WorldWideScience

Sample records for factors affecting co2

  1. Determining residential energy consumption-based CO2 emissions and examining the factors affecting the variation in Ankara, Turkey

    Science.gov (United States)

    Kus, Melike; Akan, Perihan; Aydinalp Koksal, Merih; Gullu, Gulen

    2017-11-01

    Energy demand of Turkey has been showing a remarkable increase in the last two decades due to rapid increase in population and changes in consumption trends. In parallel to the increase in energy demand, the CO2 emissions in Turkey are also increasing dramatically due to high usage of fossil fuels. CO2 emissions from the residential sector covers almost one fourth of the total sectoral emissions. In this study, CO2 emissions from the residential sector are estimated, and the factors affecting the emission levels are determined for the residential sector in Ankara, Turkey. In this study, detailed surveys are conducted to more than 400 households in Ankara. Using the information gathered from the surveys, the CO2 emissions associated with energy consumption of the households are calculated using the methodology outlined at IPCC. The statistical analyses are carried out using household income, dwelling characteristics, and household economic and demographic data to determine the factors causing the variation in emission levels among the households. The results of the study present that the main factors impacting the amount of total energy consumption and associated CO2 emissions are household income, dwelling construction year, age, education level of the household, and net footage of the dwelling.

  2. Empirical Study of Decomposition of CO2 Emission Factors in China

    Directory of Open Access Journals (Sweden)

    Yadong Ning

    2013-01-01

    Full Text Available China’s CO2 emissions increase has attracted world’s attention. It is of great importance to analyze China’s CO2 emission factors to restrain the CO2 rapid growing. The CO2 emissions of industrial and residential consumption sectors in China during 1980–2010 were calculated in this paper. The expanded decomposition model of CO2 emissions was set up by adopting factor-separating method based on the basic principle of the Kaya identities. The results showed that CO2 emissions of industrial and residential consumption sectors increase year after year, and the scale effect of GDP is the most important factor affecting CO2 emissions of industrial sector. Decreasing the specific gravity of secondary industry and energy intensity is more effective than decreasing the primary industry and tertiary industry. The emissions reduction effect of structure factor is better than the efficiency factor. For residential consumption sector, CO2 emissions increase rapidly year after year, and the economy factor (the increase of wealthy degree or income is the most important factor. In order to slow down the growth of CO2 emissions, it is an important way to change the economic growth mode, and the structure factor will become a crucial factor.

  3. CO2 Emission Factors for Coals

    Directory of Open Access Journals (Sweden)

    P. Orlović-Leko

    2015-03-01

    Full Text Available Emission factors are used in greenhouse gas inventories to estimate emissions from coal combustion. In the absence of direct measures, emissions factors are frequently used as a quick, low cost way to estimate emissions values. Coal combustion has been a major contributor to the CO2 flux into the atmosphere. Nearly all of the fuel carbon (99 % in coal is converted to CO2 during the combustion process. The carbon content is the most important coal parameter which is the measure of the degree of coalification (coal rank. Coalification is the alteration of vegetation to form peat, succeeded by the transformation of peat through lignite, sub-bituminous, bituminous to anthracite coal. During the geochemical or metamorphic stage, the progressive changes that occur within the coal are an increase in the carbon content and a decrease in the hydrogen and oxygen content resulting in a loss of volatiles. Heterogeneous composition of coal causes variation in CO2 emission from different coals. The IPCC (Intergovernmental Panel on Climate Change has produced guidelines on how to produce emission inventories which includes emission factors. Although 2006 IPCC Guidelines provided the default values specified according to the rank of the coal, the application of country-specific emission factors was recommended when estimating the national greenhouse gas emissions. This paper discusses the differences between country-specific emission factors and default IPCC CO2 emission factors, EF(CO2, for coals. Also, this study estimated EF(CO2 for two different types of coals and peat from B&H, on the basis fuel analyses. Carbon emission factors for coal mainly depend on the carbon content of the fuel and vary with both rank and geographic origin, which supports the idea of provincial variation of carbon emission factors. Also, various other factors, such as content of sulphur, minerals and macerals play an important role and influence EF(CO2 from coal. Carbonate minerals

  4. Affect and Health Behavior Co-Occurrence: The Emerging Roles of Transdiagnostic Factors and Sociocultural Factors.

    Science.gov (United States)

    Zvolensky, Michael J; Leventhal, Adam M

    2016-01-01

    The majority of scientific work addressing relations among affective states and health correlates has focused primarily on their co-occurrence and a limited range of health conditions. We have developed a Special Issue to highlight recent advances in this emerging field of work that addresses the nature and interplay between affective states and disorders, in terms of their impact and consequences from health status and behavior. This Special Issue is organized into three parts classified as (a) co-occurrence and interplay between (b) transdiagnostic factors and (c) sociocultural factors. It is hoped that this issue will (a) alert readers to the significance of this work at different levels of analysis, (b) illustrate the many domains currently being explored via innovative approaches, and (c) identify fecund areas for future systematic study. © The Author(s) 2016.

  5. Factors affecting CO2 emission from the power sector of selected countries in Asia and the Pacific

    International Nuclear Information System (INIS)

    Shrestha, Ram M.; Anandarajah, Gabrial; Liyanage, Migara H.

    2009-01-01

    This study analyzes the key factors behind the CO 2 emissions from the power sector in fifteen selected countries in Asia and the Pacific using the Log-Mean Divisia Index method of decomposition. The roles of changes in economic output, electricity intensity of the economy, fuel intensity of power generation and generation structure are examined in the evolution of CO 2 emission from the power sector of the selected countries during 1980-2004. The study shows that the economic growth was the dominant factor behind the increase in CO 2 emission in ten of the selected countries (i.e., Australia, China, India, Japan, Malaysia, Pakistan, South Korea, Singapore, Thailand and Vietnam, while the increasing electricity intensity of the economy was the main factor in three countries (Bangladesh, Indonesia and Philippines). Structural changes in power generation were found to be the main contributor to changes in the CO 2 emission in the case of Sri Lanka and New Zealand.

  6. The influencing factors of CO2 emission intensity of Chinese agriculture from 1997 to 2014.

    Science.gov (United States)

    Long, Xingle; Luo, Yusen; Wu, Chao; Zhang, Jijian

    2018-05-01

    In China, agriculture produces the greatest chemical oxygen demand (COD) emissions in wastewater and the most methane (CH 4 ) emissions. It is imperative that agricultural pollution in China be reduced. This study investigated the influencing factors of the CO 2 emission intensity of Chinese agriculture from 1997 to 2014. We analyzed the influencing factors of the CO 2 emission intensity through the first-stage least-square regression. We also analyzed determinants of innovation through the second-stage least-square regression. We found that innovation negatively affected the CO 2 emission intensity in the model of the nation. FDI positively affected innovation in China. It is important to enhance indigenous innovation for green agriculture through labor training and collaboration between agriculture and academia.

  7. Factors influencing CO2 emissions in China's power industry: Co-integration analysis

    International Nuclear Information System (INIS)

    Zhao, Xiaoli; Ma, Qian; Yang, Rui

    2013-01-01

    More than 40% of China's total CO 2 emissions originate from the power industry. The realization of energy saving and emission reduction within China's power industry is therefore crucial in order to achieve CO 2 emissions reduction in this country. This paper applies the autoregressive-distributed lag (ARDL) co-integration model to study the major factors which have influenced CO 2 emissions within China's power industry from 1980 to 2010. Results have shown that CO 2 emissions from China's power industry have been increasing rapidly. From 1980 to 2010, the average annual growth rate was 8.5%, and the average growth rate since 2002 has amounted to 10.5%. Secondly, the equipment utilization hour (as an indicator of the power demand) has the greatest influence on CO 2 emissions within China's power industry. In addition, the impact of the industrial added value of the power sector on CO 2 emissions is also positive from a short-term perspective. Thirdly, the Granger causality results imply that one of the important motivators behind China's technological progress, within the power industry, originates from the pressures created by a desire for CO 2 emissions reduction. Finally, this paper provides policy recommendations for energy saving and emission reduction for China's power industry. - Highlights: ► We study the major factors influencing China's power industry CO 2 emissions. ► The average annual growth rate of CO 2 emission from power industry is calculated. ► Installed capacity has the greatest influence on power industry CO 2 emission. ► The Granger causality between CO 2 emission and its effecting factors is analyzed

  8. Hydrogen/deuterium fractionation factors of the aqueous ligand of cobalt in Co(H2O)62+ and Co(II)-substituted carbonic anhydrase

    International Nuclear Information System (INIS)

    Kassebaum, J.W.

    1988-01-01

    The author has measured the hydrogen/deuterium fractionation factor for the rapidly exchanging aqueous ligands of cobalt in Co(H 2 O) 6 2+ and in three Co(II)-substituted isozymes of carbonic anhydrase. The fractionation factor was determined from NMR relaxation rates at 300 MHz of the protons of water in mixed solutions of H 2 O and D 2 O containing these complexes. In each case, the paramagnetic contribution to 1/T 2 was greater than to 1/T 1 , consistent with a chemical shift mechanism affecting 1/T 2 . The fractionation factors obtained from T 2 were 0.73 ± 0.02 for Co(H 2 O) 6 2+ , 0.72 ± 0.02 for Co(II)-substituted carbonic anhydrase I, 0.77 ± 0.01 for Co(II)-substituted carbonic anhydrase II, and 1.00 ± 0.07 for Co(Il)-substituted carbonic anhydrase III. He concluded that fractionation factors in these cases determined from T 1 and T 2 measured isotope preferences for different populations of ligand sites. Since T 2 has a large contribution from a chemical shift mechanism, the fractionation factor determined from T 2 has a large contribution of the fractionation of inner shell ligands. The fractionation factor of Co(H 2 O) 6 2+ was used to interpret the solvent hydrogen isotope effects on the formation of complexes of cobalt with the bidentate ligands glycine, N,N-dimethylglycine, and acetylacetone. The contribution of the fractionation factor of the inner water shell in Co(H 2 O) 6 2+ did not account completely for the measured isotope effect, and that the hydrogen/deuterium fractionation of outer shell water makes a large contribution to the isotope effect on the formation of these complexes

  9. Does elevated pCO2 affect reef octocorals?

    Science.gov (United States)

    Gabay, Yasmin; Benayahu, Yehuda; Fine, Maoz

    2013-03-01

    Increasing anthropogenic pCO2 alters seawater chemistry, with potentially severe consequences for coral reef growth and health. Octocorals are the second most important faunistic component in many reefs, often occupying 50% or more of the available substrate. Three species of octocorals from two families were studied in Eilat (Gulf of Aqaba), comprising the zooxanthellate Ovabunda macrospiculata and Heteroxenia fuscescens (family Xeniidae), and Sarcophyton sp. (family Alcyoniidae). They were maintained under normal (8.2) and reduced (7.6 and 7.3) pH conditions for up to 5 months. Their biolological features, including protein concentration, polyp weight, density of zooxanthellae, and their chlorophyll concentration per cell, as well as polyp pulsation rate, were examined under conditions more acidic than normal, in order to test the hypothesis that rising pCO2 would affect octocorals. The results indicate no statistically significant difference between the octocorals exposed to reduced pH values compared to the control. It is therefore suggested that the octocorals' tissue may act as a protective barrier against adverse pH conditions, thus maintaining them unharmed at high levels of pCO2.

  10. The co-integration analysis of factors affecting electricity consumption : a case study of Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Kongruang, C. [Thaksin Univ., Songkhla (Thailand). Faculty of Economics and Business; Waewsak, J. [Thaksin Univ., Phatthalung (Thailand). Dept. of Physics, Solar and Wind Energy Research Lab

    2008-07-01

    A study was conducted in which the main determinants of electricity demand in Thailand were investigated. Time-series analysis methods were used, notably the unit root test, the Johansen co-integration test and an error correction model (ECM). The objective was to determine the factors affecting short and long-run electricity consumption. This paper presented annual time series data from 1971 to 2006. The unit root test revealed that all series are non-stationary. The Johansen co-integration test revealed the co-integration between variables and the existence of the long-term relationship between them. Electricity consumption accelerated with the increase in gross domestic product (GDP) and population. In contrast, an increase in commodity price would reduce electricity consumption. The coefficient of population indicated that an increase of 1 million in total population would result in an increase in electricity consumption of 0.099 per cent. Last, the results of ECM revealed that nearly 21 per cent of long-term disequilibrium is adjusted to the current period. The factors that affect electricity consumption include GDP growth, inflation rate and population growth. It was concluded that Thailand should prepare for additional power generation from clean energy sources such as solar, biomass and wind energy. Thailand's Energy Policy and Planning Office revealed that electricity consumption in 2008 would be over 130,000 GWh with per capita consumption at nearly 2,000 kWh. The power peak demand will be nearly 24,000 MW in 2008. This result was based on the forecasting model that considered only GDP growth. However, electricity consumption depends not only on the GDP growth, but also upon the other key variables such as population, electricity selling price, consumer price index and temperature. 17 refs., 5 tabs., 4 figs.

  11. Forecasting Energy-Related CO2 Emissions Employing a Novel SSA-LSSVM Model: Considering Structural Factors in China

    Directory of Open Access Journals (Sweden)

    Huiru Zhao

    2018-03-01

    Full Text Available Carbon dioxide (CO2 emissions forecasting is becoming more important due to increasing climatic problems, which contributes to developing scientific climate policies and making reasonable energy plans. Considering that the influential factors of CO2 emissions are multiplex and the relationships between factors and CO2 emissions are complex and non-linear, a novel CO2 forecasting model called SSA-LSSVM, which utilizes the Salp Swarm Algorithm (SSA to optimize the two parameters of the least squares support sector machine (LSSVM model, is proposed in this paper. The influential factors of CO2 emissions, including the gross domestic product (GDP, population, energy consumption, economic structure, energy structure, urbanization rate, and energy intensity, are regarded as the input variables of the SSA-LSSVM model. The proposed model is verified to show a better forecasting performance compared with the selected models, including the single LSSVM model, the LSSVM model optimized by the particle swarm optimization algorithm (PSO-LSSVM, and the back propagation (BP neural network model, on CO2 emissions in China from 2014 to 2016. The comparative analysis indicates the SSA-LSSVM model is greatly superior and has the potential to improve the accuracy and reliability of CO2 emissions forecasting. CO2 emissions in China from 2017 to 2020 are forecast combined with the 13th Five-Year Plan for social, economic and energy development. The comparison of CO2 emissions of China in 2020 shows that structural factors significantly affect CO2 emission forecasting results. The average annual growth of CO2 emissions slows down significantly due to a series of policies and actions taken by the Chinese government, which means China can keep the promise that greenhouse gas emissions will start to drop after 2030.

  12. Mixing ratio and species affect the use of substrate-derived CO2 by Sphagnum

    NARCIS (Netherlands)

    Limpens, J.; Robroek, B.J.M.; Heijmans, M.M.P.D.; Tomassen, H.B.M.

    2008-01-01

    Question: Can mixing ratio and species affect the use of substrate-derived CO2 by Sphagnum? Location: Poor fen in south Sweden and greenhouse in Wageningen, The Netherlands. Methods: Two mixing ratios of Sphagnum cuspidatum and S. magellanicum were exposed to two levels of CO2 by pumping CO2

  13. Elevated-CO2 Response of Stomata and Its Dependence on Environmental Factors

    Science.gov (United States)

    Xu, Zhenzhu; Jiang, Yanling; Jia, Bingrui; Zhou, Guangsheng

    2016-01-01

    Stomata control the flow of gases between plants and the atmosphere. This review is centered on stomatal responses to elevated CO2 concentration and considers other key environmental factors and underlying mechanisms at multiple levels. First, an outline of general responses in stomatal conductance under elevated CO2 is presented. Second, stomatal density response, its development, and the trade-off with leaf growth under elevated CO2 conditions are depicted. Third, the molecular mechanism regulating guard cell movement at elevated CO2 is suggested. Finally, the interactive effects of elevated CO2 with other factors critical to stomatal behavior are reviewed. It may be useful to better understand how stomata respond to elevated CO2 levels while considering other key environmental factors and mechanisms, including molecular mechanism, biochemical processes, and ecophysiological regulation. This understanding may provide profound new insights into how plants cope with climate change. PMID:27242858

  14. Factors affecting biological reduction of CO{sub 2} into CH{sub 4} using a hydrogenotrophic methanogen in a fixed bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Hyung; Pak, Daewon [Seoul National University of Science and Technology, Seoul (Korea, Republic of); Chang, Won Seok [Korea District Heating Corp, Seongnam (Korea, Republic of)

    2015-10-15

    Biological conversion of CO{sub 2} was examined in a fixed bed reactor inoculated with anaerobic mixed culture to investigate influencing factors, the type of packing material and the composition of the feeding gas mixture. During the operation of the fixed bed reactor by feeding the gas mixture (80% H{sub 2} and 20% CO{sub 2} based on volume basis), the volumetric CO{sub 2} conversion rate was higher in the fixed bed reactor packed with sponge due to its large surface area and high mass transfer from gas to liquid phase compared with PS ball. Carbon dioxide loaded into the fixed bed reactor was not completely converted because some of H{sub 2} was used for biomass growth. When a mole ratio of H{sub 2} to CO{sub 2} in the feeding gas mixture increased from 4 to 5, CO{sub 2} was completely converted into CH{sub 4}. The packing material with large surface area is effective in treating gaseous substrate such as CO{sub 2} and H{sub 2}. H{sub 2}, electron donor, should be providing more than required according to stoichiometry because some of it is used for biomass growth.

  15. Factor Decomposition Analysis of Energy-Related CO2 Emissions in Tianjin, China

    Directory of Open Access Journals (Sweden)

    Zhe Wang

    2015-07-01

    Full Text Available Tianjin is the largest coastal city in northern China with rapid economic development and urbanization. Energy-related CO2 emissions from Tianjin’s production and household sectors during 1995–2012 were calculated according to the default carbon-emission coefficients provided by the Intergovernmental Panel on Climate Change. We decomposed the changes in CO2 emissions resulting from 12 causal factors based on the method of Logarithmic Mean Divisia Index. The examined factors were divided into four types of effects: energy intensity effect, structure effect, activity intensity effect, scale effect and the various influencing factors imposed differential impacts on CO2 emissions. The decomposition outcomes indicate that per capita GDP and population scale are the dominant positive driving factors behind the growth in CO2 emissions for all sectors, while the energy intensity of the production sector is the main contributor to dampen the CO2 emissions increment, and the contributions from industry structure and energy structure need further enhancement. The analysis results reveal the reasons for CO2 emission changes in Tianjin and provide a solid basis upon which policy makers may propose emission reduction measures and approaches for the implementation of sustainable development strategies.

  16. T-2 toxin and HT-2 toxin in grain and grain-based commodities in Europe: occurrence, factors affecting occurrence, co-occurence and toxicological effects

    NARCIS (Netherlands)

    Fels-Klerx, van der H.J.; Stratakou, I.

    2010-01-01

    This paper presents an overview of the occurrence of T-2 toxin and HT-2 toxin in cereals in Europe and derived food products, factors influencing the occurrence, co-occurrence with other trichothecenes, and toxicological effects of T-2 and HT-2 in human. Of all cereals, oats showed to be most

  17. Does a decade of elevated [CO2] affect a desert perennial plant community?

    Science.gov (United States)

    Newingham, Beth A; Vanier, Cheryl H; Kelly, Lauren J; Charlet, Therese N; Smith, Stanley D

    2014-01-01

    Understanding the effects of elevated [CO2 ] on plant community structure is crucial to predicting ecosystem responses to global change. Early predictions suggested that productivity in deserts would increase via enhanced water-use efficiency under elevated [CO2], but the response of intact arid plant communities to elevated [CO2 ] is largely unknown. We measured changes in perennial plant community characteristics (cover, species richness and diversity) after 10 yr of elevated [CO2] exposure in an intact Mojave Desert community at the Nevada Desert Free-Air CO2 Enrichment (FACE) Facility. Contrary to expectations, total cover, species richness, and diversity were not affected by elevated [CO2]. Over the course of the experiment, elevated [CO2] had no effect on changes in cover of the evergreen C3 shrub, Larrea tridentata; alleviated decreases in cover of the C4 bunchgrass, Pleuraphis rigida; and slightly reduced the cover of C3 drought-deciduous shrubs. Thus, we generally found no effect of elevated [CO2] on plant communities in this arid ecosystem. Extended drought, slow plant growth rates, and highly episodic germination and recruitment of new individuals explain the lack of strong perennial plant community shifts after a decade of elevated [CO2]. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  18. CO2-induced ocean acidification does not affect individual or group behaviour in a temperate damselfish.

    Science.gov (United States)

    Kwan, Garfield Tsz; Hamilton, Trevor James; Tresguerres, Martin

    2017-07-01

    Open ocean surface CO 2 levels are projected to reach approximately 800 µatm, and ocean pH to decrease by approximately 0.3 units by the year 2100 due to anthropogenic CO 2 emissions and the subsequent process of ocean acidification (OA). When exposed to these CO 2 /pH values, several fish species display abnormal behaviour in laboratory tests, an effect proposed to be linked to altered neuronal GABA A- receptor function. Juvenile blacksmith ( Chromis punctipinnis ) are social fish that regularly experience CO 2 /pH fluctuations through kelp forest diurnal primary production and upwelling events, so we hypothesized that they might be resilient to OA. Blacksmiths were exposed to control conditions (pH ∼ 7.92; p CO 2  ∼ 540 µatm), constant acidification (pH ∼ 7.71; p CO 2  ∼ 921 µatm) and oscillating acidification (pH ∼ 7.91, p CO 2  ∼ 560 µatm (day), pH ∼ 7.70, p CO 2  ∼ 955 µatm (night)), and caught and tested in two seasons of the year when the ocean temperature was different: winter (16.5 ± 0.1°C) and summer (23.1 ± 0.1°C). Neither constant nor oscillating CO 2 -induced acidification affected blacksmith individual light/dark preference, inter-individual distance in a shoal or the shoal's response to a novel object, suggesting that blacksmiths are tolerant to projected future OA conditions. However, blacksmiths tested during the winter demonstrated significantly higher dark preference in the individual light/dark preference test, thus confirming season and/or water temperature as relevant factors to consider in behavioural tests.

  19. Identifying key factors and strategies for reducing industrial CO2 emissions from a non-Kyoto protocol member's (Taiwan) perspective

    International Nuclear Information System (INIS)

    Lin, Sue J.; Lu, I.J.; Lewis, Charles

    2006-01-01

    In this study we use Divisia index approach to identify key factors affecting CO 2 emission changes of industrial sectors in Taiwan. The changes of CO 2 emission are decomposed into emission coefficient, energy intensity, industrial structure and economic growth. Furthermore, comparisons with USA, Japan, Germany, the Netherlands and South Korea are made to have a better understanding of emission tendency in these countries and to help formulate our CO 2 reduction strategies for responding to the international calls for CO 2 cuts. The results show that economic growth and high energy intensity were two key factors for the rapid increase of industrial CO 2 emission in Taiwan, while adjustment of industrial structure was the main component for the decrease. Although economic development is important, Taiwan must keep pace with the international trends for CO 2 reduction. Among the most important strategies are continuous efforts to improve energy intensity, fuel mix toward lower carbon, setting targets for industrial CO 2 cuts, and advancing green technology through technology transfer. Also, the clean development mechanism (CDM) is expected to play an important role in the future

  20. Analysis on influence factors of China's CO2 emissions based on Path-STIRPAT model

    International Nuclear Information System (INIS)

    Li Huanan; Mu Hailin; Zhang Ming; Li Nan

    2011-01-01

    With the intensification of global warming and continued growth in energy consumption, China is facing increasing pressure to cut its CO 2 (carbon dioxide) emissions down. This paper discusses the driving forces influencing China's CO 2 emissions based on Path-STIRPAT model-a method combining Path analysis with STIRPAT (stochastic impacts by regression on population, affluence and technology) model. The analysis shows that GDP per capita (A), industrial structure (IS), population (P), urbanization level (R) and technology level (T) are the main factors influencing China's CO 2 emissions, which exert an influence interactively and collaboratively. The sequence of the size of factors' direct influence on China's CO 2 emission is A>T>P>R>IS, while that of factors' total influence is A>R>P>T>IS. One percent increase in A, IS, P, R and T leads to 0.44, 1.58, 1.31, 1.12 and -1.09 percentage change in CO 2 emission totally, where their direct contribution is 0.45, 0.07, 0.63, 0.08, 0.92, respectively. Improving T is the most important way for CO 2 reduction in China. - Highlights: → We analyze the driving forces influencing China's CO 2 emissions. → Five macro factors like per capita GDP are the main influencing factors. → These factors exert an influence interactively and collaboratively. → Different factors' direct and total influence on China's CO 2 emission is different. → Improving technology level is the most important way for CO 2 reduction in China.

  1. Neither elevated nor reduced CO2 affects the photophysiological performance of the marine Antarctic diatom Chaetoceros brevis

    NARCIS (Netherlands)

    Boelen, Peter; de Poll, Willem H. van; van der Strate, Han J.; Neven, Ika A.; Beardall, John; Buma, Anita G. J.

    2011-01-01

    Enhanced or reduced pCO(2) (partial pressure of CO2) may affect the photosynthetic performance of marine microalgae since changes in pCO(2) can influence the activity of carbon concentrating mechanisms, modulate cellular RuBisCO levels or alter carbon uptake efficiency. In the present study we

  2. Panel estimation for transport sector CO2 emissions and its affecting factors: A regional analysis in China

    International Nuclear Information System (INIS)

    Zhang, Chuanguo; Nian, Jiang

    2013-01-01

    With rapid economic growth, the transport sector plays an important role in China′s CO 2 emissions. The existing research is extensively concerned with transport sector CO 2 emissions in recent years, but little attention has been paid to regional differences. This paper investigates CO 2 emissions in the transport sector at the national and regional levels using the STIRPAT model and provincial panel data from 1995 to 2010 in China. The results showed that passenger transport dominates CO 2 emissions in the transport sector, but its influence varies across regions. Electrification has significant potential to lower CO 2 emissions because of resulting higher fuel efficiency and reduced pollution. Energy efficiency improvement is effective but limited in reducing emissions due to increasing demand from economic development and population growth. These results not only contribute to advancing the existing literature, but also merit particular attention from policy makers in China. - Highlights: • We investigate China′s CO 2 emissions in the transport sector. • Passenger transport dominates CO 2 emissions in the transport sector. • The effects of passenger transport on CO 2 emissions vary across regions. • Energy efficiency improvement is effective but limited in reducing emissions

  3. Amelioration of boron toxicity in sweet pepper as affected by calcium management under an elevated CO2 concentration.

    Science.gov (United States)

    Piñero, María Carmen; Pérez-Jiménez, Margarita; López-Marín, Josefa; Del Amor, Francisco M

    2017-04-01

    We investigated B tolerance in sweet pepper plants (Capsicum annuun L.) under an elevated CO 2 concentration, combined with the application of calcium as a nutrient management amelioration technique. The data show that high B affected the roots more than the aerial parts, since there was an increase in the shoot/root ratio, when plants were grown with high B levels; however, the impact was lessened when the plants were grown at elevated CO 2 , since the root FW reduction caused by excess B was less marked at the high CO 2 concentration (30.9% less). Additionally, the high B concentration affected the membrane permeability of roots, which increased from 39 to 54% at ambient CO 2 concentration, and from 38 to 51% at elevated CO 2 concentration, producing a cation imbalance in plants, which was differentially affected by the CO 2 supply. The Ca surplus in the nutrient solution reduced the nutritional imbalance in sweet pepper plants produced by the high B concentration, at both CO 2 concentrations. The medium B concentration treatment (toxic according to the literature) did not result in any toxic effect. Hence, there is a need to review the literature on critical and toxic B levels taking into account increases in atmospheric CO 2 .

  4. Loblolly pine grown under elevated CO2 affects early instar pine sawfly performance.

    Science.gov (United States)

    Williams, R S; Lincoln, D E; Thomas, R B

    1994-06-01

    Seedlings of loblolly pine Pinus taeda (L.), were grown in open-topped field chambers under three CO 2 regimes: ambient, 150 μl l -1 CO 2 above ambient, and 300 μl l -1 CO 2 above ambient. A fourth, non-chambered ambient treatment was included to assess chamber effects. Needles were used in 96 h feeding trials to determine the performance of young, second instar larvae of loblolly pine's principal leaf herbivore, red-headed pine sawfly, Neodiprion lecontei (Fitch). The relative consumption rate of larvae significantly increased on plants grown under elevated CO 2 , and needles grown in the highest CO 2 regime were consumed 21% more rapidly than needles grown in ambient CO 2 . Both the significant decline in leaf nitrogen content and the substantial increase in leaf starch content contributed to a significant increase in the starch:nitrogen ratio in plants grown in elevated CO 2 . Insect consumption rate was negatively related to leaf nitrogen content and positively related to the starch:nitrogen ratio. Of the four volatile leaf monoterpenes measured, only β-pinene exhibited a significant CO 2 effect and declined in plants grown in elevated CO 2 . Although consumption changed, the relative growth rates of larvae were not different among CO 2 treatments. Despite lower nitrogen consumption rates by larvae feeding on the plants grown in elevated CO 2 , nitrogen accumulation rates were the same for all treatments due to a significant increase in nitrogen utilization efficiency. The ability of this insect to respond at an early, potentially susceptible larval stage to poorer food quality and declining levels of a leaf monoterpene suggest that changes in needle quality within pines in future elevated-CO 2 atmospheres may not especially affect young insects and that tree-feeding sawflies may respond in a manner similar to herb-feeding lepidopterans.

  5. On-road assessment of light duty vehicles in Delhi city: Emission factors of CO, CO2 and NOX

    Science.gov (United States)

    Jaiprakash; Habib, Gazala

    2018-02-01

    This study presents the technology based emission factors of gaseous pollutants (CO, CO2, and NOX) measured during on-road operation of nine passenger cars of diesel, gasoline, and compressed natural gas (CNG). The emissions from two 3-wheelers, and three 2-wheelers were measured by putting the vehicles on jacks and operating them according to Modified Indian Driving Cycle (MIDC) at no load condition. The emission factors observed in the present work were significantly higher than values reported from dynamometer study by Automotive Research Association of India (ARAI). Low CO (0.34 ± 0.08 g km-1) and high NOX (1.0 ± 0.4 g km-1) emission factors were observed for diesel passenger cars, oppositely high CO (2.2 ± 2.6 g km-1) and low NOX (1.0 ± 1.6 g km-1) emission factors were seen for gasoline powered cars. The after-treatment technology in diesel vehicles was effective in CO reduction. While the use of turbocharger in diesel vehicles to generate high combustion temperature and pressure produces more NOx, probably which may not be effectively controlled by after-treatment device. The after-treatment devices in gasoline powered Post-2010, Post-2005 vehicles can be acclaimed for reduced CO emissions compared to Post-2000 vehicles. This work presents a limited data set of emission factors from on-road operations of light duty vehicles, this limitation can be improved by further measurements of emissions from similar vehicles.

  6. The interaction of biotic and abiotic factors at multiple spatial scales affects the variability of CO2 fluxes in polar environments

    Czech Academy of Sciences Publication Activity Database

    Cannone, N.; Augusti, A.; Malfasi, F.; Pallozi, E.; Calfapietra, Carlo; Brugnoli, E.

    2016-01-01

    Roč. 39, č. 9 (2016), s. 1581-1596 ISSN 0722-4060 Institutional support: RVO:67179843 Keywords : Arctic ecosystems * CO2 fluxes * Speciesspecific photosynthetic capacity * Soil temperature * Carbon isotope composition * Climate warming Subject RIV: EH - Ecology, Behaviour Impact factor: 1.949, year: 2016

  7. Analysis of regional difference on impact factors of China’s energy – Related CO2 emissions

    International Nuclear Information System (INIS)

    Li, Huanan; Mu, Hailin; Zhang, Ming; Gui, Shusen

    2012-01-01

    With the intensification of global warming, the issue of carbon emissions causes more and more attention in recent years. In this paper, China’s 30 provincial-level administrative units are divided into five emission regions according to the annual average value of provincial CO 2 emissions per capita during 1990 and 2010. The regional differences in impact factors on CO 2 emissions are discussed using STIRPAT (stochastic impacts by regression on population, affluence, and technology) model. The results indicate that although GDP (Gross domestic product) per capita, industrial structure, population, urbanization and technology level have different impacts on CO 2 emissions in different emission regions, they are almost always the main factors in all emission regions. In most emission regions, urbanization and GDP per capita has a bigger impact on CO 2 emissions than other factors. Improving technology level produces a small reduction in CO 2 emissions in most emission regions, but it is still a primary way for CO 2 reduction in China. It’s noteworthy that industrial structure isn’t the main factor and improving technology level increases CO 2 emissions in high emission region. Different measures should be adopted for CO 2 reductions according to local conditions in different regions. -- Highlights: ► Regional differences of the impact factors on China’s CO 2 emissions are analyzed. ► Five macro factors like GDP per capita are almost always main influence factors in all regions. ► The impacts of different factors are different. ► Improving technology has no significant reduction on CO 2 emission in most regions. ► Policy on CO 2 reduction should be adapted to local conditions.

  8. Seasonal Variations of Atmospheric CO2 over Fire Affected Regions Based on GOSAT Observations

    Science.gov (United States)

    Shi, Y.; Matsunaga, T.

    2016-12-01

    Abstract: The carbon dioxide (CO2) emissions released from biomass burning significantly affect the temporal variations of atmospheric CO2 concentrations. Based on a long-term (July 2009-June 2015) retrieved datasets by the Greenhouse Gases Observing Satellite (GOSAT), the seasonal cycle and interannual variations of column-averaged volume mixing ratios of atmospheric carbon dioxide (XCO2) in four fire affected continental regions were investigated. The results showed Northern Africa had the largest seasonal variations after removing its regional long-term trend of XCO2 with peak-to-peak amplitude of 6.2 ppm within the year, higher than central South America (2.4 ppm), Southern Africa (3.8 ppm) and Australia (1.7 ppm). The detrended regional XCO2 was found to be positively correlated with the fire CO2 emissions during fire activity period and negatively correlated with vegetation photosynthesis activity with different seasonal variabilities. Northern Africa recorded the largest change of seasonal variations of detrended XCO2 with a total of 12.8 ppm during fire seasons, higher than central South America, Southern Africa and Australia with 5.4 ppm, 6.7 ppm and 2.2 ppm, respectively. During fire episode, the positive detrended XCO2 was noticed during June-November in central South America, December-June in Northern Africa, May-November in Southern Africa. The Pearson correlation coefficients between the variations of detrended XCO2 and fire CO2 emissions from GFED4 (Global Fire Emissions Database v4) achieved best correlations in Southern Africa (R=0.77, p<0.05). Meanwhile, Southern Africa also experienced a significant negative relationship between the variations of detrended XCO2 and vegetation activity (R=-0.84, p<0.05). This study revealed that fire CO2 emissions and vegetation activity contributed greatly to the seasonal variations of GOSAT XCO2 dataset.

  9. THE CO-TO-H2 CONVERSION FACTOR AND DUST-TO-GAS RATIO ON KILOPARSEC SCALES IN NEARBY GALAXIES

    International Nuclear Information System (INIS)

    Sandstrom, K. M.; Walter, F.; Leroy, A. K.; Bolatto, A. D.; Wolfire, M.; Croxall, K. V.; Crocker, A.; Draine, B. T.; Aniano, G.; Wilson, C. D.; Calzetti, D.; Kennicutt, R. C.; Galametz, M.; Donovan Meyer, J.; Usero, A.; Bigiel, F.; Brinks, E.; De Blok, W. J. G.; Dale, D.; Engelbracht, C. W.

    2013-01-01

    We present ∼kiloparsec spatial resolution maps of the CO-to-H 2 conversion factorCO ) and dust-to-gas ratio (DGR) in 26 nearby, star-forming galaxies. We have simultaneously solved for α CO and the DGR by assuming that the DGR is approximately constant on kiloparsec scales. With this assumption, we can combine maps of dust mass surface density, CO-integrated intensity, and H I column density to solve for both α CO and the DGR with no assumptions about their value or dependence on metallicity or other parameters. Such a study has just become possible with the availability of high-resolution far-IR maps from the Herschel key program KINGFISH, 12 CO J = (2-1) maps from the IRAM 30 m large program HERACLES, and H I 21 cm line maps from THINGS. We use a fixed ratio between the (2-1) and (1-0) lines to present our α CO results on the more typically used 12 CO J = (1-0) scale and show using literature measurements that variations in the line ratio do not affect our results. In total, we derive 782 individual solutions for α CO and the DGR. On average, α CO = 3.1 M ☉ pc –2 (K km s –1 ) –1 for our sample with a standard deviation of 0.3 dex. Within galaxies, we observe a generally flat profile of α CO as a function of galactocentric radius. However, most galaxies exhibit a lower α CO value in the central kiloparsec—a factor of ∼2 below the galaxy mean, on average. In some cases, the central α CO value can be factors of 5-10 below the standard Milky Way (MW) value of α CO, M W = 4.4 M ☉ pc –2 (K km s –1 ) –1 . While for α CO we find only weak correlations with metallicity, the DGR is well-correlated with metallicity, with an approximately linear slope. Finally, we present several recommendations for choosing an appropriate α CO for studies of nearby galaxies

  10. CO2-induced seawater acidification affects physiological performance of the marine diatom Phaeodactylum tricornutum

    Directory of Open Access Journals (Sweden)

    U. Riebesell

    2010-09-01

    Full Text Available CO2/pH perturbation experiments were carried out under two different pCO2 levels (39.3 and 101.3 Pa to evaluate effects of CO2-induced ocean acidification on the marine diatom Phaeodactylum tricornutum. After acclimation (>20 generations to ambient and elevated CO2 conditions (with corresponding pH values of 8.15 and 7.80, respectively, growth and photosynthetic carbon fixation rates of high CO2 grown cells were enhanced by 5% and 12%, respectively, and dark respiration stimulated by 34% compared to cells grown at ambient CO2. The half saturation constant (Km for carbon fixation (dissolved inorganic carbon, DIC increased by 20% under the low pH and high CO2 condition, reflecting a decreased affinity for HCO3– or/and CO2 and down-regulated carbon concentrating mechanism (CCM. In the high CO2 grown cells, the electron transport rate from photosystem II (PSII was photoinhibited to a greater extent at high levels of photosynthetically active radiation, while non-photochemical quenching was reduced compared to low CO2 grown cells. This was probably due to the down-regulation of CCM, which serves as a sink for excessive energy. The balance between these positive and negative effects on diatom productivity will be a key factor in determining the net effect of rising atmospheric CO2 on ocean primary production.

  11. Growth and Wood/Bark Properties of Abies faxoniana Seedlings as Affected by Elevated CO2

    Institute of Scientific and Technical Information of China (English)

    Yun-Zhou Qiao; Yuan-Bin Zhang; Kai-Yun Wang; Qian Wang; Qi-Zhuo Tian

    2008-01-01

    Growth and wood and bark properties of Abies faxoniana seedlings after one year's exposure to elevated CO2 concentration (ambient + 350 (=1= 25) μmol/mol) under two planting densities (28 or 84 plants/mz) were investigated in closed-top chambers. Tree height, stem diameter and cross-sectional area, and total biomass were enhanced under elevated CO2 concentration, and reduced under high planting density. Most traits of stem bark were improved under elevated CO2 concentration and reduced under high planting density. Stem wood production was significantly increased in volume under elevated CO2 concentration under both densities, and the stem wood density decreased under elevated CO2 concentration and increased under high planting density. These results suggest that the response of stem wood and bark to elevated CO2 concentration is density dependent. This may be of great importance in a future CO2 enriched world in natural forests where plant density varies considerably. The results also show that the bark/wood ratio in diameter, stem cross-sectional area and dry weight are not proportionally affected by elevated CO2 concentration under the two contrasting planting densities. This indicates that the response magnitude of stem bark and stem wood to elevated CO2 concentration are different but their response directions are the same.

  12. CO2-Water-Rock Wettability: Variability, Influencing Factors, and Implications for CO2 Geostorage.

    Science.gov (United States)

    Iglauer, Stefan

    2017-05-16

    Carbon geosequestration (CGS) has been identified as a key technology to reduce anthropogenic greenhouse gas emissions and thus significantly mitigate climate change. In CGS, CO 2 is captured from large point-source emitters (e.g., coal fired power stations), purified, and injected deep underground into geological formations for disposal. However, the CO 2 has a lower density than the resident formation brine and thus migrates upward due to buoyancy forces. To prevent the CO 2 from leaking back to the surface, four trapping mechanisms are used: (1) structural trapping (where a tight caprock acts as a seal barrier through which the CO 2 cannot percolate), (2) residual trapping (where the CO 2 plume is split into many micrometer-sized bubbles, which are immobilized by capillary forces in the pore network of the rock), (3) dissolution trapping (where CO 2 dissolves in the formation brine and sinks deep into the reservoir due to a slight increase in brine density), and (4) mineral trapping (where the CO 2 introduced into the subsurface chemically reacts with the formation brine or reservoir rock or both to form solid precipitates). The efficiency of these trapping mechanisms and the movement of CO 2 through the rock are strongly influenced by the CO 2 -brine-rock wettability (mainly due to the small capillary-like pores in the rock which form a complex network), and it is thus of key importance to rigorously understand CO 2 -wettability. In this context, a substantial number of experiments have been conducted from which several conclusions can be drawn: of prime importance is the rock surface chemistry, and hydrophilic surfaces are water-wet while hydrophobic surfaces are CO 2 -wet. Note that CO 2 -wet surfaces dramatically reduce CO 2 storage capacities. Furthermore, increasing pressure, salinity, or dissolved ion valency increases CO 2 -wettability, while the effect of temperature is not well understood. Indeed theoretical understanding of CO 2 -wettability and the

  13. Soil CO2 dynamics and fluxes as affected by tree harvest in an experimental sand ecosystem.

    Science.gov (United States)

    C.K. Keller; T.M. White; R. O' Brien; J.L. Smith

    2006-01-01

    Soil CO2 production is a key process in ecosystem C exchange, and global change predictions require understanding of how ecosystem disturbance affects this process. We monitored CO2 levels in soil gas and as bicarbonate in drainage from an experimental red pine ecosystem, for 1 year before and 3 years after its aboveground...

  14. Young Daughter Cladodes Affect CO2 Uptake by Mother Cladodes of Opuntia ficus-indica

    Science.gov (United States)

    PIMIENTA-BARRIOS, EULOGIO; ZAÑUDO-HERNANDEZ, JULIA; ROSAS-ESPINOZA, VERONICA C.; VALENZUELA-TAPIA, AMARANTA; NOBEL, PARK S.

    2004-01-01

    • Background and Aims Drought damages cultivated C3, C4 and CAM plants in the semi-arid lands of central Mexico. Drought damage to Opuntia is common when mother cladodes, planted during the dry spring season, develop young daughter cladodes that behave like C3 plants, with daytime stomatal opening and water loss. In contrast, wild Opuntia are less affected because daughter cladodes do not develop on them under extreme drought conditions. The main objective of this work is to evaluate the effects of the number of daughter cladodes on gas exchange parameters of mother cladodes of Opuntia ficus-indica exposed to varying soil water contents. • Methods Rates of net CO2 uptake, stomatal conductance, intercellular CO2 concentration, chlorophyll content and relative water content were measured in mature mother cladodes with a variable number of daughter cladodes growing in spring under dry and wet conditions. • Key Results Daily carbon gain by mother cladodes was reduced as the number of daughter cladodes increased to eight, especially during drought. This was accompanied by decreased mother cladode relative water content, suggesting movement of water from mother to daughter cladodes. CO2 assimilation was most affected in phase IV of CAM (late afternoon net CO2 uptake) by the combined effects of daughter cladodes and drought. Rainfall raised the soil water content, decreasing the effects of daughter cladodes on net CO2 uptake by mother cladodes. • Conclusions Daughter cladodes significantly hasten the effects of drought on mother cladodes by competition for the water supply and thus decrease daily carbon gain by mother cladodes, mainly by inhibiting phase IV of CAM. PMID:15567805

  15. Does trade openness affect CO2 emissions: evidence from ten newly industrialized countries?

    Science.gov (United States)

    Zhang, Shun; Liu, Xuyi; Bae, Junghan

    2017-07-01

    This paper examines whether the hypothetical environmental Kuznet curve (EKC) exists or not and investigates how trade openness affects CO 2 emissions, together with real GDP and total primary energy consumption. The study sample comprises ten newly industrialized countries (NICs-10) from 1971 to 2013. The results support the existence of hypothetical EKC and indicate that trade openness negatively and significantly affects emissions, while real GDP and energy do positive effects of emissions. Moreover, the empirical results of short-run causalities indicate feedback hypothetical linkage of real GDP and trade, unidirectional linkages from energy to emissions, and from trade to energy. The error correction terms (ECTs) reveal in the long run, feedback linkages of emissions, real GDP, and trade openness, while energy Granger causes emissions, real GDP, and trade, respectively. The study recommendations are that our policymakers should encourage and expand the trade openness in these countries, not only to restrain CO 2 emissions but also to boost their growth.

  16. Transport sector CO2 emissions growth in Asia: Underlying factors and policy options

    International Nuclear Information System (INIS)

    Timilsina, Govinda R.; Shrestha, Ashish

    2009-01-01

    This study analyze the potential factors influencing the growth of transport sector carbon dioxide (CO 2 ) emissions in selected Asian countries during the 1980-2005 period by decomposing annual emissions growth into components representing changes in fuel mix, modal shift, per capita gross domestic product (GDP) and population, as well as changes in emission coefficients and transportation energy intensity. We find that changes in per capita GDP, population growth and transportation energy intensity are the main factors driving transport sector CO 2 emission growth in the countries considered. While growth in per capita income and population are responsible for the increasing trend of transport sector CO 2 emissions in China, India, Indonesia, Republic of Korea, Malaysia, Pakistan, Sri Lanka and Thailand; the decline of transportation energy intensity is driving CO 2 emissions down in Mongolia. Per capita GDP, population and transportation energy intensity effects are all found responsible for transport sector CO 2 emissions growth in Bangladesh, the Philippines and Vietnam. The study also reviews existing government policies to limit CO 2 emissions growth, such as fiscal instruments, fuel economy standards and policies to encourage switching to less emission intensive fuels and transportation modes.

  17. High efficient removal of molybdenum from water by Fe{sub 2}(SO{sub 4}){sub 3}: Effects of pH and affecting factors in the presence of co-existing background constituents

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiang; Ma, Jun, E-mail: majunhit@126.com; Lu, Xixin; Huangfu, Xiaoliu; Zou, Jing

    2015-12-30

    Highlights: • Proposed high efficient Mo (VI) removal with Fe{sub 2}(SO{sub 4}){sub 3} coagulation-filtration. • Studied different effects of Fe{sub 2}(SO{sub 4}){sub 3} and FeCl{sub 3} due to different anionic portions. • Reported the adverse effect of calcium on the removal of Mo (VI). • Proposed factors affecting Mo (VI) removal: intercepted Fe and adsorption affinity. - Abstract: Comparatively investigated the different effects of Fe{sub 2}(SO{sub 4}){sub 3} coagulation-filtration and FeCl{sub 3} coagulation-filtration on the removal of Mo (VI). And the influence of calcium, sulfate, silicate, phosphate and humic acid (HA) were also studied. The following conclusions can be obtained: (1) compared with the case of FeCl{sub 3}, Fe{sub 2}(SO{sub 4}){sub 3} showed a higher Mo (VI) removal efficiency at pH 4.00–5.00, but an equal removal efficiency at pH 6.00–9.00. (2) The optimum Mo (VI) removal by Fe{sub 2}(SO{sub 4}){sub 3} was achieved at pH 5.00–6.00; (3) The presence of calcium can reduce the removal of Mo (VI) over the entire pH range in the present study; (4) The effect of co-existing background anions (including HA) was dominated by three factors: Firstly the influence of co-existing background anions on the content of Fe intercepted from water (intercepted Fe). Secondly the competition of co-existing anions with Mo (VI) for adsorption sites. Thirdly the influence of co-existing background anions on the Zeta potential of the iron flocs.

  18. System-level modeling for geological storage of CO2

    OpenAIRE

    Zhang, Yingqi; Oldenburg, Curtis M.; Finsterle, Stefan; Bodvarsson, Gudmundur S.

    2006-01-01

    One way to reduce the effects of anthropogenic greenhouse gases on climate is to inject carbon dioxide (CO2) from industrial sources into deep geological formations such as brine formations or depleted oil or gas reservoirs. Research has and is being conducted to improve understanding of factors affecting particular aspects of geological CO2 storage, such as performance, capacity, and health, safety and environmental (HSE) issues, as well as to lower the cost of CO2 capture and related p...

  19. Regulation of senescence under elevated atmospheric CO2 via ubiquitin modification

    OpenAIRE

    Aoyama, Shoki; Lu, Yu; Yamaguchi, Junji; Sato, Takeo

    2014-01-01

    Elevated atmospheric CO2 concentration is a serious global environmental problem. Elevated CO2 affects plant growth by changing primary metabolism, closely related to carbon (C) and nitrogen (N) availability. Under sufficient N conditions, plant growth is dramatically promoted by elevated CO2. When N availability is limited, however, elevated CO2 disrupts the balance between cellular C and N (C/N). Disruption of the C/N balance is regarded as an important factor in plant growth defects. Here ...

  20. Analyzing impact factors of CO2 emissions using the STIRPAT model

    International Nuclear Information System (INIS)

    Fan Ying; Liu Lancui; Wu Gang; Wei Yiming

    2006-01-01

    Using the STIRPAT model, this paper analyzes the impact of population, affluence and technology on the total CO 2 emissions of countries at different income levels over the period 1975-2000. Our main results show at the global level that economic growth has the greatest impact on CO 2 emissions, and the proportion of the population between ages 15 and 64 has the least impact. The proportion of the population between 15 and 64 has a negative impact on the total CO 2 emissions of countries at the high income level, but the impact is positive at other income levels. This may illustrate the importance of the 'B' in the 'I = PABT'; that is to say that different behavior fashions can greatly influence environmental change. For low-income countries, the impact of GDP per capita on total CO 2 emissions is very great, and the impact of energy intensity in upper-middle income countries is very great. The impact of these factors on the total CO 2 emissions of countries at the high income level is relatively great. Therefore, these empirical results indicate that the impact of population, affluence and technology on CO 2 emissions varies at different levels of development. Thus, policy-makers should consider these matters fully when they construct their long-term strategies for CO 2 abatement

  1. Crop responses to CO2 enrichment

    International Nuclear Information System (INIS)

    Rogers, H.H.; Dahlman, R.C.

    1993-01-01

    Carbon dioxide is rising in the global atmosphere, and this increase can be expected to continue into the foreseeable future. This compound is an essential input to plant life. Crop function is affected across all scales from biochemical to agroecosystem. An array of methods (leaf cuvettes, field chambers, free-air release systems) are available for experimental studies of CO 2 effects. Carbon dioxide enrichment of the air in which crops grow usually stimulates their growth and yield. Plant structure and physiology are markedly altered. Interactions between CO 2 and environmental factors that influence plants are known to occur. Implications for crop growth and yield are enormous. Strategies designed to assure future global food security must include a consideration of crop responses to elevated atmospheric CO 2 . 137 refs., 4 figs., 4 tabs

  2. Changes in the salinity tolerance of sweet pepper plants as affected by nitrogen form and high CO2 concentration.

    Science.gov (United States)

    Piñero, María C; Pérez-Jiménez, Margarita; López-Marín, Josefa; Del Amor, Francisco M

    2016-08-01

    The assimilation and availability of nitrogen in its different forms can significantly affect the response of primary productivity under the current atmospheric alteration and soil degradation. An elevated CO2 concentration (e[CO2]) triggers changes in the efficiency and efficacy of photosynthetic processes, water use and product yield, the plant response to stress being altered with respect to ambient CO2 conditions (a[CO2]). Additionally, NH4(+) has been related to improved plant responses to stress, considering both energy efficiency in N-assimilation and the overcoming of the inhibition of photorespiration at e[CO2]. Therefore, the aim of this work was to determine the response of sweet pepper plants (Capsicum annuum L.) receiving an additional supply of NH4(+) (90/10 NO3(-)/NH4(+)) to salinity stress (60mM NaCl) under a[CO2] (400μmolmol(-1)) or e[CO2] (800μmolmol(-1)). Salt-stressed plants grown at e[CO2] showed DW accumulation similar to that of the non-stressed plants at a[CO2]. The supply of NH4(+) reduced growth at e[CO2] when salinity was imposed. Moreover, NH4(+) differentially affected the stomatal conductance and water use efficiency and the leaf Cl(-), K(+), and Na(+) concentrations, but the extent of the effects was influenced by the [CO2]. An antioxidant-related response was prompted by salinity, the total phenolics and proline concentrations being reduced by NH4(+) at e[CO2]. Our results show that the effect of NH4(+) on plant salinity tolerance should be globally re-evaluated as e[CO2] can significantly alter the response, when compared with previous studies at a[CO2]. Copyright © 2016 Elsevier GmbH. All rights reserved.

  3. CO2 leakage-induced vegetation decline is primarily driven by decreased soil O2.

    Science.gov (United States)

    Zhang, Xueyan; Ma, Xin; Zhao, Zhi; Wu, Yang; Li, Yue

    2016-04-15

    To assess the potential risks of carbon capture and storage (CCS), studies have focused on vegetation decline caused by leaking CO2. Excess soil CO2 caused by leakage can affect soil O2 concentrations and soil pH, but how these two factors affect plant development remains poorly understood. This hinders the selection of appropriate species to mitigate potential negative consequences of CCS. Through pot experiments, we simulated CO2 leakage to examine its effects on soil pH and soil O2 concentrations. We subsequently assessed how maize growth responded to these changes in soil pH and O2. Decreased soil O2 concentrations significantly reduced maize biomass, and explained 69% of the biomass variation under CO2 leakage conditions. In contrast, although leaked CO2 changed soil pH significantly (from 7.32 to 6.75), it remained within the optimum soil pH range for maize growth. This suggests that soil O2 concentration, not soil pH, influences plant growth in these conditions. Therefore, in case of potential CO2 leakage risks, hypoxia-tolerant species should be chosen to improve plant survival, growth, and yield. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Nanoscale Chemical Processes Affecting Storage Capacities and Seals during Geologic CO2 Sequestration.

    Science.gov (United States)

    Jun, Young-Shin; Zhang, Lijie; Min, Yujia; Li, Qingyun

    2017-07-18

    Geologic CO 2 sequestration (GCS) is a promising strategy to mitigate anthropogenic CO 2 emission to the atmosphere. Suitable geologic storage sites should have a porous reservoir rock zone where injected CO 2 can displace brine and be stored in pores, and an impermeable zone on top of reservoir rocks to hinder upward movement of buoyant CO 2 . The injection wells (steel casings encased in concrete) pass through these geologic zones and lead CO 2 to the desired zones. In subsurface environments, CO 2 is reactive as both a supercritical (sc) phase and aqueous (aq) species. Its nanoscale chemical reactions with geomedia and wellbores are closely related to the safety and efficiency of CO 2 storage. For example, the injection pressure is determined by the wettability and permeability of geomedia, which can be sensitive to nanoscale mineral-fluid interactions; the sealing safety of the injection sites is affected by the opening and closing of fractures in caprocks and the alteration of wellbore integrity caused by nanoscale chemical reactions; and the time scale for CO 2 mineralization is also largely dependent on the chemical reactivities of the reservoir rocks. Therefore, nanoscale chemical processes can influence the hydrogeological and mechanical properties of geomedia, such as their wettability, permeability, mechanical strength, and fracturing. This Account reviews our group's work on nanoscale chemical reactions and their qualitative impacts on seal integrity and storage capacity at GCS sites from four points of view. First, studies on dissolution of feldspar, an important reservoir rock constituent, and subsequent secondary mineral precipitation are discussed, focusing on the effects of feldspar crystallography, cations, and sulfate anions. Second, interfacial reactions between caprock and brine are introduced using model clay minerals, with focuses on the effects of water chemistries (salinity and organic ligands) and water content on mineral dissolution and

  5. The spatial distribution of commuting CO2 emissions and the influential factors: A case study in Xi'an, China

    Directory of Open Access Journals (Sweden)

    Yuan-Yuan Liu

    2015-03-01

    Full Text Available As the transport sector is a major source of greenhouse gas emissions, the effect of urbanization on transport CO2 emissions in developing cities has become a key issue under global climate change. Examining the case of Xi'an, this paper aims to explore the spatial distribution of commuting CO2 emissions and influencing factors in the new, urban industry zones and city centers considering Xi'an's transition from a monocentric to a polycentric city in the process of urbanization. Based on household survey data from 1501 respondents, there are obvious differences in commuting CO2 emissions between new industry zones and city centers: City centers feature lower household emissions of 2.86 kg CO2 per week, whereas new industry zones generally have higher household emissions of 3.20 kg CO2 per week. Contrary to previous research results, not all new industry zones have high levels of CO2 emissions; with the rapid development of various types of industries, even a minimum level of household emissions of 2.53 kg CO2 per week is possible. The uneven distribution of commuting CO2 emissions is not uniformly affected by spatial parameters such as job–housing balance, residential density, employment density, and land use diversity. Optimum combination of the spatial parameters and travel pattern along with corresponding transport infrastructure construction may be an appropriate path to reduction and control of emissions from commuting.

  6. CO2, Temperature, and Soil Moisture Interactions Affect NDVI and Reproductive Phenology in Old-Field Plant Communities

    Science.gov (United States)

    Engel, C.; Weltzin, J.; Norby, R.

    2004-12-01

    Plant community composition and ecosystem function may be altered by global atmospheric and climate change, including increased atmospheric [CO2], temperature, and varying precipitation regimes. We are conducting an experiment at Oak Ridge National Laboratory (ORNL) utilizing open-top chambers to administer experimental treatments of elevated CO2 (+300 ppm), warming (+ 3 degrees Celsius), and varying soil moisture availability to experimental plant communities constructed of seven common old-field species, including C3 and C4 grasses, forbs, and legumes. During 2004 we monitored plant community phenology (NDVI) and plant reproductive phenology. Early in the year, NDVI was greater in wet treatment plots, and was unaffected by main effects of temperature or CO2. This result suggests that early in the season warming is insufficient to affect early canopy development. Differences in soil moisture sustained throughout the winter and into early spring may constitute an important control on early canopy greenup. Elevated CO2 alleviated detrimental effects of warming on NDVI, but only early in the season. As ambient temperatures increased, elevated temperatures negatively impacted NDVI only in the dry plots. Wetter conditions ameliorate the effects of warming on canopy greenness during the warmer seasons of the year. Warming increased rates of bolting, number of inflorescences, and time to reproductive maturity for Andropogon virginicus (a C4 bunchgrass). Solidago Canadensis (a C3 late-season forb) also produced flowers earlier in elevated temperatures. Conversely, none of the C3 grasses and forbs that bolt or flower in late spring or early summer responded to temperature or CO2. Results indicate that warming and drought may impact plant community phenology, and plant species reproductive phenology. Clearly community phenology is driven by complex interactions among temperature, water, and CO2 that change throughout the season. Our data stresses the importance of

  7. Stem girdling affects the quantity of CO2 transported in xylem as well as CO2 efflux from soil.

    Science.gov (United States)

    Bloemen, Jasper; Agneessens, Laura; Van Meulebroek, Lieven; Aubrey, Doug P; McGuire, Mary Anne; Teskey, Robert O; Steppe, Kathy

    2014-02-01

    There is recent clear evidence that an important fraction of root-respired CO2 is transported upward in the transpiration stream in tree stems rather than fluxing to the soil. In this study, we aimed to quantify the contribution of root-respired CO2 to both soil CO2 efflux and xylem CO2 transport by manipulating the autotrophic component of belowground respiration. We compared soil CO2 efflux and the flux of root-respired CO2 transported in the transpiration stream in girdled and nongirdled 9-yr-old oak trees (Quercus robur) to assess the impact of a change in the autotrophic component of belowground respiration on both CO2 fluxes. Stem girdling decreased xylem CO2 concentration, indicating that belowground respiration contributes to the aboveground transport of internal CO2 . Girdling also decreased soil CO2 efflux. These results confirmed that root respiration contributes to xylem CO2 transport and that failure to account for this flux results in inaccurate estimates of belowground respiration when efflux-based methods are used. This research adds to the growing body of evidence that efflux-based measurements of belowground respiration underestimate autotrophic contributions. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  8. Elevated Atmospheric CO2 and Drought Affect Soil Microbial Community and Functional Diversity Associated with Glycine max

    Directory of Open Access Journals (Sweden)

    Junfeng Wang

    2017-12-01

    Full Text Available Abstract Under the background of climate change, the increase of atmospheric CO2 and drought frequency have been considered as significant influencers on the soil microbial communities and the yield and quality of crop. In this study, impacts of increased ambient CO2 and drought on soil microbial structure and functional diversity of a Stagnic Anthrosol were investigated in phytotron growth chambers, by testing two representative CO2 levels, three soil moisture levels, and two soil cover types (with or without Glycine max. The 16S rDNA and 18S rDNA fragments were amplified to analyze the functional diversity of fungi and bacteria. Results showed that rhizosphere microbial biomass and community structure were significantly affected by drought, but effects differed between fungi and bacteria. Drought adaptation of fungi was found to be easier than that of bacteria. The diversity of fungi was less affected by drought than that of bacteria, evidenced by their higher diversity. Severe drought reduced soil microbial functional diversity and restrained the metabolic activity. Elevated CO2 alone, in the absence of crops (bare soil, did not enhance the metabolic activity of soil microorganisms. Generally, due to the co-functioning of plant and soil microorganisms in water and nutrient use, plants have major impacts on the soil microbial community, leading to atmospheric CO2 enrichment, but cannot significantly reduce the impacts of drought on soil microorganisms.

  9. Full-disc 13CO(1-0) mapping across nearby galaxies of the EMPIRE survey and the CO-to-H2 conversion factor

    Science.gov (United States)

    Cormier, D.; Bigiel, F.; Jiménez-Donaire, M. J.; Leroy, A. K.; Gallagher, M.; Usero, A.; Sandstrom, K.; Bolatto, A.; Hughes, A.; Kramer, C.; Krumholz, M. R.; Meier, D. S.; Murphy, E. J.; Pety, J.; Rosolowsky, E.; Schinnerer, E.; Schruba, A.; Sliwa, K.; Walter, F.

    2018-04-01

    Carbon monoxide (CO) provides crucial information about the molecular gas properties of galaxies. While 12CO has been targeted extensively, isotopologues such as 13CO have the advantage of being less optically thick and observations have recently become accessible across full galaxy discs. We present a comprehensive new data set of 13CO(1-0) observations with the IRAM 30-m telescope of the full discs of nine nearby spiral galaxies from the EMPIRE survey at a spatial resolution of ˜1.5 kpc. 13CO(1-0) is mapped out to 0.7 - 1 r25 and detected at high signal-to-noise ratio throughout our maps. We analyse the 12CO(1-0)-to-13CO(1-0) ratio (ℜ) as a function of galactocentric radius and other parameters such as the 12CO(2-1)-to-12CO(1-0) intensity ratio, the 70-to-160 μm flux density ratio, the star formation rate surface density, the star formation efficiency, and the CO-to-H2 conversion factor. We find that ℜ varies by a factor of 2 at most within and amongst galaxies, with a median value of 11 and larger variations in the galaxy centres than in the discs. We argue that optical depth effects, most likely due to changes in the mixture of diffuse/dense gas, are favoured explanations for the observed ℜ variations, while abundance changes may also be at play. We calculate a spatially resolved 13CO(1-0)-to-H2 conversion factor and find an average value of 1.0 × 1021 cm-2 (K km s-1)-1 over our sample with a standard deviation of a factor of 2. We find that 13CO(1-0) does not appear to be a good predictor of the bulk molecular gas mass in normal galaxy discs due to the presence of a large diffuse phase, but it may be a better tracer of the mass than 12CO(1-0) in the galaxy centres where the fraction of dense gas is larger.

  10. Transport sector CO{sub 2} emissions growth in Asia: Underlying factors and policy options

    Energy Technology Data Exchange (ETDEWEB)

    Timilsina, Govinda R., E-mail: gtimilsina@worldbank.or [Development Research Group, World Bank, 1818H Street, NW, Washington, DC 20433 (United States); Shrestha, Ashish [Development Research Group, World Bank, 1818H Street, NW, Washington, DC 20433 (United States)

    2009-11-15

    This study analyze the potential factors influencing the growth of transport sector carbon dioxide (CO{sub 2}) emissions in selected Asian countries during the 1980-2005 period by decomposing annual emissions growth into components representing changes in fuel mix, modal shift, per capita gross domestic product (GDP) and population, as well as changes in emission coefficients and transportation energy intensity. We find that changes in per capita GDP, population growth and transportation energy intensity are the main factors driving transport sector CO{sub 2} emission growth in the countries considered. While growth in per capita income and population are responsible for the increasing trend of transport sector CO{sub 2} emissions in China, India, Indonesia, Republic of Korea, Malaysia, Pakistan, Sri Lanka and Thailand; the decline of transportation energy intensity is driving CO{sub 2} emissions down in Mongolia. Per capita GDP, population and transportation energy intensity effects are all found responsible for transport sector CO{sub 2} emissions growth in Bangladesh, the Philippines and Vietnam. The study also reviews existing government policies to limit CO{sub 2} emissions growth, such as fiscal instruments, fuel economy standards and policies to encourage switching to less emission intensive fuels and transportation modes.

  11. Transport sector CO{sub 2} emissions growth in Asia. Underlying factors and policy options

    Energy Technology Data Exchange (ETDEWEB)

    Timilsina, Govinda R.; Shrestha, Ashish [Development Research Group, The World Bank, 1818H Street, NW, Washington, DC 20433 (United States)

    2009-11-15

    This study analyze the potential factors influencing the growth of transport sector carbon dioxide (CO{sub 2}) emissions in selected Asian countries during the 1980-2005 period by decomposing annual emissions growth into components representing changes in fuel mix, modal shift, per capita gross domestic product (GDP) and population, as well as changes in emission coefficients and transportation energy intensity. We find that changes in per capita GDP, population growth and transportation energy intensity are the main factors driving transport sector CO{sub 2} emission growth in the countries considered. While growth in per capita income and population are responsible for the increasing trend of transport sector CO{sub 2} emissions in China, India, Indonesia, Republic of Korea, Malaysia, Pakistan, Sri Lanka and Thailand; the decline of transportation energy intensity is driving CO{sub 2} emissions down in Mongolia. Per capita GDP, population and transportation energy intensity effects are all found responsible for transport sector CO{sub 2} emissions growth in Bangladesh, the Philippines and Vietnam. The study also reviews existing government policies to limit CO{sub 2} emissions growth, such as fiscal instruments, fuel economy standards and policies to encourage switching to less emission intensive fuels and transportation modes. (author)

  12. Relation between separation factor of carbon isotope and chemical reaction of CO2 with amine in nonaqueous solvent

    International Nuclear Information System (INIS)

    Takeshita, Kenji; Kitamoto, Asashi

    1989-01-01

    The separation factor for carbon isotope exchange reaction between CO 2 and amine in nonaqueous solvent was related to absorption reaction of CO 2 in a solution. The test solutions were mixtures of primary amine (such as butylamine and tert-butylamine) or secondary amine (such as diethylamine, dipropylamine and dibutylamine) diluted with nonpolar solvent (octane or triethyalmine) or polar solvent (methanol), respectively. The isotope exchange reaction consists of three steps related to chemical reaction of CO 2 in amine and nonaqueous solvent mixture, namely the reaction between CO 2 and carbamic acid, that between CO 2 and amine carbamate, and that between CO 2 and carbamic ion. Above all, the isotope separation factor between CO 2 and carbamic acid had the highest value. The overall separation factor can be higher in amine-nonaqueous solvent mixture where the concentration of carbamic acid becomes higher. (author)

  13. Factors Affecting Canagliflozin-Induced Transient Urine Volume Increase in Patients with Type 2 Diabetes Mellitus.

    Science.gov (United States)

    Tanaka, Hiroyuki; Takano, Kazuhiko; Iijima, Hiroaki; Kubo, Hajime; Maruyama, Nobuko; Hashimoto, Toshio; Arakawa, Kenji; Togo, Masanori; Inagaki, Nobuya; Kaku, Kohei

    2017-02-01

    Sodium glucose co-transporter 2 (SGLT2) inhibitors exhibit diuretic activity, which is a possible mechanism underlying the cardiovascular benefit of these inhibitors. However, the osmotic diuresis-induced increase in urine volume, and the risk of dehydration have been of concern with SGLT2 inhibitor treatment. This study aimed to investigate the mechanism underlying SGLT2 inhibitor canagliflozin-induced diuresis in Japanese type 2 diabetes mellitus (T2DM) patients. Thirteen T2DM patients received a daily oral dose of 100 mg canagliflozin before breakfast for 6 days. Blood and urine samples were collected at predetermined time points. The primary endpoint was evaluation of correlations between changes from baseline in urine volume and factors that are known to affect urine volume and between actual urine volume and these factors. Canagliflozin transiently increased urine volume and urinary sodium excretion on Day 1 with a return to baseline levels thereafter. Canagliflozin administration increased urinary glucose excretion, which was sustained during repeated-dose administration. Plasma atrial natriuretic peptide (ANP) and N-terminal pro-b-type natriuretic peptide (NT-proBNP) levels decreased, while plasma renin activity increased. On Day 1 of treatment, changes in sodium and potassium excretion were closely correlated with changes in urine output. A post hoc multiple regression analysis showed changes in sodium excretion and water intake as factors that affected urine volume change at Day 1. Furthermore, relative to that at baseline, canagliflozin decreased blood glucose throughout the day and increased plasma total GLP-1 after breakfast. Canagliflozin induced transient sodium excretion and did not induce water intake at Day 1; hence, natriuresis rather than glucose-induced osmotic diuresis may be a major factor involved in the canagliflozin-induced transient increase in urine output. In addition, canagliflozin decreased plasma ANP and NT-proBNP levels and

  14. Identification and preliminary characterization of global water resource issues which may be affected by CO/sub 2/-induced climate change

    Energy Technology Data Exchange (ETDEWEB)

    Callaway, J.M.; Cohen, M.L.; Currie, J.W.

    1984-04-01

    The objectives were to: (1) identify, characterize, and define existing or projected regional and global water resource management issues which may be affected by CO/sub 2/-induced climate changes; and (2) develop research priorities for acquiring additional information about the potential effects of a CO/sub 2/-induced climate change on the availability and allocation of freshwater supplies. The research was broken into four work elements: (1) identification of water resource management issues on a global and regional basis; (2) identification of a subset of generic CO/sub 2/-related water resource management issues believed to have the highest probability of being affected, beneficially or adversely, by a CO/sub 2/-induced climate change; (3) selection of specific sites for examining the potential effect of a CO/sub 2/-induced climate change on these issues; and (4) conducting detailed case studies at these sites, the results from which will be used to identify future research and data needs in the area of water resources. This report summarizes the research related to the first three work elements. 6 figures, 9 tables.

  15. Effects of tillage practice and atmospheric CO2 level on soil CO2 efflux

    Science.gov (United States)

    Elevated atmospheric carbon dioxide (CO2) affects both the quantity and quality of plant tissues, which impacts the cycling and storage of carbon (C) within plant/soil systems and thus the rate of CO2 release back to the atmosphere. Research to accurately quantify the effects of elevated CO2 and as...

  16. CO2 removals and CO2 and non-CO2 trace gas emissions affected by human activity in the forests in the Republic of macedonia

    International Nuclear Information System (INIS)

    Grupche, Ljupcho; Lozanovski, Risto; Markovska, Natasha

    2001-01-01

    During 2000 and 2001 inventories of CO 2 removals and emissions caused by changes in forest and other woody biomass stocks, as well as the inventories of CO 2 and non-CO 2 trace gas emissions caused by forest conversions (accidental burning) were carried out. According to the forest area in ha, and depending on the differences between the annual biomass increment and annual biomass consumption, about 30-50% of total annual carbon uptake increment is released through the biomass consumption from stocks. 50-70% of the net annual carbon uptake converted to CO 2 identify the annual removals of this gas, which is on average 1805 Gg/yr, ranging between 1485 and 2243 Gg/yr. From 1990 to 1998 on average 4700 ha forest area (min. 110 ha in 1991, max. 14420 ha in 1993) was burned. Proportionally to the burned area, there was a release on average of 18.62 kt C annually (min. 0.42 kt C, max. 57.11 kt), related to 136.07 kt CO 2 on average (min. 1.5 kt CO 2 , max. 209.22 kt CO 2 ). (Original)

  17. Plasma-assisted CO2 conversion: optimizing performance via microwave power modulation

    Science.gov (United States)

    Britun, Nikolay; Silva, Tiago; Chen, Guoxing; Godfroid, Thomas; van der Mullen, Joost; Snyders, Rony

    2018-04-01

    Significant improvement in the energy efficiency of plasma-assisted CO2 conversion is achieved with applied power modulation in a surfaguide microwave discharge. The obtained values of CO2 conversion and energy efficiency are, respectively, 0.23 and 0.33 for a 0.95 CO2  +  0.05 N2 gas mixture. Analysis of the energy relaxation mechanisms shows that power modulation can potentially affect the vibrational-translational energy exchange in plasma. In our case, however, this mechanism does not play a major role, likely due to the low degree of plasma non-equilibrium in the considered pressure range. Instead, the gas residence time in the discharge active zone together with plasma pulse duration are found to be the main factors affecting the CO2 conversion efficiency at low plasma pulse repetition rates. This effect is confirmed experimentally by the in situ time-resolved two-photon absorption laser-induced fluorescence measurements of CO molecular density produced in the discharge as a result of CO2 decomposition.

  18. Variation of NEE and its affecting factors in a vineyard of arid region of northwest China

    Science.gov (United States)

    Guo, W. H.; Kang, S. Z.; Li, F. S.; Li, S. E.

    2014-02-01

    To understand the variation of net ecosystem CO2 exchange (NEE) in orchard ecosystem and it's affecting factors, carbon flux was measured using eddy covariance system in a wine vineyard in arid northwest China during 2008-2010. Results show that vineyard NEE was positive value at the early growth stage, higher negative value at the mid-growth stage, and lower negative value at the later growth stage. Diurnal variation of NEE was "W" shaped curve in sunny day, but "U" shaped curve in cloudy day. Irrigation and pruning did not affect diurnal variation shape of NEE, however, irrigation reduced the difference between maximal and minimal value of NEE and pruning reduced the carbon sink capacity. The main factors affecting hourly NEE were canopy conductance (gc) and net radiation (Rn). The hourly NEE increased with the increase of gc or Rn when gc was less than 0.02 m·s-1 or Rn was between 0 and 200 W·m-2. The main factors affecting both daily and seasonal NEE were gc, air temperature (Ta), atmospheric CO2 density, vapour pressure deficit (VPD) and soil moisture content.

  19. CO2 efflux from subterranean nests of ant communities in a seasonal tropical forest, Thailand.

    Science.gov (United States)

    Hasin, Sasitorn; Ohashi, Mizue; Yamada, Akinori; Hashimoto, Yoshiaki; Tasen, Wattanachai; Kume, Tomonori; Yamane, Seiki

    2014-10-01

    Many ant species construct subterranean nests. The presence of their nests may explain soil respiration "hot spots", an important factor in the high CO2 efflux from tropical forests. However, no studies have directly measured CO2 efflux from ant nests. We established 61 experimental plots containing 13 subterranean ant species to evaluate the CO2 efflux from subterranean ant nests in a tropical seasonal forest, Thailand. We examined differences in nest CO2 efflux among ant species. We determined the effects of environmental factors on nest CO2 efflux and calculated an index of nest structure. The mean CO2 efflux from nests was significantly higher than those from the surrounding soil in the wet and dry seasons. The CO2 efflux was species-specific, showing significant differences among the 13 ant species. The soil moisture content significantly affected nest CO2 efflux, but there was no clear relationship between nest CO2 efflux and nest soil temperature. The diameter of the nest entrance hole affected CO2 efflux. However, there was no significant difference in CO2 efflux rates between single-hole and multiple-hole nests. Our results suggest that in a tropical forest ecosystem the increase in CO2 efflux from subterranean ant nests is caused by species-specific activity of ants, the nest soil environment, and nest structure.

  20. Variables affecting energy efficiency and CO2 emissions in the steel industry

    International Nuclear Information System (INIS)

    Siitonen, Sari; Tuomaala, Mari; Ahtila, Pekka

    2010-01-01

    Specific energy consumption (SEC) is an energy efficiency indicator widely used in industry for measuring the energy efficiency of different processes. In this paper, the development of energy efficiency and CO 2 emissions of steelmaking is studied by analysing the energy data from a case mill. First, the specific energy consumption figures were calculated using different system boundaries, such as the process level, mill level and mill site level. Then, an energy efficiency index was developed to evaluate the development of the energy efficiency at the mill site. The effects of different production conditions on specific energy consumption and specific CO 2 emissions were studied by PLS analysis. As theory expects, the production rate of crude steel and the utilisation of recycled steel were shown to affect the development of energy efficiency at the mill site. This study shows that clearly defined system boundaries help to clarify the role of on-site energy conversion and make a difference between the final energy consumption and primary energy consumption of an industrial plant with its own energy production.

  1. Current Travertines Precipitation from CO2-rich Groundwaters as an alert of CO2 Leakages from a Natural CO2 Storage at Ganuelas-Mazarron Tertiary Basin (Murcia, Spain)

    International Nuclear Information System (INIS)

    Rodrigo-Naharro, J.; Delgado, A.; Herrero, M. J.; Granados, A.; Perez del Villar, L.

    2013-01-01

    Carbon capture and storage technologies represent the most suitable solutions related to the high anthropogenic CO 2 emissions to the atmosphere. As a consequence, monitoring of the possible CO 2 leakages from an artificial deep geological CO 2 storage is indispensable to guarantee its safety. Fast surficial travertine precipitation related to these CO 2 leakages can be used as an alert for these escapes. Since few studies exist focusing on the long-term behaviour of an artificial CO 2 DGS, natural CO 2 storage affected by natural or artificial escapes must be studied as natural analogues for predicting the long-term behaviour of an artificial CO 2 storage. In this context, a natural CO 2 reservoir affected by artificial CO 2 escapes has been studied in this work. This study has mainly focused on the current travertines precipitation associated with the upwelling CO 2 -rich waters from several hydrogeological wells drilled in the Ganuelas-Mazarron Tertiary basin (SE Spain), and consists of a comprehensive characterisation of parent-waters and their associated carbonates, including elemental and isotopic geochemistry, mineralogy and petrography. Geochemical characterisation of groundwaters has led to recognise 4 hydrofacies from 3 different aquifers. These groundwaters have very high salinity and electrical conductivity; are slightly acid; present high dissolved inorganic carbon (DIC) and free CO 2 ; are oversaturated in both aragonite and calcite; and dissolve, mobilize and transport low quantities of heavy and/or toxic elements. Isotopic values indicate that: i) the origin of parent-waters is related to rainfalls from clouds originated in the Mediterranean Sea or continental areas; ii) the origin of C is mainly inorganic; and iii) sulphate anions come mainly from the dissolution of the Messinian gypsum from the Tertiary Basin sediments. Current travertines precipitation seems to be controlled by a combination of several factors, such as: i) a fast decrease of the

  2. Evaluation of factors affecting accurate measurements of atmospheric CO2 and CH4 by wavelength-scanned cavity ring-down spectroscopy

    Science.gov (United States)

    Nara, H.; Tanimoto, H.; Tohjima, Y.; Mukai, H.; Nojiri, Y.; Katsumata, K.; Rella, C.

    2012-07-01

    We examined potential interferences from water vapor and atmospheric background gases (N2, O2, and Ar), and biases by isotopologues of target species, on accurate measurement of atmospheric CO2 and CH4 by means of wavelength-scanned cavity ring-down spectroscopy (WS-CRDS). Variations in the composition of the background gas substantially impacted the CO2 and CH4 measurements: the measured amounts of CO2 and CH4 decreased with increasing N2 mole fraction, but increased with increasing O2 and Ar, suggesting that the pressure-broadening effects (PBEs) increased as Ar < O2 < N2. Using these experimental results, we inferred PBEs for the measurement of synthetic standard gases. The PBEs were negligible (up to 0.05 ppm for CO2 and 0.01 ppb for CH4) for gas standards balanced with purified air, although the PBEs were substantial (up to 0.87 ppm for CO2 and 1.4 ppb for CH4) for standards balanced with synthetic air. For isotopic biases on CO2 measurements, we compared experimental results and theoretical calculations, which showed excellent agreement within their uncertainty. We derived empirical correction functions for water vapor for three WS-CRDS instruments (Picarro EnviroSense 3000i, G-1301, and G-2301). Although the transferability of the functions was not clear, no significant difference was found in the water vapor correction values among these instruments within the typical analytical precision at sufficiently low water concentrations (< 0.3%V for CO2 and < 0.4%V for CH4). For accurate measurements of CO2 and CH4 in ambient air, we concluded that WS-CRDS measurements should be performed under complete dehumidification of air samples, or moderate dehumidification followed by application of a water vapor correction function, along with calibration by natural air-based standard gases or purified air-balanced synthetic standard gases with isotopic correction.

  3. Investigation of the Parameters affecting CO2 —assisted Polyaniline Polymerization

    Directory of Open Access Journals (Sweden)

    Noby H.

