WorldWideScience

Sample records for factorial design optimization

  1. Connection Among Some Optimal Criteria for Symmetrical Fractional Factorial Designs

    Institute of Scientific and Technical Information of China (English)

    Hong Qin; Ming-yao Ai; Jian-hui Ning

    2005-01-01

    A fundamental and practical question for fractional factorial designs is the issue of optimal factor assignment. Recently, some new criteria, such as generalized minimum aberration, WV-criterion, NB-criterion and uniformity criterion are proposed for comparing and selecting fractions. In this paper, we indicate that these criteria agree quite well for symmetrical fraction factorial designs.

  2. Optimization of minoxidil microemulsions using fractional factorial design approach.

    Science.gov (United States)

    Jaipakdee, Napaphak; Limpongsa, Ekapol; Pongjanyakul, Thaned

    2016-01-01

    The objective of this study was to apply fractional factorial and multi-response optimization designs using desirability function approach for developing topical microemulsions. Minoxidil (MX) was used as a model drug. Limonene was used as an oil phase. Based on solubility, Tween 20 and caprylocaproyl polyoxyl-8 glycerides were selected as surfactants, propylene glycol and ethanol were selected as co-solvent in aqueous phase. Experiments were performed according to a two-level fractional factorial design to evaluate the effects of independent variables: Tween 20 concentration in surfactant system (X1), surfactant concentration (X2), ethanol concentration in co-solvent system (X3), limonene concentration (X4) on MX solubility (Y1), permeation flux (Y2), lag time (Y3), deposition (Y4) of MX microemulsions. It was found that Y1 increased with increasing X3 and decreasing X2, X4; whereas Y2 increased with decreasing X1, X2 and increasing X3. While Y3 was not affected by these variables, Y4 increased with decreasing X1, X2. Three regression equations were obtained and calculated for predicted values of responses Y1, Y2 and Y4. The predicted values matched experimental values reasonably well with high determination coefficient. By using optimal desirability function, optimized microemulsion demonstrating the highest MX solubility, permeation flux and skin deposition was confirmed as low level of X1, X2 and X4 but high level of X3.

  3. Factorial Design to Optimize Biosurfactant Production by Yarrowia lipolytica

    Directory of Open Access Journals (Sweden)

    Gizele Cardoso Fontes

    2010-01-01

    Full Text Available In order to improve biosurfactant production by Yarrowia lipolytica IMUFRJ 50682, a factorial design was carried out. A 24 full factorial design was used to investigate the effects of nitrogen sources (urea, ammonium sulfate, yeast extract, and peptone on maximum variation of surface tension (ΔST and emulsification index (EI. The best results (67.7% of EI and 20.9 mN m−1 of ΔST were obtained in a medium composed of 10 g 1−1 of ammonium sulfate and 0.5 g 1−1 of yeast extract. Then, the effects of carbon sources (glycerol, hexadecane, olive oil, and glucose were evaluated. The most favorable medium for biosurfactant production was composed of both glucose (4% w/v and glycerol (2% w/v, which provided an EI of 81.3% and a ΔST of 19.5 mN m−1. The experimental design optimization enhanced ΔEI by 110.7% and ΔST by 108.1% in relation to the standard process.

  4. Optimization of permeability for quality improvement by using factorial design

    Science.gov (United States)

    Said, Rahaini Mohd; Miswan, Nor Hamizah; Juan, Ng Shu; Hussin, Nor Hafizah; Ahmad, Aminah; Kamal, Mohamad Ridzuan Mohamad

    2017-05-01

    Sand castings are used worldwide by the manufacturing process in Metal Casting Industry, whereby the green sand are the commonly used sand mould type in the industry of sand casting. The defects on the surface of casting product is one of the problems in the industry of sand casting. The problems that relates to the defect composition of green sand are such as blowholes, pinholes shrinkage and porosity. Our objective is to optimize the best composition of green sand in order to minimize the occurrence of defects. Sand specimen of difference parameters (Bentonite, Green Sand, Cold dust and water) were design and prepared to undergo permeability test. The 24 factorial design experiment with four factors at difference composition were runs, and the total of 16 runs experiment were conducted. The developed models based on the experimental design necessary models were obtained. The model with a high coefficient of determination (R2=0.9841) and model for predicted and actual fitted well with the experimental data. Using the Analysis of Design Expert software, we identified that bentonite and water are the main interaction effect in the experiments. The optimal settings for green sand composition are 100g silica sand, 21g bentonite, 6.5 g water and 6g coal dust. This composition gives an effect of permeability number 598.3GP.

