, O. V.; Lukjanov, V. G.

    2016-09-01

    The paper presents the chemical analysis of oilfield water and hydraulic analysis of the liquid flow in Kal'chinskoe oil field pipeline that allow detecting the causes of the internal corrosion processes. The inhibitor protection is suggested to reduce the corrosion rate in the pipelines of Kal'chinskoe oil field. Based on the analysis of the pipeline failures, it is suggested to replace steel pipes by fiberglass pipes.

  13. Uncertainty analysis of Multiple Greek Letter parameters in common cause failure model

    International Nuclear Information System (INIS)

    Jordan Cizelj, R.; Vrbanic, I.

    2003-01-01

    As a rule, common cause failures have high influence on the results of Probabilistic Safety Assessments. In the paper, uncertainty analysis for parameters of Multiple-Greek-Letter common-cause-model due to stochastic nature of events is presented. Results of Bayesian analysis and maximum likelihood analysis are compared and interpreted. Special emphasis is given to the assessment of the Bayesian inclusion of generic knowledge, since it may bias the results conservatively. (author)

  14. Failure analysis of a repairable system: The case study of a cam-driven reciprocating pump

    Science.gov (United States)

    Dudenhoeffer, Donald D.

    1994-09-01

    This thesis supplies a statistical and economic tool for analysis of the failure characteristics of one typical piece of equipment under evaluation: a cam-driven reciprocating pump used in the submarine's distillation system. Comprehensive statistical techniques and parametric modeling are employed to identify and quantify pump failure characteristics. Specific areas of attention include: the derivation of an optimal maximum replacement interval based on costs, an evaluation of the mission reliability for the pump as a function of pump age, and a calculation of the expected times between failures. The purpose of this analysis is to evaluate current maintenance practices of time-based replacement and examine the consequences of different replacement intervals in terms of costs and mission reliability. Tradeoffs exist between cost savings and system reliability that must be fully understood prior to making any policy decisions.

  15. Enforsing a system approach to composite failure criteria for reliability analysis

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov; Friis-Hansen, Peter; Berggreen, Christian

    2011-01-01

    parameters are random, multiple failure modes may be identified which will jeopardize the FORM analysis and a system approach should be applied to assure a correct analysis. Although crude Monte Carlo simulation automatically may account for such effects, time constraints limit its useability in problems......Composite failure criteria have found widespread use in research and industry. In the vast majority of applications the material properties and the stresses, which serve as inputs to the criteria, are defined deterministically. However, when the reliability of composite structures is sought...... the input to the failure criterion will be random quantities. The reliability is efficiently identified using approximate methods such as First Order Reliability Methods (FORM) [1,2]. FORM involves an iterative optimization procedure to obtain a reliability estimate, which imposes a number of additional...

  16. Diastolic dysfunction as a predictor of weaning failure: A systematic review and meta-analysis.

    Science.gov (United States)

    de Meirelles Almeida, C A; Nedel, W L; Morais, V D; Boniatti, M M; de Almeida-Filho, O C

    2016-08-01

    Weaning failure and prolonged mechanical ventilation are associated with increased morbidity, cost of care, and high mortality rates. In the last few years, cardiac performance has been recognized as a common etiology of weaning failure, and growing evidence suggests that left ventricular diastolic dysfunction is a key factor that determines weaning outcomes. Therefore, we performed a systematic review and a meta-analysis to evaluate whether diastolic dysfunction in the critically ill patient subjected to mechanical ventilation is an independent predictor of weaning failure. We searched MEDLINE, EMBASE, Cochrane Central Register of Controlled Trials, LILACS, Google Scholar, and ClinicalTrials.gov from inception to September 2014, along with conferences proceeding from January 2005 through September 2014, and included Observational Studies and Randomized Clinical Trials evaluating predictors of weaning failure. Ten studies were included in the systematic review; and 7, in the meta-analysis (6 observational studies and 1 randomized controlled trial). Patients who developed weaning failure had a higher E/e' ratio when compared with those who did not (mean difference, 2.65; 95% confidence interval, 0.52-4.79; P= .01); however, there was no difference in the E/A ratio (mean difference, 0.07; 95% confidence interval, -0.04 to 0.18; P= .22). Both the E/e' and E/A ratios were associated with weaning-induced pulmonary edema at the end of a spontaneous breathing trial. A higher E/e' ratio is significantly associated with weaning failure, although a high heterogeneity of diastolic dysfunction criteria and different clinical scenarios limit additional conclusions linking diastolic dysfunction with weaning failure. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Readmission rate after ultrafiltration in acute decompensated heart failure: a systematic review and meta-analysis.

    Science.gov (United States)

    Siddiqui, Waqas Javed; Kohut, Andrew R; Hasni, Syed F; Goldman, Jesse M; Silverman, Benjamin; Kelepouris, Ellie; Eisen, Howard J; Aggarwal, Sandeep

    2017-11-01

    Significance of ultrafiltration in acute decompensated heart failure remains unclear. We performed meta-analysis to determine its role in reducing readmissions after acute decompensated heart failure. MEDLINE was searched using PUBMED from inception to March 22, 2017 for prospective randomized control trials comparing ultrafiltration to diuretics in acute decompensated heart failure. Five hundred ninety studies were found; nine studies with 820 patients were included. Studies with renal replacement therapy bar ultrafiltration, chronic decompensated heart failure, and non-English language were excluded. RevMan Version 5.3 was used for analysis. The primary outcomes analyzed were cumulative and 90 days readmissions secondary to heart failure and all-cause readmissions. Baseline characteristics were similar. One hundred eighty-eight patients were readmitted with heart failure, 77 vs 111 favoring ultrafiltration; risk ratio (RR) = 0.71 (95% confidence interval (CI), 0.49-1.02, p = 0.07, I 2  = 47%). Ninety days readmissions were 43 vs 67 favoring ultrafiltration; RR = 0.65 (95%CI, 0.47-0.90, p = 0.01, I 2  = 0%). Ultrafiltration showed significantly higher fluid removal and weight loss. Hypotension was common in ultrafiltration (24 vs 13, OR = 2.06, 95%CI = 0.98-4.32, p = 0.06, I 2  = 0%). Ultrafiltration showed reduced 90 days heart failure readmissions and trend towards reduced cumulative hospital readmissions. Renal and cardiovascular outcomes and hospital stay were similar.

  18. A model-based prognostic approach to predict interconnect failure using impedance analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Dae Il; Yoon, Jeong Ah [Dept. of System Design and Control Engineering. Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2016-10-15

    The reliability of electronic assemblies is largely affected by the health of interconnects, such as solder joints, which provide mechanical, electrical and thermal connections between circuit components. During field lifecycle conditions, interconnects are often subjected to a DC open circuit, one of the most common interconnect failure modes, due to cracking. An interconnect damaged by cracking is sometimes extremely hard to detect when it is a part of a daisy-chain structure, neighboring with other healthy interconnects that have not yet cracked. This cracked interconnect may seem to provide a good electrical contact due to the compressive load applied by the neighboring healthy interconnects, but it can cause the occasional loss of electrical continuity under operational and environmental loading conditions in field applications. Thus, cracked interconnects can lead to the intermittent failure of electronic assemblies and eventually to permanent failure of the product or the system. This paper introduces a model-based prognostic approach to quantitatively detect and predict interconnect failure using impedance analysis and particle filtering. Impedance analysis was previously reported as a sensitive means of detecting incipient changes at the surface of interconnects, such as cracking, based on the continuous monitoring of RF impedance. To predict the time to failure, particle filtering was used as a prognostic approach using the Paris model to address the fatigue crack growth. To validate this approach, mechanical fatigue tests were conducted with continuous monitoring of RF impedance while degrading the solder joints under test due to fatigue cracking. The test results showed the RF impedance consistently increased as the solder joints were degraded due to the growth of cracks, and particle filtering predicted the time to failure of the interconnects similarly to their actual timesto- failure based on the early sensitivity of RF impedance.

  19. Sedation for pediatric radiological procedures: analysis of potential causes of sedation failure and paradoxical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Karian, V.E.; Burrows, P.E.; Connor, L. [Dept. of Radiology, Children' s Hospital, Boston, MA (United States); Zurakowski, D. [Dept. of Biostatistics, Children' s Hospital, Boston, MA (United States); Mason, K.P. [Dept. of Anesthesiology, Children' s Hospital, Boston, MA (United States)

    1999-11-01

    Background. Sedation for diagnostic imaging and interventional radiologic procedures in pediatrics has greatly increased over the past decade. With appropriate patient selection and monitoring, serious adverse effects are infrequent, but failure to sedate and paradoxical reactions do occur. Objective. The purpose of this study was to determine, among patients undergoing sedation for radiologic procedures, the incidence of sedation failure and paradoxical reaction to pentobarbital and to identify potentially correctable causes. Materials and methods. Records of 1665 patients who were sedated in the radiology department from 1 November 1997 to 1 July 1998 were reviewed. Patients failing sedation or experiencing paradoxical reaction were compared with respect to sex, age group, diagnosis, scan type, time of day, NPO status, use of IV contrast and type of sedation agent using the Fisher exact test, Pearson chi-square, analysis of variance (ANOVA), the Student t-test, and logistic regression. Results. Data analysis revealed a sedation failure rate of 1 % and paradoxical reaction rate of 1.2 %. Stepwise multiple logistic regression revealed that the only significant independent multivariate predictor of failure was the need for the administration of a combination of pentobarbital, fentanyl, and midazolam IV. Conclusion. The low rate of sedation failure and paradoxical reactions to pentobarbital was near optimal and probably cannot be improved with the currently available sedatives. (orig.)

  20. Sedation for pediatric radiological procedures: analysis of potential causes of sedation failure and paradoxical reactions

    International Nuclear Information System (INIS)

    Karian, V.E.; Burrows, P.E.; Connor, L.; Zurakowski, D.; Mason, K.P.

    1999-01-01

    Background. Sedation for diagnostic imaging and interventional radiologic procedures in pediatrics has greatly increased over the past decade. With appropriate patient selection and monitoring, serious adverse effects are infrequent, but failure to sedate and paradoxical reactions do occur. Objective. The purpose of this study was to determine, among patients undergoing sedation for radiologic procedures, the incidence of sedation failure and paradoxical reaction to pentobarbital and to identify potentially correctable causes. Materials and methods. Records of 1665 patients who were sedated in the radiology department from 1 November 1997 to 1 July 1998 were reviewed. Patients failing sedation or experiencing paradoxical reaction were compared with respect to sex, age group, diagnosis, scan type, time of day, NPO status, use of IV contrast and type of sedation agent using the Fisher exact test, Pearson chi-square, analysis of variance (ANOVA), the Student t-test, and logistic regression. Results. Data analysis revealed a sedation failure rate of 1 % and paradoxical reaction rate of 1.2 %. Stepwise multiple logistic regression revealed that the only significant independent multivariate predictor of failure was the need for the administration of a combination of pentobarbital, fentanyl, and midazolam IV. Conclusion. The low rate of sedation failure and paradoxical reactions to pentobarbital was near optimal and probably cannot be improved with the currently available sedatives. (orig.)

  1. Safety Management in an Oil Company through Failure Mode Effects and Critical Analysis

    Directory of Open Access Journals (Sweden)

    Benedictus Rahardjo

    2016-06-01

    Full Text Available This study attempts to apply Failure Mode Effects and Criticality Analysis (FMECA to improve the safety of a production system, specifically the production process of an oil company. Since food processing is a worldwide issue and self-management of a food company is more important than relying on government regulations, therefore this study focused on that matter. The initial step of this study is to identify and analyze the criticality of the potential failure modes of the production process. Furthermore, take corrective action to minimize the probability of repeating the same failure mode, followed by a re-analysis of its criticality. The results of corrective actions were compared with those before improvement conditions by testing the significance of the difference using two sample t-test. The final measured result is the Criticality Priority Number (CPN, which refers to the severity category of the failure mode and the probability of occurrence of the same failure mode. The recommended actions proposed by the FMECA significantly reduce the CPN compared with the value before improvement, with increases of 38.46% for the palm olein case study.

  2. Failure mode and effect analysis in blood transfusion: a proactive tool to reduce risks.

    Science.gov (United States)

    Lu, Yao; Teng, Fang; Zhou, Jie; Wen, Aiqing; Bi, Yutian

    2013-12-01

    The aim of blood transfusion risk management is to improve the quality of blood products and to assure patient safety. We utilize failure mode and effect analysis (FMEA), a tool employed for evaluating risks and identifying preventive measures to reduce the risks in blood transfusion. The failure modes and effects occurring throughout the whole process of blood transfusion were studied. Each failure mode was evaluated using three scores: severity of effect (S), likelihood of occurrence (O), and probability of detection (D). Risk priority numbers (RPNs) were calculated by multiplying the S, O, and D scores. The plan-do-check-act cycle was also used for continuous improvement. Analysis has showed that failure modes with the highest RPNs, and therefore the greatest risk, were insufficient preoperative assessment of the blood product requirement (RPN, 245), preparation time before infusion of more than 30 minutes (RPN, 240), blood transfusion reaction occurring during the transfusion process (RPN, 224), blood plasma abuse (RPN, 180), and insufficient and/or incorrect clinical information on request form (RPN, 126). After implementation of preventative measures and reassessment, a reduction in RPN was detected with each risk. The failure mode with the second highest RPN, namely, preparation time before infusion of more than 30 minutes, was shown in detail to prove the efficiency of this tool. FMEA evaluation model is a useful tool in proactively analyzing and reducing the risks associated with the blood transfusion procedure. © 2013 American Association of Blood Banks.

  3. Palliative care in heart failure : A meta-analysis of randomized controlled trials.

    Science.gov (United States)

    Zhou, K; Mao, Y

    2018-02-21

    Palliative care can play an important role in the management of heart failure. We conducted a systematic review and meta-analysis to compare the efficacy and safety of palliative care in patients with heart failure. PubMed, Embase, Web of Science, EBSCO, and the Cochrane Library databases were systematically searched. Randomized controlled trials (RCTs) on the impact of palliative care on heart failure were included. Two investigators independently searched the articles, extracted data, and assessed the quality of included studies. The primary outcome was mortality. Seven RCTs were included in the meta-analysis. Compared with usual care for heart failure, palliative care was associated with a significantly increased quality of life (standardized mean difference = 1.46; 95% confidence interval [CI] = 0.12 to 2.79; p = 0.03) and reduced depression scores (standardized mean difference = -0.62; 95% CI = -0.99 to -0.25; p = 0.03), but demonstrated no impact on mortality (risk ratio [RR] = 1.28; 95% CI = 0.86 to 1.92; p = 0.22) and rehospitalization (RR = 0.84; 95% CI = 0.66 to 1.07; p = 0.16). Palliative care can improve the quality of life and reduce the occurrence of depression in patients with heart failure.

  4. Advances on the Failure Analysis of the Dam—Foundation Interface of Concrete Dams

    Directory of Open Access Journals (Sweden)

    Luis Altarejos-García

    2015-12-01

    Full Text Available Failure analysis of the dam-foundation interface in concrete dams is characterized by complexity, uncertainties on models and parameters, and a strong non-linear softening behavior. In practice, these uncertainties are dealt with a well-structured mixture of experience, best practices and prudent, conservative design approaches based on the safety factor concept. Yet, a sound, deep knowledge of some aspects of this failure mode remain unveiled, as they have been offset in practical applications by the use of this conservative approach. In this paper we show a strategy to analyse this failure mode under a reliability-based approach. The proposed methodology of analysis integrates epistemic uncertainty on spatial variability of strength parameters and data from dam monitoring. The purpose is to produce meaningful and useful information regarding the probability of occurrence of this failure mode that can be incorporated in risk-informed dam safety reviews. In addition, relationships between probability of failure and factors of safety are obtained. This research is supported by a more than a decade of intensive professional practice on real world cases and its final purpose is to bring some clarity, guidance and to contribute to the improvement of current knowledge and best practices on such an important dam safety concern.

  5. 76 FR 67764 - Common-Cause Failure Analysis in Event and Condition Assessment: Guidance and Research, Draft...

    Science.gov (United States)

    2011-11-02

    ... COMMISSION Common-Cause Failure Analysis in Event and Condition Assessment: Guidance and Research, Draft...-xxxx, Revision 0, ``Common-Cause Failure Analysis in Event and Condition Assessment: Guidance and... at (301) 492-3446. FOR FURTHER INFORMATION CONTACT: Song-Hua Shen, Division of Risk Analysis, Office...

  6. Ship operation and failure mode analysis using a maneuver simulator

    Science.gov (United States)

    Cabrerizo-Morales, Miguel Angel; Molina, Rafael; de los Santos, Francisco; Camarero, Alberto

    2013-04-01

    In a ship or floating structure operation the agents that contribute to the systems behaviour are not only those derived from fluid-structure interaction, but also the ones linked to mooring-control line set-up evolution and human interaction. Therefore, the analysis of such systems is affected by boundary conditions that change during a complete operation. Frequently, monitoring techniques in laboratory (model) and field (prototype) are based in different instrumental techniques adding difficulty to data comparison and, in some cases, inducing precision and repeatability errors. For this reason, the main aim of this study is to develop the methods and tools to achieve a deep knowledge of those floating systems and obtain capabilities to optimize their operationally thresholds. This abstract presents a methodology and an instrumental system applicable both in field and laboratory: SRECMOCOS Project (Small scale REal-time Caisson MOnitoring and COntrol System). SRECMOCOS compiles three modules. For the monitoring and control of the structure it has been developed a synchronized open and modular microcontroller-based electronic system that comprises sensors, to monitor agents and reactions, and actuators to perform pertinent actions after processing the sensors' data. A secondary objective has been to design and implement a global scaled simulator (1:22), at the 3D basin of The Harbour Research Lab at Technical University of Madrid, in which climatic agents and those derived from the rig/maneuvering setup and the structural design were included. The particular case of Campamento's drydock, in Algeciras Bay (Spain), has been used to apply and validate the methodology. SRECMOCOS Project conjugates control, monitoring and wireless communication systems in a real time basis, offering the possibility to register and simulate all the parameters involved in port operations. This approach offers a step forward into a monitoring strategy to be included in monitoring

  7. NUP98-NSD3 fusion gene in radiation-associated myelodysplastic syndrome with t(8;11)(p11;p15) and expression pattern of NSD family genes.

    Science.gov (United States)

    Taketani, Takeshi; Taki, Tomohiko; Nakamura, Hideo; Taniwaki, Masafumi; Masuda, Junichi; Hayashi, Yasuhide

    2009-04-15

    Chromosomal 11p15 abnormality of therapy-related myelodysplastic syndrome (t-MDS)-acute myeloid leukemia (AML) is rare. NUP98-NSD3 fusion transcripts have been detected previously in one patient with AML and one patient with t-MDS having t(8;11)(p11;p15). Here we present the case of a 60-year-old man with radiation-associated MDS (r-MDS) carrying chromosome abnormalities, including t(8;11)(p11;p15) and del(1)(p22p32). Fluorescence in situ hybridization analysis demonstrated that the NUP98 gene at 11p15 was split by the translocation. Southern blot analysis of bone marrow cells showed both rearrangements of NUP98 and NSD3 genes. Reverse transcriptase-polymerase chain reaction (RT-PCR) followed by sequence analysis revealed the presence of both NUP98-NSD3 and NSD3-NUP98 fusion transcripts. Expression analysis by RT-PCR showed that NSD3 as well as NSD1 and NSD2 was ubiquitously expressed in leukemic cell lines and Epstein-Barr virus transformed B lymphocyte cell lines derived from the normal adult lymphocytes examined. Two isoforms of NSD3, NSD3S and NSD3L (but not NSD3L2), were expressed in leukemic cell lines and were fused to NUP98 in our patient, suggesting that qualitative change of these two isoforms of NSD3 by fusion with NUP98 might be related to leukemogenesis, although the function of each isoform of the NSD3 gene remains unclear.

  8. Root cause analysis of pump valve failures of three membrane pump systems

    NARCIS (Netherlands)

    Buijs, L.J.; Eijk, A.; Hooft, L. van

    2014-01-01

    This paper will present the root cause analysis and the solution of fatigue failures of the pump valves of three membrane pump systems installed on a chemical plant of Momentive in Pernis, the Netherlands. The membrane pumps were installed approximately 30 years ago. Each system has encountered

  9. Software Tool for Automated Failure Modes and Effects Analysis (FMEA) of Hydraulic Systems

    DEFF Research Database (Denmark)

    Stecki, J. S.; Conrad, Finn; Oh, B.

    2002-01-01

    management techniques and a vast array of computer aided techniques are applied during design and testing stages. The paper present and discusses the research and development of a software tool for automated failure mode and effects analysis - FMEA - of hydraulic systems. The paper explains the underlying...

  10. The Efficacy of Hospitalization of Nonorganic Failure-to-Thrive Children: A Meta-Analysis.

    Science.gov (United States)

    Fryer, George E., Jr.

    1988-01-01

    A meta-analysis of eight studies, involving 192 subjects, was performed to ascertain the efficacy of hospitalization of children with nonorganic failure to thrive. Hospitalization was found to approximately double the probability of catch-up physical growth for the children, but psychosocial development was only modestly hastened by…

  11. A Treatment Program for Failure to Thrive: A Cost-Effectiveness Analysis.

    Science.gov (United States)

    Karniski, Walt; And Others

    1986-01-01

    Analysis of treatment of infants suffering from Failure to Thrive placed in foster medical placement homes (MPH, N=17) or admitted to hospitals (N=18) revealed that the MPH infants grew more than hospitalized infants and parents of MPH children had advantages of education and support. The MPH program cost less than 25 percent of hospital care.…

  12. Low Carbon-Oriented Optimal Reliability Design with Interval Product Failure Analysis and Grey Correlation Analysis

    Directory of Open Access Journals (Sweden)

    Yixiong Feng

    2017-03-01

    Full Text Available The problem of large amounts of carbon emissions causes wide concern across the world, and it has become a serious threat to the sustainable development of the manufacturing industry. The intensive research into technologies and methodologies for green product design has significant theoretical meaning and practical value in reducing the emissions of the manufacturing industry. Therefore, a low carbon-oriented product reliability optimal design model is proposed in this paper: (1 The related expert evaluation information was prepared in interval numbers; (2 An improved product failure analysis considering the uncertain carbon emissions of the subsystem was performed to obtain the subsystem weight taking the carbon emissions into consideration. The interval grey correlation analysis was conducted to obtain the subsystem weight taking the uncertain correlations inside the product into consideration. Using the above two kinds of subsystem weights and different caution indicators of the decision maker, a series of product reliability design schemes is available; (3 The interval-valued intuitionistic fuzzy sets (IVIFSs were employed to select the optimal reliability and optimal design scheme based on three attributes, namely, low carbon, correlation and functions, and economic cost. The case study of a vertical CNC lathe proves the superiority and rationality of the proposed method.

  13. Failure rate modeling using fault tree analysis and Bayesian network: DEMO pulsed operation turbine study case

    International Nuclear Information System (INIS)

    Dongiovanni, Danilo Nicola; Iesmantas, Tomas

    2016-01-01

    Highlights: • RAMI (Reliability, Availability, Maintainability and Inspectability) assessment of secondary heat transfer loop for a DEMO nuclear fusion plant. • Definition of a fault tree for a nuclear steam turbine operated in pulsed mode. • Turbine failure rate models update by mean of a Bayesian network reflecting the fault tree analysis in the considered scenario. • Sensitivity analysis on system availability performance. - Abstract: Availability will play an important role in the Demonstration Power Plant (DEMO) success from an economic and safety perspective. Availability performance is commonly assessed by Reliability Availability Maintainability Inspectability (RAMI) analysis, strongly relying on the accurate definition of system components failure modes (FM) and failure rates (FR). Little component experience is available in fusion application, therefore requiring the adaptation of literature FR to fusion plant operating conditions, which may differ in several aspects. As a possible solution to this problem, a new methodology to extrapolate/estimate components failure rate under different operating conditions is presented. The DEMO Balance of Plant nuclear steam turbine component operated in pulse mode is considered as study case. The methodology moves from the definition of a fault tree taking into account failure modes possibly enhanced by pulsed operation. The fault tree is then translated into a Bayesian network. A statistical model for the turbine system failure rate in terms of subcomponents’ FR is hence obtained, allowing for sensitivity analyses on the structured mixture of literature and unknown FR data for which plausible value intervals are investigated to assess their impact on the whole turbine system FR. Finally, the impact of resulting turbine system FR on plant availability is assessed exploiting a Reliability Block Diagram (RBD) model for a typical secondary cooling system implementing a Rankine cycle. Mean inherent availability

  14. Failure rate modeling using fault tree analysis and Bayesian network: DEMO pulsed operation turbine study case

    Energy Technology Data Exchange (ETDEWEB)

    Dongiovanni, Danilo Nicola, E-mail: danilo.dongiovanni@enea.it [ENEA, Nuclear Fusion and Safety Technologies Department, via Enrico Fermi 45, Frascati 00040 (Italy); Iesmantas, Tomas [LEI, Breslaujos str. 3 Kaunas (Lithuania)

    2016-11-01

    Highlights: • RAMI (Reliability, Availability, Maintainability and Inspectability) assessment of secondary heat transfer loop for a DEMO nuclear fusion plant. • Definition of a fault tree for a nuclear steam turbine operated in pulsed mode. • Turbine failure rate models update by mean of a Bayesian network reflecting the fault tree analysis in the considered scenario. • Sensitivity analysis on system availability performance. - Abstract: Availability will play an important role in the Demonstration Power Plant (DEMO) success from an economic and safety perspective. Availability performance is commonly assessed by Reliability Availability Maintainability Inspectability (RAMI) analysis, strongly relying on the accurate definition of system components failure modes (FM) and failure rates (FR). Little component experience is available in fusion application, therefore requiring the adaptation of literature FR to fusion plant operating conditions, which may differ in several aspects. As a possible solution to this problem, a new methodology to extrapolate/estimate components failure rate under different operating conditions is presented. The DEMO Balance of Plant nuclear steam turbine component operated in pulse mode is considered as study case. The methodology moves from the definition of a fault tree taking into account failure modes possibly enhanced by pulsed operation. The fault tree is then translated into a Bayesian network. A statistical model for the turbine system failure rate in terms of subcomponents’ FR is hence obtained, allowing for sensitivity analyses on the structured mixture of literature and unknown FR data for which plausible value intervals are investigated to assess their impact on the whole turbine system FR. Finally, the impact of resulting turbine system FR on plant availability is assessed exploiting a Reliability Block Diagram (RBD) model for a typical secondary cooling system implementing a Rankine cycle. Mean inherent availability

  15. Global association of air pollution and heart failure: a systematic review and meta-analysis.

    Science.gov (United States)

    Shah, Anoop S V; Langrish, Jeremy P; Nair, Harish; McAllister, David A; Hunter, Amanda L; Donaldson, Ken; Newby, David E; Mills, Nicholas L

    2013-09-21

    Acute exposure to air pollution has been linked to myocardial infarction, but its effect on heart failure is uncertain. We did a systematic review and meta-analysis to assess the association between air pollution and acute decompensated heart failure including hospitalisation and heart failure mortality. Five databases were searched for studies investigating the association between daily increases in gaseous (carbon monoxide, sulphur dioxide, nitrogen dioxide, ozone) and particulate (diameter air pollutants, and heart failure hospitalisations or heart failure mortality. We used a random-effects model to derive overall risk estimates per pollutant. Of 1146 identified articles, 195 were reviewed in-depth with 35 satisfying inclusion criteria. Heart failure hospitalisation or death was associated with increases in carbon monoxide (3·52% per 1 part per million; 95% CI 2·52-4·54), sulphur dioxide (2·36% per 10 parts per billion; 1·35-3·38), and nitrogen dioxide (1·70% per 10 parts per billion; 1·25-2·16), but not ozone (0·46% per 10 parts per billion; -0·10 to 1·02) concentrations. Increases in particulate matter concentration were associated with heart failure hospitalisation or death (PM2·5 2·12% per 10 μg/m(3), 95% CI 1·42-2·82; PM10 1·63% per 10 μg/m(3), 95% CI 1·20-2·07). Strongest associations were seen on the day of exposure, with more persistent effects for PM2·5. In the USA, we estimate that a mean reduction in PM2·5 of 3·9 μg/m(3) would prevent 7978 heart failure hospitalisations and save a third of a billion US dollars a year. Air pollution has a close temporal association with heart failure hospitalisation and heart failure mortality. Although more studies from developing nations are required, air pollution is a pervasive public health issue with major cardiovascular and health economic consequences, and it should remain a key target for global health policy. British Heart Foundation. Copyright © 2013 Elsevier Ltd. All rights

  16. Analysis of the failure mechanism for a stable organic photovoltaic during 10 000 h of testing

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Norrman, Kion

    2007-01-01

    elucidated by the time-of-flight secondary ion mass spectrometry (TOF-SIMS) analysis in conjunction with isotopic labelling using O-18(2) after a total testing time of 13 000 h. This experiment allowed us to understand the chemistry that takes place in three dimensions during degradation and failure......The degradation and failure mechanisms of a stable photovoltaic device comprising a bilayer heterojunction formed between poly(3-carboxythiophene-2,5-diyl-co-thiophene-2,5-diyl) (P3CT) and Buckminsterfullerene (C-60) sandwiched between indium tin oxide (ITO) and aluminium (Al) electrodes were...

  17. Failure Modes and Effects Analysis (FMEA) of the Residual Heat Removal System

    International Nuclear Information System (INIS)

    Eggleston, F.T.

    1976-01-01

    The Residual Heat Removal System (RHRS) transfer heat from the Reactor Coolant System (RCS) to the reactor plant Component Cooling System (CCS) to reduce the temperature of the RCS at a controlled rate during the second part of normal plant cooldown and maintains the desired temperature until the plant is restarted. By the use of an analytic tool, the Failure Modes and Effects Analysis, it is shown that the RHRS, because of its redundant two train design, is able to accommodate any credible component single failure with the only effect being an extension in the required cooldown time, thus demonstrating the reliability of the RHRS to perform its intended function

  18. Influence of diabetes on cardiac resynchronization therapy in heart failure patients: a meta-analysis.

    Science.gov (United States)

    Sun, Hui; Guan, Yuqing; Wang, Lei; Zhao, Yong; Lv, Hong; Bi, Xiuping; Wang, Huating; Zhang, Xuejing; Liu, Li; Wei, Min; Song, Hui; Su, Guohai

    2015-03-21

    Diabetes mellitus is an independent risk factor of increased morbidity and mortality in patients with heart failure. Cardiac resynchronization therapy (CRT), a pacemaker-based therapy for dyssynchronous heart failure, improves cardiac performance and quality of life, but its effect on mortality in patients with diabetes is uncertain. We performed a meta-analysis of results from randomized controlled trials (RCTs) of the long-term outcome of cardiac resynchronization therapy for heart failure in diabetic and non-diabetic patients. Literature search of MEDLINE via Pubmed for reports of randomized controlled trials of Cardiac resynchronization for chronic symptomatic left-ventricular dysfunction in patients with and without diabetes mellitus, with death as the outcome. Relevant data were analyzed by use of a random-effects model. Reports published from 1994 to 2011 that described RCTs of CRT for treating chronic symptomatic left ventricular dysfunction in patients with and without diabetes, with all-cause mortality as an outcome. A total of 5 randomized controlled trials met the inclusion criteria, for 2,923 patients. The quality of studies was good to moderate. Cardiac resynchronization significantly reduced the mortality for heart failure patients with or without diabetes mellitus. Mortality was 24.3% for diabetic patients with heart failure and 20.4 % for non-diabetics (odds ratio 1.28, 95% confidence interval 1.06-1.55; P = 0.010). Cardiac resynchronization therapy (CRT) may reduce mortality from progressive heart failure in patients with or without diabetes mellitus, but mortality may be higher for patients with than without diabetes after CRT for heart failure.