    2016-01-01

    Full Text Available Specific Polyaniline (PANI morphologies such as nanotubes and nanofiber are required for enhancing its performance in the various applications. CO2 —assisted Polyaniline polymerization is a method recently used to produce these anticipated morphologies. In this study, polyaniline nanotube was prepared successfully in the presence of compressed CO2 utilizing Aniline as a monomer and Ammonium peroxydisulfate (APS as an oxidizing agent. The effect of both reaction temperature and the oxidizing agent feed rate on the morphology and surface area of the produced PANI was investigated. The synthesized PANI was examined by FT-IR, XRD, and BET surface area analysis. Furthermore, SEM was carried out to figure out the morphology of the prepared PANI. It was indicated that Polyaniline nanotubes PANNTs size and homogeneity were affected by the reaction temperature. The averages of the outer and inner diameters of the PANNTs at 25 °C, 45 °C, 65 °C were found to be about (120, 60 nm, (140, 65 nm, and (175, 75 nm respectively. Also, the produced surface area was slightly augmented with the increase of the temperature. In addition, it was observed that increasing the feeding rate of the APS was associated with the reduction of the size and the surface area of the produced PANI nanotubes.

  4. International inequalities in per capita CO2 emissions: a decomposition methodology by Kaya factors

    International Nuclear Information System (INIS)

    Duro, J.A.; Universitat de Barcelona; Padilla, E.

    2006-01-01

    In this paper, we provide a methodology for decomposing international inequalities in per capita CO 2 emissions into Kaya (multiplicative) factors and two interaction terms. We use the Theil index of inequality and show that this decomposition methodology can be extended for analyzing between- and within-group inequality components. We can thus analyze the factors behind inequalities in per capita CO 2 emissions across countries, between groups of countries and within groups of countries. The empirical illustration for international data suggests some points. Firstly, international inequality in per capita CO 2 emissions is mainly attributable to inequalities in per capita income levels, which helps to explain its recent reduction, while differences in carbon intensity of energy and energy intensity have made a less significant contribution. This result is strongly influenced by the performance of China and India. Secondly, the between-group inequality component, which is the biggest component, is also largely explained by the income factor. Thirdly, the within-group inequality component increased slightly during the period, something mainly due to the change in the income factor and the interaction terms in a few regions. (author)

  5. Tuning of Preparational Factors Affecting the Morphological Structure and Gas Separation Property of Asymmetric Polysulfone Membranes

    Science.gov (United States)

    Yuenyao, C.; Ruangdit, S.; Chittrakarn, T.

    2017-09-01

    The aim of this work was to study the effect of preparational factors such as solvent type, evaporation time (ET) and non-solvent additive, on the morphological structure, physical and gas separation properties of the prepared membrane samples by tuning of these parameters. Flat sheet asymmetric polysulfone (PSF) membranes were prepared by the dry/wet phase inversion process combined with the double coagulation bath method. The alteration of the prepared membranes were analyzed through scientific techniques such as Scanning Electron Microscope (SEM) and Dynamic Mechanical Thermal Analysis (DMTA). Furthermore, gas separation performance of membrane samples was measured in term of gas permeation and ideal selectivity of CO2/CH4. Experimental results showed that the change of preparational factors affected to the gas permeation of asymmetric PSF membranes. For example, the selective layer thickness increased with increasing of ET. This lead to increase significantly of ideal selectivity of CO2/CH4. The CO2/CH4 ideal selectivity was also increased with increase of ethanol (non-solvent additive) concentration in casting solution. In summary, the tuning of preparational factors affected to morphological structure, physical and gas separation properties of PSF membranes.

  6. Critical factors affecting the integration of biomass gasification and syngas fermentation technology

    Directory of Open Access Journals (Sweden)

    Karthikeyan D. Ramachandriya

    2016-05-01

    Full Text Available Gasification-fermentation is a thermochemical-biological platform for the production of fuels and chemicals. Biomass is gasified at high temperatures to make syngas, a gas composed of CO, CO2, H2, N2 and other minor components. Syngas is then fed to anaerobic microorganisms that convert CO, CO2 and H2 to alcohols by fermentation. This platform offers numerous advantages such as flexibility of feedstock and syngas composition and lower operating temperature and pressure compared to other catalytic syngas conversion processes. In comparison to hydrolysis-fermentation, gasification-fermentation has a major advantage of utilizing all organic components of biomass, including lignin, to yield higher fuel production. Furthermore, syngas fermentation microorganisms do not require strict CO:H2:CO2 ratios, hence gas reforming is not required. However, several issues must be addressed for successful deployment of gasification-fermentation, particularly those that involve the integration of gasification and fermentation. Most previous reviews have focused only on either biomass gasification or syngas fermentation. In this review, the critical factors that affect the integration of biomass gasification with syngas fermentation, such as carbon conversion efficiency, effect of trace gaseous species, H2 to CO ratio requirements, and microbial preference of carbon substrate, are thoroughly discussed.

  7. Effects of atmospheric CO2 enrichment on soil CO2 efflux in a young longleaf pine system

    Science.gov (United States)

    Elevated atmospheric carbon dioxide (CO2) can affect the quantity and quality of plant tissues which will impact carbon (C) cycling and storage in plant/soil systems and the release of CO2 back to the atmosphere. Research is needed to quantify the effects of elevated CO2 on soil CO2 efflux to predi...

  8. Pontellid copepods, Labidocera spp., affected by ocean acidification: A field study at natural CO2 seeps.

    Science.gov (United States)

    Smith, Joy N; Richter, Claudio; Fabricius, Katharina E; Cornils, Astrid

    2017-01-01

    CO2 seeps in coral reefs were used as natural laboratories to study the impacts of ocean acidification on the pontellid copepod, Labidocera spp. Pontellid abundances were reduced by ∼70% under high-CO2 conditions. Biological parameters and substratum preferences of the copepods were explored to determine the underlying causes of such reduced abundances. Stage- and sex-specific copepod lengths, feeding ability, and egg development were unaffected by ocean acidification, thus changes in these physiological parameters were not the driving factor for reduced abundances under high-CO2 exposure. Labidocera spp. are demersal copepods, hence they live amongst reef substrata during the day and emerge into the water column at night. Deployments of emergence traps showed that their preferred reef substrata at control sites were coral rubble, macro algae, and turf algae. However, under high-CO2 conditions they no longer had an association with any specific substrata. Results from this study indicate that even though the biology of a copepod might be unaffected by high-CO2, Labidocera spp. are highly vulnerable to ocean acidification.

  9. Pontellid copepods, Labidocera spp., affected by ocean acidification: A field study at natural CO2 seeps.

    Directory of Open Access Journals (Sweden)

    Joy N Smith

    Full Text Available CO2 seeps in coral reefs were used as natural laboratories to study the impacts of ocean acidification on the pontellid copepod, Labidocera spp. Pontellid abundances were reduced by ∼70% under high-CO2 conditions. Biological parameters and substratum preferences of the copepods were explored to determine the underlying causes of such reduced abundances. Stage- and sex-specific copepod lengths, feeding ability, and egg development were unaffected by ocean acidification, thus changes in these physiological parameters were not the driving factor for reduced abundances under high-CO2 exposure. Labidocera spp. are demersal copepods, hence they live amongst reef substrata during the day and emerge into the water column at night. Deployments of emergence traps showed that their preferred reef substrata at control sites were coral rubble, macro algae, and turf algae. However, under high-CO2 conditions they no longer had an association with any specific substrata. Results from this study indicate that even though the biology of a copepod might be unaffected by high-CO2, Labidocera spp. are highly vulnerable to ocean acidification.

  10. Factors Affecting Regional Per-Capita Carbon Emissions in China Based on an LMDI Factor Decomposition Model

    Science.gov (United States)

    Dong, Feng; Long, Ruyin; Chen, Hong; Li, Xiaohui; Yang, Qingliang

    2013-01-01

    China is considered to be the main carbon producer in the world. The per-capita carbon emissions indicator is an important measure of the regional carbon emissions situation. This study used the LMDI factor decomposition model–panel co-integration test two-step method to analyze the factors that affect per-capita carbon emissions. The main results are as follows. (1) During 1997, Eastern China, Central China, and Western China ranked first, second, and third in the per-capita carbon emissions, while in 2009 the pecking order changed to Eastern China, Western China, and Central China. (2) According to the LMDI decomposition results, the key driver boosting the per-capita carbon emissions in the three economic regions of China between 1997 and 2009 was economic development, and the energy efficiency was much greater than the energy structure after considering their effect on restraining increased per-capita carbon emissions. (3) Based on the decomposition, the factors that affected per-capita carbon emissions in the panel co-integration test showed that Central China had the best energy structure elasticity in its regional per-capita carbon emissions. Thus, Central China was ranked first for energy efficiency elasticity, while Western China was ranked first for economic development elasticity. PMID:24353753

  11. Factors affecting seawater-based pretreatment of lignocellulosic date palm residues

    DEFF Research Database (Denmark)

    Fang, Chuanji; Thomsen, Mette Hedegaard; Frankaer, Christian Grundahl

    2017-01-01

    Seawater-based pretreatment of lignocellulosic biomass is an innovative process at research stage. With respect to process optimization, factors affecting seawater-based pretreatment of lignocellulosic date palm residues were studied for the first time in this paper. Pretreatment temperature (180...... °C–210 °C), salinity of seawater (0 ppt–50 ppt), and catalysts (H2SO4, Na2CO3, and NaOH) were investigated. The results showed that pretreatment temperature exerted the largest influence on seawater-based pretreatment in terms of the enzymatic digestibility and fermentability of pretreated solids...

  12. Controls of evapotranspiration and CO2 fluxes from scots pine by surface conductance and abiotic factors.

    Directory of Open Access Journals (Sweden)

    Tianshan Zha

    Full Text Available Evapotranspiration (E and CO2 flux (Fc in the growing season of an unusual dry year were measured continuously over a Scots pine forest in eastern Finland, by eddy covariance techniques. The aims were to gain an understanding of their biological and environmental control processes. As a result, there were obvious diurnal and seasonal changes in E, Fc , surface conductance (gc , and decoupling coefficient (Ω, showing similar trends to those in radiation (PAR and vapour pressure deficit (δ. The maximum mean daily values (24-h average for E, Fc , gc , and Ω were 1.78 mmol m(-2 s(-1, -11.18 µmol m(-2 s(-1, 6.27 mm s(-1, and 0.31, respectively, with seasonal averages of 0.71 mmol m(-2 s(-1, -4.61 µmol m(-2 s(-1, 3.3 mm s(-1, and 0.16. E and Fc were controlled by combined biological and environmental variables. There was curvilinear dependence of E on gc and Fc on gc . Among the environmental variables, PAR was the most important factor having a positive linear relationship to E and curvilinear relationship to Fc , while vapour pressure deficit was the most important environmental factor affecting gc . Water use efficiency was slightly higher in the dry season, with mean monthly values ranging from 6.67 to 7.48 μmol CO2 (mmol H2O(-1 and a seasonal average of 7.06 μmol CO2 (μmol H2O(-1. Low Ω and its close positive relationship with gc indicate that evapotranspiration was sensitive to surface conductance. Mid summer drought reduced surface conductance and decoupling coefficient, suggesting a more biotic control of evapotranspiration and a physiological acclimation to dry air. Surface conductance remained low and constant under dry condition, supporting that a constant value of surface constant can be used for modelling transpiration under drought condition.

  13. Dynamics of soil CO 2 efflux under varying atmospheric CO 2 concentrations reveal dominance of slow processes

    Science.gov (United States)

    Dohyoung Kim; Ram Oren; James S. Clark; Sari Palmroth; A. Christopher Oishi; Heather R. McCarthy; Chris A. Maier; Kurt Johnsen

    2017-01-01

    We evaluated the effect on soil CO2 efflux (FCO2) of sudden changes in photosynthetic rates by altering CO2 concentration in plots subjected to +200 ppmv for 15 years. Five-day intervals of exposure to elevated CO2 (eCO2) ranging 1.0–1.8 times ambient did not affect FCO2. FCO2 did not decrease until 4 months after termination of the long-term eCO2 treatment, longer...

  14. A single gene target of an ETS-family transcription factor determines neuronal CO2-chemosensitivity

    DEFF Research Database (Denmark)

    Brandt, Julia P; Aziz-Zaman, Sonya; Juozaityte, Vaida

    2012-01-01

    . We report here a mechanism that endows C. elegans neurons with the ability to detect CO(2). The ETS-5 transcription factor is necessary for the specification of CO(2)-sensing BAG neurons. Expression of a single ETS-5 target gene, gcy-9, which encodes a receptor-type guanylate cyclase, is sufficient...

  15. Hydrogen purification by selective methanation of CO in CO/CO2/H2

    DEFF Research Database (Denmark)

    Andersen, Anne Mette; Johannessen, Tue; Livbjerg, Hans

    down through the reactor and inside the catalyst pellets/particles. The small particles, which have a rather high effectiveness factor with respect to methanation of CO, have a high CO selectivity, whereas the larger pellets have very low selectivity even at high CO inlet concentrations. Negative...... of reaction kinetics and pore diffusion is crucial for interpreting the experimental data. We have found that the selectivity decreases by increasing the reactor temperature or catalyst particle size and when the CO inlet concentration is reduced. As a result, the selectivity drops significantly...... in an integral reactor operating at high CO-conversion. The lower limit of CO concentration in the outlet is determined by the quasi-equilibrium between CO removal and CO production from CO2....

  16. Dissolved organic carbon and nitrogen mineralization strongly affect co2 emissions following lime application to acidic soil

    International Nuclear Information System (INIS)

    Shaaban, M.; Peng, Q.; Lin, S.; Wu, Y.

    2014-01-01

    Emission of greenhouse gases from agricultural soils has main contribution to the climatic change and global warming. Dynamics of dissolved organic carbon (DOC) and nitrogen mineralization can affect CO/sub 2/ emission from soils. Influence of DOC and nitrogen mineralization on CO/sub 2/ emissions following lime application to acidic soil was investigated in current study. Laboratory experiment was conducted under aerobic conditions with 25% moisture contents (66% water-filled pore space) at 25 degree C in the dark conditions. Different treatments of lime were applied to acidic soil as follows: CK (control), L (low rate of lime: 0.2g lime / 100 g soil) and H (high rate of lime: 0.5g lime /100g soil). CO/sub 2/ emissions were measured by gas chromatography and dissolved organic carbon, NH4 +-N, NO/sub 3/ --N and soil pH were measured during incubation study. Addition of lime to acidic soil significantly increased the concentration of DOC and N mineralization rate. Higher concentrations of DOC and N mineralization, consequently, increased the CO/sub 2/ emissions from lime treated soils. Cumulative CO/sub 2/ emission was 75% and 71% higher from L and H treatments as compared to CK. The results of current study suggest that DOC and N mineralization are critical in controlling gaseous emissions of CO/sub 2/ from acidic soils following lime application. (author)

  17. Does Silicate Weathering of Loess Affect Atmospheric CO2?

    Science.gov (United States)

    Anderson, S. P.

    2002-12-01

    Weathering of glacial loess may be a significant, yet unrecognized, component of the carbon cycle. Glaciers produce fine-grained sediment, exposing vast amounts of mineral surface area to weathering processes, yet silicate mineral weathering rates at glacier beds and of glacial till are not high. Thus, despite the tremendous potential for glaciers to influence global weathering rates and atmospheric CO2 levels, this effect has not been demonstrated. Loess, comprised of silt-clay sizes, may be the key glacial deposit in which silicate weathering rates are high. Loess is transported by wind off braid plains of rivers, and deposited broadly (order 100 km from the source) in vegetated areas. Both the fine grain size, and hence large mineral surface area, and presence of vegetation should render loess deposits highly susceptible to silicate weathering. These deposits effectively extend the geochemical impact of glaciation in time and space, and bring rock flour into conditions conducive to chemical weathering. A simple 1-d model of silicate weathering fluxes from a soil profile demonstrates the potential of loess deposition to enhance CO2 consumption. At each time step, computed mineral dissolution (using anorthite and field-based rate constants) modifies the size of mineral grains within the soil. In the case of a stable soil surface, this results in a gradual decline in weathering fluxes and CO2 consumption through time, as finer grain sizes dissolve away. Computed weathering fluxes for a typical loess, with an initial mean grain size of 25 μm, are an order of magnitude greater than fluxes from a non-loess soil that differs only in having a mean grain size of 320 μm. High weathering fluxes are maintained through time if loess is continually deposited. Deposition rates as low as 0.01 mm/yr (one loess grain thickness per year) can lead to a doubling of CO2 consumption rates within 5 ka. These results suggest that even modest loess deposition rates can significantly

  18. Analysis of the heat affected zone in CO2 laser cutting of stainless steel

    Directory of Open Access Journals (Sweden)

    Madić Miloš J.

    2012-01-01

    Full Text Available This paper presents an investigation into the effect of the laser cutting parameters on the heat affected zone in CO2 laser cutting of AISI 304 stainless steel. The mathematical model for the heat affected zone was expressed as a function of the laser cutting parameters such as the laser power, cutting speed, assist gas pressure and focus position using the artificial neural network. To obtain experimental database for the artificial neural network training, laser cutting experiment was planned as per Taguchi’s L27 orthogonal array with three levels for each of the cutting parameter. Using the 27 experimental data sets, the artificial neural network was trained with gradient descent with momentum algorithm and the average absolute percentage error was 2.33%. The testing accuracy was then verified with 6 extra experimental data sets and the average predicting error was 6.46%. Statistically assessed as adequate, the artificial neural network model was then used to investigate the effect of the laser cutting parameters on the heat affected zone. To analyze the main and interaction effect of the laser cutting parameters on the heat affected zone, 2-D and 3-D plots were generated. The analysis revealed that the cutting speed had maximum influence on the heat affected zone followed by the laser power, focus position and assist gas pressure. Finally, using the Monte Carlo method the optimal laser cutting parameter values that minimize the heat affected zone were identified.

  19. CO2 enrichment affects eco-physiological growth of maize and alfalfa under different water stress regimes in the UAE.

    Science.gov (United States)

    Ksiksi, Taoufik Saleh; Ppoyil, Shaijal Babu Thru; Palakkott, Abdul Rasheed

    2018-03-01

    Water stress has been reported to alter morphology and physiology of plants affecting chlorophyll content, stomatal size and density. In this study, drought stress mitigating effects of CO 2 enrichment was assessed in greenhouse conditions in the hot climate of UAE. Commercially purchased maize ( Zea mays L.) and alfalfa ( Medicago sativa L.) were seeded in three different custom-built cage structures, inside a greenhouse. One cage was kept at 1000 ppm CO 2 , the second at 700 ppm CO 2 , and the third at ambient greenhouse CO 2 environment (i.e. 435 ppm). Three water stress treatments HWS (200 ml per week), MWS (400 ml per week), and CWS (600 ml per week) were given to each cage so that five maize pots and five alfalfa pots in each cage received same water stress treatments. In maize, total chlorophyll content was similar or higher in water stress treatments compared to control for all CO 2 concentrations. Stomatal lengths were higher in enriched CO 2 environments under water stress. At 700 ppm CO 2 , stomatal widths decreased as water stress increased from MWS to HWS. At both enriched CO 2 environments, stomatal densities decreased compared to ambient CO 2 environment. In alfalfa, there was no significant increase in total chlorophyll content under enriched CO 2 environments, even though a slight increase was noticed.

  20. Explanatory factors of CO2 per capita emission inequality in the European Union

    International Nuclear Information System (INIS)

    Padilla, Emilio; Duro, Juan Antonio

    2013-01-01

    The design of European mitigation policies requires a detailed examination of the factors explaining the unequal emissions in the different countries. This research analyzes the evolution of inequality in CO 2 emissions per capita in the European Union (EU-27) in the period 1990–2009 and its explanatory factors. For this purpose, we decompose the Theil index of inequality into the contributions of the different Kaya factors. The decomposition is also applied to the inequality between and within groups of countries (North Europe, South Europe, and East Europe). The analysis shows an important reduction in inequality, to a large extent due to the smaller differences between groups and because of the lower contribution of the energy intensity factor. The importance of the GDP per capita factor increases and becomes the main explanatory factor. However, within the different groups of countries the carbonization index appears to be the most relevant factor in explaining inequalities. The policy implications of the results are discussed. - Highlights: • CO 2 inequality in EU-27 (Theil index) is decomposed into explanatory (Kaya) factors. • It decreases more between than within regions (North, South, East). • Energy intensity contribution falls and turns negative. GDP pc becomes main factor. • Carbonization makes most relevant contribution to inequality within groups. • Policy implications on feasibility of agreements and mitigation policy are discussed

  1. Current Travertines Precipitation from CO{sub 2}-rich Groundwaters as an alert of CO{sub 2} Leakages from a Natural CO{sub 2} Storage at Ganuelas-Mazarron Tertiary Basin (Murcia, Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigo-Naharro, J.; Delgado, A.; Herrero, M. J.; Granados, A.; Perez del Villar, L.

    2013-02-01

    Carbon capture and storage technologies (CCS) represent the most suitable solutions related to the high anthropogenic CO{sub 2} emissions to the atmosphere. As a consequence, monitoring of the possible CO{sub 2} leakages from an artificial deep geological CO{sub 2} storage (DGS) is indispensable to guarantee its safety. Fast surficial travertine precipitation related to these CO{sub 2} leakages can be used as an alert for these escapes. Since few studies exist focusing on the long-term behaviour of an artificial CO{sub 2} DGS, natural CO{sub 2} storage affected by natural or artificial escapes must be studied as natural analogues for predicting the long-term behaviour of an artificial CO{sub 2} storage. In this context, a natural CO{sub 2} reservoir affected by artificial CO{sub 2} escapes has been studied in this work. This study has mainly focused on the current travertines precipitation associated with the upwelling CO{sub 2}-rich waters from several hydrogeological wells drilled in the Ganuelas-Mazarron Tertiary basin (SE Spain), and consists of a comprehensive characterisation of parent-waters and their associated carbonates, including elemental and isotopic geochemistry, mineralogy and petrography. Geochemical characterisation of groundwaters has led to recognise 4 hydrofacies from 3 different aquifers. These groundwaters have very high salinity and electrical conductivity; are slightly acid; present high dissolved inorganic carbon (DIC) and free CO{sub 2}; are oversaturated in both aragonite and calcite; and dissolve, mobilize and transport low quantities of heavy and/or toxic elements. Isotopic values indicate that: i) the origin of parent-waters is related to rainfalls from clouds originated in the Mediterranean Sea or continental areas; ii) the origin of C is mainly inorganic; and iii) sulphate anions come mainly from the dissolution of the Messinian gypsum from the Tertiary Basin sediments. Current travertines precipitation seems to be controlled by a

  2. Warming, CO2, and nitrogen deposition interactively affect a plant-pollinator mutualism.

    Science.gov (United States)

    Hoover, Shelley E R; Ladley, Jenny J; Shchepetkina, Anastasia A; Tisch, Maggie; Gieseg, Steven P; Tylianakis, Jason M

    2012-03-01

    Environmental changes threaten plant-pollinator mutualisms and their critical ecosystem service. Drivers such as land use, invasions and climate change can affect pollinator diversity or species encounter rates. However, nitrogen deposition, climate warming and CO(2) enrichment could interact to disrupt this crucial mutualism by altering plant chemistry in ways that alter floral attractiveness or even nutritional rewards for pollinators. Using a pumpkin model system, we show that these drivers non-additively affect flower morphology, phenology, flower sex ratios and nectar chemistry (sugar and amino acids), thereby altering the attractiveness of nectar to bumble bee pollinators and reducing worker longevity. Alarmingly, bees were attracted to, and consumed more, nectar from a treatment that reduced their survival by 22%. Thus, three of the five major drivers of global environmental change have previously unknown interactive effects on plant-pollinator mutualisms that could not be predicted from studies of individual drivers in isolation. © 2012 Blackwell Publishing Ltd/CNRS.

  3. Carbon Dioxide (CO2 Sequestration In Bio-Concrete, An Overview

    Directory of Open Access Journals (Sweden)

    Faisal Alshalif A.

    2017-01-01

    Full Text Available The emission of CO2 into atmosphere which has increased rapidly in the last years has led to global warming. Therefore, in order to overcome the negative impacts on human and environment, the researchers focused mainly on the reduction and stabilization of CO2 which represent the main contributor in the increasing global warming. The natural capturing and conversion of CO2 from atmosphere is taken place by biological, chemical and physical processes. However, these processes need long time to cause a significant reduction in CO2. Recently, scientists shifted to use green technologies that aimed to produce concrete with high potential to adsorb CO2 in order to accelerate the reduction of CO2. In the present review the potential of bio-concrete to sequestrate CO2 based on carbonation process and as a function of carbonic anhydrase (CA is highlighted. The factors affecting CO2 sequestration in concrete and bacterial species are discussed. It is evident from the literatures, that the new trends to use bio-concrete might contribute in the reduction of CO2 and enhance the strength of non-reinforced concrete.

  4. International inequalities in per capita CO{sub 2} emissions: a decomposition methodology by Kaya factors

    Energy Technology Data Exchange (ETDEWEB)

    Duro, J.A. [Universitat Rovira i Virgili, Reus (Spain). Dept. d' Economia; Universitat de Barcelona (Spain). Inst. de Analisis Economico; Padilla, E. [Universitat de Barcelona (Spain). Dept. d' Economia Aplicada

    2006-03-15

    In this paper, we provide a methodology for decomposing international inequalities in per capita CO{sub 2} emissions into Kaya (multiplicative) factors and two interaction terms. We use the Theil index of inequality and show that this decomposition methodology can be extended for analyzing between- and within-group inequality components. We can thus analyze the factors behind inequalities in per capita CO{sub 2} emissions across countries, between groups of countries and within groups of countries. The empirical illustration for international data suggests some points. Firstly, international inequality in per capita CO{sub 2} emissions is mainly attributable to inequalities in per capita income levels, which helps to explain its recent reduction, while differences in carbon intensity of energy and energy intensity have made a less significant contribution. This result is strongly influenced by the performance of China and India. Secondly, the between-group inequality component, which is the biggest component, is also largely explained by the income factor. Thirdly, the within-group inequality component increased slightly during the period, something mainly due to the change in the income factor and the interaction terms in a few regions. (author)

  5. An empirical research on the influencing factors of regional CO2 emissions: Evidence from Beijing city, China

    International Nuclear Information System (INIS)

    Wang, Zhaohua; Yin, Fangchao; Zhang, Yixiang; Zhang, Xian

    2012-01-01

    Highlights: ► We adapt STIRPAT model to regional context and conduct PLS regress analysis. ► Energy technology related patent is innovatively used to measure technical factors. ► Urbanization level has the greatest interpretative ability for CO 2 emissions. ► We do not find evidence of Environmental Kuznets Curve in Beijing. ► Beijing should focus more on tertiary industry and residential energy consumption. -- Abstract: In order to further study the realization of carbon intensity target, find the key influencing factors of CO 2 emissions, and explore the path of developing low-carbon economy, this paper empirically studied the influences of urbanization level, economic level, industry proportion, tertiary industry proportion, energy intensity and R and D output on CO 2 emissions in Beijing using improved STIRPAT (stochastic impacts by regression on population, affluence and technology) model. The model is examined using partial least square regression. Results show that urbanization level, economic level and industry proportion positively influence the CO 2 emissions, while tertiary industry proportion, energy intensity and R and D output negatively do. Urbanization level is the main driving factor of CO 2 emissions, and tertiary industry proportion is the main inhibiting factor. In addition, along with the growth of per capita GDP, the increase of CO 2 emissions does not follow the Environmental Kuznets Curve model. Based on these empirical findings and the specific circumstances of Beijing, we provide some policy recommendations on how to reduce carbon intensity. Beijing should pay more attention to tertiary industry and residential energy consumption for carbon emission reduction. It is necessary to establish a comprehensive evaluation index of social development. Investing more capital on carbon emission reduction science and technology, and promoting R and D output is also an efficient way to reduce CO 2 emissions.

  6. Factors affecting nuclear development

    International Nuclear Information System (INIS)

    Stevens, G.H.; Girouard, P.

    1995-01-01

    Among the factors affecting nuclear development, some depend more or less on public authorities, but many are out of public authorities control (foreign policies, market and deregulation, socials and environmental impacts, public opinion). As far as possible, the following study tries to identify those factors. (D.L.). 2 photos

  7. Competition between Sphagnum magellanicum and Eriophorum angustifolium as affected by raised CO2 and increased N deposition

    NARCIS (Netherlands)

    Heijmans, M.M.P.D.; Klees, H.; Berendse, F.

    2002-01-01

    The competition between peat mosses (Sphagnum) and vascular plants as affected by raised CO2 and increased N deposition was studied in a glasshouse experiment by exposing peat monoliths with monocultures and mixtures of Sphagnummagellanicum and Eriophorumangustifolium to ambient (350 ppmv) or raised

  8. Analysis and study on the membrane method of CO2 removal of coal-fired boilers

    International Nuclear Information System (INIS)

    Fangqin, Li; Henan, Li; Jianxing, Ren; Jiang, Wu; Zhongzhu, Qiu

    2010-01-01

    Carbon dioxide (CO 2 ) is one kind of harmful substances from the burning process of fossil fuel. CO 2 emissions cause serious pollution on atmospheric environment, especially greenhouse effect. In this paper, CO 2 formation mechanism and control methods were researched. Membrane technology was studied to control CO 2 emissions from coal-fired boilers. The relationship between CO 2 removal efficiency and parameters of membrane contactor was analyzed. Through analysis and study, factors affecting on CO 2 removal efficiency were gotten. How to choose the best parameters was known. This would provide theoretical basis for coal-fired utility boilers choosing effective way of CO 2 removal. (author)

  9. European CO2 emission trends: A decomposition analysis for water and aviation transport sectors

    International Nuclear Information System (INIS)

    Andreoni, V.; Galmarini, S.

    2012-01-01

    A decomposition analysis is used to investigate the main factors influencing the CO 2 emissions of European transport activities for the period 2001–2008. The decomposition method developed by Sun has been used to investigate the carbon dioxide emissions intensity, the energy intensity, the structural changes and the economy activity growth effects for the water and the aviation transport sectors. The analysis is based on Eurostat data and results are presented for 14 Member States, Norway and EU27. Results indicate that economic growth has been the main factor behind the carbon dioxide emissions increase in EU27 both for water and aviation transport activities. -- Highlights: ► Decomposition analysis is used to investigate factors that influenced the energy-related CO 2 emissions of European transport. ► Economic growth has been the main factor affecting the energy-related CO 2 emissions increases. ► Investigating the CO 2 emissions drivers is the first step to define energy efficiency policies and emission reduction strategies.

  10. Using hyperspectral plant signatures for CO2 leak detection during the 2008 ZERT CO2 sequestration field experiment in Bozeman, Montana

    Energy Technology Data Exchange (ETDEWEB)

    Male, E.J.; Pickles, W.L.; Silver, E.A.; Hoffmann, G.D.; Lewicki, J.; Apple, M.; Repasky, K.; Burton, E.A.

    2009-11-01

    Hyperspectral plant signatures can be used as a short-term, as well as long-term (100-yr timescale) monitoring technique to verify that CO2 sequestration fields have not been compromised. An influx of CO2 gas into the soil can stress vegetation, which causes changes in the visible to nearinfrared reflectance spectral signature of the vegetation. For 29 days, beginning on July 9th, 2008, pure carbon dioxide gas was released through a 100-meter long horizontal injection well, at a flow rate of 300 kg/day. Spectral signatures were recorded almost daily from an unmown patch of plants over the injection with a ''FieldSpec Pro'' spectrometer by Analytical Spectral Devices, Inc. Measurements were taken both inside and outside of the CO2 leak zone to normalize observations for other environmental factors affecting the plants.

  11. Correlation between plant physiology and CO2 removable

    Science.gov (United States)

    Leman, A. M.; Shamsuri, Mohd Mahathir Suhaimi; Hariri, Azian; Kadir, Aeslina Abdul; Idris, Ahmad Fu'ad; Afandi, Azizi

    2017-09-01

    Certain plants that are able to live in the building are known as indoor plants. Plants have tolerance with indoor environment in order to survive. Usually these plants are able to improve indoor air quality (IAQ). Absorption of carbon dioxide (CO2) by plants is one of the indicators that plants are still alive during photosynthesis process. The possibility of plants structure (plant physiology) to affect CO2 absorption had been the concerns of former researchers. This research intends to study the significant of plant structure (leaf area, fresh weight, and dry weight) that leads to reducing the concentration of CO2 by seven plant species (Anthurium, Dumb Cane, Golden Pothos, Kadaka Fern, Prayer Plants, Spider Plants, and Syngonium). The data of CO2 reduction by plants has been obtained from previous studies. Based on results show that, the leaf area is the most contributing the significant effect to the plant absorb CO2 compare to fresh weight and dry weight. It can be prove by Pearson Correlation, where only the value of leaf area is more than 0.5 for every four conditions. This study can be conclude that the leaf area is quite plays an important role to the plant treat air from CO2, while concentration of light and CO2 will become catalytic factor for the plants improve their photosynthesis process.

  12. Sectoral analysis of energy consumption and energy related CO2 emissions in Finland 1990-1999

    International Nuclear Information System (INIS)

    Kirjavainen, M.; Tamminen, E.

    2002-03-01

    This study describes the development of energy consumption and energy related CO 2 emissions in Finland between 1990-1999. For better understanding of the factors behind the development in main sectors, special indicators are calculated to evaluate how the overall development of the sector is affected by the general activity of the sector, changes in sectoral structure and changes in end-use intensities within the sector. The specific energy consumption of space heating reduced especially during the first half of the decade. Also the total CO 2 emissions caused by space heating reduced, in spite of the increase in the building stock. The main reason for this has been the reduction in specific CO 2 emissions in production of district heat. Regardless of the increased traffic and slightly increased use of passenger cars over public transport, the total energy consumption as well as total CO 2 emissions in passenger transport reduced during the decade. The main reason for this is that the specific fuel consumption of passenger cars has reduced significantly. Volumes in freight traffic increased rapidly after the recession, and as no significant changes have occurred in either specific consumptions or in shares of different transport modes, the total energy use as well as total CO 2 emissions of freight transport have increased. The major factors affecting the energy use and CO 2 emissions of the manufacturing sector have been changes in production volumes. After the recession, growth has been rapid and that has resulted in increased total energy use and CO 2 emissions. Anyway, the especially rapid growth of the less energy intensive electronics industry has resulted in downward overall energy intensity within manufacturing sector. Major factors affecting the specific CO 2 emissions in energy production have been changes in the primary energy supply mix. In electricity production, the major factors have been the increase in nuclear capacity and the variation in net

  13. Factors Affecting Loan Utilization And Repayment Patterns By Small ...

    African Journals Online (AJOL)

    The study identified factors affecting loan utilization and repayment patterns by small holder farmers of the Nigerian Agricultural Co-operative and Rural Development Bank (NACRDB) Osogbo branch in Osun State. Two Local Government Areas with large number of loan beneficiaries from 2003 to 2008 in NACRDB were ...

  14. The Impact of Factors Affecting Environmental Pollution with Emphasis on Trade Openness in Different Countries (Case study CO2 emission

    Directory of Open Access Journals (Sweden)

    hosein mohammadi

    2015-05-01

    Full Text Available Urbanization, population growth and moving from traditional manufacturing industry to accelerate the process of economic development and parallel, significant environmental impacts are left. The purpose of this study is to investigate the effect of different variables such as trade openness, comparative advantage, production levels and other important variables affecting the emission of carbon dioxide gas in various countries of the world. Stata11 software was used to estimate the panel data model of 77 countries over the years 2010-1980. The results indicate that propagation environment, and in particular CO2, in all four groups of countries are associated with prior emission, with a per capita income direct link but with the square of it correlates inversely and have direct link with the ratio of capital to labor and with the square of it correlates inversely and trade openness in high-income countries and moderate negative effect in low-income and middle-income countries is directly related to the bottom.

  15. Free atmospheric CO2 enrichment increased above ground biomass but did not affect symbiotic N2-fixation and soil carbon dynamics in a mixed deciduous stand in Wales

    Directory of Open Access Journals (Sweden)

    A. R. Smith

    2011-02-01

    Full Text Available Through increases in net primary production (NPP, elevated CO2 is hypothesized to increase the amount of plant litter entering the soil. The fate of this extra carbon on the forest floor or in mineral soil is currently not clear. Moreover, increased rates of NPP can be maintained only if forests can escape nitrogen limitation. In a Free atmospheric CO2 Enrichment (FACE experiment near Bangor, Wales, 4 ambient and 4 elevated [CO2] plots were planted with patches of Betula pendula, Alnus glutinosa and Fagus sylvatica on a former arable field. After 4 years, biomass averaged for the 3 species was 5497 (se 270 g m−2 in ambient and 6450 (se 130 g m−2 in elevated [CO2] plots, a significant increase of 17% (P = 0.018. During that time, only a shallow L forest floor litter layer had formed due to intensive bioturbation. Total soil C and N contents increased irrespective of treatment and species as a result of afforestation. We could not detect an additional C sink in the soil, nor were soil C stabilization processes affected by elevated [CO2]. We observed a decrease of leaf N content in Betula and Alnus under elevated [CO2], while the soil C/N ratio decreased regardless of CO2 treatment. The ratio of N taken up from the soil and by N2-fixation in Alnus was not affected by elevated [CO2]. We infer that increased nitrogen use efficiency is the mechanism by which increased NPP is sustained under elevated [CO2] at this site.

  16. CO2 adsorption using TiO2 composite polymeric membranes: A kinetic study.

    Science.gov (United States)

    Hafeez, Sarah; Fan, X; Hussain, Arshad; Martín, C F

    2015-09-01

    CO2 is the main greenhouse gas which causes global climatic changes on larger scale. Many techniques have been utilised to capture CO2. Membrane gas separation is a fast growing CO2 capture technique, particularly gas separation by composite membranes. The separation of CO2 by a membrane is not just a process to physically sieve out of CO2 through the controlled membrane pore size. It mainly depends upon diffusion and solubility of gases, particularly for composite dense membranes. The blended components in composite membranes have a high capability to adsorb CO2. The adsorption kinetics of the gases may directly affect diffusion and solubility. In this study, we have investigated the adsorption behaviour of CO2 in pure and composite membranes to explore the complete understanding of diffusion and solubility of CO2 through membranes. Pure cellulose acetate (CA) and cellulose acetate-titania nanoparticle (CA-TiO2) composite membranes were fabricated and characterised using SEM and FTIR analysis. The results indicated that the blended CA-TiO2 membrane adsorbed more quantity of CO2 gas as compared to pure CA membrane. The high CO2 adsorption capacity may enhance the diffusion and solubility of CO2 in the CA-TiO2 composite membrane, which results in a better CO2 separation. The experimental data was modelled by Pseudo first-order, pseudo second order and intra particle diffusion models. According to correlation factor R(2), the Pseudo second order model was fitted well with experimental data. The intra particle diffusion model revealed that adsorption in dense membranes was not solely consisting of intra particle diffusion. Copyright © 2015. Published by Elsevier B.V.

  17. O3, CO2 and chemical fractionation in ponderosa pine saplings

    Science.gov (United States)

    Environmental factors can affect plant tissue quality which is important for quality of organic matter inputs into soil food webs and decomposition of soil organic matter. Thus the effects of increases in CO2 and O3 and their interactions were determined for various chemical fra...

  18. Kinetics of metabolism of glucose, propionate and CO2 in steers as affected by injecting phlorizin and feeding propionate

    International Nuclear Information System (INIS)

    Veenhuizen, J.J.; Russell, R.W.; Young, J.W.

    1988-01-01

    Effects of injecting phlorizin subcutaneously and/or feeding propionate on metabolism of glucose, propionate and CO2 were determined for four steers used in a 4 x 4 Latin square design. Isotope dilution techniques were used to determine a four-pool kinetic solution for the flux of carbon among plasma glucose, rumen propionate, blood CO2 and rumen CO2. Injecting 1 g of phlorizin twice daily for 19 d resulted in 7.1 mol glucose C/d being excreted in urine. The basal glucose production of 13.4 mol C/d was increased to 17.9 mol C/d with phlorizin. There was no change in glucose oxidation or propionate production. The percentage of plasma glucose derived from propionate was unaffected by phlorizin, but 54 +/- 0.4% of total propionate was converted to plasma glucose during phlorizin treatment versus 40 +/- 0.6% during the basal treatment. When propionate was fed (18.3 mol C/d) glucose production increased to 21.2 mol C/d from the basal value of 13.4 mol C/d, and propionate oxidation to CO2 increased to 14.9 mol C/d from the basal value of 4.1 mol C/d. Glucose derived from propionate was 43 +/- 5% for the basal treatment and 67 +/- 3% during propionate feeding. The percentage of propionate converted to plasma glucose and blood and rumen CO2 was not affected by feeding propionate. An increased need for glucose, because of glucose excretion during phlorizin treatment, caused an increased utilization of propionate for gluconeogenesis, but an increased availability of propionate caused an increase in glucose production without affecting the relative distribution of carbon from propionate

  19. Second law analysis of the transcritical CO2 refrigeration cycle

    International Nuclear Information System (INIS)

    Fartaj, Amir; Ting, David S.-K.; Yang, Wendy W.

    2004-01-01

    Because of the global warming impact of HFCs, the use of natural refrigerants has received worldwide attention. Efficient use of refrigerants is of pressing concern to the present automotive and HVAC industries. The natural refrigerant, carbon dioxide (CO 2 ), exhibits promise for use in automotive air conditioning systems, in particular the transcritical CO 2 refrigeration cycle. The objective of this work is to identify the main factors that affect CO 2 system performance. A second law of thermodynamic analysis on the entire CO 2 refrigeration cycle is conducted so that the effectiveness of the components of the system can be deduced and ranked, allowing future efforts to focus on improving the components that have the highest potential for advancement. The analysis reveals that the compressor and the gas cooler exhibit the largest non-idealities within the system, and hence, efforts should be focused on improving these components

  20. Pursuing air pollutant co-benefits of CO2 mitigation in China: A provincial leveled analysis

    International Nuclear Information System (INIS)

    Dong, Huijuan; Dai, Hancheng; Dong, Liang; Fujita, Tsuyoshi; Geng, Yong; Klimont, Zbigniew; Inoue, Tsuyoshi; Bunya, Shintaro; Fujii, Minoru; Masui, Toshihiko

    2015-01-01

    Highlights: • China’s future CO 2 reduction and its co-benefits on air pollutants were projected. • GAINS-China and AIM/CGE models were combined for emission and cost estimation. • High GDP regions tended to have higher emission, reduction potential and co-benefit. • Coal ratio and coal quality were also key factors to affect reduction and co-benefit. • Mitigation investment to less developed western regions was more effective. - Abstract: With fast economic development, industrialization and urbanization, China faces increasing pressures on carbon emission reduction, and especially on air pollutants (SO 2 , NOx, PM) reduction, particularly the notorious haze issue caused by air pollution in recent years. Pursuing co-benefits is an effective approach to simultaneously respond to both carbon and air pollutant problems. In this paper, the AIM/CGE (Asia–Pacific Integrated Assessment Model/Computational General Equilibrium) model and GAINS (Greenhouse Gas and Air Pollution Interactions and Synergies)-China model are combined together to project future CO 2 and air pollutants emissions in China, as well as reduction costs and co-benefit effects. Considering implementation of carbon mitigation policy and air pollutant mitigation technologies, four scenarios (S1, S2, S3 and S4) are analyzed. Results indicate that by implementing both carbon and air pollutant mitigation (S4), CO 2 emission per GDP can be reduced by 41% by 2020, compared with the 2005 level, and SO 2 , NOx and PM2.5 emissions would change by a factor 0.8, 1.26 and 1.0 of the 2005 level, respectively in 2030. The real co-benefits of emission reductions (S2 minus S4) for SO 2 , NOx and PM2.5 are 2.4 Mt, 2.1 Mt and 0.3 Mt in 2020, and the corresponding cost reduction co-benefits are 4, 0.11, and 0.8 billion €, respectively. Provincial disparity analysis reveals that regions with higher co-benefits are those with higher GDP such as Guangdong, Shandong and Jiangsu, energy production bases such as

  1. Environmental factors influencing the relationship between stem CO2 efflux and sap flow

    Czech Academy of Sciences Publication Activity Database

    Bužková, Romana; Acosta, Manuel; Dařenová, Eva; Pokorný, Radek; Pavelka, Marian

    2015-01-01

    Roč. 29, č. 2 (2015), s. 333-343 ISSN 0931-1890 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073; GA MŠk(CZ) LM2010007 Institutional support: RVO:67179843 Keywords : stem CO2 efflux * transpiration * Norway spruce * stem temperature * precipitation * volumetric soil water content Subject RIV: EH - Ecology, Behaviour Impact factor: 1.706, year: 2015

  2. Light availability and temperature, not increased CO2, will structure future meadows of Posidonia oceanica

    KAUST Repository

    Hendriks, Iris E.; Olsen, Ylva S.; Duarte, Carlos M.

    2017-01-01

    We evaluated the photosynthetic performance of Posidonia oceanica during short-term laboratory exposures to ambient and elevated temperatures (24–25°C and 29–30°C) warming and pCO2 (380, 750 and 1000ppm pCO2) under normal and low light conditions (200 and 40μmol photons m−2s−1 respectively). Plant growth was measured at the low light regime and showed a negative response to warming. Light was a critical factor for photosynthetic performance, although we found no evidence of compensation of photosynthetic quantum efficiency in high light. Relative Electron Rate Transport (rETRmax) was higher in plants incubated in high light, but not affected by pCO2 or temperature. The saturation irradiance (Ik) was negatively affected by temperature. We conclude that elevated CO2 does not enhance photosynthetic activity and growth, in the short term for P. oceanica, while temperature has a direct negative effect on growth. Low light availability also negatively affected photosynthetic performance during the short experimental period examined here. Therefore increasing concentrations of CO2 may not compensate for predicted future conditions of warmer water and higher turbidity for seagrass meadows.

  3. Light availability and temperature, not increased CO2, will structure future meadows of Posidonia oceanica

    KAUST Repository

    Hendriks, Iris E.

    2017-02-15

    We evaluated the photosynthetic performance of Posidonia oceanica during short-term laboratory exposures to ambient and elevated temperatures (24–25°C and 29–30°C) warming and pCO2 (380, 750 and 1000ppm pCO2) under normal and low light conditions (200 and 40μmol photons m−2s−1 respectively). Plant growth was measured at the low light regime and showed a negative response to warming. Light was a critical factor for photosynthetic performance, although we found no evidence of compensation of photosynthetic quantum efficiency in high light. Relative Electron Rate Transport (rETRmax) was higher in plants incubated in high light, but not affected by pCO2 or temperature. The saturation irradiance (Ik) was negatively affected by temperature. We conclude that elevated CO2 does not enhance photosynthetic activity and growth, in the short term for P. oceanica, while temperature has a direct negative effect on growth. Low light availability also negatively affected photosynthetic performance during the short experimental period examined here. Therefore increasing concentrations of CO2 may not compensate for predicted future conditions of warmer water and higher turbidity for seagrass meadows.

  4. Residual and Solubility trapping during Geological CO2 storage : Numerical and Experimental studies

    OpenAIRE

    Rasmusson, Maria

    2018-01-01

    Geological storage of carbon dioxide (CO2) in deep saline aquifers mitigates atmospheric release of greenhouse gases. To estimate storage capacity and evaluate storage safety, knowledge of the trapping mechanisms that retain CO2 within geological formations, and the factors affecting these is fundamental. The objective of this thesis is to study residual and solubility trapping mechanisms (the latter enhanced by density-driven convective mixing), specifically in regard to their dependency on ...

  5. Multivariate regulation of soil CO2 and N2 O pulse emissions from agricultural soils.

    Science.gov (United States)

    Liang, Liyin L; Grantz, David A; Jenerette, G Darrel

    2016-03-01

    Climate and land-use models project increasing occurrence of high temperature and water deficit in both agricultural production systems and terrestrial ecosystems. Episodic soil wetting and subsequent drying may increase the occurrence and magnitude of pulsed biogeochemical activity, affecting carbon (C) and nitrogen (N) cycles and influencing greenhouse gas (GHG) emissions. In this study, we provide the first data to explore the responses of carbon dioxide (CO2 ) and nitrous oxide (N2 O) fluxes to (i) temperature, (ii) soil water content as percent water holding capacity (%WHC), (iii) substrate availability throughout, and (iv) multiple soil drying and rewetting (DW) events. Each of these factors and their interactions exerted effects on GHG emissions over a range of four (CO2 ) and six (N2 O) orders of magnitude. Maximal CO2 and N2 O fluxes were observed in environments combining intermediate %WHC, elevated temperature, and sufficient substrate availability. Amendments of C and N and their interactions significantly affected CO2 and N2 O fluxes and altered their temperature sensitivities (Q10 ) over successive DW cycles. C amendments significantly enhanced CO2 flux, reduced N2 O flux, and decreased the Q10 of both. N amendments had no effect on CO2 flux and increased N2 O flux, while significantly depressing the Q10 for CO2 , and having no effect on the Q10 for N2 O. The dynamics across DW cycles could be attributed to changes in soil microbial communities as the different responses to wetting events in specific group of microorganisms, to the altered substrate availabilities, or to both. The complex interactions among parameters influencing trace gas fluxes should be incorporated into next generation earth system models to improve estimation of GHG emissions. © 2015 John Wiley & Sons Ltd.

  6. [Dynamic observation, simulation and application of soil CO2 concentration: a review].

    Science.gov (United States)

    Sheng, Hao; Luo, Sha; Zhou, Ping; Li, Teng-Yi; Wang, Juan; Li, Jie

    2012-10-01

    Soil CO2 concentration is the consequences of biological activities in above- and below-ground, and its fluctuation may significantly affect the future atmospheric CO2 concentration and the projected climate change. This paper reviewed the methodologies for measuring the soil CO2 concentration in situ as well as their advantages and disadvantages, analyzed the variation patterns and controlling factors of soil CO2 concentration across the temporal (diurnal, several days, seasonal and inter-annual) and spatial (soil profile, site and landscape) scales, introduced the primary empirical and mechanical models for estimating and predicting soil CO2 concentration, and summarized the applications and constraints of soil CO2 concentration gradient in determining soil respiration. Four research priorities were proposed, i. e., to develop new techniques for collecting and determining the soil CO2 in severe soil conditions (e. g., flooding, lithoso and others), to approach the responses of soil CO2 concentration to weather change and related regulation mechanisms, to strengthen the researches on the spatial heterogeneity of soil CO2 concentration, and to expand the applications of soil CO2 concentration gradient in the measurement of tropical-subtropical soil respiration.

  7. Advances in Geological CO{sub 2} Sequestration and Co-Sequestration with O{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Verba, Circe A; O& #x27; Connor, William K.; Ideker, J.H.

    2012-10-28

    The injection of CO{sub 2} for Enhanced Oil Recovery (EOR) and sequestration in brine-bearing formations for long term storage has been in practice or under investigation in many locations globally. This study focused on the assessment of cement wellbore seal integrity in CO{sub 2}- and CO{sub 2}-O{sub 2}-saturated brine and supercritical CO{sub 2} environments. Brine chemistries (NaCl, MgCl{sub 2}, CaCl{sub 2}) at various saline concentrations were investigated at a pressure of 28.9 MPa (4200 psi) at both 50{degree}C and 85{degree}C. These parameters were selected to simulate downhole conditions at several potential CO{sub 2} injection sites in the United States. Class H portland cement is not thermodynamically stable under these conditions and the formation of carbonic acid degrades the cement. Dissociation occurs and leaches cations, forming a CaCO{sub 3} buffered zone, amorphous silica, and other secondary minerals. Increased temperature affected the structure of C-S-H and the hydration of the cement leading to higher degradation rates.

  8. Exceptionally High Efficient Co-Co2P@N, P-Codoped Carbon Hybrid Catalyst for Visible Light-Driven CO2-to-CO Conversion.

    Science.gov (United States)

    Fu, Wen Gan

    2018-05-02

    Artificial photosynthesis has attracted wide attention, particularly the development of efficient solar light-driven methods to reduce CO2 to form energy-rich carbon-based products. Because CO2 reduction is an uphill process with a large energy barrier, suitable catalysts are necessary to achieve this transformation. In addition, CO2 adsorption on a catalyst and proton transfer to CO2 are two important factors for the conversion reaction,and catalysts with high surface area and more active sites are required to improve the efficiency of CO2 reduction. Here, we report a visible light-driven system for CO2-to-CO conversion that consists of a heterogeneous hybrid catalyst of Co and Co2P nanoparticles embedded in carbon nanolayers codoped with N and P (Co-Co2P@NPC) and a homogeneous Ru(II)-based complex photosensitizer. The average generation rate of CO of the system was up to 35,000 μmol h-1 g-1 with selectivity of 79.1% in 3 h. Linear CO production at an exceptionally high rate of 63,000 μmol h-1 g-1 was observed in the first hour of reaction. Inspired by this highly active catalyst, we also synthesized Co@NC and Co2P@NPC materials and explored their structure, morphology, and catalytic properties for CO2 photoreduction. The results showed that the nanoparticle size, partially adsorbed H2O molecules on the catalyst surface, and the hybrid nature of the systems influenced their photocatalytic CO2 reduction performance. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Ocean acidification affects fish spawning but not paternity at CO2 seeps.

    Science.gov (United States)

    Milazzo, Marco; Cattano, Carlo; Alonzo, Suzanne H; Foggo, Andrew; Gristina, Michele; Rodolfo-Metalpa, Riccardo; Sinopoli, Mauro; Spatafora, Davide; Stiver, Kelly A; Hall-Spencer, Jason M

    2016-07-27

    Fish exhibit impaired sensory function and altered behaviour at levels of ocean acidification expected to occur owing to anthropogenic carbon dioxide emissions during this century. We provide the first evidence of the effects of ocean acidification on reproductive behaviour of fish in the wild. Satellite and sneaker male ocellated wrasse (Symphodus ocellatus) compete to fertilize eggs guarded by dominant nesting males. Key mating behaviours such as dominant male courtship and nest defence did not differ between sites with ambient versus elevated CO2 concentrations. Dominant males did, however, experience significantly lower rates of pair spawning at elevated CO2 levels. Despite the higher risk of sperm competition found at elevated CO2, we also found a trend of lower satellite and sneaker male paternity at elevated CO2 Given the importance of fish for food security and ecosystem stability, this study highlights the need for targeted research into the effects of rising CO2 levels on patterns of reproduction in wild fish. © 2016 The Author(s).

  10. ELEVATED CO{sub 2} IN A PROTOTYPE FREE-AIR CO{sub 2} ENRICHMENT FACILITY AFFECTS PHOTOSYNTHETIC NITROGEN RELATIONS IN A MATURING PINE FOREST

    Energy Technology Data Exchange (ETDEWEB)

    ELLSWORTH,D.S.; LA ROCHE,J.; HENDREY,G.R.

    1998-03-01

    A maturing loblolly pine (Pinus taeda L.) forest was exposed to elevated CO{sub 2} in the natural environment in a perturbation study conducted over three seasons using the free-air CO{sub 2} enrichment (FACE) technique. At the time measurements were begun in this study, the pine canopy was comprised entirely of foliage which had developed under elevated CO{sub 2} conditions (atmospheric [CO{sub 2}] {approx} 550 {micro}mol mol{sup {minus}1}). Measurements of leaf photosynthetic responses to CO{sub 2} were taken to examine the effects of elevated CO{sub 2} on photosynthetic N nutrition in a pine canopy under elevated CO{sub 2}. Photosynthetic CO{sub 2} response curves (A-c{sub i} curves) were similar in FACE trees under elevated CO{sub 2} compared with counterpart trees in ambient plots for the first foliage cohort produced in the second season of CO{sub 2} exposure, with changes in curve form detected in the foliage cohorts subsequently produced under elevated CO{sub 2}. Differences in the functional relationship between carboxylation rate and N{sub a} suggest that for a given N{sub a} allocated among successive cohorts of foliage in the upper canopy, V{sub c max} was 17% lower in FACE versus Ambient trees. The authors also found that foliar Rubisco content per unit total protein derived from Western blot analysis was lower in late-season foliage in FACE foliage compared with ambient-grown foliage. The results illustrate a potentially important mode of physiological adjustment to growth conditions that may operate in forest canopies. Their findings suggest that mature loblolly pine trees growing in the field may have the capacity for shifts in intrinsic nitrogen utilization for photosynthesis under elevated CO{sub 2} that are not dependent on changes in leaf N. While carboxylation efficiency per unit N apparently decreased under elevated CO{sub 2}, photosynthetic rates in trees at elevated CO{sub 2} concentrations {approx} 550 pmol mol{sub {minus}1} are still

  11. Mesoscale modelling of atmospheric CO2 across Denmark

    DEFF Research Database (Denmark)

    Lansø, Anne Sofie

    2016-01-01

    of the simulated atmospheric CO2 across Denmark was, in particular, affected by the Danish terrestrial surface exchanges and its temporal variability. This study urges all future modelling studies of air–sea CO2 to include short-term variability in pCO2. To capture the full heterogeneity of the surface exchanges......It is scientifically well-established that the increase of atmospheric CO2 affects the entire globe and will lead to higher surface temperatures. Although anthropogenic CO2is emitted straight into the atmosphere, it does not all contribute to the existing atmospheric CO2 reservoir. Approximately 29......% is taken up by the global oceans, due to under-saturation of CO2 in the surface waters, while another 33 % is taken up by the terrestrial biosphere, via photosynthesis. In order to estimate the effects of increasing anthropogenic emissions of CO2 more accurately in the future, it is essential to understand...

  12. Multiscale observations of CO2, 13CO2, and pollutants at Four Corners for emission verification and attribution

    Science.gov (United States)

    Lindenmaier, Rodica; Dubey, Manvendra K.; Henderson, Bradley G.; Butterfield, Zachary T.; Herman, Jay R.; Rahn, Thom; Lee, Sang-Hyun

    2014-01-01

    There is a pressing need to verify air pollutant and greenhouse gas emissions from anthropogenic fossil energy sources to enforce current and future regulations. We demonstrate the feasibility of using simultaneous remote sensing observations of column abundances of CO2, CO, and NO2 to inform and verify emission inventories. We report, to our knowledge, the first ever simultaneous column enhancements in CO2 (3–10 ppm) and NO2 (1–3 Dobson Units), and evidence of δ13CO2 depletion in an urban region with two large coal-fired power plants with distinct scrubbing technologies that have resulted in ∆NOx/∆CO2 emission ratios that differ by a factor of two. Ground-based total atmospheric column trace gas abundances change synchronously and correlate well with simultaneous in situ point measurements during plume interceptions. Emission ratios of ∆NOx/∆CO2 and ∆SO2/∆CO2 derived from in situ atmospheric observations agree with those reported by in-stack monitors. Forward simulations using in-stack emissions agree with remote column CO2 and NO2 plume observations after fine scale adjustments. Both observed and simulated column ∆NO2/∆CO2 ratios indicate that a large fraction (70–75%) of the region is polluted. We demonstrate that the column emission ratios of ∆NO2/∆CO2 can resolve changes from day-to-day variation in sources with distinct emission factors (clean and dirty power plants, urban, and fires). We apportion these sources by using NO2, SO2, and CO as signatures. Our high-frequency remote sensing observations of CO2 and coemitted pollutants offer promise for the verification of power plant emission factors and abatement technologies from ground and space. PMID:24843169

  13. Pa2G4 is a novel Six1 co-factor that is required for neural crest and otic development☆

    Science.gov (United States)

    Neilson, Karen M.; Abbruzzesse, Genevieve; Kenyon, Kristy; Bartolo, Vanessa; Krohn, Patrick; Alfandari, Dominique; Moody, Sally A.

    2016-01-01

    Mutations in SIX1 and in its co-factor, EYA1, underlie Branchiootorenal Spectrum disorder (BOS), which is characterized by variable branchial arch, otic and kidney malformations. However, mutations in these two genes are identified in only half of patients. We screened for other potential co-factors, and herein characterize one of them, Pa2G4 (aka Ebp1/Plfap). In human embryonic kidney cells, Pa2G4 binds to Six1 and interferes with the Six1-Eya1 complex. In Xenopus embryos, knock-down of Pa2G4 leads to down-regulation of neural border zone, neural crest and cranial placode genes, and concomitant expansion of neural plate genes. Gain-of-function leads to a broader neural border zone, expanded neural crest and altered cranial placode domains. In loss-of-function assays, the later developing otocyst is reduced in size, which impacts gene expression. In contrast, the size of the otocyst in gain-of-function assays is not changed but the expression domains of several otocyst genes are reduced. Together these findings establish an interaction between Pa2G4 and Six1, and demonstrate that it has an important role in the development of tissues affected in BOS. Thereby, we suggest that pa2g4 is a potential candidate gene for BOS. PMID:27940157

  14. Elevated CO{sub 2} in a prototype free-air CO{sub 2} enrichment facility affects photosynthetic nitrogen relations in a maturing pine forest

    Energy Technology Data Exchange (ETDEWEB)

    Ellsworth, D.S.; LaRoche, J.; Hendrey, G.R.

    1998-03-01

    A maturing loblolly pine (Pinus taeda L.) forest was exposed to elevated CO{sub 2} in the natural environment in a perturbation study conducted over three seasons using the free-air CO{sub 2} enrichment (FACE) technique. At the time measurements were begun in this study, the pine canopy was comprised entirely of foliage which had developed under elevated CO{sub 2} conditions (atmospheric CO{sub 2} {approx} 550 {micro}mol/mol{sup {minus}1}). Measurements of leaf photosynthetic responses to CO{sub 2} were taken to examine the effects of elevated CO{sub 2} on photosynthetic N nutrition in a pine canopy under elevated CO{sub 2}. Photosynthetic CO{sub 2} response curves (A-c{sub i} curves) were similar in FACE trees under elevated CO{sub 2} compared with counterpart trees in ambient plots for the first foliage cohort produced in the second season of CO{sub 2} exposure, with changes in curve form detected in the foliage cohorts subsequently produced under elevated CO{sub 2}. Differences in the functional relationship between carboxylation rate and N{sub a} suggest that for a given N{sub a} allocated among successive cohorts of foliage in the upper canopy, V{sub c max} was 17% lower in FACE versus Ambient trees. The authors also found that foliar Rubisco content per unit total protein derived from Western blot analysis was lower in late-season foliage in FACE foliage compared with ambient-grown foliage. The results illustrate a potentially important mode of physiological adjustment to growth conditions that may operate in forest canopies. Findings suggest that mature loblolly pine trees growing in the field may have the capacity for shifts in intrinsic nitrogen utilization for photosynthesis under elevated CO{sub 2} that are not dependent on changes in leaf N. Findings suggest a need for continued examination of internal feedbacks at the whole-tree and ecosystem level in forests that may influence long-term photosynthetic responses to elevated CO{sub 2}.

  15. Using CO2 Prophet to estimate recovery factors for carbon dioxide enhanced oil recovery

    Science.gov (United States)

    Attanasi, Emil D.

    2017-07-17

    -specific data that can be assembled and simplifying assumptions that allow assignment of default values for some reservoir parameters. These issues are discussed in the context of the CO2 Prophet EOR model, and their resolution is demonstrated with the computation of recovery-factor estimates for CO2-EOR of 143 reservoirs in the Powder River Basin Province in southeastern Montana and northeastern Wyoming.

  16. Development of suitable photobioreactors for CO{sub 2} sequestration addressing global warming using green algae and cyanobacteria

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, K.; Dasgupta, C.N.; Nayak, B.; Lindblad, P.; Das, D. [Indian Institute of Technology, Kharagpur (India)

    2011-04-15

    CO{sub 2} sequestration by cyanobacteria and green algae are receiving increased attention in alleviating the impact of increasing CO{sub 2} in the atmosphere. They, in addition to CO{sub 2} capture, can produce renewable energy carriers such as carbon free energy hydrogen, bioethanol, biodiesel and other valuable biomolecules. Biological fixation of CO{sub 2} are greatly affected by the characteristics of the microbial strains, their tolerance to temperature and the CO{sub 2} present in the flue gas including SOx, NOx. However, there are additional factors like the availability of light, pH, O{sub 2}, removal, suitable design of the photobioreactor, culture density and the proper agitation of the reactor that will affect significantly the CO{sub 2} sequestration process. Present paper deals with the photobioreactors of different geometry available for biomass production. It also focuses on the hybrid types of reactors (integrating two reactors) which can be used for overcoming the bottlenecks of a single photobioreactor.

  17. Effect of Mineral Dissolution/Precipitation and CO2 Exsolution on CO2 transport in Geological Carbon Storage.

    Science.gov (United States)

    Xu, Ruina; Li, Rong; Ma, Jin; He, Di; Jiang, Peixue

    2017-09-19

    Geological carbon sequestration (GCS) in deep saline aquifers is an effective means for storing carbon dioxide to address global climate change. As the time after injection increases, the safety of storage increases as the CO 2 transforms from a separate phase to CO 2 (aq) and HCO 3 - by dissolution and then to carbonates by mineral dissolution. However, subsequent depressurization could lead to dissolved CO 2 (aq) escaping from the formation water and creating a new separate phase which may reduce the GCS system safety. The mineral dissolution and the CO 2 exsolution and mineral precipitation during depressurization change the morphology, porosity, and permeability of the porous rock medium, which then affects the two-phase flow of the CO 2 and formation water. A better understanding of these effects on the CO 2 -water two-phase flow will improve predictions of the long-term CO 2 storage reliability, especially the impact of depressurization on the long-term stability. In this Account, we summarize our recent work on the effect of CO 2 exsolution and mineral dissolution/precipitation on CO 2 transport in GCS reservoirs. We place emphasis on understanding the behavior and transformation of the carbon components in the reservoir, including CO 2 (sc/g), CO 2 (aq), HCO 3 - , and carbonate minerals (calcite and dolomite), highlight their transport and mobility by coupled geochemical and two-phase flow processes, and consider the implications of these transport mechanisms on estimates of the long-term safety of GCS. We describe experimental and numerical pore- and core-scale methods used in our lab in conjunction with industrial and international partners to investigate these effects. Experimental results show how mineral dissolution affects permeability, capillary pressure, and relative permeability, which are important phenomena affecting the input parameters for reservoir flow modeling. The porosity and the absolute permeability increase when CO 2 dissolved water is

  18. Web-based Factors Affecting Online Purchasing Behaviour

    Science.gov (United States)

    Ariff, Mohd Shoki Md; Sze Yan, Ng; Zakuan, Norhayati; Zaidi Bahari, Ahamad; Jusoh, Ahmad

    2013-06-01

    The growing use of internet and online purchasing among young consumers in Malaysia provides a huge prospect in e-commerce market, specifically for B2C segment. In this market, if E-marketers know the web-based factors affecting online buyers' behaviour, and the effect of these factors on behaviour of online consumers, then they can develop their marketing strategies to convert potential customers into active one, while retaining existing online customers. Review of previous studies related to the online purchasing behaviour in B2C market has point out that the conceptualization and empirical validation of the online purchasing behaviour of Information and Communication Technology (ICT) literate users, or ICT professional, in Malaysia has not been clearly addressed. This paper focuses on (i) web-based factors which online buyers (ICT professional) keep in mind while shopping online; and (ii) the effect of web-based factors on online purchasing behaviour. Based on the extensive literature review, a conceptual framework of 24 items of five factors was constructed to determine web-based factors affecting online purchasing behaviour of ICT professional. Analysis of data was performed based on the 310 questionnaires, which were collected using a stratified random sampling method, from ICT undergraduate students in a public university in Malaysia. The Exploratory factor analysis performed showed that five factors affecting online purchase behaviour are Information Quality, Fulfilment/Reliability/Customer Service, Website Design, Quick and Details, and Privacy/Security. The result of Multiple Regression Analysis indicated that Information Quality, Quick and Details, and Privacy/Security affect positively online purchase behaviour. The results provide a usable model for measuring web-based factors affecting buyers' online purchase behaviour in B2C market, as well as for online shopping companies to focus on the factors that will increase customers' online purchase.

  19. Web-based Factors Affecting Online Purchasing Behaviour

    International Nuclear Information System (INIS)

    Ariff, Mohd Shoki Md; Yan, Ng Sze; Zakuan, Norhayati; Bahari, Ahamad Zaidi; Jusoh, Ahmad

    2013-01-01

    The growing use of internet and online purchasing among young consumers in Malaysia provides a huge prospect in e-commerce market, specifically for B2C segment. In this market, if E-marketers know the web-based factors affecting online buyers' behaviour, and the effect of these factors on behaviour of online consumers, then they can develop their marketing strategies to convert potential customers into active one, while retaining existing online customers. Review of previous studies related to the online purchasing behaviour in B2C market has point out that the conceptualization and empirical validation of the online purchasing behaviour of Information and Communication Technology (ICT) literate users, or ICT professional, in Malaysia has not been clearly addressed. This paper focuses on (i) web-based factors which online buyers (ICT professional) keep in mind while shopping online; and (ii) the effect of web-based factors on online purchasing behaviour. Based on the extensive literature review, a conceptual framework of 24 items of five factors was constructed to determine web-based factors affecting online purchasing behaviour of ICT professional. Analysis of data was performed based on the 310 questionnaires, which were collected using a stratified random sampling method, from ICT undergraduate students in a public university in Malaysia. The Exploratory factor analysis performed showed that five factors affecting online purchase behaviour are Information Quality, Fulfilment/Reliability/Customer Service, Website Design, Quick and Details, and Privacy/Security. The result of Multiple Regression Analysis indicated that Information Quality, Quick and Details, and Privacy/Security affect positively online purchase behaviour. The results provide a usable model for measuring web-based factors affecting buyers' online purchase behaviour in B2C market, as well as for online shopping companies to focus on the factors that will increase customers' online purchase.

  20. Elevated CO2 levels affects the concentrations of copper and cadmium in crops grown in soil contaminated with heavy metals under fully open-air field conditions.

    Science.gov (United States)

    Guo, Hongyan; Zhu, Jianguo; Zhou, Hui; Sun, Yuanyuan; Yin, Ying; Pei, Daping; Ji, Rong; Wu, Jichun; Wang, Xiaorong

    2011-08-15

    Elevated CO(2) levels and the increase in heavy metals in soils through pollution are serious problems worldwide. Whether elevated CO(2) levels will affect plants grown in heavy-metal-polluted soil and thereby influence food quality and safety is not clear. Using a free-air CO(2) enrichment (FACE) system, we investigated the impacts of elevated atmospheric CO(2) on the concentrations of copper (Cu) or cadmium (Cd) in rice and wheat grown in soil with different concentrations of the metals in the soil. In the two-year study, elevated CO(2) levels led to lower Cu concentrations and higher Cd concentrations in shoots and grain of both rice and wheat grown in the respective contaminated soil. Elevated CO(2) levels slightly but significantly lowered the pH of the soil and led to changes in Cu and Cd fractionation in the soil. Our study indicates that elevated CO(2) alters the distribution of contaminant elements in soil and plants, thereby probably affecting food quality and safety.

  1. Simulasi Numeris Karakteristik Pembakaran CH4/CO2/Udara dan CH4/CO2/O2 pada Counterflow Premixed Burner

    Directory of Open Access Journals (Sweden)

    Hangga Wicaksono

    2017-08-01

    Full Text Available The high amount of CO2 produced in a conventional biogas reactor needs to be considered. A further analysis is needed in order to investigate the effect of CO2 addition especially in thermal and chemical kinetics aspect. This numerical study has been held to analyze the effect of CO2 in CH4/CO2/O­2 and CH4/CO2/Air premixed combustion. In this study one dimensional analisys in a counterflow burner has been performed. The volume fraction of CO2 used in this study was 0%-40% from CH4’s volume fraction, according to the amount of CO2 in general phenomenon. Based on the flammability limits data, the volume fraction of CH4 used was 5-61% in O2 environment and 5-15% in air environment. The results showed a decreasing temperature along with the increasing percentage of CO2 in each mixtures, but the effect was quite smaller especially in stoichiometric and lean mixture. CO2 could affects thermally (by absorbing heat due to its high Cp and also made the production of unburnt fuel species such as CO relatively higher.

  2. Dynamics of soil CO2 efflux under varying atmospheric CO2 concentrations reveal dominance of slow processes.

    Science.gov (United States)

    Kim, Dohyoung; Oren, Ram; Clark, James S; Palmroth, Sari; Oishi, A Christopher; McCarthy, Heather R; Maier, Chris A; Johnsen, Kurt

    2017-09-01

    We evaluated the effect on soil CO 2 efflux (F CO 2 ) of sudden changes in photosynthetic rates by altering CO 2 concentration in plots subjected to +200 ppmv for 15 years. Five-day intervals of exposure to elevated CO 2 (eCO 2 ) ranging 1.0-1.8 times ambient did not affect F CO 2 . F CO 2 did not decrease until 4 months after termination of the long-term eCO 2 treatment, longer than the 10 days observed for decrease of F CO 2 after experimental blocking of C flow to belowground, but shorter than the ~13 months it took for increase of F CO 2 following the initiation of eCO 2 . The reduction of F CO 2 upon termination of enrichment (~35%) cannot be explained by the reduction of leaf area (~15%) and associated carbohydrate production and allocation, suggesting a disproportionate contraction of the belowground ecosystem components; this was consistent with the reductions in base respiration and F CO 2 -temperature sensitivity. These asymmetric responses pose a tractable challenge to process-based models attempting to isolate the effect of individual processes on F CO2 . © 2017 John Wiley & Sons Ltd.

  3. Numerical simulation of CO2 disposal by mineral trapping in deep aquifers

    International Nuclear Information System (INIS)

    Xu Tianfu; Apps, John A.; Pruess, Karsten

    2004-01-01

    Carbon dioxide disposal into deep aquifers is a potential means whereby atmospheric emissions of greenhouse gases may be reduced. However, our knowledge of the geohydrology, geochemistry, geophysics, and geomechanics of CO 2 disposal must be refined if this technology is to be implemented safely, efficiently, and predictably. As a prelude to a fully coupled treatment of physical and chemical effects of CO 2 injection, the authors have analyzed the impact of CO 2 immobilization through carbonate mineral precipitation. Batch reaction modeling of the geochemical evolution of 3 different aquifer mineral compositions in the presence of CO 2 at high pressure were performed. The modeling considered the following important factors affecting CO 2 sequestration: (1) the kinetics of chemical interactions between the host rock minerals and the aqueous phase, (2) CO 2 solubility dependence on pressure, temperature and salinity of the system, and (3) redox processes that could be important in deep subsurface environments. The geochemical evolution under CO 2 injection conditions was evaluated. In addition, changes in porosity were monitored during the simulations. Results indicate that CO 2 sequestration by matrix minerals varies considerably with rock type. Under favorable conditions the amount of CO 2 that may be sequestered by precipitation of secondary carbonates is comparable with and can be larger than the effect of CO 2 dissolution in pore waters. The precipitation of ankerite and siderite is sensitive to the rate of reduction of Fe(III) mineral precursors such as goethite or glauconite. The accumulation of carbonates in the rock matrix leads to a considerable decrease in porosity. This in turn adversely affects permeability and fluid flow in the aquifer. The numerical experiments described here provide useful insight into sequestration mechanisms, and their controlling geochemical conditions and parameters

  4. Factors affecting construction performance: exploratory factor analysis

    Science.gov (United States)

    Soewin, E.; Chinda, T.

    2018-04-01

    The present work attempts to develop a multidimensional performance evaluation framework for a construction company by considering all relevant measures of performance. Based on the previous studies, this study hypothesizes nine key factors, with a total of 57 associated items. The hypothesized factors, with their associated items, are then used to develop questionnaire survey to gather data. The exploratory factor analysis (EFA) was applied to the collected data which gave rise 10 factors with 57 items affecting construction performance. The findings further reveal that the items constituting ten key performance factors (KPIs) namely; 1) Time, 2) Cost, 3) Quality, 4) Safety & Health, 5) Internal Stakeholder, 6) External Stakeholder, 7) Client Satisfaction, 8) Financial Performance, 9) Environment, and 10) Information, Technology & Innovation. The analysis helps to develop multi-dimensional performance evaluation framework for an effective measurement of the construction performance. The 10 key performance factors can be broadly categorized into economic aspect, social aspect, environmental aspect, and technology aspects. It is important to understand a multi-dimension performance evaluation framework by including all key factors affecting the construction performance of a company, so that the management level can effectively plan to implement an effective performance development plan to match with the mission and vision of the company.

  5. Factors affecting endoglucanase production by Trichoderma reesei ...

    African Journals Online (AJOL)

    Jane

    2011-08-22

    Aug 22, 2011 ... from the ANOVA analysis have a significant value of Pmodel>F= 0.0008 and R2 .... there are various environmental and nutritional factors ... reported to affect cellulase production from wheat straw ... many factors affecting simultaneously the fermentation ..... and control its stability (Kalra and Sandhu, 1986).

  6. Soil Conditions Rather Than Long-Term Exposure to Elevated CO2 Affect Soil Microbial Communities Associated with N-Cycling

    Directory of Open Access Journals (Sweden)

    Kristof Brenzinger

    2017-10-01

    Full Text Available Continuously rising atmospheric CO2 concentrations may lead to an increased transfer of organic C from plants to the soil through rhizodeposition and may affect the interaction between the C- and N-cycle. For instance, fumigation of soils with elevated CO2 (eCO2 concentrations (20% higher compared to current atmospheric concentrations at the Giessen Free-Air Carbon Dioxide Enrichment (GiFACE sites resulted in a more than 2-fold increase of long-term N2O emissions and an increase in dissimilatory reduction of nitrate compared to ambient CO2 (aCO2. We hypothesized that the observed differences in soil functioning were based on differences in the abundance and composition of microbial communities in general and especially of those which are responsible for N-transformations in soil. We also expected eCO2 effects on soil parameters, such as on nitrate as previously reported. To explore the impact of long-term eCO2 on soil microbial communities, we applied a molecular approach (qPCR, T-RFLP, and 454 pyrosequencing. Microbial groups were analyzed in soil of three sets of two FACE plots (three replicate samples from each plot, which were fumigated with eCO2 and aCO2, respectively. N-fixers, denitrifiers, archaeal and bacterial ammonia oxidizers, and dissimilatory nitrate reducers producing ammonia were targeted by analysis of functional marker genes, and the overall archaeal community by 16S rRNA genes. Remarkably, soil parameters as well as the abundance and composition of microbial communities in the top soil under eCO2 differed only slightly from soil under aCO2. Wherever differences in microbial community abundance and composition were detected, they were not linked to CO2 level but rather determined by differences in soil parameters (e.g., soil moisture content due to the localization of the GiFACE sets in the experimental field. We concluded that +20% eCO2 had little to no effect on the overall microbial community involved in N-cycling in the

  7. Soil Conditions Rather Than Long-Term Exposure to Elevated CO2 Affect Soil Microbial Communities Associated with N-Cycling.

    Science.gov (United States)

    Brenzinger, Kristof; Kujala, Katharina; Horn, Marcus A; Moser, Gerald; Guillet, Cécile; Kammann, Claudia; Müller, Christoph; Braker, Gesche

    2017-01-01

    Continuously rising atmospheric CO 2 concentrations may lead to an increased transfer of organic C from plants to the soil through rhizodeposition and may affect the interaction between the C- and N-cycle. For instance, fumigation of soils with elevated CO 2 ( e CO 2 ) concentrations (20% higher compared to current atmospheric concentrations) at the Giessen Free-Air Carbon Dioxide Enrichment (GiFACE) sites resulted in a more than 2-fold increase of long-term N 2 O emissions and an increase in dissimilatory reduction of nitrate compared to ambient CO 2 ( a CO 2 ). We hypothesized that the observed differences in soil functioning were based on differences in the abundance and composition of microbial communities in general and especially of those which are responsible for N-transformations in soil. We also expected e CO 2 effects on soil parameters, such as on nitrate as previously reported. To explore the impact of long-term e CO 2 on soil microbial communities, we applied a molecular approach (qPCR, T-RFLP, and 454 pyrosequencing). Microbial groups were analyzed in soil of three sets of two FACE plots (three replicate samples from each plot), which were fumigated with e CO 2 and a CO 2 , respectively. N-fixers, denitrifiers, archaeal and bacterial ammonia oxidizers, and dissimilatory nitrate reducers producing ammonia were targeted by analysis of functional marker genes, and the overall archaeal community by 16S rRNA genes. Remarkably, soil parameters as well as the abundance and composition of microbial communities in the top soil under e CO 2 differed only slightly from soil under a CO 2 . Wherever differences in microbial community abundance and composition were detected, they were not linked to CO 2 level but rather determined by differences in soil parameters (e.g., soil moisture content) due to the localization of the GiFACE sets in the experimental field. We concluded that +20% e CO 2 had little to no effect on the overall microbial community involved in N

  8. The importance of biological factors affecting trace metal concentration as revealed from accumulation patterns in co-occurring terrestrial invertebrates

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickx, Frederik; Maelfait, Jean-Pierre; Bogaert, Nicolas; Tojal, Catarina; Du Laing, Gijs; Tack, Filip M.G.; Verloo, Marc G

    2004-02-01

    As physicochemical properties of the soil highly influence the bioavailable fraction of a particular trace metal, measured metal body burdens in a particular species are often assumed to be more reliable estimators of the contamination of the biota. To test this we compared the Cd, Cu and Zn content of three spiders (generalist predators) and two amphipods (detritivores), co-occurring in seven tidal marshes along the river Schelde, between each other and with the total metal concentrations and the concentrations of four sequential extractions of the soils. Correlations were significant in only one case and significant sitexspecies interactions for all metals demonstrate that factors affecting metal concentration were species and site specific and not solely determined by site specific characteristics. These results emphasize that site and species specific biological factors might be of the utmost importance in determining the contamination of the biota, at least for higher trophic levels. A hypothetical example clarifies these findings. - Site and species specific biological factors are important in determining contamination of biota.