  5. Optimization of MCM-48 synthesis using factorial design

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, A.R. do; Medeiros, R.L.B. de A.; Melo, M. A. de F.; Melo, D.M. de A. [Universitdade Federal do Rio Grande do Norte (UFRN), Natal (Brazil); Souza, M.J.B. de, E-mail: ale3ufs@yahoo.com.br [Universidade Federal de Sergipe (UFS), Sao Cristovao (Brazil)

    2016-10-15

    MCM-48 mesoporous materials were hydrothermally synthesized according to the 2{sup 2} factorial design by varying the crystallization time and temperature of the synthesis gel, and characterized by means of X-ray diffraction analysis and adsorption of N{sub 2} . In the crystallization temperature and time conditions used, specific areas between 924 to 1102 m{sup 2}.g{sup -1}, pore volumes between 0.015 to 0.087 cm{sup 3}.g{sup -1} and pore diameters between 3.2 to 4.0 nm were obtained. It was observed that for the syntheses performed at high temperature, the crystallization time should be reduced so that the material structure is formed. (author)

  6. Optimization parameter design of a circular e+e-Higgs factory

    Institute of Scientific and Technical Information of China (English)

    WANG Dou; GAO Jie; XIAO Ming; GENG Hui-Ping; GUO Yuan-Yuan; XU Shou-Yan; WANG Na

    2013-01-01

    In this paper we will show a general method of how to make an optimized parameter design of a circular e+e-Higgs factory by using analytical expression of maximum beam-beam parameter and beamstrahlung beam lifetime starting from a given design goal and technical limitations.A parameter space has been explored.Based on beam parameters scan and RF parameters scan,a set of optimized parameter designs for 50 km Circular Higgs Factory (CHF) with different RF frequency was proposed.

  7. Theory of optimal blocking for fractional factorial split-plot designs

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    [1]Box, G.E.P., Jones, S., Split-plot designs for robust product experimentation, J. Appl. Statist., 1992, 19: 3-26.[2]Mukerjee, R., Fang, K.T., Fractional factorial split-plot designs with minimum aberration and maximum estimation capacity, Statist, Sinica, 2002, 12: 885-903.[3]Huang, P., Chen, D., Voelkel, J.O., Minimum aberration two-level split-plot designs, Technometrics, 1998, 40(4):314-326.[4]Fries, A., Hunter, W.G., Minimum aberration 2k-p designs, Technometrics, 1980, 22(4): 601-608.[5]Bingham, D., Sitter, R.R., Minimum aberration two-level fractional factorial split-plot designs, Technometrics,1999, 41(1): 62-70.[6]Bingham, D., Sitter, R.R., Some theoretical results for fractional factorial split-plot designs, Ann. Statist., 1999,27 (4): 1240-1255.[7]Bingham, D., Sitter, R.R., Design issues in fractional factorial split-plot experiments, J. Quality Technology,2001, 33(1): 2-15.[8]Cheng, C.S., Steinberg, D.M., Sun, D.X., Minimum aberration and model robustness for two-level factorial designs, J. Roy. Statist. Soc., Ser. B, 1999, 61: 85-93.[9]Cheng, C.S., Mukerjee, R., Regular fractional factorial designs with minimum aberration and maximum estimation capacity, Ann. Statist., 1998, 26: 2289-2300.[10]Zhang, R., Park, D.K., Optimal blocking of two-level fractional factorial designs, J. Statist. Plann. Infer., 2000,91 (1): 107-121.[11]Ai, M., Zhang, R., Theory of minimum aberration blocked regular mixed factorial designs, J. Statist. Plann.Infer., 2004, 126(1): 305-323.[12]Ai, M., Zhang, R., Theory of optimal blocking of nonregular factorial designs, Canad. J. Statist., 2004, 32(1):57-72.[13]Tang, B., Wu, C.F.J., Characterization of minimum aberration 2n-k designs in terms of their complementary designs, Ann. Statist., 1996, 24(6): 2549-2559.[14]Suen, C.Y., Chen, H., Wu, C.F.J., Some identities on qn-m designs with application to minimum aberrations,Ann. Statist., 1997, 25(3): 1176-1188.[15]Mukerjee, R., Wu, C.F.J., Minimum aberration designs for mixed