  19. Association of sleep bruxism with ceramic restoration failure: A systematic review and meta-analysis.

    Science.gov (United States)

    de Souza Melo, Gilberto; Batistella, Elis Ângela; Bertazzo-Silveira, Eduardo; Simek Vega Gonçalves, Thais Marques; Mendes de Souza, Beatriz Dulcineia; Porporatti, André Luís; Flores-Mir, Carlos; De Luca Canto, Graziela

    2018-03-01

    Ceramic restorations are popular because of their excellent optical properties. However, failures are still a major concern, and dentists are confronted with the following question: is sleep bruxism (SB) associated with an increased frequency of ceramic restoration failures? The purpose of this systematic review and meta-analysis was to assess whether the presence of SB is associated with increased ceramic restoration failure. Observational studies and clinical trials that evaluated the short- and long-term survival rate of ceramic restorations in SB participants were selected. Sleep bruxism diagnostic criteria must have included at least 1 of the following: questionnaire, clinical evaluation, or polysomnography. Seven databases, in addition to 3 nonpeer-reviewed literature databases, were searched. The risk of bias was assessed by using the meta-analysis of statistics assessment and review instrument (MAStARI) checklist. Eight studies were included for qualitative synthesis, but only 5 for the meta-analysis. Three studies were categorized as moderate risk and 5 as high risk of bias. Clinical and methodological heterogeneity across studies were considered high. Increased hazard ratio (HR=7.74; 95% confidence interval [CI]=2.50 to 23.95) and odds ratio (OR=2.52; 95% CI=1.24 to 5.12) were observed considering only anterior ceramic veneers. Nevertheless, limited data from the meta-analysis and from the restricted number of included studies suggested that differences in the overall odds of failure concerning SB and other types of ceramic restorations did not favor or disfavor any association (OR=1.10; 95% CI=0.43 to 2.8). The overall quality of evidence was considered very low according to the GRADE criteria. Within the limitations of this systematic review, the overall result from the meta-analysis did not favor any association between SB and increased odds of failure for ceramic restorations. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry

  20. Failure mode and effect analysis-based quality assurance for dynamic MLC tracking systems

    Energy Technology Data Exchange (ETDEWEB)

    Sawant, Amit; Dieterich, Sonja; Svatos, Michelle; Keall, Paul [Stanford University, Stanford, California 94394 (United States); Varian Medical Systems, Palo Alto, California 94304 (United States); Stanford University, Stanford, California 94394 (United States)

    2010-12-15

    Purpose: To develop and implement a failure mode and effect analysis (FMEA)-based commissioning and quality assurance framework for dynamic multileaf collimator (DMLC) tumor tracking systems. Methods: A systematic failure mode and effect analysis was performed for a prototype real-time tumor tracking system that uses implanted electromagnetic transponders for tumor position monitoring and a DMLC for real-time beam adaptation. A detailed process tree of DMLC tracking delivery was created and potential tracking-specific failure modes were identified. For each failure mode, a risk probability number (RPN) was calculated from the product of the probability of occurrence, the severity of effect, and the detectibility of the failure. Based on the insights obtained from the FMEA, commissioning and QA procedures were developed to check (i) the accuracy of coordinate system transformation, (ii) system latency, (iii) spatial and dosimetric delivery accuracy, (iv) delivery efficiency, and (v) accuracy and consistency of system response to error conditions. The frequency of testing for each failure mode was determined from the RPN value. Results: Failures modes with RPN{>=}125 were recommended to be tested monthly. Failure modes with RPN<125 were assigned to be tested during comprehensive evaluations, e.g., during commissioning, annual quality assurance, and after major software/hardware upgrades. System latency was determined to be {approx}193 ms. The system showed consistent and accurate response to erroneous conditions. Tracking accuracy was within 3%-3 mm gamma (100% pass rate) for sinusoidal as well as a wide variety of patient-derived respiratory motions. The total time taken for monthly QA was {approx}35 min, while that taken for comprehensive testing was {approx}3.5 h. Conclusions: FMEA proved to be a powerful and flexible tool to develop and implement a quality management (QM) framework for DMLC tracking. The authors conclude that the use of FMEA-based QM ensures

  1. Failure mode and effect analysis-based quality assurance for dynamic MLC tracking systems.

    Science.gov (United States)

    Sawant, Amit; Dieterich, Sonja; Svatos, Michelle; Keall, Paul

    2010-12-01

    To develop and implement a failure mode and effect analysis (FMEA)-based commissioning and quality assurance framework for dynamic multileaf collimator (DMLC) tumor tracking systems. A systematic failure mode and effect analysis was performed for a prototype real-time tumor tracking system that uses implanted electromagnetic transponders for tumor position monitoring and a DMLC for real-time beam adaptation. A detailed process tree of DMLC tracking delivery was created and potential tracking-specific failure modes were identified. For each failure mode, a risk probability number (RPN) was calculated from the product of the probability of occurrence, the severity of effect, and the detectibility of the failure. Based on the insights obtained from the FMEA, commissioning and QA procedures were developed to check (i) the accuracy of coordinate system transformation, (ii) system latency, (iii) spatial and dosimetric delivery accuracy, (iv) delivery efficiency, and (v) accuracy and consistency of system response to error conditions. The frequency of testing for each failure mode was determined from the RPN value. Failures modes with RPN > or = 125 were recommended to be tested monthly. Failure modes with RPN < 125 were assigned to be tested during comprehensive evaluations, e.g., during commissioning, annual quality assurance, and after major software/hardware upgrades. System latency was determined to be approximately 193 ms. The system showed consistent and accurate response to erroneous conditions. Tracking accuracy was within 3%-3 mm gamma (100% pass rate) for sinusoidal as well as a wide variety of patient-derived respiratory motions. The total time taken for monthly QA was approximately 35 min, while that taken for comprehensive testing was approximately 3.5 h. FMEA proved to be a powerful and flexible tool to develop and implement a quality management (QM) framework for DMLC tracking. The authors conclude that the use of FMEA-based QM ensures efficient allocation

  2. Failure analysis of top nozzle holddown spring screw for nuclear fuel assembly

    International Nuclear Information System (INIS)

    Koh, S. K.; Ryu, C. H.; Na, E. G.; Baek, T. H.; Jeon, K. L.

    2003-01-01

    A failure analysis of holddown spring screw was performed using fracture mechanics approach. The spring screw was designed such that it was capable of sustaining the loads imposed by the initial tensile preload and operational loads. In order to investigate the cause of failure, a stress analysis of the top nozzle spring assembly was done using finite element analysis and a life prediction of the screw was made using a fracture mechanics approach. The elastic-plastic finite element analysis showed that the local stresses at the critical regions of head-shank fillet and thread root significantly exceeded than the yield strength of the screw material, resulting in local plastic deformation. Primary water stress corrosion cracking life of the Inconel 600 screw was predicted by using integration of the Scott model and resulted in 1.42 years, which was fairly close to the actual service life of the holddown spring screw

  3. [Validity of an instrument for assessing food consumption, food habits and cooking skills in 8-11 years old students].

    Science.gov (United States)

    Lera, Lydia; Fretes, Gabriela; González, Carmen Gloria; Salinas, Judith; Vio del Rio, Fernando

    2015-05-01

    An instrument to measure food knowledge, food consumption, cooking skills, food habits and food expenses at school is necessary to assess changes in food practices. To validate an instrument to measure changes in food knowledge, food consumption, cooking skills, food habits and food expenses in Chilean school children 8 - 11 years from third to fifth grade. A validation of a questionnaire with 42 questions was conducted in two stages: the first to assess temporal stability, concordance and internal consistency in 45 children. The second one to apply the survey, modified with the results of the first stage, in 90 children assessing internal consistency. The first survey with 42 questions showed a reasonable temporal stability, concordance and internal consistency for cooking skills, habits and food expenditure at school. Internal consistency was good for food consumption, but not so good for food knowledge. In the final validation with 90 children, there was good consistency for food consumption but bad for food knowledge. Besides, children with cooking skills ate more healthy food and those who expended more money at school, consumed less healthy food. Food knowledge questions were eliminated from the instrument, which was elaborated with 28 questions about food consumption, cooking skills, food habits and food expenses at school. This instrument is useful to assess changes in food and nutrition education interventions in 8 -11 years children, in particular to measure cooking skills and food expenses at school. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  4. Aggregate organ failure rates among dengue patients in Malaysia: Five years' risk analysis (2010–2015

    Directory of Open Access Journals (Sweden)

    Tahir Mehmood Khan

    2017-11-01

    Full Text Available Objective: To estimate the incidence of dengue-induced organ failure form 2010–2015 in Malaysia. Methods: Data were extracted from the Malaysian Registry of Intensive Care published in June 2016. Analysis of proportions was carried out using StatsDirect software. Binary data for the outcomes available from the included studies were analyzed using StatsDirect software, using random effect model. Results: It is noteworthy that there was a drop in all complications among dengue patients at 2011. Except in year 2011, 52% [0.52 (CI 95% 0.49–0.56] of the patients with dengue developed hematological failure. Conclusions: The statistics indicate that dengue has increasingly led to cardiovascular, neurological, renal and hematological failure, as indicated from an increasing trend from year 2011–2015.

  5. Containment failure modes preliminary analysis for Atucha-I nuclear power plant during severe accidents

    International Nuclear Information System (INIS)

    Baron, J.; Caballero, C.; Zarate, S.M.

    1997-01-01

    The present work has the objective to analyze the containment behavior of the Atucha-I nuclear power plant during a severe accident, as part of a probabilistic safety assessment (PSA). Initially, a generic description of the containment failure modes considered in other PSAs is performed. Then, the possible containment failure modes for Atucha I are qualitatively analyzed, according to it design peculiarities. These failure modes involve some substantial differences from other PSAs, due to the particular design of Atucha I. Among others, it is studied the influence of: moderator/coolant separation, existence of cooling Zircaloy channels, existence of filling bodies inside the pressure vessel, reactor cavity geometry, on-line refueling mode, and existence of a double shell containment (steel and concrete) with an annular separation room. As a functions of the before mentioning analysis, a series of parameters to be taken into account is defined, on a preliminary basis, for definition of the plant damage states. (author) [es

  6. Using pattern analysis methods to do fast detection of manufacturing pattern failures

    Science.gov (United States)

    Zhao, Evan; Wang, Jessie; Sun, Mason; Wang, Jeff; Zhang, Yifan; Sweis, Jason; Lai, Ya-Chieh; Ding, Hua

    2016-03-01

    At the advanced technology node, logic design has become extremely complex and is getting more challenging as the pattern geometry size decreases. The small sizes of layout patterns are becoming very sensitive to process variations. Meanwhile, the high pressure of yield ramp is always there due to time-to-market competition. The company that achieves patterning maturity earlier than others will have a great advantage and a better chance to realize maximum profit margins. For debugging silicon failures, DFT diagnostics can identify which nets or cells caused the yield loss. But normally, a long time period is needed with many resources to identify which failures are due to one common layout pattern or structure. This paper will present a new yield diagnostic flow, based on preliminary EFA results, to show how pattern analysis can more efficiently detect pattern related systematic defects. Increased visibility on design pattern related failures also allows more precise yield loss estimation.

  7. Response analysis of curved bridge with unseating failure control system under near-fault ground motions

    Science.gov (United States)

    Zuo, Ye; Sun, Guangjun; Li, Hongjing

    2018-01-01

    Under the action of near-fault ground motions, curved bridges are prone to pounding, local damage of bridge components and even unseating. A multi-scale fine finite element model of a typical three-span curved bridge is established by considering the elastic-plastic behavior of piers and pounding effect of adjacent girders. The nonlinear time-history method is used to study the seismic response of the curved bridge equipped with unseating failure control system under the action of near-fault ground motion. An in-depth analysis is carried to evaluate the control effect of the proposed unseating failure control system. The research results indicate that under the near-fault ground motion, the seismic response of the curved bridge is strong. The unseating failure control system perform effectively to reduce the pounding force of the adjacent girders and the probability of deck unseating.

  8. Phase Field Theory and Analysis of Pressure-Shear Induced Amorphization and Failure in Boron Carbide Ceramic

    Science.gov (United States)

    2014-08-01

    Phase Field Theory and Analysis of Pressure-Shear Induced Amorphization and Failure in Boron Carbide Ceramic by John D Clayton ARL-RP...Pressure-Shear Induced Amorphization and Failure in Boron Carbide Ceramic John D Clayton Weapons and Materials Research Directorate, ARL...and Analysis of Pressure-Shear Induced Amorphization and Failure in Boron Carbide Ceramic 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM

  9. Analysis of micro-failure behaviors in artificial muscles based on fishing line and sewing thread

    Science.gov (United States)

    Xu, J. B.; Cheng, K. F.; Tu, S. L.; He, X. M.; Ma, C.; Jin, Y. Z.; Kang, X. N.; Sun, T.; Zhang, Y.

    2017-06-01

    The aim of the present study was to discuss a new and effective method for testing artificial muscles based on micro-failure behaviors analysis. Thermo-mechanical actuators based on fishing line and sewing thread, also, the capability of responding to ambient temperature variations producing a large amount of shrinkage ratio of a resulting variation in longitudinal length. The minimum micro-failure value is 0.02μm and the maximum value is 1.72μm with nylon twist pattern. The discovery of an innovative effective testing of artificial muscles based on polymeric fibers specimens on micro-failure, rupture, slippage, etc. This research finds out a micro-failure behavior analysis of thermo-mechanical actuators based on fishing line and sewing thread. The specimens show large deformations when heated together with warping performance in terms of shrinkage of energy and densities. With the purpose of providing useful analysis data for the further technology applications, we attempt micrometre-sized artificial muscles which were also tested was readily accessible and also can be applied to other polymeric fibers. Effective use of this technique achievement relies on rotate speed, temperature and tensile direction. The results of the tensile testing experiments were outstanding with respect to some important issues related to the response of micro-structure, twisted polymeric fibers and shrinkage ratio.

  10. Continuum Damage Mechanics Models for the Analysis of Progressive Failure in Open-Hole Tension Laminates

    Science.gov (United States)

    Song, Kyonchan; Li, Yingyong; Rose, Cheryl A.

    2011-01-01

    The performance of a state-of-the-art continuum damage mechanics model for interlaminar damage, coupled with a cohesive zone model for delamination is examined for failure prediction of quasi-isotropic open-hole tension laminates. Limitations of continuum representations of intra-ply damage and the effect of mesh orientation on the analysis predictions are discussed. It is shown that accurate prediction of matrix crack paths and stress redistribution after cracking requires a mesh aligned with the fiber orientation. Based on these results, an aligned mesh is proposed for analysis of the open-hole tension specimens consisting of different meshes within the individual plies, such that the element edges are aligned with the ply fiber direction. The modeling approach is assessed by comparison of analysis predictions to experimental data for specimen configurations in which failure is dominated by complex interactions between matrix cracks and delaminations. It is shown that the different failure mechanisms observed in the tests are well predicted. In addition, the modeling approach is demonstrated to predict proper trends in the effect of scaling on strength and failure mechanisms of quasi-isotropic open-hole tension laminates.

  11. Efficient surrogate models for reliability analysis of systems with multiple failure modes

    International Nuclear Information System (INIS)

    Bichon, Barron J.; McFarland, John M.; Mahadevan, Sankaran

    2011-01-01

    Despite many advances in the field of computational reliability analysis, the efficient estimation of the reliability of a system with multiple failure modes remains a persistent challenge. Various sampling and analytical methods are available, but they typically require accepting a tradeoff between accuracy and computational efficiency. In this work, a surrogate-based approach is presented that simultaneously addresses the issues of accuracy, efficiency, and unimportant failure modes. The method is based on the creation of Gaussian process surrogate models that are required to be locally accurate only in the regions of the component limit states that contribute to system failure. This approach to constructing surrogate models is demonstrated to be both an efficient and accurate method for system-level reliability analysis. - Highlights: → Extends efficient global reliability analysis to systems with multiple failure modes. → Constructs locally accurate Gaussian process models of each response. → Highly efficient and accurate method for assessing system reliability. → Effectiveness is demonstrated on several test problems from the literature.

  12. Failure Mode and Effect Analysis using Soft Set Theory and COPRAS Method

    Directory of Open Access Journals (Sweden)

    Ze-Ling Wang

    2017-01-01

    Full Text Available Failure mode and effect analysis (FMEA is a risk management technique frequently applied to enhance the system performance and safety. In recent years, many researchers have shown an intense interest in improving FMEA due to inherent weaknesses associated with the classical risk priority number (RPN method. In this study, we develop a new risk ranking model for FMEA based on soft set theory and COPRAS method, which can deal with the limitations and enhance the performance of the conventional FMEA. First, trapezoidal fuzzy soft set is adopted to manage FMEA team membersr linguistic assessments on failure modes. Then, a modified COPRAS method is utilized for determining the ranking order of the failure modes recognized in FMEA. Especially, we treat the risk factors as interdependent and employ the Choquet integral to obtain the aggregate risk of failures in the new FMEA approach. Finally, a practical FMEA problem is analyzed via the proposed approach to demonstrate its applicability and effectiveness. The result shows that the FMEA model developed in this study outperforms the traditional RPN method and provides a more reasonable risk assessment of failure modes.

  13. Reliability Analysis of Fatigue Failure of Cast Components for Wind Turbines

    Directory of Open Access Journals (Sweden)

    Hesam Mirzaei Rafsanjani

    2015-04-01

    Full Text Available Fatigue failure is one of the main failure modes for wind turbine drivetrain components made of cast iron. The wind turbine drivetrain consists of a variety of heavily loaded components, like the main shaft, the main bearings, the gearbox and the generator. The failure of each component will lead to substantial economic losses such as cost of lost energy production and cost of repairs. During the design lifetime, the drivetrain components are exposed to variable loads from winds and waves and other sources of loads that are uncertain and have to be modeled as stochastic variables. The types of loads are different for offshore and onshore wind turbines. Moreover, uncertainties about the fatigue strength play an important role in modeling and assessment of the reliability of the components. In this paper, a generic stochastic model for fatigue failure of cast iron components based on fatigue test data and a limit state equation for fatigue failure based on the SN-curve approach and Miner’s rule is presented. The statistical analysis of the fatigue data is performed using the Maximum Likelihood Method which also gives an estimate of the statistical uncertainties. Finally, illustrative examples are presented with reliability analyses depending on various stochastic models and partial safety factors.

  14. Evaluating the operational risks of biomedical waste using failure mode and effects analysis.

    Science.gov (United States)

    Chen, Ying-Chu; Tsai, Pei-Yi

    2017-06-01

    The potential problems and risks of biomedical waste generation have become increasingly apparent in recent years. This study applied a failure mode and effects analysis to evaluate the operational problems and risks of biomedical waste. The microbiological contamination of biomedical waste seldom receives the attention of researchers. In this study, the biomedical waste lifecycle was divided into seven processes: Production, classification, packaging, sterilisation, weighing, storage, and transportation. Twenty main failure modes were identified in these phases and risks were assessed based on their risk priority numbers. The failure modes in the production phase accounted for the highest proportion of the risk priority number score (27.7%). In the packaging phase, the failure mode 'sharp articles not placed in solid containers' had the highest risk priority number score, mainly owing to its high severity rating. The sterilisation process is the main difference in the treatment of infectious and non-infectious biomedical waste. The failure modes in the sterilisation phase were mainly owing to human factors (mostly related to operators). This study increases the understanding of the potential problems and risks associated with biomedical waste, thereby increasing awareness of how to improve the management of biomedical waste to better protect workers, the public, and the environment.

  15. ADM guidance-Ceramics: guidance to the use of fractography in failure analysis of brittle materials.

    Science.gov (United States)

    Scherrer, Susanne S; Lohbauer, Ulrich; Della Bona, Alvaro; Vichi, Alessandro; Tholey, Michael J; Kelly, J Robert; van Noort, Richard; Cesar, Paulo Francisco

    2017-06-01

    To provide background information and guidance as to how to use fractography accurately, a powerful tool for failure analysis of dental ceramic structures. An extended palette of qualitative and quantitative fractography is provided, both for in vivo and in vitro fracture surface analyses. As visual support, this guidance document will provide micrographs of typical critical ceramic processing flaws, differentiating between pre- versus post sintering cracks, grinding damage related failures and occlusal contact wear origins and of failures due to surface degradation. The documentation emphasizes good labeling of crack features, precise indication of the direction of crack propagation (dcp), identification of the fracture origin, the use of fractographic photomontage of critical flaws or flaw labeling on strength data graphics. A compilation of recommendations for specific applications of fractography in Dentistry is also provided. This guidance document will contribute to a more accurate use of fractography and help researchers to better identify, describe and understand the causes of failure, for both clinical and laboratory-scale situations. If adequately performed at a large scale, fractography will assist in optimizing the methods of processing and designing of restorative materials and components. Clinical failures may be better understood and consequently reduced by sending out the correct message regarding the fracture origin in clinical trials. Copyright © 2017 The Academy of Dental Materials. All rights reserved.

  16. Failure mode and effects analysis in a dual-product microsphere brachytherapy environment.

    Science.gov (United States)

    Younge, Kelly Cooper; Lee, Choonik; Moran, Jean M; Feng, Mary; Novelli, Paula; Prisciandaro, Joann I

    We performed a failure mode and effects analysis (FMEA) during the addition of a new microspheres product into our existing microsphere brachytherapy program to identify areas for safety improvements. A diverse group of team members from the microsphere program participated in the project to create a process map, identify and score failure modes, and discuss programmatic changes to address the highest ranking items. We developed custom severity ranking scales for staff- and institution-related failure modes to encompass possible risks that may exist outside of patient-based effects. Between both types of microsphere products, 173 failure mode/effect pairs were identified: 90 for patients, 35 for staff, and 48 for the institution. The SIR-Spheres program was ranked separately from the TheraSphere program because of significant differences in workflow during dose calculation, preparation, and delivery. High-ranking failure modes in each category were addressed with programmatic changes. The FMEA aided in identifying potential risk factors in our microsphere program and allowed a theoretically safer and more efficient design of the workflow and quality assurance for both our new SIR-Spheres program and our existing TheraSphere program. As new guidelines are made available, and our experience with the SIR-Spheres program increases, we will update the FMEA as an efficient starting point for future improvements. Copyright © 2016 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  17. Complex materials analysis and failure analysis. Practical examples from furnace, coating, and automotive applications; Komplexe Materialpruefung und Schadensanalyse. Praxisbeispiele aus dem Ofenbau-, Beschichtungsbau- und Automobilbereich

    Energy Technology Data Exchange (ETDEWEB)

    Teichert, Gerd; Schaaf, Peter [TU Ilmenau (Germany). Pruefzentrum Schicht- und Materialeigenschaften der MFPA Weimar; Wilke, Marcus [TU Ilmenau (Germany). Fachgebiet Werkstoffe der Elektrotechnik; Spiess, Lothar

    2011-07-01

    Failure Analysis on components and materials needs always a combination and team play of various and mostly complementary materials analyses. Within the theory of failure analysis, the latter are named instrumental analyses. By the demonstration of various practical examples of failure analysis in the field of furnaces, coatings and automotive parts, it is shown how metallographic inspection, X-ray diffraction, electron microscopy, and glow discharge optical emission spectroscopy can be very beneficially combined for the investigation of complex failure cases. Besides the verified hypotheses for the failure reasons, in certain cases also additional information about the course of events can be drawn with great details. (orig.)

  18. Material wear and failure mode analysis of breakfast cereal extruder barrels and screw elements

    Science.gov (United States)

    Mastio, Michael Joseph, Jr.

    2005-11-01

    Nearly seventy-five years ago, the single screw extruder was introduced as a means to produce metal products. Shortly after that, the extruder found its way into the plastics industry. Today much of the world's polymer industry utilizes extruders to produce items such as soda bottles, PVC piping, and toy figurines. Given the significant economical advantages of extruders over conventional batch flow systems, extruders have also migrated into the food industry. Food applications include the meat, pet food, and cereal industries to name just a few. Cereal manufacturers utilize extruders to produce various forms of Ready-to-Eat (RTE) cereals. These cereals are made from grains such as rice, oats, wheat, and corn. The food industry has been incorrectly viewed as an extruder application requiring only minimal energy control and performance capability. This misconception has resulted in very little research in the area of material wear and failure mode analysis of breakfast cereal extruders. Breakfast cereal extruder barrels and individual screw elements are subjected to the extreme pressures and temperatures required to shear and cook the cereal ingredients, resulting in excessive material wear and catastrophic failure of these components. Therefore, this project focuses on the material wear and failure mode analysis of breakfast cereal extruder barrels and screw elements, modeled as a Discrete Time Markov Chain (DTMC) process in which historical data is used to predict future failures. Such predictive analysis will yield cost savings opportunities by providing insight into extruder maintenance scheduling and interchangeability of screw elements. In this DTMC wear analysis, four states of wear are defined and a probability transition matrix is determined based upon 24,041 hours of operational data. This probability transition matrix is used to predict when an extruder component will move to the next state of wear and/or failure. This information can be used to determine

  19. A statistical analysis of pellet-clad interaction failures in water reactor fuel

    International Nuclear Information System (INIS)

    McDonald, S.G.; Fardo, R.D.; Sipush, P.J.; Kaiser, R.S.

    1981-01-01

    The primary objective of the statistical analysis was to develop a mathematical function that would predict PCI fuel rod failures as a function of the imposed operating conditions. Linear discriminant analysis of data from both test and commercial reactors was performed. The initial data base used encompassed 713 data points (117 failures and 596 non-failures) representing a wide variety of water cooled reactor fuel (PWR, BWR, CANDU, and SGHWR). When applied on a best-estimate basis, the resulting function simultaneously predicts approximately 80 percent of both the failure and non-failure data correctly. One of the most significant predictions of the analysis is that relatively large changes in power can be tolerated when the pre-ramp irradiation power is low, but that only small changes in power can be tolerated when the pre-ramp irradiation power is high. However, it is also predicted that fuel rods irradiated at low power will fail at lower final powers than those irradiated at high powers. Other results of the analysis are that fuel rods with high clad operating temperatures can withstand larger power increases that fuel rods with low clad operating temperatures, and that burnup has only a minimal effect on PCI performance after levels of approximately 10000 MWD/MTU have been exceeded. These trends in PCI performance and the operating parameters selected are believed to be consistent with mechanistic considerations. Published PCI data indicate that BWR fuel usually operates at higher local powers and changes in power, lower clad temperatures, and higher local ramp rates than PWR fuel

  20. Does Bruxism Contribute to Dental Implant Failure? A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Zhou, Yi; Gao, Jinxia; Luo, Le; Wang, Yining

    2016-04-01

    Bruxism was usually considered as a contraindication for oral implanting. The causal relationship between bruxism and dental implant failure was remained controversial in existing literatures. This meta-analysis was performed to investigate the relationship between them. This review conducted an electronic systematic literature search in MEDLINE (PubMed) and EmBase in November 2013 without time and language restrictions. Meanwhile, a hand searching for all the relevant references of included studies was also conducted. Study information extraction and methodological quality assessments were accomplished by two reviewers independently. A discussion ensued if any disagreement occurred, and unresolved issues were solved by consulting a third reviewer. Methodological quality was assessed by using the Newcastle-Ottawa Scale tool. Odds ratio (OR) with 95% confidence interval (CI) was pooled to estimate the relative effect of bruxism on dental implant failures. Fixed effects model was used initially; if the heterogeneity was high, random effects model was chosen for meta-analysis. Statistical analyses were carried out by using Review Manager 5.1. In this meta-analysis review, extracted data were classified into two groups based on different units. Units were based on the number of prostheses (group A) and the number of patients (group B). In group A, the total pooled OR of bruxers versus nonbruxers for all subgroups was 4.72 (95% CI: 2.66-8.36, p = .07). In group B, the total pooled OR of bruxers versus nonbruxers for all subgroups was 3.83 (95% CI: 2.12-6.94, p = .22). This meta-analysis was performed to evaluate the relationship between bruxism and dental implant failure. In contrast to nonbruxers, prostheses in bruxers had a higher failure rate. It suggests that bruxism is a contributing factor of causing the occurrence of dental implant technical/biological complications and plays a role in dental implant failure. © 2015 Wiley Periodicals, Inc.

  1. Analysis of instrumentation failures after three column osteotomies of the spine.

    Science.gov (United States)

    Kavadi, Niranjan; Tallarico, Richard A; Lavelle, William F

    2017-01-01

    Correction of fixed spinal imbalance in a sagittal and/or coronal plane frequently needs a tricolumnar wedge resection when the deformity is rigid. Complications associated with deformity correction surgery are pseudoarthrosis and implant failure located along the construct. The purposes of this study were to assess comparative rates of pseudoarthrosis (implant failure) at weaker points along lumbosacral junction and level of osteotomy, estimate overall incidence of implant failure, and comparatively analyze failures at different points along the construct. This was an IRB approved, single center study retrospective analysis. Twenty-six patients who underwent three column osteotomies were grouped according to procedure: pedicle subtraction osteotomy (PSO, ( n  = 18)); vertebral column resection (VCR, ( n  = 4)); hemivertebra excision (HE, ( n  = 2)); and extracavitary corpectomy (EC, ( n  = 2)). Follow-up data is presented on all of the study patients. Number of levels of fusion, anchors, percent saturation of fixation levels, type of bone graft and graft substitutes, and rod material and diameter were recorded. Radiographical data was reviewed preoperatively and postoperatively at 2 weeks and 3, 6, and 12 months and annually to determine sagittal and coronal balance, lumbopelvic parameters, presence or absence of interbody structural support, laterality or rod failure, and time to implant failure. Twenty-seven percent (7/26) patients demonstrated rod breakage either unilaterally ( N  = 2) or bilaterally ( N  = 5) during follow-up. Seventy-one percent had increasing back pain or worsening sagittal balance, while remaining failures found incidentally. No failures in children were seen. Tricolumnar osteotomy by posterior approach is a valuable tool. Rod failures found approximately 1 year from surgery, with 86% located at level of osteotomy and 14% at lumbosacral junction. Possible reasons are increased stress in the rod at this point and

  2. Application of failure mode and effects analysis in a clinical chemistry laboratory.

    Science.gov (United States)

    Jiang, Yuanyuan; Jiang, Hongmin; Ding, Siyi; Liu, Qin

    2015-08-25

    Timely delivery of correct results has long been considered as the goal of quality management in clinical laboratory. With increasing workload as well as complexities of laboratory testing and patient care, the traditional technical adopted like internal quality control (IQC) and external quality assessment (EQA) may not enough to cope with quality management problems for clinical laboratories. We applied failure mode and effects analysis (FMEA), a proactive tool, to reduce errors associated with the process beginning with sample collection and ending with a test report in a clinical chemistry laboratory. Our main objection was to investigate the feasibility of FMEA in a real-world situation, namely the working environment of hospital. A team of 8 people (3 laboratory workers, 2 couriers, 2 nurses, and 1 physician) from different departments who were involved in the testing process were recruited and trained. Their main responsibility was to analyze and score all possible clinical chemistry laboratory failures based on three aspects: the severity of the outcome (S), the likeliness of occurrence (O), and the probability of being detected (D). These three parameters were multiplied to calculate risk priority numbers (RPNs), which were used to prioritize remedial measures. Failure modes with RPN≥200 were deemed as high risk, meaning that they needed immediate corrective action. After modifications that were put, we compared the resulting RPN with the previous one. A total of 33 failure modes were identified. Many of the failure modes, including the one with the highest RPN (specimen hemolysis) appeared in the pre-analytic phase, whereas no high-risk failure modes (RPN≥200) were found during the analytic phase. High-priority risks were "sample hemolysis" (RPN, 336), "sample delivery delay" (RPN, 225), "sample volume error" (RPN, 210), "failure to release results in a timely manner" (RPN, 210), and "failure to identify or report critical results" (RPN, 200). The

  3. Theoretical and experimental analysis of inverter fed induction motor system under DC link capacitor failure

    Directory of Open Access Journals (Sweden)

    Hadeed A. Sher

    2017-04-01

    Full Text Available In this paper theoretical and experimental analysis of an AC–DC–AC inverter under DC link capacitor failure is presented. The failure study conducted for this paper is the open circuit of the DC link capacitor. The presented analysis incorporates the results for both single and three phase AC input. It has been observed that the higher ripple frequency provides better ride through capability for this fault. Furthermore, the effects of this fault on electrical characteristics of AC–DC–AC inverter and mechanical properties of the induction motor are also presented. Moreover, the effect of pulsating torque as a result of an open circuited DC link capacitor is also taken into consideration. Theoretical analysis is supported by computer aided simulation as well as with a real time experimental prototype.

  4. WWER expert system for fuel failure analysis using the RTOP-CA code

    International Nuclear Information System (INIS)

    Likhanskii, V.; Evdokimov, I.; Sorokin, A.; Khromov, A.; Kanukova, V.; Apollonova, O.; Ugryumov, A.

