WorldWideScience

Sample records for factors oct4 sox2

  1. Yin Yang 1 is associated with cancer stem cell transcription factors (SOX2, OCT4, BMI1) and clinical implication.

    Science.gov (United States)

    Kaufhold, Samantha; Garbán, Hermes; Bonavida, Benjamin

    2016-05-25

    The transcription factor Yin Yang 1 (YY1) is frequently overexpressed in cancerous tissues compared to normal tissues and has regulatory roles in cell proliferation, cell viability, epithelial-mesenchymal transition, metastasis and drug/immune resistance. YY1 shares many properties with cancer stem cells (CSCs) that drive tumorigenesis, metastasis and drug resistance and are regulated by overexpression of certain transcription factors, including SOX2, OCT4 (POU5F1), BMI1 and NANOG. Based on these similarities, it was expected that YY1 expression would be associated with SOX2, OCT4, BMI1, and NANOG's expressions and activities. Data mining from the proteomic tissue-based datasets from the Human Protein Atlas were used for protein expression patterns of YY1 and the four CSC markers in 17 types of cancer, including both solid and hematological malignancies. A close association was revealed between the frequency of expressions of YY1 and SOX2 as well as SOX2 and OCT4 in all cancers analyzed. Two types of dynamics were identified based on the nature of their association, namely, inverse or direct, between YY1 and SOX2. These two dynamics define distinctive patterns of BMI1 and OCT4 expressions. The relationship between YY1 and SOX2 expressions as well as the expressions of BMI1 and OCT4 resulted in the classification of four groups of cancers with distinct molecular signatures: (1) Prostate, lung, cervical, endometrial, ovarian and glioma cancers (YY1(lo)SOX2(hi)BMI1(hi)OCT4(hi)) (2) Skin, testis and breast cancers (YY1(hi)SOX2(lo)BMI1(hi)OCT4(hi)) (3) Liver, stomach, renal, pancreatic and urothelial cancers (YY1(lo)SOX2(lo)BMI1(hi)OCT4(hi)) and (4) Colorectal cancer, lymphoma and melanoma (YY1(hi)SOX2(hi)BMI1(lo)OCT4(hi)). A regulatory loop is proposed consisting of the cross-talk between the NF-kB/PI3K/AKT pathways and the downstream inter-regulation of target gene products YY1, OCT4, SOX2 and BMI1.

  2. Yin Yang 1 is associated with cancer stem cell transcription factors (SOX2, OCT4, BMI1) and clinical implication

    OpenAIRE

    Kaufhold, Samantha; Garbán, Hermes; Bonavida, Benjamin

    2016-01-01

    The transcription factor Yin Yang 1 (YY1) is frequently overexpressed in cancerous tissues compared to normal tissues and has regulatory roles in cell proliferation, cell viability, epithelial-mesenchymal transition, metastasis and drug/immune resistance. YY1 shares many properties with cancer stem cells (CSCs) that drive tumorigenesis, metastasis and drug resistance and are regulated by overexpression of certain transcription factors, including SOX2, OCT4 (POU5F1), BMI1 and NANOG. Based on t...

  3. Expression of early transcription factors Oct-4, Sox-2 and Nanog by porcine umbilical cord (PUC matrix cells

    Directory of Open Access Journals (Sweden)

    Schultz Bruce

    2006-02-01

    Full Text Available Abstract Background Three transcription factors that are expressed at high levels in embryonic stem cells (ESCs are Nanog, Oct-4 and Sox-2. These transcription factors regulate the expression of other genes during development and are found at high levels in the pluripotent cells of the inner cell mass. The downregulation of these three transcription factors correlates with the loss of pluripotency and self-renewal, and the beginning of subsequent differentiation steps. The roles of Nanog, Oct-4 and Sox-2 have not been fully elucidated. They are important in embryonic development and maintenance of pluripotency in ESCs. We studied the expression of these transcription factors in porcine umbilical cord (PUC matrix cells. Methods Cells were isolated from Wharton's jelly of porcine umbilical cords (PUC and histochemically assayed for the presence of alkaline phosphatase and the presence of Nanog, Oct-4 and Sox-2 mRNA and protein. PCR amplicons were sequenced and compared with known sequences. The synthesis of Oct-4 and Nanog protein was analyzed using immunocytochemistry. FACS analysis was utilized to evaluate Hoechst 33342 dye-stained cells. Results PUC isolates were maintained in culture and formed colonies that express alkaline phosphatase. FACS analysis revealed a side population of Hoechst dye-excluding cells, the Hoechst exclusion was verapamil sensitive. Quantitative and non-quantitative RT-PCR reactions revealed expression of Nanog, Oct-4 and Sox-2 in day 15 embryonic discs, PUC cell isolates and porcine fibroblasts. Immunocytochemical analysis detected Nanog immunoreactivity in PUC cell nuclei, and faint labeling in fibroblasts. Oct-4 immunoreactivity was detected in the nuclei of some PUC cells, but not in fibroblasts. Conclusion Cells isolated from PUC express three transcription factors found in pluripotent stem cell markers both at the mRNA and protein level. The presence of these transcription factors, along with the other

  4. Generation of induced pluripotent stem cells from human cord blood cells with only two factors: Oct4 and Sox2.

    Science.gov (United States)

    Giorgetti, Alessandra; Montserrat, Nuria; Rodriguez-Piza, Ignacio; Azqueta, Carmen; Veiga, Anna; Izpisúa Belmonte, Juan Carlos

    2010-04-01

    Induced pluripotent stem cells (iPSC) provide an invaluable resource for regenerative medicine as they allow the generation of patient-specific progenitors with potential value for cell therapy. However, in many instances, an off-the-shelf approach is desirable, such as for cell therapy of acute conditions or when the patient's somatic cells are altered as a consequence of a chronic disease or aging. Cord blood (CB) stem cells appear ideally suited for this purpose as they are young cells expected to carry minimal somatic mutations and possess the immunological immaturity of newborn cells; additionally, several hundred thousand immunotyped CB units are readily available through a worldwide network of CB banks. Here we present a detailed protocol for the derivation of CB stem cells and how they can be reprogrammed to pluripotency by retroviral transduction with only two factors (OCT4 and SOX2) in 2 weeks and without the need for additional chemical compounds.

  5. Over-expression of Oct4 and Sox2 transcription factors enhances differentiation of human umbilical cord blood cells in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Guseva, Daria [Kazan State Medical University, Kazan, Republic of Tatarstan (Russian Federation); Hannover Medical School, Hannover (Germany); Rizvanov, Albert A.; Salafutdinov, Ilnur I.; Kudryashova, Nezhdana V. [Kazan Federal University, Kazan, Republic of Tatarstan (Russian Federation); Palotás, András, E-mail: palotas@asklepios-med.eu [Kazan Federal University, Kazan, Republic of Tatarstan (Russian Federation); Asklepios-Med (Private Medical Practice and Research Center), Szeged (Hungary); Islamov, Rustem R., E-mail: islamru@yahoo.com [Kazan State Medical University, Kazan, Republic of Tatarstan (Russian Federation)

    2014-09-05

    Highlights: • Gene and cell-based therapies comprise innovative aspects of regenerative medicine. • Genetically modified hUCB-MCs enhanced differentiation of cells in a mouse model of ALS. • Stem cells successfully transformed into micro-glial and endothelial lines in spinal cords. • Over-expressing oct4 and sox2 also induced production of neural marker PGP9.5. • Formation of new nerve cells, secreting trophic factors and neo-vascularisation could improve symptoms in ALS. - Abstract: Gene and cell-based therapies comprise innovative aspects of regenerative medicine. Even though stem cells represent a highly potential therapeutic strategy, their wide-spread exploitation is marred by ethical concerns, potential for malignant transformation and a plethora of other technical issues, largely restricting their use to experimental studies. Utilizing genetically modified human umbilical cord blood mono-nuclear cells (hUCB-MCs), this communication reports enhanced differentiation of transplants in a mouse model of amyotrophic lateral sclerosis (ALS). Over-expressing Oct4 and Sox2 induced production of neural marker PGP9.5, as well as transformation of hUCB-MCs into micro-glial and endothelial lines in ALS spinal cords. In addition to producing new nerve cells, providing degenerated areas with trophic factors and neo-vascularisation might prevent and even reverse progressive loss of moto-neurons and skeletal muscle paralysis.

  6. Differential Nucleosome Occupancies across Oct4-Sox2 Binding Sites in Murine Embryonic Stem Cells.

    Directory of Open Access Journals (Sweden)

    Amy Sebeson

    Full Text Available The binding sequence for any transcription factor can be found millions of times within a genome, yet only a small fraction of these sequences encode functional transcription factor binding sites. One of the reasons for this dichotomy is that many other factors, such as nucleosomes, compete for binding. To study how the competition between nucleosomes and transcription factors helps determine a functional transcription factor site from a predicted transcription factor site, we compared experimentally-generated in vitro nucleosome occupancy with in vivo nucleosome occupancy and transcription factor binding in murine embryonic stem cells. Using a solution hybridization enrichment technique, we generated a high-resolution nucleosome map from targeted regions of the genome containing predicted sites and functional sites of Oct4/Sox2 regulation. We found that at Pax6 and Nes, which are bivalently poised in stem cells, functional Oct4 and Sox2 sites show high amounts of in vivo nucleosome displacement compared to in vitro. Oct4 and Sox2, which are active, show no significant displacement of in vivo nucleosomes at functional sites, similar to nonfunctional Oct4/Sox2 binding. This study highlights a complex interplay between Oct4 and Sox2 transcription factors and nucleosomes among different target genes, which may result in distinct patterns of stem cell gene regulation.

  7. Differential Nucleosome Occupancies across Oct4-Sox2 Binding Sites in Murine Embryonic Stem Cells.

    Science.gov (United States)

    Sebeson, Amy; Xi, Liqun; Zhang, Quanwei; Sigmund, Audrey; Wang, Ji-Ping; Widom, Jonathan; Wang, Xiaozhong

    2015-01-01

    The binding sequence for any transcription factor can be found millions of times within a genome, yet only a small fraction of these sequences encode functional transcription factor binding sites. One of the reasons for this dichotomy is that many other factors, such as nucleosomes, compete for binding. To study how the competition between nucleosomes and transcription factors helps determine a functional transcription factor site from a predicted transcription factor site, we compared experimentally-generated in vitro nucleosome occupancy with in vivo nucleosome occupancy and transcription factor binding in murine embryonic stem cells. Using a solution hybridization enrichment technique, we generated a high-resolution nucleosome map from targeted regions of the genome containing predicted sites and functional sites of Oct4/Sox2 regulation. We found that at Pax6 and Nes, which are bivalently poised in stem cells, functional Oct4 and Sox2 sites show high amounts of in vivo nucleosome displacement compared to in vitro. Oct4 and Sox2, which are active, show no significant displacement of in vivo nucleosomes at functional sites, similar to nonfunctional Oct4/Sox2 binding. This study highlights a complex interplay between Oct4 and Sox2 transcription factors and nucleosomes among different target genes, which may result in distinct patterns of stem cell gene regulation.

  8. 293FT cells transduced with four transcription factors (OCT4, SOX2, NANOG, and LIN28 generate aberrant ES-like cells

    Directory of Open Access Journals (Sweden)

    Kobayashi H

    2010-01-01

    Full Text Available The HEK 293 cell line (293 cells was derived from human embryonic kidney (HEK cells grown in tissue culture. 293 cells are very easy to grow and transfect and have been widely used in cell biological research for many years. 293 cells have many of the properties of immature neurons, suggesting that they represent a transformed neuronal cell present in the original kidney culture, and they are not useful as an in vitro model for kidney cell function. The 293T cell line contains the SV40 large T-antigen, which allows the episomal replication of transfected plasmids containing the SV40 origin of replication, and 293FT cells are a fast-growing variant. A recent report showed that introducing a set of transcription factors associated with pluripotency into human somatic cells can directly reprogram them to produce induced pluripotent stem (iPS cells. To date, however, iPS cells have not been generated from immortalized cells. We examined whether iPS cells could be generated from 293 FT cells transfected with four transcription factors (OCT4, SOX2, NANOG, and LIN28. The obtained cells morphologically resembled human ES cells, and showed a similar marker gene expression pattern. These cells had an impaired ability to differentiate, and formed immature ectodermal tumors after they were transplanted into nude mice. Thus, we could not derive fully reprogrammed iPS cells from 293FT cells. We conclude that the 293FT cells transduced with OCT4, SOX2, NANOG, and LIN28 produced aberrant ES-like cells.

  9. OCT4 and SOX2 are reliable markers in detecting stem cells in odontogenic lesions

    Directory of Open Access Journals (Sweden)

    Abhishek Banerjee

    2016-01-01

    Full Text Available Context (Background: Stem cells are a unique subpopulation of cells in the human body with a capacity to initiate differentiation into various cell lines. Tumor stem cells (TSCs are a unique subpopulation of cells that possess the ability to initiate a neoplasm and sustain self-renewal. Epithelial stem cell (ESC markers such as octamer-binding transcription factor 4 (OCT4 and sex-determining region Y (SRY-box 2 (SOX2 are capable of identifying these stem cells expressed during the early stages of tooth development. Aims: To detect the expression of the stem cell markers OCT4 and SOX2 in the normal odontogenic tissues and the odontogenic cysts and tumors. Materials and Methods: Paraffin sections of follicular tissue, radicular cyst, dentigerous cyst, odontogenic keratocyst, ameloblastoma, adenomatoid odontogenic tumor, and ameloblastic carcinoma were obtained from the archives. The sections were subjected to immunohistochemical assay by the use of mouse monoclonal antibodies to OCT4 and SOX2. Statistical Analysis: The results were evaluated by descriptive analysis. Results: The results show the presence of stem cells in the normal and lesional tissues with these stem cell identifying markers. SOX2 was found to be more consistent and reliable in the detection of stem cells. Conclusion: The stem cell expressions are maintained in the tumor transformation of tissue and probably suggest that there is no phenotypic change of stem cells in progression from normal embryonic state to its tumor component. The quantification and localization reveals interesting trends that indicate the probable role of the cells in the pathogenesis of the lesions.

  10. Studying the expression patterns of OCT4 and SOX2 proteins in regenerating rabbit ear tissue

    Directory of Open Access Journals (Sweden)

    A. S. Javanmard

    2016-06-01

    Full Text Available Epimorphic regeneration in New Zealand rabbit ear is an interesting example of mammalian wound healing in which blastema formation is involved in replacement of injured tissues. It has been suggested that isolated cells from regenerating rabbit ear possess stem-like properties. In this study, we aimed to determine the expression of stemness markers, OCT4 and SOX2 proteins, in regenerating rabbit tissues by immunohistochemistry. Results indicated that both proteins could be detected in epithelial cells, hair follicle cells and perichondrium cells. Expression pattern analysis of OCT4 and SOX2 proteins showed no clear differences between regenerative and non-regenerative control tissues. According to several reports of OCT4 and SOX2 proteins expression in adult stem cells, it could be proposed that OCT4 and SOX2 expressing cells in regenerating rabbit ear tissues are progenitor/adult stem cells which are resident in these tissues, and other markers should be used for detection of blastema cells.

  11. Transient exposure to proteins SOX2, Oct-4, and NANOG immortalizes exhausted tumor-infiltrating CTLs

    Energy Technology Data Exchange (ETDEWEB)

    Bhadurihauck, Anjuli; Li, Lei [Department of Animal and Avian Sciences, University of Maryland, College Park, 20742, MD (United States); Li, Qianqian; Wang, Jianjun [Department of Biochemistry and Molecular Biology, Wayne State University, Detroit, 48201 (United States); Xiao, Zhengguo, E-mail: xiao0028@umd.edu [Department of Animal and Avian Sciences, University of Maryland, College Park, 20742, MD (United States)

    2016-05-13

    Adoptive cell transfer therapy (ACT) is one of the most promising immunotherapies against cancer, using tumor-infiltrating lymphocytes (TILs) expanded in vitro. Tumor-infiltrating cytotoxic T lymphocytes (TICTLs) play a prominent role in cancer control. TILs terminally differentiate in response to immunosuppressive environments within tumors, and thus are slow to expand and challenging to maintain both in vitro and in patients. To reverse this exhaustion, we utilize a nuclear protein delivery system that exposes TICTLs to the SOX2, Oct-4, and NANOG (SON) proteins. Unlike activated naïve CTLs (effector CTLs), TICTLs respond favorably to SON treatment, exhibiting steady proliferation and extended survivability independent of cytokine and antigen stimulation. Though TICTLs treated with SON (STICTLs) still express T cell receptors as well as other critical downstream components, they are unresponsive to antigen challenge, suggesting that SON treatment regresses TICTLs into a state similar to that of an early double negative T cell. Our findings indicate the TICTL response to SON proteins is unique when compared to effector CTLs, suggesting TICTLs may be sensitive to regulation by other lineage-specific transcription factors and opening a promising new avenue into cancer immunotherapy. To our knowledge, this is the first report on lineage reprogramming of TILs using protein stem cell transcription factors delivered directly to the nucleus. -- Highlights: •TICTLs are sensitive to reprogramming by proteins of stem cell transcription factors, but effector CTLs were not. •TICTLs are regressed back to an early double negative T cell stage. •TCR signaling is deregulated by these transcription factors.

  12. Luteolin and apigenin activate the Oct-4/Sox2 signal via NFATc1 in human periodontal ligament cells.

    Science.gov (United States)

    Liu, Lu; Peng, Zhengjun; Huang, Haoquan; Xu, Zhezhen; Wei, Xi

    2016-10-01

    Identifying small molecules to activate the Oct-4/Sox2-derived pluripotency network represents a hopeful and safe method to pluripotency without genetic manipulation. Luteolin and apigenin, two major bioactive flavonoids, enhance reprogramming efficiency and increase expression of Oct-4/Sox2/c-Myc, albeit the detailed mechanism regulating pluripotency in dental-derived cells remains unknown. In the present study, to elucidate the effect of luteolin/apigenin on pluripotency of periodontal ligament cells (PDLCs) through interaction with downstream signals, we examined cell cycle, proliferation, apoptosis, expression of Oct-4/Sox2/c-Myc, and multilineage differentiation of PDLCs with luteolin/apigenin treatment. Moreover, we profiled the differentially expressed pluripotency genes by PCR arrays. Our results demonstrated that luteolin/apigenin restrained cell proliferation, increased apoptosis, and arrested PDLCs in G2/M and S phase. Luteolin and apigenin activated expression of Oct-4, Sox2, and c-Myc in a time- and dose-dependent pattern, and repressed lineage-specific differentiation. PCR arrays profiled multiple signals in PDLCs with luteolin/apigenin treatment, among which NFATc1 was the major upregulated gene. Notably, blocking of the NFATc1 signal with INCA-6 significantly decreased mRNA and protein expression of Oct-4, Sox2, and c-Myc in PDLCs with luteolin/apigenin treatment, indicating that NFATc1 may act as an upstream modulator of Oct-4/Sox2 signal. Taken together, this study showed that luteolin and apigenin effectively maintain pluripotency of PDLCs through activation of Oct-4/Sox2 signal via NFATc1.

  13. Differential expression of ID4 and its association with TP53 mutation, SOX2, SOX4 and OCT-4 expression levels.

    Directory of Open Access Journals (Sweden)

    Thais Fernanda de Almeida Galatro

    Full Text Available Inhibitor of DNA Binding 4 (ID4 is a member of the helix-loop-helix ID family of transcription factors, mostly present in the central nervous system during embryonic development, that has been associated with TP53 mutation and activation of SOX2. Along with other transcription factors, ID4 has been implicated in the tumorigenic process of astrocytomas, contributing to cell dedifferentiation, proliferation and chemoresistance. In this study, we aimed to characterize the ID4 expression pattern in human diffusely infiltrative astrocytomas of World Health Organization (WHO grades II to IV of malignancy (AGII-AGIV; to correlate its expression level to that of SOX2, SOX4, OCT-4 and NANOG, along with TP53 mutational status; and to correlate the results with the clinical end-point of overall survival among glioblastoma patients. Quantitative real time PCR (qRT-PCR was performed in 130 samples of astrocytomas for relative expression, showing up-regulation of all transcription factors in tumor cases. Positive correlation was found when comparing ID4 relative expression of infiltrative astrocytomas with SOX2 (r = 0.50; p<0.005, SOX4 (r = 0.43; p<0.005 and OCT-4 (r = 0.39; p<0.05. The results from TP53 coding exon analysis allowed comparisons between wild-type and mutated status only in AGII cases, demonstrating significantly higher levels of ID4, SOX2 and SOX4 in mutated cases (p<0.05. This pattern was maintained in secondary GBM and further confirmed by immunohistochemistry, suggesting a role for ID4, SOX2 and SOX4 in early astrocytoma tumorigenesis. Combined hyperexpression of ID4, SOX4 and OCT-4 conferred a much lower (6 months median survival than did hypoexpression (18 months. Because both ID4 alone and a complex of SOX4 and OCT-4 activate SOX2 transcription, it is possible that multiple activation of SOX2 impair the prognosis of GBM patients. These observational results of associated expression of ID4 with SOX4 and OCT-4 may be used as a

  14. YAP1 Regulates OCT4 Activity and SOX2 Expression to Facilitate Self-Renewal and Vascular Mimicry of Stem-Like Cells.

    Science.gov (United States)

    Bora-Singhal, Namrata; Nguyen, Jonathan; Schaal, Courtney; Perumal, Deepak; Singh, Sandeep; Coppola, Domenico; Chellappan, Srikumar

    2015-06-01

    Non-small cell lung cancer (NSCLC) is highly correlated with smoking and has very low survival rates. Multiple studies have shown that stem-like cells contribute to the genesis and progression of NSCLC. Our results show that the transcriptional coactivator yes-associated protein 1 (YAP1), which is the oncogenic component of the Hippo signaling pathway, is elevated in the stem-like cells from NSCLC and contributes to their self-renewal and ability to form angiogenic tubules. Inhibition of YAP1 by a small molecule or depletion of YAP1 by siRNAs suppressed self-renewal and vascular mimicry of stem-like cells. These effects of YAP1 were mediated through the embryonic stem cell transcription factor, Sox2. YAP1 could transcriptionally induce Sox2 through a physical interaction with Oct4; Sox2 induction occurred independent of TEAD2 transcription factor, which is the predominant mediator of YAP1 functions. The binding of Oct4 to YAP1 could be detected in cell lines as well as tumor tissues; the interaction was elevated in NSCLC samples compared to normal tissue as seen by proximity ligation assays. YAP1 bound to Oct4 through the WW domain, and a peptide corresponding to this region could disrupt the interaction. Delivery of the WW domain peptide to stem-like cells disrupted the interaction and abrogated Sox2 expression, self-renewal, and vascular mimicry. Depleting YAP1 reduced the expression of multiple epithelial-mesenchymal transition genes and prevented the growth and metastasis of tumor xenografts in mice; overexpression of Sox2 in YAP1 null cells rescued these functions. These results demonstrate a novel regulation of stem-like functions by YAP1, through the modulation of Sox2 expression. © 2015 AlphaMed Press.

  15. Embryonic stem cells markers SOX2, OCT4 and Nanog expression and their correlations with epithelial-mesenchymal transition in nasopharyngeal carcinoma.

    Directory of Open Access Journals (Sweden)

    Weiren Luo

    Full Text Available Expression of embryonic stem cells (ESCs markers (SOX2, OCT4, Nanog and Nestin is crucial for progression of various human malignancies. The purpose of this study was to investigate the expression and prognostic impact of these molecules in nasopharyngeal carcinoma (NPC patients by immunohistochemistry and immunofluorescence. In the present study, we found that the expression levels of SOX2, OCT4 and Nanog were highly expressed in NPC compared with the non-tumorous tissues. Furthermore, these proteins correlated significantly with several clinicalpathological factors and epithelial-mesenchymal transition (EMT-associated indicators (E-cadherin/N-cadherin and Snail. In multivariate analyses, high expression of OCT4 (P = 0.013 and Nanog (P = 0.040, but not that of SOX2, was associated with worse survival and had strongly independent prognostic effects. Of note, OCT4 and Nanog were more frequently located at the invasive front of tumors, and correlated significantly with various aggressive behaviors including T classification, N classification, M classification and clinical stage. Furthermore, patients with co-expression of OCT4 and Nanog in the invasive front had significantly worse survival (P = 0.005. Interestingly, at the invasive front, these molecules correlated significantly with Nestin expression in endothelial cells (P<0.001. These findings provide evidence that ESCs biomarkers OCT4 and Nanog serves as independent prognostic factors for NPC. Additionally, cancer cells in the invasive front of NPC acquiring ESCs-like features should be maintained by vascular niches.

  16. Oct4/Sox2 binding sites contribute to maintaining hypomethylation of the maternal igf2/h19 imprinting control region.

    Directory of Open Access Journals (Sweden)

    David L Zimmerman

    Full Text Available A central question in genomic imprinting is how parental-specific DNA methylation of imprinting control regions (ICR is established during gametogenesis and maintained after fertilization. At the imprinted Igf2/H19 locus, CTCF binding maintains the unmethylated state of the maternal ICR after the blastocyst stage. In addition, evidence from Beckwith-Wiedemann patients and cultured mouse cells suggests that two Sox-Oct binding motifs within the Igf2/H19 ICR also participate in maintaining hypomethylation of the maternal allele. We found that the Sox and octamer elements from both Sox-Oct motifs were required to drive hypomethylation of integrated transgenes in mouse embryonic carcinoma cells. Oct4 and Sox2 showed cooperative binding to the Sox-Oct motifs, and both were present at the endogenous ICR. Using a mouse with mutations in the Oct4 binding sites, we found that maternally transmitted mutant ICRs acquired partial methylation in somatic tissues, but there was little effect on imprinted expression of H19 and Igf2. A subset of mature oocytes also showed partial methylation of the mutant ICR, which suggested that the Sox-Oct motifs provide some protection from methylation during oogenesis. The Sox-Oct motifs, however, were not required for erasure of paternal methylation in primordial germ cells, which indicated that the oocyte methylation was acquired post-natally. Maternally inherited mutant ICRs were unmethylated in blastocysts, which suggested that at least a portion of the methylation in somatic tissues occurred after implantation. These findings provide evidence that Sox-Oct motifs contribute to ICR hypomethylation in post-implantation embryos and maturing oocytes and link imprinted DNA methylation with key stem cell/germline transcription factors.

  17. Comparison of Oct4, Sox2 and Nanog Expression in Pancreatic Cancer Cell Lines and Human Pancreatic Tumor

    Directory of Open Access Journals (Sweden)

    Vahideh Assadollahi

    2015-12-01

    Full Text Available Background: Genes are involved in the control of stem cell self-renewal as a new class of molecular markers of cancer. Objectives: In this study, the expression of Oct4, Nanog and Sox2 in cell lines MIA Paca-2, PA-TU-8902 and AsPC-1 and pancreatic cancer tissue were examined. Materials and Methods: In this experimental study, cell lines, MIA Paca-2, PA-TU-8902 and AsPC-1, were cultured in DMEM (Dulbecco’s Modified Eagles Medium and RPMI-1640 (Roswell Park Memorial Institute containing FBS 10% (fetal bovine serum in a 37°C incubator containing Co2 5% and humidity 90%. Samples of tumor and non-cancer pancreatic tumor were purchased Iran tumor bank. Extraction of RNA and synthesis of cDNA was performed. Expression levels of Oct4, Nanog and Sox2 were determined using Real-time PCR. The protein expression levels of target genes in the cell lines were studied by flow cytometry and immunocytochemistry. Results: The expression rate of Oct4, Nanog and Sox2 is more in the cancer cell lines than those in the control (normal tissue samples. The protein expression levels of target genes in the cell lines were confirmed by flow cytometry and immunocytochemistry. Conclusions: The genes are involved in stem cell self-renewal as a new class of molecular markers of cancer that detected in the pancreatic cell lines. Maybe, these genes play important role in the uncontrolled proliferation of cancer cells.

  18. Craniopharyngiomas express embryonic stem cell markers (SOX2, OCT4, KLF4, and SOX9) as pituitary stem cells but do not coexpress RET/GFRA3 receptors.

    Science.gov (United States)

    Garcia-Lavandeira, Montserrat; Saez, Carmen; Diaz-Rodriguez, Esther; Perez-Romero, Sihara; Senra, Ana; Dieguez, Carlos; Japon, Miguel A; Alvarez, Clara V

    2012-01-01

    Adult stem cells maintain some markers expressed by embryonic stem cells and express other specific markers depending on the organ where they reside. Recently, stem/progenitor cells in the rodent and human pituitary have been characterized as expressing GFRA2/RET, PROP1, and stem cell markers such as SOX2 and OCT4 (GPS cells). Our objective was to detect other specific markers of the pituitary stem cells and to investigate whether craniopharyngiomas (CRF), a tumor potentially derived from Rathke's pouch remnants, express similar markers as normal pituitary stem cells. We conducted mRNA and Western blot studies in pituitary extracts, and immunohistochemistry and immunofluorescence on sections from normal rat and human pituitaries and 20 CRF (18 adamantinomatous and two papillary). Normal pituitary GPS stem cells localized in the marginal zone (MZ) express three key embryonic stem cell markers, SOX2, OCT4, and KLF4, in addition to SOX9 and PROP1 and β-catenin overexpression. They express the RET receptor and its GFRA2 coreceptor but also express the coreceptor GFRA3 that could be detected in the MZ of paraffin pituitary sections. CRF maintain the expression of SOX2, OCT4, KLF4, SOX9, and β-catenin. However, RET and GFRA3 expression was altered in CRF. In 25% (five of 20), both RET and GFRA3 were detected but not colocalized in the same cells. The other 75% (15 of 20) lose the expression of RET, GFRA3, or both proteins simultaneously. Human pituitary adult stem/progenitor cells (GPS) located in the MZ are characterized by expression of embryonic stem cell markers SOX2, OCT4, and KLF4 plus the specific pituitary embryonic factor PROP1 and the RET system. Redundancy in RET coreceptor expression (GFRA2 and GFRA3) suggest an important systematic function in their physiological behavior. CRF share the stem cell markers suggesting a common origin with GPS. However, the lack of expression of the RET/GFRA system could be related to the cell mislocation and deregulated

  19. Selective influence of Sox2 on POU transcription factor binding in embryonic and neural stem cells.

    Science.gov (United States)

    Mistri, Tapan Kumar; Devasia, Arun George; Chu, Lee Thean; Ng, Wei Ping; Halbritter, Florian; Colby, Douglas; Martynoga, Ben; Tomlinson, Simon R; Chambers, Ian; Robson, Paul; Wohland, Thorsten

    2015-09-01

    Embryonic stem cell (ESC) identity is orchestrated by co-operativity between the transcription factors (TFs) Sox2 and the class V POU-TF Oct4 at composite Sox/Oct motifs. Neural stem cells (NSCs) lack Oct4 but express Sox2 and class III POU-TFs Oct6, Brn1 and Brn2. This raises the question of how Sox2 interacts with POU-TFs to transcriptionally specify ESCs versus NSCs. Here, we show that Oct4 alone binds the Sox/Oct motif and the octamer-containing palindromic MORE equally well. Sox2 binding selectively increases the affinity of Oct4 for the Sox/Oct motif. In contrast, Oct6 binds preferentially to MORE and is unaffected by Sox2. ChIP-Seq in NSCs shows the MORE to be the most enriched motif for class III POU-TFs, including MORE subtypes, and that the Sox/Oct motif is not enriched. These results suggest that in NSCs, co-operativity between Sox2 and class III POU-TFs may not occur and that POU-TF-driven transcription uses predominantly the MORE cis architecture. Thus, distinct interactions between Sox2 and POU-TF subclasses distinguish pluripotent ESCs from multipotent NSCs, providing molecular insight into how Oct4 alone can convert NSCs to pluripotency.

  20. Efficient reprogramming of human cord blood CD34+ cells into induced pluripotent stem cells with OCT4 and SOX2 alone.

    Science.gov (United States)

    Meng, Xianmei; Neises, Amanda; Su, Rui-Jun; Payne, Kimberly J; Ritter, Linda; Gridley, Daila S; Wang, Jun; Sheng, Matilda; Lau, K-H William; Baylink, David J; Zhang, Xiao-Bing

    2012-02-01

    The reprogramming of cord blood (CB) cells into induced pluripotent stem cells (iPSCs) has potential applications in regenerative medicine by converting CB banks into iPSC banks for allogeneic cell replacement therapy. Therefore, further investigation into novel approaches for efficient reprogramming is necessary. Here, we show that the lentiviral expression of OCT4 together with SOX2 (OS) driven by a strong spleen focus-forming virus (SFFV) promoter in a single vector can convert 2% of CB CD34(+) cells into iPSCs without additional reprogramming factors. Reprogramming efficiency was found to be critically dependent upon expression levels of OS. To generate transgene-free iPSCs, we developed an improved episomal vector with a woodchuck post-transcriptional regulatory element (Wpre) that increases transgene expression by 50%. With this vector, we successfully generated transgene-free iPSCs using OS alone. In conclusion, high-level expression of OS alone is sufficient for efficient reprogramming of CB CD34(+) cells into iPSCs. This report is the first to describe the generation of transgene-free iPSCs with the use of OCT4 and SOX2 alone. These findings have important implications for the clinical applications of iPSCs.

  1. Direct generation of ES-like cells from unmodified mouse embryonic fibroblasts by Oct4/Sox2/Myc/KIf4

    Institute of Scientific and Technical Information of China (English)

    Dajiang Qin; Wen Li; Jin Zhang; Duanqing Pei

    2007-01-01

    @@ Dear Editor: The demonstration that four transcription factors,Oct4/Sox2/Myc/Klf4,can reprogram fibroblasts into ES-like cells or induced pluripotent stem cells(iPS cells)has generated tremendous jnterests not only in the field of stem cell biology,but also those related fields such as developmental biology and regenerative medicine[1-5].The advance has greatly improved the prospects of generating patient specific pluripotent stem cells for therapeutic purposes without therapeutic cloning,an approach with formidable technical as well as ethical challenges.The conceptual breakthrough of the iPS strategy is quite obvious,demonstrating for the first time that the reprogrammmg of somatic nuclei can be achieved through a rational combination of transcription factors with defined regulatory activities,in contrast to the ill defined reprogramming power of unfertilized eggs.

  2. Bright/Arid3A Acts as a Barrier to Somatic Cell Reprogramming through Direct Regulation of Oct4, Sox2, and Nanog

    Directory of Open Access Journals (Sweden)

    Melissa Popowski

    2014-01-01

    Full Text Available We show here that singular loss of the Bright/Arid3A transcription factor leads to reprograming of mouse embryonic fibroblasts (MEFs and enhancement of standard four-factor (4F reprogramming. Bright-deficient MEFs bypass senescence and, under standard embryonic stem cell (ESC culture conditions, spontaneously form clones that in vitro express pluripotency markers, differentiate to all germ lineages, and in vivo form teratomas and chimeric mice. We demonstrate that BRIGHT binds directly to the promoter/enhancer regions of Oct4, Sox2, and Nanog to contribute to their repression in both MEFs and ESCs. Thus, elimination of the BRIGHT barrier may provide an approach for somatic cell reprogramming.

  3. SOX2 and OCT4 mRNA-Expressing Cells, Detected by Molecular Beacons, Localize to the Center of Neurospheres during Differentiation

    DEFF Research Database (Denmark)

    Ilieva, Mirolyuba; Dufva, Martin

    2013-01-01

    Neurospheres are used as in vitro assay to measure the properties of neural stem cells. To investigate the molecular and phenotypic heterogeneity of neurospheres, molecular beacons (MBs) targeted against the stem cell markers OCT4 and SOX2 were designed, and synthesized with a 2'-O-methyl RNA...

  4. Expression of TAT recombinant Oct4, Sox2, Lin28, and Nanog proteins from baculovirus-infected Sf9 insect cells.

    Science.gov (United States)

    Pan, Chuanying; Jia, Wenchao; Lu, Baisong; Bishop, Colin E

    2015-02-10

    Somatic cell reprogramming has generated enormous interest, following the first report of generation of induced pluripotent stem cells (iPSCs) from mouse fibroblasts, but the integration of viral transgenes into the genome is unlikely to be accepted. Given these safety considerations, a method for virus-free transient gene expression from suspension-adapted Sf9 insect cells was developed. Here, we expressed transactivator of transcription (TAT)-fused proteins, Sox2, Oct4, Lin28, and Nanog in Sf9 cells using the baculovirus expression vector system (BEVS). The molecular weights of the TAT-Sox2, TAT-Oct4, TAT-Lin28, and TAT-Nanog fusion proteins were 36kD, 40kD, 24kD, and 36kD, respectively. Further investigation indicated that most of the recombinant proteins remained in the nuclei of the Sf9 insect cells and were therefore unavailable for purification and cellular reprogramming. Once this problem has been solved, it seems likely that protein expressed from baculovirus-infected Sf9 insect cells will be the method of choice for cellular reprogramming.

  5. Effect of Luteolin and Apigenin on the Expression of Oct-4, Sox2, and c-Myc in Dental Pulp Cells with In Vitro Culture

    Directory of Open Access Journals (Sweden)

    Lu Liu

    2015-01-01

    Full Text Available Introduction. Dental pulp cells (DPCs are promising cell source for dental tissue regeneration. Recently, small molecules which optimize microenvironment or activate the reprogramming network provide a new way to enhance the pluripotency. Two promising bioflavonoids luteolin and apigenin were reported to enhance reprogramming efficiency in mouse embryonic fibroblast (MEF. However, their effect and underlying mechanism in cell fate determination of human DPCs remain unclear. Methods. To elucidate the effect of luteolin and apigenin on the cell fate determination of DPCs, we explored the cell proliferation, cell cycle, senescence, apoptosis, expression of pluripotency markers Oct-4, Sox2, and c-Myc, and multilineage differentiation capability of DPCs with luteolin or apigenin treatment. Results. We demonstrated that luteolin and apigenin inhibited cell proliferation, arrested DPCs in G2/M and S phase, and upregulated PI value and apoptosis. Moreover, luteolin and apigenin increased telomerase activity, maintained DPCs in a presenescent state, and activated the expression of Oct-4, Sox2, and c-Myc at a dose- and time-dependent pattern in DPCs even at late passages, albeit repressed lineage-specific differentiation. Conclusions. Addition of luteolin and apigenin in the culture medium might provide an effective way to maintain DPCs in an undifferentiated stage and inhibit lineage-specific differentiation.

  6. Assessment of the Potential of CDK2 Inhibitor NU6140 to Influence the Expression of Pluripotency Markers NANOG, OCT4, and SOX2 in 2102Ep and H9 Cells

    Directory of Open Access Journals (Sweden)

    Ade Kallas

    2014-01-01

    Full Text Available As cyclin-dependent kinases (CDKs regulate cell cycle progression and RNA transcription, CDKs are attractive targets for creating cancer cell treatments. In this study we investigated the effects of the small molecular agent NU6140 (inhibits CDK2 and cyclin A interaction on human embryonic stem (hES cells and embryonal carcinoma-derived (hEC cells via the expression of transcription factors responsible for pluripotency. A multiparameter flow cytometric method was used to follow changes in the expression of NANOG, OCT4, and SOX2 together in single cells. Both hES and hEC cells responded to NU6140 treatment by induced apoptosis and a decreased expression of NANOG, OCT4, and SOX2 in surviving cells. A higher sensitivity to NU6140 application in hES than hEC cells was detected. NU6140 treatment arrested hES and hEC cells in the G2 phase and inhibited entry into the M phase as evidenced by no significant increase in histone 3 phosphorylation. When embryoid bodies (EBs formed from NU6104 treated hES cells were compared to EBs from untreated hES cells differences in ectodermal, endodermal, and mesodermal lineages were found. The results of this study highlight the importance of CDK2 activity in maintaining pluripotency of hES and hEC cells and in differentiation of hES cells.

  7. The Roles of the Stem Cell-Controlling Sox2 Transcription Factor: from Neuroectoderm Development to Alzheimer's Disease?

    Science.gov (United States)

    Sarlak, Golmaryam; Vincent, Bruno

    2016-04-01

    Sox2 is a component of the core transcriptional regulatory network which maintains the totipotency of the cells during embryonic preimplantation period, the pluripotency of embryonic stem cells, and the multipotency of neural stem cells. This maintenance is controlled by internal loops between Sox2 and other transcription factors of the core such as Oct4, Nanog, Dax1, and Klf4, downstream proteins of extracellular ligands, epigenetic modifiers, and miRNAs. As Sox2 plays an important role in the balance between stem cells maintenance and commitment to differentiated lineages throughout the lifetime, it is supposed that Sox2 could regulate stem cells aging processes. In this review, we provide an update concerning the involvement of Sox2 in neurogenesis during normal aging and discuss its possible role in Alzheimer's disease.

  8. SOX2 co-occupies distal enhancer elements with distinct POU factors in ESCs and NPCs to specify cell state.

    Directory of Open Access Journals (Sweden)

    Michael A Lodato

    Full Text Available SOX2 is a master regulator of both pluripotent embryonic stem cells (ESCs and multipotent neural progenitor cells (NPCs; however, we currently lack a detailed understanding of how SOX2 controls these distinct stem cell populations. Here we show by genome-wide analysis that, while SOX2 bound to a distinct set of gene promoters in ESCs and NPCs, the majority of regions coincided with unique distal enhancer elements, important cis-acting regulators of tissue-specific gene expression programs. Notably, SOX2 bound the same consensus DNA motif in both cell types, suggesting that additional factors contribute to target specificity. We found that, similar to its association with OCT4 (Pou5f1 in ESCs, the related POU family member BRN2 (Pou3f2 co-occupied a large set of putative distal enhancers with SOX2 in NPCs. Forced expression of BRN2 in ESCs led to functional recruitment of SOX2 to a subset of NPC-specific targets and to precocious differentiation toward a neural-like state. Further analysis of the bound sequences revealed differences in the distances of SOX and POU peaks in the two cell types and identified motifs for additional transcription factors. Together, these data suggest that SOX2 controls a larger network of genes than previously anticipated through binding of distal enhancers and that transitions in POU partner factors may control tissue-specific transcriptional programs. Our findings have important implications for understanding lineage specification and somatic cell reprogramming, where SOX2, OCT4, and BRN2 have been shown to be key factors.

  9. SOX2 co-occupies distal enhancer elements with distinct POU factors in ESCs and NPCs to specify cell state.

    Directory of Open Access Journals (Sweden)

    Michael A Lodato

    Full Text Available SOX2 is a master regulator of both pluripotent embryonic stem cells (ESCs and multipotent neural progenitor cells (NPCs; however, we currently lack a detailed understanding of how SOX2 controls these distinct stem cell populations. Here we show by genome-wide analysis that, while SOX2 bound to a distinct set of gene promoters in ESCs and NPCs, the majority of regions coincided with unique distal enhancer elements, important cis-acting regulators of tissue-specific gene expression programs. Notably, SOX2 bound the same consensus DNA motif in both cell types, suggesting that additional factors contribute to target specificity. We found that, similar to its association with OCT4 (Pou5f1 in ESCs, the related POU family member BRN2 (Pou3f2 co-occupied a large set of putative distal enhancers with SOX2 in NPCs. Forced expression of BRN2 in ESCs led to functional recruitment of SOX2 to a subset of NPC-specific targets and to precocious differentiation toward a neural-like state. Further analysis of the bound sequences revealed differences in the distances of SOX and POU peaks in the two cell types and identified motifs for additional transcription factors. Together, these data suggest that SOX2 controls a larger network of genes than previously anticipated through binding of distal enhancers and that transitions in POU partner factors may control tissue-specific transcriptional programs. Our findings have important implications for understanding lineage specification and somatic cell reprogramming, where SOX2, OCT4, and BRN2 have been shown to be key factors.

  10. Stem cell pluripotency and transcription factor Oct4

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Mammalian cell totipotency is a subject that has fascinated scientists for generations. A long lastingquestion whether some of the somatic cells retains totipotency was answered by the cloning of Dolly atthe end of the 20th century. The dawn of the 21st has brought forward great expectations in harnessingthe power of totipotentcy in medicine. Through stem cell biology, it is possible to generate any parts ofthe human body by stem cell engineering. Considerable resources will be devoted to harness the untappedpotentials of stem cells in the foreseeable future which may transform medicine as we know today. At themolecular level, totipotency has been linked to a singular transcription factor and its expression appearsto define whether a cell should be totipotent. Named Oct4, it can activate or repress the expression ofvarious genes. Curiously, very little is known about Oct4 beyond its ability to regulate gene expression. Themechanism by which Oct4 specifies totipotency remains entirely unresolved. In this review, we summarizethe structure and function of Oct4 and address issues related to Oct4 function in maintaining totipotencyor pluripotency of embryonic stem cells.

  11. Cellular Reprogramming Employing Recombinant Sox2 Protein

    Directory of Open Access Journals (Sweden)

    Marc Thier

    2012-01-01

    Full Text Available Induced pluripotent stem (iPS cells represent an attractive option for the derivation of patient-specific pluripotent cells for cell replacement therapies as well as disease modeling. To become clinically meaningful, safe iPS cells need to be generated exhibiting no permanent genetic modifications that are caused by viral integrations of the reprogramming transgenes. Recently, various experimental strategies have been applied to accomplish transgene-free derivation of iPS cells, including the use of nonintegrating viruses, episomal expression, or excision of transgenes after reprogramming by site-specific recombinases or transposases. A straightforward approach to induce reprogramming factors is the direct delivery of either synthetic mRNA or biologically active proteins. We previously reported the generation of cell-permeant versions of Oct4 (Oct4-TAT and Sox2 (Sox2-TAT proteins and showed that Oct4-TAT is reprogramming-competent, that is, it can substitute for Oct4-encoding virus. Here, we explore conditions for enhanced Sox2-TAT protein stabilization and functional delivery into somatic cells. We show that cell-permeant Sox2 protein can be stabilized by lipid-rich albumin supplements in serum replacement or low-serum-supplemented media. Employing optimized conditions for protein delivery, we demonstrate that Sox2-TAT protein is able to substitute for viral Sox2. Sox2-piPS cells express pluripotency-associated markers and differentiate into all three germ layers.

  12. Extensive investigation of the IGF2/H19 imprinting control region reveals novel OCT4/SOX2 binding site defects associated with specific methylation patterns in Beckwith-Wiedemann syndrome.

    Science.gov (United States)

    Abi Habib, Walid; Azzi, Salah; Brioude, Frédéric; Steunou, Virginie; Thibaud, Nathalie; Das Neves, Cristina; Le Jule, Marilyne; Chantot-Bastaraud, Sandra; Keren, Boris; Lyonnet, Stanislas; Michot, Caroline; Rossi, Massimiliano; Pasquier, Laurent; Gicquel, Christine; Rossignol, Sylvie; Le Bouc, Yves; Netchine, Irène

    2014-11-01

    Isolated gain of methylation (GOM) at the IGF2/H19 imprinting control region 1 (ICR1) accounts for about 10% of patients with BWS. A subset of these patients have genetic defects within ICR1, but the frequency of these defects has not yet been established in a large cohort of BWS patients with isolated ICR1 GOM. Here, we carried out a genetic analysis in a large cohort of 57 BWS patients with isolated ICR1 GOM and analyzed the methylation status of the entire domain. We found a new point mutation in two unrelated families and a 21 bp deletion in another unrelated child, both of which were maternally inherited and affected the OCT4/SOX2 binding site in the A2 repeat of ICR1. Based on data from this and previous studies, we estimate that cis genetic defects account for about 20% of BWS patients with isolated ICR1 GOM. Methylation analysis at eight loci of the IGF2/H19 domain revealed that sites surrounding OCT4/SOX2 binding site mutations were fully methylated and methylation indexes declined as a function of distance from these sites. This was not the case in BWS patients without genetic defects identified. Thus, GOM does not spread uniformly across the IGF2/H19 domain, suggesting that OCT4/SOX2 protects against methylation at local sites. These findings add new insights to the mechanism of the regulation of the ICR1 domain. Our data show that mutations and deletions within ICR1 are relatively common. Systematic identification is therefore necessary to establish appropriate genetic counseling for BWS patients with isolated ICR1 GOM.

  13. Expression of the pluripotency transcription factor OCT4 in the normal and aberrant mammary gland

    Directory of Open Access Journals (Sweden)

    Foteini eHassiotou

    2013-04-01

    Full Text Available Breast cancers with lactating features, some of which are associated with pregnancy and lactation, are often poorly differentiated, lack estrogen receptor, progesterone receptor and HER2 expression and have high mortality. Very little is known about the molecular mechanisms that drive uncontrolled cell proliferation in these tumors and confer lactating features. We have recently reported expression of OCT4 and associated embryonic stem cell (ESC self-renewal genes in the normal lactating breast and breastmilk stem cells (hBSCs. This prompted us to examine OCT4 expression in breast cancers with lactating features and compare it with that observed during normal lactation, using rare specimens of human lactating breast. In accordance with previous literature, the normal resting breast (from non-pregnant, non-lactating women showed minimal OCT4 nuclear expression (0.9%. However, this increased in the normal lactating breast (11.4%, with further increase in lactating adenomas, lactating carcinomas and pregnancy-associated breast cancer (30.7-48.3%. OCT4 was expressed in the epithelium and at lower levels in the stroma, and was co-localized with NANOG. Comparison of normal non-tumorigenic hBSCs with OCT4-overexpressing tumorigenic breast cell lines (OTBCs demonstrated upregulation of OCT4, SOX2 and NANOG in both systems, but OTBCs expressed OCT4 at significantly higher levels than SOX2 and NANOG. Similar to hBSCs, OTBCs displayed multi-lineage differentiation potential, including the ability to differentiate into functional lactocytes synthesizing milk proteins both in vitro and in vivo. Based on these findings, we propose a hypothesis of normal and malignant transformation in the breast, which centers on OCT4 and its associated gene network. Although minimal expression of these embryonic genes can be seen in the breast in its resting state throughout life, a controlled program of upregulation of this gene network may be a potential regulator of the

  14. Wwp2, an E3 Ubiquitin Ligase That Targets Transcription Factor Oct-4 for Ubiquitination

    Institute of Scientific and Technical Information of China (English)

    HuiMingXu; BingLiao; QianJunZhang; BeiBeiWang; Hui,Li; XiaoMinZhong; HuiZhenSheng; YingXinZhao; YingMingZhao; YingJin

    2005-01-01

    The POU transcription factor Oct-4 is a master regulator affecting the fate of pluripotent embryonic stem cells. However, the precise mechanisms by which the activation and expression of Oct-4 are regulated still remain to be elucidated. We describe here a novel murine ubiquitin ligase, Wwp2, that specifically interacts with Oct-4 and promotes its ubiquitination both in vivo and in vitro. Remarkably, the expression of a catalytically inactive point mutant of Wwp2 abolishes Oct-4 ubiquitination. Moreover, Wwp2 promotes Oct-4 degradation in the presence of overexpressed ubiquitin. The degradation is blocked by treatment with proteasome inhibitor. Fusion of a single ubiquitin to Oct-4 inactivates its transcriptional activity in a heterologous Oct-4-driven reporter system. Furthermore, overexpression of Wwp2 in embryonic stem cells significantly reduces the Oct-4-transcriptional activities. Collectively, we demonstrate for the first time that Oct-4 can be posttranslationatly modified by ubiquitination and that this modification dramatically suppresses its transcriptional activity. These results reveal that the functional status of Oct-4, in addition to its expression level, dictates its transcriptional activity, and the results open up a new avenue to understand how Oct-4 defines the fate of embryonic stem cells.

  15. The stem cell factor SOX2 regulates the tumorigenic potential in human gastric cancer cells.

    Science.gov (United States)

    Hütz, Katharina; Mejías-Luque, Raquel; Farsakova, Katarina; Ogris, Manfred; Krebs, Stefan; Anton, Martina; Vieth, Michael; Schüller, Ulrich; Schneider, Marlon R; Blum, Helmut; Wagner, Ernst; Jung, Andreas; Gerhard, Markus

    2014-04-01

    Gastric cancer (GC) is still one of the most common causes of cancer-related death worldwide, which is mainly attributable to late diagnosis and poor treatment options. Infection with Helicobacter pylori, different environmental factors and genetic alterations are known to influence the risk of developing gastric tumors. However, the molecular mechanisms involved in gastric carcinogenesis are still not fully understood, making it difficult to design targeted therapeutic approaches. Aberrant expression of the specific gastric differentiation marker SOX2 has been observed in stomach cancer. However, the role of SOX2 in gastric tumors has not been well established to date. To elucidate the role of SOX2 in gastric tumorigenesis, SOX2 transcriptional activity was blocked in AZ-521 cells. Interestingly, inhibition of SOX2 reduced cell proliferation and migration, increased apoptosis and induced changes in cell cycle. Blocking of SOX2 also reduced the tumorigenic potential of AZ-521 cells in vivo. In addition, correlation of SOX2 expression and proliferation was observed in a subset of human gastric tumors. Finally, target genes of SOX2 were for the first time identified by RNA microarray in GC cells. Taken together, the results presented here indicate that SOX2 controls several aspects related to GC development and progression by regulating the expression of members of important signaling pathways. These findings could provide new therapeutic options for a subset of GCs exhibiting SOX2 deregulation.

  16. Pluripotency Transcription Factor Oct4 Mediates Stepwise Nucleosome Demethylation and Depletion

    Science.gov (United States)

    Shakya, Arvind; Callister, Catherine; Goren, Alon; Yosef, Nir; Garg, Neha; Khoddami, Vahid; Nix, David; Regev, Aviv

    2015-01-01

    The mechanisms whereby the crucial pluripotency transcription factor Oct4 regulates target gene expression are incompletely understood. Using an assay system based on partially differentiated embryonic stem cells, we show that Oct4 opposes the accumulation of local H3K9me2 and subsequent Dnmt3a-mediated DNA methylation. Upon binding DNA, Oct4 recruits the histone lysine demethylase Jmjd1c. Chromatin immunoprecipitation (ChIP) time course experiments identify a stepwise Oct4 mechanism involving Jmjd1c recruitment and H3K9me2 demethylation, transient FACT (facilitates chromatin transactions) complex recruitment, and nucleosome depletion. Genome-wide and targeted ChIP confirms binding of newly synthesized Oct4, together with Jmjd1c and FACT, to the Pou5f1 enhancer and a small number of other Oct4 targets, including the Nanog promoter. Histone demethylation is required for both FACT recruitment and H3 depletion. Jmjd1c is required to induce endogenous Oct4 expression and fully reprogram fibroblasts to pluripotency, indicating that the assay system identifies functional Oct4 cofactors. These findings indicate that Oct4 sequentially recruits activities that catalyze histone demethylation and depletion. PMID:25582194

  17. Cobalt and nickel stabilize stem cell transcription factor OCT4 through modulating its sumoylation and ubiquitination.

    Directory of Open Access Journals (Sweden)

    Yixin Yao

    Full Text Available Stem cell research can lead to the development of treatments for a wide range of ailments including diabetes, heart disease, aging, neurodegenerative diseases, spinal cord injury, and cancer. OCT4 is a master regulator of self-renewal of undifferentiated embryonic stem cells. OCT4 also plays a crucial role in reprogramming of somatic cells into induced pluripotent stem (iPS cells. Given known vivo reproductive toxicity of cobalt and nickel metals, we examined the effect of these metals on expression of several stem cell factors in embryonic Tera-1 cells, as well as stem cells. Cobalt and nickel induced a concentration-dependent increase of OCT4 and HIF-1α, but not NANOG or KLF4. OCT4 induced by cobalt and nickel was due primarily to protein stabilization because MG132 stabilized OCT4 in cells treated with either metals and because neither nickel nor cobalt significantly modulated its steady-state mRNA level. OCT4 stabilization by cobalt and nickel was mediated largely through reactive oxygen species (ROS as co-treatment with ascorbic acid abolished OCT4 increase. Moreover, nickel and cobalt treatment increased sumoylation and mono-ubiquitination of OCT4 and K123 was crucial for mediating these modifications. Combined, our observations suggest that nickel and cobalt may exert their reproductive toxicity through perturbing OCT4 activity in the stem cell compartment.

  18. Cobalt and Nickel Stabilize Stem Cell Transcription Factor OCT4 through Modulating Its Sumoylation and Ubiquitination

    Science.gov (United States)

    Yao, Yixin; Lu, Yinghua; Chen, Wen-chi; Jiang, Yongping; Cheng, Tao; Ma, Yupo; Lu, Lou; Dai, Wei

    2014-01-01

    Stem cell research can lead to the development of treatments for a wide range of ailments including diabetes, heart disease, aging, neurodegenerative diseases, spinal cord injury, and cancer. OCT4 is a master regulator of self-renewal of undifferentiated embryonic stem cells. OCT4 also plays a crucial role in reprogramming of somatic cells into induced pluripotent stem (iPS) cells. Given known vivo reproductive toxicity of cobalt and nickel metals, we examined the effect of these metals on expression of several stem cell factors in embryonic Tera-1 cells, as well as stem cells. Cobalt and nickel induced a concentration-dependent increase of OCT4 and HIF-1α, but not NANOG or KLF4. OCT4 induced by cobalt and nickel was due primarily to protein stabilization because MG132 stabilized OCT4 in cells treated with either metals and because neither nickel nor cobalt significantly modulated its steady-state mRNA level. OCT4 stabilization by cobalt and nickel was mediated largely through reactive oxygen species (ROS) as co-treatment with ascorbic acid abolished OCT4 increase. Moreover, nickel and cobalt treatment increased sumoylation and mono-ubiquitination of OCT4 and K123 was crucial for mediating these modifications. Combined, our observations suggest that nickel and cobalt may exert their reproductive toxicity through perturbing OCT4 activity in the stem cell compartment. PMID:24497960

  19. WWP2 promotes degradation of transcription factor OCT4 in human embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    Huiming Xu; Weicheng Wang; Chunliang Li; Hongyao Yu; Acong Yang; Beibei Wang; Ying Jin

    2009-01-01

    POU transcription factor OCT4 not only plays an essential role in maintaining the pluripotent and self-renewing state of embryonic stem (ES) cells but also acts as a cell fate determinant through a gene dosage effect. However, the molecular mechanisms that control the intracellular OCT4 protein level remain elusive. Here, we report that human WWP2, an E3 ubiquitin (Ub)-protein ligase, interacts with OCT4 specifically through its WW domain and enhances Ub modification of OCT4 both in vitro and in vivo. We first demonstrated that endogenous OCT4 in hu-man ES cells can be post-translationally modified by Ub. Furthermore, we found that WWP2 promoted degradation of OCT4 through the 26S proteasome in a dosage-dependent manner, and the active site cysteine residue of WWP2 was required for both its enzymatic activity and proteolytic effect on OCT4. Remarkably, our data show that the en-dogenous OCT4 protein level was significantly elevated when WWP2 expression was downregulated by specific RNA interference (RNAi), suggesting that WWP2 is an important regulator for maintaining a proper OCT4 protein level in human ES cells. Moreover, northern blot analysis showed that the WWP2 transcript was widely present in diverse human tissues/organs and highly expressed in undifferentiated human ES cells. However, its expression level was quickly decreased after human ES cells differentiated, indicating that WWP2 expression might be developmentally regulated. Our findings demonstrate that WWP2 is an important regulator of the OCT4 protein level in human ES cells.

  20. Sox2, a key factor in the regulation of pluripotency and neural differentiation

    Institute of Scientific and Technical Information of China (English)

    Shuchen; Zhang; Wei; Cui

    2014-01-01

    Sex determining region Y-box 2(Sox2), a member of the SoxB1 transcription factor family, is an important transcriptional regulator in pluripotent stem cells(PSCs). Together with octamer-binding transcription factor 4 and Nanog, they co-operatively control gene expression in PSCs and maintain their pluripotency. Furthermore, Sox2 plays an essential role in somatic cell reprogram-ming, reversing the epigenetic configuration of differ-entiated cells back to a pluripotent embryonic state. In addition to its role in regulation of pluripotency, Sox2 is also a critical factor for directing the differentiation of PSCs to neural progenitors and for maintaining the properties of neural progenitor stem cells. Here, we review recent findings concerning the involvement of Sox2 in pluripotency, somatic cell reprogramming and neural differentiation as well as the molecular mecha-nisms underlying these roles.

  1. Pluripotency transcription factor Sox2 is strongly adsorbed by heparin but requires a protein transduction domain for cell internalization

    Energy Technology Data Exchange (ETDEWEB)

    Albayrak, Cem [Department of Chemical Engineering, Stanford University, 381 North-South Mall, Stanford, CA 94305 (United States); Yang, William C. [Department of Bioengineering, Stanford University, 318 Campus Drive, Stanford, CA 94305 (United States); Swartz, James R., E-mail: jswartz@stanford.edu [Department of Chemical Engineering, Stanford University, 381 North-South Mall, Stanford, CA 94305 (United States); Department of Bioengineering, Stanford University, 318 Campus Drive, Stanford, CA 94305 (United States)

    2013-02-15

    Highlights: ► Both R9Sox2 and Sox2 bind heparin with comparable affinity. ► Both R9Sox2 and Sox2 bind to fibroblasts, but only R9Sox2 is internalized. ► Internalization efficiency of R9Sox2 is 0.3% of the administered protein. ► Heparan sulfate adsorption may be part of a mechanism for managing cell death. -- Abstract: The binding of protein transduction domain (PTD)-conjugated proteins to heparan sulfate is an important step in cellular internalization of macromolecules. Here, we studied the pluripotency transcription factor Sox2, with or without the nonaarginine (R9) PTD. Unexpectedly, we observed that Sox2 is strongly adsorbed by heparin and by the fibroblasts without the R9 PTD. However, only the R9Sox2 fusion protein is internalized by the cells. These results collectively show that binding to heparan sulfate is not sufficient for cellular uptake, thereby supporting a recent hypothesis that other proteins play a role in cell internalization of PTD-conjugated proteins.

  2. Study on the relationship of abnormal transcription factors OCT4, HBP1 and Snail expression with progression of osteosarcoma

    Institute of Scientific and Technical Information of China (English)

    Li Li; Yu Si

    2016-01-01

    Objective:To study the relationship of abnormal transcription factors OCT4, HBP1 and Snail expression with progression of osteosarcoma.Methods: Surgical removed osteosarcoma tissue specimens were selected as pathology group, surgically removed osteoid osteoma specimens were selected as control group, and the expression levels of gene transcription factors OCT4, HBP1 and Snail, proliferation genes, epithelial-mesenchymal transition marker molecules in tissue specimens were determined.Results:Oct4 and Snail protein levels of pathology group were significantly higher than those of control group and HBP1 protein level was significantly lower than that of control group; C-myc and cyclinD1 protein levels of pathology group were significantly higher than those of control group, positively correlated with OCT4 and negatively correlated with HBP1; p16 and p53 protein levels were significantly lower than those of control group, negatively correlated with OCT4 and positively correlated with HBP1; N-cadherin and Vimentin protein levels of pathology group were significantly higher than those of control group and positively correlated with Snail while E-cadherin and Occludin protein levels were significantly lower than those of control group and negatively correlated with Snail.Conclusion: Oct4 and Snail are highly expressed and HBP1 is lowly expressed in osteosarcoma tissue, Oct4 and Snail can participate in the regulation of cell proliferation, and HBP1 can participate in the regulation of epithelial-mesenchymal transition of cells.

  3. Establishment and initial characterization of SOX2-overexpressing NT2/D1 cell clones.

    Science.gov (United States)

    Drakulic, D; Krstic, A; Stevanovic, M

    2012-05-15

    SOX2, a universal marker of pluripotent stem cells, is a transcription factor that helps control embryonic development in vertebrates; its expression persists in neural stem/progenitor cells into adulthood. Considering the critical role of the SOX2 transcription factor in the regulation of genes required for self-renewal and pluripotency of stem cells, we developed and characterized SOX2-overexpressing NT2/D1 cell clones. Using Southern blot and semi-quantitative RT-PCR, we confirmed integration and expression of exogenous SOX2 in three NT2/D1 cell clones. Overexpression of the SOX2 gene was detected in two of these clones. SOX2 overexpression in NT2/D1 cell clones resulted in altered expression of key pluripotency genes OCT4 and NANOG. Furthermore, SOX2-overexpressing NT2/D1 cell clones entered into retinoic acid-dependent neural differentiation, even when there was elevated SOX2 expression. After 21 days of induction by retinoic acid, expression of neural markers (neuroD1 and synaptophysin) was higher in induced cell clones than in induced parental cells. The cell clone with SOX2 overexpression had an approximately 1.3-fold higher growth rate compared to parental cells. SOX2 overexpression did not increase the population of cells undergoing apoptosis. Taken together, we developed two SOX2-overexpressing cell clones, with constitutive SOX2 expression after three weeks of retinoic acid treatment. SOX2 overexpression resulted in altered expression of pluripotency-related genes, increased proliferation, and altered expression of neural markers after three weeks of retinoic acid treatment.

  4. Regulation of adipose tissue stromal cells behaviors by endogenic Oct4 expression control.

    Directory of Open Access Journals (Sweden)

    Jung Hwan Kim

    Full Text Available BACKGROUND: To clarify the role of the POU domain transcription factor Oct4 in Adipose Tissue Stromal Cells (ATSCs, we investigated the regulation of Oct4 expression and other embryonic genes in fully differentiated cells, in addition to identifying expression at the gene and protein levels. The ATSCs and several immature cells were routinely expressing Oct4 protein before and after differentiating into specific lineages. METHODOLOGY/PRINCIPAL FINDINGS AND CONCLUSIONS: Here, we demonstrated the role of Oct4 in ATSCs on cell proliferation and differentiation. Exogenous Oct4 improves adult ATSCs cell proliferation and differentiation potencies through epigenetic reprogramming of stemness genes such as Oct4, Nanog, Sox2, and Rex1. Oct4 directly or indirectly induces ATSCs reprogramming along with the activation of JAK/STAT3 and ERK1/2. Exogenic Oct4 introduced a transdifferentiation priority into the neural lineage than mesodermal lineage. Global gene expression analysis results showed that Oct4 regulated target genes which could be characterized as differentially regulated genes such as pluripotency markers NANOG, SOX2, and KLF4 and markers of undifferentiated stem cells FOXD1, CDC2, and EPHB1. The negatively regulated genes included FAS, TNFR, COL6A1, JAM2, FOXQ1, FOXO1, NESTIN, SMAD3, SLIT3, DKK1, WNT5A, BMP1, and GLIS3 which are implicated in differentiation processes as well as a number of novel genes. Finally we have demonstrated the therapeutic utility of Oct4/ATSCs were introduced into the mouse traumatic brain, engrafted cells was more effectively induces regeneration activity with high therapeutic modality than that of control ATSCs. Engrafted Oct4/ATSCs efficiently migrated and transdifferentiated into action potential carrying, functionally neurons in the hippocampus and promoting the amelioration of lesion cavities.

  5. Regulation of adipose tissue stromal cells behaviors by endogenic Oct4 expression control.

    Science.gov (United States)

    Kim, Jung Hwan; Jee, Min Ki; Lee, So Young; Han, Tae Hee; Kim, Bong Sun; Kang, Kyung Sun; Kang, Soo Kyung

    2009-09-24

    To clarify the role of the POU domain transcription factor Oct4 in Adipose Tissue Stromal Cells (ATSCs), we investigated the regulation of Oct4 expression and other embryonic genes in fully differentiated cells, in addition to identifying expression at the gene and protein levels. The ATSCs and several immature cells were routinely expressing Oct4 protein before and after differentiating into specific lineages. Here, we demonstrated the role of Oct4 in ATSCs on cell proliferation and differentiation. Exogenous Oct4 improves adult ATSCs cell proliferation and differentiation potencies through epigenetic reprogramming of stemness genes such as Oct4, Nanog, Sox2, and Rex1. Oct4 directly or indirectly induces ATSCs reprogramming along with the activation of JAK/STAT3 and ERK1/2. Exogenic Oct4 introduced a transdifferentiation priority into the neural lineage than mesodermal lineage. Global gene expression analysis results showed that Oct4 regulated target genes which could be characterized as differentially regulated genes such as pluripotency markers NANOG, SOX2, and KLF4 and markers of undifferentiated stem cells FOXD1, CDC2, and EPHB1. The negatively regulated genes included FAS, TNFR, COL6A1, JAM2, FOXQ1, FOXO1, NESTIN, SMAD3, SLIT3, DKK1, WNT5A, BMP1, and GLIS3 which are implicated in differentiation processes as well as a number of novel genes. Finally we have demonstrated the therapeutic utility of Oct4/ATSCs were introduced into the mouse traumatic brain, engrafted cells was more effectively induces regeneration activity with high therapeutic modality than that of control ATSCs. Engrafted Oct4/ATSCs efficiently migrated and transdifferentiated into action potential carrying, functionally neurons in the hippocampus and promoting the amelioration of lesion cavities.

  6. Oct4 is required ~E7.5 for proliferation in the primitive streak.

    Directory of Open Access Journals (Sweden)

    Brian DeVeale

    2013-11-01

    Full Text Available Oct4 is a widely recognized pluripotency factor as it maintains Embryonic Stem (ES cells in a pluripotent state, and, in vivo, prevents the inner cell mass (ICM in murine embryos from differentiating into trophectoderm. However, its function in somatic tissue after this developmental stage is not well characterized. Using a tamoxifen-inducible Cre recombinase and floxed alleles of Oct4, we investigated the effect of depleting Oct4 in mouse embryos between the pre-streak and headfold stages, ~E6.0-E8.0, when Oct4 is found in dynamic patterns throughout the embryonic compartment of the mouse egg cylinder. We found that depletion of Oct4 ~E7.5 resulted in a severe phenotype, comprised of craniorachischisis, random heart tube orientation, failed turning, defective somitogenesis and posterior truncation. Unlike in ES cells, depletion of the pluripotency factors Sox2 and Oct4 after E7.0 does not phenocopy, suggesting that ~E7.5 Oct4 is required within a network that is altered relative to the pluripotency network. Oct4 is not required in extraembryonic tissue for these processes, but is required to maintain cell viability in the embryo and normal proliferation within the primitive streak. Impaired expansion of the primitive streak occurs coincident with Oct4 depletion ∼E7.5 and precedes deficient convergent extension which contributes to several aspects of the phenotype.

  7. OCT4 and downstream factors are expressed in human somatic urogenital epithelia and in culture of epididymal spheres

    DEFF Research Database (Denmark)

    Audouze, Karine Marie Laure; Brunak, Søren; Kristensen, DM;

    2010-01-01

    promoter. In culture, human primary epididymis cells formed spheres that continued to express the investigated genes for at least 20 days. Transcriptomic analysis of cultured cells showed up-regulation of CD29, CD44, and CD133 that are normally associated with sphere-forming cancer stem cells. Furthermore......The transcription factor OCT4 plays a crucial role in the earliest differentiation of the mammalian embryo and in self-renewal of embryonic stem cells. However, it remains controversial whether this gene is also expressed in somatic tissues. Here we use a combination of RT-PCR on whole......, stimulation with retinoic acid resulted in down-regulation of OCT4 expression, however, without multilineage differentiation. Our results show that OCT4 and associated genes are expressed in somatic epithelial cells from the urogenital tract and that these cells can form spheres, a general marker of stem cell...

  8. CRISPR reveals a distal super-enhancer required for Sox2 expression in mouse embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Yan Li

    Full Text Available The pluripotency of embryonic stem cells (ESCs is maintained by a small group of master transcription factors including Oct4, Sox2 and Nanog. These core factors form a regulatory circuit controlling the transcription of a number of pluripotency factors including themselves. Although previous studies have identified transcriptional regulators of this core network, the cis-regulatory DNA sequences required for the transcription of these key pluripotency factors remain to be defined. We analyzed epigenomic data within the 1.5 Mb gene-desert regions around the Sox2 gene and identified a 13kb-long super-enhancer (SE located 100kb downstream of Sox2 in mouse ESCs. This SE is occupied by Oct4, Sox2, Nanog, and the mediator complex, and physically interacts with the Sox2 locus via DNA looping. Using a simple and highly efficient double-CRISPR genome editing strategy we deleted the entire 13-kb SE and characterized transcriptional defects in the resulting monoallelic and biallelic deletion clones with RNA-seq. We showed that the SE is responsible for over 90% of Sox2 expression, and Sox2 is the only target gene along the chromosome. Our results support the functional significance of a SE in maintaining the pluripotency transcription program in mouse ESCs.

  9. Sox2 uses multiple domains to associate with proteins present in Sox2-protein complexes.

    Directory of Open Access Journals (Sweden)

    Jesse L Cox

    Full Text Available Master regulators, such as Sox2, Oct4 and Nanog, control complex gene networks necessary for the self-renewal and pluripotency of embryonic stem cells (ESC. These master regulators associate with co-activators and co-repressors to precisely control their gene targets. Recent studies using proteomic analysis have identified a large, diverse group of co-activators and co-repressors that associate with master regulators, including Sox2. In this report, we examined the size distribution of nuclear protein complexes containing Sox2 and its associated proteins HDAC1, Sall4 and Lin28. Interestingly, we determined that Sox2 and HDAC1 associate with protein complexes that vary greatly in size; whereas, Lin28 primarily associates with smaller complexes, and Sall4 primarily associates with larger complexes. Additionally, we examined the domains of Sox2 necessary to mediate its association with its partner proteins Sall4, HDAC1 and HDAC2. We determined that Sox2 uses multiple and distinct domains to associate with its partner proteins. We also examined the domains of Sox2 necessary to mediate its self-association, and we determined that Sox2 self-association is mediated through multiple domains. Collectively, these studies provide novel insights into how Sox2 is able to associate with a wide array of nuclear proteins that control gene transcription.

  10. Analysis of SOX2 expression in developing human testis and germ cell neoplasia

    DEFF Research Database (Denmark)

    Sonne, Si Brask; Perrett, Rebecca M.; Nielsen, John Erik

    2010-01-01

    The transcriptional regulators of pluripotency, POU5F1 (OCT4), NANOG and SOX2, are highly expressed in embryonal carcinoma (EC). In contrast to OCT4 and NANOG, SOX2 has not been demonstrated in the early human germ cell lineage or carcinoma in situ (CIS), the precursor for testicular germ cell tu...

  11. Forced expression of OCT4 influences the expression of pluripotent genes in human mesenchymal stem cells and fibroblasts.

    Science.gov (United States)

    Palma, C S; Tannous, M A; Malta, T M; Russo, E M S; Covas, D T; Picanço-Castro, V

    2013-04-02

    Genetic reprogramming of adult cells to generate induced pluripotent stem (iPS) cells is a new and important step in sidestepping some of the ethical issues and risks involved in the use of embryonic stem cells. iPS cells can be generated by introduction of transcription factors, such as OCT4, SOX2, KLF4, and CMYC. iPS cells resemble embryonic stem cells in their properties and differentiation potential. The mechanisms that lead to induced pluripotency and the effect of each transcription factor are not completely understood. We performed a critical evaluation of the effect of overexpressing OCT4 in mesenchymal stem cells and fibroblasts and found that OCT4 can activate the expression of other stemness genes, such as SOX2, NANOG, CMYC, FOXD3, KLF4, and βCATENIN, which are not normally or are very weakly expressed in mesenchymal stem cells. Transient expression of OCT4 was also performed to evaluate whether these genes are affected by its overexpression in the first 48 h. Transfected fibroblast cells expressed around 275-fold more OCT4 than non-transfected cells. In transient expression, in which cells were analyzed after 48 h, we detected only the up-regulation of FOXD3, SOX2, and KLF4 genes, suggesting that these genes are the earlier targets of OCT4 in this cellular type. We conclude that forced expression of OCT4 can alter cell status and activate the pluripotent network. Knowledge gained through study of these systems may help us to understand the kinetics and mechanism of cell reprogramming.