  8. Theory of optimal blocking for fractional factorial split-plot designs

    Institute of Scientific and Technical Information of China (English)

    Al Mingyao; HE Shuyuan

    2005-01-01

    The issue of optimal blocking for fractional factorial split-plot (FFSP) designs is considered under the two criteria of minimum aberration and maximum estimation capacity. The criteria of minimum secondary aberration (MSA) and maximum secondary estimation capacity (MSEC) are developed for discriminating among rival nonisomorphic blcoked FFSP designs. A general rule for identifying MSA or MSEC blocked FFSP designs through their blocked consulting designs is established.

  9. Factorial design approach for optimization of floating microspheres of diltiazem hydrochloride

    Directory of Open Access Journals (Sweden)

    Mangal Singh Panwar

    2015-01-01

    Full Text Available The aim of this study was to perform optimization of floating microspheres of diltiazem hydrochloride for the prolongation of gastric residence time. The microspheres were prepared by a nonaqueous solvent evaporation method using polycarbonate. A full factorial design was applied to optimize the formulation. Preliminary studies revealed that the concentration of polymer and stirring speed significantly affected the characteristics of floating microspheres. The optimum batch of microsphere exhibited smooth surfaces with good flow and packing properties, prolonged sustained drug release, remained buoyant for more than 10 h, high entrapment efficiency up to 97% w/w. Scanning electron microscopy confirmed the hollow structure with particle size in the order of 190 μm. The studies revealed that the increase in concentration of polycarbonate increased the drug release from the floating microspheres. The results of two third full factorial design revealed that the concentration of polycarbonate (X1 and stirring speed (X2 significantly affected drug entrapment efficiency, percentage release.

  10. Application of Factorial Design for Gas Parameter Optimization in CO2 Laser Welding

    DEFF Research Database (Denmark)

    Gong, Hui; Dragsted, Birgitte; Olsen, Flemming Ove

    1997-01-01

    The effect of different gas process parameters involved in CO2 laser welding has been studied by applying two-set of three-level complete factorial designs. In this work 5 gas parameters, gas type, gas flow rate, gas blowing angle, gas nozzle diameter, gas blowing point-offset, are optimized...... to be a very useful tool for parameter optimi-zation in laser welding process. Keywords: CO2 laser welding, gas parameters, factorial design, Analysis of Variance........ The bead-on-plate welding specimens are evaluated by a number of quality char-acteristics, such as the penetration depth and the seam width. The significance of the gas pa-rameters and their interactions are based on the data found by the Analysis of Variance-ANOVA. This statistic methodology is proven...

  11. Experimentation and Optimization of Surface Roughness in WEDM Process using Full Factorial Design integrated PCA Approach

    Directory of Open Access Journals (Sweden)

    Rismaya Kumar Mishra

    2016-04-01

    Full Text Available Application of WEDM is growing rapidly since the last three decades due its several advantages and applicability of the process to produce complicated intrinsic, extrinsic shapes of miniaturized size, so there is a need to analyze and optimize the process. In this research work the experiments were conducted using the general full factorial design methodology with 48 experimental runs. The values response parameters Ra, Rq and Rz were measured and the effect of process parameters wire type, wire tension, power, pulse on time and discharge current on these responses were studied qualitatively and quantitatively using main effect plots, interaction plots and ANOVA. Finally the optimal process parameter setting for responses were found by using full factorial design integrated PCA Approach.