  9. Selective removal of Cs and Re by precipitation in a Na2CO3-H2O2 solution

    International Nuclear Information System (INIS)

    Eil-Hee Lee; Jae-Gwan Lim; Dong-Yong Chung; Han-Beom Yang; Kwang-Wook Kim

    2010-01-01

    The removal of Cs and Re (as a surrogate for Tc) by selective precipitation from the simulated fission products which were co-dissolved with uranium during the oxidative dissolution of spent fuel in a Na 2 CO 3 -H 2 O 2 solution was investigated in this study. The precipitations of Cs and Re were examined by introducing sodium tetraphenylborate (NaTPB) and tetraphenylohosponium chloride (TPPCl), respectively. The precipitation of Cs by NaTPB and that of Re by TPPCl each took place within 5 min, and an increase in temperature up to 50 deg C and a stirring speed up to 1000 rpm hardly affected their precipitation rates. The most important factor in the precipitation with NaTPB and TPPCl was found to be a pH of the solution after precipitation. Since Mo tends to co-precipitate with Cs or Re at a lower pH, an effective precipitation with NaTPB and TPPCl was done at pH of above 9 without the co-precipitation of Mo. More than 99% of Cs and Re were precipitated when the initial concentration ratio of NaTPB to Cs was above 1 and when that of TPPCl to Re was above 1. The precipitation of Cs and Re was never affected by the concentration of Na 2 CO 3 and H 2 O 2 , even though they were raised up to 1.5 and 1.0 M, respectively. Precipitation yields of Cs and Re in a Na 2 CO 3 -H 2 O 2 solution were found to be dependent on the concentration ratios of [NaTBP]/[Cs] and [TPPCl]/[Re]. (author)

  10. Field demonstration of CO2 leakage detection in potable aquifers with a pulselike CO2-release test.

    Science.gov (United States)

    Yang, Changbing; Hovorka, Susan D; Delgado-Alonso, Jesus; Mickler, Patrick J; Treviño, Ramón H; Phillips, Straun

    2014-12-02

    This study presents two field pulselike CO2-release tests to demonstrate CO2 leakage detection in a shallow aquifer by monitoring groundwater pH, alkalinity, and dissolved inorganic carbon (DIC) using the periodic groundwater sampling method and a fiber-optic CO2 sensor for real-time in situ monitoring of dissolved CO2 in groundwater. Measurements of groundwater pH, alkalinity, DIC, and dissolved CO2 clearly deviated from their background values, showing responses to CO2 leakage. Dissolved CO2 observed in the tests was highly sensitive in comparison to groundwater pH, DIC, and alkalinity. Comparison of the pulselike CO2-release tests to other field tests suggests that pulselike CO2-release tests can provide reliable assessment of geochemical parameters indicative of CO2 leakage. Measurements by the fiber-optic CO2 sensor, showing obvious leakage signals, demonstrated the potential of real-time in situ monitoring of dissolved CO2 for leakage detection at a geologic carbon sequestration (GCS) site. Results of a two-dimensional reactive transport model reproduced the geochemical measurements and confirmed that the decrease in groundwater pH and the increases in DIC and dissolved CO2 observed in the pulselike CO2-release tests were caused by dissolution of CO2 whereas alkalinity was likely affected by carbonate dissolution.

  11. Soil CO2 flux from three ecosystems in tropical peatland of Sarawak, Malaysia

    International Nuclear Information System (INIS)

    Melling, Lulie; Hatano, Ryusuke

    2005-01-01

    Soil CO 2 flux was measured monthly over a year from tropical peatland of Sarawak, Malaysia using a closed-chamber technique. The soil CO 2 flux ranged from 100 to 533 mg C/m 2 /h for the forest ecosystem, 63 to 245 mg C/m 2 /h for the sago and 46 to 335 mg C/m 2 /h for the oil palm. Based on principal component analysis (PCA), the environmental variables over all sites could be classified into three components, namely, climate, soil moisture and soil bulk density, which accounted for 86% of the seasonal variability. A regression tree approach showed that CO 2 flux in each ecosystem was related to different underlying environmental factors. They were relative humidity for forest, soil temperature at 5 cm for sago and water-filled pore space for oil palm. On an annual basis, the soil CO 2 flux was highest in the forest ecosystem with an estimated production of 2.1 kg C/m 2 /yr followed by oil palm at 1.5 kg C/m 2 /yr and sago at 1.1 kg C/m 2 /yr. The different dominant controlling factors in CO 2 flux among the studied ecosystems suggested that land use affected the exchange of CO 2 between tropical peatland and the atmosphere

  12. Emission of Methane From Enteric Fermentation: National Contribution and Factors Affecting it in Livestock

    Directory of Open Access Journals (Sweden)

    Budi Haryanto

    2009-12-01

    Full Text Available Changing in atmosphere condition is affected by the quantity of gases produced from all activities on the earth. Gases that have effects on global warming are CO2, N2O, H2O, and CH4 (methane. Among other sources of methane are enteric fermentation of organic material from ruminants and feces decomposition. Methane production from ruminants is affected by several factors such as breed/type of animal, feed quality, environmental temperature and physiological status of the animal. Energy as methane in ruminants may reach 2 to 15% of the total energy consumption. To reduce the emission of methane from ruminants, it is necessary to apply a strategic feeding system for more efficient utilization of feed.

  13. Exploring driving factors of energy-related CO2 emissions in Chinese provinces: A case of Liaoning

    International Nuclear Information System (INIS)

    Geng, Yong; Zhao, Hongyan; Liu, Zhu; Xue, Bing; Fujita, Tsuyoshi; Xi, Fengming

    2013-01-01

    In order to uncover driving forces for provincial CO 2 emission in China, a case study was undertaken to shed light on the CO 2 emission growth in such a region. Liaoning province was selected due to its typical features as one industrial province. The environmental input–output analysis and structure decomposing analysis have been conducted in order to provide a holistic picture on Liaoning's CO 2 emissions during 1997–2007. Research outcomes indicate that rapid increase of per capita consumption activities is the main driver for Liaoning to have a significant CO 2 emission growth, followed by consumption structure, production structure and population size. Energy intensity and energy structure partly offset the CO 2 emission increase. Electricity power and heat supply and construction sectors caused the most CO 2 emission, indicating that more specific mitigation policies for these two sectors should be prepared. From final demand point of view, it is clear that trade plays a leading role in regional CO 2 emission, followed by fixed capital investment and urban household consumption which become increasingly important over time. Consequently, in order to realize low carbon development, local governments should consider all these factors so that appropriate mitigation policies can be raised by considering the local realities. - Highlights: • Driving forces for Liaoning's CO 2 emission have been uncovered through the use of IO-SDA model. • Construction and electricity power/heat supply sectors have the highest embodied emissions. • Trade plays a key role on regional CO 2 emission in Chinese old industrial base. • Fixed capital investment and urban households generated more CO 2 emissions

  14. Air-ice CO2 fluxes and pCO2 dynamics in the Arctic coastal area (Amundsen Gulf, Canada)

    Science.gov (United States)

    Geilfus, Nicolas-Xavier; Tison, Jean Louis; Carnat, Gauthier; Else, Brent; Borges, Alberto V.; Thomas, Helmuth; Shadwick, Elizabeth; Delille, Bruno

    2010-05-01

    driven by the air-ice pCO2 gradient. Hence, while the temperature is a leading factor in controlling magnitude of air-ice CO2 fluxes, pCO2 of the ice controls both magnitude and direction of fluxes. However, pCO2 in Arctic is significantly higher than in Antarctica. This difference could be due to a higher level of organic matter in Arctic. The degradation of this organic matter fuel CO2 efflux from the ice to the atmosphere in early spring. We observed evidence of CaCO3 precipitation, but only at the top of the ice. Implications in term of air-ice CO2 transfer of such CaCO3 precipitation will be discussed. In addition, salt-rich snow appears to strongly affect air-ice CO2 fluxes in the arctic. Borges, A. V., et al. (2006), Carbon dioxide in European coastal waters, Estuar. Coast. Shelf Sci., 70(3), 375-387.

  15. Decomposition of factors determining the trend of CO{sub 2} emissions from car travel in Great Britain (1970-2000)

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Tae-Hyeong [The Korea Transport Institute (KOTI), 2311 Daehwa-dong, Ilsan-gu, Goyang-Shi, Gyeonggi-do, 411-701 (Korea, Republic of)

    2005-04-15

    Carbon dioxide (CO{sub 2}) is the most important of the greenhouse gases that are causing global warming. The transport sector currently accounts for more than one-quarter of CO{sub 2} emissions and more importantly its share in total emissions is increasing in most countries. This paper investigates the key factors in the change in CO{sub 2} emissions from car travel in Great Britain over the last 30 years. It attempts to disentangle determinants of growth in CO{sub 2} emissions from car travel, which has the largest share of emissions in road transport. The study is based on various decomposition analyses, starting from the IPAT identity. As summarised in the IPAT identity, the degree of the Impact of human activity on the environment is determined by changes in Population, Affluence (per-capita consumption) and Technology (environmental impact per quantity of consumption). In the case of CO{sub 2} emissions from car travel in Great Britain, the affluence (A) factor (car driving distance per person) was a dominant force for the growth of emissions over the last 30 years. Not only do people travel longer distances by cars than 30 years ago, but car occupancy rates have also decreased, contributing to the growth of car driving distance per person. Although technology (T) factors such as fuel efficiency and fuel substitution to diesel fuel partly cancelled out these growth effects of affluence factors, this contribution was relatively small. However, in the 1990s there emerged a different pattern in the trend. Of the affluence (A) factors, the growth rate of car trip distance per person weakened considerably. As for the technology (T) effect, the carbon intensity of car driving kept decreasing over this period. Therefore, although CO{sub 2} emissions from car travel (I) continued to increase, the growth rate became substantially lower than in the earlier periods. More detailed investigation into the determinants of both affluence (A) factors and technology (T

  16. Soil CO 2 fluxes from direct seeding rice fields under two tillage practices in central China

    Science.gov (United States)

    Li, Cheng-fang; Kou, Zhi-kui; Yang, Jin-hua; Cai, Ming-li; Wang, Jin-ping; Cao, Cou-gui

    2010-07-01

    Agricultural practices affect the production and emission of carbon dioxide (CO 2) from paddy soils. It is crucial to understand the effects of tillage and N fertilization on soil CO 2 flux and its influencing factors for a better comprehension of carbon dynamics in subtropical paddy ecosystems. A 2-yr field study was conducted to assess the effects of tillage (conventional tillage [CT] and no-tillage [NT]) and N fertilization (0 and 210 kg N ha -1) on soil CO 2 fluxes during the 2008 and 2009 rice growing seasons in central China. Treatments were established following a split-plot design of a randomized complete block with tillage practices as the main plot and N fertilizer level as the split-plot treatment. The soil CO 2 fluxes were measured 24 times in 2008 and 17 times in 2009. N fertilization did not affect soil CO 2 emissions while tillage affected soil CO 2 emissions, where NT had similar soil CO 2 emissions to CT in 2008, but in 2009, NT significantly increased soil CO 2 emissions. Cumulative CO 2 emissions were 2079-2245 kg CO 2-C ha -1 from NT treatments, and 2084-2141 kg CO 2-C ha -1 from CT treatments in 2008, and were 1257-1401 kg CO 2-C ha -1 from NT treatments, and 1003-1034 kg CO 2-C ha -1 from CT treatments in 2009, respectively. Cumulative CO 2 emissions were significantly related to aboveground biomass and soil organic C. Before drainage of paddy fields, soil CO 2 fluxes were significantly related to soil temperature with correlation coefficients ( R) of 0.67-0.87 in 2008 and 0.69-0.85 in 2009; moreover, the Q 10 values ranged from 1.28 to 1.55 and from 2.10 to 5.21 in 2009, respectively. Our results suggested that NT rice production system appeared to be ineffective in decreasing carbon emission, which suggested that CO 2 emissions from integrated rice-based system should be taken into account to assess effects of tillage.

  17. CO2 Acquisition Membrane (CAM)

    Science.gov (United States)

    Mason, Larry W.; Way, J. Douglas; Vlasse, Marcus

    2003-01-01

    The objective of CAM is to develop, test, and analyze thin film membrane materials for separation and purification of carbon dioxide (CO2) from mixtures of gases, such as those found in the Martian atmosphere. The membranes are targeted toward In Situ Resource Utilization (ISRU) applications that will operate in extraterrestrial environments and support future unmanned and human space missions. A primary application is the Sabatier Electrolysis process that uses Mars atmosphere CO2 as raw material for producing water, oxygen, and methane for rocket fuel and habitat support. Other applications include use as an inlet filter to collect and concentrate Mars atmospheric argon and nitrogen gases for habitat pressurization, and to remove CO2 from breathing gases in Closed Environment Life Support Systems (CELSS). CAM membrane materials include crystalline faujasite (FAU) zeolite and rubbery polymers such as silicone rubber (PDMS) that have been shown in the literature and via molecular simulation to favor adsorption and permeation of CO2 over nitrogen and argon. Pure gas permeation tests using commercial PDMS membranes have shown that both CO2 permeance and the separation factor relative to other gases increase as the temperature decreases, and low (Delta)P(Sub CO2) favors higher separation factors. The ideal CO2/N2 separation factor increases from 7.5 to 17.5 as temperature decreases from 22 C to -30 C. For gas mixtures containing CO2, N2, and Ar, plasticization decreased the separation factors from 4.5 to 6 over the same temperature range. We currently synthesize and test our own Na(+) FAU zeolite membranes using standard formulations and secondary growth methods on porous alumina. Preliminary tests with a Na(+) FAU membrane at 22 C show a He/SF6 ideal separation factor of 62, exceeding the Knudsen diffusion selectivity by an order of magnitude. This shows that the membrane is relatively free from large defects and associated non-selective (viscous flow) transport

  18. Pore-scale imaging of capillary trapped supercritical CO2 as controlled by water-wet vs. CO2-wet media and grain shapes

    Science.gov (United States)

    Chaudhary, K.; Cardenas, M.; Wolfe, W. W.; Maisano, J. A.; Ketcham, R. A.; Bennett, P.

    2013-12-01

    The capillary trapping of supercritical CO2 (s-CO2) is postulated to comprise up to 90% of permanently trapped CO2 injected during geologic sequestration. Successive s-CO2/brine flooding experiments under reservoir conditions showed that water-wet rounded beads trapped 15% of injected s-CO2 both as clusters and as individual ganglia, whereas CO2¬-wet beads trapped only 2% of the injected s-CO2 as minute pockets in pore constrictions. Angular water-wet grains trapped 20% of the CO2 but flow was affected by preferential flow. Thus, capillary trapping is a viable mechanism for the permanent CO2 storage, but its success is constrained by the media wettability.

  19. A Critical Review of the Impacts of Leaking CO2 Gas and Brine on Groundwater Quality

    Energy Technology Data Exchange (ETDEWEB)

    Qafoku, Nikolla [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zheng, Liange [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bacon, Diana H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lawter, Amanda R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Brown, Christopher F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-30

    Geological carbon sequestration (GCS) is a global carbon emission reduction strategy involving the capture of CO2 emitted from fossil fuel burning power plants, as well as the subsequent injection of the captured CO2 gas into deep saline aquifers or depleted oil and gas reservoirs. A critical question that arises from the proposed GCS is the potential impacts of CO2 injection on the quality of drinking-water systems overlying CO2 sequestration storage sites. Although storage reservoirs are evaluated and selected based on their ability to safely and securely store emplaced fluids, leakage of CO2 from storage reservoirs is a primary risk factor and potential barrier to the widespread acceptance of geologic CO2 sequestration (OR Harvey et al. 2013; Y-S Jun et al. 2013; DOE 2007). Therefore, a systematic understanding of how CO2 leakage would affect the geochemistry of potable aquifers, and subsequently control or affect elemental and contaminant release via sequential and/or simultaneous abiotic and biotic processes and reactions is vital.

  20. CO{sub 2} geothermal heat probe - Phase 2; CO{sub 2}-Erdwaermesonde - Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Grueniger, A.; Wellig, B.

    2009-12-15

    In this project the fluid dynamics and thermodynamics inside a CO{sub 2} geothermal heat probe have been investigated. The functionality of such a probe, which works like a thermosyphon, was analyzed by means of a simulation model in MATLAB. The model couples the behaviour inside the heat probe with the heat conduction in the earth. A parameter study revealed that the self-circulation character of such a probe leads to flattening of the vertical earth temperature profile near the probe and, hence, leads to more uniform heat removal along the probe. The circulation of CO{sub 2} even goes on when the heat pump is off. This might be advantageous for the regeneration phase. The heat transfer resistance of the evaporating CO{sub 2} film flowing down the probe wall is very small compared to the conduction resistance of the earth. Therefore, no difference has been found between the performances of a conventional heat pipe and a configuration where the liquid phase injection is distributed on different height stages along the probe. It is estimated that the seasonal performance factor of heat pumps can be improved by 15-25% with a CO{sub 2} geothermal heat probe. The main advantage is that the heat transfer to the evaporator of the heat pump (condensation of CO{sub 2} / evaporation of refrigerant) is much more efficient than in a conventional brine probe without phase change. Furthermore, no circulation pump is needed. (authors)

  1. THE METALLICITY DEPENDENCE OF THE CO {yields} H{sub 2} CONVERSION FACTOR IN z {>=} 1 STAR-FORMING GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Genzel, R.; Tacconi, L. J.; Schreiber, N. M. Foerster; Gracia-Carpio, J.; Lutz, D.; Saintonge, A. [Max-Planck-Institut fuer extraterrestrische Physik (MPE), Giessenbachstr. 1, 85748 Garching (Germany); Combes, F. [Observatoire de Paris, LERMA, CNRS, 61 Av. de l' Observatoire, F-75014 Paris (France); Bolatto, A. [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Neri, R.; Cox, P. [IRAM, 300 Rue de la Piscine, 38406 St. Martin d' Heres, Grenoble (France); Sternberg, A. [Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel); Cooper, M. C. [Department of Physics and Astronomy, Frederick Reines Hall, University of California, Irvine, CA 92697-4575 (United States); Bouche, N. [Department of Physics, University of California, Santa Barbara, Broida Hall, Santa Barbara, CA 93106 (United States); Bournaud, F. [Service d' Astrophysique, DAPNIA, CEA/Saclay, F-91191 Gif-sur-Yvette Cedex (France); Burkert, A. [Universitaetssternwarte der Ludwig-Maximiliansuniversitaet, Scheinerstr. 1, D-81679 Muenchen (Germany); Comerford, J. [Department of Astronomy and McDonald Observatory, 1 University Station, C1402 Austin, TX 78712-0259 (United States); Davis, M.; Newman, S. [Department of Astronomy, Campbell Hall, University of California, Berkeley, CA 94720 (United States); Garcia-Burillo, S. [Observatorio Astronomico Nacional-OAN, Apartado 1143, 28800 Alcala de Henares- Madrid (Spain); Naab, T., E-mail: genzel@mpe.mpg.de, E-mail: linda@mpe.mpg.de [Max-Planck Institut fuer Astrophysik (MPA), Karl Schwarzschildstrasse 1, D-85748 Garching (Germany); and others

    2012-02-10

    We use the first systematic samples of CO millimeter emission in z {>=} 1 'main-sequence' star-forming galaxies to study the metallicity dependence of the conversion factor {alpha}{sub CO,} from CO line luminosity to molecular gas mass. The molecular gas depletion rate inferred from the ratio of the star formation rate (SFR) to CO luminosity, is {approx}1 Gyr{sup -1} for near-solar metallicity galaxies with stellar masses above M{sub S} {approx} 10{sup 11} M{sub Sun }. In this regime, the depletion rate does not vary more than a factor of two to three as a function of molecular gas surface density or redshift between z {approx} 0 and 2. Below M{sub S} the depletion rate increases rapidly with decreasing metallicity. We argue that this trend is not caused by starburst events, by changes in the physical parameters of the molecular clouds, or by the impact of the fundamental-metallicity-SFR-stellar mass relation. A more probable explanation is that the conversion factor is metallicity dependent and that star formation can occur in 'CO-dark' gas. The trend is also expected theoretically from the effect of enhanced photodissociation of CO by ultraviolet radiation at low metallicity. From the available z {approx} 0 and z {approx} 1-3 samples we constrain the slope of the log({alpha}{sub CO})-log (metallicity) relation to range between -1 and -2, fairly insensitive to the assumed slope of the gas-SFR relation. Because of the lower metallicities near the peak of the galaxy formation activity at z {approx} 1-2 compared to z {approx} 0, we suggest that molecular gas masses estimated from CO luminosities have to be substantially corrected upward for galaxies below M{sub S}.

  2. CO2 emission factors for waste incineration: Influence from source separation of recyclable materials

    DEFF Research Database (Denmark)

    Larsen, Anna Warberg; Astrup, Thomas

    2011-01-01

    variations between emission factors for different incinerators, but the background for these variations has not been thoroughly examined. One important reason may be variations in collection of recyclable materials as source separation alters the composition of the residual waste incinerated. The objective...... routed to incineration. Emission factors ranged from 27 to 40kg CO2/GJ. The results appeared most sensitive towards variations in waste composition and water content. Recycling rates and lower heating values could not be used as simple indicators of the resulting emission factors for residual household...... different studies and when using the values for environmental assessment purposes....

  3. Measuring the CO2 shadow price for wastewater treatment: A directional distance function approach

    International Nuclear Information System (INIS)

    Molinos-Senante, María; Hanley, Nick; Sala-Garrido, Ramón

    2015-01-01

    Highlights: • The shadow price of CO 2 informs about the marginal abatement cost of this pollutant. • It is estimated the shadow price of CO 2 for wastewater treatment plants. • The shadow prices depend on the setting of the directional vectors of the distance function. • Sewage sludge treatment technology affects the CO 2 shadow price. - Abstract: The estimation of the value of carbon emissions has become a major research and policy topic since the establishment of the Kyoto Protocol. The shadow price of CO 2 provides information about the marginal abatement cost of this pollutant. It is an essential element in guiding environmental policy issues, since the CO 2 shadow price can be used when fixing carbon tax rates, in environmental cost-benefit analysis and in ascertaining an initial market price for a trading system. The water industry could play an important role in the reduction of greenhouse gas (GHG) emissions. This paper estimates the shadow price of CO 2 for a sample of wastewater treatment plants (WWTPs), using a parametric quadratic directional distance function. Following this, in a sensitivity analysis, the paper evaluates the impact of different settings of directional vectors on the shadow prices. Applying the Mann–Whitney and Kruskal–Wallis non-parametric tests, factors affecting CO 2 prices are investigated. The variation of CO 2 shadow prices across the WWTPs evaluated argues in favour of a market-based approach to CO 2 mitigation as opposed to command-and-control regulation. The paper argues that the estimation of the shadow price of CO 2 for non-power enterprises can provide incentives for reducing GHG emissions

  4. Success Factors and Measures for Public Sector IS/IT Co-Sourcing Contracts

    Directory of Open Access Journals (Sweden)

    Erhan Edguer

    2004-05-01

    Full Text Available The main objective of this research was to explore the effectiveness of contract negotiations between buyers and suppliers in small government organizations, which collectively outsource their IS/IT activities to a single outsourcing vendor, usually referred to as ‘co-sourcing’. A major finding of this study was that organizations could have a successful co-sourcing arrangement by determining and putting into practice certain critical success factors. This research was the first study of government co-sourcing arrangements in Australia that aimed to identify the success of a contract and the critical factors that affected it. In this regard, it can contribute to the existing body of knowledge in co-sourcing activities that have been growing rapidly in government departments as well as in the private sector.

  5. Factors Affecting Detection Of Irradiated Bone Meat By Using Electron Spine Resonance

    International Nuclear Information System (INIS)

    FARAG, S.A.; ATIA, A.I.; HASSAN, G.M.

    2009-01-01

    Different types of bone meats were purchased locally such as camel, cow and sheep. The bones were removed, cleaned and irradiated with gamma rays at different doses (5, 10 and 20 kGy). The bone samples were stored in a refrigerator for five months for studying their stability of radiation-induced free radicals using electron spin resonance (ESR) technique. The effect of thermal treatment at 50 o C at intervals was studied besides effect of storage period and re-irradiation process on ESR signal intensity. The ESR spectrum for radical species in irradiated samples was characterized by signal with spectroscopic splitting factor (g factor) of g1=2.0025 and g2=1.9973 for camel, cow and sheep bones, respectively. The signal at g = 2.0025 was ascribed to free radical rotation CO -2 that was derived from radiation-induced hydroxyapatite. Generally, the results proved that all above mentioned factors under investigation can affect ESR signal intensity but not prevent the recognize of irradiated bones, therefore, it must be taken in mind when calculating the absorbed dose.

  6. Energy economics. CO{sub 2} emissions in China

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Yiming [Beijing Institute of Technology (China). Center for Energy and Environmental Policy Research; Liu, Lancui [Ministry of Environmental Protection of the People' s Republic of China, Beijing (China). Center for Climate and Environmental Policy; Wu, Gang; Zou, Lele [Chinese Academy of Sciences, Beijing (China). Inst. of Policy and Management

    2011-07-01

    ''Energy Economics: CO{sub 2} Emissions in China'' presents a collection of the researches on China's CO{sub 2} emissions as studied by the Center for Energy and Environmental Policy Research (CEEP). Based on the analysis of factors related to global climate change and CO{sub 2} emissions, it discusses China's CO{sub 2} emissions originating from various sectors, diverse impact factors, as well as proposed policies for reducing carbon emissions. Featuring empirical research and policy analysis on focused and critical issues involving different stages of CO{sub 2} emissions in China, the book provides scientific supports for researchers and policy makers in dealing with global climate change. (orig.)

  7. Effects of climate factors and vegetation on the CO2 fluxes and δ13C from re-established grassland

    Science.gov (United States)

    Bezyk, Yaroslav; Dorodnikov, Maxim; Sówka, Izabela

    2017-11-01

    The relationship between stable carbon isotope composition (δ13C -CO2) of soil CO2 flux, vegetation cover and weather conditions was investigated in a short-term campaign at a temperate re-established grassland in Germany. During August-September 2016, we measured surface CO2 flux with a closed-chamber method at high and low soil moisture content (`wet', `dry'), with and without above ground vegetation (`planted', `clear-cut') and estimated the effects of treatments on respective δ13C -CO2 values. The concentration and stable carbon isotope composition of CO2 were determined using the gas chromatography and mass spectrometry analyses. The δ13C -CO2 of the soil fluxes decreased over sampling time for the `dry-warm' conditions and canopy manipulation. The ecosystem-derived δ13C -CO2 values (corrected for the atmospheric δ13C -CO2) which included predominately soil-and rhizosphere respiration were -26.2 ± 0.8‰ for the `dry-warm' conditions and decreased down to -28.1 ± 1.4‰ over a period of 28 days from late August to the end of September. The decrease coincided with the lowering of CO2 flux and could be attributed to changes in plant physiological processes at the end of the vegetation season. Though the removal of shoots did not significantly affect the δ13C -CO2 values as compared with the control, the pattern of further δ13C -CO2 decrease (down to -28.8 ± 0.8‰) supported the role of living vegetation in a contribution of 13C-enriched CO2 to the ecosystem respiration.

  8. Influence of natural and anthropogenic factors on the dynamics of CO2 emissions from chernozems soil

    Science.gov (United States)

    Syabruk, Olesia

    2017-04-01

    Twentieth century marked a significant expansion of agricultural production. Soil erosion caused by human activity, conversion of forests and grasslands to cropland, desertification, burning nutrient residues, drainage, excessive cultivation led to intense oxidation of soil carbon to the atmosphere and allocation of additional amounts of CO2. According to the UN Intergovernmental Panel on Climate Change, agriculture is one of the main sources of greenhouse gases emissions to the atmosphere. The thesis reveals main patterns of the impact of natural and anthropogenic factors on CO2 emissions in the chernozems typical and podzolized in a Left-bank Forest-Steppe of Ukraine, seasonal and annual dynamics. New provisions for conducting monitoring CO2 emissions from soil were developed by combining observations in natural and controlled conditions, which allows isolating the impact of hydrological, thermal and trophic factors. During the research, the methods for operational monitoring of emission of carbon losses were improved, using a portable infrared gas analyzer, which allows receiving information directly in the field. It was determined that the volumes of emission losses of carbon chernozems typical and podzolized Left-bank Forest-Steppe of Ukraine during the growing season are 480-910 kg/ha and can vary depending on the soil treatment ±( 4,0 - 6,0) % and fertilizer systems ± (3,8 - 7,1) %. The significant impact of long application of various fertilizer systems and soil treatment on the intensity of carbon dioxide emissions was investigated. It was found that most emission occurs in organic- mineral fertilizers systems with direct seeding. The seasonal dynamics of the potential capacity of the soil to produce CO2 were researched. Under identical conditions of humidity and temperature it has maximum in June and July and the gradual extinction of the autumn. It was determined that the intensity of the CO2 emission from the surface of chernozem fluctuates daily from

  9. CO2 storage in Sweden

    International Nuclear Information System (INIS)

    Ekstroem, Clas; Andersson, Annika; Kling, Aasa; Bernstone, Christian; Carlsson, Anders; Liljemark, Stefan; Wall, Caroline; Erstedt, Thomas; Lindroth, Maria; Tengborg, Per; Edstroem, Mikael

    2004-07-01

    with the expansions of natural gas networks for Sweden should be looked for. Issues that need more deep studies are how the injection infrastructures for aquifers need to be modified compared to those used for oil fields, successively improved validation of CO 2 handling costs for Europe and Sweden, regarding i.a. ship transport and industrial compression and cooling of large CO 2 flows in connection to CO 2 capture. It is likely that the local environment would be affected by a possible leakage. Many organisms and ecosystems are sensitive to small changes in the CO 2 concentration. Knowledge exists on how humans, animals and plants would be affected by enhanced contents of carbon dioxide in their immediate surroundings, and on how the physical part of soils and water would be influenced by higher CO 2 concentrations. How individual ecosystems would be affected will have to be assessed based on the conditions in each specific system. Further studies are needed on consequences for ecosystems, especially for ecosystems in the ground, particularly those deep in the ground. Severe environmental damages (large short-term emissions that would damage the surrounding environment, i.e. concentrations around 25 % CO 2 ) would be limited to a few tens of meters from the plant and will therefore not need to be considered. No calculations have been performed for any transport means besides pipelines. Two parallels to CO 2 transport and storage are geothermic projects and natural gas pipelines. For geothermic projects there is a basic positive attitude already before the project start and the operations take place deep in the ground, i.e. at a safe distance from those concerned, and no threatening picture has been felt. No overall legal framework applicable to CO 2 transport and storage exist today, neither within the national Swedish law nor within international/European law. There are however adjacent legal frameworks mainly regarding transport. Providing that the construction of

  10. CO{sub 2} separation from exhaust gas; CO{sub 2} separasjon fra eksosgass

    Energy Technology Data Exchange (ETDEWEB)

    Magelssen, Paul Fr. [Saga Petroleum A/S, Forus (Norway)

    1998-07-01

    When Saga wanted to reduce the CO{sub 2} emissions from Snorre B, cleaning of CO{sub 2} from exhaust gas was one of several options considered. CO{sub 2} cleaning using membrane/amine technology is under development. Saga required that the technology should be qualified and that the yield of the Snorre B project should not be reduced. This presentation discusses qualification of combined membrane/amine technology, environmental issues, economic issues and implementation on the Snorre B platform. Flue gas from the gas turbine is passed to a CO{sub 2} absorption and desorption stage from which the CO{sub 2} is passed on for compression and disposal while the cleaned flue is let out. The membrane is situated between the flue gas and the absorbent liquid. The pores are large enough for the CO{sub 2} to pass through quickly and small enough to prevent the liquid from penetrating into the pores. The packing factor is high, 500 - 1000 m2/m3, there is no formation of froth, ducts or entrainment of the liquid. New technology implies 65 - 70% size reduction of the main equipment and 39 - 40% reduction of the energy consumption. Research on amines brings out new chemicals which imply 80% reduction in the consumption of chemicals and the quantity of special waste produced. If a CO{sub 2} cleaning plant is installed on a LM 2500, the CO{sub 2} emissions can be reduced by 97,200 ton/year given the right operational conditions. Although it was decided in 1998 not to install the module with the CO{sub 2} pilot cleaning plant, Snorre B is still a good environmental project having CO{sub 2} emission within the values set by Miljoesok.

  11. The Influence of Various Operation Modes on Diesel Passenger Cars CO2 Emissions

    Directory of Open Access Journals (Sweden)

    Arina Negoițescu

    2015-07-01

    Full Text Available The amount of emissions released into the atmosphere by polluting sources was significantly reduced due to the limitations introduced by the EU. Since one of the main sources affecting air quality is the car, researches regarding the influence of various factors on exhaust emissions are carried out. As CO2 is the main pollutant responsible for the greenhouse effect, the article treats the influence of vehicle load and traffic levels, running modes, the electric consumer’s utilization, and driving style on CO2 emissions for cars equipped with diesel engine. The results from the conducted study can contribute to adopt solutions in order to decrease the concentration of CO2 emissions from cars equipped with diesel engines.

  12. An analysis of the driving forces of CO2 emissions embodied in Japan-China trade

    International Nuclear Information System (INIS)

    Dong Yanli; Ishikawa, Masanobu; Liu Xianbing; Wang Can

    2010-01-01

    By using the latest China-Japan input-output data sets and the index decomposition analysis (IDA) approach, this article analyzes the driving forces of CO 2 emissions embodied in trade between the two countries during 1990-2000. We found that the growth of trade volume had a large influence on the increase of CO 2 emissions embodiments in bilateral trade. The dramatic decline in carbon intensity of the Chinese economy is a primary cause in offsetting CO 2 emissions exported from China to Japan over 1995-2000. We argue that a better understanding of the factors affecting CO 2 emissions embodied in international trade will assist in seeking more effective climate policies with wider participation in the post-Kyoto regime.

  13. Determining the Factors Affecting Labor Productivity of Nurses

    Directory of Open Access Journals (Sweden)

    Yurdanur Dikmen

    2016-12-01

    Results: It was found that the 45.5% of nurses participated in the study were in the 23-53 age group, 79.5% were women, 76.9% married, 41.1% associate degree graduates. 42.3% of nurses' durations of professional experience were 0-5 years, 22.4% of nurses were clinical chief, 69.2% were working as shifts. Participants believe that the factors affecting the labor productivity were respectively organizational factors, ergonomic factors and personal factors. When organizational factors was examined; nurses stated that the lack of working personnel in the section, the low wages and unequal wages for the same work, the long working hours and the system which based on personal relations instead of merit were affecting productivity. The factors affecting labor productivity of nurses were not different according to age, gender, education level and marital status (p>0.05, but different according to mode of operation and years of experience (p<0.05. Conclusion: According to this study, it was found that there are many factors that affect the efficiency of the nurses. The most important factors affecting nurses' efficiency were determined as wage and working conditions. [J Contemp Med 2016; 6(4.000: 334-342

  14. Factors affecting sorption of radiocobalt by river sediments

    International Nuclear Information System (INIS)

    El-Din, M.R.E.; Ramadan, A.B.; Atta, E.R.

    2001-01-01

    Analysis of the principal factors affecting the interaction of radio cobalt with fresh water sediments and their importance for migration of radio cobalt in surface water streams. The uptake percent (U%) of radio cobalt by Ismailia Cannal bottom sediments (ICUBS) have been studied as a function of contact time, ph, competing ion, carrier concentration and natural ligands such as humic acid using batch technique. Mineralogical analyses of the sediment samples were carried out. The amount sorbed per gram sediment, (X/m), increased as the carrier concentration increased from 10 -8 mol. Following a Freundlich type isotherm. The uptake of radio cobalt was found to be affected by changing in the ph of the aqueous phase. Presence of Mg 24 ions as competing cation decreases the sorption of 60 Co. Presence of humic acid shows a slight effect on the sorption of 60 Co. Desorption of the investigated metal ion from the loaded sediment samples was also studied. A mathematical model for the migration of the investigated radioisotope in Ismailia canal water stream was developed to predict the concentrations of cobalt ion at different distances in X-direction

  15. Soil CO2 concentration does not affect growth or root respiration in bean or citrus

    NARCIS (Netherlands)

    Bouma, T.J.; Nielsen, K.F.; Eissenstat, D.M.; Lynch, J.P.

    1997-01-01

    Contrasting effects of soil CO2 concentration on root respiration rates during short-term CO2 exposure, and on plant growth during long-term CO2 exposure, have been reported, Here we examine the effects of both short-and long-term exposure to soil CO2 on the root respiration of intact plants and on

  16. Factors affecting the precipitation of pure calcium carbonate during the direct aqueous carbonation of flue gas desulfurization gypsum

    International Nuclear Information System (INIS)

    Song, Kyungsun; Jang, Young-Nam; Kim, Wonbaek; Lee, Myung Gyu; Shin, Dongbok; Bang, Jun-Hwan; Jeon, Chi Wan; Chae, Soo Chun

    2014-01-01

    The mineral carbonation of FGD (flue gas desulfurization) gypsum was carried out through CO 2 sorption into ammonia solution containing FGD gypsum. High-purity calcium carbonate was precipitated from DCC (dissolved calcium carbonate) solution which was extracted during the induction period. The factors affecting the preparation of pure calcium carbonate were examined under the following conditions: CO 2 flow rate (1–3 L/min), ammonia content (4–12%), and S/L (solid-to-liquid) ratio (5–300 g/L). X-Ray diffraction study revealed that the PCC (precipitated calcium carbonate) was round-shaped vaterite. The induction time for PCC decreased as the CO 2 flow rate increased. The maximum formation efficiency for pure PCC was seen to increase linearly with the ammonia content. The formation efficiency for pure PCC was the highest (90%) for S/L ratio of 5 g/L but it decreased as S/L ratio increased. On the other hand, S/L ratio didn't affect the maximum solubility limit of DCC. It is believed that the pure PCC would add an economic value to the FGD gypsum carbonation for industrial CO 2 sequestration. - Highlights: • Pure and white CaCO 3 was synthesized using induction period during direct carbonation of FGD gypsum. • Its formation efficiency was increased with ammonia content but decreased with solid-to-liquid ratio. • This method is expected to extend to other industrial CO 2 sequestration for the enhanced economic value of precipitated CaCO 3

  17. Does Short-term Litter Input Manipulation Affect Soil Respiration and the Carbon-isotopic Signature of Soil Respired CO2

    Science.gov (United States)

    Cheng, X.; Wu, J.

    2016-12-01

    Global change greatly alters the quality and quantity of plant litter inputs to soils, and further impacts soil organic matter (SOM) dynamics and soil respiration. However, the process-based understanding of how soil respiration may change with future shift in litter input is not fully understood. The Detritus Input and Removal Treatment (DIRT) experiment was conducted in coniferous forest (Platycladus orientalis (Linn.) Franco) ecosystem of central China to investigate the impact of above- and belowground litter input on soil respiration and the carbon-isotopic signature of soil respired CO2. Short-term (1-2 years) litter input manipulation significantly affected soil respiration, based on annual flux values, soil respiration was 31.9%, 20.5% and 37.2% lower in no litter (NL), no root (NR) and no input (NRNL), respectively, compared to control (CK). Whereas double litter (DL) treatment increased soil respiration by 9.1% compared to CK. The recalcitrance index of carbon (RIC) and the relative abundance of fungi increased under litter removal or root exclusion treatment (NL, NR and NRNL) compared to CK. Basal soil respiration was positively related to liable C and microbial biomass and negatively related to RIC and fungi to bacteria (F: B) ratio. The carbon-isotopic signature of soil respired CO2 enriched under litter removal and no input treatment, and slightly depleted under litter addition treatment compared to CK. Our results suggest that short-term litter input manipulation can affect the soil respiration by altering substrate availability and microbial community structure, and also impact the carbon-isotopic signature of soil respired CO2 possibly duo to change in the component of soil respiration and soil microclimate.

  18. Familial Aggregation and Heritability of Schizophrenia and Co-aggregation of Psychiatric Illnesses in Affected Families.

    Science.gov (United States)

    Chou, I-Jun; Kuo, Chang-Fu; Huang, Yu-Shu; Grainge, Matthew J; Valdes, Ana M; See, Lai-Chu; Yu, Kuang-Hui; Luo, Shue-Fen; Huang, Lu-Shuang; Tseng, Wen-Yi; Zhang, Weiya; Doherty, Michael

    2017-09-01

    Strong familial aggregation of schizophrenia has been reported but there is uncertainty concerning the degree of genetic contribution to the phenotypic variance of the disease. This study aimed to examine the familial aggregation and heritability of schizophrenia, and the relative risks (RRs) of other psychiatric diseases, in relatives of people with schizophrenia using the Taiwan National Health Insurance Database. The study population included individuals with affected first-degree or second-degree relatives identified from all beneficiaries (n = 23 422 955) registered in 2013. Diagnoses of schizophrenia made by psychiatrists were ascertained between January 1, 1996 and December 31, 2013. Having an affected co-twin, first-degree relative, second-degree relative, or spouse was associated with an adjusted RR (95% CI) of 37.86 (30.55-46.92), 6.30 (6.09-6.53), 2.44 (1.91-3.12), and 1.88 (1.64-2.15), respectively. Compared with the general population, individuals with one affected first-degree relative had a RR (95% CI) of 6.00 (5.79-6.22) and those with 2 or more had a RR (95% CI) of 14.66 (13.00-16.53) for schizophrenia. The accountability for the phenotypic variance of schizophrenia was 47.3% for genetic factors, 15.5% for shared environmental factors, and 37.2% for non-shared environmental factors. The RR (95% CI) in individuals with a first-degree relative with schizophrenia was 3.49 (3.34-3.64) for mood disorders and 3.91 (3.35-4.57) for delusional disorders. A family history of schizophrenia is therefore associated with a higher risk of developing schizophrenia, mood disorders, and delusional disorders. Heritability and environmental factors each account for half of the phenotypic variance of schizophrenia. © The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center.

  19. 14CO2 fixation pattern of cyanobacteria

    International Nuclear Information System (INIS)

    Erdmann, N.; Schiewer, U.

    1985-01-01

    The 14 CO 2 fixation pattern of three cyanobacteria in the light and dark were studied. Two different chromatographic methods widely used for separating labelled photosynthetic intermediates were compared. After ethanolic extraction, a rather uniform fixation pattern reflecting mainly the β-carboxylation pathway is obtained for all 3 species. Of the intermediates, glucosylglycerol is specific and high citrulline and low malate contents are fairly specific to cyanobacteria. The composition of the 14 CO 2 fixation pattern is hardly affected by changes in temperature or light intensity, but it is severely affected by changes in the water potential of the medium. (author)

  20. Impacts of upwind wildfire emissions on CO, CO2, and PM2.5 concentrations in Salt Lake City, Utah

    Science.gov (United States)

    D. V. Mallia; J. C. Lin; S. Urbanski; J. Ehleringer; T. Nehrkorn

    2015-01-01

    Biomass burning is known to contribute large quantities of CO2, CO, and PM2.5 to the atmosphere. Biomass burning not only affects the area in the vicinity of fire but may also impact the air quality far downwind from the fire. The 2007 and 2012 western U.S. wildfire seasons were characterized by significant wildfire...

  1. The numerical simulation on swelling factor and extraction rate of a tight crude oil and SC-CO2 system

    Science.gov (United States)

    Zou, Hongjun; Gong, Houjian; Li, Yajun; Dong, Mingzhe

    2018-03-01

    A method was established to study swelling and extraction between CO2 and crude oil, and the influences of pressure, temperature and molecular weight were investigated. Firstly, laboratory analysis was conducted to determine the pseudo-component and other parameters of the crude oil. Then swelling and extraction of the crude oil and SC-CO2 system were calculated by computer simulation. The results show that the pressure and temperature have little influence on the swelling and extraction between CO2 and crude oil when the mole fraction of CO2 is lower. A higher pressure and temperature is more beneficial to the interaction of CO2 and crude oil, while the swelling and extraction will not be obvious when the system is miscible. And the smaller the molecular weight of the oil is, the larger the maximum value of the swelling factor of CO2 and crude oil changes. The study of swelling and extraction plays an important role in the oilfield stimulation.

  2. Ecosystem Warming Affects CO2 Flux in an Agricultural Soil

    Science.gov (United States)

    Global warming seems likely based on present-day climate predictions. Our objective was to characterize and quantify the interactive effects of ecosystem warming (i.e., canopy temperature, TS), soil moisture content ('S) and microbial biomass (BM: bacteria, fungi) on the intra-row soil CO2 flux (FS)...

  3. Ocean-Atmosphere CO2 Fluxes in the North Atlantic Subtropical Gyre: Association with Biochemical and Physical Factors during Spring

    Directory of Open Access Journals (Sweden)

    Macarena Burgos

    2015-08-01

    Full Text Available Sea surface partial pressure of CO2 (pCO2 was measured continuously in a transect of the North Atlantic subtropical gyre between Santo Domingo, Dominican Republic (18.1° N, 68.5° W and Vigo, Spain (41.9° N, 11.8° W during spring 2011. Additional biogeochemical and physical variables measured to identify factors controlling the surface pCO2 were analyzed in discrete samples collected at 16 sites along the transect at the surface and to a depth of 200 m. Sea surface pCO2 varied between 309 and 662 μatm, and showed differences between the western and eastern subtropical gyre. The subtropical gyre acted as a net CO2 sink, with a mean flux of −5.5 ± 2.2 mmol m−2 day−1. The eastern part of the transect, close to the North Atlantic Iberian upwelling off the Galician coast, was a CO2 source with an average flux of 33.5 ± 9.0 mmol m−2 day−1. Our results highlight the importance of making more surface pCO2 observations in the area located east of the Azores Islands since air-sea CO2 fluxes there are poorly studied.

  4. LMDI Decomposition of Energy-Related CO2 Emissions Based on Energy and CO2 Allocation Sankey Diagrams: The Method and an Application to China

    Directory of Open Access Journals (Sweden)

    Linwei Ma

    2018-01-01

    Full Text Available This manuscript develops a logarithmic mean Divisia index I (LMDI decomposition method based on energy and CO2 allocation Sankey diagrams to analyze the contributions of various influencing factors to the growth of energy-related CO2 emissions on a national level. Compared with previous methods, we can further consider the influences of energy supply efficiency. Two key parameters, the primary energy quantity converted factor (KPEQ and the primary carbon dioxide emission factor (KC, were introduced to calculate the equilibrium data for the whole process of energy unitization and related CO2 emissions. The data were used to map energy and CO2 allocation Sankey diagrams. Based on these parameters, we built an LMDI method with a higher technical resolution and applied it to decompose the growth of energy-related CO2 emissions in China from 2004 to 2014. The results indicate that GDP growth per capita is the main factor driving the growth of CO2 emissions while the reduction of energy intensity, the improvement of energy supply efficiency, and the introduction of non-fossil fuels in heat and electricity generation slowed the growth of CO2 emissions.

  5. Phenology and growth in four annual species grown in ambient and elevated CO2

    Energy Technology Data Exchange (ETDEWEB)

    Reekie, E.G. (Acadia Univ., Wolfville, NS (Canada)); Bazzaz, F.A. (Harvard Univ., Cambridge, MA (USA))

    1991-01-01

    The objectives of this study were to test the hypothesis that changes in phenology with CO{sub 2} are a function of the effect of CO{sub 2} upon growth and to determine if CO{sub 2}-induced changes in phenology can influence competitive outcome. The effect of 350, 525, and 700{mu}l/l CO{sub 2} on Guara brachycarpa, Gailardia pulchella, Oenothera laciniata, and Lupinus texenis was examined. Plants were grown as individuals in 150-, 500-, or 1000-ml pots and in competition in 1000-ml pots. Growth and development were monitored at twice-weekly intervals by recording the number of leaves and noting the presence or absence of stem elongation, branching, flower buds, and open flowers. Elevated CO{sub 2} affected both growth and phenology, but the direction and magnitude of effects varied with species and soil volume. Elevated CO{sub 2} did not appear to affect development through its effect on growth. Those treatments in which there were significant effects of CO{sub 2} did not appear to affect development through its effect on growth. Those treatments in which there were significant effects of CO{sub 2} on growth were generally different from those treatments in which CO{sub 2} affected phenology. Rather than affecting phenology by changing plant size, CO{sub 2} appeared to affect phenology by modifying the size at which plants switched from one stage to the next. The level of CO{sub 2} changed competitive outcome; the importance of Lupinus increased whereas that of Oenothera decreased with increased CO{sub 2}. These changes were more closely related to the effect of CO{sub 2} on growth than its effect on phenology. 19 refs., 2 figs., 4 tabs.

  6. Effect of initial O2 and CO2 and low-dose irradiation on toxin production by Clostridium botulinum in MAP fresh pork

    International Nuclear Information System (INIS)

    Lambert, A.D.; Smith, J.P.; Dodds, K.L.

    1991-01-01

    The effects of irradiation, initial O2, initial CO2 and the presence of an O2 and CO2 absorbent on toxin production by Clostridium botulinum in inoculated pork stored at 15 degrees C were studied using a factorial experiment. Toxin production occurred faster in samples initially packaged with 20% O2, compared to samples packaged with 100% N2. The presence of CO2 in the package headspace was not a significant factor affecting time until toxin detection. Irradiation was significant in delaying the time until toxin detection in samples initially packaged with 20% O2 but not in other treatments. Sensory rejection, based primarily on discoloration, occurred within 7 to 14 d, irrespective of treatment. All samples were spoiled before they became toxic

  7. CO2 and temperature effects on morphological and physiological traits affecting risk of drought-induced mortality.

    Science.gov (United States)

    Duan, Honglang; Chaszar, Brian; Lewis, James D; Smith, Renee A; Huxman, Travis E; Tissue, David T

    2018-04-26

    Despite a wealth of eco-physiological assessments of plant response to extreme drought, few studies have addressed the interactive effects of global change factors on traits driving mortality. To understand the interaction between hydraulic and carbon metabolic traits influencing tree mortality, which may be independently influenced by atmospheric [CO2] and temperature, we grew Eucalyptus sideroxylon A. Cunn. ex Woolls from seed in a full-factorial [CO2] (280, 400 and 640 μmol mol-1, Cp, Ca and Ce, respectively) and temperature (ambient and ambient +4 °C, Ta and Te, respectively) experiment. Prior to drought, growth across treatment combinations resulted in significant variation in physiological and morphological traits, including photosynthesis (Asat), respiration (Rd), stomatal conductance, carbohydrate storage, biomass and leaf area (LA). Ce increased Asat, LA and leaf carbohydrate concentration compared with Ca, while Cp generated the opposite response; Te reduced Rd. However, upon imposition of drought, Te hastened mortality (9 days sooner compared with Ta), while Ce significantly exacerbated drought stress when combined with Te. Across treatments, earlier time-to-mortality was mainly associated with lower (more negative) leaf water potential (Ψl) during the initial drought phase, along with higher water loss across the first 3 weeks of water limitation. Among many variables, Ψl was more important than carbon status in predicting time-to-mortality across treatments, yet leaf starch was associated with residual variation within treatments. These results highlight the need to carefully consider the integration, interaction and hierarchy of traits contributing to mortality, along with their responses to environmental drivers. Both morphological traits, which influence soil resource extraction, and physiological traits, which affect water-for-carbon exchange to the atmosphere, must be considered to adequately predict plant response to drought. Researchers have

  8. [Double-ambient CO2 concentration affects the growth, development and sucking behavior of non-target brown plant hopper Nilaparvata lugens fed on transgenic Bt rice.

    Science.gov (United States)

    Lu, Yong Qing; Dai, Yang; Yu, Xiu Ying; Yu, Fu-Lan; Jiang, Shou Lin; Zhou, Zong Yuan; Chen, Fa Jun

    2018-02-01

    In recent years, the two issues of climate change including elevated CO 2 etc., and resistance of transgenic Bt crops against non-target insect pests have received widespread attention. Elevated CO 2 can affect the herbivorous insects. To date, there is no consensus about the effect of elevated CO 2 on the suck-feeding insect pests (non-target insect pests of transgenic Bt crops). Its effects on the suck-feeding behavior have rarely been reported. In this study, CO 2 levels were set up in artificial climate chamber to examined the effects of ambient (400 μL·L -1 ) and double-ambient (800 μL·L -1 ) CO 2 levels on the suck-feeding behavior, growth, development, and reproduction of the non-target insect pest of transgenic Bt rice, brown planthopper, Nilaparvata lugens. The results showed that CO 2 level significantly affected the egg and nymph duration, longevity and body mass of adults, and feeding behavior of the 4th and 5th instar nymphs, while had no effect on the fecundity of N. lugens. The duration of eggs and nymphs, and the longevity of female adults were significantly shortened by 4.0%, 4.2% and 6.6% respectively, the proportion of the macropterous adults was significantly increased by 11.6%, and the body mass of newly hatched female adults was significantly decreased by 2.2% by elevated CO 2 . In addition, elevated CO 2 significantly enhanced the stylet puncturing efficiency of the 4th and 5th instar nymphs of N. lugens. The duration ofphloem ingestion of the N4b waveform was significantly prolonged by 60.0% and 50.1%, and the frequency significantly was increased by 230.0% and 155.9% for the 4th and 5th instar nymphs of N. lugens by elevated CO 2 , respectively. It was concluded that double-ambient CO 2 could promote the growth and development of N. lugens through enhancing its suck-feeding, shorten the generation life-span and increase the macropertous adults' proportion of N. lugens. Thus, it could result in the occurrence of non-target rice

  9. Vehicle emissions of greenhouse gases and related tracers from a tunnel study: : CO: CO2, N2O: CO2, CH4: CO2, O2: CO2 ratios, and the stable isotopes 13C and 18O in CO2 and CO

    NARCIS (Netherlands)

    Popa, Maria Elena; Vollmer, M. K.; Jordan, A.; Brand, W. A.; Pathirana, S. L.; Rothe, M.; Röckmann, T.

    2014-01-01

    Measurements of CO2, CO, N2O and CH4 mole fractions, O2/N2 ratios and the stable isotopes 13C and 18O in CO2 and CO have been performed in air samples from the Islisberg highway tunnel (Switzerland). The molar CO : CO2 ratios, with an average of (4.15 ± 0.34) ppb:ppm, are lower than reported in

  10. Potential factors affecting accumulation of unsupported 210Pb in soil

    International Nuclear Information System (INIS)

    Mihailović, Aleksandra; Vučinić Vasić, Milica; Todorović, Nataša; Hansman, Jan; Vasin, Jovica; Krmar, Miodrag

    2014-01-01

    Airborne 210 Pb, daughter of 222 Rn, is frequently used as a tracer in different studies concerning atmospheric transport, sedimentation, soil erosion, dating, etc. Concentration of 210 Pb was measured in 40 soil samples collected in urban and industrial areas in order to get evidence of possible influence of some factors on accumulation of airborne 210 Pb in soil. Different soil properties such as the content of organic matter, free CaCO 3 , and available phosphorus (P 2 O 5 ) were measured to explore their possible correlation with the amount of 210 Pb. Special attention was given to the correlation between 210 Pb and stable lead accumulated in the soil. Several samples were taken near a battery manufacturer to check if extremely high concentrations of lead can affect the uptake of the airborne 210 Pb in soil. Soil samples were also taken at different depths to investigate the penetration of lead through the soil. - Highlights: • 210 Pb and 137 Cs were measured in samples of urban soil. • Organic matter, free CaCO 3 content, available phosphorus, and lead were measured in soil samples. • There is no statistically significant correlation between 210 Pb and lead, CaCO 3 and phosphorus. • A strong positive correlation between 210 Pb and organic matter was observed

  11. Pollutants transport and atmospheric variability of CO2 over Siberia: contribution of airborne measurements

    International Nuclear Information System (INIS)

    Paris, J.D.

    2008-12-01

    The work presented here intends to characterize the variations of atmospheric concentrations of CO 2 , CO, O 3 and ultrafine particles, over a large scale aircraft transect above Siberia, during three intensive YAK-AEROSIB campaigns in April 2006, September 2006 and August 2007, respectively. Pollutant and greenhouse gases distribution in this poorly studied region is needed to model atmospheric long range transport. I show here that CO concentrations at the time of the campaigns is broadly affected by (1) advection of Chinese pollutants through baro-clinic perturbations, (2) advection (diffuse or not) of European pollutants at various altitudes, (3) and of biomass burning from Central Asia. This set of factors is analyzed through a novel statistical technique based on clustering of backward transport simulated by the FLEXPART Lagrangian model. Large observed CO 2 gradients in summer are matched against vertical mixing in GCM simulated CO 2 . At last I present ultrafine particle measurements, and a possible nucleation summer maximum in the clean, continental mid-troposphere. (author)

  12. CO2 efflux from soils with seasonal water repellency

    Science.gov (United States)

    Urbanek, Emilia; Doerr, Stefan H.

    2017-10-01

    Soil carbon dioxide (CO2) emissions are strongly dependent on pore water distribution, which in turn can be modified by reduced wettability. Many soils around the world are affected by soil water repellency (SWR), which reduces infiltration and results in diverse moisture distribution. SWR is temporally variable and soils can change from wettable to water-repellent and vice versa throughout the year. Effects of SWR on soil carbon (C) dynamics, and specifically on CO2 efflux, have only been studied in a few laboratory experiments and hence remain poorly understood. Existing studies suggest soil respiration is reduced with increasing severity of SWR, but the responses of soil CO2 efflux to varying water distribution created by SWR are not yet known.Here we report on the first field-based study that tests whether SWR indeed reduces soil CO2 efflux, based on in situ measurements carried out over three consecutive years at a grassland and pine forest sites under the humid temperate climate of the UK.Soil CO2 efflux was indeed very low on occasions when soil exhibited consistently high SWR and low soil moisture following long dry spells. Low CO2 efflux was also observed when SWR was absent, in spring and late autumn when soil temperatures were low, but also in summer when SWR was reduced by frequent rainfall events. The highest CO2 efflux occurred not when soil was wettable, but when SWR, and thus soil moisture, was spatially patchy, a pattern observed for the majority of the measurement period. Patchiness of SWR is likely to have created zones with two different characteristics related to CO2 production and transport. Zones with wettable soil or low persistence of SWR with higher proportion of water-filled pores are expected to provide water with high nutrient concentration resulting in higher microbial activity and CO2 production. Soil zones with high SWR persistence, on the other hand, are dominated by air-filled pores with low microbial activity, but facilitating O2

  13. Fracture Initiation of an Inhomogeneous Shale Rock under a Pressurized Supercritical CO2 Jet

    Directory of Open Access Journals (Sweden)

    Yi Hu

    2017-10-01

    Full Text Available Due to the advantages of good fracture performance and the application of carbon capture and storage (CCS, supercritical carbon dioxide (SC-CO2 is considered a promising alternative for hydraulic fracturing. However, the fracture initiation mechanism and its propagation under pressurized SC-CO2 jet are still unknown. To address these problems, a fluid–structure interaction (FSI-based numerical simulation model along with a user-defined code was used to investigate the fracture initiation in an inhomogeneous shale rock. The mechanism of fracturing under the effect of SC-CO2 jet was explored, and the effects of various influencing factors were analyzed and discussed. The results indicated that higher velocity jets of SC-CO2 not only caused hydraulic-fracturing ring, but also resulted in the increase of stress in the shale rock. It was found that, with the increase of perforation pressure, more cracks initiated at the tip. In contrast, the length of cracks at the root decreased. The length-to-diameter ratio and the aperture ratio distinctly affected the pressurization of SC-CO2 jet, and contributed to the non-linear distribution and various maximum values of the stress in shale rock. The results proved that Weibull probability distribution was appropriate for analysis of the fracture initiation. The studied parameters explain the distribution of weak elements, and they affect the stress field in shale rock.

  14. The X CO Conversion Factor from Galactic Multiphase ISM Simulations

    Science.gov (United States)

    Gong, Munan; Ostriker, Eve C.; Kim, Chang-Goo

    2018-05-01

    {CO}(J=1{--}0) line emission is a widely used observational tracer of molecular gas, rendering essential the X CO factor, which is applied to convert CO luminosity to {{{H}}}2 mass. We use numerical simulations to study how X CO depends on numerical resolution, non-steady-state chemistry, physical environment, and observational beam size. Our study employs 3D magnetohydrodynamics (MHD) simulations of galactic disks with solar neighborhood conditions, where star formation and the three-phase interstellar medium (ISM) are self-consistently regulated by gravity and stellar feedback. Synthetic CO maps are obtained by postprocessing the MHD simulations with chemistry and radiation transfer. We find that CO is only an approximate tracer of {{{H}}}2. On parsec scales, W CO is more fundamentally a measure of mass-weighted volume density, rather than {{{H}}}2 column density. Nevertheless, =(0.7{\\textstyle {--}}1.0)× {10}20 {{{cm}}}-2 {{{K}}}-1 {{{km}}}-1 {{s}}, which is consistent with observations and insensitive to the evolutionary ISM state or radiation field strength if steady-state chemistry is assumed. Due to non-steady-state chemistry, younger molecular clouds have slightly lower and flatter profiles of X CO versus extinction than older ones. The {CO}-dark {{{H}}}2 fraction is 26%–79%, anticorrelated with the average extinction. As the observational beam size increases from 1 to 100 pc, increases by a factor of ∼2. Under solar neighborhood conditions, in molecular clouds is converged at a numerical resolution of 2 pc. However, the total CO abundance and luminosity are not converged even at the numerical resolution of 1 pc. Our simulations successfully reproduce the observed variations of X CO on parsec scales, as well as the dependence of X CO on extinction and the CO excitation temperature.

  15. On the relationship between positive and negative affect: Their correlation and their co-occurrence.

    Science.gov (United States)

    Larsen, Jeff T; Hershfield, Hal E; Stastny, Bradley J; Hester, Neil

    2017-03-01

    Understanding the nature of emotional experience requires understanding the relationship between positive and negative affect. Two particularly important aspects of that relationship are the extent to which positive and negative affect are correlated with one another and the extent to which they co-occur. Some researchers have assumed that weak negative correlations imply greater co-occurrence (i.e., more mixed emotions) than do strong negative correlations, but others have noted that correlations may imply very little about co-occurrence. We investigated the relationship between the correlation between positive and negative affect and co-occurrence. Participants in each of 2 samples provided moment-to-moment happiness and sadness ratings as they watched an evocative film and listened to music. Results indicated (a) that 4 measures of the correlation between positive and negative affect were quite highly related to 1 another; (b) that the strength of the correlation between measures of mixed emotions varied considerably; (c) that correlational measures were generally (but not always) weakly correlated with mixed emotion measures; and (d) that bittersweet stimuli consistently led to elevations in mixed emotion measures but did not consistently weaken the correlation between positive and negative affect. Results highlight that the correlation between positive and negative affect and their co-occurrence are distinct aspects of the relationship between positive and negative affect. Such insight helps clarify the implications of existing work on age-related and cultural differences in emotional experience and sets the stage for greater understanding of the experience of mixed emotions. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  16. Study on factors affecting sintering density of Gd2O3-UO2 pellets

    International Nuclear Information System (INIS)

    Zhu Shuming; Zou Congpei; Yang Jing; Yang Youqing; Mei Xiaohui

    1996-02-01

    The sintered density of Gd 2 O 3 -UO 2 burnable poison fuel pellets is an important quality index and is one of main QC items. Therefore, the efforts were made to investigate the factors affecting the sintered density of Gd 2 O 3 -UO 2 , that is, the influences of pre-treatment of Gd 2 O 3 powder, additives, mixing methods and time, sintering atmosphere, sintering temperature and time on the final density of Gd 2 O 3 UO 2 pellets contained 0, 3%, 7% and 10% (mass percentage) Gd 2 O 3 . The results show: the pre-treatment is useful for improving the distribution of Gd 2 O 3 ; the additive of ammonium oxalate will effectively adjust the density of pellets; 1750 degree C is the suitable sintering temperature. The proper process parameters have been obtained, and the Gd 2 O 3 -UO 2 pellets prepared for in-pile irradiation test meet the design requirements for the density (93.5%∼96.5% of T.D.), homogeneity, microstructure, etc. (8 refs., 3 figs., 8 tabs.)

  17. Vertical variations in wood CO2 efflux for live emergent trees in a Bornean tropical rainforest.

    Science.gov (United States)

    Katayama, Ayumi; Kume, Tomonori; Komatsu, Hikaru; Ohashi, Mizue; Matsumoto, Kazuho; Ichihashi, Ryuji; Kumagai, Tomo'omi; Otsuki, Kyoichi

    2014-05-01

    Difficult access to 40-m-tall emergent trees in tropical rainforests has resulted in a lack of data related to vertical variations in wood CO2 efflux, even though significant variations in wood CO2 efflux are an important source of errors when estimating whole-tree total wood CO2 efflux. This study aimed to clarify vertical variations in wood CO2 efflux for emergent trees and to document the impact of the variations on the whole-tree estimates of stem and branch CO2 efflux. First, we measured wood CO2 efflux and factors related to tree morphology and environment for seven live emergent trees of two dipterocarp species at four to seven heights of up to ∼ 40 m for each tree using ladders and a crane. No systematic tendencies in vertical variations were observed for all the trees. Wood CO2 efflux was not affected by stem and air temperature, stem diameter, stem height or stem growth. The ratios of wood CO2 efflux at the treetop to that at breast height were larger in emergent trees with relatively smaller diameters at breast height. Second, we compared whole-tree stem CO2 efflux estimates using vertical measurements with those based on solely breast height measurements. We found similar whole-tree stem CO2 efflux estimates regardless of the patterns of vertical variations in CO2 efflux because the surface area in the canopy, where wood CO2 efflux often differed from that at breast height, was very small compared with that at low stem heights, resulting in little effect of the vertical variations on the estimate. Additionally, whole-tree branch CO2 efflux estimates using measured wood CO2 efflux in the canopy were considerably different from those measured using only breast height measurements. Uncertainties in wood CO2 efflux in the canopy did not cause any bias in stem CO2 efflux scaling, but affected branch CO2 efflux. © The Author 2014. Published by Oxford University Press. All rights reserved.

  18. Emission factors and their uncertainty for the exchange of CO2, CH4 and N2O in Finnish managed peatlands

    International Nuclear Information System (INIS)

    Alm, J.; Shurpali, N. J.; Minkkinen, K.

    2007-01-01

    This paper summarises the results of several research groups participating in the research programme 'Greenhouse Impacts of the use of Peat and Peatlands in Finland', and presents emission factors for peat-atmosphere fluxes of CO 2 , CH 4 , and N 2 O, filling gaps in knowledge concerning the afforestation of organic croplands and cutaways, and improves the emission assessment of peatlands drained for forestry. Forest drainage may result in net binding of soil carbon or net release, depending on site characteristics and the tree stand. Use of peatlands for agriculture (48-4821 g CO 2 -eq. m -2 a -1 ), even after the cultivation has ceased, or for milled peat harvesting (1948-2478 g CO 2 -eq. m -2 a -1 ) can cause the highest overall emissions. Extremely high CO 2 emissions are possible from peat harvesting areas during wet and warm summers. Afforestation of those peatlands abandoned from cultivation or peat harvesting can reduce the warming impact at least during the first tree generation. Heterotrophic soil respiration may have a systematic south-north difference in temperature response. More data must be collected before the information on peatland forest soil CO 2 emissions can be adapted for different climatic regions in Finland. A test of the model DNDC against measured data showed that DNDC has to be developed further before it can be used in estimating N 2 O emissions from boreal peatlands. (orig.)

  19. Recent enlightening strategies for co2 capture: a review

    Science.gov (United States)

    Yuan, Peng; Qiu, Ziyang; Liu, Jia

    2017-05-01

    The global climate change has seriously affected the survival and prosperity of mankind, where greenhouse effect owing to atmospheric carbon dioxide (CO2) enrichment is a great cause. Accordingly, a series of down-to-earth measures need to be implemented urgently to control the output of CO2. As CO2 capture appears as a core issue in developing low-carbon economy, this review provides a comprehensive introduction of recent CO2 capture technologies used in power plants or other industries. Strategies for CO2 capture, e.g. pre-combustion, post-combustion and oxyfuel combustion, are covered in this article. Another enlightening technology for CO2 capture based on fluidized beds is intensively discussed.

  20. How does customer co-creation affect firm’s brand image and customer’s willingness to pay a price premium?

    OpenAIRE

    LI, Yingnan

    2015-01-01

    This study is aimed to investigate whether brand image and customer willingness to pay a premium can be affected by co-creation. Co-creation now has been a crucial part in firm‟s new product or service development process and a major factor of firm‟s competitive advantage. However, regarding the correlations between co-creation, brand image and willingness to pay a premium, most previous studies focused on co-creation effects on service-intensive industries, whereas the effects...

  1. Factors Affecting Employees’ Job Satisfaction in Telecommunication Industry: a case study of Pakistan

    OpenAIRE

    Mohammad Aamir; Muhammad Salman; Mohammad Asif; Gul Bahar

    2014-01-01

    Employees’ satisfaction is crucial to any organization. There are numerous factors affecting the employees’ job satisfaction but 5 factors, namely working conditions, pay & promotion, job security, fairness and relations with co-workers. Organizations have to invest on its employees to satisfy its employees. Target audience is in Telecommunication sector Zong and Mobilink in Pakistan and took data through ques-tionnaire and analyzes data through SPSS. The research included 5 independent varia...

  2. CO{sub 2} and energy France and world indicators 2007; CO{sub 2} et energie France et Monde reperes edition 2007

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    In the framework of a sustainable development, the carbon dioxide is a very controlled greenhouse effect gases to limit the climatic change. This paper presents and explains the greenhouse effect, the consequences of the climatic change, the other greenhouse effect gases as the CO{sub 2}, the CO{sub 2} emissions from the energy production, the emission factors of CO{sub 2}, the sectorial emissions of CO{sub 2}, the Kyoto protocol and the european market of the CO{sub 2} quotas. (A.L.B.)

  3. Spatial Outlier Detection of CO2 Monitoring Data Based on Spatial Local Outlier Factor

    OpenAIRE

    Liu Xin; Zhang Shaoliang; Zheng Pulin

    2015-01-01

    Spatial local outlier factor (SLOF) algorithm was adopted in this study for spatial outlier detection because of the limitations of the traditional static threshold detection. Based on the spatial characteristics of CO2 monitoring data obtained in the carbon capture and storage (CCS) project, the K-Nearest Neighbour (KNN) graph was constructed using the latitude and longitude information of the monitoring points to identify the spatial neighbourhood of the monitoring points. Then ...

  4. The effect of electron and hole doping on the thermoelectric properties of shandite-type Co3Sn2S2

    Science.gov (United States)

    Mangelis, Panagiotis; Vaqueiro, Paz; Jumas, Jean-Claude; da Silva, Ivan; Smith, Ronald I.; Powell, Anthony V.

    2017-07-01

    Electron and hole doping in Co3Sn2S2, through chemical substitution of cobalt by the neighbouring elements, nickel and iron, affects both the structure and thermoelectric properties. Electron doping to form Co3-xNixSn2S2 (0≤x≤3) results in an expansion of the kagome layer and materials become increasingly metallic as cobalt is substituted. Conversely, hole doping in Co3-xFexSn2S2 (0≤x≤0.6) leads to a transition from metallic to n-type semiconducting behaviour at x=0.5. Iron substitution induces a small increase in the separation between the kagome layers and improves the thermoelectric performance. Neutron diffraction data reveal that substitution occurs at the Co 9(d) site in a disordered fashion. Mössbauer spectroscopy reveals two iron environments with very different isomer shifts, which may be indicative of a mixed-valence state, while Sn exhibits an oxidation state close to zero in both series. Co2.6Fe0.4Sn2S2 exhibits a maximum figure-of-merit, ZT=0.2 at 523 K while Co2.4Fe0.6Sn2S2 reaches a power factor of 10.3 μW cm-1 K-2 close to room temperature.

  5. Absorption of CO2 laser light by a dense, high temperature plasma

    International Nuclear Information System (INIS)

    Peacock, N.J.; Forrest, M.J.; Morgan, P.D.; Offenberger, A.A.

    1977-01-01

    The interaction between a pulsed, CO 2 laser beam and the plasma produced in a plasma focus device is investigated theoretically and experimentally. The CO 2 laser radiation, directed orthogonal to the pinch axis and along the density gradient only weakly perturbs the focus since the radiation density of 30 J cm -3 (allowing for the Airy enhancement factor near the critical layer), is still less than the plasma thermal energy >=1 kJ cm -3 . On the contrary, the CO 2 laser beam is grossly affected by the plasma and absorption during the compressed pinch phase when the plasma frequency is much more complete than can be predicted by classical resistivity. Density fluctuations at the Langmuir frequency are measured directly for forward scattering from a probe, ruby laser beam. Since the wave numbers correspond to approximately 0.1 the Langmuir waves should appear as electron 'lines' in the scattered spectrum shifted by 427 A from the ruby laser wavelength. At low CO 2 laser pump intensity the electron wave intensity is close to the thermal level. As the pump is increased beyond a threshold of approximately 3x10 9 W/cm -2 (in vacuo) enhanced scattering is observed, reaching a factor of 30 above thermal. A WKB treatment of the electron-ion decay instability which takes into account the linear growth of waves at equal electron and ion temperatures and their convection in an inhomogeneous plasma is reasonably consistent with the observations

  6. Modulation of magmatic processes by CO2 flushing

    Science.gov (United States)

    Caricchi, Luca; Sheldrake, Tom E.; Blundy, Jon

    2018-06-01

    Magmatic systems are the engines driving volcanic eruptions and the source of fluids responsible for the formation of porphyry-type ore deposits. Sudden variations of pressure, temperature and volume in magmatic systems can produce unrest, which may culminate in a volcanic eruption and/or the abrupt release of ore-forming fluids. Such variations of the conditions within magmatic systems are commonly ascribed to the injection of new magma from depth. However, as magmas fractionating at depth or rising to the upper crust release CO2-rich fluids, the interaction between carbonic fluids and H2O-rich magmas stored in the upper crust (CO2 flushing), must also be a common process affecting the evolution of subvolcanic magma reservoirs. Here, we investigate the effect of gas injection on the stability and chemical evolution of magmatic systems. We calculate the chemical and physical evolution of magmas subjected to CO2-flushing using rhyolite-MELTS. We compare the calculations with a set of melt inclusion data for Mt. St. Helens, Merapi, Etna, and Stromboli volcanoes. We provide an approach that can be used to distinguish between melt inclusions trapped during CO2 flushing, magma ascent and decompression, or those affected by post-entrapment H2O-loss. Our results show that CO2 flushing is a widespread process in both felsic and mafic magmatic systems. Depending upon initial magma crystallinity and duration of CO2 input, flushing can either lead to volcanic eruption or fluid release. We suggest that CO2 flushing is a fundamental process modulating the behaviour and chemical evolution of crustal magmatic systems.

  7. Impact of short-lived non-CO2 mitigation on carbon budgets for stabilizing global warming

    International Nuclear Information System (INIS)

    Rogelj, Joeri; Riahi, Keywan; Meinshausen, Malte; Schaeffer, Michiel; Knutti, Reto

    2015-01-01

    Limiting global warming to any level requires limiting the total amount of CO 2 emissions, or staying within a CO 2 budget. Here we assess how emissions from short-lived non-CO 2 species like methane, hydrofluorocarbons (HFCs), black-carbon, and sulphates influence these CO 2 budgets. Our default case, which assumes mitigation in all sectors and of all gases, results in a CO 2 budget between 2011–2100 of 340 PgC for a >66% chance of staying below 2°C, consistent with the assessment of the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Extreme variations of air-pollutant emissions from black-carbon and sulphates influence this budget by about ±5%. In the hypothetical case of no methane or HFCs mitigation—which is unlikely when CO 2 is stringently reduced—the budgets would be much smaller (40% or up to 60%, respectively). However, assuming very stringent CH 4 mitigation as a sensitivity case, CO 2 budgets could be 25% higher. A limit on cumulative CO 2 emissions remains critical for temperature targets. Even a 25% higher CO 2 budget still means peaking global emissions in the next two decades, and achieving net zero CO 2 emissions during the third quarter of the 21st century. The leverage we have to affect the CO 2 budget by targeting non-CO 2 diminishes strongly along with CO 2 mitigation, because these are partly linked through economic and technological factors. (letter)

  8. CO2 in Alberta - a vision of the future

    International Nuclear Information System (INIS)

    Edwards, K.

    1999-01-01

    The potential to develop a province-wide infrastructure for carbon dioxide (CO 2 ) collection and transmission was discussed. The petroleum industry's original interest in CO 2 was its potential for enhanced oil recovery (EOR) for Alberta's depleted oil fields. However, new interest has stemmed from its perceived role in global climate change and the potentially negative business and economic implications of emitting CO 2 into the atmosphere. It was suggested that the development of a province wide infrastructure to collect CO 2 would address both interests. A simple screening of the reservoirs was carried out to determine if Alberta has the right oil reservoirs and sufficient CO 2 supplies to support a large-scale CO 2 infrastructure. The proposed infrastructure would consist of CO 2 supplies from electrical power generation plants, CO 2 trunklines, feeder pipelines to deliver CO 2 from the trunklines to the field and the oil reservoirs where the CO 2 would be injected. Such infrastructures already exist in Texas and Mexico where more than 1 billion scf per day of CO 2 is used for EOR. This study compared the factors leading to a large-scale CO 2 industry with factors in place during the 1970s and 1980s, when most of the hydrocarbon miscible floods were initiated in Alberta. It was concluded that the preliminary economics suggest that the concept has merit. 12 refs., 3 tabs., 9 figs

  9. A decomposition analysis of the driving factors of CO_2 (Carbon dioxide) emissions from the power sector in the European Union countries

    International Nuclear Information System (INIS)

    Karmellos, M.; Kopidou, D.; Diakoulaki, D.

    2016-01-01

    The scope of this paper is to investigate the driving factors of CO_2 emissions from electricity generation in all European Union countries (EU-28) during the period 2000–2012. Particular emphasis is placed on the assessment of any potential association between the examined driving factors and major climate and energy policies implemented during the examined period. In addition, the analysis distinguishes two subperiods, namely 2000–2007 and 2007–2012 in order to detect the impact of the economic crisis on each distinct driving factor and, consequently, on the total level of CO_2 emissions from the power sector. The model developed to analyse the changes in CO_2 emissions from the power sector across EU-28, is based on LMDI-I method and takes into account five driving factors: level of activity, electricity intensity, electricity trade, efficiency of electricity generation and fuel mix. The obtained results show that in times of economic growth the main factor counterbalancing the activity effect was in most countries the decreasing electricity intensity, while the contribution of all other factors becomes apparent later, despite the economic crisis and in view of the Kyoto targets. - Highlights: • LMDI is used to identify driving forces of CO_2 emissions from EU's power sector. • Declining electricity intensity was the main restrictive factor before 2007. • Fuel shifts contributed to emissions fall mostly after 2007, despite the crisis. • Trade effect is notable and indicates growing carbon leakage in the power sector.

  10. Radiation dosimetry of 15O-labeled O2, CO2 and CO gases administered continuously in the breath

    International Nuclear Information System (INIS)

    Bigler, R.E.; Sgouros, G.

    1982-01-01

    The ratio of activity per liter of air supplied to the activity concentration in the blood for oxygen-15 labeled carbon dioxide and carbon monoxide was found to show an approximate factor of 10 variation from study to study in dog experiments (Bigler and co-workers, unpublished data). Unless human measurement experience shows the lung extraction efficiency to be more constant and therefore predictable, radiation dose estimates should be empirically verified in each study by a rapid and early measurement of the exhaled and unused gas activities. Patient activity extraction would be obtained by difference of this measurement with the supplied activity. The results show calculations for a factor of 2 lower and higher than the extraction efficiency observed for barbiturate sedated dogs. The total-body cumulated activities can be converted into effective total administered doses by multiplying them by the decay constant for oxygen-15 (20.453 hr -1 ). This gives for O 2 , CO 2 and CO, respectively, 227, 98 and 95 mCi/hr or 3.79, 1.64 and 1.58 mCi/min. Assuming the patient inhales 7.4 liters/min., the extraction efficiencies from the 1 mCi/liter-air supplied to the patient amounts to for O 2 , CO 2 and CO, respectively 51, 22 and 21%

  11. The effects of environmental regulation and technical progress on CO2 Kuznets curve: An evidence from China

    International Nuclear Information System (INIS)

    Yin, Jianhua; Zheng, Mingzheng; Chen, Jian

    2015-01-01

    Based on environmental Kuznets curve theory, a panel data model which takes environmental regulation and technical progress as its moderating factors was developed to analyse the institutional and technical factors that affect the path of low-carbon economic development. The results indicated that there was a CO 2 emission Kuznets curve seen in China. Environmental regulation had a significant moderating effect on the curve, and the inflection of CO 2 emissions could come substantially earlier under stricter environmental regulation. Meanwhile, the impact of technical progress on the low-carbon economic development path had a longer hysteresis effect but restrained CO 2 emission during its increasing stage and accelerated its downward trend during the decreasing stage which was conducive to emission reduction. Strict environmental regulation could force the high-carbon emitting industries to transfer from the eastern regions to the central or the western regions of China, which would make the CO 2 Kuznets curve higher in its increasing stage and lower in its decreasing stage than that under looser regulation. Furthermore, energy efficiency, energy structure, and industrial structure exerted a significant direct impact on CO 2 emissions; we should consider the above factors as essential in the quest for low-carbon economic development. - Highlights: • Estimate moderating effect of environmental regulation and technical progress on EKC. • There was a CO 2 emission Kuznets curve in effect in China. • Environmental regulation presents significant moderating effect on EKC. • Technical progress moderates the relationship between income and CO 2 emissions

  12. Factors Affecting University Library Website Design

    OpenAIRE

    Kim, Yongi-Mi; University of Oklahoma

    2011-01-01

    Existing studies have extensively explored factors that affect users’ intentions to use university library website resources (ULWR); yet little attention has been given to factors affecting university library website design. This paper investigates factors that affect university library website design and assesses the success of the university library website from both designers’ and users’ perspectives. The findings show that when planning a website, university web designers consider univers...