  12. BMPs functionally replace Klf4 and support efficient reprogramming of mouse fibroblasts by Oct4 alone

    Institute of Scientific and Technical Information of China (English)

    Jiekai Chen; Duanqing Pei; Jing Liu; Jiaqi Yang; You Chen; Jing Chen; Su Ni; Hong Song; Lingwen Zeng; Ke Ding

    2011-01-01

    Generation of induced pluripotent stem cells by defined factors has become a useful model to investigate the mechanism of reprogramming and cell fate determination.However,the precise mechanism of factor-based reprogramming remains unclear.Here,we show that Klf4 mainly acts at the initial phase of reprogramming to initiate mesenchymal-to-epithelial transition and can be functionally replaced by bone morphogenetic proteins(BMPs).BMPs boosted the efficiency of Oct4/Sox2-mediated reprogramming of mouse embryonic fibroblasts(MEFs)to~1%.BMPs also promoted single-factor Oct4-based reprogramming of MEFs and tail tibiai fihroblasts.Our studies clarify the contribution of Klf4 in reprogramming and establish Oct4 as a singular setter of pluripotency in differentiated cells.

  13. HIPPO pathway members restrict SOX2 to the inner cell mass where it promotes ICM fates in the mouse blastocyst.

    Directory of Open Access Journals (Sweden)

    Eryn Wicklow

    2014-10-01

    Full Text Available Pluripotent epiblast (EPI cells, present in the inner cell mass (ICM of the mouse blastocyst, are progenitors of both embryonic stem (ES cells and the fetus. Discovering how pluripotency genes regulate cell fate decisions in the blastocyst provides a valuable way to understand how pluripotency is normally established. EPI cells are specified by two consecutive cell fate decisions. The first decision segregates ICM from trophectoderm (TE, an extraembryonic cell type. The second decision subdivides ICM into EPI and primitive endoderm (PE, another extraembryonic cell type. Here, we investigate the roles and regulation of the pluripotency gene Sox2 during blastocyst formation. First, we investigate the regulation of Sox2 patterning and show that SOX2 is restricted to ICM progenitors prior to blastocyst formation by members of the HIPPO pathway, independent of CDX2, the TE transcription factor that restricts Oct4 and Nanog to the ICM. Second, we investigate the requirement for Sox2 in cell fate specification during blastocyst formation. We show that neither maternal (M nor zygotic (Z Sox2 is required for blastocyst formation, nor for initial expression of the pluripotency genes Oct4 or Nanog in the ICM. Rather, Z Sox2 initially promotes development of the primitive endoderm (PE non cell-autonomously via FGF4, and then later maintains expression of pluripotency genes in the ICM. The significance of these observations is that 1 ICM and TE genes are spatially patterned in parallel prior to blastocyst formation and 2 both the roles and regulation of Sox2 in the blastocyst are unique compared to other pluripotency factors such as Oct4 or Nanog.

  14. Manganese Superoxide Dismutase Gene Expression Is Induced by Nanog and Oct4, Essential Pluripotent Stem Cells’ Transcription Factors

    Science.gov (United States)

    Solari, Claudia; Vázquez Echegaray, Camila; Cosentino, María Soledad; Petrone, María Victoria; Waisman, Ariel; Luzzani, Carlos; Francia, Marcos; Villodre, Emilly; Lenz, Guido; Miriuka, Santiago; Barañao, Lino; Guberman, Alejandra

    2015-01-01

    Pluripotent stem cells possess complex systems that protect them from oxidative stress and ensure genomic stability, vital for their role in development. Even though it has been reported that antioxidant activity diminishes along stem cell differentiation, little is known about the transcriptional regulation of the involved genes. The reported modulation of some of these genes led us to hypothesize that some of them could be regulated by the transcription factors critical for self-renewal and pluripotency in embryonic stem cells (ESCs) and in induced pluripotent stem cells (iPSCs). In this work, we studied the expression profile of multiple genes involved in antioxidant defense systems in both ESCs and iPSCs. We found that Manganese superoxide dismutase gene (Mn-Sod/Sod2) was repressed during diverse differentiation protocols showing an expression pattern similar to Nanog gene. Moreover, Sod2 promoter activity was induced by Oct4 and Nanog when we performed a transactivation assay using two different reporter constructions. Finally, we studied Sod2 gene regulation by modulating the expression of Oct4 and Nanog in ESCs by shRNAs and found that downregulation of any of them reduced Sod2 expression. Our results indicate that pluripotency transcription factors positively modulate Sod2 gene transcription. PMID:26642061

  15. A Structural Investigation into Oct4 Regulation by Orphan Nuclear Receptors, Germ Cell Nuclear Factor (GCNF) and Liver Receptor Homolog-1 (LRH-1).

    Science.gov (United States)

    Weikum, Emily R; Tuntland, Micheal L; Murphy, Michael N; Ortlund, Eric A

    2016-10-27

    Oct4 is a transcription factor required for maintaining pluripotency and self-renewal in stem cells. Prior to differentiation, Oct4 must be silenced to allow for the development of the three germ layers in the developing embryo. This fine-tuning is controlled by the nuclear receptors, liver receptor homolog-1 and germ cell nuclear factor. Liver receptor homolog-1 is responsible for driving the expression of Oct4 where germ cell nuclear factor represses its expression upon differentiation. Both receptors bind to a DR0 motif located within the Oct4 promoter. Here, we present the first structure of mouse germ cell nuclear factor DNA binding domain in complex with the Oct4 DR0. The overall structure revealed two molecules bound in a head-to-tail fashion on opposite sides of the DNA. Additionally, we solved the structure of the human liver receptor homolog-1 DNA binding domain bound to the same element. We explore the structural elements that govern Oct4 recognition by these two nuclear receptors.

  16. Germ Cell Nuclear Factor (GCNF) Represses Oct4 Expression and Globally Modulates Gene Expression in Human Embryonic Stem (hES) Cells.

    Science.gov (United States)

    Wang, Hongran; Wang, Xiaohong; Xu, Xueping; Kyba, Michael; Cooney, Austin J

    2016-04-15

    Oct4 is considered a key transcription factor for pluripotent stem cell self-renewal. It binds to specific regions within target genes to regulate their expression and is downregulated upon induction of differentiation of pluripotent stem cells; however, the mechanisms that regulate the levels of human Oct4 expression remain poorly understood. Here we show that expression of human Oct4 is directly repressed by germ cell nuclear factor (GCNF), an orphan nuclear receptor, in hES cells. Knockdown of GCNF by siRNA resulted in maintenance of Oct4 expression during RA-induced hES cell differentiation. While overexpression of GCNF promoted repression of Oct4 expression in both undifferentiated and differentiated hES cells. The level of Oct4 repression was dependent on the level of GCNF expression in a dose-dependent manner. mRNA microarray analysis demonstrated that overexpression of GCNF globally regulates gene expression in undifferentiated and differentiated hES cells. Within the group of altered genes, GCNF down-regulated 36% of the genes, and up-regulated 64% in undifferentiated hES cells. In addition, GCNF also showed a regulatory gene pattern that is different from RA treatment during hES cell differentiation. These findings increase our understanding of the mechanisms that maintain hES cell pluripotency and regulate gene expression during the differentiation process.

  17. Reprogramming of non-genomic estrogen signaling by the stemness factor SOX2 enhances the tumor-initiating capacity of breast cancer cells

    Science.gov (United States)

    Vazquez-Martin, Alejandro; Cufí, Sílvia; López-Bonet, Eugeni; Corominas-Faja, Bruna; Cuyàs, Elisabet; Vellon, Luciano; Iglesias, Juan Manuel; Leis, Olatz; Martín, Ángel G; Menendez, Javier A

    2013-01-01

    The restoration of pluripotency circuits by the reactivation of endogenous stemness factors, such as SOX2, may provide a new paradigm in cancer development. The tumoral stem cell reprogramming hypothesis, i.e., the ability of stemness factors to redirect normal and differentiated tumor cells toward a less-differentiated and stem-like state, adds new layers of complexity to cancer biology, because the effects of such reprogramming may remain dormant until engaged later in response to (epi)genetic and/or (micro)environmental events. To test this hypothesis, we utilized an in vitro model of a SOX2-overexpressing cancer stem cell (CSC)-like cellular state that was recently developed in our laboratory by employing Yamanaka’s nuclear reprogramming technology in the estrogen receptor α (ERα)-positive MCF-7 breast cancer cell line. Despite the acquisition of distinct molecular features that were compatible with a breast CSC-like cellular state, such as strong aldehyde dehydrogenase activity, as detected by ALDEFLUOR, and overexpression of the SSEA-4 and CD44 breast CSC markers, the tumor growth-initiating ability of SOX2-overexpressing CSC-like MCF-7 cells solely occurred in female nude mice supplemented with estradiol when compared with MCF-7 parental cells. Ser118 phosphorylation of estrogen receptor α (ERα), which is a pivotal integrator of the genomic and nongenomic E2/ERα signaling pathways, drastically accumulated in nuclear speckles in the interphase nuclei of SOX2-driven CSC-like cell populations. Moreover, SOX2-positive CSC-like cells accumulated significantly higher numbers of actively dividing cells, and the highest levels of phospho-Ser118-ERα occurred when chromosomes lined up on a metaphase plate. The previously unrecognized link between E2/ERα signaling and SOX2-driven stem cell circuitry may significantly impact our current understanding of breast cancer initiation and progression, i.e., SOX2 can promote non-genomic E2 signaling that leads to

  18. OCT4A contributes to the stemness and multi-potency of human umbilical cord blood-derived multipotent stem cells (hUCB-MSCs)

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Kwang-Won; Lee, Sae-Rom; Bhandari, Dilli Ram; Roh, Kyoung-Hwan; Park, Sang-Bum; So, Ah-Young; Jung, Ji-Won; Seo, Min-Soo [Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University 151-742, Seoul (Korea, Republic of); Laboratory of Stem Cell and Tumor Biology, Department of Veterinary Public Health, College of Veterinary Medicine, and BK21 Program for Veterinary Science, Seoul National University 151-742, Seoul (Korea, Republic of); Kang, Soo-Kyung [Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University 151-742, Seoul (Korea, Republic of); Laboratory of Biotechnology, College of Veterinary Medicine, and BK21 Program for Veterinary Science, Seoul National University 151-742, Seoul (Korea, Republic of); Lee, Yong-Soon [Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University 151-742, Seoul (Korea, Republic of); Laboratory of Stem Cell and Tumor Biology, Department of Veterinary Public Health, College of Veterinary Medicine, and BK21 Program for Veterinary Science, Seoul National University 151-742, Seoul (Korea, Republic of); Kang, Kyung-Sun, E-mail: kangpub@snu.ac.kr [Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University 151-742, Seoul (Korea, Republic of); Laboratory of Stem Cell and Tumor Biology, Department of Veterinary Public Health, College of Veterinary Medicine, and BK21 Program for Veterinary Science, Seoul National University 151-742, Seoul (Korea, Republic of)

    2009-06-19

    The OCT4A gene, a POU homeodomain transcription factor, has been shown to be expressed in embryonic stem cells (ESC) as well as hUCB-MSCs. In this study, the roles played by OCT4A in hUCB-MSCs were determined by stably inhibiting OCT4A with lenti-viral vector-based small hairpin RNA (shRNA). A decreased rate of cell proliferation was observed in OCT4-inhibited hUCB-MSCs. Down-regulation of CCNA2 expression in OCT4-inhibited hUCB-MSCs was confirmed by RT-PCR and real-time RT-PCR analysis in three genetically independent hUCB-MSC clones. Adipogenic differentiation was also suppressed in OCT4-inhibited hUCB-MSCs. The up-regulation of DTX1 and down-regulation of HDAC1, 2, and 4 expressions may be related to this differentiation deformity. The expression of other transcription factors, including SOX2, REX1 and c-MYC, was also affected by OCT4 inhibition in hUCB-MSCs. In conclusion, these finding suggest that OCT4A performs functionally conserved roles in hUCB-MSCs, making its expression biologically important for ex vivo culture of hUCB-MSCs.

  19. Sox2 expression in breast tumours and activation in breast cancer stem cells.

    Science.gov (United States)

    Leis, O; Eguiara, A; Lopez-Arribillaga, E; Alberdi, M J; Hernandez-Garcia, S; Elorriaga, K; Pandiella, A; Rezola, R; Martin, A G

    2012-03-15

    The cancer stem cell (CSC) model does not imply that tumours are generated from transformed tissue stem cells. The target of transformation could be a tissue stem cell, a progenitor cell, or a differentiated cell that acquires self-renewal ability. The observation that induced pluripotency reprogramming and cancer are related has lead to the speculation that CSCs may arise through a reprogramming-like mechanism. Expression of pluripotency genes (Oct4, Nanog and Sox2) was tested in breast tumours by immunohistochemistry and it was found that Sox2 is expressed in early stage breast tumours. However, expression of Oct4 or Nanog was not found. Mammosphere formation in culture was used to reveal stem cell properties, where expression of Sox2, but not Oct4 or Nanog, was induced. Over-expression of Sox2 increased mammosphere formation, effect dependent on continuous Sox2 expression; furthermore, Sox2 knockdown prevented mammosphere formation and delayed tumour formation in xenograft tumour initiation models. Induction of Sox2 expression was achieved through activation of the distal enhancer of Sox2 promoter upon sphere formation, the same element that controls Sox2 transcription in pluripotent stem cells. These findings suggest that reactivation of Sox2 represents an early step in breast tumour initiation, explaining tumour heterogeneity by placing the tumour-initiating event in any cell along the axis of mammary differentiation.

  20. Generation of iPSCs from mouse fibroblasts with a single gene,Oct4,and small molecules

    Institute of Scientific and Technical Information of China (English)

    Yanqin Li; Xu Zhang; Yetao Wu; Honggang Li; Kang Liu; Chen Wu; Zhihua Song; Yang Zhao; Yan Shi; Hongkui Deng; Qiang Zhang; Xiaolei Yin; Weifeng Yang; Yuanyuan Du; Pingping Hou; Jian Ge; Chun Liu; Weiqi Zhang

    2011-01-01

    The introduction of four transcription factors Oct4,Klf4,Sox2 and c-Myc by viral transduction can induce reprogramming of somatic cells into induced pluripotent stem cells(iPSCs),but the use of iPSCs is hindered by the use of viral delivery systems.Chemical-induced reprogramming offers a novel approach to generating iPSCs without any viral vector-based genetic modification.Previous reports showed that several small molecules could replace some of the reprogramming factors although at least two transcription factors,Oct4 and Klf4,are still required to generate iPSCs from mouse embryonic fibroblasts.Here,we identify a specific chemical combination,which is sufficient to permit reprogramming from mouse embryonic and adult fibroblasts in the presence of a single transcription factor,Oct4,within 20 days,replacing Sox2,Klf4 and c-Myc.The iPSCs generated using this treatment resembled mouse embryonic stem cells in terms of global gene expression profile,epigenetic status and pluripotency both in vitro and in vivo.We also found that 8 days of Oct4 induction was sufficient to enable Oct4-induced reprogramming in the presence of the small molecules,which suggests that reprogramming was initiated within the first 8 days and was independent of continuous exogenous Oct4 expression.These discoveries will aid in the future generation of iPSCs without genetic modification,as well as elucidating the molecular mechanisms that underlie the reprogramming process.

  1. Sox2 in Embryonic Stem Cells and Lung Development

    NARCIS (Netherlands)

    C.G. Pardo (Cristina Gontan)

    2009-01-01

    markdownabstract__Abstract__ Sox2 is a fascinating transcription factor with multiple roles during embryonic development. In early embryonic development, Sox2 is one of the key transcription factors in the maintenance of the pluripotent status of the cells of the inner cell mass (ICM). Sox2 is also

  2. A data integration approach to mapping OCT4 gene regulatory networks operative in embryonic stem cells and embryonal carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Marc Jung

    Full Text Available It is essential to understand the network of transcription factors controlling self-renewal of human embryonic stem cells (ESCs and human embryonal carcinoma cells (ECs if we are to exploit these cells in regenerative medicine regimes. Correlating gene expression levels after RNAi-based ablation of OCT4 function with its downstream targets enables a better prediction of motif-specific driven expression modules pertinent for self-renewal and differentiation of embryonic stem cells and induced pluripotent stem cells.We initially identified putative direct downstream targets of OCT4 by employing CHIP-on-chip analysis. A comparison of three peak analysis programs revealed a refined list of OCT4 targets in the human EC cell line NCCIT, this list was then compared to previously published OCT4 CHIP-on-chip datasets derived from both ES and EC cells. We have verified an enriched POU-motif, discovered by a de novo approach, thus enabling us to define six distinct modules of OCT4 binding and regulation of its target genes.A selection of these targets has been validated, like NANOG, which harbours the evolutionarily conserved OCT4-SOX2 binding motif within its proximal promoter. Other validated targets, which do not harbour the classical HMG motif are USP44 and GADD45G, a key regulator of the cell cycle. Over-expression of GADD45G in NCCIT cells resulted in an enrichment and up-regulation of genes associated with the cell cycle (CDKN1B, CDKN1C, CDK6 and MAPK4 and developmental processes (BMP4, HAND1, EOMES, ID2, GATA4, GATA5, ISL1 and MSX1. A comparison of positively regulated OCT4 targets common to EC and ES cells identified genes such as NANOG, PHC1, USP44, SOX2, PHF17 and OCT4, thus further confirming their universal role in maintaining self-renewal in both cell types. Finally we have created a user-friendly database (http://biit.cs.ut.ee/escd/, integrating all OCT4 and stem cell related datasets in both human and mouse ES and EC cells.In the current

  3. Cervical cancer cells with positive Sox2 expression exhibit the properties of cancer stem cells.

    Directory of Open Access Journals (Sweden)

    Xiao-Fang Liu

    Full Text Available BACKGROUND: Although Sox2 expression has been found in several types of cancer, it has not yet been used to identify or isolate CSCs in somatic carcinoma. METHODS: SiHa and C33A cells stably transfected with a plasmid containing human Sox2 transcriptional elements driving the enhanced green fluorescent protein (EGFP reporter were sorted into the Sox2-positive and the Sox2-negative populations by FACS, and Sox2 expression was detected by western blot and immunohistochemistry. The differentiation, self-renewal and tumor formation abilities, as well as the expression of the stemness and the EMT related genes of the Sox2-positive and the Sox2-negative cervical cancer cells were characterized in vitro and in vivo. RESULTS: A pSox2/EGFP system was used to separate the Sox2-positive and the Sox2-negative cells from cervical cancer cell lines, SiHa and C33A cells. Compared with the Sox2-negative cells, the Sox2-positive SiHa and C33A cells exhibited greater capacities for self-renewal, differentiation and tumor formation. Furthermore, Sox2-positive SiHa and C33A cells expressed higher levels of stemness-related genes, such as Sox2/Bmi-1/Oct4/ALDH1, and EMT-related genes, such as vimentin/snail/β-catenin. Taken together, all these results indicated that cells expressing endogenous Sox2 are CSCs in cervical carcinomas. CONCLUSION: This study is the first to establish a functional link between endogenous Sox2 expression and CSCs in cervical carcinomas. Additionally, this study demonstrated that it is feasible to develop a tool to isolate CSCs from somatic tumors based on the expression of the endogenous nuclear protein Sox2 instead of cell surface markers.

  4. Prokaryotic expression of buffalo iPSCs transcription factor Sox2 and assist protein HA2-TAT%水牛iPS细胞转录因子Sox2及协助蛋白HA2-TAT的原核表达

    Institute of Scientific and Technical Information of China (English)

    伏彭辉; 石德顺; 邓彦飞; 刘金凤; 刘庆友

    2011-01-01

    为探讨干细胞转录因子与穿膜肽融合表达蛋白对水牛体细胞诱导重编程的可行性,本试验对水牛iPS细胞转录因子Sox2与细胞穿膜肽HIV TAT进行融合表达,以获得具有自主穿膜功能的Sox2蛋白,建立非转基因水牛iPS生产技术体系。首先人工合成了HA2-TAT序列,并将pET-32a(+)质粒改造为pET-HA2-TAT基础表达载体,再通过双酶切定向克隆将水牛Sox2基因插入pET-HA2-TAT得到原核表达载体pET-NLS-Sox2-TAT;重组质粒转化大肠杆菌BL21(DE3),经IPTG诱导,用SDS-P%To obtain Sox2 protein which could penetrate cell membrane,buffalo iPSCs(induced pluripotent stem cells) transcription factor Sox2 and cell-penetrating peptide HIV TAT were fusingly expressed.First,HA2-TAT fragment was synthesised to construct a basic expressing plasmid,pET-HA2-TAT.Then buffalo Sox2 gene was subcloned to pET-HA2-TAT,forming a recombinant plasmid pET-NLS-Sox2-TAT.It was transformed into E.coli BL21(DE3) and the fusion protein was expressed with induction of IPTG.SDS-PAGE analysis and Western blot was performed to detect the fusion protein which was isolated and purified by Ni2+ protein purificating column.The results showed that the fusion protein HA2-TAT(24 400)and NLS-Sox2-TAT(57 700) could high efficiently expressed.When the imidazole at the density of 365.30 mmol/L,fusion protein NLS-Sox2-TAT emerges eluting peak.The fusion protein could be detected with biology antigenicity by Western blot.

  5. Study on the relationship of abnormal transcription factors OCT4,HBP1 and Snail expres-sion with progression of osteosarcoma%转录因子 OCT4、HBP 1、Snail 异常表达与骨肉瘤病情进展的关系研究

    Institute of Scientific and Technical Information of China (English)

    黎立; 司裕

    2016-01-01

    [ABSTRACT]Objective:To study the relationship of abnormal transcription factors OCT4,HBP1 and Snail expression with progression of osteosarcoma.Methods:Surgical removed osteosarcoma tissue specimens were selected as pathology group, surgically removed osteoid osteoma specimens were selected as control group,and the expression levels of gene transcription factors OCT4,HBP1 and Snail,proliferation genes,epithelial-mesenchymal transition marker molecules in tissue specimens were determined.Results:Oct4 and Snail protein levels of pathology group were significantly higher than those of control group and HBP1 protein level was significantly lower than that of control group;C-myc and cyclinD1 protein levels of pathology group were significantly higher than those of control group,positively correlated with OCT4 and negatively correlated with HBP1;p1 6 and p53 protein levels were significantly lower than those of control group,negatively correlated with OCT4 and positively correlated with HBP1;N-cadherin and Vimentin protein levels of pathology group were significantly higher than those of control group and positively correlated with Snail while E-cadherin and Occludin protein levels were significantly lower than those of control group and negatively correlated with Snail.Conclusions:Oct4 and Snail are highly expressed and HBP1 is lowly expressed in osteosarcoma tissue,Oct4 and Snail can participate in the regulation of cell proliferation,and HBP1 can par-ticipate in the regulation of epithelial-mesenchymal transition of cells.%目的::研究转录因子 OCT4、HBP1、Snail 异常表达与骨肉瘤病情进展的关系.方法:选择手术切除的骨肉瘤组织作为病例组标本,手术切除的骨样骨瘤标本作为对照组标本,测定组织样本中转录因子 OCT4、HBP1、Snail 及增殖基因、上皮间质转化标志分子的表达量.结果:病例组 OCT4和 Snail 的蛋白含量显著高于对照组(P <0.05),HBP1的蛋白

  6. Emerging role of long non-coding RNA SOX2OT in SOX2 regulation in breast cancer.

    Directory of Open Access Journals (Sweden)

    Marjan E Askarian-Amiri

    Full Text Available The transcription factor SOX2 is essential for maintaining pluripotency in a variety of stem cells. It has important functions during embryonic development, is involved in cancer stem cell maintenance, and is often deregulated in cancer. The mechanism of SOX2 regulation has yet to be clarified, but the SOX2 gene lies in an intron of a long multi-exon non-coding RNA called SOX2 overlapping transcript (SOX2OT. Here, we show that the expression of SOX2 and SOX2OT is concordant in breast cancer, differentially expressed in estrogen receptor positive and negative breast cancer samples and that both are up-regulated in suspension culture conditions that favor growth of stem cell phenotypes. Importantly, ectopic expression of SOX2OT led to an almost 20-fold increase in SOX2 expression, together with a reduced proliferation and increased breast cancer cell anchorage-independent growth. We propose that SOX2OT plays a key role in the induction and/or maintenance of SOX2 expression in breast cancer.

  7. Involvement of ubiquitous and tale transcription factors, as well as liganded RXRα, in the regulation of human SOX2 gene expression in the NT2/D1 embryonal carcinoma cell line

    Directory of Open Access Journals (Sweden)

    Milivojević Milena

    2010-01-01

    Full Text Available SOX2 is a key transcription factor in embryonic development representing a universal marker of pluripotent stem cells. Based on the functional redundancy and overlapping expression patterns of SOXB1 subgroup members during development, the goal of this study has been to analyze if some aspects of regulation of expression are preserved between human SOX2 and SOX3 genes. Thus, we have tested several transcription factors previously demonstrated to play roles in controlling SOX3 gene activity for potential participation in the regulation of SOX2 gene expression in NT2/D1 cells. Here we report on the activation of SOX2 expression by ubiquitous transcription factors (NF-Y, Sp1 and MAZ, TALE family members (Pbx1 and Meis1, as well as liganded RXRα. Elucidating components involved in the regulation of SOX gene expression represent a valuable contribution in unraveling the regulatory networks operating in pluripotent embryonic cells.

  8. Oct4 links multiple epigenetic pathways to the pluripotency network

    Institute of Scientific and Technical Information of China (English)

    Junjun Ding; Huilei Xu; Francesco Faiola; Avi Ma'ayan; Jianlong Wang

    2012-01-01

    Oct4 is a well-known transcription factor that plays fundamental roles in stem cell self-renewal,pluripotency,and somatic cell reprogramming.However,limited information is available on Oct4-associated protein complexes and their intrinsic protein-protein interactions that dictate Oct4's critical regulatory activities.Here we employed an improved affinity purification approach combined with mass spectrometry to purify Oct4 protein complexes in mouse embryonic stem cells (mESCs),and discovered many novel Oct4 partners important for self-renewal and pluripotency of mESCs.Notably,we found that Oct4 is associated with multiple cbromatin-modifying complexes with documented as well as newly proved functional significance in stem cell maintenance and somatic cell reprogramming.Our study establishes a solid biochemical basis for genetic and epigenetic regulation of stem cell pluripotency and provides a framework for exploring alternative factor-based reprogramming strategies.

  9. Oct-4 expression in pluripotent cells of the rhesus monkey.

    Science.gov (United States)

    Mitalipov, Shoukhrat M; Kuo, Hung-Chih; Hennebold, Jon D; Wolf, Don P

    2003-12-01

    The POU (Pit-Oct-Unc)-domain transcription factor, Oct-4, has become a useful marker of pluripotency in the mouse. It is found exclusively in mouse preimplantation-stage embryos after embryonic genome activation and is a characteristic of mouse embryonic stem (ES) cells, and its absence in knockout mice precludes inner cell mass (ICM) formation in blastocysts. Expression of Oct-4 has also been associated with pluripotency in primate cells. Here, we undertook a systematic study of Oct-4 expression in rhesus macaque preimplantation embryos produced by intracytoplasmic sperm injection and in ES cells before and after exposure to differentiating conditions in vitro. We also evaluated Oct-4 expression as a means of monitoring the extent of reprogramming following somatic cell nuclear transfer. Oct-4 was detected by reverse transcription-polymerase chain reaction and immunocytochemistry with a monoclonal antibody. Monkey pronuclear-stage zygotes and cleaving embryos up to the 8-cell stage showed no detectable Oct-4. Nuclear staining for Oct-4 first became obvious at the 16-cell stage, and a strong signal was observed in morula and compact morula stages. Both ICM and trophectodermal cell nuclei of monkey early blastocysts were positive for Oct-4. However, the signal was diminished in trophectodermal cells of expanded blastocysts, whereas expression remained high in ICM nuclei. Similar to the mouse, hatched monkey blastocysts showed strong Oct-4 expression in the ICM, with no detectable signal in the trophectoderm. Undifferentiated monkey ES cells derived from the ICM of in vitro-produced blastocysts expressed Oct-4, consistent with their pluripotent nature, whereas ES cell differentiation was associated with signal loss. Therefore, Oct-4 expression in the monkey, as in the mouse, provides a useful marker for pluripotency after activation of the embryonic genome. Finally, the observed lack or abnormal expression of Oct-4 in monkey nuclear transfer embryos suggests

  10. The embryonic stem cell transcription factors Oct-4 and FoxD3 interact to regulate endodermal-specific promoter expression

    OpenAIRE

    Guo, Ying; De Costa, Robert; Ramsey, Heather; Starnes, Trevor; Vance, Gail; Robertson, Kent; Kelley, Mark; Reinbold, Rolland; Scholer, Hans; Hromas, Robert

    2002-01-01

    The POU homeodomain protein Oct-4 and the Forkhead Box protein FoxD3 (previously Genesis) are transcriptional regulators expressed in embryonic stem cells. Down-regulation of Oct-4 during gastrulation is essential for proper endoderm development. After gastrulation, FoxD3 is generally down-regulated during early endoderm formation, although it specifically remains expressed in the embryonic neural crest. In these studies, we have found that Oct-4 and FoxD3 can bind to identical regulatory DNA...

  11. Oct-4 is associated with gastric cancer progression and prognosis

    Directory of Open Access Journals (Sweden)

    Jiang WL

    2016-01-01

    Full Text Available Wen-Li Jiang,1 Peng-Fei Zhang,2 Guo-Feng Li,1 Jian-Hua Dong,1 Xue-Song Wang,1 Yuan-Yu Wang3 1Department of Surgery, Juxian People’s Hospital, 2Department of Surgery, Rizhao People’s Hospital of Traditional Chinese Medicine, Rizhao, 3Department of Gastrointestinal Surgery, Zhejiang Provincial People’s Hospital, Hangzhou, People’s Republic of China Aim: To investigate the clinical significance of Oct-4 in the development and progression of gastric cancer.Methods: Immunohistochemistry was used to analyze Oct-4 expression in 412 gastric cancer cases. Oct-4 protein levels were upregulated in gastric cancer tissues compared with adjacent noncancerous tissues.Results: Positive expression of Oct-4 correlated with age, depth of invasion, Lauren classification, lymph node metastasis, distant metastasis, and TNM stage. In stages I, II, and III, the 5-year survival rate of patients with high expression of Oct-4 was significantly lower than that in patients with low expression of Oct-4. In stage IV, Oct-4 expression did not correlate with the 5-year survival rate. Furthermore, multivariate analysis suggested that the depth of invasion, lymph node metastasis, distant metastasis, TNM stage, and upregulation of Oct-4 were independent prognostic factors of gastric cancer.Conclusion: Oct-4 protein is a useful marker in predicting tumor progression and prognosis. Keywords: gastric carcinoma, invasion, metastasis, survival rate

  12. Expression and interdependencies of pluripotency factors LIN28, OCT3/4, NANOG and SOX2 in human testicular germ cells and tumours of the testis.

    Science.gov (United States)

    Gillis, A J M; Stoop, H; Biermann, K; van Gurp, R J H L M; Swartzman, E; Cribbes, S; Ferlinz, A; Shannon, M; Oosterhuis, J W; Looijenga, L H J

    2011-08-01

    OCT3/4, NANOG, SOX2 and, most recently, LIN28 have been identified as key regulators of pluripotency in mammalian embryonic and induced stem cells, and are proven to be crucial for generation of the mouse germ-cell lineage. These factors are a hallmark of certain histological types of germ-cell tumours (GCTs). Here, we report novel information on the temporal and spatial expression pattern of LIN28 during normal human male germ-cell development as well as various types of GCTs. To investigate LIN28 expression, immunohistochemical analyses and quantitative proximity ligation assay-based TaqMan protein assays were applied on snap-frozen and formalin-fixed, paraffin-embedded samples as well as representative cell lines. LIN28 was found in primordial germ cells, gonocytes and pre-spermatogonia, in contrast to OCT3/4 and NANOG, which were found only in the first two stages. LIN28 was also found in all precursor lesions (carcinoma in situ and gonadoblastoma) of type II GCTs, as well as the invasive components seminoma and the non-seminomatous elements embryonal carcinoma and yolk sac tumour. Choriocarcinoma showed a heterogeneous pattern, while teratomas and spermatocytic seminomas (type III GCTs) were negative. This expression pattern suggests that LIN28 is associated with malignant behaviour of type II GCTs. Cell line experiments involving siRNA knockdown of LIN28, OCT3/4 and SOX2 showed that LIN28 plays a role in the maintenance of the undifferentiated state of both seminoma and embryonal carcinoma, closely linked to, and likely upstream of OCT3/4 and NANOG. In conclusion, LIN28 regulates the differentiation status of seminoma and embryonal carcinoma and is likely to play a related role in normal human germ-cell development. © 2011 The Authors. International Journal of Andrology © 2011 European Academy of Andrology.

  13. Pseudogene OCT4-pg4 functions as a natural micro RNA sponge to regulate OCT4 expression by competing for miR-145 in hepatocellular carcinoma.

    Science.gov (United States)

    Wang, Lei; Guo, Zhang-Yan; Zhang, Rui; Xin, Bo; Chen, Rui; Zhao, Jing; Wang, Tao; Wen, Wei-Hong; Jia, Lin-Tao; Yao, Li-Bo; Yang, An-Gang

    2013-08-01

    The POU transcription factor OCT4 is a pleiotropic regulator of gene expression in embryonic stem cells. Recent studies demonstrated that OCT4 is aberrantly expressed in multiple types of human cancer; however, the underlying molecular mechanism remains largely unknown. In this study, we report that OCT4-pg4, a pseudogene of OCT4, is abnormally activated in hepatocellular carcinoma (HCC). The expression level of OCT4-pg4 is positively correlated with that of OCT4, and both gene transcripts can be directly targeted by a tumor-suppressive micro RNA miR-145. We find that the non-coding RNA OCT4-pg4 is biologically active, as it can upregulate OCT4 protein level in HCC. Mechanistic analysis revealed that OCT4-pg4 functions as a natural micro RNA sponge to protect OCT4 transcript from being inhibited by miR-145. In addition, our study also showed that OCT4-pg4 can promote growth and tumorigenicity of HCC cells, thus exerting an oncogenic role in hepatocarcinogenesis. Furthermore, survival analysis suggests that high OCT4-pg4 level is significantly correlated with poor prognosis of HCC patients. Taken together, our finding adds a new layer of post-transcriptional regulation of OCT4 and sheds new light on the treatment of human HCC.

  14. Sox2(+) adult stem and progenitor cells are important for tissue regeneration and survival of mice

    NARCIS (Netherlands)

    Arnold, K.; Sarkar, A.; Yram, M.A.; Polo, J.M.; Bronson, R.; Sengupta, S.; Seandel, M.; Geijsen, N.; Hochedlinger, K.

    2011-01-01

    The transcription factor Sox2 maintains the pluripotency of early embryonic cells and regulates the formation of several epithelia during fetal development. Whether Sox2 continues to play a role in adult tissues remains largely unknown. We show here that Sox2 marks adult cells in several epithelial

  15. EGFR/Src/Akt signaling modulates Sox2 expression and self-renewal of stem-like side-population cells in non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Singh Sandeep

    2012-09-01

    Full Text Available Abstract Background Cancer stem cells are thought to be responsible for the initiation and progression of cancers. In non-small cell lung cancers (NSCLCs, Hoechst 33342 dye effluxing side population (SP cells are shown to have stem cell like properties. The oncogenic capacity of cancer stem-like cells is in part due to their ability to self-renew; however the mechanistic correlation between oncogenic pathways and self-renewal of cancer stem-like cells has remained elusive. Here we characterized the SP cells at the molecular level and evaluated its ability to generate tumors at the orthotopic site in the lung microenvironment. Further, we investigated if the self-renewal of SP cells is dependent on EGFR mediated signaling. Results SP cells were detected and isolated from multiple NSCLC cell lines (H1650, H1975, A549, as well as primary human tumor explants grown in nude mice. SP cells demonstrated stem-like properties including ability to self-renew and grow as spheres; they were able to generate primary and metastatic tumors upon orthotopic implantation into the lung of SCID mice. In vitro study revealed elevated expression of stem cell associated markers like Oct4, Sox2 and Nanog as well as demonstrated intrinsic epithelial to mesenchymal transition features in SP cells. Further, we show that abrogation of EGFR, Src and Akt signaling through pharmacological or genetic inhibitors suppresses the self-renewal growth and expansion of SP-cells and resulted in specific downregulation of Sox2 protein expression. siRNA mediated depletion of Sox2 significantly blocked the SP phenotype as well as its self-renewal capacity; whereas other transcription factors like Oct4 and Nanog played a relatively lesser role in regulating self-renewal. Interestingly, Sox2 was elevated in metastatic foci of human NSCLC samples. Conclusions Our findings suggest that Sox2 is a novel target of EGFR-Src-Akt signaling in NSCLCs that modulates self-renewal and expansion of

  16. SOX2 functions as a molecular rheostat to control the growth, tumorigenicity and drug responses of pancreatic ductal adenocarcinoma cells

    Science.gov (United States)

    Wuebben, Erin L.; Wilder, Phillip J.; Cox, Jesse L.; Grunkemeyer, James A.; Caffrey, Thomas; Hollingsworth, Michael A.; Rizzino, Angie

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is a highly deadly malignancy. Expression of the stem cell transcription factor SOX2 increases during progression of PDAC. Knockdown of SOX2 in PDAC cell lines decreases growth in vitro; whereas, stable overexpression of SOX2 in one PDAC cell line reportedly increases growth in vitro. Here, we reexamined the role of SOX2 in PDAC cells, because inducible SOX2 overexpression in other tumor cell types inhibits growth. In this study, four PDAC cell lines were engineered for inducible overexpression of SOX2 or inducible knockdown of SOX2. Remarkably, inducible overexpression of SOX2 in PDAC cells inhibits growth in vitro and reduces tumorigenicity. Additionally, inducible knockdown of SOX2 in PDAC cells reduces growth in vitro and in vivo. Thus, growth and tumorigenicity of PDAC cells is highly dependent on the expression of optimal levels of SOX2 – a hallmark of molecular rheostats. We also determined that SOX2 alters the responses of PDAC cells to drugs used in PDAC clinical trials. Increasing SOX2 reduces growth inhibition mediated by MEK and AKT inhibitors; whereas knockdown of SOX2 further reduces growth when PDAC cells are treated with these inhibitors. Thus, targeting SOX2, or its mode of action, could improve the treatment of PDAC. PMID:27145457

  17. Effects of SOX2 on Proliferation, Migration and Adhesion of Human Dental Pulp Stem Cells.

    Science.gov (United States)

    Liu, Pengfei; Cai, Jinglei; Dong, Delu; Chen, Yaoyu; Liu, Xiaobo; Wang, Yi; Zhou, Yulai

    2015-01-01

    As a key factor for cell pluripotent and self-renewing phenotypes, SOX2 has attracted scientists' attention gradually in recent years. However, its exact effects in dental pulp stem cells (DPSCs) are still unclear. In this study, we mainly investigated whether SOX2 could affect some biological functions of DPSCs. DPSCs were isolated from the dental pulp of human impacted third molar. SOX2 overexpressing DPSCs (DPSCs-SOX2) were established through retroviral infection. The effect of SOX2 on cell proliferation, migration and adhesion ability was evaluated with CCK-8, trans-well system and fibronectin-induced cell attachment experiment respectively. Whole genome expression of DPSCs-SOX2 was analyzed with RNA microarray. Furthermore, a rescue experiment was performed with SOX2-siRNA in DPSC-SOX2 to confirm the effect of SOX2 overexpression in DPSCs. We found that SOX2 overexpression could result in the enhancement of cell proliferation, migration, and adhesion in DPSCs obviously. RNA microarray analysis indicated that some key genes in the signal pathways associated with cell cycle, migration and adhesion were upregulated in different degree, and the results were further confirmed with qPCR and western-blot. Finally, DPSC-SOX2 transfected with SOX2-siRNA showed a decrease of cell proliferation, migration and adhesion ability, which further confirmed the biological effect of SOX2 in human DPSCs. This study indicated that SOX2 could improve the cell proliferation, migration and adhesion ability of DPSCs through regulating gene expression about cell cycle, migration and adhesion, and provided a novel strategy to develop seed cells with strong proliferation, migration and adhesion ability for tissue engineering.

  18. Effects of SOX2 on Proliferation, Migration and Adhesion of Human Dental Pulp Stem Cells.

    Directory of Open Access Journals (Sweden)

    Pengfei Liu

    Full Text Available As a key factor for cell pluripotent and self-renewing phenotypes, SOX2 has attracted scientists' attention gradually in recent years. However, its exact effects in dental pulp stem cells (DPSCs are still unclear. In this study, we mainly investigated whether SOX2 could affect some biological functions of DPSCs. DPSCs were isolated from the dental pulp of human impacted third molar. SOX2 overexpressing DPSCs (DPSCs-SOX2 were established through retroviral infection. The effect of SOX2 on cell proliferation, migration and adhesion ability was evaluated with CCK-8, trans-well system and fibronectin-induced cell attachment experiment respectively. Whole genome expression of DPSCs-SOX2 was analyzed with RNA microarray. Furthermore, a rescue experiment was performed with SOX2-siRNA in DPSC-SOX2 to confirm the effect of SOX2 overexpression in DPSCs. We found that SOX2 overexpression could result in the enhancement of cell proliferation, migration, and adhesion in DPSCs obviously. RNA microarray analysis indicated that some key genes in the signal pathways associated with cell cycle, migration and adhesion were upregulated in different degree, and the results were further confirmed with qPCR and western-blot. Finally, DPSC-SOX2 transfected with SOX2-siRNA showed a decrease of cell proliferation, migration and adhesion ability, which further confirmed the biological effect of SOX2 in human DPSCs. This study indicated that SOX2 could improve the cell proliferation, migration and adhesion ability of DPSCs through regulating gene expression about cell cycle, migration and adhesion, and provided a novel strategy to develop seed cells with strong proliferation, migration and adhesion ability for tissue engineering.

  19. OCT4 increases BIRC5 and CCND1 expression and promotes cancer progression in hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Cao Lu

    2013-02-01

    Full Text Available Abstract Background OCT4 and BIRC5 are preferentially expressed in human cancer cells and mediate cancer cell survival and tumor maintenance. However, the molecular mechanism that regulates OCT4 and BIRC5 expression is not well characterized. Methods By manipulating OCT4 and BIRC5 expression in hepatocellular carcinoma (HCC cell lines, the regulatory mechanism of OCT4 on BIRC5 and CCND1 were investigated. Results Increasing or decreasing OCT4 expression could enhance or suppress BIRC5 expression, respectively, by regulating the activity of BIRC5 promoter. Because there is no binding site for OCT4 within BIRC5 promoter, the effect of OCT4 on BIRC5 promoter is indirect. An octamer motif for OCT4 in the CCND1 promoter has directly and partly participated in the regulation of CCND1 promoter activity, suggesting that OCT4 also could upregulated the expression of CCND1. Co-suppression of OCT4 and BIRC5 induced cancer cell apoptosis and cell cycle arrest, thereby efficiently inhibiting the proliferative activity of cancer cells and suppressing the growth of HCC xenogrfts in nude mice. Conclusion OCT4 can upregulate BIRC5 and CCND1 expression by increasing their promoter activity. These factors collusively promotes HCC cell proliferation, and co-suppression of OCT4 and BIRC5 is potentially beneficial for HCC treatment.

  20. Genetic and Epigenetic Modifications of Sox2 Contribute to the Invasive Phenotype of Malignant Gliomas

    Science.gov (United States)

    Alonso, Marta M.; Diez-Valle, Ricardo; Manterola, Lorea; Rubio, Angel; Liu, Dan; Cortes-Santiago, Nahir; Urquiza, Leire; Jauregi, Patricia; de Munain, Adolfo Lopez; Sampron, Nicolás; Aramburu, Ander; Tejada-Solís, Sonia; Vicente, Carmen; Odero, María D.; Bandrés, Eva; García-Foncillas, Jesús; Idoate, Miguel A.; Lang, Frederick F.; Fueyo, Juan; Gomez-Manzano, Candelaria

    2011-01-01

    We undertook this study to understand how the transcription factor Sox2 contributes to the malignant phenotype of glioblastoma multiforme (GBM), the most aggressive primary brain tumor. We initially looked for unbalanced genomic rearrangements in the Sox2 locus in 42 GBM samples and found that Sox2 was amplified in 11.5% and overexpressed in all the samples. These results prompted us to further investigate the mechanisms involved in Sox2 overexpression in GBM. We analyzed the methylation status of the Sox2 promoter because high CpG density promoters are associated with key developmental genes. The Sox2 promoter presented a CpG island that was hypomethylated in all the patient samples when compared to normal cell lines. Treatment of Sox2-negative glioma cell lines with 5-azacitidine resulted in the re-expression of Sox2 and in a change in the methylation status of the Sox2 promoter. We further confirmed these results by analyzing data from GBM cases generated by The Cancer Genome Atlas project. We observed Sox2 overexpression (86%; N = 414), Sox2 gene amplification (8.5%; N = 492), and Sox 2 promoter hypomethylation (100%; N = 258), suggesting the relevance of this factor in the malignant phenotype of GBMs. To further explore the role of Sox2, we performed in vitro analysis with brain tumor stem cells (BTSCs) and established glioma cell lines. Downmodulation of Sox2 in BTSCs resulted in the loss of their self-renewal properties. Surprisingly, ectopic expression of Sox2 in established glioma cells was not sufficient to support self-renewal, suggesting that additional factors are required. Furthermore, we observed that ectopic Sox2 expression was sufficient to induce invasion and migration of glioma cells, and knockdown experiments demonstrated that Sox2 was essential for maintaining these properties. Altogether, our data underscore the importance of a pleiotropic role of Sox2 and suggest that it could be used as a therapeutic target in GBM. PMID:22069467

  1. Genetic and epigenetic modifications of Sox2 contribute to the invasive phenotype of malignant gliomas.

    Directory of Open Access Journals (Sweden)

    Marta M Alonso

    Full Text Available We undertook this study to understand how the transcription factor Sox2 contributes to the malignant phenotype of glioblastoma multiforme (GBM, the most aggressive primary brain tumor. We initially looked for unbalanced genomic rearrangements in the Sox2 locus in 42 GBM samples and found that Sox2 was amplified in 11.5% and overexpressed in all the samples. These results prompted us to further investigate the mechanisms involved in Sox2 overexpression in GBM. We analyzed the methylation status of the Sox2 promoter because high CpG density promoters are associated with key developmental genes. The Sox2 promoter presented a CpG island that was hypomethylated in all the patient samples when compared to normal cell lines. Treatment of Sox2-negative glioma cell lines with 5-azacitidine resulted in the re-expression of Sox2 and in a change in the methylation status of the Sox2 promoter. We further confirmed these results by analyzing data from GBM cases generated by The Cancer Genome Atlas project. We observed Sox2 overexpression (86%; N = 414, Sox2 gene amplification (8.5%; N = 492, and Sox 2 promoter hypomethylation (100%; N = 258, suggesting the relevance of this factor in the malignant phenotype of GBMs. To further explore the role of Sox2, we performed in vitro analysis with brain tumor stem cells (BTSCs and established glioma cell lines. Downmodulation of Sox2 in BTSCs resulted in the loss of their self-renewal properties. Surprisingly, ectopic expression of Sox2 in established glioma cells was not sufficient to support self-renewal, suggesting that additional factors are required. Furthermore, we observed that ectopic Sox2 expression was sufficient to induce invasion and migration of glioma cells, and knockdown experiments demonstrated that Sox2 was essential for maintaining these properties. Altogether, our data underscore the importance of a pleiotropic role of Sox2 and suggest that it could be used as a therapeutic target in GBM.

  2. Sox2 is dispensable for the reprogramming of melanocytes and melanoma cells into induced pluripotent stem cells.

    Science.gov (United States)

    Utikal, Jochen; Maherali, Nimet; Kulalert, Warakorn; Hochedlinger, Konrad

    2009-10-01

    Induced pluripotent stem cells (iPSCs) have been derived at low frequencies from different cell types through ectopic expression of the transcription factors Oct4 and Sox2, combined with either Klf4 and c-Myc or Lin28 and Nanog. In order to generate iPSCs more effectively, it will be crucial to identify somatic cells that are easily accessible and possibly require fewer factors for conversion into iPSCs. Here, we show that both human and mouse melanocytes give rise to iPSCs at higher efficiencies than fibroblasts. Moreover, we demonstrate that a mouse malignant melanoma cell line, which has previously been reprogrammed into embryonic stem cells by nuclear transfer, remains equally amenable to reprogramming into iPSCs by these transcription factors. In contrast to skin fibroblasts, melanocytes and melanoma cells did not require ectopic Sox2 expression for conversion into iPSCs. iPSC lines from melanocytic cells expressed pluripotency markers, formed teratomas and contributed to viable chimeric mice with germ line transmission. Our results identify skin melanocytes as an alternative source for deriving patient-specific iPSCs at increased efficiency and with fewer genetic elements. In addition, our results suggest that cancer cells remain susceptible to transcription factor-mediated reprogramming, which should facilitate the study of epigenetic changes in human cancer.

  3. [SOX2 defect and anophthalmia and microphthalmia].

    Science.gov (United States)

    Ye, Fu-xiang; Fan, Xian-qun

    2012-11-01

    As a severe congenital developmental disorder, anophthalmia and microphthalmia are usually accompanied with vision impairment and hypoevolutism of the orbit in the affected side. Many genes are involved in anophthalmia and microphthalmia, in which, SOX2 is an important one. The defect of SOX2 causes multiple system disorders, including anophthalmia and microphthalmia. We describe the relationship between the SOX2 defect and anophthalmia/microphthalmia, in order to offer some proposals for the differential diagnosis, treatment and research of anophthalmia and microphthalmia.

  4. Patients with Multiple Myeloma Develop SOX2-Specific Autoantibodies after Allogeneic Stem Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Sebastian Kobold

    2011-01-01

    Full Text Available The occurrence of SOX2-specific autoantibodies seems to be associated with an improved prognosis in patients with monoclonal gammopathy of undetermined significance (MGUS. However, it is unclear if SOX2-specific antibodies also develop in established multiple myeloma (MM. Screening 1094 peripheral blood (PB sera from 196 MM patients and 100 PB sera from healthy donors, we detected SOX2-specific autoantibodies in 7.7% and 2.0% of patients and donors, respectively. We identified SOX2211–230 as an immunodominant antibody-epitope within the full protein sequence. SOX2 antigen was expressed in most healthy tissues and its expression did not correlate with the number of BM-resident plasma cells. Accordingly, anti-SOX2 immunity was not related to SOX2 expression levels or tumor burden in the patients’ BM. The only clinical factor predicting the development of anti-SOX2 immunity was application of allogeneic stem cell transplantation (alloSCT. Anti-SOX2 antibodies occurred more frequently in patients who had received alloSCT (n=74. Moreover, most SOX2-seropositive patients had only developed antibodies after alloSCT. This finding indicates that alloSCT is able to break tolerance towards this commonly expressed antigen. The questions whether SOX2-specific autoantibodies merely represent an epiphenomenon, are related to graft-versus-host effects or participate in the immune control of myeloma needs to be answered in prospective studies.

  5. Sox2 promotes survival of satellite glial cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Koike, Taro, E-mail: koiket@hirakata.kmu.ac.jp; Wakabayashi, Taketoshi; Mori, Tetsuji; Hirahara, Yukie; Yamada, Hisao

    2015-08-14

    Sox2 is a transcriptional factor expressed in neural stem cells. It is known that Sox2 regulates cell differentiation, proliferation and survival of the neural stem cells. Our previous study showed that Sox2 is expressed in all satellite glial cells of the adult rat dorsal root ganglion. In this study, to examine the role of Sox2 in satellite glial cells, we establish a satellite glial cell-enriched culture system. Our culture method succeeded in harvesting satellite glial cells with the somata of neurons in the dorsal root ganglion. Using this culture system, Sox2 was downregulated by siRNA against Sox2. The knockdown of Sox2 downregulated ErbB2 and ErbB3 mRNA at 2 and 4 days after siRNA treatment. MAPK phosphorylation, downstream of ErbB, was also inhibited by Sox2 knockdown. Because ErbB2 and ErbB3 are receptors that support the survival of glial cells in the peripheral nervous system, apoptotic cells were also counted. TUNEL-positive cells increased at 5 days after siRNA treatment. These results suggest that Sox2 promotes satellite glial cell survival through the MAPK pathway via ErbB receptors. - Highlights: • We established satellite glial cell culture system. • Function of Sox2 in satellite glial cell was examined using siRNA. • Sox2 knockdown downregulated expression level of ErbB2 and ErbB3 mRNA. • Sox2 knockdown increased apoptotic satellite glial cell. • Sox2 promotes satellite glial cell survival through ErbB signaling.

  6. Oct4 targets regulatory nodes to modulate stem cell function.

    Directory of Open Access Journals (Sweden)

    Pearl A Campbell

    Full Text Available Stem cells are characterized by two defining features, the ability to self-renew and to differentiate into highly specialized cell types. The POU homeodomain transcription factor Oct4 (Pou5f1 is an essential mediator of the embryonic stem cell state and has been implicated in lineage specific differentiation, adult stem cell identity, and cancer. Recent description of the regulatory networks which maintain 'ES' have highlighted a dual role for Oct4 in the transcriptional activation of genes required to maintain self-renewal and pluripotency while concomitantly repressing genes which facilitate lineage specific differentiation. However, the molecular mechanism by which Oct4 mediates differential activation or repression at these loci to either maintain stem cell identity or facilitate the emergence of alternate transcriptional programs required for the realization of lineage remains to be elucidated. To further investigate Oct4 function, we employed gene expression profiling together with a robust statistical analysis to identify genes highly correlated to Oct4. Gene Ontology analysis to categorize overrepresented genes has led to the identification of themes which may prove essential to stem cell identity, including chromatin structure, nuclear architecture, cell cycle control, DNA repair, and apoptosis. Our experiments have identified previously unappreciated roles for Oct4 for firstly, regulating chromatin structure in a state consistent with self-renewal and pluripotency, and secondly, facilitating the expression of genes that keeps the cell poised to respond to cues that lead to differentiation. Together, these data define the mechanism by which Oct4 orchestrates cellular regulatory pathways to enforce the stem cell state and provides important insight into stem cell function and cancer.

  7. High OCT4 and Low p16INK4A Expressions Determine In Vitro Lifespan of Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Carla A. Piccinato

    2015-01-01

    Full Text Available After long-term culture, mesenchymal stem cells alter their biological properties and enter into a state of replicative senescence. Although several classical biomarkers have been used for quantitative assessment of cellular senescence, no hallmark has been proven completely unique to the senescent state in cells. We used bone marrow-derived MSCs (BM-MSCs from different healthy young donors and an in vitro model with well-defined senescence end points to identify a set of robust markers that could potentially predict the expansion capacity of MSCs preparations before reaching senescence. For each early passage BM-MSC sample (5th or 6th passages, the normalized protein expression levels of senescence-associated markers p16INK4A, p21WAF1, SOD2, and rpS6S240/244; the concentration of IL6 and IL8 in cell culture supernatants; and the normalized gene expression levels of pluripotency markers OCT4, NANOG, and SOX2 were correlated with final population doubling (PD number. We revealed that the low expression of p16INK4A protein and a high OCT4 gene expression, rather than other evaluated markers, might be potential hallmarks and predictors of greater in vitro lifespan and growth potential, factors that can impact the successful therapeutic use of MSCs preparations.

  8. Targeting SOX2 as a therapeutic strategy in glioblastoma

    Directory of Open Access Journals (Sweden)

    Ander Matheu

    2016-10-01

    Full Text Available Glioblastoma is the most common and malignant brain cancer in adults. Current therapy consisting of surgery followed by radiation and temozolomide therapy has moderate success rate and the tumor reappears. Among the features that a cancer cell must have to survive the therapeutic treatment and reconstitute the tumor is the ability to self-renewal. Therefore, it is vital to identify the molecular mechanisms that regulate this activity.SOX2 is a transcription factor whose activity has been associated with the maintenance of the undifferentiated state of cancer stem cells in several tissues including the brain. Several groups have detected SOX2 levels increased in biopsies of glioblastoma patients, with highest levels associated to poor outcome. Therefore, SOX2 silencing might be a novel therapeutic approach to combat cancer and particularly brain tumors.In this review, we will summarize the current knowledge about SOX2 in glioblastoma and recapitulate several strategies, which have been recently described targeting SOX2 in this malignancy.

  9. SOX2 overexpression affects neural differentiation of human pluripotent NT2/D1 cells.

    Science.gov (United States)

    Klajn, A; Drakulic, D; Tosic, M; Pavkovic, Z; Schwirtlich, M; Stevanovic, M

    2014-11-01

    SOX2 is one of the key transcription factors involved in maintenance of neural progenitor identity. However, its function during the process of neural differentiation, including phases of lineage-specification and terminal differentiation, is still poorly understood. Considering growing evidence indicating that SOX2 expression level must be tightly controlled for proper neural development, the aim of this research was to analyze the effects of constitutive SOX2 overexpression on outcome of retinoic acid-induced neural differentiation of pluripotent NT2/D1 cells. We demonstrated that in spite of constitutive SOX2 overexpression, NT2/D1 cells were able to reach final phases of neural differentiation yielding both neuronal and glial cells. However, SOX2 overexpression reduced the number of mature MAP2-positive neurons while no difference in the number of GFAP-positive astrocytes was detected. In-depth analysis at single-cell level showed that SOX2 downregulation was in correlation with both neuronal and glial phenotype acquisitions. Interestingly, while in mature neurons SOX2 was completely downregulated, astrocytes with low level of SOX2 expression were detected. Nevertheless, cells with high level of SOX2 expression were incapable of entering in either of two differentiation pathways, neurogenesis or gliogenesis. Accordingly, our results indicate that fine balance between undifferentiated state and neural differentiation depends on SOX2 expression level. Unlike neurons, astrocytes could maintain low level of SOX2 expression after they acquired glial fate. Further studies are needed to determine whether differences in the level of SOX2 expression in GFAP-positive astrocytes are in correlation with their self-renewal capacity, differentiation status, and/or their phenotypic characteristics.

  10. Transcriptional regulation of Sox2 by the retinoblastoma family of pocket proteins.

    Science.gov (United States)

    Vilas, Jéssica M; Ferreirós, Alba; Carneiro, Carmen; Morey, Lluis; Da Silva-Álvarez, Sabela; Fernandes, Tânia; Abad, María; Di Croce, Luciano; García-Caballero, Tomás; Serrano, Manuel; Rivas, Carmen; Vidal, Anxo; Collado, Manuel

    2015-02-20

    Cellular reprogramming to iPSCs has uncovered unsuspected links between tumor suppressors and pluripotency factors. Using this system, it was possible to identify tumor suppressor p27 as a repressor of Sox2 during differentiation. This led to the demonstration that defects in the repression of Sox2 can contribute to tumor development. The members of the retinoblastoma family of pocket proteins, pRb, p107 and p130, are negative regulators of the cell cycle with tumor suppressor activity and with roles in differentiation. In this work we studied the relative contribution of the retinoblastoma family members to the regulation of Sox2 expression. We found that deletion of Rb or p130 leads to impaired repression of Sox2, a deffect amplified by inactivation of p53. We also identified binding of pRb and p130 to an enhancer with crucial regulatory activity on Sox2 expression. Using cellular reprogramming we tested the impact of the defective repression of Sox2 and confirmed that Rb deficiency allows the generation of iPSCs in the absence of exogenous Sox2. Finally, partial depletion of Sox2 positive cells reduced the pituitary tumor development initiated by Rb loss in vivo. In summary, our results show that Sox2 repression by pRb is a relevant mechanism of tumor suppression.

  11. Transcriptional regulation of Sox2 by the retinoblastoma family of pocket proteins

    Science.gov (United States)

    Carneiro, Carmen; Morey, Lluis; Silva-Álvarez, Sabela Da; Fernandes, Tânia; Abad, María; Croce, Luciano Di; García-Caballero, Tomás; Serrano, Manuel; Rivas, Carmen; Vidal, Anxo; Collado, Manuel

    2015-01-01

    Cellular reprogramming to iPSCs has uncovered unsuspected links between tumor suppressors and pluripotency factors. Using this system, it was possible to identify tumor suppressor p27 as a repressor of Sox2 during differentiation. This led to the demonstration that defects in the repression of Sox2 can contribute to tumor development. The members of the retinoblastoma family of pocket proteins, pRb, p107 and p130, are negative regulators of the cell cycle with tumor suppressor activity and with roles in differentiation. In this work we studied the relative contribution of the retinoblastoma family members to the regulation of Sox2 expression. We found that deletion of Rb or p130 leads to impaired repression of Sox2, a deffect amplified by inactivation of p53. We also identified binding of pRb and p130 to an enhancer with crucial regulatory activity on Sox2 expression. Using cellular reprogramming we tested the impact of the defective repression of Sox2 and confirmed that Rb deficiency allows the generation of iPSCs in the absence of exogenous Sox2. Finally, partial depletion of Sox2 positive cells reduced the pituitary tumor development initiated by Rb loss in vivo. In summary, our results show that Sox2 repression by pRb is a relevant mechanism of tumor suppression. PMID:25576924

  12. Sequential EMT-MET induces neuronal conversion through Sox2.

    Science.gov (United States)

    He, Songwei; Chen, Jinlong; Zhang, Yixin; Zhang, Mengdan; Yang, Xiao; Li, Yuan; Sun, Hao; Lin, Lilong; Fan, Ke; Liang, Lining; Feng, Chengqian; Wang, Fuhui; Zhang, Xiao; Guo, Yiping; Pei, Duanqing; Zheng, Hui

    2017-01-01

    Direct neuronal conversion can be achieved with combinations of small-molecule compounds and growth factors. Here, by studying the first or induction phase of the neuronal conversion induced by defined 5C medium, we show that the Sox2-mediated switch from early epithelial-mesenchymal transition (EMT) to late mesenchymal-epithelial transition (MET) within a high proliferation context is essential and sufficient for the conversion from mouse embryonic fibroblasts (MEFs) to TuJ(+) cells. At the early stage, insulin and basic fibroblast growth factor (bFGF)-induced cell proliferation, early EMT, the up-regulation of Stat3 and Sox2, and the subsequent activation of neuron projection. Up-regulated Sox2 then induced MET and directed cells towards a neuronal fate at the late stage. Inhibiting either stage of this sequential EMT-MET impaired the conversion. In addition, Sox2 could replace sequential EMT-MET to induce a similar conversion within a high proliferation context, and its functions were confirmed with other neuronal conversion protocols and MEFs reprogramming. Therefore, the critical roles of the sequential EMT-MET were implicated in direct cell fate conversion in addition to reprogramming, embryonic development and cancer progression.

  13. Genetics Home Reference: SOX2 anophthalmia syndrome

    Science.gov (United States)

    ... Kherani F, Katowitz J, Schimmenti LA, Hummel M, Fitzpatrick DR, Young TL. Familial recurrence of SOX2 anophthalmia ... Nov 5. Review. Citation on PubMed Verma AS, Fitzpatrick DR. Anophthalmia and microphthalmia. Orphanet J Rare Dis. ...

  14. Sox2 is not required for melanomagenesis, melanoma growth and melanoma metastasis in vivo.

    Science.gov (United States)

    Cesarini, V; Guida, E; Todaro, F; Di Agostino, S; Tassinari, V; Nicolis, S; Favaro, R; Caporali, S; Lacal, P M; Botti, E; Costanzo, A; Rossi, P; Jannini, E A; Dolci, S

    2017-08-01

    Melanoma is a dangerous form of skin cancer derived from the malignant transformation of melanocytes. The transcription factor SOX2 is not expressed in melanocytes, however, it has been shown to be differentially expressed between benign nevi and malignant melanomas and to be essential for melanoma stem cell maintenance and expansion in vitro and in xenograft models. By using a mouse model in which BRaf(V600E) mutation cooperates with Pten loss to induce the development of metastatic melanoma, we investigated if Sox2 is required during the process of melanomagenesis, melanoma growth and metastasis and in the acquisition of resistance to BRAF inhibitors (BRAFi) treatments. We found that deletion of Sox2 specifically in Pten null and BRafV600E-expressing melanocytes did not prevent tumor formation and did not modify the temporal kinetics of melanoma occurrence compared to Sox2 wt mice. In addition, tumor growth was similar between Sox2 wt and Sox2 deleted (del) melanomas. By querying publicly available databases, we did not find statistically significant differences in SOX2 expression levels between benign nevi and melanomas, and analysis on two melanoma patient cohorts confirmed that Sox2 levels did not significantly change between primary and metastatic melanomas. Melanoma cell lines derived from both Sox2 genotypes showed a similar sensitivity to vemurafenib treatment and the same ability to develop vemurafenib resistance in long-term cultures. Development of vemurafenib resistance was not dependent on SOX2 expression also in human melanoma cell lines in vitro. Our findings exclude an oncogenic function for Sox2 during melanoma development and do not support a role for this transcription factor in the acquisition of resistance to BRAFi treatments.

  15. Forced expression of the Oct-4 gene influences differentiation of embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    By transfecting an Oct-4 expression plasmid into embryonic stem cells (ES cells), the ES-O cell line was constructed, which sustained the expression of Oct-4 gene when induced by retinoic acid. Forced expression of Oct-4 gene could not sustain the stem property of ES-O cells without the differentiation inhibiting factor LIF, but if LIF exists,forced expression of Oct-4 gene could enhance the ability to sustain the undifferentiation state and inhibit cell differentiation induced by retinoic acid. It was indicated that Oct-4 must cooperate with LIF to sustain the undifferentiation state of ES cells. During the cell differentiation, ES-O cells tend to differentiate into neural cells, suggesting that forced expression of Oct-4 gene may be in relation with the differentiation of neuroderm.

  16. A Conserved Oct4/POUV-Dependent Network Links Adhesion and Migration to Progenitor Maintenance

    Science.gov (United States)

    Livigni, Alessandra; Peradziryi, Hanna; Sharov, Alexei A.; Chia, Gloryn; Hammachi, Fella; Migueles, Rosa Portero; Sukparangsi, Woranop; Pernagallo, Salvatore; Bradley, Mark; Nichols, Jennifer; Ko, Minoru S.H.; Brickman, Joshua M.

    2013-01-01

    Summary Background The class V POU domain transcription factor Oct4 (Pou5f1) is a pivotal regulator of embryonic stem cell (ESC) self-renewal and reprogramming of somatic cells to induced pluripotent stem (iPS) cells. Oct4 is also an important evolutionarily conserved regulator of progenitor cell differentiation during embryonic development. Results Here we examine the function of Oct4 homologs in Xenopus embryos and compare this to the role of Oct4 in maintaining mammalian embryo-derived stem cells. Based on a combination of expression profiling of Oct4/POUV-depleted Xenopus embryos and in silico analysis of existing mammalian Oct4 target data sets, we defined a set of evolutionary-conserved Oct4/POUV targets. Most of these targets were regulators of cell adhesion. This is consistent with Oct4/POUV phenotypes observed in the adherens junctions in Xenopus ectoderm, mouse embryonic, and epiblast stem cells. A number of these targets could rescue both Oct4/POUV phenotypes in cellular adhesion and multipotent progenitor cell maintenance, whereas expression of cadherins on their own could only transiently support adhesion and block differentiation in both ESC and Xenopus embryos. Conclusions Currently, the list of Oct4 transcriptional targets contains thousands of genes. Using evolutionary conservation, we identified a core set of functionally relevant factors that linked the maintenance of adhesion to Oct4/POUV. We found that the regulation of adhesion by the Oct4/POUV network occurred at both transcriptional and posttranslational levels and was required for pluripotency. PMID:24210613

  17. Human haematopoietic stem cells express Oct4 pseudogenes and lack the ability to initiate Oct4 promoter-driven gene expression

    Directory of Open Access Journals (Sweden)

    Strain Alastair J

    2010-03-01

    Full Text Available Abstract The transcription factor Oct4 is well defined as a key regulator of embryonic stem (ES cell pluripotency. In recent years, the role of Oct4 has purportedly extended to the self renewal and maintenance of multipotency in adult stem cell (ASC populations. This profile has arisen mainly from reports utilising reverse transcription-polymerase chain reaction (RT-PCR based methodologies and has since come under scrutiny following the discovery that many developmental genes have multiple pseudogenes associated with them. Six known pseudogenes exist for Oct4, all of which exhibit very high sequence homology (three >97%, and for this reason the generation of artefacts may have contributed to false identification of Oct4 in somatic cell populations. While ASC lack a molecular blueprint of transcription factors proposed to be involved with 'stemness' as described for ES cells, it is not unreasonable to assume that similar gene patterns may exist. The focus of this work was to corroborate reports that Oct4 is involved in the regulation of ASC self-renewal and differentiation, using a combination of methodologies to rule out pseudogene interference. Haematopoietic stem cells (HSC derived from human umbilical cord blood (UCB and various differentiated cell lines underwent RT-PCR, product sequencing and transfection studies using an Oct4 promoter-driven reporter. In summary, only the positive control expressed Oct4, with all other cell types expressing a variety of Oct4 pseudogenes. Somatic cells were incapable of utilising an exogenous Oct4 promoter construct, leading to the conclusion that Oct4 does not appear involved in the multipotency of human HSC from UCB.

  18. OCT4B1 Regulates the Cellular Stress Response of Human Dental Pulp Cells with Inflammation

    Directory of Open Access Journals (Sweden)

    Lu Liu

    2017-01-01

    Full Text Available Introduction. Infection and apoptosis are combined triggers for inflammation in dental tissues. Octamer-binding transcription factor 4-B1 (OCT4B1, a novel spliced variant of OCT4 family, could respond to the cellular stress and possess antiapoptotic property. However, its specific role in dental pulpitis remains unknown. Methods. To investigate the effect of OCT4B1 on inflammation of dental pulp cells (DPCs, its expression in inflamed dental pulp tissues and DPCs was examined by in situ hybridization, real-time PCR, and FISH assay. OCT4B1 overexpressed DPCs model was established, confirmed by western blot and immunofluorescence staining, and then stimulated with Lipopolysaccharide (LPS. Apoptotic rate was determined by Hoechst/PI staining and FACS. Cell survival rate was calculated by CCK8 assay. Results. In situ hybridization, real-time PCR, and FISH assay revealed that OCT4B1 was extensively expressed in inflamed dental pulp tissues and DPCs with LPS stimulation. Western blot and immunofluorescence staining showed the expression of OCT4B1 and OCT4B increased after OCT4B1 transfection. Hoechst/PI staining and FACS demonstrated that less red/blue fluorescence was detected and apoptotic percentage decreased (3.45% after transfection. CCK8 demonstrated that the survival rate of pCDH-OCT4B1-flag cells increased. Conclusions. OCT4B1 plays an essential role in inflammation and apoptosis of DPCs. OCT4B might operate synergistically with OCT4B1 to reduce apoptosis.

  19. Nuclear reprogramming of luminal-like breast cancer cells generates Sox2-overexpressing cancer stem-like cellular states harboring transcriptional activation of the mTOR pathway

    Science.gov (United States)

    Corominas-Faja, Bruna; Cufí, Sílvia; Oliveras-Ferraros, Cristina; Cuyàs, Elisabet; López-Bonet, Eugeni; Lupu, Ruth; Alarcón, Tomás; Vellon, Luciano; Iglesias, Juan Manuel; Leis, Olatz; Martín, Ángel G; Vazquez-Martin, Alejandro; Menendez, Javier A

    2013-01-01

    Energy metabolism plasticity enables stemness programs during the reprogramming of somatic cells to an induced pluripotent stem cell (iPSC) state. This relationship may introduce a new era in the understanding of Warburg’s theory on the metabolic origin of cancer at the level of cancer stem cells (CSCs). Here, we used Yamanaka’s stem cell technology in an attempt to create stable CSC research lines in which to dissect the transcriptional control of mTOR—the master switch of cellular catabolism and anabolism—in CSC-like states. The rare colonies with iPSC-like morphology, obtained following the viral transduction of the Oct4, Sox2, Klf4, and c-Myc (OSKM) stemness factors into MCF-7 luminal-like breast cancer cells (MCF-7/Rep), demonstrated an intermediate state between cancer cells and bona fide iPSCs. MCF-7/Rep cells notably overexpressed SOX2 and stage-specific embryonic antigen (SSEA)-4 proteins; however, other stemness-related markers (OCT4, NANOG, SSEA-1, TRA-1–60, and TRA-1–81) were found at low to moderate levels. The transcriptional analyses of OSKM factors confirmed the strong but unique reactivation of the endogenous Sox2 stemness gene accompanied by the silencing of the exogenous Sox2 transgene in MCF-7/Rep cells. Some but not all MCF-7/Rep cells acquired strong alkaline phosphatase (AP) activity compared with MCF-7 parental cells. SOX2-overexpressing MCF-7/Rep cells contained drastically higher percentages of CD44+ and ALDEFLUOR-stained ALDHbright cells than MCF-7 parental cells. The overlap between differentially expressed mTOR signaling-related genes in 3 different SOX2-overexpressing CSC-like cell lines revealed a notable downregulation of 3 genes, PRKAA1 (which codes for the catalytic α 1 subunit of AMPK), DDIT4/REDD1 (a stress response gene that operates as a negative regulator of mTOR), and DEPTOR (a naturally occurring endogenous inhibitor of mTOR activity). The insulin-receptor gene (INSR) was differentially upregulated in MCF-7/Rep

  20. Context-dependent wiring of Sox2 regulatory networks for self-renewal of embryonic and trophoblast stem cells.

    Science.gov (United States)

    Adachi, Kenjiro; Nikaido, Itoshi; Ohta, Hiroshi; Ohtsuka, Satoshi; Ura, Hiroki; Kadota, Mitsutaka; Wakayama, Teruhiko; Ueda, Hiroki R; Niwa, Hitoshi

    2013-11-07

    Sox2 is a transcription factor required for the maintenance of pluripotency. It also plays an essential role in different types of multipotent stem cells, raising the possibility that Sox2 governs the common stemness phenotype. Here we show that Sox2 is a critical downstream target of fibroblast growth factor (FGF) signaling, which mediates self-renewal of trophoblast stem cells (TSCs). Sustained expression of Sox2 together with Esrrb or Tfap2c can replace FGF dependency. By comparing genome-wide binding sites of Sox2 in embryonic stem cells (ESCs) and TSCs combined with inducible knockout systems, we found that, despite the common role in safeguarding the stem cell state, Sox2 regulates distinct sets of genes with unique functions in these two different yet developmentally related types of stem cells. Our findings provide insights into the functional versatility of transcription factors during embryogenesis, during which they can be recursively utilized in a variable manner within discrete network structures.

  1. Nac1 Coordinates a Sub-network of Pluripotency Factors to Regulate Embryonic Stem Cell Differentiation.

    Science.gov (United States)

    Malleshaiah, Mohan; Padi, Megha; Rué, Pau; Quackenbush, John; Martinez-Arias, Alfonso; Gunawardena, Jeremy

    2016-02-01

    Pluripotent cells give rise to distinct cell types during development and are regulated by often self-reinforcing molecular networks. How such networks allow cells to differentiate is less well understood. Here, we use integrative methods to show that external signals induce reorganization of the mouse embryonic stem cell pluripotency network and that a sub-network of four factors, Nac1, Oct4, Tcf3, and Sox2, regulates their differentiation into the alternative mesendodermal and neuroectodermal fates. In the mesendodermal fate, Nac1 and Oct4 were constrained within quantitative windows, whereas Sox2 and Tcf3 were repressed. In contrast, in the neuroectodermal fate, Sox2 and Tcf3 were constrained while Nac1 and Oct4 were repressed. In addition, we show that Nac1 coordinates differentiation by activating Oct4 and inhibiting both Sox2 and Tcf3. Reorganization of progenitor cell networks around shared factors might be a common differentiation strategy and our integrative approach provides a general methodology for delineating such networks.