    2008-01-01

    The computer expert system for fuel failure analysis of WWER during operation is presented. The diagnostics is based on the measurement of specific activity of reference nuclides in reactor primary coolant and application of a computer code for the data interpretation. The data analysis includes an evaluation of tramp uranium mass in reactor core, detection of failures by iodine and caesium spikes, evaluation of burnup of defective fuel. Evaluation of defective fuel burnup was carried out by applying the relation of caesium nuclides activity in spikes and relations of activities of gaseous fission products for steady state operational conditions. The method of burnup evaluation of defective fuel by use of fission gas activity is presented in details. The neural-network analysis is performed for determination of failed fuel rod number and defect size. Results of the expert system application are illustrated for several fuel campaigns on operating WWER NPPs. (authors)

  5. Post-test creep analysis of piping failure tests in wind project

    International Nuclear Information System (INIS)

    Chino, E.; Maruyama, Y.; Yuchi, Y.; Shibazaki, H.; Nakamura, H.; Hidaka, A.; Kudo, T.; Hashimoto, K.

    2000-01-01

    Thermal and structural responses of the reactor coolant piping under elevated temperature and pressure conditions are being investigated in piping failure tests in WIND (Wide Range Piping Integrity Demonstration) project at JAERI (Japan Atomic Energy Research Institute). The elasto-plastic creep analysis was performed with ABAQUS code for the test using a nuclear grade type 316 stainless steel pipe, which had an outer diameter of 114.3 mm and a wall thickness of 13.5 mm. The major material properties at elevated temperature needed for the analysis were measured for specimen sectioned from the test pipe. Based on the measured creep data, a creep constitutive equation including the tertiary stage was developed and incorporated into ABAQUS code. We compared the results of the three-dimensional analysis with those of two-dimensional analysis and the piping failure test. The comparison showed that the piping failure timing and deformation of pipe obtained from the three dimensional analysis underestimated the test results, and that temperature history at the elevated temperature should be adequately considered. (author)

  6. BILAM: a composite laminate failure-analysis code using bilinear stress-strain approximations

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, P.V. Jr.; Dasgupta, A.; Chun, Y.W.

    1980-10-01

    The BILAM code which uses constant strain laminate analysis to generate in-plane load/deformation or stress/strain history of composite laminates to the point of laminate failure is described. The program uses bilinear stress-strain curves to model layer stress-strain behavior. Composite laminates are used for flywheels. The use of this computer code will help to develop data on the behavior of fiber composite materials which can be used by flywheel designers. In this program the stress-strain curves are modelled by assuming linear response in axial tension while using bilinear approximations (2 linear segments) for stress-strain response to axial compressive, transverse tensile, transverse compressive and axial shear loadings. It should be noted that the program attempts to empirically simulate the effects of the phenomena which cause nonlinear stress-strain behavior, instead of mathematically modelling the micromechanics involved. This code, therefore, performs a bilinear laminate analysis, and, in conjunction with several user-defined failure interaction criteria, is designed to provide sequential information on all layer failures up to and including the first fiber failure. The modus operandi is described. Code BILAM can be used to: predict the load-deformation/stress-strain behavior of a composite laminate subjected to a given combination of in-plane loads, and make analytical predictions of laminate strength.

  7. Generalized renewal process for analysis of repairable systems with limited failure experience

    International Nuclear Information System (INIS)

    Yanez, Medardo; Joglar, Francisco; Modarres, Mohammad

    2002-01-01

    Repairable systems can be brought to one of possible states following a repair. These states are: 'as good as new', 'as bad as old', 'better than old but worse than new', 'better than new', and 'worse than old'. The probabilistic models traditionally used to estimate the expected number of failures account for the first two states, but they do not properly apply to the last three, which are more realistic in practice. In this paper, a robust solution to a probabilistic model that is applicable to all of the five after repair states, called generalized renewal process (GRP), is presented. This research demonstrates that the GRP offers a general approach to modeling repairable systems and discusses application of the classical maximum likelihood and Bayesian approaches to estimation of the GRP parameters. This paper also presents a review of the traditional approaches to the analysis of repairable systems as well as some applications of the GRP and shows that they are subsets of the GRP approach. It is shown that the proposed GRP solution accurately describes the failure data, even when a small amount of failure data is available. Recent emphasis in the use of performance-based analysis in operation and regulation of complex engineering systems (such as those in space and process industries) require use of sound models for predicting failures based on the past performance of the systems. The GRP solution in this paper is a promising and efficient approach for such performance-based applications

  8. An investigation into failure analysis of interfering part of a steam turbine journal bearing

    Directory of Open Access Journals (Sweden)

    M. Mehdizadeh

    2014-10-01

    Full Text Available Journal bearings as so sensitive parts of steam turbines are very susceptible to failure through different mechanisms of wear, fatigue and crush during service conditions. Failure occurring through these mechanisms lead to turbine completely shut down as a result of interfering in working conditions of bearing different parts. In this research, failed interfered part of a journal bearing related to a 320,000 kW steam turbine was examined. Failure analysis investigations were performed by utilizing of stereographic, optical microscopy, scanning electron microscopy (SEM, energy-dispersive X-ray spectroscopy (EDS analysis and hardness test. Surface crush, large amounts of surface cracks, no noticeable changes of failed surface chemical composition and microstructure with significant hardness improvement were the main obtained results. The studies were revealed that the bearing part loosing and inappropriate clearance can produce relative displacements under cyclic gradient loading. This condition was detrimental for the service life of turbine journal bearing via failure through fretting fatigue mechanism.

  9. Construct validity of the Heart Failure Screening Tool (Heart-FaST) to identify heart failure patients at risk of poor self-care: Rasch analysis.

    Science.gov (United States)

    Reynolds, Nicholas A; Ski, Chantal F; McEvedy, Samantha M; Thompson, David R; Cameron, Jan

    2018-02-14

    The aim of this study was to psychometrically evaluate the Heart Failure Screening Tool (Heart-FaST) via: (1) examination of internal construct validity; (2) testing of scale function in accordance with design; and (3) recommendation for change/s, if items are not well adjusted, to improve psychometric credential. Self-care is vital to the management of heart failure. The Heart-FaST may provide a prospective assessment of risk, regarding the likelihood that patients with heart failure will engage in self-care. Psychometric validation of the Heart-FaST using Rasch analysis. The Heart-FaST was administered to 135 patients (median age = 68, IQR = 59-78 years; 105 males) enrolled in a multidisciplinary heart failure management program. The Heart-FaST is a nurse-administered tool for screening patients with HF at risk of poor self-care. A Rasch analysis of responses was conducted which tested data against Rasch model expectations, including whether items serve as unbiased, non-redundant indicators of risk and measure a single construct and that rating scales operate as intended. The results showed that data met Rasch model expectations after rescoring or deleting items due to poor discrimination, disordered thresholds, differential item functioning, or response dependence. There was no evidence of multidimensionality which supports the use of total scores from Heart-FaST as indicators of risk. Aggregate scores from this modified screening tool rank heart failure patients according to their "risk of poor self-care" demonstrating that the Heart-FaST items constitute a meaningful scale to identify heart failure patients at risk of poor engagement in heart failure self-care. © 2018 John Wiley & Sons Ltd.

  10. Impact of Injectable Furosemide Hospital Shortage on Congestive Heart Failure Outcomes: A Time Series Analysis.

    Science.gov (United States)

    Tan, Vivian S; Nash, Danielle M; McArthur, Eric; Jain, Arsh K; Garg, Amit X; Juurlink, David N; Weir, Matthew A

    2017-11-01

    Beginning in February 2012, there was a shortage of injectable furosemide in the province of Ontario, Canada. The objective of this study was to assess the effects of the furosemide shortage on heart failure outcomes in Ontario, Canada. We determined which hospitals experienced a shortage of injectable furosemide using an online survey. We then used health administrative data to identify all patients who presented to those hospitals with congestive heart failure. Using 40 months of data from before the shortage, we determined the proportion of patients with heart failure expected to die each month. We then used time series analysis to forecast the 30-day mortality rate during the shortage period and compared it with the observed rate. Secondary outcomes included length of hospital stay, transfer to an intensive care unit, mechanical ventilation during the hospital stay, and risk of 30-day readmission for heart failure. Survey results were obtained for 82% of hospitals, 28 of which experienced a severe shortage of injectable furosemide in the year 2012. The 30-day mortality among patients presenting to these hospitals with congestive heart failure before the shortage period was 11.2%. We forecasted a mortality rate of 11.3% (95% confidence interval, 8.2-14.4) for the shortage period, which was not significantly different from the observed rate of 10.9%. Similarly, we found no significant effect of the shortage on secondary outcomes. A severe shortage of injectable furosemide did not increase the risk of adverse outcomes among patients who presented to the hospital with congestive heart failure. Copyright © 2017 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  11. Identification of Modeling Approaches To Support Common-Cause Failure Analysis

    International Nuclear Information System (INIS)

    Korsah, Kofi; Wood, Richard Thomas

    2015-01-01

    Experience with applying current guidance and practices for common-cause failure (CCF) mitigation to digital instrumentation and control (I&C) systems has proven problematic, and the regulatory environment has been unpredictable. The impact of CCF vulnerability is to inhibit I&C modernization and, thereby, challenge the long-term sustainability of existing plants. For new plants and advanced reactor concepts, the issue of CCF vulnerability for highly integrated digital I&C systems imposes a design burden resulting in higher costs and increased complexity. The regulatory uncertainty regarding which mitigation strategies are acceptable (e.g., what diversity is needed and how much is sufficient) drives designers to adopt complicated, costly solutions devised for existing plants. The conditions that constrain the transition to digital I&C technology by the U.S. nuclear industry require crosscutting research to resolve uncertainty, demonstrate necessary characteristics, and establish an objective basis for qualification of digital technology for usage in Nuclear Power Plant (NPP) I&C applications. To fulfill this research need, Oak Ridge National Laboratory is conducting an investigation into mitigation of CCF vulnerability for nuclear-qualified applications. The outcome of this research is expected to contribute to a fundamentally sound, comprehensive technical basis for establishing the qualification of digital technology for nuclear power applications. This report documents the investigation of modeling approaches for representing failure of I&C systems. Failure models are used when there is a need to analyze how the probability of success (or failure) of a system depends on the success (or failure) of individual elements. If these failure models are extensible to represent CCF, then they can be employed to support analysis of CCF vulnerabilities and mitigation strategies. Specifically, the research findings documented in this report identify modeling approaches that

  12. Identification of Modeling Approaches To Support Common-Cause Failure Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Korsah, Kofi [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wood, Richard Thomas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-06-01

    Experience with applying current guidance and practices for common-cause failure (CCF) mitigation to digital instrumentation and control (I&C) systems has proven problematic, and the regulatory environment has been unpredictable. The impact of CCF vulnerability is to inhibit I&C modernization and, thereby, challenge the long-term sustainability of existing plants. For new plants and advanced reactor concepts, the issue of CCF vulnerability for highly integrated digital I&C systems imposes a design burden resulting in higher costs and increased complexity. The regulatory uncertainty regarding which mitigation strategies are acceptable (e.g., what diversity is needed and how much is sufficient) drives designers to adopt complicated, costly solutions devised for existing plants. The conditions that constrain the transition to digital I&C technology by the U.S. nuclear industry require crosscutting research to resolve uncertainty, demonstrate necessary characteristics, and establish an objective basis for qualification of digital technology for usage in Nuclear Power Plant (NPP) I&C applications. To fulfill this research need, Oak Ridge National Laboratory is conducting an investigation into mitigation of CCF vulnerability for nuclear-qualified applications. The outcome of this research is expected to contribute to a fundamentally sound, comprehensive technical basis for establishing the qualification of digital technology for nuclear power applications. This report documents the investigation of modeling approaches for representing failure of I&C systems. Failure models are used when there is a need to analyze how the probability of success (or failure) of a system depends on the success (or failure) of individual elements. If these failure models are extensible to represent CCF, then they can be employed to support analysis of CCF vulnerabilities and mitigation strategies. Specifically, the research findings documented in this report identify modeling approaches that

  13. Failure and sensitivity analysis of a reconfigurable vibrating screen using finite element analysis

    OpenAIRE

    Boitumelo Ramatsetse; Khumbulani Mpofu; Olasumbo Makinde

    2017-01-01

    In mineral processing industries vibrating screens operate under high structural loading and continuous vibrations. In this regard, this may result in high strain rates, which may often lead to structural failure or damage to the screen. In order to lessen the possibility of failure occurring, theories and techniques for analyzing machine structures are investigated and applied to perform a sensitivity study of a newly developed vibrating screen. Structural strength and stability of a vibrati...

  14. WebDASC: a web-based dietary assessment software for 8-11-year-old Danish children

    DEFF Research Database (Denmark)

    Biltoft-Jensen, Anja Pia; Trolle, Ellen; Christensen, Tue

    Background:  The present study describes the development and formative evaluation of the Web-based Dietary Assessment Software for Children (WebDASC). WebDASC is part of the OPUS project ('Optimal well-being, development and health for Danish children through a healthy New Nordic Diet......') and was intended to measure dietary change resulting from a school-based intervention. Methods:  WebDASC was developed as a self-administered tool that could be used by 8-11-year-old children with or without parent's aid. The development of WebDASC followed a prototyping approach: focus groups, informal interviews...... as an intuitive, cost-effective, and engaging method to collect detailed dietary data from 8- to 11-year-old children. Preliminary testing demonstrated that it was well accepted among children....

  15. Miniscrews failure rate in orthodontics: systematic review and meta-analysis.

    Science.gov (United States)

    Alharbi, Fahad; Almuzian, Mohammed; Bearn, David

    2018-01-05

    Miniscrews in orthodontics have been mainly used for anchorage without patient compliance in orthodontic treatment. The literature has reported changing failure rates. The aim of this review was to provide a precise estimation of miniscrew failure rate and the possible risk factors of the mechanically-retained miniscrews. Electronic search in database was undertaken up to July 2017 through the Cochrane Database of Systematic Reviews, MEDLINE, Scopus, and Ovid. Additional searching for on-going and unpublished data, hand search of relevant journals and grey lietraure were also undertaken, authors were contacted, and reference lists screened. Randomised controlled trials (RCTs) and prospective cohort studies (PCSs), published in English were obtained, which reported the failure rate of miniscrews, as orthodontic anchorage, with less than 2 mm diameter. Blind and induplicate study selection, data extraction, and risk of bias assessment were undertaken in this research. Failure rates and relevant risk factors of miniscrews with the corresponding 95 per cent confidence intervals (CIs) were calculated by using the random-effects model. The heterogeneity across the studies was assessed using the I2 and Chi2 test. The risk of bias was assessed using Cochrane risk of bias and Newcastle-Ottawa Scale. Subgroup and sensitivity analyses were performed in order to test the robustness of the results in meta-analysis. The 16 RCTs and 30 PCSs were included in this research. Five studies were not included in the meta-analysis due to a lack of the statistical information needed to compute the effect sizes. About 3250 miniscrews from 41 studies were pooled in a random-effect model. The overall failure rate of miniscrews was 13.5 per cent (95% CI 11.5-15.9). Subgroup analysis showed that miniscrews 'diameter, length and design, patient age, and jaw of insertion had minimal effect on rate of miniscrews failure while the type of the gingivae and smoking had statistically significant

  16. IS THE AMPLIFICATION OF c-MYC, MLL AND RUNX1 GENES IN AML AND MDS PATIENTS WITH TRISOMY 8, 11 AND 21 A FACTOR FOR A CLONAL EVOLUTION IN THEIR KARYOTYPE?

    Science.gov (United States)

    Angelova, S; Spassov, B; Nikolova, V; Christov, I; Tzvetkov, N; Simeonova, M

    2015-01-01

    The aim of our study was 1) to define if the amplification of c-MYC, MLL and RUNX1 genes is related to the progressive changes of the karyotype in patients with AML and MDS with trisomy 8, 11 and 21 (+8, +11 and +21) in bone marrow and 2) can that amplification be accepted as part of the clonal evolution (CE). Karyotype analysis was performed in 179 patients with AML or MDS with the different chromosomal aberrations (CA) aged 16-81. The findings were distributed as follow: initiating balanced CA (n = 60), aneuploidia (n = 55), unbalanced CA (n = 64). Amplification of c-MYC, MLL and RUNX1 genes by means of fluorescence in situ hybridization (FISH) was found in 35% (7 out of 20) of AML and MDS patients with +8, +11 u +21 as single CA in their karyotype; in 63.6% of pts (7 out of 11)--with additional numerical or structural CA and in 75% (9 out of 12)--with complex karyotype. We assume that the amplification of the respective chromosomal regions in patients with +8, +11 and +21 is related to CE. Considering the amplification as a factor of CE, we established 3 patterns of karyotype development depending on the type of the initiating CA in it. Significant statistical differences were found between the three patterns regarding the karyotype distribution in the different stages of progression (p < 0.001).

  17. [High-flow nasal cannulae oxygen in patients with respiratory failure: a Meta-analysis].

    Science.gov (United States)

    Yue, Weigang; Zhang, Zhigang; Zhang, Caiyun; Yang, Liping; He, Jufang; Hou, Yuying; Tang, Ying; Tian, Jinhui

    2017-05-01

    To systematically evaluate the efficacy of high-flow nasal cannulae oxygen (HFNC) in patients with respiratory failure. Computerized PubMed, Embase, Web of Science, the Cochrane Library, CNKI, CBM, VIP, Wanfang Database up to March 31st, 2017, all published available randomized controlled trials (RCTs) or cohort studies about HFNC therapy for patients with respiratory failure were searched. The control group was treated with face mask oxygen therapy (FM) or non-invasive positive pressure ventilation (NIPPV), while the experimental group was treated with HFNC. The main outcome measurements included endotracheal intubation rate, patient comfort, and the secondary outcome was in-hospital mortality. The quality of the literature was completed by two professionally trained evidence-based medical students, and meta-analysis was performed on quality-compliant literature. Funnel plot was used to analyze the publication bias. A total of 17 articles were enrolled including 15 RCTs and 2 cohort studies. There were 3 909 patients enrolled, 1 907 patients in HFNC group, and 2 002 in control group (1 068 patients with FM, and 934 with NIPPV). Meta-analysis showed that HFNC had a significant advantage over FM in reducing the tracheal intubation rate of patients with respiratory failure [odds ratio (OR) = 0.51, 95% confidence interval (95%CI) = 0.29-0.89, P = 0.02], but there was no significant difference as compared with that of NIPPV (OR = 0.80, 95%CI = 0.54-1.17, P = 0.25). It was shown by pooled analysis of two subgroups that compared with FM/NIPPV, HFNC had a significant advantage in reducing tracheal intubation rate in patients with respiratory failure (pooled OR = 0.66, 95%CI = 0.47-0.94, P = 0.02). Compared with FM, patients with respiratory failure were more likely to receive HFNC for comfort [standardized mean difference (SMD) = -0.41, 95%CI = -0.56 to -0.26, P analysis of two subgroups were still unchanged (pooled OR = 0.75, 95%CI = 0.54-1.05, P = 0.09). It was shown by

  18. Mechanics and complications of reverse shoulder arthroplasty: morse taper failure analysis and prospective rectification

    International Nuclear Information System (INIS)

    Hoskin, HLD; Furie, E; Ganey, TM; Schlatterer, DR; Collins, W

    2017-01-01

    Since Sir John Charnley began his monumental hip arthroplasty work in 1958, clinical researchers have been incrementally improving longevity and functionality of total joint systems, although implant failure occurs on occasion. The purpose of this study is to report the fracture of the humeral tray Morse taper of a reverse total shoulder system (RTSS), which to date has not been reported with metallurgic analysis for any RTSS. There was no reported antecedent fall, motor vehicle collision, or other traumatic event prior to implant fracture in this case. Analysis was performed on the retrieved failed implant by Scanning Electron Microscopy (SEM) and Electron Dispersion Spectroscopy (EDS) in an attempt to determine the failure method, as well as to offer improvements for future implants. At the time of revision surgery all explants were retained from the left shoulder of a 61-year old male who underwent a non-complicated RTSS 4 years prior. The explants, particularly the cracked humeral tray, were processed as required for SEM and EDS. Analysis was performed on the failure sites in order to determine the chemical composition of the different parts of the implant, discover the chemical composition of the filler metal used during the electron beam welding process, and to detect any foreign elements that could suggest corrosion or other evidence of failure etiology. Gross visual inspection of all explants revealed that implant failure was a result of dissociation of the taper from the humeral tray at the weld, leaving the Morse taper embedded in the humeral stem while the tray floated freely in the patient’s shoulder. SEM further confirmed the jagged edges noted grossly at the weld fracture site, both suggesting failure due to torsional forces. EDS detected elevated levels of carbon and oxygen at the fracture site on the taper only and not on the humeral tray. In order to determine the origin of the high levels of C and O, it was considered that in titanium alloys, C

  19. Mechanics and complications of reverse shoulder arthroplasty: morse taper failure analysis and prospective rectification

    Science.gov (United States)

    Hoskin, HLD; Furie, E.; Collins, W.; Ganey, TM; Schlatterer, DR

    2017-05-01

    Since Sir John Charnley began his monumental hip arthroplasty work in 1958, clinical researchers have been incrementally improving longevity and functionality of total joint systems, although implant failure occurs on occasion. The purpose of this study is to report the fracture of the humeral tray Morse taper of a reverse total shoulder system (RTSS), which to date has not been reported with metallurgic analysis for any RTSS. There was no reported antecedent fall, motor vehicle collision, or other traumatic event prior to implant fracture in this case. Analysis was performed on the retrieved failed implant by Scanning Electron Microscopy (SEM) and Electron Dispersion Spectroscopy (EDS) in an attempt to determine the failure method, as well as to offer improvements for future implants. At the time of revision surgery all explants were retained from the left shoulder of a 61-year old male who underwent a non-complicated RTSS 4 years prior. The explants, particularly the cracked humeral tray, were processed as required for SEM and EDS. Analysis was performed on the failure sites in order to determine the chemical composition of the different parts of the implant, discover the chemical composition of the filler metal used during the electron beam welding process, and to detect any foreign elements that could suggest corrosion or other evidence of failure etiology. Gross visual inspection of all explants revealed that implant failure was a result of dissociation of the taper from the humeral tray at the weld, leaving the Morse taper embedded in the humeral stem while the tray floated freely in the patient’s shoulder. SEM further confirmed the jagged edges noted grossly at the weld fracture site, both suggesting failure due to torsional forces. EDS detected elevated levels of carbon and oxygen at the fracture site on the taper only and not on the humeral tray. In order to determine the origin of the high levels of C and O, it was considered that in titanium alloys, C

  20. Co-morbidities in patients with heart failure : an analysis of the European Heart Failure Pilot Survey

    NARCIS (Netherlands)

    van Deursen, Vincent M.; Urso, Renato; Laroche, Cecile; Damman, Kevin; Dahlstrom, Ulf; Tavazzi, Luigi; Maggioni, Aldo P.; Voors, Adriaan A.

    Aims Co-morbidities frequently accompany heart failure (HF), contributing to increased morbidity and mortality, and an impairment of quality of life. We assessed the prevalence, determinants, regional variation, and prognostic implications of co-morbidities in patients with chronic HF in Europe.

  1. Medication adherence interventions for heart failure patients: A meta-analysis.

    Science.gov (United States)

    Ruppar, Todd M; Delgado, Janet M; Temple, Jonathon

    2015-10-01

    Adherence to medications is an essential part of heart failure self-care. Poor medication adherence leads to increased rates of exacerbation causing hospitalizations and increased morbidity and mortality. This meta-analysis aimed to quantify the effect of interventions to improve adherence to heart failure medications on adherence outcomes. Comprehensive search methods identified studies testing interventions designed to improve medication adherence among patients with heart failure. Data from eligible studies were independently coded by two coders and analyzed using random-effects meta-analysis methods. Moderator analyses to explain heterogeneity among the studies were conducted using meta-regression and ANOVA for moderators with sufficient numbers of comparisons. Searching yielded 6665 potential study reports. From these studies, we identified 29 eligible treatment versus control comparisons of heart failure medication adherence interventions (total n=4285). The mean effect size (d-index) for two-group comparisons was 0.29 (SE=0.09, p=0.004). Moderator analyses found effect sizes were larger as samples were older. Medication adherence effect sizes were larger for studies conducted in Europe or Asia versus North America, and for interventions focused on changing only medication adherence. Smaller effect sizes were seen for interventions with components directed at health care providers, and those including social support as an intervention component. While the medication adherence effect size across all studies was significant, the effect was modest. Approaches to improving heart failure medication adherence may be most effective when focused on medication adherence alone, and when seeking to change behavior of patients, rather than health care provider behavior. © The European Society of Cardiology 2015.

  2. Failure Mode and Effect Analysis in Increasing the Revenue of Emergency Department

    Directory of Open Access Journals (Sweden)

    Farhad Rahmati

    2015-02-01

    Full Text Available Introduction: Successful performance of emergency department(ED is one of the important indications of increasing the satisfaction among referees. The insurance of such successful performance is fiscal discipline and avoiding from non-beneficial activities in this department. Therefore, the increasing revenue of emergency department is one of the interested goals of hospital management system. According to above-mentioned, the researchers assessed problems lead to loss the revenue of ED and eliminate them by using failure mode and effects analysis (FMEA.Methods: This was the prospective cohort study performed during 18 months, set in 6 phases. In the first phase, the failures were determined and some solutions suggested to eliminate them. During 2-5 phases, based on the prioritizing the problems, solutions were performed. In the sixth phase, final assessment of the study was done. Finally, the feedback of system’s revenue was evaluated and data analyzed using repeated measure ANOVA.Results: Lack of recording the consuming instrument and attribution of separate codes for emergency services of hospitalized patients were the most important failures that lead to decrease the revenue of ED. Such elimination caused to 75.9% increase in revenue within a month (df = 1.6; F = 84.0; p<0.0001.  Totally, 18 months following the eliminating of failures caused to 328.2% increase in the revenue of ED (df = 15.9; F = 215; p<0.0001.Conclusion: The findings of the present study shows that failure mode and effect analysis, can be used as a safe and effected method to reduce the expenses of ED and increase its revenue.

  3. Do antibiotics decrease implant failure and postoperative infections? A systematic review and meta-analysis.

    Science.gov (United States)

    Ata-Ali, J; Ata-Ali, F; Ata-Ali, F

    2014-01-01

    The purpose of this study was to systematically review and perform a comprehensive meta-analysis of the current literature to answer the following question: among patients receiving dental implants, does the use of antibiotics, when compared with a control group, reduce the frequency of implant failure and postoperative infection? A manual and electronic PubMed search of the literature was made to identify randomized controlled trials (RCTs) on the efficacy of antibiotics compared with a control group (not receiving antibiotics or receiving placebo). Four RCTs were included in the final review. These four RCTs grouped a total of 2063 implants and a total of 1002 patients. Antibiotic use significantly lowered the implant failure rate (P = 0.003), with an odds ratio of 0.331, implying that antibiotic treatment reduced the odds of failure by 66.9%. The number needed to treat (NNT) to prevent one patient from having an implant failure was 48 (95% confidence interval 31-109). In contrast, antibiotic use did not significantly reduce the incidence of postoperative infection (P = 0.754). Based on the results of this meta-analysis, and pending further research in the field, it can be concluded that there is evidence in favour of systematic antibiotic use in patients receiving dental implants, since such treatment significantly reduces implant failure. In contrast, antibiotic use does not exert a significant preventive effect against postoperative infection. Our recommendations for future research focus on the performance of large-scale RCTs to identify the best choice of antibiotic, timing of administration, and dose. Increased effort is also required to reach consensus and define the most effective antibiotic treatment protocol for patients who are allergic to beta-lactams and for those who are not. Copyright © 2013 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  4. Comprehensive Analysis of Gene Expression Profiles of Sepsis-Induced Multiorgan Failure Identified Its Valuable Biomarkers.

    Science.gov (United States)

    Wang, Yumei; Yin, Xiaoling; Yang, Fang

    2018-02-01

    Sepsis is an inflammatory-related disease, and severe sepsis would induce multiorgan dysfunction, which is the most common cause of death of patients in noncoronary intensive care units. Progression of novel therapeutic strategies has proven to be of little impact on the mortality of severe sepsis, and unfortunately, its mechanisms still remain poorly understood. In this study, we analyzed gene expression profiles of severe sepsis with failure of lung, kidney, and liver for the identification of potential biomarkers. We first downloaded the gene expression profiles from the Gene Expression Omnibus and performed preprocessing of raw microarray data sets and identification of differential expression genes (DEGs) through the R programming software; then, significantly enriched functions of DEGs in lung, kidney, and liver failure sepsis samples were obtained from the Database for Annotation, Visualization, and Integrated Discovery; finally, protein-protein interaction network was constructed for DEGs based on the STRING database, and network modules were also obtained through the MCODE cluster method. As a result, lung failure sepsis has the highest number of DEGs of 859, whereas the number of DEGs in kidney and liver failure sepsis samples is 178 and 175, respectively. In addition, 17 overlaps were obtained among the three lists of DEGs. Biological processes related to immune and inflammatory response were found to be significantly enriched in DEGs. Network and module analysis identified four gene clusters in which all or most of genes were upregulated. The expression changes of Icam1 and Socs3 were further validated through quantitative PCR analysis. This study should shed light on the development of sepsis and provide potential therapeutic targets for sepsis-induced multiorgan failure.

  5. User-defined Material Model for Thermo-mechanical Progressive Failure Analysis

    Science.gov (United States)

    Knight, Norman F., Jr.

    2008-01-01

    Previously a user-defined material model for orthotropic bimodulus materials was developed for linear and nonlinear stress analysis of composite structures using either shell or solid finite elements within a nonlinear finite element analysis tool. Extensions of this user-defined material model to thermo-mechanical progressive failure analysis are described, and the required input data are documented. The extensions include providing for temperature-dependent material properties, archival of the elastic strains, and a thermal strain calculation for materials exhibiting a stress-free temperature.

  6. Analysis of Statistical Distributions Used for Modeling Reliability and Failure Rate of Temperature Alarm Circuit

    International Nuclear Information System (INIS)

    EI-Shanshoury, G.I.

    2011-01-01

    Several statistical distributions are used to model various reliability and maintainability parameters. The applied distribution depends on the' nature of the data being analyzed. The presented paper deals with analysis of some statistical distributions used in reliability to reach the best fit of distribution analysis. The calculations rely on circuit quantity parameters obtained by using Relex 2009 computer program. The statistical analysis of ten different distributions indicated that Weibull distribution gives the best fit distribution for modeling the reliability of the data set of Temperature Alarm Circuit (TAC). However, the Exponential distribution is found to be the best fit distribution for modeling the failure rate

  7. Numerical simulation and factor analysis of petrochemical pipe erosion-corrosion failure

    Science.gov (United States)

    XU, G. F.; OU, G. F.; Chen, T.; Li, P. X.; JIN, H. Z.

    2016-05-01

    Based on the behavior of carbon steel outlet tube in REAC pipes of Zhenhai Refining & Chemical Company, the mathematical model of fluid-solid interaction was established according to the mechanism of erosion-corrosion damage. The interaction between corrosion products protecting film and multiphase liquid was analyzed by numerical simulation method. The distribution of shearing stress on the inwall of elbow bend, and the distribution of principal displacement, stress and strain of corrosion products protecting film were disclosed, while the erosion-corrosion failure processes was studied. The simulation result coincides with that of the positioned thickness gauging which validated the reliability and feasibility of the finite element analysis software simulation method. The obtained results can be used in the erosion-corrosion failure analysis, structural optimization, in-service testing positioning, life prediction, risk assessment, safety and other security projects for multiphase flow pipeline.

  8. Sensitivity analysis of repairable redundant system with switching failure and geometric reneging

    Directory of Open Access Journals (Sweden)

    Chandra Shekhar

    2017-09-01

    Full Text Available This study deals with the performance modeling and reliability analysis of a redundant machining system composed of several functional machines. To analyze the more realistic scenarios, the concepts of switching failure and geometric reneging are included. The time-to-breakdown and repair time of operating and standby machines are assumed to follow the exponential distribution. For the quantitative assessment of the machine interference problem, various performance measures such as mean-time-to-failure, reliability, reneging rate, etc. have been formulated. To show the practicability of the developed model, a numerical illustration has been presented. For the practical justification and validity of the results established, the sensitivity analysis of reliability indices has been presented by varying different system descriptors.