  12. A quality by design approach to optimization of emulsions for electrospinning using factorial and D-optimal designs.

    Science.gov (United States)

    Badawi, Mariam A; El-Khordagui, Labiba K

    2014-07-16

    Emulsion electrospinning is a multifactorial process used to generate nanofibers loaded with hydrophilic drugs or macromolecules for diverse biomedical applications. Emulsion electrospinnability is greatly impacted by the emulsion pharmaceutical attributes. The aim of this study was to apply a quality by design (QbD) approach based on design of experiments as a risk-based proactive approach to achieve predictable critical quality attributes (CQAs) in w/o emulsions for electrospinning. Polycaprolactone (PCL)-thickened w/o emulsions containing doxycycline HCl were formulated using a Span 60/sodium lauryl sulfate (SLS) emulsifier blend. The identified emulsion CQAs (stability, viscosity and conductivity) were linked with electrospinnability using a 3(3) factorial design to optimize emulsion composition for phase stability and a D-optimal design to optimize stable emulsions for viscosity and conductivity after shifting the design space. The three independent variables, emulsifier blend composition, organic:aqueous phase ratio and polymer concentration, had a significant effect (pquality in electrospinnable emulsions, allowing development of hydrophilic drug-loaded nanofibers with desired morphological characteristics.

  13. Optimization of LDL targeted nanostructured lipid carriers of 5-FU by a full factorial design

    Directory of Open Access Journals (Sweden)

    Sare Andalib

    2012-01-01

    Full Text Available Background: Nanostructured lipid carriers (NLC are a mixture of solid and liquid lipids or oils as colloidal carrier systems that lead to an imperfect matrix structure with high ability for loading water soluble drugs. The aim of this study was to find the best proportion of liquid and solid lipids of different types for optimization of the production of LDL targeted NLCs used in carrying 5-Fu by the emulsification-solvent evaporation method. Materials and Methods: The influence of the lipid type, cholesterol or cholesteryl stearate for targeting LDL receptors, oil type (oleic acid or octanol, lipid and oil% on particle size, surface charge, drug loading efficiency, and drug released percent from the NLCs were studied by a full factorial design. Results: The NLCs prepared by 54.5% cholesterol and 25% of oleic acid, showed optimum results with particle size of 105.8 nm, relatively high zeta potential of −25 mV, drug loading efficiency of 38% and release efficiency of about 40%. Scanning electron microscopy of nanoparticles confirmed the results of dynamic light scattering method used in measuring the particle size of NLCs. Conclusions: The optimization method by a full factorial statistical design is a useful optimization method for production of nanostructured lipid carriers.

  14. Optimization of a chondrogenic medium through the use of factorial design of experiments.

    Science.gov (United States)

    Enochson, Lars; Brittberg, Mats; Lindahl, Anders

    2012-12-01

    The standard culture system for in vitro cartilage research is based on cells in a three-dimensional micromass culture and a defined medium containing the chondrogenic key growth factor, transforming growth factor (TGF)-β1. The aim of this study was to optimize the medium for chondrocyte micromass culture. Human chondrocytes were cultured in different media formulations, designed with a factorial design of experiments (DoE) approach and based on the standard medium for redifferentiation. The significant factors for the redifferentiation of the chondrocytes were determined and optimized in a two-step process through the use of response surface methodology. TGF-β1, dexamethasone, and glucose were significant factors for differentiating the chondrocytes. Compared to the standard medium, TGF-β1 was increased 30%, dexamethasone reduced 50%, and glucose increased 22%. The potency of the optimized medium was validated in a comparative study against the standard medium. The optimized medium resulted in micromass cultures with increased expression of genes important for the articular chondrocyte phenotype and in cultures with increased glycosaminoglycan/DNA content. Optimizing the standard medium with the efficient DoE method, a new medium that gave better redifferentiation for articular chondrocytes was determined.

  15. Fish canning wastewater treatment by activated sludge: Application of factorial design optimization

    Directory of Open Access Journals (Sweden)

    Raquel O. Cristóvão

    2015-06-01

    Full Text Available The optimization of hydraulic retention time (HRT and initial organic matter concentration for dissolved organic carbon (DOC abatement of wastewater from a fish canning industry of northern Portugal by activated sludge was investigated using response surface methodology (RSM. The two parameters were chosen since it was found that the treatment efficiency is mainly influenced by them. The experimental data on DOC removal were fitted into a quadratic polynomial model using factorial design and RSM. The optimum process conditions were determined by analyzing the response surface of a three-dimensional plot and by solving the regression model equation. The obtained results showed a HRT of 6.4 h and an initial DOC of 406.2 mg/L as the best treatment conditions. Under these conditions, the maximum predicted DOC removal was 88.0%, confirming the feasibility and the reliability of fish canning wastewater treatment by activated sludge for organic content removal.