  2. Nac1 Coordinates a Sub-network of Pluripotency Factors to Regulate Embryonic Stem Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Mohan Malleshaiah

    2016-02-01

    Full Text Available Pluripotent cells give rise to distinct cell types during development and are regulated by often self-reinforcing molecular networks. How such networks allow cells to differentiate is less well understood. Here, we use integrative methods to show that external signals induce reorganization of the mouse embryonic stem cell pluripotency network and that a sub-network of four factors, Nac1, Oct4, Tcf3, and Sox2, regulates their differentiation into the alternative mesendodermal and neuroectodermal fates. In the mesendodermal fate, Nac1 and Oct4 were constrained within quantitative windows, whereas Sox2 and Tcf3 were repressed. In contrast, in the neuroectodermal fate, Sox2 and Tcf3 were constrained while Nac1 and Oct4 were repressed. In addition, we show that Nac1 coordinates differentiation by activating Oct4 and inhibiting both Sox2 and Tcf3. Reorganization of progenitor cell networks around shared factors might be a common differentiation strategy and our integrative approach provides a general methodology for delineating such networks.

  3. SOX2 redirects the developmental fate of the intestinal epithelium toward a premature gastric phenotype

    Institute of Scientific and Technical Information of China (English)

    Lalini Raghoebir; Dick Tibboel; Ron Smits; Robbert J. Rottier; Elvira RM. Bakker; Jason C. Mills; Sigrid Swagemakers; Marjon Buscop-van Kempen; Anne Boerema-de Munck; Siska Driegen; Dies Meijer; Frank Grosveld

    2012-01-01

    Various factors play an essential role in patterning the digestive tract.During development,Sox2 and Cdx2 are exclusively expressed in the anterior and the posterior parts of the primitive gut,respectively.However,it is unclear whether these transcription factors influence each other in determining specification of the na(i)ve gut endoderm.We therefore investigated whether Sox2 redirects the fate of the prospective intestinal part of the primitive gut.Ectopic expression of Sox2 in the posterior region of the primitive gut caused anteriorization of the gut toward a gastric-like phenotype.Sox2 activated the foregut transcriptional program,in spite of sustained co-expression of endogenous Cdx2.However,binding of Cdx2 to its genomic targets and thus its transcriptional activity was strongly reduced.Recent findings indicate that endodermal Cdx2 is required to initiate the intestinal program and to suppress anterior cell fate.Our findings suggest that reduced Cdx2 expression by itself is not sufficient to cause anteriorization,but that Sox2 expression is also required.Moreover,it indicates that the balance between Sox2 and Cdx2 function is essential for proper specification of the primitive gut and that Sox2 may overrule the initial patterning of the primitive gut,emphasizing the plasticity of the primitive gut.

  4. Sox2 Promotes Malignancy in Glioblastoma by Regulating Plasticity and Astrocytic Differentiation12

    Science.gov (United States)

    Berezovsky, Artem D.; Poisson, Laila M.; Cherba, David; Webb, Craig P.; Transou, Andrea D.; Lemke, Nancy W.; Hong, Xin; Hasselbach, Laura A.; Irtenkauf, Susan M.; Mikkelsen, Tom; deCarvalho, Ana C.

    2014-01-01

    The high-mobility group–box transcription factor sex-determining region Y–box 2 (Sox2) is essential for the maintenance of stem cells from early development to adult tissues. Sox2 can reprogram differentiated cells into pluripotent cells in concert with other factors and is overexpressed in various cancers. In glioblastoma (GBM), Sox2 is a marker of cancer stemlike cells (CSCs) in neurosphere cultures and is associated with the proneural molecular subtype. Here, we report that Sox2 expression pattern in GBM tumors and patient-derived mouse xenografts is not restricted to a small percentage of cells and is coexpressed with various lineage markers, suggesting that its expression extends beyond CSCs to encompass more differentiated neoplastic cells across molecular subtypes. Employing a CSC derived from a patient with GBM and isogenic differentiated cell model, we show that Sox2 knockdown in the differentiated state abolished dedifferentiation and acquisition of CSC phenotype. Furthermore, Sox2 deficiency specifically impaired the astrocytic component of a biphasic gliosarcoma xenograft model while allowing the formation of tumors with sarcomatous phenotype. The expression of genes associated with stem cells and malignancy were commonly downregulated in both CSCs and serum-differentiated cells on Sox2 knockdown. Genes previously shown to be associated with pluripontency and CSCs were only affected in the CSC state, whereas embryonic stem cell self-renewal genes and cytokine signaling were downregulated, and the Wnt pathway activated in differentiated Sox2-deficient cells. Our results indicate that Sox2 regulates the expression of key genes and pathways involved in GBM malignancy, in both cancer stemlike and differentiated cells, and maintains plasticity for bidirectional conversion between the two states, with significant clinical implications. PMID:24726753

  5. Sox2 Promotes Malignancy in Glioblastoma by Regulating Plasticity and Astrocytic Differentiation

    Directory of Open Access Journals (Sweden)

    Artem D. Berezovsky

    2014-03-01

    Full Text Available The high-mobility group–box transcription factor sex-determining region Y–box 2 (Sox2 is essential for the maintenance of stem cells from early development to adult tissues. Sox2 can reprogram differentiated cells into pluripotent cells in concert with other factors and is overexpressed in various cancers. In glioblastoma (GBM, Sox2 is a marker of cancer stemlike cells (CSCs in neurosphere cultures and is associated with the proneural molecular subtype. Here, we report that Sox2 expression pattern in GBM tumors and patient-derived mouse xenografts is not restricted to a small percentage of cells and is coexpressed with various lineage markers, suggesting that its expression extends beyond CSCs to encompass more differentiated neoplastic cells across molecular subtypes. Employing a CSC derived from a patient with GBM and isogenic differentiated cell model, we show that Sox2 knockdown in the differentiated state abolished dedifferentiation and acquisition of CSC phenotype. Furthermore, Sox2 deficiency specifically impaired the astrocytic component of a biphasic gliosarcoma xenograft model while allowing the formation of tumors with sarcomatous phenotype. The expression of genes associated with stem cells and malignancy were commonly downregulated in both CSCs and serum-differentiated cells on Sox2 knockdown. Genes previously shown to be associated with pluripontency and CSCs were only affected in the CSC state, whereas embryonic stem cell self-renewal genes and cytokine signaling were downregulated, and the Wnt pathway activated in differentiated Sox2-deficient cells. Our results indicate that Sox2 regulates the expression of key genes and pathways involved in GBM malignancy, in both cancer stemlike and differentiated cells, and maintains plasticity for bidirectional conversion between the two states, with significant clinical implications.

  6. Sox2 promotes malignancy in glioblastoma by regulating plasticity and astrocytic differentiation.

    Science.gov (United States)

    Berezovsky, Artem D; Poisson, Laila M; Cherba, David; Webb, Craig P; Transou, Andrea D; Lemke, Nancy W; Hong, Xin; Hasselbach, Laura A; Irtenkauf, Susan M; Mikkelsen, Tom; deCarvalho, Ana C

    2014-03-01

    The high-mobility group-box transcription factor sex-determining region Y-box 2 (Sox2) is essential for the maintenance of stem cells from early development to adult tissues. Sox2 can reprogram differentiated cells into pluripotent cells in concert with other factors and is overexpressed in various cancers. In glioblastoma (GBM), Sox2 is a marker of cancer stemlike cells (CSCs) in neurosphere cultures and is associated with the proneural molecular subtype. Here, we report that Sox2 expression pattern in GBM tumors and patient-derived mouse xenografts is not restricted to a small percentage of cells and is coexpressed with various lineage markers, suggesting that its expression extends beyond CSCs to encompass more differentiated neoplastic cells across molecular subtypes. Employing a CSC derived from a patient with GBM and isogenic differentiated cell model, we show that Sox2 knockdown in the differentiated state abolished dedifferentiation and acquisition of CSC phenotype. Furthermore, Sox2 deficiency specifically impaired the astrocytic component of a biphasic gliosarcoma xenograft model while allowing the formation of tumors with sarcomatous phenotype. The expression of genes associated with stem cells and malignancy were commonly downregulated in both CSCs and serum-differentiated cells on Sox2 knockdown. Genes previously shown to be associated with pluripontency and CSCs were only affected in the CSC state, whereas embryonic stem cell self-renewal genes and cytokine signaling were downregulated, and the Wnt pathway activated in differentiated Sox2-deficient cells. Our results indicate that Sox2 regulates the expression of key genes and pathways involved in GBM malignancy, in both cancer stemlike and differentiated cells, and maintains plasticity for bidirectional conversion between the two states, with significant clinical implications. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Expression of the stem cell marker, SOX2, in ameloblastoma and dental epithelium.

    Science.gov (United States)

    Juuri, Emma; Isaksson, Sanna; Jussila, Maria; Heikinheimo, Kristiina; Thesleff, Irma

    2013-12-01

    Ameloblastomas are locally invasive odontogenic tumors that exhibit a high rate of recurrence and often associate with the third molars. They are suggested to originate from dental epithelium because the tumor cells resemble epithelial cells of developing teeth. Expression of the transcription factor SOX2 has been previously localized in epithelial stem and progenitor cells in developing teeth as well as in various tumors. Here, we show that SOX2 is expressed in the epithelial cells of follicular and plexiform ameloblastomas. SOX2 was localized in the dental lamina of developing human primary molars. It was also expressed in the fragmented dental lamina associated with the third molars and in the epithelium budding from its posterior aspect in mice. However, no SOX2 expression was detected in either Hertwig's epithelial root sheath directing the formation of roots or in the epithelial cell rests of Malassez covering the completed roots. SOX2 was associated with supernumerary tooth formation in odontoma-like tumors induced by Wnt signal activation in mice. We propose that SOX2 functions in maintaining the progenitor state of epithelium in ameloblastomas and that ameloblastomas may originate from SOX2-expressing dental lamina epithelium.

  8. High OCT4A levels drive tumorigenicity and metastatic potential of medulloblastoma cells.

    Science.gov (United States)

    da Silva, Patrícia Benites Gonçalves; Teixeira Dos Santos, Márcia Cristina; Rodini, Carolina Oliveira; Kaid, Carolini; Pereira, Márcia Cristina Leite; Furukawa, Gabriela; da Cruz, Daniel Sanzio Gimenes; Goldfeder, Mauricio Barbugiani; Rocha, Clarissa Ribeiro Reily; Rosenberg, Carla; Okamoto, Oswaldo Keith

    2017-03-21

    Medulloblastoma is a highly aggressive pediatric brain tumor, in which sporadic expression of the pluripotency factor OCT4 has been recently correlated with poor patient survival. However the contribution of specific OCT4 isoforms to tumor aggressiveness is still poorly understood. Here, we report that medulloblastoma cells stably overexpressing the OCT4A isoform displayed enhanced clonogenic, tumorsphere generation, and invasion capabilities. Moreover, in an orthotopic metastatic model of medulloblastoma, OCT4A overexpressing cells generated more developed, aggressive and infiltrative tumors, with tumor-bearing mice attaining advanced metastatic disease and shorter survival rates. Pro-oncogenic OCT4A effects were expression-level dependent and accompanied by distinct chromosomal aberrations. OCT4A overexpression in medulloblastoma cells also induced a marked differential expression of non-coding RNAs, including poorly characterized long non-coding RNAs and small nucleolar RNAs. Altogether, our findings support the relevance of pluripotency-related factors in the aggravation of medulloblastoma traits classically associated with poor clinical outcome, and underscore the prognostic and therapeutic value of OCT4A in this challenging type of pediatric brain cancer.

  9. High OCT4A levels drive tumorigenicity and metastatic potential of medulloblastoma cells

    Science.gov (United States)

    Gonçalves da Silva, Patrícia Benites; Teixeira dos Santos, Márcia Cristina; Rodini, Carolina Oliveira; Kaid, Carolini; Leite Pereira, Márcia Cristina; Furukawa, Gabriela; Gimenes da Cruz, Daniel Sanzio; Goldfeder, Mauricio Barbugiani; Reily Rocha, Clarissa Ribeiro; Rosenberg, Carla; Okamoto, Oswaldo Keith

    2017-01-01

    Medulloblastoma is a highly aggressive pediatric brain tumor, in which sporadic expression of the pluripotency factor OCT4 has been recently correlated with poor patient survival. However the contribution of specific OCT4 isoforms to tumor aggressiveness is still poorly understood. Here, we report that medulloblastoma cells stably overexpressing the OCT4A isoform displayed enhanced clonogenic, tumorsphere generation, and invasion capabilities. Moreover, in an orthotopic metastatic model of medulloblastoma, OCT4A overexpressing cells generated more developed, aggressive and infiltrative tumors, with tumor-bearing mice attaining advanced metastatic disease and shorter survival rates. Pro-oncogenic OCT4A effects were expression-level dependent and accompanied by distinct chromosomal aberrations. OCT4A overexpression in medulloblastoma cells also induced a marked differential expression of non-coding RNAs, including poorly characterized long non-coding RNAs and small nucleolar RNAs. Altogether, our findings support the relevance of pluripotency-related factors in the aggravation of medulloblastoma traits classically associated with poor clinical outcome, and underscore the prognostic and therapeutic value of OCT4A in this challenging type of pediatric brain cancer. PMID:28186969

  10. Oct-4+/Tenascin C+ neuroblastoma cells serve as progenitors of tumor-derived endothelial cells

    Institute of Scientific and Technical Information of China (English)

    Annalisa Pezzolo; Silvia Deaglio; Fabio Malavasi; Vito Pistoia; Federica Parodi; Danilo Marimpietri; Lizzia Raffaghello; Claudia Cocco; Angela Pistorio; Manuela Mosconi; Claudio Gambini; Michele Cillj

    2011-01-01

    Neuroblastoma (NB)-associated endothelial microvessels (EMs) may be lined by tumor-derived endothelial cells (TECs),that are genetically unstable and chemoresistant.Here we have addressed the identification of TEC progenitors in NB by focusing on Octamer-binding transcription factor 4 (Oct-4) as a putative marker.Oct-4+ cells were detected in primary NB samples (n = 23),metastatic bone marrow aspirates (n = 10),NB cell lines (n = 4),and orthotopic tumors (n = 10) formed by the HTLA-230 NB cell line in immunodeficient mice.Most Oct-4+ cells showed a perivascular distribution,with 5% of them homing in perinecrotic areas.All Oct-4+ cells were tumor-derived since they shared amplification of MYCN oncogene with malignant cells.Perivascular Oct-4+ cells expressed stem cellrelated,neural progenitor-related and NB-related markers,including surface Tenascin C (TNC),that was absent from perinecrotic Oct-4+ cells and bulk tumor cells.TNC+ but not TNC- HTLA-230 cells differentiated in vitro into endothelial-like cells expressing vascular-endothellal-cadherin,prostate-specific membrane antigen and CD31 upon culture in medium containing vascular endothelial growth factor (VEGF).TNC+ but not TNC- HTLA-230 cells formed neurospheres when cultured in serum-free medium.Both cell fractions were tumorigenic,but only tumors formed by TNC+ cegs contained EMs fined by TECs.In conclusion,we have identified in NB tumors two putative niches containing Oct-4+ tumor cells.Oct-4+/TNC+ perivascular NB cells displayed a high degree of plasticity and served as progenitors of TECs.Therapeutic targeting of Oct4+/TNC+ progenitors may counteract the contribution of NB-derived ECs to tumor relapse and chemoresistance.

  11. Counteracting Activities of OCT4 and KLF4 during Reprogramming to Pluripotency

    Directory of Open Access Journals (Sweden)

    Ulf Tiemann

    2014-03-01

    Full Text Available Differentiated cells can be reprogrammed into induced pluripotent stem cells (iPSCs after overexpressing four transcription factors, of which Oct4 is essential. To elucidate the role of Oct4 during reprogramming, we investigated the immediate transcriptional response to inducible Oct4 overexpression in various somatic murine cell types using microarray analysis. By downregulating somatic-specific genes, Oct4 induction influenced each transcriptional program in a unique manner. A significant upregulation of pluripotent markers could not be detected. Therefore, OCT4 facilitates reprogramming by interfering with the somatic transcriptional network rather than by directly initiating a pluripotent gene-expression program. Finally, Oct4 overexpression upregulated the gene Mgarp in all the analyzed cell types. Strikingly, Mgarp expression decreases during the first steps of reprogramming due to a KLF4-dependent inhibition. At later stages, OCT4 counteracts the repressive activity of KLF4, thereby enhancing Mgarp expression. We show that this temporal expression pattern is crucial for the efficient generation of iPSCs.

  12. Dynamics of SOX2 and CDX2 Expression in Barrett’s Mucosa

    Directory of Open Access Journals (Sweden)

    Rita Barros

    2016-01-01

    Full Text Available Barrett’s esophagus (BE is the replacement of the normal esophageal squamous epithelium by a columnar lining epithelium. It is a premalignant condition for the development of adenocarcinoma of the esophagus and esophagogastric junction. BE is associated with gastroesophageal reflux which might change the expression profile of key transcription factors involved in the establishment of tissue differentiation, namely, SOX2 (associated with esophageal and gastric differentiation and CDX2 (associated with intestinal differentiation. Here, we sought to characterize the expression profile of SOX2 and CDX2 in the sequential alterations of the esophageal mucosa towards adenocarcinoma and compare it with the well-established gastric and intestinal mucin profiles (MUC5AC, MUC6, and MUC2. We observed that SOX2 and CDX2 expression correlates with gastric and intestinal differentiation in BE, defined by morphological parameters and mucin expression. We show the presence of a complete intestinal profile in BE, without gastric mucins and without SOX2, and we observed an evolutionary modulation of the metaplastic phenotype by SOX2 and CDX2. We observed that adenocarcinomas harbor more frequently a mixed gastric and intestinal phenotype. In conclusion, our study establishes a role for transcription factors SOX2 and CDX2 in the progression from gastric to gastrointestinal differentiation in Barrett’s metaplasia.

  13. Two-factor reprogramming of somatic cells to pluripotent stem cells reveals partial functional redundancy of Sox2 and Klf4

    OpenAIRE

    Nemajerova, A; Kim, S. Y.; Petrenko, O.; Moll, U.M.

    2012-01-01

    Ectopic expression of defined sets of transcription factors in somatic cells enables them to adopt the qualities of pluripotency. Mouse embryonic fibroblasts (MEFs) are the classic target cell used to elucidate the core principles of nuclear reprogramming. However, their phenotypic and functional heterogeneity represents a major hurdle for mechanistic studies aimed at defining the molecular nature of cellular plasticity. We show that reducing the complexity of MEFs by flow cytometry allows th...

  14. SOX2–LIN28/let-7 pathway regulates proliferation and neurogenesis in neural precursors

    Science.gov (United States)

    Cimadamore, Flavio; Amador-Arjona, Alejandro; Chen, Connie; Huang, Chun-Teng; Terskikh, Alexey V.

    2013-01-01

    The transcription factor SRY (sex-determining region)-box 2 (SOX2) is an important functional marker of neural precursor cells (NPCs) and plays a critical role in self-renewal and neuronal differentiation; however, the molecular mechanisms underlying its functions are poorly understood. Using human embryonic stem cell-derived NPCs to model neurogenesis, we found that SOX2 is required to maintain optimal levels of LIN28, a well-characterized suppressor of let-7 microRNA biogenesis. Exogenous LIN28 expression rescued the NPC proliferation deficit, as well as the early but not the late stages of the neurogenic deficit associated with the loss of SOX2. We found that SOX2 binds to a proximal site in the LIN28 promoter region and regulates LIN28 promoter acetylation, likely through interactions with the histone acetyltransferase complex. Misexpression of let-7 microRNAs in NPCs reduced proliferation and inhibited neuronal differentiation, phenocopying the loss of SOX2. In particular, we identified let-7i as a novel and potent inhibitor of neuronal differentiation that targets MASH1 and NGN1, two well-characterized proneural genes. In conclusion, we discovered the SOX2–LIN28/let-7 pathway as a unique molecular mechanism governing NPC proliferation and neurogenic potential. PMID:23884650

  15. SOX2-LIN28/let-7 pathway regulates proliferation and neurogenesis in neural precursors.

    Science.gov (United States)

    Cimadamore, Flavio; Amador-Arjona, Alejandro; Chen, Connie; Huang, Chun-Teng; Terskikh, Alexey V

    2013-08-06

    The transcription factor SRY (sex-determining region)-box 2 (SOX2) is an important functional marker of neural precursor cells (NPCs) and plays a critical role in self-renewal and neuronal differentiation; however, the molecular mechanisms underlying its functions are poorly understood. Using human embryonic stem cell-derived NPCs to model neurogenesis, we found that SOX2 is required to maintain optimal levels of LIN28, a well-characterized suppressor of let-7 microRNA biogenesis. Exogenous LIN28 expression rescued the NPC proliferation deficit, as well as the early but not the late stages of the neurogenic deficit associated with the loss of SOX2. We found that SOX2 binds to a proximal site in the LIN28 promoter region and regulates LIN28 promoter acetylation, likely through interactions with the histone acetyltransferase complex. Misexpression of let-7 microRNAs in NPCs reduced proliferation and inhibited neuronal differentiation, phenocopying the loss of SOX2. In particular, we identified let-7i as a novel and potent inhibitor of neuronal differentiation that targets MASH1 and NGN1, two well-characterized proneural genes. In conclusion, we discovered the SOX2-LIN28/let-7 pathway as a unique molecular mechanism governing NPC proliferation and neurogenic potential.

  16. LSD1通过和Oct4/Nanog相互作用调节诱导多能干细胞的形成%LSD1 Regulates the Generation of Induced Pluripotent Stem Cells via Interaction with Oct4/Nanog

    Institute of Scientific and Technical Information of China (English)

    孙昊; 卢存福; 郭允倩

    2012-01-01

    Fibroblasts can be reprogrammed to induced pluripotent stem (iPS) cells upon expression of Oct4, Sox2, Klf4 and c-Myc. Transcription factors and chromatin modifiers are important to this reprogramming process. As one of the chromatin regulators, LSD1 plays critical roles in early embryogenesis and ES cell differentiation. Western blot analysis showed that the expression level of LSD1 in ES cells is higher than in MEFs. Overexpression of LSD1 in the reprogramming system has no effect on the generation of iPS cells. However, more iPS cell colonies are formed when the expression of LSD1 is knockdown by RNAi or with LSD1 inhibitor tranylcypromine. Co-immunoprecipitation showed the physical interaction between LSD1 and Oct4/Nanog. In all, these data suggests that LSD1 regulates the generation of iPS cells via interaction with Oct4/Nanog.%将4个转录因子Oct4,Sox2,Klf4和c-Myc转入成纤维细胞可以生成诱导多能干细胞(iPS细胞),转录因子和染色质修饰因子在这个过程中起重要作用.LSD1作为染色质结构的调节因子,在早期胚胎发育和ES细胞分化中发挥着关键作用.为了探索LSD1在iPS细胞产生过程中的作用,首先比较了LSD1蛋白在MEFs和ES细胞中的表达量,然后分别通过在重编程体系中过表达LSD1、加入RNAi和抑制剂的方法探索LSD1的功能,最后用免疫共沉淀的方法初步发现LSD1的作用机制.结果表明,LSD1在ES细胞中的表达量高于MEFs中,过表达LSD1对iPS细胞的形成效率没有影响,而RNAi抑制LSD1的表达和LSD1抑制剂tranylcypromine都能促进iPS细胞的形成.免疫共沉淀实验表明LSD1和Oct4/Nanog有相互作用.这些数据说明LSD1通过和Oct4/Nanog相互作用调控iPS细胞的形成.

  17. Oct4 mediates tumor initiating properties in oral squamous cell carcinomas through the regulation of epithelial-mesenchymal transition.

    Directory of Open Access Journals (Sweden)

    Lo-Lin Tsai

    Full Text Available BACKGROUND: Overexpression of Oct4, an important transcription factor of embryonic stem cells (ESC, has been reported in several cancers. The aim of this study was to determine the emerging role of Oct4 in oral squamous cell carcinoma (OSCC both in vitro and in vivo. METHODOLOGY/PRINCIPAL FINDING: Tumourigenic activity and molecular mechanisms of Oct4 overexpression or knockdown by lentiviral infection in OSCC was investigated in vitro and in vivo. Initially, we demonstrated that Oct4 expression was increased in OSCC cell lines as compared to a normal oral epithelial cell line SG. Overexpression of Oct4 was demonstrated to enhance cell proliferation, invasiveness, anchorage-independent growth and xenotransplantation tumourigenicity. These findings were coupled with epithelial-mesenchymal transition (EMT transformation in OSCCs. In contrast, the silence of Oct4 significantly blocked the xenograft tumorigenesis of OSCC-derived cancer stem cells (OSCC-CSCs and significantly improved the recipient survival. Clinically, the level of Oct4 expression was higher in recurrent and metastatic OSCC specimens but lower in primary OSCC specimens. CONCLUSION/SIGNIFICANCE: Our results suggest that Oct4-mediated tumorigenecity is associated with the regulation of EMT. Oct4 might be a therapeutic target for OSCC.

  18. A novel SALL4/OCT4 transcriptional feedback network for pluripotency of embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Jianchang Yang

    Full Text Available BACKGROUND: SALL4 is a member of the SALL gene family that encodes a group of putative developmental transcription factors. Murine Sall4 plays a critical role in maintaining embryonic stem cell (ES cell pluripotency and self-renewal. We have shown that Sall4 activates Oct4 and is a master regulator in murine ES cells. Other SALL gene members, especially Sall1 and Sall3 are expressed in both murine and human ES cells, and deletions of these two genes in mice lead to perinatal death due to developmental defects. To date, little is known about the molecular mechanisms controlling the regulation of expressions of SALL4 or other SALL gene family members. METHODOLOGY/PRINCIPAL FINDINGS: This report describes a novel SALL4/OCT4 regulator feedback loop in ES cells in balancing the proper expression dosage of SALL4 and OCT4 for the maintenance of ESC stem cell properties. While we have observed that a positive feedback relationship is present between SALL4 and OCT4, the strong self-repression of SALL4 seems to be the "break" for this loop. In addition, we have shown that SALL4 can repress the promoters of other SALL family members, such as SALL1 and SALL3, which competes with the activation of these two genes by OCT4. CONCLUSIONS/SIGNIFICANCE: Our findings, when taken together, indicate that SALL4 is a master regulator that controls its own expression and the expression of OCT4. SALL4 and OCT4 work antagonistically to balance the expressions of other SALL gene family members. This novel SALL4/OCT4 transcription regulation feedback loop should provide more insight into the mechanism of governing the "stemness" of ES cells.

  19. Dental pulp stem cells differentiation reveals new insights in Oct4A dynamics.

    Directory of Open Access Journals (Sweden)

    Federico Ferro

    Full Text Available Although the role played by the core transcription factor network, which includes c-Myc, Klf4, Nanog, and Oct4, in the maintenance of embryonic stem cell (ES pluripotency and in the reprogramming of adult cells is well established, its persistence and function in adult stem cells are still debated. To verify its persistence and clarify the role played by these molecules in adult stem cell function, we investigated the expression pattern of embryonic and adult stem cell markers in undifferentiated and fully differentiated dental pulp stem cells (DPSC. A particular attention was devoted to the expression pattern and intracellular localization of the stemness-associated isoform A of Oct4 (Oct4A. Our data demonstrate that: Oct4, Nanog, Klf4 and c-Myc are expressed in adult stem cells and, with the exception of c-Myc, they are significantly down-regulated following differentiation. Cell differentiation was also associated with a significant reduction in the fraction of DPSC expressing the stem cell markers CD10, CD29 and CD117. Moreover, a nuclear to cytoplasm shuttling of Oct4A was identified in differentiated cells, which was associated with Oct4A phosphorylation. The present study would highlight the importance of the post-translational modifications in DPSC stemness maintenance, by which stem cells balance self-renewal versus differentiation. Understanding and controlling these mechanisms may be of great importance for stemness maintenance and stem cells clinical use, as well as for cancer research.

  20. SOX2 O-GlcNAcylation alters its protein-protein interactions and genomic occupancy to modulate gene expression in pluripotent cells

    Science.gov (United States)

    Myers, Samuel A; Peddada, Sailaja; Chatterjee, Nilanjana; Friedrich, Tara; Tomoda, Kiichrio; Krings, Gregor; Thomas, Sean; Maynard, Jason; Broeker, Michael; Thomson, Matthew; Pollard, Katherine; Yamanaka, Shinya; Burlingame, Alma L; Panning, Barbara

    2016-01-01

    The transcription factor SOX2 is central in establishing and maintaining pluripotency. The processes that modulate SOX2 activity to promote pluripotency are not well understood. Here, we show SOX2 is O-GlcNAc modified in its transactivation domain during reprogramming and in mouse embryonic stem cells (mESCs). Upon induction of differentiation SOX2 O-GlcNAcylation at serine 248 is decreased. Replacing wild type with an O-GlcNAc-deficient SOX2 (S248A) increases reprogramming efficiency. ESCs with O-GlcNAc-deficient SOX2 exhibit alterations in gene expression. This change correlates with altered protein-protein interactions and genomic occupancy of the O-GlcNAc-deficient SOX2 compared to wild type. In addition, SOX2 O-GlcNAcylation impairs the SOX2-PARP1 interaction, which has been shown to regulate ESC self-renewal. These findings show that SOX2 activity is modulated by O-GlcNAc, and provide a novel regulatory mechanism for this crucial pluripotency transcription factor. DOI: http://dx.doi.org/10.7554/eLife.10647.001 PMID:26949256

  1. SOX2 gene regulates the transcriptional network of oncogenes and affects tumorigenesis of human lung cancer cells.

    Directory of Open Access Journals (Sweden)

    Si Chen

    Full Text Available Recent studies demonstrated that cancer stem cells (CSCs have higher tumorigenesis properties than those of differentiated cancer cells and that transcriptional factor-SOX2 plays a vital role in maintaining the unique properties of CSCs; however, the function and underlying mechanism of SOX2 in carcinogenesis of lung cancer are still elusive. This study applied immunohistochemistry to analyze the expression of SOX2 in human lung tissues of normal individuals as well as patients with adenocarcinoma, squamous cell carcinoma, and large cell and small cell carcinoma and demonstrated specific overexpression of SOX2 in all types of lung cancer tissues. This finding supports the notion that SOX2 contributes to the tumorigenesis of lung cancer cells and can be used as a diagnostic probe. In addition, obviously higher expression of oncogenes c-MYC, WNT1, WNT2, and NOTCH1 was detected in side population (SP cells than in non-side population (NSP cells of human lung adenocarcinoma cell line-A549, revealing a possible mechanism for the tenacious tumorigenic potential of CSCs. To further elucidate the function of SOX2 in tumorigenesis of cancer cells, A549 cells were established with expression of luciferase and doxycycline-inducible shRNA targeting SOX2. We found silencing of SOX2 gene reduces the tumorigenic property of A549 cells with attenuated expression of c-MYC, WNT1, WNT2, and NOTCH1 in xenografted NOD/SCID mice. By using the RNA-Seq method, an additional 246 target cancer genes of SOX2 were revealed. These results present evidence that SOX2 may regulate the expression of oncogenes in CSCs to promote the development of human lung cancer.

  2. SOX2 gene regulates the transcriptional network of oncogenes and affects tumorigenesis of human lung cancer cells.

    Science.gov (United States)

    Chen, Si; Xu, Yingxi; Chen, Yanan; Li, Xuefei; Mou, Wenjun; Wang, Lina; Liu, Yanhua; Reisfeld, Ralph A; Xiang, Rong; Lv, Dan; Li, Na

    2012-01-01

    Recent studies demonstrated that cancer stem cells (CSCs) have higher tumorigenesis properties than those of differentiated cancer cells and that transcriptional factor-SOX2 plays a vital role in maintaining the unique properties of CSCs; however, the function and underlying mechanism of SOX2 in carcinogenesis of lung cancer are still elusive. This study applied immunohistochemistry to analyze the expression of SOX2 in human lung tissues of normal individuals as well as patients with adenocarcinoma, squamous cell carcinoma, and large cell and small cell carcinoma and demonstrated specific overexpression of SOX2 in all types of lung cancer tissues. This finding supports the notion that SOX2 contributes to the tumorigenesis of lung cancer cells and can be used as a diagnostic probe. In addition, obviously higher expression of oncogenes c-MYC, WNT1, WNT2, and NOTCH1 was detected in side population (SP) cells than in non-side population (NSP) cells of human lung adenocarcinoma cell line-A549, revealing a possible mechanism for the tenacious tumorigenic potential of CSCs. To further elucidate the function of SOX2 in tumorigenesis of cancer cells, A549 cells were established with expression of luciferase and doxycycline-inducible shRNA targeting SOX2. We found silencing of SOX2 gene reduces the tumorigenic property of A549 cells with attenuated expression of c-MYC, WNT1, WNT2, and NOTCH1 in xenografted NOD/SCID mice. By using the RNA-Seq method, an additional 246 target cancer genes of SOX2 were revealed. These results present evidence that SOX2 may regulate the expression of oncogenes in CSCs to promote the development of human lung cancer.

  3. Embryonic stem cell factors and pancreatic cancer.

    Science.gov (United States)

    Herreros-Villanueva, Marta; Bujanda, Luis; Billadeau, Daniel D; Zhang, Jin-San

    2014-03-07

    Pancreatic ductal adenocarcinoma (PDAC), the most common type of pancreatic tumor, is a highly aggressive human cancer with the lowest five-year survival rate of any human maligancy primarily due to its early- metastasis and lack of response to chemotherapy and radiation. Recent research suggests that PDAC cells comprise a hierarchy of tumor cells that develop around a population of cancer stem cells (CSCs), a small and distinct population of cancer cells that mediates tumoregenesis, metastasis and resistance to standard treatments. Thus, CSCs could be a target for more effective treatment options. Interestingly, pancreatic CSCs are subject to regulation by some of key embryonic stem cell (ESC) transctiption factors abberently expressed in PDAC, such as SOX2, OCT4 and NANOG. ESC transcription factors are important DNA-binding proteins present in both embryonic and adult somatic cells. The critical role of these factors in reprogramming processes makes them essential not only for embryonic development but also tumorigenesis. Here we provide an overview of stem cell transcription factors, particularly SOX2, OCT4, and NANOG, on their expression and function in pancreatic cancer. In contrast to embryonic stem cells, in which OCT4 and SOX2 are tightly regulated and physically interact to regulate a wide spectrum of target genes, de novo SOX2 expression alone in pancreatic cancer cells is sufficient to promote self-renewal, de-differentiation and imparting stemness characteristics via impacting specific cell cycle regulatory genes and epithelial-mesnechymal transtion driver genes. Thus, targeting ESC factors, particularly SOX2, could be a worthy strategy for pancreatic cancer therapy.

  4. O-GlcNAc transferase regulates transcriptional activity of human Oct4.

    Science.gov (United States)

    Constable, Sandii; Lim, Jae-Min; Vaidyanathan, Krithika; Wells, Lance

    2017-10-01

    O-linked β-N-acetylglucosamine (O-GlcNAc) is a single sugar modification found on many different classes of nuclear and cytoplasmic proteins. Addition of this modification, by the enzyme O-linked N-acetylglucosamine transferase (OGT), is dynamic and inducible. One major class of proteins modified by O-GlcNAc is transcription factors. O-GlcNAc regulates transcription factor properties through a variety of different mechanisms including localization, stability and transcriptional activation. Maintenance of embryonic stem (ES) cell pluripotency requires tight regulation of several key transcription factors, many of which are modified by O-GlcNAc. Octamer-binding protein 4 (Oct4) is one of the key transcription factors required for pluripotency of ES cells and more recently, the generation of induced pluripotent stem (iPS) cells. The action of Oct4 is modulated by the addition of several post-translational modifications, including O-GlcNAc. Previous studies in mice found a single site of O-GlcNAc addition responsible for transcriptional regulation. This study was designed to determine if this mechanism is conserved in humans. We mapped 10 novel sites of O-GlcNAc attachment on human Oct4, and confirmed a role for OGT in transcriptional activation of Oct4 at a site distinct from that found in mouse that allows distinction between different Oct4 target promoters. Additionally, we uncovered a potential new role for OGT that does not include its catalytic function. These results confirm that human Oct4 activity is being regulated by OGT by a mechanism that is distinct from mouse Oct4. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. SOX2在非小细胞肺癌,肺腺癌和肺鳞癌中的作用

    Institute of Scientific and Technical Information of China (English)

    Niki Karachaliou; Rafael Rosell; Santiago Viteri; 刘红兵

    2015-01-01

    SOX2是在胚胎发育中发挥关键作用的干细胞转录因子,它是一组能使人类体细胞转化成多能干细胞的因子(Oct4,SOX2,Nanog)的基因之一.SOX2的过度表达在各种肺癌组织类型如肺小细胞肺癌,肺鳞癌及肺腺癌.肺小细胞肺癌基因组改变频谱已经确认SOX2是潜在治疗干预靶点.3q扩增是肺鳞癌的最普遍的基因变异,并参与原位鳞癌演变也提示SOX2是肿瘤演变的关键靶点,因而SOX2及其下游效应物成为鳞癌生物治疗的潜在靶点.近20%的肺腺癌表达SOX2,且预后更差.SOX2并不导致细胞分化缺失,而是促进鳞状上皮识别,这也与SOX2是谱系生存原癌基因相一致.有趣的是,SOX2转录因子是EGFR信号通路的主要下游靶点,在自我更新生长及SP细胞扩增中发挥主要作用.鉴于SOX2在正常发育和肿瘤发展中的复杂作用,阐明SOX2依赖通路可提供新的肺癌治疗途径,并揭示肿瘤发展,正常发育,维持多能性的其他共同通路.

  6. Sox2 transcription network acts as a molecular switch to regulate properties of neural stem cells

    Institute of Scientific and Technical Information of China (English)

    Koji; Shimozaki

    2014-01-01

    Neural stem cells(NSCs) contribute to ontogeny by producing neurons at the appropriate time and location. Neurogenesis from NSCs is also involved in various biological functions in adults. Thus, NSCs continue to exert their effects throughout the lifespan of the organism. The mechanism regulating the core functional properties of NSCs is governed by intra- and extracellular signals. Among the transcription factors that serve as molecular switches, Sox2 is considered a key factor in NSCs. Sox2 forms a core network with partner factors, thereby functioning as a molecular switch. This review discusses how the network of Sox2 partner and target genes illustrates the molecular characteristics of the mechanism underlying the self-renewal and multipotency of NSCs.

  7. Autophagy and cellular senescence mediated by Sox2 suppress malignancy of cancer cells.

    Directory of Open Access Journals (Sweden)

    Yong-Yeon Cho

    Full Text Available Autophagy is a critical cellular process required for maintaining cellular homeostasis in health and disease states, but the molecular mechanisms and impact of autophagy on cancer is not fully understood. Here, we found that Sox2, a key transcription factor in the regulation of the "stemness" of embryonic stem cells and induced-pluripotent stem cells, strongly induced autophagic phenomena, including intracellular vacuole formation and lysosomal activation in colon cancer cells. The activation occurred through Sox2-mediated ATG10 gene expression and resulted in the inhibition of cell proliferation and anchorage-independent colony growth ex vivo and tumor growth in vivo. Further, we found that Sox2-induced-autophagy enhanced cellular senescence by up-regulating tumor suppressors or senescence factors, including p16(INK4a, p21 and phosphorylated p53 (Ser15. Notably, knockdown of ATG10 in Sox2-expressing colon cancer cells restored cancer cell properties. Taken together, our results demonstrated that regulation of autophagy mediated by Sox2 is a mechanism-driven novel strategy to treat human colon cancers.

  8. Sox2 regulates Müller glia reprogramming and proliferation in the regenerating zebrafish retina via Lin28 and Ascl1a.

    Science.gov (United States)

    Gorsuch, Ryne A; Lahne, Manuela; Yarka, Clare E; Petravick, Michael E; Li, Jingling; Hyde, David R

    2017-08-01

    Sox2 is a well-established neuronal stem cell-associated transcription factor that regulates neural development and adult neurogenesis in vertebrates, and is one of the critical genes used to reprogram differentiated cells into induced pluripotent stem cells. We examined if Sox2 was involved in the early reprogramming-like events that Müller glia undergo as they upregulate many pluripotency- and neural stem cell-associated genes required for proliferation in light-damaged adult zebrafish retinas. In the undamaged adult zebrafish retina, Sox2 is expressed in Müller glia and a subset of amacrine cells, similar to other vertebrates. Following 31 h of light damage, Sox2 expression significantly increased in proliferating Müller glia. Morpholino-mediated knockdown of Sox2 expression resulted in decreased numbers of proliferating Müller glia, while induced overexpression of Sox2 stimulated Müller glia proliferation in the absence of retinal damage. Thus, Sox2 is necessary and sufficient for Müller glia proliferation. We investigated the role of Wnt/β-catenin signaling, which is a known regulator of sox2 expression during vertebrate retinal development. While β-catenin 2, but not β-catenin 1, was necessary for Müller glia proliferation, neither β-catenin paralog was required for sox2 expression following retinal damage. Sox2 expression was also necessary for ascl1a (neurogenic) and lin28a (reprogramming) expression, but not stat3 expression following retinal damage. Furthermore, Sox2 was required for Müller glial-derived neuronal progenitor cell amplification and expression of the pro-neural marker Tg(atoh7:EGFP). Finally, loss of Sox2 expression prevented complete regeneration of cone photoreceptors. This study is the first to identify a functional role for Sox2 during Müller glial-based regeneration of the vertebrate retina. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Of Mice and Snakes: A Tail of Oct4.

    Science.gov (United States)

    Shylo, Natalia A; Weatherbee, Scott D

    2016-08-08

    The vertebrate axial skeleton comprises regions of specialized vertebrae, which vary in length between lineages. Aires et al. (2016) uncover a key role for Oct4 in determining trunk length in mice. Additionally, a heterochronic shift in Oct4 expression may underlie the extreme elongation of the trunk in snakes.

  10. Post-translational regulation of Oct4 transcriptional activity.

    Directory of Open Access Journals (Sweden)

    Jonathan P Saxe

    Full Text Available Oct4 is a key component of the molecular circuitry which regulates embryonic stem cell proliferation and differentiation. It is essential for maintenance of undifferentiated, pluripotent cell populations, and accomplishes these tasks by binding DNA in multiple heterodimer and homodimer configurations. Very little is known about how formation of these complexes is regulated, or the mechanisms through which Oct4 proteins respond to complex extracellular stimuli which regulate pluripotency. Here, we provide evidence for a phosphorylation-based mechanism which regulates specific Oct4 homodimer conformations. Point mutations of a putative phosphorylation site can specifically abrogate transcriptional activity of a specific homodimer assembly, with little effect on other configurations. Moreover, we performed bioinformatic predictions to identify a subset of Oct4 target genes which may be regulated by this specific assembly, and show that altering Oct4 protein levels affects transcription of Oct4 target genes which are regulated by this assembly but not others. Finally, we identified several signaling pathways which may mediate this phosphorylation and act in combination to regulate Oct4 transcriptional activity and protein stability. These results provide a mechanism for rapid and reversible alteration of Oct4 transactivation potential in response to extracellular signals.

  11. Acetylation-dependent regulation of essential iPS-inducing factors: a regulatory crossroad for pluripotency and tumorigenesis.

    Science.gov (United States)

    Dai, Xiangpeng; Liu, Pengda; Lau, Alan W; Liu, Yueyong; Inuzuka, Hiroyuki

    2014-10-01

    Induced pluripotent stem (iPS) cells can be generated from somatic cells by coexpression of four transcription factors: Sox2, Oct4, Klf4, and c-Myc. However, the low efficiency in generating iPS cells and the tendency of tumorigenesis hinder the therapeutic applications for iPS cells in treatment of human diseases. To this end, it remains largely unknown how the iPS process is subjected to regulation by upstream signaling pathway(s). Here, we report that Akt regulates the iPS process by modulating posttranslational modifications of these iPS factors in both direct and indirect manners. Specifically, Akt directly phosphorylates Oct4 to modulate the Oct4/Sox2 heterodimer formation. Furthermore, Akt either facilitates the p300-mediated acetylation of Oct4, Sox2, and Klf4, or stabilizes Klf4 by inactivating GSK3, thus indirectly modulating stemness. As tumorigenesis shares possible common features and mechanisms with iPS, our study suggests that Akt inhibition might serve as a cancer therapeutic approach to target cancer stem cells.

  12. Expression and Significance of Oct4 in Bladder Cancer

    Institute of Scientific and Technical Information of China (English)

    XU Kai; ZHU Zhaohui; ZENG Fuqing; DONG Jihua

    2007-01-01

    In order to detect the expression of Oct4 in bladder cancer tissue and cell line BIU-87, immunohistochemistry was used in 49 bladder cancer biopsy samples and immunofluorescence and reverse transcription-PCR were performed on bladder cancer cell line BIU-87. Forty of 49 bladdercancer samples showed the expression of Oct4 in about 0.6% cancer cells. The positive rate and den-sity of Oct4 expression had no obvious relationship with the grade, recurrence or metastasis of blad-der cancer (P0.05). A few Oct4 positive cells were found in bladder cancer cell line BlU-87, which was also confirmed by RT-PCR. This study indicated the existence of few Oct4 positive cells in bladder cancer, which may be the bladder cancer stem cells. This study may provide the foundation for isolation and identification of bladder cancer stem cells.

  13. SOX2 expression is upregulated in adult spinal cord after contusion injury in both oligodendrocyte lineage and ependymal cells.

    Science.gov (United States)

    Lee, Hyun Joon; Wu, Junfang; Chung, Jumi; Wrathall, Jean R

    2013-02-01

    The upregulation of genes normally associated with development may occur in the adult after spinal cord injury (SCI). To test this, we performed real-time RT-PCR array analysis of mouse spinal cord mRNAs comparing embryonic day (E)14.5 spinal cord with intact adult and adult cord 1 week after a clinically relevant standardized contusion SCI. We found significantly increased expression of a large number of neural development- and stem cell-associated genes after SCI. These included Sox2 (sex determining region Y-box 2), a transcription factor that regulates self-renewal and potency of embryonic neural stem cells and is one of only a few key factors needed to induce pluripotency. In adult spinal cord of Sox2-EGFP mice, Sox2-EGFP was found mainly in the ependymal cells of the central canal. After SCI, both mRNA and protein levels of Sox2 were significantly increased at and near the injury site. By 1 day, Sox2 was upregulated in NG2(+) oligodendrocyte progenitor cells (OPC) in the spared white matter. By 3 days, Sox2-EGFP ependymal cells had increased proliferation and begun to form multiple layers and clusters of cells in the central lesion zone of the cord. Expression of Sox2 by NG2(+) cells had declined by 1 week, but increased numbers of other Sox2-expressing cells persisted for at least 4 weeks after SCI in both mouse and rat models. Thus, SCI upregulates many genes associated with development and neural stem cells, including the key transcription factor Sox2, which is expressed in a pool of cells that persists for weeks after SCI.

  14. Oct4 resetting by Aurkb-PP1 cell cycle axis determines the identity of mouse embryonic stem cells.

    Science.gov (United States)

    Shin, Jihoon; Youn, Hong-Duk

    2016-10-01

    In embryonic stem cells (ESCs), cell cycle regulation is deeply connected to pluripotency. Especially, core transcription factors (CTFs) which are essential to maintaining the pluripotency transcription programs should be reset during M/G1 transition. However, it remains unknown about how CTFs are governed during cell cycle progression. Here, we describe that the regulation of Oct4 by Aurora kinase b (Aurkb)/protein phosphatase 1 (PP1) axis during the cell cycle is important for resetting Oct4 to pluripotency and cell cycle related target genes in determining the identity of ESCs. Aurkb starts to phosphorylate Oct4(S229) at the onset of G2/M phase, inducing the dissociation of Oct4 from chromatin, whereas PP1 binds Oct4 and dephosphorylates Oct4(S229) during M/G1 transition, which resets Oct4-driven transcription for pluripotency and the cell cycle. Furthermore, Aurkb phosphormimetic and PP1 binding-deficient mutations in Oct4 disrupt the pluripotent cell cycle, lead to the loss of pluripotency in ESCs, and decrease the efficiency of somatic cell reprogramming. Based on our findings, we suggest that the cell cycle is directly linked to pluripotency programs in ESCs. [BMB Reports 2016; 49(10): 527-528].

  15. Aurkb/PP1-mediated resetting of Oct4 during the cell cycle determines the identity of embryonic stem cells.

    Science.gov (United States)

    Shin, Jihoon; Kim, Tae Wan; Kim, Hyunsoo; Kim, Hye Ji; Suh, Min Young; Lee, Sangho; Lee, Han-Teo; Kwak, Sojung; Lee, Sang-Eun; Lee, Jong-Hyuk; Jang, Hyonchol; Cho, Eun-Jung; Youn, Hong-Duk

    2016-02-15

    Pluripotency transcription programs by core transcription factors (CTFs) might be reset during M/G1 transition to maintain the pluripotency of embryonic stem cells (ESCs). However, little is known about how CTFs are governed during cell cycle progression. Here, we demonstrate that the regulation of Oct4 by Aurora kinase b (Aurkb)/protein phosphatase 1 (PP1) during the cell cycle is important for resetting Oct4 to pluripotency and cell cycle genes in determining the identity of ESCs. Aurkb phosphorylates Oct4(S229) during G2/M phase, leading to the dissociation of Oct4 from chromatin, whereas PP1 binds Oct4 and dephosphorylates Oct4(S229) during M/G1 transition, which resets Oct4-driven transcription for pluripotency and the cell cycle. Aurkb phosphor-mimetic and PP1 binding-deficient mutations in Oct4 alter the cell cycle, effect the loss of pluripotency in ESCs, and decrease the efficiency of somatic cell reprogramming. Our findings provide evidence that the cell cycle is linked directly to pluripotency programs in ESCs.

  16. Expression of OCT4A: The First Step to the Next Stage of Urothelial Bladder Cancer Progression

    Directory of Open Access Journals (Sweden)

    Wojciech Jóźwicki

    2014-09-01

    Full Text Available OCT4 (octamer-binding transcription factor is a transcription factor responsible for maintaining the pluripotent properties of embryonic stem cells. In this paper, we present the results of studies to investigate the role of the OCT4 splicing variant in urothelial bladder cancer and the relationship between the OCT4 phenotype and the morphological parameters of tumor malignancy. Ninety patients who received a cystectomy for bladder cancer were enrolled. The expression of OCT4 protein was analyzed by immunohistochemistry. The ratio of OCT4-positive cells was the lowest in pT1 (pathological assessment (p—tumor extent confined to mucosa (T1 tumors and the highest in pTis (non-papillary tumor extent confined to urothelium and pT2 (tumor extent including muscularis propria tumors. Information about the percentage of OCT4A-positive tumor cells could facilitate choosing the treatment mode in borderline pTis–pT1 (crossing the border of the basement membrane; the first stage of progression and pT1–pT2 (crossing the border of the muscularis propria; the second stage of progression cases: a higher percentage of OCT4A-positive cells should support more radical therapy. A significantly higher percentage of cases with moderate OCT4 intensity was found in metastasizing (the third stage of progression cases with >2 positive lymph nodes. The percentage of OCT4-positive cells was significantly higher for cancers with a high grade, higher non-classic differentiation number and greater aggressiveness of invasion. The differentiation, maturation and aggressiveness of tumor invasion appear to depend on the expression of the OCT4 phenotype in cancer cells, similar to the successive stages of malignancy progression in urothelial cancer.

  17. Nanog Is an Essential Factor for Induction of Pluripotency in Somatic Cells from Endangered Felids

    OpenAIRE

    Verma, Rajneesh; Liu, Jun; Holland, Michael Kenneth; Temple-Smith, Peter; Williamson, Mark; Verma, Paul John

    2013-01-01

    Abstract Nanog has an important role in pluripotency induction in bovines and snow leopards. To examine whether it was required for wild felids globally, we examined the induction of pluripotency in felids from Asia (Bengal tiger, Panthera tigris), Africa (serval, Leptailurus serval), and the Americas (jaguar, Panthera onca). Dermal fibroblasts were transduced with genes encoding the human transcription factors OCT4, SOX2, KLF4, and cMYC with or without NANOG. Both four- and five-factor induc...

  18. MiR-145 regulates epithelial to mesenchymal transition of breast cancer cells by targeting Oct4.

    Directory of Open Access Journals (Sweden)

    Jiajia Hu

    Full Text Available MiR-145 could regulate tumor growth, apoptosis, migration, and invasion. In our present study, we investigated its role in epithelial-mesenchymal transition (EMT. Expression of miR-145 was decreased in breast tumor tissues at T3&4 stages in comparison with those at T1&2. Over-expression of miR-145 mimics enhanced protein levels of E-cadherin and dampened those of α-SMA and Fibronectin, indicative of its inhibitory role in EMT occurrence. Mechanistic studies showed that miR-145 mimics inhibited Oct4 expression and miR-145 inhibitor enhanced it. Over-expression of Oct4 reversed miR-145-regulated expression of EMT markers, suggesting that Oct4 mediated the inhibitory effects of miR-145. MiR-145 could inhibite the expression of Snail, ZEB1, and ZEB2, while over-expression of Oct4 rescued the effects. Furthermore, Oct-4 induced over-expression of transcription factor Snail, ZEB1 and ZEB2 was mediated by β-catenin. Expression of Slug and Twist were not altered by miR-145/Oct4. Taken together, our results have revealed a novel role of miR-145 on EMT. It inhibits EMT by blocking the expression of Oct4, and downstream transcriptional factors, Snail, ZEB1 and ZEB2.

  19. The overexpression of SOX2 affects the migration of human teratocarcinoma cell line NT2/D1

    Directory of Open Access Journals (Sweden)

    DANIJELA DRAKULIC

    2015-03-01

    Full Text Available The altered expression of the SOX2 transcription factor is associated with oncogenic or tumor suppressor functions in human cancers. This factor regulates the migration and invasion of different cancer cells. In this study we investigated the effect of constitutive SOX2 overexpression on the migration and adhesion capacity of embryonal teratocarcinoma NT2/D1 cells derived from a metastasis of a human testicular germ cell tumor. We detected that increased SOX2 expression changed the speed, mode and path of cell migration, but not the adhesion ability of NT2/D1 cells. Additionally, we demonstrated that SOX2 overexpression increased the expression of the tumor suppressor protein p53 and the HDM2 oncogene. Our results contribute to the better understanding of the effect of SOX2 on the behavior of tumor cells originating from a human testicular germ cell tumor. Considering that NT2/D1 cells resemble cancer stem cells in many features, our results could contribute to the elucidation of the role of SOX2 in cancer stem cells behavior and the process of metastasis.

  20. The overexpression of SOX2 affects the migration of human teratocarcinoma cell line NT2/D1.

    Science.gov (United States)

    Drakulic, Danijela; Vicentic, Jelena Marjanovic; Schwirtlich, Marija; Tosic, Jelena; Krstic, Aleksandar; Klajn, Andrijana; Stevanovic, Milena

    2015-03-01

    The altered expression of the SOX2 transcription factor is associated with oncogenic or tumor suppressor functions in human cancers. This factor regulates the migration and invasion of different cancer cells. In this study we investigated the effect of constitutive SOX2 overexpression on the migration and adhesion capacity of embryonal teratocarcinoma NT2/D1 cells derived from a metastasis of a human testicular germ cell tumor. We detected that increased SOX2 expression changed the speed, mode and path of cell migration, but not the adhesion ability of NT2/D1 cells. Additionally, we demonstrated that SOX2 overexpression increased the expression of the tumor suppressor protein p53 and the HDM2 oncogene. Our results contribute to the better understanding of the effect of SOX2 on the behavior of tumor cells originating from a human testicular germ cell tumor. Considering that NT2/D1 cells resemble cancer stem cells in many features, our results could contribute to the elucidation of the role of SOX2 in cancer stem cells behavior and the process of metastasis.

  1. Sixteen additional enhancers associated with the chicken Sox2 locus outside the central 50-kb region.

    Science.gov (United States)

    Okamoto, Ryuji; Uchikawa, Masanori; Kondoh, Hisato

    2015-01-01

    The transcription factor Sox2 plays a central role in the regulation of neuro-sensory development, and many other developmental processes. To gain an in depth understanding of the Sox2 gene regulation, we previously investigated the Sox2-proximal 50-kb region of the chicken genome to determine enhancers based on functional assays using chicken embryo electroporation. We identified 11 enhancers with specificity for neuro-sensory tissues. In this study, we extended the analysis of Sox2 locus-associated enhancers to a 200-kb region and identified 16 additional enhancers with functions in neuro-sensory development. These enhancers roughly correspond to a fraction of the sequence blocks that are highly conserved between chicken and mammalian genomes. The neural enhancers were activated in sequence, thereby creating a complex pattern of functional overlaps in the developing central nervous system (CNS). The variations in the specificities of the sensory enhancers also reflected the intermediate steps of sensory tissue development. This study provides an example where a single transcription factor gene has numerous regulatory elements that allow it to fulfill many functional roles in different biological contexts.

  2. Comprehensive analysis of clinical significance of stem-cell related factors in renal cell cancer

    Directory of Open Access Journals (Sweden)

    Zhou Libin

    2011-10-01

    Full Text Available Abstract Background C-MYC, LIN28, OCT4, KLF4, NANOG and SOX2 are stem cell related factors. We detected whether these factors express in renal cell carcinoma (RCC tissues to study their correlations with the clinical and pathological characteristics. Methods The expressions of c-MYC, LIN28, SOX2, KLF4, OCT4 and NANOG in 30 RCC patients and 5 non-RCC patients were detected with quantitative real-time reverse transcription-PCR (qRT-PCR. The data were analyzed with Wilcoxon signed rank sum test and x2 test. Results In RCC group, c-MYC expression was significantly higher in RCC tissues compared with normal tissues (P 0.05. Also the expression levels of all above factors were not significantly changed in non-RCC group (P > 0.05. Conclusions The present analysis strongly suggests that altered expression of several stem cell related factors may play different roles in RCC. C-MYC may function as an oncogene and OCT4, KLF4, NANOG and SOX2 as tumor suppressors.

  3. Sox2 promotes tamoxifen resistance in breast cancer cells

    Science.gov (United States)

    Piva, Marco; Domenici, Giacomo; Iriondo, Oihana; Rábano, Miriam; Simões, Bruno M; Comaills, Valentine; Barredo, Inmaculada; López-Ruiz, Jose A; Zabalza, Ignacio; Kypta, Robert; Vivanco, Maria d M

    2014-01-01

    Development of resistance to therapy continues to be a serious clinical problem in breast cancer management. Cancer stem/progenitor cells have been shown to play roles in resistance to chemo- and radiotherapy. Here, we examined their role in the development of resistance to the oestrogen receptor antagonist tamoxifen. Tamoxifen-resistant cells were enriched for stem/progenitors and expressed high levels of the stem cell marker Sox2. Silencing of the SOX2 gene reduced the size of the stem/progenitor cell population and restored sensitivity to tamoxifen. Conversely, ectopic expression of Sox2 reduced tamoxifen sensitivity in vitro and in vivo. Gene expression profiling revealed activation of the Wnt signalling pathway in Sox2-expressing cells, and inhibition of Wnt signalling sensitized resistant cells to tamoxifen. Examination of patient tumours indicated that Sox2 levels are higher in patients after endocrine therapy failure, and also in the primary tumours of these patients, compared to those of responders. Together, these results suggest that development of tamoxifen resistance is driven by Sox2-dependent activation of Wnt signalling in cancer stem/progenitor cells. PMID:24178749

  4. The Oct4 homologue PouV and Nanog regulate pluripotency in chicken embryonic stem cells.

    Science.gov (United States)

    Lavial, Fabrice; Acloque, Hervé; Bertocchini, Federica; Macleod, David J; Boast, Sharon; Bachelard, Elodie; Montillet, Guillaume; Thenot, Sandrine; Sang, Helen M; Stern, Claudio D; Samarut, Jacques; Pain, Bertrand

    2007-10-01

    Embryonic stem cells (ESC) have been isolated from pregastrulation mammalian embryos. The maintenance of their pluripotency and ability to self-renew has been shown to be governed by the transcription factors Oct4 (Pou5f1) and Nanog. Oct4 appears to control cell-fate decisions of ESC in vitro and the choice between embryonic and trophectoderm cell fates in vivo. In non-mammalian vertebrates, the existence and functions of these factors are still under debate, although the identification of the zebrafish pou2 (spg; pou5f1) and Xenopus Pou91 (XlPou91) genes, which have important roles in maintaining uncommitted putative stem cell populations during early development, has suggested that these factors have common functions in all vertebrates. Using chicken ESC (cESC), which display similar properties of pluripotency and long-term self-renewal to mammalian ESC, we demonstrated the existence of an avian homologue of Oct4 that we call chicken PouV (cPouV). We established that cPouV and the chicken Nanog gene are required for the maintenance of pluripotency and self-renewal of cESC. These findings show that the mechanisms by which Oct4 and Nanog regulate pluripotency and self-renewal are not exclusive to mammals.

  5. C-MYC transcriptionally amplifies SOX2 target genes to regulate self-renewal in multipotent otic progenitor cells.

    Science.gov (United States)

    Kwan, Kelvin Y; Shen, Jun; Corey, David P

    2015-01-13

    Sensorineural hearing loss is caused by the loss of sensory hair cells and neurons of the inner ear. Once lost, these cell types are not replaced. Two genes expressed in the developing inner ear are c-Myc and Sox2. We created immortalized multipotent otic progenitor (iMOP) cells, a fate-restricted cell type, by transient expression of C-MYC in SOX2-expressing otic progenitor cells. This activated the endogenous C-MYC and amplified existing SOX2-dependent transcripts to promote self-renewal. RNA-seq and ChIP-seq analyses revealed that C-MYC and SOX2 occupy over 85% of the same promoters. C-MYC and SOX2 target genes include cyclin-dependent kinases that regulate cell-cycle progression. iMOP cells continually divide but retain the ability to differentiate into functional hair cells and neurons. We propose that SOX2 and C-MYC regulate cell-cycle progression of these cells and that downregulation of C-MYC expression after growth factor withdrawal serves as a molecular switch for differentiation. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  6. A mechanism regulating the onset of Sox2 expression in the embryonic neural plate.

    Directory of Open Access Journals (Sweden)

    Costis Papanayotou

    2008-01-01

    Full Text Available In vertebrate embryos, the earliest definitive marker for the neural plate, which will give rise to the entire central nervous system, is the transcription factor Sox2. Although some of the extracellular signals that regulate neural plate fate have been identified, we know very little about the mechanisms controlling Sox2 expression and thus neural plate identity. Here, we use electroporation for gain- and loss-of-function in the chick embryo, in combination with bimolecular fluorescence complementation, two-hybrid screens, chromatin immunoprecipitation, and reporter assays to study protein interactions that regulate expression of N2, the earliest enhancer of Sox2 to be activated and which directs expression to the largest part of the neural plate. We show that interactions between three coiled-coil domain proteins (ERNI, Geminin, and BERT, the heterochromatin proteins HP1alpha and HP1gamma acting as repressors, and the chromatin-remodeling enzyme Brm acting as activator control the N2 enhancer. We propose that this mechanism regulates the timing of Sox2 expression as part of the process of establishing neural plate identity.

  7. Establishment of a rabbit Oct4 promoter-based EGFP reporter system.

    Directory of Open Access Journals (Sweden)

    Longquan Quan

    Full Text Available Rabbits are commonly used as laboratory animal models to investigate human diseases and phylogenetic development. However, pluripotent stem cells that contribute to germline transmission have yet to be established in rabbits. The transcription factor Oct4, also known as Pou5f1, is considered essential for the maintenance of the pluripotency of stem cells. Hence, pluripotent cells can be identified by monitoring Oct4 expression using a well-established Oct4 promoter-based reporter system. This study developed a rabbit Oct4 promoter-based enhanced green fluorescent protein (EGFP reporter system by transfecting pROP2-EGFP into rabbit fetal fibroblasts (RFFs. The transgenic RFFs were used as donor cells for somatic cell nuclear transfer (SCNT. The EGFP expression was detected in the blastocysts and genital ridges of SCNT fetuses. Fibroblasts and neural stem cells (NSCs were derived from the SCNT fetuses. EGFP was also reactivated in blastocysts after the second SCNT, and induced pluripotent stem cells (iPSCs were obtained after reprogramming using Yamanaka's factors. The results above indicated that a rabbit reporter system used to monitor the differentiating status of cells was successfully developed.

  8. The BET family member BRD4 interacts with OCT4 and regulates pluripotency gene expression.

    Science.gov (United States)

    Wu, Tao; Pinto, Hugo Borges; Kamikawa, Yasunao F; Donohoe, Mary E

    2015-03-10

    Embryonic stem cell (ESC) pluripotency is controlled by defined transcription factors. During cellular differentiation, ESCs undergo a global epigenetic reprogramming. Female ESCs exemplify this process as one of the two X-chromosomes is globally silenced during X chromosome inactivation (XCI) to balance the X-linked gene disparity with XY males. The pluripotent factor OCT4 regulates XCI by triggering X chromosome pairing and counting. OCT4 directly binds Xite and Tsix, which encode two long noncoding RNAs (lncRNAs) that suppress the silencer lncRNA, Xist. To control its activity as a master regulator in pluripotency and XCI, OCT4 must have chromatin protein partners. Here we show that BRD4, a member of the BET protein subfamily, interacts with OCT4. BRD4 occupies the regulatory regions of pluripotent genes and the lncRNAs of XCI. BET inhibition or depletion of BRD4 reduces the expression of many pluripotent genes and shifts cellular fate showing that BRD4 is pivotal for transcription in ESCs.

  9. Differential Expression of OCT4 Pseudogenes in Pluripotent and Tumor Cell Lines

    Science.gov (United States)

    Poursani, Ensieh M.; Mohammad Soltani, Bahram; Mowla, Seyed Javad

    2016-01-01

    Objective The human OCT4 gene, the most important pluripotency marker, can generate at least three different transcripts (OCT4A, OCT4B, and OCT4B1) by alternative splicing. OCT4A is the main isoform responsible for the stemness property of embryonic stem (ES) cells. There also exist eight processed OCT4 pseudogenes in the human genome with high homology to the OCT4A, some of which are transcribed in various cancers. Recent conflicting reports on OCT4 expression in tumor cells and tissues emphasize the need to discriminate the expression of OCT4A from other variants as well as OCT4 pseudogenes. Materials and Methods In this experimental study, DNA sequencing confirmed the authenticity of transcripts of OCT4 pseudogenes and their expression patterns were investigated in a panel of different human cell lines by reverse transcription-polymerase chain reaction (RT-PCR). Results Differential expression of OCT4 pseudogenes in various human cancer and pluripotent cell lines was observed. Moreover, the expression pattern of OCT4-pseudogene 3 (OCT4-pg3) followed that of OCT4A during neural differentiation of the pluripotent cell line of NTERA-2 (NT2). Although OCT4-pg3 was highly expressed in undifferentiated NT2 cells, its expression was rapidly down-regulated upon induction of neural differentiation. Analysis of protein expression of OCT4A, OCT4-pg1, OCT4-pg3, and OCT4-pg4 by Western blotting indicated that OCT4 pseudogenes cannot produce stable proteins. Consistent with a newly proposed competitive role of pseudogene microRNA docking sites, we detected miR-145 binding sites on all transcripts of OCT4 and OCT4 pseudogenes. Conclusion Our study suggests a potential coding-independent function for OCT4 pseudogenes during differentiation or tumorigenesis. PMID:27054116

  10. Partial Characterization of the Sox2+ Cell Population in an Adult Murine Model of Digit Amputation

    Science.gov (United States)

    Agrawal, Vineet; Siu, Bernard F.; Chao, Hsu; Hirschi, Karen K.; Raborn, Eric; Johnson, Scott A.; Tottey, Stephen; Hurley, Katherine B.; Medberry, Chris J.

    2012-01-01

    Tissue regeneration in response to injury in adult mammals is generally limited to select tissues. Nonmammalian species such as newts and axolotls undergo regeneration of complex tissues such as limbs and digits via recruitment and accumulation of local and circulating multipotent progenitors preprogrammed to recapitulate the missing tissue. Directed recruitment and activation of progenitor cells at a site of injury in adult mammals may alter the default wound-healing response from scar tissue toward regeneration. Bioactive molecules derived from proteolytic degradation of extracellular matrix (ECM) proteins have been shown to recruit a variety of progenitor cells in vitro and in vivo to the site of injury. The present study further characterized the population of cells accumulating at the site of injury after treatment with ECM degradation products in a well-established model of murine digit amputation. After a mid-second phalanx digit amputation in 6–8-week-old adult mice, treatment with ECM degradation products resulted in the accumulation of a heterogeneous population of cells, a subset of which expressed the transcription factor Sox2, a marker of pluripotent and adult progenitor cells. Sox2+ cells were localized lateral to the amputated P2 bone and coexpressed progenitor cell markers CD90 and Sca1. Transgenic Sox2 eGFP/+ and bone marrow chimeric mice showed that the bone marrow and blood circulation did not contribute to the Sox2+ cell population. The present study showed that, in addition to circulating progenitor cells, resident tissue-derived cells also populate at the site of injury after treatment with ECM degradation products. Although future work is necessary to determine the contribution of Sox2+ cells to functional tissue at the site of injury, recruitment and/or activation of local tissue-derived cells may be a viable approach to tissue engineering of more complex tissues in adult mammals. PMID:22530556

  11. Preliminary screening of downstream proteins of Sox2 and role of Sox2 in colonic cancer cell migration and invasion%Sox2下游调控蛋白的筛选及其对大肠癌细胞增殖、迁移的影响

    Institute of Scientific and Technical Information of China (English)

    周敏; 陆滟霞; 袁理; 郑林; 刘燕; 洪敏; 张超; 李学农

    2014-01-01

    Objective To screen the down-stream proteins of transcription factor Sox2 and explore the role of Sox2 in the proliferation and migration of colonic cancer cells in vitro. Methods The cellular proteins were separated by SDS-PAGE electrophoresis and stained with Coomassie blue and amine plated silver. The differentially expressed proteins was identified by mass spectrometry and verified by QPCR and Western blotting. A cell counting kit-8 (CCK8) assay was performed to evaluate the cell proliferation, and the cell migration was assessed using Transwell assay. Results S3a was identified by proteomics technology as a Sox2-downregulated protein while ENO1 and gama-actin the up-regulated proteins. QPCR and Western blotting analyses showed that overexpression of Sox2 significantly decreased the expression of S3a (P<0.005) and increased the expression of ENO1(P<0.05), but had no significant effect on gama-actin expression. Sox2 overexpression obviously promoted cell proliferation and migration (P<0.05), while inhibition of Sox2 produced contrary effects (P<0.05). Conclusion Sox2 negatively regulates S3a expression and positively regulates ENO1 expression to promot the proliferation and migration of colonic cancer cells.%目的:分析大肠癌细胞转录因子Sox2对大肠癌细胞增殖及迁移的影响。方法应用SDS-PAGE蛋白电泳,结合考马斯亮蓝及镀胺银染色方法,筛选差异蛋白。质谱分析筛选Sox2下游调控蛋白,应用定量PCR(QPCR)及Western blotting验证和鉴定下游调控蛋白。Cell Counting Kit-8(CCK8)观察Sox2对大肠癌细胞增殖的影响,Transwell实验观察Sox2对迁移能力的影响。结果应用蛋白组学技术成功筛选出Sox2下调蛋白S3a、上调蛋白ENO1、Gama-actin。QPCR和Western blotting显示,Sox2过表达后,大肠癌细胞S3a表达减少(P<0.005),ENO1表达增加(P<0.05),Gama-actin表达无明显差异,细胞增殖及迁移能力提高(P<0.05);Sox2

  12. CpG oligodeoxyribonucleotide 7909 enhances radiosensitivity via downregulating Oct-4 expression in radioresistant lung cancer cells

    Directory of Open Access Journals (Sweden)

    Xing N

    2015-06-01

    Full Text Available Na Xing,1 Tiankui Qiao,1 Xibing Zhuang,1 Sujuan Yuan,1 Qi Zhang,1 Guoxiong Xu2 1Department of Oncology, 2Center Laboratory, Jinshan Hospital, Fudan University, Shanghai, People’s Republic of China Abstract: Radiotherapy is a powerful cure for local advanced non-small cell lung cancer. However, radioresistance and tumor relapse still occur in a high proportion of patients. Octamer-4 (Oct-4, a transcription factor of the POU family, plays a key role in maintaining chemoradioresistant properties and regulating cancer progression. In this study, we demonstrated that Oct-4 expression was significantly increased in radioresistant H460 (H460R cell line. CpG oligodeoxyribonucleotide (CpG-ODN 7909 sensitized H460R cells when combined with irradiation treatment. The clonogenic capacity was significantly decreased, and the values of D0 and Dq were lower than those of irradiation alone group. The sensitive enhancement ratio (SER of D0 was 1.224. This combined treatment led to a dramatic reduction in Oct-4 expression in a dose-dependent manner and also showed increased percentage of cells in the radiosensitive G2/M phase relative to either treatment alone. These results identified that Oct-4 was involved in radioresistance. CpG-ODN 7909 could enhance radiosensitivity partly through downregulating Oct-4 expression in radioresistant lung cancer cells. Keywords: CpG-ODN, Oct-4, lung cancer, TLR9, radiosensitivity

  13. MicroRNA-145 Regulates Neural Stem Cell Differentiation Through the Sox2-Lin28/let-7 Signaling Pathway.

    Science.gov (United States)

    Morgado, Ana L; Rodrigues, Cecília M P; Solá, Susana

    2016-05-01

    MicroRNAs (miRNAs or miRs) regulate several biological functions, including cell fate determination and differentiation. Although miR-145 has already been described to regulate glioma development, its precise role in neurogenesis has never been addressed. miR-145 represses sex-determining region Y-box 2 (Sox2), a core transcription factor of embryonic stem cells (ESCs), to inhibit pluripotency and self-renewal in human ESCs. In addition, the Sox2-Lin28/let-7 signaling pathway regulates proliferation and neurogenesis of neural precursors. In this study, we aimed to investigate the precise role of miR-145 in neural stem cell (NSC) fate decision, and the possible involvement of the Sox2-Lin28/let-7 signaling pathway in miR-145 regulatory network. Our results show for the first time that miR-145 expression significantly increased after induction of mouse NSC differentiation, remaining elevated throughout this process. Forced miR-145 downregulation decreased neuronal markers, namely βIII-tubulin, NeuN, and MAP2. Interestingly, throughout NSC differentiation, protein levels of Sox2 and Lin28, a well-known suppressor of let-7 biogenesis, decreased. Of note, neuronal differentiation also resulted in let-7a and let-7b upregulation. Transfection of NSCs with anti-miR-145, in turn, increased both Sox2 and Lin28 protein levels, while decreasing both let-7a and let-7b. More importantly, Sox2 and Lin28 silencing partially rescued the impairment of neuronal differentiation induced by miR-145 downregulation. In conclusion, our results demonstrate a novel role for miR-145 during NSC differentiation, where miR-145 modulation of Sox2-Lin28/let-7 network is crucial for neurogenesis progression. Stem Cells 2016;34:1386-1395. © 2016 AlphaMed Press.