  9. Failure Analysis of PRDS Pipe in a Thermal Power Plant Boiler

    Science.gov (United States)

    Ghosh, Debashis; Ray, Subrata; Mandal, Jiten; Mandal, Nilrudra; Shukla, Awdhesh Kumar

    2018-04-01

    The pressure reducer desuperheater (PRDS) pipeline is used for reducing the pressure and desuperheating of the steam in different auxiliary pipeline. When the PRDS pipeline is failed, the reliability of the boiler is affected. This paper investigates the probable cause/causes of failure of the PRDS tapping line. In that context, visual inspection, outside diameter and wall thickness measurement, chemical analysis, metallographic examination and hardness measurement are conducted as part of the investigative studies. Apart from these tests, mechanical testing and fractographic analysis are also conducted as supplements. Finally, it has been concluded that the PRDS pipeline has mainly failed due to graphitization due to prolonged exposure of the pipe at higher temperature. The improper material used is mainly responsible for premature failure of the pipe.

  10. Determination of Weibull Analysis of the Hypereutectic Silumins Reliability in Failure Time Respect

    Directory of Open Access Journals (Sweden)

    J. Szymszal

    2009-07-01

    Full Text Available The results of dynamic evaluation of the reliability of hypereutectic AlSi17Cu3NiMg silumin under the effect of symmetrical cyclic tensile-compressive stresses were presented. Studies were carried out on a normal-running fatigue testing machine, which was the mechanically driven resonant pulsator. For the needs of quantitative reliability evaluation and the time-to-failure evaluation, the procedures used in survival analysis, adapted to the analysis of failure-free operation with two- and three-parametric Weibull distributions, were applied. The values of the parameters were estimated using the method of maximum reliability and a rank-based non-parametric method. The results of the evaluation of the reliability and damage intensity are an important element in the determination of casting quality and enable a reliable estimation of the operational suitability time.

  11. Failure analysis of leakage caused by perforation in an L415 steel gas pipeline

    Directory of Open Access Journals (Sweden)

    Zhiyong Liu

    2017-10-01

    Full Text Available The reasons for the failure of a buried pipeline perforated during construction were investigated by a chemical composition analysis; a metallographic test; macromorphology observation; characterization of the corrosion products by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction; field medium characterization; and an analysis of the working conditions. The results revealed that the material composition and organization of the steel pipe conformed to API Specification 5CT. However, the reason for the perforation of the L415 steel pipe was an ultrahigh growth rate of pitting corrosion, as high as 14 mm per year. We confirmed that the synergistic effect of a high partial pressure of oxygen introduced by an improper packing process and concentrated Cl− in the corrosion product layer, which originated from groundwater with a high salt concentration that was used for the water pressure test, were responsible for the failure process.

  12. Space station software reliability analysis based on failures observed during testing at the multisystem integration facility

    Science.gov (United States)

    Tamayo, Tak Chai

    1987-01-01

    Quality of software not only is vital to the successful operation of the space station, it is also an important factor in establishing testing requirements, time needed for software verification and integration as well as launching schedules for the space station. Defense of management decisions can be greatly strengthened by combining engineering judgments with statistical analysis. Unlike hardware, software has the characteristics of no wearout and costly redundancies, thus making traditional statistical analysis not suitable in evaluating reliability of software. A statistical model was developed to provide a representation of the number as well as types of failures occur during software testing and verification. From this model, quantitative measure of software reliability based on failure history during testing are derived. Criteria to terminate testing based on reliability objectives and methods to estimate the expected number of fixings required are also presented.

  13. Impact of the specialization from failures data in probability safety analysis for process plants

    International Nuclear Information System (INIS)

    Ribeiro, Antonio C.O.; Melo, P.F. Frutuoso e

    2005-01-01

    Full text: The aim of this paper is to show the Bayesian inference in reliability studies, which are used to failures, rates updating in safety analyses. It is developed the impact of its using in quantitative risk assessments (QRA) for industrial process plants. With this approach we find a structured and auditable way of showing the difference between an industrial installation with a good project and maintenance structure from another one that shows a low level of quality in these areas. In general the evidence from failures rates and as follow the frequency of occurrence from scenarios, which the risks taken in account in ERA, are taken from generics data banks, instead of, the installation in analysis. The use of this methodology in probabilistic safety analysis (PSA) for nuclear plants is commonly used when you need to find the final fault tree event evaluation applied to a scenario, but it is not showed in a PSA level III. (author)

  14. Multinational Assessment of Accuracy of Equations for Predicting Risk of Kidney Failure: A Meta-analysis.

    Science.gov (United States)

    Tangri, Navdeep; Grams, Morgan E; Levey, Andrew S; Coresh, Josef; Appel, Lawrence J; Astor, Brad C; Chodick, Gabriel; Collins, Allan J; Djurdjev, Ognjenka; Elley, C Raina; Evans, Marie; Garg, Amit X; Hallan, Stein I; Inker, Lesley A; Ito, Sadayoshi; Jee, Sun Ha; Kovesdy, Csaba P; Kronenberg, Florian; Heerspink, Hiddo J Lambers; Marks, Angharad; Nadkarni, Girish N; Navaneethan, Sankar D; Nelson, Robert G; Titze, Stephanie; Sarnak, Mark J; Stengel, Benedicte; Woodward, Mark; Iseki, Kunitoshi

    2016-01-12

    Identifying patients at risk of chronic kidney disease (CKD) progression may facilitate more optimal nephrology care. Kidney failure risk equations, including such factors as age, sex, estimated glomerular filtration rate, and calcium and phosphate concentrations, were previously developed and validated in 2 Canadian cohorts. Validation in other regions and in CKD populations not under the care of a nephrologist is needed. To evaluate the accuracy of the risk equations across different geographic regions and patient populations through individual participant data meta-analysis. Thirty-one cohorts, including 721,357 participants with CKD stages 3 to 5 in more than 30 countries spanning 4 continents, were studied. These cohorts collected data from 1982 through 2014. Cohorts participating in the CKD Prognosis Consortium with data on end-stage renal disease. Data were obtained and statistical analyses were performed between July 2012 and June 2015. Using the risk factors from the original risk equations, cohort-specific hazard ratios were estimated and combined using random-effects meta-analysis to form new pooled kidney failure risk equations. Original and pooled kidney failure risk equation performance was compared, and the need for regional calibration factors was assessed. Kidney failure (treatment by dialysis or kidney transplant). During a median follow-up of 4 years of 721,357 participants with CKD, 23,829 cases kidney failure were observed. The original risk equations achieved excellent discrimination (ability to differentiate those who developed kidney failure from those who did not) across all cohorts (overall C statistic, 0.90; 95% CI, 0.89-0.92 at 2 years; C statistic at 5 years, 0.88; 95% CI, 0.86-0.90); discrimination in subgroups by age, race, and diabetes status was similar. There was no improvement with the pooled equations. Calibration (the difference between observed and predicted risk) was adequate in North American cohorts, but the original risk

  15. Software failure events derivation and analysis by frame-based technique

    International Nuclear Information System (INIS)

    Huang, H.-W.; Shih, C.; Yih, Swu; Chen, M.-H.

    2007-01-01

    A frame-based technique, including physical frame, logical frame, and cognitive frame, was adopted to perform digital I and C failure events derivation and analysis for generic ABWR. The physical frame was structured with a modified PCTran-ABWR plant simulation code, which was extended and enhanced on the feedwater system, recirculation system, and steam line system. The logical model is structured with MATLAB, which was incorporated into PCTran-ABWR to improve the pressure control system, feedwater control system, recirculation control system, and automated power regulation control system. As a result, the software failure of these digital control systems can be properly simulated and analyzed. The cognitive frame was simulated by the operator awareness status in the scenarios. Moreover, via an internal characteristics tuning technique, the modified PCTran-ABWR can precisely reflect the characteristics of the power-core flow. Hence, in addition to the transient plots, the analysis results can then be demonstrated on the power-core flow map. A number of postulated I and C system software failure events were derived to achieve the dynamic analyses. The basis for event derivation includes the published classification for software anomalies, the digital I and C design data for ABWR, chapter 15 accident analysis of generic SAR, and the reported NPP I and C software failure events. The case study of this research includes: (1) the software CMF analysis for the major digital control systems; and (2) postulated ABWR digital I and C software failure events derivation from the actual happening of non-ABWR digital I and C software failure events, which were reported to LER of USNRC or IRS of IAEA. These events were analyzed by PCTran-ABWR. Conflicts among plant status, computer status, and human cognitive status are successfully identified. The operator might not easily recognize the abnormal condition, because the computer status seems to progress normally. However, a well

  16. Cost Based Failure Modes and Effects Analysis (FMEA) for Systems of Accelerator Magnets.

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Cherrill M

    2003-06-02

    The proposed Next Linear Collider (NLC) has a proposed 85% overall availability goal, the availability specifications for all its 7200 magnets and their 6167 power supplies are 97.5% each. Thus all of the electromagnets and their power supplies must be highly reliable or quickly repairable. Improved reliability or repairability comes at a higher cost. We have developed a set of analysis procedures for magnet designers to use as they decide how much effort to exert, i.e. how much money to spend, to improve the reliability of a particular style of magnet. We show these procedures being applied to a standard SLAC electromagnet design in order to make it reliable enough to meet the NLC availability specs. First, empirical data from SLAC's accelerator failure database plus design experience are used to calculate MTBF for failure modes identified through a FMEA. Availability for one particular magnet can be calculated. Next, labor and material costs to repair magnet failures are used in a Monte Carlo simulation to calculate the total cost of all failures over a 30-year lifetime. Opportunity costs are included. Engineers choose from amongst various designs by comparing lifecycle costs.

  17. Failure Analysis in Magnetic Tunnel Junction Nanopillar with Interfacial Perpendicular Magnetic Anisotropy

    Directory of Open Access Journals (Sweden)

    Weisheng Zhao

    2016-01-01

    Full Text Available Magnetic tunnel junction nanopillar with interfacial perpendicular magnetic anisotropy (PMA-MTJ becomes a promising candidate to build up spin transfer torque magnetic random access memory (STT-MRAM for the next generation of non-volatile memory as it features low spin transfer switching current, fast speed, high scalability, and easy integration into conventional complementary metal oxide semiconductor (CMOS circuits. However, this device suffers from a number of failure issues, such as large process variation and tunneling barrier breakdown. The large process variation is an intrinsic issue for PMA-MTJ as it is based on the interfacial effects between ultra-thin films with few layers of atoms; the tunneling barrier breakdown is due to the requirement of an ultra-thin tunneling barrier (e.g., <1 nm to reduce the resistance area for the spin transfer torque switching in the nanopillar. These failure issues limit the research and development of STT-MRAM to widely achieve commercial products. In this paper, we give a full analysis of failure mechanisms for PMA-MTJ and present some eventual solutions from device fabrication to system level integration to optimize the failure issues.

  18. Using failure mode and effect analysis in identification of components sensitive to ageing

    International Nuclear Information System (INIS)

    Nitoi, Mirela; Turcu, Ilie; Apostol, Minodora; Farcasiu, Mita; Popa, Adrian; Florescu, Gheorghe; Pavelescu, Margarit

    2008-01-01

    Ageing represents a phenomenon of concern since any degradation that may occur in time could lower a component performance and so reduce its reliability. If the phenomenon is left unchecked and unmitigated, the ageing could increase the risk associated with the facility operation. To understand the ageing degradation of a component, it is first necessary to identify and understand the ageing processes. Since these processes involve constituent materials, parts and the service conditions of components, it is necessary to know the design, materials, service conditions, performance requirements, operating experience (operation, surveillance and maintenance histories) and relevant research results for the component of interest. The purpose of the Ageing Failure Mode and Effect Analysis (AFMEA) is to study the results or effects of item failure caused by ageing, on system operation and to classify each potential failure according to its severity The paper will present the advantages of using AFMEA in identification of most sensitive to ageing components, as the results obtained for a particular case. For each component analyzed, the stressors will be established, the corresponding ageing mechanisms will be identified, as the failure modes induced by the ageing mechanisms. (authors)

  19. Failure Mode and Effect Analysis for Delivery of Lung Stereotactic Body Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Perks, Julian R., E-mail: julian.perks@ucdmc.ucdavis.edu [University of California Davis Medical Center, Sacramento, CA (United States); Stanic, Sinisa; Stern, Robin L.; Henk, Barbara; Nelson, Marsha S.; Harse, Rick D.; Mathai, Mathew; Purdy, James A.; Valicenti, Richard K.; Siefkin, Allan D.; Chen, Allen M. [University of California Davis Medical Center, Sacramento, CA (United States)

    2012-07-15

    Purpose: To improve the quality and safety of our practice of stereotactic body radiation therapy (SBRT), we analyzed the process following the failure mode and effects analysis (FMEA) method. Methods: The FMEA was performed by a multidisciplinary team. For each step in the SBRT delivery process, a potential failure occurrence was derived and three factors were assessed: the probability of each occurrence, the severity if the event occurs, and the probability of detection by the treatment team. A rank of 1 to 10 was assigned to each factor, and then the multiplied ranks yielded the relative risks (risk priority numbers). The failure modes with the highest risk priority numbers were then considered to implement process improvement measures. Results: A total of 28 occurrences were derived, of which nine events scored with significantly high risk priority numbers. The risk priority numbers of the highest ranked events ranged from 20 to 80. These included transcription errors of the stereotactic coordinates and machine failures. Conclusion: Several areas of our SBRT delivery were reconsidered in terms of process improvement, and safety measures, including treatment checklists and a surgical time-out, were added for our practice of gantry-based image-guided SBRT. This study serves as a guide for other users of SBRT to perform FMEA of their own practice.

  20. Acute respiratory failure associated with cryptococcosis in patients with AIDS: analysis of predictive factors.

    Science.gov (United States)

    Visnegarwala, F; Graviss, E A; Lacke, C E; Dural, A T; Johnson, P C; Atmar, R L; Hamill, R J

    1998-11-01

    The incidence of acute respiratory failure (ARF) associated with cryptococcal disease in patients with AIDS is underestimated in the literature. We performed a retrospective, case-control (referent) study to determine the prevalence of ARF associated with cryptococcal disease and analyzed associated factors. Potential cases of ARF were identified at four university-affiliated teaching hospitals from a cohort of 210 patients with AIDS who had positive cryptococcal antigen tests and/or Cryptococcus neoformans isolated from any body site. Twenty-nine of the 210 (13.8%) had ARF associated with cryptococcal disease. Nineteen were thought to have respiratory failure due solely to C. neoformans. The demographic, clinical, laboratory, treatment, and outcome data of 19 cases of respiratory failure were compared with data for 20 patients without respiratory failure. In-hospital mortality was 100% and median survival was 2 days for cases, vs. 25% and > 365 days, respectively, for referents. The clinical presentation was identical to that of Pneumocystis carinii pneumonia. In multivariate analysis, variables independently predictive of ARF in patients with cryptococcal disease were black race, a lactate dehydrogenase level of > or = 500 IU/L, the presence of interstitial infiltrates, and the presence of cutaneous lesions. ARF with cryptococcosis in patients with AIDS is associated with disseminated disease and high mortality. The diagnosis frequently is not considered before death. Serum cryptococcal antigen testing is a sensitive and rapid screening method.

  1. Failure Mode and Effect Analysis for remote handling transfer systems of ITER

    Energy Technology Data Exchange (ETDEWEB)

    Pinna, T. [ENEA FPN-FUSTEC, Via E.Fermi 45, 00044 Frascati, Rome (Italy)], E-mail: pinna@frascati.enea.it; Caporali, R. [ENEA consultant, Via Teano 269, 00177 Rome (Italy)], E-mail: r_caporali@tin.it; Tesini, A. [ITER International Organization-Cadarache Joint Work Site, 13108 Saint Paul Lez Durance (France)

    2008-12-15

    A Failure Mode and Effect Analysis (FMEA) at component level was done to study safety-relevant implications arising from possible failures in performing remote handling (RH) operations at ITER facility . Autonomous air cushion transporter, pallet, sealed casks and tractor movers needed for port plug mounting/dismantling operation were analysed. For each sub-system, the breakdown of significant components was outlined and, for each component, possible failure modes have been investigated pointing out possible causes, possible actions to prevent the causes, consequences and actions to prevent or mitigate consequences. Off-normal events which may result in hazardous consequences to the public and the environment have been defined as Postulated Initiating Events (PIEs). Two safety-relevant PIEs have been defined by assessing elementary failures related to the analysed system. Each PIE has been discussed in order to qualitatively identify accident sequences arising from each of them. As an output of this FMEA study, possible incidental scenarios, where the intervention of rescue RH equipments is required to overcome critical situations determined by fault of RH components, were defined as well. Being rescue scenarios of main concern for ITER remote handling activities, such families could be helpful in defining the design requirements of port handling systems in general and on RH transfer system in particular. Furthermore, they could be useful in defining casks and vehicles to be used for rescue activities.

  2. [Failure mode and effects analysis to improve quality in clinical trials].

    Science.gov (United States)

    Mañes-Sevilla, M; Marzal-Alfaro, M B; Romero Jiménez, R; Herranz-Alonso, A; Sanchez Fresneda, M N; Benedi Gonzalez, J; Sanjurjo-Sáez, M

    2018-02-15

    The failure mode and effects analysis (FMEA) has been used as a tool in risk management and quality improvement. The objective of this study is to identify the weaknesses in processes in the clinical trials area, of a Pharmacy Department (PD) with great research activity, in order to improve the safety of the usual procedures. A multidisciplinary team was created to analyse each of the critical points, identified as possible failure modes, in the development of clinical trial in the PD. For each failure mode, the possible cause and effect were identified, criticality was calculated using the risk priority number and the possible corrective actions were discussed. Six sub-processes were defined in the development of the clinical trials in PD. The FMEA identified 67 failure modes, being the dispensing and prescription/validation sub-processes the most likely to generate errors. All the improvement actions established in the AMFE were implemented in the Clinical Trials area. The FMEA is a useful tool in proactive risk management because it allows us to identify where we are making mistakes and analyze the causes that originate them, to prioritize and to adopt solutions to risk reduction. The FMEA improves process safety and quality in PD. Copyright © 2018 SECA. Publicado por Elsevier España, S.L.U. All rights reserved.

  3. Cost Based Failure Modes and Effects Analysis (FMEA) for Systems of Accelerator Magnets

    International Nuclear Information System (INIS)

    Spencer, Cherrill M

    2003-01-01

    The proposed Next Linear Collider (NLC) has a proposed 85% overall availability goal, the availability specifications for all its 7200 magnets and their 6167 power supplies are 97.5% each. Thus all of the electromagnets and their power supplies must be highly reliable or quickly repairable. Improved reliability or repairability comes at a higher cost. We have developed a set of analysis procedures for magnet designers to use as they decide how much effort to exert, i.e. how much money to spend, to improve the reliability of a particular style of magnet. We show these procedures being applied to a standard SLAC electromagnet design in order to make it reliable enough to meet the NLC availability specs. First, empirical data from SLAC's accelerator failure database plus design experience are used to calculate MTBF for failure modes identified through a FMEA. Availability for one particular magnet can be calculated. Next, labor and material costs to repair magnet failures are used in a Monte Carlo simulation to calculate the total cost of all failures over a 30-year lifetime. Opportunity costs are included. Engineers choose from amongst various designs by comparing lifecycle costs

  4. Operating personnel error analysis during operation failures in the Kozloduj NPP

    International Nuclear Information System (INIS)

    Jonkova, A.

    1990-01-01

    The failures due to personnel errors are analyzed for 10 years period (1977-1986). Most of the results are presented in absolute values and are considered in dynamics. The indices for relative shares are compared by alternative analysis. One of the most important causes is the fluctuation of manpower. The failures distribution by months within the year and by hours of the day is given. The biggest number of failures occurred in the period April-October (without August - the month of the leaves), when the refueling and repair were taken place, and in January-February, due to heavy meteorological conditions and some fatigue and disconcentration because of multiple holidays. The failures during the day shifts had the greatest relative share - 42%, during the afternoon shifts - 26% and during the night shifts - 32% The most 'dangerous' time periods happened to be 11-12 h and 13-14 h (deteriorated attention after lunch), 20-22 h (physiological drop of the psychological activity), 0-3 h (the lowest level of physiological and psychological activity) and in the first and last hours of every shift. Three groups of causes are pointed out as the most frequent: improper actions connected with orders; improper independent actions; uncoordinated teamwork. The following measures are proposed for reducing the effect of the human factor: setting up the training centre; preliminary evaluation of the professional qualification of the operators; current dynamic control of their neuro-psychological fitness and occupational reliability. 1 fig, 2 tabs, 5 refs

  5. Analysis and resolution of service water system heat exchanger tube failures at Clinton Power Station

    International Nuclear Information System (INIS)

    Bhayana, G.K.

    1992-01-01

    Microbiologically Influenced (or Induced) Corrosion (MIC) is generally prominent in a hospitable open loop environment with warmer temperatures and low flow or stagnant flow conditions. It is further enhanced by lack of chemical treatment of the cooling medium. Microbiologically induced corrosion is initiated by a metabolic process of the mocroorganisms. The influenced corrosion occurs when the growth of microorganisms create an environment for corrosion to exist by forming an oxygen-barrier or by producing metabolic by-products that attack metal surfaces. heat exchanger tubes, constructed of 90-10 Copper Nickel, located in two emergency Diesel Generators had to be replaced twice in less than two years. lack of effective chemical treatment was determined to be a contributing factor in both of the failures. The first failure was attributed to microbiologically induced corrosion and the second failure to a combination of microbiologically induced and influenced corrosion. This paper discusses the CPS heat exchanger tube failure analysis, the development and implementation of the MIC mitigation plan, various observations and the conclusions rendered

  6. Failure Mode and Effect Analysis for remote handling transfer systems of ITER

    International Nuclear Information System (INIS)

    Pinna, T.; Caporali, R.; Tesini, A.

    2008-01-01

    A Failure Mode and Effect Analysis (FMEA) at component level was done to study safety-relevant implications arising from possible failures in performing remote handling (RH) operations at ITER facility . Autonomous air cushion transporter, pallet, sealed casks and tractor movers needed for port plug mounting/dismantling operation were analysed. For each sub-system, the breakdown of significant components was outlined and, for each component, possible failure modes have been investigated pointing out possible causes, possible actions to prevent the causes, consequences and actions to prevent or mitigate consequences. Off-normal events which may result in hazardous consequences to the public and the environment have been defined as Postulated Initiating Events (PIEs). Two safety-relevant PIEs have been defined by assessing elementary failures related to the analysed system. Each PIE has been discussed in order to qualitatively identify accident sequences arising from each of them. As an output of this FMEA study, possible incidental scenarios, where the intervention of rescue RH equipments is required to overcome critical situations determined by fault of RH components, were defined as well. Being rescue scenarios of main concern for ITER remote handling activities, such families could be helpful in defining the design requirements of port handling systems in general and on RH transfer system in particular. Furthermore, they could be useful in defining casks and vehicles to be used for rescue activities

  7. Failure Analysis of Cracked FS-85 Tubing and ASTAR-811C End Caps

    International Nuclear Information System (INIS)

    ME Petrichek

    2006-01-01

    Failure analyses were performed on cracked FS-85 tubing and ASTAR-811C and caps which had been fabricated as components of biaxial creep specimens meant to support materials testing for the NR Space program. During the failure analyses of cracked FS-85 tubing, it was determined that the failure potentially could be due to two effects: possible copper contamination from the EDM (electro-discharge machined) recast layer and/or an insufficient solution anneal. to prevent similar failures in the future, a more formal analysis should be done after each processing step to ensure the quality of the material before further processing. During machining of the ASTAR-811FC rod to form end caps for biaxial creep specimens, linear defects were observed along the center portion of the end caps. These defects were only found in material that was processed from the top portion of the ingot. The linear defects were attributed to a probable residual ingot pipe that was not removed from the ingot. During the subsequent processing of the ingot to rod, the processing temperatures were not high enough to allow self healing of the ingot's residual pipe defect. To prevent this from occurring in the future, it is necessary to ensure that complete removal of the as-melted ingot pipe is verified by suitable non-destructive evaluation (NDE)

  8. Fatigue failure analysis of vibrating screen spring by means of finite element simulation: a case study

    OpenAIRE

    Franco Rodríguez, Rosendo

    2017-01-01

    Vibrating screens are often used in the mining industry to separate mineral particles by size. In many designs, spring arrays are used to provide the system with the necessary stiffness for screens to vibrate in a controlled manner. Naturally, these springs are subjected to varying loading cycles, which can cause their premature fatigue failure. This behavior has been studied by means of finite element analysis and compared with data obtained from a real case scenario, in which a helical spri...

  9. Correntropy-based Analysis of Respiratory Patterns with Chronic Heart Failure

    OpenAIRE

    Garde Martínez, Ainara; Sörnmo, Leif; Jané Campos, Raimon; Giraldo Giraldo, Beatriz

    2009-01-01

    A correntropy-based technique is proposed for the analysis and characterization of respiratory flow signals in chronic heart failure (CHF) patients with both periodic and nonperiodic breathing (PB and nPB), and healthy subjects. Correntropy is a novel similarity measure which provides information on temporal structure and statistical distribution simultaneously. Its properties lend itself to the definition of the correntropy spectral density (CSD). An interesting result from CS...

  10. Analysis on IGBT and Diode Failures in Distribution Electronic Power Transformers

    Science.gov (United States)

    Wang, Si-cong; Sang, Zi-xia; Yan, Jiong; Du, Zhi; Huang, Jia-qi; Chen, Zhu

    2018-02-01

    Fault characteristics of power electronic components are of great importance for a power electronic device, and are of extraordinary importance for those applied in power system. The topology structures and control method of Distribution Electronic Power Transformer (D-EPT) are introduced, and an exploration on fault types and fault characteristics for the IGBT and diode failures is presented. The analysis and simulation of different fault types for the fault characteristics lead to the D-EPT fault location scheme.

  11. Common-cause failure analysis of McGuire Unit 2 auxiliary feedwater system

    International Nuclear Information System (INIS)

    Rasmuson, D.M.; Shepherd, J.C.; Fowler, R.D.; Summitt, R.L.; Logan, B.W.

    1982-01-01

    A powerful method for qualitative common cause failure analysis (CCFA) of nuclear power plant systems was developed by EG and G Idaho at the Idaho National Engineering Laboratory. As a cooperative project to demonstrate and evaluate the usefulness of the method, the Duke Power Company agreed to allow a CCFA of the auxiliary feedwater system (AFWS) in their McGuire Nuclear Station Unit 2. The results of the CCFA are the subject of this discussion

  12. On the failure analysis of bondlines: Stress or energy based fracture criteria?

    DEFF Research Database (Denmark)

    Anyfantis, Konstantinos

    2014-01-01

    that characterizes a given bondline, both its cohesive strength and fracture toughness material parameters must be experimentally defined. Based on these properties, failure analysis of the bondline can be done either through stress- or energy-based criteria. The aim of this work is to investigate the effectiveness...... experimentation programme. Fracture initiation and propagation of the bondlines was numerically simulated by cohesive zone models. (C) 2014 Elsevier Ltd. All rights reserved....

  13. Failure analysis and evaluation of a six cylinders crankshaft for marine diesel generator

    Science.gov (United States)

    Khaeroman, Haryadi, Gunawan Dwi; Ismail, R.; Kim, Seon Jin

    2017-01-01

    This paper discusses the failure of a diesel engine crankshaft of a four stroke 6 cylinders, used in a marine diesel generator. A correct analysis and evaluation of the dimension of the crankshaft are very essential to prevent failure of the crankshaft fracture and cracks. The crankshaft is liable to deformation due to misalignment of the main journals bearings. This article presents the result of crankshaft failure analysis by measuring the mean diameter of the rod journal and the main journal, on the wear, out of roundness, taper, etc. The measurement results must be compared with the acceptable value in the engine specification and manual service and also should follow the American Bureau of Shipping (ABS) guidance notes on propulsion shafting alignment. The measurement results of this study show that the main journal diameter of the third cylinder exhibits an excessive wear, 1.35 % above the permissible lowest rate. It also has a taper for 0.23 mm and out of roundness of 0.13 mm. The diameter of the rod journal indicates excessive wear, 1.06 % higher than the permissible lowest rate, the taper of 0.41 mm and out of roundness of 0.65 mm. The crankshaft warpage or run-out journal, the analysis of the crank web deflection are also evaluated and presented in this paper.

  14. Top-down and bottom-up definitions of human failure events in human reliability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Boring, Ronald Laurids [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-10-01

    In the probabilistic risk assessments (PRAs) used in the nuclear industry, human failure events (HFEs) are determined as a subset of hardware failures, namely those hardware failures that could be triggered by human action or inaction. This approach is top-down, starting with hardware faults and deducing human contributions to those faults. Elsewhere, more traditionally human factors driven approaches would tend to look at opportunities for human errors first in a task analysis and then identify which of those errors is risk significant. The intersection of top-down and bottom-up approaches to defining HFEs has not been carefully studied. Ideally, both approaches should arrive at the same set of HFEs. This question is crucial, however, as human reliability analysis (HRA) methods are generalized to new domains like oil and gas. The HFEs used in nuclear PRAs tend to be top-down—defined as a subset of the PRA—whereas the HFEs used in petroleum quantitative risk assessments (QRAs) often tend to be bottom-up—derived from a task analysis conducted by human factors experts. The marriage of these approaches is necessary in order to ensure that HRA methods developed for top-down HFEs are also sufficient for bottom-up applications.

  15. Comparative Analysis of Four Scores to Stratify Patients With Heart Failure and Reduced Ejection Fraction.

    Science.gov (United States)

    Freitas, Pedro; Aguiar, Carlos; Ferreira, António; Tralhão, António; Ventosa, António; Mendes, Miguel

    2017-08-01

    There are several prognostic risk scores available for patients with heart failure with reduced ejection fraction (HFrEF) that can aid in the decision of listing candidates for heart transplant (HTx). A direct comparison between these scores has not been performed. Therefore, our objective was to evaluate the calibration and discriminative power of 4 contemporary HF scores. A retrospective analysis of 259 patients with HFrEF who underwent cardiopulmonary exercise test was conducted. The Heart Failure Survival Score (HFSS), Seattle Heart Failure Model (SHFM), Meta-analysis Global Group in Chronic Heart Failure (MAGGIC), and Metabolic Exercise Cardiac Kidney Index (MECKI) were compared. During the first year, 7 deaths occurred (6 cardiovascular) and 25 patients were submitted to HTx (8 urgent). Over a 2-year period, 14 deaths occurred (10 cardiovascular) and 34 patients received an HTx (8 urgent). Calibration analysis showed that SHFM and HFSS tended to underestimate event occurrence, whereas MAGGIC and MECKI tended to overestimate risk, especially in the highest risk subgroups. Interestingly, MECKI score at 1 year was well calibrated (expected similar to observed events). Overall, the MECKI score consistently showed better discrimination ability for all studied end points (areas under the curve between 0.8 and 0.9). In conclusion, along with HFSS and SHFM, the MECKI score can also be used to aid treatment decisions, such as HTx listing with the advantage of being very well calibrated at 1-year intervals, which might allow us to avoid the pitfalls of under/overestimation of risk. Copyright © 2017. Published by Elsevier Inc.

  16. Burden of Heart Failure in Latin America: A Systematic Review and Meta-analysis.

    Science.gov (United States)

    Ciapponi, Agustín; Alcaraz, Andrea; Calderón, María; Matta, María Gabriela; Chaparro, Martin; Soto, Natalie; Bardach, Ariel

    2016-11-01

    Heart failure is a major public health concern. The aim of this review was to estimate the burden of heart failure in Latin America. Systematic review and meta-analysis following a search in MEDLINE, EMBASE, LILACS, and CENTRAL for articles published between January 1994 and June 2014, with no language restrictions. We included experimental and observational studies with at least 50 participants aged ≥ 18 years. In total, 143 of the 4792 references retrieved were included in the study. Most studies had been conducted in South America (92%), and mainly in Brazil (64%). The mean age of the patients was 60 ± 9 years, and mean ejection fraction was 36% ± 9%. The incidence of heart failure in the single population study providing this information was 199 cases per 100000 person-years. The prevalence of heart failure was 1% (95% confidence interval [95%CI], 0.1%-2.7%); hospital readmission rates were 33%, 28%, 31%, and 35% at 3, 6, 12, and 24 to 60 months of follow-up, respectively; and the median duration of hospitalization was 7.0 days. The 1-year mortality rate was 24.5% (95%CI, 19.4%-30.0%). In-hospital mortality was 11.7% (95%CI, 10.4%-13.0%), and the rate was higher in patients with a reduced ejection fraction, ischemic heart disease, or Chagas disease. Few studies have evaluated the incidence and prevalence of heart failure in Latin America. High mortality and hospitalization rates were found, and the main limitation was heterogeneity between studies. The results presented provide useful epidemiologic information for decision-making related to this disease. Further studies with standardized methods and representative populations are needed in this line. Copyright © 2016 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  17. Repeated or intermittent levosimendan treatment in advanced heart failure: An updated meta-analysis.