  16. Novel Starch-PVA Polymer for Microparticle Preparation and Optimization Using Factorial Design Study.

    Science.gov (United States)

    Chattopadhyay, Helen; De, Amit Kumar; Datta, Sriparna

    2015-01-01

    The aim of our present work was to optimize the ratio of a very novel polymer, starch-polyvinyl alcohol (PVA), for controlled delivery of Ornidazole. Polymer-coated drug microparticles were prepared by emulsion method. Microscopic study, scanning electron microscopic study, and atomic force microscopic study revealed that the microparticles were within 10 micrometers of size with smooth spherical shape. The Fourier transform infrared spectroscopy showed absence of drug polymer interaction. A statistical 3(2) full factorial design was used to study the effect of different concentration of starch and PVA on the drug release profile. The three-dimensional plots gave us an idea about the contribution of each factor on the release kinetics. Hence this novel polymer of starch and polyvinyl alcohol can be utilized for control release of the drug from a targeted delivery device.

  17. HPLC/DAD determination of rosmarinic acid in Salvia officinalis: sample preparation optimization by factorial design

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Karina B. de [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Dept. de Farmacia; Oliveira, Bras H. de, E-mail: bho@ufpr.br [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Dept. de Quimica

    2013-01-15

    Sage (Salvia officinalis) contains high amounts of the biologically active rosmarinic acid (RA) and other polyphenolic compounds. RA is easily oxidized, and may undergo degradation during sample preparation for analysis. The objective of this work was to develop and validate an analytical procedure for determination of RA in sage, using factorial design of experiments for optimizing sample preparation. The statistically significant variables for improving RA extraction yield were determined initially and then used in the optimization step, using central composite design (CCD). The analytical method was then fully validated, and used for the analysis of commercial samples of sage. The optimized procedure involved extraction with aqueous methanol (40%) containing an antioxidant mixture (ascorbic acid and ethylenediaminetetraacetic acid (EDTA)), with sonication at 45 deg C for 20 min. The samples were then injected in a system containing a C{sub 18} column, using methanol (A) and 0.1% phosphoric acid in water (B) in step gradient mode (45A:55B, 0-5 min; 80A:20B, 5-10 min) with flow rate of 1.0 mL min-1 and detection at 330 nm. Using this conditions, RA concentrations were 50% higher when compared to extractions without antioxidants (98.94 {+-} 1.07% recovery). Auto-oxidation of RA during sample extraction was prevented by the use of antioxidants resulting in more reliable analytical results. The method was then used for the analysis of commercial samples of sage. (author)

  18. Optimization of cardiovascular stent against restenosis: factorial design-based statistical analysis of polymer coating conditions.

    Directory of Open Access Journals (Sweden)

    Gayathri Acharya

    Full Text Available The objective of this study was to optimize the physicodynamic conditions of polymeric system as a coating substrate for drug eluting stents against restenosis. As Nitric Oxide (NO has multifunctional activities, such as regulating blood flow and pressure, and influencing thrombus formation, a continuous and spatiotemporal delivery of NO loaded in the polymer based nanoparticles could be a viable option to reduce and prevent restenosis. To identify the most suitable carrier for S-Nitrosoglutathione (GSNO, a NO prodrug, stents were coated with various polymers, such as poly (lactic-co-glycolic acid (PLGA, polyethylene glycol (PEG and polycaprolactone (PCL, using solvent evaporation technique. Full factorial design was used to evaluate the effects of the formulation variables in polymer-based stent coatings on the GSNO release rate and weight loss rate. The least square regression model was used for data analysis in the optimization process. The polymer-coated stents were further assessed with Differential scanning calorimetry (DSC, Fourier transform infrared spectroscopy analysis (FTIR, Scanning electron microscopy (SEM images and platelet adhesion studies. Stents coated with PCL matrix displayed more sustained and controlled drug release profiles than those coated with PLGA and PEG. Stents coated with PCL matrix showed the least platelet adhesion rate. Subsequently, stents coated with PCL matrix were subjected to the further optimization processes for improvement of surface morphology and enhancement of the drug release duration. The results of this study demonstrated that PCL matrix containing GSNO is a promising system for stent surface coating against restenosis.