  13. Effects of elevated CO2 and nitrogen deposition on ecosystem carbon fluxes on the Sanjiang plain wetland in Northeast China.

    Science.gov (United States)

    Wang, Jianbo; Zhu, Tingcheng; Ni, Hongwei; Zhong, Haixiu; Fu, Xiaoling; Wang, Jifeng

    2013-01-01

    Increasing atmospheric CO2 and nitrogen (N) deposition across the globe may affect ecosystem CO2 exchanges and ecosystem carbon cycles. Additionally, it remains unknown how increased N deposition and N addition will alter the effects of elevated CO2 on wetland ecosystem carbon fluxes. Beginning in 2010, a paired, nested manipulative experimental design was used in a temperate wetland of northeastern China. The primary factor was elevated CO2, accomplished using Open Top Chambers, and N supplied as NH4NO3 was the secondary factor. Gross primary productivity (GPP) was higher than ecosystem respiration (ER), leading to net carbon uptake (measured by net ecosystem CO2 exchange, or NEE) in all four treatments over the growing season. However, their magnitude had interannual variations, which coincided with air temperature in the early growing season, with the soil temperature and with the vegetation cover. Elevated CO2 significantly enhanced GPP and ER but overall reduced NEE because the stimulation caused by the elevated CO2 had a greater impact on ER than on GPP. The addition of N stimulated ecosystem C fluxes in both years and ameliorated the negative impact of elevated CO2 on NEE. In this ecosystem, future elevated CO2 may favor carbon sequestration when coupled with increasing nitrogen deposition.

  14. Reduce, reuse, recycle: Acceptance of CO_2-utilization for plastic products

    International Nuclear Information System (INIS)

    Heek, Julia van; Arning, Katrin; Ziefle, Martina

    2017-01-01

    Global warming is a central threat for today's society caused by greenhouse gas emissions, mostly carbon dioxide emissions. Carbon dioxide capture and utilization (CCU) is a promising approach to reduce emissions and the use of expensive and limited fossil resources. Applying CCU, carbon dioxide (CO_2) can be incorporated as raw material during the manufacture of plastic products. While most of the studies address technical feasibilities, hardly any systematic research on public perception and acceptance of those specific products exists so far. This study empirically investigates the acceptance of CCU plastic products (mattress as example). First, interviews with experts and lay people revealed critical acceptance factors (CO_2 proportion, saving of fossil resources, disposal conditions, perceived health complaints). Their relative importance was detailed in two consecutive conjoint studies. Study 1 revealed disposal conditions and saving of fossil resources as essential for product selection, while the products’ CO_2 proportion was less important. In study 2, potential health complaints were integrated as well as individual levels of domain knowledge and risk perception, which significantly affected acceptance of CCU products. Recommendations concerning communication strategies for policy and industry were derived. - Highlights: • Study provides insights into the acceptance of specific CCU products. • Disposal conditions and savings of fossil resource are main drivers of acceptance. • Concerns about potential health effects act as major barrier especially for laypeople. • Perceived knowledge and risk perception affect CCU product acceptance. • Communication strategy recommendations for policy and industry are derived.

  15. Metformin affects the features of a human hepatocellular cell line (HepG2) by regulating macrophage polarization in a co-culture microenviroment.

    Science.gov (United States)

    Chen, Miaojiao; Zhang, Jingjing; Hu, Fang; Liu, Shiping; Zhou, Zhiguang

    2015-11-01

    Accumulating evidence suggests an association between diabetes and cancer. Inflammation is a key event that underlies the pathological processes of the two diseases. Metformin displays anti-cancer effects, but the mechanism is not completely clear. This study investigated whether metformin regulated the microenvironment of macrophage polarization to affect the characteristics of HepG2 cells and the possible role of the Notch-signalling pathway. RAW264.7 macrophages were cultured alone or co-cultured with HepG2 cells and treated with metformin. We analysed classical (M1) and alternative (M2) gene expression in RAW264.7 cells using quantitative real-time polymerase chain reaction. Changes in mRNA and protein expressions of Notch signalling in both cell types were also detected using quantitative real-time polymerase chain reaction and Western-blotting analyses. The proliferation, apoptosis and migration of HepG2 cells were detected using Cell Titer 96 AQueous One Solution Cell Proliferation Assay (MTS) (Promega Corporation, Fitchburg, WI, USA), Annexin V-FITC/PI (7SeaPharmTech, Shanghai, China) and the cell scratch assay, respectively. Metformin induced single-cultured RAW264.7 macrophages with an M2 phenotype but attenuated the M2 macrophage differentiation and inhibited monocyte chemoattractant protein-1 (MCP-1) secretion in a co-culture system. The co-cultured group of metformin pretreatment activated Notch signalling in macrophages but repressed it inHepG2 cells. Co-culture also promoted the proliferation and migration of HepG2 cells. However, along with the enhanced apoptosis, the proliferation and the migration of HepG2 cells were remarkably inhibited in another co-culture system with metformin pretreatment. Metformin can skew RAW264.7 macrophages toward different phenotypes according to changes in the microenvironment, which may affect the inflammatory conditions mediated by macrophages, induce apoptosis and inhibit the proliferation and migration of HepG2

  16. Quantitative analysis of an engineered CO2-fixing Escherichia coli reveals great potential of heterotrophic CO2 fixation.

    Science.gov (United States)

    Gong, Fuyu; Liu, Guoxia; Zhai, Xiaoyun; Zhou, Jie; Cai, Zhen; Li, Yin

    2015-01-01

    Production of fuels from the abundant and wasteful CO2 is a promising approach to reduce carbon emission and consumption of fossil fuels. Autotrophic microbes naturally assimilate CO2 using energy from light, hydrogen, and/or sulfur. However, their slow growth rates call for investigation of the possibility of heterotrophic CO2 fixation. Although preliminary research has suggested that CO2 fixation in heterotrophic microbes is feasible after incorporation of a CO2-fixing bypass into the central carbon metabolic pathway, it remains unclear how much and how efficient that CO2 can be fixed by a heterotrophic microbe. A simple metabolic flux index was developed to indicate the relative strength of the CO2-fixation flux. When two sequential enzymes of the cyanobacterial Calvin cycle were incorporated into an E. coli strain, the flux of the CO2-fixing bypass pathway accounts for 13 % of that of the central carbon metabolic pathway. The value was increased to 17 % when the carbonic anhydrase involved in the cyanobacterial carbon concentrating mechanism was introduced, indicating that low intracellular CO2 concentration is one limiting factor for CO2 fixation in E. coli. The engineered CO2-fixing E. coli with carbonic anhydrase was able to fix CO2 at a rate of 19.6 mg CO2 L(-1) h(-1) or the specific rate of 22.5 mg CO2 g DCW(-1) h(-1). This CO2-fixation rate is comparable with the reported rates of 14 autotrophic cyanobacteria and algae (10.5-147.0 mg CO2 L(-1) h(-1) or the specific rates of 3.5-23.7 mg CO2 g DCW(-1) h(-1)). The ability of CO2 fixation was created and improved in E. coli by incorporating partial cyanobacterial Calvin cycle and carbon concentrating mechanism, respectively. Quantitative analysis revealed that the CO2-fixation rate of this strain is comparable with that of the autotrophic cyanobacteria and algae, demonstrating great potential of heterotrophic CO2 fixation.

  17. Co-contaminants and factors affecting the sorption behaviour of two sulfonamides in pasture soils

    International Nuclear Information System (INIS)

    Srinivasan, Prakash; Sarmah, Ajit K.; Manley-Harris, Merilyn

    2013-01-01

    We investigated the effect of soil pH, organic carbon, ionic strength and steroid hormones on the sorption of sulfamethoxazole (SMO) and sulfachloropyridazine (SCP) in three pastoral soils of New Zealand. A model linking sorbate speciation with species-specific sorption coefficients describing the pH dependence of the apparent sorption coefficients was used to derive the fraction of each species of SMO. All soils displayed a decrease in sorption when pH was increased, with SMO exhibiting the highest sorption at pH 2. The cationic form of SMO appeared to sorb more close to pH ≥ pK a1 and, when pH ≥ pK a2 (6.5, 7.5 and 8.5) the anionic species seems to dominate, however, its sorption affinity to all soils was low. SMO sorption was affected by ionic strengths and organic carbon content, while the presence of hormones showed only a subtle decrease in SCP sorption in a selected model pasture soil. -- Highlights: •The effect of OC content on sulfamethoxazole sorption is nullified by the pH effect. •Steroid hormone has a subtle influence on the sulfachloropyridazine sorption in pastoral soil. •Increased hormone concentrations decrease sulfachloropyridazine sorption in soils. -- Sorption affinity of SMO and SCP are strongly governed by multitude of factors, and variations in these factors can be significant when manure and fertilisers are added to soil

  18. What affects CH4/CO2 ratio in cow’s breath

    DEFF Research Database (Denmark)

    Hellwing, Anne Louise Frydendahl; Weisbjerg, Martin Riis; Madsen, Jørgen

    2013-01-01

    under farm management control. CO2 is released largely from microbial decay or burning of plant litter and soil organic matter. CH4 is produced when organic materials decompose under anoxic conditions, notably from fermentative digestion by ruminant livestock, stored manures, wetlands and rice grown...

  19. Starch and sucrose synthesis in Phaseolus vulgaris as affected by light, CO2, and abscisic acid

    International Nuclear Information System (INIS)

    Sharkey, T.D.; Berry, J.A.; Raschke, K.

    1985-01-01

    Phaseolus vulgaris L. leaves were subjected to various light, CO 2 , and O 2 levels and abscisic acid, then given a 10 minute pulse of 14 CO 2 followed by a 5 minute chase with unlabeled CO 2 . After the chase period, very little label remained in the ionic fractions except at low CO 2 partial pressure. Most label was found in the neutral, alcohol soluble fraction or in the insoluble fraction digestable by amyloglucosidase. Sucrose formation was linearly related to assimilation rate. Starch formation increased linearly with assimilation rate, but did not occur if the assimilation rate was below 4 micromoles per square meter per second. Neither abscisic acid, nor high CO 2 in combination with low O 2 caused significant perturbations of the sucrose/starch formation ratio. These studies indicate that the pathways for starch and sucrose synthesis both are controlled by the rate of net CO 2 assimilation, with sucrose the preferred product at very low assimilation rates

  20. CO2 Emissions from Fuel Combustion 2011: Highlights

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    How much CO2 are countries emitting? Where is it coming from? In the lead-up to the UN climate negotiations in Durban, the latest information on the level and growth of CO2 emissions, their source and geographic distribution will be essential to lay the foundation for a global agreement. To provide input to and support for the UN process the IEA is making available for free download the 'Highlights' version of CO2 Emissions from Fuel Combustion. This annual publication contains: - estimates of CO2 emissions by country from 1971 to 2009; - selected indicators such as CO2/GDP, CO2/capita, CO2/TPES and CO2/kWh; - CO2 emissions from international marine and aviation bunkers, and other relevant information. These estimates have been calculated using the IEA energy databases and the default methods and emission factors from the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories.

  1. CO2 Emissions from Fuel Combustion 2011: Highlights

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    How much CO2 are countries emitting? Where is it coming from? In the lead-up to the UN climate negotiations in Durban, the latest information on the level and growth of CO2 emissions, their source and geographic distribution will be essential to lay the foundation for a global agreement. To provide input to and support for the UN process the IEA is making available for free download the 'Highlights' version of CO2 Emissions from Fuel Combustion. This annual publication contains: - estimates of CO2 emissions by country from 1971 to 2009; - selected indicators such as CO2/GDP, CO2/capita, CO2/TPES and CO2/kWh; - CO2 emissions from international marine and aviation bunkers, and other relevant information. These estimates have been calculated using the IEA energy databases and the default methods and emission factors from the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories.

  2. Sustained effects of atmospheric [CO2] and nitrogen availability on forest soil CO2 efflux.

    Science.gov (United States)

    Oishi, A Christopher; Palmroth, Sari; Johnsen, Kurt H; McCarthy, Heather R; Oren, Ram

    2014-04-01

    Soil CO2 efflux (Fsoil ) is the largest source of carbon from forests and reflects primary productivity as well as how carbon is allocated within forest ecosystems. Through early stages of stand development, both elevated [CO2] and availability of soil nitrogen (N; sum of mineralization, deposition, and fixation) have been shown to increase gross primary productivity, but the long-term effects of these factors on Fsoil are less clear. Expanding on previous studies at the Duke Free-Air CO2 Enrichment (FACE) site, we quantified the effects of elevated [CO2] and N fertilization on Fsoil using daily measurements from automated chambers over 10 years. Consistent with previous results, compared to ambient unfertilized plots, annual Fsoil increased under elevated [CO2] (ca. 17%) and decreased with N (ca. 21%). N fertilization under elevated [CO2] reduced Fsoil to values similar to untreated plots. Over the study period, base respiration rates increased with leaf productivity, but declined after productivity saturated. Despite treatment-induced differences in aboveground biomass, soil temperature and water content were similar among treatments. Interannually, low soil water content decreased annual Fsoil from potential values - estimated based on temperature alone assuming nonlimiting soil water content - by ca. 0.7% per 1.0% reduction in relative extractable water. This effect was only slightly ameliorated by elevated [CO2]. Variability in soil N availability among plots accounted for the spatial variability in Fsoil , showing a decrease of ca. 114 g C m(-2) yr(-1) per 1 g m(-2) increase in soil N availability, with consistently higher Fsoil in elevated [CO2] plots ca. 127 g C per 100 ppm [CO2] over the +200 ppm enrichment. Altogether, reflecting increased belowground carbon partitioning in response to greater plant nutritional needs, the effects of elevated [CO2] and N fertilization on Fsoil in this stand are sustained beyond the early stages of stand development and

  3. Coupled nutrient cycling determines tropical forest trajectory under elevated CO2.

    Science.gov (United States)

    Bouskill, N.; Zhu, Q.; Riley, W. J.

    2017-12-01

    Tropical forests have a disproportionate capacity to affect Earth's climate relative to their areal extent. Despite covering just 12 % of land surface, tropical forests account for 35 % of global net primary productivity and are among the most significant of terrestrial carbon stores. As atmospheric CO2 concentrations increase over the next century, the capacity of tropical forests to assimilate and sequester anthropogenic CO2 depends on limitation by multiple factors, including the availability of soil nutrients. Phosphorus availability has been considered to be the primary factor limiting metabolic processes within tropical forests. However, recent evidence points towards strong spatial and temporal co-limitation of tropical forests by both nitrogen and phosphorus. Here, we use the Accelerated Climate Modeling for Energy (ACME) Land Model (ALMv1-ECA-CNP) to examine how nutrient cycles interact and affect the trajectory of the tropical forest carbon sink under, (i) external nutrient input, (ii) climate (iii) elevated CO2, and (iv) a combination of 1-3. ALMv1 includes recent theoretical advances in representing belowground competition between roots, microbes and minerals for N and P uptake, explicit interactions between the nitrogen and phosphorus cycles (e.g., phosphatase production and nitrogen fixation), the dynamic internal allocation of plant N and P resources, and the integration of global datasets of plant physiological traits. We report nutrient fertilization (N, P, N+P) predictions for four sites in the tropics (El Verde, Puerto Rico, Barro Colorado Island, Panama, Manaus, Brazil and the Osa Peninsula, Coast Rica) to short-term nutrient fertilization (N, P, N+P), and benchmarking of the model against a meta-analysis of forest fertilization experiments. Subsequent simulations focus on the interaction of the carbon, nitrogen, and phosphorus cycles across the tropics with a focus on the implications of coupled nutrient cycling and the fate of the tropical

  4. Stem CO2 efflux in six co-occurring tree species: underlying factors and ecological implications.

    Science.gov (United States)

    Rodríguez-Calcerrada, Jesús; López, Rosana; Salomón, Roberto; Gordaliza, Guillermo G; Valbuena-Carabaña, María; Oleksyn, Jacek; Gil, Luis

    2015-06-01

    Stem respiration plays a role in species coexistence and forest dynamics. Here we examined the intra- and inter-specific variability of stem CO2 efflux (E) in dominant and suppressed trees of six deciduous species in a mixed forest stand: Fagus sylvatica L., Quercus petraea [Matt.] Liebl, Quercus pyrenaica Willd., Prunus avium L., Sorbus aucuparia L. and Crataegus monogyna Jacq. We conducted measurements in late autumn. Within species, dominants had higher E per unit stem surface area (Es ) mainly because sapwood depth was higher than in suppressed trees. Across species, however, differences in Es corresponded with differences in the proportion of living parenchyma in sapwood and concentration of non-structural carbohydrates (NSC). Across species, Es was strongly and NSC marginally positively related with an index of drought tolerance, suggesting that slow growth of drought-tolerant trees is related to higher NSC concentration and Es . We conclude that, during the leafless period, E is indicative of maintenance respiration and is related with some ecological characteristics of the species, such as drought resistance; that sapwood depth is the main factor explaining variability in Es within species; and that the proportion of NSC in the sapwood is the main factor behind variability in Es among species. © 2014 John Wiley & Sons Ltd.

  5. Concurrent CO2 and COS fluxes across major biomes in Europe

    Science.gov (United States)

    Spielmann, Felix M.; Kitz, Florian; Hammerle, Albin; Gerdel, Katharina; Ibrom, Andreas; Kolle, Olaf; Migliavacca, Mirco; Moreno, Gerardo; Noe, Steffen M.; Wohlfahrt, Georg

    2017-04-01

    The trace gas carbonyl sulfide (COS) has been proposed as a tracer for canopy gross primary production (GPP), canopy transpiration and stomatal conductance of plant canopies in the last few years. COS enters the plant leaf through the stomata and diffuses through the intercellular space, the cell wall, the plasma membrane and the cytosol like carbon dioxide (CO2). It is then catalyzed by the enzyme carbonic anhydrase in a one-way reaction to hydrogen sulfide and CO2. This one-way flux into the leaf makes COS a promising tracer for the GPP. However, this approach assumes that the ratio of the deposition velocities between COS and CO2 is constant, which must be determined in field experiments covering a wide variety of ecosystems. The overarching objective of this study was to quantify the relationship between the ecosystem-scale exchange of COS and CO2 and thus, to test for the potential of COS to be used as a universal tracer for the plant canopy CO2 exchange. Between spring 2015 and summer 2016 we set up our quantum cascade laser at different field sites across Europe. These sites included a managed temperate mountain grassland (AUT), a savanna (ESP), a temperate beech forest (DEN) and a hemiboreal forest (EST). On each of these sites, we conducted ecosystem scale eddy covariance and soil chamber measurements. Since the soil COS flux contribution, especially in grass dominated ecosystems, could not be neglected, we had to derive the actual canopy COS fluxes for all the measurement sites. Using these fluxes we compared the ecosystem relative uptake (ERU) of the sites and searched for factors affecting its variability. We then used the influential factors to scale the ERU to be comparable under different field sites and conditions. Furthermore we also calculated the GPP using conventional CO2 flux partitioning and compared the results with the approach of using the leaf relative uptake.

  6. Interactions between CO2, saline water and minerals during geological storage of CO2

    International Nuclear Information System (INIS)

    Hellevang, Helge

    2006-06-01

    The topic of this thesis is to gain a better understanding of interactions between injected CO 2 , aqueous solutions and formation mineralogies. The main focus is concerned with the potential role mineral reactions play in safe long term storage of CO 2 . The work is divided into an experimental part concentrated on the potential of dawsonite (NaAl(OH) 2 CO 3 ) as a permanent storage host of CO 2 , and the development of a new geochemical code ACCRETE that is coupled with the ATHENA multiphase flow simulator. The thesis is composed of two parts: (I) the first part introducing CO 2 storage, geochemical interactions and related work; and (II) the second part that consists of the papers. Part I is composed as follows: Chapter 2 gives a short introduction to geochemical reactions considered important during CO 2 storage, including a thermodynamic framework. Chapter 3 presents objectives of numerical work related to CO 2 -water-rock interactions including a discussion of factors that influence the outcome of numerical simulations. Chapter 4 presents the main results from paper A to E. Chapter 5 give some details about further research that we propose based on the present work and related work in the project. Several new activities have emerged from research on CO 2 -water-rock interaction during the project. Several of the proposed activities are already initiated. Papers A to F are then listed in Part II of the thesis after the citation list. The thesis presents the first data on the reaction kinetics of dawsonite at different pH (Paper A), and comprehensive numerical simulations, both batch- and large scale 3D reactive transport, that illustrate the role different carbonates have for safe storage of CO 2 in geological formations (Papers C to F). The role of dawsonite in CO 2 storage settings is treated throughout the study (Papers A to E) After the main part of the thesis (Part I and II), two appendices are included: Appendix A lists reactions that are included in the

  7. Essays on the Determinants of Energy Related CO2 Emissions =

    Science.gov (United States)

    Moutinho, Victor Manuel Ferreira

    Overall, amongst the most mentioned factors for Greenhouse Gases (GHG) growth are the economic growth and the energy demand growth. To assess the determinants GHG emissions, this thesis proposed and developed a new analysis which links the emissions intensity to its main driving factors. In the first essay, we used the 'complete decomposition' technique to examine CO2 emissions intensity and its components, considering 36 economic sectors and the 1996-2009 periods in Portugal. The industry (in particular 5 industrial sectors) is contributing largely to the effects of variation of CO2 emissions intensity. We concluded, among others, the emissions intensity reacts more significantly to shocks in the weight of fossil fuels in total energy consumption compared to shocks in other variables. In the second essay, we conducted an analysis for 16 industrial sectors (Group A) and for the group of the 5 most polluting manufacturing sectors (Group B) based on the convergence examination for emissions intensity and its main drivers, as well as on an econometric analysis. We concluded that there is sigma convergence for all the effects with exception to the fossil fuel intensity, while gamma convergence was verified for all the effects, with exception of CO2 emissions by fossil fuel and fossil fuel intensity in Group B. From the econometric approach we concluded that the considered variables have a significant importance in explaining CO2 emissions and CO2 emissions intensity. In the third essay, the Tourism Industry in Portugal over 1996-2009 period was examined, specifically two groups of subsectors that affect the impacts on CO2 emissions intensity. The generalized variance decomposition and the impulse response functions pointed to sectors that affect tourism more directly, i. e. a bidirectional causality between the intensity of emissions and energy intensity. The effect of intensity of emissions is positive on energy intensity, and the effect of energy intensity on

  8. Investigating effect of environmental controls on dynamics of CO2 budget in a subtropical estuarial marsh wetland ecosystem

    Science.gov (United States)

    Lee, Sung-Ching; Fan, Chao-Jung; Wu, Zih-Yi; Juang, Jehn-Yih

    2015-02-01

    In this study, we quantified the ecosystem-scale CO2 exchange of two different but typical low-latitude vegetation types, para grass and reed, in a subtropical wetland ecosystem by integrating flux observation with the parameterization of environmental variables. In addition, we explored how seasonal dynamics of environmental factors affected variations in CO2 budget. The results suggest that gross primary production (GPP, in the order of 1700 gC m-2 yr-1) of CO2 was higher in this site than in previous studies of northern peatlands and estuarial wetlands because of the direct effect of environmental factors. Temperature and radiation had a larger effect than water status (soil moisture content and vapor pressure deficit) on GPP for the two low-latitude ecosystems, which differ from the results for high-latitude regions. Environmental variables had a strong but different impact on the CO2 budget for para grass and reed areas. This diversity led to different potential shifts and trends of biomass accumulation and distribution of these two typical low-latitude vegetation types under different scenarios of environmental change. The findings from this study can sufficiently provide quantitative understanding of CO2 budgets in low-latitude wetlands.

  9. Measurements and modeling of absorption by CO2 + H2O mixtures in the spectral region beyond the CO2 ν3-band head

    Science.gov (United States)

    Tran, H.; Turbet, M.; Chelin, P.; Landsheere, X.

    2018-05-01

    In this work, we measured the absorption by CO2 + H2O mixtures from 2400 to 2600 cm-1 which corresponds to the spectral region beyond the ν3 band head of CO2. Transmission spectra of CO2 mixed with water vapor were recorded with a high-resolution Fourier-transform spectrometer for various pressure, temperature and concentration conditions. The continuum absorption by CO2 due to the presence of water vapor was determined by subtracting from measured spectra the contribution of local lines of both species, that of the continuum of pure CO2 as well as of the self- and CO2-continua of water vapor induced by the H2O-H2O and H2O-CO2 interactions. The obtained results are in very good agreement with the unique previous measurement (in a narrower spectral range). They confirm that the H2O-continuum of CO2 is significantly larger than that observed for pure CO2. This continuum thus must be taken into account in radiative transfer calculations for media involving CO2+ H2O mixture. An empirical model, using sub-Lorentzian line shapes based on some temperature-dependent correction factors χ is proposed which enables an accurate description of the experimental results.

  10. Effects of temperature and anion species on CO2 permeability and CO2/N2 separation coefficient through ionic liquid membranes

    International Nuclear Information System (INIS)

    Jindaratsamee, Pinyarat; Shimoyama, Yusuke; Morizaki, Hironobu; Ito, Akira

    2011-01-01

    The permeability of carbon dioxide (CO 2 ) through imidazolium-based ionic liquid membranes was measured by a sweep gas method. Six species of ionic liquids were studied in this work as follows: [emim][BF 4 ], [bmim][BF 4 ], [bmim][PF 6 ], [bmim][Tf 2 N], [bmim][OTf], and [bmim][dca]. The ionic liquids were supported with a polyvinylidene fluoride porous membrane. The measurements were performed at T = (303.15 to 343.15) K. The partial pressure difference between feed and permeate sides was 0.121 MPa. The permeability of the CO 2 increases with temperature for the all ionic liquid species. Base on solution diffusion theory, it can be explained that the diffusion coefficient of CO 2 in an ionic liquid affects the temperature dependence more strongly than the solubility coefficient. The greatest permeability was obtained with the [bmim][Tf 2 N] membrane. The membrane of [bmim][PF 6 ] presents the lowest permeability. The separation coefficient between CO 2 and N 2 through the ionic liquid membranes was also investigated at the volume fraction of CO 2 at feed side 0.10. The separation coefficient decreases with the increase of temperature for the all ionic liquid species. The membrane of [emim][BF 4 ] and [bmim][BF 4 ] gives the highest separation coefficient at constant temperature. The lowest separation coefficient was obtained from [bmim][Tf 2 N] membrane which presents the highest permeability of CO 2 .

  11. The direct and indirect CO_2 rebound effect for private cars in China

    International Nuclear Information System (INIS)

    Zhang, Yue-Jun; Liu, Zhao; Qin, Chang-Xiong; Tan, Tai-De

    2017-01-01

    The quantity of China's private cars has increased dramatically in the past decade, which has become one of the key sources of carbon emission and air pollution in the cities of China. In theory, to improve energy efficiency can reduce carbon emission significantly, but the result may be affected by the rebound effect. This paper utilizes a two-stage Almost Ideal Demand System (AIDS) model to estimate the total CO_2 rebound effect for China's private cars during 2001–2012 at the provincial level, then uses a panel data model to analyze its impact factors. The results suggest that, first of all, the CO_2 emissions of private cars have the super conservation effect, partial rebound effect and backfire effect among provinces in China. And the direct CO_2 rebound effect plays a dominant role in the total CO_2 rebound effect in most provinces. Second, the total CO_2 rebound effect of private cars among China's provinces presents an overall convergence trend over time. Finally, the household expenditure and the population density have a negative and positive influence on the total CO_2 rebound effect for China's private cars, respectively. - Highlights: • Private cars have become the key source of carbon emission in China. • This paper employs a two-stage Almost Ideal Demand System (AIDS) model • The direct and indirect CO_2 rebound effects for China's private cars are estimated. • The direct CO_2 rebound effect plays a dominant role in the total CO_2 rebound effect in most provinces. • The total CO_2 rebound effect among China's provinces has a convergence over time.

  12. An equivalence factor between CO2 avoided emissions and sequestration. Description and applications in forestry

    International Nuclear Information System (INIS)

    Costa, P.M.; Wilson, C.

    2000-01-01

    Concern about the issue of permanence and reversibility of the effects of carbon sequestration has led to the need to devise accounting methods that quantify the temporal value of storing carbon that has been actively sequestered or removed from the atmosphere, as compared to carbon stored as a result of activities taken to avoid emissions. This paper describes a method for accounting for the atmospheric effects of sequestration-based land-use projects in relation to the duration of carbon storage. Firstly, the time period over which sequestered carbon should be stored in order to counteract the radiative forcing effect of carbon emissions was calculated, based on the residence time and decay pattern of atmospheric CO2, its Absolute Global Warming Potential. This time period was called the equivalence time, and was calculated to be approximately 55 years. From this equivalence time, the effect of storage of 1 t CO2 for 1 year was derived, and found to be similar to preventing the effect of the emission of 0.0182 t CO2. Potential applications of this tonne.year figure, here called the equivalence factor, are then discussed in relation to the estimation of atmospheric benefits over time of sequestration-based land use projects. 15 refs

  13. Financial development and sectoral CO2 emissions in Malaysia.

    Science.gov (United States)

    Maji, Ibrahim Kabiru; Habibullah, Muzafar Shah; Saari, Mohd Yusof

    2017-03-01

    The paper examines the impacts of financial development on sectoral carbon emissions (CO 2 ) for environmental quality in Malaysia. Since the financial sector is considered as one of the sectors that will contribute to Malaysian economy to become a developed country by 2020, we utilize a cointegration method to investigate how financial development affects sectoral CO 2 emissions. The long-run results reveal that financial development increases CO 2 emissions from the transportation and oil and gas sector and reduces CO 2 emissions from manufacturing and construction sectors. However, the elasticity of financial development is not significant in explaining CO 2 emissions from the agricultural sector. The results for short-run elasticities were also consistent with the long-run results. We conclude that generally, financial development increases CO 2 emissions and reduces environmental quality in Malaysia.

  14. Investigating Natural Analogues for Co{sub 2} Sequestration in Ultra Mafic Rocks: A Reactive Transport Modelling Approach

    Energy Technology Data Exchange (ETDEWEB)

    Gherardi, F. [Istituto di Geoscienze e Georisorse, Consiglio Nazionale delle Ricerche, Pisa (Italy)

    2013-07-15

    Serpentinites of Ligurian ophiolites are studied as natural analogues for CO{sub 2} mineral sequestration in Italy. Mineralogical and geochemical observations indicate that silicification and carbonation are typical alteration processes induced by the interaction of CO{sub 2} charged fluids with pristine ultramafic rocks. Multicomponent reactive transport models have been applied to reproduce natural patterns and investigate carbon sequestration efficiency under high P{sub CO2} conditions. Temporal changes in porosity and permeability are predicted to affect the spatial and temporal occurrence of secondary minerals. The feedback between mineralogical transformations and transport properties of the geological media emerges as a key factor controlling the mineral carbonation potential of the investigated ultramafic rocks. (author)

  15. The use of solvent extractions and solubility theory to discern hydrocarbon associations in coal, with application to the coal-supercritical CO2 system

    Science.gov (United States)

    Kolak, Jonathan J.; Burruss, Robert A.

    2014-01-01

    findings indicate that hydrocarbon solubility does not exert a strong influence on hydrocarbon behavior in the systems studied. Other factors such as coal composition and maceral content, surface processes (physisorption), or other molecular interactions appear to affect the partitioning of hydrocarbons within the coal–supercritical CO2 system. Resolving the extent to which these factors might affect hydrocarbon behavior under different geological settings is important to efforts seeking to model petroleum generation, fractionation and expulsion from coal beds and to delineate potential hydrocarbon fate and transport in geologic CO2 sequestration settings.

  16. Uncertainties in relation to CO2 capture and sequestration. Preliminary results. Working Paper

    International Nuclear Information System (INIS)

    Gielen, D.

    2003-03-01

    This paper has been presented at an expert meeting on CO2 capture technology learning at the IEA headquarters, January 24th, 2003. The electricity sector is a key source of CO2 emissions and a strong increase of emissions is forecast in a business-as-usual scenario. A range of strategies have been proposed to reduce these emissions. This paper focuses on one of the promising strategies, CO2 capture and storage. The future role of CO2 capture in the electricity sector has been assessed, using the Energy Technology Perspectives model (ETP). Technology data have been collected and reviewed in cooperation with the IEA Greenhouse Gas R and D implementing agreement and other expert groups. CO2 capture and sequestration is based on relatively new technology. Therefore, its characteristics and its future role in the energy system is subject to uncertainties, as for any new technology. The analysis suggests that the choice of a reference electricity production technology and the characteristics of the CO2 storage option constitute the two main uncertainties, apart from a large number of other factors of lesser importance. Based on the choices made cost estimates can range from less than zero USD for coal fired power plants to more than 150 USD per ton of CO2 for gas fired power plants. The results suggest that learning effects are important, but they do not affect the CO2 capture costs significantly, other uncertainties dominate the cost estimates. The ETP model analysis, where choices are based on the ideal market hypothesis and rational price based decision making, suggest up to 18% of total global electricity production will be equipped with CO2 capture by 2040, in case of a penalty of 50 US$ per ton of CO2. However this high penetration is only achieved in case coal fired IGCC-SOFC power plants are developed successfully. Without such technology only a limited amount of CO2 is captured from gas fired power plants. Higher penalties may result in a higher share of CO2

  17. Factors affecting ultraviolet irradiation/hydrogen peroxide (UV/H2O2) degradation of mixed N-nitrosamines in water

    International Nuclear Information System (INIS)

    Zhou, Chao; Gao, Naiyun; Deng, Yang; Chu, Wenhai; Rong, Wenlei; Zhou, Shengdong

    2012-01-01

    Highlights: ► NAms with three-induced toxicity, as emerging DBPs, has caused a great public attention. ► No paper regards UV/H 2 O 2 oxidation of mixed NAms in an aquatic environment. ► The treatment effect is typically affected by a few factors in water. ► NPIP and NDPhA are the most readily and difficult to be degraded due to unique structure. ► All the NAms degradation exhibited a pseudo-first-order kinetics pattern. - Abstract: Disinfection by-products (DBPs) are a great challenge to our drinking water security. Particularly, nitrosamines (NAms), as emerging DBPs, are potently carcinogenic, mutagenic, and teratogenic, and have increasingly attained public attention. This study was to evaluate the performance of the NAms degradation by the ultraviolet (UV) irradiation (253.7 nm) in the presence of hydrogen peroxide (H 2 O 2 ). In the UV/H 2 O 2 system, hydroxyl radicals (OH·), a type of nonselective and powerful oxidant, was produced to attack the molecules of NAms. Factors affecting the treatment efficiency, including the H 2 O 2 dosage, initial NAms concentration, UV irradiation intensity, initial solution pH, and inorganic anions present in water, were evaluated. All the NAms degradation exhibited a pseudo-first-order kinetics pattern. Within 60 min, 0.1 mg/L of any NAms could be almost decomposed except NDPhA that required 120 min for complete removal, at 25 μmol/L H 2 O 2 and at initial pH 7. Results demonstrate that the UV/H 2 O 2 treatment is a viable option to control NAms in water.

  18. Regional variability of grassland CO2 fluxes in Tyrol/Austria

    Science.gov (United States)

    Irschick, Christoph; Hammerle, Albin; Haslwanter, Alois; Wohlfahrt, Georg

    2010-05-01

    ecosystem respiration (RECO), (ii) GPP depended mainly on the amount of incident photosynthetically active radiation and the amount of green plant matter, the scale of influence of these two factors varying fourfold between the sites, and not so much on the available water, (iii) RECO was mainly affected by the soil temperature, but some evidence for priming effects was also found, (iv) the NEE was mainly influenced by GPP and to a lower extent by RECO. Taken together our results indicate that even within the same ecosystem type exposed to similar climate and land use, site selection may strongly affect the resulting NEE estimates. References: [1] D.D. Baldocchi, "Breathing of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems", Australian Journal of Botany vol.56 (2008) pp. 1-26. [2] A. Hammerle, A. Haslwanter, U. Tappeiner, A. Cernusca, G. Wohlfahrt, "Leaf area controls on energy partitioning of a temperate mountain grassland", Biogeosciences vol.5 (2008) pp. 421 431. [3] G. Wohlfahrt, A. Hammerle, A. Haslwanter, M. Bahn, U. Tappeiner, A. Cernusca, "Seasonal and inter-annual variability of the net ecosystem CO2 exchange of a temperate mountain grassland: effects of weather and management", Journal of Geophysical Research 113 (2008) D08110, doi:10.1029/2007JD009286.

  19. On-road emissions of CO, CO2 and NOX from four wheeler and emission estimates for Delhi.

    Science.gov (United States)

    Jaiprakash; Habib, Gazala; Kumar, Anil; Sharma, Akash; Haider, Minza

    2017-03-01

    This study presents the emission factor of gaseous pollutants (CO, CO 2 , and NO X ) from on-road tailpipe measurement of 14 passenger cars of different types of fuel and vintage. The trolley equipped with stainless steel duct, vane probe velocity meter, flue gas analyzer, Nondispersive infra red (NDIR) CO 2 analyzer, temperature, and relative humidity (RH) sensors was connected to the vehicle using a towing system. Lower CO and higher NO X emissions were observed from new diesel cars (post 2010) compared to old cars (post 2005), which implied that new technological advancement in diesel fueled passenger cars to reduce CO emission is a successful venture, however, the use of turbo charger in diesel cars to achieve high temperature combustion might have resulted in increased NO X emissions. Based on the measured emission factors (g/kg), and fuel consumption (kg), the average and 95% confidence interval (CI) bound estimates of CO, CO 2 , and NO X from four wheeler (4W) in Delhi for the year 2012 were 15.7 (1.4-37.1) , 6234 (386-12,252) , and 30.4 (0.0-103) Gg/year, respectively. The contribution of diesel, gasoline and compressed natural gas (CNG) to total CO, CO 2 and NO X emissions were 7:84:9, 50:48:2 and 58:41:1 respectively. The present work indicated that the age and the maintenance of vehicle both are important factors in emission assessment therefore, more systematic repetitive measurements covering wide range of vehicles of different age groups, engine capacity, and maintenance level is needed for refining the emission factors with CI. Copyright © 2016. Published by Elsevier B.V.

  20. Climatic significance of stable isotope characteristics of air-CO2 and rainfall in Delhi area water-plant-air system

    International Nuclear Information System (INIS)

    Datta, P.S.; Tyagi, S.K.

    2002-01-01

    In recent years, there is a global concern on the role of carbon dioxide in atmosphere in affecting the climate. The present models of global atmospheric circulation suggest that oceans sequester about one-third of the CO 2 released by anthropogenic activities, and biospheric productivity is the primary cause of the interannual fluctuations in the atmospheric CO 2 . However, most of the times, the excess of CO 2 in air is associated with the presence of anthropogenic pollutants from urbanised centres. Therefore, the studies on the pattern of local variations in the isotopic composition of air CO 2 and rainfall in urban areas are expected to provide important information on the atmospheric circulation processes which affect the climate on a regional scale. Internationally, aspects of climate change have been so far demonstrated using isotopic data mainly from temperate climates, and there is limited understanding of the factors controlling stable isotopic composition of air-CO 2 and rainfall in tropical regions. In this context, to assess the magnitude of the above mentioned effects, analysis of the data on the variations in the 13 C/ 12 C and 18 O/ 16 O signatures of air-CO 2 in Delhi area water-plant-air system is presented here

  1. EGL-13/SoxD specifies distinct O2 and CO2 sensory neuron fates in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Jakob Gramstrup Petersen

    2013-05-01

    Full Text Available Animals harbor specialized neuronal systems that are used for sensing and coordinating responses to changes in oxygen (O2 and carbon dioxide (CO2. In Caenorhabditis elegans, the O2/CO2 sensory system comprises functionally and morphologically distinct sensory neurons that mediate rapid behavioral responses to exquisite changes in O2 or CO2 levels via different sensory receptors. How the diversification of the O2- and CO2-sensing neurons is established is poorly understood. We show here that the molecular identity of both the BAG (O2/CO2-sensing and the URX (O2-sensing neurons is controlled by the phylogenetically conserved SoxD transcription factor homolog EGL-13. egl-13 mutant animals fail to fully express the distinct terminal gene batteries of the BAG and URX neurons and, as such, are unable to mount behavioral responses to changes in O2 and CO2. We found that the expression of egl-13 is regulated in the BAG and URX neurons by two conserved transcription factors-ETS-5(Ets factor in the BAG neurons and AHR-1(bHLH factor in the URX neurons. In addition, we found that EGL-13 acts in partially parallel pathways with both ETS-5 and AHR-1 to direct BAG and URX neuronal fate respectively. Finally, we found that EGL-13 is sufficient to induce O2- and CO2-sensing cell fates in some cellular contexts. Thus, the same core regulatory factor, egl-13, is required and sufficient to specify the distinct fates of O2- and CO2-sensing neurons in C. elegans. These findings extend our understanding of mechanisms of neuronal diversification and the regulation of molecular factors that may be conserved in higher organisms.

  2. Cosmic rays, gas and dust in nearby anticentre clouds. I. CO-to-H2 conversion factors and dust opacities

    Science.gov (United States)

    Remy, Q.; Grenier, I. A.; Marshall, D. J.; Casandjian, J. M.

    2017-05-01

    Aims: We aim to explore the capabilities of dust emission and γ rays for probing the properties of the interstellar medium in the nearby anti-centre region, using γ-ray observations with the Fermi Large Area Telescope (LAT), and the thermal dust optical depth inferred from Planck and IRAS observations. We also aim to study massive star-forming clouds including the well known Taurus, Auriga, Perseus, and California molecular clouds, as well as a more diffuse structure which we refer to as Cetus. In particular, we aim at quantifying potential variations in cosmic-ray density and dust properties per gas nucleon across the different gas phases and different clouds, and at measuring the CO-to-H2 conversion factor, XCO, in different environments. Methods: We have separated six nearby anti-centre clouds that are coherent in velocities and distances, from the Galactic-disc background in H I 21-cm and 12CO 2.6-mm line emission. We have jointly modelled the γ-ray intensity recorded between 0.4 and 100 GeV, and the dust optical depth τ353 at 353 GHz as a combination of H I-bright, CO-bright, and ionised gas components. The complementary information from dust emission and γ rays was used to reveal the gas not seen, or poorly traced, by H I, free-free, and 12CO emissions, namely (I) the opaque H iand diffuse H2 present in the Dark Neutral Medium at the atomic-molecular transition, and (II) the dense H2 to be added where 12CO lines saturate. Results: The measured interstellar γ-ray spectra support a uniform penetration of the cosmic rays with energies above a few GeV through the clouds, from the atomic envelopes to the 12CO-bright cores, and with a small ± 9% cloud-to-cloud dispersion in particle flux. We detect the ionised gas from the H iiregion NGC 1499 in the dust and γ-ray emissions and measure its mean electron density and temperature. We find a gradual increase in grain opacity as the gas (atomic or molecular) becomes more dense. The increase reaches a factor of

  3. Impact of Three-Phase Relative Permeability and Hysteresis Models on Forecasts of Storage Associated With CO2-EOR

    Science.gov (United States)

    Jia, Wei; McPherson, Brian; Pan, Feng; Dai, Zhenxue; Moodie, Nathan; Xiao, Ting

    2018-02-01

    Geological CO2 sequestration in conjunction with enhanced oil recovery (CO2-EOR) includes complex multiphase flow processes compared to CO2 storage in deep saline aquifers. Two of the most important factors affecting multiphase flow in CO2-EOR are three-phase relative permeability and associated hysteresis, both of which are difficult to measure and are usually represented by numerical interpolation models. The purpose of this study is to improve understanding of (1) the relative impacts of different three-phase relative permeability models and hysteresis models on CO2 trapping mechanisms, and (2) uncertainty associated with these two factors. Four different three-phase relative permeability models and three hysteresis models were applied to simulations of an active CO2-EOR site, the SACROC unit located in western Texas. To eliminate possible bias of deterministic parameters, we utilized a sequential Gaussian simulation technique to generate 50 realizations to describe heterogeneity of porosity and permeability, based on data obtained from well logs and seismic survey. Simulation results of forecasted CO2 storage suggested that (1) the choice of three-phase relative permeability model and hysteresis model led to noticeable impacts on forecasted CO2 sequestration capacity; (2) impacts of three-phase relative permeability models and hysteresis models on CO2 trapping are small during the CO2-EOR injection period, and increase during the post-EOR CO2 injection period; (3) the specific choice of hysteresis model is more important relative to the choice of three-phase relative permeability model; and (4) using the recommended three-phase WAG (Water-Alternating-Gas) hysteresis model may increase the impact of three-phase relative permeability models and uncertainty due to heterogeneity.

  4. Effects of increased CO2 on fish gill and plasma proteome.

    Directory of Open Access Journals (Sweden)

    Karine Bresolin de Souza

    Full Text Available Ocean acidification and warming are both primarily caused by increased levels of atmospheric CO2, and marine organisms are exposed to these two stressors simultaneously. Although the effects of temperature on fish have been investigated over the last century, the long-term effects of moderate CO2 exposure and the combination of both stressors are almost entirely unknown. A proteomics approach was used to assess the adverse physiological and biochemical changes that may occur from the exposure to these two environmental stressors. We analysed gills and blood plasma of Atlantic halibut (Hippoglossus hippoglossus exposed to temperatures of 12 °C (control and 18 °C (impaired growth in combination with control (400 µatm or high-CO2 water (1000 µatm for 14 weeks. The proteomic analysis was performed using two-dimensional gel electrophoresis (2DE followed by Nanoflow LC-MS/MS using a LTQ-Orbitrap. The high-CO2 treatment induced the up-regulation of immune system-related proteins, as indicated by the up-regulation of the plasma proteins complement component C3 and fibrinogen β chain precursor in both temperature treatments. Changes in gill proteome in the high-CO2 (18 °C group were mostly related to increased energy metabolism proteins (ATP synthase, malate dehydrogenase, malate dehydrogenase thermostable, and fructose-1,6-bisphosphate aldolase, possibly coupled to a higher energy demand. Gills from fish exposed to high-CO2 at both temperature treatments showed changes in proteins associated with increased cellular turnover and apoptosis signalling (annexin 5, eukaryotic translation elongation factor 1γ, receptor for protein kinase C, and putative ribosomal protein S27. This study indicates that moderate CO2-driven acidification, alone and combined with high temperature, can elicit biochemical changes that may affect fish health.

  5. CO2 EFFECTS ON MOJAVE DESERT PLANT INTERACTIONS

    Energy Technology Data Exchange (ETDEWEB)

    L. A. DEFALCO; G. C. FERNANDEZ; S. D. SMITH; R. S. NOWAK

    2004-01-01

    Seasonal and interannual droughts characteristic of deserts have the potential to modify plant interactions as atmospheric CO{sub 2} concentrations continue to rise. At the Nevada Desert FACE (free-air CO{sub 2} enrichment) facility in the northern Mojave Desert, the effects of elevated atmospheric C02 (550 vs. ambient {approx}360 {micro}mol mol{sup -1}) on plant interactions were examined during two years of high and low rainfall. Results suggest that CO{sub 2} effects on the interaction between native species and their understory herbs are dependent on the strength of competition when rainfall is plentiful, but are unimportant during annual drought. Seasonal rainfall for 1999 was 23% the long-term average for the area, and neither elevated CO{sub 2} nor the low production of herbaceous neighbors had an effect on relative growth rate (RGR, d{sup -1}) and reproductive effort (RE, number of flowers g{sup -1}) for Achnatherum hymenoides (early season perennial C{sub 3} grass), Pleuraphis rigida (late season perennial C{sub 4} grass), and Larrea tridentata (evergreen C{sub 3} shrub). In contrast, 1998 received 213% the average rainfall. Consequently, the decrease in RGR and increase in RE for Achnatherum, whose period of growth overlaps directly with that of its neighbors, was exaggerated at elevated CO{sub 2}. However, competitive effects of neighbors on Eriogonum trichopes (a winter annual growing in shrub interspaces), Pleuraphis and Larrea were not affected by elevated CO{sub 2}, and possible explanations are discussed. Contrary to expectations, the invasive annual neighbor Bromus madritensis ssp. rubens had little influence on target plant responses because densities in 1998 and 1999 at this site were well below those found in other studies where it has negatively affected perennial plant growth. The extent that elevated CO{sub 2} reduces the performance of Achnatherum in successive years to cause its loss from the plant community depends more on future pressure

  6. Feasibility of office CO2 laser surgery in patients affected by benign pathologies and congenital malformations of female lower genital tract.

    Science.gov (United States)

    Frega, A; Verrone, A; Schimberni, M; Manzara, F; Ralli, E; Catalano, A; Schimberni, M; Torcia, F; Cozza, G; Bianchi, P; Marziani, R; Lukic, A

    2015-01-01

    Traditional surgery presents some disadvantages, such as the necessity for general anesthesia, hemorrhage, recurrence of pathology, and the possible onset of dyspareunia due to an excessive scarring. CO2 laser surgery might resolve these problems and might be employed in a wider range of clinical indications than usual. We examined the results of CO2 laser surgery in patients affected by benign pathologies and congenital malformations of the female lower genital tract. In this observational study, we enrolled 49 women who underwent CO2 laser surgery for the following indications: Bartholin's gland cyst, imperforate hymen, vaginal septum, Nabothian cyst, and vaginal polyps. Feasibility, cost-effectiveness, complication rate, recurrence rate, short- and long-term outcomes were assessed. All procedures were carried out in a short operative time, without any intraoperative complications. Only 1 (2.0%) out of 49 patients required a hemostatic suture for bleeding. Postoperative period was uneventful in all patients, except 6 (12.2%) out of 49 patients who reported pain one day after surgery, successfully treated with paracetamol. Healing was rapid and excellent in all cases; no wound infection, scarring or stenosis were noticed. Preoperative symptoms reduced or disappeared in all cases. No recurrence was observed and no re-intervention was needed. CO2 laser surgery provides several advantages over traditional surgery, as its systematic use in treating pre-invasive, benign, and congenital pathologies of the female lower genital tract reduces patient discomfort, improves short- and long-term outcomes, and optimizes cost-effectiveness.

  7. Implications of overestimated anthropogenic CO2 emissions on East Asian and global land CO2 flux inversion

    Science.gov (United States)

    Saeki, Tazu; Patra, Prabir K.

    2017-12-01

    Measurement and modelling of regional or country-level carbon dioxide (CO2) fluxes are becoming critical for verification of the greenhouse gases emission control. One of the commonly adopted approaches is inverse modelling, where CO2 fluxes (emission: positive flux, sink: negative flux) from the terrestrial ecosystems are estimated by combining atmospheric CO2 measurements with atmospheric transport models. The inverse models assume anthropogenic emissions are known, and thus the uncertainties in the emissions introduce systematic bias in estimation of the terrestrial (residual) fluxes by inverse modelling. Here we show that the CO2 sink increase, estimated by the inverse model, over East Asia (China, Japan, Korea and Mongolia), by about 0.26 PgC year-1 (1 Pg = 1012 g) during 2001-2010, is likely to be an artifact of the anthropogenic CO2 emissions increasing too quickly in China by 1.41 PgC year-1. Independent results from methane (CH4) inversion suggested about 41% lower rate of East Asian CH4 emission increase during 2002-2012. We apply a scaling factor of 0.59, based on CH4 inversion, to the rate of anthropogenic CO2 emission increase since the anthropogenic emissions of both CO2 and CH4 increase linearly in the emission inventory. We find no systematic increase in land CO2 uptake over East Asia during 1993-2010 or 2000-2009 when scaled anthropogenic CO2 emissions are used, and that there is a need of higher emission increase rate for 2010-2012 compared to those calculated by the inventory methods. High bias in anthropogenic CO2 emissions leads to stronger land sinks in global land-ocean flux partitioning in our inverse model. The corrected anthropogenic CO2 emissions also produce measurable reductions in the rate of global land CO2 sink increase post-2002, leading to a better agreement with the terrestrial biospheric model simulations that include CO2-fertilization and climate effects.

  8. Effects of elevated CO2 and nitrogen deposition on ecosystem carbon fluxes on the Sanjiang plain wetland in Northeast China.

    Directory of Open Access Journals (Sweden)

    Jianbo Wang

    Full Text Available BACKGROUND: Increasing atmospheric CO2 and nitrogen (N deposition across the globe may affect ecosystem CO2 exchanges and ecosystem carbon cycles. Additionally, it remains unknown how increased N deposition and N addition will alter the effects of elevated CO2 on wetland ecosystem carbon fluxes. METHODOLOGY/PRINCIPAL FINDINGS: Beginning in 2010, a paired, nested manipulative experimental design was used in a temperate wetland of northeastern China. The primary factor was elevated CO2, accomplished using Open Top Chambers, and N supplied as NH4NO3 was the secondary factor. Gross primary productivity (GPP was higher than ecosystem respiration (ER, leading to net carbon uptake (measured by net ecosystem CO2 exchange, or NEE in all four treatments over the growing season. However, their magnitude had interannual variations, which coincided with air temperature in the early growing season, with the soil temperature and with the vegetation cover. Elevated CO2 significantly enhanced GPP and ER but overall reduced NEE because the stimulation caused by the elevated CO2 had a greater impact on ER than on GPP. The addition of N stimulated ecosystem C fluxes in both years and ameliorated the negative impact of elevated CO2 on NEE. CONCLUSION/SIGNIFICANCE: In this ecosystem, future elevated CO2 may favor carbon sequestration when coupled with increasing nitrogen deposition.

  9. Generation of H2 and CO by solar thermochemical splitting of H2O and CO2 by employing metal oxides

    International Nuclear Information System (INIS)

    Rao, C.N.R.; Dey, Sunita

    2016-01-01

    Generation of H 2 and CO by splitting H 2 O and CO 2 respectively constitutes an important aspect of the present-day concerns with energy and environment. The solar thermochemical route making use of metal oxides is a viable means of accomplishing these reduction reactions. The method essentially involves reducing a metal oxide by heating and passing H 2 O or CO 2 over the nonstoichiometric oxide to cause reverse oxidation by abstracting oxygen from H 2 O or CO 2 . While ceria, perovskites and other oxides have been investigated for this purpose, recent studies have demonstrated the superior performance of perovskites of the type Ln 1−x A x Mn 1−y M y O 3 (Ln=rare earth, A=alkaline earth, M=various +2 and +3 metal ions), in the thermochemical generation of H 2 and CO. We present the important results obtained hitherto to point out how the alkaine earth and the Ln ions, specially the radius of the latter, determine the performance of the perovskites. The encouraging results obtained are exemplefied by Y 0.5 Sr 0.5 MnO 3 which releases 483 µmol/g of O 2 at 1673 K and produces 757 µmol/g of CO from CO 2 at 1173 K. The production of H 2 from H 2 O is also quite appreciable. Modification of the B site ion of the perovskite also affects the performance. In addition to perovskites, we present the generation of H 2 based on the Mn 3 O 4 /NaMnO 2 cycle briefly. - Graphical abstract: Ln 0.5 A 0.5 Mn 1−x M x O 3 (Ln=lanthanide; A=Ca, Sr; M=Al, Ga, Sc, Mg, Cr, Fe, Co) perovskites are employed for the two step thermochemical splitting of CO 2 and H 2 O for the generation of CO and H 2 . - Highlights: • Perovskite oxides based on Mn are ideal for the two-step thermochemical splitting of CO 2 and H 2 O. • In Ln 1−x A x MnO 3 perovskite (Ln=rare earth, A=alkaline earth) both Ln and A ions play major roles in the thermochemical process. • H 2 O splitting is also achieved by the use of the Mn 3 O 4 -sodium carbonate system. • Thermochemical splitting of CO 2 and H

  10. Design of CO{sub 2} absorption plant for recovery of CO{sub 2} from flue gases of gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Mofarahi, Masoud [Chemical Engineering Department, Persian Gulf University, Boushehr (Iran); Khojasteh, Yaser; Khaledi, Hiwa; Farahnak, Arsalan [Delta Consultant Engineering Group, Tehran (Iran)

    2008-08-15

    The ongoing human-induced emission of carbon dioxide (CO{sub 2}) threatens to change the earth's climate. A major factor in global warming is CO{sub 2} emission from thermal power plants, which burn fossil fuels. One possible way of decreasing CO{sub 2} emissions is to apply CO{sub 2} removal, which involves recovering of CO{sub 2} from energy conversion processes. This study is focused on recovery of CO{sub 2} from gas turbine exhaust of Sarkhun gas refinery power station. The purpose of this study is to recover the CO{sub 2} with minimum energy requirement. Many of CO{sub 2} recovery processes from flue gases have been studied. Among all CO{sub 2} recovery processes which were studied, absorption process was selected as the optimum one, due to low CO{sub 2} concentration in flue gas. The design parameters considered in this regard, are: selection of suitable solvent, solvent concentration, solvent circulation rate, reboiler and condenser duty and number of stages in absorber and stripper columns. In the design of this unit, amine solvent such as, diethanolamine (DEA), diglycolamine (DGA), methyldiethanolamine (MDEA), and monoethanolamine (MEA) were considered and the effect of main parameters on the absorption and stripping columns is presented. Some results with simultaneous changing of the design variables have been obtained. The results show that DGA is the best solvent with minimum energy requirement for recovery of CO{sub 2} from flue gases at atmospheric pressure. (author)

  11. Factors affecting job satisfaction among the radiologic technologists

    International Nuclear Information System (INIS)

    Kim, Chang Ho; Jeong, Won Mee; Yu, Seung Hum; Lee Sun Hee; Sohn, Tae Yong

    1997-01-01

    Job satisfaction is very important for adequate manpower management in the medical field. To study job satisfaction among the radiologic technologists, 344 cases were reviewed in five university hospitals and one general hospital. Self-administered questionnaire was used to study their socioeconomic characteristics, working conditions, job satisfaction, and the factors affecting there job satisfaction. The results were as follows : 1. There was statistically significant difference in job satisfaction according to the their department of employment, position, and hospital characteristics. 2. The group that was satisfied with their salary had a higher job satisfaction score, whereas others who were not satisfied ranked lower. 3. The positive answering group on the ability and job recognition ranked higher score on the job satisfaction than the negative answering group. 4. The group that was in good relationship with their superiors and co-workers scored higher on job satisfaction. From the above results, the job satisfaction was high for the group with positive thinking and reply, but the intentin to change their job was low. Considering the fact that these results represent only 6 hospitals from limited arease, therefore, necessary to include more medical facilities nationwide, especially small-medium sized clinics or hospitals where the difficulty with high turnover rate of employment is expected, to study further various factors involving job satisfaction in the future

  12. The Effects of Daily Co-Occurrence of Affect on Older Adults’ Reactivity to Health Stressors

    Science.gov (United States)

    Ramsey, Jennifer L.; Neupert, Shevaun D.; Mroczek, Daniel K.; Spiro, Avron

    2015-01-01

    Objectives The present study examined age differences among older adults in the daily co-occurrence of affect and its potential role in buffering the negative effects of health stressors. Design Participants were from the Veterans Affairs Normative Aging Study (NAS) and included 249 young-old adults (age = 60–79 years, M=71.6) and 64 old-old adults (age = 80–89, M = 82.9) who completed questionnaires assessing stressors, physical health symptoms, and positive and negative affect on eight consecutive days. Results An independent samples t-test showed young-old and old-old adults did not significantly differ in their mean levels of daily co-occurrence of affect. The between-person relationships among stressors, health, and daily co-occurrence of affect revealed that neither stressors nor health were significantly related to daily co-occurrence of affect. However, results from a multilevel model revealed a three-way cross-level interaction (Health Stressor X Age Group X Co-Occurrence of Affect) where old-old adults with higher levels of co-occurrence of affect were less emotionally reactive to health stressors than young-old adults. Conclusion These findings provide support for the assertion that co-occurrence of affect functions in an adaptive capacity and highlight the importance of examining domain specific stressors. PMID:26518259

  13. The effects of daily co-occurrence of affect on older adults' reactivity to health stressors.

    Science.gov (United States)

    Ramsey, Jennifer L; Neupert, Shevaun D; Mroczek, Daniel K; Spiro, Avron

    2016-01-01

    The present study examined age differences among older adults in the daily co-occurrence of affect and its potential role in buffering the negative effects of health stressors. Participants were from the Veterans Affairs Normative Aging Study and included 249 young-old adults (age = 60-79 years, M = 71.6) and 64 old-old adults (age = 80-89, M = 82.9) who completed questionnaires assessing stressors, physical health symptoms, and positive and negative affect for eight consecutive days. An independent samples t-test showed young-old and old-old adults did not significantly differ in their mean levels of daily co-occurrence of affect. The between-person relationships among stressors, health and daily co-occurrence of affect revealed that neither stressors nor health were significantly related to daily co-occurrence of affect. However, results from a multilevel model revealed a three-way cross-level interaction (health stressor × age group × co-occurrence of affect) where old-old adults with higher levels of co-occurrence of affect were less emotionally reactive to health stressors than young-old adults. These findings provide support for the assertion that co-occurrence of affect functions in an adaptive capacity and highlight the importance of examining domain-specific stressors.

  14. Experimental Ion Mobility measurements in Ne-CO$_2$ and CO$_2$-N$_2$ mixtures

    CERN Document Server

    Encarnação, P.M.C.C.; Veenhof, R.; Neves, P.N.B.; Santos, F.P.; Trindade, A.M.F.; Borges, F.I.G.M.; Conde, C.A.N.

    2016-01-01

    In this paper we present the experimental results for the mobility, K0, of ions in neon-carbon dioxide (Ne-CO2) and carbon dioxide-nitrogen (CO2-N2) gaseous mixtures for total pressures ranging from 8–12 Torr, reduced electric fields in the 10–25 Td range, at room temperature. Regarding the Ne-CO2 mixture only one peak was observed for CO2 concentrations above 25%, which has been identified as an ion originated in CO2, while below 25% of CO2 a second-small peak appears at the left side of the main peak, which has been attributed to impurities. The mobility values for the main peak range between 3.51 ± 0.05 and 1.07 ± 0.01 cm2V−1s−1 in the 10%-99% interval of CO2, and from 4.61 ± 0.19 to 3.00 ± 0.09 cm2V−1s−1 for the second peak observed (10%–25% of CO2). For the CO2-N2, the time-of-arrival spectra displayed only one peak for CO2 concentrations above 10%, which was attributed to ions originated in CO2, namely CO2+(CO2), with a second peak appearing for CO2 concentrations below 10%. This secon...

  15. Positive feedback between increasing atmospheric CO2 and ecosystem productivity

    Science.gov (United States)

    Gelfand, I.; Hamilton, S. K.; Robertson, G. P.

    2009-12-01

    Increasing atmospheric CO2 will likely affect both the hydrologic cycle and ecosystem productivity. Current assumptions that increasing CO2 will lead to increased ecosystem productivity and plant water use efficiency (WUE) are driving optimistic predictions of higher crop yields as well as greater availability of freshwater resources due to a decrease in evapotranspiration. The plant physiological response that drives these effects is believed to be an increase in carbon uptake either by (a) stronger CO2 gradient between the stomata and the atmosphere, or by (b) reduced CO2 limitation of enzymatic carboxylation within the leaf. The (a) scenario will lead to increased water use efficiency (WUE) in plants. However, evidence for increased WUE is mostly based on modeling studies, and experiments producing a short duration or step-wise increase in CO2 concentration (e.g. free-air CO2 enrichment). We hypothesize that the increase in atmospheric CO2 concentration is having a positive effect on ecosystem productivity and WUE. To investigate this hypothesis, we analyzed meteorological, ANPP, and soil CO2 flux datasets together with carbon isotopic ratio (13C/12C) of archived plant samples from the long term ecological research (LTER) program at Kellogg Biological Station. The datasets were collected between 1989 and 2007 (corresponding to an increase in atmospheric CO2 concentration of ~33 ppmv at Mauna Loa). Wheat (Triticum aestivum) samples taken from 1989 and 2007 show a significant decrease in the C isotope discrimination factor (Δ) over time. Stomatal conductance is directly related to Δ, and thus Δ is inversely related to plant intrinsic WUE (iWUE). Historical changes in the 13C/12C ratio (δ13C) in samples of a perennial forb, Canada goldenrod (Solidago canadensis), taken from adjacent successional fields, indicate changes in Δ upon uptake of CO2 as well. These temporal trends in Δ suggest a positive feedback between the increasing CO2 concentration in the

  16. Co-factors necessary for PPAR mediated transactivation of endogenous target genes

    DEFF Research Database (Denmark)

    Grøntved, Lars; Nielsen, Ronni; Stunnenberg, Henk

    of endogenous target gene in different cell types are elusive. To mutually compare the ability of the PPAR subtypes to activate endogenous target genes in a given cell, PPARa, PPARb/d and PPARg2 were HA tagged and rapidly, equally and synchronously expressed using adenoviral delivery. Within a few hours after...... subtype specific activation of target genes. Accumulating evidence suggests that transcriptional co-factors can function as master regulators for nuclear receptors and impose promoter selectivity. To study co-factor necessity for PPAR mediated transactivation of endogenous target genes, specific co...

  17. Factors Affecting Medical Service Quality.

    Science.gov (United States)

    Mosadeghrad, Ali Mohammad

    2014-02-01

    A better understanding of factors influencing quality of medical service can pinpoint better strategies for quality assurance in medical services. This study aimed to identify factors affecting the quality of medical services provided by Iranian physicians. Exploratory in-depth individual interviews were conducted with sixty-four physicians working in various medical institutions in Iran. Individual, organizational and environmental factors enhance or inhibit the quality of medical services. Quality of medical services depends on the personal factors of the physician and patient, and factors pertaining to the healthcare setting and the broader environment. Differences in internal and external factors such as availability of resources, patient cooperation and collaboration among providers affect the quality of medical services and patient outcomes. Supportive leadership, proper planning, education and training and effective management of resources and processes improve the quality of medical services. This article contributes to healthcare theory and practice by developing a conceptual framework for understanding factors that influence medical services quality.

  18. Making carbon dioxide sequestration feasible: Toward federal regulation of CO2 sequestration pipelines

    International Nuclear Information System (INIS)

    Mack, Joel; Endemann, Buck

    2010-01-01

    As the United States moves closer to a national climate change policy, it will have to focus on a variety of factors affecting the manner in which the country moves toward a future with a substantially lower carbon footprint. In addition to encouraging renewable energy, smart grid, clean fuels and other technologies, the United States will need to make substantial infrastructure investments in a variety of industries. Among the significant contributors to the current carbon footprint in the United States is the use of coal as a major fuel for the generation of electricity. One of the most important technologies that the United States can employ to reduce its carbon footprint is to sequester the carbon dioxide ('CO 2 ') from coal-fired power plants. This article focuses on the legal and policy issues surrounding a critical piece of the necessary sequestration infrastructure: CO 2 pipelines that will carry CO 2 from where it is removed from fuel or waste gas streams to where it will be sequestered. Ultimately, this article recommends developing a federally regulated CO 2 pipeline program to foster the implementation of carbon sequestration technology.

  19. Evolution of the chemistry of Fe bearing waters during CO2 degassing

    Science.gov (United States)

    Geroni, J.N.; Cravotta, C.A.; Sapsford, D.J.

    2012-01-01

    The rates of Fe(II) oxidation and precipitation from groundwater are highly pH dependent. Elevated levels of dissolved CO2 can depress pH and cause difficulty in removing dissolved Fe and associated metals during treatment of ferruginous water. This paper demonstrates interdependent changes in pH, dissolved inorganic C species, and Fe(II) oxidation rates that occur as a result of the removal (degassing) of CO2 during aeration of waters discharged from abandoned coal mines. The results of field monitoring of aeration cascades at a treatment facility as well as batchwise aeration experiments conducted using net alkaline and net acidic waters in the UK are combined with geochemical modelling to demonstrate the spatial and temporal evolution of the discharge water chemistry. The aeration cascades removed approximately 67% of the dissolved CO2 initially present but varying the design did not affect the concentration of Fe(II) leaving the treatment ponds. Continued removal of the residual CO2 by mechanical aeration increased pH by as much as 2 units and resulted in large increases in the rates of Fe(II) oxidation and precipitation. Effective exsolution of CO2 led to a reduction in the required lime dose for removal of remaining Fe(II), a very important factor with regard to increasing the sustainability of treatment practices. An important ancillary finding for passive treatment is that varying the design of the cascades had little impact on the rate of CO2 removal at the flow rates measured.

  20. Rechargeable Al-CO2 Batteries for Reversible Utilization of CO2.

    Science.gov (United States)

    Ma, Wenqing; Liu, Xizheng; Li, Chao; Yin, Huiming; Xi, Wei; Liu, Ruirui; He, Guang; Zhao, Xian; Luo, Jun; Ding, Yi

    2018-05-21

    The excessive emission of CO 2 and the energy crisis are two major issues facing humanity. Thus, the electrochemical reduction of CO 2 and its utilization in metal-CO 2 batteries have attracted wide attention because the batteries can simultaneously accelerate CO 2 fixation/utilization and energy storage/release. Here, rechargeable Al-CO 2 batteries are proposed and realized, which use chemically stable Al as the anode. The batteries display small discharge/charge voltage gaps down to 0.091 V and high energy efficiencies up to 87.7%, indicating an efficient battery performance. Their chemical reaction mechanism to produce the performance is revealed to be 4Al + 9CO 22Al 2 (CO 3 ) 3 + 3C, by which CO 2 is reversibly utilized. These batteries are envisaged to effectively and safely serve as a potential CO 2 fixation/utilization strategy with stable Al. © 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Mechanism of the CO2-Ca(OH)2 reaction

    International Nuclear Information System (INIS)

    Chew, V.S.; Cheh, C.H.; Glass, R.W.

    1983-01-01

    Recent studies clearly showed the importance of moisture in achieving high Ca(OH) 2 absorbent utilization for removing CO 2 from gas streams at ambient temperatures. However, the role of moisture and the mechanism of the reaction was not well understood. This paper summarizes the results of a study of the mechanism of the CO 2 -Ca(OH) 2 reaction with emphasis on the role of moisture. The reaction between Ca(OH) 2 and CO 2 in moist N 2 was found to be first order with respect to the reactants with a rate constant of about 100 min -1 . At high humidities, the rate of reaction was chemically controlled, but at low humidities, the reaction rate was limited by the diffusion through the carbonate layer formed by the reaction. Calculations showed that capillary condensation could have occurred only in about 2% of the pore volume and was unlikely to have affected the reaction rate significantly by allowing the reaction to occur in the liquid phase. It was, therefore, concluded that the main role of moisture was to improve the Ca(OH) 2 utilization by lowering the resistance to diffusion through the carbonate layer

  2. Electricity system planning under the CO2 emission restriction

    International Nuclear Information System (INIS)

    Lim, Chae Young; Lee, Man Ki; Roh, Jae Hyung; Kim, Eun Hwan

    2004-01-01

    Objective of this study is to analyze how the restriction of CO 2 emission from power generation will affect the national electricity supply system. The role of nuclear power is investigated under the restriction of CO 2 emission in Korea. A simplified electricity system was modeled for the analysis. To analyze the impact of CO 2 emission restriction, 2 different scenarios were established and compared with the base scenario. The first scenario was 'CO 2 emission restriction with new nuclear power installation'. In this scenario, a CO 2 emission restriction of 0.11kg-C/kWh was imposed and there was no restriction on the nuclear power construction. While, in the second scenario, 'CO 2 emission restriction without new nuclear power installation' the same amount of CO 2 restriction was imposed with no consideration of nuclear power installation. It is found out that the current national emission target(0.11kg- C/kWh) in the electricity sector can not be achieved without nuclear and renewable(wind power) options considered

  3. Enhancing hair growth in male androgenetic alopecia by a combination of fractional CO2 laser therapy and hair growth factors.

    Science.gov (United States)

    Huang, Yue; Zhuo, Fenglin; Li, Linfeng

    2017-11-01

    Laser therapy and growth factors have been used as alternative treatments for male androgenetic alopecia (MAA). The aim of this study is to determine the efficacy and safety of hair growth factors alone or combined with ablative carbon dioxide (CO 2 ) fractional laser therapy in MAA. Twenty-eight men were enrolled in this randomized half-split study based on a left-head to right-head pattern. Fractional CO 2 laser treatment was unilaterally performed; hair growth factors were bilaterally applied. Six sessions with 2-week intervals were performed. Global photographs and dermoscopy assessments were performed at the baseline and 4 months after first treatment. Global photographs underwent blinded review by three independent dermatologists. Scanning electron microscopy was used to compare changes in hair-follicle phase and hair-shaft diameter. Twenty-seven participants completed the 4-month treatment schedule. One patient was lost. Mean hair density increased from 114 ± 27 to 143 ± 25/cm 2 (P laser combined with hair growth factors may serve as an alternative treatment for MAA in individuals unwilling/unable to undergo medical or surgical treatment.

  4. Examining the Factors Affecting Student Dropout

    Directory of Open Access Journals (Sweden)

    Fethi Ahmet INAN

    2006-07-01

    Full Text Available This study examined the factors affecting student dropouts in an online certificate program. In this research, a combination of quantitative and qualitative methods was used. Online Course Dropout Survey was developed and used to determine which factors affect student attrition from the program. The dropout survey was sent by e-mail to 98 students who had dropped the program. Twenty-six students returned the survey. The findings show that the most important factor affecting student retention is finding sufficient time to study. Having personal problems and affordability of the program took second and third place.

  5. Analysis of Economic Factors Affecting Stock Market

    OpenAIRE

    Xie, Linyin

    2010-01-01

    This dissertation concentrates on analysis of economic factors affecting Chinese stock market through examining relationship between stock market index and economic factors. Six economic variables are examined: industrial production, money supply 1, money supply 2, exchange rate, long-term government bond yield and real estate total value. Stock market comprises fixed interest stocks and equities shares. In this dissertation, stock market is restricted to equity market. The stock price in thi...

  6. Study on O2 generation and CO2 absorption capability of four co-cultured salad plants in an enclosed system

    Science.gov (United States)

    Guo, Shuangsheng; Ai, Weidang; Tang, Yongkang; Cheng, Quanyong; Shen, Yunze; Qin, Lifeng; Ma, Jialu; Zhu, Jingtao; Ren, Jin

    2014-06-01

    The ability to generate O2 and absorb CO2 of several co-cultured vegetable plants in an enclosed system was studied to provide theoretical reference for the future man-plant integrated tests. Four kinds of salad plants (Lactuca sativa L. var. Dasusheng, Lactuca sativa L. var. Youmaicai, Gynura bicolor and Cichorium endivia L.) were grown in the CELSS Integration Test Platform (CITP). The environmental factors including O2 and CO2 concentration were continuously monitored on-line and the plant biomass was measured at the end of the test. The changing rules of O2 and CO2 concentration in the system were basically understood and it was found that the O2 generated by the plants could satisfy the respiratory needs of 1.75 persons by calculation. It was also found that the plants could absorb the CO2 breathed out by 2 persons when the light intensity was raised to 550 mmol m-2 s-1 PPF. The results showed that the co-cultured plants hold good compatibility and excellent O2-generating and CO2-absorbing capability. They could also supply some fresh edible vegetable for a 2-person crew.

  7. Rising atmospheric CO{sub 2} and crops: Research methodology and direct effects

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, H. [National Soil Dynamics Laboratory, Auburn, AL (United States); Acock, B. [Systems Research Laboratory, Beltsville, MD (United States)

    1993-12-31

    Carbon dioxide is the food of trees and grass. Our relentless pursuit of a better life has taken us down a traffic jammed road, past smoking factories and forests. This pursuit is forcing a rise in the atmospheric CO{sub 2} level, and no one know when and if flood stage will be reached. Some thinkers have suggested that this increase of CO{sub 2} in the atmosphere will cause warming. No matter whether this prediction is realized or not, more CO{sub 2} will directly affect plants. Data from controlled observations have usually, but not always, shown benefits. Our choices of scientific equipment for gathering CO{sub 2} response data are critical since we must see what is happening through the eye of the instrument. The signals derived from our sensors will ultimately determine the truth of our conclusions, conclusion which will profoundly influence our policy decisions. Experimental gear is selected on the basis of scale of interest and problem to be addressed. Our imaginations and our budgets interact to set bounds on our objectives and approaches. Techniques run the gamut from cellular microprobes through whole-plant controlled environment chambers to field-scale exposure systems. Trade-offs exist among the various CO{sub 2} exposure techniques, and many factors impinge on the choice of a method. All exposure chambers are derivatives of three primary types--batch, plug flow, and continuous stirred tank reactor. Systems for the generation of controlled test atmospheres of CO{sub 2} vary in two basic ways--size and degree of control. Among the newest is free-air CO{sub 2} enrichment which allows tens of square meters of cropland to be studied.

  8. Explaining CO2 fluctuations observed in snowpacks

    Science.gov (United States)

    Graham, Laura; Risk, David

    2018-02-01

    Winter soil carbon dioxide (CO2) respiration is a significant and understudied component of the global carbon (C) cycle. Winter soil CO2 fluxes can be surprisingly variable, owing to physical factors such as snowpack properties and wind. This study aimed to quantify the effects of advective transport of CO2 in soil-snow systems on the subdiurnal to diurnal (hours to days) timescale, use an enhanced diffusion model to replicate the effects of CO2 concentration depletions from persistent winds, and use a model-measure pairing to effectively explore what is happening in the field. We took continuous measurements of CO2 concentration gradients and meteorological data at a site in the Cape Breton Highlands of Nova Scotia, Canada, to determine the relationship between wind speeds and CO2 levels in snowpacks. We adapted a soil CO2 diffusion model for the soil-snow system and simulated stepwise changes in transport rate over a broad range of plausible synthetic cases. The goal was to mimic the changes we observed in CO2 snowpack concentration to help elucidate the mechanisms (diffusion, advection) responsible for observed variations. On subdiurnal to diurnal timescales with varying winds and constant snow levels, a strong negative relationship between wind speed and CO2 concentration within the snowpack was often identified. Modelling clearly demonstrated that diffusion alone was unable to replicate the high-frequency CO2 fluctuations, but simulations using above-atmospheric snowpack diffusivities (simulating advective transport within the snowpack) reproduced snow CO2 changes of the observed magnitude and speed. This confirmed that wind-induced ventilation contributed to episodic pulsed emissions from the snow surface and to suppressed snowpack concentrations. This study improves our understanding of winter CO2 dynamics to aid in continued quantification of the annual global C cycle and demonstrates a preference for continuous wintertime CO2 flux measurement systems.

  9. Root dynamics in an artificially constructed regenerating longleaf pine ecosystem are affected by atmospheric CO(2) enrichment.

    Science.gov (United States)

    Pritchard, S G.; Davis, M A.; Mitchell, R J.; Prior, S A.; Boykin, D L.; Rogers, H H.; Runion, G B.