    Science.gov (United States)

    Silvetti, Simona; Nieminen, Markku S

    2016-01-01

    Advanced heart failure is a malignant disease characterized by a debilitating late course, with increasingly frequent hospitalisations and high rate of mortality. Levosimendan, an inodilator developed for the treatment of acutely decompensated chronic heart failure, has been recently proposed also as a repetitive treatment of advanced heart failure. Several studies on the use of levosimendan in this settings report mortality data. Independent meta-analyses on the effect on mortality of repetitive or intermittent levosimendan administration in advanced heart failure has been published but were criticized in regard to the selection of the studies. Meanwhile new data became available. We therefore updated the selection of studies and re-analyzed all the available data. Data from seven randomized trial and a total of 438 adult patients using intermittent levosimendan in a cardiological setting were included in the present analysis. The average follow-up period was 8±3.8 months. The use of levosimendan was associated with a significant reduction in mortality at the longest follow-up available [41 of 257 (16%) in the levosimendan group vs. 39 of 181 (21.5%) in the control arm, OR=0.54 (95% CI 0.32-0.91), p for effect=0.02, p for heterogeneity=0.64, I2=0%]. The updated results suggest that repetitive or intermittent levosimendan administration in advanced heart failure is associated with a significant reduction in mortality at the longest follow-up available. There is therefore a strong rationale for a randomized clinical trial with adequate power on mortality. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  18. Analysis of Renal Artery Stenosis in Patients with Heart Failure: A RASHEF Study.

    Science.gov (United States)

    Zheng, Bin; Ma, Qin; Zheng, Li-Hong; Yong, Qiang; He, Yi-Hua; Liu, Jing-Hua

    2015-10-20

    Previous data are controversial about the association of renal artery stenosis (RAS) with clinical outcome in patients with heart failure. Definition of RAS in previous studies might not be appropriate. By definition of RAS with renal duplex sonography, we investigated the association of RAS with clinical outcome in patients with heart failure. In this retrospective study, we identified 164 patients with heart failure (New York Heart Association classification ≥II; left ventricular ejection fraction renal duplex sonography during hospital stay. RAS was defined as renal-aortic ratio ≥3.5 or a peak systolic velocity ≥200 cm/s (or both), or occlusion of the renal artery. Categorical data of patients were compared using the Chi-square test or Fisher's exact test. Cox proportional hazards regression modeling technique was used to investigate the prognostic significance of possible predictors. Finally, 143 patients were enrolled. Median follow-up time was 32 months (1-53 months). Twenty-two patients were diagnosed as RAS by renal duplex sonography, including 13 unilateral RAS (3 left RAS, 10 right RAS) and 9 bilateral RAS. There were more all-cause mortality and cardiovascular death in patients with RAS than patients without RAS. By multivariate analysis, RAS was a significant predictor for all-cause death and cardiovascular death (hazard ratio [HR] = 4.155, 95% confidence interval [CI]: 1.546-11.164, P = 0.005; and HR = 3.483, 95% CI: 1.200-10.104, P = 0.022, respectively). As for composite endpoint events, including death, nonfatal myocardial infarction, ischemic stroke or intracranial hemorrhage, rehospitalization for cardiac failure, and renal replacement therapy, only angiotensin-converting enzyme inhibitor or angiotensin-receptor blocker was significant predictor. RAS was not a significant predictor for composite endpoint events. Our data suggested that RAS is associated with a poorer clinical outcome in patients with heart failure.

  19. Conformer generation with OMEGA: learning from the data set and the analysis of failures.

    Science.gov (United States)

    Hawkins, Paul C D; Nicholls, Anthony

    2012-11-26

    We recently published a high quality validation set for testing conformer generators, consisting of structures from both the PDB and the CSD (Hawkins, P. C. D. et al. J. Chem. Inf. Model. 2010, 50, 572.), and tested the performance of our conformer generator, OMEGA, on these sets. In the present publication, we focus on understanding the suitability of those data sets for validation and identifying and learning from OMEGA's failures. We compare, for the first time we are aware of, the coverage of the applicable property spaces between the validation data sets we used and the parent compound sets to determine if our data sets adequately sample these property spaces. We also introduce the concept of torsion fingerprinting and compare this method of dissimilation to the more traditional graph-centric diversification methods we used in our previous publication. To improve our ability to programmatically identify cases where the crystallographic conformation is not well reproduced computationally, we introduce a new metric to compare conformations, RMSTanimoto. This new metric is used alongside those from our previous publication to efficiently identify reproduction failures. We find RMSTanimoto to be particularly effective in identifying failures for the smallest molecules in our data sets. Analysis of the nature of these failures, particularly those for the CSD, sheds further light on the issue of strain in crystallographic structures. Some of the residual failure cases not resolved by simple changes in OMEGA's defaults present significant challenges to conformer generation engines like OMEGA and are a source of new avenues to further improve their performance, while others illustrate the pitfalls of validating against crystallographic ligand conformations, particularly those from the PDB.

  20. Gamma prior distribution selection for Bayesian analysis of failure rate and reliability

    International Nuclear Information System (INIS)

    Waler, R.A.; Johnson, M.M.; Waterman, M.S.; Martz, H.F. Jr.

    1977-01-01

    It is assumed that the phenomenon under study is such that the time-to-failure may be modeled by an exponential distribution with failure-rate parameter, lambda. For Bayesian analyses of the assumed model, the family of gamma distributions provides conjugate prior models for lambda. Thus, an experimenter needs to select a particular gamma model to conduct a Bayesian reliability analysis. The purpose of this paper is to present a methodology which can be used to translate engineering information, experience, and judgment into a choice of a gamma prior distribution. The proposed methodology assumes that the practicing engineer can provide percentile data relating to either the failure rate or the reliability of the phenomenon being investigated. For example, the methodology will select the gamma prior distribution which conveys an engineer's belief that the failure rate, lambda, simultaneously satisfies the probability statements, P(lambda less than 1.0 x 10 -3 ) = 0.50 and P(lambda less than 1.0 x 10 -5 ) = 0.05. That is, two percentiles provided by an engineer are used to determine a gamma prior model which agrees with the specified percentiles. For those engineers who prefer to specify reliability percentiles rather than the failure-rate percentiles illustrated above, one can use the induced negative-log gamma prior distribution which satisfies the probability statements, P(R(t 0 ) less than 0.99) = 0.50 and P(R(t 0 ) less than 0.99999) = 0.95 for some operating time t 0 . Also, the paper includes graphs for selected percentiles which assist an engineer in applying the methodology

  1. Failures to further developing orphan medicinal products after designation granted in Europe: an analysis of marketing authorisation failures and abandoned drugs.

    Science.gov (United States)

    Giannuzzi, Viviana; Landi, Annalisa; Bosone, Enrico; Giannuzzi, Floriana; Nicotri, Stefano; Torrent-Farnell, Josep; Bonifazi, Fedele; Felisi, Mariagrazia; Bonifazi, Donato; Ceci, Adriana

    2017-09-11

    The research and development process in the field of rare diseases is characterised by many well-known difficulties, and a large percentage of orphan medicinal products do not reach the marketing approval.This work aims at identifying orphan medicinal products that failed the developmental process and investigating reasons for and possible factors influencing failures. Drugs designated in Europe under Regulation (European Commission) 141/2000 in the period 2000-2012 were investigated in terms of the following failures: (1) marketing authorisation failures (refused or withdrawn) and (2) drugs abandoned by sponsors during development.Possible risk factors for failure were analysed using statistically validated methods. This study points out that 437 out of 788 designations are still under development, while 219 failed the developmental process. Among the latter, 34 failed the marketing authorisation process and 185 were abandoned during the developmental process. In the first group of drugs (marketing authorisation failures), 50% reached phase II, 47% reached phase III and 3% reached phase I, while in the second group (abandoned drugs), the majority of orphan medicinal products apparently never started the development process, since no data on 48.1% of them were published and the 3.2% did not progress beyond the non-clinical stage.The reasons for failures of marketing authorisation were: efficacy/safety issues (26), insufficient data (12), quality issues (7), regulatory issues on trials (4) and commercial reasons (1). The main causes for abandoned drugs were efficacy/safety issues (reported in 54 cases), inactive companies (25.4%), change of company strategy (8.1%) and drug competition (10.8%). No information concerning reasons for failure was available for 23.2% of the analysed products. This analysis shows that failures occurred in 27.8% of all designations granted in Europe, the main reasons being safety and efficacy issues. Moreover, the stage of development

  2. Probability of Failure Analysis Standards and Guidelines for Expendable Launch Vehicles

    Science.gov (United States)

    Wilde, Paul D.; Morse, Elisabeth L.; Rosati, Paul; Cather, Corey

    2013-09-01

    Recognizing the central importance of probability of failure estimates to ensuring public safety for launches, the Federal Aviation Administration (FAA), Office of Commercial Space Transportation (AST), the National Aeronautics and Space Administration (NASA), and U.S. Air Force (USAF), through the Common Standards Working Group (CSWG), developed a guide for conducting valid probability of failure (POF) analyses for expendable launch vehicles (ELV), with an emphasis on POF analysis for new ELVs. A probability of failure analysis for an ELV produces estimates of the likelihood of occurrence of potentially hazardous events, which are critical inputs to launch risk analysis of debris, toxic, or explosive hazards. This guide is intended to document a framework for POF analyses commonly accepted in the US, and should be useful to anyone who performs or evaluates launch risk analyses for new ELVs. The CSWG guidelines provide performance standards and definitions of key terms, and are being revised to address allocation to flight times and vehicle response modes. The POF performance standard allows a launch operator to employ alternative, potentially innovative methodologies so long as the results satisfy the performance standard. Current POF analysis practice at US ranges includes multiple methodologies described in the guidelines as accepted methods, but not necessarily the only methods available to demonstrate compliance with the performance standard. The guidelines include illustrative examples for each POF analysis method, which are intended to illustrate an acceptable level of fidelity for ELV POF analyses used to ensure public safety. The focus is on providing guiding principles rather than "recipe lists." Independent reviews of these guidelines were performed to assess their logic, completeness, accuracy, self- consistency, consistency with risk analysis practices, use of available information, and ease of applicability. The independent reviews confirmed the

  3. Time-to-Event Analysis of Individual Variables Associated with Nursing Students' Academic Failure: A Longitudinal Study

    Science.gov (United States)

    Dante, Angelo; Fabris, Stefano; Palese, Alvisa

    2013-01-01

    Empirical studies and conceptual frameworks presented in the extant literature offer a static imagining of academic failure. Time-to-event analysis, which captures the dynamism of individual factors, as when they determine the failure to properly tailor timely strategies, impose longitudinal studies which are still lacking within the field. The…

  4. Meta-Analysis of Clinical Studies Supports the Pharmacokinetic Variability Hypothesis for Acquired Drug Resistance and Failure of Antituberculosis Therapy

    OpenAIRE

    Pasipanodya, Jotam G.; Srivastava, Shashikant; Gumbo, Tawanda

    2012-01-01

    Laboratory studies have questioned nonadherence as a cause of antituberculosis drug failure and propose that between-patient pharmacokinetic variability may be the cause. This meta-analysis provides clinical evidence that pharmacokinetic variability of isoniazid alone leads to worse microbiological failure, relapse, and acquired drug resistance.

  5. Human failure event analysis and precautionary methods and their application to reactor system

    International Nuclear Information System (INIS)

    Zhang Li; Huang Shudong; Wang Yiqun; Gao Wenyu; Zhang Jin

    2003-01-01

    Making use of human factor engineering, control science and safety science and adopting the method of systemically collection and doing research work factually, the authors analyze the problem and tendency of human factor science, the classification system, the formation, the quantitative appraisal, data collection and data bank, the effect and influence of organization management, the root cause analysis technology, and human error failure mode and effect and criticality analysis, the method and strategy of defense-in-depth for preventing human-initiated accident. The human factor accidents theory and mechanism are constructed. All of the above was successfully applied to Daya Bay Nuclear Power Station and Lingao Nuclear Power Station. (authors)

  6. Direct modeling parameter signature analysis and failure mode prediction of physical systems using hybrid computer optimization

    Science.gov (United States)

    Drake, R. L.; Duvoisin, P. F.; Asthana, A.; Mather, T. W.

    1971-01-01

    High speed automated identification and design of dynamic systems, both linear and nonlinear, are discussed. Special emphasis is placed on developing hardware and techniques which are applicable to practical problems. The basic modeling experiment and new results are described. Using the improvements developed successful identification of several systems, including a physical example as well as simulated systems, was obtained. The advantages of parameter signature analysis over signal signature analysis in go-no go testing of operational systems were demonstrated. The feasibility of using these ideas in failure mode prediction in operating systems was also investigated. An improved digital controlled nonlinear function generator was developed, de-bugged, and completely documented.

  7. Nuclear reactor component populations, reliability data bases, and their relationship to failure rate estimation and uncertainty analysis

    International Nuclear Information System (INIS)

    Martz, H.F.; Beckman, R.J.

    1981-12-01

    Probabilistic risk analyses are used to assess the risks inherent in the operation of existing and proposed nuclear power reactors. In performing such risk analyses the failure rates of various components which are used in a variety of reactor systems must be estimated. These failure rate estimates serve as input to fault trees and event trees used in the analyses. Component failure rate estimation is often based on relevant field failure data from different reliability data sources such as LERs, NPRDS, and the In-Plant Data Program. Various statistical data analysis and estimation methods have been proposed over the years to provide the required estimates of the component failure rates. This report discusses the basis and extent to which statistical methods can be used to obtain component failure rate estimates. The report is expository in nature and focuses on the general philosophical basis for such statistical methods. Various terms and concepts are defined and illustrated by means of numerous simple examples

  8. Failure Analysis and Magnetic Evaluation of Tertiary Superheater Tube Used in Gas-Fired Boiler

    Science.gov (United States)

    Mohapatra, J. N.; Patil, Sujay; Sah, Rameshwar; Krishna, P. C.; Eswarappa, B.

    2018-01-01

    Failure analysis was carried out on a prematurely failed tertiary superheater tube used in gas-fired boiler. The analysis includes a comparative study of visual examination, chemical composition, hardness and microstructure at failed region, adjacent and far to failure as well as on fresh tube. The chemistry was found matching to the standard specification, whereas the hardness was low in failed tube compared to the fish mouth opening region and the fresh tube. Microscopic examination of failed sample revealed the presence of spheroidal carbides of Cr and Mo predominantly along the grain boundaries. The primary cause of failure is found to be localized heating. Magnetic hysteresis loop (MHL) measurements were carried out to correlate the magnetic parameters with microstructure and mechanical properties to establish a possible non-destructive evaluation (NDE) for health monitoring of the tubes. The coercivity of the MHL showed a very good correlation with microstructure and mechanical properties deterioration enabling a possible NDE technique for the health monitoring of the tubes.

  9. Aquatic exercise training and stable heart failure: A systematic review and meta-analysis.

    Science.gov (United States)

    Adsett, Julie A; Mudge, Alison M; Morris, Norman; Kuys, Suzanne; Paratz, Jennifer D

    2015-01-01

    A meta-analysis and review of the evidence was conducted to determine the efficacy of aquatic exercise training for individuals with heart failure compared to traditional land-based programmes. A systematic search was conducted for studies published prior to March 2014, using MEDLINE, PUBMED, Cochrane Library, CINAHL and PEDro databases. Key words and synonyms relating to aquatic exercise and heart failure comprised the search strategy. Interventions included aquatic exercise or a combination of aquatic plus land-based training, whilst comparator protocols included usual care, no exercise or land-based training alone. The primary outcome of interest was exercise performance. Studies reporting on muscle strength, quality of life and a range of haemodynamic and physiological parameters were also reviewed. Eight studies met criteria, accounting for 156 participants. Meta-analysis identified studies including aquatic exercise to be superior to comparator protocols for 6 minute walk test (p aquatic exercise training provided similar benefits for VO(2peak), muscle strength and quality of life, though was not superior. Cardiac dimensions, left ventricular ejection fraction, cardiac output and BNP were not influenced by aquatic exercise training. For those with stable heart failure, aquatic exercise training can improve exercise capacity, muscle strength and quality of life similar to land-based training programmes. This form of exercise may provide a safe and effective alternative for those unable to participate in traditional exercise programmes. Crown Copyright © 2015. Published by Elsevier Ireland Ltd. All rights reserved.

  10. SU-E-T-420: Failure Effects Mode Analysis for Trigeminal Neuralgia Frameless Radiosurgery

    International Nuclear Information System (INIS)

    Howe, J

    2015-01-01

    Purpose: Functional radiosurgery has been used successfully in the treatment of trigeminal neuralgia but presents significant challenges to ensuring the high prescription dose is delivered accurately. A review of existing practice should help direct the focus of quality improvement for this treatment regime. Method: Failure modes and effects analysis was used to identify the processes in preparing radiosurgery treatment for TN. The map was developed by a multidisciplinary team including: neurosurgeon, radiation oncology, physicist and therapist. Potential failure modes were identified for each step in the process map as well as potential causes and end effect. A risk priority number was assigned to each cause. Results: The process map identified 66 individual steps (see attached supporting document). Corrective actions were developed for areas of high risk priority number. Wrong site treatment is at higher risk for trigeminal neuralgia treatment due to the lack of site specific pathologic imaging on MR and CT – additional site specific checks were implemented to minimize the risk of wrong site treatment. Failed collision checks resulted from an insufficient collision model in the treatment planning system and a plan template was developed to address this problem. Conclusion: Failure modes and effects analysis is an effective tool for developing quality improvement in high risk radiotherapy procedures such as functional radiosurgery

  11. Failure Analysis and Magnetic Evaluation of Tertiary Superheater Tube Used in Gas-Fired Boiler

    Science.gov (United States)

    Mohapatra, J. N.; Patil, Sujay; Sah, Rameshwar; Krishna, P. C.; Eswarappa, B.

    2018-02-01

    Failure analysis was carried out on a prematurely failed tertiary superheater tube used in gas-fired boiler. The analysis includes a comparative study of visual examination, chemical composition, hardness and microstructure at failed region, adjacent and far to failure as well as on fresh tube. The chemistry was found matching to the standard specification, whereas the hardness was low in failed tube compared to the fish mouth opening region and the fresh tube. Microscopic examination of failed sample revealed the presence of spheroidal carbides of Cr and Mo predominantly along the grain boundaries. The primary cause of failure is found to be localized heating. Magnetic hysteresis loop (MHL) measurements were carried out to correlate the magnetic parameters with microstructure and mechanical properties to establish a possible non-destructive evaluation (NDE) for health monitoring of the tubes. The coercivity of the MHL showed a very good correlation with microstructure and mechanical properties deterioration enabling a possible NDE technique for the health monitoring of the tubes.

  12. Using Failure Mode and Effect Analysis (FMEA for Performing Good Ploughing with Mouldboard

    Directory of Open Access Journals (Sweden)

    M Namdari

    2011-03-01

    Full Text Available Farm management needs creative methods to success. FMEA (Failure Modes and Effects Analysis is a new method to analyze potential reliability problems in the development cycle of the project, making it easier to take actions to overcome such issues, thus enhancing the reliability through design or process. Anticipating these failure modes, being the central step in the analysis, needs to be carried on extensively, in order to prepare a list of maximum potential failure modes. Risk is measured in terms of Risk Priority Number (RPN that is a product of occurrence, severity, and detection difficulty. This study attempted to improve clod mean weight diameter and soil inversion as indicators of tillage quality by FMEA methodology. The results showed that low soil moisture, slow speed of ploughing and great depth of ploughing is the most important factors that increase clod MWD with 900, 630 and 560 RPN, respectively. Also for soil inversion the slow speed of ploughing, not using coulter, low soil moisture and great depth of ploughing are important factors with 720, 648, 490 and 420 RPN. Using a split - split factorial experiment with 16 treatments and three replications also acknowledged the results of this method. After reforming the conditions and re-testing the experiment, results showed that clod MWD was reduced 20% and soil inversion increased 2% approximately. This study proposes the use of this technique in agricultural management.

  13. Visibility graph analysis of heart rate time series and bio-marker of congestive heart failure

    Science.gov (United States)

    Bhaduri, Anirban; Bhaduri, Susmita; Ghosh, Dipak

    2017-09-01

    Study of RR interval time series for Congestive Heart Failure had been an area of study with different methods including non-linear methods. In this article the cardiac dynamics of heart beat are explored in the light of complex network analysis, viz. visibility graph method. Heart beat (RR Interval) time series data taken from Physionet database [46, 47] belonging to two groups of subjects, diseased (congestive heart failure) (29 in number) and normal (54 in number) are analyzed with the technique. The overall results show that a quantitative parameter can significantly differentiate between the diseased subjects and the normal subjects as well as different stages of the disease. Further, the data when split into periods of around 1 hour each and analyzed separately, also shows the same consistent differences. This quantitative parameter obtained using the visibility graph analysis thereby can be used as a potential bio-marker as well as a subsequent alarm generation mechanism for predicting the onset of Congestive Heart Failure.

  14. Analysis of ultrafiltration failure in peritoneal dialysis patients by means of standard peritoneal permeability analysis

    NARCIS (Netherlands)

    Ho-Dac-Pannekeet, M. M.; Atasever, B.; Struijk, D. G.; Krediet, R. T.

    1997-01-01

    BACKGROUND: Ultrafiltration failure (UFF) is a complication of peritoneal dialysis (PD) treatment that occurs especially in long-term patients. Etiological factors include a large effective peritoneal surface area [measured as high mass transfer area coefficient (MTAC) of creatinine], a high

  15. Launch Vehicle Abort Analysis for Failures Leading to Loss of Control

    Science.gov (United States)

    Hanson, John M.; Hill, Ashley D.; Beard, Bernard B.

    2013-01-01

    Launch vehicle ascent is a time of high risk for an onboard crew. There is a large fraction of possible failures for which time is of the essence and a successful abort is possible if the detection and action happens quickly enough. This paper focuses on abort determination based on data already available from the Guidance, Navigation, and Control system. This work is the result of failure analysis efforts performed during the Ares I launch vehicle development program. The two primary areas of focus are the derivation of abort triggers to ensure that abort occurs as quickly as possible when needed, but that false aborts are avoided, and evaluation of success in aborting off the failing launch vehicle.

  16. Guidelines for VCCT-Based Interlaminar Fatigue and Progressive Failure Finite Element Analysis

    Science.gov (United States)

    Deobald, Lyle R.; Mabson, Gerald E.; Engelstad, Steve; Prabhakar, M.; Gurvich, Mark; Seneviratne, Waruna; Perera, Shenal; O'Brien, T. Kevin; Murri, Gretchen; Ratcliffe, James; hide

    2017-01-01

    This document is intended to detail the theoretical basis, equations, references and data that are necessary to enhance the functionality of commercially available Finite Element codes, with the objective of having functionality better suited for the aerospace industry in the area of composite structural analysis. The specific area of focus will be improvements to composite interlaminar fatigue and progressive interlaminar failure. Suggestions are biased towards codes that perform interlaminar Linear Elastic Fracture Mechanics (LEFM) using Virtual Crack Closure Technique (VCCT)-based algorithms [1,2]. All aspects of the science associated with composite interlaminar crack growth are not fully developed and the codes developed to predict this mode of failure must be programmed with sufficient flexibility to accommodate new functional relationships as the science matures.

  17. Fatigue fracture of a cemented Omnifit CoCr femoral stem: implant and failure analysis

    Directory of Open Access Journals (Sweden)

    Noah Bonnheim, MS

    2017-12-01

    Full Text Available A cemented, cast CoCr alloy, Omnifit Plus femoral stem was retrieved following mid-stem fracture after 24 years in vivo. The patient was an active 55-year-old male with a high body mass index (31.3 and no traumatic incidents before stem fracture. Fractographic and fatigue-based failure analyses were performed to illuminate the etiology of fracture and retrospectively predict the device lifetime. The fracture surfaces show evidence of a coarse grain microstructure, intergranular fracture, and regions of porosity. The failure analysis suggests that stems with similar metallurgical characteristics, biomechanical environments, and in vivo durations may be abutting their functioning lifetimes, raising the possibility of an increased revision burden. Keywords: Fatigue fracture, Total hip arthroplasty, Stem fracture

  18. Low-Energy Defibrillation Failure Correction is Possible Through Nonlinear Analysis of Spatiotemporal Arrhythmia Data

    Science.gov (United States)

    Simonotto, Jennifer; Furman, Michael; Beaver, Thomas; Spano, Mark; Kavanagh, Katherine; Iden, Jason; Hu, Gang; Ditto, William

    2004-03-01

    Explanted Porcine hearts were Langendorff-perfused, administered a voltage-sensitive fluorescent dye (Di-4-ANEPPS) and illuminated with a ND:Yag laser (532 nm); the change in fluorescence resulting from electrical activity on the heart surface was recorded with an 80 x 80 pixel CCD camera at 1000 frames per second. The heart was put into fibrillation with rapid ventricular pacing and shocks were administered close to the defibrillation threshold. Defibrillation failure data was analyzed using synchronization, space-time volume plots and recurrence quantification. Preliminary spatiotemporal synchronization results reveal a short window of time ( 1 second) after defibrillation failure in which the disordered electrical activity becomes ordered; this ordered period occurs 4-5 seconds after the defibrillation shock. Recurrence analysis of a single time series confirmed these results, thus opening the avenue for dynamic defibrillators that can detect an optimal window for cardioversion.

  19. Interfacing LabVIEW With Instrumentation for Electronic Failure Analysis and Beyond

    Science.gov (United States)

    Buchanan, Randy K.; Bryan, Coleman; Ludwig, Larry

    1996-01-01

    The Laboratory Virtual Instrumentation Engineering Workstation (LabVIEW) software is designed such that equipment and processes related to control systems can be operationally lined and controlled by the use of a computer. Various processes within the failure analysis laboratories of NASA's Kennedy Space Center (KSC) demonstrate the need for modernization and, in some cases, automation, using LabVIEW. An examination of procedures and practices with the Failure Analaysis Laboratory resulted in the conclusion that some device was necessary to elevate the potential users of LabVIEW to an operational level in minimum time. This paper outlines the process involved in creating a tutorial application to enable personnel to apply LabVIEW to their specific projects. Suggestions for furthering the extent to which LabVIEW is used are provided in the areas of data acquisition and process control.

  20. Dam failure analysis for the Lago El Guineo Dam, Orocovis, Puerto Rico

    Science.gov (United States)

    Gómez-Fragoso, Julieta; Heriberto Torres-Sierra,

    2016-08-09

    The U.S. Geological Survey, in cooperation with the Puerto Rico Electric Power Authority, completed hydrologic and hydraulic analyses to assess the potential hazard to human life and property associated with the hypothetical failure of the Lago El Guineo Dam. The Lago El Guineo Dam is within the headwaters of the Río Grande de Manatí and impounds a drainage area of about 4.25 square kilometers.The hydrologic assessment was designed to determine the outflow hydrographs and peak discharges for Lago El Guineo and other subbasins in the Río Grande de Manatí hydrographic basin for three extreme rainfall events: (1) a 6-hour probable maximum precipitation event, (2) a 24-hour probable maximum precipitation event, and (3) a 24-hour, 100-year recurrence rainfall event. The hydraulic study simulated a dam failure of Lago El Guineo Dam using flood hydrographs generated from the hydrologic study. The simulated dam failure generated a hydrograph that was routed downstream from Lago El Guineo Dam through the lower reaches of the Río Toro Negro and the Río Grande de Manatí to determine water-surface profiles developed from the event-based hydrologic scenarios and “sunny day” conditions. The Hydrologic Engineering Center’s Hydrologic Modeling System (HEC–HMS) and Hydrologic Engineering Center’s River Analysis System (HEC–RAS) computer programs, developed by the U.S. Army Corps of Engineers, were used for the hydrologic and hydraulic modeling, respectively. The flow routing in the hydraulic analyses was completed using the unsteady flow module available in the HEC–RAS model.Above the Lago El Guineo Dam, the simulated inflow peak discharges from HEC–HMS resulted in about 550 and 414 cubic meters per second for the 6- and 24-hour probable maximum precipitation events, respectively. The 24-hour, 100-year recurrence storm simulation resulted in a peak discharge of about 216 cubic meters per second. For the hydrologic analysis, no dam failure conditions are

  1. Minimizing treatment planning errors in proton therapy using failure mode and effects analysis

    International Nuclear Information System (INIS)

    Zheng, Yuanshui; Johnson, Randall; Larson, Gary

    2016-01-01

    Purpose: Failure mode and effects analysis (FMEA) is a widely used tool to evaluate safety or reliability in conventional photon radiation therapy. However, reports about FMEA application in proton therapy are scarce. The purpose of this study is to apply FMEA in safety improvement of proton treatment planning at their center. Methods: The authors performed an FMEA analysis of their proton therapy treatment planning process using uniform scanning proton beams. The authors identified possible failure modes in various planning processes, including image fusion, contouring, beam arrangement, dose calculation, plan export, documents, billing, and so on. For each error, the authors estimated the frequency of occurrence, the likelihood of being undetected, and the severity of the error if it went undetected and calculated the risk priority number (RPN). The FMEA results were used to design their quality management program. In addition, the authors created a database to track the identified dosimetric errors. Periodically, the authors reevaluated the risk of errors by reviewing the internal error database and improved their quality assurance program as needed. Results: In total, the authors identified over 36 possible treatment planning related failure modes and estimated the associated occurrence, detectability, and severity to calculate the overall risk priority number. Based on the FMEA, the authors implemented various safety improvement procedures into their practice, such as education, peer review, and automatic check tools. The ongoing error tracking database provided realistic data on the frequency of occurrence with which to reevaluate the RPNs for various failure modes. Conclusions: The FMEA technique provides a systematic method for identifying and evaluating potential errors in proton treatment planning before they result in an error in patient dose delivery. The application of FMEA framework and the implementation of an ongoing error tracking system at their

  2. Instability and instrumentation failures after a PSO: a finite element analysis.

    Science.gov (United States)

    Charosky, Sebastien; Moreno, Pierre; Maxy, Philippe

    2014-11-01

    Finite element analysis. Pedicle subtraction osteotomy (PSO) is associated with a high rate of mechanical complications and implant failures. The biomechanical reasons for these failures are unclear. Using finite element analysis (FEA): to analyze the biomechanical instability after a PSO, to compare the effect of constructs with different rod contours and analyze the mechanical forces acting on these constructs to explain the mechanisms of failure. A 3D validated FE model of the spine from L1 to the sacrum was used. The model was modified to simulate a PSO of L4 in different situations: healthy, high dehydrated and completely degenerated discs. Loads were applied and range of motion (ROM) was measured. Pedicle screw constructs from L2 to S1 with different rod contours were added to the most instable scenario. Bending, torsion, shear moments and stress were measured. PSO alone had a moderate impact on the ROM of basic movements (flexion, extension and lateral bending). Secondary motion (torsion) in lateral bending increased 200 %. Greatest increase in ROM was observed with the PSO and degenerated discs. Secondary motion (torsion) in lateral bending increased +625 %. The instability after a PSO is rotational. Mean reduction of ROM was 95 % for all constructs tested. Rod contour affected the location of bending moments and stress. Sharp angle bend showed maximum bending moments (2,208 Nmm) and stress at the PSO level. Smooth contour of the rod showed maximum bending moments (1,940 Nmm) and stress at the sacral connection. Anterior support below the PSO reduced bending moments along the rod (-26 %). The instability observed after a PSO is mainly rotational and increases with disc degeneration. Shape of rod contour affects the location of maximum stress in the constructs. These findings may explain different instrumentation failures.