  14. Sox2 expression in Schwann cells inhibits myelination in vivo and induces influx of macrophages to the nerve.

    Science.gov (United States)

    Roberts, Sheridan L; Dun, Xin-Peng; Doddrell, Robin D S; Mindos, Thomas; Drake, Louisa K; Onaitis, Mark W; Florio, Francesca; Quattrini, Angelo; Lloyd, Alison C; D'Antonio, Maurizio; Parkinson, David B

    2017-09-01

    Correct myelination is crucial for the function of the peripheral nervous system. Both positive and negative regulators within the axon and Schwann cell function to ensure the correct onset and progression of myelination during both development and following peripheral nerve injury and repair. The Sox2 transcription factor is well known for its roles in the development and maintenance of progenitor and stem cell populations, but has also been proposed in vitro as a negative regulator of myelination in Schwann cells. We wished to test fully whether Sox2 regulates myelination in vivo and show here that, in mice, sustained Sox2 expression in vivo blocks myelination in the peripheral nerves and maintains Schwann cells in a proliferative non-differentiated state, which is also associated with increased inflammation within the nerve. The plasticity of Schwann cells allows them to re-myelinate regenerated axons following injury and we show that re-myelination is also blocked by Sox2 expression in Schwann cells. These findings identify Sox2 as a physiological regulator of Schwann cell myelination in vivo and its potential to play a role in disorders of myelination in the peripheral nervous system. © 2017. Published by The Company of Biologists Ltd.

  15. Cyclin-dependent kinase inhibitor p21 controls adult neural stem cell expansion by regulating Sox2 gene expression.

    Science.gov (United States)

    Marqués-Torrejón, M Ángeles; Porlan, Eva; Banito, Ana; Gómez-Ibarlucea, Esther; Lopez-Contreras, Andrés J; Fernández-Capetillo, Oscar; Vidal, Anxo; Gil, Jesús; Torres, Josema; Fariñas, Isabel

    2013-01-01

    In the adult brain, continual neurogenesis of olfactory neurons is sustained by the existence of neural stem cells (NSCs) in the subependymal niche. Elimination of the cyclin-dependent kinase inhibitor 1A (p21) leads to premature exhaustion of the subependymal NSC pool, suggesting a relationship between cell cycle control and long-term self-renewal, but the molecular mechanisms underlying NSC maintenance by p21 remain unexplored. Here we identify a function of p21 in the direct regulation of the expression of pluripotency factor Sox2, a key regulator of the specification and maintenance of neural progenitors. We observe that p21 directly binds a Sox2 enhancer and negatively regulates Sox2 expression in NSCs. Augmented levels of Sox2 in p21 null cells induce replicative stress and a DNA damage response that leads to cell growth arrest mediated by increased levels of p19(Arf) and p53. Our results show a regulation of NSC expansion driven by a p21/Sox2/p53 axis.

  16. Identification of Pou5f1, Sox2, and Nanog downstream target genes with statistical confidence by applying a novel algorithm to time course microarray and genome-wide chromatin immunoprecipitation data

    Directory of Open Access Journals (Sweden)

    Xin Li

    2008-06-01

    Full Text Available Abstract Background Target genes of a transcription factor (TF Pou5f1 (Oct3/4 or Oct4, which is essential for pluripotency maintenance and self-renewal of embryonic stem (ES cells, have previously been identified based on their response to Pou5f1 manipulation and occurrence of Chromatin-immunoprecipitation (ChIP-binding sites in promoters. However, many responding genes with binding sites may not be direct targets because response may be mediated by other genes and ChIP-binding site may not be functional in terms of transcription regulation. Results To reduce the number of false positives, we propose to separate responding genes into groups according to direction, magnitude, and time of response, and to apply the false discovery rate (FDR criterion to each group individually. Using this novel algorithm with stringent statistical criteria (FDR Pou5f1 suppression and published ChIP data, we identified 420 tentative target genes (TTGs for Pou5f1. The majority of TTGs (372 were down-regulated after Pou5f1 suppression, indicating that the Pou5f1 functions as an activator of gene expression when it binds to promoters. Interestingly, many activated genes are potent suppressors of transcription, which include polycomb genes, zinc finger TFs, chromatin remodeling factors, and suppressors of signaling. Similar analysis showed that Sox2 and Nanog also function mostly as transcription activators in cooperation with Pou5f1. Conclusion We have identified the most reliable sets of direct target genes for key pluripotency genes – Pou5f1, Sox2, and Nanog, and found that they predominantly function as activators of downstream gene expression. Thus, most genes related to cell differentiation are suppressed indirectly.

  17. Identification of Pou5f1, Sox2, and Nanog downstream target genes with statistical confidence by applying a novel algorithm to time course microarray and genome-wide chromatin immunoprecipitation data

    Science.gov (United States)

    Sharov, Alexei A; Masui, Shinji; Sharova, Lioudmila V; Piao, Yulan; Aiba, Kazuhiro; Matoba, Ryo; Xin, Li; Niwa, Hitoshi; Ko, Minoru SH

    2008-01-01

    Background Target genes of a transcription factor (TF) Pou5f1 (Oct3/4 or Oct4), which is essential for pluripotency maintenance and self-renewal of embryonic stem (ES) cells, have previously been identified based on their response to Pou5f1 manipulation and occurrence of Chromatin-immunoprecipitation (ChIP)-binding sites in promoters. However, many responding genes with binding sites may not be direct targets because response may be mediated by other genes and ChIP-binding site may not be functional in terms of transcription regulation. Results To reduce the number of false positives, we propose to separate responding genes into groups according to direction, magnitude, and time of response, and to apply the false discovery rate (FDR) criterion to each group individually. Using this novel algorithm with stringent statistical criteria (FDR < 0.2) to a compendium of published and new microarray data (3, 6, 12, and 24 hr after Pou5f1 suppression) and published ChIP data, we identified 420 tentative target genes (TTGs) for Pou5f1. The majority of TTGs (372) were down-regulated after Pou5f1 suppression, indicating that the Pou5f1 functions as an activator of gene expression when it binds to promoters. Interestingly, many activated genes are potent suppressors of transcription, which include polycomb genes, zinc finger TFs, chromatin remodeling factors, and suppressors of signaling. Similar analysis showed that Sox2 and Nanog also function mostly as transcription activators in cooperation with Pou5f1. Conclusion We have identified the most reliable sets of direct target genes for key pluripotency genes – Pou5f1, Sox2, and Nanog, and found that they predominantly function as activators of downstream gene expression. Thus, most genes related to cell differentiation are suppressed indirectly. PMID:18522731

  18. Targeted transcriptional activation of silent oct4 pluripotency gene by combining designer TALEs and inhibition of epigenetic modifiers.

    Science.gov (United States)

    Bultmann, Sebastian; Morbitzer, Robert; Schmidt, Christine S; Thanisch, Katharina; Spada, Fabio; Elsaesser, Janett; Lahaye, Thomas; Leonhardt, Heinrich

    2012-07-01

    Specific control of gene activity is a valuable tool to study and engineer cellular functions. Recent studies uncovered the potential of transcription activator-like effector (TALE) proteins that can be tailored to activate user-defined target genes. It remains however unclear whether and how epigenetic modifications interfere with TALE-mediated transcriptional activation. We studied the activity of five designer TALEs (dTALEs) targeting the oct4 pluripotency gene. In vitro assays showed that the five dTALEs that target distinct sites in the oct4 promoter had the expected DNA specificity and comparable affinities to their corresponding DNA targets. In contrast to their similar in vitro properties, transcriptional activation of oct4 by these distinct dTALEs varied up to 25-fold. While dTALEs efficiently upregulated transcription of the active oct4 promoter in embryonic stem cells (ESCs) they failed to activate the silenced oct4 promoter in ESC-derived neural stem cells (NSCs), indicating that as for endogenous transcription factors also dTALE activity is limited by repressive epigenetic mechanisms. We therefore targeted the activity of epigenetic modulators and found that chemical inhibition of histone deacetylases by valproic acid or DNA methyltransferases by 5-aza-2'-deoxycytidine facilitated dTALE-mediated activation of the epigenetically silenced oct4 promoter in NSCs. Notably, demethylation of the oct4 promoter occurred only if chemical inhibitors and dTALEs were applied together but not upon treatment with inhibitors or dTALEs only. These results show that dTALEs in combination with chemical manipulation of epigenetic modifiers facilitate targeted transcriptional activation of epigenetically silenced target genes.

  19. Translationally-controlled tumor protein activates the transcription of Oct-4 in kidney-derived stem cells.

    Science.gov (United States)

    Jing, Ying; He, Liang-Liang; Mei, Chang-Lin

    2017-01-01

    The molecular mechanisms underlying translationally-controlled tumor protein (TCTP) in the activation of octamer-binding transcription factor 4 (Oct-4) in kidney-derived stem cells have not been characterized. The aim of the present study was to identify the transcriptional activation of Oct-4 by TCTP in kidney-derived stem cells. Homology-directed repair cDNA inserted into Fisher 344 transgenic (Tg) rats and the mouse strain 129/Svj were used for the experiments. Diphtheria toxin (DT; 10 ng/kg) injected into the Tg rats created the kidney injury, which was rapidly restored by the activation of kidney-derived stem cells. Kidney-derived stem cells were isolated from the DT-injured Tg rats using cell culture techniques. The co-expression of Oct-4 and TCTP were observed in the isolated kidney-derived stem cells. Immunoblotting and reverse transcription-polymerase chain reaction analysis of TCTP null mutant (TCTP(-)/(-)) embryos at day 9.5 (E9.5) demonstrated the absence of co-expression of Oct-4 and TCTP, but expression of paired box-2 was detected. This was in contrast with the E9.5 control embryos, which expressed all three proteins. In conclusion, the results of the present study demonstrated that TCTP activates the transcription of Oct-4 in kidney-derived stem cells, as TCTP(-)/(-) embryos exhibited knock down of TCTP and Oct-4 without disturbing the expression of Pax-2 The characteristics and functional nature of TCTP in association with Oct-4 in kidney-derived stem cells was identified.

  20. Lin28 regulates BMP4 and functions with Oct4 to affect ovarian tumor microenvironment

    Science.gov (United States)

    Ma, Wei; Ma, Jing; Xu, Jie; Qiao, Chong; Branscum, Adam; Cardenas, Andres; Baron, Andre T.; Schwartz, Peter; Maihle, Nita J.; Huang, Yingqun

    2013-01-01

    Emerging evidence suggests that the tumor microenvironment plays a critical role in regulating cancer stem cells (CSCs) and tumor progression through both autocrine and paracrine signaling. Elevated production of bone morphogenetic proteins (BMPs) from human ovarian cancer cells and stroma has been shown to increase CSC proliferation and tumor growth. Here, we report that Lin28, a stem cell factor, binds to BMP4 mRNA in epithelial ovarian carcinoma cells, thereby promoting BMP4 expression at the post-transcriptional level. As co-expression of Lin28 and Oct4 (another stem cell factor) has been implicated in ovarian cancer CSCs, we also determined that high levels of Lin28 are associated with an unfavorable prognosis when co-expressed with high levels of Oct4. Together, these findings uncover a new level of regulation of BMP4 expression and imply a novel Lin28/Oct4/BMP4-mediated mechanism of regulating ovarian tumor cell growth, thus holding potential for the development of new strategies for the diagnosis and treatment of ovarian cancer. PMID:23255092

  1. 3D imaging of Sox2 enhancer clusters in embryonic stem cells.

    Science.gov (United States)

    Liu, Zhe; Legant, Wesley R; Chen, Bi-Chang; Li, Li; Grimm, Jonathan B; Lavis, Luke D; Betzig, Eric; Tjian, Robert

    2014-12-24

    Combinatorial cis-regulatory networks encoded in animal genomes represent the foundational gene expression mechanism for directing cell-fate commitment and maintenance of cell identity by transcription factors (TFs). However, the 3D spatial organization of cis-elements and how such sub-nuclear structures influence TF activity remain poorly understood. Here, we combine lattice light-sheet imaging, single-molecule tracking, numerical simulations, and ChIP-exo mapping to localize and functionally probe Sox2 enhancer-organization in living embryonic stem cells. Sox2 enhancers form 3D-clusters that are segregated from heterochromatin but overlap with a subset of Pol II enriched regions. Sox2 searches for specific binding targets via a 3D-diffusion dominant mode when shuttling long-distances between clusters while chromatin-bound states predominate within individual clusters. Thus, enhancer clustering may reduce global search efficiency but enables rapid local fine-tuning of TF search parameters. Our results suggest an integrated model linking cis-element 3D spatial distribution to local-versus-global target search modalities essential for regulating eukaryotic gene transcription.

  2. CpG oligodeoxyribonucleotide 7909 enhances radiosensitivity via downregulating Oct-4 expression in radioresistant lung cancer cells.

    Science.gov (United States)

    Xing, Na; Qiao, Tiankui; Zhuang, Xibing; Yuan, Sujuan; Zhang, Qi; Xu, Guoxiong

    2015-01-01

    Radiotherapy is a powerful cure for local advanced non-small cell lung cancer. However, radioresistance and tumor relapse still occur in a high proportion of patients. Octamer-4 (Oct-4), a transcription factor of the POU family, plays a key role in maintaining chemoradioresistant properties and regulating cancer progression. In this study, we demonstrated that Oct-4 expression was significantly increased in radioresistant H460 (H460R) cell line. CpG oligodeoxyribonucleotide (CpG-ODN) 7909 sensitized H460R cells when combined with irradiation treatment. The clonogenic capacity was significantly decreased, and the values of D0 and Dq were lower than those of irradiation alone group. The sensitive enhancement ratio (SER) of D0 was 1.224. This combined treatment led to a dramatic reduction in Oct-4 expression in a dose-dependent manner and also showed increased percentage of cells in the radiosensitive G2/M phase relative to either treatment alone. These results identified that Oct-4 was involved in radioresistance. CpG-ODN 7909 could enhance radiosensitivity partly through downregulating Oct-4 expression in radioresistant lung cancer cells.

  3. Oct4 B1在结直肠癌干细胞中的表达及意义%Expression and significance of Oct4 B1 in colorectal cancer stem cells

    Institute of Scientific and Technical Information of China (English)

    程家平; 黎江; 苏弦; 陈奕霖; 曾庆良; 坤明

    2016-01-01

    Objective:To investigate the expression and its possible role of Oct4B1 subtype of Embryonic stem cell transcription factor Oct4 in colorectal cancer stem cells. Methods: 3D microspheres were cultured by suspension culture to human colorectal cancer cell line SW480 cells. The 3D microspheres and SW480 cells were used as the research objects. Whether 3D microspheres were enriched cancer stem cells,we used the methods of cell differentiation experiments,soft agar cloning experiments,and the expression levels of cancer stem cells markers CD133,CD44 detected by flow cytometry. The expression levels of Oct4B1 mRNA were detected by RT-qPCR. Results:3D microspheres could differentiate into normal cancer cells. Compared with the parental SW480 cells,in vitro colony formation was significantly enhanced(P<0. 01),the percentage of positive cells of CD133 and CD44 were significantly increased ( P < 0. 01 ), the expression levels of Oct4B1 mRNA were obviously higher ( P < 0. 01 ) in 3D microspheres. Conclusion: Oct4B1 subtype of Embryonic stem cell transcription factor Oct4 in 3D microspheres enriched human colorectal cancer stem cells,which may be involved in the regulation of colorectal cancer stem cells.%目的:探讨胚胎干细胞转录因子Oct4的亚型Oct4B1在结直肠癌干细胞中的表达及其可能的作用。方法:以结直肠癌细胞株SW480细胞采用悬浮培养法培养出的3D微球体及其亲本细胞SW480为研究对象,采用细胞分化实验、细胞软琼脂克隆实验、流式细胞技术检测干细胞标记物CD133、CD44的表达以验证3D微球体是否富集肿瘤干细胞(CSCs),实时荧光定量PCR(RT-qPCR)检测两种细胞Oct4B1 mRNA表达水平。结果:3D微球体具有分化为普通肿瘤细胞的能力,相对于亲本细胞,3D微球体体外克隆形成能力明显增强(P<0.01),干细胞标记物CD133、CD44明显高表达(P<0.01),Oct4B1 mRNA表达水平明显增高(P<0.01)。结论:干细胞调控因子Oct

  4. A Preliminary Study on the Surface Marker of Human Pancreatic Cancer Stem Cell Regulated by OCT4%胰腺癌干细胞中受OCT4调控的表面标志研究

    Institute of Scientific and Technical Information of China (English)

    周竹超; 董强刚; 倪泉兴

    2011-01-01

    OCT4 and Nanog are two core transcriptional factors to regulate the self-renewal in human embryonic stem cells (hECSs). The expression of SEMA6A membrane protein in hESCs is regulated by OCT4. In this paper, we induced the sphere formation in Panc-1, Bxpc-3, Aspc-1 and Cfpac-1 pancreatic cancer cell lines by culturing the cells in the serum-free conditions supplemented with EGF, IGF-1 and FGF-10. Their expression of selfrenewing genes, OCT4 and Nanog, were measured by immunofluorscent staining. The same assay was also done in these cell lines including 15 cases of pancreatic cancer tissues and 13 cases of normal pancreas. The float-growing spheres were developed after 5 to 10 days culture in all the cell lines tested. The expression of OCT4 and Nanog in the sphere-forming cells was much higher than their relevant counterparts in cell lines. These stemness markers were also found in the pancreatic cancer tissues and at much lower level in normal pancreas. Furthermore, the stemlike spheres in Panc-1 were observed to express SEMA6A, a surface marker known to be the OCT4 downstream target. In conclusion, the expression of self-renewing genes, OCT4 and Nanog, in pancreatic cancer cells implies their relevance to the cancer stem cells. The SEMA6A protein regulated by OCT4 may represent an invaluable surface marker for studying the putative pancreatic cancer stem cells.%OCT4和Nanog被公认是人ESC的自我更新调控基因,其中OCT4能够转录调控多种表面蛋白的表达,如SEMA6A.该文将人胰腺癌细胞株Panc-1、Bxpc-3、Aspc-1和Cfac-1培养在无血清条件下,采用EGF、IGF-1和FGF-10诱导球体形成.用免疫荧光法分别检测这4种人胰腺癌细胞株及其球体细胞以及15例胰腺癌组织标本和13例正常胰腺组织标本中OCT4和Nanog的表达,结果显示,4种人胰腺癌细胞株在无血清-DF12培养基中5~10d即可形成悬浮生长的球体.OCT4和Nanog在4种细胞株均有表达,且球体细胞中表达明显高于

  5. A conserved Oct4/POUV-dependent network links adhesion and migration to progenitor maintenance

    DEFF Research Database (Denmark)

    Livigni, Alessandra; Peradziryi, Hanna; Sharov, Alexei A

    2013-01-01

    analysis of existing mammalian Oct4 target data sets, we defined a set of evolutionary-conserved Oct4/POUV targets. Most of these targets were regulators of cell adhesion. This is consistent with Oct4/POUV phenotypes observed in the adherens junctions in Xenopus ectoderm, mouse embryonic, and epiblast stem...

  6. An Oct4-pRb axis, controlled by MiR-335, integrates stem cell self-renewal and cell cycle control.

    Science.gov (United States)

    Schoeftner, Stefan; Scarola, Michele; Comisso, Elisa; Schneider, Claudio; Benetti, Roberta

    2013-04-01

    The pluripotency of mouse embryonic stem cells (mESCs) is controlled by a network of transcription factors, mi-RNAs, and signaling pathways. Here, we present a new regulatory circuit that connects miR-335, Oct4, and the Retinoblastoma pathway to control mESC self-renewal and differentiation. Oct4 drives the expression of Nipp1 and Ccnf that inhibit the activity of the protein phosphatase 1 (PP1) complex to establish hyperphosphorylation of the retinoblastoma protein 1 (pRb) as a hallmark feature of self-renewing mESCs. The Oct4-Nipp1/Ccnf-PP1-pRb axis promoting mESC self-renewal is under control of miR-335 that regulates Oct4 and Rb expression. During mESC differentiation, miR-335 upregulation co-operates with the transcriptional repression of Oct4 to facilitate the collapse of the Oct4-Nipp1/Ccnf-PP1-pRb axis, pRb dephosphorylation, the exit from self-renewal, and the establishment of a pRb-regulated cell cycle program. Our results introduce Oct4-dependent control of the Rb pathway as novel regulatory circuit controlling mESC self-renewal and differentiation.

  7. Exogenous Oct4 in combination with valproic acid increased neural progenitor markers: an approach for enhancing the repair potential of the brain.

    Science.gov (United States)

    Dehghan, Samaneh; Asadi, Sareh; Hajikaram, Maryam; Soleimani, Masoud; Mowla, Seyed Javad; Fathollahi, Yaghoub; Ahmadiani, Abolhassan; Javan, Mohammad

    2015-02-01

    Attempts are aimed to introduce new approaches toward enhancing the brain's potential for repair in neurodegenerative diseases and traumatic injuries. Here we report an increased expression of pluripotency and progenitor markers within the brain following pretreatment with valproic acid (VPA) and in vivo transfection of inducible Oct4-expressing viral particles. Systemic administration of VPA was performed for one week prior to an intracerebroventricular injection of the Oct4-expressing vector into the right side of the brain. Oct4 expression was induced by doxycycline from day 1 post-transfection for an additional week. Real time-PCR and immunohistofluorescence were used for evaluation of marker expression. Real time-PCR analyses of samples collected from the area of transfection within the injected-lateral ventricle revealed increased expression of some stem cell and progenitor markers, which included endogenous Oct4, Nanog, Klf4, c-Myc, Pax6 and Sox1. Expressions of Oct4, SSEA1 and Nanog were further confirmed by immunohistofluorescence. The increased neural progenitor and pluripotency markers due to Oct4 overexpression did not lead to teratoma formation during a 100day follow-up. Our findings suggest that the application of Oct4 as a reprogramming factor in conjunction with VPA, an epigenetic modifier, might be a potential strategy for increasing the brain's capability to repair itself. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. FoxM1 Promotes Stemness and Radio-Resistance of Glioblastoma by Regulating the Master Stem Cell Regulator Sox2.

    Science.gov (United States)

    Lee, Yeri; Kim, Kang Ho; Kim, Dong Geon; Cho, Hee Jin; Kim, Yeonghwan; Rheey, Jinguen; Shin, Kayoung; Seo, Yun Jee; Choi, Yeon-Sook; Lee, Jung-Il; Lee, Jeongwu; Joo, Kyeung Min; Nam, Do-Hyun

    2015-01-01

    Glioblastoma (GBM) is the most aggressive and most lethal brain tumor. As current standard therapy consisting of surgery and chemo-irradiation provides limited benefit for GBM patients, novel therapeutic options are urgently required. Forkhead box M1 (FoxM1) transcription factor is an oncogenic regulator that promotes the proliferation, survival, and treatment resistance of various human cancers. The roles of FoxM1 in GBM remain incompletely understood, due in part to pleotropic nature of the FoxM1 pathway. Here, we show the roles of FoxM1 in GBM stem cell maintenance and radioresistance. ShRNA-mediated FoxM1 inhibition significantly impeded clonogenic growth and survival of patient-derived primary GBM cells with marked downregulation of Sox2, a master regulator of stem cell phenotype. Ectopic expression of Sox2 partially rescued FoxM1 inhibition-mediated effects. Conversely, FoxM1 overexpression upregulated Sox2 expression and promoted clonogenic growth of GBM cells. These data, with a direct binding of FoxM1 in the Sox2 promoter region in GBM cells, suggest that FoxM1 regulates stemness of primary GBM cells via Sox2. We also found significant increases in FoxM1 and Sox2 expression in GBM cells after irradiation both in vitro and in vivo orthotopic tumor models. Notably, genetic or a small-molecule FoxM1 inhibitor-mediated FoxM1 targeting significantly sensitized GBM cells to irradiation, accompanying with Sox2 downregulation. Finally, FoxM1 inhibition combined with irradiation in a patient GBM-derived orthotopic model significantly impeded tumor growth and prolonged the survival of tumor bearing mice. Taken together, these results indicate that the FoxM1-Sox2 signaling axis promotes clonogenic growth and radiation resistance of GBM, and suggest that FoxM1 targeting combined with irradiation is a potentially effective therapeutic approach for GBM.

  9. Sox2 in the dermal papilla niche controls hair growth by fine-tuning BMP signaling in differentiating hair shaft progenitors.

    Science.gov (United States)

    Clavel, Carlos; Grisanti, Laura; Zemla, Roland; Rezza, Amelie; Barros, Rita; Sennett, Rachel; Mazloom, Amin Reza; Chung, Chi-Yeh; Cai, Xiaoqiang; Cai, Chen-Leng; Pevny, Larysa; Nicolis, Silvia; Ma'ayan, Avi; Rendl, Michael

    2012-11-13

    How dermal papilla (DP) niche cells regulate hair follicle progenitors to control hair growth remains unclear. Using Tbx18(Cre) to target embryonic DP precursors, we ablate the transcription factor Sox2 early and efficiently, resulting in diminished hair shaft outgrowth. We find that DP niche expression of Sox2 controls the migration speed of differentiating hair shaft progenitors. Transcriptional profiling of Sox2 null DPs reveals increased Bmp6 and decreased BMP inhibitor Sostdc1, a direct Sox2 transcriptional target. Subsequently, we identify upregulated BMP signaling in knockout hair shaft progenitors and demonstrate that Bmp6 inhibits cell migration, an effect that can be attenuated by Sostdc1. A shorter and Sox2-negative hair type lacks Sostdc1 in the DP and shows reduced migration and increased BMP activity of hair shaft progenitors. Collectively, our data identify Sox2 as a key regulator of hair growth that controls progenitor migration by fine-tuning BMP-mediated mesenchymal-epithelial crosstalk.

  10. Preparation of Polyclonal Anti-Sox2 Antibody in Capra hircus%山羊SOX2多克隆抗体制备

    Institute of Scientific and Technical Information of China (English)

    刘平; 张明; 张昀; 郑喜邦; 李恭贺; 岑小妹; 岳磊磊; 宗自杰; 卢晟盛; 卢克焕

    2012-01-01

    [Objective] The present study was to construct a prokaryotic expression vector of Capra hircus Sox2 gene, pRSET-Sox2, to induce expression and purification of His-Sox2 fusion protein, which was used to immunize New Zeland white rabbits to prepare polyclonal anti-Sox2 antibody. [Method] Removed from plasmid pMD18-Sox2 by double digestion of BamH I and Xho I, Sox2 fragment was subcloned to pRSET-A vector to construct recombinant plasmid pRSET-Sox2. The plasmid was transformed into E. coli BL 21 (DE3), and His-Sox2 fusion protein was induced to expess with 1 mrnol·L-1 IPTG at 37℃ for 4 h, which was identified with SDS-PAGE analysis and Western blotting. In the same way, large volume of expressing culture was prepared to purify His-Sox2 fusion protein with NI-NTA argrose under denaturing condition. The refolded fusion protein in vitro was injected subcutaneously into New Zeland white rabbits for four times at intervals of 2-3 weeks. Seven days after the last injection, blood samples were collected, serum was isolated, and specificity of polyclonal anti-Sox2 antibody was determined by Western blotting assay. [Result] The prokaryotic expression vector pRSET-Sox2 was expressed efficiently in E. coli. BL21. The purified His-Sox2 was qualified for preparation of polyclonal antibody. The polyclonal anti-Sox2 antibody was prepared, and it could bind His-Sox2 fusion protein specifically, which was illustrated by Western blotting assay. [Conclusion] The polyclonal anti-Sox2 antibody with strong specificity was prepared, which will lay a solid biological foundation for study of Sox2, and for its application in detection of Capra hircus iPS cells (induced pluripotent stem cells).%[目的]构建山羊Sox2原核表达载体—pRSET-Sox2,并将诱导表达、纯化的His-Sox2融合蛋白免疫新西兰大白兔,制备Sox2多克隆抗体.[方法]从pMD18T-Sox2载体上以BamHI和XhoI双酶切截取Sox2 片段,然后将其亚克隆到pRSET-A表达载体上,获得pRSET-Sox2重组质粒.转化了pRSET-Sox

  11. SOX2 is essential for in vivo reprogramming of seminoma-like TCam-2 cells to an embryonal carcinoma-like fate

    Science.gov (United States)

    Nettersheim, Daniel; Heimsoeth, Alena; Jostes, Sina; Schneider, Simon; Fellermeyer, Martin; Hofmann, Andrea; Schorle, Hubert

    2016-01-01

    Type II germ cell cancers (GCC) are divided into seminomas, which are highly similar to primordial germ cells and embryonal carcinomas (EC), often described as malignant counterparts to embryonic stem cells. Previously, we demonstrated that the development of GCCs is a highly plastic process and strongly influenced by the microenvironment. While orthotopic transplantation into the testis promotes seminomatous growth of the seminoma-like cell line TCam-2, ectopic xenotransplantation into the flank initiates reprogramming into an EC-like fate. During this reprogramming, BMP signaling is inhibited, leading to induction of NODAL signaling, upregulation of pluripotency factors and downregulation of seminoma markers, like SOX17. The pluripotency factor and EC-marker SOX2 is strongly induced. Here, we adressed the molecular role of SOX2 in this reprogramming. Using CRISPR/Cas9-mediated genome-editing, we established SOX2-deficient TCam-2 cells. Xenografting of SOX2-deficient cells into the flank of nude mice resulted in maintenance of a seminoma-like fate, indicated by the histology and expression of OCT3/4, SOX17, TFAP2C, PRDM1 and PRAME. In SOX2-deficient cells, BMP signaling is inhibited, but NODAL signaling is not activated. Thus, SOX2 appears to be downstream of BMP signaling but upstream of NODAL activation. So, SOX2 is an essential factor in acquiring an EC-like cell fate from seminomas. A small population of differentiated cells was identified resembling a mixed non-seminoma. Analyses of these cells revealed downregulation of the pluripotency and seminoma markers OCT3/4, SOX17, PRDM1 and TFAP2C. In contrast, the pioneer factor FOXA2 and its target genes were upregulated, suggesting that FOXA2 might play an important role in induction of non-seminomatous differentiation. PMID:27283990

  12. Oct4 expression in adult human stem cells: evidence in support of the stem cell theory of carcinogenesis.

    Science.gov (United States)

    Tai, Mei-Hui; Chang, Chia-Cheng; Kiupel, Matti; Webster, Joshua D; Olson, L Karl; Trosko, James E

    2005-02-01

    The Oct3/4 gene, a POU family transcription factor, has been noted as being specifically expressed in embryonic stem cells and in tumor cells but not in cells of differentiated tissues. With the ability to isolate adult human stem cells it became possible to test for the expression of Oct3/4 gene in adult stem cells and to test the stem cell theory of carcinogenesis. Using antibodies and PCR primers we tested human breast, liver, pancreas, kidney, mesenchyme and gastric stem cells, the cancer cell lines HeLa and MCF-7 and human, dog and rat tumors for Oct4 expression. The results indicate that adult human stem cells, immortalized non-tumorigenic cells and tumor cells and cell lines, but not differentiated cells, express Oct4. Oct4 is expressed in a few cells found in the basal layer of human skin epidermis. The data demonstrate that adult stem cells maintain expression of Oct4, consistent with the stem cell hypothesis of carcinogenesis.

  13. Curcumin Effect on the Expressional Profile of OCT4, Nanog and Nucleostemin Genes in AGS (Adenocarcinoma Cancer Cell Line

    Directory of Open Access Journals (Sweden)

    Fahmideh Bagrezaei

    2016-07-01

    Full Text Available Background Curcumin is the natural yellow pigment in turmeric isolated from the rhizome of the plant Curcuma longa. Curcumin inhibits formation and invasive cancer cells and destroys cancer cells resistant to chemotherapeutic drugs. Objectives The purpose of this study was the survey of effects of different concentrations of alcoholic curcumin on the octamer-binding transcription factor 4 (OCT4 Nanog and Nucleostemin genes in the AGS (human gastric adenocarcinoma cell line. Materials and Methods In this experimental study the AGS cell line was cultured in RPMI-1640, supplemented with penicillin/streptomycin (100 U/mL and 100 mg/mL, respectively and 10% fetal bovine serum, at 37°C in a humidified atmosphere of 5% CO2. In 60 - 70% cell confluence, the cells were treated with curcumin concentration (20, 40, 100 μL and incubated for 24, 48 and 72 hours. Finally, total RNA were extracted and cDNA were synthesized and the expression of mentioned genes was detected. The data were analyzed by excel software. Results Expression rate of OCT4A, OCT4B, Nanog and Nucleostemin (GLN3 at concentrations less than 20 μg/mL were reduced but OCT4B1 expression showed increased by hours respectively. Conclusions The results showed that curcumin inhibited cell division; also, this study could be the basis for more extensive studies on the anti-cancer effect of the combined plants.

  14. Quiescent Sox2+ Cells Drive Hierarchical Growth and Relapse in Sonic Hedgehog Subgroup Medulloblastoma

    Science.gov (United States)

    Vanner, Robert J.; Remke, Marc; Gallo, Marco; Selvadurai, Hayden J.; Coutinho, Fiona; Lee, Lilian; Kushida, Michelle; Head, Renee; Morrissy, Sorana; Zhu, Xueming; Aviv, Tzvi; Voisin, Veronique; Clarke, Ian D.; Li, Yisu; Mungall, Andrew J.; Moore, Richard A.; Ma, Yussanne; Jones, Steven J.M.; Marra, Marco A.; Malkin, David; Northcott, Paul A.; Kool, Marcel; Pfister, Stefan M.; Bader, Gary; Hochedlinger, Konrad; Korshunov, Andrey; Taylor, Michael D.; Dirks, Peter B.

    2015-01-01

    SUMMARY Functional heterogeneity within tumors presents a significant therapeutic challenge. Here we show that quiescent, therapy-resistant Sox2+ cells propagate sonic hedgehog subgroup medulloblastoma by a mechanism that mirrors a neurogenic program. Rare Sox2+ cells produce rapidly cycling doublecortin+ progenitors that, together with their postmitotic progeny expressing NeuN, comprise tumor bulk. Sox2+ cells are enriched following anti-mitotic chemotherapy and Smoothened inhibition, creating a reservoir for tumor regrowth. Lineage traces from Sox2+ cells increase following treatment, suggesting that this population is responsible for relapse. Targeting Sox2+ cells with the antineoplastic mithramycin abrogated tumor growth. Addressing functional heterogeneity and eliminating Sox2+ cells presents a promising therapeutic paradigm for treatment of sonic hedgehog subgroup medulloblastoma. PMID:24954133

  15. [Enhanced chemosensitivity of Hep-2 through down-regulating expression of SOX2 by RNAi].

    Science.gov (United States)

    Yang, Ning; Hui, Lian; Yang, Huijun; Jiang, Xuejun

    2014-08-01

    To investigate the effect of SOX2 on chemotherapy sensitivity of human laryngeal epithelial cells Hep-2. We designed and synthesized RNAis for silencing the expression of SOX2 in Hep-2 cells and selected the most effective RNAi by Western blot analysis. Then the recombinant plasmids of pGCsi-H1-SOX2 and pGCsi-H1-NC were constructed and transfected into Hep-2 cells to build cell lines of psiSOX2-Hep-2 and psiNC-Hep-2. CCK-8 assay had been used to test the sensitivity of Hep-2 cells to 5-FU and PTX after silencing SOX2 expression. Hoechst staining had been used to exam the changes of Hep-2 cells apoptosis treatment by 5-FU and PTX after silencing SOX2 expression. Furthermore, the changes of apoptosis-related genes expressions were detected by Western blotting. The cell lines of psiSOX2-Hep-2 and psiNC-Hep-2 were successfully established, and the expression of SOX2 protein was decreased 78% in psiSOX2-Hep-2 cells compared with psiNC-Hep-2 cells. After reducing SOX2 expression, the sensitivity of Hep-2 cells to 5-FU and PTX were increased and the IC50 values for 48 h were decreased to 8.12 μg/ml and 5.16 μg/ml. Meanwhile, the apoptosis rate and the expression of apoptotic gene Bax and cleaved caspase-3 expression were dramatically increased and anti-apoptotic genes survivin and Bcl-2 were significantly decreased in psiSOX2-Hep-2 cells compared with psiNC-Hep-2 cells. Down-regulating the protein expression of SOX2 by RNAi will significantly enhance the sensitivity of human laryngeal epithelial cells Hep-2 to 5-FU and PTX.

  16. RIT1 GTPase Regulates Sox2 Transcriptional Activity and Hippocampal Neurogenesis.

    Science.gov (United States)

    Mir, Sajad; Cai, Weikang; Andres, Douglas A

    2017-02-10

    Adult neurogenesis, the process of generating mature neurons from neuronal progenitor cells, makes critical contributions to neural circuitry and brain function in both healthy and disease states. Neurogenesis is a highly regulated process in which diverse environmental and physiological stimuli are relayed to resident neural stem cell populations to control the transcription of genes involved in self-renewal and differentiation. Understanding the molecular mechanisms governing neurogenesis is necessary for the development of translational strategies to harness this process for neuronal repair. Here we report that the Ras-related GTPase RIT1 serves to control the sequential proliferation and differentiation of adult hippocampal neural progenitor cells, with in vivo expression of active RIT1 driving robust adult neurogenesis. Gene expression profiling analysis demonstrates increased expression of a specific set of transcription factors known to govern adult neurogenesis in response to active RIT1 expression in the hippocampus, including sex-determining region Y-related HMG box 2 (Sox2), a well established regulator of stem cell self-renewal and neurogenesis. In adult hippocampal neuronal precursor cells, RIT1 controls an Akt-dependent signaling cascade, resulting in the stabilization and transcriptional activation of phosphorylated Sox2. This study supports a role for RIT1 in relaying niche-derived signals to neural/stem progenitor cells to control transcription of genes involved in self-renewal and differentiation.

  17. Sox2 acts as a rheostat of epithelial to mesenchymal transition during neural crest development

    Directory of Open Access Journals (Sweden)

    Nikolaos eMandalos

    2014-09-01

    Full Text Available Precise control of self-renewal and differentiation of progenitor cells into the cranial neural crest (CNC pool ensures proper head development, guided by signaling pathways such as BMPs, FGFs, Shh and Notch. Here, we show that murine Sox2 plays an essential role in controlling progenitor cell behavior during craniofacial development. A Conditional by Inversion Sox2 allele (Sox2COIN has been employed to generate an epiblast ablation of Sox2 function (Sox2EpINV. Sox2EpINV/+(H haploinsufficient and conditional (Sox2EpINV/mosaic mutant embryos proceed beyond gastrulation and die around E11. These mutant embryos exhibit severe anterior malformations, with hydrocephaly and frontonasal truncations, which could be attributed to the deregulation of CNC progenitor cells during their epithelial to mesenchymal transition. This irregularity results in an exacerbated and aberrant migration of Sox10+ NCC in the branchial arches and frontonasal process of the Sox2 mutant embryos. These results suggest a novel role for Sox2 as a regulator of the epithelial to mesenchymal transitions that are important for the cell flow in the developing head.

  18. Targeting Tumor Oct4 to Deplete Prostate Tumor and Metastasis Initiating Cells

    Science.gov (United States)

    2016-10-01

    Award Number: W81XWH-13-1-0461 TITLE: Targeting Tumor Oct4 to Deplete Prostate Tumor - and Metastasis-Initiating Cells PRINCIPAL INVESTIGATOR: Daotai...29 2016 4. TITLE AND SUBTILE Targeting Tumor Oct4 to Deplete Prostate Tumor - and Metastasis-Initiating Cells 5a. CONTRACT NUMBER 5b. GRANT NUMBER...the c-MYC oncogene. POU5F1B is a pseudogene of embryonic Oct4 (POU5F1). A recent study found that tumor Oct4 found in prostate cancer cells is due

  19. TRA-1-60(+), SSEA-4(+), POU5F1(+), SOX2(+), NANOG(+) Clones of Pluripotent Stem Cells in the Embryonal Carcinomas of the Testes.

    Science.gov (United States)

    Malecki, Marek; Tombokan, Xenia; Anderson, Mark; Malecki, Raf; Beauchaine, Michael

    2013-04-02

    Cancer of the testes is currently the most frequent neoplasm and a leading cause of morbidity in men 15-35 years of age. Its incidence is increasing. Embryonal carcinoma is its most malignant form, which either may be resistant or may develop resistance to therapies, which results in relapses. Cancer stem cells are hypothesized to be drivers of these phenomena. The specific aim of this work was identification and isolation of spectra of single, living cancer stem cells, which were acquired directly from the patients' biopsies, followed by testing of their pluripotency. Biopsies were obtained from the patients with the clinical and histological diagnoses of the primary, pure embryonal carcinomas of the testes. The magnetic and fluorescent antibodies were genetically engineered. The SSEA-4 and TRA-1-60 cell surface display was analyzed by multiphoton fluorescence spectroscopy (MPFS), flow cytometry (FCM), immunoblotting (IB), nuclear magnetic resonance spectroscopy (NMRS), energy dispersive x-ray spectroscopy (EDXS), and total reflection x-ray spectroscopy (TRXFS). The single, living cells were isolated by magnetic or fluorescent sorting followed by their clonal expansion. The OCT4A, SOX2, and NANOG genes' transcripts were analyzed by qRTPCR and the products by IB and MPFS. The clones of cells, with the strong surface display of TRA-1-60 and SSEA-4, were identified and isolated directly from the biopsies acquired from the patients diagnosed with the pure embryonal carcinomas of the testes. These cells demonstrated high levels of transcription and translation of the pluripotency genes: OCT4A, SOX2, and NANOG. They formed embryoid bodies, which differentiated into ectoderm, mesoderm, and endoderm. In the pure embryonal carcinomas of the testes, acquired directly from the patients, we identified, isolated with high viability and selectivity, and profiled the clones of the pluripotent stem cells. These results may help in explaining therapy-resistance and relapses of

  20. Examining cooperative binding of Sox2 on DC5 regulatory element upon complex formation with Pax6 through excess electron transfer assay.

    Science.gov (United States)

    Saha, Abhijit; Kizaki, Seiichiro; De, Debojyoti; Endo, Masayuki; Kim, Kyeong Kyu; Sugiyama, Hiroshi

    2016-08-19

    Functional cooperativity among transcription factors on regulatory genetic elements is pivotal for milestone decision-making in various cellular processes including mammalian development. However, their molecular interaction during the cooperative binding cannot be precisely understood due to lack of efficient tools for the analyses of protein-DNA interaction in the transcription complex. Here, we demonstrate that photoinduced excess electron transfer assay can be used for analysing cooperativity of proteins in transcription complex using cooperative binding of Pax6 to Sox2 on the regulatory DNA element (DC5 enhancer) as an example. In this assay, (Br)U-labelled DC5 was introduced for the efficient detection of transferred electrons from Sox2 and Pax6 to the DNA, and guanine base in the complementary strand was replaced with hypoxanthine (I) to block intra-strand electron transfer at the Sox2-binding site. By examining DNA cleavage occurred as a result of the electron transfer process, from tryptophan residues of Sox2 and Pax6 to DNA after irradiation at 280 nm, we not only confirmed their binding to DNA but also observed their increased occupancy on DC5 with respect to that of Sox2 and Pax6 alone as a result of their cooperative interaction. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. A Systematic Survey and Characterization of Enhancers that Regulate Sox3 in Neuro-Sensory Development in Comparison with Sox2 Enhancers

    Directory of Open Access Journals (Sweden)

    Hisato Kondoh

    2012-11-01

    Full Text Available Development of neural and sensory primordia at the early stages of embryogenesis depends on the activity of two B1 Sox transcription factors, Sox2 and Sox3. The embryonic expression patterns of the Sox2 and Sox3 genes are similar, yet they show gene-unique features. We screened for enhancers of the 231-kb genomic region encompassing Sox3 of chicken, and identified 13 new enhancers that showed activity in different domains of the neuro-sensory primordia. Combined with the three Sox3-proximal enhancers determined previously, at least 16 enhancers were involved in Sox3 regulation. Starting from the NP1 enhancer, more enhancers with different specificities are activated in sequence, resulting in complex overlapping patterns of enhancer activities. NP1 was activated in the caudal lateral epiblast adjacent to the posterior growing end of neural plate, and by the combined action of Wnt and Fgf signaling, similar to the Sox2 N1 enhancer involved in neural/mesodermal dichotomous cell lineage segregation. The Sox3 D5 enhancer and Sox2 N3 enhancer were also activated similarly in the diencephalon, optic vesicle and lens placode, suggesting analogies in their regulation. In general, however, the specificities of the enhancers were not identical between Sox3 and Sox2, including the cases of the NP1 and D5 enhancers.

  2. A Systematic Survey and Characterization of Enhancers that Regulate Sox3 in Neuro-Sensory Development in Comparison with Sox2 Enhancers.

    Science.gov (United States)

    Nishimura, Naoko; Kamimura, Yoshifumi; Ishida, Yoshiko; Takemoto, Tatsuya; Kondoh, Hisato; Uchikawa, Masanori

    2012-11-22

    Development of neural and sensory primordia at the early stages of embryogenesis depends on the activity of two B1 Sox transcription factors, Sox2 and Sox3. The embryonic expression patterns of the Sox2 and Sox3 genes are similar, yet they show gene-unique features. We screened for enhancers of the 231-kb genomic region encompassing Sox3 of chicken, and identified 13 new enhancers that showed activity in different domains of the neuro-sensory primordia. Combined with the three Sox3-proximal enhancers determined previously, at least 16 enhancers were involved in Sox3 regulation. Starting from the NP1 enhancer, more enhancers with different specificities are activated in sequence, resulting in complex overlapping patterns of enhancer activities. NP1 was activated in the caudal lateral epiblast adjacent to the posterior growing end of neural plate, and by the combined action of Wnt and Fgf signaling, similar to the Sox2 N1 enhancer involved in neural/mesodermal dichotomous cell lineage segregation. The Sox3 D5 enhancer and Sox2 N3 enhancer were also activated similarly in the diencephalon, optic vesicle and lens placode, suggesting analogies in their regulation. In general, however, the specificities of the enhancers were not identical between Sox3 and Sox2, including the cases of the NP1 and D5 enhancers.

  3. microRNA-29b is a novel mediator of Sox2 function in the regulation of somatic cell reprogramming

    Institute of Scientific and Technical Information of China (English)

    Xudong Guo; Qidong Liu; Guiying Wang; Songcheng Zhu; Longfei Gao; Wujun Hong; Yafang Chen

    2013-01-01

    Fibroblasts can be reprogrammed into induced pluripotent stem cells (iPSCs) by the application of Yamanaka factors (OSKM),but the mechanisms underlying this reprogramming remain poorly understood.Here,we report that Sox2 directly regulates endogenous microRNA-29b (miR-29b) expression during iPSC generation and that miR-29b expression is required for OSKM-and OSK-mediated reprogramming.Mechanistic studies show that Dnmt3a and Dnmt3b are in vivo targets of miR-29b and that Dnmt3a and Dnmt3b expression is inversely correlated with miR-29b expression during reprogramming.Moreover,the effect of miR-29b on reprogramming can be blocked by Dnmt3a or Dnmt3b overexpression.Further experiments indicate that miR-29b-DNMT signaling is significantly involved in the regulation of DNA methylation-related reprogramming events,such as mesenchymal-to-epithelial transition (MET)and Dlk1-Dio3 region transcription.Thus,our studies not only reveal that miR-29b is a novel mediator of reprogramming factor Sox2 but also provide evidence for a muitistep mechanism in which Sox2 drives a miR-29b-DNMT signaling axis that regulates DNA methylation-related events during reprogramming.

  4. CpG oligodeoxyribonucleotide 7909 enhances radiosensitivity via downregulating Oct-4 expression in radioresistant lung cancer cells

    OpenAIRE

    Xing N; Qiao T; Zhuang X; Yuan S; Zhang Q; Xu G

    2015-01-01

    Na Xing,1 Tiankui Qiao,1 Xibing Zhuang,1 Sujuan Yuan,1 Qi Zhang,1 Guoxiong Xu2 1Department of Oncology, 2Center Laboratory, Jinshan Hospital, Fudan University, Shanghai, People’s Republic of China Abstract: Radiotherapy is a powerful cure for local advanced non-small cell lung cancer. However, radioresistance and tumor relapse still occur in a high proportion of patients. Octamer-4 (Oct-4), a transcription factor of the POU family, plays a key role in maintaining chemoradioresista...

  5. Transcriptional activation by Oct4 is sufficient for the maintenance and induction of pluripotency

    DEFF Research Database (Denmark)

    Hammachi, Fella; Morrison, Gillian M; Sharov, Alexei A

    2012-01-01

    Oct4 is an essential regulator of pluripotency in vivo and in vitro in embryonic stem cells, as well as a key mediator of the reprogramming of somatic cells into induced pluripotent stem cells. It is not known whether activation and/or repression of specific genes by Oct4 is relevant to these fun...

  6. Transcriptional activation by Oct4 is sufficient for the maintenance and induction of pluripotency

    DEFF Research Database (Denmark)

    Hammachi, Fella; Morrison, Gillian M; Sharov, Alexei A;

    2012-01-01

    Oct4 is an essential regulator of pluripotency in vivo and in vitro in embryonic stem cells, as well as a key mediator of the reprogramming of somatic cells into induced pluripotent stem cells. It is not known whether activation and/or repression of specific genes by Oct4 is relevant to these fun...

  7. Transcriptional Activation by Oct4 Is Sufficient for the Maintenance and Induction of Pluripotency

    Science.gov (United States)

    Hammachi, Fella; Morrison, Gillian M.; Sharov, Alexei A.; Livigni, Alessandra; Narayan, Santosh; Papapetrou, Eirini P.; O'Malley, James; Kaji, Keisuke; Ko, Minoru S.H.; Ptashne, Mark; Brickman, Joshua M.

    2012-01-01

    Summary Oct4 is an essential regulator of pluripotency in vivo and in vitro in embryonic stem cells, as well as a key mediator of the reprogramming of somatic cells into induced pluripotent stem cells. It is not known whether activation and/or repression of specific genes by Oct4 is relevant to these functions. Here, we show that fusion proteins containing the coding sequence of Oct4 or Xlpou91 (the Xenopus homolog of Oct4) fused to activating regions, but not those fused to repressing regions, behave as Oct4, suppressing differentiation and promoting maintenance of undifferentiated phenotypes in vivo and in vitro. An Oct4 activation domain fusion supported embryonic stem cell self-renewal in vitro at lower concentrations than that required for Oct4 while alleviating the ordinary requirement for the cytokine LIF. At still lower levels of the fusion, LIF dependence was restored. We conclude that the necessary and sufficient function of Oct4 in promoting pluripotency is to activate specific target genes. PMID:22832160

  8. Transient acquisition of pluripotency during somatic cell transdifferentiation with iPSC reprogramming factors.

    Science.gov (United States)

    Maza, Itay; Caspi, Inbal; Zviran, Asaf; Chomsky, Elad; Rais, Yoach; Viukov, Sergey; Geula, Shay; Buenrostro, Jason D; Weinberger, Leehee; Krupalnik, Vladislav; Hanna, Suhair; Zerbib, Mirie; Dutton, James R; Greenleaf, William J; Massarwa, Rada; Novershtern, Noa; Hanna, Jacob H

    2015-07-01

    Somatic cells can be transdifferentiated to other cell types without passing through a pluripotent state by ectopic expression of appropriate transcription factors. Recent reports have proposed an alternative transdifferentiation method in which fibroblasts are directly converted to various mature somatic cell types by brief expression of the induced pluripotent stem cell (iPSC) reprogramming factors Oct4, Sox2, Klf4 and c-Myc (OSKM) followed by cell expansion in media that promote lineage differentiation. Here we test this method using genetic lineage tracing for expression of endogenous Nanog and Oct4 and for X chromosome reactivation, as these events mark acquisition of pluripotency. We show that the vast majority of reprogrammed cardiomyocytes or neural stem cells obtained from mouse fibroblasts by OSKM-induced 'transdifferentiation' pass through a transient pluripotent state, and that their derivation is molecularly coupled to iPSC formation mechanisms. Our findings underscore the importance of defining trajectories during cell reprogramming by various methods.

  9. Spontaneous evolution of an unusual cortical malformation in SOX2 anophthalmia syndrome

    Directory of Open Access Journals (Sweden)

    Jay Desai

    2013-01-01

    Full Text Available Brain malformations such as agenesis and dysgenesis of corpus callosum, pituitary hypoplasia, hypothalamic hamartoma, mesial temporal periventricular heterotopia, and abnormally oriented and misshapen hippocampi have been described with SOX2 gene mutations. A neocortical malformation is presented here in association with SOX2 deletion that over time underwent spontaneous evolution and decrease in size.

  10. Data in support of DPF2 regulates OCT4 protein level and nuclear distribution

    Directory of Open Access Journals (Sweden)

    Chao Liu

    2015-12-01

    Full Text Available DPF2, also named ubi-d4/requiem (REQU, interacts with a protein complex containing OCT4. This paper provides data in support of the research article entitled “DPF2 regulates OCT4 protein level and nuclear distribution”. The highlights include: (1 Denature-immunoprecipitation assay revealed ubiquitination of OCT4 in pluripotent H9 cells, which was enhancedby MG132, a proteasome inhibitor. (2 Well colocalization of ectopic OCT4 and FLAG-Ub was found in HeLa cells, which was also increased by MG132. (3 MG132 treatment decreased DPF2 cytoplasmic expression in vivo. These data give insights into how proteasome inhibition contributes to studying ubiquitnation of OCT4.

  11. Nanog is an essential factor for induction of pluripotency in somatic cells from endangered felids.

    Science.gov (United States)

    Verma, Rajneesh; Liu, Jun; Holland, Michael Kenneth; Temple-Smith, Peter; Williamson, Mark; Verma, Paul John

    2013-02-01

    Nanog has an important role in pluripotency induction in bovines and snow leopards. To examine whether it was required for wild felids globally, we examined the induction of pluripotency in felids from Asia (Bengal tiger, Panthera tigris), Africa (serval, Leptailurus serval), and the Americas (jaguar, Panthera onca). Dermal fibroblasts were transduced with genes encoding the human transcription factors OCT4, SOX2, KLF4, and cMYC with or without NANOG. Both four- and five-factor induction resulted in colony formation at day 3 in all three species tested; however, we were not able to maintain colonies that were generated without NANOG beyond passage (P) 7. Five-factor induced pluripotent stem cell (iPSC) colonies from wild cats were expanded in vitro on feeder layers and were positive for alkaline phosphatase and protein expression of OCT-4, NANOG, and stage-specific embryonic antigen-4 at P4 and P14. Reverse-transcription polymerase chain reaction confirmed that all five human transgenes were transcribed at P4; however, OCT4, SOX2, and NANOG transgenes were silenced by P14. Endogenous OCT4 and NANOG transcripts were detected at P4 and P14 in all cell lines confirming successful reprogramming. At P14, the iPSCs from all three species remained euploid and differentiated in vivo and in vitro into derivatives of the three germ layers. This study describes an effective method for inducing pluripotency in three endangered wild cats from across the globe and confirms Nanog as an essential factor in the reprogramming event. Efficient production of iPSC from endangered felids creates a unique opportunity for species preservation through gamete production, nuclear transfer, embryo complementation, and future novel technologies.

  12. SOX2 and SOX2-MYC Reprogramming Process of Fibroblasts to the Neural Stem Cells Compromised by Senescence.

    Directory of Open Access Journals (Sweden)

    Marta Winiecka-Klimek

    Full Text Available Tumorigenic potential of induced pluripotent stem cells (iPSCs infiltrating population of induced neural stem cells (iNSCs generated from iPSCs may limit their medical applications. To overcome such a difficulty, direct reprogramming of adult somatic cells into iNSCs was proposed. The aim of this study was the systematic comparison of induced neural cells (iNc obtained with different methods-direct reprogramming of human adult fibroblasts with either SOX2 (SiNSc-like or SOX2 and c-MYC (SMiNSc-like and induced pluripotent stem cells differentiation to ebiNSc-in terms of gene expression profile, differentiation potential as well as proliferation properties. Immunocytochemistry and real-time PCR analyses were used to evaluate gene expression profile and differentiation potential of various iNc types. Bromodeoxyuridine (BrdU incorporation and senescence-associated beta-galactosidase (SA-β-gal assays were used to estimate proliferation potential. All three types of iNc were capable of neuronal differentiation; however, astrocytic differentiation was possible only in case of ebiNSc. Contrary to ebiNSc generation, the direct reprogramming was rarely a propitious process, despite 100% transduction efficiency. The potency of direct iNSCs-like cells generation was lower as compared to iNSCs obtained by iPSCs differentiation, and only slightly improved when c-MYC was added. Directly reprogrammed iNSCs-like cells were lacking the ability to differentiate into astrocytic cells and characterized by poor efficiency of neuronal cells formation. Such features indicated that these cells could not be fully reprogrammed, as confirmed mainly with senescence detection. Importantly, SiNSc-like and SMiNSc-like cells were unable to achieve the long-term survival and became senescent, which limits their possible therapeutic applicability. Our results suggest that iNSCs-like cells, generated in the direct reprogramming attempts, were either not fully reprogrammed or

  13. FUNCION DE SOX2 EN LA REGENERACION DE LA MEDULA ESPINAL DE XENOPUS LAEVIS

    OpenAIRE

    2010-01-01

    Los mamíferos presentan una limitada capacidad de regeneración frente a una lesión de la médula espinal, lo que impide una correcta recuperación locomotriz. Sin embargo, los renacuajos de Xenopus laevis sí son capaces de regenerar la médula espinal, pero se desconocen los mecanismos involucrados en este proceso. Es posible que esta regeneración proceda a través de la activación de células madre y progenitores neurales. Sox2 es un factor de transcripción que se expresa en las células mad...

  14. FUNCION DE SOX2 EN LA REGENERACION DE LA MEDULA ESPINAL DE XONOPUS LAEVIS

    OpenAIRE

    2010-01-01

    Los mamíferos presentan una limitada capacidad de regeneración frente a una lesión de la médula espinal, lo que impide una correcta recuperación locomotriz. Sin embargo, los renacuajos de Xenopus laevis sí son capaces de regenerar la médula espinal, pero se desconocen los mecanismos involucrados en este proceso. Es posible que esta regeneración proceda a través de la activación de células madre y progenitores neurales. Sox2 es un factor de transcripción que se expresa en las cé...

  15. Co-motif discovery identifies an Esrrb-Sox2-DNA ternary complex as a mediator of transcriptional differences between mouse embryonic and epiblast stem cells.

    Science.gov (United States)

    Hutchins, Andrew Paul; Choo, Siew Hua; Mistri, Tapan Kumar; Rahmani, Mehran; Woon, Chow Thai; Ng, Calista Keow Leng; Jauch, Ralf; Robson, Paul

    2013-02-01

    Transcription factors (TF) often bind in heterodimeric complexes with each TF recognizing a specific neighboring cis element in the regulatory region of the genome. Comprehension of this DNA motif grammar is opaque, yet recent developments have allowed the interrogation of genome-wide TF binding sites. We reasoned that within this data novel motif grammars could be identified that controlled distinct biological programs. For this purpose, we developed a novel motif-discovery tool termed fexcom that systematically interrogates ChIP-seq data to discover spatially constrained TF-TF composite motifs occurring over short DNA distances. We applied this to the extensive ChIP-seq data available from mouse embryonic stem cells (ESCs). In addition to the well-known and most prevalent sox-oct motif, we also discovered a novel constrained spacer motif for Esrrb and Sox2 with a gap of between 2 and 8 bps that Essrb and Sox2 cobind in a selective fashion. Through the use of knockdown experiments, we argue that the Esrrb-Sox2 complex is an arbiter of gene expression differences between ESCs and epiblast stem cells (EpiSC). A number of genes downregulated upon dual Esrrb/Sox2 knockdown (e.g., Klf4, Klf5, Jam2, Pecam1) are similarly downregulated in the ESC to EpiSC transition and contain the esrrb-sox motif. The prototypical Esrrb-Sox2 target gene, containing an esrrb-sox element conserved throughout eutherian and metatherian mammals, is Nr0b1. Through positive regulation of this transcriptional repressor, we argue the Esrrb-Sox2 complex promotes the ESC state through inhibition of the EpiSC transcriptional program and the same trio may also function to maintain trophoblast stem cells.

  16. Expression of Ki-67, Oct-4, γ-tubulin and α-tubulin in human tooth development.

    Science.gov (United States)

    Kero, Darko; Novakovic, Josip; Vukojevic, Katarina; Petricevic, Josko; Kalibovic Govorko, Danijela; Biocina-Lukenda, Dolores; Saraga-Babic, Mirna

    2014-11-01

    To analyze factors controlling cell proliferation and differentiation, and appearance of primary cilia during the cap and bell stages of incisor or/and canine human enamel organs. Qualitative and quantitative analysis of proliferating Ki-67 positive cells and expression of γ-tubulin, α-tubulin and Oct-4 was immunohistochemically analyzed in the cap an bell stages of 10 developing human incisor and canine germs, 8-21 weeks old. During the analyzed period, ratio of Ki-67 positive cells changed in outer enamel epithelium from 48.86% to 24.52%, in inner enamel epithelium increased from 56.11% to 60.06% and then dropped to 44.24%. While in dental papilla proliferation first increased from 46.26% to 55.45%, and then dropped to 22.08%, a constant decrease of proliferation characterized enamel reticulum (from 46.26% to 15.49%). Strong cytoplasmic Oct-4 expression characterized epithelial parts of enamel organ, particularly the differentiating ameloblasts. During further development, Oct-4 expression shifted to both nuclear and cytoplasmic expression in mesenchymal tooth components. Primary cilia characterized most of the cells in developing enamel organ. While non-ciliated (proliferating) cells mainly contained two centrioles (γ-tubulin), the primary cilia (α-tubulin) were arising from basal bodies (γ-tubulin) of non-proliferating cells. We suggest that increase in cell proliferation enables growth of enamel organ, while its selective decrease leads to disintegration of some tooth parts. Drop of proliferation coincided with initiation of ameloblast and odontoblast differentiation. Additionally, cell differentiation was accompanied by increased expression of Oct-4 and probably by signalling via primary cilia, both regulating processes of cell proliferation and differentiation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Expression and prognostic value of Oct-4 in astrocytic brain tumors

    DEFF Research Database (Denmark)

    Krogh Petersen, Jeanette; Jensen, Per; Sørensen, M. D.

    2016-01-01

    suggested to have promising potentials as prognostic markers in gliomas. Methodology/Principal Findings: The aim of the present study was to investigate the expression and prognostic impact of the TSC-related marker Oct-4 in astrocytic brain tumors of increasing grade. In total 114 grade II, III and IV.......045). There was no association between survival and Oct-4 positive cell fraction, neither when combining all tumor grades nor in analysis of individual grades. Oct-4 intensity was not associated with grade, but taking IDH1 status into account we found a tendency for high Oct-4 intensity to be associated with poor prognosis...... was associated with tumor malignancy, but seemed to be without independent prognostic influence in glioblastomas. Identification of a potential prognostic value in anaplastic astrocytomas requires additional studies using larger patient cohorts. © 2016 Krogh Petersen et al. This is an open access article...

  18. Sox2-positive dermal papilla cells specify hair follicle type in mammalian epidermis.

    Science.gov (United States)

    Driskell, Ryan R; Giangreco, Adam; Jensen, Kim B; Mulder, Klaas W; Watt, Fiona M

    2009-08-01

    The dermal papilla comprises the specialised mesenchymal cells at the base of the hair follicle. Communication between dermal papilla cells and the overlying epithelium is essential for differentiation of the hair follicle lineages. We report that Sox2 is expressed in all dermal papillae at E16.5, but from E18.5 onwards expression is confined to a subset of dermal papillae. In postnatal skin, Sox2 is only expressed in the dermal papillae of guard/awl/auchene follicles, whereas CD133 is expressed both in guard/awl/auchene and in zigzag dermal papillae. Using transgenic mice that express GFP under the control of the Sox2 promoter, we isolated Sox2(+) (GFP(+)) CD133(+) cells and compared them with Sox2(-) (GFP(-)) CD133(+) dermal papilla cells. In addition to the 'core' dermal papilla gene signature, each subpopulation expressed distinct sets of genes. GFP(+) CD133(+) cells had upregulated Wnt, FGF and BMP pathways and expressed neural crest markers. In GFP(-) CD133(+) cells, the hedgehog, IGF, Notch and integrin pathways were prominent. In skin reconstitution assays, hair follicles failed to form when dermis was depleted of both GFP(+) CD133(+) and GFP(-) CD133(+) cells. In the absence of GFP(+) CD133(+) cells, awl/auchene hairs failed to form and only zigzag hairs were found. We have thus demonstrated a previously unrecognised heterogeneity in dermal papilla cells and shown that Sox2-positive cells specify particular hair follicle types.

  19. Anaplastic Thyroid Carcinoma: A ceRNA Analysis Pointed to a Crosstalk between SOX2, TP53, and microRNA Biogenesis

    Directory of Open Access Journals (Sweden)

    Walter Arancio

    2015-01-01

    Full Text Available It has been suggested that cancer stem cells (CSC may play a central role in oncogenesis, especially in undifferentiated tumours. Anaplastic thyroid carcinoma (ATC has characteristics suggestive of a tumour enriched in CSC. Previous studies suggested that the stem cell factor SOX2 has a preeminent hierarchical role in determining the characteristics of stem cells in SW1736 ATC cell line. In detail, silencing SOX2 in SW1736 is able to suppress the expression of the stem markers analysed, strongly sensitizing the line to treatment with chemotherapeutic agents. Therefore, in order to further investigate the role of SOX2 in ATC, a competing endogenous RNA (ceRNA analysis was conducted in order to isolate new functional partners of SOX2. Among the interactors, of particular interest are genes involved in the biogenesis of miRNAs (DICER1, RNASEN, and EIF2C2, in the control cell cycle (TP53, CCND1, and in mitochondrial activity (COX8A. The data suggest that stemness, microRNA biogenesis and functions, p53 regulatory network, cyclin D1, and cell cycle control, together with mitochondrial activity, might be coregulated.

  20. SOX9 accelerates ESC differentiation to three germ layer lineages by repressing SOX2 expression through P21 (WAF1/CIP1).

    Science.gov (United States)

    Yamamizu, Kohei; Schlessinger, David; Ko, Minoru S H

    2014-11-01

    Upon removal of culture conditions that maintain an undifferentiated state, mouse embryonic stem cells (ESCs) differentiate into various cell types. Differentiation can be facilitated by forced expression of certain transcription factors (TFs), each of which can generally specify a particular developmental lineage. We previously established 137 mouse ESC lines, each of which carried a doxycycline-controllable TF. Among them, Sox9 has unique capacity: its forced expression accelerates differentiation of mouse ESCs into cells of all three germ layers. With the additional use of specific culture conditions, overexpression of Sox9 facilitated the generation of endothelial cells, hepatocytes and neurons from ESCs. Furthermore, Sox9 action increases formation of p21 (WAF1/CIP1), which then binds to the SRR2 enhancer of pluripotency marker Sox2 and inhibits its expression. Knockdown of p21 abolishes inhibition of Sox2 and Sox9-accelerated differentiation, and reduction of Sox2 2 days after the beginning of ESC differentiation can comparably accelerate mouse ESC formation of cells of three germ layers. These data implicate the involvement of the p21-Sox2 pathway in the mechanism of accelerated ESC differentiation by Sox9 overexpression. The molecular cascade could be among the first steps to program ESC differentiation.

  1. Two-stage induced differentiation of OCT4+/Nanog+ stem-like cells in lung adenocarcinoma.

    Science.gov (United States)

    Li, Rong; Huang, Jinsu; Ma, Meili; Lou, Yuqing; Zhang, Yanwei; Wu, Lixia; Chang, David W; Zhao, Picheng; Dong, Qianggang; Wu, Xifeng; Han, Baohui

    2016-10-18

    Stem-like cells in solid tumors are purported to contribute to cancer development and poor treatment outcome. The abilities to self-renew, differentiate, and resist anticancer therapies are hallmarks of these rare cells, and steering them into lineage commitment may be one strategy to curb cancer development or progression. Vitamin D is a prohormone that can alter cell growth and differentiation and may induce the differentiation cancer stem-like cells. In this study, octamer-binding transcription factor 4 (OCT4)-positive/Nanog homeobox (Nanog)- positive lung adenocarcinoma stem-like cells (LACSCs) were enriched from spheroid cultured SPC-A1 cells and differentiated by a two-stage induction (TSI) method, which involved knockdown of hypoxia-inducible factor 1-alpha (HIF1α) expression (first stage) followed by sequential induction with 1alpha,25-dihydroxyvitamin D3 (1,25(OH)2D3, VD3) and suberoylanilide hydroxamic acid (SAHA) treatment (second stage). The results showed the HIF1α-knockdowned cells displayed diminished cell invasion and clonogenic activities. Moreover, the TSI cells highly expressed tumor suppressor protein p63 (P63) and forkhead box J1 (FOXJ1) and lost stem cell characteristics, including absent expression of OCT4 and Nanog. These cells regained sensitivity to cisplatin in vitro while losing tumorigenic capacity and decreased tumor cell proliferation in vivo. Our results suggest that induced transdifferentiation of LACSCs by vitamin D and SAHA may become novel therapeutic avenue to alter tumor cell phenotypes and improve patient outcome.The development and progression of lung cancer may involve rare population of stem-like cells that have the ability to grow, differentiate, and resist drug treatment. However, current therapeutic strategies have mostly focused on tumor characteristics and neglected the potential source of cells that may contribute to poor clinical outcome. We generated lung adenocarcinoma stem-like cells from spheroid culture and

  2. Pluripotent stem cell transcription factors during human odontogenesis.

    Science.gov (United States)

    da Cunha, Juliana Malta; da Costa-Neves, Adriana; Kerkis, Irina; da Silva, Marcelo Cavenaghi Pereira

    2013-09-01

    Stem cells are capable of generating various cell lines and can be obtained from adult or embryonic tissues for clinical therapies. Stem cells from deciduous dental pulp are among those that are easily obtainable from adult tissues and have been widely studied because of their ability to differentiate into a variety of cell lines in the presence of various chemical mediators. We have analyze the expression of several proteins related to the differentiation and proliferative potential of cell populations that compose the tooth germ of human fetuses. We evaluate 20 human fetuses of both genders. After being paraffin-embedded, cap and bell stages of tooth germ development were subjected to immunohistochemistry for the following markers: Oct-4, Nanog, Stat-3 and Sox-2. The studied antibodies showed nuclear or cytoplasmic immunnostaining within various anatomical structures and with various degrees of expression, indicating the action of these proteins during tooth development. We conclude that the interrelationship between these transcription factors is complex and associated with self-renewal and cell differentiation. Our results suggest that the expression of Oct-4, Nanog, Sox-2 and Stat-3 are related to differentiation in ameloblasts and odontoblasts.

  3. SOX2 defect and anophthalmia and microphthalmia%SOX2基因缺陷与先天性小眼球和无眼球

    Institute of Scientific and Technical Information of China (English)

    叶福相; 范先群

    2012-01-01

    As a severe congenital developmental disorder,anophthalmia and microphthalmia are usually accompanied with vision impairment and hypoevolutism of the orbit in the affected side.Many genes are involved in anophthalmia and microphthalmia,in which,SOX2 is an important one.The defect of SOX2 causes multiple system disorders,including anophthalmia and microphthalmia.We describe the relationship between the SOX2 defect and anophthalmia/microphthalmia,in order to offer some proposals for the differential diagnosis,treatment and research of anophthalmia and microphthalmia.%先天性小眼球和无眼球是一种严重眼球先天性发育疾病,患侧通常有严重的视力障碍,同时伴有患侧眼眶发育迟缓.先天性小眼球和无眼球的发病与诸多基因相关,其中,较为重要的是SOX2基因,其缺陷可导致包括先天性无眼球和小眼球在内的多系统异常.本文对SOX2基因缺陷与先天性小眼球和无眼球之间的关系进行简要综述,为先天性小眼球和无眼球的鉴别、诊治和研究提供一定的参考.

  4. Establishment of oct4:gfp transgenic zebrafish line for monitoring cellular multipotency by GFP fluorescence.

    Science.gov (United States)

    Kato, Hiroyuki; Abe, Kota; Yokota, Shinpei; Matsuno, Rinta; Mikekado, Tsuyoshi; Yokoi, Hayato; Suzuki, Tohru

    2015-01-01

    The establishment of induced pluripotent stem (iPS) cell technology in fish could facilitate the establishment of novel cryopreservation techniques for storing selected aquaculture strains as frozen cells. In order to apply iPS cell technology to fish, we established a transgenic zebrafish line, Tg(Tru.oct4:EGFP), using green fluorescent protein (GFP) expression under the control of the oct4 gene promoter as a marker to evaluate multipotency in iPS cell preparations. We used the oct4 promoter from fugu (Takifugu rubripes) due to the compact nature of the fugu genome and to facilitate future applications of this technology in marine fishes. During embryogenesis, maternal GFP fluorescence was observed at the cleavage stage and zygotic GFP expression was observed from the start of the shield stage until approximately 24 h after fertilization. gfp messenger RNA (mRNA) was expressed by whole embryonic cells at the shield stage, and then restricted to the caudal neural tube in the latter stages of embryogenesis. These observations showed that GFP fluorescence and the regulation of gfp mRNA expression by the exogenous fugu oct4 promoter are well suited for monitoring endogenous oct4 mRNA expression in embryos. Bisulfite sequencing revealed that the rate of CpG methylation in the transgenic oct4 promoter was high in adult cells (98%) and low in embryonic cells (37%). These findings suggest that, as with the endogenous oct4 promoter, demethylation and methylation both take place normally in the transgenic oct4 promoter during embryogenesis. The embryonic cells harvested at the shield stage formed embryonic body-like cellular aggregates and maintained GFP fluorescence for 6 d when cultured on Transwell-COL Permeable Supports or a feeder layer of adult fin cells. Loss of GFP fluorescence by cultured cells was correlated with cellular differentiation. We consider that the Tg(Tru.oct4:EGFP) zebrafish line established here is well suited for monitoring multipotency in

  5. Fast, potent pharmacological expansion of endogenous hes3+/sox2+ cells in the adult mouse and rat hippocampus.

    Directory of Open Access Journals (Sweden)

    Simone Pacioni

    Full Text Available The adult hippocampus is involved in learning and memory. As a consequence, it is a brain region of remarkable plasticity. This plasticity exhibits itself both as cellular changes and neurogenesis. For neurogenesis to occur, a population of local stem cells and progenitor cells is maintained in the adult brain and these are able to proliferate and differentiate into neurons which contribute to the hippocampal circuitry. There is much interest in understanding the role of immature cells in the hippocampus, in relation to learning and memory. Methods and mechanisms that increase the numbers of these cells will be valuable in this research field. We show here that single injections of soluble factors into the lateral ventricle of adult rats and mice induces the rapid (within one week increase in the number of putative stem cells/progenitor cells in the hippocampus. The established progenitor marker Sox2 together with the more recently established marker Hes3, were used to quantify the manipulation of the Sox2/Hes3 double-positive cell population. We report that in both adult rodent species, Sox2+/Hes3+ cell numbers can be increased within one week. The most prominent increase was observed in the hilus of the dentate gyrus. This study presents a fast, pharmacological method to manipulate the numbers of endogenous putative stem cells/progenitor cells. This method may be easily modified to alter the degree of activation (e.g. by the use of osmotic pumps for delivery, or by repeat injections through implanted cannulas, in order to be best adapted to different paradigms of research (neurodegenerative disease, neuroprotection, learning, memory, plasticity, etc.