    2001-08-01

    Differential responses to elevated atmospheric CO(2) concentration exhibited by different plant functional types may alter competition for above- and belowground resources in a higher CO(2) world. Because C allocation to roots is often favored over C allocation to shoots in plants grown with CO(2) enrichment, belowground function of forest ecosystems may change significantly. We established an outdoor facility to examine the effects of elevated CO(2) on root dynamics in artificially constructed communities of five early successional forest species: (1) a C(3) evergreen conifer (longleaf pine, Pinus palustris Mill.); (2) a C(4) monocotyledonous bunch grass (wiregrass, Aristida stricta Michx.); (3) a C(3) broadleaf tree (sand post oak, Quercus margaretta); (4) a C(3) perennial herbaceous legume (rattlebox, Crotalaria rotundifolia Walt. ex Gemel); and (5) an herbaceous C(3) dicotyledonous perennial (butterfly weed, Asclepias tuberosa L.). These species are common associates in early successional longleaf pine savannahs throughout the southeastern USA and represent species that differ in life-form, growth habit, physiology, and symbiotic relationships. A combination of minirhizotrons and soil coring was used to examine temporal and spatial rooting dynamics from October 1998 to October 1999. CO(2)-enriched plots exhibited 35% higher standing root crop length, 37% greater root length production per day, and 47% greater root length mortality per day. These variables, however, were enhanced by CO(2) enrichment only at the 10-30 cm depth. Relative root turnover (flux/standing crop) was unchanged by elevated CO(2). Sixteen months after planting, root biomass of pine was 62% higher in elevated compared to ambient CO(2) plots. Conversely, the combined biomass of rattlebox, wiregrass, and butterfly weed was 28% greater in ambient compared to high CO(2) plots. There was no difference in root biomass of oaks after 16 months of exposure to elevated CO(2). Using root and shoot

  10. Capture and geological storage of CO2

    International Nuclear Information System (INIS)

    2013-03-01

    Capture and geological storage of CO 2 could be a contribution to reduce CO 2 emissions, and also a way to meet the factor 4 objective of reduction of greenhouse gas emissions. This publication briefly presents the capture and storage definitions and principles, and comments some key data related to CO 2 emissions, and their natural trapping by oceans, soils and forests. It discusses strengths (a massive and perennial reduction of CO 2 emissions, a well defined regulatory framework) and weaknesses (high costs and uncertain cost reduction perspectives, a technology which still consumes a lot of energy, geological storage capacities still to be determined, health environmental impacts and risks to be controlled, a necessary consultation of population for planned projects) of this option. Actions undertaken by the ADEME are briefly reviewed

  11. Potential and economics of CO{sub 2} sequestration; Sequestration du CO{sub 2}: faisabilite et cout

    Energy Technology Data Exchange (ETDEWEB)

    Jean-Baptiste, Ph.; Ciais, Ph.; Orr, J. [CEA Saclay, 91 - Gif sur Yvette (France). Direction des Sciences de la Matiere; Ducroux, R. [Centre d' Initiative et de Recherche sur l' Energie et l' Environnement, CIRENE, 91 - Palaiseau (France)

    2001-07-01

    Increasing atmospheric level of greenhouse gases are causing global warming and putting at risk the global climate system. The main anthropogenic greenhouse gas is CO{sub 2}. Some techniques could be used to reduced CO{sub 2} emission and stabilize atmospheric CO{sub 2} concentration, including i) energy savings and energy efficiency, ii) switch to lower carbon content fuels (natural gas) and use energy sources with zero CO{sub 2} emissions such as renewable or nuclear energy, iii) capture and store CO{sub 2} from fossil fuels combustion, and enhance the natural sinks for CO{sub 2} (forests, soils, ocean...). The purpose of this report is to provide an overview of the technology and cost for capture and storage of CO{sub 2} and to review the various options for CO{sub 2} sequestration by enhancing natural carbon sinks. Some of the factors which will influence application, including environmental impact, cost and efficiency, are discussed. Capturing CO{sub 2} and storing it in underground geological reservoirs appears as the best environmentally acceptable option. It can be done with existing technology, however, substantial R and D is needed to improve available technology and to lower the cost. Applicable to large CO{sub 2} emitting industrial facilities such as power plants, cement factories, steel industry, etc., which amount to about 30% of the global anthropic CO{sub 2} emission, it represents a valuable tool in the baffle against global warming. About 50% of the anthropic CO{sub 2} is being naturally absorbed by the biosphere and the ocean. The 'natural assistance' provided by these two large carbon reservoirs to the mitigation of climate change is substantial. The existing natural sinks could be enhanced by deliberate action. Given the known and likely environmental consequences, which could be very damaging indeed, enhancing ocean sinks does not appears as a satisfactory option. In contrast, the promotion of land sinks through demonstrated carbon

  12. Influence Of Dilution Factor For Activity Measurement Of 60CO

    International Nuclear Information System (INIS)

    Hermawan-Candra; Nazaroh; Ermi-Juita

    2003-01-01

    Influence of dilution factor for activity measurement of 60 Co has been studied. The aim of this research is to determine influence between activity measurement result of 60 Co before and after diluted. Measurement were done by using ionization chamber detectors system and gamma spectrometry system with NaI(TI) detector. Discrepancy within three ionization chambers measurements were 0.2% - 2.1% and NaI(Tl) were 3.5% - 6%. (author)

  13. Elevated CO2 concentration affects vertical distribution of photosynthetic activity in Calamagrostis arundinacea (L.) Roth

    Czech Academy of Sciences Publication Activity Database

    Klem, Karel; Holub, Petr; Urban, Otmar

    2017-01-01

    Roč. 10, 1-2 (2017), s. 67-74 ISSN 1803-2451 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:86652079 Keywords : chlorophyll * CO2 assimilation * elevated CO2 * concentration * transpiration * vertical gradient * water-use efficiency Subject RIV: EH - Ecology, Behaviour OBOR OECD: Environmental sciences (social aspects to be 5.7) https://beskydy.mendelu.cz/10/1/0067/

  14. Reducing CO2 emissions on the electric grid through a carbon disincentive policy

    International Nuclear Information System (INIS)

    Li, Chiao-Ting; Peng, Huei; Sun, Jing

    2013-01-01

    This paper studies the operation of an electric grid with renewable wind generation and plug-in electric vehicles (PEVs). In particular, PEVs will be the controllable demand that can mitigate the intermittency in wind generation and improve the capacity factors of the non-renewable generation assets on the grid. Optimization problems are formulated to minimize the costs of electricity generation, and two approaches are proposed to address the grid CO 2 emission in the optimization. The first approach directly penalizes CO 2 in the objective function, and the second approach adopts a carbon disincentive policy to alter the dispatch order of power plants, so that expensive low-CO 2 plants can replace cheap high-CO 2 plants. These two approaches result in very different outcomes: the first approach affects only the PEV charging demand on the grid and does not result in significant CO 2 reduction, whereas the second approach controls both the generation and load, and CO 2 can be reduced substantially. In addition, the carbon disincentive policy, unlike a carbon tax, does not collect any revenue; therefore, the increase in electricity cost is minimal. The effect of the proposed algorithms on the grid electricity cost and carbon emission is analyzed in details and reported. - Highlights: • We study the tradeoff between CO 2 emissions and generation cost on an electric grid. • The tradeoff was shown by Pareto fronts obtained from optimizations. • Pareto fronts shows that a carbon disincentive is effective in reducing emissions. • Controlling both supply and demand on the grid is necessary to reduce CO 2 and costs

  15. Species and tissue type regulate long-term decomposition of brackish marsh plants grown under elevated CO2 conditions

    Science.gov (United States)

    Jones, Joshua A; Cherry, Julia A; Mckee, Karen L.

    2016-01-01

    Organic matter accumulation, the net effect of plant production and decomposition, contributes to vertical soil accretion in coastal wetlands, thereby playing a key role in whether they keep pace with sea-level rise. Any factor that affects decomposition may affect wetland accretion, including atmospheric CO2 concentrations. Higher CO2 can influence decomposition rates by altering plant tissue chemistry or by causing shifts in plant species composition or biomass partitioning. A combined greenhouse-field experiment examined how elevated CO2 affected plant tissue chemistry and subsequent decomposition of above- and belowground tissues of two common brackish marsh species, Schoenoplectus americanus (C3) and Spartina patens (C4). Both species were grown in monoculture and in mixture under ambient (350-385 μL L-1) or elevated (ambient + 300 μL L-1) atmospheric CO2 conditions, with all other growth conditions held constant, for one growing season. Above- and belowground tissues produced under these treatments were decomposed under ambient field conditions in a brackish marsh in the Mississippi River Delta, USA. Elevated CO2 significantly reduced nitrogen content of S. americanus, but not sufficiently to affect subsequent decomposition. Instead, long-term decomposition (percent mass remaining after 280 d) was controlled by species composition and tissue type. Shoots of S. patens had more mass remaining (41 ± 2%) than those of S. americanus (12 ± 2 %). Belowground material decomposed more slowly than that placed aboveground (62 ± 1% vs. 23 ± 3% mass remaining), but rates belowground did not differ between species. Increases in atmospheric CO2concentration will likely have a greater effect on overall decomposition in this brackish marsh community through shifts in species dominance or biomass allocation than through effects on tissue chemistry. Consequent changes in organic matter accumulation may alter marsh capacity to accommodate sea-level rise

  16. [Effects of drying and wetting cycles induced by tides on net ecosystem exchange of CO2 over a salt marsh in the Yellow River Delta, China.

    Science.gov (United States)

    He, Wen Jun; Han, Guang Xuan; Xu, Yan Ning; Zhang, Xi Tao; Wang, An Dong; Che, Chun Guang; Sun, Bao Yu; Zhang, Xiao Shuai

    2018-01-01

    As a unique hydrological characteristic, the tidal action can strongly affect carbon balance in a salt marsh despite their short duration. Using the eddy covariance technique, we measured the net ecosystem CO 2 exchange (NEE) and its environmental factors and tidal change over a salt marsh in the Yellow River Delta. It aimed to investigate the effect of tidal process and drying and wetting cycles induced by tides on NEE. The results showed that the tidal process promoted the daytime CO 2 uptake, but it didn't clearly affect the nighttime CO 2 release. Tidal inundation was a major factor influencing daytime NEE. The diurnal change of NEE showed a distinct U-shaped curve on both drought and wet stages, but not with substantial variation in its amplitude during the drought stage. The drying and wetting cycles enhanced the absorption of daytime CO 2 . Under drought stage, the mean of the maximum photosynthetic rate (A max ), apparent quantum yield (α) and ecosystem respiration (R eco ) were higher than those in wet stage. In addition, the drying and wetting cycles suppressed the nighttime CO 2 release from the salt marsh but increased its temperature sensitivity.

  17. CO2 sequestration

    International Nuclear Information System (INIS)

    Favre, E.; Jammes, L.; Guyot, F.; Prinzhofer, A.; Le Thiez, P.

    2009-01-01

    This document presents the summary of a conference-debate held at the Academie des Sciences (Paris, France) on the topic of CO 2 sequestration. Five papers are reviewed: problems and solutions for the CO 2 sequestration; observation and surveillance of reservoirs; genesis of carbonates and geological storage of CO 2 ; CO 2 sequestration in volcanic and ultra-basic rocks; CO 2 sequestration, transport and geological storage: scientific and economical perspectives

  18. Impacts of a weather event on shelf circulation and CO2 and O2 dynamics on the Louisiana shelf during summer 2009

    Science.gov (United States)

    Huang, W.-J.; Cai, W.-J.; Wang, Y.; Hopkinson, C. S.

    2013-12-01

    While much is known about the physics of coastal currents, much less is known about the biogeochemical effects of surface currents on shelf carbon dioxide (CO2) and oxygen distribution and dynamics. The Mississippi and Atchafalaya River plume is usually observed along the Louisiana shelf with easterly winds. Such a typical pattern was observed in August 2007, i.e. a plume of low salinity and low partial pressure of CO2 (pCO2), indicating high biological production on the inner shelf; and higher salinity and pCO2 on the outer shelf. This high biological production induced by riverine nitrogen flux thus provided major organic matter sources for the shelf-wide hypoxia (dissolved oxygen [DO] hypoxic area. Furthermore, DIC concentration in bottom waters was higher than those predicted by the Redfield ratio, most likely because of much rapid O2 compensation than CO2 loss during air-sea exchange. Numerical models indicate such relocation of plume was mostly affected by the shelf circulation dominated by southerly and southwesterly winds. Consequently, we conclude that wind-forcing and shelf circulation are critical factors that influence the plume trajectories and the associated biogeochemical properties in coastal waters.

  19. Atmospheric CO2 fertilization effects on biomass yields of 10 crops in northern Germany

    Directory of Open Access Journals (Sweden)

    Jan F. Degener

    2015-07-01

    Full Text Available The quality and quantity of the influence that atmospheric CO2 has on cropgrowth is still a matter of debate. This study's aim is to estimate if CO2 will have an effect on biomass yields at all, to quantify and spatially locate the effects and to explore if an elevated photosynthesis rate or water-use-efficiency is predominantly responsible. This study uses a numerical carbon based crop model (BioSTAR to estimate biomass yields within theadministrative boundaries of Niedersachsen in Northern Germany. 10 crops are included (winter grains: wheat, barley,rye, triticale - early, medium, late maize variety - sunflower, sorghum, spring wheat, modeled annuallyfor the entire 21st century on 91,014 separate sites. Modeling was conducted twice, once with an annually adaptedCO2 concentration according to the SRES-A1B scenario and once with a fixed concentration of 390 ppm to separate the influence of CO2 from that of the other input variables.Rising CO2 concentrations will play a central role in keeping future yields of all crops above or aroundtoday's level. Differences in yields between modeling with fixed or adapted CO2 can be as high as60 % towards the century's end. Generally yields will increase when CO2 rises and decline whenit is kept constant. As C4-crops are equivalently affected it is presumed that anelevated efficiency in water use is the main responsible factor for all plants.

  20. Energy consumption and CO2 emissions in Iran, 2025.

    Science.gov (United States)

    Mirzaei, Maryam; Bekri, Mahmoud

    2017-04-01

    Climate change and global warming as the key human societies' threats are essentially associated with energy consumption and CO 2 emissions. A system dynamic model was developed in this study to model the energy consumption and CO 2 emission trends for Iran over 2000-2025. Energy policy factors are considered in analyzing the impact of different energy consumption factors on environmental quality. The simulation results show that the total energy consumption is predicted to reach 2150 by 2025, while that value in 2010 is 1910, which increased by 4.3% yearly. Accordingly, the total CO 2 emissions in 2025 will reach 985million tonnes, which shows about 5% increase yearly. Furthermore, we constructed policy scenarios based on energy intensity reduction. The analysis show that CO 2 emissions will decrease by 12.14% in 2025 compared to 2010 in the scenario of 5% energy intensity reduction, and 17.8% in the 10% energy intensity reduction scenario. The results obtained in this study provide substantial awareness regarding Irans future energy and CO 2 emission outlines. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Early growth interactions between a mangrove and an herbaceous salt marsh species are not affected by elevated CO2 or drought

    Science.gov (United States)

    Howard, Rebecca J.; Stagg, Camille L.; Utomo, Herry S.

    2018-01-01

    Increasing atmospheric carbon dioxide (CO2) concentrations are likely to influence future distributions of plants and plant community structure in many regions of the world through effects on photosynthetic rates. In recent decades the encroachment of woody mangrove species into herbaceous marshes has been documented along the U.S. northern Gulf of Mexico coast. These species shifts have been attributed primarily to rising sea levels and warming winter temperatures, but the role of elevated CO2 and water availability may become more prominent drivers of species interactions under future climate conditions. Drought has been implicated as a major factor contributing to salt marsh vegetation dieback in this region. In this greenhouse study we examined the effects of CO2 concentration (∼380 ppm, ∼700 ppm) and water regime (drought, saturated, flooded) on early growth of Avicennia germinans, a C3 mangrove species, and Spartina alterniflora, a C4 grass. Plants were grown in monocultures and in a mixed-species assemblage. We found that neither species responded to elevated CO2 over the 10-month duration of the experiment, and there were few interactions between experimental factors. Two effects of water regime were documented: lower A. germinanspneumatophore biomass under drought conditions, and lower belowground biomass under flooded conditions regardless of planting assemblage. Evidence of interspecific interactions was noted. Competition for aboveground resources (e.g., light) was indicated by lower S. alterniflora stem biomass in mixed-species assemblage compared to biomass in S. alterniflora monocultures. Pneumatophore biomass of A. germinans was reduced when grown in monoculture compared to the mixed-species assemblage, indicating competition for belowground resources. These interactions provide insight into how these species may respond following major disturbance events that lead to vegetation dieback. Site variation in propagule availability

  2. Photosynthesis and metabolite responses of Isatis indigotica Fortune to elevated [CO2

    Institute of Scientific and Technical Information of China (English)

    Ping Li; Hongying Li; Yuzheng Zong; Frank Yonghong Li; Yuanhuai Han; Xingyu Hao

    2017-01-01

    Climate change is affecting global crop productivity, food quality, and security. However, few studies have addressed the mechanism by which elevated CO2 may affect the growth of medicinal plants. Isatis indigotica Fortune is a widely used Chinese medicinal herb with multiple pharmacological properties. To investigate the physiological mechanism of I. indigotica response to elevated [CO2], plants were grown at either ambient [CO2] (385μmol mol?1) or elevated [CO2] (590μmol mol?1) in an open-top chamber (OTC) experimental facility in North China. A significant reduction in transpiration rate (Tr) and stomatal conductance (gs) and a large increase in water-use efficiency contributed to an increase in net photosynthetic rate (Pn) under elevated [CO2] 76 days after sowing. Leaf non-photochemical quenching (NPQ) was decreased, so that more energy was used in effective quantum yield of PSII photochemistry (ΦPSI ) under elevated [CO2]. High ΦPSI , meaning high electron transfer efficiency, also increased Pn. The [CO2]-induced increase in photosynthesis significantly increased biomass by 36.8%. Amounts of metabolic compounds involved in sucrose metabolism, pyrimidine metabolism, flavonoid biosynthesis, and other processes in leaves were reduced under elevated [CO2]. These results showed that the fertilization effect of elevated [CO2] is conducive to increasing dry weight but not secondary metabolism in I. indigotica.

  3. Assessment of Factors Influencing Effective CO2 Storage Capacity and Injectivity in Eastern Gas Shales

    Energy Technology Data Exchange (ETDEWEB)

    Godec, Michael [Advanced Resources International, Inc., Arlington, VA (United States)

    2013-06-30

    Building upon advances in technology, production of natural gas from organic-rich shales is rapidly developing as a major hydrocarbon supply option in North America and around the world. The same technology advances that have facilitated this revolution - dense well spacing, horizontal drilling, and hydraulic fracturing - may help to facilitate enhanced gas recovery (EGR) and carbon dioxide (CO2) storage in these formations. The potential storage of CO2 in shales is attracting increasing interest, especially in Appalachian Basin states that have extensive shale deposits, but limited CO2 storage capacity in conventional reservoirs. The goal of this cooperative research project was to build upon previous and on-going work to assess key factors that could influence effective EGR, CO2 storage capacity, and injectivity in selected Eastern gas shales, including the Devonian Marcellus Shale, the Devonian Ohio Shale, the Ordovician Utica and Point Pleasant shale and equivalent formations, and the late Devonian-age Antrim Shale. The project had the following objectives: (1) Analyze and synthesize geologic information and reservoir data through collaboration with selected State geological surveys, universities, and oil and gas operators; (2) improve reservoir models to perform reservoir simulations to better understand the shale characteristics that impact EGR, storage capacity and CO2 injectivity in the targeted shales; (3) Analyze results of a targeted, highly monitored, small-scale CO2 injection test and incorporate into ongoing characterization and simulation work; (4) Test and model a smart particle early warning concept that can potentially be used to inject water with uniquely labeled particles before the start of CO2 injection; (5) Identify and evaluate potential constraints to economic CO2 storage in gas shales, and propose development approaches that overcome these constraints

  4. Electronic structures and stability of Ni/Bi2Te3 and Co/Bi2Te3 interfaces

    International Nuclear Information System (INIS)

    Xiong Ka; Wang Weichao; Alshareef, Husam N; Gupta, Rahul P; Gnade, Bruce E; Cho, Kyeongjae; White, John B

    2010-01-01

    We investigate the electronic structures and stability for Ni/Bi 2 Te 3 , NiTe/Bi 2 Te 3 , Co/Bi 2 Te 3 and CoTe 2 /Bi 2 Te 3 interfaces by first-principles calculations. It is found that the surface termination strongly affects the band alignment. Ni and Co are found to form Ohmic contacts to Bi 2 Te 3 . The interface formation energy for Co/Bi 2 Te 3 interfaces is much lower than that of Ni/Bi 2 Te 3 interfaces. Furthermore, we found that NiTe on Bi 2 Te 3 is more stable than Ni, while the formation energies for Co and CoTe 2 on Bi 2 Te 3 are comparable.

  5. Seasonal changes of Rubisco content and activity in Fagus sylvatica and Picea abies affected by elevated CO2 concentration

    Czech Academy of Sciences Publication Activity Database

    Hrstka, M.; Urban, Otmar; Babák, L.

    2012-01-01

    Roč. 66, č. 9 (2012), s. 836-841 ISSN 0366-6352 R&D Projects: GA AV ČR IAA600870701; GA MŠk(CZ) LM2010007; GA MŠk(CZ) ED1.1.00/02.0073 Institutional research plan: CEZ:AV0Z60870520 Keywords : Rubisco content * Rubisco activity * seasonal changes * elevated CO2 concentrations * Fagus sylvatica * Picea abies Subject RIV: EH - Ecology, Behaviour Impact factor: 0.879, year: 2012

  6. Salphen-Co(III) complexes catalyzed copolymerization of epoxides with CO2

    Czech Academy of Sciences Publication Activity Database

    Hošťálek, Z.; Mundil, R.; Císařová, I.; Trhlíková, Olga; Grau, E.; Peruch, F.; Cramail, H.; Merna, J.

    2015-01-01

    Roč. 63, 20 April (2015), s. 52-61 ISSN 0032-3861 Institutional support: RVO:61389013 Keywords : cobalt salphen catalyst * CO2 epoxide copolymerization * MALDI-TOF Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.586, year: 2015

  7. Litter Quality of Populus Species as Affected by Free-Air CO2

    NARCIS (Netherlands)

    Vermue, E.; Buurman, P.; Hoosbeek, M.R.

    2009-01-01

    The effect of elevated CO2 and nitrogen fertilization on the molecular chemistry of litter of three Populus species and associated soil organic matter (SOM) was investigated by pyrolysis-gas chromatography/mass spectrometry. The results are based on 147 quantified organic compounds in 24 litter

  8. Factors affecting the palmitoyl-coenzyme A desaturase of Saccharomyces cerevisiae

    Science.gov (United States)

    Klein, H. P.; Volkmann, C. M.

    1975-01-01

    The activity and stability of the palmitoyl-coenzyme A (CoA) desaturase complex of Saccharomyces cerevisiae was influenced by several factors. Cells, grown nonaerobically and then incubated with glucose, either in air or under N2, showed a marked increase in desaturase activity. Cycloheximide, added during such incubations, prevented the increase in activity, suggesting de novo synthesis. The stability of the desaturase from cells grown nonaerobically was affected by subsequent treatment of the cells; enzyme from freshly harvested cells, or from cells that were then shaken under nitrogen, readily lost activity upon washing or during density gradient analysis, whereas aerated cells, in the presence or absence of glucose, yielded stable enzyme preparations. The loss of activity in nonaerobic preparations could be reversed by adding soluble supernatant from these homogenates and could be prevented by growing the cells in the presence of palmitoleic acid and ergosterol, but not with several other lipids tested.

  9. Cu-Sn Bimetallic Catalyst for Selective Aqueous Electroreduction of CO2 to CO

    KAUST Repository

    Sarfraz, Saad

    2016-03-23

    We report a selective and stable electrocatalyst utilizing non-noble metals consisting of Cu and Sn for the efficient and selective reduction of CO2 to CO over a wide potential range. The bimetallic electrode was prepared through the electrodeposition of Sn species on the surface of oxide-derived copper (OD-Cu). The Cu surface, when decorated with an optimal amount of Sn, resulted in a Faradaic efficiency (FE) for CO greater than 90% and a current density of −1.0 mA cm−2 at −0.6 V vs. RHE, compared to the CO FE of 63% and −2.1 mA cm−2 for OD-Cu. Excess Sn on the surface caused H2 evolution with a decreased current density. X-ray diffraction (XRD) suggests the formation of Cu-Sn alloy. Auger electron spectroscopy of the sample surface exhibits zero-valent Cu and Sn after the electrodeposition step. Density functional theory (DFT) calculations show that replacing a single Cu atom with a Sn atom leaves the d-band orbitals mostly unperturbed, signifying no dramatic shifts in the bulk electronic structure. However, the Sn atom discomposes the multi-fold sites on pure Cu, disfavoring the adsorption of H and leaving the adsorption of CO relatively unperturbed. Our catalytic results along with DFT calculations indicate that the presence of Sn on reduced OD-Cu diminishes the hydrogenation capability—i.e., the selectivity towards H2 and HCOOH—while hardly affecting the CO productivity. While the pristine monometallic surfaces (both Cu and Sn) fail to selectively reduce CO2, the Cu-Sn bimetallic electrocatalyst generates a surface that inhibits adsorbed H*, resulting in improved CO FE. This study presents a strategy to provide a low-cost non-noble metals that can be utilized as a highly selective electrocatalyst for the efficient aqueous reduction of CO2.

  10. Decoupling of CO2 emissions and GDP

    Directory of Open Access Journals (Sweden)

    Yves Rocha de Salles Lima

    2016-12-01

    Full Text Available The objetive of this work is to analyze the variation of CO2 emissions and GDP per capita throughout the years and identify the possible interaction between them. For this purpose, data from the International Energy Agency was collected on two countries, Brazil and the one with the highest GDP worldwide, the United States. Thus, the results showed that CO2 emissions have been following the country’s economic growth for many years. However, these two indicators have started to decouple in the US in 2007 while in Brazil the same happened in 2011. Furthermore, projections for CO2 emissions are made until 2040, considering 6 probable scenarios. These projections showed that even if the oil price decreases, the emissions will not be significantly affected as long as the economic growth does not decelerate.

  11. Interannual variability in the atmospheric CO2 rectification over a boreal forest region

    Science.gov (United States)

    Chen, Baozhang; Chen, Jing M.; Worthy, Douglas E. J.

    2005-08-01

    Ecosystem CO2 exchange with the atmosphere and the planetary boundary layer (PBL) dynamics are correlated diurnally and seasonally. The strength of this kind of covariation is quantified as the rectifier effect, and it affects the vertical gradient of CO2 and thus the global CO2 distribution pattern. An 11-year (1990-1996, 1999-2002), continuous CO2 record from Fraserdale, Ontario (49°52'29.9″N, 81°34'12.3″W), along with a coupled vertical diffusion scheme (VDS) and ecosystem model named Boreal Ecosystem Productivity Simulator (BEPS), are used to investigate the interannual variability of the rectifier effect over a boreal forest region. The coupled model performed well (r2 = 0.70 and 0.87, at 40 m at hourly and daily time steps, respectively) in simulating CO2 vertical diffusion processes. The simulated annual atmospheric rectifier effect varies from 3.99 to 5.52 ppm, while the diurnal rectifying effect accounted for about a quarter of the annual total (22.8˜28.9%).The atmospheric rectification of CO2 is not simply influenced by terrestrial source and sink strengths, but by seasonal and diurnal variations in the land CO2 flux and their interaction with PBL dynamics. Air temperature and moisture are found to be the dominant climatic factors controlling the rectifier effect. The annual rectifier effect is highly correlated with annual mean temperature (r2 = 0.84), while annual mean air relative humidity can explain 51% of the interannual variation in rectification. Seasonal rectifier effect is also found to be more sensitive to climate variability than diurnal rectifier effect.

  12. A holistic approach to factors affecting depression in haemodialysis patients.

    Science.gov (United States)

    Gerogianni, Georgia; Kouzoupis, Anastasios; Grapsa, Eirini

    2018-05-19

    Depression in dialysis populations is affected by co-morbid diseases, such as cardiovascular disease, diabetes, and immune dysfunction, and it also includes high suicide risk and frequent hospitalizations. Depressive disorders have a close association with malnutrition and chronic inflammation, as well as with cognitive impairment. Impaired cognitive function may be manifested as low adherence to dialysis treatment, leading to malnutrition. Additionally, chronic pain and low quality of sleep lead to high rates of depressive symptoms in haemodialysis patients, while an untreated depression can cause sleep disturbances and increased mortality risk. Depression can also lead to sexual dysfunction and non-adherence, while unemployment can cause depressive disorders, due to patients' feelings of being a financial burden on their family. The present review provides a holistic approach to the factors affecting depression in haemodialysis, offering significant knowledge to renal professionals.

  13. Modeling experimental stable isotope results from CO2 adsorption and diffusion experiments

    Science.gov (United States)

    Larson, T. E.

    2012-12-01

    Transport of carbon dioxide through porous media can be affected by diffusion, advection and adsorption processes. Developing new tools to understand which of these processes dominates migration of CO2 or other gases in the subsurface is important to a wide range of applications including CO2 storage. Whereas advection rates are not affected by isotope substitution in CO2, adsorption and diffusion constants are. For example, differences in the binary diffusion constant calculated between C12O2-He and C13O2-He results in a carbon isotope fractionation whereby the front of the chromatographic peak is enriched in carbon-12 and the tail of the peak is enriched in carbon-13. Interestingly, adsorption is shown to have an opposite, apparent inverse affect whereby the lighter isotopologues of CO2 are preferentially retained by the chromatographic column and the heavier isotopologues are eluted first. This apparent inverse chromatographic effect has been ascribed to Van der Waals dispersion forces. Smaller molar volumes of the heavier isotopologues resulting from increased bond strength (shorter bond length) effectively decreases Van der Waals forces in heavier isotopologues compared to lighter isotopologues. Here we discuss the possible application of stable isotope values measured across chromatographic peaks to differentiate diffusion-dominated from adsorption-dominated transport processes for CO2. Separate 1-dimensional flow-through columns were packed with quartz and illite, and one remained empty. Dry helium was used as a carrier gas. Constant flow rate, temperature and column pressure were maintained. After background CO2 concentrations were minimized and constant, a sustained pulse of CO2 was injected at the head of the column and the effluent was sampled at 4 minute intervals for CO2 concentration, and carbon and oxygen isotope ratios. The quartz-sand packed and empty columns resulted in similar trends in concentration and isotope ratios whereby CO2 concentrations

  14. System-level modeling for economic evaluation of geological CO2 storage in gas reservoirs

    International Nuclear Information System (INIS)

    Zhang, Yingqi; Oldenburg, Curtis M.; Finsterle, Stefan; Bodvarsson, Gudmundur S.

    2007-01-01

    One way to reduce the effects of anthropogenic greenhouse gases on climate is to inject carbon dioxide (CO 2 ) from industrial sources into deep geological formations such as brine aquifers or depleted oil or gas reservoirs. Research is being conducted to improve understanding of factors affecting particular aspects of geological CO 2 storage (such as storage performance, storage capacity, and health, safety and environmental (HSE) issues) as well as to lower the cost of CO 2 capture and related processes. However, there has been less emphasis to date on system-level analyses of geological CO 2 storage that consider geological, economic, and environmental issues by linking detailed process models to representations of engineering components and associated economic models. The objective of this study is to develop a system-level model for geological CO 2 storage, including CO 2 capture and separation, compression, pipeline transportation to the storage site, and CO 2 injection. Within our system model we are incorporating detailed reservoir simulations of CO 2 injection into a gas reservoir and related enhanced production of methane. Potential leakage and associated environmental impacts are also considered. The platform for the system-level model is GoldSim [GoldSim User's Guide. GoldSim Technology Group; 2006, http://www.goldsim.com]. The application of the system model focuses on evaluating the feasibility of carbon sequestration with enhanced gas recovery (CSEGR) in the Rio Vista region of California. The reservoir simulations are performed using a special module of the TOUGH2 simulator, EOS7C, for multicomponent gas mixtures of methane and CO 2 . Using a system-level modeling approach, the economic benefits of enhanced gas recovery can be directly weighed against the costs and benefits of CO 2 injection

  15. Natural variations in snow cover do not affect the annual soil CO2 efflux from a mid-elevation temperate forest.

    Science.gov (United States)

    Schindlbacher, Andreas; Jandl, Robert; Schindlbacher, Sabine

    2014-02-01

    Climate change might alter annual snowfall patterns and modify the duration and magnitude of snow cover in temperate regions with resultant impacts on soil microclimate and soil CO2 efflux (Fsoil ). We used a 5-year time series of Fsoil measurements from a mid-elevation forest to assess the effects of naturally changing snow cover. Snow cover varied considerably in duration (105-154 days) and depth (mean snow depth 19-59 cm). Periodically shallow snow cover (soil freezing or increased variation in soil temperature. This was mostly not reflected in Fsoil which tended to decrease gradually throughout winter. Progressively decreasing C substrate availability (identified by substrate induced respiration) likely over-rid the effects of slowly changing soil temperatures and determined the overall course of Fsoil . Cumulative CO2 efflux from beneath snow cover varied between 0.46 and 0.95 t C ha(-1)  yr(-1) and amounted to between 6 and 12% of the annual efflux. When compared over a fixed interval (the longest period of snow cover during the 5 years), the cumulative CO2 efflux ranged between 0.77 and 1.18 t C ha(-1) or between 11 and 15% of the annual soil CO2 efflux. The relative contribution (15%) was highest during the year with the shortest winter. Variations in snow cover were not reflected in the annual CO2 efflux (7.44-8.41 t C ha(-1) ) which did not differ significantly between years and did not correlate with any snow parameter. Regional climate at our site was characterized by relatively high amounts of precipitation. Therefore, snow did not play a role in terms of water supply during the warm season and primarily affected cold season processes. The role of changing snow cover therefore seems rather marginal when compared to potential climate change effects on Fsoil during the warm season. © 2013 The Authors. Global Change Biology published by John Wiley & Sons Ltd.

  16. Leakage and Seepage of CO2 from Geologic Carbon Sequestration Sites: CO2 Migration into Surface Water

    International Nuclear Information System (INIS)

    Oldenburg, Curt M.; Lewicki, Jennifer L.

    2005-01-01

    Geologic carbon sequestration is the capture of anthropogenic carbon dioxide (CO 2 ) and its storage in deep geologic formations. One of the concerns of geologic carbon sequestration is that injected CO 2 may leak out of the intended storage formation, migrate to the near-surface environment, and seep out of the ground or into surface water. In this research, we investigate the process of CO 2 leakage and seepage into saturated sediments and overlying surface water bodies such as rivers, lakes, wetlands, and continental shelf marine environments. Natural CO 2 and CH 4 fluxes are well studied and provide insight into the expected transport mechanisms and fate of seepage fluxes of similar magnitude. Also, natural CO 2 and CH 4 fluxes are pervasive in surface water environments at levels that may mask low-level carbon sequestration leakage and seepage. Extreme examples are the well known volcanic lakes in Cameroon where lake water supersaturated with respect to CO 2 overturned and degassed with lethal effects. Standard bubble formation and hydrostatics are applicable to CO 2 bubbles in surface water. Bubble-rise velocity in surface water is a function of bubble size and reaches a maximum of approximately 30 cm s -1 at a bubble radius of 0.7 mm. Bubble rise in saturated porous media below surface water is affected by surface tension and buoyancy forces, along with the solid matrix pore structure. For medium and fine grain sizes, surface tension forces dominate and gas transport tends to occur as channel flow rather than bubble flow. For coarse porous media such as gravels and coarse sand, buoyancy dominates and the maximum bubble rise velocity is predicted to be approximately 18 cm s -1 . Liquid CO 2 bubbles rise slower in water than gaseous CO 2 bubbles due to the smaller density contrast. A comparison of ebullition (i.e., bubble formation) and resulting bubble flow versus dispersive gas transport for CO 2 and CH 4 at three different seepage rates reveals that

  17. Element mobilization and immobilization from carbonate rocks between CO 2 storage reservoirs and the overlying aquifers during a potential CO 2 leakage

    Energy Technology Data Exchange (ETDEWEB)

    Lawter, Amanda R.; Qafoku, Nikolla P.; Asmussen, R. Matthew; Kukkadapu, Ravi K.; Qafoku, Odeta; Bacon, Diana H.; Brown, Christopher F.

    2018-04-01

    Despite the numerous studies on changes within the reservoir following CO2 injection and the effects of CO2 release into overlying aquifers, little or no literature is available on the effect of CO2 release on rock between the storage reservoirs and subsurface. To address this knowledge gap, relevant rock materials, temperatures and pressures were used to study mineralogical and elemental changes in this intermediate zone. After rocks reacted with CO2, liquid analysis showed an increase of major elements (e.g., Ca, and Mg) and variable concentrations of potential contaminants (e.g., Sr and Ba); lower concentrations were observed in N2 controls. In experiments with As/Cd and/or organic spikes, representing potential contaminants in the CO2 plume originating in the storage reservoir, most or all of these contaminants were removed from the aqueous phase. SEM and Mössbauer spectroscopy results showed the formation of new minerals and Fe oxides in some CO2-reacted samples, indicating potential for contaminant removal through mineral incorporation or adsorption onto Fe oxides. These experiments show the interactions between the CO2-laden plume and the rock between storage reservoirs and overlying aquifers have the potential to affect the level of risk to overlying groundwater, and should be considered during site selection and risk evaluation.

  18. Experimental study on concrete cutting by CO2 laser beam

    International Nuclear Information System (INIS)

    Kutsumizu, Akira; Tomura, Hidemasa; Wakizaka, Tatsuya; Hishikawa, Kyoichi; Moriya, Masahiro

    1994-01-01

    Methods for dismantling nuclear reactor facilities must meet particularly exacting requirements imposed by heavily reinforced and radioactivated reactor shield walls. Conventional methods do not meet all such requirements, however. Intrigued by excellent characteristics of the laser cutting method relative to nuclear facility demolition, we carried out an experimental study to make a comprehensive evaluation of its characteristics, especially for deep cutting, with success in identifying main factors affecting the cutting depth of a laser and characterizing its cutting behavior. The study results indicate that a 50 kW class CO 2 laser has a potential to provide a practicable cutting speed and depth. (author)

  19. CAPTURING EXHAUST CO2 GAS USING MOLTEN CARBONATE FUEL CELLS

    Directory of Open Access Journals (Sweden)

    Prateek Dhawan

    2016-03-01

    Full Text Available Carbon dioxide is considered as one of the major contenders when the question of greenhouse effect arises. So for any industry or power plant it is of utmost importance to follow certain increasingly stringent environment protection rules and laws. So it is significant to keep eye on any possible methods to reduce carbon dioxide emissions in an efficient way. This paper reviews the available literature so as to try to provide an insight of the possibility of using Molten Carbonate Fuel Cells (MCFCs as the carbon capturing and segregating devices and the various factors that affect the performance of MCFCs during the process of CO2 capture.

  20. Hepatitis B and C Co-Infection in HIV Patients from the TREAT Asia HIV Observational Database: Analysis of Risk Factors and Survival

    Science.gov (United States)

    Chen, Marcelo; Wong, Wing-Wai; Law, Matthew G.; Kiertiburanakul, Sasisopin; Yunihastuti, Evy; Merati, Tuti Parwati; Lim, Poh Lian; Chaiwarith, Romanee; Phanuphak, Praphan; Lee, Man Po; Kumarasamy, Nagalingeswaran; Saphonn, Vonthanak; Ditangco, Rossana; Sim, Benedict L. H.; Nguyen, Kinh Van; Pujari, Sanjay; Kamarulzaman, Adeeba; Zhang, Fujie; Pham, Thuy Thanh; Choi, Jun Yong; Oka, Shinichi; Kantipong, Pacharee; Mustafa, Mahiran; Ratanasuwan, Winai; Durier, Nicolas; Chen, Yi-Ming Arthur

    2016-01-01

    Background We assessed the effects of hepatitis B (HBV) or hepatitis C (HCV) co-infection on outcomes of antiretroviral therapy (ART) in HIV-infected patients enrolled in the TREAT Asia HIV Observational Database (TAHOD), a multi-center cohort of HIV-infected patients in the Asia-Pacific region. Methods Patients testing HBs antigen (Ag) or HCV antibody (Ab) positive within enrollment into TAHOD were considered HBV or HCV co-infected. Factors associated with HBV and/or HCV co-infection were assessed by logistic regression models. Factors associated with post-ART HIV immunological response (CD4 change after six months) and virological response (HIV RNA <400 copies/ml after 12 months) were also determined. Survival was assessed by the Kaplan-Meier method and log rank test. Results A total of 7,455 subjects were recruited by December 2012. Of patients tested, 591/5656 (10.4%) were HBsAg positive, 794/5215 (15.2%) were HCVAb positive, and 88/4966 (1.8%) were positive for both markers. In multivariate analysis, HCV co-infection, age, route of HIV infection, baseline CD4 count, baseline HIV RNA, and HIV-1 subtype were associated with immunological recovery. Age, route of HIV infection, baseline CD4 count, baseline HIV RNA, ART regimen, prior ART and HIV-1 subtype, but not HBV or HCV co-infection, affected HIV RNA suppression. Risk factors affecting mortality included HCV co-infection, age, CDC stage, baseline CD4 count, baseline HIV RNA and prior mono/dual ART. Shortest survival was seen in subjects who were both HBV- and HCV-positive. Conclusion In this Asian cohort of HIV-infected patients, HCV co-infection, but not HBV co-infection, was associated with lower CD4 cell recovery after ART and increased mortality. PMID:26933963

  1. Degradation kinetics of monoethanolamine during CO2 and H2 S absorption from biogas

    Directory of Open Access Journals (Sweden)

    Preecha Kasikamphaiboon

    2015-02-01

    Full Text Available The rate of degradation of MEA during CO2 and H2 S absorption in the biogas upgrading process was examined in four degradation systems, i.e., MEA-CO2 , MEA-CO2 -O2 , MEA-CO2 -H2 S and MEA-CO2 -O2 -H2 S. Degradation experiments were performed in a 800-ml stainless steel autoclave reactor, using MEA concentrations of 3 and 5 mol/L, CO2 loadings of 0.4 and 0.5 mol CO2 /mol MEA, O2 pressure of 200 kPa, and H2 S concentrations of 84 and 87 mg/L at temperatures of 120 and 140C. The results showed that, for the MEA-CO2 system, an increase in temperature or MEA concentration resulted in a higher rate of MEA degradation. In contrast, an increase in CO2 loading in the MEA-CO2 -O2 system led to a reduction of MEA degradation. The degradation rate of the system with O2 was with 8.3 times as high as that of the system without O2 . The presence of H2 S did not appear to affect the rate of degradation in the MEA-CO2 -H2 S system. However, for the system in which both H2 S and O2 were present, the MEA degradation was additionally induced by H2 S, thus, resulting in higher degradation rates than those of the system with O2 only. The extent of degradation under the same period of time increased in the order MEA-CO2 , MEA-CO2 -H2 S < MEA-CO2 -O2 < MEA-CO2 -O2 -H2 S.

  2. Electronic structures and stability of Ni/Bi2Te3 and Co/Bi2Te3 interfaces

    KAUST Repository

    Xiong, Ka; Wang, Weichao; Alshareef, Husam N.; Gupta, Rahul P.; White, John B.; Gnade, Bruce E.; Cho, Kyeongjae

    2010-01-01

    We investigate the electronic structures and stability for Ni/Bi 2Te3, NiTe/Bi2Te3, Co/Bi 2Te3 and CoTe2/Bi2Te3 interfaces by first-principles calculations. It is found that the surface termination strongly affects the band alignment. Ni and Co are found to form Ohmic contacts to Bi2Te3. The interface formation energy for Co/Bi2Te3 interfaces is much lower than that of Ni/Bi2Te3 interfaces. Furthermore, we found that NiTe on Bi2Te3 is more stable than Ni, while the formation energies for Co and CoTe2 on Bi2Te3 are comparable. © 2010 IOP Publishing Ltd.

  3. Electronic structures and stability of Ni/Bi2Te3 and Co/Bi2Te3 interfaces

    KAUST Repository

    Xiong, Ka

    2010-03-04

    We investigate the electronic structures and stability for Ni/Bi 2Te3, NiTe/Bi2Te3, Co/Bi 2Te3 and CoTe2/Bi2Te3 interfaces by first-principles calculations. It is found that the surface termination strongly affects the band alignment. Ni and Co are found to form Ohmic contacts to Bi2Te3. The interface formation energy for Co/Bi2Te3 interfaces is much lower than that of Ni/Bi2Te3 interfaces. Furthermore, we found that NiTe on Bi2Te3 is more stable than Ni, while the formation energies for Co and CoTe2 on Bi2Te3 are comparable. © 2010 IOP Publishing Ltd.

  4. Co-ordination of NDH and Cup proteins in CO2 uptake in cyanobacterium Synechocystis sp. PCC 6803.

    Science.gov (United States)

    Han, Xunling; Sun, Nan; Xu, Min; Mi, Hualing

    2017-06-01

    High and low affinity CO2-uptake systems containing CupA (NDH-1MS) and CupB (NDH-1MS'), respectively, have been identified in Synechocystis sp. PCC 6803, but it is yet unknown how the complexes function in CO2 uptake. In this work, we found that deletion of cupB significantly lowered the growth of cells, and deletion of both cupA and cupB seriously suppressed the growth below pH 7.0 even under 3% CO2. The rate of photosynthetic oxygen evolution was decreased slightly by deletion of cupA but significantly by deletion of cupB and more severely by deletion of both cupA and cupB, especially in response to changed pH conditions under 3% CO2. Furthermore, we found that assembly of CupB into NDH-1MS' was dependent on NdhD4 and NdhF4. NDH-1MS' was not affected in the NDH-1MS-degradation mutant and NDH-1MS was not affected in the NDH-1MS'-degradation mutants, indicating the existence of independent CO2-uptake systems under high CO2 conditions. The light-induced proton gradient across thylakoid membranes was significantly inhibited in ndhD-deletion mutants, suggesting that NdhDs functions in proton pumping. The carbonic anhydrase activity was suppressed partly in the cupA- or cupB-deletion mutant but severely in the mutant with both cupA and cupB deletion, indicating that CupA and CupB function in conversion of CO2 to HCO3-. In turn, deletion of cup genes lowered the transthylakoid membrane proton gradient and deletion of ndhDs decreased the CO2 hydration. Our results suggest that NDH-1M provides an alkaline region to activate Cup proteins involved in CO2 uptake. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  5. Factors affecting CO_2 emissions in China’s agriculture sector: Evidence from geographically weighted regression model

    International Nuclear Information System (INIS)

    Xu, Bin; Lin, Boqiang

    2017-01-01

    China is currently the world's largest emitter of carbon dioxide. Considered as a large agricultural country, carbon emission in China’s agriculture sector keeps on growing rapidly. It is, therefore, of great importance to investigate the driving forces of carbon dioxide emissions in this sector. The traditional regression estimation can only get “average” and “global” parameter estimates; it excludes the “local” parameter estimates which vary across space in some spatial systems. Geographically weighted regression embeds the latitude and longitude of the sample data into the regression parameters, and uses the local weighted least squares method to estimate the parameters point–by–point. To reveal the nonstationary spatial effects of driving forces, geographically weighted regression model is employed in this paper. The results show that economic growth is positively correlated with emissions, with the impact in the western region being less than that in the central and eastern regions. Urbanization is positively related to emissions but produces opposite effects pattern. Energy intensity is also correlated with emissions, with a decreasing trend from the eastern region to the central and western regions. Therefore, policymakers should take full account of the spatial nonstationarity of driving forces in designing emission reduction policies. - Highlights: • We explore the driving forces of CO_2 emissions in the agriculture sector. • Urbanization is positively related to emissions but produces opposite effect pattern. • The effect of energy intensity declines from the eastern region to western region.

  6. Low Calorie Diet Affects Aging-Related Factors

    Science.gov (United States)

    ... Current Issue Past Issues Research News From NIH Low Calorie Diet Affects Aging-Related Factors Past Issues / ... to learn more about the effects of sustained low-calorie diets in humans on factors affecting aging. ...

  7. CO2 degassing in the Hartoušov mofette area, western Eger Rift, imaged by CO2 mapping and geoelectrical and gravity surveys

    Czech Academy of Sciences Publication Activity Database

    Nickschick, T.; Kämpf, H.; Flechsig, C.; Mrlina, Jan; Heinicke, J.

    2015-01-01

    Roč. 104, č. 8 (2015), s. 2107-2129 ISSN 1437-3254 R&D Projects: GA MŠk LM2010008 Institutional support: RVO:67985530 Keywords : Eger Rift * Cheb Basin * magmatic CO2 * CO2 gas flux studies * geoelectrics * gravity Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.133, year: 2015

  8. Above- and below-ground responses of Calamagrostis purpurea to UV-B radiation and elevated CO{sub 2} under phosphorus limitation

    Energy Technology Data Exchange (ETDEWEB)

    Bussell, J.S.; Gwynn-Jones, D.; Griffith, G.W.; Scullion, J. (Aberystwyth Univ., IBERS, Wales (United Kingdom))

    2012-08-15

    UV-B radiation and elevated CO{sub 2} may impact rhizosphere processes through altered below-ground plant resource allocation and root exudation, changes that may have implications for nutrient acquisition. As nutrients limit plant growth in many habitats, their supply may dictate plant response under elevated CO{sub 2}. This study investigated UV-B exposure and elevated CO{sub 2} effects, including interactions, on plant growth, tissue chemistry and rooting responses relating to P acquisition. The sub-arctic grass Calamagrostis purpurea was subjected to UV-B (0 or 3.04 kJ m-2day-1) and CO{sub 2} (ambient 380 or 650 ppmv) treatments in a factorial glasshouse experiment, with sparingly soluble P (0 or 0.152 mg P per plant as FePO{sub 4}) a further factor. It was hypothesized that UV-B exposure and elevated CO{sub 2} would change plant resource allocation, with CO{sub 2} mitigating adverse responses to UV-B exposure and aiding P uptake. Plant biomass and morphology, tissue composition and rhizosphere leachate properties were measured. UV-B directly affected chemical composition of shoots and interacted with CO{sub 2} to give a greater root biomass. Elevated CO{sub 2} altered the composition of both shoots and roots and increased shoot biomass and secondary root length, while leachate pH decreased. Below-ground responses to CO{sub 2} did not affect P acquisition although P limitation progressively reduced leachate pH and increased secondary root length. Although direct plant growth, foliar composition and below-ground nutrient acquisition responses were dominated by CO{sub 2} treatments, UV-B modified these CO{sub 2} responses significantly. These interactions have implications for plant responses to future atmospheric conditions. (Author)

  9. Frequency stabilization of quantum cascade laser for spectroscopic CO2 isotope analysis

    Science.gov (United States)

    Han, Luo; Xia, Hua; Pang, Tao; Zhang, Zhirong; Wu, Bian; Liu, Shuo; Sun, Pengshuai; Cui, Xiaojuan; Wang, Yu; Sigrist, Markus W.; Dong, Fengzhong

    2018-06-01

    Using off-axis integrated cavity output spectroscopy, named OA-ICOS, the absorption spectrum of CO2 at 4.32 μm is recorded by using a quantum cascade laser (QCL). The concentration of the three isotopologues 16O12C16O, 16O13C16O and 16O12C18O is detected simultaneously. The isotope abundance ratio of 13C and 18O in CO2 gas can be obtained, which is most useful for ecological research. Since the ambient temperature has a serious influence on the output wavelength of the laser, even small temperature variations seriously affect the stability and sensitivity of the system. In this paper, a wavelength locking technique for QCL is proposed. The output of a digital potentiometer integrated in the laser current driver control is modified by software, resulting in a correction of the driving current of the laser and thus of its wavelength. This method strongly reduces the influence of external factors on the wavelength drift of lasers and thus substantially improves the stability and performance of OA-ICOS as is demonstrated with long-time measurements on CO2 in laboratory air.

  10. Growth performance and survival of larval Atlantic herring, under the combined effects of elevated temperatures and CO2.

    Directory of Open Access Journals (Sweden)

    Michael Sswat

    Full Text Available In the coming decades, environmental change like warming and acidification will affect life in the ocean. While data on single stressor effects on fish are accumulating rapidly, we still know relatively little about interactive effects of multiple drivers. Of particular concern in this context are the early life stages of fish, for which direct effects of increased CO2 on growth and development have been observed. Whether these effects are further modified by elevated temperature was investigated here for the larvae of Atlantic herring (Clupea harengus, a commercially important fish species. Over a period of 32 days, larval survival, growth in size and weight, and instantaneous growth rate were assessed in a crossed experimental design of two temperatures (10°C and 12°C with two CO2 levels (400 μatm and 900 μatm CO2 at food levels mimicking natural levels using natural prey. Elevated temperature alone led to increased swimming activity, as well as decreased survival and instantaneous growth rate (Gi. The comparatively high sensitivity to elevated temperature in this study may have been influenced by low food levels offered to the larvae. Larval size, Gi and swimming activity were not affected by CO2, indicating tolerance of this species to projected "end of the century" CO2 levels. A synergistic effect of elevated temperature and CO2 was found for larval weight, where no effect of elevated CO2 concentrations was detected in the 12°C treatment, but a negative CO2 effect was found in the 10°C treatment. Contrasting CO2 effects were found for survival between the two temperatures. Under ambient CO2 conditions survival was increased at 12°C compared to 10°C. In general, CO2 effects were minor and considered negligible compared to the effect of temperature under these mimicked natural food conditions. These findings emphasize the need to include biotic factors such as energy supply via prey availability in future studies on interactive

  11. Stomatal and pavement cell density linked to leaf internal CO2 concentration.

    Science.gov (United States)

    Santrůček, Jiří; Vráblová, Martina; Simková, Marie; Hronková, Marie; Drtinová, Martina; Květoň, Jiří; Vrábl, Daniel; Kubásek, Jiří; Macková, Jana; Wiesnerová, Dana; Neuwithová, Jitka; Schreiber, Lukas

    2014-08-01

    Stomatal density (SD) generally decreases with rising atmospheric CO2 concentration, Ca. However, SD is also affected by light, air humidity and drought, all under systemic signalling from older leaves. This makes our understanding of how Ca controls SD incomplete. This study tested the hypotheses that SD is affected by the internal CO2 concentration of the leaf, Ci, rather than Ca, and that cotyledons, as the first plant assimilation organs, lack the systemic signal. Sunflower (Helianthus annuus), beech (Fagus sylvatica), arabidopsis (Arabidopsis thaliana) and garden cress (Lepidium sativum) were grown under contrasting environmental conditions that affected Ci while Ca was kept constant. The SD, pavement cell density (PCD) and stomatal index (SI) responses to Ci in cotyledons and the first leaves of garden cress were compared. (13)C abundance (δ(13)C) in leaf dry matter was used to estimate the effective Ci during leaf development. The SD was estimated from leaf imprints. SD correlated negatively with Ci in leaves of all four species and under three different treatments (irradiance, abscisic acid and osmotic stress). PCD in arabidopsis and garden cress responded similarly, so that SI was largely unaffected. However, SD and PCD of cotyledons were insensitive to Ci, indicating an essential role for systemic signalling. It is proposed that Ci or a Ci-linked factor plays an important role in modulating SD and PCD during epidermis development and leaf expansion. The absence of a Ci-SD relationship in the cotyledons of garden cress indicates the key role of lower-insertion CO2 assimilation organs in signal perception and its long-distance transport. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Carbon flow from volcanic CO2 into soil microbial communities of a wetland mofette

    DEFF Research Database (Denmark)

    Beulig, Felix

    2015-01-01

    Effects of extremely high carbon dioxide (CO2) concentrations on soil microbial communities and associated processes are largely unknown. We studied a wetland area affected by spots of subcrustal CO2 degassing (mofettes) with focus on anaerobic autotrophic methanogenesis and acetogenesis because ......2-induced geochemical changes promoted anaerobic and acidophilic organisms and altered carbon turnover in affected soils.......Effects of extremely high carbon dioxide (CO2) concentrations on soil microbial communities and associated processes are largely unknown. We studied a wetland area affected by spots of subcrustal CO2 degassing (mofettes) with focus on anaerobic autotrophic methanogenesis and acetogenesis because...... the pore gas phase was largely hypoxic. Compared with a reference soil, the mofette was more acidic (ΔpH ~0.8), strongly enriched in organic carbon (up to 10 times), and exhibited lower prokaryotic diversity. It was dominated by methanogens and subdivision 1 Acidobacteria, which likely thrived under stable...

  13. Interactive effects of elevated CO2, warming, and drought on photosynthesis of Deschampsia flexuosa in a temperate heath ecosystem

    DEFF Research Database (Denmark)

    Albert, Kristian Rost; Ro-Poulsen, H.; Mikkelsen, Teis Nørgaard

    2011-01-01

    Global change factors affect plant carbon uptake in concert. In order to investigate the response directions and potential interactive effects, and to understand the underlying mechanisms, multifactor experiments are needed. The focus of this study was on the photosynthetic response to elevated CO2...... not decrease gs, but stimulated Pn via increased Ci. The T×CO2 synergistically increased plant carbon uptake via photosynthetic capacity up-regulation in early season and by better access to water after rewetting. The effects of the combination of drought and elevated CO2 depended on soil water availability......, with additive effects when the soil water content was low and D×CO2 synergistic stimulation of Pn after rewetting. The photosynthetic responses appeared to be highly influenced by growth pattern. The grass has opportunistic water consumption, and a biphasic growth pattern allowing for leaf dieback at low soil...

  14. Annual CO2 budget and seasonal CO2 exchange signals at a High Arctic permafrost site on Spitsbergen, Svalbard archipelago

    Science.gov (United States)

    Lüers, J.; Westermann, S.; Piel, K.; Boike, J.

    2014-01-01

    The annual variability of CO2 exchange in most ecosystems is primarily driven by the activities of plants and soil microorganisms. However, little is known about the carbon balance and its controlling factors outside the growing season in arctic regions dominated by soil freeze/thaw-processes, long-lasting snow cover, and several months of darkness. This study presents a complete annual cycle of the CO2 net ecosystem exchange (NEE) dynamics for a High Arctic tundra area on the west coast of Svalbard based on eddy-covariance flux measurements. The annual cumulative CO2 budget is close to zero grams carbon per square meter per year, but shows a very strong seasonal variability. Four major CO2 exchange seasons have been identified. (1) During summer (ground snow-free), the CO2 exchange occurs mainly as a result of biological activity, with a predominance of strong CO2 assimilation by the ecosystem. (2) The autumn (ground snow-free or partly snow-covered) is dominated by CO2 respiration as a result of biological activity. (3) In winter and spring (ground snow-covered), low but persistent CO2 release occur, overlain by considerable CO2 exchange events in both directions associated with changes of air masses and air and atmospheric CO2 pressure. (4) The snow melt season (pattern of snow-free and snow-covered areas), where both, meteorological and biological forcing, resulting in a visible carbon uptake by the high arctic ecosystem. Data related to this article are archived under: http://doi.pangaea.de/10.1594/PANGAEA.809507.

  15. Impact of CO_2-enriched combustion air on micro-gas turbine performance for carbon capture

    International Nuclear Information System (INIS)

    Best, Thom; Finney, Karen N.; Ingham, Derek B.; Pourkashanian, Mohamed

    2016-01-01

    Power generation is one of the largest anthropogenic greenhouse gas emission sources; although it is now reducing in carbon intensity due to switching from coal to gas, this is only part of a bridging solution that will require the utilization of carbon capture technologies. Gas turbines, such as those at the UK Carbon Capture Storage Research Centre's Pilot-scale Advanced CO_2 Capture Technology (UKCCSRC PACT) National Core Facility, have high exhaust gas mass flow rates with relatively low CO_2 concentrations; therefore solvent-based post-combustion capture is energy intensive. Exhaust gas recirculation (EGR) can increase CO_2 levels, reducing the capture energy penalty. The aim of this paper is to simulate EGR through enrichment of the combustion air with CO_2 to assess changes to turbine performance and potential impacts on complete generation and capture systems. The oxidising air was enhanced with CO_2, up to 6.29%vol dry, impacting mechanical performance, reducing both engine speed by over 400 revolutions per minute and compression temperatures. Furthermore, it affected complete combustion, seen in changes to CO and unburned hydrocarbon emissions. This impacted on turbine efficiency, which increased specific fuel consumption (by 2.9%). CO_2 enhancement could therefore result in significant efficiency gains for the capture plant. - Highlights: • Experimental investigation of the impact of exhaust gas recirculation (EGR) on GT performance. • Combustion air was enhanced with CO_2 to simulate EGR. • EGR impact was ascertained by CO and unburned hydrocarbon changes. • Primary factor influencing performance was found to be oxidiser temperature. • Impact of CO_2 enhancement on post-combustion capture efficiency.

  16. Responses of pink salmon to CO2-induced aquatic acidification

    Science.gov (United States)

    Ou, Michelle; Hamilton, Trevor J.; Eom, Junho; Lyall, Emily M.; Gallup, Joshua; Jiang, Amy; Lee, Jason; Close, David A.; Yun, Sang-Seon; Brauner, Colin J.

    2015-10-01

    Ocean acidification negatively affects many marine species and is predicted to cause widespread changes to marine ecosystems. Similarly, freshwater ecosystems may potentially be affected by climate-change-related acidification; however, this has received far less attention. Freshwater fish represent 40% of all fishes, and salmon, which rear and spawn in freshwater, are of immense ecosystem, economical and cultural importance. In this study, we investigate the impacts of CO2-induced acidification during the development of pink salmon, in freshwater and following early seawater entry. At this critical and sensitive life stage, we show dose-dependent reductions in growth, yolk-to-tissue conversion and maximal O2 uptake capacity; as well as significant alterations in olfactory responses, anti-predator behaviour and anxiety under projected future increases in CO2 levels. These data indicate that future populations of pink salmon may be at risk without mitigation and highlight the need for further studies on the impact of CO2-induced acidification on freshwater systems.

  17. Effects of elevated temperature and CO2 on aboveground-belowground systems: a case study with plants, their mutualistic bacteria and root / shoot herbivores

    Directory of Open Access Journals (Sweden)

    James Michael William Ryalls

    2013-11-01

    Full Text Available Interactions between above- and belowground herbivores have been prominent in the field of aboveground-belowground ecology from the outset, although little is known about how climate change affects these organisms when they share the same plant. Additionally, the interactive effects of multiple factors associated with climate change such as elevated temperature (eT and elevated atmospheric carbon dioxide (eCO2 are untested. We investigated how eT and eCO2 affected larval development of the lucerne weevil (Sitona discoideus and colonisation by the pea aphid (Acyrthosiphon pisum, on three cultivars of a common host plant, lucerne (Medicago sativa. Sitona discoideus larvae feed on root nodules housing N2-fixing rhizobial bacteria, allowing us to test the effects of eT and eCO2 on three trophic levels. Moreover, we assessed the influence of these factors on plant growth. eT increased plant growth rate initially (6, 8 and 10 weeks after sowing, with cultivar ‘Sequel’ achieving the greatest height. Inoculation with aphids, however, reduced plant growth at week 14. eT severely reduced root nodulation by 43%, whereas eCO2 promoted nodulation by 56%, but only at ambient temperatures. Weevil presence increased net root biomass and nodulation, by 31 and 45%, respectively, showing an overcompensatory plant growth response. Effects of eT and eCO2 on root nodulation were mirrored by weevil larval development; eT and eCO2 reduced and increased larval development, respectively. Contrary to expectations, aphid colonisation was unaffected by eT or eCO2, but there was a near-significant 10% reduction in colonisation rates on plants with weevils present belowground. The contrasting effects of eT and eCO2 on weevils potentially occurred through changes in root nodulation patterns.

  18. Changes in CO2 emission intensities in the Mexican industry

    International Nuclear Information System (INIS)

    González, Domingo; Martínez, Manuel

    2012-01-01

    A CO 2 emission intensity analysis in the Mexican industry from 1965 to 2010 is carried out by taking into consideration four stages: 1965–1982, 1982–1994, 1994–2003, and 2004–2010. Based on the LMDI decomposition methodology, three influencing factors are analyzed: energy intensity, CO 2 coefficient, and structure in terms of their contributions of each individual attributes to the overall percent change of them as it was proposed in Choi and Ang (2011). The energy intensity effect was the driving factor behind the main decreases of CO 2 intensity, the CO 2 coefficient effect contributed to less extent to mitigate it, and the structure effect tended to increased it. It is observed that CO 2 intensity declined by 26.2% from 1965 to 2003, but it increased by 10.1% from 2004 to 2010. In addition, the move of Mexico from an economic model based on import-substitution to an export-oriented economy brought more importance to the Mexican industry intended to export, thus maintaining high levels of activity of industries such as cement, iron and steel, chemical, and petrochemical, while industries such as automotive, and ‘other’ industries grown significantly not only as far their energy consumptions and related CO 2 emissions but they also increased their contributions to the national economy. - Highlights: ► Industrial CO 2 emission intensity was reduced by 26.2% from 1965 to 2003. ► Industrial CO 2 emission intensity was increased by 10.1% from 2003 to 2010. ► 1965–2003: Intensity effect took down CO 2 emission intensity. ► 2003–2010: Export-oriented industries raised CO 2 emission intensity.

  19. Modeling of CO2 absorber using an AMP solution

    DEFF Research Database (Denmark)

    Gabrielsen, Jostein; Michelsen, Michael Locht; Stenby, Erling Halfdan

    2006-01-01

    Abstract: An explicit model for carbon dioxide (CO2) solubility in an aqueous solution of 2-amino-2-methyl-1-propanol (AMP) has been proposed and an expression for the heat of absorption of CO2 has been developed as a function of loading and temperature. A rate-based steady-state model for CO2...... to absorption of CO2 into an AMP solution in a packed tower and validated against pilot-plant data from the literature. (c) 2006 American Institute of Chemical Engineers....... absorption into an AMP solution has been proposed, using both the proposed expression for the CO2 solubility and the expression for the heat of absorption along with an expression for the enhancement factor and physicochemical data from the literature. The proposed model has successfully been applied...

  20. Silvering substrates after CO2 snow cleaning

    Science.gov (United States)

    Zito, Richard R.

    2005-09-01

    There have been some questions in the astronomical community concerning the quality of silver coatings deposited on substrates that have been cleaned with carbon dioxide snow. These questions center around the possible existence of carbonate ions left behind on the substrate by CO2. Such carbonate ions could react with deposited silver to produce insoluble silver carbonate, thereby reducing film adhesion and reflectivity. Carbonate ions could be produced from CO2 via the following mechanism. First, during CO2 snow cleaning, a small amount of moisture can condense on a surface. This is especially true if the jet of CO2 is allowed to dwell on one spot. CO2 gas can dissolve in this moisture, producing carbonic acid, which can undergo two acid dissociations to form carbonate ions. In reality, it is highly unlikely that charged carbonate ions will remain stable on a substrate for very long. As condensed water evaporates, Le Chatelier's principle will shift the equilibrium of the chain of reactions that produced carbonate back to CO2 gas. Furthermore, the hydration of CO2 reaction of CO2 with H20) is an extremely slow process, and the total dehydrogenation of carbonic acid is not favored. Living tissues that must carry out the equilibration of carbonic acid and CO2 use the enzyme carbonic anhydrase to speed up the reaction by a factor of one million. But no such enzymatic action is present on a clean mirror substrate. In short, the worst case analysis presented below shows that the ratio of silver atoms to carbonate radicals must be at least 500 million to one. The results of chemical tests presented here support this view. Furthermore, film lift-off tests, also presented in this report, show that silver film adhesion to fused silica substrates is actually enhanced by CO2 snow cleaning.

  1. Connecting CO2. Feasibility study CO2 network Southwest Netherlands; Connecting CO2. Haalbaarheidsstudie CO2-netwerk Zuidwest-Nederland

    Energy Technology Data Exchange (ETDEWEB)

    Rutten, M.

    2009-06-10

    An overview is given of supply and demand of CO2 in the region Southwest Netherlands and the regions Antwerp and Gent in Belgium. Also attention is paid to possible connections between these regions [Dutch] Een inventarisatie wordt gegeven van vraag en aanbod van CO2 in de regio Zuidwest- Nederland en de regios Antwerpen en Gent in Belgie. Ook worden mogelijke koppelingen tussen de regios besproken.

  2. Energy consumption and CO2 emissions in Iran, 2025

    International Nuclear Information System (INIS)

    Mirzaei, Maryam; Bekri, Mahmoud

    2017-01-01

    Climate change and global warming as the key human societies' threats are essentially associated with energy consumption and CO 2 emissions. A system dynamic model was developed in this study to model the energy consumption and CO 2 emission trends for Iran over 2000–2025. Energy policy factors are considered in analyzing the impact of different energy consumption factors on environmental quality. The simulation results show that the total energy consumption is predicted to reach 2150 by 2025, while that value in 2010 is 1910, which increased by 4.3% yearly. Accordingly, the total CO 2 emissions in 2025 will reach 985 million tonnes, which shows about 5% increase yearly. Furthermore, we constructed policy scenarios based on energy intensity reduction. The analysis show that CO 2 emissions will decrease by 12.14% in 2025 compared to 2010 in the scenario of 5% energy intensity reduction, and 17.8% in the 10% energy intensity reduction scenario. The results obtained in this study provide substantial awareness regarding Irans future energy and CO 2 emission outlines. - Highlights: • Creation of an energy consumption model using system dynamics. • The effect of different policies on energy consumption and emission reductions. • An ascending trend for the environmental costs caused by CO 2 emissions is observed. • An urgent need for energy saving and emission reductions in Iran.

  3. How positioning strategies affect co-branding outcomes

    Directory of Open Access Journals (Sweden)

    Hilary Wason

    2015-12-01

    Full Text Available Co-branding is a widely applied strategy, with research indicating differential benefits to the parent brands. Past studies suggest the source of these differences may be due to the partners’ relative market position, and characteristics such as brand familiarity, brand equity and proximity to the consumer have been explored. However, the role of brand positioning has received little attention in the context of co-branding. The current study attempts to address this gap, considering the positioning of a brand and the impact of a co-branding strategy on customer perceptions. Using the Blankson and Kalafatis positioning typology, we explore the impact of co-branding on the parent brand perceptions from a hedonic vs. functional (utilitarian focus. The results suggest that for hedonically oriented positioning strategies, fit between the brands is more important than fit between the product categories in driving positive brand perceptions. For a functionally oriented positioning strategy, the reverse holds, with product fit a more important factor than brand fit in driving post-alliance perceptions.

  4. Factors Affecting University Library Website Design

    Directory of Open Access Journals (Sweden)

    Yongi-Mi Kim

    2011-09-01

    Full Text Available Existing studies have extensively explored factors that affect users’ intentions to use university library website resources (ULWR; yet little attention has been given to factors affecting university library website design. This paper investigates factors that affect university library website design and assesses the success of the university library website from both designers’ and users’ perspectives. The findings show that when planning a website, university web designers consider university guidelines, review other websites, and consult with experts and other divisions within the library; however, resources and training for the design process are lacking. While website designers assess their websites as highly successful, user evaluations are somewhat lower. Accordingly, use is low, and users rely heavily on commercial websites. Suggestions for enhancing the usage of ULWR are provided.

  5. Well technologies for CO2 geological storage: CO2-resistant cement

    International Nuclear Information System (INIS)

    Barlet-Gouedard, V.; Rimmele, G.; Porcherie, O.; Goffe, B.

    2007-01-01

    Storing carbon dioxide (CO 2 ) underground is considered the most effective way for long-term safe and low-cost CO 2 sequestration. This recent application requires long-term well-bore integrity. A CO 2 leakage through the annulus may occur much more rapidly than geologic leakage through the formation rock, leading to economic loss, reduction of CO 2 storage efficiency, and potential compromise of the field for storage. The possibility of such leaks raises considerable concern about the long-term well-bore isolation and the durability of hydrated cement that is used to isolate the annulus across the producing/injection intervals in CO 2 -storage wells. We propose a new experimental procedure and methodology to study reactivity of CO 2 -Water-Cement systems in simulating the interaction of the set cement with injected supercritical CO 2 under downhole conditions. The conditions of experiments are 90 deg. C under 280 bars. The evolution of mechanical, physical and chemical properties of Portland cement with time is studied up to 6 months. The results are compared to equivalent studies on a new CO 2 -resistant material; the comparison shows significant promise for this new material. (authors)

  6. Modeling the key factors that could influence the diffusion of CO2 from a wellbore blowout in the Ordos Basin, China.

    Science.gov (United States)

    Li, Qi; Shi, Hui; Yang, Duoxing; Wei, Xiaochen

    2017-02-01

    Carbon dioxide (CO 2 ) blowout from a wellbore is regarded as a potential environment risk of a CO 2 capture and storage (CCS) project. In this paper, an assumed blowout of a wellbore was examined for China's Shenhua CCS demonstration project. The significant factors that influenced the diffusion of CO 2 were identified by using a response surface method with the Box-Behnken experiment design. The numerical simulations showed that the mass emission rate of CO 2 from the source and the ambient wind speed have significant influence on the area of interest (the area of high CO 2 concentration above 30,000 ppm). There is a strong positive correlation between the mass emission rate and the area of interest, but there is a strong negative correlation between the ambient wind speed and the area of interest. Several other variables have very little influence on the area of interest, e.g., the temperature of CO 2 , ambient temperature, relative humidity, and stability class values. Due to the weather conditions at the Shenhua CCS demonstration site at the time of the modeled CO 2 blowout, the largest diffusion distance of CO 2 in the downwind direction did not exceed 200 m along the centerline. When the ambient wind speed is in the range of 0.1-2.0 m/s and the mass emission rate is in the range of 60-120 kg/s, the range of the diffusion of CO 2 is at the most dangerous level (i.e., almost all Grade Four marks in the risk matrix). Therefore, if the injection of CO 2 takes place in a region that has relatively low perennial wind speed, special attention should be paid to the formulation of pre-planned, emergency measures in case there is a leakage accident. The proposed risk matrix that classifies and grades blowout risks can be used as a reference for the development of appropriate regulations. This work may offer some indicators in developing risk profiles and emergency responses for CO 2 blowouts.

  7. Supersaturation of dissolved H(2) and CO (2) during fermentative hydrogen production with N(2) sparging.

    Science.gov (United States)

    Kraemer, Jeremy T; Bagley, David M

    2006-09-01

    Dissolved H(2) and CO(2) were measured by an improved manual headspace-gas chromatographic method during fermentative H(2) production with N(2) sparging. Sparging increased the yield from 1.3 to 1.8 mol H(2)/mol glucose converted, although H(2) and CO(2) were still supersaturated regardless of sparging. The common assumption that sparging increases the H(2) yield because of lower dissolved H(2) concentrations may be incorrect, because H(2) was not lowered into the range necessary to affect the relevant enzymes. More likely, N(2) sparging decreased the rate of H(2) consumption via lower substrate concentrations.

  8. Decomposition of Net CO2 Emission in the Wuhan Metropolitan Area of Central China

    Directory of Open Access Journals (Sweden)

    Xin Yang

    2016-08-01

    Full Text Available Policy-makers have been sharing growing concerns that climate change has significant impacts on human society and economic activates. Knowledge of the influencing factors of CO2 emission is the crucial step to reduce it. In this paper, both CO2 emission and CO2 sink on a city-level of the nine cities in Wuhan Metropolitan Area are calculated using the Intergovernmental Panel on Climate Change approach. Moreover, the logarithmic mean Divisia index (LMDI model was employed to decompose the net CO2 emission from 2001 to 2009. Results showed that (1 the largest amount of CO2 emission comes from energy while the largest amount CO2 sink comes from cropland; (2 economic level (S was the largest positive driving factor for net CO2 emission growth in the Wuhan Metropolitan Area, population (P also played a positive driving role, but with very weak contribution; and as negative inhibiting factors, energy structure (E and energy efficiency (C significantly reduced the net CO2 emission.

  9. Soil carbon dioxide (CO 2 ) efflux of two shrubs in response to plant ...

    African Journals Online (AJOL)

    Although plant density should affect soil carbon dioxide (CO2) efflux and carbon cycling in semi-arid regions, the effects of plant density on soil CO2 efflux are not well known. This study was performed to investigate the responses of soil CO2 efflux of two dominant shrubs (Caragana korshinkii and Salix psammophila) to ...

  10. Factors Affecting Tocopherol Concentrations in Soybean Seeds.

    Science.gov (United States)

    Carrera, Constanza S; Seguin, Philippe

    2016-12-21

    Soybean seeds contain several health-beneficial compounds, including tocopherols, which are used by the nutraceutical and functional food industries. Soybean tocopherol concentrations are, however, highly variable. Large differences observed in tocopherol concentrations among soybean genotypes together with the relatively simple biosynthetic pathway involving few genes support the feasibility of selecting for high-tocopherol soybean. Tocopherol concentrations are also highly influenced by environmental factors and field management. Temperature during seed filling and soil moisture appear to be the main factors affecting tocopherol concentrations; other factors such as soil fertility and solar radiation also affect concentrations and composition. Field management decisions including seeding date, row spacing, irrigation, and fertilization also affect tocopherols. Knowledge of factors affecting soybean tocopherols is essential to develop management strategies that will lead to the production of seeds with consistent target concentrations that will meet the needs of the nutraceutical and functional food industries.

  11. CO{sub 2} separation

    Energy Technology Data Exchange (ETDEWEB)

    Hakuta, Toshikatu [National Inst. of Materials and Chemical Research, Ibaraki (Japan)

    1993-12-31

    The climate change induced by CO{sub 2} and other greenhouse gases is probably the most serious environmental threat that mankind has ever experienced. Nowadays fossil fuels occupy the majority of the world commercial energy supply. Most nations will be dependent on fossil fuels even in the first half of the next century. Around 30 % of CO{sub 2} in the world is emitted from thermal power plants. Recovering CO{sub 2} from energy conversion processes and storing it outside the atmosphere is a promising option for the mitigation of global warming. CO{sub 2} fixation and storage include CO{sub 2} disposal into oceans and underground, and utilization of CO{sub 2}. CO{sub 2} separation process will be used in any CO{sub 2} storage system, and is estimated to consume almost half the energy of the total system. Research and development of highly efficient CO{sub 2} separation process is most important from the viewpoint of practical application of CO{sub 2} fixation system.

  12. Households' direct CO-2 emissions according to location

    International Nuclear Information System (INIS)

    Cavailhes, Jean; Hilal, Mohamed; Moreau, Sylvain; Bottin, Anne; Reperant, Patricia

    2012-08-01

    Limiting direct emissions of carbon dioxide (CO 2 ) by households is an important factor for achieving reductions in greenhouse gas emissions in compliance with the Kyoto Protocol and European policy. The two main sources of emissions are, in descending order, housing and commuting between home and the workplace or place of study. Average housing-related emissions are 3, 150 kg of CO 2 per year, reaching 4, 200 kg of CO 2 per year in mountain and semi-continental climates. Individual houses in urban centres, often old and with fuel-oil heating, emit more CO 2 than peri-urban dwellings, which are more recent and often have 100% electric heating. Conversely, emissions from commuting are higher in peri-urban areas, where the needs for transport are greater but less transport services are on offer. (authors)

  13. Elevated CO2 and Tree Species Affect Microbial  Activity and Associated Aggregate Stability in Soil  Amended with Litter

    Directory of Open Access Journals (Sweden)

    Salwan M. J. Al‐Maliki

    2017-03-01

    Full Text Available (1 Elevated atmospheric CO2 (eCO2 may affect organic inputs to woodland soils with potential consequences for C dynamics and associated aggregation; (2 The Bangor Free Air Concentration Enrichment experiment compared ambient (330 ppmv and elevated (550 ppmv CO2 regimes over four growing seasons (2005–2008 under Alnus glutinosa, Betula pendula and Fagus sylvatica. Litter from the experiment (autumn 2008 and Lumbricus terrestris were added to mesocosm soils. Microbial properties and aggregate stability were investigated in soil and earthworm casts. Soils taken from the field experiment in spring 2009 were also investigated; (3 eCO2 litter had lower N and higher C:N ratios. F. sylvatica and B. pendula litter had lower N and P than A. glutinosa; F. sylvatica had higher cellulose. In mesocosms, eCO2 litter decreased respiration, mineralization constant (respired C:total organic C and soluble carbon in soil but not earthworm casts; microbial‐C and fungal hyphal length differed by species (A. glutinosa = B. pendula > F. sylvatica not CO2 regime. eCO2 increased respiration in field aggregates but increased stability only under F. sylvatica; (4 Lower litter quality under eCO2 may restrict its initial decomposition, affecting C stabilization in aggregates. Later resistant materials may support microbial activity and increase aggregate stability. In woodland, C and soil aggregation dynamics may alter under eCO2, but outcomes may be influenced by tree species and earthworm activity.

  14. Carbonation and CO2 uptake of concrete

    International Nuclear Information System (INIS)

    Yang, Keun-Hyeok; Seo, Eun-A; Tae, Sung-Ho

    2014-01-01

    This study developed a reliable procedure to assess the carbon dioxide (CO 2 ) uptake of concrete by carbonation during the service life of a structure and by the recycling of concrete after demolition. To generalize the amount of absorbable CO 2 per unit volume of concrete, the molar concentration of carbonatable constituents in hardened cement paste was simplified as a function of the unit content of cement, and the degree of hydration of the cement paste was formulated as a function of the water-to-cement ratio. The contribution of the relative humidity, type of finishing material for the concrete surface, and the substitution level of supplementary cementitious materials to the CO 2 diffusion coefficient in concrete was reflected using various correction factors. The following parameters varying with the recycling scenario were also considered: the carbonatable surface area of concrete crusher-runs and underground phenomena of the decreased CO 2 diffusion coefficient and increased CO 2 concentration. Based on the developed procedure, a case study was conducted for an apartment building with a principal wall system and an office building with a Rahmen system, with the aim of examining the CO 2 uptake of each structural element under different exposure environments during the service life and recycling of the building. As input data necessary for the case study, data collected from actual surveys conducted in 2012 in South Korea were used, which included data on the surrounding environments, lifecycle inventory database, life expectancy of structures, and recycling activity scenario. Ultimately, the CO 2 uptake of concrete during a 100-year lifecycle (life expectancy of 40 years and recycling span of 60 years) was estimated to be 15.5%–17% of the CO 2 emissions from concrete production, which roughly corresponds to 18%–21% of the CO 2 emissions from the production of ordinary Portland cement. - Highlights: • CO 2 uptake assessment approach owing to the

  15. Factors Affecting Wound Healing

    OpenAIRE

    Guo, S.; DiPietro, L.A.

    2010-01-01

    Wound healing, as a normal biological process in the human body, is achieved through four precisely and highly programmed phases: hemostasis, inflammation, proliferation, and remodeling. For a wound to heal successfully, all four phases must occur in the proper sequence and time frame. Many factors can interfere with one or more phases of this process, thus causing improper or impaired wound healing. This article reviews the recent literature on the most significant factors that affect cutane...

  16. Painted Goby Larvae under High-CO2 Fail to Recognize Reef Sounds.

    Directory of Open Access Journals (Sweden)

    Joana M Castro

    Full Text Available Atmospheric CO2 levels have been increasing at an unprecedented rate due to anthropogenic activity. Consequently, ocean pCO2 is increasing and pH decreasing, affecting marine life, including fish. For many coastal marine fishes, selection of the adult habitat occurs at the end of the pelagic larval phase. Fish larvae use a range of sensory cues, including sound, for locating settlement habitat. This study tested the effect of elevated CO2 on the ability of settlement-stage temperate fish to use auditory cues from adult coastal reef habitats. Wild late larval stages of painted goby (Pomatoschistus pictus were exposed to control pCO2 (532 μatm, pH 8.06 and high pCO2 (1503 μatm, pH 7.66 conditions, likely to occur in nearshore regions subjected to upwelling events by the end of the century, and tested in an auditory choice chamber for their preference or avoidance to nighttime reef recordings. Fish reared in control pCO2 conditions discriminated reef soundscapes and were attracted by reef recordings. This behaviour changed in fish reared in the high CO2 conditions, with settlement-stage larvae strongly avoiding reef recordings. This study provides evidence that ocean acidification might affect the auditory responses of larval stages of temperate reef fish species, with potentially significant impacts on their survival.