  3. The economic cost of failure in clinical education: a multi-perspective analysis.

    Science.gov (United States)

    Foo, Jonathan; Rivers, George; Ilic, Dragan; Evans, Darrell J R; Walsh, Kieran; Haines, Terrence; Paynter, Sophie; Morgan, Prue; Lincke, Karl; Lambrou, Haria; Nethercote, Anna; Maloney, Stephen

    2017-07-01

    Failure by students in health professional clinical education intertwines the health and education sectors, with actions in one having potential downstream effects on the other. It is unknown what economic costs are associated with failure, how these costs are distributed, and the impacts these have on students, clinicians and workplace productivity. An understanding of cost drivers and cost boundaries will enable evidence-based targeting of strategic investments into clinical education, including where they should be made and by whom. This study was designed to determine the additional economic costs associated with failure by students in health professional clinical education. A cost analysis study involving cost identification, measurement, valuation and the calculation of total cost was conducted. Costs were considered from the perspective of the student, the education institution, the clinical educator, the health service placement provider organisation and the government. Data were based on a 5-week clinical education programme at Monash University, Australia. Data were collected using quantitative surveys and interviews conducted with health professional students, clinical educators and education institute staff. Reference group representation was also sought at various education institution and health service organisation levels. A transferable model with sensitivity analysis was developed. There is a total additional cost of US$9371 per student failing in clinical education from the perspective of all stakeholders considered. Students bear the majority of this burden, incurring 49% of costs, followed by the government (22%), the education institution (18%), the health service organisation (10%) and the clinical educator (1%). Strong economic links for multiple stakeholders as a result of failure by students in clinical education have been identified. The cost burden is skewed in the direction of students. Any generalisation of these results should be made

  4. Numerical analysis oriented biaxial stress-strain relation and failure criterion of plain concrete

    International Nuclear Information System (INIS)

    Link, J.

    1975-01-01

    A biaxial stress-strain relation and failure criterion is proposed, which is applicable to structural analysis methods. The formulation of material behavior of plain concrete in biaxial stress-state was developed. A nonlinear elastic, anisotropic stress-strain relation was derived with two moduli of elasticity, E 1 , E 2 and Poisson's ratios, ν 1 , ν 2 , which depend on the prevailing biaxial stress state. The stress-strain relation is valid in the whole biaxial stress field, that means with a smooth transition between the domains of tension/tension, tension/compression and compression/compression. The stress-dependent moduli E 1 , E 2 and the Poisson's ratios ν 1 , ν 2 are approximated by polynomials, trigonometrical and exponential functions. A failure criterion was defined by approximating the test results of the biaxial ultimate concrete strength with a 7th degree polynomial, which is also valid in the whole biaxial stress domain. The definition of the state of failure is given as a function of stresses as well as strains. Initial parameters of the formulation of the biaxial material behavior are the uniaxial cylindrical strength of concrete and the initial values of Young's modulus and Poisson's ratio. A simple expansion of this formulation makes it applicable not only to normal but also to light-weight concrete. Comparison of numerically calculated stress-strain curves up to the ultimate biaxial stresses which indicate the failure criteria with those obtained from tests show a very good agreement. It is shown, that the biaxial stress-strain relation can be extended for use in cases of triaxial tension/tension/compression stress state. Numerical examples of analysis of concrete slabs show the importance of incorporation of a realistic material behavior for better safety estimations

  5. Reading John 7:53–8:11 as a narrative against male violence against women

    Directory of Open Access Journals (Sweden)

    Michael O'Sullivan

    2015-08-01

    Full Text Available Male violence against women is at shocking levels in South Africa. According to Faul, ‘A woman is killed by an intimate partner every eight hours, a probable underestimate because no perpetrator is identified in 20 percent of killings’, whilst ‘More than 30 percent of girls have been raped by the time they are 18’. Reeva Steenkamp’s killing by her partner, Oscar Pistorius, came ‘the day before she planned to wear black in a “Black Friday” protest against the country’s excruciatingly high number of rapes’ (Faul. The purpose of this article is to reread a key biblical text regarding male violence against women in order to highlight how Jesus would want us to respond to such violence. The text is John 7:53–8:11. The NRSV: Catholic Edition entitles the story ‘The woman caught in adultery’. However, this title is problematic as it can lead to misleading readings of the text, as I will show, and so I have given it a different title, namely ‘The woman threatened with stoning’.

  6. Academic outcomes in Asian children aged 8-11 years with attention-deficit/hyperactivity disorder treated with atomoxetine hydrochloride.

    Science.gov (United States)

    Mendez, Luis; Singh, Pritibha; Harrison, Gavan; Huang, Yu-Shu; Jin, Xingming; Cho, Soo Churl

    2011-06-01

    To investigate the relationship between changes in attention-deficit/hyperactivity disorder (ADHD) core symptoms and changes in academic outcome of Asian children treated with atomoxetine. This open-label study enrolled patients aged 8-11 years with DSM-IV-TR-defined ADHD, who were naïve to ADHD medications and met the symptomatic severity threshold of 1.5 standard deviations above the age and gender norm for the ADHDRS-IV-Parent:Inv (ADHDRS) total score. Data collection occurred for 24 weeks and included academic outcome, measured by the school grade average (SGA). Of 228 patients enrolled from China (n = 82), Taiwan (n = 76), and Korea (n = 70), 77.2% completed the study. Statistically significant (P < 0.001) baseline to last observation improvements in ADHDRS and SGA scores were observed. However, no linear correlation between change in ADHDRS total score and SGA (-0.083, P = 0.293) was observed. Despite significant independent improvements in core ADHD symptoms and academic grades over 24 weeks, the mean improvements observed in these measures did not appear to be correlated.

  7. Extensive risk analysis of mechanical failure for an epiphyseal hip prothesis: a combined numerical-experimental approach.

    Science.gov (United States)

    Martelli, S; Taddei, F; Cristofolini, L; Gill, H S; Viceconti, M

    2011-02-01

    There has been recent renewed interest in proximal femur epiphyseal replacement as an alternative to conventional total hip replacement. In many branches of engineering, risk analysis has proved to be an efficient tool for avoiding premature failures of innovative devices. An extensive risk analysis procedure has been developed for epiphyseal hip prostheses and the predictions of this method have been compared to the known clinical outcomes of a well-established contemporary design, namely hip resurfacing devices. Clinical scenarios leading to revision (i.e. loosening, neck fracture and failure of the prosthetic component) were associated with potential failure modes (i.e. overload, fatigue, wear, fibrotic tissue differentiation and bone remodelling). Driving parameters of the corresponding failure mode were identified together with their safe thresholds. For each failure mode, a failure criterion was identified and studied under the most relevant physiological loading conditions. All failure modes were investigated with the most suitable investigation tool, either numerical or experimental. Results showed a low risk for each failure scenario either in the immediate postoperative period or in the long term. These findings are in agreement with those reported by the majority of clinical studies for correctly implanted devices. Although further work is needed to confirm the predictions of this method, it was concluded that the proposed risk analysis procedure has the potential to increase the efficacy of preclinical validation protocols for new epiphyseal replacement devices.

  8. Effects of Tolvaptan in patients with acute heart failure: a systematic review and meta-analysis.

    Science.gov (United States)

    Wang, Chunbin; Xiong, Bo; Cai, Lin

    2017-06-20

    Acute heart failure, which requires urgent evaluation and treatment, is a leading cause for admission to the emergency department. The aim of this meta-analysis was to evaluate the effects of tolvaptan on acute heart failure and compare them with the effects of conventional therapy or placebo. The electronic databases PubMed, EMBASE, and the Cochrane Controlled Trial registry were searched from their starting dates to October 24, 2016. Two authors independently read the trials and extracted related information from the included studies. We used fixed-effects or random-effects models to assess the overall combined risk estimates according to I 2 statistics. Analysis to determine sensitivity and publication bias was conducted. Six randomised controlled trials from eight articles, with a total of 746 patients, were included for analysis. Compared with the control, tolvaptan reduced body weight in two days (WMD 1.35; 95% CI 0.75 to 1.96), elevated sodium level in two days (WMD 2.33; 95% CI 1.08 to 3.57) and five days (WMD 1.57; 95% CI 0.04 to 3.09), and ameliorated symptoms of dyspnoea (RR 0.82; 95% CI 0.71-0.95). However, tolvaptan did not improve long-term (RR 1.04; 95% CI 0.66-1.62) or short-term all-cause mortality (RR 0.89; 95% CI 0.45-1.76), incidence of clinical events (worsening heart failure, RR 0.75; 95% CI 0.50-1.12 and worsening renal function, RR 0.97; 95% CI 0.75-1.27), and length of hospital stay in patients (WMD 0.14; 95% CI -0.29 to 2.38) with acute heart failure. Tolvaptan can decrease body weight, increase serum sodium level, and ameliorate some of the congestion symptoms in patients with acute heart failure, which may help avoid the overdose of loop diuretics, especially in patients with renal dysfunction.

  9. Efficacy of aliskiren supplementation for heart failure : A meta-analysis of randomized controlled trials.

    Science.gov (United States)

    Luo, Y; Chen, Q

    2018-02-22

    Aliskiren might be beneficial for heart failure. However, the results of various studies are controversial. We conducted a systematic review and meta-analysis to explore the efficacy of aliskiren supplementation for heart failure. PubMed, Embase, Web of Science, EBSCO, and the Cochrane Library databases were systematically searched. Randomized controlled trials (RCTs) assessing the efficacy of aliskiren for heart failure were included. Two investigators independently searched for articles, extracted data, and assessed the quality of included studies. The meta-analysis was performed using the random-effect model. Five RCTs comprising 1973 patients were included in the meta-analysis. Compared with control interventions in heart failure, aliskiren supplementation was found to significantly reduce NT-proBNP levels (standardized mean difference [SMD] = -0.12; 95% CI = -0.21 to -0.03 pg/ml; p = 0.008) and plasma renin activity (SMD = -0.66; 95% CI = -0.89 to -0.44 ng/ml.h; p < 0.00001) while increasing plasma renin concentration (SMD = 0.52; 95% CI = 0.30-0.75 ng/l; p < 0.00001); however, it demonstrated no significant influence on BNP levels (SMD = -0.08; 95% CI = -0.31-0.15 pg/ml; p = 0.49), mortality (RR = 0.97; 95% CI = 0.79-1.20; p = 0.79), aldosterone levels (SMD = -0.09; 95% CI = -0.32-0.14 pmol/l; p = 0.44), adverse events (RR = 3.03; 95% CI = 0.18-49.51; p = 0.44), and serious adverse events (RR = 1.34; 95% CI = 0.54-3.33; p = 0.53). Aliskiren supplementation was found to significantly decrease NT-proBNP levels and plasma renin activity and to improve plasma renin concentration in the setting of heart failure.

  10. One Size Does Not Fit All: Human Failure Event Decomposition and Task Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ronald Laurids Boring, PhD

    2014-09-01

    In the probabilistic safety assessments (PSAs) used in the nuclear industry, human failure events (HFEs) are determined as a subset of hardware failures, namely those hardware failures that could be triggered or exacerbated by human action or inaction. This approach is top-down, starting with hardware faults and deducing human contributions to those faults. Elsewhere, more traditionally human factors driven approaches would tend to look at opportunities for human errors first in a task analysis and then identify which of those errors is risk significant. The intersection of top-down and bottom-up approaches to defining HFEs has not been carefully studied. Ideally, both approaches should arrive at the same set of HFEs. This question remains central as human reliability analysis (HRA) methods are generalized to new domains like oil and gas. The HFEs used in nuclear PSAs tend to be top-down—defined as a subset of the PSA—whereas the HFEs used in petroleum quantitative risk assessments (QRAs) are more likely to be bottom-up—derived from a task analysis conducted by human factors experts. The marriage of these approaches is necessary in order to ensure that HRA methods developed for top-down HFEs are also sufficient for bottom-up applications. In this paper, I first review top-down and bottom-up approaches for defining HFEs and then present a seven-step guideline to ensure a task analysis completed as part of human error identification decomposes to a level suitable for use as HFEs. This guideline illustrates an effective way to bridge the bottom-up approach with top-down requirements.

  11. Failure Analysis Results and Corrective Actions Implemented for the EMU 3011 Water in the Helmet Mishap

    Science.gov (United States)

    Steele, John; Metselaar, Carol; Peyton, Barbara; Rector, Tony; Rossato, Robert; Macias, Brian; Weigel, Dana; Holder, Don

    2015-01-01

    During EVA (Extravehicular Activity) No. 23 aboard the ISS (International Space Station) on 07/16/2013 water entered the EMU (Extravehicular Mobility Unit) helmet resulting in the termination of the EVA (Extravehicular Activity) approximately 1-hour after it began. It was estimated that 1.5-L of water had migrated up the ventilation loop into the helmet, adversely impacting the astronauts hearing, vision and verbal communication. Subsequent on-board testing and ground-based TT and E (Test, Tear-down and Evaluation) of the affected EMU hardware components led to the determination that the proximate cause of the mishap was blockage of all water separator drum holes with a mixture of silica and silicates. The blockages caused a failure of the water separator function which resulted in EMU cooling water spilling into the ventilation loop, around the circulating fan, and ultimately pushing into the helmet. The root cause of the failure was determined to be ground-processing short-comings of the ALCLR (Airlock Cooling Loop Recovery) Ion Filter Beds which led to various levels of contaminants being introduced into the Filters before they left the ground. Those contaminants were thereafter introduced into the EMU hardware on-orbit during ALCLR scrubbing operations. This paper summarizes the failure analysis results along with identified process, hardware and operational corrective actions that were implemented as a result of findings from this investigation.

  12. Failure Analysis for Composition of Web Services Represented as Labeled Transition Systems

    Science.gov (United States)

    Nadkarni, Dinanath; Basu, Samik; Honavar, Vasant; Lutz, Robyn

    The Web service composition problem involves the creation of a choreographer that provides the interaction between a set of component services to realize a goal service. Several methods have been proposed and developed to address this problem. In this paper, we consider those scenarios where the composition process may fail due to incomplete specification of goal service requirements or due to the fact that the user is unaware of the functionality provided by the existing component services. In such cases, it is desirable to have a composition algorithm that can provide feedback to the user regarding the cause of failure in the composition process. Such feedback will help guide the user to re-formulate the goal service and iterate the composition process. We propose a failure analysis technique for composition algorithms that views Web service behavior as multiple sequences of input/output events. Our technique identifies the possible cause of composition failure and suggests possible recovery options to the user. We discuss our technique using a simple e-Library Web service in the context of the MoSCoE Web service composition framework.

  13. An alternative approach for addressing the failure probability-safety factor method with sensitivity analysis

    International Nuclear Information System (INIS)

    Castillo, Enrique; Conejo, Antonio J.; Minguez, Roberto; Castillo, Carmen

    2003-01-01

    The paper introduces a method for solving the failure probability-safety factor problem for designing engineering works proposed by Castillo et al. that optimizes an objective function subject to the standard geometric and code constraints, and two more sets of constraints that simultaneously guarantee given safety factors and failure probability bounds associated with a given set of failure modes. The method uses the dual variables and is especially convenient to perform a sensitivity analysis, because sensitivities of the objective function and the reliability indices can be obtained with respect to all data values. To this end, the optimization problems are transformed into other equivalent ones, in which the data parameters are converted into artificial variables, and locked to their actual values. In this way, some variables of the associated dual problems become the desired sensitivities. In addition, using the proposed methodology, calibration of codes based on partial safety factors can be done. The method is illustrated by its application to the design of a simple rubble mound breakwater and a bridge crane

  14. Failure Analysis in Magnetic Tunnel Junction Nanopillar with Interfacial Perpendicular Magnetic Anisotropy.

    Science.gov (United States)

    Zhao, Weisheng; Zhao, Xiaoxuan; Zhang, Boyu; Cao, Kaihua; Wang, Lezhi; Kang, Wang; Shi, Qian; Wang, Mengxing; Zhang, Yu; Wang, You; Peng, Shouzhong; Klein, Jacques-Olivier; de Barros Naviner, Lirida Alves; Ravelosona, Dafine

    2016-01-12

    Magnetic tunnel junction nanopillar with interfacial perpendicular magnetic anisotropy (PMA-MTJ) becomes a promising candidate to build up spin transfer torque magnetic random access memory (STT-MRAM) for the next generation of non-volatile memory as it features low spin transfer switching current, fast speed, high scalability, and easy integration into conventional complementary metal oxide semiconductor (CMOS) circuits. However, this device suffers from a number of failure issues, such as large process variation and tunneling barrier breakdown. The large process variation is an intrinsic issue for PMA-MTJ as it is based on the interfacial effects between ultra-thin films with few layers of atoms; the tunneling barrier breakdown is due to the requirement of an ultra-thin tunneling barrier (e.g., MRAM to widely achieve commercial products. In this paper, we give a full analysis of failure mechanisms for PMA-MTJ and present some eventual solutions from device fabrication to system level integration to optimize the failure issues.

  15. Inductive analysis of failure patterns and of their impact on thermohydraulic circuits of nuclear power plants

    International Nuclear Information System (INIS)

    Limnios, N.

    1983-01-01

    The APACHE code (Automatic Analysis of Failures of Hydraulic and Thermohydraulic Circuits more particularly of Water) situates in an important program of computer codes development in the field of studies on reliability and safety of systems in nuclear power plants. APACHE is an automatic generation code of failure pattern and of their effects. After a presentation of the theoretical basis, the methodological principles of the theory of networks are developed. Then, the model of the code is developed: model of individual behavior of each classical model component of normal behavior and model of failure pattern with specifications. The global model of hydraulic systems and the resolution systems are then developed. More particularly, some aspects of the theory of graphs, and the algorithms developed for the automatic construction of the equation systems and especially the algorithm of the research of meshes are presented. The computer aspect of the code and the programming of the code with its limits and some specifications are described. The practical aspect of utilization is finally presented [fr

  16. Failure of Polyethylene Inlays in Cementless Total Hip Arthroplasty: A Retrieval Analysis

    Science.gov (United States)

    Lee, Christoph; Heisel, Christian; Thomsen, Marc; Bitsch, Rudi G.

    2016-01-01

    A retrieval analysis has been performed on 50 polyethylene inlays of cementless screw ring implants (Mecring, Mecron, Berlin, Germany) to investigate the failure mechanism of this specific open cup hip arthroplasty design that has shown a high clinical failure rate. Design-specific damage modes like rim creep, collar fatigue, and backside wear were assessed. Furthermore, the inlays were measured using a CMM to determine deformation. In 90% backside wear was observed and collar fatigue occurred in 68% of the cases. Rim creep was present in 38% of the polyethylene inlays. In 90% of the cases the cup opening diameter was 32.1 mm or less and 46% had a diameter less than 32 mm. It seems that creep and deformation of the polyethylene leads to a reduced diameter at the cup opening and consequently decreased clearance. To avoid this type of failure, polyethylene inlays should be supported at the back by the cup to reduce the risk of ongoing creep deformation. PMID:27660758

  17. Failures Analysis of E-Glass Fibre reinforced pipes in Oil and Gas Industry: A Review

    Science.gov (United States)

    Bobba, Sujith; Leman, Z.; Zainuddin, E. S.; Sapuan, S. M.

    2017-07-01

    A comprehensive review is conducted on the failures in the field of manufacturing and installation of E-glass fiber reinforced pipes (GFRP). Some of the failures which are mainly encountered after the installation of E-Glass fiber reinforced pipes are the for nation of air bubbles in between the polyester resin layer and the surface film, dispersion of moisture in between the tubing outer and inner layers after installation, heat released in between the layers of E-glass fiber reinforced pipes due to exothermic reaction which in turn results in the formation of cracks on the surface of the pipe. The recent findings and challenges performed in conducting research regarding the deterioration caused in glass fiber reinforced pipes are highlighted and each type of failure that was identified was illustrated with an appropriate high resolution photograph. Performing creep resistance and fatigue analysis are new aspects which are still requited to be analyzed which ave not been stated in the literature which are nominated.

  18. A 3D Analysis of Rock Block Deformation and Failure Mechanics Using Terrestrial Laser Scanning

    Science.gov (United States)

    Rowe, Emily; Hutchinson, D. Jean; Kromer, Ryan A.; Edwards, Tom

    2017-04-01

    Many natural geological hazards are present along the Thompson River corridor in British Columbia, Canada, including one particularly hazardous rocky slope known as the White Canyon. Railway tracks used by Canadian National (CN) and Canadian Pacific (CP) Railway companies pass through this area at the base of the Canyon slope. The geologically complex and weathered rock face exposed at White Canyon is prone to rockfalls. With a limited ditch capacity, these falling rocks have the potential to land on the tracks and therefore increase the risk of train derailment. Since 2012, terrestrial laser scanning (TLS) data has been collected at this site on a regular basis to enable researchers at Queen's University to study these rockfalls in greater detail. In this paper, the authors present a summary of an analysis of these TLS datasets including an examination of the pre-failure deformation patterns exhibited by failed rock blocks as well as an investigation into the influence of structural constraints on the pre-failure behavior of these blocks. Aligning rockfall source zones in an early point cloud dataset to a later dataset generates a transformation matrix describing the movement of the block from one scan to the next. This process was repeated such that the motion of the block over the entire TLS data coverage period was measured. A 3D roto-translation algorithm was then used to resolve the motion into translation and rotation components (Oppikofer et al. 2009; Kromer et al. 2015). Structural information was plotted on a stereonet for further analysis. A total of 111 rockfall events exceeding a volume of 1 m3 were analyzed using this approach. The study reveals that although some rockfall source blocks blocks do not exhibit detectable levels of deformation prior to failure, others do experience cm-level translation and rotation on the order of 1 to 6 degrees before detaching from the slope. Moreover, these movements may, in some cases, be related to the discontinuity

  19. Statistical analysis on failure-to-open/close probability of motor-operated valve in sodium system

    International Nuclear Information System (INIS)

    Kurisaka, Kenichi

    1998-08-01

    The objective of this work is to develop basic data for examination on efficiency of preventive maintenance and actuation test from the standpoint of failure probability. This work consists of a statistical trend analysis of valve failure probability in a failure-to-open/close mode on time since installation and time since last open/close action, based on the field data of operating- and failure-experience. In this work, the terms both dependent and independent on time were considered in the failure probability. The linear aging model was modified and applied to the first term. In this model there are two terms with both failure rates in proportion to time since installation and to time since last open/close-demand. Because of sufficient statistical population, motor-operated valves (MOV's) in sodium system were selected to be analyzed from the CORDS database which contains operating data and failure data of components in the fast reactors and sodium test facilities. According to these data, the functional parameters were statistically estimated to quantify the valve failure probability in a failure-to-open/close mode, with consideration of uncertainty. (J.P.N.)

  20. Levosimendan Treatment for Heart Failure: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Gong, Bojun; Li, Zicheng; Yat Wong, Philip Ching

    2015-12-01

    Emerging studies suggest that administration of levosimendan therapy may be better than dobutamine or placebo in decompensated heart failure. The authors performed an updated meta-analysis of trials to obtain the best estimates of the efficacy and safety of levosimendan for the initial treatment of decompensated heart failure. A meta-analysis. Hospitals. A total of 5,349 patients from 25 randomized controlled studies were included in the analysis. None. The authors performed a meta-analysis of trials comparing levosimendan therapy with dobutamine or placebo in patients with decompensated heart failure. Twenty-five trials, involving 5,349 patients, were included. Two reviewers performed independent article review and study quality assessment. Data on overall mortality, early-term mortality, midterm mortality, long-term mortality, efficacy outcomes, and adverse events were collected. Mortality outcomes were according to follow-up duration: early term (≤30-day), midterm (30-day to≤6-month), and long term (>6-month). Levosimendan was compared with dobutamine or placebo, calculating pooled relatives risk (RRs) and associated 95% confidence intervals (CIs). A random-effects model was selected for meta-analysis if there was significant heterogeneity. Levosimendan significantly reduced total mortality (17.1% versus 20.8%; RR, 0.84; 95% CI, 0.75-0.94). Compared with dobutamine, levosimendan was associated with significant reduction in mortality at final follow-up (RR, 0.86; 95% CI, 0.76-0.97; I(2) = 7%; p = 0.02).Compared with placebo, levosimendan was associated with a nonsignificant trend in favor of placebo in mortality at final follow-up (11.6% versus 16.2%, RR, 0.75; 95% CI, 0.56-1.01; p = 0.06), but it was associated with a significant reduction in long-term mortality (RR, 0.34; 95%CI, 0.15-0.76; p = 0.009). Compared with dobutamine or placebo, levosimendan therapy was associated with improvements in hemodynamically- and echocardiographically-derived cardiac

  1. 76 FR 70768 - Common-Cause Failure Analysis in Event and Condition Assessment: Guidance and Research, Draft...

    Science.gov (United States)

    2011-11-15

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Common-Cause Failure Analysis in Event and Condition Assessment: Guidance and Research, Draft Report for Comment; Correction AGENCY: Nuclear Regulatory Commission. ACTION: Draft NUREG; request for...

  2. Influence of preparation design on failure risks of ceramic inlays: a finite element analysis.

    Science.gov (United States)

    Ona, Masahiro; Watanabe, Chie; Igarashi, Yoshimasa; Wakabayashi, Noriyuki

    2011-08-01

    To assess the influence of preparation design on failure risk of ceramic inlays by means of finite element (FE) analysis. Both 2D and 3D models of the maxillary first premolar were constructed. MOD ceramic inlays were designed with an isthmus width of 1.5 to 5.0 mm and a minimum thickness of 1 to 3 mm. Occlusal contact motion and debonding at the tooth/ceramic adhesive interface were simulated in 2D models by downward displacement of a ceramic ball (1.5 mm in diameter) onto the central groove. The stress distributions within the inlays and at the interface were analyzed using 3D models. A maximum occlusal load of 250 N was assumed. The maximum principal stress at the base of the inlays was constant among models of different isthmus widths, although it decreased considerably as inlay thickness increased from 1 mm to 2 mm. The maximum shear stress at the adhesive interface increased as the width of the inlay decreased and the distance between the occlusal contact and the margin decreased to 0.3 mm or less. The maximum principal stress on the occlusal surface was relatively low and insensitive to inlay design; however, it was increased by a simulated adhesive failure. The failure risk at the base of the inlay is minimized by increasing the minimum inlay thickness. As the occlusal contact becomes close to the margin, the adhesive failure risk is increased, potentially leading to an increase in risk of fracture on the occlusal surface.

  3. Comprehensive protocol of traceability during IVF: the result of a multicentre failure mode and effect analysis.

    Science.gov (United States)

    Rienzi, L; Bariani, F; Dalla Zorza, M; Albani, E; Benini, F; Chamayou, S; Minasi, M G; Parmegiani, L; Restelli, L; Vizziello, G; Costa, A Nanni

    2017-08-01

    Can traceability of gametes and embryos be ensured during IVF? The use of a simple and comprehensive traceability system that includes the most susceptible phases during the IVF process minimizes the risk of mismatches. Mismatches in IVF are very rare but unfortunately possible with dramatic consequences for both patients and health care professionals. Traceability is thus a fundamental aspect of the treatment. A clear process of patient and cell identification involving witnessing protocols has to be in place in every unit. To identify potential failures in the traceability process and to develop strategies to mitigate the risk of mismatches, previously failure mode and effects analysis (FMEA) has been used effectively. The FMEA approach is however a subjective analysis, strictly related to specific protocols and thus the results are not always widely applicable. To reduce subjectivity and to obtain a widespread comprehensive protocol of traceability, a multicentre centrally coordinated FMEA was performed. Seven representative Italian centres (three public and four private) were selected. The study had a duration of 21 months (from April 2015 to December 2016) and was centrally coordinated by a team of experts: a risk analysis specialist, an expert embryologist and a specialist in human factor. Principal investigators of each centre were first instructed about proactive risk assessment and FMEA methodology. A multidisciplinary team to perform the FMEA analysis was then formed in each centre. After mapping the traceability process, each team identified the possible causes of mistakes in their protocol. A risk priority number (RPN) for each identified potential failure mode was calculated. The results of the FMEA analyses were centrally investigated and consistent corrective measures suggested. The teams performed new FMEA analyses after the recommended implementations. In each centre, this study involved: the laboratory director, the Quality Control & Quality

  4. WebDASC: a web-based dietary assessment software for 8-11-year-old Danish children.

    Science.gov (United States)

    Biltoft-Jensen, A; Trolle, E; Christensen, T; Islam, N; Andersen, L F; Egenfeldt-Nielsen, S; Tetens, I

    2014-01-01

      The present study describes the development and formative evaluation of the Web-based Dietary Assessment Software for Children (WebDASC). WebDASC is part of the OPUS project ('Optimal well-being, development and health for Danish children through a healthy New Nordic Diet') and was intended to measure dietary change resulting from a school-based intervention.   WebDASC was developed as a self-administered tool that could be used by 8-11-year-old children with or without parent's aid. The development of WebDASC followed a prototyping approach: focus groups, informal interviews, literature review, and usability tests preceded its release. Special consideration was given to age-appropriate design issues.   In WebDASC an animated armadillo guides respondents through six daily eating occasions and helps them report foods and beverages previously consumed. A database of 1300 food items is available either through category browse or free text search, aided by a spell check application. A type-in format is available for foods not otherwise found through category browse or text search. Amount consumed is estimated by selecting the closest portion size among four different digital images. WebDASC includes internal checks for frequently forgotten foods, and the following features to create motivation: a food-meter displaying cumulative weight of foods reported, a most popular food ranking, and a computer game with a high score list.   WebDASC was developed as an intuitive, cost-effective, and engaging method to collect detailed dietary data from 8- to 11-year-old children. Preliminary testing demonstrated that it was well accepted among children. © 2012 The Authors. Journal of Human Nutrition and Dietetics © 2012 The British Dietetic Association Ltd.

  5. Root-cause analysis of burner tip failures in coal-fired power plants

    International Nuclear Information System (INIS)

    Citirik, E.

    2014-01-01

    Warpage and complete or partial tear of burner material was frequently experienced in coal-fired power plants due to material overheating. Root-cause analysis of a burner tip failure is investigated employing stress modeling in the burner tip material in this study. The analyses performed in this research paper include heat transfer and stress analyses employing computational tools. Thermal analysis was performed using Computational Fluid Dynamics (CFD) software FLUENT for computing temperature distribution within the burner tip due to convection and radiation. Once the temperature distribution in the burner tip is determined, Finite Element Analysis (FEA) is employed using ANSYS to determine the maximum stress and deformations in burner tip material. Both FLUENT and ANSYS are numerical commercial simulation tools employed in this study. Large temperature gradients along the burner tip result in local bending stresses. These stresses resulting in creep stresses might be causing warpage in the burner tip. In this study, a design option was exercised to eliminate the excessive stress gradient in the burner tip material. Seven different FEA models were developed to simulate different operating conditions. Proposed design modification (Model 5) was able to reduce the maximum compressive stress from 76.09 MPa to 33.59 MPa. Significant reduction in the thermal stress due to design modification in Model 5 made author believe that the proposed design solution would eliminate the burner tip failures in this particular power plant. - Highlights: • Maximum stress and displacement values in the baseline model were computed. • Computations were performed using commercial FEA software ANSYS. • Different operating conditions were simulated in models 1-2-3-4. • Proposed geometry to prevent the failure is simulated in Models 5 and 6. • The proposed design solution reduced the maximum compressive stresses by ∼50%

  6. Eplerenone in Patients With Systolic Heart Failure and Mild Symptoms Analysis of Repeat Hospitalizations

    NARCIS (Netherlands)

    Rogers, Jennifer K.; McMurray, John J. V.; Pocock, Stuart J.; Zannad, Faiez; Krum, Henry; van Veldhuisen, Dirk J.; Swedberg, Karl; Shi, Harry; Vincent, John; Pitt, Bertram

    2012-01-01

    Background-Eplerenone is known to reduce time to first hospitalization for heart failure or cardiovascular death in patients with heart failure and mild symptoms. In chronic diseases such as heart failure, characterized by repeat hospitalizations, analyzing all heart failure hospitalizations, not

  7. New approaches to image processing based failure analysis of nano-scale ULSI devices

    CERN Document Server

    Zalevsky, Zeev; Gur, Eran

    2013-01-01

    New Approaches to Image Processing Based Failure Analysis of Nano-Scale ULSI Devices introduces the reader to transmission and scanning microscope image processing for metal and non-metallic microstructures. Engineers and scientists face the pressing problem in ULSI development and quality assurance: microscopy methods can't keep pace with the continuous shrinking of feature size in microelectronics. Nanometer scale sizes are below the resolution of light, and imaging these features is nearly impossible even with electron microscopes, due to image noise. This book presents novel ""smart"

  8. A survey of SiC power MOSFETs short-circuit robustness and failure mode analysis

    DEFF Research Database (Denmark)

    Ceccarelli, L.; Reigosa, P. D.; Iannuzzo, F.