  6. Mir-21–Sox2 Axis Delineates Glioblastoma Subtypes with Prognostic Impact

    Science.gov (United States)

    Sathyan, Pratheesh; Zinn, Pascal O.; Marisetty, Anantha L.; Liu, Bin; Kamal, Mohamed Mostafa; Singh, Sanjay K.; Bady, Pierre; Lu, Li; Wani, Khalida M.; Veo, Bethany L.; Gumin, Joy; Kassem, Dina Hamada; Robinson, Frederick; Weng, Connie; Baladandayuthapani, Veerabhadran; Suki, Dima; Colman, Howard; Bhat, Krishna P.; Sulman, Erik P.; Aldape, Ken; Colen, Rivka R.; Verhaak, Roel G.W.; Lu, Zhimin; Fuller, Gregory N.; Huang, Suyun; Lang, Frederick F.; Sawaya, Raymond; Hegi, Monika

    2015-01-01

    Glioblastoma (GBM) is the most aggressive human brain tumor. Although several molecular subtypes of GBM are recognized, a robust molecular prognostic marker has yet to be identified. Here, we report that the stemness regulator Sox2 is a new, clinically important target of microRNA-21 (miR-21) in GBM, with implications for prognosis. Using the MiR-21–Sox2 regulatory axis, approximately half of all GBM tumors present in the Cancer Genome Atlas (TCGA) and in-house patient databases can be mathematically classified into high miR-21/low Sox2 (Class A) or low miR-21/high Sox2 (Class B) subtypes. This classification reflects phenotypically and molecularly distinct characteristics and is not captured by existing classifications. Supporting the distinct nature of the subtypes, gene set enrichment analysis of the TCGA dataset predicted that Class A and Class B tumors were significantly involved in immune/inflammatory response and in chromosome organization and nervous system development, respectively. Patients with Class B tumors had longer overall survival than those with Class A tumors. Analysis of both databases indicated that the Class A/Class B classification is a better predictor of patient survival than currently used parameters. Further, manipulation of MiR-21–Sox2 levels in orthotopic mouse models supported the longer survival of the Class B subtype. The MiR-21–Sox2 association was also found in mouse neural stem cells and in the mouse brain at different developmental stages, suggesting a role in normal development. Therefore, this mechanism-based classification suggests the presence of two distinct populations of GBM patients with distinguishable phenotypic characteristics and clinical outcomes. SIGNIFICANCE STATEMENT Molecular profiling-based classification of glioblastoma (GBM) into four subtypes has substantially increased our understanding of the biology of the disease and has pointed to the heterogeneous nature of GBM. However, this classification is not

  7. The Expression of NP847 and Sox2 after TBI and Its Influence on NSCs

    Science.gov (United States)

    Gu, Jun; Bao, Yifeng; Chen, Jian; Huang, Chuanjun; Zhang, Xinghua; Jiang, Rui; Liu, Qianqian; Liu, Yonghua; Xu, Xide; Shi, Wei

    2016-01-01

    The proliferation and differentiation of neural stem cells (NSCs) is important for neural regeneration after cerebral injury. Here, for the first time, we show that phosphorylated (p)-ser847-nNOS (NP847), rather than nNOS, may play a major role in NSC proliferation after traumatic brain injury (TBI). Western blot results demonstrated that the expression of NP847 and Sox2 in the hippocampus is up-regulated after TBI, and they both peak 3 days after brain injury. In addition, an immunofluorescence experiment indicated that NP847 and Sox2 partly co-localize in the nuclei of NSCs after TBI. Further immunoprecipitation experiments found that NP847 and Sox2 can directly interact with each other in NSCs. Moreover, in an OGD model of NSCs, NP847 expression is decreased, which is followed by the down-regulation of Sox2. Interestingly, in this study, we did not observe changes in the expression of nNOS in the OGD model. Further research data suggest that the NP847-Sox2 complex may play a major role in NSCs through the Shh/Gli signaling pathway in a CaMKII-dependent manner after brain injury. PMID:28066182

  8. Granulosa cells and retinoic acid co-treatment enrich potential germ cells from manually selected Oct4-EGFP expressing human embryonic stem cells.

    Science.gov (United States)

    Chen, Hsin-Fu; Jan, Pey-Shynan; Kuo, Hung-Chih; Wu, Fang-Chun; Lan, Chen-Wei; Huang, Mei-Chi; Chien, Chung-Liang; Ho, Hong-Nerng

    2014-09-01

    Differentiation of human embryonic stem (HES) cells to germ cells may become clinically useful in overcoming diseases related to germ-cell development. Niches were used to differentiate HES cell lines, NTU1 and H9 Oct4-enhanced green fluorescence protein (EGFP), including laminin, granulosa cell co-culture or conditioned medium, ovarian stromal cell co-culture or conditioned medium, retinoic acid, stem cell factor (SCF) and BMP4-BMP7-BMP8b treatment. Flow cytometry showed that granulosa cell co-culture (P cells expressing early germ cell marker stage-specific embryonic antigen 1(SSEA1); sorted SSEA1[+] cells did not express higher levels of germ cell gene VASA and GDF9. Manually collected H9 Oct4-EGFP[+] cells expressed significantly higher levels of VASA (P = 0.005) and GDF9 (P = 0.001). H9 Oct4-EGFP[+] cells developed to ovarian follicle-like structures after culture for 28 days but with low efficiency. Unlike SCF and BMP4, retinoic acid co-treatment enhanced VASA, GDF9 and SCP3 expression. A protocol is recommended to enrich differentiated HES cells with germ-cell potential by culture with granulosa cells, conditioned medium or retinoic acid, manual selection of Oct4-EGFP[+] cells, and analysis of VASA, GDF9 expression, or both.

  9. Antithetical NFATc1-Sox2 and p53-miR200 signaling networks govern pancreatic cancer cell plasticity.

    Science.gov (United States)

    Singh, Shiv K; Chen, Nai-Ming; Hessmann, Elisabeth; Siveke, Jens; Lahmann, Marlen; Singh, Garima; Voelker, Nadine; Vogt, Sophia; Esposito, Irene; Schmidt, Ansgar; Brendel, Cornelia; Stiewe, Thorsten; Gaedcke, Jochen; Mernberger, Marco; Crawford, Howard C; Bamlet, William R; Zhang, Jin-San; Li, Xiao-Kun; Smyrk, Thomas C; Billadeau, Daniel D; Hebrok, Matthias; Neesse, Albrecht; Koenig, Alexander; Ellenrieder, Volker

    2015-02-12

    In adaptation to oncogenic signals, pancreatic ductal adenocarcinoma (PDAC) cells undergo epithelial-mesenchymal transition (EMT), a process combining tumor cell dedifferentiation with acquisition of stemness features. However, the mechanisms linking oncogene-induced signaling pathways with EMT and stemness remain largely elusive. Here, we uncover the inflammation-induced transcription factor NFATc1 as a central regulator of pancreatic cancer cell plasticity. In particular, we show that NFATc1 drives EMT reprogramming and maintains pancreatic cancer cells in a stem cell-like state through Sox2-dependent transcription of EMT and stemness factors. Intriguingly, NFATc1-Sox2 complex-mediated PDAC dedifferentiation and progression is opposed by antithetical p53-miR200c signaling, and inactivation of the tumor suppressor pathway is essential for tumor dedifferentiation and dissemination both in genetically engineered mouse models (GEMM) and human PDAC. Based on these findings, we propose the existence of a hierarchical signaling network regulating PDAC cell plasticity and suggest that the molecular decision between epithelial cell preservation and conversion into a dedifferentiated cancer stem cell-like phenotype depends on opposing levels of p53 and NFATc1 signaling activities.

  10. Reprogramming of ovine adult fibroblasts to pluripotency via drug-inducible expression of defined factors

    Institute of Scientific and Technical Information of China (English)

    Lei Bao; Lei Qian; Yijun Gu; Huimin Dai; Xun Xu; Jinqiu Zhou; Wen Wang; Chun Cui; Lei Xiao; Lixiazi He; Jijun Chen; Zhao Wu; Jing Liao; Lingjun Rao; Jiangtao Ren; Hui Li; Hui Zhu

    2011-01-01

    Reprogramming of somatic cells in the enucleated egg made Dolly, the sheep, the first successfully cloned mammal in 1996. However, the mechanism of sheep somatic cell reprogramming has not yet been addressed. Moreover, sheep embryonic stem (ES) cells are still not available, which limits the generation of precise gene-modified sheep, in this study, we report that sheep somatic cells can be directly reprogrammed to induced pluripotent stem (iPS) cells using defined factors (Oct4, Sox2, c-Myc, KIf4, Nanog, Lin28, SV40 large T and hTERT). Our observations indicated that somatic cells from sheep are more difficult to reprogram than somatic cells from other species, in which iPS cells have been reported. We demonstrated that sheep iPS cells express ES cell markers, including alkaline phosphatase, Oct4, Nanog, Sox2, Rexl, stage-specific embryonic antigen-l, TRA-1-60, TRA-1-81 and E-cadherin. Sheep iPS cells exhibited normal karyotypes and were able to differentiate into all three germ layers both in vitro and in teratomas.Our study may help to reveal the mechanism of somatic cell reprogramming in sheep and provide a platform to explore the culture conditions for sheep ES cells. Moreover, sheep iPS cells may be directly used to generate precise gene-modified sheep.

  11. HSA21 Single-Minded 2 (Sim2 Binding Sites Co-Localize with Super-Enhancers and Pioneer Transcription Factors in Pluripotent Mouse ES Cells.

    Directory of Open Access Journals (Sweden)

    Audrey Letourneau

    Full Text Available The HSA21 encoded Single-minded 2 (SIM2 transcription factor has key neurological functions and is a good candidate to be involved in the cognitive impairment of Down syndrome. We aimed to explore the functional capacity of SIM2 by mapping its DNA binding sites in mouse embryonic stem cells. ChIP-sequencing revealed 1229 high-confidence SIM2-binding sites. Analysis of the SIM2 target genes confirmed the importance of SIM2 in developmental and neuronal processes and indicated that SIM2 may be a master transcription regulator. Indeed, SIM2 DNA binding sites share sequence specificity and overlapping domains of occupancy with master transcription factors such as SOX2, OCT4 (Pou5f1, NANOG or KLF4. The association between SIM2 and these pioneer factors is supported by co-immunoprecipitation of SIM2 with SOX2, OCT4, NANOG or KLF4. Furthermore, the binding of SIM2 marks a particular sub-category of enhancers known as super-enhancers. These regions are characterized by typical DNA modifications and Mediator co-occupancy (MED1 and MED12. Altogether, we provide evidence that SIM2 binds a specific set of enhancer elements thus explaining how SIM2 can regulate its gene network in neuronal features.

  12. mTOR inhibition decreases SOX2-SOX9 mediated glioma stem cell activity and temozolomide resistance

    Science.gov (United States)

    Garros-Regulez, Laura; Aldaz, Paula; Arrizabalaga, Olatz; Moncho-Amor, Veronica; Carrasco-Garcia, Estefania; Manterola, Lorea; Moreno-Cugnon, Leire; Barrena, Cristina; Villanua, Jorge; Ruiz, Irune; Pollard, Steven; Lovell-Badge, Robin; Sampron, Nicolas; Garcia, Idoia; Matheu, Ander

    2016-01-01

    ABSTRACT Background: SOX2 and SOX9 are commonly overexpressed in glioblastoma, and regulate the activity of glioma stem cells (GSCs). Their specific and overlapping roles in GSCs and glioma treatment remain unclear. Methods: SOX2 and SOX9 levels were examined in human biopsies. Gain and loss of function determined the impact of altering SOX2 and SOX9 on cell proliferation, senescence, stem cell activity, tumorigenesis and chemoresistance. Results: SOX2 and SOX9 expression correlates positively in glioma cells and glioblastoma biopsies. High levels of SOX2 bypass cellular senescence and promote resistance to temozolomide. Mechanistic investigations revealed that SOX2 acts upstream of SOX9. mTOR genetic and pharmacologic (rapamycin) inhibition decreased SOX2 and SOX9 expression, and reversed chemoresistance. Conclusions: Our findings reveal SOX2-SOX9 as an oncogenic axis that regulates stem cell properties and chemoresistance. We identify that rapamycin abrogate SOX protein expression and provide evidence that a combination of rapamycin and temozolomide inhibits tumor growth in cells with high SOX2/SOX9. PMID:26878385

  13. The RNA binding protein ESRP1 fine-tunes the expression of pluripotency-related factors in mouse embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Sharmila Fagoonee

    Full Text Available In pluripotent stem cells, there is increasing evidence for crosstalk between post-transcriptional and transcriptional networks, offering multifold steps at which pluripotency can be controlled. In addition to well-studied transcription factors, chromatin modifiers and miRNAs, RNA-binding proteins are emerging as fundamental players in pluripotency regulation. Here, we report a new role for the RNA-binding protein ESRP1 in the control of pluripotency. Knockdown of Esrp1 in mouse embryonic stem cells induces, other than the well-documented epithelial to mesenchymal-like state, also an increase in expression of the core transcription factors Oct4, Nanog and Sox2, thereby enhancing self-renewal of these cells. Esrp1-depleted embryonic stem cells displayed impaired early differentiation in vitro and formed larger teratomas in vivo when compared to control embryonic stem cells. We also show that ESRP1 binds to Oct4 and Sox2 mRNAs and decreases their polysomal loading. ESRP1 thus acts as a physiological regulator of the finely-tuned balance between self-renewal and commitment to a restricted developmental fate. Importantly, both mouse and human epithelial stem cells highly express ESRP1, pinpointing the importance of this RNA-binding protein in stem cell biology.

  14. Sorting live stem cells based on Sox2 mRNA expression.

    Directory of Open Access Journals (Sweden)

    Hans M Larsson

    Full Text Available While cell sorting usually relies on cell-surface protein markers, molecular beacons (MBs offer the potential to sort cells based on the presence of any expressed mRNA and in principle could be extremely useful to sort rare cell populations from primary isolates. We show here how stem cells can be purified from mixed cell populations by sorting based on MBs. Specifically, we designed molecular beacons targeting Sox2, a well-known stem cell marker for murine embryonic (mES and neural stem cells (NSC. One of our designed molecular beacons displayed an increase in fluorescence compared to a nonspecific molecular beacon both in vitro and in vivo when tested in mES and NSCs. We sorted Sox2-MB(+SSEA1(+ cells from a mixed population of 4-day retinoic acid-treated mES cells and effectively isolated live undifferentiated stem cells. Additionally, Sox2-MB(+ cells isolated from primary mouse brains were sorted and generated neurospheres with higher efficiency than Sox2-MB(- cells. These results demonstrate the utility of MBs for stem cell sorting in an mRNA-specific manner.

  15. Three-dimensional localisation of NANOG, OCT4, and E-CADHERIN in porcine pre- and peri-implantation embryos

    DEFF Research Database (Denmark)

    Wolf, Xenia Asbæk; Serup, Palle; Hyttel, Poul

    2011-01-01

    The expression patterns of NANOG and OCT4 have previously been reported to differ markedly between mammalian species indicating distinct species-specific roles during development. We investigate the three-dimensional expression pattern of NANOG and OCT4 in porcine pre- and peri-implantation embryos...

  16. Visualized gene network reveals the novel target transcripts Sox2 and Pax6 of neuronal development in trans-placental exposure to bisphenol A.

    Directory of Open Access Journals (Sweden)

    Chung-Wei Yang

    Full Text Available Bisphenol A (BPA is a ubiquitous endocrine disrupting chemical in our daily life, and its health effect in response to prenatal exposure is still controversial. Early-life BPA exposure may impact brain development and contribute to childhood neurological disorders. The aim of the present study was to investigate molecular target genes of neuronal development in trans-placental exposure to BPA.A meta-analysis of three public microarray datasets was performed to screen for differentially expressed genes (DEGs in exposure to BPA. The candidate genes of neuronal development were identified from gene ontology analysis in a reconstructed neuronal sub-network, and their gene expressions were determined using real-time PCR in 20 umbilical cord blood samples dichotomized into high and low BPA level groups upon the median 16.8 nM.Among 36 neuronal transcripts sorted from DAVID ontology clusters of 457 DEGs using the analysis of Bioconductor limma package, we found two neuronal genes, sex determining region Y-box 2 (Sox2 and paired box 6 (Pax6, had preferentially down-regulated expression (Bonferroni correction p-value <10(-4 and log2-transformed fold change ≤-1.2 in response to BPA exposure. Fetal cord blood samples had the obviously attenuated gene expression of Sox2 and Pax6 in high BPA group referred to low BPA group. Visualized gene network of Cytoscape analysis showed that Sox2 and Pax6 which were contributed to neural precursor cell proliferation and neuronal differentiation might be down-regulated through sonic hedgehog (Shh, vascular endothelial growth factor A (VEGFA and Notch signaling.These results indicated that trans-placental BPA exposure down-regulated gene expression of Sox2 and Pax6 potentially underlying the adverse effect on childhood neuronal development.

  17. OCT4 expression in outgrowth colonies derived from porcine inner cell masses and epiblasts

    DEFF Research Database (Denmark)

    Rasmussen, M A; Wolf, X A; Schauser, K;

    2011-01-01

    , or whole blastocyst culture. OCs were established on mouse embryonic fibroblast (MEF) cells and categorized according to morphology and OCT4 staining. Although all isolation methods resulted in ESC-like OCs, immunosurgery with manual cleaning yielded significantly higher rates of ICM/epiblast attachment......The present study was conducted to test different methods for porcine inner cell mass (ICM) and epiblast isolation and to evaluate the morphology and expression of pluripotency genes in ICM- and epiblast-derived outgrowth colonies (OCs) and passages thereof with particular attention...... on the relationship between OCT4 expression and embryonic stem cell (ESC)-like morphology. A total of 104 zona pellucida-enclosed and 101 hatched blastocysts were subjected to four different methods of ICM and epiblast isolation, respectively: Manual isolation, immunosurgery, immunosurgery with manual cleaning...

  18. Cisplatin hypersensitivity of testicular germ cell tumors is determined by high constitutive Noxa levels mediated by Oct-4.

    Science.gov (United States)

    Gutekunst, Matthias; Mueller, Thomas; Weilbacher, Andrea; Dengler, Michael A; Bedke, Jens; Kruck, Stephan; Oren, Moshe; Aulitzky, Walter E; van der Kuip, Heiko

    2013-03-01

    Testicular germ cell tumors (TGCT) are considered a paradigm of chemosensitive tumors. Embryonal carcinoma cells represent the pluripotent entity of TGCTs and are characterized by expression of Oct-4, a key regulator of pluripotency and a determinant of their inherent hypersensitivity to cisplatin. However, the mechanisms underlying this Oct-4-mediated sensitivity are poorly understood. We previously showed that p53 is a major player in cisplatin hypersensitivity and therefore investigated whether Oct-4 may directly affect p53 activity. Despite a significant decrease in sensitivity, depletion of Oct-4 neither did alter cisplatin-induced transactivation of p53 target genes nor its subcellular localization. These data indicate that, rather than directly modulating p53 activity, Oct-4 provides a cellular context that augments the proapoptotic activity of p53. As mitochondrial priming by the Bcl-2 family is a known determinant of chemosensitivity, we compared the constitutive levels of these proteins in Oct-4-positive and -depleted cells. We identified Noxa as the only Bcl-2 family protein to be highly correlated with Oct-4 status and cisplatin sensitivity. Compared with differentiated cells, constitutive Noxa levels were significantly higher in Oct-4-positive cell lines and cancer patient samples. Furthermore, RNA interference-mediated knockdown of Oct-4 resulted in reduced Noxa transcript, in an almost complete loss of constitutive Noxa protein and decreased cisplatin hypersensitivity to a similar extent as did Noxa depletion. In conclusion, our study indicates that Noxa is a central determinant of hypersensitivity to cisplatin. Oct-4-dependent high constitutive levels of this BH3-only protein prime embryonal carcinoma cells to undergo rapid and massive apoptosis in response to p53 activation.

  19. 绵羊Sox2基因逆转录病毒载体的构建与检测%Construction and Detection of Retrovirus Vector with Ovine Sox2 Gene

    Institute of Scientific and Technical Information of China (English)

    赵健灵; 安铁洙; 张志人; 王子竹; 朴善花; 王春生

    2012-01-01

    In order to construct the retroviral vector with sheep Sox2 to induce ovine somatic cell to iPS, sheep Sox2 gene was cloned, and then linked with retroviral vector pMXs. 293GP cells were co-transfected by the vector and pVSV-G. Viral supernatant was infected sheep fibroblast cells in order to detect the expression of Sox2. The results were showed as followed. PCR and restriction enzyme digestion revealed that pMXs-Sox2 plasmid was constructed successfully. Expression of Sox2 was detected in sheep fibroblasts cell after being infected by the viral supernatant obtained. The results indicated that the vector obtained could be used to induce sheep somatic cell reprogramming.%为建立利用内源诱导因子诱导绵羊体细胞为多能干细胞(induced pluripotent stem cell,iPS)的方法,对绵羊Sox2基因进行克隆,并与pMXs连接构建逆转录病毒载体,将构建的载体转染293GP细胞以获得假病毒上清,利用假病毒上清侵染绵羊胎儿成纤维细胞以检测细胞中的Sox2表达变化.PCR和酶切鉴定结果显示,成功构建了pMXs-Sox2重组质粒,该质粒具有转染293GP细胞的能力,所获得的假病毒上清侵染绵羊胎儿成纤维细胞后,可诱导细胞表达Sox2基因.本研究为开展绵羊iPS的相关研究提供依据.

  20. Stemness of the organ of Corti relates to the epigenetic status of Sox2 enhancers.

    Directory of Open Access Journals (Sweden)

    Jörg Waldhaus

    Full Text Available In the adult mammalian auditory epithelium, the organ of Corti, loss of sensory hair cells results in permanent hearing loss. The underlying cause for the lack of regenerative response is the depletion of otic progenitors in the cell pool of the sensory epithelium. Here, we show that an increase in the sequence-specific methylation of the otic Sox2 enhancers NOP1 and NOP2 is correlated with a reduced self-renewal potential in vivo and in vitro; additionally, the degree of methylation of NOP1 and NOP2 is correlated with the dedifferentiation potential of postmitotic supporting cells into otic stem cells. Thus, the stemness the organ of Corti is related to the epigenetic status of the otic Sox2 enhancers. These observations validate the continued exploration of treatment strategies for dedifferentiating or reprogramming of differentiated supporting cells into progenitors to regenerate the damaged organ of Corti.

  1. Targeted 'Next-Generation' sequencing in anophthalmia and microphthalmia patients confirms SOX2, OTX2 and FOXE3 mutations

    Directory of Open Access Journals (Sweden)

    Lopez Jimenez Nelson

    2011-12-01

    Full Text Available Abstract Background Anophthalmia/microphthalmia (A/M is caused by mutations in several different transcription factors, but mutations in each causative gene are relatively rare, emphasizing the need for a testing approach that screens multiple genes simultaneously. We used next-generation sequencing to screen 15 A/M patients for mutations in 9 pathogenic genes to evaluate this technology for screening in A/M. Methods We used a pooled sequencing design, together with custom single nucleotide polymorphism (SNP calling software. We verified predicted sequence alterations using Sanger sequencing. Results We verified three mutations - c.542delC in SOX2, resulting in p.Pro181Argfs*22, p.Glu105X in OTX2 and p.Cys240X in FOXE3. We found several novel sequence alterations and SNPs that were likely to be non-pathogenic - p.Glu42Lys in CRYBA4, p.Val201Met in FOXE3 and p.Asp291Asn in VSX2. Our analysis methodology gave one false positive result comprising a mutation in PAX6 (c.1268A > T, predicting p.X423LeuextX*15 that was not verified by Sanger sequencing. We also failed to detect one 20 base pair (bp deletion and one 3 bp duplication in SOX2. Conclusions Our results demonstrated the power of next-generation sequencing with pooled sample groups for the rapid screening of candidate genes for A/M as we were correctly able to identify disease-causing mutations. However, next-generation sequencing was less useful for small, intragenic deletions and duplications. We did not find mutations in 10/15 patients and conclude that there is a need for further gene discovery in A/M.

  2. Premalignant SOX2 overexpression in the fallopian tubes of ovarian cancer patients: Discovery and validation studies

    Directory of Open Access Journals (Sweden)

    Karin Hellner

    2016-08-01

    Full Text Available Current screening methods for ovarian cancer can only detect advanced disease. Earlier detection has proved difficult because the molecular precursors involved in the natural history of the disease are unknown. To identify early driver mutations in ovarian cancer cells, we used dense whole genome sequencing of micrometastases and microscopic residual disease collected at three time points over three years from a single patient during treatment for high-grade serous ovarian cancer (HGSOC. The functional and clinical significance of the identified mutations was examined using a combination of population-based whole genome sequencing, targeted deep sequencing, multi-center analysis of protein expression, loss of function experiments in an in-vivo reporter assay and mammalian models, and gain of function experiments in primary cultured fallopian tube epithelial (FTE cells. We identified frequent mutations involving a 40 kb distal repressor region for the key stem cell differentiation gene SOX2. In the apparently normal FTE, the region was also mutated. This was associated with a profound increase in SOX2 expression (p < 2−16, which was not found in patients without cancer (n = 108. Importantly, we show that SOX2 overexpression in FTE is nearly ubiquitous in patients with HGSOCs (n = 100, and common in BRCA1-BRCA2 mutation carriers (n = 71 who underwent prophylactic salpingo-oophorectomy. We propose that the finding of SOX2 overexpression in FTE could be exploited to develop biomarkers for detecting disease at a premalignant stage, which would reduce mortality from this devastating disease.

  3. The Role of Sox2 in Lung Cancer Initiation and Progression

    Science.gov (United States)

    2013-10-01

    induced tumorigenesis. Our close collaborator Barry Stripp provided re-derived inducible p63-knockout (floxed p63) mouse line from frozen embryos . We set...GFP cells via flow sorting for transplantation into the retroorbital veins of immunodeficient Rag1-/- mice. While our preliminary data demonstrated that...this transplantation led to tumors when the transplant was performed using K-RasG12D-expressing cells, we have not obtained tumors using the Sox2

  4. SOX2, OTX2 and PAX6 analysis in subjects with anophthalmia and microphthalmia.

    Science.gov (United States)

    Mauri, Lucia; Franzoni, Alessandra; Scarcello, Manuela; Sala, Stefano; Garavelli, Livia; Modugno, Alessandra; Grammatico, Paola; Patrosso, Maria Cristina; Piozzi, Elena; Del Longo, Alessandra; Gesu, Giovanni P; Manfredini, Emanuela; Primignani, Paola; Damante, Giuseppe; Penco, Silvana

    2015-02-01

    Anophthalmia (A) and microphthalmia (M) are rare developmental anomalies that have significant effects on visual activity. In fraction of A/M subjects, single genetic defects have been identified as causative. In this study we analysed 65 Italian A/M patients, 21 of whom are syndromic, for mutations in SOX2, OTX2 and PAX6 genes. In syndromic patients the presence of genome imbalances through array CGH was also investigated. No mutations were found for OTX2 and PAX6 genes. Three causative SOX2 mutations were found in subjects with syndromic A. In a subject with syndromic signs and monolateral M, two de novo 6.26 Mb and 1.37 Mb deletions in 4q13.2q13.3 have been identified. A SOX2 missense (p.Ala161Ser) mutation was found in 1 out of 39 a subject with non-syndromic monolateral M. Alanine at position 161 is conserved along phylogeny and the p.Ala161Ser mutation is estimated pathogenic by in silico analysis. However, this mutation was also present in the unaffected patient's daughter.

  5. Decoding the Pluripotency Network: The Emergence of New Transcription Factors

    Directory of Open Access Journals (Sweden)

    Kai Chuen Lee

    2013-12-01

    Full Text Available Since the successful isolation of mouse and human embryonic stem cells (ESCs in the past decades, massive investigations have been conducted to dissect the pluripotency network that governs the ability of these cells to differentiate into all cell types. Beside the core Oct4-Sox2-Nanog circuitry, accumulating regulators, including transcription factors, epigenetic modifiers, microRNA and signaling molecules have also been found to play important roles in preserving pluripotency. Among the various regulations that orchestrate the cellular pluripotency program, transcriptional regulation is situated in the central position and appears to be dominant over other regulatory controls. In this review, we would like to summarize the recent advancements in the accumulating findings of new transcription factors that play a critical role in controlling both pluripotency network and ESC identity.

  6. Confinement and clearance of OCT4 in the porcine embryo at stereomicroscopically defined stages around gastrulation

    DEFF Research Database (Denmark)

    Vejlsted, Morten; Offenberg, Hanne Kjær; Thorup, Flemming;

    2006-01-01

    In the areas of developmental biology and embryonic stem cell research, reliable molecular markers of pluripotency and early lineage commitment are sparse in large animal species. In this study, we present morphological and immunohistochemical findings on the porcine embryo in the period around...... gastrulation, days 8-17 postinsemination, introducing a steromicroscopical staging system in this species. In embryos at the expanding hatched blastocyst stage, OCT4 is confined to the inner cell mass. Following detachment of the hypoblast, and formation of the embryonic disk, this marker of pluripotency...

  7. Targeting Tumor Oct4 to Deplete Prostate Tumor- and Metastasis-Initiating Cells

    Science.gov (United States)

    2015-10-01

    Daotai Nie CONTRACTING ORGANIZATION: Southern Illinois University Springfield, IL 62794-9626 REPORT DATE: October 2015 TYPE OF REPORT: Annual PREPARED...AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Southern Illinois University Springfield, IL 62794 9. SPONSORING / MONITORING AGENCY...POU5F1B (also called POU5F1P1), in this gene desert of 1.2Mb between FAM84B and the c-MYC oncogene. POU5F1B is a pseudogene of embryonic Oct4

  8. Generation of induced pluripotent stem cells from buffalo (Bubalus bubalis) fetal fibroblasts with buffalo defined factors.

    Science.gov (United States)

    Deng, Yanfei; Liu, Qingyou; Luo, Chan; Chen, Shibei; Li, Xiangping; Wang, Caizhu; Liu, Zhenzhen; Lei, Xiaocan; Zhang, Huina; Sun, Hongliang; Lu, Fenghua; Jiang, Jianrong; Shi, Deshun

    2012-09-01

    Ectopically, expression of defined factors could reprogram mammalian somatic cells into induced pluripotent stem cells (iPSCs), which initiates a new strategy to obtain pluripotent stem cell lines. Attempts have been made to generate buffalo pluripotent stem cells by culturing primary germ cells or inner cell mass, but the efficiency is extremely low. Here, we report a successful method to reprogram buffalo fetal fibroblasts (BFFs) into pluripotent stem cells [buffalo induced pluripotent stem cell (biPSCs)] by transduction of buffalo defined factors (Oct4, Sox2, Klf4, and c-Myc) using retroviral vectors. The established biPSCs displayed typical morphological characteristics of pluripotent stem cells, normal karyotype, positive staining of alkaline phosphatase, and expressed pluripotent markers including Oct4, Sox2, Nanog, Lin28, E-Cadherin, SSEA-1, SSEA-4, TRA-1-81, STAT3, and FOXD3. They could form embryoid bodies (EBs) in vitro and teratomas after injecting into the nude BALB/C mice, and 3 germ layers were identified in the EBs and teratomas. Methylation assay revealed that the promoters of Oct4 and Nanog were hypomethylated in biPSCs compared with BFFs and pre-biPSCs, while the promoters of Sox2 and E-Cadherin were hypomethylated in both BFFs and biPSCs. Further, inhibiting p53 expression by coexpression of SV40 large T antigen and buffalo defined factors in BFFs or treating BFFs with p53 inhibitor pifithrin-a (PFT) could increase the efficiency of biPSCs generation up to 3-fold, and nuclear transfer embryos reconstructed with biPSCs could develop to blastocysts. These results indicate that BFFs can be reprogrammed into biPSCs by buffalo defined factors, and the generation efficiency of biPSCs can be increased by inhibition of p53 expression. These efforts will provide a feasible approach for investigating buffalo stem cell signal pathways, establishing buffalo stem cell lines, and producing genetic modification buffaloes in the future.

  9. EXPRESSION OF THE SOX2 GENE IN DIFFERENT TISSUES AND DIFFERENT MONTHS ON TESTIS OF HYRIOPSIS SCHLEGELII%池蝶蚌Sox2基因在不同组织及不同月龄精巢中的表达

    Institute of Scientific and Technical Information of China (English)

    曾柳根; 徐灵; 王军花; 盛军庆; 辜清; 彭扣; 洪一江

    2012-01-01

    The Sox genes family comprises several transcription factors that share a highly conserved HMG (High-Mobility-Group) box and has been studied in many species, including a variety of vertebrates and several of invertebrates such as fruit fly, nematode and Portunustrituberculatus. But there are only few reports on Sox gene family of freshwater bivalve so far, which have important value in evolution and production. H. Schlegelii, which originated from Lake Biwa in Japan and was introduced into China in 1998, is one of the representative freshwater pearl mussels. It has been widely applied in the Chinese freshwater pearl industry for its high quality pearl bearing ability. In order to know the function of Sox genes in this mussel, a degenerate PCR, referred to the HMG box of human SRY gene, was used to amplify the conserved sequence of HMG domains of Sox genes. Two different HMG sequences were got from DNA and the testis cDNA, named DNA-HMG1, DNA-HMG2 and cDNA-HMG. Amino acids sequences analysis showed that those HMG sequences had high homology with the Sox1, Sox2, Sox3 and Sox 14 genes from other animals including human being. But there showed no difference between the male and female. A partial cDNA sequence of Sox2 gene (refereed as hs-Sox2) with 1774 bp including partial ORF and complete 3' untranslated region (UTR) was cloned from the testis cDNA by RACE-PCR methods. DNA sequences analysis showed that it had high homology with the SoxB gene in Patella vulgata and the Soxl gene in human being. The putative 249 amino acid sequence contained one conserved HMG box like the human SYR gene, and exhibited 98% homology with human, mouse, chicken and zebrafish. For further know the expression level of Sox2 gene, real-time PCR method was used to examine its mRNA level in different tissues and different months on testis of H. Schlegelii. Results showed that the hs-Soxl mRNA was ubiquitously expressed in all the tissues, with the highest in kidney, followed by intestine

  10. Altered Expression of High Molecular Weight Heat Shock Proteins after OCT4B1 Suppression in Human Tumor Cell Lines

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Mirzaei

    2016-02-01

    Full Text Available Objective: OCT4B1, a novel variant of OCT4, is expressed in cancer cell lines and tissues. Based on our previous reports, OCT4B1 appears to have a crucial role in regulating apoptosis as well as stress response [heat shock proteins (HSPs] pathways. The aim of the present study was to determine the effects of OCT4B1 silencing on the expression of high molecular weight HSPs in three different human tumor cell lines. Materials and Methods: In this experimental study, OCT4B1 expression was suppressed in AGS (gastric adenocarcinoma, 5637 (bladder tumor and U-87MG (brain tumor cell lines using RNAi strategy. Real-time polymerase chain reaction (PCR array was employed for expression level analysis and the fold changes were calculated using RT2 Profiler PCR array data analysis software version 3.5. Results: Our data revealed up-regulation of HSPD1 (from HSP60 family as well as HSPA14, HSPA1L, HSPA4, HSPA5 and HSPA8 (from HSP70 family following OCT4B1 knock-down in all three cell lines. In contrast, the expression of HSP90AA1 and HSP- 90AB1 (from HSP90 family as well as HSPA1B and HSPA6 (from HSP70 family was down-regulated under similar conditions. Other stress-related genes showed varying expression pattern in the examined tumor cell lines. Conclusion: Our data suggest a direct or indirect correlation between the expression of OCT4B1 and HSP90 gene family. However, OCT4B1 expression was not strongly correlated with the expression of HSP70 and HSP60 gene families.

  11. Unravelling the pluripotency paradox in fetal and placental mesenchymal stem cells: Oct-4 expression and the case of The Emperor's New Clothes.

    Science.gov (United States)

    Ryan, Jennifer M; Pettit, Allison R; Guillot, Pascale V; Chan, Jerry K Y; Fisk, Nicholas M

    2013-08-01

    Mesenchymal stem cells (MSC) from fetal-placental tissues have translational advantages over their adult counterparts, and have variably been reported to express pluripotency markers. OCT-4 expression in fetal-placental MSC has been documented in some studies, paradoxically without tumourogenicity in vivo. It is possible that OCT-4 expression is insufficient to induce true "stemness", but this issue is important for the translational safety of fetal-derived MSC. To clarify this, we undertook a systematic literature review on OCT-4 in fetal or adnexal MSC to show that most studies report OCT-4 message or protein expression, but no study provides definitive evidence of true OCT-4A expression. Discrepant findings were attributable not to different culture conditions, tissue sources, or gestational ages but instead to techniques used. In assessing OCT-4 as a pluripotency marker, we highlight the challenges in detecting the correct OCT-4 isoform (OCT-4A) associated with pluripotency. Although specific detection of OCT-4A mRNA is achievable, it appears unlikely that any antibody can reliably distinguish between OCT-4A and the pseudogene OCT-4B. Finally, using five robust techniques we demonstrate that fetal derived-MSC do not express OCT-4A (or by default OCT-4B). Reports suggesting OCT-4 expression in fetal-derived MSC warrant reassessment, paying attention to gene and protein isoforms, pseudogenes, and antibody choice as well as primer design. Critical examination of the OCT-4 literature leads us to suggest that OCT-4 expression in fetal MSC may be a case of "The Emperor's New Clothes" with early reports of (false) positive expression amplified in subsequent studies without critical attention to emerging refinements in knowledge and methodology.

  12. Generation of Knock-In Pigs Carrying Oct4-tdTomato Reporter through CRISPR/Cas9-Mediated Genome Engineering

    OpenAIRE

    2016-01-01

    The porcine pluripotent cells that can generate germline chimeras have not been developed. The Oct4 promoter-based fluorescent reporter system, which can be used to monitor pluripotency, is an important tool to generate authentic porcine pluripotent cells. In this study, we established a porcine Oct4 reporter system, wherein the endogenous Oct4 promoter directly controls red fluorescent protein (RFP). 2A-tdTomato sequence was inserted to replace the stop codon of the porcine Oct4 gene by homo...

  13. Attributes of Oct4 in stem cell biology: perspectives on cancer stem cells of the ovary

    Directory of Open Access Journals (Sweden)

    Samardzija Chantel

    2012-11-01

    Full Text Available Abstract Epithelial ovarian cancer (EOC remains the most lethal of all the gynaecological malignancies with drug resistance and recurrence remaining the major therapeutic barrier in the management of the disease. Although several studies have been undertaken to understand the mechanisms responsible for chemoresistance and subsequent recurrence in EOC, the exact mechanisms associated with chemoresistance/recurrence continue to remain elusive. Recent studies have shown that the parallel characteristics commonly seen between embryonic stem cells (ESCs and induced pluripotent stem cells (iPSC are also shared by a relatively rare population of cells within tumors that display stem cell-like features. These cells, termed ‘cancer initiating cells’ or ‘cancer stem cells (CSCs’ have been shown not only to display increased self renewal and pluripotent abilities as seen in ESCs and iPSCs, but are also highly tumorigenic in in vivo mouse models. Additionally, these CSCs have been implicated in tumor recurrence and chemoresistance, and when isolated have consistently shown to express the master pluripotency and embryonic stem cell regulating gene Oct4. This article reviews the involvement of Oct4 in cancer progression and chemoresistance, with emphasis on ovarian cancer. Overall, we highlight why ovarian cancer patients, who initially respond to conventional chemotherapy subsequently relapse with recurrent chemoresistant disease that is essentially incurable.

  14. Transdifferentiation of Human Hair Follicle Mesenchymal Stem Cells into Red Blood Cells by OCT4

    Directory of Open Access Journals (Sweden)

    Zhijing Liu

    2015-01-01

    Full Text Available Shortage of red blood cells (RBCs, erythrocytes can have potentially life-threatening consequences for rare or unusual blood type patients with massive blood loss resulting from various conditions. Erythrocytes have been derived from human pluripotent stem cells (PSCs, but the risk of potential tumorigenicity cannot be ignored, and a majority of these cells produced from PSCs express embryonic ε- and fetal γ-globins with little or no adult β-globin and remain nucleated. Here we report a method to generate erythrocytes from human hair follicle mesenchymal stem cells (hHFMSCs by enforcing OCT4 gene expression and cytokine stimulation. Cells generated from hHFMSCs expressed mainly the adult β-globin chain with minimum level of the fetal γ-globin chain. Furthermore, these cells also underwent multiple maturation events and formed enucleated erythrocytes with a biconcave disc shape. Gene expression analyses showed that OCT4 regulated the expression of genes associated with both pluripotency and erythroid development during hHFMSC transdifferentiation toward erythroid cells. These findings show that mature erythrocytes can be generated from adult somatic cells, which may serve as an alternative source of RBCs for potential autologous transfusion.

  15. The prognostic value of SOX2 expression in non-small cell lung cancer: a meta-analysis.

    Directory of Open Access Journals (Sweden)

    Yansu Chen

    Full Text Available OBJECTIVE: To investigate the association of SOX2 expression in tumor with clinicopathological features and survival of non-small-cell lung carcinoma (NSCLC patients. METHODS: Publications assessing the clinicopathological characteristics and prognostic significance of SOX2 in NSCLC were identified up to May 2013. A meta-analysis of eligible studies was performed using standard statistical methods to clarify the association between SOX2 expression and these clinical parameters. RESULTS: A total of eight studies met the inclusion criteria. Analysis of these data showed that SOX2 expression was positively associated with squamous histology, (pooled OR = 5.26, 95% CI: 1.08-25.6, P = 0.040. Simultaneously, we also found that SOX2 expression was positively associated with overall survival (pooled HR = 0.65, 95% CI: 0.47-0.89, P = 0.007, random-effect. CONCLUSIONS: SOX2 expression in tumor is a candidate positive prognostic biomarker for NSCLC patients.

  16. Expressions of SOX2 and CyclinD1 in epithelial ovarian cancer tissue%卵巢上皮性癌组织中 SOX2和 CyclinD1的表达

    Institute of Scientific and Technical Information of China (English)

    姚俊阁; 李红雨; 赵书君; 张慧; 张艳艳; 郭欢欢

    2014-01-01

    目的:检测卵巢上皮性癌组织中SOX2和CyclinD1的表达。方法:分别采用免疫组化SP法和RT-PCR法检测20例正常卵巢上皮组织、20例卵巢良性上皮性肿瘤组织及43例卵巢上皮性癌组织中SOX2和CyclinD1蛋白及mRNA的表达。结果:3种组织间SOX2、CyclinD1蛋白及mRNA的表达差异有统计学意义(蛋白:χ2=32.998,mRNA:F=454.222、398.284,P均<0.05);卵巢上皮性癌组织中SOX2、CyclinD1蛋白及mRNA的表达高于卵巢良性上皮性肿瘤组织及正常卵巢上皮组织( P均<0.05)。 SOX2、CyclinD1蛋白的表达均与卵巢上皮性癌FIGO分期、分化程度及淋巴结转移有关(P均<0.05)。卵巢上皮性癌组织中SOX2、CyclinD1蛋白的表达有关联(rp =0.422,P<0.05)。结论:SOX2和CyclinD1在卵巢上皮性癌组织中高表达,二者可能协同参与卵巢上皮性癌的发生及发展。%Aim:To explore the expressions and clinical significance of SOX 2 and CyclinD1 in epithelial ovarian canc-er tissue.Methods:Immunohistochemical SP method and RT-PCR were used to separately detect the expressions of SOX 2 and CyclinD1 in 20 cases of normal epithelial ovarian tissue , 20 cases of benign epithelial ovarian neoplasm tissue , and 43 cases of epithelial ovarian cancer tissue .Results:The expressions of SOX2 and CyclinD1 protein and mRNA in epithelial ovarian cancer tissue were significantly higher than those in benign epithelial ovarian neoplasm tissue and normal epithelial ovarian tissue(protein:χ2 =32.998;mRNA:F=454.222,398.284, all P<0.05).The expressions of SOX2 and CyclinD1 protein in epithelial ovarian cancer tissue were related to FIGO stage , histological differentiation and lymph node metastasis (P<0.05).The expression of SOX2 protein was associated with that of CyclinD1 protein in epithelial ovarian cancer tissue (rp =0.422,P<0.05).Conclusion: SOX2 and CyclinD1 are both over-expressed in epithelial ovarian cancer

  17. Sox2+ progenitors in sharks link taste development with the evolution of regenerative teeth from denticles

    Science.gov (United States)

    Martin, Kyle J.; Rasch, Liam J.; Cooper, Rory L.; Johanson, Zerina; Fraser, Gareth J.

    2016-01-01

    Teeth and denticles belong to a specialized class of mineralizing epithelial appendages called odontodes. Although homology of oral teeth in jawed vertebrates is well supported, the evolutionary origin of teeth and their relationship with other odontode types is less clear. We compared the cellular and molecular mechanisms directing development of teeth and skin denticles in sharks, where both odontode types are retained. We show that teeth and denticles are deeply homologous developmental modules with equivalent underlying odontode gene regulatory networks (GRNs). Notably, the expression of the epithelial progenitor and stem cell marker sex-determining region Y-related box 2 (sox2) was tooth-specific and this correlates with notable differences in odontode regenerative ability. Whereas shark teeth retain the ancestral gnathostome character of continuous successional regeneration, new denticles arise only asynchronously with growth or after wounding. Sox2+ putative stem cells associated with the shark dental lamina (DL) emerge from a field of epithelial progenitors shared with anteriormost taste buds, before establishing within slow-cycling cell niches at the (i) superficial taste/tooth junction (T/TJ), and (ii) deep successional lamina (SL) where tooth regeneration initiates. Furthermore, during regeneration, cells from the superficial T/TJ migrate into the SL and contribute to new teeth, demonstrating persistent contribution of taste-associated progenitors to tooth regeneration in vivo. This data suggests a trajectory for tooth evolution involving cooption of the odontode GRN from nonregenerating denticles by sox2+ progenitors native to the oral taste epithelium, facilitating the evolution of a novel regenerative module of odontodes in the mouth of early jawed vertebrates: the teeth. PMID:27930309

  18. Nestin-positive/SOX2-negative cells mediate adult neurogenesis of nigral dopaminergic neurons in mice.

    Science.gov (United States)

    Albright, Joshua E; Stojkovska, Iva; Rahman, Abir A; Brown, Connor J; Morrison, Brad E

    2016-02-26

    The primary clinical motor symptoms of Parkinson's disease (PD) result from loss of dopaminergic (DA) neurons in the substantia nigra (SN). Consequently, neurogenesis of this group of neurons in the adult brain has drawn considerable interest for the purpose of harnessing endogenous neurogenerative potential as well as devising better strategies for stem cell therapy for PD. However, the existence of adult neurogenesis for DA neurons within the SN remains controversial. To overcome technical and design limitations associated with previous studies, our group has developed a novel genetic mouse model for assessing adult nigral DA neurogenesis. This system utilizes transgenic mice that express a tamoxifen-activatable Cre recombinase (Cre(ERT2)) under the control of the neuronal progenitor cell promoters nestin or Sox2 leading to suppression of the DA neuron marker tyrosine hydroxylase (TH) via excision of exon 1 by flanking loxP sites in adult animals. This study reports that six months following initiation of a six week treatment with tamoxifen mice with nestin-mediated Th excision displayed a significant reduction in TH+ neurons in the SN. This finding indicates that nestin-expressing cells regenerate DA neurons within the SN of adult animals. Interestingly, no reduction was observed in TH+ cells following Sox2-mediated Th excision suggesting that a nestin+/SOX2- precursor cell population drives DA neurogenesis in the adult SN. This information represents a substantial leap in current knowledge of adult DA neurogenesis, will enable improved in vitro and in vivo modeling, as well as facilitate the harnessing of this process for therapeutic intervention for PD. Published by Elsevier Ireland Ltd.

  19. Análisis del gen SOX-2 en carcinoma escamoso de cabeza y cuello

    OpenAIRE

    González Márquez, Rocío

    2015-01-01

    El carcinoma escamoso de cabeza y cuello es la sexta neoplasia más frecuente en el mundo. El origen de dichos tumores implica gran numero de alteraciones genéticas y moleculares, siendo recientemente estudiado el gen SOX2. Se estudiaron las muestras procedentes de 220 pacientes con carcinoma escamoso de hipofaringe, laringe y senos paranasales. En el estudio inmunohistoquímico apareció un grado de sobreexpresión similar en tumores faringeos y laríngeos, así como relación significativa con...

  20. Análisis del gen SOX-2 en carcinoma escamoso de cabeza y cuello

    OpenAIRE

    González Márquez, Rocío

    2014-01-01

    El carcinoma escamoso de cabeza y cuello es la sexta neoplasia más frecuente en el mundo. El origen de dichos tumores implica gran numero de alteraciones genéticas y moleculares, siendo recientemente estudiado el gen SOX2. Se estudiaron las muestras procedentes de 220 pacientes con carcinoma escamoso de hipofaringe, laringe y senos paranasales. En el estudio inmunohistoquímico apareció un grado de sobreexpresión similar en tumores faringeos y laríngeos, así como relación significativa con...

  1. 干细胞特异性标志物Oct-4在表皮肿瘤中表达的临床实验研究%Oct-4 expression in epidermal tumors

    Institute of Scientific and Technical Information of China (English)

    沈颖; 蔡绥勍

    2012-01-01

    Objective The aim of this study was to understand the role of specific markers of stem cells Oct-4 expression in the development of human epidermal non-melanoma cutaneous tumors.Methods The paraffin-embedded samples were retrieved from files of pathology department at our hospital,including 20 cases of skin squamous cell carcinomas (SCC),20 cases of basal cell carcinomas (BCC),20 cases of seborrhoeic keratosis (SK) and 20 cases of normal skin (from head,face,trunk,extremities).The expression of Oct-4 and PCNA were observed by immunohistochemical staining technique.Results Oct-4 protein was abnormally increased in SCC and BCC comparel to normal skin and SK ( P <0.05 ).However there were no significant difference of Oct-4 protein expression between SCC and BCC ( P >0.05).There were also no significantly different Oct-4 protein expression between Sk and the normal skin ( P > 0.05 ),and no significantly different Oct-4 protein expression between SK and BCC( P >0.05 ).PCNA protein was abnormally increased in SCC and BCC compared to normal skin and SK ( P <0.01 ).There were significantly different PCNA protein expression between SCC and BCC( P <0.05).There were also significantly different PCNA protein expression between SK and the normal skin ( P < 0.05 ).However there were no significant difference of PCNA protein expression between SK and BCC ( P > 0.05 ).There were positive correlation between the expression intensity of Oct-4 and PCNA in SCC and BCC.Conclusions The abnormal expression of Oct-4 may have an important role in the development of BCC and SCC.Positive Oct-4 expression cells may be the tumor stem cell in SCC and BCC.There were positive correlation between the expression intensity of Oct-4 and PCNA in SCC and BCC.The over expression Oct-4 in BCC and SCC may play an important role in proliferation of tumor.%目的 探讨表皮非黑素肿瘤中干细胞特异性标志物Oct-4的表达情况以及在表皮肿瘤发生中的作用.方法

  2. Expression and significance of S100P, CD147, and OCT4 in different prostate cancer tissue TNM stages.

    Science.gov (United States)

    Wang, Q; Zhang, J G; Wang, W

    2015-06-18

    The aim of this project was to investigate the expression and significance of S100P, CD147, and OCT4 in prostate cancer tissue at different TNM stages. We enrolled 54 patients with prostate cancer, 40 with benign prostatic hyperplasia, and 20 subjects with normal prostates. S100P, CD147, and OCT4 were detected by immunohistochemistry. The positive rate of S100P detection was 18.52% in prostate cancer tissues, significantly lower than in normal and benign prostate hyperplasia tissues (P ˂ 0.05). The positive expression rate of CD147 and OCT4 were 100 and 77.38% in prostate cancer tissue, respectively, both markedly higher than in normal and benign prostate hyperplasia tissue (P ˂ 0.05). The positive rate of S100P in stage V was 0, which was significantly lower than in stages I (37.50%) and II (35.71%) (P ˂ 0.05). OCT4 expression in stages III (86.67%) and V (94.12%) was higher than in stage I (37.50%). The positive rate of S100P in patients with distant metastasis was 4%, which was significantly lower than that in patients without metastases (P ˂ 0.05). In contrast, the positive rate of OCT4 in patients with distant metastasis was 92%. S100P, CD147, and OCT4 expression in prostate cancer patients with different degrees of differentiation had no significant difference (P > 0.05). Overall, our results demonstrated that S100P expression in prostate cancer tissue was significantly decreased, whereas CD147 and OCT4 expression was increased. Their expression levels were closely associated with TNM stage and distant metastasis, but were not related to the degree of differentiation.

  3. Aberrant DNA methylation reprogramming during induced pluripotent stem cell generation is dependent on the choice of reprogramming factors

    Directory of Open Access Journals (Sweden)

    Aline C Planello

    2014-01-01

    Full Text Available The conversion of somatic cells into pluripotent stem cells via overexpression of reprogramming factors involves epigenetic remodeling. DNA methylation at a significant proportion of CpG sites in induced pluripotent stem cells (iPSCs differs from that of embryonic stem cells (ESCs. Whether different sets of reprogramming factors influence the type and extent of aberrant DNA methylation in iPSCs differently remains unknown. In order to help resolve this critical question, we generated human iPSCs from a common fibroblast cell source using either the Yamanaka factors (OCT4, SOX2, KLF4 and cMYC or the Thomson factors (OCT4, SOX2, NANOG and LIN28, and determined their genome-wide DNA methylation profiles. In addition to shared DNA methylation aberrations present in all our iPSCs, we identified Yamanaka-iPSC (Y-iPSC-specific and Thomson-iPSC (T-iPSC-specific recurrent aberrations. Strikingly, not only were the genomic locations of the aberrations different but also their types: reprogramming with Yamanaka factors mainly resulted in failure to demethylate CpGs, whereas reprogramming with Thomson factors mainly resulted in failure to methylate CpGs. Differences in the level of transcripts encoding DNMT3b and TET3 between Y-iPSCs and T-iPSCs may contribute partially to the distinct types of aberrations. Finally, de novo aberrantly methylated genes in Y-iPSCs were enriched for NANOG targets that are also aberrantly methylated in some cancers. Our study thus reveals that the choice of reprogramming factors influences the amount, location, and class of DNA methylation aberrations in iPSCs. These findings may provide clues into how to produce human iPSCs with fewer DNA methylation abnormalities.

  4. Activated WNT signaling in postnatal SOX2-positive dental stem cells can drive odontoma formation.

    Science.gov (United States)

    Xavier, Guilherme M; Patist, Amanda L; Healy, Chris; Pagrut, Ankita; Carreno, Gabriela; Sharpe, Paul T; Martinez-Barbera, Juan Pedro; Thavaraj, Selvam; Cobourne, Martyn T; Andoniadou, Cynthia L

    2015-09-28

    In common with most mammals, humans form only two dentitions during their lifetime. Occasionally, supernumerary teeth develop in addition to the normal complement. Odontoma represent a small group of malformations containing calcified dental tissues of both epithelial and mesenchymal origin, with varying levels of organization, including tooth-like structures. The specific cell type responsible for the induction of odontoma, which retains the capacity to re-initiate de novo tooth development in postnatal tissues, is not known. Here we demonstrate that aberrant activation of WNT signaling by expression of a non-degradable form of β-catenin specifically in SOX2-positive postnatal dental epithelial stem cells is sufficient to generate odontoma containing multiple tooth-like structures complete with all dental tissue layers. Genetic lineage-tracing confirms that odontoma form in a similar manner to normal teeth, derived from both the mutation-sustaining epithelial stem cells and adjacent mesenchymal tissues. Activation of the WNT pathway in embryonic SOX2-positive progenitors results in ectopic expression of secreted signals that promote odontogenesis throughout the oral cavity. Significantly, the inductive potential of epithelial dental stem cells is retained in postnatal tissues, and up-regulation of WNT signaling specifically in these cells is sufficient to promote generation and growth of ectopic malformations faithfully resembling human odontoma.

  5. SOX2+ cell population from normal human brain white matter is able to generate mature oligodendrocytes.

    Directory of Open Access Journals (Sweden)

    Jorge Oliver-De La Cruz

    Full Text Available OBJECTIVES: A number of neurodegenerative diseases progress with a loss of myelin, which makes them candidate diseases for the development of cell-replacement therapies based on mobilisation or isolation of the endogenous neural/glial progenitor cells, in vitro expansion, and further implantation. Cells expressing A2B5 or PDGFRA/CNP have been isolated within the pool of glial progenitor cells in the subcortical white matter of the normal adult human brain, all of which demonstrate glial progenitor features. However, the heterogeneity and differentiation potential of this pool of cells is not yet well established. METHODS: We used diffusion tensor images, histopathology, and immunostaining analysis to demonstrate normal cytoarchitecture and the absence of abnormalities in human temporal lobe samples from patients with mesial temporal sclerosis. These samples were used to isolate and enrich glial progenitor cells in vitro, and later to detect such cells in vivo. RESULTS: We have identified a subpopulation of SOX2+ cells, most of them co-localising with OLIG2, in the white matter of the normal adult human brain in vivo. These cells can be isolated and enriched in vitro, where they proliferate and generate immature (O4+ and mature (MBP+ oligodendrocytes and, to a lesser extent, astrocytes (GFAP+. CONCLUSION: Our results demonstrate the existence of a new glial progenitor cell subpopulation that expresses SOX2 in the white matter of the normal adult human brain. These cells might be of use for tissue regeneration procedures.

  6. Evaluation of SOX2 as a potential marker for ameloblastic carcinoma.

    Science.gov (United States)

    Lei, Yu; Jaradat, Jumana M; Owosho, Adepitan; Adebiyi, Kehinde E; Lybrand, Kelley S; Neville, Brad W; Müller, Susan; Bilodeau, Elizabeth A

    2014-05-01

    Ameloblastic carcinoma often poses diagnostic challenges in its separation from benign ameloblastoma with atypical cytologic features or an unusual clinical course. This study aimed to determine whether SOX2 (sex determining region-Y-related high mobility group box 2), a protein expressed in the epithelial basal proliferative zone in dentigerous cysts, is a marker for ameloblastic carcinoma as well as for high-grade transformation in ameloblastic neoplasms. Immunoperoxidase stains were performed according to a standard protocol. Immunostains were interpreted independently by 3 pathologists, and scores were recorded based on the percentage of staining and intensity of staining in the cells of interest. The diffuse strong nuclear staining pattern has 86.4% specificity (19 of 22) to indicate the presence of high-grade features and has 76.9% sensitivity (10 of 13) in comparison with benign counterparts (P = .0021). Although previously shown as a marker for ameloblastic neoplasms, calretinin is weakly positive in a few cells in 50% (5 of 10) of ameloblastic carcinoma and 43% (3 of 7) of benign ameloblastic neoplasms, with little value in highlighting the high-grade change (P = .36). The diffuse nuclear staining pattern of SOX2 is suggestive of a high-grade process in ameloblastic neoplasms. Numerous aggregates of cells harboring dense nuclear stain should raise concern for a malignancy. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Activated WNT signaling in postnatal SOX2-positive dental stem cells can drive odontoma formation

    Science.gov (United States)

    Xavier, Guilherme M.; Patist, Amanda L.; Healy, Chris; Pagrut, Ankita; Carreno, Gabriela; Sharpe, Paul T.; Pedro Martinez-Barbera, Juan; Thavaraj, Selvam; Cobourne, Martyn T.; Andoniadou, Cynthia L.

    2015-01-01

    In common with most mammals, humans form only two dentitions during their lifetime. Occasionally, supernumerary teeth develop in addition to the normal complement. Odontoma represent a small group of malformations containing calcified dental tissues of both epithelial and mesenchymal origin, with varying levels of organization, including tooth-like structures. The specific cell type responsible for the induction of odontoma, which retains the capacity to re-initiate de novo tooth development in postnatal tissues, is not known. Here we demonstrate that aberrant activation of WNT signaling by expression of a non-degradable form of β-catenin specifically in SOX2-positive postnatal dental epithelial stem cells is sufficient to generate odontoma containing multiple tooth-like structures complete with all dental tissue layers. Genetic lineage-tracing confirms that odontoma form in a similar manner to normal teeth, derived from both the mutation-sustaining epithelial stem cells and adjacent mesenchymal tissues. Activation of the WNT pathway in embryonic SOX2-positive progenitors results in ectopic expression of secreted signals that promote odontogenesis throughout the oral cavity. Significantly, the inductive potential of epithelial dental stem cells is retained in postnatal tissues, and up-regulation of WNT signaling specifically in these cells is sufficient to promote generation and growth of ectopic malformations faithfully resembling human odontoma. PMID:26411543

  8. The Developmental Potential of iPSCs Is Greatly Influenced by Reprogramming Factor Selection

    NARCIS (Netherlands)

    Buganim, Yosef; Markoulaki, Styliani; van Wietmarschen, Niek; Hoke, Heather; Wu, Tao; Ganz, Kibibi; Akhtar-Zaidi, Batool; He, Yupeng; Abraham, Brian J.; Porubsky, David; Kulenkampff, Elisabeth; Faddah, Dina A.; Shi, Linyu; Gao, Qing; Sarkar, Sovan; Cohen, Malkiel; Goldmann, Johanna; Nery, Joseph R.; Schultz, Matthew D.; Ecker, Joseph R.; Xiao, Andrew; Young, Richard A.; Lansdorp, Peter M.; Jaenisch, Rudolf

    2014-01-01

    Induced pluripotent stem cells (iPSCs) are commonly generated by transduction of Oct4, Sox2, Klf4, and Myc (OSKM) into cells. Although iPSCs are pluripotent, they frequently exhibit high variation in terms of quality, as measured in mice by chimera contribution and tetraploid complementation.

  9. The Developmental Potential of iPSCs Is Greatly Influenced by Reprogramming Factor Selection

    NARCIS (Netherlands)

    Buganim, Yosef; Markoulaki, Styliani; van Wietmarschen, Niek; Hoke, Heather; Wu, Tao; Ganz, Kibibi; Akhtar-Zaidi, Batool; He, Yupeng; Abraham, Brian J.; Porubsky, David; Kulenkampff, Elisabeth; Faddah, Dina A.; Shi, Linyu; Gao, Qing; Sarkar, Sovan; Cohen, Malkiel; Goldmann, Johanna; Nery, Joseph R.; Schultz, Matthew D.; Ecker, Joseph R.; Xiao, Andrew; Young, Richard A.; Lansdorp, Peter M.; Jaenisch, Rudolf

    2014-01-01

    Induced pluripotent stem cells (iPSCs) are commonly generated by transduction of Oct4, Sox2, Klf4, and Myc (OSKM) into cells. Although iPSCs are pluripotent, they frequently exhibit high variation in terms of quality, as measured in mice by chimera contribution and tetraploid complementation. Reliab

  10. Sox2, Tlx, Gli3, and Her9 converge on Rx2 to define retinal stem cells in vivo.

    Science.gov (United States)

    Reinhardt, Robert; Centanin, Lázaro; Tavhelidse, Tinatini; Inoue, Daigo; Wittbrodt, Beate; Concordet, Jean-Paul; Martinez-Morales, Juan Ramón; Wittbrodt, Joachim

    2015-06-03

    Transcriptional networks defining stemness in adult neural stem cells (NSCs) are largely unknown. We used the proximal cis-regulatory element (pCRE) of the retina-specific homeobox gene 2 (rx2) to address such a network. Lineage analysis in the fish retina identified rx2 as marker for multipotent NSCs. rx2-positive cells located in the peripheral ciliary marginal zone behave as stem cells for the neuroretina, or the retinal pigmented epithelium. We identified upstream regulators of rx2 interrogating the rx2 pCRE in a trans-regulation screen and focused on four TFs (Sox2, Tlx, Gli3, and Her9) activating or repressing rx2 expression. We demonstrated direct interaction of the rx2 pCRE with the four factors in vitro and in vivo. By conditional mosaic gain- and loss-of-function analyses, we validated the activity of those factors on regulating rx2 transcription and consequently modulating neuroretinal and RPE stem cell features. This becomes obvious by the rx2-mutant phenotypes that together with the data presented above identify rx2 as a transcriptional hub balancing stemness of neuroretinal and RPE stem cells in the adult fish retina.

  11. 穿膜肽引导的体外表达转录因子蛋白Sox2进入红鳍东方鲀精巢细胞系%Intracellular delivery of the expressed fusion protein Sox2 with cell penetrating peptides to cultured Takifugu rupies spermary cells

    Institute of Scientific and Technical Information of China (English)

    杨秀霞; 侯雪宁; 徐彬; 郝萧; 姜国建; 樊廷俊

    2014-01-01

    penetrating peptides such as Sox2-11R-6His. The recombi-nant proteins were incubated with cultured T. rupies spermary cell line cells in vitro. Cells treated with proteins below 8μg/mL induced no or minor toxic effects while higher concentrations gave rise to cytotoxicity. The transduction effi-ciency of the recombinant protein with 6 His tag, evaluated by western blotting using an anti-His antibody, reached a maximum level at 8 μg/mL and in a dose responsive fashion. Based upon the optimal concentration of proteins for transduction, Sox2-11R-H6 in TRS cells was further imaged using a fluorescence microscope. The recombinant protein Sox2-11R-H6was detected in the cytoplasm and even in the nucleus. Taken together, the value of the 11R translocation domain in facilitating the routing of proteins to the cytosol of cultured fish cells was confirmed. However, whether the functionality of the transcription factor Sox2 was disturbed by addition of this domain in the construct needs further exploration. The subcellular localization of transduced proteins may depend on the nature of imported proteins, the cell type, and delivery approach. As a transcription factor, Sox2 must contain a nuclear localization signal (NLS) so that it can be transported to the nucleus to bind to its target octamer motif and transactivate its target genes. Our observation that fluorescence intensity was higher in the nucleus than cytoplasm, indicates that the exogenous protein Sox2 enters the fish nucleus. Further experiments are needed to decide whether nuclear location ofSox2-11R-H6 was facilitated by a nuclear localization signal or the cell penetrating peptide.

  12. Factor-Reduced Human Induced Pluripotent Stem Cells Efficiently Differentiate into Neurons Independent of the Number of Reprogramming Factors.

    Science.gov (United States)

    Hermann, Andreas; Kim, Jeong Beom; Srimasorn, Sumitra; Zaehres, Holm; Reinhardt, Peter; Schöler, Hans R; Storch, Alexander

    2016-01-01

    Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) by overexpression of the transcription factors OCT4, SOX2, KLF4, and c-Myc holds great promise for the development of personalized cell replacement therapies. In an attempt to minimize the risk of chromosomal disruption and to simplify reprogramming, several studies demonstrated that a reduced set of reprogramming factors is sufficient to generate iPSC. We recently showed that a reduction of reprogramming factors in murine cells not only reduces reprogramming efficiency but also may worsen subsequent differentiation. To prove whether this is also true for human cells, we compared the efficiency of neuronal differentiation of iPSC generated from fetal human neural stem cells with either one (OCT4; hiPSC1F-NSC) or two (OCT4, KLF4; hiPSC2F-NSC) reprogramming factors with iPSC produced from human fibroblasts using three (hiPSC3F-FIB) or four reprogramming factors (hiPSC4F-FIB). After four weeks of coculture with PA6 stromal cells, neuronal differentiation of hiPSC1F-NSC and hiPSC2F-NSC was as efficient as iPSC3F-FIB or iPSC4F-FIB. We conclude that a reduction of reprogramming factors in human cells does reduce reprogramming efficiency but does not alter subsequent differentiation into neural lineages. This is of importance for the development of future application of iPSC in cell replacement therapies.

  13. Factor-Reduced Human Induced Pluripotent Stem Cells Efficiently Differentiate into Neurons Independent of the Number of Reprogramming Factors

    Directory of Open Access Journals (Sweden)

    Andreas Hermann

    2016-01-01

    Full Text Available Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs by overexpression of the transcription factors OCT4, SOX2, KLF4, and c-Myc holds great promise for the development of personalized cell replacement therapies. In an attempt to minimize the risk of chromosomal disruption and to simplify reprogramming, several studies demonstrated that a reduced set of reprogramming factors is sufficient to generate iPSC. We recently showed that a reduction of reprogramming factors in murine cells not only reduces reprogramming efficiency but also may worsen subsequent differentiation. To prove whether this is also true for human cells, we compared the efficiency of neuronal differentiation of iPSC generated from fetal human neural stem cells with either one (OCT4; hiPSC1F-NSC or two (OCT4, KLF4; hiPSC2F-NSC reprogramming factors with iPSC produced from human fibroblasts using three (hiPSC3F-FIB or four reprogramming factors (hiPSC4F-FIB. After four weeks of coculture with PA6 stromal cells, neuronal differentiation of hiPSC1F-NSC and hiPSC2F-NSC was as efficient as iPSC3F-FIB or iPSC4F-FIB. We conclude that a reduction of reprogramming factors in human cells does reduce reprogramming efficiency but does not alter subsequent differentiation into neural lineages. This is of importance for the development of future application of iPSC in cell replacement therapies.

  14. 甲状腺乳头状癌组织中SOX2和 CyclinD1的表达及相关性%Expressions of SOX2 and CyclinD1 in the Papillary Thyroid Carcinoma

    Institute of Scientific and Technical Information of China (English)

    董斌

    2016-01-01

    目的:探讨甲状腺乳头状癌组织中性别决定区 Y 框蛋白(SOX2)和细胞周期素 D1(CyclinD1)的表达及相关性。方法采用免疫组化 S-P 法检测100例甲状腺乳头状癌和50例癌旁正常甲状腺组织中 SOX2和 CyclinD1的表达,并分析两者与甲状腺乳头状癌患者临床病理参数的关系。结果甲状腺乳头状癌组织中 SOX2和 CyclinD1的阳性率分别为80.0%和73.0%,均高于癌旁正常甲状腺组织的10.0%和4.0%,差异有统计学意义(P <0.05)。甲状腺乳头状癌组织中 SOX2和 CyclinD1的表达与其临床分期、淋巴结转移关系密切(P <0.05)。甲状腺乳头状癌组织中 SOX2和 CyclinD1的表达呈正相关(r =0.597,P <0.05)。结论甲状腺乳头状癌组织中 SOX2和 CyclinD1存在表达,两者可能共同参与了甲状腺乳头状癌的疾病进展。%Objective To investigate the expressions of sex determining region Y-box(SOX2)and CyclinD1 in the patients with papillary thyroid carcinoma and the correlation. Methods Immunohistochemical S-P method was used to detect the expressions of SOX2 and CyclinD1 in the 100 patients with papillary thyroid carcinoma and 50 pa-tients with paraneoplastic normal thyroid tissues,their relationship with clinicopathological parameters were ana-lyzed. Results The positive rates of SOX2 and CyclinD1 in the papillary thyroid carcinoma were 80. 0% and 73. 0% ,and were 10. 0% and 4. 0% in the paraneoplastic normal thyroid tissues(P < 0. 05). The expressions of SOX2 and CyclinD1 in the papillary thyroid carcinoma were related with clinical stage and lymph node metastasis (P < 0. 05). In the papillary thyroid carcinoma,the expression of SOX2 was positively related with CyclinD1(r =0. 597,P < 0. 05). Conclusion high expressions of SOX2 and CyclinD1 are observed in the papillary thyroid carci-noma,and may be related to the development of papillary thyroid carcinoma.

  15. Oct-4 expression maintained cancer stem-like properties in lung cancer-derived CD133-positive cells.

    Directory of Open Access Journals (Sweden)

    Yu-Chih Chen

    Full Text Available CD133 (prominin-1, a 5-transmembrane glycoprotein, has recently been considered to be an important marker that represents the subset population of cancer stem-like cells. Herein we report the isolation of CD133-positive cells (LC-CD133(+ and CD133-negative cells (LC-CD133(- from tissue samples of ten patients with non-small cell lung cancer (LC and five LC cell lines. LC-CD133(+ displayed higher Oct-4 expressions with the ability to self-renew and may represent a reservoir with proliferative potential for generating lung cancer cells. Furthermore, LC-CD133(+, unlike LC-CD133(-, highly co-expressed the multiple drug-resistant marker ABCG2 and showed significant resistance to chemotherapy agents (i.e., cisplatin, etoposide, doxorubicin, and paclitaxel and radiotherapy. The treatment of Oct-4 siRNA with lentiviral vector can specifically block the capability of LC-CD133(+ to form spheres and can further facilitate LC-CD133(+ to differentiate into LC-CD133(-. In addition, knock-down of Oct-4 expression in LC-CD133(+ can significantly inhibit the abilities of tumor invasion and colony formation, and increase apoptotic activities of caspase 3 and poly (ADP-ribose polymerase (PARP. Finally, in vitro and in vivo studies further confirm that the treatment effect of chemoradiotherapy for LC-CD133(+ can be improved by the treatment of Oct-4 siRNA. In conclusion, we demonstrated that Oct-4 expression plays a crucial role in maintaining the self-renewing, cancer stem-like, and chemoradioresistant properties of LC-CD133(+. Future research is warranted regarding the up-regulated expression of Oct-4 in LC-CD133(+ and malignant lung cancer.

  16. Estblishment of Porcine Oct-4-EGFP Site-directed Transgene Cell Lines using Engineered TALENs%利用TALENs技术建立基因定点修饰的猪Oct-4-EGFP细胞系

    Institute of Scientific and Technical Information of China (English)

    刘畅; 冯冲; 宋志强; 李西睿; 王宁; 储明星; 潘登科

    2013-01-01

    本研究旨在建立一个用于干细胞示踪的报告体系,将EGFP cDNA及两侧带有LoxP位点的neo抗性基因插入五指山小型猪内源性Oct-4基因的终止密码子处,以Oct-4基因完整的5'调控区启动EGFP的表达,为猪干细胞研究提供有价值的工具.试验定制了针对猪Oct-4终止密码子的TALENs,与打靶载体共转染猪耳成纤维细胞,药物筛选得到抗性克隆点514个,经过PCR鉴定,共获得杂合阳性克隆点36个,打靶效率分别为5.6%和13.0%.本研究成功获得了Oct-4-EGFP转基因细胞系,并证明了TALENs技术可以明显提高同源重组效率.

  17. Sox2 regulates cholinergic amacrine cell positioning and dendritic stratification in the retina.

    Science.gov (United States)

    Whitney, Irene E; Keeley, Patrick W; St John, Ace J; Kautzman, Amanda G; Kay, Jeremy N; Reese, Benjamin E

    2014-07-23

    The retina contains two populations of cholinergic amacrine cells, one positioned in the ganglion cell layer (GCL) and the other in the inner nuclear layer (INL), that together comprise ∼1/2 of a percent of all retinal neurons. The present study examined the genetic control of cholinergic amacrine cell number and distribution between these two layers. The total number of cholinergic amacrine cells was quantified in the C57BL/6J and A/J inbred mouse strains, and in 25 recombinant inbred strains derived from them, and variations in their number and ratio (GCL/INL) across these strains were mapped to genomic loci. The total cholinergic amacrine cell number was found to vary across the strains, from 27,000 to 40,000 cells, despite little variation within individual strains. The number of cells was always lower within the GCL relative to the INL, and the sizes of the two populations were strongly correlated, yet there was variation in their ratio between the strains. Approximately 1/3 of that variation in cell ratio was mapped to a locus on chromosome 3, where Sex determining region Y box 2 (Sox2) was identified as a candidate gene due to the presence of a 6-nucleotide insertion in the protein-coding sequence in C57BL/6J and because of robust and selective expression in cholinergic amacrine cells. Conditionally deleting Sox2 from the population of nascent cholinergic amacrine cells perturbed the normal ratio of cells situated in the GCL versus the INL and induced a bistratifying morphology, with dendrites distributed to both ON and OFF strata within the inner plexiform layer.

  18. Functional Analysis of CP2-Like Domain and SAM-Like Domain in TFCP2L1, Novel Pluripotency Factor of Embryonic Stem Cells.

    Science.gov (United States)

    Kim, Chang Min; Jang, Tae-Ho; Park, Hyun Ho

    2016-06-01

    TFCP2L1 is a transcription factor that facilitates establishment and maintenance of pluripotency in embryonic stem cells by forming a complex transcriptional network with other transcription factors (OCT4, SOX2, and NANOG). TFCP2L1 contains two distinct domains, the CP2-like domain at the N-terminus and the SAM-like domain at the C-terminus. In this study, we found that TFCP2L1 is hexamerized in solution via the C-terminal SAM-like domain. We also found that homo-oligomerization of SAM-like domain is dependent on the concentration of the proteins. Finally, we found that TFCP2L1 binds directly to DNA via the N-terminal CP2-like domain.