  17. Porous materials as high performance adsorbents for CO2 capture, gas separation and purification

    Science.gov (United States)

    Wang, Jun

    Global warming resulted from greenhouse gases emission has received a widespread attention. Among the greenhouse gases, CO2 contributes more than 60% to global warming due to its huge emission amount. The flue gas contains about 15% CO2 with N2 as the balance. If CO2 can be separated from flue gas, the benefit is not only reducing the global warming effect, but also producing pure CO2 as a very useful industry raw material. Substantial progress is urgent to be achieved in an industrial process. Moreover, energy crisis is one of the biggest challenges for all countries due to the short life of fossil fuels, such as, petroleum will run out in 50 years and coal will run out in 150 years according to today's speed. Moreover, the severe pollution to the environment caused by burning fossil fuels requires us to explore sustainable, environment-friendly, and facile energy sources. Among several alternative energy sources, natural gas is one of the most promising alternative energy sources due to its huge productivity, abundant feed stock, and ease of generation. In order to realize a substantial adsorption process in industry, synthesis of new adsorbents or modification of existing adsorbent with improved properties has become the most critical issue. This dissertation reports systemic characterization and development of five serials of novel adsorbents with advanced adsorption properties. In chapter 2, nitrogen-doped Hypercross-linking Polymers (HCPs) have been synthesized successfully with non-carcinogenic chloromethyl methyl ether (CME) as the cross-linking agent within a single step. Texture properties, surface morphology, CO2/N2 selectivity, and adsorption heat have been presented and demonstrated properly. A comprehensive discussion on factors that affect the CO2 adsorption and CO2/N 2 separation has also been presented. It was found that high micropore proportion and N-content could effectively enhance CO2 uptake and CO2/N2 separation selectivity. In chapter 3, a

  18. Carbon balance of China constrained by CONTRAIL aircraft CO2 measurements

    Science.gov (United States)

    Jiang, F.; Wang, H. M.; Chen, J. M.; Machida, T.; Zhou, L. X.; Ju, W. M.; Matsueda, H.; Sawa, Y.

    2014-09-01

    Terrestrial carbon dioxide (CO2) flux estimates in China using atmospheric inversion method are beset with considerable uncertainties because very few atmospheric CO2 concentration measurements are available. In order to improve these estimates, nested atmospheric CO2 inversion during 2002-2008 is performed in this study using passenger aircraft-based CO2 measurements over Eurasia from the Comprehensive Observation Network for Trace gases by Airliner (CONTRAIL) project. The inversion system includes 43 regions with a focus on China, and is based on the Bayesian synthesis approach and the TM5 transport model. The terrestrial ecosystem carbon flux modeled by the Boreal Ecosystems Productivity Simulator (BEPS) model and the ocean exchange simulated by the OPA-PISCES-T model are considered as the prior fluxes. The impacts of CONTRAIL CO2 data on inverted China terrestrial carbon fluxes are quantified, the improvement of the inverted fluxes after adding CONTRAIL CO2 data are rationed against climate factors and evaluated by comparing the simulated atmospheric CO2 concentrations with three independent surface CO2 measurements in China. Results show that with the addition of CONTRAIL CO2 data, the inverted carbon sink in China increases while those in South and Southeast Asia decrease. Meanwhile, the posterior uncertainties over these regions are all reduced (2-12%). CONTRAIL CO2 data also have a large effect on the inter-annual variation of carbon sinks in China, leading to a better correlation between the carbon sink and the annual mean climate factors. Evaluations against the CO2 measurements at three sites in China also show that the CONTRAIL CO2 measurements may have improved the inversion results.

  19. Equilibration of metabolic CO2 with preformed CO2 and bicarbonate

    International Nuclear Information System (INIS)

    Hems, R.; Saez, G.T.

    1983-01-01

    Entry of metabolic 14 CO 2 into urea is shown to occur more readily than it equilibrates with the general pool of cellular plus extracellular bicarbonate plus CO 2 . Since the sites of CO 2 production (pyruvate dehydrogenase and oxoglutarate dehydrogenase) and of fixation (carbamoylphosphate synthetase) are intramitochondrial, it is likely that the fixation of CO 2 is also more rapid than its equilibration with the cytoplasmic pool of bicarbonate plus CO 2 . This observation may point to a more general problem concerning the interpretation of isotope data, with compartmentation or proximity of sites of production and utilisation of metabolites may result in the isotope following a preferred pathway. (Auth.)

  20. The possible evolution and future of CO2-concentrating mechanisms.

    Science.gov (United States)

    Raven, John A; Beardall, John; Sánchez-Baracaldo, Patricia

    2017-06-01

    CO2-concentrating mechanisms (CCMs), based either on active transport of inorganic carbon (biophysical CCMs) or on biochemistry involving supplementary carbon fixation into C4 acids (C4 and CAM), play a major role in global primary productivity. However, the ubiquitous CO2-fixing enzyme in autotrophs, Rubisco, evolved at a time when atmospheric CO2 levels were very much higher than today and O2 was very low and, as CO2 and O2 approached (by no means monotonically), today's levels, at some time subsequently many organisms evolved a CCM that increased the supply of CO2 and decreased Rubisco oxygenase activity. Given that CO2 levels and other environmental factors have altered considerably between when autotrophs evolved and the present day, and are predicted to continue to change into the future, we here examine the drivers for, and possible timing of, evolution of CCMs. CCMs probably evolved when CO2 fell to 2-16 times the present atmospheric level, depending on Rubisco kinetics. We also assess the effects of other key environmental factors such as temperature and nutrient levels on CCM activity and examine the evidence for evolutionary changes in CCM activity and related cellular processes as well as limitations on continuity of CCMs through environmental variations. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  1. The CO2 emission in urbanic soils in the conditions of intensive technogenic pollution

    Science.gov (United States)

    Deviatova, Tatiana; Alaeva, Liliia; Negrobova, Elena; Kramareva, Tatiana

    2017-04-01

    Massive industrial pollution of the environment including soils leads to drastic changes in the vital activity of microorganisms, plants and animals. As objects of research was selected soils of the industrial and residential zones, farmland soils, forest soils. Comparative analysis showed that the emission of CO2 urbanizable increase compared to the suburban soils in recreational areas is 1.5 times, in the residential and industrial zones - in 3-5 times. In addition, identified a local point located in the vicinity of chemical plants, where soil CO2 emission increased up to 40 times compared to the suburban soils. Air technogenic pollution of soils by industrial emissions and transport enhances the mineralization of soil organic matter, increases its lability. These trends are associated with nonspecific adaptive reactions of the soil microbial complex in terms of pollution. Strengthening of the processes of mineralization may be due to the increase in the proportion of fungi in the microbial community. According to numerous reports they are more resistant to pollution compared to bacteria and actinomycetes. Admission to the soil organic matter of anthropogenic origin also increases the process of mineralization. According to the findings, low concentrations of petroleum products lead to increased "breathing" of the soil. Strengthening of the processes of mineralization and, consequently, of CO2 emissions, in the conditions of technogenic pollution of the soils identified in our studies, confirmed by numerous studies by other authors. According to reports in Russia the emission of CO2 from soils is 4.5 times higher than the industrial receipt of its atmosphere. The contribution of local anthropogenic CO2 emissions is not so significant compared to the indirect influence of soil pollution on increased CO2 emissions. Consequently, the expansion of technogenic contaminated soil is becoming a more significant factor adversely affecting the state of the atmosphere

  2. Toward physical aspects affecting a possible leakage of geologically stored CO2 into the shallow subsurface

    DEFF Research Database (Denmark)

    Singh, Ashok; Delfs, Jens Olaf; Görke, Uwe Jens

    2014-01-01

    In geological formations, migration of CO2 plume is very complex and irregular. To make CO2 capture and storage technology feasible, it is important to quantify CO2 amount associated with possible leakage through natural occurring faults and fractures in geologic medium. Present work examines the...

  3. Gas stunning with CO2 affected meat color, lipid peroxidation, oxidative stress, and gene expression of mitogen-activated protein kinases, glutathione S-transferases, and Cu/Zn-superoxide dismutase in the skeletal muscles of broilers.

    Science.gov (United States)

    Xu, Lei; Zhang, Haijun; Yue, Hongyuan; Wu, Shugeng; Yang, Haiming; Wang, Zhiyue; Qi, Guanghai

    2018-01-01

    Meat color and lipid peroxidation are important traits related to meat quality. CO 2 concentration is a critical factor that can affect meat quality in the commercial use of gas stunning (GS). However, the effect and mechanism of CO 2 stunning on meat color and lipid peroxidation during long-term storage remain poorly studied. We aimed to study the effects of GS methods, especially CO 2 concentration, on meat color and meat lipid peroxidation in broilers during long-term storage at 4 °C and to explore the potential mechanism of meat color change via lipid peroxidation and the inner lipid peroxide scavenging system. Eighteen broilers were sacrificed after exposure to one of the following gas mixtures for 90 s: 40% CO 2  + 21% O 2  + 39% N 2 (G40%), 79% CO 2  + 21% O 2 (G79%), or no stunning (0% CO 2 , control). Meat color, serum variables, enzyme activities, and the gene expression of mitogen-activated protein kinase ( MAPK ), nuclear factor-erythroid 2-related factor 2 ( Nrf2 ), glutathione S-transferase ( GST ) and superoxide dismutase ( SOD ) were determined. The concentrations of serum triiodothyronine (T3, P  = 0.03) and the ratio of serum free triiodothyronine/free thyroxine (FT3/FT4, P  meat and the TBARS 3 d in thigh meat ( P  meat ( r  = - 0.63, P  meat and in the thigh meat ( r  = - 0.57, P  = 0.01; and r  = - 0.53, P  = 0.03 respectively). Compared with the control group, Lightness (L*) 1 d ( P =  0.03) and L* 9 d ( P meat of both the G40% and G79% groups. The values of yellowness (b*) 3 d ( P =  0.01), b* 6 d ( P meat were lower in both the G40% and G79% groups than in the control group. In the breast muscle, the mRNA levels of c-Jun N-terminal kinase 2 ( JNK2, P  = 0.03), GSTT1 ( P  = 0.04), and SOD1 ( P  = 0.05) were decreased, and the mRNA levels of JNK1 ( P  = 0.07), Nrf2 ( P  = 0.09), and GSTA3 ( P  = 0.06) were slightly lower in both the G40% and G79% groups

  4. OPTIMIZATION OF FACTORS AFFECTING THE Agrobacterium tumefaciens- MEDIATED TRANSFORMATION OF Eucalyptus saligna

    Directory of Open Access Journals (Sweden)

    Yohana de Oliveira-Cauduro

    2018-02-01

    Full Text Available ABSTRACT This study aimed to evaluate the effect of factors that may affect the genetic transformation of cotiledonary explants of Eucalyptus saligna mediated by EHA105 strain of Agrobacterium tumefaciens. The vector pBI121 carrying gus gene under control of 35S CaMV promoter was used. The effect of the following factors was evaluated: explant pre-culture, use of different antibiotics and presence of acetosyringone (AS in co-culture media. An antioxidant solution was also used during excision, containing ascorbic acid (250mg.L-1, citric acid (25mg.L-1 and PVP-40 (1g.L-1. Pre-culture of the explants before the co-culture with bacteria was done over a 4-day period in MS culture medium supplemented with 4.4µM BAP and 2.7ìM NAA. After theco-culture period, three concentrations of kanamycin (12.5;25 and 50mg.L-1 combined with 300mg.L-1 Augmentin® in the culture medium were tested The influence of the antibiotic was also evaluated by keeping the explants in a medium containing 50mg.L-1 Km and 300mg.L-1 Augmentin® or 500mg.L-1 cefotaxime. It was concluded that Augmentin® stimulates organogenesis, that a Km concentration of 12.5mg.L-1 allows selection of explants transformed with gus gene and, finally, the addition of AS (50ìM to the liquid and solid co-culture media has a positive effect on gus gene expression. Moreover, the use of an antioxidant solution during cotyledon excision is dispensable and the pre-culture of the explants has no effect on bud regeneration or gus gene expression. A transformation efficiency of 1.5% was reached.

  5. Hyperspectral detection of a subsurface CO2 leak in the presence of water stressed vegetation.

    Directory of Open Access Journals (Sweden)

    Gabriel J Bellante

    Full Text Available Remote sensing of vegetation stress has been posed as a possible large area monitoring tool for surface CO2 leakage from geologic carbon sequestration (GCS sites since vegetation is adversely affected by elevated CO2 levels in soil. However, the extent to which remote sensing could be used for CO2 leak detection depends on the spectral separability of the plant stress signal caused by various factors, including elevated soil CO2 and water stress. This distinction is crucial to determining the seasonality and appropriateness of remote GCS site monitoring. A greenhouse experiment tested the degree to which plants stressed by elevated soil CO2 could be distinguished from plants that were water stressed. A randomized block design assigned Alfalfa plants (Medicago sativa to one of four possible treatment groups: 1 a CO2 injection group; 2 a water stress group; 3 an interaction group that was subjected to both water stress and CO2 injection; or 4 a group that received adequate water and no CO2 injection. Single date classification trees were developed to identify individual spectral bands that were significant in distinguishing between CO2 and water stress agents, in addition to a random forest classifier that was used to further understand and validate predictive accuracies. Overall peak classification accuracy was 90% (Kappa of 0.87 for the classification tree analysis and 83% (Kappa of 0.77 for the random forest classifier, demonstrating that vegetation stressed from an underground CO2 leak could be accurately discerned from healthy vegetation and areas of co-occurring water stressed vegetation at certain times. Plants appear to hit a stress threshold, however, that would render detection of a CO2 leak unlikely during severe drought conditions. Our findings suggest that early detection of a CO2 leak with an aerial or ground-based hyperspectral imaging system is possible and could be an important GCS monitoring tool.

  6. Hyperspectral detection of a subsurface CO2 leak in the presence of water stressed vegetation.

    Science.gov (United States)

    Bellante, Gabriel J; Powell, Scott L; Lawrence, Rick L; Repasky, Kevin S; Dougher, Tracy

    2014-01-01

    Remote sensing of vegetation stress has been posed as a possible large area monitoring tool for surface CO2 leakage from geologic carbon sequestration (GCS) sites since vegetation is adversely affected by elevated CO2 levels in soil. However, the extent to which remote sensing could be used for CO2 leak detection depends on the spectral separability of the plant stress signal caused by various factors, including elevated soil CO2 and water stress. This distinction is crucial to determining the seasonality and appropriateness of remote GCS site monitoring. A greenhouse experiment tested the degree to which plants stressed by elevated soil CO2 could be distinguished from plants that were water stressed. A randomized block design assigned Alfalfa plants (Medicago sativa) to one of four possible treatment groups: 1) a CO2 injection group; 2) a water stress group; 3) an interaction group that was subjected to both water stress and CO2 injection; or 4) a group that received adequate water and no CO2 injection. Single date classification trees were developed to identify individual spectral bands that were significant in distinguishing between CO2 and water stress agents, in addition to a random forest classifier that was used to further understand and validate predictive accuracies. Overall peak classification accuracy was 90% (Kappa of 0.87) for the classification tree analysis and 83% (Kappa of 0.77) for the random forest classifier, demonstrating that vegetation stressed from an underground CO2 leak could be accurately discerned from healthy vegetation and areas of co-occurring water stressed vegetation at certain times. Plants appear to hit a stress threshold, however, that would render detection of a CO2 leak unlikely during severe drought conditions. Our findings suggest that early detection of a CO2 leak with an aerial or ground-based hyperspectral imaging system is possible and could be an important GCS monitoring tool.

  7. Factors affecting dispersion of radionuclides in north western coast of Mediterranean Sea, Egypt

    Directory of Open Access Journals (Sweden)

    E.R. Atta

    2015-01-01

    Full Text Available This study aims to analyze the principal factors affecting the interaction of 137Cs, 60Co and 89Sr with coastal sediments and their importance for migration of these ions in surface water. The second goal is to assess the acceptability of radiological consequences of proposed routine discharges of nuclear installations for radioactive materials into surface water as well as to confirm the suitability of the site to select and to establish limits for radioactive discharge into water. Uptake of the investigated ions by Mediterranean Sea bottom sediment samples have been studied as a function of liquid to solid ratio (V/m and contact time using batch technique. The suspended sediment concentration, different discharge rates of radionuclides and the distance between the source point in the sea and the beach were investigated. The obtained results show that Kd of Cs+, Co2+ and Sr2+is 20, 32 and 10 l/g, respectively. The lowest effective dose is for 89Sr, while the highest effective dose is for 137Cs, at the same distances. A mathematical model for the migration of the investigated isotopes in surface water was constructed to predict the concentration of these ions for both different distances and time periods.

  8. Large power factor and anomalous Hall effect and their correlation with observed linear magneto resistance in Co-doped Bi2Se3 3D topological insulator

    Science.gov (United States)

    Singh, Rahul; Shukla, K. K.; Kumar, A.; Okram, G. S.; Singh, D.; Ganeshan, V.; Lakhani, Archana; Ghosh, A. K.; Chatterjee, Sandip

    2016-09-01

    Magnetoresistance (MR), thermo power, magnetization and Hall effect measurements have been performed on Co-doped Bi2Se3 topological insulators. The undoped sample shows that the maximum MR as a destructive interference due to a π-Berry phase leads to a decrease of MR. As the Co is doped, the linearity in MR is increased. The observed MR of Bi2Se3 can be explained with the classical model. The low temperature MR behavior of Co doped samples cannot be explained with the same model, but can be explained with the quantum linear MR model. Magnetization behavior indicates the establishment of ferromagnetic ordering with Co doping. Hall effect data also supports the establishment of ferromagnetic ordering in Co-doped Bi2Se3 samples by showing the anomalous Hall effect. Furthermore, when spectral weight suppression is insignificant, Bi2Se3 behaves as a dilute magnetic semiconductor. Moreover, the maximum power factor is observed when time reversal symmetry (TRS) is maintained. As the TRS is broken the power factor value is decreased, which indicates that with the rise of Dirac cone above the Fermi level the anomalous Hall effect and linearity in MR increase and the power factor decreases.

  9. Alteration of bentonite when contacted with supercritical CO2

    Science.gov (United States)

    Jinseok, K.; Jo, H. Y.; Yun, S. T.

    2014-12-01

    Deep saline formations overlaid by impermeable caprocks with a high sealing capacity are attractive CO2 storage reservoirs. Shales, which consist of mainly clay minerals, are potential caprocks for the CO2 storage reservoirs. The properties of clay minerals in shales may affect the sealing capacity of shales. In this study, changes in clay minerals' properties when contacted with supercritical (SC) CO2 at various conditions were investigated. Bentonite, whichis composed of primarily montmorillonite, was used as the clay material in this study. Batch reactor tests on wet bentonite samples in the presence of SC CO2 with or without aqueous phases were conducted at high pressure (12 MPa) and moderate temperature (50 oC) conditions for a week. Results show that the bentonite samples obtained from the tests with SC CO2 had less change in porosity than those obtained from the tests without SC CO2 (vacuum-drying) at a given reaction time, indicating that the bentonite samples dried in the presence of SC CO2 maintained their structure. These results suggest that CO2 molecules can diffuse into interlayer of montmorillonite, which is a primary mineral of bentonite, and form a single CO2 molecule layer or double CO2 molecule layers. The CO2 molecules can displace water molecules in the interlayer, resulting in maintaining the interlayer spacing when dehydration occurs. Noticeable changes in reacted bentonite samples obtained from the tests with an aqueous phase (NaCl, CaCl2, or sea water) are decreases in the fraction of plagioclase and pyrite and formation of carbonate minerals (i.e., calcite and dolomite) and halite. In addition, no significant exchanges of Na or Ca on the exchangeable complex of the montmorillonite in the presence of SC CO2 occurred, resulting in no significant changes in the swelling capacity of bentonite samples after reacting with SC CO2 in the presence of aqueous phases. These results might be attributed by the CO2 molecule layer, which prevents

  10. An unknown oxidative metabolism substantially contributes to soil CO2 emissions

    Directory of Open Access Journals (Sweden)

    T. Shahzad

    2013-02-01

    Full Text Available The respiratory release of CO2 from soils is a major determinant of the global carbon cycle. It is traditionally considered that this respiration is an intracellular metabolism consisting of complex biochemical reactions carried out by numerous enzymes and co-factors. Here we show that the endoenzymes released from dead organisms are stabilised in soils and have access to suitable substrates and co-factors to permit function. These enzymes reconstitute an extracellular oxidative metabolism (EXOMET that may substantially contribute to soil respiration (16 to 48% of CO2 released from soils in the present study. EXOMET and respiration from living organisms should be considered separately when studying effects of environmental factors on the C cycle because EXOMET shows specific properties such as resistance to high temperature and toxic compounds.

  11. Temporal variations of atmospheric CO2 and CO at Ahmedabad in western India

    Science.gov (United States)

    Chandra, Naveen; Lal, Shyam; Venkataramani, S.; Patra, Prabir K.; Sheel, Varun

    2016-05-01

    About 70 % of the anthropogenic carbon dioxide (CO2) is emitted from the megacities and urban areas of the world. In order to draw effective emission mitigation policies for combating future climate change as well as independently validating the emission inventories for constraining their large range of uncertainties, especially over major metropolitan areas of developing countries, there is an urgent need for greenhouse gas measurements over representative urban regions. India is a fast developing country, where fossil fuel emissions have increased dramatically in the last three decades and are predicted to continue to grow further by at least 6 % per year through to 2025. The CO2 measurements over urban regions in India are lacking. To overcome this limitation, simultaneous measurements of CO2 and carbon monoxide (CO) have been made at Ahmedabad, a major urban site in western India, using a state-of-the-art laser-based cavity ring down spectroscopy technique from November 2013 to May 2015. These measurements enable us to understand the diurnal and seasonal variations in atmospheric CO2 with respect to its sources (both anthropogenic and biospheric) and biospheric sinks. The observed annual average concentrations of CO2 and CO are 413.0 ± 13.7 and 0.50 ± 0.37 ppm respectively. Both CO2 and CO show strong seasonality with lower concentrations (400.3 ± 6.8 and 0.19 ± 0.13 ppm) during the south-west monsoon and higher concentrations (419.6 ± 22.8 and 0.72 ± 0.68 ppm) during the autumn (SON) season. Strong diurnal variations are also observed for both the species. The common factors for the diurnal cycles of CO2 and CO are vertical mixing and rush hour traffic, while the influence of biospheric fluxes is also seen in the CO2 diurnal cycle. Using CO and CO2 covariation, we differentiate the anthropogenic and biospheric components of CO2 and found significant contributions of biospheric respiration and anthropogenic emissions in the late night (00:00-05:00 h, IST

  12. Mineralogical controls on porosity and water chemistry during O_2-SO_2-CO_2 reaction of CO_2 storage reservoir and cap-rock core

    International Nuclear Information System (INIS)

    Pearce, Julie K.; Golab, Alexandra; Dawson, Grant K.W.; Knuefing, Lydia; Goodwin, Carley; Golding, Suzanne D.

    2016-01-01

    Reservoir and cap-rock core samples with variable lithology's representative of siliciclastic reservoirs used for CO_2 storage have been characterized and reacted at reservoir conditions with an impure CO_2 stream and low salinity brine. Cores from a target CO_2 storage site in Queensland, Australia were tested. Mineralogical controls on the resulting changes to porosity and water chemistry have been identified. The tested siliciclastic reservoir core samples can be grouped generally into three responses to impure CO_2-brine reaction, dependent on mineralogy. The mineralogically clean quartzose reservoir cores had high porosities, with negligible change after reaction, in resolvable porosity or mineralogy, calculated using X-ray micro computed tomography and QEMSCAN. However, strong brine acidification and a high concentration of dissolved sulphate were generated in experiments owing to minimal mineral buffering. Also, the movement of kaolin has the potential to block pore throats and reduce permeability. The reaction of the impure CO_2-brine with calcite-cemented cap-rock core samples caused the largest porosity changes after reaction through calcite dissolution; to the extent that one sample developed a connection of open pores that extended into the core sub-plug. This has the potential to both favor injectivity but also affect CO_2 migration. The dissolution of calcite caused the buffering of acidity resulting in no significant observable silicate dissolution. Clay-rich cap-rock core samples with minor amounts of carbonate minerals had only small changes after reaction. Created porosity appeared mainly disconnected. Changes were instead associated with decreases in density from Fe-leaching of chlorite or dissolution of minor amounts of carbonates and plagioclase. The interbedded sandstone and shale core also developed increased porosity parallel to bedding through dissolution of carbonates and reactive silicates in the sandy layers. Tight interbedded cap

  13. CO2 Emissions From Fuel Combustion. Highlights. 2013 Edition

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-01

    In the lead-up to the UN climate negotiations in Warsaw, the latest information on the level and growth of CO2 emissions, their source and geographic distribution will be essential to lay the foundation for a global agreement. To provide input to and support for the UN process, the IEA is making available for free download the ''Highlights'' version of CO2 Emissions from Fuel Combustion now for sale on IEA Bookshop. This annual publication contains, for more than 140 countries and regions: estimates of CO2 emissions from 1971 to 2011; selected indicators such as CO2/GDP, CO2/capita, CO2/TPES and CO2/kWh; a decomposition of CO2 emissions into driving factors; and CO2emissions from international marine and aviation bunkers, key sources, and other relevant information. The nineteenth session of the Conference of the Parties to the Climate Change Convention (COP-19), in conjunction with the ninth meeting of the Parties to the Kyoto Protocol (CMP 9), met in Warsaw, Poland from 11 to 22 November 2013. This volume of ''Highlights'', drawn from the full-scale study, was specially designed for delegations and observers of the meeting in Warsaw.

  14. Correlation of foliage and litter chemistry of sugar maple, Acer saccharum, as affected by elevated CO2 and varying N availability, and effects on decomposition

    Science.gov (United States)

    J. S. King; K. S. Pregitzer; D. R. Zak; M. E. Kubiske; W. E. Holmes

    2001-01-01

    Rising atmospheric carbon dioxide has the potential to alter leaf litter chemistry, potentially affecting decomposition and rates of carbon and nitrogen cycling in forest ecosystems. This study was conducted to determine whether growth under elevated atmospheric CO2 altered the quality and microbial decomposition of leaf litter of a widely...

  15. Nitrogen and Carbon Cycling in a Grassland Community Ecosystem as Affected by Elevated Atmospheric CO2

    Directory of Open Access Journals (Sweden)

    H. A. Torbert

    2012-01-01

    Full Text Available Increasing global atmospheric carbon dioxide (CO2 concentration has led to concerns regarding its potential effects on terrestrial ecosystems and the long-term storage of carbon (C and nitrogen (N in soil. This study examined responses to elevated CO2 in a grass ecosystem invaded with a leguminous shrub Acacia farnesiana (L. Willd (Huisache. Seedlings of Acacia along with grass species were grown for 13 months at CO2 concentrations of 385 (ambient, 690, and 980 μmol mol−1. Elevated CO2 increased both C and N inputs from plant growth which would result in higher soil C from litter fall, root turnover, and excretions. Results from the incubation indicated an initial (20 days decrease in N mineralization which resulted in no change in C mineralization. However, after 40 and 60 days, an increase in both C and N mineralization was observed. These increases would indicate that increases in soil C storage may not occur in grass ecosystems that are invaded with Acacia over the long term.

  16. Solubility of β-carotene in ethanol- and triolein-modified CO2

    International Nuclear Information System (INIS)

    Araus, Karina A.; Canales, Roberto I.; Valle, Jose M. del; Fuente, Juan C. de la

    2011-01-01

    Highlights: → We measure solubility of β-carotene in pure CO 2 , and with ethanol and triolein as co-solvents. → We model the solubility of β-carotene in pure CO 2 , and with co-solvents. → The co-solvent effect of triolein over solubility of β-carotene in CO 2 was higher than ethanol. - Abstract: Modification of an experimental device and methodology improved speed and reproducibility of measurement of solubility of β-carotene in pure and modified SuperCritical (SC) CO 2 at (313 to 333) K. Solubilities of β-carotene in pure CO 2 at (17 to 34) MPa ranged (0.17 to 1.06) μmol/mol and agreed with values reported in literature. The solubility of β-carotene in CO 2 modified with (1.2 to 1.6) % mol ethanol increased by a factor of 1.7 to 3.0 as compared to its solubility in pure CO 2 under equivalent conditions. The concentration of triolein in equilibrated ternary (CO 2 + β-carotene + triolein) mixtures having excess triolein reached values (0.01 to 0.39) mmol/mol corresponding to its solubility in pure SC CO 2 under equivalent conditions. Under these conditions, the solubility of β-carotene in triolein-modified CO 2 increased by a factor of up to 4.0 in relation with its solubility in pure CO 2 at comparable system temperature and pressure, reaching an uppermost value of 3.3 μmol/mol at 333 K and 32 MPa. Unlike in the case of ethanol, where enhancements in solubility where relatively independent on system conditions, solubility enhancements using triolein as co-solvent increased markedly with system pressure, being larger than using (1.2 to 1.6) % mol ethanol at about (24 to 28) MPa, depending on system temperature. The increase in the solubility β-carotene in SC CO 2 as a result of using ethanol or triolein as co-solvent apparently does not depend on the increase in density associated with the dissolution of the co-solvent in CO 2 . Enhancements may be due to an increase in the polarizability of SC CO 2 , which possibly growths markedly as triolein

  17. Modelling CO2-Brine Interfacial Tension using Density Gradient Theory

    KAUST Repository

    Ruslan, Mohd Fuad Anwari Che

    2018-03-01

    Knowledge regarding carbon dioxide (CO2)-brine interfacial tension (IFT) is important for petroleum industry and Carbon Capture and Storage (CCS) strategies. In petroleum industry, CO2-brine IFT is especially importance for CO2 – based enhanced oil recovery strategy as it affects phase behavior and fluid transport in porous media. CCS which involves storing CO2 in geological storage sites also requires understanding regarding CO2-brine IFT as this parameter affects CO2 quantity that could be securely stored in the storage site. Several methods have been used to compute CO2-brine interfacial tension. One of the methods employed is by using Density Gradient Theory (DGT) approach. In DGT model, IFT is computed based on the component density distribution across the interface. However, current model is only applicable for modelling low to medium ionic strength solution. This limitation is due to the model only considers the increase of IFT due to the changes of bulk phases properties and does not account for ion distribution at interface. In this study, a new modelling strategy to compute CO2-brine IFT based on DGT was proposed. In the proposed model, ion distribution across interface was accounted for by separating the interface to two sections. The saddle point of tangent plane distance where ( ) was defined as the boundary separating the two sections of the interface. Electrolyte is assumed to be present only in the second section which is connected to the bulk liquid phase side. Numerical simulations were performed using the proposed approach for single and mixed salt solutions for three salts (NaCl, KCl, and CaCl2), for temperature (298 K to 443 K), pressure (2 MPa to 70 MPa), and ionic strength (0.085 mol·kg-1 to 15 mol·kg-1). The simulation result shows that the tuned model was able to predict with good accuracy CO2-brine IFT for all studied cases. Comparison with current DGT model showed that the proposed approach yields better match with the experiment data

  18. Experimental study on concrete cutting by CO{sub 2} laser beam

    Energy Technology Data Exchange (ETDEWEB)

    Kutsumizu, Akira; Tomura, Hidemasa; Wakizaka, Tatsuya; Hishikawa, Kyoichi; Moriya, Masahiro [Ohbayashi Corp., Tokyo (Japan)

    1994-10-01

    Methods for dismantling nuclear reactor facilities must meet particularly exacting requirements imposed by heavily reinforced and radioactivated reactor shield walls. Conventional methods do not meet all such requirements, however. Intrigued by excellent characteristics of the laser cutting method relative to nuclear facility demolition, we carried out an experimental study to make a comprehensive evaluation of its characteristics, especially for deep cutting, with success in identifying main factors affecting the cutting depth of a laser and characterizing its cutting behavior. The study results indicate that a 50 kW class CO{sub 2} laser has a potential to provide a practicable cutting speed and depth. (author).

  19. Associations between classroom CO2 concentrations and student attendance in Washington and Idaho.

    Science.gov (United States)

    Shendell, D G; Prill, R; Fisk, W J; Apte, M G; Blake, D; Faulkner, D

    2004-10-01

    Student attendance in American public schools is a critical factor in securing limited operational funding. Student and teacher attendance influence academic performance. Limited data exist on indoor air and environmental quality (IEQ) in schools, and how IEQ affects attendance, health, or performance. This study explored the association of student absence with measures of indoor minus outdoor carbon dioxide concentration (dCO(2)). Absence and dCO(2) data were collected from 409 traditional and 25 portable classrooms from 22 schools located in six school districts in the states of Washington and Idaho. Study classrooms had individual heating, ventilation, and air conditioning (HVAC) systems, except two classrooms without mechanical ventilation. Classroom attributes, student attendance and school-level ethnicity, gender, and socioeconomic status (SES) were included in multivariate modeling. Forty-five percent of classrooms studied had short-term indoor CO(2) concentrations above 1000 p.p.m. A 1000 p.p.m. increase in dCO(2) was associated (P student absence. Annual ADA was 2% higher (P student attendance, and occupant health and student performance, with longer term indoor minus outdoor CO(2) concentrations and more accurately measured ventilation rates. If our findings are confirmed, improving classroom ventilation should be considered a practical means of reducing student absence. Adequate or enhanced ventilation may be achieved, for example, with educational training programs for teachers and facilities staff on ventilation system operation and maintenance. Also, technological interventions such as improved automated control systems could provide continuous ventilation during occupied times, regardless of occupant thermal comfort demands.

  20. ORIGINAL ARTICLES Factors affecting career preferences of ...

    African Journals Online (AJOL)

    College of Medicine prefer to work as doctors, and (ii) what factors may affect their long-term retention in their home country? Methods. We designed ... from rural areas and small towns, and whose parents were 'non- professionals', were .... needs – 5; city life can be difficult – 3; one is closer to family – 2; there is a sense of ...

  1. CO2 blood test

    Science.gov (United States)

    Bicarbonate test; HCO3-; Carbon dioxide test; TCO2; Total CO2; CO2 test - serum; Acidosis - CO2; Alkalosis - CO2 ... Many medicines can interfere with blood test results. Your health ... need to stop taking any medicines before you have this test. DO ...

  2. Estimating CO2 Emission Reduction of Non-capture CO2 Utilization (NCCU) Technology

    International Nuclear Information System (INIS)

    Lee, Ji Hyun; Lee, Dong Woog; Gyu, Jang Se; Kwak, No-Sang; Lee, In Young; Jang, Kyung Ryoung; Shim, Jae-Goo; Choi, Jong Shin

    2015-01-01

    Estimating potential of CO 2 emission reduction of non-capture CO 2 utilization (NCCU) technology was evaluated. NCCU is sodium bicarbonate production technology through the carbonation reaction of CO 2 contained in the flue gas. For the estimating the CO 2 emission reduction, process simulation using process simulator (PRO/II) based on a chemical plant which could handle CO 2 of 100 tons per day was performed, Also for the estimation of the indirect CO 2 reduction, the solvay process which is a conventional technology for the production of sodium carbonate/sodium bicarbonate, was studied. The results of the analysis showed that in case of the solvay process, overall CO 2 emission was estimated as 48,862 ton per year based on the energy consumption for the production of NaHCO 3 (7.4 GJ/tNaHCO 3 ). While for the NCCU technology, the direct CO 2 reduction through the CO 2 carbonation was estimated as 36,500 ton per year and the indirect CO 2 reduction through the lower energy consumption was 46,885 ton per year which lead to 83,385 ton per year in total. From these results, it could be concluded that sodium bicarbonate production technology through the carbonation reaction of CO 2 contained in the flue was energy efficient and could be one of the promising technology for the low CO 2 emission technology.

  3. Energy-saving behavior and marginal abatement cost for household CO2 emissions

    International Nuclear Information System (INIS)

    Hamamoto, Mitsutsugu

    2013-01-01

    This paper attempts to measure consumers' perceived net benefits (or net costs) of energy-saving measures in using energy-consuming durable goods. Using the estimated net costs and the volume of CO 2 reduced by the measures, a marginal abatement cost (MAC) curve for the average household's CO 2 emissions is produced. An analysis using the curve suggests that in order to provide households with an incentive to take actions that can lead to CO 2 emission reductions in using energy-consuming durables, a high level of carbon price is needed. In addition, a regression analysis reveals that the net benefits of the measures are larger for households that put a higher priority on energy saving, for those living in detached houses, for those with a smaller number of persons living together, and for those with less income. The result of the analysis using the MAC curve may suggest that promoting energy-saving behavior will require not only a policy to provide economic incentives but also interventions to influence psychological factors of household behavior. - Highlights: • Consumers' perceived net costs of energy-saving measures in using energy-consuming durables are measured. • Using the estimated net costs, a marginal abatement cost (MAC) curve for the average household's CO 2 emissions is produced. • A high carbon price is needed in order to provide households with an incentive to take actions for energy-savings. • Households' attributes affecting their energy-saving behavior are revealed by a regression analysis

  4. Frontolimbic serotonin 2A receptor binding in healthy subjects is associated with personality risk factors for affective disorder

    DEFF Research Database (Denmark)

    Frokjaer, Vibe G.; Mortensen, Erik L.; Nielsen, Finn Årup

    2008-01-01

    Background: Serotonergic dysfunction has been associated with affective disorders. High trait neuroticism, as measured on personality inventories, is a risk factor for major depression. In this study we investigated whether neuroticism is associated with serotonin 2A receptor binding in brain...... regions of relevance for affective disorders. Methods: Eighty-three healthy volunteers completed the standardized personality questionnaire NEO-PI-R (Revised NEO Personality Inventory) and underwent [F-18]altanserin positron emission tomography imaging for assessment of serotonin 2A receptor binding...... remained significant after correction for multiple comparisons (r = .35, p = .009). Conclusions: In healthy subjects the personality dimension neuroticism and particularly its constituent trait, vulnerability, are positively associated with frontolimbic serotonin 2A binding. Our findings point...

  5. CO2 control technology effects on IGCC plant performance and cost

    International Nuclear Information System (INIS)

    Chen Chao; Rubin, Edward S.

    2009-01-01

    As part of the USDOE's Carbon Sequestration Program, an integrated modeling framework has been developed to evaluate the performance and cost of alternative carbon capture and storage (CCS) technologies for fossil-fueled power plants in the context of multi-pollutant control requirements. This paper uses the newly developed model of an integrated gasification combined cycle (IGCC) plant to analyze the effects of adding CCS to an IGCC system employing a GE quench gasifier with water gas shift reactors and a Selexol system for CO 2 capture. Parameters of interest include the effects on plant performance and cost of varying the CO 2 removal efficiency, the quality and cost of coal, and selected other factors affecting overall plant performance and cost. The stochastic simulation capability of the model is also used to illustrate the effect of uncertainties or variability in key process and cost parameters. The potential for advanced oxygen production and gas turbine technologies to reduce the cost and environmental impacts of IGCC with CCS is also analyzed

  6. CO2-EOR:Approaching an NCNO classification

    Energy Technology Data Exchange (ETDEWEB)

    Nunez-Lopez, Vanessa [The University of Texas at Austin; Gil-Egui, Ramon

    2017-09-20

    This presentation provides an overview of progress made under the sponsored project and provides valuable input into the following questions: 1. Is CO2-EOR a valid option for greenhouse gas emission reduction? 2. How do different injection strategies affect EOR's Carbon Balance? 3. What is the impact of different gas separation processes on EOR emissions? 4. What is the impact of the downstream emissions on the Carbon Balance?

  7. Contextual investigation of factors affecting sludge accumulation ...

    African Journals Online (AJOL)

    Pit latrines in slums areas of Uganda fill up faster than might be expected from some estimates owing to inappropriate use and failure to consider critical factors affecting sludge accumulation rates at the planning, design and construction stages. This study sought to investigate factors affecting filling rates of lined pit latrines ...

  8. Method and apparatus for efficient injection of CO2 in oceans

    Science.gov (United States)

    West, Olivia R.; Tsouris, Constantinos; Liang, Liyuan

    2003-07-29

    A liquid CO.sub.2 injection system produces a negatively buoyant consolidated stream of liquid CO.sub.2, CO.sub.2 hydrate, and water that sinks upon release at ocean depths in the range of 700-1500 m. In this approach, seawater at a predetermined ocean depth is mixed with the liquid CO.sub.2 stream before release into the ocean. Because mixing is conducted at depths where pressures and temperatures are suitable for CO.sub.2 hydrate formation, the consolidated stream issuing from the injector is negatively buoyant, and comprises mixed CO.sub.2 -hydrate/CO.sub.2 -liquid/water phases. The "sinking" characteristic of the produced stream will prolong the metastability of CO.sub.2 ocean sequestration by reducing the CO.sub.2 dissolution rate into water. Furthermore, the deeper the CO.sub.2 hydrate stream sinks after injection, the more stable it becomes internally, the deeper it is dissolved, and the more dispersed is the resulting CO.sub.2 plume. These factors increase efficiency, increase the residence time of CO2 in the ocean, and decrease the cost of CO.sub.2 sequestration while reducing deleterious impacts of free CO.sub.2 gas in ocean water.

  9. Higher fungal diversity is correlated with lower CO2 emissions from dead wood in a natural forest.

    Science.gov (United States)

    Yang, Chunyan; Schaefer, Douglas A; Liu, Weijie; Popescu, Viorel D; Yang, Chenxue; Wang, Xiaoyang; Wu, Chunying; Yu, Douglas W

    2016-08-24

    Wood decomposition releases almost as much CO2 to the atmosphere as does fossil-fuel combustion, so the factors regulating wood decomposition can affect global carbon cycling. We used metabarcoding to estimate the fungal species diversities of naturally colonized decomposing wood in subtropical China and, for the first time, compared them to concurrent measures of CO2 emissions. Wood hosting more diverse fungal communities emitted less CO2, with Shannon diversity explaining 26 to 44% of emissions variation. Community analysis supports a 'pure diversity' effect of fungi on decomposition rates and thus suggests that interference competition is an underlying mechanism. Our findings extend the results of published experiments using low-diversity, laboratory-inoculated wood to a high-diversity, natural system. We hypothesize that high levels of saprotrophic fungal biodiversity could be providing globally important ecosystem services by maintaining dead-wood habitats and by slowing the atmospheric contribution of CO2 from the world's stock of decomposing wood. However, large-scale surveys and controlled experimental tests in natural settings will be needed to test this hypothesis.

  10. Factors Affecting Wound Healing

    Science.gov (United States)

    Guo, S.; DiPietro, L.A.

    2010-01-01

    Wound healing, as a normal biological process in the human body, is achieved through four precisely and highly programmed phases: hemostasis, inflammation, proliferation, and remodeling. For a wound to heal successfully, all four phases must occur in the proper sequence and time frame. Many factors can interfere with one or more phases of this process, thus causing improper or impaired wound healing. This article reviews the recent literature on the most significant factors that affect cutaneous wound healing and the potential cellular and/or molecular mechanisms involved. The factors discussed include oxygenation, infection, age and sex hormones, stress, diabetes, obesity, medications, alcoholism, smoking, and nutrition. A better understanding of the influence of these factors on repair may lead to therapeutics that improve wound healing and resolve impaired wounds. PMID:20139336

  11. A multinational model for CO2 reduction: defining boundaries of future CO2 emissions in nine countries

    International Nuclear Information System (INIS)

    Kram, Tom; Hill, Douglas.

    1996-01-01

    A need to make substantial future reductions in greenhouse gas emissions would require major changes in national energy systems. Nine industrialized countries have explored the technical boundaries of CO 2 emission restrictions during the next 40 to 50 years using comparable scenario assumptions and a standard model, MARKAL. Quantitative results for the countries are shown side by side in a set of energy maps that compare the least-cost evolution of the national energy systems by the main factors that contribute to CO 2 emissions. The ability to restrict future CO 2 emissions and the most cost-effective measures for doing so differ among the countries; an international agreement that would mandate substantial emission restrictions among countries by an equal percentage reduction is clearly impossible. The results are a first step toward a basis for allocating such international reductions, and the multinational process by which they were produced provides an example for further international greenhouse gas abatement costing studies. (Author)

  12. Transcription factors SOHLH1 and SOHLH2 coordinate oocyte differentiation without affecting meiosis I.

    Science.gov (United States)

    Shin, Yong-Hyun; Ren, Yu; Suzuki, Hitomi; Golnoski, Kayla J; Ahn, Hyo Won; Mico, Vasil; Rajkovic, Aleksandar

    2017-06-01

    Following migration of primordial germ cells to the genital ridge, oogonia undergo several rounds of mitotic division and enter meiosis at approximately E13.5. Most oocytes arrest in the dictyate (diplotene) stage of meiosis circa E18.5. The genes necessary to drive oocyte differentiation in parallel with meiosis are unknown. Here, we have investigated whether expression of spermatogenesis and oogenesis bHLH transcription factor 1 (Sohlh1) and Sohlh2 coordinates oocyte differentiation within the embryonic ovary. We found that SOHLH2 protein was expressed in the mouse germline as early as E12.5 and preceded SOHLH1 protein expression, which occurred circa E15.5. SOHLH1 protein appearance at E15.5 correlated with SOHLH2 translocation from the cytoplasm into the nucleus and was dependent on SOHLH1 expression. NOBOX oogenesis homeobox (NOBOX) and LIM homeobox protein 8 (LHX8), two important regulators of postnatal oogenesis, were coexpressed with SOHLH1. Single deficiency of Sohlh1 or Sohlh2 disrupted the expression of LHX8 and NOBOX in the embryonic gonad without affecting meiosis. Sohlh1-KO infertility was rescued by conditional expression of the Sohlh1 transgene after the onset of meiosis. However, Sohlh1 or Sohlh2 transgene expression could not rescue Sohlh2-KO infertility due to a lack of Sohlh1 or Sohlh2 expression in rescued mice. Our results indicate that Sohlh1 and Sohlh2 are essential regulators of oocyte differentiation but do not affect meiosis I.

  13. MODEL SIMULASI EMISI DAN PENYERAPAN CO2 DI KOTA BOGOR

    Directory of Open Access Journals (Sweden)

    Rizka Permatayakti Rasyidta Nur

    2015-04-01

    Full Text Available Most of the urban pollution is the result of carbon dioxide (CO2 emission from human activities. This research identified CO2 emission and absorption in Bogor, and also the alternatives to solve the emission problem by system model and simulation. CO2 emission and absorption system model was created using software Stella 9.0.2 based on loss-gain emission concept for 30 years prediction. Human activities that contribute to CO2 emission are transportation, industries, energy consumption such as fuel or electricity, house hold waste, and farms, while the decrease factor is green open spaces as CO2 sequester. The alternatives to solve emission problem in Bogor is created based on green city concept by including the environmental aspects in every urban activity. The result of this research, the CO2 emission of Bogor reached 20.027.878 tons and the absorption reached 93.843 tons in 2042. Combined mitigation alternatives in several sectors could reduce CO2 emission by 2.797.667 tons in 2042 and CO2 emission could be neutralized by reforestation in 2036.

  14. Factors influencing the amount of CO2 sorbed on coal

    Czech Academy of Sciences Publication Activity Database

    Přibyl, Oldřich; Weishauptová, Zuzana; Kolář, František

    2009-01-01

    Roč. 22, - (2009), s. 52-57 ISSN 1210-9606. [Coal Geology Conference. Praha, 26.05.2008-30.05.2008] R&D Projects: GA ČR GA106/08/1146 Institutional research plan: CEZ:AV0Z30460519 Keywords : sorption of CO2 * carbon dioxide * coal sorption capacity Subject RIV: CF - Physical ; Theoretical Chemistry

  15. Potential and economics of CO2 sequestration

    International Nuclear Information System (INIS)

    Jean-Baptiste, Ph.; Ciais, Ph.; Orr, J.

    2001-01-01

    Increasing atmospheric level of greenhouse gases are causing global warming and putting at risk the global climate system. The main anthropogenic greenhouse gas is CO 2 . Some techniques could be used to reduced CO 2 emission and stabilize atmospheric CO 2 concentration, including i) energy savings and energy efficiency, ii) switch to lower carbon content fuels (natural gas) and use energy sources with zero CO 2 emissions such as renewable or nuclear energy, iii) capture and store CO 2 from fossil fuels combustion, and enhance the natural sinks for CO 2 (forests, soils, ocean...). The purpose of this report is to provide an overview of the technology and cost for capture and storage of CO 2 and to review the various options for CO 2 sequestration by enhancing natural carbon sinks. Some of the factors which will influence application, including environmental impact, cost and efficiency, are discussed. Capturing CO 2 and storing it in underground geological reservoirs appears as the best environmentally acceptable option. It can be done with existing technology, however, substantial R and D is needed to improve available technology and to lower the cost. Applicable to large CO 2 emitting industrial facilities such as power plants, cement factories, steel industry, etc., which amount to about 30% of the global anthropic CO 2 emission, it represents a valuable tool in the baffle against global warming. About 50% of the anthropic CO 2 is being naturally absorbed by the biosphere and the ocean. The 'natural assistance' provided by these two large carbon reservoirs to the mitigation of climate change is substantial. The existing natural sinks could be enhanced by deliberate action. Given the known and likely environmental consequences, which could be very damaging indeed, enhancing ocean sinks does not appears as a satisfactory option. In contrast, the promotion of land sinks through demonstrated carbon-storing approach to agriculture, forests and land management could

  16. CO2-Switchable Membranes Prepared by Immobilization of CO2-Breathing Microgels.

    Science.gov (United States)

    Zhang, Qi; Wang, Zhenwu; Lei, Lei; Tang, Jun; Wang, Jianli; Zhu, Shiping

    2017-12-20

    Herein, we report the development of a novel CO 2 -responsive membrane system through immobilization of CO 2 -responsive microgels into commercially available microfiltration membranes using a method of dynamic adsorption. The microgels, prepared from soap-free emulsion polymerization of CO 2 -responsive monomer 2-(diethylamino)ethyl methacrylate (DEA), can be reversibly expanded and shrunken upon CO 2 /N 2 alternation. When incorporated into the membranes, this switching behavior was preserved and further led to transformation between microfiltration and ultrafiltration membranes, as indicated from the dramatic changes on water flux and BSA rejection results. This CO 2 -regulated performance switching of membranes was caused by the changes of water transportation channel, as revealed from the dynamic water contact angle tests and SEM observation. This work represents a simple yet versatile strategy for making CO 2 -responsive membranes.

  17. Solubility and phase behaviors of DGA compounds in supercritical CO2

    International Nuclear Information System (INIS)

    Li Jia; Meng Qingyang

    2010-01-01

    Solubility and phase behaviors of DGA compounds in supercritical CO 2 (Sc-CO 2 ) was investigated. The results indicated: The dissolving ability of these six DGA compounds in Sc-CO 2 is TEDGA> TBDGA>THDGA>TODGA>TDDGA >TDdDGA; The solubility of DGA in Sc-CO 2 increase with increasing density of CO 2 , pressure and δ CO 2 ; The structure of DGA compounds is the mainly factor effected on solubility of DGA compounds in Sc-CO 2 , and the effect of hydrophobicity on solubility is much smaller than that of DGA's structure. In Sc-CO 2 , TDDGA and TDdDGA can't form the available extraction system; TEDGA and TBDGA are useful for extraction of solid powder; TODGA and THDGA are both useful for extraction of solid powder and solution contained some kind of actinide metal. (authors)

  18. Heterotrophic fixation of CO2 in soil

    Czech Academy of Sciences Publication Activity Database

    Šantrůčková, Hana; Bird, M. I.; Elhottová, Dana; Novák, Jaroslav; Picek, T.; Šimek, Miloslav; Tykva, Richard

    2005-01-01

    Roč. 49, č. 2 (2005), s. 218-225 ISSN 0095-3628 R&D Projects: GA ČR(CZ) GA206/02/1036; GA AV ČR(CZ) IAA6066901 Institutional research plan: CEZ:AV0Z60660521 Keywords : heterotrophic fixation * CO2 * soil Subject RIV: EH - Ecology, Behaviour Impact factor: 2.674, year: 2005

  19. TG-FTIR measurement of CO2-H2O co-adsorption for CO2 air capture sorbent screening

    NARCIS (Netherlands)

    Smal, I.M.; Yu, Qian; Veneman, Rens; Fränzel-Luiten, B.; Brilman, Derk Willem Frederik

    2014-01-01

    Capturing atmospheric CO2 using solid sorbents is gaining interest. As ambient air normally contains much more (up to 100 times) water than CO2, a selective sorbent is desirable as co-adsorption will most likely occur. In this study, a convenient method based on an TG-FTIR analysis system is

  20. TcoF-DB v2: update of the database of human and mouse transcription co-factors and transcription factor interactions

    KAUST Repository

    Schmeier, Sebastian; Alam, Tanvir; Essack, Magbubah; Bajic, Vladimir B.

    2016-01-01

    Transcription factors (TFs) play a pivotal role in transcriptional regulation, making them crucial for cell survival and important biological functions. For the regulation of transcription, interactions of different regulatory proteins known as transcription co-factors (TcoFs) and TFs are essential in forming necessary protein complexes. Although TcoFs themselves do not bind DNA directly, their influence on transcriptional regulation and initiation, although indirect, has been shown to be significant, with the functionality of TFs strongly influenced by the presence of TcoFs. In the TcoF-DB v2 database, we collect information on TcoFs. In this article, we describe updates and improvements implemented in TcoF-DB v2. TcoF-DB v2 provides several new features that enables exploration of the roles of TcoFs. The content of the database has significantly expanded, and is enriched with information from Gene Ontology, biological pathways, diseases and molecular signatures. TcoF-DB v2 now includes many more TFs; has substantially increased the number of human TcoFs to 958, and now includes information on mouse (418 new TcoFs). TcoF-DB v2 enables the exploration of information on TcoFs and allows investigations into their influence on transcriptional regulation in humans and mice. TcoF-DB v2 can be accessed at http://tcofdb.org/.

  1. TcoF-DB v2: update of the database of human and mouse transcription co-factors and transcription factor interactions

    KAUST Repository

    Schmeier, Sebastian

    2016-10-17

    Transcription factors (TFs) play a pivotal role in transcriptional regulation, making them crucial for cell survival and important biological functions. For the regulation of transcription, interactions of different regulatory proteins known as transcription co-factors (TcoFs) and TFs are essential in forming necessary protein complexes. Although TcoFs themselves do not bind DNA directly, their influence on transcriptional regulation and initiation, although indirect, has been shown to be significant, with the functionality of TFs strongly influenced by the presence of TcoFs. In the TcoF-DB v2 database, we collect information on TcoFs. In this article, we describe updates and improvements implemented in TcoF-DB v2. TcoF-DB v2 provides several new features that enables exploration of the roles of TcoFs. The content of the database has significantly expanded, and is enriched with information from Gene Ontology, biological pathways, diseases and molecular signatures. TcoF-DB v2 now includes many more TFs; has substantially increased the number of human TcoFs to 958, and now includes information on mouse (418 new TcoFs). TcoF-DB v2 enables the exploration of information on TcoFs and allows investigations into their influence on transcriptional regulation in humans and mice. TcoF-DB v2 can be accessed at http://tcofdb.org/.

  2. Soot and NOx simultaneous reduction by use of CO2 mixed fuel; Ekika CO2 yokai nenryo ni yoru diesel kikan no susu, NOx no doji teigen

    Energy Technology Data Exchange (ETDEWEB)

    Senda, J; Yokoyama, T; Ikeda, M; Fujimoto, H [Doshisha University, Kyoto (Japan); Ifuku, Y [Kubota Corp., Osaka (Japan)

    1997-10-01

    We propose the new fuel injection system by use of diesel fuel dissolved with CO2 to reduce both soot and NOx simultaneously. In this paper spray combustion characteristics of CO2 mixed fuel is reported. It is revealed that flame temperature and KL factor at the CO2 mixed fuel combustion are lower than at the only n-tridecane combustion due to separation or partly flashing of CO2component. And the result of exhaust gas measurement shows the capability that CO2 mixed fuel is able to reduce both soot and NOx simultaneously. 12 refs., 7 figs., 1 tab.

  3. Inter-genotypic differences in drought tolerance of maritime pine are modified by elevated [CO2].

    Science.gov (United States)

    Sánchez-Gómez, David; Mancha, José A; Cervera, M Teresa; Aranda, Ismael

    2017-10-17

    Despite the importance of growth [CO 2 ] and water availability for tree growth and survival, little information is available on how the interplay of these two factors can shape intraspecific patterns of functional variation in tree species, particularly for conifers. The main objective of the study was to test whether the range of realized drought tolerance within the species can be affected by elevated [CO 2 ]. Intraspecific variability in leaf gas exchange, growth rate and other leaf functional traits were studied in clones of maritime pine. A factorial experiment including water availability, growth [CO 2 ] and four different genotypes was conducted in growth rooms. A 'water deficit' treatment was imposed by applying a cycle of progressive soil water depletion and recovery at two levels of growth [CO 2 ]: 'ambient [CO 2 ]' (aCO 2 400 μmol mol -1 ) and 'elevated [CO 2 ]' (eCO 2 800 μmol mol -1 ). eCO2 had a neutral effect on the impact of drought on growth and leaf gas exchange of the most drought-sensitive genotypes while it aggravated the impact of drought on the most drought-tolerant genotypes at aCO2. Thus, eCO2 attenuated genotypic differences in drought tolerance as compared with those observed at aCO2. Genotypic variation at both levels of growth [CO2] was found in specific leaf area and leaf nitrogen content but not in other physiological leaf traits such as intrinsic water use efficiency and leaf osmotic potential. eCO2 increased Δ 13 C but had no significant effect on δ 18 O. This effect did not interact with the impact of drought, which increased δ 18 O and decreased Δ 13 C. Nevertheless, correlations between Δ 13 C and δ 18 O indicated the non-stomatal component of water use efficiency in this species can be particularly sensitive to drought. Evidence from this study suggests elevated [CO 2 ] can modify current ranges of drought tolerance within tree species. © The Author 2017. Published by Oxford University Press on behalf of the Annals

  4. Seasonal dynamics of soil CO2 efflux and soil profile CO2 concentrations in arboretum of Moscow botanical garden

    Science.gov (United States)

    Goncharova, Olga; Udovenko, Maria; Matyshak, Georgy

    2016-04-01

    To analyse and predict recent and future climate change on a global scale exchange processes of greenhouse gases - primarily carbon dioxide - over various ecosystems are of rising interest. In order to upscale land-use dependent sources and sinks of CO2, knowledge of the local variability of carbon fluxes is needed. Among terrestrial ecosystems, urban areas play an important role because most of anthropogenic emissions of carbon dioxide originate from these areas. On the other hand, urban soils have the potential to store large amounts of soil organic carbon and, thus, contribute to mitigating increases in atmospheric CO2 concentrations. Research objectives: 1) estimate the seasonal dynamics of carbon dioxide production (emission - closed chamber technique and profile concentration - soil air sampling tubes method) by soils of Moscow State University Botanical Garden Arboretum planted with Picea obovata and Pinus sylvestris, 1) identification the factors that control CO2 production. The study was conducted with 1-2 weeks intervals between October 2013 and November 2015 at two sites. Carbon dioxide soil surface efflux during the year ranged from 0 to 800 mgCO2/(m2hr). Efflux values above 0 mgCO2/(m2hr) was observed during the all cold period except for only 3 weeks. Soil CO2 concentration ranged from 1600-3000 ppm in upper 10-cm layer to 10000-40000 ppm at a depth of 60 cm. The maximum concentrations of CO2 were recorded in late winter and late summer. We associate it with high biological activity (both heterotrophic and autotrophic) during the summer, and with physical gas jamming in the winter. The high value of annual CO2 production of the studied soils is caused by high organic matter content, slightly alkaline reaction, good structure and texture of urban soils. Differences in soil CO2 production by spruce and pine urban forest soils (in the pine forest 1.5-2.0 times higher) are caused by urban soil profiles construction, but not temperature regimes. Seasonal

  5. Alterations in seawater pH and CO 2 affect calcification and photosynthesis in the tropical coralline alga, Hydrolithon sp. (Rhodophyta)

    Science.gov (United States)

    Semesi, I. Sware; Kangwe, Juma; Björk, Mats

    2009-09-01

    Calcification in the marine environment is the basis for the accretion of carbonate in structures such as coral reefs, algal ridges and carbonate sands. Among the organisms responsible for such calcification are the Corallinaceae (Rhodophyta), recognised as major contributors to the process world-wide. Hydrolithon sp. is a coralline alga that often forms rhodoliths in the Western Indian Ocean. In Zanzibar, it is commonly found in shallow lagoons, where it often grows within seagrass beds and/or surrounded by green algae such as Ulva sp. Since seagrasses in Zanzibar have recently been shown to raise the pH of the surrounding seawater during the day, and since calcification rates are sensitive to pH, which changes the saturation state of calcium carbonate, we measured the effects of pH on photosynthetic and calcification rates of this alga. It was found that pH had significant effects on both calcification and photosynthesis. While increased pH enhanced calcification rates both in the light and in the dark at pH >8.6, photosynthetic rates decreased. On the other hand, an increase in dissolved CO 2 concentration to ˜26 μmol kg -1 (by bubbling with air containing 0.9 mbar CO 2) caused a decrease in seawater pH which resulted in 20% less calcification after 5 days of exposure, while enhancing photosynthetic rates by 13%. The ecological implications of these findings is that photosynthetically driven changes in water chemistry by surrounding plants can affect calcification rates of coralline algae, as may future ocean acidification resulting from elevated atmospheric CO 2.

  6. Atmospheric inversion of the surface CO2 flux with 13CO2 constraint

    Science.gov (United States)

    Chen, J. M.; Mo, G.; Deng, F.

    2013-10-01

    Observations of 13CO2 at 73 sites compiled in the GLOBALVIEW database are used for an additional constraint in a global atmospheric inversion of the surface CO2 flux using CO2 observations at 210 sites for the 2002-2004 period for 39 land regions and 11 ocean regions. This constraint is implemented using the 13CO2/CO2 flux ratio modeled with a terrestrial ecosystem model and an ocean model. These models simulate 13CO2 discrimination rates of terrestrial photosynthesis and respiration and ocean-atmosphere diffusion processes. In both models, the 13CO2 disequilibrium between fluxes to and from the atmosphere is considered due to the historical change in atmospheric 13CO2 concentration. For the 2002-2004 period, the 13CO2 constraint on the inversion increases the total land carbon sink from 3.40 to 3.70 Pg C yr-1 and decreases the total oceanic carbon sink from 1.48 to 1.12 Pg C yr-1. The largest changes occur in tropical areas: a considerable decrease in the carbon source in the Amazon forest, and this decrease is mostly compensated by increases in the ocean region immediately west of the Amazon and the southeast Asian land region. Our further investigation through different treatments of the 13CO2/CO2 flux ratio used in the inversion suggests that variable spatial distributions of the 13CO2 isotopic discrimination rate simulated by the models over land and ocean have considerable impacts on the spatial distribution of the inverted CO2 flux over land and the inversion results are not sensitive to errors in the estimated disequilibria over land and ocean.

  7. The impact of CO2-costs on biogas usage

    DEFF Research Database (Denmark)

    Jensen, Ida Græsted; Nielsen, Lise Skovsgaard

    2017-01-01

    The Danish government has set a target of being fossil fuel independent by 2050 implying that a high degree of inflexible renewable energy will be included in the energy system; biogas can add flexibility and potentially has a negative CO2-emission. In this paper, we investigate the socioeconomic...... system costs of reaching a Danish biogas target of 3.8 PJ in the energy system, and how CO2 costs affect the system costs and biogas usage. We perform our analysis using the energy systems model, Balmorel, and expand the model with a common target for raw biogas and upgraded biogas (biomethane). Raw...... biogas can be used directly in heat and power production, while biomethane has the same properties as natural gas. Balmorel is altered such that natural gas and biomethane can be used in the same technologies. Several CO2-cost estimates are investigated; hereunder a high estimate for the expected CO2...

  8. Disruption of key NADH-binding pocket residues of the Mycobacterium tuberculosis InhA affects DD-CoA binding ability.

    Science.gov (United States)

    Shaw, Daniel J; Robb, Kirsty; Vetter, Beatrice V; Tong, Madeline; Molle, Virginie; Hunt, Neil T; Hoskisson, Paul A

    2017-07-05

    Tuberculosis (TB) is a global health problem that affects over 10 million people. There is an urgent need to develop novel antimicrobial therapies to combat TB. To achieve this, a thorough understanding of key validated drug targets is required. The enoyl reductase InhA, responsible for synthesis of essential mycolic acids in the mycobacterial cell wall, is the target for the frontline anti-TB drug isoniazid. To better understand the activity of this protein a series of mutants, targeted to the NADH co-factor binding pocket were created. Residues P193 and W222 comprise a series of hydrophobic residues surrounding the cofactor binding site and mutation of both residues negatively affect InhA function. Construction of an M155A mutant of InhA results in increased affinity for NADH and DD-CoA turnover but with a reduction in V max for DD-CoA, impairing overall activity. This suggests that NADH-binding geometry of InhA likely permits long-range interactions between residues in the NADH-binding pocket to facilitate substrate turnover in the DD-CoA binding region of the protein. Understanding the precise details of substrate binding and turnover in InhA and how this may affect protein-protein interactions may facilitate the development of improved inhibitors enabling the development of novel anti-TB drugs.

  9. CO2 Saline Storage Demonstration in Colorado Sedimentary Basins. Applied Studies in Reservoir Assessment and Dynamic Processes Affecting Industrial Operations

    Energy Technology Data Exchange (ETDEWEB)

    Nummedal, Dag [Trustees Of The Colorado School Of Mines, Golden, CO (United States); Doran, Kevin [Trustees Of The Colorado School Of Mines, Golden, CO (United States); Sitchler, Alexis [Trustees Of The Colorado School Of Mines, Golden, CO (United States); McCray, John [Trustees Of The Colorado School Of Mines, Golden, CO (United States); Mouzakis, Katherine [Trustees Of The Colorado School Of Mines, Golden, CO (United States); Glossner, Andy [Trustees Of The Colorado School Of Mines, Golden, CO (United States); Mandernack, Kevin [Trustees Of The Colorado School Of Mines, Golden, CO (United States); Gutierrez, Marte [Trustees Of The Colorado School Of Mines, Golden, CO (United States); Pranter, Matthew [Trustees Of The Colorado School Of Mines, Golden, CO (United States); Rybowiak, Chris [Trustees Of The Colorado School Of Mines, Golden, CO (United States)

    2012-09-30

    orders of magnitude smaller than renewable energy facilities with equivalent energy capacity. Finally, inexpensive natural gas here in North America is pushing coal for electricity generation off the market, thus reducing US CO2 emissions faster than any other large industrialized nation. These two big factors argue for renewed efforts to find technology solutions to reduce the carbon footprint (carbon dioxide as well as methane and trace gases) of conventional and unconventional oil and gas. One major such technology component is likely to be carbon capture, utilization and storage.

  10. Microalgal CO2 sequestering – Modeling microalgae production costs

    International Nuclear Information System (INIS)

    Bilanovic, Dragoljub; Holland, Mark; Armon, Robert

    2012-01-01

    Highlights: ► Microalgae production costs were modeled as a function of specific expenses. ► The effects of uncontrollable expenses/factors were incorporated into the model. ► Modeled microalgae production costs were in the range $102–1503 t −1 ha −1 y −1 . - Abstract: Microalgae CO 2 sequestering facilities might become an industrial reality if microalgae biomass could be produced at cost below $500.00 t −1 . We develop a model for estimation of total production costs of microalgae as a function of known production-specific expenses, and incorporate into the model the effects of uncontrollable factors which affect known production-specific expenses. Random fluctuations were intentionally incorporated into the model, consequently into generated cost/technology scenarios, because each and every logically interconnected equipment/operation that is used in design/construction/operation/maintenance of a production process is inevitably subject to random cost/price fluctuations which can neither be eliminated nor a priori controlled. A total of 152 costs/technology scenarios were evaluated to find 44 scenarios in which predicted total production costs of microalgae (PTPCM) was in the range $200–500 t −1 ha −1 y −1 . An additional 24 scenarios were found with PTCPM in the range of $102–200 t −1 ha −1 y −1 . These findings suggest that microalgae CO 2 sequestering and the production of commercial compounds from microalgal biomass can be economically viable venture even today when microalgae production technology is still far from its optimum.

  11. Reappraising factors affecting mourning dove perch coos

    Science.gov (United States)

    Sayre, M.W.; Atkinson, R.D.; Baskett, T.S.; Haas, G.H.

    1978-01-01

    Results confirmed pairing as the primary factor influencing perch-cooing rates of wild mourning doves (Zenaida macroura). Marked unmated males cooed at substantially higher rates (6.2x) than mated males, had greater probability of cooing (2.3x) during 3-minute periods, and continued cooing longer each morning than mated males. Population density was not a major factor affecting cooing. Unmated males cooed more frequently in the presence of other cooing doves (P < 0.05) than when alone, but the number of additional doves above 1 was unimportant. Cooing rates of both mated and unmated males on areas with dissimilar dove densities were not significantly different. Within limits of standard call-count procedure, weather exerted no detectable influence on cooing.

  12. Sensitivity of terrestrial ecosystems to elevated atmospheric CO{sub 2}: Comparisons of model simulation studies to CO{sub 2} effect

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Y. [Marine Biological Lab., Woods Hole, MA (United States)

    1995-06-01

    In the context of a project to compare terrestrial ecosystem models, the Vegetation/Ecosystem Modeling and Analysis Project (VEMAP), we have analyzed how three biogeochemistry models link plant growth to doubled atmospheric CO{sub 2}. A common set of input data was used to drive three biogeochemistry models, BIOME-BGC, CENTURY and TEM. For the continental United States the simulation results show that with doubled CO{sub 2}, NPP increased by 8.7%, 5.0% and 10.8% for TEM, CENTURY and BIOME-BGC, respectively. At the biome level the range of NPP estimates varied considerably among models. TEM-simulated enhancement of NPP ranged from 2% to 28%; CENTURY, from 2% to 9%; and BIOME-BGC, from 4% to 27%. A transect analysis across several biomes along a latitude at 41.5 N shows that the TEM-simulated CO{sub 2} enhancement of NPP ranged from 0% to 22%; CENTURY, from 1% to 10% and BIOME-BGC, from 1% to 63%. In this study, we have investigated the underlying mechanisms of the three models to reveal how increased CO{sub 2} affects photosynthesis rate, water using efficiency and nutrient cycles. The relative importance of these mechanisms in each of the three biogeochemistry models will be discussed.

  13. The FP7 ULTimateCO2 project: a study of the long term fate of CO2

    Science.gov (United States)

    Audigane, Pascal; Waldmann, Svenja; Pearce, Jonathan; Dimier, Alain; Le Gallo, Yann; Frykman, Peter; Maurand, Nicolas; Gherardi, Fabrizio; Yalamas, Thierry; Cremer, Holger; Spiers, Chris; Nussbaum, Christophe

    2014-05-01

    The objectives of the European FP7 ULTimateCO2 project are to study specific processes that could influence the long-term fate of geologically stored CO2, mainly: the trapping mechanisms occurring in the storage reservoir, the influence of fluid-rock interactions on mechanical integrity of caprock and well vicinity, and also the modifications induced at the regional scale (brine displacement, fault reactivation, hydrogeology changes...). A comprehensive approach combining laboratory experiments, numerical modeling and natural analogue studies is developed to assess all the processes mentioned above. A collection of data has been generated from natural and industrial (oil industry) analogues on the fluid flow and mechanical properties, structure, and mineralogy of faults and fractures that could affect the long-term storage capacity of underground CO2 storage sites. To address geochemical trapping at reservoir scale, an experimental approach is developed using sandstone core materials in batch reactive mode with CO2 and impurities at reservoir pressure and temperature conditions. Three inter-related lines of laboratory experiments investigate the long-term evolution of the mechanical properties and sealing integrity of fractured and faulted caprocks using Opalinus clay of Mont Terri Gallery (Switzerland), an analogue for caprock well investigated in the past for nuclear waste disposal purpose. To evaluate the interactions between CO2 (and formation fluid) and the well environment (formation, cement, casing) and to assess the consequences of these interactions on the transport properties of well materials, a 1 to 1 scale experiment has been set in the Mont Terri Gallery Opalinus clay to reproduce classical well objects (cemented annulus, casing and cement plug) perforating caprock formations. An extensive program of numerical modeling is also developed to calibrate, to reproduce and to extrapolate the experimental results at longer time scales including uncertainty

  14. Factors Affecting Learning Among Undergraduate Nursing Students: Cross-Sectional Survey

    Directory of Open Access Journals (Sweden)

    Linu Sara George

    2017-11-01

    Full Text Available Introduction: Nursing education expects the students to be competent enough to render quality care for their patients in hospital as well as community setting. To reach the level of expected competency, the students must undergo vigorous training during their undergraduate education. The learning experience of the students is influenced by many factors. Aim: To identify the factors, affecting learning as perceived by the students. Materials and Methods: This descriptive survey was conducted among 414 undergraduate nursing students enrolled in selected Nursing Colleges. Background information was collected using Demographic Proforma and the factors affecting learning were identified using Likert Scale. Factors were identified by exploratory factor analysis using extraction method of principal component analysis with varimax rotation. Results: Majority (73.7% of the samples were between 22-25 years of age, 93.2% were females, most (38.9% were studying in the fourth year of nursing, 50% of the students enrolled in the study had chosen nursing as a career due to job security in future, 58.7% students did not spent time every day for their studies and majority (89.1% had English as their medium of instruction in Pre-university college. Factor analysis identified five factors (Learning environment, Supportive services, Teacher characteristics, Learner challenges and Personal factors that affect the student learning. Conclusion: From the present study it can be concluded that perception of students do have an influence on factors affecting learning. The study findings will help the faculty members to bring in changes for the best learning outcome.

  15. CO2 absorption/emission and aerodynamic effects of trees on the concentrations in a street canyon in Guangzhou, China

    International Nuclear Information System (INIS)

    Li, Jian-Feng; Zhan, Jie-Min; Li, Y.S.; Wai, Onyx W.H.

    2013-01-01

    In this paper, the effects of trees on CO 2 concentrations in a street canyon in Guangzhou, China are examined by Computational Fluid Dynamics (CFD) simulations of the concentration distribution, taking into account both the CO 2 absorption/emission and aerodynamic effects of trees. Simulation results show that, under a 2 m/s southerly prevailing wind condition, CO 2 absorption by trees will reduce the CO 2 concentration by around 2.5% in the daytime and at the same time the trees' resistance will increase the difference of CO 2 concentrations in the street and at the inflow by 43%. As the traffic density increases to 50 vehicles/min, the effect of trees on the ambient CO 2 concentration will change from positive to negative. At night, trees have a negative effect on the concentration in the street canyon mainly because of their resistance to airflow. When environmental wind changes, the effect of trees will be different. -- Highlights: ► The trees affect CO 2 concentrations in a street canyon. ► Both the CO 2 absorption and flow resistance of trees are significant factors by day. ► As the emissions of CO 2 increase, the effect of trees will become negative. ► At night, trees have a negative effect on CO 2 concentration due to the resistance. -- The effects of trees on CO 2 concentrations in a street canyon are examined by CFD simulations, taking into account both the CO 2 absorption/emission and aerodynamic effects of trees

  16. Soil Microbial Responses to Elevated CO2 and O3 in a Nitrogen-Aggrading Agroecosystem

    Science.gov (United States)

    Cheng, Lei; Booker, Fitzgerald L.; Burkey, Kent O.; Tu, Cong; Shew, H. David; Rufty, Thomas W.; Fiscus, Edwin L.; Deforest, Jared L.; Hu, Shuijin

    2011-01-01

    Climate change factors such as elevated atmospheric carbon dioxide (CO2) and ozone (O3) can exert significant impacts on soil microbes and the ecosystem level processes they mediate. However, the underlying mechanisms by which soil microbes respond to these environmental changes remain poorly understood. The prevailing hypothesis, which states that CO2- or O3-induced changes in carbon (C) availability dominate microbial responses, is primarily based on results from nitrogen (N)-limiting forests and grasslands. It remains largely unexplored how soil microbes respond to elevated CO2 and O3 in N-rich or N-aggrading systems, which severely hinders our ability to predict the long-term soil C dynamics in agroecosystems. Using a long-term field study conducted in a no-till wheat-soybean rotation system with open-top chambers, we showed that elevated CO2 but not O3 had a potent influence on soil microbes. Elevated CO2 (1.5×ambient) significantly increased, while O3 (1.4×ambient) reduced, aboveground (and presumably belowground) plant residue C and N inputs to soil. However, only elevated CO2 significantly affected soil microbial biomass, activities (namely heterotrophic respiration) and community composition. The enhancement of microbial biomass and activities by elevated CO2 largely occurred in the third and fourth years of the experiment and coincided with increased soil N availability, likely due to CO2-stimulation of symbiotic N2 fixation in soybean. Fungal biomass and the fungi∶bacteria ratio decreased under both ambient and elevated CO2 by the third year and also coincided with increased soil N availability; but they were significantly higher under elevated than ambient CO2. These results suggest that more attention should be directed towards assessing the impact of N availability on microbial activities and decomposition in projections of soil organic C balance in N-rich systems under future CO2 scenarios. PMID:21731722

  17. Temporal variations of atmospheric CO2 and CO at Ahmedabad in western India

    Directory of Open Access Journals (Sweden)

    N. Chandra

    2016-05-01

    Full Text Available About 70 % of the anthropogenic carbon dioxide (CO2 is emitted from the megacities and urban areas of the world. In order to draw effective emission mitigation policies for combating future climate change as well as independently validating the emission inventories for constraining their large range of uncertainties, especially over major metropolitan areas of developing countries, there is an urgent need for greenhouse gas measurements over representative urban regions. India is a fast developing country, where fossil fuel emissions have increased dramatically in the last three decades and are predicted to continue to grow further by at least 6 % per year through to 2025. The CO2 measurements over urban regions in India are lacking. To overcome this limitation, simultaneous measurements of CO2 and carbon monoxide (CO have been made at Ahmedabad, a major urban site in western India, using a state-of-the-art laser-based cavity ring down spectroscopy technique from November 2013 to May 2015. These measurements enable us to understand the diurnal and seasonal variations in atmospheric CO2 with respect to its sources (both anthropogenic and biospheric and biospheric sinks. The observed annual average concentrations of CO2 and CO are 413.0 ± 13.7 and 0.50 ± 0.37 ppm respectively. Both CO2 and CO show strong seasonality with lower concentrations (400.3 ± 6.8 and 0.19 ± 0.13 ppm during the south-west monsoon and higher concentrations (419.6 ± 22.8 and 0.72 ± 0.68 ppm during the autumn (SON season. Strong diurnal variations are also observed for both the species. The common factors for the diurnal cycles of CO2 and CO are vertical mixing and rush hour traffic, while the influence of biospheric fluxes is also seen in the CO2 diurnal cycle. Using CO and CO2 covariation, we differentiate the anthropogenic and biospheric components of CO2 and found significant contributions of biospheric respiration and anthropogenic

  18. Factors affecting the rural domestic waste generation

    Directory of Open Access Journals (Sweden)

    A.R. Darban Astane

    2017-12-01

    Full Text Available The current study was carried out to evaluate the quantity and quality of rural domestic waste generation and to identify the factors affecting it in rural areas of Khodabandeh county in Zanjan Province, Iran. Waste samplings consisted of 318 rural households in 11 villages. In order to evaluate the quality and quantity of the rural domestic waste, waste production was classified into 12 groups and 2 main groups of organic waste and solid waste. Moreover, kriging interpolation technique in ARC-GIS software was used to evaluate the spatial distribution of the generated domestic waste and ultimately multiple regression analysis was used to evaluate the factors affecting the generation of domestic waste. The results of this study showed that the average waste generated by each person was 0.588 kilograms per day. with the share of organic waste generated by each person being 0.409 kilograms per day and the share of solid waste generated by each person being 0.179 kilograms per day. The results from spatial distribution of waste generation showed a certain pattern in three groups and a higher rate of waste generation in the northern and northwestern parts, especially in the subdistrict. The results of multiple regression analysis showed that the households’ income, assets, age, and personal attitude are respectively the most important variables affecting waste generation. The housholds’ attitude and indigenous knowledge on efficient use of materials are also the key factors which can help reducing waste generation.

  19. Increased N2O emission by inhibited plant growth in the CO2 leaked soil environment: Simulation of CO2 leakage from carbon capture and storage (CCS) site.

    Science.gov (United States)

    Kim, You Jin; He, Wenmei; Ko, Daegeun; Chung, Haegeun; Yoo, Gayoung

    2017-12-31

    Atmospheric carbon dioxide (CO 2 ) concentrations is continuing to increase due to anthropogenic activity, and geological CO 2 storage via carbon capture and storage (CCS) technology can be an effective way to mitigate global warming due to CO 2 emission. However, the possibility of CO 2 leakage from reservoirs and pipelines exists, and such leakage could negatively affect organisms in the soil environment. Therefore, to determine the impacts of geological CO 2 leakage on plant and soil processes, we conducted a greenhouse study in which plants and soils were exposed to high levels of soil CO 2 . Cabbage, which has been reported to be vulnerable to high soil CO 2 , was grown under BI (no injection), NI (99.99% N 2 injection), and CI (99.99% CO 2 injection). Mean soil CO 2 concentration for CI was 66.8-76.9% and the mean O 2 concentrations in NI and CI were 6.6-12.7%, which could be observed in the CO 2 leaked soil from the pipelines connected to the CCS sites. The soil N 2 O emission was increased by 286% in the CI, where NO 3 - -N concentration was 160% higher compared to that in the control. This indicates that higher N 2 O emission from CO 2 leakage could be due to enhanced nitrification process. Higher NO 3 - -N content in soil was related to inhibited plant metabolism. In the CI treatment, chlorophyll content decreased and chlorosis appeared after 8th day of injection. Due to the inhibited root growth, leaf water and nitrogen contents were consistently lowered by 15% under CI treatment. Our results imply that N 2 O emission could be increased by the secondary effects of CO 2 leakage on plant metabolism. Hence, monitoring the environmental changes in rhizosphere would be very useful for impact assessment of CCS technology. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Net Fluxes of CO2, but not N20 or CH4, are Affected Following Agronomic-Scale Additions of Urea to Prairie and Arable Soils

    Science.gov (United States)

    Microbial production of carbon dioxide (CO2) increased with nitrogen (N) application rate for both arable and prairie soils incubated at 21 °C. Rate of N applied as urea (0, 11, 56, 112 kg N ha-1) did not affect soil methane consumption and nitrous oxide production for soil collected from either ec...