    2017-01-01

    The aim of this paper is to provide an extensive overview about the state-of-art commercially available SiC power MOSFET, focusing on their short-circuit ruggedness. A detailed literature investigation has been carried out, in order to collect and understand the latest research contribution withi...... this topic and create a survey of the present scenario of SiC MOSFETs reliability evaluation and failure mode analysis, pointing out the evolution and improvements as well as the future challenges in this promising device technology....

  9. Semiparametric Bayesian analysis of accelerated failure time models with cluster structures.

    Science.gov (United States)

    Li, Zhaonan; Xu, Xinyi; Shen, Junshan

    2017-11-10

    In this paper, we develop a Bayesian semiparametric accelerated failure time model for survival data with cluster structures. Our model allows distributional heterogeneity across clusters and accommodates their relationships through a density ratio approach. Moreover, a nonparametric mixture of Dirichlet processes prior is placed on the baseline distribution to yield full distributional flexibility. We illustrate through simulations that our model can greatly improve estimation accuracy by effectively pooling information from multiple clusters, while taking into account the heterogeneity in their random error distributions. We also demonstrate the implementation of our method using analysis of Mayo Clinic Trial in Primary Biliary Cirrhosis. Copyright © 2017 John Wiley & Sons, Ltd.

  10. Failure analysis of globe control valves with spring-diaphragm actuator for nuclear power plant applications

    International Nuclear Information System (INIS)

    Khan, M.R.; Chen, W.W.H.; Wang, T.Y.

    1997-01-01

    The results of the failure analysis of a globe control valve with spring-diaphragm actuator indicated that the diaphragm failed because the service loading is close to the strength of the diaphragm. The resulting impact force is significantly larger than the plug guide strength and that cause it to bulge out after the impact. To improve the valve performance, proper torque should be used to tighten the actuator diaphragm case fasteners. A stronger actuator diaphragm could be used to provide additional safety margin during operation. Stiffening the plug guide may avoid jamming the bushing

  11. Analysis of the failure mechanisms in magnesiummanganese dioxide dry cells

    Science.gov (United States)

    Narayanan, S. R.

    Failure of high-energy magnesiummanganese dioxide dry cells is characterised by loss of ampere hour capacity on storage, increase of voltage delay, and anode corrosion. The present investigation of the degradation of cell performance suggests several underlying mechanisms. The important ones have been identified as: redistribution of electrolyte in the cathode, breakdown of the passive film on the anode, and corrosion at bi-metallic interfaces formed by cell components. These degradation processes tend to increase cell internal resistance, thereby reducing capacity output and increasing voltage delay. An analysis of the dependence of ampere hour capacity and voltage delay on internal resistance of the cell has also been presented.

  12. Failure Analysis and Prevention for the Air Logistics Center Engineer: CAStLE Course Development Summary

    Science.gov (United States)

    2006-09-01

    job 3.0a 2.5 positive 2.0 1.5 1.0 0.5- 0.0- ALC dU t ien V U. C 0 O.2 C 0 CS 2 u. g 2 0 E 0 ) a cn ee cs o eam br Uf nel -oes t Cot LL (D o u( 0 LL...1992. Witherell, Charles E., Mechanical Failure Avoidance - Strategies & Techniques. McGraw-Hill, New York, 1994. - A3 - USAF Academy Center for...Analysis b. x- ray (radiography) c. ultrasound d. magnetic particle e. liquid penetrant 4. Mechanical Testing (BE JUDICIOUS!) a. tensile b. hardness 5

  13. ANALYSIS OF MULTIVARIATE FAILURE TIME DATA USING MARGINAL PROPORTIONAL HAZARDS MODEL.

    Science.gov (United States)

    Chen, Ying; Chen, Kani; Ying, Zhiliang

    2010-01-01

    The marginal proportional hazards model is an important tool in the analysis of multivariate failure time data in the presence of censoring. We propose a method of estimation via the linear combinations of martingale residuals. The estimation and inference procedures are easy to implement numerically. The estimation is generally more accurate than the existing pseudo-likelihood approach: the size of efficiency gain can be considerable in some cases, and the maximum relative efficiency in theory is infinite. Consistency and asymptotic normality are established. Empirical evidence in support of the theoretical claims is shown in simulation studies.

  14. Failure of Orthodontic Mini-implants by Patient Age, Sex, and Arch; Number of Primary Insertions; and Frequency of Reinsertions After Failure: An Analysis of the Implant Failure Rate and Patient Failure Rate.

    Science.gov (United States)

    Kim, Jong-Wan; Lee, Nam-Ki; Sim, Hye-Young; Yun, Pil-Young; Lee, Jong-Ho

    2016-01-01

    This study aimed to analyze and compare the failure rate of orthodontic mini-implants (OMIs) in terms of the number of implants (implant failure rate [IFR]) and patients (patient failure rate [PFR]) according to the age, sex, and arch of the patients, the number of primary insertions, and frequency of reinsertions after failure. A total of 394 OMIs (1.2 mm in diameter; 7.0 mm in length) were inserted in 125 patients (24 male and 101 female, mean age 21.95 ± 7.60 years). IFR and PFR were evaluated according to the age and sex of the patient, the number of primary insertions, and the frequency of reinsertions after failure. PFR was 40.08% and IFR was 18.27% after the first insertions. PFR was higher than IFR regardless of the number of OMIs inserted. IFR increased with an increase in the frequency of reinsertions, reaching 66.67% after the fourth insertion, whereas PFR decreased to 25.00% after the second insertion and to 66.67% after the third and fourth insertions. The overall PFR and IFR were 40.80% and 19.29%, respectively. Although male patients, young patients, and location in the mandible showed higher PFR and IFR, there were no significant differences between PFR and IFR according to the sex, age, or arch. PFR was higher than IFR in this study, indicating that the treatment process could be more strongly affected by PFR than IFR. The failure rate can increase with the frequency of OMI reinsertions after failure. Sex, age, and arch may have no correlation with primary or recurrent OMI failure.

  15. Non-Invasive Ventilation in Patients with Heart Failure: A Systematic Review and Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Hugo Souza Bittencourt

    Full Text Available Abstract Non-invasive ventilation (NIV may perfect respiratory and cardiac performance in patients with heart failure (HF. The objective of the study to establish, through systematic review and meta-analysis, NIV influence on functional capacity of HF patients. A systematic review with meta-analysis of randomized studies was carried out through research of databases of Cochrane Library, SciELO, Pubmed and PEDro, using the key-words: heart failure, non-invasive ventilation, exercise tolerance; and the free terms: bi-level positive airway pressure (BIPAP, continuous positive airway pressure (CPAP, and functional capacity (terms were searched for in English and Portuguese using the Boolean operators AND and OR. Methodological quality was ensured through PEDro scale. Weighted averages and a 95% confidence interval (CI were calculated. The meta-analysis was done thorugh the software Review Manager, version 5.3 (Cochrane Collaboration. Four randomized clinical trials were included. Individual studies suggest NIV improved functional capacity. NIV resulted in improvement in the distance of the six-minute walk test (6MWT (68.7m 95%CI: 52.6 to 84.9 in comparison to the control group. We conclude that the NIV is an intervention that promotes important effects in the improvement of functional capacity of HF patients. However, there is a gap in literature on which are the most adequate parameters for the application of this technique.

  16. Estimation of failure criteria in multivariate sensory shelf life testing using survival analysis.

    Science.gov (United States)

    Giménez, Ana; Gagliardi, Andrés; Ares, Gastón

    2017-09-01

    For most food products, shelf life is determined by changes in their sensory characteristics. A predetermined increase or decrease in the intensity of a sensory characteristic has frequently been used to signal that a product has reached the end of its shelf life. Considering all attributes change simultaneously, the concept of multivariate shelf life allows a single measurement of deterioration that takes into account all these sensory changes at a certain storage time. The aim of the present work was to apply survival analysis to estimate failure criteria in multivariate sensory shelf life testing using two case studies, hamburger buns and orange juice, by modelling the relationship between consumers' rejection of the product and the deterioration index estimated using PCA. In both studies, a panel of 13 trained assessors evaluated the samples using descriptive analysis whereas a panel of 100 consumers answered a "yes" or "no" question regarding intention to buy or consume the product. PC1 explained the great majority of the variance, indicating all sensory characteristics evolved similarly with storage time. Thus, PC1 could be regarded as index of sensory deterioration and a single failure criterion could be estimated through survival analysis for 25 and 50% consumers' rejection. The proposed approach based on multivariate shelf life testing may increase the accuracy of shelf life estimations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Efficient Fault Localization and Failure Analysis Techniques for Improving IC Yield

    Directory of Open Access Journals (Sweden)

    Ankush Oberai

    2018-02-01

    Full Text Available With the increase in the complexity of the semiconductor device processes and increase in the challenge to satisfy high market demands, enhancement in yield has become a crucial factor. Discovering and reacting to yield problems emerging at the end of the production line may cause unbearable yield loss leading to larger times to market. Thus, time and cost involved in fault isolation may be significantly shortened by effectively utilizing the fault diagnosis technology and supporting yield improvements. Hence for yield analysis, a highly integrated data network with software analysis tools have been established to reduce the fault analysis time. Synopsys Avalon, a product used for fault localization is described in this paper which aids in achieving better integrated circuit yields. This paper also illustrates various fault localization techniques for faster problem identification and discusses a few analytical tools like photon emission microscope and transmission emission microscope for faster determination of device failures.

  18. Analysis of terminated TOP accidents in the FTR using the Los Alamos failure model

    International Nuclear Information System (INIS)

    Mast, P.K.; Scott, J.H.

    1978-01-01

    A new fuel pin failure model (the Los Alamos Failure Model), based on a linear life fraction rule failure criterion, has been developed and is reported herein. Excellent agreement between calculated and observed failure time and location has been obtained for a number of TOP TREAT tests. Because of the nature of the failure criterion used, the code has also been used to investigate the extent of cladding damage incurred in terminated as well as unterminated TOP transients in the FTR

  19. Fault tree analysis of failure cause of crushing plant and mixing bed hall at Khoy cement factory in Iran☆

    Science.gov (United States)

    Nouri.Gharahasanlou, Ali; Mokhtarei, Ashkan; Khodayarei, Aliasqar; Ataei, Mohammad

    2014-01-01

    Evaluating and analyzing the risk in the mining industry is a new approach for improving the machinery performance. Reliability, safety, and maintenance management based on the risk analysis can enhance the overall availability and utilization of the mining technological systems. This study investigates the failure occurrence probability of the crushing and mixing bed hall department at Azarabadegan Khoy cement plant by using fault tree analysis (FTA) method. The results of the analysis in 200 h operating interval show that the probability of failure occurrence for crushing, conveyor systems, crushing and mixing bed hall department is 73, 64, and 95 percent respectively and the conveyor belt subsystem found as the most probable system for failure. Finally, maintenance as a method of control and prevent the occurrence of failure is proposed. PMID:26779433

  20. Fault tree analysis of failure cause of crushing plant and mixing bed hall at Khoy cement factory in Iran.

    Science.gov (United States)

    Nouri Gharahasanlou, Ali; Mokhtarei, Ashkan; Khodayarei, Aliasqar; Ataei, Mohammad

    2014-04-01

    Evaluating and analyzing the risk in the mining industry is a new approach for improving the machinery performance. Reliability, safety, and maintenance management based on the risk analysis can enhance the overall availability and utilization of the mining technological systems. This study investigates the failure occurrence probability of the crushing and mixing bed hall department at Azarabadegan Khoy cement plant by using fault tree analysis (FTA) method. The results of the analysis in 200 h operating interval show that the probability of failure occurrence for crushing, conveyor systems, crushing and mixing bed hall department is 73, 64, and 95 percent respectively and the conveyor belt subsystem found as the most probable system for failure. Finally, maintenance as a method of control and prevent the occurrence of failure is proposed.

  1. The analysis of risk of the radiation failures in Russian navy. Experience of international cooperation

    International Nuclear Information System (INIS)

    Lisovsky, I.V.

    2000-01-01

    The international research program 'Risk and nuclear waste' is carried out under a management FOA - Swedish Defence Research Establishment and CERUM - Centre for Regional Science of the University of Umea (Sweden) at participation UAF - University of Alaska, Fairbanks, KNC - Kola Centre of Science of Russian Academy Science (RAN), MMBI - Murmansk Sea Bbiological Institute KNC of RAN. A component of the program is the project INTAS 96-1802 An Estimation of potential risk of radioactive pollution of an environment on Europe from nuclear sources on Russia'. This project (scientific official responsible for the project - Mr R. BERGMAN) consists of 5 directions and is carried out by forces Swedish Defence Research Establishment (Sweden) - direction 1, Oulu University (Finland) - direction 2, Institute of applied Mathematicians of RAN (Russia) - direction 3, Laboratory of Modeling of an Environment of KNC of RAN (Russia) - direction 4 and St. -Petersburg State Technical University (Russia) - direction 5 (scientific official responsible for this part of the project - Mr I. LISOVSKY). The working program of researches on a direction 5 project INTAS 96-1802 provides: determination of the list of typical sources of danger emergency radioactive emissions in an environment in connection with military activity in Russia; the description of the basic scripts of development of failures, resulting to emission of radionuclides in an environment; the analysis of radiation risk for the population and environment, connected to an emergency condition of the storage for radioactive waste 'Mironova mountain'; the description of models, used for accounts of fields of concentration and the migration of radionuclides in a ground and coastal waters; an estimation higienic and ecological danger of nuclear submarines removed from operation and solid radioactive waste; an estimation of risk of failures with air excharge of radionuclides; an estimation of possible doses of chronic exposure for

  2. Failure mode and effects analysis of skin electronic brachytherapy using Esteya® unit

    Directory of Open Access Journals (Sweden)

    Blanca Ibanez-Rosello

    2016-12-01

    Full Text Available Purpose: Esteya® (Nucletron, an Elekta company, Elekta AB, Stockholm, Sweden is an electronic brachytherapy device used for skin cancer lesion treatment. In order to establish an adequate level of quality of treatment, a risk analysis of the Esteya treatment process has been done, following the methodology proposed by the TG-100 guidelines of the American Association of Physicists in Medicine (AAPM. Material and methods: A multidisciplinary team familiar with the treatment process was formed. This team developed a process map (PM outlining the stages, through which a patient passed when subjected to the Esteya treatment. They identified potential failure modes (FM and each individual FM was assessed for the severity (S, frequency of occurrence (O, and lack of detection (D. A list of existing quality management tools was developed and the FMs were consensually reevaluated. Finally, the FMs were ranked according to their risk priority number (RPN and their S. Results : 146 FMs were identified, 106 of which had RPN ≥ 50 and 30 had S ≥ 7. After introducing the quality management tools, only 21 FMs had RPN ≥ 50. The importance of ensuring contact between the applicator and the surface of the patient’s skin was emphasized, so the setup was reviewed by a second individual before each treatment session with periodic quality control to ensure stability of the applicator pressure. Some of the essential quality management tools are already being implemented in the installation are the simple templates for reproducible positioning of skin applicators, that help marking the treatment area and positioning of X-ray tube. Conclusions : New quality management tools have been established as a result of the application of the failure modes and effects analysis (FMEA treatment. However, periodic update of the FMEA process is necessary, since clinical experience has suggested occurring of further new possible potential failure modes.

  3. Incident learning and failure-mode-and-effects-analysis guided safety initiatives in radiation medicine

    Directory of Open Access Journals (Sweden)

    Ajay eKapur

    2013-12-01

    Full Text Available By combining incident learning and process failure-mode-and-effects-analysis in a structure-process-outcome framework we have created a risk profile for our radiation medicine practice and implemented evidence-based risk mitigation initiatives focused on patient safety. Based on reactive reviews of incidents reported in our departmental incident-reporting system and proactive failure-mode-and-effects-analysis, high safety-risk procedures in our paperless radiation medicine process and latent risk factors were identified. Six initiatives aimed at the mitigation of associated severity, likelihood of occurrence and detectability risks were implemented. These were the standardization of care pathways and toxicity grading, pre-treatment-planning peer review, a policy to thwart delay-rushed processes, an electronic whiteboard to enhance coordination and the use of six-sigma metrics to monitor operational efficiencies. The effectiveness of these initiatives over a three year period was assessed using process and outcome specific metrics within the framework of the department structure. There has been a 47% increase in incident reporting, with no increase in adverse events. Care pathways have been used with greater than 97% clinical compliance rate. The implementation of peer review prior to treatment planning and use of the whiteboard have provided opportunities for proactive detection and correction of errors. There has been a twofold drop in the occurrence of high-risk procedural delays. Patient treatment start delays are routinely enforced on cases that would have historically been rushed. Z-scores for high risk procedures have steadily improved from 1.78 to 2.35. The initiatives resulted in sustained reductions of failure-mode risks as measured by a set of evidence-based metrics over a three year period. These augment or incorporate many of the published recommendations for patient safety in radiation medicine by translating them to clinical

  4. Prophylactic antibiotic regimen and dental implant failure: a meta-analysis.

    Science.gov (United States)

    Chrcanovic, B R; Albrektsson, T; Wennerberg, A

    2014-12-01

    The aim of this meta-analysis was to investigate whether there are any positive effects of prophylactic antibiotic regimen on implant failure rates and post-operative infection when performing dental implant treatment in healthy individuals. An electronic search without time or language restrictions was undertaken in March 2014. Eligibility criteria included clinical human studies, either randomised or not. The search strategy resulted in 14 publications. The I(2) statistic was used to express the percentage of the total variation across studies due to heterogeneity. The inverse variance method was used with a fixed- or random-effects model, depending on the heterogeneity. The estimates of relative effect were expressed in risk ratio (RR) with 95% confidence interval. Six studies were judged to be at high risk of bias, whereas one study was considered at moderate risk, and six studies were considered at low risk of bias. The test for overall effect showed that the difference between the procedures (use versus non-use of antibiotics) significantly affected the implant failure rates (P = 0.0002), with a RR of 0.55 (95% CI 0.41-0.75). The number needed to treat (NNT) to prevent one patient having an implant failure was 50 (95% CI 33-100). There were no apparent significant effects of prophylactic antibiotics on the occurrence of post-operative infections in healthy patients receiving implants (P = 0.520). A sensitivity analysis did not reveal difference when studies judged as having high risk of bias were not considered. The results have to be interpreted with caution due to the presence of several confounding factors in the included studies. © 2014 John Wiley & Sons Ltd.

  5. EMG amplitude, fatigue threshold, and time to task failure: A meta-analysis.

    Science.gov (United States)

    McCrary, J Matt; Ackermann, Bronwen J; Halaki, Mark

    2017-11-11

    Electromyographic (EMG) fatigue threshold (EMG FT ) is utilised as a correlate of critical power, torque, and force thresholds that establishes a theoretical exercise intensity-the power, torque, or force at which the rate of change of EMG amplitude (ΔEM¯G) is zero-below which neuromuscular fatigue is negligible and unpredictable. Recent studies demonstrating neuromuscular fatigue below critical thresholds raise questions about the construct validity of EMG FT . The purpose of this analysis is to evaluate the construct validity of EMGFT by aggregating ΔEM¯G and time to task failure (T lim ) data. Meta-analysis. Database search of MEDLINE, SPORTDiscus, Web of Science, and Cochrane (inception - September 2016) conducted using terms relevant to EMG and muscle fatigue. Inclusion criteria were studies reporting agonist muscle EMG amplitude data during constant force voluntary isometric contractions taken to task failure. Linear and nonlinear regression models were used to relate ΔEM¯G and T lim data extracted from included studies. Regression analyses included data from 837 healthy adults from 43 studies. Relationships between ΔEM¯G and T lim were strong in both nonlinear (R 2 =0.65) and linear (R 2 =0.82) models. ΔEM¯G at EMG FT was significantly nonzero overall and in 3 of 5 cohorts in the nonlinear model (pEMG FT lacks face validity as currently calculated; models for more precise EMG FT calculation are proposed. A new framework for prediction of task failure using EMG amplitude data alone is presented. The ΔEM¯G vs. Tlim relationship remains consistent across sexes and force vs. position tasks. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  6. Pattern of Failure with Locally Advanced Cervical Cancer– A Retrospective Audit and Analysis of Contributory Factors

    Science.gov (United States)

    Bandyopadhyay, Anis; Mukherjee, Upasana; Ghosh, Sandip; Ghosh, Saurav; Sarkar, Shyamal Kumar

    2018-01-27

    Background: The majority of the global burden of cervical cancer is affecting developing countries. Despite improvement in treatment of patients presenting at a locally advanced stage, approximately 50% experience recurrence within the 1st two years. This study was conducted to analyse contributory factors for recurrence within 24 months. Methods: The present retrospective study was undertaken to analyse factors affecting recurrence, type of failure and the follow up pattern of patients who completed treatment with a minimum follow-up period of 6 months during the study period of 5 years. Results: Out of 323 patients included in the study, 112 (34.7%) presented with recurrence within the follow-up period. The stage and histology had a significant impact on disease free survival (DFS). Of those who were followed-up regularly, recurrence was observed in 28.7% with a DFS of 81.3 months, in contrast to the 48. 5% patients with a DFS of 45.0 months for whom follow-up was irregular. The failure pattern was mostly in the form of nodal recurrence (61%). On univariate analysis, treatment time, EBRT and ICBT gap and mean EQD2 point A were found to associated with a better outcome in terms of 2yr DFS. On Cox regression analysis, stage, histology, treatment gap (HR-0.48) and follow up pattern (HR-0.24) retained their effects on survival. Point A dose was higher in patients without recurrence (P value 0.000) unlike other assymmetric parameters. Conclusion: Apart from point A cumulative dose (mean EQD2), stage, histology and treatment gap were the factors that affected early local failure. An interesting result was that follow-up pattern had a significant impact on DFS period. Creative Commons Attribution License

  7. NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8-11.

    Science.gov (United States)

    Lundegaard, Claus; Lamberth, Kasper; Harndahl, Mikkel; Buus, Søren; Lund, Ole; Nielsen, Morten

    2008-07-01

    NetMHC-3.0 is trained on a large number of quantitative peptide data using both affinity data from the Immune Epitope Database and Analysis Resource (IEDB) and elution data from SYFPEITHI. The method generates high-accuracy predictions of major histocompatibility complex (MHC): peptide binding. The predictions are based on artificial neural networks trained on data from 55 MHC alleles (43 Human and 12 non-human), and position-specific scoring matrices (PSSMs) for additional 67 HLA alleles. As only the MHC class I prediction server is available, predictions are possible for peptides of length 8-11 for all 122 alleles. artificial neural network predictions are given as actual IC(50) values whereas PSSM predictions are given as a log-odds likelihood scores. The output is optionally available as download for easy post-processing. The training method underlying the server is the best available, and has been used to predict possible MHC-binding peptides in a series of pathogen viral proteomes including SARS, Influenza and HIV, resulting in an average of 75-80% confirmed MHC binders. Here, the performance is further validated and benchmarked using a large set of newly published affinity data, non-redundant to the training set. The server is free of use and available at: http://www.cbs.dtu.dk/services/NetMHC.

  8. Applying failure mode effects and criticality analysis in radiotherapy: Lessons learned and perspectives of enhancement

    International Nuclear Information System (INIS)

    Scorsetti, Marta; Signori, Chiara; Lattuada, Paola; Urso, Gaetano; Bignardi, Mario; Navarria, Pierina; Castiglioni, Simona; Mancosu, Pietro; Trucco, Paolo

    2010-01-01

    Introduction: The radiation oncology process along with its unique therapeutic properties is also potentially dangerous for the patient, and thus it should be delivered under a systematic risk control. To this aim incident reporting and analysis are not sufficient for assuring patient safety and proactive risk assessment should also be implemented. The paper accounts for some methodological solutions, lessons learned and opportunities for improvement, starting from the systematic application of the failure mode effects and criticality analysis (FMECA) technique to the radiotherapy process of an Italian hospital. Materials and methods: The analysis, performed by a working group made of experts of the radiotherapy unit, was organised into the following steps: (1) complete and detailed analysis of the process (integration definition for function modelling); (2) identification of possible failure modes (FM) of the process, representing sources of adverse events for the patient; (3) qualitative risk assessment of FMs, aimed at identifying priorities of intervention; (4) identification and planning of corrective actions. Results: Organisational and procedural corrective measures were implemented; a set of safety indexes for the process was integrated within the traditional quality assurance indicators measured by the unit. A strong commitment of all the professionals involved was observed and the study revealed to be a powerful 'tool' for dissemination of patient safety culture. Conclusion: The feasibility of FMECA in fostering radiotherapy safety was proven; nevertheless, some lessons learned as well as weaknesses of current practices in risk management open to future research for the integration of retrospective methods (e.g. incident reporting or root cause analysis) and risk assessment.

  9. Intelligent data analysis: the best approach for chronic heart failure (CHF) follow up management.

    Science.gov (United States)

    Mohammadzadeh, Niloofar; Safdari, Reza; Baraani, Alireza; Mohammadzadeh, Farshid

    2014-08-01

    Intelligent data analysis has ability to prepare and present complex relations between symptoms and diseases, medical and treatment consequences and definitely has significant role in improving follow-up management of chronic heart failure (CHF) patients, increasing speed ​​and accuracy in diagnosis and treatments; reducing costs, designing and implementation of clinical guidelines. The aim of this article is to describe intelligent data analysis methods in order to improve patient monitoring in follow and treatment of chronic heart failure patients as the best approach for CHF follow up management. Minimum data set (MDS) requirements for monitoring and follow up of CHF patient designed in checklist with six main parts. All CHF patients that discharged in 2013 from Tehran heart center have been selected. The MDS for monitoring CHF patient status were collected during 5 months in three different times of follow up. Gathered data was imported in RAPIDMINER 5 software. Modeling was based on decision trees methods such as C4.5, CHAID, ID3 and k-Nearest Neighbors algorithm (K-NN) with k=1. Final analysis was based on voting method. Decision trees and K-NN evaluate according to Cross-Validation. Creating and using standard terminologies and databases consistent with these terminologies help to meet the challenges related to data collection from various places and data application in intelligent data analysis. It should be noted that intelligent analysis of health data and intelligent system can never replace cardiologists. It can only act as a helpful tool for the cardiologist's decisions making.

  10. Comparison Study of Electromagnet and Permanent Magnet Systems for an Accelerator Using Cost-Based Failure Modes and Effects Analysis

    International Nuclear Information System (INIS)

    Spencer, C

    2004-01-01

    The next generation of particle accelerators will be one-of-a-kind facilities, and to meet their luminosity goals they must have guaranteed availability over their several decade lifetimes. The Next Linear Collider (NLC) is one viable option for a 1 TeV electron-positron linear collider, it has an 85% overall availability goal. We previously showed how a traditional Failure Modes and Effects Analysis (FMEA) of a SLAC electromagnet leads to reliability-enhancing design changes. Traditional FMEA identifies failure modes with high risk but does not consider the consequences in terms of cost, which could lead to unnecessarily expensive components. We have used a new methodology, ''Life Cost-Based FMEA'', which measures risk of failure in terms of cost, in order to evaluate and compare two different technologies that might be used for the 8653 NLC magnets: electromagnets or permanent magnets. The availabilities for the two different types of magnet systems have been estimated using empirical data from SLAC's accelerator failure database plus expert opinion on permanent magnet failure modes and industry standard failure data. Labor and material costs to repair magnet failures are predicted using a Monte Carlo simulation of all possible magnet failures over a 30-year lifetime. Our goal is to maximize up-time of the NLC through magnet design improvements and the optimal combination of electromagnets and permanent magnets, while reducing magnet system lifecycle costs

  11. Multiscale Failure Analysis of Laminated Composite Panels Subjected to Blast Loading Using FEAMAC/Explicit

    Science.gov (United States)

    Pineda, Evan J.; Waas, Anthony M.; Berdnarcyk, Brett A.; Arnold, Steven M.; Collier, Craig S.

    2009-01-01

    This preliminary report demonstrates the capabilities of the recently developed software implementation that links the Generalized Method of Cells to explicit finite element analysis by extending a previous development which tied the generalized method of cells to implicit finite elements. The multiscale framework, which uses explicit finite elements at the global-scale and the generalized method of cells at the microscale is detailed. This implementation is suitable for both dynamic mechanics problems and static problems exhibiting drastic and sudden changes in material properties, which often encounter convergence issues with commercial implicit solvers. Progressive failure analysis of stiffened and un-stiffened fiber-reinforced laminates subjected to normal blast pressure loads was performed and is used to demonstrate the capabilities of this framework. The focus of this report is to document the development of the software implementation; thus, no comparison between the results of the models and experimental data is drawn. However, the validity of the results are assessed qualitatively through the observation of failure paths, stress contours, and the distribution of system energies.

  12. Risk management for outsourcing biomedical waste disposal – Using the failure mode and effects analysis

    International Nuclear Information System (INIS)

    Liao, Ching-Jong; Ho, Chao Chung

    2014-01-01

    Highlights: • This study is based on a real case in hospital in Taiwan. • We use Failure Mode and Effects Analysis (FMEA) as the evaluation method. • We successfully identify the evaluation factors of bio-medical waste disposal risk. - Abstract: Using the failure mode and effects analysis, this study examined biomedical waste companies through risk assessment. Moreover, it evaluated the supervisors of biomedical waste units in hospitals, and factors relating to the outsourcing risk assessment of biomedical waste in hospitals by referring to waste disposal acts. An expert questionnaire survey was conducted on the personnel involved in waste disposal units in hospitals, in order to identify important factors relating to the outsourcing risk of biomedical waste in hospitals. This study calculated the risk priority number (RPN) and selected items with an RPN value higher than 80 for improvement. These items included “availability of freezing devices”, “availability of containers for sharp items”, “disposal frequency”, “disposal volume”, “disposal method”, “vehicles meeting the regulations”, and “declaration of three lists”. This study also aimed to identify important selection factors of biomedical waste disposal companies by hospitals in terms of risk. These findings can serve as references for hospitals in the selection of outsourcing companies for biomedical waste disposal

  13. Failure Mode and Effects Analysis (FMEA) of the solid state full length rod control system

    International Nuclear Information System (INIS)

    Shopsky, W.E.

    1977-01-01

    The Full Length Rod Control System (FLRCS) controls the power to the rod drive mechanisms for rod movement in response to signals received from the Reactor Control System or from signals generated through Reactor Operator action. Rod movement is used to control reactivity of the reactor during plant operation. The Full Length Rod Control System is designed to perform its reactivity control function in conjunction with the Reactor Control and Protection System, to maintain the reactor core within design safety limits. By the use of a Failure Mode and Effects Analysis, it is shown that the FLRCS will perform its reactivity control functions considering the loss of single active components. That is, sufficient fault limiting control circuits are provided which blocks control rod movement and/or indicates presence of a fault condition at the Control Board. Reactor operator action or automatic reactor trip will thus mitigate the consequences of potential failure of the FLRCS. The analysis also qualitatively demonstrates the reliability of the FLRCS to perform its intended function

  14. Failure Bounding And Sensitivity Analysis Applied To Monte Carlo Entry, Descent, And Landing Simulations

    Science.gov (United States)

    Gaebler, John A.; Tolson, Robert H.

    2010-01-01

    In the study of entry, descent, and landing, Monte Carlo sampling methods are often employed to study the uncertainty in the designed trajectory. The large number of uncertain inputs and outputs, coupled with complicated non-linear models, can make interpretation of the results difficult. Three methods that provide statistical insights are applied to an entry, descent, and landing simulation. The advantages and disadvantages of each method are discussed in terms of the insights gained versus the computational cost. The first method investigated was failure domain bounding which aims to reduce the computational cost of assessing the failure probability. Next a variance-based sensitivity analysis was studied for the ability to identify which input variable uncertainty has the greatest impact on the uncertainty of an output. Finally, probabilistic sensitivity analysis is used to calculate certain sensitivities at a reduced computational cost. These methods produce valuable information that identifies critical mission parameters and needs for new technology, but generally at a significant computational cost.