  19. 胃癌细胞株MKN45球体细胞中Sox2的表达研究%Significantly increased expression of Sox2 in spheroid body forming cells of the human gastric cancer MKN45 cell line

    Institute of Scientific and Technical Information of China (English)

    刘建明; 马利林; 周友浪; 陈瑞新; 徐骏飞; 章建国; 刘杰

    2013-01-01

    Objective:To detect the expression of stem-cell related factor Sox2 in spheroid body-forming cells of gastric cancer cell line MKN45. Methods: We used gastric cancer cell line MKN45 to culture spheroid bodies in nonadherent condition in a serum-free medium supplemented with epidermal growth factor(EGF) and basic fibroblast growth factor(bFGF),and evaluated their resistance to DDP. Using reverse transcriptase polymerase chain reaction(RT-PCR) and Western Blot analysed the expres-sion level of the embryonic stem cell-related gene Sox2 in spheroid body forming cells and parental cells. Results: In this study, we observed that MKN45 cells formed spheroid bodies in nonadherent condition in a serum-free medium. The spheroid body-forming cells possessed the ability of chemoresistance, and showed higher expression of the embryonic stem cell-related gene Sox2. Conclusion: Spheroid body-forming cells developed from human gastric cancer cell line MKN45 in nonadherent condition in a serum-free medium supplemented with EGF and bFGF acquired CSCs characteristics. Spheroid body formation assay may be a practical and effective approach to isolate and identify CSCs.%目的:检测干细胞相关因子Sox2在胃癌细胞株MKN45悬浮球体细胞中的表达。方法:选择人胃癌细胞株MKN45,在含有表皮生长因子(epidermal growth factor,EGF)及基本的成纤维细胞生长因子(basic fibroblast growth factor,bFGF)无血清培养液中培养,观察球体形成情况,并检测球体细胞对化疗药物顺铂(cisplatin,DDP)的耐受性;采用RT-PCR与免疫印迹分析检测干细胞相关基因Sox2在球体细胞及原代贴壁细胞两组细胞中的表达差异。结果:胃癌细胞株MKN45在无血清培养条件下能形成悬浮球体,球体细胞中Sox2的相对表达量明显高于原代贴壁细胞(P=0.000)。结论:悬浮球培养法在胃癌细胞株MKN45中培养形成的球体细胞具有肿瘤干细胞特性。该方法是分离和鉴

  20. Reprogramming of mouse neural stem cells to induced pluripotent stem cells using Oct4 combined with microRNA

    Institute of Scientific and Technical Information of China (English)

    Qiuyue Yan; Jie Xu; Yanqiang Zhan; Zhouping Tang; Suming Zhang

    2011-01-01

    microRNA is important for maintaining characteristics of embryonic stem cells,and microRNA302a (MiR-302a) has been shown to exert important effects on cell reprogramming.Therefore,the present study used miR294 and miR302a,in combination with Oct4,to induce mouse neural stem cells (NSCs) into induced pluripotent stem (iPS) cells.Following identification of iPS cells,the effects of microRNA on cell reprogramming were analyzed.Results suggested that reprogramming efficiency with Oct4 + miR-294 + miR-302a was 7-fold greater than Oct4 alone (0.1% vs.0.014%).The iPS cells were undifferentiated and positive for alkaline phosphatase,SSEA-1,and Oct4.These findings demonstrated that microRNAs play an important role in cell reprogramming and provide a safe and efficient induction system for cellular reprogramming.

  1. Targeting of de novo DNA methylation throughout the Oct-4 gene regulatory region in differentiating embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Rodoniki Athanasiadou

    Full Text Available Differentiation of embryonic stem (ES cells is accompanied by silencing of the Oct-4 gene and de novo DNA methylation of its regulatory region. Previous studies have focused on the requirements for promoter region methylation. We therefore undertook to analyse the progression of DNA methylation of the approximately 2000 base pair regulatory region of Oct-4 in ES cells that are wildtype or deficient for key proteins. We find that de novo methylation is initially seeded at two discrete sites, the proximal enhancer and distal promoter, spreading later to neighboring regions, including the remainder of the promoter. De novo methyltransferases Dnmt3a and Dnmt3b cooperate in the initial targeted stage of de novo methylation. Efficient completion of the pattern requires Dnmt3a and Dnmt1, but not Dnmt3b. Methylation of the Oct-4 promoter depends on the histone H3 lysine 9 methyltransferase G9a, as shown previously, but CpG methylation throughout most of the regulatory region accumulates even in the absence of G9a. Analysis of the Oct-4 regulatory domain as a whole has allowed us to detect targeted de novo methylation and to refine our understanding the roles of key protein components in this process.

  2. GLUT3 and PKM2 regulate OCT4 expression and support the hypoxic culture of human embryonic stem cells.

    Science.gov (United States)

    Christensen, David R; Calder, Philip C; Houghton, Franchesca D

    2015-12-07

    Human embryonic stem cells (hESCs) have the capacity to differentiate into all cell types and thus have great potential for regenerative medicine. hESCs cultured at low oxygen tensions are more pluripotent and display an increased glycolytic rate but how this is regulated is unknown. This study therefore aimed to investigate the regulation of glucose metabolism in hESCs and whether this might impact OCT4 expression. In contrast to the glucose transporter GLUT1, GLUT3 was regulated by environmental oxygen and localised to hESC membranes. Silencing GLUT3 caused a reduction in glucose uptake and lactate production as well as OCT4 expression. GLUT3 and OCT4 expression were correlated suggesting that hESC self-renewal is regulated by the rate of glucose uptake. Surprisingly, PKM2, a rate limiting enzyme of glycolysis displayed a nuclear localisation in hESCs and silencing PKM2 did not alter glucose metabolism suggesting a role other than as a glycolytic enzyme. PKM2 expression was increased in hESCs cultured at 5% oxygen compared to 20% oxygen and silencing PKM2 reduced OCT4 expression highlighting a transcriptional role for PKM2 in hESCs. Together, these data demonstrate two separate mechanisms by which genes regulating glucose uptake and metabolism are involved in the hypoxic support of pluripotency in hESCs.

  3. Correlation of HIF-2α, ABCG2 and OCT-4 with chemotherapy resistance in human gastric cancer

    Directory of Open Access Journals (Sweden)

    Hong-mei ZHANG

    2015-11-01

    Full Text Available Objective To investigate the correlation of HIF-2α, ABCG2 and OCT-4 with chemotherapy resistant gastric cancer in humans. Methods Fifty-two patients who were confirmed to have advanced gastric cancer with the aid of electronic endoscopy and pathology in the Department of Gastroenterology, Affiliated Hospital of Weifang Medical College, were enrolled in the study. According to the effect of FOL-FOX4 chemotherapy that these patients had experienced, they were divided into three groups: CR+PR (complete remission+partial remission group, SD (stable disease group and PD (progressive disease group. The expression levels of HIF-2α, ABCG2, and OCT-4 mRNA and protein were assessed in different groups by using RT-PCR and immunocytochemistry. Results Two patients achieved CR , 19 achieved PR , 25 showed SD, and 6 showed PD. In other words, CR+PR were seen in 21 patients (40.4%, SD in 25(48.1%, PD in 6(11.5%. In CR+PR group, the expression levels of HIF-2α, ABCG2 and OCT4 mRNA and protein were low, but the above mentioned expressions were significantly increased in SD group and PD group. The expression levels of HIF-2α, ABCG2 and Oct-4 mRNA and protein were highest in the PD group, lower in the SD group, and lowest in the CR + PR groups (all P<0.05. Conclusions The expression of the markers HIF-2α, ABCG2 and OCT4 in human tumor tissues is related to the effect of chemotherapy for gastric cancer. A high expression of tumor markers is perhaps the main reason for low efficacy of chemotherapy due to drug resistance. DOI: 10.11855/j.issn.0577-7402.2015.10.09

  4. CD44, SHH and SOX2 as novel biomarkers in esophageal cancer patients treated with neoadjuvant chemoradiotherapy

    NARCIS (Netherlands)

    Honing, Judith; Pavlov, Kirill V.; Mul, Veronique E. M.; Karrenbeld, Arend; Meijer, Coby; Faiz, Zohra; Smit, Justin K.; Hospers, Geke A. P.; Burgerhof, Johannes G. M.; Kruyt, Frank A. E.; Kleibeuker, Jan H.; Plukker, John T. M.

    2015-01-01

    Background and purpose: Neoadjuvant chemoradiotherapy (nCRT) improves survival in esophageal cancer (EC) patients, but the response to treatment is heterogeneous and little is known regarding prognostic and predictive markers in these patients. CD44, SOX2 and SHH have been implicated in resistance t

  5. The early human germ cell lineage does not express SOX2 during in vivo development or upon in vitro culture

    DEFF Research Database (Denmark)

    Perrett, Rebecca M; Turnpenny, Lee; Eckert, Judith J

    2008-01-01

    NANOG, POU5F1, and SOX2 are required by the inner cell mass of the blastocyst and act cooperatively to maintain pluripotency in both mouse and human embryonic stem cells. Inadequacy of any one of them causes loss of the undifferentiated state. Mouse primordial germ cells (PGCs), from which plurip...

  6. Sox2, a stemness gene, regulates tumor-initiating and drug-resistant properties in CD133-positive glioblastoma stem cells

    Directory of Open Access Journals (Sweden)

    Wen-Shin Song

    2016-10-01

    Conclusion: SOX2 plays a crucial role in regulating tumorigenicity in CD133+ GBM cells. Our results not only revealed the genetic plasticity contributing to drug resistance and stemness but also demonstrated the dominant role of SOX2 in maintenance of GBM CSCs, which may provide a novel therapeutic target to overcome the conundrum of poor survival of brain cancers.

  7. Generation of Leukemia Inhibitory Factor-Dependent Induced Pluripotent Stem Cells from the Massachusetts General Hospital Miniature Pig

    Directory of Open Access Journals (Sweden)

    Dae-Jin Kwon

    2013-01-01

    Full Text Available The generation and application of porcine induced pluripotent stem cells (iPSCs may enable the testing for safety and efficacy of therapy in the field of human regenerative medicine. Here, the generation of iPSCs from the Massachusetts General Hospital miniature pig (MGH minipig established for organ transplantation studies is reported. Fibroblasts were isolated from the skin of the ear of a 10-day-old MGH minipig and transduced with a cocktail of six human factors: POU5F1, NANOG, SOX2, C-MYC, KLF4, and LIN28. Two distinct types of iPSCs were generated that were positive for alkaline phosphatase activity, as well as the classical pluripotency markers: Oct4, Nanog, Sox2, and the surface marker Ssea-1. Only one of two porcine iPSC lines differentiated into three germ layers both in vitro and in vivo. Western blot analysis showed that the porcine iPSCs were dependent on LIF or BMP-4 to sustain self-renewal and pluripotency. In conclusion, the results showed that human pluripotent factors could reprogram porcine ear fibroblasts into the pluripotent state. These cells may provide a useful source of cells that could be used for the treatment of degenerative and genetic diseases and agricultural research and application.

  8. Single-cell duplex RT-LATE-PCR reveals Oct4 and Xist RNA gradients in 8-cell embryos

    Directory of Open Access Journals (Sweden)

    Hartung Odelya

    2007-12-01

    Full Text Available Abstract Background The formation of two distinctive cell lineages in preimplantation mouse embryos is characterized by differential gene expression. The cells of the inner cell mass are pluripotent and express high levels of Oct4 mRNA, which is down-regulated in the surrounding trophectoderm. In contrast, the trophectoderm of female embryos contains Xist mRNA, which is absent from cells of the inner mass. Prior to blastocyst formation, all blastomeres of female embryos still express both of these RNAs. We, thus, postulated that simultaneous quantification of Oct4 and Xist transcripts in individual blastomeres at the 8-cell stage could be informative as to their subsequent fate. Testing this hypothesis, however, presented numerous technical challenges. We overcame these difficulties by combining PurAmp, a single-tube method for RNA preparation and quantification, with LATE-PCR, an advanced form of asymmetric PCR. Results We constructed a duplex RT-LATE-PCR assay for real-time measurement of Oct4 and Xist templates and confirmed its specificity and quantitative accuracy with different methods. We then undertook analysis of sets of blastomeres isolated from embryos at the 8-cell stage. At this stage, all cells in the embryo are still pluripotent and morphologically equivalent. Our results demonstrate, however, that both Oct4 and Xist RNA levels vary in individual blastomeres comprising the same embryo, with some cells having particularly elevated levels of either transcript. Analysis of multiple embryos also shows that Xist and Oct4 expression levels are not correlated at the 8-cell stage, although transcription of both genes is up-regulated at this time in development. In addition, comparison of data from males and females allowed us to determine that the efficiency of the Oct4/Xist assay is unaffected by sex-related differences in gene expression. Conclusion This paper describes the first example of multiplex RT-LATE-PCR and its utility, when

  9. Expression of SOX2 in gastric carcinoma tissues and its clinicopathologic significance%SOX2在胃癌组织中的表达与临床意义

    Institute of Scientific and Technical Information of China (English)

    陈淑贞; 许玲; 刘凤军; 宋燕燕; 薛凤华; 张建平

    2012-01-01

    Objective:To investigate the expression of SO×2 in gastric carcinoma and analyze its relationship with clinicopathologic characteristics. Methods:Tissue microarray and immunohis-tochemical methods were performed to detect the expression of SO×2 in 130 cases of gastric carcinoma and 20 cases normal gastric mucosa. Results:The positive expression rate of SO×2 in gastric carcinoma (67.7%) was obviously down regulated than in normal gastric mucosa (90.0%). The expression of SOX2 was not related to the age and sex of the patients, but significantly associated with histological type, differentiation, depth of invasion, lymph node metastasis and TNM stage of the tumor. The statistical significance in the each group was assessed by P<0.05. Conclusion: The results suggest the expression of SO×2 is closely related to the genesis, invasion and metastasis of gastric carcinoma, and may provide a potential role for prognosis.%目的:探讨SOX2在胃癌组织中的表达情况及与临床病理特征的关系.方法:应用组织芯片技术及免疫组织化学PV-9000通用二步法检测130例胃癌组织及20例正常胃黏膜中SOX2的表达情况.结果:SOX2在胃癌组织中的阳性表达率(67.7%)低于较正常胃黏膜阳性率(90.0%,P<0.05).SOX2的表达与患者的年龄、性别无关,与肿瘤的组织学类型、分化程度、浸润深度、淋巴结转移及TNM分期相关,差异均有统计学意义(P<0.05).结论:SOX2与胃癌的发生、浸润和转移过程有密切关系,可为胃癌早期诊断、治疗、预后判断提供依据.

  10. milk-145通过下调OCT4基因仰制肺腺癌干细胞增殖%milk-145 Inhibits Lung Adenocarcinoma Stem Cells Proliferation by Targeting OCT4 Gene

    Institute of Scientific and Technical Information of China (English)

    张帅; 武雅琴; 冯冬杰; 张治; 蒋峰; 尹荣; 许林

    2011-01-01

    Background and objective MiR-l45 functions as a protective miRNA identified in tumor tissues of lung adenocarcinoma patients.The aim of this study is to investigate the relationship between miR-145 and proliferation of lung cancer stem cells and involved molecular mechanisms in human lung adenocarcinaoma A549 cell line.Methods MicroRNA microarray technology was conducted to compare miRNA signature between tumor and adjacent normal tissue of lung adenocaranaoma.The potential target gene of miR-l45 was predicted by online bioinformatic softwares.Pre-miR- 145 mimics and anti-miR-145 inhibitor were transfected into A549 cell line by lipofectamine 2000.miR-l45 expression in each group was detected by real time PCR.The OCT4 protein level was analyzed by Western blot.The predicted miR-l45 binding site in OCT4 3'-untranslated region (UTR) was validated by dual-luciferase reporter gene assay.CCK-8 assay was employed to observe the proliferation activity of A549 cells.The ratio of CDl33 positive cells in each group was analyzed by flow cytometry.Results miR-l45 expression was significantly down-regulated in lung adenocarcinoma compared with ajacent normal tissue.OCT4 is a potential target gene of miR-l45 predicted by miRanda.Compared with control group, miR-l45 was significantly up-regulated and down-regulated in the pre-miR-145 mimics and anti-miR-l45 inhibitor groups respectively Overexpression of miR-145 inhibited the proliferation of A549 cells.Both the OCT4 protein level and CD133 positive ratio were remarkably decreased in the pre-miR-145 mimics group, whereas significantly increased in the anti-miR-145 inhibitor group.Dual-luciferase reporter gene assay validated the predicted miR-145 binding site of OCT4 3'UTR.Conclusion MiR-145 can inhibit the proliferation of lung cancer stem cells in A549 cell line via down-regulating O CT4 expression.MiR-145 is a potential protective miRNA of lung cancer.%背景与目的 milk-145是通过miRNA芯片及qPCR验证筛选出的一

  11. 结直肠腺癌组织中CD44+/Oct4+癌干细胞的形态及分布%Morphology and distribution of CD44+/Oct4+colorectal cancer stem cells

    Institute of Scientific and Technical Information of China (English)

    张登才; 刘斌; 张丽华; 张彩兰; 杨艳丽; 苏勤军; 史敏; 董亮; 哈英娣

    2013-01-01

    背景:越来越多的证据显示 CD44可作为结直肠腺癌干细胞的一个特异性的标志物,近年发现胚胎干细胞转录因子Oct4在结直肠腺癌中有表达。  目的:观察CD44+/Oct4+细胞在原发性结直肠腺癌组织中的数量、位置及分布方式。  方法:取108例结直肠腺癌、18例癌旁正常肠黏膜组织及18例伴不典型增生的结直肠腺瘤标本制成48点共3块组织芯片,应用免疫组织化学双重染色和苏木精-伊红染色,定位CD44+/Oct4+肿瘤细胞,观察计数并在苏木精-伊红切片的对应位置上观察其形态特征。  结果与结论:免疫组织化学双重染色结果显示,癌旁正常肠黏膜中未见CD44+/Oct4+细胞,在伴不典型增生的腺瘤中可见极少量CD44+/Oct4+细胞,结直肠腺癌中可见到少量CD44+/Oct4+细胞。双阳性细胞主要分布在腺管样结构基底膜侧或共壁腺体的共壁侧,呈小灶状或散在点状分布;细胞呈卵圆形或立方状,胞浆稀少,胞核规则,均质深染,呈卵圆形或高柱状。其数量与结直肠癌分化程度呈负相关(r=-0.579,P OBJECTIVE:To investigate the quantity, location and distribution of CD44+/Oct4+cells in primary colorectal carcinoma. METHODS:A total y of 108 cases of human colorectal carcinoma and 18 cases of normal mucosa, 18 cases of adenoma were col ected and made into three tissue microarrays, each containing of 48 dots. The locations of CD44+/Oct4+cells were detected by double-label immunohistochemical staining and hematoxylin-eosin staining. The morphologic features of them were investigated on hematoxylin-eosin staining at the same position.  RESULTS AND CONCLUSION:The results of double-label immunohistochemical staining demonstrated that there were no CD44+/Oct4+cells in normal intestine mucosa and a very smal amount of CD44+/Oct4+cells in adenoma, and double-positive cells could also be seen in colorectal carcinoma. The number of CD

  12. Oct4B, CD90, and CD73 are upregulated in bladder tissue following electro-resection of the bladder

    Directory of Open Access Journals (Sweden)

    Takeuchi T

    2016-05-01

    Full Text Available Aim: We tested the hypothesis that stimulation by electro-resection of bladder tissue induces stem cells in the tissue repair process. Materials & Methods: After primary transurethral resection of a bladder tumor and surrounding tissue (TUR-Bt, second TUR-Bt was performed. Tissues excised by second TUR-Bt were immunohistochemically stained for Oct4, a marker of pluripotency, and for CD90 and CD73, markers of mesenchymal stromal cells, when no bladder tumor cells remained. Results and Conclusions: Oct4B protein was sporadically stained in the cytoplasm of interstitial cells in four out of eight cases. CD90 and CD73 are upregulated in interstitial and vascular endothelial cells without CD45 expression. Mesenchymal stromal cells, but not pluripotent stem cells, may be mainly involved in bladder tissue repair.

  13. Comparison of Oct-2-enyl and Oct-4-enyl Staples for Their Formation and α-Helix Stabilizing Effects

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Thanh K.; Yoo, Jiyeon; Kim, Youngwoo [Dongguk Univ., Seoul (Korea, Republic of)

    2013-09-15

    The all-hydrocarbon i,i+4 stapling system using an oct-4-enyl crosslink is one of the most widely employed chemical tools to stabilize an α-helical conformation of a short peptide. This crosslinking system has greatly extended our ability to modulate intracellular protein-macromolecule interactions. The helix-inducing property of the i,i+4 staple has shown to be highly dependent on the length and the stereochemistry of the oct-4-enyl crosslink. Here we show that changing the double bond position within the i,i+4 staple has a considerable impact not only on the formation of the crosslink but also on α-helix induction. The data further increases the understanding of the structure-activity relationships of this valuable chemical tool.

  14. PD-L1 promotes OCT4 and Nanog expression in breast cancer stem cells by sustaining PI3K/AKT pathway activation.

    Science.gov (United States)

    Almozyan, Sheema; Colak, Dilek; Mansour, Fatmah; Alaiya, Ayodele; Al-Harazi, Olfat; Qattan, Amal; Al-Mohanna, Falah; Al-Alwan, Monther; Ghebeh, Hazem

    2017-10-01

    The expression of PD-L1 in breast cancer is associated with estrogen receptor negativity, chemoresistance and epithelial-to-mesenchymal transition (EMT), all of which are common features of a highly tumorigenic subpopulation of cancer cells termed cancer stem cells (CSCs). Hitherto, the expression and intrinsic role of PD-L1 in the dynamics of breast CSCs has not been investigated. To address this issue, we used transcriptomic datasets, proteomics and several in vitro and in vivo assays. Expression profiling of a large breast cancer dataset (530 patients) showed statistically significant correlation (p cancer. Specific knockdown of PD-L1 using ShRNA revealed its critical role in the expression of the embryonic stem cell transcriptional factors: OCT-4A, Nanog and the stemness factor, BMI1. Conversely, these factors could be induced upon PD-L1 ectopic expression in cells that are normally PD-L1 negative. Global proteomic analysis hinted for the central role of AKT in the biology of PD-L1 expressing cells. Indeed, PD-L1 positive effect on OCT-4A and Nanog was dependent on AKT activation. Most importantly, downregulation of PD-L1 compromised the self-renewal capability of breast CSCs in vitro and in vivo as shown by tumorsphere formation assay and extreme limiting dilution assay, respectively. This study demonstrates a novel role for PD-L1 in sustaining stemness of breast cancer cells and identifies the subpopulation and its associated molecular pathways that would be targeted upon anti-PD-L1 therapy. © 2017 The Authors International Journal of Cancer published by John Wiley & Sons Ltd on behalf of UICC.

  15. Helicobacter pylori upregulates Nanog and Oct4 via Wnt/β-catenin signaling pathway to promote cancer stem cell-like properties in human gastric cancer.

    Science.gov (United States)

    Yong, Xin; Tang, Bo; Xiao, Yu-Feng; Xie, Rui; Qin, Yong; Luo, Gang; Hu, Chang-Jiang; Dong, Hui; Yang, Shi-Ming

    2016-05-01

    Helicobacter pylori (H. pylori) infection is considered a major risk factor for gastric cancer. CagA behaves as a major bacterial oncoprotein playing a key role in H. pylori-induced tumorigenesis. Cancer stem cells (CSCs) are believed to possess the ability to initiate tumorigenesis and promote progression. Although studies have suggested that cancer cells can exhibit CSC-like properties in the tumor microenvironment, it remains unclear whether H. pylori infection could induce the emergence of CSC-like properties in gastric cancer cells and, the underlying mechanism. Here, gastric cancer cells were co-cultured with a CagA-positive H. pylori strain or a CagA isogenic mutant strain. We found that H. pylori-infected gastric cancer cells exhibited CSC-like properties, including an increased expression of CSC specific surface markers CD44 and Lgr5, as well as that of Nanog, Oct4 and c-myc, which are known pluripotency genes, and an increased capacity for self-renewal, whereas these properties were not observed in the CagA isogenic mutant strain-infected cells. Further studies revealed that H. pylori activated Wnt/β-catenin signaling pathway in a CagA-dependent manner and that the activation of this pathway was dependent upon CagA-positive H. pylori-mediated phosphorylation of β-catenin at the C-terminal Ser675 and Ser552 residues in a c-met- and/or Akt-dependent manner. We further demonstrated that this activation was responsible for H. pylori-induced CSC-like properties. Moreover, we found the promoter activity of Nanog and Oct4 were upregulated, and β-catenin was observed to bind to these promoters during H. pylori infection, while a Wnt/β-catenin inhibitor suppressed promoter activity and binding. Taken together, these results suggest that H. pylori upregulates Nanog and Oct4 via Wnt/β-catenin signaling pathway to promote CSC-like properties in gastric cancer cells.

  16. Yamanaka factors critically regulate the developmental signaling network in mouse embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    Xiaosong Liu; Jinyan Huang; Taotao Chen; Ying Wang; Shunmei Xin; Jian Li; Gang Pei; Jiuhong Kang

    2008-01-01

    Yamanaka factors (Oct3/4,Sox2,KIf4,c-Myc) are highly expressed in embryonic stem (ES) cells,and their overexpression can induce pluripotency in both mouse and human somatic cells,indicating that these factors regulate the developmental signaling network necessary for ES cell pluripotency.However,systemic analysis of the signaling pathways regulated by Yamanaka factors has not yet been fully described.In this study,we identified the target promoters of endogenous Yamanaka factors on a whole genome scale using ChIP (chromatin immunoprecipitation)-on-chip in E14.1 mouse ES cells,and we found that these four factors co-occupied 58 promoters.Interestingly,when Oct4 and Sox2 were analyzed as core factors,Kif4 functioned to enhance the core factors for development regulation,whereas c-Myc seemed to play a distinct role in regulating metabolism.The pathway analysis revealed that Yamanaka factors collectively regulate a developmental signaling network composed of 16 developmental signaling pathways,nine of which represent earlier unknown pathways in ES cells,including apoptosis and cellcycle pathways.We further analyzed data from a recent study examining Yamanaka factors in mouse ES cells.Interestingly,this analysis also revealed 16 developmental signaling pathways,of which 14 pathways overlap with the ones revealed by this study,despite that the target genes and the signaling pathways regulated by each individual Yamanaka factor differ significantly between these two datasets.We suggest that Yamanaka factors critically regulate a developmental signaling network composed of approximately a dozen crucial developmental signaling pathways to maintain the pluripotency of ES cells and probably also to induce pluripotent stem cells.

  17. Generation of Knock-In Pigs Carrying Oct4-tdTomato Reporter through CRISPR/Cas9-Mediated Genome Engineering.

    Science.gov (United States)

    Lai, Sisi; Wei, Shu; Zhao, Bentian; Ouyang, Zhen; Zhang, Quanjun; Fan, Nana; Liu, Zhaoming; Zhao, Yu; Yan, Quanmei; Zhou, Xiaoqing; Li, Li; Xin, Jige; Zeng, Yangzhi; Lai, Liangxue; Zou, Qingjian

    2016-01-01

    The porcine pluripotent cells that can generate germline chimeras have not been developed. The Oct4 promoter-based fluorescent reporter system, which can be used to monitor pluripotency, is an important tool to generate authentic porcine pluripotent cells. In this study, we established a porcine Oct4 reporter system, wherein the endogenous Oct4 promoter directly controls red fluorescent protein (RFP). 2A-tdTomato sequence was inserted to replace the stop codon of the porcine Oct4 gene by homogenous recombination (HR). Thus, the fluorescence can accurately show the activation of endogenous Oct4. Porcine fetal fibroblast (PFF) lines with knock-in (KI) of the tdTomato gene in the downstream of endogenous Oct4 promoter were achieved using the CRISPR/CAS9 system. Transgenic PFFs were used as donor cells for somatic cell nuclear transfer (SCNT). Strong RFP expression was detected in the blastocysts and genital ridges of SCNT fetuses but not in other tissues. Two viable transgenic piglets were also produced by SCNT. Reprogramming of fibroblasts from the fetuses and piglets by another round of SCNT resulted in tdTomato reactivation in reconstructed blastocysts. Result indicated that a KI porcine reporter system to monitor the pluripotent status of cells was successfully developed.

  18. VIH from the mud crab is specifically expressed in the eyestalk and potentially regulated by transactivator of Sox9/Oct4/Oct1.

    Science.gov (United States)

    Liu, Chunyun; Jia, Xiwei; Zou, Zhihua; Wang, Xiaowei; Wang, Yilei; Zhang, Ziping

    2017-09-18

    Vitellogenesis-inhibiting hormone (VIH) is known to regulate ovarian maturation by suppressing the synthesis of vitellogenin (Vtg) in crustaceans, which belongs to a member of crustacean hyperglycemic hormone (CHH) family synthesized and secreted from the X-organ/sinus gland complex of eyestalks. In this study, the cDNA, genomic DNA (gDNA) and the 5'-upstream regulatory (promoter region) sequences of VIH gene were obtained by conventional PCR, genome walker and tail-PCR techniques according to our transcriptomic database of Scylla paramamosain. The full-length cDNA of SpVIH is 634 bp including 105 bp 5'UTR, 151 bp 3'UTR and 378 bp ORF that encodes a peptide of 125 amino acids. The full length gDNA of SpVIH is 790 bp containing two exons and one intron. The 5'-flanking promoter regions of SpVIH we isolated are 3070 bp from the translation initiation (ATG) and 2398 bp from the predicted transcription initiation (A), which consists of putative core promoter region and multiple potential transcription factor binding sites. SpVIH was only expressed in eyestalk. The expression level of SpVIH in eyestalk of female crab decreased gradually along with the development of ovary. As there is not cell line of crabs available, we chose the mature transfection system HEK293FT cell lines to explore the mechanism of transcription regulation of SpVIH in crabs. Sequential deletion assays using luciferase reporter gene in HEK293FT cells revealed that the possible promoter activity regions (including positive and negative transcription factors binding sites simultaneously) presented between pSpVIH-4 and pSpVIH-6. In order to further identify the crucial transcription factors binding site in this region, the site-directed mutagenesis of Sox9/Oct4/Oct1 binding site of pSpVIH-4 was created. The results demonstrated that the transcriptional activity of pSpVIH-4△ decreased significantly (p<0.05). Thus, it is reasonable to deduce that the Sox9/Oct4/Oct1 may be the essential positive

  19. Conserved and divergent patterns of expression of DAZL, VASA and OCT4 in the germ cells of the human fetal ovary and testis

    Directory of Open Access Journals (Sweden)

    Coutts Shona

    2007-12-01

    Full Text Available Abstract Background Germ cells arise from a small group of cells that express markers of pluripotency including OCT4. In humans formation of gonadal compartments (cords in testis, nests in ovary takes place during the 1st trimester (6–8 weeks gestation. In the 2nd trimester germ cells can enter meiotic prophase in females whereas in males this does not occur until puberty. We have used qRTPCR, Westerns and immunohistochemical profiling to determine which of the germ cell subtypes in the human fetal gonads express OCT4, DAZL and VASA, as these have been shown to play an essential role in germ cell maturation in mice. Results OCT4 mRNA and protein were detected in extracts from both 1st and 2nd trimester ovaries and testes. In ovarian extracts a marked increase in expression of VASA and DAZL mRNA and protein occurred in the 2nd trimester. In testicular extracts VASA mRNA and protein were low/undetectable in 1st trimester and increased in the 2nd trimester whereas the total amount of DAZL did not seem to change. During the 1st trimester, germ cells were OCT4 positive but did not express VASA. These results are in contrast to the situation in mice where expression of Vasa is initiated in Oct4 positive primordial germ cells as they enter the gonadal ridge. In the 2nd trimester germ cells with intense cytoplasmic staining for VASA were present in both sexes; these cells were OCT4 negative. DAZL expression overlapped with both OCT4 and VASA and changed from the nuclear to the cytoplasmic compartment as cells became OCT4-negative. In males, OCT4-positive and VASA-positive subpopulations of germ cells coexisted within the same seminiferous cords but in the ovary there was a distinct spatial distribution of cells with OCT4 expressed by smaller, peripherally located, germ cells whereas DAZL and VASA were immunolocalised to larger (more mature centrally located cells. Conclusion OCT4, DAZL and VASA are expressed by human fetal germ cells but their

  20. Survival and death of epiblast cells during embryonic stem cell derivation revealed by long-term live-cell imaging with an Oct4 reporter system.

    Science.gov (United States)

    Yamagata, Kazuo; Ueda, Jun; Mizutani, Eiji; Saitou, Mitinori; Wakayama, Teruhiko

    2010-10-01

    Despite the broad literature on embryonic stem cells (ESCs), their derivation process remains enigmatic. This may be because of the lack of experimental systems that can monitor this prolonged cellular process. Here we applied a live-cell imaging technique to monitor the process of ESC derivation over 10 days from morula to outgrowth phase using an Oct4/eGFP reporter system. Our imaging reflects the 'natural' state of ESC derivation, as the ESCs established after the imaging were both competent in chimeric mice formation and germ-line transmission. Using this technique, ESC derivation in conventional conditions was imaged. After the blastocoel was formed, the intensity of Oct4 signals attenuated in the trophoblast cells but was maintained in the inner cell mass (ICM). Thereafter, the Oct4-positive cells scattered and their number decreased along with apoptosis of the other Oct4-nagative cells likely corresponds to trophoblast and hypoblast cells, and then only the surviving Oct4-positive cells proliferated and formed the colony. All embryos without exception passed through this cell death phase. Importantly, the addition of caspase inhibitor Z-VAD-FMK to the medium dramatically suppressed the loss of Oct4-positive cells and also other embryo-derived cells, suggesting that the cell deaths was induced by a caspase-dependent apoptotic pathway. Next we imaged the ESC derivation in 3i medium, which consists of chemical compounds that can suppress differentiation. The most significant difference between the conventional and 3i methods was that there was no obvious cell death in 3i, so that the colony formation was rapid and all of the Oct4-positive cells contributed to the formation of the outgrown colony. These data indicate that the prevention of cell death in epiblast cells is one of the important events for the successful establishment of ESCs. Thus, our imaging technique can advance the understanding of the time-dependent cellular changes during ESC derivation.

  1. Systems Analyses Reveal Shared and Diverse Attributes of Oct4 Regulation in Pluripotent Cells

    DEFF Research Database (Denmark)

    Ding, Li; Paszkowski-Rogacz, Maciej; Winzi, Maria;

    2015-01-01

    We combine a genome-scale RNAi screen in mouse epiblast stem cells (EpiSCs) with genetic interaction, protein localization, and "protein-level dependency" studies-a systematic technique that uncovers post-transcriptional regulation-to delineate the network of factors that control the expression...

  2. Large-scale time-lapse microscopy of Oct4 expression in human embryonic stem cell colonies.

    Science.gov (United States)

    Bhadriraju, Kiran; Halter, Michael; Amelot, Julien; Bajcsy, Peter; Chalfoun, Joe; Vandecreme, Antoine; Mallon, Barbara S; Park, Kye-Yoon; Sista, Subhash; Elliott, John T; Plant, Anne L

    2016-07-01

    Identification and quantification of the characteristics of stem cell preparations is critical for understanding stem cell biology and for the development and manufacturing of stem cell based therapies. We have developed image analysis and visualization software that allows effective use of time-lapse microscopy to provide spatial and dynamic information from large numbers of human embryonic stem cell colonies. To achieve statistically relevant sampling, we examined >680 colonies from 3 different preparations of cells over 5days each, generating a total experimental dataset of 0.9 terabyte (TB). The 0.5 Giga-pixel images at each time point were represented by multi-resolution pyramids and visualized using the Deep Zoom Javascript library extended to support viewing Giga-pixel images over time and extracting data on individual colonies. We present a methodology that enables quantification of variations in nominally-identical preparations and between colonies, correlation of colony characteristics with Oct4 expression, and identification of rare events.

  3. 胚胎干细胞基因Nanog,Oct-4基因在前列腺癌中的表达及意义%Expression of Embryonic Stem Cell Genes Nanog and Oct-4 in Human Prostate Cancer and Its Clinical Significance

    Institute of Scientific and Technical Information of China (English)

    熊靓; 孙庭

    2011-01-01

    [目的]探讨Nanog基因和Oct-4基因在良性前列腺增生(BPH),前列腺上皮内瘤变(PIN)及前列腺癌(PCa)中的表达及其在PCa发生发展中的作用.[方法]用免疫组织化学法检测BPH(n=30)、PIN(n=8)及PCa(n=94)中胚胎干细胞相关基因Nanog,Oct-4的表达水平,并比较三者之间的差异.[结果]Nanog基因和Oct-4基因在BPH和PIN组织中无明显差异(P>0.05).PCa组织中的Nanog基因和Oct-4基因明显高于BPH及PIN(P<0.05).随着PCa组织Gleason评分的增加,肿瘤中干细胞相关基因Nanog,Oct-4的表达也明显增多(P<0.05).[结论]Nanog,Oct-4基因在前列腺癌中均有表达,其表达水平与肿瘤的组织学分级相关.%[Objcctivc]To explore the expression of Nanog and Oct-4 genes in benign prostatic hypcrplasia(BPH) , prostatic intracpithclial ncoplasm(PIN) and prostatic canccr(PCa) and the role in the genesis and development of PCa.[Methods]The expression of embryonic stem cell genes Nanog and Oct-4 were detected by immunohistochemistry method in 30 BPH patients, 8 PIN patients and 94 PCa patients.The difference among three groups was compared.[Results! There was no obvious difference in the expression of Nanog and Oct-4 between BPH and PIN tissucs( P >0.05).The expression of Nanog and Oct-4 in Pea tissues were obviously higher than those in BPH and PIN tissucs( P >0.05).With the increasing of Glcason score, the expression of Nanog and Oct-4 incrcascd( P <0.05).[Conclusion! Nanog and Oct-4 genes arc expressed on prostatic cancer, and their expression levels arc related to the histological grade of the tumor.

  4. Downregulation of the Genes Involved in Reprogramming (SOX2, c-MYC, miR-302, miR-145, and P21) in Gastric Adenocarcinoma.

    Science.gov (United States)

    Khalili, Mitra; Vasei, Mohammad; Khalili, Davood; Alimoghaddam, Kamran; Sadeghizadeh, Majid; Mowla, Seyed Javad

    2015-09-01

    Many cell signaling pathways essential for normal stem cell development are involved in cancer initiation and progression. In the present study, motivated by a possible contribution of reprogramming process in induction of cancer, we compared the expression level of main genes involved in iPS generation, i.e., miR-302, miR-145, SOX2, c-MYC, and P21, in a series of tumor and non-tumor tissues of stomach. A total number of 34 tumors and their matched non-tumor (as control) gastric surgical specimens were obtained. The expression of the candidate genes was evaluated by using real-time PCR and immunohistochemistry (IHC) techniques. Our data revealed a significant downregulation of miR-302b, P21, and miR-145 genes in intestinal and SOX2 gene in diffuse type of tumor samples. SOX2, but not the other genes, showed a significant downregulation in both proximal (cardia and fundus) and distal (body and antrum) sites of stomach. Based on receiver-operating characteristic (ROC) analyses, the highest total area under the curve (AUC) was found for SOX2 (AUC = 82 %, P c-MYC expression, while non-tumor samples represented an intense cytoplasmic staining. Despite the fact that some hESC-specific genes are upregulated in tumors, our data revealed a significant downregulation of all candidate genes, except for c-MYC, in tumor samples of stomach. Moreover, ROC data demonstrated that SOX2 gene expression index is a better potential biomarker of gastric cancer, compared to other tested genes. SOX2 expression has a good sensitivity and specificity to discriminate correctly between tumor/non-tumor and also high/low grades of tumor malignancy. It seems downregulation of miR-302b, miR-145, and P21 could contribute to gastric tumor initiation and progression.

  5. Inducing goat pluripotent stem cells with four transcription factor mRNAs that activate endogenous promoters.

    Science.gov (United States)

    Chen, Hao; Zuo, Qisheng; Wang, Yingjie; Song, Jiuzhou; Yang, Huilin; Zhang, Yani; Li, Bichun

    2017-02-13

    Traditional approaches for generating goat pluripotent stem cells (iPSCs) suffer from complexity and low preparation efficiency. Therefore, we tried to derive goat iPSCs with a new method by transfecting exogenous Oct4, Sox2, Klf4 and c-Myc mRNAs into goat embryonic fibroblasts (GEFs), and explore the mechanisms regarding the transcription regulation of the reprogramming factors in goat iPSCs induction. mRNAs of the four reprogramming factors were transfected into GEFs, and were localized in nucleus with approximately 90% transfection efficiency. After five consecutive transfections, GEFs tended to aggregate by day 10. Clones appeared on day 15-18, and typical embryonic stem cell -like clones formed on day 20. One thousand AKP staining positive clones were achieved in 10(4) GEFs, with approximately 1.0% induction efficiency. Immunofluorescence staining and qRT-PCR detection of the ESCs markers confirmed the properties of the goat iPSCs. The achieved goat iPSCs could be cultured to 22nd passage, which showed normal karyotype. The goat iPSCs were able to differentiate into embryoid bodies with three germ layers. qRT-PCR and western blot showed activated endogenous pluripotent factors expression in the later phase of mRNA-induced goat iPSCs induction. Epigenetic analysis of the endogenous pluripotent gene Nanog revealed its demethylation status in derived goat iPSCs. Core promoter regions of the four reprogramming factors were determined. Transcription factor binding sites, including Elf-1, AP-2, SP1, C/EBP and MZF1, were identified to be functional in the core promoter regions of these reprogramming genes. Demethylation and deacetylation of the promoters enhanced their transcription activities. We successfully generated goat iPSCs by transfection of Oct4, Sox2, Klf4 and c-Myc mRNAs into GEFs, which initiated the endogenous reprogramming network and altered the methylation status of pluripotent genes. Core promoter regions and functional transcription binding sites of

  6. [Effect of down-regulation of Oct4 gene on biological characteristics of MDA-MB-231 breast cancer stem cells].

    Science.gov (United States)

    2015-04-01

    To investigate the effect and significance of down-regulation of Oct4 gene on biological characteristics of MDA-MB-231 breast cancer stem cells. Breast cancer cell line MDA-MB-231 cells were used in this study. Breast cancer stem cells were isolated and enriched by serum-free culture. The obtained stem cells were identified through calculating the percentages of CD44 and CD24 stem cells by FACS and evaluating the paclitaxel resistance in vitro and tumorigenicity in mice. RT-PCR, real-time PCR (qPCR) and Western blot were used to detect Oct4 expression. RNA interference was applied to induce Oct4 down-regulation. The interference experiment set up a control group (no siRNA transfection), negative control group (negative siRNA group, transfection of siRNA sequences without any interfering effect on the cells) and Oct4 siRNA group (transfection of siRNA with interfering effect on the Oct4 gene). Methyl thiazolyl tetrazolium (MTT) and Transwell chamber tests were conducted to detect the proliferation and invasion ability of MDA-MB-231 breast cancer stem cells after Oct4 knock-down, and paclitaxel inhibition test was applied to evaluate drug resistance of MDA-MB-231 breast cancer stem cells after Oct4 knock-down. MDA-MB-231 breast cancer stem cells grew as spheres cultured in serum-free suspension. MDA-MB-231 breast cancer stem cells showed a higher percentage of CD44+/CD24-/low cells (97.2%) than that in MDA-MB-231 breast cancer cells (76.6%) (P MB-231 breast cancer stem cells was (124.60 ± 13.65) mm3, significantly larger than that of mice inoculated with breast cancer cells (68.20 ± 9.99 mm3) (P = 0.0007). MDA-MB-231 breast cancer stem cells were less sensitive to paclitaxel inhibition than MDA-MB-231 breast cancer cells showing by 50% inhibitory concentration (IC50) [(4.40 ± 0.48) µg/ml vs. (8.20 ± 0.34) µg/m, P MB-231 breast cancer stem cells than that in breast cancer cells (P MB-231 breast cancer stem cells with Oct4 siRNA interference was significantly

  7. BORIS up-regulates OCT4 via histone methylation to promote cancer stem cell-like properties in human liver cancer cells.

    Science.gov (United States)

    Liu, Qiuying; Chen, Kefei; Liu, Zhongjian; Huang, Yuan; Zhao, Rongce; Wei, Ling; Yu, Xiaoqin; He, Jingyang; Liu, Jun; Qi, Jianguo; Qin, Yang; Li, Bo

    2017-09-10

    Accumulating evidence has revealed the importance of cancer stem cells (CSCs) in chemoresistance and recurrence. BORIS, a testes-specific CTCF paralog, has been shown to be associated with stemness traits of embryonic cancer cells and epithelial CSCs. We previously reported that BORIS is correlated with the expression of the CSC marker CD90 in hepatocellular carcinoma (HCC). These results encourage us to wonder whether BORIS exerts functions on CSC-like traits of human liver cancer cells. Here, we report that BORIS was enriched in HCC tissues. Exogenous overexpression of BORIS promoted CSC-like properties, including self-renewal, chemoresistance, migration and invasion in Huh7 and HCCLM3 cells. Conversely, BORIS knockdown suppressed CSC-like properties in SMMC-7721 and HepG2 cells and inhibited tumorigenicity in SMMC-7721 cells. Moreover, BORIS alteration did not affect the DNA methylation status of the minimal promoter and exon 1 region of OCT4. However, BORIS overexpression enhanced the amount of BORIS bound on the OCT4 promoter and increased H3K4me2, while reducing H3K27me3; BORIS depletion decreased BORIS and H3K4me2 on the OCT4 promoter, while increasing H3K27me3. These results revealed that BORIS is associated with the CSC-like traits of human liver cancer cells through the epigenetic regulation of OCT4. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Oct4 methylation-mediated silencing as an epigenetic barrier preventing Müller glia dedifferentiation in a murine model of retinal injury

    Directory of Open Access Journals (Sweden)

    Luis Ignacio Reyes-Aguirre

    2016-11-01

    Full Text Available Müller glia (MG is the most abundant glial type in the vertebrate retina. Among its many functions, it is capable of responding to injury by dedifferentiating, proliferating and differentiating into every cell types lost to damage. This regenerative ability is notoriously absent in mammals. We have previously reported that cultured mammalian MG undergoes a partial dedifferentiation, but fails to fully acquire a progenitor phenotype and differentiate into neurons. This might be explained by a mnemonic mechanism comprised by epigenetic traits, such as DNA methylation. To achieve a better understanding of this epigenetic memory, we studied the expression of pluripotency-associated genes, such as Oct4, Nanog and Lin28, which have been reported as necessary for regeneration in fish, at early times after NMDA-induced retinal injury in a mouse experimental model. We found that although Oct4 is expressed rapidly after damage (4 hpi, it is silenced at 24 hpi. This correlates with a significant decrease in the DNA methyltransferase Dnmt3b expression, which returns to basal levels at 24 hpi. By MS-PCR, we observed a decrease in Oct4 methylation levels at 4 and 12 hpi, before returning to a fully methylated state at 24 hpi. To demonstrate that these changes are restricted to MG, we separated these cells using a GLAST antibody coupled with magnetic beads. Finally, intravitreous administration of the DNA-methyltransferase inhibitor SGI-1027 induced Oct4 expression at 24 hpi in MG. Our results suggest that mammalian MG injury-induced dedifferentiation could be restricted by DNA methylation, which rapidly silences Oct4 expression, preventing multipotency acquisition.

  9. Sox2和Nanog基因的克隆及其对胎肺成纤维细胞分化的影响%Cloning of human Sox2 and Nanog gene and transforming fetal pneumal fibroblasts into neuron-like cells

    Institute of Scientific and Technical Information of China (English)

    孙中帅; 雷建园; 广茜茜; 畅继武

    2011-01-01

    To clone the complete coding sequences (CDS) of Homo sapiens Sox2 gene and Nanog gene in vitro, construct their recombinant eukaryotic expressing plasmids (pSG5-Sox2, pSG5-Nanog), and then transfect the plasmids into the fetal pneumal fibroblast, to observe the expression of Sox2 and Nanog and morphological change in fibroblast Methods The CDS of Sox2 gene was cloned from the brain tissue of aborted fetus aged 4 - 6w by RT-PCR. The CDS of Nanog gene was cloned from bladder carcinoma cells. The obtained sequences were then ligated with pSG5. The recombinant plasmids pSG5-Sox2 and pSG5-Nanog were then transfected into fetal pneumal fibroblast. Immunocytochemical method was used to detect the expression of Sox2 gene and Nanog gene. Results The complete CDS of Homo sapiens Sox2 gene and Nanog gene were 957bp and 934bp respectively. Immunocytochemical method revealed that rerecombinant plasmids pSG5-Sox2 and pSG5-Nanog were expressed positively in the fetal pneumal fibroblast. After transfection of these plasmids, the fetal pneumal fibroblasts were transformed into stem cell like cells,and then they were differentiated into epithelial-like cells with positive, CK (pan) staining, and finally showed a differentiated tendency towards neuron-like cell, with positive Nestin, GFAP and NSE staining. Conclusions In summary, Homo sapiens Sox2 gene and Nanog gene have been cloned, and the eukaryotic expressing plasmids have also been obtained in present study, which may lay a foundation for deriving human iPS cells. Meanwhile, without feeder layer, the fetal pneumal fibroblast can differentiate into epithelium-like and neuron-like cells after transfection in vitro.%目的 克隆人Sox2、Nanog基因编码序列,构建pSG5-Sox2及pSG5-Nanog真核表达重组质粒,转染胎肺间质成纤维细胞,观察Sox2、Nanog基因表达并鉴定其功能.方法 应用RT-PCR方法分别从4~6周龄流产胎儿脑组织和膀胱癌细胞中扩增出Sox2及Nanog基因编码

  10. Successful elimination of non-neural cells and unachievable elimination of glial cells by means of commonly used cell culture manipulations during differentiation of GFAP and SOX2 positive neural progenitors (NHA to neuronal cells

    Directory of Open Access Journals (Sweden)

    Krynska Barbara

    2008-07-01

    Full Text Available Abstract Background Although extensive research has been performed to control differentiation of neural stem cells – still, the response of those cells to diverse cell culture conditions often appears to be random and difficult to predict. To this end, we strived to obtain stabilized protocol of NHA cells differentiation – allowing for an increase in percentage yield of neuronal cells. Results Uncommitted GFAP and SOX2 positive neural progenitors – so-called, Normal Human Astrocytes (NHA were differentiated in different environmental conditions to: only neural cells consisted of neuronal [MAP2+, GFAP-] and glial [GFAP+, MAP2-] population, non-neural cells [CD44+, VIMENTIN+, FIBRONECTIN+, MAP2-, GFAP-, S100β-, SOX2-], or mixture of neural and non-neural cells. In spite of successfully increasing the percentage yield of glial and neuronal vs. non-neural cells by means of environmental changes, we were not able to increase significantly the percentage of neuronal (GABA-ergic and catecholaminergic over glial cells under several different cell culture testing conditions. Supplementing serum-free medium with several growth factors (SHH, bFGF, GDNF did not radically change the ratio between neuronal and glial cells – i.e., 1,1:1 in medium without growth factors and 1,4:1 in medium with GDNF, respectively. Conclusion We suggest that biotechnologists attempting to enrich in vitro neural cell cultures in one type of cells – such as that required for transplantology purposes, should consider the strong limiting influence of intrinsic factors upon extracellular factors commonly tested in cell culture conditions.

  11. Cloning promoter Oct4 from sheep and its sequence comparison with bovine and porcine upstream promoter sequences%绵羊Oct4基因启动子序列的克隆及其与猪和牛序列的比较分析

    Institute of Scientific and Technical Information of China (English)

    李昊; 郭虎; 王春生; 宋红卫; 朴善花; 安铁洙

    2016-01-01

    为探明绵羊Oct4基因启动子的结构特点,用PCR方法克隆获得了绵羊Oct4基因启动子,并对绵羊、牛和猪Oct4基因的上游调控序列进行对比分析。结果显示,成功扩增获得长度为2951 bp的绵羊Oct4基因启动子;绵羊、牛和猪Oct4基因的上游调控序列均含有4个保守区域(CR1–CR4),且4个保守区域在3个物种间具有高度同源性;CR1区域富含GC碱基对,且序列上的Sp1/Sp3位点与激素反应元件HRE在3个物种中具有100%的同源性;绵羊和牛、猪的上游调控序列富含GC,并存在大量的CCC(A/T)CCC位点。%To explore the structural characteristics of gene promoterOct4in sheep, 5' upstream regulatory regions of ovine geneOct4were cloned using PCR, and the comparative alignment analysis among sheep, cow and pig was conducted as well. The results showed that the promoter was 2 951 bp in length. There were four conserved regions (CR 1 to 4) in theupstream regulatory sequence of geneOct4in sheep, cow and pig, and the four regions presented in high homology among the three species. A putative Sp1/Sp3 binding site and the overlapping hormone responsive element (HRE) in CR 1 region were identical to each other among the three species, moreover, there were rich in GC and a high number of CCC (A/T) CCC motifs in the upstream regions. The research could provide reference for futher understanding the gene Oct4 and facilitate the relevant research on sheep.

  12. RAD21 cooperates with pluripotency transcription factors in the maintenance of embryonic stem cell identity.

    Directory of Open Access Journals (Sweden)

    Anja Nitzsche

    Full Text Available For self-renewal, embryonic stem cells (ESCs require the expression of specific transcription factors accompanied by a particular chromosome organization to maintain a balance between pluripotency and the capacity for rapid differentiation. However, how transcriptional regulation is linked to chromosome organization in ESCs is not well understood. Here we show that the cohesin component RAD21 exhibits a functional role in maintaining ESC identity through association with the pluripotency transcriptional network. ChIP-seq analyses of RAD21 reveal an ESC specific cohesin binding pattern that is characterized by CTCF independent co-localization of cohesin with pluripotency related transcription factors Oct4, Nanog, Sox2, Esrrb and Klf4. Upon ESC differentiation, most of these binding sites disappear and instead new CTCF independent RAD21 binding sites emerge, which are enriched for binding sites of transcription factors implicated in early differentiation. Furthermore, knock-down of RAD21 causes expression changes that are similar to expression changes after Nanog depletion, demonstrating the functional relevance of the RAD21--pluripotency transcriptional network association. Finally, we show that Nanog physically interacts with the cohesin or cohesin interacting proteins STAG1 and WAPL further substantiating this association. Based on these findings we propose that a dynamic placement of cohesin by pluripotency transcription factors contributes to a chromosome organization supporting the ESC expression program.

  13. The Expression of Connexins and SOX2 Reflects the Plasticity of Glioma Stem-Like Cells

    Directory of Open Access Journals (Sweden)

    Joana Balça-Silva

    2017-08-01

    Full Text Available Glioblastoma (GBM is the most malignant primary brain tumor, with an average survival rate of 15 months. GBM is highly refractory to therapy, and such unresponsiveness is due, primarily, but not exclusively, to the glioma stem-like cells (GSCs. This subpopulation express stem-like cell markers and is responsible for the heterogeneity of GBM, generating multiple differentiated cell phenotypes. However, how GBMs maintain the balance between stem and non-stem populations is still poorly understood. We investigated the GBM ability to interconvert between stem and non-stem states through the evaluation of the expression of specific stem cell markers as well as cell communication proteins. We evaluated the molecular and phenotypic characteristics of GSCs derived from differentiated GBM cell lines by comparing their stem-like cell properties and expression of connexins. We showed that non-GSCs as well as GSCs can undergo successive cycles of gain and loss of stem properties, demonstrating a bidirectional cellular plasticity model that is accompanied by changes on connexins expression. Our findings indicate that the interconversion between non-GSCs and GSCs can be modulated by extracellular factors culminating on differential expression of stem-like cell markers and cell-cell communication proteins. Ultimately, we observed that stem markers are mostly expressed on GBMs rather than on low-grade astrocytomas, suggesting that the presence of GSCs is a feature of high-grade gliomas. Together, our data demonstrate the utmost importance of the understanding of stem cell plasticity properties in a way to a step closer to new strategic approaches to potentially eliminate GSCs and, hopefully, prevent tumor recurrence.

  14. Human amniotic epithelial cell feeder layers maintain human iPS cell pluripotency via inhibited endogenous microRNA-145 and increased Sox2 expression

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Te, E-mail: liute79@yahoo.com [School of Environmental Science and Engineering, Donghua University, Shanghai 201620 (China); Shanghai Geriatric Institute of Chinese Medicine, Shanghai 200031 (China); Cheng, Weiwei [International Peace Maternity and Child Health Hospital, Shanghai Jiaotong University, Shanghai 200030 (China); Huang, Yongyi [Laboratoire PROTEE, Batiment R, Universite du Sud Toulon-Var, 83957 LA GARDE Cedex (France); Huang, Qin; Jiang, Lizhen [Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China); Guo, Lihe, E-mail: liute79@yahoo.com [Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China)

    2012-02-15

    Currently, human induced pluripotent stem (iPS) cells were generated from patient or disease-specific sources and share the same key properties as embryonic stem cells. This makes them attractive for personalized medicine, drug screens or cellular therapy. Long-term cultivation and maintenance of normal iPS cells in an undifferentiated self-renewing state are a major challenge. Our previous studies have shown that human amniotic epithelial cells (HuAECs) could provide a good source of feeder cells for mouse and human embryonic stem cells, or spermatogonial stem cells, but the mechanism for this is unknown. Here, we examined the effect of endogenous microRNA-145 regulation on Sox2 expression in human iPS cells by HuAECs feeder cells regulation, and in turn on human iPS cells pluripotency. We found that human IPS cells transfected with a microRNA-145 mutant expressed Sox2 at high levels, allowing iPS to maintain a high level of AP activity in long-term culture and form teratomas in SCID mice. Expression of stem cell markers was increased in iPS transfected with the microRNA-145 mutant, compared with iPS was transfected with microRNA-145. Besides, the expression of Drosha proteins of the microRNA-processor complex, required for the generation of precursor pre-miRNA, was significantly increased in human iPS cells cultured on MEF but not on HuAECs. Taken together, these results suggest that endogenous Sox2 expression may be regulated by microRNA-145 in human iPS cells with HuAECs feeder cells, and Sox2 is a crucial component required for maintenance of them in an undifferentiated, proliferative state capable of self-renewal. Highlights: Black-Right-Pointing-Pointer microRNA-145 inhibits Sox2 expression in human iPS cells. Black-Right-Pointing-Pointer microRNA-145 suppresses the self-renewal and pluripotency of human iPS cells. Black-Right-Pointing-Pointer HuAECs regulate expression of microRNA-145 and Sox2 in human iPS cells. Black-Right-Pointing-Pointer HuAECs feeder

  15. Metformin represses self-renewal of the human breast carcinoma stem cells via inhibition of estrogen receptor-mediated OCT4 expression.

    Directory of Open Access Journals (Sweden)

    Ji-Won Jung

    Full Text Available Metformin, a Type II diabetic treatment drug, which inhibits transcription of gluconeogenesis genes, has recently been shown to lower the risk of some diabetes-related tumors, including breast cancer. Recently, "cancer stem cells" have been demonstrated to sustain the growth of tumors and are resistant to therapy. To test the hypothesis that metformin might be reducing the risk to breast cancers, the human breast carcinoma cell line, MCF-7, grown in 3-dimensional mammospheres which represent human breast cancer stem cell population, were treated with various known and suspected breast cancer chemicals with and without non-cytotoxic concentrations of metformin. Using OCT4 expression as a marker for the cancer stem cells, the number and size were measured in these cells. Results demonstrated that TCDD (100 nM and bisphenol A (10 µM increased the number and size of the mammospheres, as did estrogen (10 nM E2. By monitoring a cancer stem cell marker, OCT4, the stimulation by these chemicals was correlated with the increased expression of OCT4. On the other hand, metformin at 1 and 10 mM concentration dramatically reduced the size and number of mammospheres. Results also demonstrated the metformin reduced the expression of OCT4 in E2 & TCDD mammospheres but not in the bisphenol A mammospheres, suggesting different mechanisms of action of the bisphenol A on human breast carcinoma cells. In addition, these results support the use of 3-dimensional human breast cancer stem cells as a means to screen for potential human breast tumor promoters and breast chemopreventive and chemotherapeutic agents.

  16. Anal atresia, coloboma, microphthalmia, and nasal skin tag in a female patient with 3.5 Mb deletion of 3q26 encompassing SOX2.

    Science.gov (United States)

    Salem, Nabeel J M; Hempel, Maja; Heiliger, Katrin-Janine; Hosie, Stuart; Meitinger, Thomas; Oexle, Konrad

    2013-06-01

    A full term female newborn presented with prominent forehead, bilateral microphthalmia, iris coloboma and cataract, wide intercanthal distance, large, low-set and protruding ears, skin tag at the left nasal nostril, imperforate anus with rectovestibular fistula, and postnatal growth delay with brachymicrocephaly. A marker chromosome was not detectable and the copy number of 22q11 was normal. However, array CGH revealed a 3.5 Mb microdeletion of chromosome region 3q26.32-3q26.33 (chr. 3: 178,598,162-182,114,483; hg19) which comprised the SOX2 gene. While SOX2 haploinsufficiency is known to cause microphthalmia and coloboma, it has not been described before in patients with anal atresia.

  17. Derivation and characterization of sleeping beauty transposon-mediated porcine induced pluripotent stem cells

    DEFF Research Database (Denmark)

    Kues, Wilfried A.; Herrmann, Doris; Barg-Kues, Brigitte

    2013-01-01

    the nonviral Sleeping Beauty transposon system to deliver the reprogramming factors Oct4, Sox2, Klf4, and cMyc. Successful reprogramming to a pluripotent state was indicated by changes in cell morphology and reactivation of the Oct4-EGFP reporter. The transposon-reprogrammed induced pluripotent stem (i...

  18. Effects of MCF2L2, ADIPOQ and SOX2 genetic polymorphisms on the development of nephropathy in type 1 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Gu Harvest F

    2010-07-01

    Full Text Available Abstract Background MCF2L2, ADIPOQ and SOX2 genes are located in chromosome 3q26-27, which is linked to diabetic nephropathy (DN. ADIPOQ and SOX2 genetic polymorphisms are found to be associated with DN. In the present study, we first investigated the association between MCF2L2 and DN, and then evaluated effects of these three genes on the development of DN. Methods A total of 1177 type 1 diabetes patients with and without DN from the GoKinD study were genotyped with TaqMan allelic discrimination. All subjects were of European descent. Results Leu359Ile T/G variant in the MCF2L2 gene was found to be associated with DN in female subjects (P = 0.017, OR = 0.701, 95%CI 0.524-0.938 but not in males. The GG genotype carriers among female patients with DN had tendency decreased creatinine and cystatin levels compared to the carriers with either TT or TG genotypes. This polymorphism MCF2L2-rs7639705 together with SNPs of ADIPOQ-rs266729 and SOX2-rs11915160 had combined effects on decreased risk of DN in females (P = 0.001. Conclusion The present study provides evidence that MCF2L2, ADIPOQ and SOX2 genetic polymorphisms have effects on the resistance of DN in female T1D patients, and suggests that the linkage with DN in chromosome 3q may be explained by the cumulated genetic effects.

  19. Effects of acupuncture on cortical expression of Wnt3a, β-catenin and Sox2 in a rat model of traumatic brain injury.

    Science.gov (United States)

    Zhang, Yi-min; Dai, Qiu-fu; Chen, Wei-hao; Jiang, Shu-ting; Chen, Sheng-xin; Zhang, Yu-juan; Tang, Chun-zhi; Cheng, Shao-bing

    2016-02-01

    To observe the effects of acupuncture treatment on the expression of Wnt/β-catenin signalling pathway-related genes (Wnt3a, β-catenin and Sox2) in the injured cerebral cortex of rats with traumatic brain injury (TBI). A controlled impact model of TBI was established using Feeney's free-drop method. Seventy-eight Sprague-Dawley rats were randomly divided into the following three groups: a normal group (n=18) that was left untreated; a model group (n=30) that received no treatment after TBI; and an acupuncture group (n=30) that received acupuncture (at LI4, GV20, GV26 and GV16) after TBI. Rats in each group were randomly and equally divided into 3-day, 7-day and 14-day subgroups according to the duration of therapy. Real-time fluorescence quantitative PCR (RT-qPCR) was used to measure mRNA expression of Wnt3a, β-catenin and Sox2. Western blots were performed to determine the expression levels of WNT3a, β-Catenin and SOX2. Wnt3a mRNA was upregulated in the 7-day and 14-day acupuncture subgroups compared with the corresponding model subgroups (pacupuncture subgroups compared with the corresponding model subgroups (pacupuncture subgroups, Sox2 expression was significantly higher than that in the normal and model groups (pAcupuncture exerts a regulatory effect on the Wnt/β-catenin signalling pathway, which may in turn influence the proliferation and differentiation of endogenous neural stem cells. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  20. Inactivation of NKX6.3 in the stomach leads to abnormal expression of CDX2 and SOX2 required for gastric-to-intestinal transdifferentiation.

    Science.gov (United States)

    Yoon, Jung H; Choi, Sung S; Kim, Olga; Choi, Won S; Park, Yong K; Nam, Suk W; Lee, Jung Y; Park, Won S

    2016-02-01

    Intestinal metaplasia in gastric mucosa is considered a preneoplastic lesion that progresses to gastric cancer. However, the molecular networks underlying this lesion formation are largely unknown. NKX6.3 is known to be an important regulator in gastric mucosal epithelial differentiation. In this study, we characterized the effects of NKX6.3 that may contribute to gastric intestinal metaplasia. NKX6.3 expression was significantly reduced in gastric mucosae with intestinal metaplasia. The mRNA expression levels of both NKX6.3 and CDX2 predicted the intestinal metaplasia risk, with an area under the receiver operating characteristic curve value of 0.9414 and 0.9971, respectively. Notably, the NKX6.3 expression level was positively and inversely correlated with SOX2 and CDX2, respectively. In stable AGS(NKX6.3) and MKN1(NKX6.3) cells, NKX6.3 regulated the expression of CDX2 and SOX2 by directly binding to the promoter regions of both genes. Nuclear NKX6.3 expression was detected only in gastric epithelial cells without intestinal metaplasia. Furthermore, NKX6.3-induced TWSG1 bound to BMP4 and inhibited BMP4-binding activity to BMPR-II. These data suggest that NKX6.3 might function as a master regulator of gastric differentiation by affecting SOX2 and CDX2 expression and the NKX6.3 inactivation may result in intestinal metaplasia in gastric epithelial cells.

  1. Downregulation of the transcription factor KLF4 is required for the lineage commitment of T cells

    Institute of Scientific and Technical Information of China (English)

    Xiaomin Wen; Haifeng Liu; Gang Xiao; Xiaolong Liu

    2011-01-01

    The roles of the reprogramming factors Oct4,Sox2,c-Myc and Klf4 in early T cell development are incompletely defined.Here,we show that Klf4 is the only reprogramming factor whose expression is downregulated when early thymic progenitors (ETPs) differentiate into T cells.Enforced expression of Klf4 in uncommitted progenitors severely impaired T cell development mainly at the DN2-to-DN3 transition when T cell lineage commitment occurs and affected the transcription of a variety of genes with crucial functions in early T cell development,including genes involved in microenvironmental signaling (IL-7Rα),Notch target genes (Deltexl),and essential T cell lineage regulatory or inhibitory genes (Bcllla,SpiB,and ldl).The survival of thymocytes and the rearrangement at the Tcrb locus were impaired in the presence of enforced Klf4 expression.The defects in the DN1-to-DN2 and DN2-to-DN3 transitions in Klf4 transgenic mice could not be rescued by the introduction of a TCR transgene,but was partially rescued by restoring the expression of IL-7Rα.Thus,our data indicate that the downregulation of Klf4 is a prerequisite for T cell lineage commitment.

  2. Expression of Sox-2 in mouse embryonic stem cell test for screening drugs with embryotoxicity%Sox-2基因表达的变化在小鼠EST模型药物胚胎毒性评价中的应用

    Institute of Scientific and Technical Information of China (English)

    许华; 何清; 邓淑琴; 查庆兵

    2011-01-01

    目的:建立小鼠胚胎干细胞实验 (EST) 模型,验证该模型检测胚胎毒性的有效性,探讨未分化基因Sox-2表达水平的变化对药物胚胎毒性评价的作用.方法:体外培养小鼠胚胎干细胞(ES),通过形态学观察、核型分析和碱性磷酸酶(AKP)染色等方法鉴定ES;MTT法检测5-氟尿嘧啶(5-FU)、苯妥英钠(DPH)和青霉素G(penicillin G)对ES的毒性作用,RT-PCR半定量分析法检测3种药物对未分化基因Sox-2表达的影响.结果:成功建立EST 模型.5-FU、DPH和penicillin G细胞毒性检测结果表明,其胚胎毒性依次为强、弱和无,与临床药物毒性相一致.Sox-2基因表达结果显示,随药物浓度增高及毒性增加,Sox-2基因表达量逐渐高于阴性对照组,但均低于未分化ES细胞.结论:研究结果显示,Sox-2基因的表达水平与药物毒性密切相关,可用于初步评价EST模型中药物的胚胎毒性.

  3. Insulin-Like Growth Factor Binding Protein-6 Alters Skeletal Muscle Differentiation of Human Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Doaa Aboalola

    2017-01-01

    Full Text Available Insulin-like growth factor binding protein-6 (IGFBP-6, the main regulator of insulin-like growth factor-2 (IGF-2, is a component of the stem cell niche in developing muscle cells. However, its role in muscle development has not been clearly defined. In this study, we investigated the role of IGFBP-6 in muscle commitment and differentiation of human mesenchymal stem cells derived from the placenta. We showed that placental mesenchymal stem cells (PMSCs have the ability to differentiate into muscle cells when exposed to a specific culture medium by expressing muscle markers Pax3/7, MyoD, myogenin, and myosin heavy chain in a stage-dependent manner with the ultimate formation of multinucleated fibers and losing pluripotency-associated markers, OCT4 and SOX2. The addition of IGFBP-6 significantly increased pluripotency-associated markers as well as muscle differentiation markers at earlier time points, but the latter decreased with time. On the other hand, silencing IGFBP-6 decreased both pluripotent and differentiation markers at early time points. The levels of these markers increased as IGFBP-6 levels were restored. These findings indicate that IGFBP-6 influences MSC pluripotency and myogenic differentiation, with more prominent effects observed at the beginning of the differentiation process before muscle commitment.

  4. 特异性多能转录因子及其作用的研究进展%Research progress on defined pluripotent transcription factors and their functions

    Institute of Scientific and Technical Information of China (English)

    张芳; 周晓燕

    2011-01-01

    Viral introduction of four genes (oct-4, sox-2, c-myc, klf-4) in committed somatic cells is sufficient to yield induced pluripotent stem (iPS) cells that resemble embryonic stem cells. Since dental pulp stem cell (DPSC) can be easily obtained from extracted teeth, attempts to reprogram DPSC to iPS cells by defined pluripotent transcription factors may provide a more advantageous seed cell source for tooth regeneration. This review mainly covers the structures and function of the defined pluripotent transcription factors, the roles they play in de-differentiation of somatic cell and in tumor genesis, and their expressions and significances in dental pulp cell.%将自胚胎干细胞中筛选出的oct-4、sox一2、c-mye、klf-4四种基因组合转入体细胞,可获得与胚胎干细胞类似的诱导性多能干细胞.牙髓干细胞取材简单,尝试利用特异性多能转录因子将其重编程为与胚胎干细胞类似的诱导性多能干细胞,可为牙组织工程提供优质的种子细胞.本文就特异性多能转录因子的结构和功能、在体细胞去分化中的作用、在肿瘤发生中的作用、在牙髓细胞中的表达及其意义等作一综述.

  5. SOX2在5-氟尿嘧啶处理的人喉癌Hep-2细胞中的表达及作用机制%SOX2 Expression in Human Laryngeal Carcinoma Hep-2 Cells and the Related Mechanism under the Treatment of 5-fluorouracil

    Institute of Scientific and Technical Information of China (English)

    杨宁; 惠莲; 杨会军; 姜学钧

    2014-01-01

    目的 探讨5-氟尿嘧啶(5-FU)对人喉癌Hep-2细胞中干细胞转录因子SOX2表达的影响及机制,并分析SOX2拮抗5-FU诱导的细胞凋亡作用.方法 CCK-8法检测48 h内不同浓度5-FU对Hep-2细胞生长的抑制作用,统计抑制率和IC50值.Western blot法检测5-FU作用不同时间后SOX2的表达量,并检测PI3K/AKT信号活化情况.Hoechst染色法检测细胞凋亡.结果 5-FU对Hep-2细胞生长抑制作用明显,IC50值为20.92 μg/mL.随着时间的延长SOX2表达增高,48 h达到最大值,磷酸化AKT活化也随着时间的延长逐渐增加.使用PI3K/AKT信号特异性抑制剂LY294002处理后,SOX2表达被下调;Hoechst染色法显示细胞凋亡数增多.同时检测凋亡相关蛋白表达变化,结果显示Survivin、Bcl-2、BAX在5-FU处理的Hep-2细胞中表达均上升,但PI3K/AKT信号抑制后抗凋亡蛋白Survivin、Bcl-2被显著下调,凋亡蛋白BAX表达继续上调.结论 PI3K/AKT信号活化诱导SOX2表达在Hep-2细胞拮抗5-FU诱导的细胞凋亡中发挥了重要作用.

  6. Efficient generation of integration-free ips cells from human adult peripheral blood using BCL-XL together with Yamanaka factors.

    Science.gov (United States)

    Su, Rui-Jun; Baylink, David J; Neises, Amanda; Kiroyan, Jason B; Meng, Xianmei; Payne, Kimberly J; Tschudy-Seney, Benjamin; Duan, Yuyou; Appleby, Nancy; Kearns-Jonker, Mary; Gridley, Daila S; Wang, Jun; Lau, K-H William; Zhang, Xiao-Bing

    2013-01-01

    The ability to efficiently generate integration-free induced pluripotent stem cells (iPSCs) from the most readily available source-peripheral blood-has the potential to expedite the advances of iPSC-based therapies. We have successfully generated integration-free iPSCs from cord blood (CB) CD34(+) cells with improved oriP/EBNA1-based episomal vectors (EV) using a strong spleen focus forming virus (SFFV) long terminal repeat (LTR) promoter. Here we show that Yamanaka factors (OCT4, SOX2, MYC, and KLF4)-expressing EV can also reprogram adult peripheral blood mononuclear cells (PBMNCs) into pluripotency, yet at a very low efficiency. We found that inclusion of BCL-XL increases the reprogramming efficiency by approximately 10-fold. Furthermore, culture of CD3(-)/CD19(-) cells or T/B cell-depleted MNCs for 4-6 days led to the generation of 20-30 iPSC colonies from 1 ml PB, an efficiency that is substantially higher than previously reported. PB iPSCs express pluripotency markers, form teratomas, and can be induced to differentiate in vitro into mesenchymal stem cells, cardiomyocytes, and hepatocytes. Used together, our optimized factor combination and reprogramming strategy lead to efficient generation of integration-free iPSCs from adult PB. This discovery has potential applications in iPSC banking, disease modeling and regenerative medicine.

  7. Efficient generation of integration-free ips cells from human adult peripheral blood using BCL-XL together with Yamanaka factors.