  1. Changes in plants and soil microorganisms in an artificial CO2 leakage experiment

    Science.gov (United States)

    Ko, D.; Kim, Y.; Yoo, G.; Chung, H.

    2017-12-01

    Carbon capture and storage (CCS) technology is considered to be a promising technology that can mitigate global climate change by greatly reducing anthropogenic CO2 emissions. Despite the advantage, potential risks of leakage of CO2 from CO2 storage site exists, which may negatively affect organisms in the soil ecosystems. To investigate the short- term impacts of geological CO2 leakage on soil ecosystem, we conducted an artificial CO2 leakage experiment in a greenhouse where plants and soils were exposed to high levels of CO2. Corn was grown in a 1:1 (v/v) mixture of potting and field soil, and 99.99% CO2 gas was injected at a flow rate of 0.1l min-1 for 30 days whereas no gas was injected to control pots. Changes in plant growth, soil characteristics, and bacterial community composition were determined. Mean soil CO2 and O2 concentrations were 31.6% and 15.6%, respectively, in CO2-injected pots, while they were at ambient levels in control pots. The shoot and root length, and chlorophyll contents decreased in CO2-injected pots by 19.4%, 9.7%, and 11.9%, respectively. In addition, the concentration of available N such as NH4+-N and NO3-N was 83.3 to 90.8% higher in CO2-injected pots than in control pots likely due to inhibited plant growth. The results of bacterial 16S rRNA gene pyrosequencing showed that the major phyla in the soils were Actinobacteria, Proteobacteria, Acidobacteria, Chloroflexi, and Saccharibacteria_TM7. Among these, the relative abundance of Proteobacteria was lower in CO2-injected than in control pots (28.8% vs. 34.1%) likely due to decreased C availability. On the other hand, the abundance of Saccharibacteria_TM7 was significantly higher in CO2-injected than in control pots (6.0% vs. 1.3%). The changes in soil mineral N and microorganisms in response to injected CO2 was likely due to inhibited plant growth under high soil CO2 conditions, and further studies are needed to determine if belowground CO2 leakage from CO2 storage sites can directly

  2. CO2 Abatement In The Iron And Steel Industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-01-15

    The iron and steel industry is the largest industrial source of CO2 emissions due to the energy intensity of steel production, its reliance on carbon-based fuels and reductants, and the large volume of steel produced -- over 1414 Mt in 2010. With the growing concern over climate change, steel makers are faced with the challenge of finding ways of lowering CO2 emissions without seriously undermining process efficiency or considerably adding to costs. This report examines ways of abating CO2 emissions from raw materials preparation (coking, sintering and pelletising plants) through to the production of liquid steel in basic oxygen furnaces and electric arc furnaces. Direct reduction and smelting reduction processes are covered, as well as iron making in a blast furnace. A range of technologies and measures exist for lowering CO2 emissions including minimising energy consumption and improving energy efficiency, changing to a fuel and/or reducing agent with a lower CO2 emission factor (such as wood charcoal), and capturing the CO2 and storing it underground. Significant CO2 reductions can be achieved by combining a number of the available technologies. If carbon capture and storage is fitted than steel plants could become near zero emitters of CO2.

  3. Energy consumption and CO{sub 2} emissions in Iran, 2025

    Energy Technology Data Exchange (ETDEWEB)

    Mirzaei, Maryam [Department of Banking and Finance, Multimedia University (Malaysia); Bekri, Mahmoud [Economic and Statistic Institute, Karlsruhe Institute of Technology (Germany)

    2017-04-15

    Climate change and global warming as the key human societies' threats are essentially associated with energy consumption and CO{sub 2} emissions. A system dynamic model was developed in this study to model the energy consumption and CO{sub 2} emission trends for Iran over 2000–2025. Energy policy factors are considered in analyzing the impact of different energy consumption factors on environmental quality. The simulation results show that the total energy consumption is predicted to reach 2150 by 2025, while that value in 2010 is 1910, which increased by 4.3% yearly. Accordingly, the total CO{sub 2} emissions in 2025 will reach 985 million tonnes, which shows about 5% increase yearly. Furthermore, we constructed policy scenarios based on energy intensity reduction. The analysis show that CO{sub 2} emissions will decrease by 12.14% in 2025 compared to 2010 in the scenario of 5% energy intensity reduction, and 17.8% in the 10% energy intensity reduction scenario. The results obtained in this study provide substantial awareness regarding Irans future energy and CO{sub 2} emission outlines. - Highlights: • Creation of an energy consumption model using system dynamics. • The effect of different policies on energy consumption and emission reductions. • An ascending trend for the environmental costs caused by CO{sub 2} emissions is observed. • An urgent need for energy saving and emission reductions in Iran.

  4. From Oil Crisis to Climate Change. Understanding CO2 Emission Trends in IEA Countries

    International Nuclear Information System (INIS)

    Unander, F.

    2003-11-01

    OECD CO2 emissions from fuel combustion increased 13% between 1990 and 2001. This signals an important shift since, over the 1973 to 1990 period, emissions only increased by 3.4%. As a result, CO2 emissions from energy use (fuel combustion) contributed 81.1% of total OECD greenhouse gas emissions in 2001 compared to 77.7% in 1990. As these figures make clear, reducing CO2 emissions from fuel combustion constitutes a key challenge to combat climate change. Developing and successfully implementing the most efficient policies for reducing CO2 emissions requires a good understanding of how factors such as income, prices, demography, economic structure, lifestyle, climate, energy efficiency and fuel mix affect energy use and resulting CO2 emissions. This paper presents selected results from the analysis of CO2 developments included in the IEA publication 'From Oil Crisis to Climate Challenge: 30 Years of Energy Use in IEA Countries'. The paper gives a brief overview of aggregate CO2 emission trends and of how recent developments in selected IEA countries compare to emissions levels implied by the Kyoto targets. A deeper understanding of the aggregate trends is provided by showing results from a decomposition analysis and by discussing developments in key end-use sectors. The full publication presents a more detailed analysis of how various factors have shaped energy use patterns and CO2 emissions since 1973. The analysis draws on a newly developed database with detailed information on energy use in the manufacturing, household, service and transport sectors. The database represents the most disaggregated information available on a consistent basis across countries and sectors. The study uses quantitative measures to illustrate the forces that drive or restrain energy use. These measures - or indicators - include: activities such as manufacturing output or heated-floor-area of homes; structural developments such as changes in manufacturing output mix or changes in the

  5. Three-dimensional culture conditions differentially affect astrocyte modulation of brain endothelial barrier function in response to transforming growth factor β1.

    Science.gov (United States)

    Hawkins, Brian T; Grego, Sonia; Sellgren, Katelyn L

    2015-05-22

    Blood-brain barrier (BBB) function is regulated by dynamic interactions among cell types within the neurovascular unit, including astrocytes and endothelial cells. Co-culture models of the BBB typically involve astrocytes seeded on two-dimensional (2D) surfaces, which recent studies indicate cause astrocytes to express a phenotype similar to that of reactive astrocytes in situ. We hypothesized that the culture conditions of astrocytes would differentially affect their ability to modulate BBB function in vitro. Brain endothelial cells were grown alone or in co-culture with astrocytes. Astrocytes were grown either as conventional (2D) monolayers, or in a collagen-based gel which allows them to grow in a three-dimensional (3D) construct. Astrocytes were viable in 3D conditions, and displayed a marked reduction in their expression of glial fibrillary acidic protein (GFAP), suggesting reduced activation. Stimulation of astrocytes with transforming growth factor (TGF)β1 decreased transendothelial electrical resistance (TEER) and reduced expression of claudin-5 in co-cultures, whereas treatment of endothelial cells in the absence of astrocytes was without effect. The effect of TGFβ1 on TEER was significantly more pronounced in endothelial cells cultured with 3D astrocytes compared to 2D astrocytes. These results demonstrate that astrocyte culture conditions differentially affect their ability to modulate brain endothelial barrier function, and suggest a direct relationship between reactive gliosis and BBB permeability. Moreover, these studies demonstrate the potential importance of physiologically relevant culture conditions to in vitro modeling of disease processes that affect the neurovascular unit. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Physiological effects on fishes in a high-CO2 world

    Science.gov (United States)

    Ishimatsu, Atsushi; Hayashi, Masahiro; Lee, Kyoung-Seon; Kikkawa, Takashi; Kita, Jun

    2005-09-01

    Fish are important members of both freshwater and marine ecosystems and constitute a major protein source in many countries. Thus potential reduction of fish resources by high-CO2 conditions due to the diffusion of atmospheric CO2 into the surface waters or direct CO2 injection into the deep sea can be considered as another potential threat to the future world population. Fish, and other water-breathing animals, are more susceptible to a rise in environmental CO2 than terrestrial animals because the difference in CO2 partial pressure (PCO2) of the body fluid of water-breathing animals and ambient medium is much smaller (only a few torr (1 torr = 0.1333 kPa = 1316 μatm)) than in terrestrial animals (typically 30-40 torr). A survey of the literature revealed that hypercapnia acutely affects vital physiological functions such as respiration, circulation, and metabolism, and changes in these functions are likely to reduce growth rate and population size through reproduction failure and change the distribution pattern due to avoidance of high-CO2 waters or reduced swimming activities. This paper reviews the acute and chronic effects of CO2 on fish physiology and tries to clarify necessary areas of future research.

  7. Studies on CO2 removal and reduction. CO2 taisaku kenkyu no genjo

    Energy Technology Data Exchange (ETDEWEB)

    Shindo, Y [National Institute of Materials and Chemical Research, Tsukuba (Japan)

    1993-02-01

    This paper summarizes study trends mainly in CO2 fixing processes. Underground CO2 storage is a most promising method because it can fix a huge amount of CO2 and has low effects on ecological systems. Storing CO2 in ocean includes such methods as storing it in deep oceans; storing it in deep ocean beds; dissolving it into sea water; neutralizing it with calcium carbonates; and precipitating it as dry ice. Japan, disposing CO2 in these ways, may create international problems. Separation of CO2 may use a chemical absorption process as a superior method. Other processes discussed include a physical adsorption method and a membrane separation method. A useful method for CO2 fixation using marine organisms is fixation using coral reefs. This process will require an overall study including circulation of phosphorus and nitrogen. Marine organisms may include planktons and algae. CO2 fixation using land plants may be able to fix one trillion and 8 hundred billion tons of CO2 as converted to carbon. This process would require forest protection, prevention of desertification, and tree planting. Discussions are being given also on improving power generation cycles, recovering CO2 from automotive exhausts, and backfilling carbons into ground by means of photosynthesis. 23 refs., 7 figs., 1 tab.

  8. Distribution of the partial pressure of CO2 in surface water (pCO2w) between Japan and the Hawaiian Islands: pCO2w-SST relationship in the winter and summer

    International Nuclear Information System (INIS)

    Inoue, Hisayuki Y.; Ishii, Masao; Matsueda, Hidekazu; Kawano, Takeshi; Murata, Akihiko; Takasugi, Yoshio

    2003-01-01

    On the basis of measurements of the partial pressure of carbon dioxide in surface seawater (pCO 2 w) between Japan and the Hawaiian Islands in winter and summer, we examined the relationship between pCO 2 w and the sea surface temperature (SST) in the North Pacific Subtropical Gyre (NPSG). In winter, pCO 2 w correlated well with the SST (0.14-0.24%/deg C), suggesting a monotonous change in the carbonate system. However, in summer, five different pCO 2 w-SST relationships were found in the NPSG (including the Kuroshio Extension) due to changes in the relative contribution of ocean dynamics (upwelling, vertical mixing and advection), biological activity in the absence (very low level) of macro-nutrients and thermodynamics. The increase in pCO 2 w corresponding to a unit increase in the SST from January to July was low (<2.5%/deg C) west (leeward side) of the Hawaiian Islands (19-22 deg N, 158-168 deg W) and in the Kuroshio Extension (33-35 deg N, 140-165deg E), and high (3%/deg C) south of the Kuroshio Extension (25-30 deg N, 180-165 deg W) and the Hawaiian Islands (15-19 deg N, 157-162 deg W). This suggested that the drawdown of dissolved inorganic carbon was affected by the enhanced biological activity due to upwelling events associated with eddies and/or the transport of dissolved nutrients from gyre edges to the interior

  9. Does Elevated CO2 Alter Silica Uptake in Trees?

    Directory of Open Access Journals (Sweden)

    Robinson W. Fulweiler

    2015-01-01

    Full Text Available Human activities have greatly altered global carbon (C and N (N cycling. In fact, atmospheric concentrations of carbon dioxide (CO2 have increased 40% over the last century and the amount of N cycling in the biosphere has more than doubled. In an effort to understand how plants will respond to continued global carbon dioxide fertilization, long-term free-air CO2 enrichment (FACE experiments have been conducted at sites around the globe. Here we examine how atmospheric CO2 enrichment and N fertilization affects the uptake of silicon (Si in the Duke Forest, North Carolina, a stand dominated by Pinus taeda (loblolly pine, and five hardwood species. Specifically, we measured foliar biogenic silica (BSi concentrations in five deciduous and one coniferous species across three treatments: CO2 enrichment, N enrichment, and N and CO2 enrichment. We found no consistent trends in foliar Si concentration under elevated CO2, N fertilization, or combined elevated CO2 and N fertilization. However, two-thirds of the tree species studied here have Si foliar concentrations greater than well-known Si accumulators, such as grasses. Based on net primary production values and aboveground Si concentrations in these trees, we calculated forest Si uptake rates under control and elevated CO2 concentrations. Due largely to increased primary production, elevated CO2 enhanced the magnitude of Si uptake between 20% and 26%, likely intensifying the terrestrial silica pump. This uptake of Si by forests has important implications for Si export from terrestrial systems, with the potential to impact C sequestration and higher trophic levels in downstream ecosystems.

  10. CO2 leakage from carbon dioxide capture and storage (CCS) systems affects organic matter cycling in surface marine sediments.

    Science.gov (United States)

    Rastelli, Eugenio; Corinaldesi, Cinzia; Dell'Anno, Antonio; Amaro, Teresa; Greco, Silvestro; Lo Martire, Marco; Carugati, Laura; Queirós, Ana M; Widdicombe, Stephen; Danovaro, Roberto

    2016-12-01

    Carbon dioxide capture and storage (CCS), involving the injection of CO 2 into the sub-seabed, is being promoted worldwide as a feasible option for reducing the anthropogenic CO 2 emissions into the atmosphere. However, the effects on the marine ecosystems of potential CO 2 leakages originating from these storage sites have only recently received scientific attention, and little information is available on the possible impacts of the resulting CO 2 -enriched seawater plumes on the surrounding benthic ecosystem. In the present study, we conducted a 20-weeks mesocosm experiment exposing coastal sediments to CO 2 -enriched seawater (at 5000 or 20,000 ppm), to test the effects on the microbial enzymatic activities responsible for the decomposition and turnover of the sedimentary organic matter in surface sediments down to 15 cm depth. Our results indicate that the exposure to high-CO 2 concentrations reduced significantly the enzymatic activities in the top 5 cm of sediments, but had no effects on subsurface sediment horizons (from 5 to 15 cm depth). In the surface sediments, both 5000 and 20,000 ppm CO 2 treatments determined a progressive decrease over time in the protein degradation (up to 80%). Conversely, the degradation rates of carbohydrates and organic phosphorous remained unaltered in the first 2 weeks, but decreased significantly (up to 50%) in the longer term when exposed at 20,000 ppm of CO 2 . Such effects were associated with a significant change in the composition of the biopolymeric carbon (due to the accumulation of proteins over time in sediments exposed to high-pCO 2 treatments), and a significant decrease (∼20-50% at 5000 and 20,000 ppm respectively) in nitrogen regeneration. We conclude that in areas immediately surrounding an active and long-lasting leak of CO 2 from CCS reservoirs, organic matter cycling would be significantly impacted in the surface sediment layers. The evidence of negligible impacts on the deeper sediments should be

  11. Phase transformations in the B2 phase of Co-rich Co-Al binary alloys

    International Nuclear Information System (INIS)

    Niitsu, K.; Omori, T.; Nagasako, M.; Oikawa, K.; Kainuma, R.; Ishida, K.

    2011-01-01

    Research highlights: → Bainitic transformation and a martensite-like structure from B2-CoAl were observed depending on quenching rate. → The phase separation into the metastable A2 + B2 structure was found in the as-quenched B2-CoAl. → The two-phase structure of A2 and B2 was found to show some coercive force after aging under a magnetic field. - Abstract: Phase transformations in the β (B2) phase of Co-21 and -23 at.% Al alloys were examined using transmission electron microscopy, energy dispersive X-ray spectroscopy and differential scanning calorimetry. The microstructures obtained from as-quenched specimens were found to be strongly affected by the quenching condition. While relatively thick sheet-specimens with a lower quenching rate showed bainitic plate precipitates with a fcc structure, a martensite-like structure was observed by optical microscopy in relatively thin specimens with a higher quenching rate. Regardless of the quenching condition, a spinodal-like microstructure composed of A2 and B2 phases was also detected and the A2 phase changed to a metastable hcp phase during further aging.

  12. A review on the effects of TiO2 surface point defects on CO2 photoreduction with H2O

    Directory of Open Access Journals (Sweden)

    Huilei Zhao

    2017-03-01

    Full Text Available Photocatalytic reduction of CO2 with water by photocatalysts such as TiO2 to produce solar fuels is an attractive approach to alleviate the environmental influences of greenhouse gases and in the meantime produce valuable carbon-neutral fuels. Among the materials properties that affect catalytic activity of CO2 photoreduction, the point defect on TiO2 is one of the most important but not frequently addressed and well understood in the literature. In this review, we have examined the major influences of TiO2 point defects on CO2 photoreduction with H2O, by changing the catalysts' gas adsorption capabilities, optical properties, and electronic structures. In addition, the performances of various defective TiO2 toward CO2 photoreduction are summarized and compared in terms of productivity, selectivity, and stability. We hope this review can contribute to understanding the mechanism of CO2 photoreduction on defective TiO2 and provide insights to the design of highly efficient defect-rich TiO2 to boost the CO2 utilization.

  13. Photonic, and photocatalytic behavior of TiO{sub 2} mediated by Fe, CO, Ni, N doping and co-doping

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jia [College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan (China); Zhao, Y.F. [Institute of Coordination Bond Metrology and Engineering, School of Materials Science and Engineering, China Jiliang University, Hangzhou 310018 (China); Wang, T., E-mail: twang@zju.edu.cn [College of Electrical Engineering, Zhejiang University (China); Li, H., E-mail: Lihui02@tyut.edu.cn [College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan (China); Li, C., E-mail: canli1983@gmail.com [Institute of Coordination Bond Metrology and Engineering, School of Materials Science and Engineering, China Jiliang University, Hangzhou 310018 (China)

    2015-12-01

    Fe, Co, Ni, or N addition could modulate the photonic and catalytic responses of TiO{sub 2} for photocatalysts applications. Their morphologies, structures, compositions and photocatalytic performance in the degradation of methylene blue were characterized by scanning electron microscopy, X-ray diffraction, UV–vis absorption spectroscopy, Raman spectra and X-ray photoelectron spectroscopy. The results showed that dopants affect the electronic transition energies by changing the optical band gap and the impurity absorption peaks of the specimens. Especially, co-doping enhances the visible-light photocatalytic activity of TiO{sub 2} by 4–10 times that of pure TiO{sub 2}, and the Co and N co-doping derives 10-fold photocatalytic activity.

  14. On the way to 130 g CO2/km-Estimating the future characteristics of the average European passenger car

    International Nuclear Information System (INIS)

    Fontaras, Georgios; Samaras, Zissis

    2010-01-01

    A new average CO 2 emissions limit for passenger cars was introduced in EU in 2009 imposing gradual average CO 2 emissions reduction to 130 g/km until 2015. This paper attempts to study possible changes in vehicle characteristics for meeting this limit taking into account the average European passenger car of 2007-2008. For this purpose first the most important factors affecting vehicle fuel consumption over the reference cycle (NEDC) are identified. At a second step, the CO 2 benefit from the optimisation of these factors is quantified, through simulations of 6 different passenger cars commonly found in the European fleet. For the simulations Advisor 2002 was employed and validated against published type approval data. The analysis indicated that substantial reductions in vehicle weight, tyre rolling resistance and engine efficiency are necessary to reach even the 2008 target. A 10% reduction in average vehicle weight combined with 10% better aerodynamic characteristics, 20% reduced tyre rolling resistance and a 7.5% increase in average powertrain efficiency can lead to CO 2 reductions of approximately 13% (about 138 g/km based on 2007-2008 fleet-wide performance). Complying with the 130 g/km within the next six-year timeframe will be a rather difficult task and additional technical measures appear to be necessary.

  15. Identification of factors affecting individual industries

    Directory of Open Access Journals (Sweden)

    Maryam Sadat Mirzadeh

    2017-10-01

    Full Text Available High knowledge and technology are rapidly becoming a competitive advantage in today’s world. Individual industries are considered one of the key sectors in the country’s industry. Ranking the factors that affect these industries makes us more familiar with their effectiveness and helps us take actions to improve such factors in knowledge-based companies. Consequently, based on previous research studies on Individual Industries, field observations, and a questionnaire prepared by the researchers, the current study explores and classifies the factors affecting the establishment of these industries. Regarding its purpose, this is an applied research, and regarding data collection, it is a descriptive survey. Using purposive sampling, 60 questionnaires were collected and effective factors were classified applying the SPSS software and the TOPSIS technique. This study suggests that content factors are ranked first place, while contextual and structural factors are ranked second and third, respectively. Therefore, executives and managers in single industries are recommended to strengthen joint enterprise norms and dominant values and beliefs in knowledge-based companies in order to help the growth and development of single industries.

  16. On the income–nuclear energy–CO2 emissions nexus revisited

    International Nuclear Information System (INIS)

    Baek, Jungho; Pride, Dominique

    2014-01-01

    This paper seeks to contribute to the debate over the income–nuclear enery–CO 2 emissions nexus by taking specific account of the possible endogeneity of income, which has been largely ignored by early studies. A multivariate cointegrated vector autoregression (CVAR) is applied to top six nuclear generating countries. We find that nuclear energy tends to reduce CO 2 emission for all countries. It is also found that income has a beneficial effect on the environment only in some countries. Finally, we find that CO 2 emissions and income are indeed determined simultaneously, while nuclear energy acts exogenously, indicating that nuclear energy is the driving variable, which significantly influences the long-run movements of CO 2 emissions and income, but is not affected by CO 2 emissions and income in the model. - Highlights: • We examine the income–nuclear energy–CO 2 emissions nexus in top six nuclear generating countries. • The model pays special attention to the possible endogeneity of income. • Nuclear energy is found to have a beneficial effect on the environment in all countries. • Income has a favorable effect on the environment only in some countries. • CO 2 emissions and income are indeed found to be determined simultaneously

  17. Experimental Studies of CO2 Capturing from the Flue Gases

    Directory of Open Access Journals (Sweden)

    Ehsan Rahmandoost

    2014-10-01

    Full Text Available CO2 emissions from combustion flue gases have turned into a major factor in global warming. Post-combustion carbon capture (PCC from industrial utility flue gases by reactive absorption can substantially reduce the emissions of the greenhouse gas CO2. To test a new solvent (AIT600 for this purpose, a small pilot plant was used. This paper presents the results of studies on chemical methods of absorbing CO2 from flue gases with the new solvent, and evaluates the effects of operating conditions on CO2 absorption efficiency. CO2 removal rate of the AIT600 solvent was higher in comparison to the conventional monoethanolamine (MEA solvent. The optimized temperature of the absorber column was 60 °C for CO2 absorption in this pilot plant. The overall absorption rate (Φ and the volumetric overall mass transfer coefficient (KGaV were also investigated.

  18. Geochemical Implications of CO2 Leakage Associated with Geologic Storage: A Review

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, Omar R.; Qafoku, Nikolla; Cantrell, Kirk J.; Brown, Christopher F.

    2012-07-09

    Leakage from deep storage reservoirs is a major risk factor associated with geologic sequestration of carbon dioxide (CO2). Different scientific theories exist concerning the potential implications of such leakage for near-surface environments. The authors of this report reviewed the current literature on how CO2 leakage (from storage reservoirs) would likely impact the geochemistry of near surface environments such as potable water aquifers and the vadose zone. Experimental and modeling studies highlighted the potential for both beneficial (e.g., CO2 re sequestration or contaminant immobilization) and deleterious (e.g., contaminant mobilization) consequences of CO2 intrusion in these systems. Current knowledge gaps, including the role of CO2-induced changes in redox conditions, the influence of CO2 influx rate, gas composition, organic matter content and microorganisms are discussed in terms of their potential influence on pertinent geochemical processes and the potential for beneficial or deleterious outcomes. Geochemical modeling was used to systematically highlight why closing these knowledge gaps are pivotal. A framework for studying and assessing consequences associated with each factor is also presented in Section 5.6.

  19. Vibrational dynamics of adsorbed CO2: Separability of the CO2 asymmetric stretching mode

    Czech Academy of Sciences Publication Activity Database

    Bludský, Ota; Nachtigall, Petr; Špirko, Vladimír

    2011-01-01

    Roč. 76, č. 6 (2011), s. 669-682 ISSN 0010-0765 R&D Projects: GA MŠk LC512; GA ČR GAP208/11/0436; GA MŠk(CZ) ME10032 Grant - others:GA MŠk(CZ) KONTAKT-II(LH)-CH022 Institutional research plan: CEZ:AV0Z40550506 Keywords : adsorption of CO2 * vibrational dynamics * DFT calculations Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.283, year: 2011

  20. Plant growth and leaf-spot severity on eucalypt at different CO2 concentrations in the air

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Oliveira da Silva

    2014-03-01

    Full Text Available The objective of this work was to evaluate the effects of increased air-CO2 concentration on plant growth and on leaf-spot caused by Cylindrocladium candelabrum in Eucalyptus urophylla. Seedlings were cultivated for 30 days at 451, 645, 904, and 1,147 µmol mol-1 CO2 ; then, they were inoculated with the pathogen and kept under the same conditions for seven days. Increased CO2 concentration increased plant height and shoot dry matter mass, and decreased disease incidence and severity. Stem diameter was not affected by the treatments. Increased concentrations of atmospheric CO2 favorably affect eucalypt growth and reduce leaf-spot severity.

  1. Generation of H{sub 2} and CO by solar thermochemical splitting of H{sub 2}O and CO{sub 2} by employing metal oxides

    Energy Technology Data Exchange (ETDEWEB)

    Rao, C.N.R., E-mail: cnrrao@jncasr.ac.in; Dey, Sunita

    2016-10-15

    Generation of H{sub 2} and CO by splitting H{sub 2}O and CO{sub 2} respectively constitutes an important aspect of the present-day concerns with energy and environment. The solar thermochemical route making use of metal oxides is a viable means of accomplishing these reduction reactions. The method essentially involves reducing a metal oxide by heating and passing H{sub 2}O or CO{sub 2} over the nonstoichiometric oxide to cause reverse oxidation by abstracting oxygen from H{sub 2}O or CO{sub 2}. While ceria, perovskites and other oxides have been investigated for this purpose, recent studies have demonstrated the superior performance of perovskites of the type Ln{sub 1−x}A{sub x}Mn{sub 1−y}M{sub y}O{sub 3} (Ln=rare earth, A=alkaline earth, M=various +2 and +3 metal ions), in the thermochemical generation of H{sub 2} and CO. We present the important results obtained hitherto to point out how the alkaine earth and the Ln ions, specially the radius of the latter, determine the performance of the perovskites. The encouraging results obtained are exemplefied by Y{sub 0.5}Sr{sub 0.5}MnO{sub 3} which releases 483 µmol/g of O{sub 2} at 1673 K and produces 757 µmol/g of CO from CO{sub 2} at 1173 K. The production of H{sub 2} from H{sub 2}O is also quite appreciable. Modification of the B site ion of the perovskite also affects the performance. In addition to perovskites, we present the generation of H{sub 2} based on the Mn{sub 3}O{sub 4}/NaMnO{sub 2} cycle briefly. - Graphical abstract: Ln{sub 0.5}A{sub 0.5}Mn{sub 1−x}M{sub x}O{sub 3} (Ln=lanthanide; A=Ca, Sr; M=Al, Ga, Sc, Mg, Cr, Fe, Co) perovskites are employed for the two step thermochemical splitting of CO{sub 2} and H{sub 2}O for the generation of CO and H{sub 2}. - Highlights: • Perovskite oxides based on Mn are ideal for the two-step thermochemical splitting of CO{sub 2} and H{sub 2}O. • In Ln{sub 1−x}A{sub x}MnO{sub 3} perovskite (Ln=rare earth, A=alkaline earth) both Ln and A ions play major roles

  2. Factors affecting temporal H2S emission at construction and demolition (C&D) debris landfills.

    Science.gov (United States)

    Xu, Qiyong; Townsend, Timothy

    2014-02-01

    Odor problems associated with H2S emissions often result in odor complaints from nearby residents of C&D debris landfills, especially in the early morning. As part of a field study conducted on H2S removal ability using different cover materials, daily and seasonal H2S emissions through a soil cover layer were monitored at a C&D debris landfill to investigate factors affecting H2S emissions. H2S emission rates were not a constant, but varied seasonally, with an average emission rate of 4.67×10(-6)mgm(-2)s(-1). During a the 10-month field study, as the H2S concentration increased from 140ppm to about 3500ppm underneath the cover soil in the testing cell, H2S emissions ranged from zero to a maximum emission rate of 1.24×10(-5)mgm(-2)s(-1). Continuous emission monitoring indicated that H2S emissions even changed over time throughout the day, generally increasing from morning to afternoon, and were affected by soil moisture and temperature. Laboratory experiments were also conducted to investigate the effects of H2S concentration and cover soil moisture content on H2S emissions. The results showed that increased soil moisture reduced H2S emissions by retarding H2S migration through cover soil and dissolving H2S into soil water. The field study also indicated that due to atmospheric dispersion, high H2S emissions may not cause odor problems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Implications of generator siting for CO2 pipeline infrastructure

    International Nuclear Information System (INIS)

    Newcomer, Adam; Apt, Jay

    2008-01-01

    The location of a new electric power generation system with carbon capture and sequestration (CCS) affects the profitability of the facility and determines the amount of infrastructure required to connect the plant to the larger world. Using a probabilistic analysis, we examine where a profit-maximizing power producer would locate a new generator with carbon capture in relation to a fuel source, electric load, and CO 2 sequestration site. Based on models of costs for transmission lines, CO 2 pipelines, and fuel transportation, we find that it is always preferable to locate a CCS power facility nearest the electric load, reducing the losses and costs of bulk electricity transmission. This result suggests that a power system with significant amounts of CCS requires a very large CO 2 pipeline infrastructure

  4. Natural CO2 migrations in the South-Eastern Basin of France: implications for the CO2 storage in sedimentary formations

    International Nuclear Information System (INIS)

    Rubert, Y.

    2009-03-01

    Study of natural CO 2 analogues brings key informations on the factors governing the long term stability/instability of future anthropogenic CO 2 storages. The main objective of this work, through the study of cores from V.Mo.2 well crosscutting the Montmiral natural reservoir (Valence Basin, France), is to trace the deep CO 2 migrations in fractures. Petrographic, geochemical and micro-thermometric studies of the V.Mo.2 cores were thus performed in order: 1) to describe the reservoir filling conditions and 2) to detect possible CO 2 -leakage through the sediments overlying the reservoir. Fluid inclusions from the Paleozoic crystalline basement record the progressive unmixing of a hot homogeneous aquo-carbonic fluid. The Montmiral reservoir was therefore probably fed by a CO 2 -enriched gas component at the Late Cretaceous-Paleogene. The study of the sedimentary column in V.Mo.2 well, demonstrates that the CO 2 did not migrate towards the surface through the thick marly unit (Domerian-Middle Oxfordian). These marls have acted as an impermeable barrier that prevented the upward migration of fluids. Two main stages of fluid circulation have been recognized: 1) an ante- Callovian one related to the Tethysian extension 2) a tertiary stage during which the upper units underwent a karstification, with CO 2 leakage related but which remained confined into the deeper parts of the Valence Basin. Since the Paleogene, the Montmiral reservoir has apparently remained stable, despite the Pyrenean and alpine orogeneses. This is mainly due to the efficient seal formed by the thick marly levels and also to the local structuration in faulted blocks which apparently acted as efficient lateral barriers. (author)

  5. Oysters and eelgrass: potential partners in a high pCO2 ocean.

    Science.gov (United States)

    Groner, Maya L; Burge, Colleen A; Cox, Ruth; Rivlin, Natalie; Turner, Mo; Van Alstyne, Kathryn L; Wyllie-Echeverria, Sandy; Bucci, John; Staudigel, Philip; Friedman, Carolyn S

    2018-05-25

    Climate change is affecting the health and physiology of marine organisms and altering species interactions. Ocean acidification (OA) threatens calcifying organisms such as the Pacific oyster, Crassostrea gigas. In contrast, seagrasses, such as the eelgrass Zostera marina, can benefit from the increase in available carbon for photosynthesis found at a lower seawater pH. Seagrasses can remove dissolved inorganic carbon from OA environments, creating local daytime pH refugia. Pacific oysters may improve the health of eelgrass by filtering out pathogens such as Labyrinthula zosterae (LZ), which causes eelgrass wasting disease (EWD). We examined how co-culture of eelgrass ramets and juvenile oysters affected the health and growth of eelgrass and the mass of oysters under different pCO 2 exposures. In Phase I, each species was cultured alone or in co-culture at 12°C across ambient, medium, and high pCO 2 conditions, (656, 1158 and1606 μatm pCO 2 , respectively). Under high pCO 2 , eelgrass grew faster and had less severe EWD (contracted in the field prior to the experiment). Co-culture with oysters also reduced the severity of EWD. While the presence of eelgrass decreased daytime pCO 2 , this reduction was not substantial enough to ameliorate the negative impact of high pCO 2 on oyster mass. In Phase II, eelgrass alone or oysters and eelgrass in co-culture were held at 15°C under ambient and high pCO 2 conditions, (488 and 2013 μatm pCO 2 , respectively). Half of the replicates were challenged with cultured LZ. Concentrations of defensive compounds in eelgrass (total phenolics and tannins), were altered by LZ exposure and pCO 2 treatments. Greater pathogen loads and increased EWD severity were detected in LZ exposed eelgrass ramets; EWD severity was reduced at high relative to low pCO 2 . Oyster presence did not influence pathogen load or EWD severity; high LZ concentrations in experimental treatments may have masked the effect of this treatment. Collectively, these

  6. The Density and Compressibility of BaCO3-SrCO3-CaCO3-K2CO3-Na2CO3-Li2CO3 Liquids: New Measurements and a Systematic Trend with Cation Field Strength

    Science.gov (United States)

    Hurt, S. M.; Lange, R. A.; Ai, Y.

    2015-12-01

    The volumetric properties of multi-component carbonate liquids are required to extend thermodynamic models that describe partial melting of the deep mantle (e.g. pMELTS; Ghiorso et al., 2003) to carbonate-bearing lithologies. Carbonate in the mantle is an important reservoir of carbon, which is released to the atmosphere as CO2 through volcanism, and thus contributes to the carbon cycle. Although MgCO3 is the most important carbonate component in the mantle, it is not possible to directly measure the 1-bar density and compressibility of MgCO3 liquid because, like other alkaline-earth carbonates, it decomposes at a temperature lower than its melting temperature. Despite this challenge, Liu and Lange (2003) and O'Leary et al. (2015) showed that the one bar molar volume, thermal expansion and compressibility of the CaCO3 liquid component could be obtained by measuring the density and sound speeds of stable liquids in the CaCO3-Li2CO3-Na2CO3-K2CO3 quaternary system at one bar. In this study, this same strategy is employed on SrCO3- and BaCO3-bearing alkali carbonate liquids. The density and sound speed of seven liquids in the SrCO3-Li2CO3-Na2CO3-K2CO3 quaternary and three liquids in the BaCO3-Li2CO3-Na2CO3-K2CO3 quaternary were measured from 739-1367K, with SrCO3 and BaCO3 concentrations ranging from 10-50 mol%. The density measurements were made using the double-bob Archimedean method and sound speeds were obtained with a frequency-sweep acoustic interferometer. The molar volume and sound speed measurements were used to calculate the isothermal compressibility of each liquid, and the results show the volumetric properties mix ideally with composition. The partial molar volume and compressibility of the SrCO3 and BaCO3 components are compared to those obtained for the CaCO3 component as a function of cation field strength. The results reveal a systematic trend that allows the partial molar volume and compressibility of the MgCO3 liquid component to be estimated.

  7. Nitrogen fertilization has a stronger effect on soil nitrogen-fixing bacterial communities than elevated atmospheric CO2.

    Science.gov (United States)

    Berthrong, Sean T; Yeager, Chris M; Gallegos-Graves, Laverne; Steven, Blaire; Eichorst, Stephanie A; Jackson, Robert B; Kuske, Cheryl R

    2014-05-01

    Biological nitrogen fixation is the primary supply of N to most ecosystems, yet there is considerable uncertainty about how N-fixing bacteria will respond to global change factors such as increasing atmospheric CO2 and N deposition. Using the nifH gene as a molecular marker, we studied how the community structure of N-fixing soil bacteria from temperate pine, aspen, and sweet gum stands and a brackish tidal marsh responded to multiyear elevated CO2 conditions. We also examined how N availability, specifically, N fertilization, interacted with elevated CO2 to affect these communities in the temperate pine forest. Based on data from Sanger sequencing and quantitative PCR, the soil nifH composition in the three forest systems was dominated by species in the Geobacteraceae and, to a lesser extent, Alphaproteobacteria. The N-fixing-bacterial-community structure was subtly altered after 10 or more years of elevated atmospheric CO2, and the observed shifts differed in each biome. In the pine forest, N fertilization had a stronger effect on nifH community structure than elevated CO2 and suppressed the diversity and abundance of N-fixing bacteria under elevated atmospheric CO2 conditions. These results indicate that N-fixing bacteria have complex, interacting responses that will be important for understanding ecosystem productivity in a changing climate.

  8. Analysis of Microbial Communities in the Oil Reservoir Subjected to CO2-Flooding by Using Functional Genes as Molecular Biomarkers for Microbial CO2 Sequestration

    Directory of Open Access Journals (Sweden)

    Jin-Feng eLiu

    2015-03-01

    Full Text Available Sequestration of CO2 in oil reservoirs is considered to be one of the feasible options for mitigating atmospheric CO2 building up and also for the in situ potential bioconversion of stored CO2 to methane. However, the information on these functional microbial communities and the impact of CO2 storage on them is hardly available. In this paper a comprehensive molecular survey was performed on microbial communities in production water samples from oil reservoirs experienced CO2-flooding by analysis of functional genes involved in the process, including cbbM, cbbL, fthfs, [FeFe]-hydrogenase and mcrA. As a comparison, these functional genes in the production water samples from oil reservoir only experienced water-flooding in areas of the same oil bearing bed were also analyzed. It showed that these functional genes were all of rich diversity in these samples, and the functional microbial communities and their diversity were strongly affected by a long-term exposure to injected CO2. More interestingly, microorganisms affiliated with members of the genera Methanothemobacter, Acetobacterium and Halothiobacillus as well as hydrogen producers in CO2 injected area either increased or remained unchanged in relative abundance compared to that in water-flooded area, which implied that these microorganisms could adapt to CO2 injection and, if so, demonstrated the potential for microbial fixation and conversion of CO2 into methane in subsurface oil reservoirs.

  9. Elevated CO2 and warming induce substantial and persistent declines in forage quality irrespective of warming in mixed grass prairie

    Science.gov (United States)

    Increasing atmospheric [CO2] and temperature are expected to affect the productivity, species composition, biogeochemistry, and therefore the quantity and quality of forage available to herbivores in rangeland ecosystems. Both elevated CO2 (eCO2) and warming affect plant tissue chemistry through mul...

  10. Soil [N] modulates soil C cycling in CO2-fumigated tree stands

    DEFF Research Database (Denmark)

    Dieleman, W. I. J.; Luyssaert, S.; Rey, A.

    2010-01-01

    Under elevated atmospheric CO2 concentrations, soil carbon (C) inputs are typically enhanced, suggesting larger soil C sequestration potential. However, soil C losses also increase and progressive nitrogen (N) limitation to plant growth may reduce the CO2 effect on soil C inputs with time. We...... compiled a data set from 131 manipulation experiments, and used meta-analysis to test the hypotheses that: (1) elevated atmospheric CO2 stimulates soil C inputs more than C losses, resulting in increasing soil C stocks; and (2) that these responses are modulated by N. Our results confirm that elevated CO2...... induces a C allocation shift towards below-ground biomass compartments. However, the increased soil C inputs were offset by increased heterotrophic respiration (Rh), such that soil C content was not affected by elevated CO2. Soil N concentration strongly interacted with CO2 fumigation: the effect...

  11. Factors affecting farm diversification in rice-wheat

    International Nuclear Information System (INIS)

    Ashfaq, M.; Hassan, S.; Naseer, M.Z.; Baig, I.A.; Asma, J.

    2008-01-01

    The risk in agriculture sector is due to various factors like weather and market conditions, particularly the demand of the commodities. This uncertainty can result in variable returns (farm income) to the decisions that farmers make in a particular season. Diversification is a frequently used risk management strategy that involves participation in more than one activity. It has the added advantage of mitigating price risk as well as fluctuations in outputs. The main purpose of this paper was to determine the factors affecting crop diversification. For determining the effect of different factors on diversification a multiple regression model was used. The values of Entropy index computed for measuring horizontal diversification were taken as dependent variable and different factors affecting diversification were taken as independent variables. The results showed that the main factors affecting diversification were size of land holding, age of respondent, education level of respondent, farming experience of respondent, off farm income of respondent, distance of farm from main road, distance of farm from main market and farm machinery. (author)

  12. Elevated CO2 impacts bell pepper growth with consequences to Myzus persicae life history, feeding behaviour and virus transmission ability.

    Science.gov (United States)

    Dáder, Beatriz; Fereres, Alberto; Moreno, Aránzazu; Trębicki, Piotr

    2016-01-08

    Increasing atmospheric carbon dioxide (CO2) impacts plant growth and metabolism. Indirectly, the performance and feeding of insects is affected by plant nutritional quality and resistance traits. Life history and feeding behaviour of Myzus persicae were studied on pepper plants under ambient (aCO2, 400 ppm) or elevated CO2 (eCO2, 650 ppm), as well as the direct impact on plant growth and leaf chemistry. Plant parameters were significantly altered by eCO2 with a negative impact on aphid's life history. Their pre-reproductive period was 11% longer and fecundity decreased by 37%. Peppers fixed significantly less nitrogen, which explains the poor aphid performance. Plants were taller and had higher biomass and canopy temperature. There was decreased aphid salivation into sieve elements, but no differences in phloem ingestion, indicating that the diminished fitness could be due to poorer tissue quality and unfavourable C:N balance, and that eCO2 was not a factor impeding feeding. Aphid ability to transmit Cucumber mosaic virus (CMV) was studied by exposing source and receptor plants to ambient (427 ppm) or elevated (612 ppm) CO2 before or after virus inoculation. A two-fold decrease on transmission was observed when receptor plants were exposed to eCO2 before aphid inoculation when compared to aCO2.

  13. Increasing CO2 differentially affects essential and non-essential amino acid concentration of rice grains grown in cadmium-contaminated soils.

    Science.gov (United States)

    Wu, Huibin; Song, Zhengguo; Wang, Xiao; Liu, Zhongqi; Tang, Shirong

    2016-09-01

    Environmental pollution by both ambient CO2 and heavy metals has been steadily increasing, but we do not know how fluctuating CO2 concentrations influence plant nutrients under high Cd pollution, especially in crops. Here, we studied the effects of elevated CO2 and Cd accumulation on proteins and amino acids in rice under Cd stress. In this pot experiment, we analyzed the amino-acid profile of 20 rice cultivars that accumulate Cd differently; the plants were grown in Cd-containing soils under ambient conditions and elevated CO2 levels. We found that although Cd concentrations appeared to be higher in most cultivars under elevated CO2 than under ambient CO2, the effect was significant only in seven cultivars. Combined exposure to Cd and elevated CO2 strongly decreased rice protein and amino acid profiles, including essential and non-essential amino acids. Under elevated CO2, the ratios of specific amino acids were either higher or lower than the optimal ratios provided by FAO/WHO, suggesting that CO2 may flatten the overall amino-acid profile, leading to an excess in some amino acids and deficiencies in others when the rice is consumed. Thus, Cd-tainted rice limits the concentration of essential amino acids in rice-based diets, and the combination with elevated CO2 further exacerbates the problem. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Experimental analysis of CO2 emissions from agricultural soils subjected to five different tillage systems in Lithuania

    International Nuclear Information System (INIS)

    Buragienė, Sidona; Šarauskis, Egidijus; Romaneckas, Kęstutis; Sasnauskienė, Jurgita; Masilionytė, Laura; Kriaučiūnienė, Zita

    2015-01-01

    Intensive agricultural production strongly influences the global processes that determine climate change. Thus, tillage can play a very important role in climate change. The intensity of soil carbon dioxide (CO 2 ) emissions, which contribute to the greenhouse effect, can vary depending on the following factors: the tillage system used, meteorological conditions (which vary in different regions of the world), soil properties, plant residue characteristics and other factors. The main purpose of this research was to analyse and assess the effects of autumn tillage systems with different intensities on CO 2 emissions from soils during different seasons and under the climatic conditions of Central Lithuania. The research was conducted at the Experimental Station of Aleksandras Stulginskis University from 2009 to2012; and in 2014. The soils at the experimental site were classified as Eutric Endogleyic Planosol (Drainic). The investigations were conducted using five tillage systems with different intensities, typical of the Baltic Region. Deep conventional ploughing was performed at a depth of 230–250 mm, shallow ploughing was conducted at a depth of 120–150 mm, deep loosening was conducted at depths of 250–270 mm, and shallow loosening was conducted at depths of 120–150 mm. The fifth system was a no-tillage system. Overall, autumn tillage resulted in greater CO 2 emissions from the soil over both short- and long-term periods under the climatic conditions of Central Lithuania, regardless of the tillage system applied. The highest soil CO 2 emissions were observed for the conventional deep ploughing tillage system, and the lowest emissions were observed for the no-tillage system. The meteorological conditions greatly influenced the CO 2 emissions from the soil during the spring. Soil CO 2 emissions were enhanced as precipitation and the air and soil temperatures increased. Long-term investigations regarding the dynamics of CO 2 emissions from soils during the

  15. Preparation of a Facilitated Transport Membrane Composed of Carboxymethyl Chitosan and Polyethylenimine for CO2/N2 Separation

    Directory of Open Access Journals (Sweden)

    Jiang-Nan Shen

    2013-02-01

    Full Text Available The miscibility of carboxymethyl chitosan/polyethylenimine (CMCS/PEI blends was analyzed by FT-IR, TGA and SEM. Defect-free CMCS/PEI blend membranes were prepared with polysulfone (PSf ultrafiltration membranes as support layer for the separation of CO2/N2 mixtures. The results demonstrate that the CMCS/PEI blend is miscible, due to the hydrogen bonding interaction between the two targeted polymers. For the blended membrane without water, the permeability of CO2 gas is 3.6 × 10−7 cm3 cm−2 s−1 cmHg−1 and the corresponding separation factor for CO2 and N2 gas is about 33 at the pressure of 15.2 cmHg. Meanwhile, the blended membrane with water has the better permselectivity. The blended membrane containing water with PEI content of 30 wt% has the permeance of 6.3 × 10−4 cm3 cm−2 s−1 cmHg−1 for CO2 gas and a separation factor of 325 for CO2/N2 mixtures at the same feed pressure. This indicates that the CO2 separation performance of the CMCS/PEI blend membrane is higher than that of other facilitated transport membranes reported for CO2/N2 mixture separation.

  16. Measuring priming using 14C of respired CO2: effects on respiration source pools and interactions with warming

    Science.gov (United States)

    Hopkins, F. M.; Trumbore, S.

    2011-12-01

    The role of substrate availability on soil carbon turnover is a critical unknown in predicting future soil carbon stocks. Substrate composition and availability can be altered by land cover change, warming, and nitrogen deposition, which can in turn affect soil carbon stocks through the priming effect. In particular, little is understood about the interaction between warming and changing substrate concentration. We examined the interactions between global change factors and the priming effect using sucrose addition to incubations of soils from two forest Free Air CO2 Enrichment (FACE) sites (Duke and Aspen). In addition to the in situ global change manipulations conducted at these sites, the CO2 fertilization procedure over the decade-long experiment labeled soil carbon pools with fossil-derived carbon (depleted in 14C relative to the background isotope content of soil carbon), allowing us to determine the effect of priming on respiration of soil carbon substrates of different ages. Thus, we used the carbon-13 signature of sucrose-derived CO2 to account for losses of substrate C, and the carbon-14 signature to partition fluxes of soil-derived CO2 between pre-FACE (> 10 y) and FACE derived (stocks, differences in the source of the priming effect between the two sites may be due to inherent differences in the relative role of stabilization factors within the soil carbon stock.

  17. Litter Quality of Populus Species as Affected by Free-Air CO2

    OpenAIRE

    Vermue, E.; Buurman, P.; Hoosbeek, M.R.

    2009-01-01

    The effect of elevated CO2 and nitrogen fertilization on the molecular chemistry of litter of three Populus species and associated soil organic matter (SOM) was investigated by pyrolysis-gas chromatography/mass spectrometry. The results are based on 147 quantified organic compounds in 24 litter samples. Litter of P. euramerica was clearly different from that of P. nigra and P. alba. The latter two had higher contents of proteins, polysaccharides, and cutin/cutan, while the former had higher c...

  18. Influential Factors Affecting Materials Management in Construction Projects

    Directory of Open Access Journals (Sweden)

    Jusoh Zairra Mat

    2017-12-01

    Full Text Available Construction projects are more often than not plagued by poor performances such as delays, cost overrun, low productivity, construction wastes and compromised quality. Amongst the critical contributory factors of poor project performances, is the ineffectiveness of materials management occurring in the construction sites. Indeed, materials management is a very important component for construction projects. However, there are only limited numbers of research available regarding this topic. Thus, this research focuses its study on materials management, specifically in identifying the influential factors that affect materials management in the construction project activities. Literatures from books, journal articles and conference papers related to poor project performances and materials management have been reviewed. Consequently, this study sorted the salient influential factors and categorized them based on their specific group. Out of 47 factors identified, they are classified into 8 groups. They are (1 site condition; (2 planning and handling on site; (3 management; (4 materials; (5 supplier and manufacturer default; (6 transportation; (7 contractual; and (8 governmental interferences. In conclusion, this study contends that by identifying the influential factors affecting materials management, it will help construction players to avoid the occurrence of those factors and will minimize the negative impacts on the overall performance of construction projects. Hence, the handling-over of project will be according to schedule and not delayed by materials mismanagement.

  19. Inexpensive CO2 Thickening Agents for Improved Mobility Control of CO2 Floods

    Energy Technology Data Exchange (ETDEWEB)

    Robert Enick; Eric Beckman; Andrew Hamilton

    2005-08-31

    The objective of this research was the design, synthesis and evaluation of inexpensive, non-fluorous carbon dioxide thickening agents. We followed the same strategy employed in the design of fluorinated CO{sub 2} polymeric thickeners. First, a highly CO{sub 2}-philic, hydrocarbon-based monomer was to be identified. Polymers or oligomers of this monomer were then synthesized. The second step was to design a CO{sub 2}-thickener based on these CO{sub 2}-philic polymers. Two types of thickeners were considered. The first was a copolymer in which the CO{sub 2}-philic monomer was combined with a small proportion of CO{sub 2}-phobic associating groups that could cause viscosity-enhancing intermolecular interactions to occur. The second was a small hydrogen-bonding compound with urea groups in the core to promote intermolecular interactions that would cause the molecules to 'stack' in solution while the arms were composed of the CO{sub 2}-philic oligomers. Although we were not able to develop a viable thickener that exhibited high enough CO{sub 2} solubility at EOR MMP conditions to induce a viscosity increase, we made significant progress in our understanding of CO{sub 2}-soluble compounds that can be used in subsequent studies to design CO{sub 2}-soluble thickeners or CO{sub 2}-soluble surfactant-based foaming agents. These findings are detailed in this final report. In summary, we assessed many polymers and verified that the most CO{sub 2}-soluble oxygenated hydrocarbon polymer is poly(vinyl acetate), PVAc. This is primarily due to the presence of both ether and carbonyl oxygens associated with acetate-rich compounds. In addition to polymers, we also made small acetate-rich molecules that were also capable of associating in solution via the inclusion of hydrogen-bonding groups in hopes of forming viscosity-enhancing macromolecules. Despite the presence of multiple acetate groups in these compounds, which can impart incredible CO{sub 2}-solubility to many

  20. CO2-Dissolved - A Novel Approach to Combining CCS and Geothermal Heat Recovery

    International Nuclear Information System (INIS)

    Kervevan, C.; Bugarel, F.; Galiegue, X.; Le Gallo, Y.; May, F.; O'Neil, K.; Sterpenich, J.

    2013-01-01

    This paper presents the outline of the CO 2 -Dissolved project whose objective is to assess the technical-economic feasibility of a novel CCS concept integrating geothermal energy recovery, aqueous dissolution of CO 2 and injection via a doublet system, and an innovative post-combustion CO 2 capture technology. Compared to the use of a supercritical phase, this approach offers substantial benefits in terms of storage safety, due to lower brine displacement risks, lower CO 2 escape risks, and the potential for more rapid mineralization. However, the solubility of CO 2 in brine will be a limiting factor to the amount of CO 2 that can be injected. Consequently, and as another contributing novel factor, this proposal targets low to medium range CO 2 emitters (ca. 10-100 kt/yr), that could be compatible with a single doublet installation. Since it is intended to be a local solution, the costs related to CO 2 transport would then be dramatically reduced, provided that the local underground geology is favorable. Finally, this project adds the potential for energy and/or revenue generation through geothermal heat recovery. This constitutes an interesting way of valorization of the injection operations, demonstrating that an actual synergy between CO 2 storage and geothermal activities may exist. (authors)

  1. Effect of elevated CO2 on degradation of azoxystrobin and soil microbial activity in rice soil.

    Science.gov (United States)

    Manna, Suman; Singh, Neera; Singh, V P

    2013-04-01

    An experiment was conducted in open-top chambers (OTC) to study the effect of elevated CO2 (580 ± 20 μmol mol(-1)) on azoxystrobin degradation and soil microbial activities. Results indicated that elevated CO2 did not have any significant effect on the persistence of azoxystrobin in rice-planted soil. The half-life values for the azoxystrobin in rice soils were 20.3 days in control (rice grown at ambient CO2 outdoors), 19.3 days in rice grown under ambient CO2 atmosphere in OTC, and 17.5 days in rice grown under elevated CO2 atmosphere in OTC. Azoxystrobin acid was recovered as the only metabolite of azoxystrobin, but it did not accumulate in the soil/water and was further metabolized. Elevated CO2 enhanced soil microbial biomass (MBC) and alkaline phosphatase activity of soil. Compared with rice grown at ambient CO2 (both outdoors and in OTC), the soil MBC at elevated CO2 increased by twofold. Elevated CO2 did not affect dehydrogenase, fluorescein diacetate, and acid phosphatase activity. Azoxystrobin application to soils, both ambient and elevated CO2, inhibited alkaline phosphates activity, while no effect was observed on other enzymes. Slight increase (1.8-2 °C) in temperature inside OTC did not affect microbial parameters, as similar activities were recorded in rice grown outdoors and in OTC at ambient CO2. Higher MBC in soil at elevated CO2 could be attributed to increased carbon availability in the rhizosphere via plant metabolism and root secretion; however, it did not significantly increase azoxystrobin degradation, suggesting that pesticide degradation was not the result of soil MBC alone. Study suggested that increased CO2 levels following global warming might not adversely affect azoxystrobin degradation. However, global warming is a continuous and cumulative process, therefore, long-term studies are necessary to get more realistic assessment of global warming on fate of pesticide.

  2. A study of CO2 precipitation method considering an ionic CO2 and Ca(OH)2 slurry

    International Nuclear Information System (INIS)

    Park, Sangwon; Jo, Hoyong; Kang, Dongwoo; Park, Jinwon

    2014-01-01

    CCS (carbon capture and storage) is the most popular technology used for the reduction of CO 2 in the post-combustion stage. However, the CCS process has some disadvantages including uncertainty about the stability of the land that is used to store the separated CO 2 . Consequently, CCU (carbon capture and utilization) technologies have recently received increased attention as a possible replacement for CCS. In this study, we utilized CO 2 fixation methods by using the metal carbonate mechanism. We selected 5 and 30 wt% MEA (mono-ethanolamine) solutions to rapidly make a carbonate and Ca(OH) 2 slurry. In all of the experiments, normal temperature and pressure conditions were maintained (except during desorption to check for residual CO 2 in the MEA solution). Consequently, most of the CO 2 was converted to carbonate. The MEA converted CO 2 to ionic CO 2 and rapidly created calcium carbonate. Also the formed solids that were observed were determined to be CaCO 3 and Ca(OH) 2 by X-ray diffractometry. Also, the MEA solution could be reused to absorb CO 2 . Therefore, we have confirmed the development of our suggested CCS process. This process has the ability not only to reuse emitted CO 2 , but it can also be employed to reuse construction wastes that include heavy metals. - Highlights: • We propose novel CO 2 conversion technology by utilizing an amine solution. • In this study, alkaline solutions were used to produce CO 2 precipitate. • The MEA (mono-ethanolamine) solution has a sufficient potential to fix CO 2 with metal sources under moderate condition. • Also, the Ca(OH) 2 slurry yielded enough Ca 2+ ions to make carbonate

  3. CO2NNIE

    DEFF Research Database (Denmark)

    Krogh, Benjamin Bjerre; Andersen, Ove; Lewis-Kelham, Edwin

    2015-01-01

    We propose a system for calculating the personalized annual fuel consumption and CO2 emissions from transportation. The system, named CO2NNIE, estimates the fuel consumption on the fastest route between the frequent destinations of the user. The travel time and fuel consumption estimated are based......% of the actual fuel consumption (4.6% deviation on average). We conclude, that the system provides new detailed information on CO2 emissions and fuel consumption for any make and model....

  4. Factors affecting the insurance sector development: Evidence from Albania

    Directory of Open Access Journals (Sweden)

    Eglantina Zyka

    2014-03-01

    Full Text Available In this paper we explore factors potentially affecting the size of Albanian insurance market, over the period 1999 to 2009. The results of co- integration regression show that GDP and fraction urban population, both one lagged value, size of population and paid claims, both at contemporary value, have significant positive effect on aggregate insurance premium in Albania while the market share of the largest company in the insurance market, one lagged value, has significant negative effect on aggregate insurance premiums. Granger causality test shows statistically significance contribution of GDP growth to insurance premium growth, GDP drives insurance premium growth but not vice versa. The Albanian insurance market is under development, indicators as: insurance penetration, premium per capita, ect are still at low level and this can justify the insignificant role of the insurance in the economy

  5. Heat of Absorption of CO2 in Phase Change Solvents: 2-(Diethylamino)ethanol and 3-(Methylamino)propylamine

    DEFF Research Database (Denmark)

    Waseem Arshad, Muhammad; Fosbøl, Philip Loldrup; von Solms, Nicolas

    2013-01-01

    Heat of absorption of CO2 in phase change solvents containing 2-(diethylamino)ethanol (DEEA) and 3-(methylamino)propylamine (MAPA) were measured as a function of CO2 loading at different temperatures using a commercially available reaction calorimeter. The tested systems were aqueous single amines...... (5 M DEEA, 2 M MAPA, and 1 M MAPA) and aqueous amine mixtures (5 M DEEA + 2 M MAPA and 5 M DEEA + 1 M MAPA) which give two liquid phases on reacting with CO2. All parallel experiments have shown good repeatability. The measurements were taken isothermally at three different temperatures, (40, 80......, and 120) °C. The measured differential heat of absorption values were converted into integral values by integration. Heats of absorption of CO2 in aqueous single amines were affected by changing the solvent composition (large difference in concentrations) and CO2 feed pressure simultaneously. In addition...

  6. CO2 leakage alters biogeochemical and ecological functions of submarine sands

    Science.gov (United States)

    Molari, Massimiliano; Guilini, Katja; Lott, Christian; Weber, Miriam; de Beer, Dirk; Meyer, Stefanie; Ramette, Alban; Wegener, Gunter; Wenzhöfer, Frank; Martin, Daniel; Cibic, Tamara; De Vittor, Cinzia; Vanreusel, Ann; Boetius, Antje

    2018-01-01

    Subseabed CO2 storage is considered a future climate change mitigation technology. We investigated the ecological consequences of CO2 leakage for a marine benthic ecosystem. For the first time with a multidisciplinary integrated study, we tested hypotheses derived from a meta-analysis of previous experimental and in situ high-CO2 impact studies. For this, we compared ecological functions of naturally CO2-vented seafloor off the Mediterranean island Panarea (Tyrrhenian Sea, Italy) to those of nonvented sands, with a focus on biogeochemical processes and microbial and faunal community composition. High CO2 fluxes (up to 4 to 7 mol CO2 m−2 hour−1) dissolved all sedimentary carbonate, and comigration of silicate and iron led to local increases of microphytobenthos productivity (+450%) and standing stocks (+300%). Despite the higher food availability, faunal biomass (−80%) and trophic diversity were substantially lower compared to those at the reference site. Bacterial communities were also structurally and functionally affected, most notably in the composition of heterotrophs and microbial sulfate reduction rates (−90%). The observed ecological effects of CO2 leakage on submarine sands were reproduced with medium-term transplant experiments. This study assesses indicators of environmental impact by CO2 leakage and finds that community compositions and important ecological functions are permanently altered under high CO2. PMID:29441359

  7. Biofiksasi CO2 Oleh Mikroalga Chlamydomonas sp dalam Photobioreaktor Tubular

    Directory of Open Access Journals (Sweden)

    Hadiyanto Hadiyanto

    2014-05-01

    Full Text Available Mikroalga memiliki potensi dalam membiofiksasi CO2 dan dapat dimanfaatkan untuk mengurangi kadar CO2 dalam gas pencemar. Pertumbuhan mikroalga sangat dipengaruhi oleh konsentrasi gas CO2 di dalam gas pencemar. Tujuan penelitian ini adalah untuk mengeetahui kemampuan mikroalga Chlamydomonas sp yang dikultivasi dalam photobioreaktor tubular dalam penyerapan gas CO2 serta untuk mengetahui konsentrasi maksimum gas CO2 dalam umpan untuk memproduksi biomasa mikroalga yang optimal. Percobaan dilakukan dnegan memvariasi laju alir dari 0.03 -0.071 L/menit dan konsentrasi CO2 dalam umpan 10-30%. Hasil penelitian menunjukkan bahwa biomasa mikroalga dapat diproduksi dengan maksimal dengan konsentrasi gas CO2 20% dengan laju alir 0.07 L/min. Semakin tinggi laju alir maka produksi biomasa alga semakin besar. Kecepatan pertumbuhan alga maksimum terjadi pada 0.31 /hari. Pada konsentrasi gas CO2 30%, terjadi substrate inhibition yang disebabkan carbon dalam bentuk ion bicarbonate tidak dapat dikonsumsi lagi di dalam kultur alga. Kata kunci : Mikroalga, chlamydomonas sp, biofiksasi CO2, biogas Abstract Microalgae have a potential for CO2 biofixation and therefore can be used to reduce the CO2 concentration in the gas pollutants. Moreover, microalgae growth is strongly affected by the concentration of CO2 in the exhaust gas pollutants. The objective of this research was to investigate the ability of microalgae Chlamydomonas sp which was cultivated in a tubular photobioreactor for CO2 absorption as well as to determine the maximum concentration of CO2 in the feed gas to obtain optimum microalgae biomass. The experiments were performed by varying the gas flow rate of 0.03 -0.071 L / min and the concentration of CO2 in the feed of 10-30%. The results showed that the maximum biomass of microalgae can be produced with CO2 concentration of 20% vol with a flow rate of 0.07 L / min. The result also showed that increasing the gas flow rate, the greater of the production of

  8. Study of CO 2 stability and electrochemical oxygen activation of mixed conductors with low thermal expansion coefficient based on the TbBaCo 3ZnO 7+ δ system

    Science.gov (United States)

    Vert, Vicente B.; Serra, José M.

    The influence of different application-oriented factors on the electrochemical activity and stability of TbBaCo 3ZnO 7+ δ when used as a solid oxide fuel cell cathode has been studied. Calcination at temperatures above 900 °C (e.g. 1000 °C) leads to a significant increase in the electrode polarization resistance. The effect of the sintering temperature of the TbBaCo 3ZnO 7+ δ cathode seems to be more important than the effect produced by the Tb substitution as observed when compared with 900 °C-sintered YBaCo 3ZnO 7+ δ; and ErBaCo 3ZnO 7+ δ electrode performances. The presence of CO 2 in the air flow leads to an increase of roughly 10% in the polarization resistance for the whole studied temperature range (500-850 °C) while this effect is reversible. Analysis of the impedance spectroscopy measurements shows that the exchange rate constant (k G from Gerischer element) is significantly affected by CO 2 at temperatures below 700 °C, while the diffusion coefficient related parameter is slightly influenced at low temperatures. Electrode degrades with a low constant rate of 1 mΩ cm 2 h -1 after 60 h. This cathode material exhibits high CO 2 tolerance, as shown by temperature programmed treatment under a continuous gas flow of air with 5% CO 2, and a relatively low thermal expansion coefficient.

  9. CO2 - The Canary in the Energy Efficiency Coal Mine

    Science.gov (United States)

    Somssich, Peter

    2011-04-01

    While much of the discussion surrounding CO2 is focused on its role as a GHG (green house gas) and its affect on Climate Change, CO2 can also be viewed as an indicator for reductions in fossil fuel use and increased energy efficiency. Much as the canary in a mine was used to warn miners of unsafe health conditions in a mine, CO2 can be seen as allowing us to effectively track progress towards energy efficiency and sustainability. Such an effort can best be achieved by either a Carbon Tax or a Cap and Trade system which was highly effective as part of the 1992 Clean Air Act, contributing to a significant reduction of SO2 and acid rain. A similar attempt has been made using the 1997 Kyoto Protocol to reduce carbon emissions. The mechanisms of how this treaty was intended to work will be explained, and examples will be given, both in the USA and Europe, of how the protocol was used to reduce energy consumption and energy dependence, while also reducing CO2 emissions. Regardless of how strong an impact CO2 reduction may have for Climate Change issues, a reduction of CO2 is guaranteed to produce energy benefits, monetary benefits and can even enhance national security. For all of these reasons, we need the CO2 canary.

  10. The impact of CO2 emissions on economic growth: evidence from selected higher CO2 emissions economies.

    Science.gov (United States)

    Azam, Muhammad; Khan, Abdul Qayyum; Bin Abdullah, Hussin; Qureshi, Muhammad Ejaz

    2016-04-01

    The main purpose of this work is to analyze the impact of environmental degradation proxied by CO2 emissions per capita along with some other explanatory variables namely energy use, trade, and human capital on economic growth in selected higher CO2 emissions economies namely China, the USA, India, and Japan. For empirical analysis, annual data over the period spanning between 1971 and 2013 are used. After using relevant and suitable tests for checking data properties, the panel fully modified ordinary least squares (FMOLS) method is employed as an analytical technique for parameter estimation. The panel group FMOLS results reveal that almost all variables are statistically significant, whereby test rejects the null hypotheses of non cointegration, demonstrating that all variables play an important role in affecting the economic growth role across countries. Where two regressors namely CO2 emissions and energy use show significantly negative impacts on economic growth, for trade and human capital, they tend to show the significantly positive impact on economic growth. However, for the individual analysis across countries, the panel estimate suggests that CO2 emissions have a significant positive relationship with economic growth for China, Japan, and the USA, while it is found significantly negative in case of India. The empirical findings of the study suggest that appropriate and prudent policies are required in order to control pollution emerging from areas other than liquefied fuel consumption. The ultimate impact of shrinking pollution will help in supporting sustainable economic growth and maturation as well as largely improve society welfare.

  11. Thermodynamic and Kinetic Response of Microbial Reactions to High CO2.

    Science.gov (United States)

    Jin, Qusheng; Kirk, Matthew F

    2016-01-01

    Geological carbon sequestration captures CO 2 from industrial sources and stores the CO 2 in subsurface reservoirs, a viable strategy for mitigating global climate change. In assessing the environmental impact of the strategy, a key question is how microbial reactions respond to the elevated CO 2 concentration. This study uses biogeochemical modeling to explore the influence of CO 2 on the thermodynamics and kinetics of common microbial reactions in subsurface environments, including syntrophic oxidation, iron reduction, sulfate reduction, and methanogenesis. The results show that increasing CO 2 levels decreases groundwater pH and modulates chemical speciation of weak acids in groundwater, which in turn affect microbial reactions in different ways and to different extents. Specifically, a thermodynamic analysis shows that increasing CO 2 partial pressure lowers the energy available from syntrophic oxidation and acetoclastic methanogenesis, but raises the available energy of microbial iron reduction, hydrogenotrophic sulfate reduction and methanogenesis. Kinetic modeling suggests that high CO 2 has the potential of inhibiting microbial sulfate reduction while promoting iron reduction. These results are consistent with the observations of previous laboratory and field studies, and highlight the complexity in microbiological responses to elevated CO 2 abundance, and the potential power of biogeochemical modeling in evaluating and quantifying these responses.

  12. Thermodynamic and kinetic response of microbial reactions to high CO2

    Directory of Open Access Journals (Sweden)

    Qusheng Jin

    2016-11-01

    Full Text Available Geological carbon sequestration captures CO2 from industrial sources and stores the CO2 in subsurface reservoirs, a viable strategy for mitigating global climate change. In assessing the environmental impact of the strategy, a key question is how microbial reactions respond to the elevated CO2 concentration. This study uses biogeochemical modeling to explore the influence of CO2 on the thermodynamics and kinetics of common microbial reactions in subsurface environments, including syntrophic oxidation, iron reduction, sulfate reduction, and methanogenesis. The results show that increasing CO2 levels decreases groundwater pH and modulates chemical speciation of weak acids in groundwater, which in turn affect microbial reactions in different ways and to different extents. Specifically, a thermodynamic analysis shows that increasing CO2 partial pressure lowers the energy available from syntrophic oxidation and acetoclastic methanogenesis, but raises the available energy of microbial iron reduction, hydrogenotrophic sulfate reduction and methanogenesis. Kinetic modeling suggests that high CO2 has the potential of inhibiting microbial sulfate reduction while promoting iron reduction. These results are consistent with the observations of previous laboratory and field studies, and highlight the complexity in microbiological responses to elevated CO2 abundance, and the potential power of biogeochemical modeling in evaluating and quantifying these responses.

  13. Increase in the activity of fructose-1,6-bisphosphatase in cytosol affects sugar partitioning and increases the lateral shoots in tobacco plants at elevated CO2 levels.

    Science.gov (United States)

    Tamoi, Masahiro; Hiramatsu, Yoshie; Nedachi, Shigeki; Otori, Kumi; Tanabe, Noriaki; Maruta, Takanori; Shigeoka, Shigeru

    2011-05-01

    We generated transgenic tobacco plants with high levels of fructose-1,6-bisphosphatase expressing cyanobacterialfructose-1,6-/sedoheptulose-1,7-bisphosphatase in the cytosol. At ambient CO(2) levels (360 ppm), growth, photosynthetic activity, and fresh weight were unchanged but the sucrose/hexose/starch ratio was slightly altered in the transgenic plants compared with wild-type plants. At elevated CO(2) levels (1200 ppm), lateral shoot, leaf number, and fresh weight were significantly increased in the transgenic plants. Photosynthetic activity was also increased. Hexose accumulated in the upper leaves in the wild-type plants, while sucrose and starch accumulated in the lower leaves and lateral shoots in the transgenic plants. These findings suggest that cytosolic fructose-1,6-bisphosphatase contributes to the efficient conversion of hexose into sucrose, and that the change in carbon partitioning affects photosynthetic capacity and morphogenesis at elevated CO(2) levels.

  14. Co-occurring Down syndrome and SUCLA2-related mitochondrial depletion syndrome.

    Science.gov (United States)

    Couser, Natario L; Marchuk, Daniel S; Smith, Laurie D; Arreola, Alexandra; Kaiser-Rogers, Kathleen A; Muenzer, Joseph; Pandya, Arti; Gucsavas-Calikoglu, Muge; Powell, Cynthia M

    2017-10-01

    Mitochondrial DNA depletion syndrome 5 (MIM 612073) is a rare autosomal recessive disorder caused by homozygous or compound heterozygous pathogenic variants in the beta subunit of the succinate-CoA ligase gene located within the 13q14 band. We describe two siblings of Hispanic descent with SUCLA2-related mitochondrial depletion syndrome (encephalomyopathic form with methylmalonic aciduria); the older sibling is additionally affected with trisomy 21. SUCLA2 sequencing identified homozygous p.Arg284Cys pathogenic variants in both patients. This mutation has previously been identified in four individuals of Italian and Caucasian descent. The older sibling with concomitant disease has a more severe phenotype than what is typically described in patients with either SUCLA2-related mitochondrial depletion syndrome or Down syndrome alone. The younger sibling, who has a normal female chromosome complement, is significantly less affected compared to her brother. While the clinical and molecular findings have been reported in about 50 patients affected with a deficiency of succinate-CoA ligase caused by pathogenic variants in SUCLA2, this report describes the first known individual affected with both a mitochondrial depletion syndrome and trisomy 21. © 2017 Wiley Periodicals, Inc.

  15. The 'compensation effect' in the graphite/CO2 reaction

    International Nuclear Information System (INIS)

    Stephen, W.J.

    1983-08-01

    The compensation effect is the often observed linear relationship between the activation energy and pre-exponential factor in the Arrhenius equations of a series of related reactions. Previously reported studies of the graphite/CO 2 reaction at different total pressures and CO 2 /CO ratios are used as an example of the compensation effect. The effect is shown in general to be an artefact produced by a strong correlation between the parameter estimates in the conventional Arrhenius plot. A transformation of the Arrhenius plot to minimise the overall correlation between estimates and thus enable detection of a true compensation effect is presented. The results of this transformation on the kinetic data for the graphite/CO 2 reaction are consistent with previous analyses of the reaction system. They show that there is only a limited compensation effect within this study and demonstrate the influence of the approach to equilibrium of the graphite/CO 2 reaction. (author)

  16. Question marks concerning CO2 trade after 2012

    International Nuclear Information System (INIS)

    Wellander, Dag

    2006-01-01

    Different aspects of the Kyoto protocol are discussed, from the (in)significance of the Kyoto protocol, the inefficiency of the CO 2 trade system, to questions about how electricity prices will be affected in the EU, and what will be the solution in the future when the Kyoto agreement ends in 2012

  17. EGL-13/SoxD Specifies Distinct O2 and CO2 Sensory Neuron Fates in Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Gramstrup Petersen, Jakob; Rojo Romanos, Teresa; Juozaityte, Vaida

    2013-01-01

    that EGL-13 is sufficient to induce O2- and CO2-sensing cell fates in some cellular contexts. Thus, the same core regulatory factor, egl-13, is required and sufficient to specify the distinct fates of O2- and CO2-sensing neurons in C. elegans. These findings extend our understanding of mechanisms......Animals harbor specialized neuronal systems that are used for sensing and coordinating responses to changes in oxygen (O2) and carbon dioxide (CO2). In Caenorhabditis elegans, the O2/CO2 sensory system comprises functionally and morphologically distinct sensory neurons that mediate rapid behavioral...

  18. A TPD-MS study of glassy carbon surfaces oxidized by CO2 and O2

    Directory of Open Access Journals (Sweden)

    MILA D. LAUSEVIC

    2002-11-01

    Full Text Available The temperature-programmed desorption (TPD method combined with mass spectrometric (MS analysis has been applied to investigate the surface properties of carbon materials. The apparatus consisting of a temperature-programmed furnace and a quadrupole mass spectrometer was constructed in order to characterize the surface of differently treated glassy carbon samples. In this work, samples of glassy carbon exposed to air, CO2 and O2 were examined. The desorption of H2O, CO and CO2, as major products, indicated the presence of different oxide groups. The amount of these groups for all samples was calculated. It is concluded that oxidation affects the nature and the amount of the surface oxide groups and contributes to their increased stability.

  19. Outsourcing CO2 Emissions

    Science.gov (United States)

    Davis, S. J.; Caldeira, K. G.

    2009-12-01

    CO2 emissions from the burning of fossil fuels are the primary cause of global warming. Much attention has been focused on the CO2 directly emitted by each country, but relatively little attention has been paid to the amount of emissions associated with consumption of goods and services in each country. This consumption-based emissions inventory differs from the production-based inventory because of imports and exports of goods and services that, either directly or indirectly, involved CO2 emissions. Using the latest available data and reasonable assumptions regarding trans-shipment of embodied carbon through third-party countries, we developed a global consumption-based CO2 emissions inventory and have calculated associated consumption-based energy and carbon intensities. We find that, in 2004, 24% of CO2 emissions are effectively outsourced to other countries, with much of the developed world outsourcing CO2 emissions to emerging markets, principally China. Some wealthy countries, including Switzerland and Sweden, outsource over half of their consumption-based emissions, with many northern Europeans outsourcing more than three tons of emissions per person per year. The United States is both a big importer and exporter of emissions embodied in trade, outsourcing >2.6 tons of CO2 per person and at the same time as >2.0 tons of CO2 per person are outsourced to the United States. These large flows indicate that CO2 emissions embodied in trade must be taken into consideration when considering responsibility for increasing atmospheric greenhouse gas concentrations.

  20. Role of Biotic and Abiotic Processes on Soil CO2 Dynamics in the McMurdo Dry Valleys, Antarctica

    Science.gov (United States)

    Risk, D. A.; Macintyre, C. M.; Lee, C.; Cary, C.; Shanhun, F.; Almond, P. C.

    2016-12-01

    In the harsh conditions of the Antarctic Dry Valleys, microbial activity has been recorded via measurements of soil carbon dioxide (CO2) concentration and surface efflux. However, high temporal resolution studies in the Dry Valleys have also shown that abiotic solubility-driven processes can strongly influence (and perhaps even dominate) the CO2 dynamics in these low flux environments and suggests that biological activity may be lower than previously thought. In this study, we aim to improve our understanding of CO2 dynamics (biotic and abiotic) in Antarctic Dry Valley soils using long-term automated measurements of soil CO2 surface flux and soil profile concentration at several sites, often at sub-diel frequency. We hypothesize that soil CO2 variations are driven primarily by environmental factors affecting CO2 solubility in soil solution, mainly temperature, and that these processes may even overprint biologic production in representative Dry Valley soils. Monitoring of all sites revealed only one likely biotic CO2 production event, lasting three weeks during the Austral summer and reaching fluxes of 0.4 µmol/m2/s. Under more typical low flux conditions (sampling campaigns. Subsurface CO2 monitoring and a lab-controlled Antarctic soil simulation experiment confirmed that abiotic processes are capable of dominating soil CO2 variability. Diel temperature cycles crossing the freezing boundary revealed a dual abiotic cycle of solubility cycling and gas exclusion from ice formation observed only by high temporal frequency measurements (30 min). This work demonstrates a need for a numerical model to partition the dynamic abiotic processes underlying any biotic CO2 production in order to understand potential climate-change induced increases in microbial productivity in terrestrial Antarctica.

  1. CO2/CH4 Separation via Polymeric Blend Membrane

    Directory of Open Access Journals (Sweden)

    H. Sanaeepur

    2013-01-01

    Full Text Available CO2/CH4 gas separation is a very important applicatable process in upgrading the natural gas and landfil gas recovery. In this work, to investigate the membrane separation process performance, the gas permeation results andCO2/CH4 separation characteristics of different prepared membranes (via blending different molecular weights of polyethylene glycol (PEG as a modifier with acrylonitrile-butadiene-styrene (ABS as a backbone structure have been studied. Furthermore, SEM analysis was carried out for morphological investigations. The effect of PEG content on gas transport properties on the selected sample was also studied. The effect of pressure on CO2 permeation was examined and showed that at the pressure beyond 4 bar, permeability is not affected by pressure. The results showed that more or less in all cases, incorporation of PEG molecules without any significant increase in CH4 permeability increases the CO2/CH4 selectivity. From the view point of gas separation applications the resultant data are within commercial attractive range

  2. Skating rinks: a contribution to the discussion on using CO{sub 2} as a refrigerant; CO{sub 2} als Kaeltetraeger - ein Diskussionsbeitrag

    Energy Technology Data Exchange (ETDEWEB)

    Buehrer, B. W.

    2003-07-01

    This article examines the situation with regard to the use of carbon dioxide as a refrigerant for ice rinks instead of more risky and costly direct-evaporation ammonia installations. Tighter regulations on the operation of such ammonia-based installations and the advantages of CO{sub 2}-based systems are discussed. Although not poisonous, CO{sub 2} can present dangers if leaks occur as it is heavier than air and can lead to suffocation. Also, the energy consumption of CO{sub 2} refrigeration plants is compared with that of ammonia and glycol-based systems. The role played by other factors such as thermal insulation, good dehumidification systems and infra-red radiation shields are discussed. An installation in Zug, Switzerland, is briefly described that features cold-generation with ammonia and secondary distribution systems using CO{sub 2} and glycol for the main hall and the curling rinks respectively.