  15. Degradation testing and failure analysis of DC film capacitors under high humidity conditions

    DEFF Research Database (Denmark)

    Wang, Huai; Nielsen, Dennis Achton; Blaabjerg, Frede

    2015-01-01

    Metallized polypropylene film capacitors are widely used for high-voltage DC-link applications in power electronic converters. They generally have better reliability performance compared to aluminum electrolytic capacitors under electro-thermal stresses within specifications. However, the degrada......Metallized polypropylene film capacitors are widely used for high-voltage DC-link applications in power electronic converters. They generally have better reliability performance compared to aluminum electrolytic capacitors under electro-thermal stresses within specifications. However......, the degradation of the film capacitors is a concern in applications exposed to high humidity environments. This paper investigates the degradation of a type of plastic-boxed metallized DC film capacitors under different humidity conditions based on a total of 8700 h of accelerated testing and also post failure...... analysis. The test results are given by the measured data of capacitance and the equivalent series resistance. The degradation curves in terms of capacitance reduction are obtained under the conditions of 85% Relative Humidity (RH), 70% RH, and 55% RH. The post failure analysis of the degraded samples...

  16. Risk management for outsourcing biomedical waste disposal – Using the failure mode and effects analysis

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Ching-Jong; Ho, Chao Chung, E-mail: ho919@pchome.com.tw

    2014-07-15

    Highlights: • This study is based on a real case in hospital in Taiwan. • We use Failure Mode and Effects Analysis (FMEA) as the evaluation method. • We successfully identify the evaluation factors of bio-medical waste disposal risk. - Abstract: Using the failure mode and effects analysis, this study examined biomedical waste companies through risk assessment. Moreover, it evaluated the supervisors of biomedical waste units in hospitals, and factors relating to the outsourcing risk assessment of biomedical waste in hospitals by referring to waste disposal acts. An expert questionnaire survey was conducted on the personnel involved in waste disposal units in hospitals, in order to identify important factors relating to the outsourcing risk of biomedical waste in hospitals. This study calculated the risk priority number (RPN) and selected items with an RPN value higher than 80 for improvement. These items included “availability of freezing devices”, “availability of containers for sharp items”, “disposal frequency”, “disposal volume”, “disposal method”, “vehicles meeting the regulations”, and “declaration of three lists”. This study also aimed to identify important selection factors of biomedical waste disposal companies by hospitals in terms of risk. These findings can serve as references for hospitals in the selection of outsourcing companies for biomedical waste disposal.

  17. A critical analysis of the failure of nurses to raise concerns about poor patient care.

    Science.gov (United States)

    Roberts, Marc

    2017-07-01

    The occurrence of poor patient care is emerging as one of the most significant, challenging, and critical issues confronting contemporary nursing and those responsible for the provision of health care more generally. Indeed, as a consequence of the increased recognition of the manner in which nurses can be implicated in the occurrence of poor patient care, there has been sustained critical debate that seeks to understand how such healthcare failings can occur and, in particular, why nurses seemingly fail to intervene, raise concerns, and effectively respond to prevent the occurrence and continuation of such poor patient care. In seeking to contribute to this critical discussion, and in contrast to those "situational explanations" that maintain that the failure to raise concerns is a consequence of the contextual factors and challenging conditions to which nurses can be subject in the clinical setting, this paper will provide a resolutely philosophical analysis of that failure. In particular, it will draw upon the work of Jean-Paul Sartre-the French philosopher generally regarded as one of the most influential thinkers of the twentieth century-in order to propose that his work can be productively recontextualized to provide a detailed, challenging, and provocative critical analysis of the occurrence and continuation of poor patient care and the role of individual nurse practitioners in such healthcare failings. © 2016 John Wiley & Sons Ltd.

  18. Time-to-event analysis of individual variables associated with nursing students' academic failure: a longitudinal study.

    Science.gov (United States)

    Dante, Angelo; Fabris, Stefano; Palese, Alvisa

    2013-12-01

    Empirical studies and conceptual frameworks presented in the extant literature offer a static imagining of academic failure. Time-to-event analysis, which captures the dynamism of individual factors, as when they determine the failure to properly tailor timely strategies, impose longitudinal studies which are still lacking within the field. The aims of this longitudinal study were to investigate the time which elapses from a nursing student's admission to a Bachelor of Nursing program to their academic failure and to estimate the predictive power of individual variables on academic failure. Enrolled students (n = 170) in two Italian nursing degree programs during academic year 2008-2009, received at the beginning of each years a questionnaire which evaluated individual variables. Academic failure rate was 37.2 %. Time-to-event analysis has shown that academic failure occurred after an average of 664.52 days of course attendance ((95 %)CI = 623.2-705.8). Kaplan-Meier analyses demonstrated a high likelihood of failure among males (χ(2) 7.790, p 0.005) and among those who had obtained a final average grade in their secondary education ≤73/100 (χ(2)11.676, p 0.001). Cox regression analysis confirmed an increased likelihood of failure over time among males as compared to females (HR 1.931, (95 %)CI = 1.017-3.670), and among students living more than a 30 min commute from their place of study (HR 1.898, (95 %)CI = 1.015-3.547). The effect of these two factors on academic failure has been seen to manifest primarily toward the end of students' second academic year; students at risk might be supported by the appropriate university staff prior to this period.

  19. Failure Analysis of Fractured Poppet from Space Shuttle Orbiter Flow Control Valve

    Science.gov (United States)

    Russell, Richard

    2010-01-01

    This slide presentation reviews the failure analysis of a fractured poppet from a flow control valve (FCV) used on the space shuttle. This presentation has focused on the laboratory analysis of the failed hardware. The use of Scanning electron fractography during the investigation led to the conclusion that the poppet failed due to fatigue cracking that, most likely, occurred under changing loading conditions. The initial investigation led to a more thorough test of poppets that had been retired, this testing led to the conclusion that the thumbnail cracks in the flight hardware had existed for the life of the shuttle program. This led to a program to develop an eddy current technique that was capable of detecting small very tight cracks.

  20. Failure Analysis and Thermochemical Surface Engineering of Bearings in the Wind Turbine Drivetrain

    DEFF Research Database (Denmark)

    West, Ole H.E.; Dahl, Kristian Vinter; Christiansen, Thomas Lundin

    backscatter diffraction (EBSD) and ion channelling contrast imaging (ICCI) were used. The gap between RLM and SEM (providing a good overview over the crack morphology) and TEM (providing very detailed information but from a very limited part of the sample) could be covered by the use of EBSD and ICCI...... charged rollers to reproduce WEC formation. The influence of different hoop stress levels was studied. The fracture surfaces as well as formed WECs were investigated. A detrimental effect of higher hoop stress levels on roller lifetime was found and based on the analysis of the formed WECs an incremental...... increase of WEA formation with each cycle was suggested. By X-ray diffraction stress analysis the nonuniform build-up of compressive stresses under testing was identified. Deep nitriding is considered as a potential remedy against WEC failure. Therefore nitriding experiments were conducted to study...

  1. Does a higher glycemic level lead to a higher rate of dental implant failure?: A meta-analysis.

    Science.gov (United States)

    Shi, Quan; Xu, Juan; Huo, Na; Cai, Chuan; Liu, Hongchen

    2016-11-01

    Owing to limited evidence, it is unclear whether diabetes that is not well controlled would lead to a higher rate of dental implant failure. The authors of this meta-analysis evaluated whether the failure rate for patients with diabetes that was not well controlled was higher than the failure rate for patients with well-controlled diabetes. The authors searched PubMed, the Cochrane Library, and ClinicalTrials.gov without limitations for studies whose investigators compared the dental implant failure rates between patients with well-controlled diabetes and diabetes that was not well controlled. The authors pooled the relative risk (RR) and 95% confidence interval (CI) values to estimate the relative effect of the glycemic level on dental implant failures. The authors used a subgroup analysis to identify the association between the implant failure rate and the stage at which the failure occurred. The authors included 7 studies in this meta-analysis, including a total of 252 patients and 587 dental implants. The results of the pooled analysis did not indicate a direct association between the glycemic level in patients with diabetes and the dental implant failure rate (RR, 0.620; 95% CI, 0.225-1.705). The pooled RR in the subgroup of patients who experienced early implant failure was 0.817 (95% CI, 0.096-6.927), whereas in the subgroup of patients who experienced late implant failure, the pooled RR was 0.572 (95% CI, 0.206-1.586). On the basis of the evidence, the results of this meta-analysis failed to show a difference in the failure rates for dental implants between patients with well-controlled diabetes and patients with diabetes that was not well controlled. However, considering the limitations associated with this meta-analysis, the authors determined that future studies that are well designed and provide adequate controls for confounding factors are required. Copyright © 2016 American Dental Association. Published by Elsevier Inc. All rights reserved.

  2. A cause-defense approach to the understanding and analysis of common cause failures

    International Nuclear Information System (INIS)

    Paula, Henrique M.; Campbell, David J.; Parry, Gareth W.; Mitchell, Donald B.; Rasmuson, Dale M.

    1990-03-01

    For improved reliability and safety, nuclear power plants are designed with redundant safety systems, many of which also have redundant trains of equipment within the system. However, the very high reliability theoretically achievable through the use of redundancy is often compromised by single events that can individually render redundant components unavailable (common cause failure [CCF] events). As evidenced by the results of probabilistic risk assessments (PRAs) and by historical experience with nuclear power plant operations, CCF events are usually major contributors to the risk posed by nuclear power plant operation. Thus, it is important that PRAs recognize the potential for CCF events and realistically account for CCF contributions to system unavailability and plant risk. Much progress has been made over the years in the area of CCF analysis, including the development of both qualitative and quantitative analysis methods. Until now, however, CCF methodologies have not explicitly and systematically accounted for the impact of plant-specific defenses, such as design features and operational and maintenance policies, in place to reduce the likelihood of failure occurrences at nuclear power plants. Recognizing the importance of this issue, the NRC has funded a research effort that has focused on developing the cause-defense methodology for CCF analysis and prevention. This report presents the results of this research. Specifically, this report discusses the development of (1) procedures for identifying the potential for CCF events at individual nuclear power plants and (2) cause-defense matrices for analysis of CCF events. Also, new concepts and more precise definitions are introduced to enhance CCF terminology and interpretation of historical event data. (author)

  3. Vulnerabilities to Rock-Slope Failure Impacts from Christchurch, NZ Case History Analysis

    Science.gov (United States)

    Grant, A.; Wartman, J.; Massey, C. I.; Olsen, M. J.; Motley, M. R.; Hanson, D.; Henderson, J.

    2015-12-01

    Rock-slope failures during the 2010/11 Canterbury (Christchurch), New Zealand Earthquake Sequence resulted in 5 fatalities and caused an estimated US$400 million of damage to buildings and infrastructure. Reducing losses from rock-slope failures requires consideration of both hazard (i.e. likelihood of occurrence) and risk (i.e. likelihood of losses given an occurrence). Risk assessment thus requires information on the vulnerability of structures to rock or boulder impacts. Here we present 32 case histories of structures impacted by boulders triggered during the 2010/11 Canterbury earthquake sequence, in the Port Hills region of Christchurch, New Zealand. The consequences of rock fall impacts on structures, taken as penetration distance into structures, are shown to follow a power-law distribution with impact energy. Detailed mapping of rock fall sources and paths from field mapping, aerial lidar digital elevation model (DEM) data, and high-resolution aerial imagery produced 32 well-constrained runout paths of boulders that impacted structures. Impact velocities used for structural analysis were developed using lumped mass 2-D rock fall runout models using 1-m resolution lidar elevation data. Model inputs were based on calibrated surface parameters from mapped runout paths of 198 additional boulder runouts. Terrestrial lidar scans and structure from motion (SfM) imagery generated 3-D point cloud data used to measure structural damage and impacting boulders. Combining velocity distributions from 2-D analysis and high-precision boulder dimensions, kinetic energy distributions were calculated for all impacts. Calculated impact energy versus penetration distance for all cases suggests a power-law relationship between damage and impact energy. These case histories and resulting fragility curve should serve as a foundation for future risk analysis of rock fall hazards by linking vulnerability data to the predicted energy distributions from the hazard analysis.

  4. Reliability analysis of hierarchical computer-based systems subject to common-cause failures

    International Nuclear Information System (INIS)

    Xing Liudong; Meshkat, Leila; Donohue, Susan K.

    2007-01-01

    The results from reliability modeling and analysis are key contributors to design and tuning activities for computer-based systems. Each architecture style, however, poses different challenges for which analytical approaches must be developed or modified. The challenge we address in this paper is the reliability analysis of hierarchical computer-based systems (HS) with common-cause failures (CCF). The dependencies among components introduced by CCF complicate the reliability analysis of HS, especially when components affected by a common cause exist on different hierarchical levels. We propose an efficient decomposition and aggregation (EDA) approach for incorporating CCF into the reliability evaluation of HS. Our approach is to decompose an original HS reliability analysis problem with CCF into a number of reduced reliability problems freed from the CCF concerns. The approach is represented in a dynamic fault tree by a proposed CCF gate modeled after the functional dependency gate. We present the basics of the EDA approach by working through a hypothetical analysis of a HS subject to CCF and show how it can be extended to an analysis of a hierarchical phased-mission system subject to different CCF depending on mission phases

  5. Trend and pattern analysis of failures of main feedwater system components in United States commercial nuclear power plants

    International Nuclear Information System (INIS)

    Gentillon, C.D.; Meachum, T.R.; Brady, B.M.

    1987-01-01

    The goal of the trend and pattern analysis of MFW (main feedwater) component failure data is to identify component attributes that are associated with relatively high incidences of failure. Manufacturer, valve type, and pump rotational speed are examples of component attributes under study; in addition, the pattern of failures among NPP units is studied. A series of statistical methods is applied to identify trends and patterns in failures and trends in occurrences in time with regard to these component attributes or variables. This process is followed by an engineering evaluation of the statistical results. In the remainder of this paper, the characteristics of the NPRDS that facilitate its use in reliability and risk studies are highlighted, the analysis methods are briefly described, and the lessons learned thus far for improving MFW system availability and reliability are summarized (orig./GL)

  6. Ultrafiltration for acute decompensated cardiac failure: A systematic review and meta-analysis.

    Science.gov (United States)

    Kwok, Chun Shing; Wong, Chun Wai; Rushton, Claire A; Ahmed, Fozia; Cunnington, Colin; Davies, Simon J; Patwala, Ashish; Mamas, Mamas A; Satchithananda, Duwarakan

    2017-02-01

    Ultrafiltration is a method used to achieve diuresis in acute decompensated heart failure (ADHF) when there is diuretic resistance, but its efficacy in other settings is unclear. We therefore conducted a systematic review and meta-analysis to evaluate the use of ultrafiltration in ADHF. We searched MEDLINE and EMBASE for studies that evaluated outcomes following filtration compared to diuretic therapy in ADHF. The outcomes of interest were body weight change, change in renal function, length of stay, frequency of rehospitalization, mortality and dependence on dialysis. We performed random effects meta-analyses to pool studies that evaluated the desired outcomes and assessed statistical heterogeneity using the I 2 statistic. A total of 10 trials with 857 participants (mean age 68years, 71% male) compared filtration to usual diuretic care in ADHF. Nine studies evaluated weight change following filtration and the pooled results suggest a decline in mean body weight -1.8; 95% CI, -4.68 to 0.97 kg. Pooled results showed no difference between the filtration and diuretic group in change in creatinine or estimated glomerular filtration rate. The pooled results suggest longer hospital stay with filtration (mean difference, 3.70; 95% CI, -3.39 to 10.80days) and a reduction in heart failure hospitalization (RR, 0.71; 95% CI, 0.51-1.00) and all-cause rehospitalization (RR, 0.89; 95% CI, 0.43-1.86) compared to the diuretic group. Filtration was associated with a non-significant greater risk of death compared to diuretic use (RR, 1.08; 95% CI, 0.77-1.52). There is insufficient evidence supporting routine use of ultrafiltration in acute decompensated heart failure. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Dam failure analysis for the Lago de Matrullas Dam, Orocovis, Puerto Rico

    Science.gov (United States)

    Torres-Sierra, Heriberto; Gómez-Fragoso, Julieta

    2015-01-01

    The U.S. Geological Survey, in cooperation with the Puerto Rico Electric Power Authority, completed a hydrologic and hydraulic study to assess the potential hazard to human life and property associated with the hypothetical failure of the Lago de Matrullas Dam, located within the headwaters of the Río Grande de Manatí. The hydrologic study yielded outflow hydrographs and peak discharges for Lago de Matrullas and other subbasins in the Río Grande de Manatí hydrographic basin for three extreme rainfall events: (1) a 6-hour probable maximum precipitation (PMP) event, (2) a 24-hour PMP event, and (3) a 100-year-recurrence, 24-hour rainfall event. The hydraulic study simulated the hypothetical dam failure of Lago de Matrullas using hypothetical flood hydrographs generated from the hydrologic study and selected dam breach parameters. The flood wave resulting from the failure was downstream-routed through the lower reaches of the Río Matrullas, the Río Toro Negro, and the Río Grande de Manatí for determination of water-surface profiles developed from the event-based hydrologic scenarios and “sunny day” (no precipitation) conditions. The Hydrologic Modeling System (HEC–HMS) and the River Analysis System (HEC–RAS) computer programs, developed by the Hydrologic Engineering Center (HEC) of the U.S. Army Corps of Engineers, were used for the hydrologic and hydraulic modeling, respectively. The flow routing in the hydraulic analyses was performed using the unsteady-state flow module available in the HEC–RAS model.

  8. Prediction of hemodialysis vascular access failure using segmental bioimpedance analysis parameters.

    Science.gov (United States)

    Kim, Hyunwoo; Seo, Hye Mi; Kim, Ji Young; Kim, Miyeon

    2018-02-23

    Segmental bioimpedance analysis (BIA) can identify fluid volume changes in the arms of patients on hemodialysis (HD) after vascular access surgery. We investigated whether the difference in fluid volumes between the arms of the patients using segmental BIA is associated with vascular access outcome. Body composition measurements were taken for 127 patients on HD with segmental, multi-frequency BIA equipment (InBody 1.0, Biospace Co. Ltd, Seoul, Korea). The difference in fluid volume between the arms of the patients was calculated from the fluid volume of the arm with the vascular access minus that of the other. The primary outcome was the loss of vascular access patency within 3 months of BIA measurement. The median absolute and relative inter-arm fluid volume differences were 150 ml [interquartile range (IQR) 90-250 ml] and 9.6% (IQR 4.9-14.4%), respectively. Within 3 months of BIA measurement, 38 patients (30.0%) experienced vascular access failure. When the patients were divided into three groups based on the tertiles of relative inter-arm fluid volume differences (lowest tertile:  12.7%), greater difference in relative inter-arm fluid volume differences was associated with higher vascular access failure rates (14 vs. 28 vs. 48%, p value for trend across tertiles = 0.003). We conclude that segmental BIA may be used as a tool that can predict vascular access failure in patients on HD by calculating the relative difference in fluid volume between the arms of the patients with and without vascular access.

  9. Finite element analysis and CT-based structural rigidity analysis to assess failure load in bones with simulated lytic defects.

    Science.gov (United States)

    Anez-Bustillos, Lorenzo; Derikx, Loes C; Verdonschot, Nico; Calderon, Nathan; Zurakowski, David; Snyder, Brian D; Nazarian, Ara; Tanck, Esther

    2014-01-01

    There is an urgent need to improve the prediction of fracture risk for cancer patients with bone metastases. Pathological fractures that result from these tumors frequently occur in the femur. It is extremely difficult to determine the fracture risk even for experienced physicians. Although evolving, fracture risk assessment is still based on inaccurate predictors estimated from previous retrospective studies. As a result, many patients are surgically over-treated, whereas other patients may fracture their bones against expectations. We mechanically tested ten pairs of human cadaveric femurs to failure, where one of each pair had an artificial defect simulating typical metastatic lesions. Prior to testing, finite element (FE) models were generated and computed tomography rigidity analysis (CTRA) was performed to obtain axial and bending rigidity measurements. We compared the two techniques on their capacity to assess femoral failure load by using linear regression techniques, Student's t-tests, the Bland-Altman methodology and Kendall rank correlation coefficients. The simulated FE failure loads and CTRA predictions showed good correlation with values obtained from the experimental mechanical testing. Kendall rank correlation coefficients between the FE rankings and the CTRA rankings showed moderate to good correlations. No significant differences in prediction accuracy were found between the two methods. Non-invasive fracture risk assessment techniques currently developed both correlated well with actual failure loads in mechanical testing suggesting that both methods could be further developed into a tool that can be used in clinical practice. The results in this study showed slight differences between the methods, yet validation in prospective patient studies should confirm these preliminary findings. © 2013.

  10. Non-destructive failure analysis and measurement for molded devices and complex assemblies with X-ray CT and 3D image processing techniques

    International Nuclear Information System (INIS)

    Yin, Xiaoming; Liew, Seaw Jia; Jiang, Ting Ying; Xu, Jian; Kakarala, Ramakrishna

    2013-01-01

    In both automotive and healthcare sectors, reliable failure analysis and accurate measurement of molded devices and complex assemblies are important. Current methods of failure analysis and measurement require these molded parts to be cross-sectioned so that internal features or dimensions can be accessible. As a result, the parts are deemed unusable and additional failure introduced by sectioning may cause misinterpretation of the results. X-ray CT and 3D image processing techniques provide a new nondestructive solution for failure analysis and measurement of molded devices and complex assemblies. These techniques simplify failure analysis and measurement of molded devices and assemblies, and improve the productivity of molding manufacturing significantly.

  11. The current and future financial burden of hospital admissions for heart failure in Canada: a cost analysis.

    Science.gov (United States)

    Tran, Dat T; Ohinmaa, Arto; Thanh, Nguyen X; Howlett, Jonathan G; Ezekowitz, Justin A; McAlister, Finlay A; Kaul, Padma

    2016-01-01

    Heart failure is a costly health condition and a major public health concern. We sought to examine the costs of hospital admissions for heart failure between fiscal years 2004 and 2013 in Canada and to model the future costs to 2030. Canadian Institutes for Health Information Discharge Abstract Database was used to identify admissions to hospital with heart failure as the primary diagnosis between fiscal years 2004 and 2013. Multiple linear regression models were used to calculate the trend in prevalence and extrapolate these to 2030. Canadian Institutes for Health Information patient cost estimates were used to identify costs of hospital admissions for heart failure. Generalized linear models were used to estimate average annual costs per heart failure patient. We conducted a sensitivity analysis including all admissions for heart failure in any diagnostic field. In 2013, 45 600 (95% confidence interval [CI]: 43 800-47 200) patients were admitted with heart failure as the primary diagnosis, accounting for $482 (95% CI $464-$500) million. By 2030, we estimate 54 000 (95% CI 49 000-60 000) patients and costs of $722 (95% CI $650-$801) million, with older adults (age ≥ 80 yr) accounting for 52% of costs. Including admissions for which heart failure was a secondary diagnosis increases the total cost to $2.8 (95% CI $2.6-$3.0) billion in 2030. As in other developed countries, hospital costs related to heart failure in Canada are on the rise. Older adults are the main consumers of such hospital services. Strategies to improve outpatient care to reduce rates of admission for heart failure are needed.

  12. Direct Torque Control in presence of Current sensor failure in Variable Speed Wind System: Effect analysis, detection and control reconfiguration

    Directory of Open Access Journals (Sweden)

    A. J. Arbi

    2008-03-01

    Full Text Available This paper presents a study of current sensor failure in a Direct Torque Control applied to a Double Fed Induction Generator based Variable Speed Wind System. The effect of scaling and offset current sensor errors is discussed through sensibility analysis. A control reconfiguration is then proposed to remedy this sensor failure. Simulation results emphasize the good performances of the proposed current sensor fault tolerant control

  13. A Case Study on Improving Intensive Care Unit (ICU) Services Reliability: By Using Process Failure Mode and Effects Analysis (PFMEA).

    Science.gov (United States)

    Yousefinezhadi, Taraneh; Jannesar Nobari, Farnaz Attar; Behzadi Goodari, Faranak; Arab, Mohammad

    2016-09-01

    In any complex human system, human error is inevitable and shows that can't be eliminated by blaming wrong doers. So with the aim of improving Intensive Care Units (ICU) reliability in hospitals, this research tries to identify and analyze ICU's process failure modes at the point of systematic approach to errors. In this descriptive research, data was gathered qualitatively by observations, document reviews, and Focus Group Discussions (FGDs) with the process owners in two selected ICUs in Tehran in 2014. But, data analysis was quantitative, based on failures' Risk Priority Number (RPN) at the base of Failure Modes and Effects Analysis (FMEA) method used. Besides, some causes of failures were analyzed by qualitative Eindhoven Classification Model (ECM). Through FMEA methodology, 378 potential failure modes from 180 ICU activities in hospital A and 184 potential failures from 99 ICU activities in hospital B were identified and evaluated. Then with 90% reliability (RPN≥100), totally 18 failures in hospital A and 42 ones in hospital B were identified as non-acceptable risks and then their causes were analyzed by ECM. Applying of modified PFMEA for improving two selected ICUs' processes reliability in two different kinds of hospitals shows that this method empowers staff to identify, evaluate, prioritize and analyze all potential failure modes and also make them eager to identify their causes, recommend corrective actions and even participate in improving process without feeling blamed by top management. Moreover, by combining FMEA and ECM, team members can easily identify failure causes at the point of health care perspectives.

  14. Trade credit and the propagation of corporate failure: An empirical analysis

    OpenAIRE

    Jacobsen, Tor; von Schedvin, Erik

    2012-01-01

    We quantify the importance of trade credit chains for the propagation of corporate bankruptcies. Our results show that trade creditors (suppliers) that issue more trade credit are more exposed to trade debtor (customer) failures, both in terms of the likelihood of experiencing a debtor failure and the loss given failure. We further document that the credit loss invoked by a debtor failure imposes a substantially enhanced bankruptcy risk on the creditors. The propagation mechanism is mitigated...

  15. Verification and Validation Process for Progressive Damage and Failure Analysis Methods in the NASA Advanced Composites Consortium

    Science.gov (United States)

    Wanthal, Steven; Schaefer, Joseph; Justusson, Brian; Hyder, Imran; Engelstad, Stephen; Rose, Cheryl

    2017-01-01

    The Advanced Composites Consortium is a US Government/Industry partnership supporting technologies to enable timeline and cost reduction in the development of certified composite aerospace structures. A key component of the consortium's approach is the development and validation of improved progressive damage and failure analysis methods for composite structures. These methods will enable increased use of simulations in design trade studies and detailed design development, and thereby enable more targeted physical test programs to validate designs. To accomplish this goal with confidence, a rigorous verification and validation process was developed. The process was used to evaluate analysis methods and associated implementation requirements to ensure calculation accuracy and to gage predictability for composite failure modes of interest. This paper introduces the verification and validation process developed by the consortium during the Phase I effort of the Advanced Composites Project. Specific structural failure modes of interest are first identified, and a subset of standard composite test articles are proposed to interrogate a progressive damage analysis method's ability to predict each failure mode of interest. Test articles are designed to capture the underlying composite material constitutive response as well as the interaction of failure modes representing typical failure patterns observed in aerospace structures.

  16. Common cause failure analysis of hydraulic scram and control rod systems in the Swedish and Finnish BWR plants

    Energy Technology Data Exchange (ETDEWEB)

    Mankamo, T. [Avaplan Oy, Espoo (Finland)

    1996-12-01

    The main task of the project included the analysis of the operating experiences at the BWRs of ABB Atom design, comprising 9 units in Sweden and 2 in Finland. International experience and reference information were also surveyed. A reference application was done for the Barsebaeck plant. This pilot study covered all systems which contribute to the reactor shutdown, including also the actuation relays at the interface to the reactor protection system. The Common Load Model was used as the quantification method, which proved to be a practicable approach. This method provides a consistent handling of failure combinatorics and workable extension to evaluate localized dependence between adjacent control rod and drive assemblies (CRDAs). As part of this project, instructions of handbook style were prepared for the CCF analysis of high redundancy systems. The primary focus in the analysis of operating experience was placed on the scram valves and CRDAs. Due to the limited component population, the experiences for the scram valve constitute only a few single failures and some potential but none actual CCF event. These insights are compatible with the generic data for these valves. The experiences for the CRDAs include several single failures, and some actual and many potential CCF events of varying degree of functional impact. Special emphasis was placed to identify any multiple failure or degradation indicating that adjacent rods would be more vulnerable to failure, because such phenomena are far more critical for the scram function as compared to failure of randomly placed rods. 17 refs.

  17. Diagnostic prediction of renal failure from blood serum analysis by FTIR spectrometry and chemometrics

    Science.gov (United States)

    Khanmohammadi, Mohammdreza; Ghasemi, Keyvan; Garmarudi, Amir Bagheri; Ramin, Mehdi

    2015-02-01

    A new diagnostic approach based on Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectrometry and classification algorithm has been introduced which provides a rapid, reliable, and easy way to perform blood test for the diagnosis of renal failure. Blood serum samples from 35 renal failure patients and 40 healthy persons were analyzed by ATR-FTIR spectrometry. The resulting data was processed by Quadratic Discriminant Analysis (QDA) and QDA combined with simple filtered method. Spectroscopic studies were performed in 900-2000 cm-1 spectral region with 3.85 cm-1 data space. Results showed 93.33% and 100% of accuracy for QDA and filter-QDA models, respectively. In the first step, 30 samples were applied to construct the model. In order to modify the capability of QDA in prediction of test samples, filter-based feature selection methods were applied. It was found that the filtered spectra coupled with QDA could correctly predict the test samples in most of the cases.

  18. Outcomes of a Failure Mode and Effects Analysis for medication errors in pediatric anesthesia.

    Science.gov (United States)

    Martin, Lizabeth D; Grigg, Eliot B; Verma, Shilpa; Latham, Gregory J; Rampersad, Sally E; Martin, Lynn D

    2017-06-01

    The Institute of Medicine has called for development of strategies to prevent medication errors, which are one important cause of preventable harm. Although the field of anesthesiology is considered a leader in patient safety, recent data suggest high medication error rates in anesthesia practice. Unfortunately, few error prevention strategies for anesthesia providers have been implemented. Using Toyota Production System quality improvement methodology, a multidisciplinary team observed 133 h of medication practice in the operating room at a tertiary care freestanding children's hospital. A failure mode and effects analysis was conducted to systematically deconstruct and evaluate each medication handling process step and score possible failure modes to quantify areas of risk. A bundle of five targeted countermeasures were identified and implemented over 12 months. Improvements in syringe labeling (73 to 96%), standardization of medication organization in the anesthesia workspace (0 to 100%), and two-provider infusion checks (23 to 59%) were observed. Medication error reporting improved during the project and was subsequently maintained. After intervention, the median medication error rate decreased from 1.56 to 0.95 per 1000 anesthetics. The frequency of medication error harm events reaching the patient also decreased. Systematic evaluation and standardization of medication handling processes by anesthesia providers in the operating room can decrease medication errors and improve patient safety. © 2017 John Wiley & Sons Ltd.

  19. Risk-Cost Estimation of On-Site Wastewater Treatment System Failures Using Extreme Value Analysis.

    Science.gov (United States)

    Kohler, Laura E; Silverstein, JoAnn; Rajagopalan, Balaji

    2017-05-01

      Owner resistance to increasing regulation of on-site wastewater treatment systems (OWTS), including obligatory inspections and upgrades, moratoriums and cease-and-desist orders in communities around the U.S. demonstrate the challenges associated with managing risks of inadequate performance of owner-operated wastewater treatment systems. As a result, determining appropriate and enforceable performance measures in an industry with little history of these requirements is challenging. To better support such measures, we develop a statistical method to predict lifetime failure risks, expressed as costs, in order to identify operational factors associated with costly repairs and replacement. A binomial logistic regression is used to fit data from public records of reported OWTS failures, in Boulder County, Colorado, which has 14 300 OWTS to determine the probability that an OWTS will be in a low- or high-risk category for lifetime repair and replacement costs. High-performing or low risk OWTS with repairs and replacements below the threshold of $9000 over a 40-year life are associated with more frequent inspections and upgrades following home additions. OWTS with a high risk of exceeding the repair cost threshold of $18 000 are further analyzed in a variation of extreme value analysis (EVA), Points Over Threshold (POT) where the distribution of ris