    Directory of Open Access Journals (Sweden)

    Rui-Jun Su

    Full Text Available The ability to efficiently generate integration-free induced pluripotent stem cells (iPSCs from the most readily available source-peripheral blood-has the potential to expedite the advances of iPSC-based therapies. We have successfully generated integration-free iPSCs from cord blood (CB CD34(+ cells with improved oriP/EBNA1-based episomal vectors (EV using a strong spleen focus forming virus (SFFV long terminal repeat (LTR promoter. Here we show that Yamanaka factors (OCT4, SOX2, MYC, and KLF4-expressing EV can also reprogram adult peripheral blood mononuclear cells (PBMNCs into pluripotency, yet at a very low efficiency. We found that inclusion of BCL-XL increases the reprogramming efficiency by approximately 10-fold. Furthermore, culture of CD3(-/CD19(- cells or T/B cell-depleted MNCs for 4-6 days led to the generation of 20-30 iPSC colonies from 1 ml PB, an efficiency that is substantially higher than previously reported. PB iPSCs express pluripotency markers, form teratomas, and can be induced to differentiate in vitro into mesenchymal stem cells, cardiomyocytes, and hepatocytes. Used together, our optimized factor combination and reprogramming strategy lead to efficient generation of integration-free iPSCs from adult PB. This discovery has potential applications in iPSC banking, disease modeling and regenerative medicine.

  8. Reprogramming of sheep fibroblasts into pluripotency under a drug-inducible expression of mouse-derived defined factors.

    Directory of Open Access Journals (Sweden)

    Yang Li

    Full Text Available Animal embryonic stem cells (ESCs provide powerful tool for studies of early embryonic development, gene targeting, cloning, and regenerative medicine. However, the majority of attempts to establish ESC lines from large animals, especially ungulate mammals have failed. Recently, another type of pluripotent stem cells, known as induced pluripotent stem cells (iPSCs, have been successfully generated from mouse, human, monkey, rat and pig. In this study we show sheep fibroblasts can be reprogrammed to pluripotency by defined factors using a drug-inducible system. Sheep iPSCs derived in this fashion have a normal karyotype, exhibit morphological features similar to those of human ESCs and express AP, Oct4, Sox2, Nanog and the cell surface marker SSEA-4. Pluripotency of these cells was further confirmed by embryoid body (EB and teratoma formation assays which generated derivatives of all three germ layers. Our results also show that the substitution of knockout serum replacement (KSR with fetal bovine serum in culture improves the reprogramming efficiency of sheep iPSCs. Generation of sheep iPSCs places sheep on the front lines of large animal preclinical trials and experiments involving modification of animal genomes.

  9. Generation of human induced pluripotent stem cells by simple transient transfection of plasmid DNA encoding reprogramming factors

    Directory of Open Access Journals (Sweden)

    Lough John W

    2010-08-01

    Full Text Available Abstract Background The use of lentiviruses to reprogram human somatic cells into induced pluripotent stem (iPS cells could limit their therapeutic usefulness due to the integration of viral DNA sequences into the genome of the recipient cell. Recent work has demonstrated that human iPS cells can be generated using episomal plasmids, excisable transposons, adeno or sendai viruses, mRNA, or recombinant proteins. While these approaches offer an advance, the protocols have some drawbacks. Commonly the procedures require either subcloning to identify human iPS cells that are free of exogenous DNA, a knowledge of virology and safe handling procedures, or a detailed understanding of protein biochemistry. Results Here we report a simple approach that facilitates the reprogramming of human somatic cells using standard techniques to transfect expression plasmids that encode OCT4, NANOG, SOX2, and LIN28 without the need for episomal stability or selection. The resulting human iPS cells are free of DNA integration, express pluripotent markers, and form teratomas in immunodeficient animals. These iPS cells were also able to undergo directed differentiation into hepatocyte-like and cardiac myocyte-like cells in culture. Conclusions Simple transient transfection of plasmid DNA encoding reprogramming factors is sufficient to generate human iPS cells from primary fibroblasts that are free of exogenous DNA integrations. This approach is highly accessible and could expand the use of iPS cells in the study of human disease and development.

  10. Two-step generation of induced pluripotent stem cells from mouse fibroblasts using Id3 and Oct4

    Institute of Scientific and Technical Information of China (English)

    Jai-Hee Moon; Byung Sun Yoon; Seungkwon You; June Seok Heo; Suhyun Kwon; Jihyun Kirn; Jihye Hwang; Phil Jun Kang; Aeree Kim; Hyun Ok Kim; Kwang Youn Whang

    2012-01-01

    Dear Editor,Somatic cells can be reprogrammed into pluripotent stem cells,called induced pluripotent stem cells (iPSCs),by defined transcription factors (Takahashi et al.,2006).The reprogramming of somatic cells may be a continuous stochastic process in which nearly all somatic donor cells have the ability to give rise to iPSCs with continuous passaging and the expression of defined factors (Hanna et al.,2009).

  11. Transient Downregulation of Nanog and Oct4 Induced by DETA/NO Exposure in Mouse Embryonic Stem Cells Leads to Mesodermal/Endodermal Lineage Differentiation

    Directory of Open Access Journals (Sweden)

    Sergio Mora-Castilla

    2014-01-01

    Full Text Available The function of pluripotency genes in differentiation is a matter of investigation. We report here that Nanog and Oct4 are reexpressed in two mouse embryonic stem cell (mESC lines following exposure to the differentiating agent DETA/NO. Both cell lines express a battery of both endoderm and mesoderm markers following induction of differentiation with DETA/NO-based protocols. Confocal analysis of cells undergoing directed differentiation shows that the majority of cells expressing Nanog express also endoderm genes such as Gata4 and FoxA2 (75.4% and 96.2%, resp.. Simultaneously, mRNA of mesodermal markers Flk1 and Mef2c are also regulated by the treatment. Acetylated histone H3 occupancy at the promoter of Nanog is involved in the process of reexpression. Furthermore, Nanog binding to the promoter of Brachyury leads to repression of this gene, thus disrupting mesendoderm transition.

  12. Transient Downregulation of Nanog and Oct4 Induced by DETA/NO Exposure in Mouse Embryonic Stem Cells Leads to Mesodermal/Endodermal Lineage Differentiation.

    Science.gov (United States)

    Mora-Castilla, Sergio; Tejedo, Juan R; Tapia-Limonchi, Rafael; Díaz, Irene; Hitos, Ana B; Cahuana, Gladys M; Hmadcha, Abdelkrim; Martín, Franz; Soria, Bernat; Bedoya, Francisco J

    2014-01-01

    The function of pluripotency genes in differentiation is a matter of investigation. We report here that Nanog and Oct4 are reexpressed in two mouse embryonic stem cell (mESC) lines following exposure to the differentiating agent DETA/NO. Both cell lines express a battery of both endoderm and mesoderm markers following induction of differentiation with DETA/NO-based protocols. Confocal analysis of cells undergoing directed differentiation shows that the majority of cells expressing Nanog express also endoderm genes such as Gata4 and FoxA2 (75.4% and 96.2%, resp.). Simultaneously, mRNA of mesodermal markers Flk1 and Mef2c are also regulated by the treatment. Acetylated histone H3 occupancy at the promoter of Nanog is involved in the process of reexpression. Furthermore, Nanog binding to the promoter of Brachyury leads to repression of this gene, thus disrupting mesendoderm transition.

  13. Estudo sobre a associação de OCT4 com marcadores prognósticos em neoplasias mamárias de cadelas

    OpenAIRE

    Tatiane Marisis Giovani

    2013-01-01

    A neoplasia mamária é a doença mais entre as neoplasias em cadelas. As características clínicas dos tumores mamários caninos e sua relação com prognóstico foram discutidos, incluindo idade, raça, estagiamento clínico, diagnóstico histopatológico, hormônios e proliferação celular. Fatores clínicos prognósticos incluindo diâmetro do tumor e comprometimento linfonodal são discutidos em relação a graduação histopatológica e expressão de OCT4 (marcador para célula tronco tumoral). Avaliação imunoh...

  14. TRA-1-60(+), SSEA-4(+), Oct4A(+), Nanog(+) Clones of Pluripotent Stem Cells in the Embryonal Carcinomas of the Ovaries.

    Science.gov (United States)

    Malecki, Marek; Anderson, Mark; Beauchaine, Michael; Seo, Songwon; Tombokan, Xenia; Malecki, Raf

    2012-11-18

    Embryonal carcinoma of the ovary (ECO), pure or admixed to other tumors, is the deadly gynecological cancer. The specific aim of this work was identification, isolation, clonal expansion, and molecular profiling of the pluripotent cells in the embryonal carcinomas of the ovaries. The samples were acquired from the patients, who were clinically and histopathologically diagnosed with the advanced, pure embryonal carcinomas of the ovaries. The cell surface display of the TRA-1-60 and SSEA-4 was analyzed by flow cytometry (FCM), immunoblotting (IB), multiphoton fluorescence spectroscopy (MPFS), nuclear magnetic resonance spectroscopy (NMRS), and total reflection x-ray spectroscopy (TRXFS). The transcripts of the Oct4A and Nanog were analyzed by qRTPCR and MPFS and the products by MPFS. The human pluripotent, embryonic stem cells (ESC), human pluripotent, embryonal carcinoma of the testes (ECT), healthy tissues of the ovary (HTO), healthy tissue of testes (HTT), peripheral blood mononuclear cells (PBMC), and bone marrow mononuclear cells (BMMC) served as the controls. The studied embryonal carcinomas of the ovaries (ECOs) contained the cells with the strong surface display of the TRA-1-60 and SSEA-4, which was similar to the pluripotent ESC and ECT. Their morphology was consistent with the histopathological diagnosis. Moreover, these cells showed strong expression of the Oct4A and Nanog, which was similar to the pluripotent ESC and ECT. The ECO cells formed embryoid bodies, which differentiated into ectoderm, mesoderm, and endoderm. These cells were induced to differentiate into muscles, epithelia, and neurons. Herein, we revealed presence and identified molecular profiles of the clones of the pluripotent stem cells in the embryonal carcinomas of the ovaries. These results should help us with refining molecular diagnoses of these deadly neoplasms and design biomarker-targeted, patient-centered, personalized therapy.

  15. Reprogramming fibroblasts into induced pluripotent stem cells with Bmi

    Institute of Scientific and Technical Information of China (English)

    Jai-Hee Moon; June Seok Heo; Jun Sung Kim; Eun Kyoung Jun; Jung Han Lee; Aeree Kim; Jonggun Kim

    2011-01-01

    Somatic cells can be reprogrammed into induced pluripotent stem (iPS) cells by the transcription factors Oct4,Sox2,and Klf4 in combination with c-Myc.Recently,Sox2 plus Oct4 was shown to reprogram fibroblasts and Oct4 alone was able to reprogram mouse and human neural stem cells (NSCs) into iPS cells.Here,we report that Bmi1 leads to the transdifferentiation of mouse fibroblasts into NSC-like cells,and,in combination with Oct4,can replace Sox2,Klf4 and c-Myc during the reprogramming of fibroblasts into iPS cells.Furthermore,activation of sonic hedgehog signaling (by Shh,purmorphamine,or oxysterol) compensates for the effects of Bmil,and,in combination with Oct4,reprograms mouse embryonic and adult fibroblasts into iPS cells.One- and two-factor iPS cells are similar to mouse embryonic stem cells in their global gene expression profile,epigenetic status,and in vitro and in vivo differentiation into all three germ layers,as well as teratoma formation and germline transmission in vivo.These data support that converting fibroblasts with Bmi1 or activation of the sonic hedgehog pathway to an intermediate cell type that expresses Sox2,KIf4,and N-Myc allows iPS generation via the addition of Oct4.

  16. OCT4: Less is more

    Institute of Scientific and Technical Information of China (English)

    Ryan T Wagner; Austin J Cooney

    2009-01-01

    @@ Embryonic Stem Cells (ES cells) exhibit vast potential that is just begin-ning to be realized with regard to both clinical therapies, and use in the labora-tory as a model system for the study of development and cancer progression.

  17. Oct4 to count 2

    Institute of Scientific and Technical Information of China (English)

    Anton Wutz

    2009-01-01

    @@ In mammals, dosage compensation between the sexes involves the tran-scriptional silencing of one of the two X chromosomes in female cells. Thereby, either the paternally or maternally inher-ited X chromosome becomes inactivated in a random manner.

  18. More synergetic cooperation of Yamanaka factors in in-duced pluripotent stem cells than in embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    Jinyan Huang; Taotao Chen; Xiaosong Liu; Jing Jiang; Jinsong Li; Dangsheng Li; X Shirley Liu; Wei Li; Jiuhong Kang; Gang Pei

    2009-01-01

    The role of Yamanaka factors as the core regulators in the induction of pluripotency during somatic cell repro-gramming has been discovered recently. Our previous study found that Yamanaka factors regulate a developmental signaling network in maintaining embryonic stem (ES) cell pluripotency. Here, we established completely repro-grammed induced pluripotent stem (iPS) cells and analyzed the global promoter occupancy of Yamanaka factors in these cells by ChiP-chip assays. We found that promoters of 565 genes were co-bound by four Yamanaka factors in iPS cells, a 10-fold increase when compared with their binding in ES cells. The promoters occupied by a single Ya-manaka factor distributed equally in activated and repressed genes in iPS cells, while in ES cells Oct4, Sox2, or Klf4 distributed mostly in repressed genes and c-Myc in activated ones. Pathway analysis of the ChIP-chip data revealed that Yamanaka factors regulated 16 developmental signaling pathways in iPS cells, among which 12 were common and 4 were unique compared to pathways regulated in ES cells. We further analyzed another recently published ChiP-chip dataset in iPS cells and observed similar results, showing the power of ChIP-chip plus pathway analysis for revealing the nature of pluripotency maintenance and regeneration. Next, we experimentally tested one of the repressive signaling pathways and found that its inhibition indeed improved efficiency of cell reprogramming. Taken together, we proposed that there is a core developmental signaling network necessary for pluripotency, with TGF-β, Hedgehog, Wnt, p53 as repressive (Yin) regulators and Jak-STAT, cell cycle, focal adhesion, adherens junction as ac-tive (Yang) ones; and Yamanaka factors synergistically regulate them in a Yin-Yang balanced way to induce pluripo-tency.

  19. Identification of New Rat Bone Marrow-Derived Population of Very Small Stem Cell with Oct-4A and Nanog Expression by Flow Cytometric Platforms

    Directory of Open Access Journals (Sweden)

    Anna Labedz-Maslowska

    2016-01-01

    Full Text Available Very small embryonic-like stem cells (VSELs represent a unique rare population of adult stem cells (SCs sharing several structural, genetic, biochemical, and functional properties with embryonic SCs and have been identified in several adult murine and human tissues. However, rat bone marrow- (BM- derived SCs closely resembling murine or human VSELs have not been described. Thus, we employed multi-instrumental flow cytometric approach including classical and imaging cytometry and we established that newly identified population of nonhematopoietic cells expressing CD106 (VCAM-I antigen contains SCs with very small size, expressing markers of pluripotency (Oct-4A and Nanog on both mRNA and protein levels that indicate VSEL population. Based on our experience in both murine and human VSEL isolation procedures by fluorescence-activated cell sorting (FACS, we also optimized sorting protocol for separation of CD45−/Lin−/CD106+ rat BM-derived VSELs from wild type and eGFP-expressing rats, which are often used as donor animals for cell transplantations in regenerative studies in vivo. Thus, this is a first study identifying multiantigenic phenotype and providing sorting protocols for isolation VSELs from rat BM tissue for further examining of their functional properties in vitro as well as regenerative capacity in distinct in vivo rat models of tissue injury.

  20. TALEN/CRISPR-mediated eGFP knock-in add-on at the OCT4 locus does not impact differentiation of human embryonic stem cells towards endoderm.

    Directory of Open Access Journals (Sweden)

    Nicole A J Krentz

    Full Text Available Human embryonic stem cells (hESCs have great promise as a source of unlimited transplantable cells for regenerative medicine. However, current progress on producing the desired cell type for disease treatment has been limited due to an insufficient understanding of the developmental processes that govern their differentiation, as well as a paucity of tools to systematically study differentiation in the lab. In order to overcome these limitations, cell-type reporter hESC lines will be required. Here we outline two strategies using Transcription Activator Like Effector Nucleases (TALENs and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR-CRISPR-Associated protein (Cas to create OCT4-eGFP knock-in add-on hESC lines. Thirty-one and forty-seven percent of clones were correctly modified using the TALEN and CRISPR-Cas9 systems, respectively. Further analysis of three correctly targeted clones demonstrated that the insertion of eGFP in-frame with OCT4 neither significantly impacted expression from the wild type allele nor did the fusion protein have a dramatically different biological stability. Importantly, the OCT4-eGFP fusion was easily detected using microscopy, flow cytometry and western blotting. The OCT4 reporter lines remained equally competent at producing CXCR4+ definitive endoderm that expressed a panel of endodermal genes. Moreover, the genomic modification did not impact the formation of NKX6.1+/SOX9+ pancreatic progenitor cells following directed differentiation. In conclusion, these findings demonstrate for the first time that CRISPR-Cas9 can be used to modify OCT4 and highlight the feasibility of creating cell-type specific reporter hESC lines utilizing genome-editing tools that facilitate homologous recombination.

  1. CRISPR-mediated genomic deletion of Sox2 in the axolotl shows a requirement in spinal cord neural stem cell amplification during tail regeneration.

    Science.gov (United States)

    Fei, Ji-Feng; Schuez, Maritta; Tazaki, Akira; Taniguchi, Yuka; Roensch, Kathleen; Tanaka, Elly M

    2014-09-09

    The salamander is the only tetrapod that functionally regenerates all cell types of the limb and spinal cord (SC) and thus represents an important regeneration model, but the lack of gene-knockout technology has limited molecular analysis. We compared transcriptional activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPRs) in the knockout of three loci in the axolotl and find that CRISPRs show highly penetrant knockout with less toxic effects compared to TALENs. Deletion of Sox2 in up to 100% of cells yielded viable F0 larvae with normal SC organization and ependymoglial cell marker expression such as GFAP and ZO-1. However, upon tail amputation, neural stem cell proliferation was inhibited, resulting in spinal-cord-specific regeneration failure. In contrast, the mesodermal blastema formed normally. Sox3 expression during development, but not regeneration, most likely allowed embryonic survival and the regeneration-specific phenotype. This analysis represents the first tissue-specific regeneration phenotype from the genomic deletion of a gene in the axolotl.

  2. CRISPR-Mediated Genomic Deletion of Sox2 in the Axolotl Shows a Requirement in Spinal Cord Neural Stem Cell Amplification during Tail Regeneration

    Directory of Open Access Journals (Sweden)

    Ji-Feng Fei

    2014-09-01

    Full Text Available The salamander is the only tetrapod that functionally regenerates all cell types of the limb and spinal cord (SC and thus represents an important regeneration model, but the lack of gene-knockout technology has limited molecular analysis. We compared transcriptional activator-like effector nucleases (TALENs and clustered regularly interspaced short palindromic repeats (CRISPRs in the knockout of three loci in the axolotl and find that CRISPRs show highly penetrant knockout with less toxic effects compared to TALENs. Deletion of Sox2 in up to 100% of cells yielded viable F0 larvae with normal SC organization and ependymoglial cell marker expression such as GFAP and ZO-1. However, upon tail amputation, neural stem cell proliferation was inhibited, resulting in spinal-cord-specific regeneration failure. In contrast, the mesodermal blastema formed normally. Sox3 expression during development, but not regeneration, most likely allowed embryonic survival and the regeneration-specific phenotype. This analysis represents the first tissue-specific regeneration phenotype from the genomic deletion of a gene in the axolotl.

  3. The activation of the Sox2 RR2 pluripotency transcriptional reporter in human breast cancer cell lines is dynamic and labels cells with higher tumorigenic potential

    Directory of Open Access Journals (Sweden)

    Juan Manuel eIglesias

    2014-11-01

    Full Text Available The striking similarity displayed at the mechanistic level between tumorigenesis and the generation of induced pluripotent stem cells and the fact that genes and pathways relevant for embryonic development are reactivated during tumor progression highlights the link between pluripotency and cancer. Based on these observations we tested whether it is possible to use a pluripotency-associated transcriptional reporter, whose activation is driven by the SRR2 enhancer from the Sox2 gene promoter (named S4+ reporter, to isolate cancer stem cells from breast cancer cell lines. The S4+ pluripotency transcriptional reporter allows the isolation of cells with enhanced tumorigenic potential and its activation was switched on and off in the cell lines studied, reflecting a plastic cellular process. Microarray analysis comparing the populations in which the reporter construct is active vs. inactive showed that positive cells expressed higher mRNA levels of cytokines (IL-8, IL-6, TNF and genes (such as ATF3, SNAI2, KLF6 previously related with the cancer stem cell phenotype in breast cancer.

  4. Residual expression of reprogramming factors affects the transcriptional program and epigenetic signatures of induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Cesar A Sommer

    Full Text Available Delivery of the transcription factors Oct4, Klf4, Sox2 and c-Myc via integrating viral vectors has been widely employed to generate induced pluripotent stem cell (iPSC lines from both normal and disease-specific somatic tissues, providing an invaluable resource for medical research and drug development. Residual reprogramming transgene expression from integrated viruses nevertheless alters the biological properties of iPSCs and has been associated with a reduced developmental competence both in vivo and in vitro. We performed transcriptional profiling of mouse iPSC lines before and after excision of a polycistronic lentiviral reprogramming vector to systematically define the overall impact of persistent transgene expression on the molecular features of iPSCs. We demonstrate that residual expression of the Yamanaka factors prevents iPSCs from acquiring the transcriptional program exhibited by embryonic stem cells (ESCs and that the expression profiles of iPSCs generated with and without c-Myc are indistinguishable. After vector excision, we find 36% of iPSC clones show normal methylation of the Gtl2 region, an imprinted locus that marks ESC-equivalent iPSC lines. Furthermore, we show that the reprogramming factor Klf4 binds to the promoter region of Gtl2. Regardless of Gtl2 methylation status, we find similar endodermal and hepatocyte differentiation potential comparing syngeneic Gtl2(ON vs Gtl2(OFF iPSC clones. Our findings provide new insights into the reprogramming process and emphasize the importance of generating iPSCs free of any residual transgene expression.

  5. Generation of immortal cell lines from the adult pituitary: role of cAMP on differentiation of SOX2-expressing progenitor cells to mature gonadotropes.

    Directory of Open Access Journals (Sweden)

    Ginah L Kim

    Full Text Available The pituitary is a complex endocrine tissue composed of a number of unique cell types distinguished by the expression and secretion of specific hormones, which in turn control critical components of overall physiology. The basic function of these cells is understood; however, the molecular events involved in their hormonal regulation are not yet fully defined. While previously established cell lines have provided much insight into these regulatory mechanisms, the availability of representative cell lines from each cell lineage is limited, and currently none are derived from adult pituitary. We have therefore used retroviral transfer of SV40 T-antigen to mass immortalize primary pituitary cell culture from an adult mouse. We have generated 19 mixed cell cultures that contain cells from pituitary cell lineages, as determined by RT-PCR analysis and immunocytochemistry for specific hormones. Some lines expressed markers associated with multipotent adult progenitor cells or transit-amplifying cells, including SOX2, nestin, S100, and SOX9. The progenitor lines were exposed to an adenylate cyclase activator, forskolin, over 7 days and were induced to differentiate to a more mature gonadotrope cell, expressing significant levels of α-subunit, LHβ, and FSHβ mRNAs. Additionally, clonal populations of differentiated gonadotropes were exposed to 30 nM gonadotropin-releasing hormone and responded appropriately with a significant increase in α-subunit and LHβ transcription. Further, exposure of the lines to a pulse paradigm of GnRH, in combination with 17β-estradiol and dexamethasone, significantly increased GnRH receptor mRNA levels. This array of adult-derived pituitary cell models will be valuable for both studies of progenitor cell characteristics and modulation, and the molecular analysis of individual pituitary cell lineages.

  6. Residual expression of the reprogramming factors prevents differentiation of iPSC generated from human fibroblasts and cord blood CD34+ progenitors.

    Directory of Open Access Journals (Sweden)

    Verónica Ramos-Mejía

    Full Text Available Human induced pluripotent stem cells (hiPSC have been generated from different tissues, with the age of the donor, tissue source and specific cell type influencing the reprogramming process. Reprogramming hematopoietic progenitors to hiPSC may provide a very useful cellular system for modelling blood diseases. We report the generation and complete characterization of hiPSCs from human neonatal fibroblasts and cord blood (CB-derived CD34+ hematopoietic progenitors using a single polycistronic lentiviral vector containing an excisable cassette encoding the four reprogramming factors Oct4, Klf4, Sox2 and c-myc (OKSM. The ectopic expression of OKSM was fully silenced upon reprogramming in some hiPSC clones and was not reactivated upon differentiation, whereas other hiPSC clones failed to silence the transgene expression, independently of the cell type/tissue origin. When hiPSC were induced to differentiate towards hematopoietic and neural lineages those hiPSC which had silenced OKSM ectopic expression displayed good hematopoietic and early neuroectoderm differentiation potential. In contrast, those hiPSC which failed to switch off OKSM expression were unable to differentiate towards either lineage, suggesting that the residual expression of the reprogramming factors functions as a developmental brake impairing hiPSC differentiation. Successful adenovirus-based Cre-mediated excision of the provirus OKSM cassette in CB-derived CD34+ hiPSC with residual transgene expression resulted in transgene-free hiPSC clones with significantly improved differentiation capacity. Overall, our findings confirm that residual expression of reprogramming factors impairs hiPSC differentiation.

  7. A central role for TFIID in the pluripotent transcription circuitry

    NARCIS (Netherlands)

    Pijnappel, W.W.M.P.; Esch, D.; Baltissen, M.P.A.; Wu, G.; Mischerikow, N.; Bergsma, A.J.; Wal, E. van de; Han, D.W.; Bruch, H.; Moritz, S.; Lijnzaad, P.; Altelaar, A.F.; Sameith, K.; Zaehres, H.; Heck, A.J.R. van; Holstege, F.C.; Scholer, H.R.; Timmers, H.T.M.

    2013-01-01

    Embryonic stem (ES) cells are pluripotent and characterized by open chromatin and high transcription levels, achieved through auto-regulatory and feed-forward transcription factor loops. ES-cell identity is maintained by a core of factors including Oct4 (also known as Pou5f1), Sox2, Klf4, c-Myc (OSK

  8. Proteome adaptation in cell reprogramming proceeds via distinct transcriptional networks

    NARCIS (Netherlands)

    Benevento, Marco; Tonge, Peter D; Puri, Mira C; Hussein, Samer M I; Cloonan, Nicole; Wood, David L; Grimmond, Sean M; Nagy, Andras; Munoz, Javier; Heck, Albert J R

    2014-01-01

    The ectopic expression of Oct4, Klf4, c-Myc and Sox2 (OKMS) transcription factors allows reprogramming of somatic cells into induced pluripotent stem cells (iPSCs). The reprogramming process, which involves a complex network of molecular events, is not yet fully characterized. Here we perform a quan

  9. Experiment list: SRX648116 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 02 GSM1430423: iPSC OSK2; Mus musculus; ChIP-Seq source_name=reprogramming from MEF cell || cell line=iPSC O...SK2 || passage=15-20 || reprogramming factors=Oct4, Sox2, Klf4 || antibody=H2A.X (Xiao lab) http://dbarchive

  10. Experiment list: SRX648117 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 08 GSM1430424: iPSC OSK9; Mus musculus; ChIP-Seq source_name=reprogramming from MEF cell || cell line=iPSC O...SK9 || passage=15-20 || reprogramming factors=Oct4, Sox2, Klf4 || antibody=H2A.X (Xiao lab) http://dbarchive

  11. Experiment list: SRX648115 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 37 GSM1430422: iPSC OSK4; Mus musculus; ChIP-Seq source_name=reprogramming from MEF cell || cell line=iPSC O...SK4 || passage=15-20 || reprogramming factors=Oct4, Sox2, Klf4 || antibody=H2A.X (Xiao lab) http://dbarchive

  12. Experiment list: SRX483618 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 40 GSM1342526: iPSC OSKM test; Mus musculus; ChIP-Seq source_name=reprogramming from MEF cell || cell line=i...PSC OSKM_test || passage=15-20 || reprogramming factors=Oct4, Sox2, Klf4 and Myc || antibody=H2A.X (Xiao lab

  13. Experiment list: SRX483617 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 25 GSM1342525: iPSC OSKM8; Mus musculus; ChIP-Seq source_name=reprogramming from MEF cell || cell line=iPSC ...OSKM8 || passage=15-20 || reprogramming factors=Oct4, Sox2, Klf4 and Myc || antibody=H2A.X (Xiao lab) http:/

  14. Experiment list: SRX483616 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 54 GSM1342524: iPSC OSKM5; Mus musculus; ChIP-Seq source_name=reprogramming from MEF cell || cell line=iPSC ...OSKM5 || passage=15-20 || reprogramming factors=Oct4, Sox2, Klf4 and Myc || antibody=H2A.X (Xiao lab) http:/

  15. Proteome adaptation in cell reprogramming proceeds via distinct transcriptional networks

    NARCIS (Netherlands)

    Benevento, Marco|info:eu-repo/dai/nl/328200859; Tonge, Peter D; Puri, Mira C; Hussein, Samer M I; Cloonan, Nicole; Wood, David L; Grimmond, Sean M; Nagy, Andras; Munoz, Javier; Heck, Albert J R|info:eu-repo/dai/nl/105189332

    2014-01-01

    The ectopic expression of Oct4, Klf4, c-Myc and Sox2 (OKMS) transcription factors allows reprogramming of somatic cells into induced pluripotent stem cells (iPSCs). The reprogramming process, which involves a complex network of molecular events, is not yet fully characterized. Here we perform a quan

  16. Whole Exome Analysis of Early Onset Alzheimer’s Disease

    Science.gov (United States)

    2016-04-01

    lines have been characterized for their pluripotency by immunocytochemistry (ICC), functional pluripotency through embryoid body formation, and...A. Immunocytochemistry for pluripotency factors (Nanog, Oct4 and Sox2). B) These iPSC have the capacity to form embryoid bodies (a test of

  17. A simple method for production and purification of soluble and biologically active recombinant human leukemia inhibitory factor (hLIF) fusion protein in Escherichia coli.

    Science.gov (United States)

    Imsoonthornruksa, Sumeth; Noisa, Parinya; Parnpai, Rangsun; Ketudat-Cairns, Mariena

    2011-02-20

    Mouse embryonic stem cells (mESCs) rely on a cytokine named leukemia inhibitory factor (LIF) to maintain their undifferentiated state and pluripotency. However, the progress of mESC research is restricted and limited to highly funded laboratories due to the cost of commercial LIF. Here we presented the homemade hLIF which is biologically active. The hLIF cDNA was cloned into two different vectors in order to produce N-terminal His₆-tag and Trx-His₆-tag hLIF fusion proteins in Origami(DE3) Escherichia coli. The His₆-hLIF fusion protein was not as soluble as the Trx-His₆-hLIF fusion protein. One-step immobilized metal affinity chromatography (IMAC) was done to recover high purity (> 95% pure) His₆-hLIF and Trx-His₆-hLIF fusion proteins with the yields of 100 and 200 mg/l of cell culture, respectively. The hLIF fusion proteins were identified by Western blot and verified by mass spectrometry (LC/MS/MS). The hLIF fusion proteins specifically promote the proliferation of TF-1 cells in a dose-dependent manner. They also demonstrate the potency to retain the morphology of undifferentiated mESCs, in that they were positive for mESC markers (Oct-4, Sox-2, Nanog, SSEA-1 and alkaline phosphatase activity). These results demonstrated that the N-terminal fusion tags of the His₆-hLIF and Trx-His₆-hLIF fusion proteins do not interfere with their biological activity. This expression and purification approach to produce recombinant hLIF is a simple, reliable, cost effective and user-friendly method.

  18. Basic fibroblast growth factor is critical to reprogramming buffalo (Bubalus bubalis) primordial germ cells into embryonic germ stem cell-like cells.

    Science.gov (United States)

    Wang, Caizhu; Deng, Yanfei; Chen, Feng; Zhu, Peng; Wei, Jingwei; Luo, Chan; Lu, Fenghua; Yang, Sufang; Shi, Deshun

    2017-03-15

    Primordial germ cells (PGCs) are destined to form gametes in vivo, and they can be reprogrammed into pluripotent embryonic germ (EG) cells in vitro. Buffalo PGC have been reported to be reprogrammed into EG-like cells, but the identities of the major signaling pathways and culture media involved in this derivation remain unclear. Here, the effects of basic fibroblast growth factor (bFGF) and downstream signaling pathways on the reprogramming of buffalo PGCs into EG-like cells were investigated. Results showed bFGF to be critical to buffalo PGCs to dedifferentiate into EG-like cells (20 ng/mL is optimal) with many characteristics of pluripotent stem cells, including alkaline phosphatase (AP) activity, expression of pluripotency marker genes such as OCT4, NANOG, SOX2, SSEA-1, CDH1, and TRA-1-81, and the capacity to differentiate into all three embryonic germ layers. After chemically inhibiting pathways or components downstream of bFGF, data showed that inhibition of the PI3K/AKT pathway led to significantly lower EG cell derivation, while inhibition of P53 activity resulted in an efficiency of EG cell derivation comparable to that in the presence of bFGF. These results suggest that the role of bFGF in PGC-derived EG-like cell generation is mainly due to the activation of the PI3K/AKT/P53 pathway, in particular, the inhibition of P53 function. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Acquisition cancer stemness, mesenchymal transdifferentiation, and chemoresistance properties by chronic exposure of oral epithelial cells to arecoline

    Science.gov (United States)

    Lee, Shiuan-Shinn; Chou, Ming-Yung; Yu, Cheng-Chia; Chang, Yu-Chao

    2016-01-01

    Oral squamous cell carcinoma (OSCC), one of the most deadliest malignancies in the world, is caused primarily by areca nut chewing in Southeast Asia. The mechanisms by which areca nut participates in OSCC tumorigenesis are not well understood. In this study, we investigated the effects of low dose long-term arecoline (10 μg/mL, 90-days), a major areca nut alkaloid, on enhancement cancer stemness of human oral epithelial (OE) cells. OE cells with chronic arecoline exposure resulted in increased ALDH1 population, CD44 positivity, stemness-related transcription factors (Oct4, Nanog, and Sox2), epithelial-mesenchymal transdifferentiation (EMT) traits, chemoresistance, migration/invasiveness/anchorage independent growth and in vivo tumor growth as compared to their untreated controls. Mechanistically, ectopic miR-145 over-expression in chronic arecoline-exposed OE (AOE) cells inhibited the cancer stemness and xenografic. In AOE cells, luciferase reporter assays further revealed that miR-145 directly targets the 3′ UTR regions of Oct4 and Sox2 and overexpression of Sox2/Oct4 effectively reversed miR-145-regulated cancer stemness-associated phenomenas. Additionally, clinical results further revealed that Sox2 and Oct4 expression was inversely correlated with miR-145 in the tissues of areca quid chewing-associated OSCC patients. This study hence attempts to provide novel insight into areca nut-induced oral carcinogenesis and new intervention for the treatment of OSCC patients, especially in areca nut users. PMID:27557511

  20. Targeting cancer stem cells: emerging role of Nanog transcription factor

    Directory of Open Access Journals (Sweden)

    Wang ML

    2013-09-01

    Full Text Available Mong-Lien Wang,1 Shih-Hwa Chiou,2,3 Cheng-Wen Wu1,4–61Institute of Biochemistry and Molecular Biology, 2Institute of Pharmacology, National Yang Ming University, Taipei, Taiwan; 3Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan; 4Institute of Microbiology and Immunology, 5Institute of Clinical Medicine, National Yang Ming University, Taipei, Taiwan; 6Institute of Biomedical Science, Academia Sinica, Taipei, TaiwanAbstract: The involvement of stemness factors in cancer initiation and progression has drawn much attention recently, especially after the finding that introducing four stemness factors in somatic cells is able to reprogram the cells back to an embryonic stem cell-like state. Following accumulating data revealing abnormal elevated expression levels of key stemness factors, like Nanog, Oct4, and Sox2, in several types of cancer stem cells; the importance and therapeutic potential of targeting these stemness regulators in cancers has turned to research focus. Nanog determines cell fate in both embryonic and cancer stem cells; activating Nanog at an inappropriate time would result in cancer stem cells rather than normal pluripotent stem cells or differentiated somatic cells. Upregulated Nanog is correlated with poor survival outcome of patients with various types of cancer. The discoveries of downstream regulatory pathways directly or indirectly mediated by Nanog indicate that Nanog regulates several aspects of cancer development such as tumor cell proliferation, self-renewal, motility, epithelial-mesenchymal transition, immune evasion, and drug-resistance, which are all defined features for cancer stem cells. The current review paper illustrates the central role of Nanog in the regulatory networks of cancer malignant development and stemness acquirement, as well as in the communication between cancer cells and the surrounding stroma. Though a more defined model is needed to test the

  1. DCLK1 regulates pluripotency and angiogenic factors via microRNA-dependent mechanisms in pancreatic cancer.

    Directory of Open Access Journals (Sweden)

    Sripathi M Sureban

    Full Text Available Stem cell pluripotency, angiogenesis and epithelial-mesenchymal transition (EMT have been shown to be significantly upregulated in pancreatic ductal adenocarcinoma (PDAC and many other aggressive cancers. The dysregulation of these processes is believed to play key roles in tumor initiation, progression, and metastasis, and is contributory to PDAC being the fourth leading cause of cancer-related deaths in the US. The tumor suppressor miRNA miR-145 downregulates critical pluripotency factors and oncogenes and results in repressed metastatic potential in PDAC. Additionally, the miR-200 family regulates several angiogenic factors which have been linked to metastasis in many solid tumors. We have previously demonstrated that downregulation of DCLK1 can upregulate critical miRNAs in both in vitro and in vivo cancer models and results in downregulation of c-MYC, KRAS, NOTCH1 and EMT-related transcription factors. A recent report has also shown that Dclk1 can distinguish between normal and tumor stem cells in Apc (min/+ mice and that ablation of Dclk1(+ cells resulted in regression of intestinal polyps without affecting homeostasis. Here we demonstrate that the knockdown of DCLK1 using poly(lactide-co-glycolide-encapsulated-DCLK1-siRNA results in AsPC1 tumor growth arrest. Examination of xenograft tumors revealed, (a increased miR-145 which results in decreased pluripotency maintenance factors OCT4, SOX2, NANOG, KLF4 as well as KRAS and RREB1; (b increased let-7a which results in decreased pluripotency factor LIN28B; and (c increased miR-200 which results in decreased VEGFR1, VEGFR2 and EMT-related transcription factors ZEB1, ZEB2, SNAIL and SLUG. Specificity of DCLK1 post-transcriptional regulation of the downstream targets of miR-145, miR-200 and let-7a was accomplished utilizing a luciferase-based reporter assay. We conclude that DCLK1 plays a significant master regulatory role in pancreatic tumorigenesis through the regulation of multiple tumor

  2. ESF-EMBO Symposium Molecular Biology and Innovative Therapies in Sarcomas of Childhood and AdolescenceSept 29 – Oct 4, Polonia Castle Pultusk, Poland

    Directory of Open Access Journals (Sweden)

    Beat W Schäfer

    2013-06-01

    Full Text Available Rhabdomyosarcoma (RMS and Ewing sarcoma (ES are among the most common pediatric sarcomas (Arndt et al., 2012. Despite sarcomas representing a highly heterogeneous group of tumors, ES and alveolar RMS (ARMS typically share one common genetic characteristic, namely a specific chromosomal translocation (Helman and Meltzer, 2003; Lessnick and Ladanyi, 2012. These translocations generate fusion proteins, which are composed of two transcription factors (TF. Typically, one TF is a developmentally regulated factor that is essential for proper specification of a given lineage and provides the DNA-binding domain, while the partner TF contributes a transactivation domain that drives aberrant expression of target genes. Based on these common genetic characteristics, the first ESF-EMBO research conference entitled "Molecular Biology and Innovative Therapies in Sarcomas of Childhood and Adolescence" with special focus on RMS and ES was held at the Polonia Castle in Pultusk, Poland. The conference gathered 70 participants from more than 15 countries and several continents representing most research groups that are active in this field.

  3. ESF-EMBO Symposium “Molecular Biology and Innovative Therapies in Sarcomas of Childhood and Adolescence” Sept 29–Oct 4, Polonia Castle Pultusk, Poland

    Science.gov (United States)

    Schäfer, Beat W.; Koscielniak, Ewa; Kovar, Heinrich; Fulda, Simone

    2013-01-01

    Rhabdomyosarcoma (RMS) and Ewing sarcoma (ES) are among the most common pediatric sarcomas (Arndt et al., 2012). Despite sarcomas representing a highly heterogeneous group of tumors, ES and alveolar RMS (ARMS) typically share one common genetic characteristic, namely a specific chromosomal translocation (Helman and Meltzer, 2003; Lessnick and Ladanyi, 2012). These translocations generate fusion proteins, which are composed of two transcription factors (TF). Typically, one TF is a developmentally regulated factor that is essential for proper specification of a given lineage and provides the DNA-binding domain, while the partner TF contributes a transactivation domain that drives aberrant expression of target genes. Based on these common genetic characteristics, the first ESF-EMBO research conference entitled “Molecular Biology and Innovative Therapies in Sarcomas of Childhood and Adolescence” with special focus on RMS and ES was held at the Polonia Castle in Pultusk, Poland. The conference gathered 70 participants from more than 15 countries and several continents representing most research groups that are active in this field. PMID:23761860

  4. ESF-EMBO Symposium "Molecular Biology and Innovative Therapies in Sarcomas of Childhood and Adolescence" Sept 29-Oct 4, Polonia Castle Pultusk, Poland.

    Science.gov (United States)

    Schäfer, Beat W; Koscielniak, Ewa; Kovar, Heinrich; Fulda, Simone

    2013-01-01

    Rhabdomyosarcoma (RMS) and Ewing sarcoma (ES) are among the most common pediatric sarcomas (Arndt et al., 2012). Despite sarcomas representing a highly heterogeneous group of tumors, ES and alveolar RMS (ARMS) typically share one common genetic characteristic, namely a specific chromosomal translocation (Helman and Meltzer, 2003; Lessnick and Ladanyi, 2012). These translocations generate fusion proteins, which are composed of two transcription factors (TF). Typically, one TF is a developmentally regulated factor that is essential for proper specification of a given lineage and provides the DNA-binding domain, while the partner TF contributes a transactivation domain that drives aberrant expression of target genes. Based on these common genetic characteristics, the first ESF-EMBO research conference entitled "Molecular Biology and Innovative Therapies in Sarcomas of Childhood and Adolescence" with special focus on RMS and ES was held at the Polonia Castle in Pultusk, Poland. The conference gathered 70 participants from more than 15 countries and several continents representing most research groups that are active in this field.

  5. KDM4C, a H3K9me3 Histone Demethylase, is Involved in the Maintenance of Human ESCC-Initiating Cells by Epigenetically Enhancing SOX2 Expression

    Directory of Open Access Journals (Sweden)

    Xiang Yuan

    2016-10-01

    Full Text Available Our studies investigating the existence of tumor-initiating cell (TIC populations in human esophageal squamous cell carcinoma (ESCC had identified a subpopulation of cells isolated from ESCC patient-derived tumor specimens marked by an ALDHbri+ phenotype bear stem cell-like features. Importantly, KDM4C, a histone demethylase was enhanced in ALDHbri+ subpopulation, suggesting that strategies interfering with KDM4C may be able to target these putative TICs. In the present study, by genetic and chemical means, we demonstrated that, KDM4C blockade selectively decreased the ESCC ALDHbri+ TICs population in vitro and specifically targeted the TICs in ALDHbri+-derived xenograft, retarding engraftment. Subsequent studies of the KDM4C functional network identified a subset of pluripotency-associated genes (PAGs and aldehyde dehydrogenase family members to be preferentially down-regulated in KDM4C inhibited ALDHbri+ TICs. We further supported a model in which KDM4C maintains permissive histone modifications with a low level of H3K9 methylation at the promoters of several PAGs. Moreover, ectopic expression of SOX2 restored KDM4C inhibition-dependent ALDHbri+ TIC properties. We further confirmed these findings by showing that the cytoplasmic and nuclear KDM4C staining increased with adverse pathologic phenotypes and poor patient survival. Such staining pattern of intracellular KDM4C appeared to overlap with the expression of SOX2 and ALDH1. Collectively, our findings provided the insights into the development of novel therapeutic strategies based on the inhibition of KDM4C pathway for the eliminating of ESCC TIC compartment.

  6. Derivation and characterization of sleeping beauty transposon-mediated porcine induced pluripotent stem cells

    DEFF Research Database (Denmark)

    Kues, Wilfried A.; Herrmann, Doris; Barg-Kues, Brigitte;

    2013-01-01

    the nonviral Sleeping Beauty transposon system to deliver the reprogramming factors Oct4, Sox2, Klf4, and cMyc. Successful reprogramming to a pluripotent state was indicated by changes in cell morphology and reactivation of the Oct4-EGFP reporter. The transposon-reprogrammed induced pluripotent stem (iPS...... of the 3 germ layers. Upon injection of putative iPS cells under the skin of immunodeficient mice, we observed teratomas in 3 of 6 cases. These results form the basis for in-depth studies toward the derivation of porcine iPS cells, which hold great promise for preclinical testing of novel cell therapies......The domestic pig is an important large animal model for preclinical testing of novel cell therapies. Recently, we produced pluripotency reporter pigs in which the Oct4 promoter drives expression of the enhanced green fluorescent protein (EGFP). Here, we reprogrammed Oct4-EGFP fibroblasts employing...

  7. Bovine trophectoderm cell lines induced from bovine fibroblasts with reprogramming factors

    Science.gov (United States)

    Bovine trophectoderm (TE) cells were induced [induced bovine trophectoderm-like (iBT)] from bovine fetal liver-derived fibroblasts, and other bovine fetal fibroblasts, after viral-vector transduction with either four or six reprogramming factors (RF), including POU5F1, KLF4, SOX2, C-MYC, SV40 large ...

  8. MiR-208a stimulates the cocktail of SOX2 and β-catenin to inhibit the let-7 induction of self-renewal repression of breast cancer stem cells and formed miR208a/let-7 feedback loop via LIN28 and DICER1.

    Science.gov (United States)

    Sun, Xin; Jiang, Shiwen; Liu, Jian; Wang, Huangzhen; Zhang, Yiwen; Tang, Shou-Ching; Wang, Jichang; Du, Ning; Xu, Chongwen; Wang, Chenguang; Qin, Sida; Zhang, Jia; Liu, Dapeng; Zhang, Yunfeng; Li, Xiaojun; Wang, Jiansheng; Dong, Jun; Wang, Xin; Xu, Shaohua; Tao, Zhen; Xu, Fei; Zhou, Jie; Wang, Tao; Ren, Hong

    2015-10-20

    MiR-208a stimulates cardiomyocyte hypertrophy, fibrosis and β-MHC (β-myosin heavy chain) expression, being involved in cardiovascular diseases. Although miR-208a is known to play a role in cardiovascular diseases, its role in cancer and cancer stem cells (CSCs) remains uncertain. We identified an inverse relationship between miR-208a and let-7a in breast cancer specimens, and found that SOX2, β-catenin and LIN28 are highly expressed in patients with advanced breast cancer opposed to lesser grades. Further, we isolated ALDH1+ CSCs from ZR75-1 and MDA-MB-231 (MM-231) breast cancer cell lines to test the role of miR-208a in breast CSCs (BrCSCs). Our studies showed that overexpression of miR-208a in these cells strongly promoted the proportion of ALDH1+ BrCSCs and continuously stimulated the self-renewal ability of BrCSCs. By using siRNAs of SOX2 and/or β-catenin, we found that miR-208a increased LIN28 through stimulation of both SOX2 and β-catenin. The knockdown of either SOX2 or β-catenin only partially attenuated the functions of miR-208a. Let-7a expression was strongly inhibited in miR-208a overexpressed cancer cells, which was achieved by miR-208a induction of LIN28, and the restoration of let-7a significantly inhibited the miR-208a induction of the number of ALDH1+ cells, inhibiting the propagations of BrCSCs. In let-7a overexpressed ZR75-1 and MM-231 cells, DICER1 activity was significantly inhibited with decreased miR-208a. Let-7a failed to decrease miR-208a expression in ZR75-1 and MM-231 cells with DICER1 knockdown. Our research revealed the mechanisms through which miR-208a functioned in breast cancer and BrCSCs, and identified the miR-208a-SOX2/β-catenin-LIN28-let-7a-DICER1 regulatory feedback loop in regulations of stem cells renewal.

  9. Generation of iPSC lines from primary human chorionic villi cells

    Directory of Open Access Journals (Sweden)

    Björn Lichtner

    2015-11-01

    Full Text Available Primary human chorionic villi (CV cells were used to generate the iPSC line by retroviral transduction of the four Yamanaka-factors OCT4, SOX2, KLF4 and c-MYC. Pluripotency was confirmed both in vivo and in vitro. The transcriptomes of the CV-derived iPSC lines and the human embryonic stem cell lines—H1 and H9 have a Pearson correlation of 0.929 and 0.943 respectively.

  10. Generation of Human Induced Pluripotent Stem Cells from Peripheral Blood Mononuclear Cells Using Sendai Virus.

    Science.gov (United States)

    Soares, Filipa A C; Pedersen, Roger A; Vallier, Ludovic

    2016-01-01

    This protocol describes the efficient isolation of peripheral blood mononuclear cells from circulating blood via density gradient centrifugation and subsequent generation of integration-free human induced pluripotent stem cells. Peripheral blood mononuclear cells are cultured for 9 days to allow expansion of the erythroblast population. The erythroblasts are then used to derive human induced pluripotent stem cells using Sendai viral vectors, each expressing one of the four reprogramming factors Oct4, Sox2, Klf4, and c-Myc.

  11. Reprogramming human amniotic fluid stem cells to functional pluripotency by manipulation of culture conditions.

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: Dafni Moschidou & Pascale V Guillot ### Abstract Pluripotent stem cells have potential applications in regenerative medicine, disease modelling and drug screening. Induced pluripotent stem (iPS) cells have first been generated from fibroblasts using retroviral insertion of OCT4A, SOX2, c-MYC and KLF4. Since then, a number of methods have been developed to avoid the random integration of ectopic factors in the genome and the low efficiency of the process. Those include alt...

  12. Peripheral mRNA expression of pluripotency markers in bipolar disorder and the effect of long-term lithium treatment.

    Science.gov (United States)

    Ferensztajn-Rochowiak, Ewa; Tarnowski, Maciej; Samochowiec, Jerzy; Michalak, Michal; Ratajczak, Mariusz Z; Rybakowski, Janusz K

    2016-10-01

    The aim was to evaluate the peripheral mRNA expression of pluripotency master transcriptional factors such as octamer-binding transcription factor 4 (Oct4), sex-determining region Y-box 2 (Sox2) and homeobox protein Nanog, in patients with bipolar disorder (BD), and the effect of long-term lithium treatment. Fifteen BD patients (aged 53±7years) not treated with lithium, with duration of illness>10years, 15 BD patients (aged 55±6years) treated with lithium for 8-40 years (mean 16years) and 15 control subjects (aged 50±5years) were included. Assessment of the mRNA levels of pluripotency markers (Oct-4, Sox 2 and Nanog) was performed, using the Real-time quantitative reverse transcription PCR (RQ-PCR) procedure, and the number of CD34+ very small embryonic-like stem cells (VSELs) was measured by flow cytometric analysis. In those BD patients not treated with lithium the expression of all three pluripotency genes was significantly higher than that in the control subjects. Oct-4, Sox2 and Nanog also positively correlated with the number of CD34+ VSELs/[ul] in this group. In the lithium-treated patients the mRNA levels of Nanog were significantly higher than in the control individuals and correlated with the number and % of CD34+ VSELs. The overexpression of the pluripotency master transcriptional factors in patients with a long duration of BD not treated with lithium, may contribute to the pathogenesis of the illness and make them potential biological markers of BD. Long-term lithium treatment may attenuate these excessive regenerative processes, especially in relation to the transcription factors Oct-4 and Sox2. Copyright © 2016. Published by Elsevier Urban & Partner Sp. z o.o.

  13. Stemcell Information: SKIP000543 [SKIP Stemcell Database[Archive

    Lifescience Database Archive (English)

    Full Text Available l vectors pMXs-Oct4, pMXs-Sox2, pMXs-Klf4, and pMXs-c-Myc encoding (mouse) reprogramming factors. 健常人の皮膚細胞から...4つのレトロウイルスベクター(pMXs-Oct4, pMXs-Sox2, pMXs-Klf4, and pMXs-c-Mycを用いてiPS細胞を樹立した。 hum... SKIP000543 ... Normal iPS 090707 iPS 090707 ... -- -- ... -- No iPS cell...broblast (MEF) the standard hES cell medium (80% DMEM/F12, 20% KO Serum Replacement (Invitrogen) with 4 ng/m...y and contractile vector variability in hypertrophic cardiomyopathy-induced pluripotent stem cell-derived ca

  14. Application of Induced Pluripotent Stem Cells Reprogrammed from Dental Pulp Cells: a Novel Approach for Tooth Regeneration

    Directory of Open Access Journals (Sweden)

    Xiaoyan Zhou

    2011-03-01

    Full Text Available Introduction: Candidate human dental stem/progenitor cells have been isolated and charac-terized from dental tissues and shown to hold the capability to differentiate into tooth-generating cells. However, ad-vances in engineering a whole tooth by these stem cells are hindered by various factors, such as the poor availability of human primitive tooth bud stem cells, difficulties in isolating and purifying dental mesenchymal stem cells and ethical controversies when using embryonic oral epithelium. As a result it is meaningful to find other autologous dental cells for the purpose of reconstructing a tooth.The hypothesis: Previous studies demonstrated that somatic cells can be reprogrammed into induced pluripotent stem cells by ex-ogenous expression Oct-4 and Sox-2. On the basis of these findings we can reasonably hypothesize that when transfected with specific transcription factors Oct-4 and Sox-2, dental pulp cells, the main cell in pulp, could also be reprogrammed into induced pluripotent stem cells, which are considered to be of best potential to regenerate a whole tooth. Evaluation of the hypothesis: After transfection with Oct-4 and Sox-2 into human dental pulp cells, the positive colonies are isolated and then identified according to the characteristics of iPS cells. These cells are further investigated the capability in differentiating into ameloblasts and odontoblasts and finally seeded onto the sur-face of a tooth-shaped biodegradable polymer scaffold to detect the ability of constructing a bioengineered tooth.

  15. Functional and mechanistic studies of XPC DNA-repair complex as transcriptional coactivator in embryonic stem cells.

    Science.gov (United States)

    Cattoglio, Claudia; Zhang, Elisa T; Grubisic, Ivan; Chiba, Kunitoshi; Fong, Yick W; Tjian, Robert

    2015-05-01

    The embryonic stem cell (ESC) state is transcriptionally controlled by OCT4, SOX2, and NANOG with cofactors, chromatin regulators, noncoding RNAs, and other effectors of signaling pathways. Uncovering components of these regulatory circuits and their interplay provides the knowledge base to deploy ESCs and induced pluripotent stem cells. We recently identified the DNA-repair complex xeroderma pigmentosum C (XPC)-RAD23B-CETN2 as a stem cell coactivator (SCC) required for OCT4/SOX2 transcriptional activation. Here we investigate the role of SCC genome-wide in murine ESCs by mapping regions bound by RAD23B and analyzing transcriptional profiles of SCC-depleted ESCs. We establish OCT4 and SOX2 as the primary transcription factors recruiting SCC to regulatory regions of pluripotency genes and identify the XPC subunit as essential for interaction with the two proteins. The present study reveals new mechanistic and functional aspects of SCC transcriptional activity, and thus underscores the diversified functions of this regulatory complex.

  16. Direct Reprogramming of Human Primordial Germ Cells into Induced Pluripotent Stem Cells: Efficient Generation of Genetically Engineered Germ Cells.

    Science.gov (United States)

    Bazley, Faith A; Liu, Cyndi F; Yuan, Xuan; Hao, Haiping; All, Angelo H; De Los Angeles, Alejandro; Zambidis, Elias T; Gearhart, John D; Kerr, Candace L

    2015-11-15

    Primordial germ cells (PGCs) share many properties with embryonic stem cells (ESCs) and innately express several key pluripotency-controlling factors, including OCT4, NANOG, and LIN28. Therefore, PGCs may provide a simple and efficient model for studying somatic cell reprogramming to induced pluripotent stem cells (iPSCs), especially in determining the regulatory mechanisms that fundamentally define pluripotency. Here, we report a novel model of PGC reprogramming to generate iPSCs via transfection with SOX2 and OCT4 using integrative lentiviral. We also show the feasibility of using nonintegrative approaches for generating iPSC from PGCs using only these two factors. We show that human PGCs express endogenous levels of KLF4 and C-MYC protein at levels similar to embryonic germ cells (EGCs) but lower levels of SOX2 and OCT4. Transfection with both SOX2 and OCT4 together was required to induce PGCs to a pluripotent state at an efficiency of 1.71%, and the further addition of C-MYC increased the efficiency to 2.33%. Immunohistochemical analyses of the SO-derived PGC-iPSCs revealed that these cells were more similar to ESCs than EGCs regarding both colony morphology and molecular characterization. Although leukemia inhibitory factor (LIF) was not required for the generation of PGC-iPSCs like EGCs, the presence of LIF combined with ectopic exposure to C-MYC yielded higher efficiencies. Additionally, the SO-derived PGC-iPSCs exhibited differentiation into representative cell types from all three germ layers in vitro and successfully formed teratomas in vivo. Several lines were generated that were karyotypically stable for up to 24 subcultures. Their derivation efficiency and survival in culture significantly supersedes that of EGCs, demonstrating their utility as a powerful model for studying factors regulating pluripotency in future studies.

  17. Reactivation of Endogenous Genes and Epigenetic Remodeling Are Barriers for Generating Transgene-Free Induced Pluripotent Stem Cells in Pig.

    Directory of Open Access Journals (Sweden)

    Kwang-Hwan Choi

    Full Text Available Cellular reprogramming of committed cells into a pluripotent state can be induced by ectopic expression of genes such as OCT4, SOX2, KLF4, and MYC. Reprogrammed cells can be maintained by activating endogenous pluripotent networks without transgene expression. Although various research groups have attempted to generate pig induced pluripotent stem cells (iPSCs, authentic iPSCs have not be obtained, instead showing dependence on transgene expression. In this study, iPSCs were derived from porcine fetal fibroblasts via drug-inducible vectors carrying human transcription factors (OCT4, SOX2, KLF4, and MYC. Therefore, this study investigated characteristics of iPSCs and reprogramming mechanisms in pig. The iPSCs were stably maintained over an extended period with potential in vitro differentiation into three germ layers. In addition, the pluripotent state of iPSCs was regulated by modulating culture conditions. They showed naive- or primed-like pluripotent states in LIF or bFGF supplemented culture conditions, respectively. However, iPSCs could not be maintained without ectopic expression of transgenes. The cultured iPSCs expressed endogenous transcription factors such as OCT4 and SOX2, but not NANOG (a known gateway to complete reprogramming. Endogenous genes related to mesenchymal-to-epithelial transition (DPPA2, CDH1, EPCAM, and OCLN were not sufficiently reactivated, as measured by qPCR. DNA methylation analysis for promoters of OCT4, NANOG, and XIST showed that epigenetic reprogramming did not occur in female iPSCs. Based on our results, expression of exogenous genes could not sufficiently activate the essential endogenous genes and remodel the epigenetic milieu to achieve faithful pluripotency in pig. Accordingly, investigating iPSCs could help us improve and develop reprogramming methods by understanding reprogramming mechanisms in pig.

  18. Rapid and efficient reprogramming of human fetal and adult blood CD34+ cells into mesenchymal stem cells with a single factor

    Institute of Scientific and Technical Information of China (English)

    Xianmei Meng; Rui-Jun Su; David J Baylink; Amanda Neises; Jason B Kiroyan; Wayne Yuk-Wai Lee; Kimberly J Payne

    2013-01-01

    The direct conversion of skin cells into somatic stem cells has opened new therapeutic possibilities in regenerative medicine.Here,we show that human induced mesenchymal stem cells (iMSCs) can be efficiently generated from cord blood (CB)-or adult peripheral blood (PB)-CD34+ cells by direct reprogramming with a single factor,OCT4.In the presence of a GSK3 inhibitor,16% of the OCT4-transduced CD34+ cells are converted into iMSCs within 2 weeks.Efficient direct reprogramming is achieved with both episomal vector-mediated transient OCT4 expression and lentiviral vector-mediated OCT4 transduction.The iMSCs express MSC markers,resemble bone marrow (BM)-MSCs in morphology,and possess in vitro multilineage differentiation capacity,yet have a greater proliferative capacity compared with BM-MSCs.Similar to BM-MSCs,the implanted iMSCs form bone and connective tissues,and are non-tumorigenic in mice.However,BM-MSCs do not,whereas iMSCs do form muscle fibers,indicating a potential functional advantage of iMSCs.In addition,we observed that a high level of OCT4 expression is required for the initial reprogramming and the optimal iMSC self-renewal,while a reduction of OCT4 expression is required for multilineage differentiation.Our method will contribute to the generation of patient-specific iMSCs,which could have applications in regenerative medicine.This discovery may also facilitate the development of strategies for direct conversion of blood cells into other types of cells of clinical importance.

  19. Regeneration and reprogramming compared

    Directory of Open Access Journals (Sweden)

    Robles Vanesa

    2010-01-01

    Full Text Available Abstract Background Dedifferentiation occurs naturally in mature cell types during epimorphic regeneration in fish and some amphibians. Dedifferentiation also occurs in the induction of pluripotent stem cells when a set of transcription factors (Oct4, Sox2, Klf4 and c-Myc is over expressed in mature cell types. Results We hypothesised that there are parallels between dedifferentiation or reprogramming of somatic cells to induced pluripotent stem cells and the natural process of dedifferentiation during epimorphic regeneration. We analysed expression levels of the most commonly used pluripotency associated factors in regenerating and non-regenerating tissue and compared them with levels in a pluripotent reference cell. We found that some of the pluripotency associated factors (oct4/pou5f1, sox2, c-myc, klf4, tert, sall4, zic3, dppa2/4 and fut1, a homologue of ssea1 were expressed before and during regeneration and that at least two of these factors (oct4, sox2 were also required for normal fin regeneration in the zebrafish. However these factors were not upregulated during regeneration as would be expected if blastema cells acquired pluripotency. Conclusions By comparing cells from the regeneration blastema with embryonic pluripotent reference cells we found that induced pluripotent stem and blastema cells do not share pluripotency. However, during blastema formation some of the key reprogramming factors are both expressed and are also required for regeneration to take place. We therefore propose a link between partially reprogrammed induced pluripotent stem cells and the half way state of blastema cells and suggest that a common mechanism might be regulating these two processes.

  20. Stem Cell Factor-Based Identification and Functional Properties of In Vitro-Selected Subpopulations of Malignant Mesothelioma Cells

    Directory of Open Access Journals (Sweden)

    Walter Blum

    2017-04-01

    Full Text Available Malignant mesothelioma (MM is an aggressive neoplasm characterized by a poor patient survival rate, because of rapid tumor recurrence following first-line therapy. Cancer stem cells (CSCs are assumed to be responsible for initiating tumorigenesis and driving relapse after therapeutic interventions. CSC-enriched MM cell subpopulations were identified by an OCT4/SOX2 reporter approach and were characterized by (1 increased resistance to cisplatin, (2 increased sensitivity toward the FAK inhibitor VS-6063 in vitro, and (3 a higher tumor-initiating capacity in vivo in orthotopic xenograft and allograft mouse models. Overexpression of NF2 (neurofibromatosis 2, merlin, a tumor suppressor often mutated or lost in MM, did not affect proliferation and viability of CSC-enriched MM populations but robustly decreased the viability of reporter-negative cells. In contrast, downregulation of calretinin strongly decreased proliferation and viability of both populations. In summary, we have enriched and characterized a small MM cell subpopulation that bears the expected CSC characteristics.

  1. Generation and genetic engineering of human induced pluripotent stem cells using designed zinc finger nucleases.

    Science.gov (United States)

    Ramalingam, Sivaprakash; London, Viktoriya; Kandavelou, Karthikeyan; Cebotaru, Liudmila; Guggino, William; Civin, Curt; Chandrasegaran, Srinivasan

    2013-02-15

    Zinc finger nucleases (ZFNs) have become powerful tools to deliver a targeted double-strand break at a pre-determined chromosomal locus in order to insert an exogenous transgene by homology-directed repair. ZFN-mediated gene targeting was used to generate both single-allele chemokine (C-C motif) receptor 5 (CCR5)-modified human induced pluripotent stem cells (hiPSCs) and biallele CCR5-modified hiPSCs from human lung fibroblasts (IMR90 cells) and human primary cord blood mononuclear cells (CBMNCs) by site-specific insertion of stem cell transcription factor genes flanked by LoxP sites into the endogenous CCR5 locus. The Oct4 and Sox2 reprogramming factors, in combination with valproic acid, induced reprogramming of human lung fibroblasts to form CCR5-modified hiPSCs, while 5 factors, Oct4/Sox2/Klf4/Lin28/Nanog, induced reprogramming of CBMNCs. Subsequent Cre recombinase treatment of the CCR5-modified IMR90 hiPSCs resulted in the removal of the Oct4 and Sox2 transgenes. Further genetic engineering of the single-allele CCR5-modified IMR90 hiPSCs was achieved by site-specific addition of the large CFTR transcription unit to the remaining CCR5 wild-type allele, using CCR5-specific ZFNs and a donor construct containing tdTomato and CFTR transgenes flanked by CCR5 homology arms. CFTR was expressed efficiently from the endogenous CCR5 locus of the CCR5-modified tdTomato/CFTR hiPSCs. These results suggest that it might be feasible to use ZFN-evoked strategies to (1) generate precisely targeted genetically well-defined patient-specific hiPSCs, and (2) then to reshape their function by targeted addition and expression of therapeutic genes from the CCR5 chromosomal locus for autologous cell-based transgene-correction therapy to treat various recessive monogenic human diseases in the future.

  2. Evidence that high-migration drug-surviving MOLT4 leukemia cells exhibit cancer stem cell-like properties.

    Science.gov (United States)

    Huang, Xiaoxing; Xiong, Meng; Jin, Yujie; Deng, Chaohua; Xu, Hui; An, Changqing; Hao, Ling; Yang, Xiangyong; Deng, Xinzhou; Tu, Zhenbo; Li, Xinran; Xiao, Ruijing; Zhang, Qiuping

    2016-07-01

    Leukemia represents a spectrum of hematological malignancies threatening human health. Resistance to treatments and metastasis of leukemia are the main causes of death in patients. Leukemia stem cells (LSCs) are the initiating cells of leukemia as well as the main source of drug resistance, invasion and metastasis. Consequently, eliminating LSCs is a prerequisite to eradicate leukemia. Preliminary studies in our laboratory have shown that chemokines and their related receptors play an important role in the drug resistance and metastasis of leukemic cells. In this study, we obtained high migration drug-surviving (short term) MOLT4 cells (hMDSCs-MOLT4) with treatment of doxorubicin (DOX) after Transwell assay. Then we detected stem cell-associated molecular markers on hMDSCs-MOLT4 cells and the parental MOLT4 cells by FCM, QPCR, western blotting, H&E staining and immunohisto-chemistry experimental techniques in vitro and in vivo. Moreover, we explored its impact on drug resistance and tumor formation. Then we found that compared with the parental MOLT4 cells, the mRNA expression levels of stem cell-related factors Sox2, Oct4, C-myc, Klf4, Nanog, Bmi-1, CXCR4 are increased in hMDSCs-MOLT4 cells, together with the protein expression levels of Sox2, Oct4, Klf4, Nanog, CXCR4 and CD34. Our results indicated that hMDSCs-MOLT4 cells exhibited strong drug resistance and certain cancer stem cell-like characteristics. It is the first indication that the targeting stemness factors such as Sox2, Oct4, Klf4, Nanog and CXCR4 may represent plausible options for eliminating T-ALL stem-like cells. The present findings shed light on the relationship between drug-tolerant leukemic cells and cancer stem cells.

  3. Generation of induced pluripotent stem cells from peripheral blood CD34+ hematopoietic progenitors of a 31 year old healthy woman

    Directory of Open Access Journals (Sweden)

    Amornrat Tangprasittipap

    2017-04-01

    Full Text Available The MUi019-A human induced pluripotent stem cell line was generated from peripheral blood CD34+ hematopoietic progenitors of a healthy woman using a non-integrative reprogramming method. Episomal vectors carrying reprogramming factors OCT4, SOX2, KLF4, L-MYC, LIN28, and shRNA of TP53 and EBNA-1 were delivered using electroporation. The iPSC line can be used as a control in studying disease mechanisms. Furthermore, gene editing approaches can be used to introduce specific mutations into the MUi019-A to model disease while the cell type affected by the disease is inaccessible.

  4. Generation and characterization of two iPSC lines from human epicardium-derived cells

    Directory of Open Access Journals (Sweden)

    Christina Paulitschek

    2017-04-01

    Full Text Available Human epicardium-derived cells (EPDC were reprogrammed to generate two iPSC lines, MCDU1i-EPDC and MCDU2i-EPDC, by nucleofection of episomal-based plasmids expressing the reprogramming factors OCT4, SOX2, KLF4, c-MYC, NANOG and LIN28. Pluripotency was confirmed in vitro by immunofluorescence analysis and embryoid body formation. The iPSC lines and the human embryonic stem cell line H1 show a Pearson correlation co-efficient of 0.951 (MCDU1i-EPDC and 0.937 (MCDU2i-EPDC as assessed by comparative transcriptome profiling.

  5. Generation of induced pluripotent stem cells (iPSCs from a retinoblastoma patient carrying a c.2663G>A mutation in RB1 gene

    Directory of Open Access Journals (Sweden)

    Sicong Zeng

    2016-09-01

    Full Text Available Skin fibroblasts were obtained from a male patient diagnosed with retinoblastoma (RB carrying a c.2663G>A mutation in the 25 exon of RB1 gene. RB-iPS cells was generated via delivered four reprogramming factors (OCT4, SOX2, NANOG and LIN28 into these skin fibroblasts. The RB-iPS cells retained the RB1 heterozygous mutation resulted in a truncated RB1 mRNA. Characteristic tests proved that the iPSC line presented typical markers of pluripotency and had the capability to form the three germ layers in vitro.

  6. Peripheral blood derived induced pluripotent stem cells (iPSCs from a female with familial hypertrophic cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Samantha Barratt Ross

    2017-04-01

    Full Text Available Induced pluripotent stem cells (iPSCs were generated from peripheral blood mononuclear cells (PBMCs obtained from a 62-year-old female with familial hypertrophic cardiomyopathy (HCM. PBMCs were reprogrammed to a pluripotent state following transfection with non-integrative episomal vectors carrying reprogramming factors OCT4, SOX2, LIN28, KLF4 and L-MYC. iPSCs were shown to express pluripotency markers, possess trilineage differentiation potential, carry rare variants identified in DNA isolated directly from the patient's whole blood, have a normal karyotype and no longer carry episomal vectors for reprogramming. This line is a useful resource for identifying unknown genetic causes of HCM.

  7. Stemcell Information: SKIP000682 [SKIP Stemcell Database[Archive

    Lifescience Database Archive (English)

    Full Text Available oid body formation ... Yes qRT-PCR ... Yes ... Immune Disease Institute, Program in Cellular and Molecu...lar Medicine, Children's Hospital Boston Immune Disease Institute, Program in Cellular and Molecular Medicin...Immune Disease Institute, Program in Cellular and Molecular Medicine, Children's Hospital Boston Immune Dise...ase Institute, Program in Cellular and Molecular Medicine, Children's Hospital Boston ... 20888316 10.1016/...g factors OCT4, SOX2, KLF4, c-MYC and LIN28 (OSKML) with molar concentrations in the ratio 3:1:1:1:1. Detroit 551 (D551)由来iPS細胞

  8. Temporal repression of endogenous pluripotency genes during reprogramming of porcine induced pluripotent stem cells

    DEFF Research Database (Denmark)

    Hall, Vanessa Jane; Christensen, Marianne; Rasmussen, Mikkel Aabech;

    2012-01-01

    transgenes on the expression of the porcine endogenous pluripotency machinery. Endogenous and exogenous gene expression of OCT4, NANOG, SOX2, KLF4, and cMYC was determined at passages 5, 10, 15, and 20, both in cells cultured at 1¿µg/mL doxycycline or 4¿µg/mL doxycycline. Our results revealed that endogenous....... Despite the ability for some endogenous genes to be expressed in these lines, the piPSC-like cells still cannot be maintained without doxycycline, indicating that the culture system of piPSCs may not be optimal or that the reprogramming factor combination used may not currently be optimal for maintaining...

  9. Bmil puSHHes reprogramming

    Institute of Scientific and Technical Information of China (English)

    Han Li; Manuel Serrano

    2011-01-01

    In 2006,the group of Shinya Yamanaka demonstrated that somatic cells could be reprogrammed into induced pluripotent stem cells (iPSCs) by ectopic expression of four transcription factors associated to stemness:Oct4,Sox2,Klf4 and c-Myc [1].This groundbreaking discovery opened the possibility of generating patient-specific cells for research,drug development and regenerative medicine.Due to the tremendous potential of its clinical applications,understanding the process of reprogramming has become a priority and one of the most fascinating biomedical research topics.

  10. CD44+CD24-Λow乳腺癌干细胞的流式分选及其肿瘤干细胞特性的初步鉴定%Isolation and Preliminary Characterization of CD44+CD24-Λow Human Breast Cancer Stem Cells

    Institute of Scientific and Technical Information of China (English)

    王玲燕; 王斌; 马清华; 金泗虎; 高红伟; 李素波; 卞修武; 宫锋

    2012-01-01

    Objective: To enrich breast cancer stem cells through fluorescence-activated cell sorting and verify their biological characteristics of the cells. Methods: CD44+CD24-△oW subset cells were sorted and measured by flow cytometry,and the expressions of Oct-4,SOX-2,CK-18 and a-SMA were detected by immunostaining. Results: Flow cytometry analysis indicated that the purity of CD44+CD24-△ow subset cells exceed 90%. Immunostaining analysis suggested that CD44+CD24-△ow subset cells expressed higher levels of transcription factors Oct-4 and SOX-2,lower levels of differentiated factors CK-18 and α-SMA than non-CD44+CD24-△ow subset cells. In vitro, CD44+ CD24-△ow subset cells were verified to possess the ability of forming tumor spheres and multipotency. Conclusion: CD44+CD24-△ow subset cells contained higher proportion of breast cancer stem cells and expressed higher levels of Oct-4 and SOX-2.%目的:通过表面标志分选法富集乳腺癌干细胞,并初步鉴定其肿瘤干细胞特性.方法:采用流式细胞分选术从人乳腺癌细胞系MCF-7中分选CD44+CD24-Λow乳腺癌干细胞,并进行干细胞比例分析;用免疫荧光法检测、比较分选获得的细胞和对照细胞的干性和分化标记物Oct-4SOX-2、CK-18和α-SMA的表达状态.结果:分选获得的CD44+CD24-Λow乳腺癌干细胞阳性比例达90%以上;免疫荧光检测结果显示,CD44+CD24-Λow细胞亚群比non-CD44+CD24-Λow细胞亚群高表达干细胞转录因子Oct-4SOX-2,低表达分化因子CK-18、α-SMA;体外实验表明,CD44+CD24-Λow细胞亚群具有更强的成球生长能力,并具有双向分化潜能.结论:CD44+CD24-Λow表面标记物分选的方法可以富集高纯度的乳腺癌干细胞,且呈现干性因子Oct-4SOX-2高表达.

  11. Role of Sox2 in postimplantation epiblast pluripotency

    OpenAIRE

    Wong, Ching Kwan Frederick

    2015-01-01

    Pluripotency is defined as the capacity to differentiate into cells from each of the three primary germ layers, the ectoderm, mesoderm and endoderm. This is a property of cells located in the inner cell mass (ICM) of preimplantation blastocysts and in the epiblast layer of postimplantation, presomite embryos. Preimplantation and postimplantation pluripotency can be captured indefinitely in cultured embryonic stem (ES) cells and epiblast stem cells (EpiSCs) respectively. Prei...