  3. FOX-2 Dependent Splicing of Ataxin-2 Transcript Is Affected by Ataxin-1 Overexpression

    Science.gov (United States)

    Welzel, Franziska; Kaehler, Christian; Isau, Melanie; Hallen, Linda; Lehrach, Hans; Krobitsch, Sylvia

    2012-01-01

    Alternative splicing is a fundamental posttranscriptional mechanism for controlling gene expression, and splicing defects have been linked to various human disorders. The splicing factor FOX-2 is part of a main protein interaction hub in a network related to human inherited ataxias, however, its impact remains to be elucidated. Here, we focused on the reported interaction between FOX-2 and ataxin-1, the disease-causing protein in spinocerebellar ataxia type 1. In this line, we further evaluated this interaction by yeast-2-hybrid analyses and co-immunoprecipitation experiments in mammalian cells. Interestingly, we discovered that FOX-2 localization and splicing activity is affected in the presence of nuclear ataxin-1 inclusions. Moreover, we observed that FOX-2 directly interacts with ataxin-2, a protein modulating spinocerebellar ataxia type 1 pathogenesis. Finally, we provide evidence that splicing of pre-mRNA of ataxin-2 depends on FOX-2 activity, since reduction of FOX-2 levels led to increased skipping of exon 18 in ataxin-2 transcripts. Most striking, we observed that ataxin-1 overexpression has an effect on this splicing event as well. Thus, our results demonstrate that FOX-2 is involved in splicing of ataxin-2 transcripts and that this splicing event is altered by overexpression of ataxin-1. PMID:22666429

  4. Enhancing Catalyzed Decomposition of Na2CO3 with Co2MnO x Nanowire-Decorated Carbon Fibers for Advanced Na-CO2 Batteries.

    Science.gov (United States)

    Fang, Cong; Luo, Jianmin; Jin, Chengbin; Yuan, Huadong; Sheng, Ouwei; Huang, Hui; Gan, Yongping; Xia, Yang; Liang, Chu; Zhang, Jun; Zhang, Wenkui; Tao, Xinyong

    2018-05-23

    The metal-CO 2 batteries, especially Na-CO 2 , batteries come into sight owing to their high energy density, ability for CO 2 capture, and the abundance of sodium resource. Besides the sluggish electrochemical reactions at the gas cathodes and the instability of the electrolyte at a high voltage, the final discharge product Na 2 CO 3 is a solid and poor conductor of electricity, which may cause the high overpotential and poor cycle performance for the Na-CO 2 batteries. The promotion of decomposition of Na 2 CO 3 should be an efficient strategy to enhance the electrochemical performance. Here, we design a facile Na 2 CO 3 activation experiment to screen the efficient cathode catalyst for the Na-CO 2 batteries. It is found that the Co 2 MnO x nanowire-decorated carbon fibers (CMO@CF) can promote the Na 2 CO 3 decomposition at the lowest voltage among all these metal oxide-decorated carbon fiber structures. After assembling the Na-CO 2 batteries, the electrodes based on CMO@CF show lower overpotential and better cycling performance compared with the electrodes based on pristine carbon fibers and other metal oxide-modified carbon fibers. We believe this catalyst screening method and the freestanding structure of the CMO@CF electrode may provide an important reference for the development of advanced Na-CO 2 batteries.

  5. Forecasting global atmospheric CO2

    International Nuclear Information System (INIS)

    Agusti-Panareda, A.; Massart, S.; Boussetta, S.; Balsamo, G.; Beljaars, A.; Engelen, R.; Jones, L.; Peuch, V.H.; Chevallier, F.; Ciais, P.; Paris, J.D.; Sherlock, V.

    2014-01-01

    A new global atmospheric carbon dioxide (CO 2 ) real-time forecast is now available as part of the preoperational Monitoring of Atmospheric Composition and Climate - Interim Implementation (MACC-II) service using the infrastructure of the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS). One of the strengths of the CO 2 forecasting system is that the land surface, including vegetation CO 2 fluxes, is modelled online within the IFS. Other CO 2 fluxes are prescribed from inventories and from off-line statistical and physical models. The CO 2 forecast also benefits from the transport modelling from a state-of-the-art numerical weather prediction (NWP) system initialized daily with a wealth of meteorological observations. This paper describes the capability of the forecast in modelling the variability of CO 2 on different temporal and spatial scales compared to observations. The modulation of the amplitude of the CO 2 diurnal cycle by near-surface winds and boundary layer height is generally well represented in the forecast. The CO 2 forecast also has high skill in simulating day-to-day synoptic variability. In the atmospheric boundary layer, this skill is significantly enhanced by modelling the day-to-day variability of the CO 2 fluxes from vegetation compared to using equivalent monthly mean fluxes with a diurnal cycle. However, biases in the modelled CO 2 fluxes also lead to accumulating errors in the CO 2 forecast. These biases vary with season with an underestimation of the amplitude of the seasonal cycle both for the CO 2 fluxes compared to total optimized fluxes and the atmospheric CO 2 compared to observations. The largest biases in the atmospheric CO 2 forecast are found in spring, corresponding to the onset of the growing season in the Northern Hemisphere. In the future, the forecast will be re-initialized regularly with atmospheric CO 2 analyses based on the assimilation of CO 2 products retrieved from satellite

  6. Comprehensive evaluation of industrial CO2 emission (1989-2004) in Taiwan by input-output structural decomposition

    International Nuclear Information System (INIS)

    Chang, Yih F.; Lewis, Charles; Lin, Sue J.

    2008-01-01

    Taiwan currently emits approximately 1% of the world's CO 2 - ranking it 22nd among nations. Herein, we use the input-output (I-O) structural decomposition method to examine the changes in CO 2 emission over a 15-year period. By decomposing the CO 2 emission changes into nine factors for the periods of 1989-1994, 1994-1999, and 1999-2004, we have identified the key factors causing the emission changes, as well as the most important trends regarding the industrial development process in Taiwan. The 5-year increment with the largest increase of CO 2 emission was that of 1999-2004, due to the rapid increase of electricity consumption. From the decomposition, the industrial energy coefficient and the CO 2 emission factors were identified as the most important parameters for the determination of the highway, petrochemical materials, iron and steel, the commercial sector, and electric machinery as the major sources of increased CO 2 emission during the past 15 years. From 1989 to 2004, the level of exports and the level of domestic final demand were the largest contributors to the increase in the total increment of CO 2 change. During 1989-2004, the industrial energy coefficient and CO 2 emission factors, being minimally significant during 1989-1994, became extremely important, joining the domestic final demand and the level of exports factors as the major causes of the increase increment of CO 2 . This indicates a heavy reliance upon high-energy (and CO 2 ) intensity for Taiwanese industries; therefore, continuous efforts to improve energy intensity and fuel mix toward lower carbon are important for CO 2 reduction, especially for the electricity and power generation sectors. Relevant strategies for reducing carbon dioxide emissions from major industries are also highlighted. (author)

  7. Upper airway CO2 receptors in tegu lizards: localization and ventilatory sensitivity.

    Science.gov (United States)

    Coates, E L; Ballam, G O

    1987-01-01

    1. Tidal volume, end-tidal CO2, and ventilatory frequency in Tupinambis nigropunctatus were measured in response to CO2 (1-4%) delivered to either the mouth or nares. Additionally, the sensitivity of the ventilatory response to nasal CO2 was evaluated at CO2 concentrations less than 1%. The ventilatory parameters were also measured in response to CO2 (1-4%) delivered to the nares after the olfactory peduncle was transected. 2. It was found that (0.4-4%) nasal CO2 depressed ventilatory frequency by 9% to 83% respectively, while tidal volume was not significantly altered. CO2 (1-4%) delivered to the mouth produced no apparent changes in any of the ventilatory parameters. Following transection of the olfactory peduncle, nasal CO2 was ineffective in producing any change in ventilatory frequency or depth. 3. These findings indicate that CO2-sensitive receptors are located in either the nasal or vomeronasal membranes of tegu lizards and that the olfactory peduncle must be intact for these receptors to affect ventilatory changes in response to elevated CO2 concentrations. The receptors are capable of mediating a ventilatory response to CO2 concentrations lower than those found in either expired air or in confined spaces such as occupied burrows. 4. The discrepancies in the ventilatory responses of lizards and snakes to inspired CO2 reported in past experiments may be partially explained by the presence of nasal or vomeronasal CO2-sensitive receptors.

  8. Carbon flow from volcanic CO2 into soil microbial communities of a wetland mofette

    DEFF Research Database (Denmark)

    Beulig, Felix

    2015-01-01

    Effects of extremely high carbon dioxide (CO2) concentrations on soil microbial communities and associated processes are largely unknown. We studied a wetland area affected by spots of subcrustal CO2 degassing (mofettes) with focus on anaerobic autotrophic methanogenesis and acetogenesis because ...

  9. Optimal CO2 Enrichment Considering Emission from Soil for Cucumber Greenhouses

    International Nuclear Information System (INIS)

    Lee, D.H.; Lee, K.S.; Cho, Y.J.; Kim, H.J.; Choi, J.M.; Chung, S.O.

    2012-01-01

    Reducing carbon dioxide (CO2) exhaust has become a major issue for society in the last few years, especially since the initial release of the Kyoto Protocol in 1997 that strictly limited the emissions of greenhouse gas for each country. One of the primary sectors affecting the levels of atmospheric greenhouse gases is agriculture where CO2 is not only consumed by plants but also produced from various types of soil and agricultural ecosystems including greenhouses. In greenhouse cultivation, CO2 concentration plays an essential role in the photosynthesis process of crops. Optimum control of greenhouse CO2 enrichment based on accurate monitoring of the added CO2 can improve profitability through efficient crop production and reduce environmental impact, compared to traditional management practices. In this study, a sensor-based control system that could estimate the required CO2 concentration considering emission from soil for cucumber greenhouses was developed and evaluated. The relative profitability index (RPI) was defined by the ratio of growth rate to supplied CO2. RPI for a greenhouse controlled at lower set point of CO2 concentration (500 μmol * mol -1 ) was greater than that of greenhouse at higher set point (800 μmol * mol -1 ). Evaluation tests to optimize CO2 enrichment concluded that the developed control system would be applicable not only to minimize over-exhaust of CO2 but also to maintain the crop profitability

  10. CO2 emissions and economic development: China's 12th five-year plan

    International Nuclear Information System (INIS)

    Meng Ming; Niu Dongxiao; Shang Wei

    2012-01-01

    For the period of the 12th Five-Year Plan (2011–2015), the Chinese government has decided to reconsider and adjust its policies on economic development because of the pressures of CO 2 emissions and fossil energy consumption. The current paper adopts the logarithmic Stochastic Impacts by Regression on Population, Affluence, and Technology (STIRPAT) model to simulate the relationship between CO 2 emissions and other economic development factors in China. Three groups of outliers are found using samples from 1989 to 2008 and the Partial Least Square (PLS) regularity test method. The outlier analysis reveals three important areas for CO 2 reduction: (a) decreasing the share of coal to the total energy consumption and replacing it with non-fossil energies; (b) controlling vehicles used in the cities as well as (c) adjusting industrial structure. Furthermore, based on the social and economic realities of China, the current paper designs six feasible development scenarios for the period covered by the 12th Five-Year Plan and predicts the values of each factor in each scenario. The values can test the implementation of China's CO 2 control development concept. The experiences obtained by outlier analysis can be of significant reference value for realizing the predicted scenarios. - Highlights: ► Using STIRPAT to analyze China's CO 2 emissions and economic development factors. ► Using the PLS outlier test method, three groups of outliers are found. ► Outlier analysis reveals three important areas on reducing CO 2 emissions. ► We design six feasible scenarios for the period covered by the 12th Five-Year Plan. ► We predict the values of each factor in each scenario.

  11. Effect of SO 2 on CO 2 Capture Using Liquid-like Nanoparticle Organic Hybrid Materials

    KAUST Repository

    Lin, Kun-Yi Andrew

    2013-08-15

    Liquid-like nanoparticle organic hybrid materials (NOHMs), consisting of silica nanoparticles with a grafted polymeric canopy, were synthesized. Previous work on NOHMs has revealed that CO2 capture behaviors in these hybrid materials can be tuned by modifying the structure of the polymeric canopy. Because SO2, which is another acidic gas found in flue gas, would also interact with NOHMs, this study was designed to investigate its effect on CO2 capture in NOHMs. In particular, CO2 capture capacities as well as swelling and CO2 packing behaviors of NOHMs were analyzed using thermogravimetric analyses and Raman and attenuated total reflectance (ATR) Fourier transform infrared (FTIR) spectroscopies before and after exposure of NOHMs to SO2. It was found that the SO2 absorption in NOHMs was only prominent at high SO2 levels (i.e., 3010 ppm; Ptot = 0.4 MPa) far exceeding the typical SO2 concentration in flue gas. As expected, the competitive absorption between SO2 and CO2 for the same absorption sites (i.e., ether and amine groups) resulted in a decreased CO2 capture capacity of NOHMs. The swelling of NOHMs was not notably affected by the presence of SO 2 within the given concentration range (Ptot = 0-0.68 MPa). On the other hand, SO2, owing to its Lewis acidic nature, interacted with the ether groups of the polymeric canopy and, thus, changed the CO2 packing behaviors in NOHMs. © 2013 American Chemical Society.

  12. Effect of SO 2 on CO 2 Capture Using Liquid-like Nanoparticle Organic Hybrid Materials

    KAUST Repository

    Lin, Kun-Yi Andrew; Petit, Camille; Park, Ah-Hyung Alissa

    2013-01-01

    Liquid-like nanoparticle organic hybrid materials (NOHMs), consisting of silica nanoparticles with a grafted polymeric canopy, were synthesized. Previous work on NOHMs has revealed that CO2 capture behaviors in these hybrid materials can be tuned by modifying the structure of the polymeric canopy. Because SO2, which is another acidic gas found in flue gas, would also interact with NOHMs, this study was designed to investigate its effect on CO2 capture in NOHMs. In particular, CO2 capture capacities as well as swelling and CO2 packing behaviors of NOHMs were analyzed using thermogravimetric analyses and Raman and attenuated total reflectance (ATR) Fourier transform infrared (FTIR) spectroscopies before and after exposure of NOHMs to SO2. It was found that the SO2 absorption in NOHMs was only prominent at high SO2 levels (i.e., 3010 ppm; Ptot = 0.4 MPa) far exceeding the typical SO2 concentration in flue gas. As expected, the competitive absorption between SO2 and CO2 for the same absorption sites (i.e., ether and amine groups) resulted in a decreased CO2 capture capacity of NOHMs. The swelling of NOHMs was not notably affected by the presence of SO 2 within the given concentration range (Ptot = 0-0.68 MPa). On the other hand, SO2, owing to its Lewis acidic nature, interacted with the ether groups of the polymeric canopy and, thus, changed the CO2 packing behaviors in NOHMs. © 2013 American Chemical Society.

  13. CO{sub 2} sequestration technologies

    Energy Technology Data Exchange (ETDEWEB)

    Ketzer, Marcelo [Brazilian Carbon Storage Research Center (Brazil)

    2008-07-15

    In this presentation the importance of the capture and sequestration of CO{sub 2} is outlined for the reduction of gas discharges of greenhouse effect; then the principles of CO{sub 2} storage in geologic formations are reviewed; afterwards, the analogs for the CO{sub 2} storage are commented, such as the storage of the acid gas, the natural gas storage and the natural CO{sub 2} deposits. Also it is spoken on the CO{sub 2} storage in coal, in water-bearing saline deposits and in oil fields, and finally the subject of the safety and monitoring of the CO{sub 2} storage is reviewed. [Spanish] En esta presentacion se expone la importancia de la captura y secuestro de CO{sub 2} para la reduccion de emisiones de gases de efecto invernadero; luego se tratan los principios de almacenamiento de CO{sub 2} en formaciones geologicas; despues se comentan los analogos para el almacenamiento de CO{sub 2} como el almacenamiento del gas acido, el almacenamiento de gas natural y los yacimientos naturales de CO{sub 2}. Tambien se habla sobre el almacenamiento de CO{sub 2} en carbon, acuiferos salinos y yacimientos petroliferos y por ultimo se toca el tema de la seguridad y monitoreo del almacenamiento de CO{sub 2}.

  14. Mechanisms of glacial-to-future atmospheric CO2 effects on plant immunity.

    Science.gov (United States)

    Williams, Alex; Pétriacq, Pierre; Schwarzenbacher, Roland E; Beerling, David J; Ton, Jurriaan

    2018-04-01

    The impacts of rising atmospheric CO 2 concentrations on plant disease have received increasing attention, but with little consensus emerging on the direct mechanisms by which CO 2 shapes plant immunity. Furthermore, the impact of sub-ambient CO 2 concentrations, which plants have experienced repeatedly over the past 800 000 yr, has been largely overlooked. A combination of gene expression analysis, phenotypic characterisation of mutants and mass spectrometry-based metabolic profiling was used to determine development-independent effects of sub-ambient CO 2 (saCO 2 ) and elevated CO 2 (eCO 2 ) on Arabidopsis immunity. Resistance to the necrotrophic Plectosphaerella cucumerina (Pc) was repressed at saCO 2 and enhanced at eCO 2 . This CO 2 -dependent resistance was associated with priming of jasmonic acid (JA)-dependent gene expression and required intact JA biosynthesis and signalling. Resistance to the biotrophic oomycete Hyaloperonospora arabidopsidis (Hpa) increased at both eCO 2 and saCO 2 . Although eCO 2 primed salicylic acid (SA)-dependent gene expression, mutations affecting SA signalling only partially suppressed Hpa resistance at eCO 2 , suggesting additional mechanisms are involved. Induced production of intracellular reactive oxygen species (ROS) at saCO 2 corresponded to a loss of resistance in glycolate oxidase mutants and increased transcription of the peroxisomal catalase gene CAT2, unveiling a mechanism by which photorespiration-derived ROS determined Hpa resistance at saCO 2 . By separating indirect developmental impacts from direct immunological effects, we uncover distinct mechanisms by which CO 2 shapes plant immunity and discuss their evolutionary significance. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  15. City density and CO_2 efficiency

    International Nuclear Information System (INIS)

    Gudipudi, Ramana; Fluschnik, Till; Ros, Anselmo García Cantú; Walther, Carsten; Kropp, Jürgen P.

    2016-01-01

    Cities play a vital role in the global climate change mitigation agenda. City population density is one of the key factors that influence urban energy consumption and the subsequent GHG emissions. However, previous research on the relationship between population density and GHG emissions led to contradictory results due to urban/rural definition conundrum and the varying methodologies for estimating GHG emissions. This work addresses these ambiguities by employing the City Clustering Algorithm (CCA) and utilizing the gridded CO_2 emissions data. Our results, derived from the analysis of all inhabited areas in the US, show a sub-linear relationship between population density and the total emissions (i.e. the sum of on-road and building emissions) on a per capita basis. Accordingly, we find that doubling the population density would entail a reduction in the total CO_2 emissions in buildings and on-road sectors typically by at least 42%. Moreover, we find that population density exerts a higher influence on on-road emissions than buildings emissions. From an energy consumption point of view, our results suggest that on-going urban sprawl will lead to an increase in on-road energy consumption in cities and therefore stresses the importance of developing adequate local policy measures to limit urban sprawl. - Highlights: •We use gridded population, land use and CO_2 emissions data. •We attribute building and on-road sectoral emissions to populated settlements. •We apply CCA to identify unique city extents and population densities. •Doubling the population density increases CO_2 efficiency typically by 42%. •Population density has more influence on-road CO_2 efficiency than buildings sector.

  16. Age Learning Factors Affecting Pilot Education.

    Science.gov (United States)

    Torbert, Brison

    This document, intended for pilot education and flight safety specialists, consists chiefly of a review of the literature on physiological factors that affect pilot education and an examination of environmental factors that should be scrutinized in order to improve the effectiveness of aviation learning facilities. The physiological factors…

  17. Perceived Factors Affecting Performance Of Extension Workers In ...

    African Journals Online (AJOL)

    The study focused on perceived factors affecting performance of extension workers in Imo State, Nigeria. Data for the study was collected from 83 Extension agents from the Imo State Agricultural Development Programme (ADP). Results of the study revealed that the organizational factors that affect performance are ...

  18. Practical enhancement factor model based on GM for multiple parallel reactions: Piperazine (PZ) CO2 capture

    DEFF Research Database (Denmark)

    Gaspar, Jozsef; Fosbøl, Philip Loldrup

    2017-01-01

    Reactive absorption is a key process for gas separation and purification and it is the main technology for CO2 capture. Thus, reliable and simple mathematical models for mass transfer rate calculation are essential. Models which apply to parallel interacting and non-interacting reactions, for all......, desorption and pinch conditions.In this work, we apply the GM model to multiple parallel reactions. We deduce the model for piperazine (PZ) CO2 capture and we validate it against wetted-wall column measurements using 2, 5 and 8 molal PZ for temperatures between 40 °C and 100 °C and CO2 loadings between 0.......23 and 0.41 mol CO2/2 mol PZ. We show that overall second order kinetics describes well the reaction between CO2 and PZ accounting for the carbamate and bicarbamate reactions. Here we prove the GM model for piperazine and MEA but we expect that this practical approach is applicable for various amines...

  19. Prediction of CO2 Emission in China’s Power Generation Industry with Gauss Optimized Cuckoo Search Algorithm and Wavelet Neural Network Based on STIRPAT model with Ridge Regression

    Directory of Open Access Journals (Sweden)

    Weibo Zhao

    2017-12-01

    Full Text Available Power generation industry is the key industry of carbon dioxide (CO2 emission in China. Assessing its future CO2 emissions is of great significance to the formulation and implementation of energy saving and emission reduction policies. Based on the Stochastic Impacts by Regression on Population, Affluence and Technology model (STIRPAT, the influencing factors analysis model of CO2 emission of power generation industry is established. The ridge regression (RR method is used to estimate the historical data. In addition, a wavelet neural network (WNN prediction model based on Cuckoo Search algorithm optimized by Gauss (GCS is put forward to predict the factors in the STIRPAT model. Then, the predicted values are substituted into the regression model, and the CO2 emission estimation values of the power generation industry in China are obtained. It’s concluded that population, per capita Gross Domestic Product (GDP, standard coal consumption and thermal power specific gravity are the key factors affecting the CO2 emission from the power generation industry. Besides, the GCS-WNN prediction model has higher prediction accuracy, comparing with other models. Moreover, with the development of science and technology in the future, the CO2 emission growth in the power generation industry will gradually slow down according to the prediction results.

  20. Solid state synthesis of stoichiometric LiCoO2 from mechanically activated Co-Li2CO3 mixtures

    International Nuclear Information System (INIS)

    Berbenni, Vittorio; Milanese, Chiara; Bruni, Giovanna; Marini, Amedeo

    2006-01-01

    Stoichiometric lithium cobalt oxide (LiCoO 2 ) has been synthesized by solid state reaction of mixtures of the system Co-0.5Li 2 CO 3 after mechanical activation by high energy milling. The differences in the reaction mechanism and in product stoichiometry with respect to what happens when starting from the non activated (physical) system have been brought into evidence by TG analysis. Furthermore it has been shown that stoichiometric LiCoO 2 is obtained by a 200 h annealing of the activated mixture at temperatures as low as 400 deg. C. Finally, it has been revealed that longer activation times (150 h) result in Co oxidation to Co 3 O 4 that, in turn, hampers the formation of stoichiometric LiCoO 2

  1. Economic growth, energy consumption and CO2 emissions in Sweden 1800-2000

    International Nuclear Information System (INIS)

    Kander, Astrid

    2002-01-01

    Large transformations of technologies have occurred in the Swedish economy during the last two centuries, resulting in higher income, better quality of products and changing composition of GDP. An agrarian society has given way to an industrial society and lately to a post-industrial phase. The energy supply systems have changed, from traditional energy carriers, such as firewood and muscle energy to modern carriers like coal, oil and electricity, with effects on CO 2 emissions. Not only the energy supply has gone through fundamental changes, but also forest management, which affects the net emissions of CO 2 . The interrelations of growth, energy and CO 2 are analyzed in this thesis, which uses standard calculations, relative price analyses and energy quality factors, to determine the relative effects of structural and technical changes, including changes in energy carrier composition to explain the long term delinking of energy consumption, CO 2 emissions and economic growth that takes place. Technical change is the main reason of energy intensity decline. Total factor productivity gains, including improvements in technical energy efficiency, saves energy in relation to output. The most spectacular energy savings took place in the sectors transportation, communications and industry. Structural changes at the sector level tended to increase energy intensity between 1870 and 1970. No correlation was found between increasing energy quality and decreasing energy intensity, but energy quality may have had an impact on economic growth rates. The consumers' surplus was exceptionally high during the interwar period and the three decades after the Second World War, and the total energy quality was outstanding during the latter period. The most rapid relative decline in energy intensity took place between 1970 and 2000. In this period structural changes at the sector level no longer worked to increase energy intensity and the new growth direction of the third industrial

  2. Comparison of Pore-scale CO2-water-glass System Wettability and Conventional Wettability Measurement on a Flat Plate for Geological CO2 Sequestration

    Science.gov (United States)

    Jafari, M.; Cao, S. C.; Jung, J.

    2017-12-01

    Goelogical CO2 sequestration (GCS) has been recently introduced as an effective method to mitigate carbon dioxide emission. CO2 from main producer sources is collected and then is injected underground formations layers to be stored for thousands to millions years. A safe and economical storage project depends on having an insight of trapping mechanisms, fluids dynamics, and interaction of fluids-rocks. Among different forces governing fluids mobility and distribution in GCS condition, capillary pressure is of importance, which, in turn, wettability (measured by contact angel (CA)) is the most controversial parameters affecting it. To explore the sources of discrepancy in the literature for CA measurement, we conducted a series of conventional captive bubble test on glass plates under high pressure condition. By introducing a shape factor, we concluded that surface imperfection can distort the results in such tests. Since the conventional methods of measuring the CA is affected by gravity and scale effect, we introduced a different technique to measure pore-scale CA inside a transparent glass microchip. Our method has the ability to consider pore sizes and simulate static and dynamics CA during dewetting and imbibition. Glass plates shows a water-wet behavior (CA 30° - 45°) by a conventional experiment consistent with literature. However, CA of miniature bubbles inside of the micromodel can have a weaker water-wet behavior (CA 55° - 69°). In a more realistic pore-scale condition, water- CO2 interface covers whole width of a pore throats. Under this condition, the receding CA, which is used for injectability and capillary breakthrough pressure, increases with decreasing pores size. On the other hand, advancing CA, which is important for residual or capillary trapping, does not show a correlation with throat sizes. Static CA measured in the pores during dewetting is lower than static CA on flat plate, but it is much higher when measured during imbibition implying

  3. Discussion of the influence of CO and CH4 in CO2 transport, injection, and storage for CCS technology.

    Science.gov (United States)

    Blanco, Sofía T; Rivas, Clara; Bravo, Ramón; Fernández, Javier; Artal, Manuela; Velasco, Inmaculada

    2014-09-16

    This paper discusses the influence of the noncondensable impurities CO and CH4 on Carbon Capture and Storage (CCS) technology. We calculated and drew conclusions about the impact of both impurities in the CO2 on selected transport, injection, and storage parameters (pipeline pressure drop, storage capacity, etc.), whose analysis is necessary for the safe construction and operation of CO2 pipelines and for the secure long-term geological storage of anthropogenic CO2. To calculate these parameters, it is necessary to acquire data on the volumetric properties and the vapor-liquid equilibrium of the fluid being subjected to CCS. In addition to literature data, we used new experimental data, which are presented here and were obtained for five mixtures of CO2+CO with compositions characteristic of the typical emissions of the E.U. and the U.S.A. Temperatures and pressures are based on relevant CO2 pipeline and geological storage site values. From our experimental results, Peng-Robinson, PC-SAFT, and GERG Equations of State for were validated CO2+CO under the conditions of CCS. We conclude that the concentration of both impurities strongly affects the studied parameters, with CO being the most influential and problematic. The overall result of these negative effects is an increase in the difficulties, risks, and overall costs of CCS.

  4. Development of Novel CO2 Adsorbents for Capture of CO2 from Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Fauth, D.J.; Filburn, T.P. (University of Hartford, West Hartford, CT); Gray, M.L.; Hedges, S.W.; Hoffman, J.; Pennline, H.W.; Filburn, T.

    2007-06-01

    Capturing CO2 emissions generated from fossil fuel-based power plants has received widespread attention and is considered a vital course of action for CO2 emission abatement. Efforts are underway at the Department of Energy’s National Energy Technology Laboratory to develop viable energy technologies enabling the CO2 capture from large stationary point sources. Solid, immobilized amine sorbents (IAS) formulated by impregnation of liquid amines within porous substrates are reactive towards CO2 and offer an alternative means for cyclic capture of CO2 eliminating, to some degree, inadequacies related to chemical absorption by aqueous alkanolamine solutions. This paper describes synthesis, characterization, and CO2 adsorption properties for IAS materials previously tested to bind and release CO2 and water vapor in a closed loop life support system. Tetraethylenepentamine (TEPA), acrylonitrile-modified tetraethylenepentamine (TEPAN), and a single formulation consisting of TEPAN and N, N’-bis(2-hydroxyethyl)ethylenediamine (BED) were individually supported on a poly (methyl methacrylate) (PMMA) substrate and examined. CO2 adsorption profiles leading to reversible CO2 adsorption capacities were obtained using thermogravimetry. Under 10% CO2 in nitrogen at 25°C and 1 atm, TEPA supported on PMMA over 60 minutes adsorbed ~3.2 mmol/g{sorbent} whereas, TEPAN supported on PMMA along with TEPAN and BED supported on PMMA adsorbed ~1.7 mmol/g{sorbent} and ~2.3 mmol/g{sorbent} respectively. Cyclic experiments with a 1:1 weight ratio of TEPAN and BED supported on poly (methyl methacrylate) beads utilizing a fixed-bed flow system with 9% CO2, 3.5% O2, nitrogen balance with trace gas constituents were studied. CO2 adsorption capacity was ~ 3 mmols CO2/g{sorbent} at 40°C and 1.4 atm. No beneficial effect on IAS performance was found using a moisture-laden flue gas mixture. Tests with 750 ppmv NO in a humidified gas stream revealed negligible NO sorption onto the IAS. A high SO2

  5. Pore-scale observation and 3D simulation of wettability effects on supercritical CO2 - brine immiscible displacement in drainage

    Science.gov (United States)

    Hu, R.; Wan, J.; Chen, Y.

    2016-12-01

    Wettability is a factor controlling the fluid-fluid displacement pattern in porous media and significantly affects the flow and transport of supercritical (sc) CO2 in geologic carbon sequestration. Using a high-pressure micromodel-microscopy system, we performed drainage experiments of scCO2 invasion into brine-saturated water-wet and intermediate-wet micromodels; we visualized the scCO2 invasion morphology at pore-scale under reservoir conditions. We also performed pore-scale numerical simulations of the Navier-Stokes equations to obtain 3D details of fluid-fluid displacement processes. Simulation results are qualitatively consistent with the experiments, showing wider scCO2 fingering, higher percentage of scCO2 and more compact displacement pattern in intermediate-wet micromodel. Through quantitative analysis based on pore-scale simulation, we found that the reduced wettability reduces the displacement front velocity, promotes the pore-filling events in the longitudinal direction, delays the breakthrough time of invading fluid, and then increases the displacement efficiency. Simulated results also show that the fluid-fluid interface area follows a unified power-law relation with scCO2 saturation, and show smaller interface area in intermediate-wet case which suppresses the mass transfer between the phases. These pore-scale results provide insights for the wettability effects on CO2 - brine immiscible displacement in geologic carbon sequestration.

  6. Metal-Organic Framework-Stabilized CO2/Water Interfacial Route for Photocatalytic CO2 Conversion.

    Science.gov (United States)

    Luo, Tian; Zhang, Jianling; Li, Wei; He, Zhenhong; Sun, Xiaofu; Shi, Jinbiao; Shao, Dan; Zhang, Bingxing; Tan, Xiuniang; Han, Buxing

    2017-11-29

    Here, we propose a CO 2 /water interfacial route for photocatalytic CO 2 conversion by utilizing a metal-organic framework (MOF) as both an emulsifier and a catalyst. The CO 2 reduction occurring at the CO 2 /water interface produces formate with remarkably enhanced efficiency as compared with that in conventional solvent. The route is efficient, facile, adjustable, and environmentally benign, which is applicable for the CO 2 transformation photocatalyzed by different kinds of MOFs.

  7. Cobalt chloride decreases fibroblast growth factor-21 expression dependent on oxidative stress but not hypoxia-inducible factor in Caco-2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yanlong [School of Pharmacy, Wenzhou Medical College, Wenzhou (China); Department of Medicine, University of Louisville, Louisville, KY (United States); Wang, Chunhong [Second Hospital, Jilin University, Changchun (China); Department of Medicine, University of Louisville, Louisville, KY (United States); Wang, Yuhua [College of Food Science and Engineering, Jilin Agricultural University, Changchun (China); Department of Medicine, University of Louisville, Louisville, KY (United States); Ma, Zhenhua [First Hospital, Xi' an Jiaotong University, Xi' an (China); Department of Medicine, University of Louisville, Louisville, KY (United States); Xiao, Jian [School of Pharmacy, Wenzhou Medical College, Wenzhou (China); McClain, Craig [Department of Medicine, University of Louisville, Louisville, KY (United States); Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY (United States); Alcohol Research Center, University of Louisville, Louisville, KY (United States); Robley Rex Veterans Affairs Medical Center, Louisville, KY (United States); Li, Xiaokun [School of Pharmacy, Wenzhou Medical College, Wenzhou (China); Feng, Wenke, E-mail: wenke.feng@louisville.edu [School of Pharmacy, Wenzhou Medical College, Wenzhou (China); Department of Medicine, University of Louisville, Louisville, KY (United States); Alcohol Research Center, University of Louisville, Louisville, KY (United States)

    2012-10-15

    Fibroblast growth factor-21 (FGF21) is a potential metabolic regulator with multiple beneficial effects on metabolic diseases. FGF21 is mainly expressed in the liver, but is also found in other tissues including the intestine, which expresses β-klotho abundantly. The intestine is a unique organ that operates in a physiologically hypoxic environment, and is responsible for the fat absorption processes including triglyceride breakdown, re-synthesis and absorption into the portal circulation. In the present study, we investigated the effects of hypoxia and the chemical hypoxia inducer, cobalt chloride (CoCl{sub 2}), on FGF21 expression in Caco-2 cells and the consequence of fat accumulation. Physical hypoxia (1% oxygen) and CoCl{sub 2} treatment decreased both FGF21 mRNA and secreted protein levels. Gene silence and inhibition of hypoxia-inducible factor-α (HIFα) did not affect the reduction of FGF21 mRNA and protein levels by hypoxia. However, CoCl{sub 2} administration caused a significant increase in oxidative stress. The addition of n-acetylcysteine (NAC) suppressed CoCl{sub 2}-induced reactive oxygen species (ROS) formation and completely negated CoCl{sub 2}-induced FGF21 loss. mRNA stability analysis demonstrated that the CoCl{sub 2} administration caused a remarkable reduction in FGF21 mRNA stability. Furthermore, CoCl{sub 2} increased intracellular triglyceride (TG) accumulation, along with a reduction in mRNA levels of lipid lipase, hormone sensitive lipase (HSL) and adipose triglyceride lipase (ATGL), and an increase of sterol regulatory element-binding protein-1c (SREBP1c) and stearoyl-coenzyme A (SCD1). Addition of both NAC and recombinant FGF21 significantly attenuated the CoCl{sub 2}-induced TG accumulation. In conclusion, the decrease of FGF21 in Caco-2 cells by chemical hypoxia is independent of HIFα, but dependent on an oxidative stress-mediated mechanism. The regulation of FGF21 by hypoxia may contribute to intestinal lipid metabolism and

  8. Cobalt chloride decreases fibroblast growth factor-21 expression dependent on oxidative stress but not hypoxia-inducible factor in Caco-2 cells

    International Nuclear Information System (INIS)

    Liu, Yanlong; Wang, Chunhong; Wang, Yuhua; Ma, Zhenhua; Xiao, Jian; McClain, Craig; Li, Xiaokun; Feng, Wenke

    2012-01-01

    Fibroblast growth factor-21 (FGF21) is a potential metabolic regulator with multiple beneficial effects on metabolic diseases. FGF21 is mainly expressed in the liver, but is also found in other tissues including the intestine, which expresses β-klotho abundantly. The intestine is a unique organ that operates in a physiologically hypoxic environment, and is responsible for the fat absorption processes including triglyceride breakdown, re-synthesis and absorption into the portal circulation. In the present study, we investigated the effects of hypoxia and the chemical hypoxia inducer, cobalt chloride (CoCl 2 ), on FGF21 expression in Caco-2 cells and the consequence of fat accumulation. Physical hypoxia (1% oxygen) and CoCl 2 treatment decreased both FGF21 mRNA and secreted protein levels. Gene silence and inhibition of hypoxia-inducible factor-α (HIFα) did not affect the reduction of FGF21 mRNA and protein levels by hypoxia. However, CoCl 2 administration caused a significant increase in oxidative stress. The addition of n-acetylcysteine (NAC) suppressed CoCl 2 -induced reactive oxygen species (ROS) formation and completely negated CoCl 2 -induced FGF21 loss. mRNA stability analysis demonstrated that the CoCl 2 administration caused a remarkable reduction in FGF21 mRNA stability. Furthermore, CoCl 2 increased intracellular triglyceride (TG) accumulation, along with a reduction in mRNA levels of lipid lipase, hormone sensitive lipase (HSL) and adipose triglyceride lipase (ATGL), and an increase of sterol regulatory element-binding protein-1c (SREBP1c) and stearoyl-coenzyme A (SCD1). Addition of both NAC and recombinant FGF21 significantly attenuated the CoCl 2 -induced TG accumulation. In conclusion, the decrease of FGF21 in Caco-2 cells by chemical hypoxia is independent of HIFα, but dependent on an oxidative stress-mediated mechanism. The regulation of FGF21 by hypoxia may contribute to intestinal lipid metabolism and absorption. -- Graphical abstract: Physical

  9. The effects of reduced CO{sub 2} emissions on employment; Sysselsettingsvirkninger av redusert CO{sub 2}-utslipp

    Energy Technology Data Exchange (ETDEWEB)

    Mathiesen, L

    1995-06-01

    This report discusses how reducing the CO{sub 2} emission might affect employment, adaptation and job mobility between trades. It confirms and expands the results of many previous studies. The socio-economic costs involved in regulation of greenhouse gas emissions appear to be low and perhaps negative, and very unevenly distributed on the sectors which must be regulated if the emission goals are to be achieved. The author`s analyses show that in addition to affecting the transport sectors, regulations have an especially strong impact on trades within the processing industries such as refining of crude oil, production of ferro alloys, fertilizers, cement and primary aluminium. For the Norwegian CO{sub 2} emissions in 2000 not to exceed the 1989 level, the activities within crude oil refining and ferro alloys production must be halved and the activities within the three other industries must go down by 10-15%. This ranking is very stable under changes in common external conditions provided all the sectors face the same tax per unit emitted. The trades most strongly influenced by regulations are mostly found in places with few alternative job possibilities, which results in frictional unemployment. Some of the unemployed may get lost forever so that the unemployment becomes permanent. However, less than 1% of the total manpower of Norway work in the five sectors and so the loss of work places will be 0.2%, or 4000. 35 refs., 9 figs., 6 tabs.

  10. Atmospheric and Surface-Condition Effects on CO2 Exchange in the Liaohe Delta Wetland, China

    Directory of Open Access Journals (Sweden)

    Qingyu Jia

    2017-10-01

    Full Text Available The eddy covariance method was used to study the CO2 budget of the Liaohe Delta reed wetland in northern China during 2012–2015. The changes in environmental factors (including meteorology, vegetation, hydrology, and soil were analyzed simultaneously. The change in the trend of the CO2 concentration in the reed wetland was similar to global changes over the four years. The average annual CO2 accumulation was 2.037 kg·CO2·m−2, ranging from 1.472 to 2.297 kg·CO2·m−2. The seasonal characteristics of the CO2 exchange included high CO2 absorption in June and July, and high emissions in April and from September to October, with the highest emissions in July 2015. The average temperatures from 2013 to 2015 were higher than the 50-year average, largely due to increased temperatures in winter. Precipitation was below the 50-year average, mainly because of low precipitation in summer. The average wind speed was less than the 50-year average, and sunshine duration decreased each year. The CO2 exchange and environmental factors had a degree of correlation or consistency. The contribution of meteorology, vegetation, hydrology, and soil to the CO2 budget was analyzed using the partial least squares method. Water and soil temperature had a greater effect on the CO2 exchange variability. The regression equation of the CO2 budget was calculated using the significant contributing factors, including temperature, precipitation, relative humidity, water-table level, salinity, and biomass. The model fit explained more than 70% of the CO2 exchange, and the simulation results were robust.

  11. Performances of an expanding insect under elevated CO{sub 2} and snow cover in the Alps

    Energy Technology Data Exchange (ETDEWEB)

    Battisti, B.; Petrucco-Toffolo, E. [University of Padova, Legnaro (Italy). Dept. of Environmental Agronomy

    2008-09-30

    Variations of phenology and distribution have been recently highlighted in numerous insect species and attributed to climate change, particularly the increase of temperature and atmospheric carbon dioxide (CO{sub 2}). Both have been shown to have direct and indirect effects on insect species of various ecosystems, though the responses are often species-specific. The pine processionary moth, Thaumetopoea pityocampa (Lepidoptera, Notodontidae) is an important pest of conifers in the Mediterranean region, and has been recently shown to expand its altitudinal range in the Alps, including the mountain pine Pinus mugo as a novel host. We had the opportunity to transplant colonies of the pine processionary moth to a high elevation site well outside of the current range of the insect (Stillberg, Davos, Switzerland, 2180 m), where trees of the mountain pine have been grown for five years under ambient and elevated CO{sub 2} concentrations (ca. 570 ppm). The aim of the study was to evaluate the response of first instar larvae to extreme conditions of temperature and to an altered performance induced by the change of host metabolism under elevated CO{sub 2}. Larval mortality and relative growth rate did not differ between host trees grown in ambient or elevated CO{sub 2}. As extended snow cover may be an important mortality factor of larval colonies on the dwarf trees of mountain pine, we tested the survival of colonies transplanted at two extreme sites of Eastern Alps. The snow cover extended over more than one month proved to be an important mortality factor of larval colonies on mountain pine. We concluded that the first instar larvae of the pine processionary moth are not concerned by unusually low temperature and CO{sub 2} increase whereas they can be later strongly affected by snow accumulation. The decrease of snow cover observed in the last decades, however, may reduce such a risk.

  12. Autologous peripheral blood stem cell harvest: Collection efficiency and factors affecting it

    Directory of Open Access Journals (Sweden)

    Aseem K Tiwari

    2016-01-01

    Full Text Available Background: Harvest of hematopoietic progenitor cells via leukapheresis is being used increasingly for transplants in India. Adequate yield of cells per kilogram body weight of recipient is required for successful engraftment. Collection efficiency (CE is an objective quality parameter used to assess the quality of leukapheresis program. In this study, we calculated the CE of the ComTec cell separator (Fresenius Kabi, Germany using two different formulae (CE1 and CE2 and analyzed various patient and procedural factors, which may affect it. Materials and Methods: One hundred and one consecutive procedures in 77 autologous donors carried out over 3 years period were retrospectively reviewed. Various characteristics like gender, age, weight, disease status, hematocrit, preprocedure total leukocyte count, preprocedure CD34 positive (CD34+ cells count, preprocedure absolute CD34+ cell count and processed apheresis volume effect on CE were compared. CE for each procedure was calculated using two different formulae, and results were compared using statistical correlation and regression analysis. Results: The mean CE1 and CE2 was 41.2 and 49.1, respectively. CE2 appeared to be more accurate indicator of overall CE as it considered the impact of continued mobilization of stem cells during apheresis procedure, itself. Of all the factors affecting CE, preprocedure absolute CD34+ was the only independent factor affecting CE. Conclusion: The only factor affecting CE was preprocedure absolute CD34+ cells. Though the mean CE2 was higher than CE1, it was not statistically significant.

  13. Enhancement of CO(3-2)/CO(1-0) ratios and star formation efficiencies in supergiant H II regions

    Energy Technology Data Exchange (ETDEWEB)

    Miura, Rie E.; Espada, Daniel; Komugi, Shinya; Nakanishi, Kouichiro; Sawada, Tsuyoshi; Fujii, Kosuke; Kawabe, Ryohei [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Kohno, Kotaro [Institute of Astronomy, School of Science, The University of Tokyo, Osawa, Mitaka, Tokyo 181-0015 (Japan); Tosaki, Tomoka [Joetsu University of Education, Yamayashiki-machi, Joetsu, Niigata 943-8512 (Japan); Hirota, Akihiko; Minamidani, Tetsuhiro [Nobeyama Radio Observatory, Minamimaki, Minamisaku, Nagano 384-1805 (Japan); Okumura, Sachiko K. [Department of Mathematical and Physical Sciences, Faculty of Science, Japan Woman' s University, Mejirodai 2-8-1, Bunkyo, Tokyo 112-8681 (Japan); Kuno, Nario [Department of Astronomical Science, The Graduate University for Advanced Studies (Sokendai), 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan); Muraoka, Kazuyuki; Onodera, Sachiko [Osaka Prefecture University, Gakuen 1-1, Sakai, Osaka 599-8531 (Japan); Kaneko, Hiroyuki, E-mail: rie.miura@nao.ac.jp [Department of Physics, Meisei University, Hino, Tokyo 191-8506 (Japan)

    2014-06-20

    We present evidence that super giant H II regions (GHRs) and other disk regions of the nearby spiral galaxy, M33, occupy distinct locations in the correlation between molecular gas, Σ{sub H{sub 2}}, and the star formation rate surface density, Σ{sub SFR}. This result is based on wide-field and high-sensitivity CO(3-2) observations at 100 pc resolution. Star formation efficiencies (SFEs), defined as Σ{sub SFR}/Σ{sub H{sub 2}}, in GHRs are found to be ∼1 dex higher than in other disk regions. The CO(3-2)/CO(1-0) integrated intensity ratio, R {sub 3-2/1-0}, is also higher than the average over the disk. Such high SFEs and R {sub 3-2/1-0} can reach the values found in starburst galaxies, which suggests that GHRs may be the elements building up a larger-scale starburst region. Three possible contributions to high SFEs in GHRs are investigated: (1) the I {sub CO}-N(H{sub 2}) conversion factor, (2) the dense gas fraction traced by R {sub 3-2/1-0}, and (3) the initial mass function (IMF). We conclude that these starburst-like properties in GHRs can be interpreted by a combination of both a top-heavy IMF and a high dense gas fraction, but not by changes in the I {sub CO}-N(H{sub 2}) conversion factor.

  14. Hydrogen production from food wastes and gas post-treatment by CO2 adsorption

    International Nuclear Information System (INIS)

    Redondas, V.; Gómez, X.; García, S.; Pevida, C.; Rubiera, F.; Morán, A.; Pis, J.J.

    2012-01-01

    Highlights: ► The dark fermentation process of food wastes was studied over an extended period. ► Decreasing the HRT of the process negatively affected the specific gas production. ► Adsorption of CO 2 was successfully attained using a biomass type activated carbon. ► H 2 concentration in the range of 85–95% was obtained for the treated gas-stream. - Abstract: The production of H 2 by biological means, although still far from being a commercially viable proposition, offers great promise for the future. Purification of the biogas obtained may lead to the production of highly concentrated H 2 streams appropriate for industrial application. This research work evaluates the dark fermentation of food wastes and assesses the possibility of adsorbing CO 2 from the gas stream by means of a low cost biomass-based adsorbent. The reactor used was a completely stirred tank reactor run at different hydraulic retention times (HRTs) while the concentration of solids of the feeding stream was kept constant. The results obtained demonstrate that the H 2 yields from the fermentation of food wastes were affected by modifications in the hydraulic retention time (HRT) due to incomplete hydrolysis. The decrease in the duration of fermentation had a negative effect on the conversion of the substrate into soluble products. This resulted in a lower amount of soluble substrate being available for metabolisation by H 2 producing microflora leading to a reduction in specific H 2 production. Adsorption of CO 2 from a gas stream generated from the dark fermentation process was successfully carried out. The data obtained demonstrate that the column filled with biomass-derived activated carbon resulted in a high degree of hydrogen purification. Co-adsorption of H 2 S onto the activated carbon also took place, there being no evidence of H 2 S present in the bio-H 2 exiting the column. Nevertheless, the concentration of H 2 S was very low, and this co-adsorption did not affect the CO 2

  15. Elevated CO2 induces substantial and persistent declines in forage digestibility and protein content irrespective of warming in mixed-grass prairie

    Science.gov (United States)

    Increasing atmospheric [CO2] and temperature are expected to affect the productivity, species composition, biogeochemistry, and therefore the quantity and quality of forage available to herbivores in rangeland ecosystems. Both elevated CO2 (eCO2) and warming affect plant tissue chemistry through mul...

  16. Cognitive Factors Affecting Freeze-like Behavior in Humans.

    Science.gov (United States)

    Alban, Michael W; Pocknell, Victoria

    2017-01-01

    Contemporary research on survival-related defensive behaviors has identified physiological markers of freeze/flight/fight. Our research focused on cognitive factors associated with freeze-like behavior in humans. Study 1 tested if an explicit decision to freeze is associated with the psychophysiological state of freezing. Heart rate deceleration occurred when participants chose to freeze. Study 2 varied the efficacy of freezing relative to other defense options and found "freeze" was responsive to variations in the perceived effectiveness of alternative actions. Study 3 tested if individual differences in motivational orientation affect preference for a "freeze" option when the efficacy of options is held constant. A trend in the predicted direction suggested that naturally occurring cognitions led loss-avoiders to select "freeze" more often than reward-seekers. In combination, our attention to the cognitive factors affecting freeze-like behavior in humans represents a preliminary step in addressing an important but neglected research area.

  17. DFT+U study of polaronic conduction in Li2O2 and Li2CO3

    DEFF Research Database (Denmark)

    García Lastra, Juan Maria; Myrdal, J.S.G.; Christensen, Rune

    2013-01-01

    The main discharge products formed at the cathode of nonaqueous Li-air batteries are known to be Li2O2 and residual Li2CO3. Recent experiments indicate that the charge transport through these materials is the main limiting factor for the battery performance. It has been also shown...... that the performance of the battery decreases drastically when the amount of Li2CO3 at the cathode increases with respect to Li2O2. In this work, we study the formation and transport of hole and electron polarons in Li2O2 and Li2CO3 using density functional theory (DFT) within the PBE+U approximation. For both...... materials, we find that the formation of polarons (both hole and electron) is stabilized with respect to the delocalized states for all physically relevant values of U. We find a much higher mobility for hole polarons than for the electron polarons, and we show that the poor charge transport in Li2CO3...

  18. Economic evaluation of CO2 pipeline transport in China

    International Nuclear Information System (INIS)

    Zhang Dongjie; Wang Zhe; Sun Jining; Zhang Lili; Li Zheng

    2012-01-01

    Highlights: ► We build a static hydrodynamic model of CO 2 pipeline for CCS application. ► We study the impact on pressure drop of pipeline by viscosity, density and elevation. ► We point out that density has a bigger impact on pressure drop than viscosity. ► We suggest dense phase transport is preferred than supercritical state. ► We present cost-optimal pipeline diameters for different flowrates and distances. - Abstract: Carbon capture and sequestration (CCS) is an important option for CO 2 mitigation and an optimized CO 2 pipeline transport system is necessary for large scale CCS implementation. In the present work, a hydrodynamic model for CO 2 pipeline transport was built up and the hydrodynamic performances of CO 2 pipeline as well as the impacts of multiple factors on pressure drop behavior along the pipeline were studied. Based on the model, an economic model was established to optimize the CO 2 pipeline transport system economically and to evaluate the unit transport cost of CO 2 pipeline in China. The hydrodynamic model results show that pipe diameter, soil temperature, and pipeline elevation change have significant influence on the pressure drop behavior of CO 2 in the pipeline. The design of pipeline system, including pipeline diameter and number of boosters etc., was optimized to achieve a lowest unit CO 2 transport cost. In regarding to the unit cost, when the transport flow rate and distance are between 1–5 MtCO 2 /year and 100–500 km, respectively, the unit CO 2 transport cost mainly lies between 0.1–0.6 RMB/(tCO 2 km) and electricity consumption cost of the pipeline inlet compressor was found to take more than 60% of the total cost. The present work provides reference for CO 2 transport pipeline design and for feasibility evaluation of potential CCS projects in China.

  19. Rain events decrease boreal peatland net CO2 uptake through reduced light availability.

    Science.gov (United States)

    Nijp, Jelmer J; Limpens, Juul; Metselaar, Klaas; Peichl, Matthias; Nilsson, Mats B; van der Zee, Sjoerd E A T M; Berendse, Frank

    2015-06-01

    Boreal peatlands store large amounts of carbon, reflecting their important role in the global carbon cycle. The short-term exchange and the long-term storage of atmospheric carbon dioxide (CO2 ) in these ecosystems are closely associated with the permanently wet surface conditions and are susceptible to drought. Especially, the single most important peat forming plant genus, Sphagnum, depends heavily on surface wetness for its primary production. Changes in rainfall patterns are expected to affect surface wetness, but how this transient rewetting affects net ecosystem exchange of CO2 (NEE) remains unknown. This study explores how the timing and characteristics of rain events during photosynthetic active periods, that is daytime, affect peatland NEE and whether rain event associated changes in environmental conditions modify this response (e.g. water table, radiation, vapour pressure deficit, temperature). We analysed an 11-year time series of half-hourly eddy covariance and meteorological measurements from Degerö Stormyr, a boreal peatland in northern Sweden. Our results show that daytime rain events systematically decreased the sink strength of peatlands for atmospheric CO2 . The decrease was best explained by rain associated reduction in light, rather than by rain characteristics or drought length. An average daytime growing season rain event reduced net ecosystem CO2 uptake by 0.23-0.54 gC m(-2) . On an annual basis, this reduction of net CO2 uptake corresponds to 24% of the annual net CO2 uptake (NEE) of the study site, equivalent to a 4.4% reduction of gross primary production (GPP) during the growing season. We conclude that reduced light availability associated with rain events is more important in explaining the NEE response to rain events than rain characteristics and changes in water availability. This suggests that peatland CO2 uptake is highly sensitive to changes in cloud cover formation and to altered rainfall regimes, a process hitherto largely

  20. Wellbore integrity analysis of a natural CO2 producer

    KAUST Repository

    Crow, Walter

    2010-03-01

    Long-term integrity of existing wells in a CO2-rich environment is essential for ensuring that geological sequestration of CO2 will be an effective technology for mitigating greenhouse gas-induced climate change. The potential for wellbore leakage depends in part on the quality of the original construction as well as geochemical and geomechanical stresses that occur over its life-cycle. Field data are essential for assessing the integrated effect of these factors and their impact on wellbore integrity, defined as the maintenance of isolation between subsurface intervals. In this report, we investigate a 30-year-old well from a natural CO2 production reservoir using a suite of downhole and laboratory tests to characterize isolation performance. These tests included mineralogical and hydrological characterization of 10 core samples of casing/cement/formation, wireline surveys to evaluate well conditions, fluid samples and an in situ permeability test. We find evidence for CO2 migration in the occurrence of carbonated cement and calculate that the effective permeability of an 11′-region of the wellbore barrier system was between 0.5 and 1 milliDarcy. Despite these observations, we find that the amount of fluid migration along the wellbore was probably small because of several factors: the amount of carbonation decreased with distance from the reservoir, cement permeability was low (0.3-30 microDarcy), the cement-casing and cement-formation interfaces were tight, the casing was not corroded, fluid samples lacked CO2, and the pressure gradient between reservoir and caprock was maintained. We conclude that the barrier system has ultimately performed well over the last 3 decades. These results will be used as part of a broader effort to develop a long-term predictive simulation tool to assess wellbore integrity performance in CO2 storage sites. © 2009 Elsevier Ltd. All rights reserved.

  1. Surface CO2 leakage during the first shallow subsurface CO2 release experiment

    OpenAIRE

    Lewicki, J.L.; Oldenburg, C.; Dobeck, L.; Spangler, L.

    2008-01-01

    A new field facility was used to study CO2 migration processes and test techniques to detect and quantify potential CO2 leakage from geologic storage sites. For 10 days starting 9 July 2007, and for seven days starting 5 August 2007, 0.1 and 0.3 t CO2 d-1, respectively, were released from a ~;100-m long, sub-water table (~;2.5-m depth) horizontal well. The spatio-temporal evolution of leakage was mapped through repeated grid measurements of soil CO2 flux (FCO2). The surface leakage onset...

  2. Thermogravimetric study on the influence of structural, textural and chemical properties of biomass chars on CO2 gasification reactivity

    International Nuclear Information System (INIS)

    Bouraoui, Zeineb; Jeguirim, Mejdi; Guizani, Chamseddine; Limousy, Lionel; Dupont, Capucine; Gadiou, Roger

    2015-01-01

    The present investigation aims to examine the influence of textural, structural and chemical properties of biomass chars on the CO 2 gasification rate. Various lignocellulosic biomass chars were prepared under the same conditions. Different analytical techniques were used to determine the char properties such as Scanning Electronic Microscopy, nitrogen adsorption manometry, Raman spectroscopy and X Ray Fluorescence. Gasification tests were carried out in a thermobalance under 20% CO 2 in nitrogen at 800 °C. Significant differences of the total average reactivity were observed with a factor of 2 between the prepared chars. Moreover, different behaviors of gasification rate profiles versus conversion were obtained. This difference of behavior appeared to be correlated with the biomass char properties. Hence, up to 70% of conversion, the gasification rate was shown to depend on the char external surface and the potassium content. At higher conversion ratio, a satisfactory correlation between the Catalytic Index and the average gasification rate was identified. The results highlight the importance of knowing both textural and structural properties and mineral contents of biomass chars to predict fuel reactivity during CO 2 gasification processes. Such behavior prediction is highly important in the gasifiers design for char conversion. - Highlights: • CO 2 gasification reactivity of various lignocellulosic chars were examined. • Chars properties affect strongly samples gasification behavior. • Initial gasification rate is affected by external surface, K content and D3/G ratio. • Gasification rate behavior depends on the Alkali index at high conversion

  3. Controllable factors affecting the epitaxial quality of LaCoO3 films ...

    Indian Academy of Sciences (India)

    2018-03-23

    Mar 23, 2018 ... ... larger molecular weight contribute to the improvement of epitaxial quality of LaCoO3 epitaxial film. ..... Research Fund of Education Department of Sichuan Province. (grant nos. 16ZA0133 and 15ZB0108); and the Doctoral.

  4. Soil surface CO2 flux in a boreal black spruce fire chronosequence

    Science.gov (United States)

    Wang, Chuankuan; Bond-Lamberty, Ben; Gower, Stith T.

    2003-02-01

    Understanding the effects of wildfire on the carbon (C) cycle of boreal forests is essential to quantifying the role of boreal forests in the global carbon cycle. Soil surface CO2 flux (Rs), the second largest C flux in boreal forests, is directly and indirectly affected by fire and is hypothesized to change during forest succession following fire. The overall objective of this study was to measure and model Rs for a black spruce (Picea mariana [Mill.] BSP) postfire chronosequence in northern Manitoba, Canada. The experiment design was a nested factorial that included two soil drainage classes (well and poorly drained) × seven postfire aged stands. Specific objectives were (1) to quantify the relationship between Rs and soil temperature for different aged boreal black spruce forests in well-drained and poorly drained soil conditions, (2) to examine Rs dynamics along postfire successional stands, and (3) to estimate annual soil surface CO2 flux for these ecosystems. Soil surface CO2 flux was significantly affected by soil drainage class (p = 0.014) and stand age (p = 0.006). Soil surface CO2 flux was positively correlated to soil temperature (R2 = 0.78, p aged stand combination. Soil surface CO2 flux was significantly greater at the well-drained than the poorly drained stands (p = 0.007) during growing season. Annual soil surface CO2 flux for the 1998, 1995, 1989, 1981, 1964, 1930, and 1870 burned stands averaged 226, 412, 357, 413, 350, 274, and 244 g C m-2 yr-1 in the well-drained stands and 146, 380, 300, 303, 256, 233, and 264 g C m-2 yr-1 in the poorly drained stands. Soil surface CO2 flux during the winter (from 1 November to 30 April) comprised from 5 to 19% of the total annual Rs. We speculate that the smaller soil surface CO2 flux in the recently burned than the older stands is mainly caused by decreased root respiration.

  5. ANALYSIS OF THE FACTORS AFFECTING THE AVERAGE

    Directory of Open Access Journals (Sweden)

    Carmen BOGHEAN

    2013-12-01

    Full Text Available Productivity in agriculture most relevantly and concisely expresses the economic efficiency of using the factors of production. Labour productivity is affected by a considerable number of variables (including the relationship system and interdependence between factors, which differ in each economic sector and influence it, giving rise to a series of technical, economic and organizational idiosyncrasies. The purpose of this paper is to analyse the underlying factors of the average work productivity in agriculture, forestry and fishing. The analysis will take into account the data concerning the economically active population and the gross added value in agriculture, forestry and fishing in Romania during 2008-2011. The distribution of the average work productivity per factors affecting it is conducted by means of the u-substitution method.

  6. Distinct responses of soil microbial communities to elevated CO2 and O3 in a soybean agro-ecosystem.

    Science.gov (United States)

    He, Zhili; Xiong, Jinbo; Kent, Angela D; Deng, Ye; Xue, Kai; Wang, Gejiao; Wu, Liyou; Van Nostrand, Joy D; Zhou, Jizhong

    2014-03-01

    The concentrations of atmospheric carbon dioxide (CO2) and tropospheric ozone (O3) have been rising due to human activities. However, little is known about how such increases influence soil microbial communities. We hypothesized that elevated CO2 (eCO2) and elevated O3 (eO3) would significantly affect the functional composition, structure and metabolic potential of soil microbial communities, and that various functional groups would respond to such atmospheric changes differentially. To test these hypotheses, we analyzed 96 soil samples from a soybean free-air CO2 enrichment (SoyFACE) experimental site using a comprehensive functional gene microarray (GeoChip 3.0). The results showed the overall functional composition and structure of soil microbial communities shifted under eCO2, eO3 or eCO2+eO3. Key functional genes involved in carbon fixation and degradation, nitrogen fixation, denitrification and methane metabolism were stimulated under eCO2, whereas those involved in N fixation, denitrification and N mineralization were suppressed under eO3, resulting in the fact that the abundance of some eO3-supressed genes was promoted to ambient, or eCO2-induced levels by the interaction of eCO2+eO3. Such effects appeared distinct for each treatment and significantly correlated with soil properties and soybean yield. Overall, our analysis suggests possible mechanisms of microbial responses to global atmospheric change factors through the stimulation of C and N cycling by eCO2, the inhibition of N functional processes by eO3 and the interaction by eCO2 and eO3. This study provides new insights into our understanding of microbial functional processes in response to global atmospheric change in soybean agro-ecosystems.

  7. Solubility of {beta}-carotene in ethanol- and triolein-modified CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Araus, Karina A. [Departamento de Ingenieria Quimica y Bioprocesos, Pontificia Universidad Catolica de Chile, Avda. Vicuna Mackenna 4860, Macul, Santiago (Chile); Canales, Roberto I. [Departamento de Ingenieria Quimica y Ambiental, Universidad Tecnica Federico Santa Maria, Avda. Espana 1680, Valparaiso (Chile); Valle, Jose M. del [Departamento de Ingenieria Quimica y Bioprocesos, Pontificia Universidad Catolica de Chile, Avda. Vicuna Mackenna 4860, Macul, Santiago (Chile); Fuente, Juan C. de la, E-mail: juan.delafuente@usm.cl [Departamento de Ingenieria Quimica y Ambiental, Universidad Tecnica Federico Santa Maria, Avda. Espana 1680, Valparaiso (Chile); Centro Regional de Estudios en Alimentos Saludables, Blanco 1623, Valparaiso (Chile)

    2011-12-15

    Highlights: > We measure solubility of {beta}-carotene in pure CO{sub 2}, and with ethanol and triolein as co-solvents. > We model the solubility of {beta}-carotene in pure CO{sub 2}, and with co-solvents. > The co-solvent effect of triolein over solubility of {beta}-carotene in CO{sub 2} was higher than ethanol. - Abstract: Modification of an experimental device and methodology improved speed and reproducibility of measurement of solubility of {beta}-carotene in pure and modified SuperCritical (SC) CO{sub 2} at (313 to 333) K. Solubilities of {beta}-carotene in pure CO{sub 2} at (17 to 34) MPa ranged (0.17 to 1.06) {mu}mol/mol and agreed with values reported in literature. The solubility of {beta}-carotene in CO{sub 2} modified with (1.2 to 1.6) % mol ethanol increased by a factor of 1.7 to 3.0 as compared to its solubility in pure CO{sub 2} under equivalent conditions. The concentration of triolein in equilibrated ternary (CO{sub 2} + {beta}-carotene + triolein) mixtures having excess triolein reached values (0.01 to 0.39) mmol/mol corresponding to its solubility in pure SC CO{sub 2} under equivalent conditions. Under these conditions, the solubility of {beta}-carotene in triolein-modified CO{sub 2} increased by a factor of up to 4.0 in relation with its solubility in pure CO{sub 2} at comparable system temperature and pressure, reaching an uppermost value of 3.3 {mu}mol/mol at 333 K and 32 MPa. Unlike in the case of ethanol, where enhancements in solubility where relatively independent on system conditions, solubility enhancements using triolein as co-solvent increased markedly with system pressure, being larger than using (1.2 to 1.6) % mol ethanol at about (24 to 28) MPa, depending on system temperature. The increase in the solubility {beta}-carotene in SC CO{sub 2} as a result of using ethanol or triolein as co-solvent apparently does not depend on the increase in density associated with the dissolution of the co-solvent in CO{sub 2}. Enhancements may be due

  8. The Relationship Between Emissions and Economic Growth for SO2, CO2, and BC

    Science.gov (United States)

    Ru, M.; Shindell, D. T.; Tao, S.; Zhong, Q.; Seltzer, K.

    2017-12-01

    We characterize the relationship between per person emissions of SO2, CO2, and black carbon (BC) and income using a global country-level emission inventory. Pollutant emissions of SO2 and BC from the power, industry, and transportation sectors largely follow an Environmental Kuznets Curve (EKC) pattern with peak emissions at income levels between 10,000 and 100,000 USD per capita. However, for CO2, any estimated turnover income is extremely high and unlikely to be reached in the near future in power, industry, and transportation. Residential emissions show a negatively sloped linear relationship for BC, a small positive slope for CO2, and a fairly flat trajectory for SO2. For the EKC-like trajectories, "turning point" incomes for each sector and pollutant are related to technological advances and the effectiveness of emission controls. These results suggest that policy targeting technological advances and emission controls could change future pathways by affecting the "turning point" incomes. For the linear trajectories in the residential sector, we show that transitions from biomass fuel to coal in low-income countries and from coal to natural gas in middle and high-income countries, in concert with electrification levels, are the main factors governing slopes. Thus, the three pollutants show different income-emission trajectories based on the sum of the four major sectors, and the residential sector in particular has a unique relationship with income growth. As one of the first studies to analyze historical emission trajectories of BC, we find that BC differs from SO2 and CO2 because of its significantly earlier turnover in the power and industry sectors due to control policies. Total BC emissions trajectories follow a unique shape due to the combination of linearly decreasing residential emissions with EKC-like patterns in industry and transportation. We compare these trajectories to those in three Integrated Assessment Models (IAMs), GCAM, AIM, and MESSAGE

  9. Tropical Cyclones Cause CaCO3 Undersaturation of Coral Reef Seawater in a High-CO2 World

    Science.gov (United States)

    Manzello, D.; Enochs, I.; Carlton, R.; Musielewicz, S.; Gledhill, D. K.

    2013-12-01

    Ocean acidification is the global decline in seawater pH and calcium carbonate (CaCO3) saturation state (Ω) due to the uptake of anthropogenic CO2 by the world's oceans. Acidification impairs CaCO3 shell and skeleton construction by marine organisms. Coral reefs are particularly vulnerable, as they are constructed by the CaCO3 skeletons of corals and other calcifiers. We understand relatively little about how coral reefs will respond to ocean acidification in combination with other disturbances, such as tropical cyclones. Seawater carbonate chemistry data collected from two reefs in the Florida Keys before, during, and after Tropical Storm Isaac provide the most thorough data to-date on how tropical cyclones affect the seawater CO2-system of coral reefs. Tropical Storm Isaac caused both an immediate and prolonged decline in seawater pH. Aragonite saturation state was depressed by 1.0 for a full week after the storm impact. Based on current 'business-as-usual' CO2 emissions scenarios, we show that tropical cyclones with high rainfall and runoff can cause periods of undersaturation (Ω negatively impact the structural persistence of coral reefs over this century.

  10. A decrease in nasal CO2 stimulates breathing in the tegu lizard.

    Science.gov (United States)

    Coates, E L; Furilla, R A; Ballam, G O; Bartlett, D

    1991-10-01

    Tegu lizards decrease ventilatory frequency (f) when constant CO2, as low as 0.4%, is delivered to the nasal cavities. In contrast, CO2, as high as 6%, pulsed into the nasal cavities during the expiratory phase of the breathing cycle does not alter f. The purpose of the present study was to investigate further the effect of nasal CO2 pattern on f in tegu lizards. Specifically, we tested: (1) whether f was affected by CO2 delivered to the nasal cavities during the inspiratory phase of the breathing cycle, and (2) whether pulsed decreases in nasal CO2 from 4% to 2% and from 4% to 0% would remove the f inhibition caused by constant nasal CO2. Ventilation was measured using a pneumotachograph and pressure transducer in-line with an endotracheal T-tube inserted through the glottis. CO2 was delivered to the nasal cavities through small tubes inserted into the external nares. Ventilatory frequency was not significantly altered when 4% CO2 was pulsed into the nasal cavities during inspiration. Dropping the CO2 in the nasal cavities from 4% to 0% at either 15 cycles/min (0.25 Hz) or for one cycle stimulated breathing. There was no significant difference between the f response to a drop in CO2 from 4% to 0% and that to a drop in CO2 from 4% to 2%. The failure to link the phasic CO2 ventilatory response to a phase in the respiratory cycle indicates that the nasal CO2 receptors do not participate in the breath-by-breath regulation of breathing in these lizards. The observation that small decreases in nasal CO2 abolished the f inhibition caused by constant nasal CO2 provides further evidence for the ability of the nasal CO2 receptors to distinguish between pulsed and constant CO2.

  11. Environmental Factors Affecting Preschoolers' Motor Development

    Science.gov (United States)

    Venetsanou, Fotini; Kambas, Antonis

    2010-01-01

    The process of development occurs according to the pattern established by the genetic potential and also by the influence of environmental factors. The aim of the present study was to focus on the main environmental factors affecting motor development. The review of the literature revealed that family features, such as socioeconomic status,…

  12. Factors Affecting Successful Implementation of Hospital Information Systems.

    Science.gov (United States)

    Farzandipur, Mehrdad; Jeddi, Fatemeh Rangraz; Azimi, Esmaeil

    2016-02-01

    Today, the use of information systems in health environments, like any other fields, is necessary and organizational managers are convinced to use these systems. However, managers' satisfaction is not the only factor in successfully implementing these systems and failed information technology projects (IT) are reported despite the consent of the directors. Therefore, this study aims to determine the factors affecting the successful implementation of a hospital information system. The study was carried out as a descriptive method in 20 clinical hospitals that the hospital information system (HIS) was conducted in them. The clinical and paraclinical users of mentioned hospitals are the study group. 400 people were chosen as samples in scientific method and the data was collected using a questionnaire consisted of three main human, managerial and organizational, and technological factors, by questionnaire and interview. Then the data was scored in Likert scale (score of 1 to 5) and were analyzed using the SPSS software. About 75 percent of the population were female, with average work experience of 10 years and the mean age was 30 years. The human factors affecting the success of hospital information system implementation achieved the mean score of 3.5, both organizational and managerial factors 2.9 and technological factors the mean of 3. Human factors including computer skills, perceiving usefulness and perceiving the ease of a hospital information system use are more effective on the acceptance and successful implementation of hospital information systems; then the technological factors play a greater role. It is recommended that for the successful implementation of hospital information systems, most of these factors to be considered.

  13. Global CO2 fluxes estimated from GOSAT retrievals of total column CO2

    Directory of Open Access Journals (Sweden)

    S. Basu

    2013-09-01

    Full Text Available We present one of the first estimates of the global distribution of CO2 surface fluxes using total column CO2 measurements retrieved by the SRON-KIT RemoTeC algorithm from the Greenhouse gases Observing SATellite (GOSAT. We derive optimized fluxes from June 2009 to December 2010. We estimate fluxes from surface CO2 measurements to use as baselines for comparing GOSAT data-derived fluxes. Assimilating only GOSAT data, we can reproduce the observed CO2 time series at surface and TCCON sites in the tropics and the northern extra-tropics. In contrast, in the southern extra-tropics GOSAT XCO2 leads to enhanced seasonal cycle amplitudes compared to independent measurements, and we identify it as the result of a land–sea bias in our GOSAT XCO2 retrievals. A bias correction in the form of a global offset between GOSAT land and sea pixels in a joint inversion of satellite and surface measurements of CO2 yields plausible global flux estimates which are more tightly constrained than in an inversion using surface CO2 data alone. We show that assimilating the bias-corrected GOSAT data on top of surface CO2 data (a reduces the estimated global land sink of CO2, and (b shifts the terrestrial net uptake of carbon from the tropics to the extra-tropics. It is concluded that while GOSAT total column CO2 provide useful constraints for source–sink inversions, small spatiotemporal biases – beyond what can be detected using current validation techniques – have serious consequences for optimized fluxes, even aggregated over continental scales.

  14. CO2 emissions embodied in China-US trade: Input-output analysis based on the emergy/dollar ratio

    International Nuclear Information System (INIS)

    Du Huibin; Guo Jianghong; Mao Guozhu; Smith, Alexander M.; Wang Xuxu; Wang, Yuan

    2011-01-01

    To gain insight into changes in CO 2 emissions embodied in China-US trade, an input-output analysis based on the emergy/dollar ratio (EDR) is used to estimate embodied CO 2 emissions; a structural decomposition analysis (SDA) is employed to analyze the driving factors for changes in CO 2 emissions embodied in China's exports to the US during 2002-2007. The results of the input-output analysis show that net export of CO 2 emissions increased quickly from 2002 to 2005 but decreased from 2005 to 2007. These trends are due to a reduction in total CO 2 emission intensity, a decrease in the exchange rate, and small imports of embodied CO 2 emissions. The results of the SDA demonstrate that total export volume was the largest driving factor for the increase in embodied CO 2 emissions during 2002-2007, followed by intermediate input structure. Direct CO 2 emissions intensity had a negative effect on changes in embodied CO 2 emissions. The results suggest that China should establish a framework for allocating emission responsibilities, enhance energy efficiency, and improve intermediate input structure. - Highlights: → An input-output analysis based on the emergy/dollar ratio estimated embodied CO 2 . → A structural decomposition analysis analyzed the driving factors. → Net export of CO 2 increased from 2002 to 2005 but decreased from 2005 to 2007. → Total export volume was the largest driving factor. → A framework for allocating emission responsibilities.

  15. Electrochemical fabrication, microstructure and magnetic properties of Sm2Co17/Fe7Co3 dual phase nanocomposite

    International Nuclear Information System (INIS)

    Cui, Chunxiang; Chen, Fenghua; Yang, Wei; Li, Hongfang; Liu, Qiaozhi; Sun, Jibing

    2015-01-01

    By utilizing alternate electrochemical reaction, atomic migration and deposition of Fe, Co, Sm and other chemical substances in the electrochemical solution, a large number of Sm 2 Co 17 /Fe 7 Co 3 dual phase nanowire arrays were carried out in the anodic aluminum oxide (AAO) template with highly uniform and orderly. The Sm 2 Co 17 /Fe 7 Co 3 dual phase nanowire arrays with diameter of 50 nm and length of 12 μm have the smooth surface and uniform diameter. The morphology and microstructure of annealed Sm 2 Co 17 /Fe 7 Co 3 dual phase nanowires were observed and analyzed using SEM, TEM and HRTEM. Compared with single-phase nanowires, dual phase magnetic nanowires have higher coercivity and saturation magnetization. In this composite system, both the hard and the soft phases have a high Curie temperature, therefore, we believe that the Sm 2 Co 17 /Fe 7 Co 3 dual phase nanowire arrays is a new type of high-temperature magnetic composites. - Highlights: • Sm 2 Co 17 /Fe 7 Co 3 dual phase nanowires were prepared by electrochemical method. • The interface pinning is the main factor to improve anisotropy field of the nanowires. • The dual phase magnetic nanowires have higher coercivity and saturation magnetization

  16. Decomposition analysis and mitigation strategies of CO2 emissions from energy consumption in South Korea

    International Nuclear Information System (INIS)

    Oh, Ilyoung; Wehrmeyer, Walter; Mulugetta, Yacob

    2010-01-01

    Energy-related CO 2 emissions in South Korea have increased substantially, outpacing those of Organisation for Economic Co-operation and Development (OECD) countries since 1990. To mitigate CO 2 emissions in South Korea, we need to understand the main contributing factors to rising CO 2 levels as part of the effort toward developing targeted policies. This paper aims to analyze the specific trends and influencing factors that have caused changes in emissions patterns in South Korea over a 15-year period. To this end, we employed the Log Mean Divisia index method with five energy consumption sectors and seven sub-sectors in terms of fuel mix (FM), energy intensity (EI), structural change (SC) and economic growth (EG). The results showed that EG was a dominant explanation for the increase in CO 2 emissions in all of the sectors. The results also demonstrated that FM causes CO 2 reduction across the array of sectors with the exception of the energy supply sector. CO 2 reduction as a function of SC was also observed in manufacturing, services and residential sectors. Furthermore, EI was an important driver of CO 2 reduction in most sectors except for several manufacturing sub-sectors. Based on these findings, it appears that South Korea should implement climate change policies that consider the specific influential factors associated with increasing CO 2 emissions in each sector.

  17. ELEVATED TEMPERATURE, SOIL MOISTURE AND SEASONALITY BUT NOT CO2 AFFECT CANOPY ASSIMILATION AND SYSTEM RESPIRATION IN SEEDLING DOUGLAS-FIR ECOSYSTEMS

    Science.gov (United States)

    We investigated the effects of elevated atmospheric CO2 and air temperature on C cycling in trees and associated soil system, focusing on canopy CO2 assimilation (Asys) and system CO2 loss through respiration (Rsys). We hypothesized that both elevated CO2 and elevated temperature...

  18. Estimation of Total Yearly CO2 Emissions by Wildfires in Mexico during the Period 1999–2010

    Directory of Open Access Journals (Sweden)

    Flor Bautista Vicente

    2014-01-01

    Full Text Available The phenomenon of wildfires became a global environmental problem which demands estimations of their CO2 emissions. Wildfires have deteriorated the air quality increasingly. Using available information on documented wildfires and a data set of satellite detected hot spots, total yearly emissions of CO2 in Mexico were estimated for the period 1999–2010. A map of the main vegetation groups was used to calculate total areas for every vegetation type. The yearly number of hot spots per vegetation type was calculated. Estimates of emitted CO2 in a wildfire were then accomplished by considering parameters such as: forest fuel load, vegetation type, burning efficiency, and mean burned area. The number of wildfires and total affected areas showed an annual variability. The yearly mean of affected area by a single wildfire varied between 0.2 and 0.3 km2. The total affected area during the period 1999 to 2010 was 86800 km2 which corresponds to 4.3% of the Mexican territory. Total CO2 emissions were approximately 112 Tg. The most affected vegetation types were forest and rainforest.

  19. CoFactor: Folate Requirement for Optimization of 5-Fluouracil Activity in Anticancer Chemotherapy

    Directory of Open Access Journals (Sweden)

    Muhammad Wasif Saif

    2010-01-01

    Full Text Available Intracellular reduced folate exists as a “pool” of more than 6 interconvertable forms. One of these forms, 5,10 methylenetetrahydrofolic acid (CH2THF, is the key one-carbon donor and reduced folate substrate for thymidylate synthase (TS. This pathway has been an important target for chemotherapy as it provides one of the necessary nucleotide substrates for DNA synthesis. The fluoropyrimidine 5-fluorouracil (5-FU exerts its main cytotoxic activity through TS inhibition. Leucovorin (5-formyltetrahydrofolate; LV has been used to increase the intracellular reduced folate pools and enhance TS inhibition. However, it must be metabolized within the cell through multiple intracellular enzymatic steps to form CH2THF. CoFactor (USAN fotrexorin calcium, (dl-5,10,-methylenepteroyl-monoglutamate calcium salt is a reduced folate that potentiates 5-FU cytotoxicity. According to early clinical trials, when 5-FU is modulated by CoFactor instead of LV, there is greater anti-tumor activity and less toxicity. This review presents the emerging role of CoFactor in colorectal and nongastrointestinal malignancies.

  20. Growth under elevated CO2 concentration affects the temperature response of photosynthetic rate

    Czech Academy of Sciences Publication Activity Database

    Holišová, Petra; Šigut, Ladislav; Klem, Karel; Urban, Otmar

    2013-01-01

    Roč. 6, č. 1 (2013), s. 43-52 ISSN 1803-2451 R&D Projects: GA ČR(CZ) GAP501/10/0340; GA MŠk(CZ) LM2010007; GA ČR GA13-28093S Institutional support: RVO:67179843 Keywords : CO2 assimilation rate * Fagus sylvatica * chlorophyll fluorescence * Picea abies * Rubisco Subject RIV: ED - Physiology http://dx.doi.org/10.11118/beskyd201306010043