  12. Efficient generation of rat induced pluripotent stem cells using a non-viral inducible vector.

    Directory of Open Access Journals (Sweden)

    Claudia Merkl

    Full Text Available Current methods of generating rat induced pluripotent stem cells are based on viral transduction of pluripotency inducing genes (Oct4, Sox2, c-myc and Klf4 into somatic cells. These activate endogenous pluripotency genes and reprogram the identity of the cell to an undifferentiated state. Epigenetic silencing of exogenous genes has to occur to allow normal iPS cell differentiation. To gain more control over the expression of exogenous reprogramming factors, we used a novel doxycycline-inducible plasmid vector encoding Oct4, Sox2, c-Myc and Klf4. To ensure efficient and controlled generation of iPS cells by plasmid transfection we equipped the reprogramming vector with a bacteriophage φC31 attB site and used a φC31 integrase expression vector to enhance vector integration. A series of doxycycline-independent rat iPS cell lines were established. These were characterized by immunocytochemical detection of Oct4, SSEA1 and SSEA4, alkaline phosphatase staining, methylation analysis of the endogenous Oct4 promoter and RT-PCR analysis of endogenous rat pluripotency genes. We also determined the number of vector integrations and the extent to which reprogramming factor gene expression was controlled. Protocols were developed to generate embryoid bodies and rat iPS cells demonstrated as pluripotent by generating derivatives of all three embryonic germ layers in vitro, and teratoma formation in vivo. All data suggest that our rat iPS cells, generated by plasmid based reprogramming, are similar to rat ES cells. Methods of DNA transfection, protein transduction and feeder-free monolayer culture of rat iPS cells were established to enable future applications.

  13. Syndecan-1 responsive microRNA-126 and 149 regulate cell proliferation in prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Tomomi; Shimada, Keiji [Department of Pathology, Nara Medical University School of Medicine, Nara (Japan); Tatsumi, Yoshihiro [Department of Pathology, Nara Medical University School of Medicine, Nara (Japan); Department of Urology, Nara Medical University School of Medicine, Nara (Japan); Fujimoto, Kiyohide [Department of Urology, Nara Medical University School of Medicine, Nara (Japan); Konishi, Noboru, E-mail: nkonishi@naramed-u.ac.jp [Department of Pathology, Nara Medical University School of Medicine, Nara (Japan)

    2015-01-02

    Highlights: • Syndecan-1 is highly expressed in androgen independent prostate cancer cells, PC3. • Syndecan-1 regulates the expression of miR-126 and -149 in prostate cancer cells. • MiR-126 and 149 control cell growth via p21 induction and senescence mechanism. • MiR-126 and 149 promote cell proliferation by suppressing SOX2, NANOG, and Oct4. - Abstract: MicroRNAs (miRNAs) are short (19–24 nt), low molecular weight RNAs that play important roles in the regulation of target genes associated with cell proliferation, differentiation, and development, by binding to the 3′-untranslated region of the target mRNAs. In this study, we examined the expression of miRNA-126 (miR-126) and miR-149 in prostate cancer, and investigated the molecular mechanisms by which they affect syndecan-1 in prostate cancer. Functional analysis of miR-126 and miR-149 was conducted in the prostate cancer cell lines, PC3, Du145, and LNCaP. The expression levels of SOX2, NANOG, Oct4, miR-126 and miR-149 were evaluated by quantitative RT-PCR. After silencing syndecan-1, miR-126, and/or miR-149 in the PC3 cells, cell proliferation, senescence, and p21 induction were assessed using the MTS assay, senescence-associated β-galactosidase (SA-β-Gal) assay, and immunocytochemistry, respectively. Compared to the Du145 and LNCaP cells, PC3 cells exhibited higher expression of syndecan-1. When syndecan-1 was silenced, the PC3 cells showed reduced expression of miR-126 and miR-149 most effectively. Suppression of miR-126 and/or miR-149 significantly inhibited cell growth via p21 induction and subsequently, induced senescence. The mRNA expression levels of SOX2, NANOG, and Oct4 were significantly increased in response to the silencing of miR-126 and/or miR-149. Our results suggest that miR-126 and miR-149 are associated with the expression of syndecan-1 in prostate cancer cells. These miRNAs promote cell proliferation by suppressing SOX2, NANOG, and Oct4. The regulation of these factors by mi

  14. Isolation and Culture of Goat Bone Marrow Mesenchymal Stem Cells%山羊骨髓间充质干细胞的分离培养

    Institute of Scientific and Technical Information of China (English)

    王利; 陈琦; 贾宇臣; 郑源强; 李少伟

    2014-01-01

    旨在对山羊的骨髓间充质干细胞(BMSCs)进行分离培养。将分离得到的BMSCs进行传代培养,采用RT-PCR法检测其干细胞转录因子oct4sox2基因,以验证其干细胞特性;在此基础上绘制BMSCs的生长曲线,对其生物学特性进行直观了解。结果表明,分离到的山羊BMSCs原代细胞呈现出成纤维样,并能够表达oct4sox2基因,证明了其干细胞特性;其生长曲线呈“S”型,在1~2 d时为潜伏期,第3天时进入指数生长期,第7天时进入平台期。结果提示,分离得到的细胞具有BMSCs的特性,能够用于后续的相关试验研究。%The aim of this study was to observe the biological characteristics of goat bone marrow mesenchymal stem cells (BMSCs). Samples were collected from goat and the BMSCs were isolated and cultured. RT-PCR was used to verify the stem cell properties of the isolated cells by detecting the stem cell transcription factor oct4 gene and sox2 gene. Furthermore, the growth curve of the identified BMSCs was drawn. The results showed that the BMSCs exhibited primary fibroblast and were able to express the oct4 gene and sox2 gene, which proved its characteristics of stem cells. The growth curve of BMSCs was shown as ‘S’ type, the 1st and 2nd day when the cells were cultured were the incubation period, the 3rd day was the exponential growth phase, and the growth of the cells entered platform phase after the 7th day. It was indicated that the isolated cells were BMSCs and can be used for the subsequent study.

  15. miR-21 Is Linked to Glioma Angiogenesis

    DEFF Research Database (Denmark)

    Hermansen, Simon Kjær; Nielsen, Boye Schnack; Aaberg-Jessen, Charlotte

    2016-01-01

    (Sox2) and CD133. We developed an image analysis-based co-localization approach allowing global alignment and quantitation of the individual markers, and measured the miR-21 in situ hybridization signal against the immunohistochemical staining of the six different markers. miR-21 significantly co......-positive tumor cells, we systematically stained consecutive serial sections from ten astrocytomas for miR-21, hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF), phosphatase and tensin homolog (PTEN), octamer-binding transcription factor 4 (Oct4), sex-determining region Y box 2......-localized with the hypoxia- and angiogenesis-associated markers HIF-1α (p=0.0020) and VEGF (p=0.0096), whereas the putative miR-21 target, PTEN, was expressed independently of miR-21. Expression of stem cell markers Oct4, Sox2 and CD133 was not associated with miR-21. In six glioblastoma cultures, miR-21 did not correlate...

  16. MicroRNA-Mediated Reprogramming of Somatic Cells into Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Sandmaier, Shelley E S; Telugu, Bhanu Prakash V L

    2015-01-01

    MicroRNAs or miRNAs belong to a class of small noncoding RNAs that play a crucial role in posttranscriptional regulation of gene expression. Nascent miRNAs are expressed as a longer transcript, which are then processed into a smaller 18-23-nucleotide mature miRNAs that bind to the target transcripts and induce cleavage or inhibit translation. MiRNAs therefore represent another key regulator of gene expression in establishing and maintaining unique cellular fate. Several classes of miRNAs have been identified to be uniquely expressed in embryonic stem cells (ESC) and regulated by the core transcription factors Oct4, Sox2, and Klf4. One such class of miRNAs is the mir-302/367 cluster that is enriched in pluripotent cells in vivo and in vitro. Using the mir-302/367 either by themselves or in combination with the Yamanaka reprogramming factors (Oct4, Sox2, c-Myc, and Klf4) has resulted in the establishment of induced pluripotent stem cells (iPSC) with high efficiencies. In this chapter, we outline the methodologies for establishing and utilizing the miRNA-based tools for reprogramming somatic cells into iPSC.

  17. Induction of oligodendrocyte differentiation from adult human fibroblast-derived induced pluripotent stem cells.

    Science.gov (United States)

    Ogawa, Shin-ichiro; Tokumoto, Yasuhito; Miyake, Jun; Nagamune, Teruyuki

    2011-08-01

    Induced pluripotent stem cells (iPSCs) prepared from somatic cells might become a novel therapeutic tool in regenerative medicine, especially for the central nervous system (CNS). In this study, we attempted to induce O4-positive (O4(+)) oligodendrocytes from adult human fibroblast-derived iPSCs in vitro. We used two adult human iPSC cell lines, 201B7 and 253G1. 201B7 was induced by four-gene transduction (oct4, sox2, klf4, c-myc), and 253G1 was induced by three-gene transduction (oct4, sox2, klf4). We treated these cells with two in vitro oligodendrocyte-directed differentiation protocols that were optimized for human embryonic stem cells. One protocol used platelet-derived growth factor as the major mitogen for oligodendrocyte lineage cells, and the other protocol used epidermal growth factor (EGF) as the mitogen. Although the differentiation efficiency was low (less than 0.01%), we could induce O4(+) oligodendrocytes from 253G1 cells using the EGF-dependent differentiation protocol. This is the first report of the in vitro induction of oligodendrocytes differentiation from human iPSCs.

  18. Identification of MicroRNAs Regulating Reprogramming Factor LIN28 in Embryonic Stem Cells and Cancer Cells*

    Science.gov (United States)

    Zhong, Xiaomin; Li, Ning; Liang, Shun; Huang, Qihong; Coukos, George; Zhang, Lin

    2010-01-01

    LIN28 (a homologue of the Caenorhabditis elegans lin-28 gene) is an evolutionarily conserved RNA-binding protein and a master regulator controlling the pluripotency of embryonic stem cells. Together with OCT4, SOX2, and NANOG, LIN28 can reprogram somatic cells, producing induced pluripotent stem cells. Expression of LIN28 is highly restricted to embryonic stem cells and developing tissues. In human tumors, LIN28 is up-regulated and functions as an oncogene promoting malignant transformation and tumor progression. However, the mechanisms of transcriptional and post-transcriptional regulation of LIN28 are still largely unknown. To examine microRNAs (miRNAs) that repress LIN28 expression, a combined in silico prediction and miRNA library screening approach was used in the present study. Four miRNAs directly regulating LIN28 (let-7, mir-125, mir-9, and mir-30) were initially identified by this approach and further validated by quantitative RT-PCR, Western blot analysis, and a LIN28 3′-UTR reporter assay. We found that expression levels of these four miRNAs were clustered together and inversely correlated with LIN28 expression during embryonic stem cell differentiation. In addition, the expression of these miRNAs was remarkably lower in LIN28-positive tumor cells compared with LIN28-negative tumor cells. Importantly, we demonstrated that these miRNAs were able to regulate the expression and activity of let-7, mediated by LIN28. Taken together, our studies demonstrate that miRNAs let-7, mir-125, mir-9, and mir-30 directly repress LIN28 expression in embryonic stem and cancer cells. Global down-regulation of these miRNAs may be one of the mechanisms of LIN28 reactivation in human cancers. PMID:20947512

  19. Identification of microRNAs regulating reprogramming factor LIN28 in embryonic stem cells and cancer cells.

    Science.gov (United States)

    Zhong, Xiaomin; Li, Ning; Liang, Shun; Huang, Qihong; Coukos, George; Zhang, Lin

    2010-12-31

    LIN28 (a homologue of the Caenorhabditis elegans lin-28 gene) is an evolutionarily conserved RNA-binding protein and a master regulator controlling the pluripotency of embryonic stem cells. Together with OCT4, SOX2, and NANOG, LIN28 can reprogram somatic cells, producing induced pluripotent stem cells. Expression of LIN28 is highly restricted to embryonic stem cells and developing tissues. In human tumors, LIN28 is up-regulated and functions as an oncogene promoting malignant transformation and tumor progression. However, the mechanisms of transcriptional and post-transcriptional regulation of LIN28 are still largely unknown. To examine microRNAs (miRNAs) that repress LIN28 expression, a combined in silico prediction and miRNA library screening approach was used in the present study. Four miRNAs directly regulating LIN28 (let-7, mir-125, mir-9, and mir-30) were initially identified by this approach and further validated by quantitative RT-PCR, Western blot analysis, and a LIN28 3'-UTR reporter assay. We found that expression levels of these four miRNAs were clustered together and inversely correlated with LIN28 expression during embryonic stem cell differentiation. In addition, the expression of these miRNAs was remarkably lower in LIN28-positive tumor cells compared with LIN28-negative tumor cells. Importantly, we demonstrated that these miRNAs were able to regulate the expression and activity of let-7, mediated by LIN28. Taken together, our studies demonstrate that miRNAs let-7, mir-125, mir-9, and mir-30 directly repress LIN28 expression in embryonic stem and cancer cells. Global down-regulation of these miRNAs may be one of the mechanisms of LIN28 reactivation in human cancers.

  20. Reprogramming of endometrial adult stromal cells in the presence of a ROCK inhibitor, thiazovivin, could obtain more efficient iPSCs.

    Science.gov (United States)

    Mohseni, Rashin; Shoae-Hassani, Alireza; Verdi, Javad

    2015-05-01

    Today, there is a need for a platform to efficiently generate and maintain a feeder free culture of pluripotent stem cells by small molecules or pharmacological agents. Induced pluripotent stem cell (iPSC) is considered a promising resource for restorative cell therapy in clinical areas. While fully reprogrammed iPSCs are similar to embryonic stem cells, iPSCs could be derived from the patient's own cells (autologous), which avoids the immune rejection activities. Recent advances have demonstrated that iPSCs could be generated from human fibroblasts using only four transcription factors: OCT4, SOX2, CMYC, and KLF4. However, the limitations of reprogramming technologies include low efficiency, slow kinetics, transgene integration and residual expression. Surprisingly, adult stem cells from human endometrium (endometrial stem cells; EnSCs) express OCT4 and KLF4 pluripotency factors. On the other hand, small molecule inhibitors of specific signaling pathways such as thiazovivin have been used in various aspects of iPSC generation and maintenance. Thiazovivin is a selective small molecule that directly targets Rho-associated kinase (ROCK) and increases expression of pluripotency factors. The process using thiazovivin could be easier, faster and more cost effective than transgene integration into somatic cells. So reprogramming of OCT4 and KLF4 expressing EnSCs by a ROCK inhibitor, thiazovivin, could result in producing more efficient iPSCs compared with fibroblasts or conventional somatic cells without integration any transgene and retroviral vector. © 2015 International Federation for Cell Biology.

  1. Pluripotency can be rapidly and efficiently induced in human amniotic fluid-derived cells.

    Science.gov (United States)

    Li, Chunliang; Zhou, Junmei; Shi, Guilai; Ma, Yu; Yang, Ying; Gu, Junjie; Yu, Hongyao; Jin, Shibo; Wei, Zhe; Chen, Fang; Jin, Ying

    2009-11-15

    Direct reprogramming of human somatic cells into pluripotency has broad implications in generating patient-specific induced pluripotent stem (iPS) cells for disease modeling and cellular replacement therapies. However, the low efficiency and safety issues associated with generation of human iPS cells have limited their usage in clinical settings. Cell types can significantly influence reprogramming efficiency and kinetics. To date, human iPS cells have been obtained only from a few cell types. Here, we report for the first time rapid and efficient generation of iPS cells from human amniotic fluid-derived cells (hAFDCs) via ectopic expression of four human factors: OCT4/SOX2/KLF4/C-MYC. Significantly, typical single iPS cell colonies can be picked up 6 days after viral infection with high efficiency. Eight iPS cell lines have been derived. They can be continuously propagated in vitro and express pluripotency markers such as AKP, OCT4, SOX2, SSEA4, TRA-1-60 and TRA-1-81, maintaining the normal karyotype. Transgenes are completely inactivated and the endogenous OCT4 promoter is adequately demethylated in the established iPS cell lines. Moreover, various cells and tissues from all three germ layers are found in embryoid bodies and teratomas, respectively. In addition, microarray analysis demonstrates a high correlation coefficient between hAFDC-iPS cells and human embryonic stem cells, but a low correlation coefficient between hAFDCs and hAFDC-iPS cells. Taken together, these data identify an ideal human somatic cell resource for rapid and efficient generation of iPS cells, allowing us to establish human iPS cells using more advanced approaches and possibly to establish disease- or patient-specific iPS cells.

  2. HIF induces human embryonic stem cell markers in cancer cells.

    Science.gov (United States)

    Mathieu, Julie; Zhang, Zhan; Zhou, Wenyu; Wang, Amy J; Heddleston, John M; Pinna, Claudia M A; Hubaud, Alexis; Stadler, Bradford; Choi, Michael; Bar, Merav; Tewari, Muneesh; Liu, Alvin; Vessella, Robert; Rostomily, Robert; Born, Donald; Horwitz, Marshall; Ware, Carol; Blau, C Anthony; Cleary, Michele A; Rich, Jeremy N; Ruohola-Baker, Hannele

    2011-07-01

    Low oxygen levels have been shown to promote self-renewal in many stem cells. In tumors, hypoxia is associated with aggressive disease course and poor clinical outcomes. Furthermore, many aggressive tumors have been shown to display gene expression signatures characteristic of human embryonic stem cells (hESC). We now tested whether hypoxia might be responsible for the hESC signature observed in aggressive tumors. We show that hypoxia, through hypoxia-inducible factor (HIF), can induce an hESC-like transcriptional program, including the induced pluripotent stem cell (iPSC) inducers, OCT4, NANOG, SOX2, KLF4, cMYC, and microRNA-302 in 11 cancer cell lines (from prostate, brain, kidney, cervix, lung, colon, liver, and breast tumors). Furthermore, nondegradable forms of HIFα, combined with the traditional iPSC inducers, are highly efficient in generating A549 iPSC-like colonies that have high tumorigenic capacity. To test potential correlation between iPSC inducers and HIF expression in primary tumors, we analyzed primary prostate tumors and found a significant correlation between NANOG-, OCT4-, and HIF1α-positive regions. Furthermore, NANOG and OCT4 expressions positively correlated with increased prostate tumor Gleason score. In primary glioma-derived CD133 negative cells, hypoxia was able to induce neurospheres and hESC markers. Together, these findings suggest that HIF targets may act as key inducers of a dynamic state of stemness in pathologic conditions.

  3. Generating induced pluripotent stem cells from common marmoset (Callithrix jacchus) fetal liver cells using defined factors, including Lin28.

    Science.gov (United States)

    Tomioka, Ikuo; Maeda, Takuji; Shimada, Hiroko; Kawai, Kenji; Okada, Yohei; Igarashi, Hiroshi; Oiwa, Ryo; Iwasaki, Tsuyoshi; Aoki, Mikio; Kimura, Toru; Shiozawa, Seiji; Shinohara, Haruka; Suemizu, Hiroshi; Sasaki, Erika; Okano, Hideyuki

    2010-09-01

    Although embryonic stem (ES) cell-like induced pluripotent stem (iPS) cells have potential therapeutic applications in humans, they are also useful for creating genetically modified human disease models in nonhuman primates. In this study, we generated common marmoset iPS cells from fetal liver cells via the retrovirus-mediated introduction of six human transcription factors: Oct-3/4, Sox2, Klf4, c-Myc, Nanog, and Lin28. Four to five weeks after introduction, several colonies resembling marmoset ES cells were observed and picked for further expansion in ES cell medium. Eight cell lines were established, and validation analyses of the marmoset iPS cells followed. We detected the expression of ES cell-specific surface markers. Reverse transcription-PCR showed that these iPS cells expressed endogenous Oct-3/4, Sox2, Klf4, c-Myc, Nanog and Lin28 genes, whereas all of the transgenes were silenced. Karyotype analysis showed that two of three iPS cell lines retained a normal karyotype after a 2-month culture. Both embryoid body and teratoma formation showed that marmoset iPS cells had the developmental potential to give rise to differentiated derivatives of all three primary germ layers. In summary, we generated marmoset iPS cells via the transduction of six transcription factors; this provides a powerful preclinical model for studies in regenerative medicine.

  4. Activation of pluripotency genes in human fibroblast cells by a novel mRNA based approach.

    Directory of Open Access Journals (Sweden)

    Jordan R Plews

    Full Text Available BACKGROUND: Several methods have been used to induce somatic cells to re-enter the pluripotent state. Viral transduction of reprogramming genes yields higher efficiency but involves random insertions of viral sequences into the human genome. Although induced pluripotent stem (iPS cells can be obtained with the removable PiggyBac transposon system or an episomal system, both approaches still use DNA constructs so that resulting cell lines need to be thoroughly analyzed to confirm they are free of harmful genetic modification. Thus a method to change cell fate without using DNA will be very useful in regenerative medicine. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we synthesized mRNAs encoding OCT4, SOX2, cMYC, KLF4 and SV40 large T (LT and electroporated them into human fibroblast cells. Upon transfection, fibroblasts expressed these factors at levels comparable to, or higher than those in human embryonic stem (ES cells. Ectopically expressed OCT4 localized to the cell nucleus within 4 hours after mRNA introduction. Transfecting fibroblasts with a mixture of mRNAs encoding all five factors significantly increased the expression of endogenous OCT4, NANOG, DNMT3β, REX1 and SALL4. When such transfected fibroblasts were also exposed to several small molecules (valproic acid, BIX01294 and 5'-aza-2'-deoxycytidine and cultured in human embryonic stem cell (ES medium they formed small aggregates positive for alkaline phosphatase activity and OCT4 protein within 30 days. CONCLUSION/SIGNIFICANCE: Our results demonstrate that mRNA transfection can be a useful approach to precisely control the protein expression level and short-term expression of reprogramming factors is sufficient to activate pluripotency genes in differentiated cells.

  5. The Evaluation of Testes Extracts on Spermatogonial Stem Cells’ Self-Renewal Property Compared to Their Specific Growth Factors

    Directory of Open Access Journals (Sweden)

    Sohrab Boozarpour

    2014-07-01

    Full Text Available Introduction: Spermatogonial stem cells are regarded as the continual generator of sperms in males. They possess the potential to regenerate themselves, provided by the niche, which is necessary for substituting the old sperms with the new ones and their population’s maintenance. There are demanding efforts conducted often on spermatogonial stem cells, and some special growth factors with the capability of reestablishment of this niche under experimental circumstances, but there have been few studies on poultries in this respect. Methods: In the present study, the impact of adult mice and roosters testes extracts on colony-formation potential of chicken spermatogonial stem cells in the course of four days, as compared to those of three conventional growth factors (LIF, bFGF and GDNF was investigated. After determination of the optimum concentrations of growth factors, OCT4 gene expression was measured as one of spermatogonial stem cell activities’ signature via Real-time RT-PCR technique during two weeks treatment. Results: The results of colony forming activity show that in vitro treatment by the mice and roosters testes extracts and the three mentioned growth factors (GDNF,bFGF and LIF had a considerably discrepancies in terms of the number of created colonies compared to the control group (without adding any factor after four days. Moreover, the OCT4 over-expressed extremely by these biological impulses after two weeks. Conclusion: The results indicated that the testes extract would be a valuable substitute for non-economical industrial growth factors.

  6. Production of Induced Pluripotent Stem Cells by Reprogramming of Blood Cells

    Directory of Open Access Journals (Sweden)

    Sadia Zia

    2011-06-01

    Full Text Available Blood cells are the simple, efficient and economical source for the production of induced pluripotent cells. The discovery of induced pluripotent cells was not novel; it was pedestal on the scientific principals and technologies which have been developed over last six decades. These are nuclear transfer and the cloning of Animals, Pluripotent cell lines and fusion hybrids and Transcription Factors and lineage switching. The use of human embryonic stem cells in regenerative medicines was a breakthrough but make use of these cells arise ethical issues as they are obtained from human embryos. An alternative advancement using induced pluripotent stem cells, which mimics the embryonic stem cells has the significant gain that they replaced the embryonic stem cells. The pluripotent cells can be induced from terminally differentiated somatic cells by the Induction of only four defined factors including c-Myc, klf4, Oct4 and Sox2 which are enough to alter the fate of cell.

  7. The Role of microRNAs in Animal Cell Reprogramming.

    Science.gov (United States)

    Cruz-Santos, María Concepción; Aragón-Raygoza, Alejandro; Espinal-Centeno, Annie; Arteaga-Vázquez, Mario; Cruz-Hernández, Andrés; Bako, Laszlo; Cruz-Ramírez, Alfredo

    2016-07-15

    Our concept of cell reprogramming and cell plasticity has evolved since John Gurdon transferred the nucleus of a completely differentiated cell into an enucleated Xenopus laevis egg, thereby generating embryos that developed into tadpoles. More recently, induced expression of transcription factors, oct4, sox2, klf4, and c-myc has evidenced the plasticity of the genome to change the expression program and cell phenotype by driving differentiated cells to the pluripotent state. Beyond these milestone achievements, research in artificial cell reprogramming has been focused on other molecules that are different than transcription factors. Among the candidate molecules, microRNAs (miRNAs) stand out due to their potential to control the levels of proteins that are involved in cellular processes such as self-renewal, proliferation, and differentiation. Here, we review the role of miRNAs in the maintenance and differentiation of mesenchymal stem cells, epimorphic regeneration, and somatic cell reprogramming to induced pluripotent stem cells.

  8. Peripheral blood mononuclear cell-converted induced pluripotent stem cells (iPSCs) from an early onset Alzheimer's patient.

    Science.gov (United States)

    Lee, Han-Kyu; Morin, Peter; Xia, Weiming

    2016-03-01

    Improvement in transduction efficiency makes it possible to convert blood cells into induced pluripotent stem cells (iPSC). In this study, we generated an iPSC line from peripheral blood mononuclear cells (PBMC) donated by a patient who exhibited memory deficit at age 59; outcome of positron emission tomography scan is consistent with a diagnosis of Alzheimer's disease. Integration-free CytoTune-iPS Sendai Reprogramming factors which include Sendai virus particles of the four Yamanaka factors Oct4, Sox2, Klf4, and c-Myc were introduced to PBMC to convert them to iPSCs without retention of virus. Three germ layer differentiation was induced to demonstrate the pluripotency of these iPSCs. Published by Elsevier B.V.

  9. Peripheral blood mononuclear cell-converted induced pluripotent stem cells (iPSCs from an early onset Alzheimer's patient

    Directory of Open Access Journals (Sweden)

    Han-Kyu Lee

    2016-03-01

    Full Text Available Improvement in transduction efficiency makes it possible to convert blood cells into induced pluripotent stem cells (iPSC. In this study, we generated an iPSC line from peripheral blood mononuclear cells (PBMC donated by a patient who exhibited memory deficit at age 59; outcome of positron emission tomography scan is consistent with a diagnosis of Alzheimer's disease. Integration-free CytoTune-iPS Sendai Reprogramming factors which include Sendai virus particles of the four Yamanaka factors Oct4, Sox2, Klf4, and c-Myc were introduced to PBMC to convert them to iPSCs without retention of virus. Three germ layer differentiation was induced to demonstrate the pluripotency of these iPSCs.

  10. Murine inner cell mass-derived lineages depend on Sall4 function

    Science.gov (United States)

    Elling, Ulrich; Klasen, Christian; Eisenberger, Tobias; Anlag, Katrin; Treier, Mathias

    2006-01-01

    Sall4 is a mammalian Spalt transcription factor expressed by cells of the early embryo and germ cells, an expression pattern similar to that of both Oct4 and Sox2, which play essential roles during early murine development. We show that the activity of Sall4 is cell-autonomously required for the development of the epiblast and primitive endoderm from the inner cell mass. Furthermore, no embryonic or extraembryonic endoderm stem cell lines could be established from Sall4-deficient blastocysts. In contrast, neither the development of the trophoblast lineage nor the ability to generate trophoblast cell lines from murine blastocysts was impaired in the absence of Sall4. These data establish Sall4 as an essential transcription factor required for the early development of inner cell mass-derived cell lineages. PMID:17060609

  11. Thymic derived iPs cells can be differentiated into cardiomyocytes.

    Science.gov (United States)

    Li, Jian; Cao, Yin-yin; Ma, Xiao-jing; Liu, Fang; Li, Shuo-lin; Zhang, Jing; Gao, Yan; Wang, Hui-jun; Yuan, Yuan; Ma, Duan; Huang, Guo-ying

    2015-06-01

    Ventricular septal defect (VSD) is one of the common congenital heart malformations. Several factors lead to the development of VSD, including familial causes, exposure to certain drugs, infectious agents, and maternal metabolic disturbances. We considered that induced pluripotent stem (iPS) cells derived from VSD patients can be used to study the origin and pathogenesis of the VSD. Here, we show generation and cardiomyocyte differentiation potential of iPS cells from thymic epithelial cells of a patient with VSD (TECs-VSD) by overexpressing the four factors: OCT4, SOX2, NANOG, and LIN28 with lentiviral vectors. The self-renewal and pluripotency of the VSD-iPS cells was verified in iPS cells by in vitro expression of pluripotency markers and formation of teratoma in vivo. iPS cell lines from VSD patients differentiated into functional cardiomyocytes can serve as a model system for studying the pathophysiology and identifying etiology of VSD.

  12. Generation of induced pluripotent stem cells from human blood.

    Science.gov (United States)

    Loh, Yuin-Han; Agarwal, Suneet; Park, In-Hyun; Urbach, Achia; Huo, Hongguang; Heffner, Garrett C; Kim, Kitai; Miller, Justine D; Ng, Kitwa; Daley, George Q

    2009-05-28

    Human dermal fibroblasts obtained by skin biopsy can be reprogrammed directly to pluripotency by the ectopic expression of defined transcription factors. Here, we describe the derivation of induced pluripotent stem cells from CD34+ mobilized human peripheral blood cells using retroviral transduction of OCT4/SOX2/KLF4/MYC. Blood-derived human induced pluripotent stem cells are indistinguishable from human embryonic stem cells with respect to morphology, expression of surface antigens, and pluripotency-associated transcription factors, DNA methylation status at pluripotent cell-specific genes, and the capacity to differentiate in vitro and in teratomas. The ability to reprogram cells from human blood will allow the generation of patient-specific stem cells for diseases in which the disease-causing somatic mutations are restricted to cells of the hematopoietic lineage.

  13. Induced pluripotent stem cell lines derived from human somatic cells.

    Science.gov (United States)

    Yu, Junying; Vodyanik, Maxim A; Smuga-Otto, Kim; Antosiewicz-Bourget, Jessica; Frane, Jennifer L; Tian, Shulan; Nie, Jeff; Jonsdottir, Gudrun A; Ruotti, Victor; Stewart, Ron; Slukvin, Igor I; Thomson, James A

    2007-12-21

    Somatic cell nuclear transfer allows trans-acting factors present in the mammalian oocyte to reprogram somatic cell nuclei to an undifferentiated state. We show that four factors (OCT4, SOX2, NANOG, and LIN28) are sufficient to reprogram human somatic cells to pluripotent stem cells that exhibit the essential characteristics of embryonic stem (ES) cells. These induced pluripotent human stem cells have normal karyotypes, express telomerase activity, express cell surface markers and genes that characterize human ES cells, and maintain the developmental potential to differentiate into advanced derivatives of all three primary germ layers. Such induced pluripotent human cell lines should be useful in the production of new disease models and in drug development, as well as for applications in transplantation medicine, once technical limitations (for example, mutation through viral integration) are eliminated.

  14. Zscan4 transiently reactivates early embryonic genes during the generation of induced pluripotent stem cells.

    Science.gov (United States)

    Hirata, Tetsuya; Amano, Tomokazu; Nakatake, Yuhki; Amano, Misa; Piao, Yulan; Hoang, Hien G; Ko, Minoru S H

    2012-01-01

    The generation of induced pluripotent stem cells (iPSCs) by the forced expression of defined transcription factors in somatic cells holds great promise for the future of regenerative medicine. However, the initial reprogramming mechanism is still poorly understood. Here we show that Zscan4, expressed transiently in2-cell embryos and embryonic stem cells (ESCs), efficiently produces iPSCs from mouse embryo fibroblasts when coexpressed with Klf4, Oct4, and Sox2. Interestingly, the forced expression of Zscan4 is required onlyfor the first few days of iPSC formation. Microarray analysis revealed transient and early induction of preimplantation-specific genes in a Zscan4-dependent manner. Our work indicates that Zscan4 is a previously unidentified potent natural factor that facilitates the reprogramming process and reactivates early embryonic genes.

  15. Set7 mediated interactions regulate transcriptional networks in embryonic stem cells.

    Science.gov (United States)

    Tuano, Natasha K; Okabe, Jun; Ziemann, Mark; Cooper, Mark E; El-Osta, Assam

    2016-11-02

    Histone methylation by lysine methyltransferase enzymes regulate the expression of genes implicated in lineage specificity and cellular differentiation. While it is known that Set7 catalyzes mono-methylation of histone and non-histone proteins, the functional importance of this enzyme in stem cell differentiation remains poorly understood. We show Set7 expression is increased during mouse embryonic stem cell (mESC) differentiation and is regulated by the pluripotency factors, Oct4 and Sox2. Transcriptional network analyses reveal smooth muscle (SM) associated genes are subject to Set7-mediated regulation. Furthermore, pharmacological inhibition of Set7 activity confirms this regulation. We observe Set7-mediated modification of serum response factor (SRF) and mono-methylation of histone H4 lysine 4 (H3K4me1) regulate gene expression. We conclude the broad substrate specificity of Set7 serves to control key transcriptional networks in embryonic stem cells.

  16. Heat Shock Factor 1 Depletion Sensitizes A172 Glioblastoma Cells to Temozolomide via Suppression of Cancer Stem Cell-Like Properties

    Directory of Open Access Journals (Sweden)

    Chang-Nim Im

    2017-02-01

    Full Text Available Heat shock factor 1 (HSF1, a transcription factor activated by various stressors, regulates proliferation and apoptosis by inducing expression of target genes, such as heat shock proteins and Bcl-2 (B-cell lymphoma 2 interacting cell death suppressor (BIS. HSF1 also directly interacts with BIS, although it is still unclear whether this interaction is critical in the regulation of glioblastoma stem cells (GSCs. In this study, we examined whether small interfering RNA-mediated BIS knockdown decreased protein levels of HSF1 and subsequent nuclear localization under GSC-like sphere (SP-forming conditions. Consistent with BIS depletion, HSF1 knockdown also reduced sex determining region Y (SRY-box 2 (SOX2 expression, a marker of stemness, accompanying the decrease in SP-forming ability and matrix metalloprotease 2 (MMP2 activity. When HSF1 or BIS knockdown was combined with temozolomide (TMZ treatment, a standard drug used in glioblastoma therapy, apoptosis increased, as measured by an increase in poly (ADP-ribose polymerase (PARP cleavage, whereas cancer stem-like properties, such as colony-forming activity and SOX2 protein expression, decreased. Taken together, our findings suggest that targeting BIS or HSF1 could be a viable therapeutic strategy for GSCs resistant to conventional TMZ treatment.

  17. Heat Shock Factor 1 Depletion Sensitizes A172 Glioblastoma Cells to Temozolomide via Suppression of Cancer Stem Cell-Like Properties

    Science.gov (United States)

    Im, Chang-Nim; Yun, Hye Hyeon; Lee, Jeong-Hwa

    2017-01-01

    Heat shock factor 1 (HSF1), a transcription factor activated by various stressors, regulates proliferation and apoptosis by inducing expression of target genes, such as heat shock proteins and Bcl-2 (B-cell lymphoma 2) interacting cell death suppressor (BIS). HSF1 also directly interacts with BIS, although it is still unclear whether this interaction is critical in the regulation of glioblastoma stem cells (GSCs). In this study, we examined whether small interfering RNA-mediated BIS knockdown decreased protein levels of HSF1 and subsequent nuclear localization under GSC-like sphere (SP)-forming conditions. Consistent with BIS depletion, HSF1 knockdown also reduced sex determining region Y (SRY)-box 2 (SOX2) expression, a marker of stemness, accompanying the decrease in SP-forming ability and matrix metalloprotease 2 (MMP2) activity. When HSF1 or BIS knockdown was combined with temozolomide (TMZ) treatment, a standard drug used in glioblastoma therapy, apoptosis increased, as measured by an increase in poly (ADP-ribose) polymerase (PARP) cleavage, whereas cancer stem-like properties, such as colony-forming activity and SOX2 protein expression, decreased. Taken together, our findings suggest that targeting BIS or HSF1 could be a viable therapeutic strategy for GSCs resistant to conventional TMZ treatment. PMID:28241425

  18. Stemcell Information: SKIP001116 [SKIP Stemcell Database[Archive

    Lifescience Database Archive (English)

    Full Text Available SKIP001116 ... Diseased D2-2 D2-2 ... 統合失調症 F209 schizophrenia ... 605210 ... 39 ...upted in schizophrenia 1 ( DISC1 ) 統合失調症患者由来iPS細胞 human ES-like Research Grade Plasmid OCT4,SOX2,KLF4,c-MYC,

  19. Stemcell Information: SKIP001115 [SKIP Stemcell Database[Archive

    Lifescience Database Archive (English)

    Full Text Available SKIP001115 ... Diseased D2-1 D2-1 ... 統合失調症 F209 schizophrenia ... 605210 ... 39 ...upted in schizophrenia 1 ( DISC1 ) 統合失調症患者由来iPS細胞 human ES-like Research Grade Plasmid OCT4,SOX2,KLF4,c-MYC,

  20. Stemcell Information: SKIP000260 [SKIP Stemcell Database[Archive

    Lifescience Database Archive (English)

    Full Text Available SKIP000260 ... Diseased GM23761 GM23761 ... 統合失調症 F20 Schizophrenia 181500 ... ...h Shizophrenia(SCZD) . | 統合失調症患者線維芽細胞(GM01835)由来iPS細胞株| human ES-like -- Lentivirus Oct4, Sox2, Klf4, c-Myc,

  1. Generation of a human induced pluripotent stem cell line CERAi001-A-6 using episomal vectors

    Directory of Open Access Journals (Sweden)

    Raymond C.B. Wong

    2017-07-01

    Full Text Available We report the generation of the hiPSC line CERAi001-A-6 from primary human dermal fibroblasts. Reprogramming was performed using episomal vector delivery of OCT4, SOX2, KLF4, L-MYC, LIN28 and shRNA for p53.

  2. Experiment list: SRX214078 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available =Undifferentiated || treatment=Overexpress Sox2-V5 tagged || cell line=KH2 || chip antibody 1=Pou5f1/Oct4 || chip antibody manufactur...er 1=Santa Cruz || chip antibody 2=V5 || chip antibody manufacture

  3. Experiment list: SRX214079 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Undifferentiated || treatment=Overexpress Sox2-V5 tagged || cell line=KH2 || chip antibody 1=Pou5f1/Oct4 || chip antibody manufacture...r 1=Santa Cruz || chip antibody 2=V5 || chip antibody manufacture

  4. Experiment list: SRX214081 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available cturer 1=Santa Cruz || chip antibody 2=V5 || chip antibody manufacture...ge=Undifferentiated || treatment=Overexpress Sox2KE-V5 tagged || cell line=KH2 || chip antibody 1=Pou5f1/Oct4 || chip antibody manufa

  5. Experiment list: SRX214080 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available cturer 1=Santa Cruz || chip antibody 2=V5 || chip antibody manufacture...ge=Undifferentiated || treatment=Overexpress Sox2KE-V5 tagged || cell line=KH2 || chip antibody 1=Pou5f1/Oct4 || chip antibody manufa

  6. Expression pattern of clinically relevant markers in paediatric germ cell- and sex-cord stromal tumours is similar to adult testicular tumours

    DEFF Research Database (Denmark)

    Mosbech, Christiane Hammershaimb; Svingen, Terje; Nielsen, John Erik

    2014-01-01

    tumour (PDPN, GATA4). All YSTs expressed AFP and SALL4, with GATA4 present in 13/14. The majority of teratomas expressed SOX2 and PDPN, whereas SALL4 was found in 8/13 immature teratomas. Adult seminoma markers AP-2γ, OCT4, SALL4 and PDPN were all expressed in dysgerminoma. We further report a previously...

  7. Stemcell Information: SKIP001000 [SKIP Stemcell Database[Archive

    Lifescience Database Archive (English)

    Full Text Available pean/North African European/North African -- No Cellartis human iPS cell line P11025|Research Grade(commerci...al) Cellartis human iPS cell line P11025|Research Grade(commercial) -- Research Grade Other Oct4,SOX2,KLF4,c

  8. Stemcell Information: SKIP001002 [SKIP Stemcell Database[Archive

    Lifescience Database Archive (English)

    Full Text Available o Cellartis human iPS cell line 4 (ChiPSC4)|Research Grade(commercial) Cellartis human iPS cell line 4 (ChiPSC4)|Research... Grade(commercial) -- Research Grade Lentivirus Oct4,SOX2,KLF4,c-Myc ... -- ... Negative ... Yes ... Yes

  9. Stemcell Information: SKIP000991 [SKIP Stemcell Database[Archive

    Lifescience Database Archive (English)

    Full Text Available s disease patient ... 遺伝性パーキンソン病患者由来iPS細胞 human ES-like Research Grade Lentivirus Klf4, Sox2, Oct4, c-Myc ... Yes ...EASE 8, AUTOSOMAL DOMINANT; PARK8 607060 ... 66 60-69 Female ... Yes No iPS cells from familial Parkinson'

  10. Stemcell Information: SKIP000678 [SKIP Stemcell Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 1:1:1:1の割合でコードした合成RNAを、線維芽細胞株に20日間毎日添加し、遺伝子を細胞へ導入した。 human ES-like Research Grade Other OCT4 , SOX2 , KLF4 ,

  11. Generation of induced pluripotent stem cells (iPSCs) from an Alzheimer's disease patient carrying an A79V mutation in PSEN1

    DEFF Research Database (Denmark)

    Li, Tong; Pires, Carlota; Nielsen, Troels T.

    2016-01-01

    Skin fibroblasts were obtained from a 48-year-old presymptomatic woman carrying a A79V mutation in the presenilin 1 gene (PSEN1), causing Alzheimer's disease (AD). Induced pluripotent stem cell (iPSCs) were derived via transfection with episomal vectors carrying hOCT4, hSOX2, hKLF2, hL-MYC, hLIN28...

  12. Embryonic Stem Cell–like Population in Dupuytren’s Disease

    Science.gov (United States)

    Koh, Sabrina P.; On, Nicholas; Brasch, Helen D.; Chibnall, Alice M.; Armstrong, James R.; Davis, Paul F.; Itinteang, Tinte

    2016-01-01

    Background: Recent research has identified mesenchymal stem cells (MSCs) within Dupuytren’s disease (DD) tissue and they have been proposed to give rise to the myofibroblasts, implicated in the progression of this condition. The aim of this study was to identify and characterize the primitive population that might be upstream of the MSC population, within DD. Methods: Formalin-fixed paraffin-embedded 4-µm-thick sections of DD cords and nodules obtained from 6 patients underwent 3,3-diaminobenzidine and immunofluorescent immunohistochemical staining for embryonic stem cell (ESC) markers OCT4, NANOG, SOX2, pSTAT3, and SALL4 and endothelial markers CD34 and ERG. NanoString gene expression analysis was performed to determine the transcriptional activation of these markers. Results: Immunohistochemical staining demonstrated the expression of ESC markers OCT4, NANOG, SOX2, pSTAT3, and SALL4 on the endothelium of the microvessels expressing CD34 and ERG, particularly those surrounding the DD nodules. NanoString analysis confirmed the transcriptional activation of OCT4, NANOG, STAT3, and SALL4, but not SOX2. Conclusion: This article demonstrates the novel finding of an ESC-like population expressing ESC markers OCT4, NANOG, SOX2, pSTAT3, and SALL4, localized to the endothelium of the microvessels within DD tissue, suggesting a potential therapeutic target for this condition. PMID:27975007

  13. Generation of induced pluripotent stem cells (iPSCs) from an Alzheimer's disease patient carrying a M146I mutation in PSEN1

    DEFF Research Database (Denmark)

    Li, Tong; Pires, Carlota; Nielsen, Troels Tolstrup

    2016-01-01

    Skin fibroblasts were obtained from a 46-year-old symptomatic man carrying a M146I mutation in the presenilin 1 gene (PSEN1), responsible for causing Alzheimer's disease (AD). Induced pluripotent stem cells (iPSCs) were derived via transfection with episomal vectors carrying hOCT4, hSOX2, hKLF2, ...

  14. Factors that regulate embryonic gustatory development

    Directory of Open Access Journals (Sweden)

    Krimm Robin F

    2007-09-01

    Full Text Available Abstract Numerous molecular factors orchestrate the development of the peripheral taste system. The unique anatomy/function of the taste system makes this system ideal for understanding the mechanisms by which these factors function; yet the taste system is underutilized for this role. This review focuses on some of the many factors that are known to regulate gustatory development, and discusses a few topics where more work is needed. Some attention is given to factors that regulate epibranchial placode formation, since gustatory neurons are thought to be primarily derived from this region. Epibranchial placodes appear to arise from a pan-placodal region and a number of regulatory factors control the differentiation of individual placodes. Gustatory neuron differentiation is regulated by a series of transcription factors and perhaps bone morphongenic proteins (BMP. As neurons differentiate, they also proliferate such that their numbers exceed those in the adult, and this is followed by developmental death. Some of these cell-cycling events are regulated by neurotrophins. After gustatory neurons become post-mitotic, axon outgrowth occurs. Axons are guided by multiple chemoattractive and chemorepulsive factors, including semaphorins, to the tongue epithelium. Brain derived neurotrophic factor (BDNF, functions as a targeting factor in the final stages of axon guidance and is required for gustatory axons to find and innervate taste epithelium. Numerous factors are involved in the development of gustatory papillae including Sox-2, Sonic hedge hog and Wnt-β-catenin signaling. It is likely that just as many factors regulate taste bud differentiation; however, these factors have not yet been identified. Studies examining the molecular factors that regulate terminal field formation in the nucleus of the solitary tract are also lacking. However, it is possible that some of the factors that regulate geniculate ganglion development, outgrowth, guidance and

  15. Evolution of the mammalian embryonic pluripotency gene regulatory network

    Science.gov (United States)

    Fernandez-Tresguerres, Beatriz; Cañon, Susana; Rayon, Teresa; Pernaute, Barbara; Crespo, Miguel; Torroja, Carlos; Manzanares, Miguel

    2010-01-01

    Embryonic pluripotency in the mouse is established and maintained by a gene-regulatory network under the control of a core set of transcription factors that include octamer-binding protein 4 (Oct4; official name POU domain, class 5, transcription factor 1, Pou5f1), sex-determining region Y (SRY)-box containing gene 2 (Sox2), and homeobox protein Nanog. Although this network is largely conserved in eutherian mammals, very little information is available regarding its evolutionary conservation in other vertebrates. We have compared the embryonic pluripotency networks in mouse and chick by means of expression analysis in the pregastrulation chicken embryo, genomic comparisons, and functional assays of pluripotency-related regulatory elements in ES cells and blastocysts. We find that multiple components of the network are either novel to mammals or have acquired novel expression domains in early developmental stages of the mouse. We also find that the downstream action of the mouse core pluripotency factors is mediated largely by genomic sequence elements nonconserved with chick. In the case of Sox2 and Fgf4, we find that elements driving expression in embryonic pluripotent cells have evolved by a small number of nucleotide changes that create novel binding sites for core factors. Our results show that the network in charge of embryonic pluripotency is an evolutionary novelty of mammals that is related to the comparatively extended period during which mammalian embryonic cells need to be maintained in an undetermined state before engaging in early differentiation events. PMID:21048080

  16. EXPRESSION OF PLURIPOTENCY MARKERS IN REPROGRAMMING WITH TRANSPOSON SYSTEM MURINE FIBROBLASTS

    Directory of Open Access Journals (Sweden)

    S. V. Malysheva

    2013-10-01

    Full Text Available The search for effective and safe methods to generate induced pluripotent stem cells is especially urgent. In the paper murine embryonic fibro blasts were reprogrammed towards actively proliferating colonies with typical induced pluripotent stem cells morphology by means of Sleeping beauty transposon-based vector system. The obtained clones were checked for the expression of various pluripotency markers: alkaline phosphatase, Oct4 and Sox2 genes, SSEA-1 expression in various clones was evaluated. Also the reactivation of endogenous pluripotency factors Nanog and Rex1 was indicated. The data obtained is analyzed and compared to the established pluripotent stem cell line. It is shown that somatic cells are reprogrammed towards pluripotency by means of Sleeping beauty transposon system. Therefore, the system is a new perspective biotechnological tool to generate pluripotent cells.

  17. Generation of induced pluripotent stem cells (iPSCs from a hypertrophic cardiomyopathy patient with the pathogenic variant p.Val698Ala in beta-myosin heavy chain (MYH7 gene

    Directory of Open Access Journals (Sweden)

    Samantha Barratt Ross

    2017-04-01

    Full Text Available Induced pluripotent stem cells (iPSCs were generated from peripheral blood mononuclear cells (PBMCs isolated from the whole blood of a 43-year-old male with hypertrophic cardiomyopathy (HCM who carries the pathogenic variant p.Val698Ala in beta-myosin heavy chain (MYH7. Patient-derived PBMCs were reprogrammed using non-integrative episomal vectors containing reprogramming factors OCT4, SOX2, LIN28, KLF4 and L-MYC. iPSCs were shown to express pluripotent markers, have trilineage differentiation potential, carry the pathogenic MYH7 variant p.Val698Ala, have a normal karyotype and no longer carry the episomal reprogramming vector. This line is useful for studying the link between variants in MYH7 and the pathogenesis of HCM.

  18. A Flexible Reporter System for Direct Observation and Isolation of Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Binwu Tang

    2015-01-01

    Full Text Available Many tumors are hierarchically organized with a minority cell population that has stem-like properties and enhanced ability to initiate tumorigenesis and drive therapeutic relapse. These cancer stem cells (CSCs are typically identified by complex combinations of cell-surface markers that differ among tumor types. Here, we developed a flexible lentiviral-based reporter system that allows direct visualization of CSCs based on functional properties. The reporter responds to the core stem cell transcription factors OCT4 and SOX2, with further selectivity and kinetic resolution coming from use of a proteasome-targeting degron. Cancer cells marked by this reporter have the expected properties of self-renewal, generation of heterogeneous offspring, high tumor- and metastasis-initiating activity, and resistance to chemotherapeutics. With this approach, the spatial distribution of CSCs can be assessed in settings that retain microenvironmental and structural cues, and CSC plasticity and response to therapeutics can be monitored in real time.

  19. C/EBPα poises B cells for rapid reprogramming into induced pluripotent stem cells

    OpenAIRE

    Di Stefano, Bruno

    2014-01-01

    Actualmente uno de los principales objetivos de la investigación con células madre es la comprensión de los mecanismos por los cuales las células somáticas se pueden reprogramar a células madre pluripotentes inducidas (iPSCs) por la acción de los factores de transcripción Oct4, Sox2, Klf4 y Myc (OSKM). Sin embargo, la baja eficiencia de este proceso, que tiene lugar sólo en un pequeño porcentaje de células y que típicamente requiere más de 12 días para llevarse a cabo, ha im...

  20. What is the clinical value of cancer stem cell markers in gliomas?

    DEFF Research Database (Denmark)

    Dahlrot, Rikke Hedegaard; Hermansen, Simon Kjær; Hansen, Steinbjørn

    2013-01-01

    Recent data indicate that cancer stem cells (CSCs) are responsible for resistance of glioblastomas to radiotherapy and chemotherapy, thereby contributing to the poor survival of these patients. In order to identify novel prognostic markers in gliomas, several CSC markers have been investigated....... This review summarizes current reports on putative glioma CSC markers and reviews the prognostic value of the individual immunohistochemical markers reported in the literature. Using the Pubmed database, twenty-seven CSC studies looking at membrane markers (CD133, podoplanin, CD15, and A2B5), filament markers...... (nestin), RNA-binding proteins (Musashi-1) and transcription factors (BMI1, SOX2, Id1 and Oct-4) qualified for this review. The level of CD133 and nestin increased with increasing malignancy grade, and for both markers a prognostic significance was identified in the majority of the studies. Moreover...

  1. Forced expression of Nanog with mRNA synthesized in vitro to evaluate the malignancy of HeLa cells through acquiring cancer stem cell phenotypes.

    Science.gov (United States)

    Ding, Yan; Yu, Ai Qing; Wang, Xiao Li; Guo, Xing Rong; Yuan, Ya Hong; Li, Dong Sheng

    2016-05-01

    Nanog is a pluripotency-related factor. It was also found to play an important role in tumorigenesis. To date, the mechanisms underlying cervical tumorigenesis still need to be elucidated. In the present study, Nanog mRNA was synthesized in vitro and transfected into HeLa cells. After mRNA transfection, the forced expressed of Nanog in HeLa cells led to markedly increased invasion, migration, resistance to chemotherapeutic agents and dedifferentiation. In a subcutaneous xenograft assay, these cells had significantly increased tumorigenic capacity. Real-time PCR indicated that Nanog‑induced dedifferentiation was associated with increased expression of endogenous Oct4, Sox2 and FoxD3. In addition, the dedifferentiated HeLa cells acquired features associated with cancer stem cells (CSCs), such as multipotent differentiation capacity, and expression of CSC markers such as CD133. These data imply that Nanog is a positive regulator of cervical cancer dedifferentiation.

  2. Genome-editing tools for stem cell biology.

    Science.gov (United States)

    Vasileva, E A; Shuvalov, O U; Garabadgiu, A V; Melino, G; Barlev, N A

    2015-07-23

    Human pluripotent stem cells provide a versatile platform for regenerative studies, drug testing and disease modeling. That the expression of only four transcription factors, Oct4, Klf4, Sox2 and c-Myc (OKSM), is sufficient for generation of induced pluripotent stem cells (iPSCs) from differentiated somatic cells has revolutionized the field and also highlighted the importance of OKSM as targets for genome editing. A number of novel genome-editing systems have been developed recently. In this review, we focus on successful applications of several such systems for generation of iPSCs. In particular, we discuss genome-editing systems based on zinc-finger fusion proteins (ZFs), transcription activator-like effectors (TALEs) and an RNA-guided DNA-specific nuclease, Cas9, derived from the bacterial defense system against viruses that utilizes clustered regularly interspaced short palindromic repeats (CRISPR).

  3. Proteome adaptation in cell reprogramming proceeds via distinct transcriptional networks.

    Science.gov (United States)

    Benevento, Marco; Tonge, Peter D; Puri, Mira C; Hussein, Samer M I; Cloonan, Nicole; Wood, David L; Grimmond, Sean M; Nagy, Andras; Munoz, Javier; Heck, Albert J R

    2014-12-10

    The ectopic expression of Oct4, Klf4, c-Myc and Sox2 (OKMS) transcription factors allows reprogramming of somatic cells into induced pluripotent stem cells (iPSCs). The reprogramming process, which involves a complex network of molecular events, is not yet fully characterized. Here we perform a quantitative mass spectrometry-based analysis to probe in-depth dynamic proteome changes during somatic cell reprogramming. Our data reveal defined waves of proteome resetting, with the first wave occurring 48 h after the activation of the reprogramming transgenes and involving specific biological processes linked to the c-Myc transcriptional network. A second wave of proteome reorganization occurs in a later stage of reprogramming, where we characterize the proteome of two distinct pluripotent cellular populations. In addition, the overlay of our proteome resource with parallel generated -omics data is explored to identify post-transcriptionally regulated proteins involved in key steps during reprogramming.

  4. Human Embryonic and Hepatic Stem Cell Differentiation Visualized in Two and Three Dimensions Based on Serial Sections

    DEFF Research Database (Denmark)

    Vestentoft, Peter S.; Brøchner, Christian B; Lynnerup, Niels

    2015-01-01

    Pluripotent human embryonic stem cells (hESCs) are characterized by two defining properties, self-renewal and differentiation. Self-renewing hESCs express transcription factors OCT4, SOX2, and NANOG, and surface markers SSEA-4 and TRA-1-60 and TRA-1-81 and their ability to differentiate...... into derivatives of the three germ layers show the differentiating potential. Studies suggest a certain microheterogeneity of the hESC colonies, in which not all cells in one colony of apparently undifferentiated cells express all the expected markers. We describe a technique to paraffin embed an entire h...... of an entire colony is accomplished using 3D image processing software such as Mimics(®) or Amira(®). An extended version of this technique even allows for a high-magnification 3D-reconstruction of, e.g., hepatic stem cells in developing liver. These techniques combined allow for both a 2- and a 3-dimensional...

  5. Age-related changes in rat bone-marrow mesenchymal stem cell plasticity

    Directory of Open Access Journals (Sweden)

    Chase P Bryant

    2011-10-01

    Full Text Available Abstract Background The efficacy of adult stem cells is known to be compromised as a function of age. This therefore raises questions about the effectiveness of autologous cell therapy in elderly patients. Results We demonstrated that the expression profile of stemness markers was altered in BM-MSCs derived from old rats. BM-MSCs from young rats (4 months expressed Oct-4, Sox-2 and NANOG, but we failed to detect Sox-2 and NANOG in BM-MSCs from older animals (15 months. Chondrogenic, osteogenic and adipogenic potential is compromised in old BM-MSCs. Stimulation with a cocktail mixture of bone morphogenetic protein (BMP-2, fibroblast growth factor (FGF-2 and insulin-like growth factor (IGF-1 induced cardiomyogenesis in young BM-MSCs but not old BM-MSCs. Significant differences in the expression of gap junction protein connexin-43 were observed between young and old BM-MSCs. Young and old BM-MSCs fused with neonatal ventricular cardiomyocytes in co-culture and expressed key cardiac transcription factors and structural proteins. Cells from old animals expressed significantly lower levels of VEGF, IGF, EGF, and G-CSF. Significantly higher levels of DNA double strand break marker γ-H2AX and diminished levels of telomerase activity were observed in old BM-MSCs. Conclusion The results suggest age related differences in the differentiation capacity of BM-MSCs. These changes may affect the efficacy of BM-MSCs for use in stem cell therapy.

  6. Inducing pluripotency in somatic cells from the snow leopard (Panthera uncia), an endangered felid.

    Science.gov (United States)

    Verma, R; Holland, M K; Temple-Smith, P; Verma, P J

    2012-01-01

    Induced pluripotency is a new approach to produce embryonic stem-like cells from somatic cells that provides a unique means to understand both pluripotency and lineage assignment. To investigate whether this technology could be applied to endangered species, where the limited availability of gametes makes production and research on embryonic stem cells difficult, we attempted generation of induced pluripotent stem (iPS) cells from snow leopard (Panthera uncia) fibroblasts by retroviral transfection with Moloney-based retroviral vectors (pMXs) encoding four factors (OCT4, SOX2, KLF4 and cMYC). This resulted in the formation of small colonies of cells, which could not be maintained beyond four passages (P4). However, addition of NANOG, to the transfection cocktail produced stable iPS cell colonies, which formed as early as D3. Colonies of cells were selected at D5 and expanded in vitro. The resulting cell line was positive for alkaline phosphatase (AP), OCT4, NANOG, and Stage-Specific embryonic Antigen-4 (SSEA-4) at P14. RT-PCR also confirmed that endogenous OCT4 and NANOG were expressed by snow leopard iPS cells from P4. All five human transgenes were transcribed at P4, but OCT4, SOX2 and NANOG transgenes were silenced as early as P14; therefore, reprogramming of the endogenous pluripotent genes had occurred. When injected into immune-deficient mice, snow leopard iPS cells formed teratomas containing tissues representative of the three germ layers. In conclusion, this was apparently the first derivation of iPS cells from the endangered snow leopard and the first report on induced pluripotency in felid species. Addition of NANOG to the reprogramming cocktail was essential for derivation of iPS lines in this felid. The iPS cells provided a unique source of pluripotent cells with utility in conservation through cryopreservation of genetics, as a source of reprogrammed donor cells for nuclear transfer or for directed differentiation to gametes in the future.

  7. 不同组织来源的细胞建立诱导多能干细胞系的研究%Generation of Induced Pluripotent Stem Cells from Different Tissue Cells

    Institute of Scientific and Technical Information of China (English)

    范勇; 骆玉梅; 陈欣洁; 黎青; 王晓蔓; 孙筱放

    2012-01-01

    Objective: To investigate the efficiency of different type of cells to generate iPS cells. Methods: Hurnan anmotic fluid cells, chorionic villus cells and fibroblast cells were infected with retrovirus via ectopic expression of four tunan factors: OCT4/SOX2/KLF4/c-MYC. The iPS cells were identified by immunostaining. Results: Human iPS cells were produced ftwnuamniotic fluid cells, chorionic villus cells and fibroblast cells. The iPSCs expressed pluripotency markers such as Oct4, Nanog ard Tia-1-60, and they can be differentiated into various somatic cell types in vitro. It was found that generation of iPS cells from human anarpic: fluid cells were more rapid and efficient than chorionic villus cells and fibroblast cells. Conclusions: Amniotic fluid cells may be a preferred tissue for generating iPSCs.%目的:比较不同组织来源的细胞生成iPS细胞的效率,获得高效制备iPS细胞的组织类型.方法:通过四种逆转录病毒(OCT4/SOX2/KLF4/c-MYC)转染羊水细胞、绒毛细胞和皮肤成纤维细胞,建立不同组织来源的iPS细胞系.结果:我们建立了羊水、绒毛细胞和皮肤细胞三个不同组织来源的iPS细胞系,并对其多能性基因Oct4、Nanog以及分子表面标记Tra-1.60以及体外分化为三个胚层能力进行鉴定,发现利用羊水细胞建立iPS细胞的效率显著高于绒毛细胞和皮肤细胞.结论:羊水细胞可能是制备iPS细胞的理想细胞类型.

  8. Targeting Tumor Oct4 to Deplete Prostate Tumor and Metastasis Initiating Cells

    Science.gov (United States)

    2014-10-01

    Recently, Hayashi et al. showed that overexpression of POU5F1B in gastric cancer cells increased cell growth in vitro as well as both tumorigenicity and...POU5F1 is associated with prostate cancer susceptibility. American journal of human genetics 94, 395-404. Hayashi, H., Arao, T., Togashi, Y., Kato, H...promotes an aggressive phenotype in gastric cancer . Oncogene. Kastler, S., Honold, L., Luedeke, M., Kuefer, R., Moller, P., Hoegel, J., Vogel, W., Maier

  9. Comparative In Vitro Evaluation of Human Dental Pulp and Follicle Stem Cell Commitment

    Directory of Open Access Journals (Sweden)

    Razieh Karamzadeh

    2016-10-01

    Full Text Available Objective: Pulp and periodontal tissues are well-known sources of mesenchymal stem cells (MSCs that provide a promising place in tissue engineering and regenerative medicine. The molecular mechanisms underlying commitment and differentiation of dental stem cells that originate from different dental tissues are not fully understood. In this study, we have compared the expression levels of pluripotency factors along with immunological and developmentally-related markers in the culture of human dental pulp stem cells (hDPSCs, human dental follicle stem cells (hDFSCs, and human embryonic stem cells (hESCs. Materials and Methods: In this experimental study, isolated human dental stem cells were investigated using quantitative polymerase chain reaction (qPCR, immunostaining, and fluorescence-activated cell sorting (FACS. Additionally, we conducted gene ontology (GO analysis of differentially expressed genes and compared them between dental stem cells and pluripotent stem cells. Results: The results demonstrated that pluripotency (OCT4 and SOX2 and immunological (IL-6 and TLR4 factors had higher expressions in hDFSCs, with the exception of the JAGGED- 1/NOTCH1 ratio, c-MYC and NESTIN which expressed more in hDPSCs. Immunostaining of OCT4, SOX2 and c-MYC showed cytoplasmic and nucleus localization in both groups at similar passages. GO analysis showed that the majority of hDFSCs and hDPSCs populations were in the synthesis (S and mitosis (M phases of the cell cycle, respectively. Conclusion: This study showed different status of heterogeneous hDPSCs and hDFSCs in terms of stemness, differentiation fate, and cell cycle phases. Therefore, the different behaviors of dental stem cells should be considered based on clinical treatment variations.

  10. GEP, a Local Growth Factor, is Critical for Odontogenesis and Amelogenesis

    Directory of Open Access Journals (Sweden)

    Zhengguo Cao, Baichun Jiang, Yixia Xie, Chuan-ju Liu, Jian Q. Feng

    2010-01-01

    Full Text Available Granulin epithelin precursor (GEP is a new growth factor that functions in brain development, chondrogenesis, tissue regeneration, tumorigenesis, and inflammation. The goal of this study was to study whether GEP was critical for odontogenesis and amelogenesis both in vivo and in vitro. The in situ hybridization and immunohistochemistry data showed that GEP was expressed in both odontoblast and ameloblast cells postnatally. Knockdown of GEP by crossing U6-ploxPneo-GEP and Sox2-Cre transgenic mice led to a reduction of dentin thickness, an increase in predentin thickness, and a reduction in mineral content in enamel. The in vitro application of recombinant GEP up-regulated molecular markers important for odontogenesis (DMP1, DSPP, and ALP and amelogenesis (ameloblastin, amelogenin and enamelin. In conclusion, both the in vivo and the in vivo data support an important role of GEP in tooth formation during postnatal development.

  11. Systematic repression of transcription factors reveals limited patterns of gene expression changes in ES cells

    Science.gov (United States)

    Nishiyama, Akira; Sharov, Alexei A.; Piao, Yulan; Amano, Misa; Amano, Tomokazu; Hoang, Hien G.; Binder, Bernard Y.; Tapnio, Richard; Bassey, Uwem; Malinou, Justin N.; Correa-Cerro, Lina S.; Yu, Hong; Xin, Li; Meyers, Emily; Zalzman, Michal; Nakatake, Yuhki; Stagg, Carole; Sharova, Lioudmila; Qian, Yong; Dudekula, Dawood; Sheer, Sarah; Cadet, Jean S.; Hirata, Tetsuya; Yang, Hsih-Te; Goldberg, Ilya; Evans, Michele K.; Longo, Dan L.; Schlessinger, David; Ko, Minoru S. H.

    2013-01-01

    Networks of transcription factors (TFs) are thought to determine and maintain the identity of cells. Here we systematically repressed each of 100 TFs with shRNA and carried out global gene expression profiling in mouse embryonic stem (ES) cells. Unexpectedly, only the repression of a handful of TFs significantly affected transcriptomes, which changed in two directions/trajectories: one trajectory by the repression of either Pou5f1 or Sox2; the other trajectory by the repression of either Esrrb, Sall4, Nanog, or Tcfap4. The data suggest that the trajectories of gene expression change are already preconfigured by the gene regulatory network and roughly correspond to extraembryonic and embryonic fates of cell differentiation, respectively. These data also indicate the robustness of the pluripotency gene network, as the transient repression of most TFs did not alter the transcriptomes. PMID:23462645

  12. GEP, a local growth factor, is critical for odontogenesis and amelogenesis.

    Science.gov (United States)

    Cao, Zhengguo; Jiang, Baichun; Xie, Yixia; Liu, Chuan-ju; Feng, Jian Q

    2010-11-25

    Granulin epithelin precursor (GEP) is a new growth factor that functions in brain development, chondrogenesis, tissue regeneration, tumorigenesis, and inflammation. The goal of this study was to study whether GEP was critical for odontogenesis and amelogenesis both in vivo and in vitro. The in situ hybridization and immunohistochemistry data showed that GEP was expressed in both odontoblast and ameloblast cells postnatally. Knockdown of GEP by crossing U6-ploxPneo-GEP and Sox2-Cre transgenic mice led to a reduction of dentin thickness, an increase in predentin thickness, and a reduction in mineral content in enamel. The in vitro application of recombinant GEP up-regulated molecular markers important for odontogenesis (DMP1, DSPP, and ALP) and amelogenesis (ameloblastin, amelogenin and enamelin). In conclusion, both the in vivo and the in vivo data support an important role of GEP in tooth formation during postnatal development.

  13. Second Intron of Mouse Nestin Gene Directs its Expression in Pluripotent Embryonic Carcinoma Cells through POU Factor Binding Site

    Institute of Scientific and Technical Information of China (English)

    Zhi-Gang JIN; Li LIU; Hua ZHONG; Ke-Jing ZHANG; Yong-Feng CHEN; Wei BIAN; Le-Ping CHENG; Nai-He JING

    2006-01-01

    Nestin, an intermediate filament protein, is expressed in the neural stem cells of the developing central nervous system. This tissue-specific expression is driven by the neural stem cell-specific enhancer in the second intron of the nestin gene. In this study, we showed that the mouse nestin gene was expressed in pluripotent embryonic carcinoma (EC) P19 and F9 cells, not in the differentiated cell types. This cell typespecific expression was conferred by the enhancer in the second intron. Mutation of the conserved POU factor-binding site in the enhancer abolished the reporter gene expression in EC cells. Oct4, a Class V POU factor, was found to be coexpressed with nestin in EC cells. Electrophoretic mobility-shift assays and supershift assays showed that a unique protein-DNA complex was formed specifically with nuclear extracts of EC cells, and Oct4 protein was included. Together, these results suggest the functional relevance between the conserved POU factor-binding site and the expression of the nestin gene in pluripotent EC cells.

  14. Effects of Autocrine Motility Factor (AMF) on the Migration and Invasion of Glioblastoma U251 Cells and Their Mechanism%自分泌运动因子AMF对人胶质母细胞瘤U251细胞迁移、侵袭的影响及相关机制研究

    Institute of Scientific and Technical Information of China (English)

    李阳; 汤宁; 刘哲宇; 孙铮

    2016-01-01

    为了探讨自分泌运动因子(autocrine motility factor,AMF)对人胶质母细胞瘤U251细胞迁移、侵袭影响及其相关分子机制,该实验采用了RT-PCR及免疫印迹法检测RNA干扰AMF后U251细胞中AMF的表达变化;细胞划痕实验、Transwell实验分别观察了AMF干扰前后U251细胞迁移、侵袭能力的变化;免疫印记检测AMF干扰前后细胞中总Akt、p-Akt、Sox2、基质金属蛋白酶-2(matrix metalloprotein-2,MMP-2)及MMP-9蛋白水平的变化.研究结果表明,AMF成功干扰后U251细胞的迁移和侵袭能力受到抑制,p-Akt、Sox2、MMP-2和MMP-9蛋白表达水平降低.该研究表明,AMF敲低可以通过下调PI3K/Ak信号通路活性及Sox2、MMP-2和MMP-9蛋白水平,抑制人胶质母细胞瘤U251细胞迁移和侵袭.

  15. Generation of feeder-free pig induced pluripotent stem cells without Pou5f1.

    Science.gov (United States)

    Montserrat, Nuria; de Oñate, Lorena; Garreta, Elena; González, Federico; Adamo, Antonio; Eguizábal, Cristina; Häfner, Sophia; Vassena, Rita; Izpisua Belmonte, Juan Carlos

    2012-01-01

    The pig represents an ideal large-animal model, intermediate between rodents and humans, for the preclinical assessment of emerging cell therapies. As no validated pig embryonic stem (pES) cell lines have been derived so far, pig induced pluripotent stem cells (piPSCs) should offer an alternative source of undifferentiated cells to advance regenerative medicine research from bench to clinical trial. We report here for the first time the derivation of piPSCs from adult fibroblast with only three transcription factors: Sox2 (sex determining region Y-box 2), Klf4 (Krüppel-like factor 4), and c-Myc (avian myelocytomatosis viral oncogene homolog). We have been able to demonstrate that exogenous Pou5f1 (POU domain class 5 transcription factor 1; abbreviated as Octamer-4: Oct4) is dispensable to achieve and maintain pluripotency in the generation of piPSCs. To the best of our knowledge, this is also the first report of somatic reprogramming in any species without the overexpression, either directly or indirectly, of Oct4. Moreover, we were able to generate piPSCs without the use of feeder cells, approaching thus xeno-free conditions. Our work paves the way for the derivation of clinical grade piPSCs for regenerative medicine.

  16. Modeling co-expression across species for complex traits: insights to the difference of human and mouse embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Jun Cai

    2010-03-01

    Full Text Available Complex interactions between genes or proteins contribute substantially to phenotypic evolution. We present a probabilistic model and a maximum likelihood approach for cross-species clustering analysis and for identification of conserved as well as species-specific co-expression modules. This model enables a "soft" cross-species clustering (SCSC approach by encouraging but not enforcing orthologous genes to be grouped into the same cluster. SCSC is therefore robust to obscure orthologous relationships and can reflect different functional roles of orthologous genes in different species. We generated a time-course gene expression dataset for differentiating mouse embryonic stem (ES cells, and compiled a dataset of published gene expression data on differentiating human ES cells. Applying SCSC to analyze these datasets, we identified conserved and species-specific gene regulatory modules. Together with protein-DNA binding data, an SCSC cluster specifically induced in murine ES cells indicated that the KLF2/4/5 transcription factors, although critical to maintaining the pluripotent phenotype in mouse ES cells, were decoupled from the OCT4/SOX2/NANOG regulatory module in human ES cells. Two of the target genes of murine KLF2/4/5, LIN28 and NODAL, were rewired to be targets of OCT4/SOX2/NANOG in human ES cells. Moreover, by mapping SCSC clusters onto KEGG signaling pathways, we identified the signal transduction components that were induced in pluripotent ES cells in either a conserved or a species-specific manner. These results suggest that the pluripotent cell identity can be established and maintained through more than one gene regulatory network.

  17. Senescence-Associated Molecular and Epigenetic Alterations in Mesenchymal Stem Cell Cultures from Amniotic Fluid of Normal and Fetus-Affected Pregnancy

    Directory of Open Access Journals (Sweden)

    Jūratė Savickienė

    2016-01-01

    Full Text Available Human amniotic-fluid-derived mesenchymal stem cells (AF-MSCs are interesting for their multilineage differentiation potential and wide range of therapeutic applications due to the ease of culture expansion. However, MSCs undergo replicative senescence. So far, the molecular mechanisms that underlie fetal diseases and cell senescence are still poorly understood. Here, we analyzed senescence-associated morphologic, molecular, and epigenetic characteristics during propagation of MSCs derived from AF of normal and fetus-affected pregnancy. AF-MSCs cultures from both cell sources displayed quite similar morphology and expression of specific cell surface (CD44, CD90, and CD105 and stemness (Oct4, Nanog, Sox2, and Rex1 markers but had interindividual variability in proliferation capability and time to reach senescence. Within passages 4 and 8, senescent cultures exhibited typical morphological features, senescence-associated β-galactosidase activity, increased levels of p16, and decreased levels of miR-17 and miR-21 but showed differential expression of p21, p53, and ATM dependently on the onset of cell senescence. These differences correlated with changes in the level of chromatin modifiers (DNMT1 and HDAC1 and polycomb group proteins (EZH2, SUZ12, and BMI1 paralleling with changes in the expression of repressive histone marks (H3K9me3 and H3K27me3 and stemness markers (Oct4, Nanog, Sox2, and Rex1. Therefore epigenetic factors are important for AF-MSCs senescence process that may be related with individuality of donor or a fetus malignancy status.

  18. n-Butylidenephthalide (BP) maintains stem cell pluripotency by activating Jak2/Stat3 pathway and increases the efficiency of iPS cells generation.

    Science.gov (United States)

    Liu, Shih-Ping; Harn, Horng-Jyh; Chien, Ying-Jiun; Chang, Cheng-Hsuan; Hsu, Chien-Yu; Fu, Ru-Huei; Huang, Yu-Chuen; Chen, Shih-Yin; Shyu, Woei-Cherng; Lin, Shinn-Zong

    2012-01-01

    In 2006, induced pluripotent stem (iPS) cells were generated from so