  19. Ground-up circular Higgs Factory ring design and cell length optimization

    Science.gov (United States)

    Talman, Richard

    2017-02-01

    A “ground-up” Higgs Factory design methodology is described. For concreteness, numerical parameter choices are drawn primarily from CEPC, the Circular Electron Positron Collider. The goals are to find: (i) optimal parameters, (ii) improved understanding , (iii) a tentative lattice design. As illustration of the method, six chromaticity-corrected lattices, with cell lengths ranging from 45 m to 280 m, all with identical βy = 2 mm or βy = 10 mm intersection region optics, are designed and their properties compared. For simplicity only a single “toy ring,” circumference (76 km), with one interaction point, and a single beam energy (120 GeV) is considered. For the cell-length optimization a figure of merit FOM (essentially integrated luminosity) is maximized consistent with a dimensionless “fine tuning penalty function” or figure of demerit FOD not being allowed to exceed a conservatively chosen upper limit. The tentative recommendation from this investigation is that the optimal CEPC route is (except for obvious changes) to simply copy LEP: 80 m cell length and two-in-one single-ring operation. The main luminosity-increasing improvements are increased radius and power, top-off-full-energy-injection, noninterleaved sextupoles, more than 100 beam bunch operation, and improved intersection region design. Local chromaticity compensation (with its inevitable intense hard X-rays incident on the detectors) is found to be unnecessary. With these changes luminosity in excess of 1034cm‑2s‑1 is projected to be achievable.

  20. Floating granules of ranitidine hydrochloride-gelucire 43/01: formulation optimization using factorial design.

    Science.gov (United States)

    Patel, Dasharath M; Patel, Natavarlal M; Patel, Viral F; Bhatt, Darshini A

    2007-04-13

    The purpose of this research was to develop and optimize a controlled-release multiunit floating system of a highly water soluble drug, ranitidine HCl, using Compritol, Gelucire 50/13, and Gelucire 43/01 as lipid carriers. Ranitidine HCl-lipid granules were prepared by the melt granulation technique and evaluated for in vitro floating and drug release. Ethyl cellulose, methylcellulose, and hydroxypropyl methylcellulose were evaluated as release rate modifiers. A 3(2) full factorial design was used for optimization by taking the amounts of Gelucire 43/01 (X (1)) and ethyl cellulose (X (2)) as independent variables, and the percentage drug released in 1(Q(1)), 5(Q(5)), and 10 (Q(10)) hours as dependent variables. The results revealed that the moderate amount of Gelucire 43/01 and ethyl cellulose provides desired release of ranitidine hydrochloride from a floating system. Batch F4 was considered optimum since it contained less Gelucire and was more similar to the theoretically predicted dissolution profile (f(2) = 62.43). The temperature sensitivity studies for the prepared formulations at 40 degrees C/75% relative humidity for 3 months showed no significant change in in vitro drug release pattern. These studies indicate that the hydrophobic lipid Gelucire 43/01 can be considered an effective carrier for design of a multiunit floating drug delivery system for highly water soluble drugs such as ranitidine HCl.

  1. Optimization of Extracellular Lipase Production by Penicillium chrysogenum Using Factorial Design

    Directory of Open Access Journals (Sweden)

    Shafei, M. S.

    2011-01-01

    Full Text Available The effect of oxygen on lipase production by Penicillium chrysogenum was studied under two operating modes, controlled aeration rate tested and controlled agitation at dissolved oxygen concentration (DO 1.00 vvm. Lipase production and cell dry weight were tested in a stirred batch fermenter 5 L. Improvement in oxygen transfer rate (OTR either by aeration or agitation resulted in an increase in lipase production. Growth curves and lipase activities of P.chrysogenum were examined at agitation rates (200,400,600 rpm, aeration rates (2,4 vvm at different fermentation periods (24,48,72,96,120 h. Response Surface Methodology (RSM using Design Expert software was used to study the effect of aeration, agitation, and fermentation time on lipase activity and cell dry weight. These factors were analyzed using 21. 32 level factorial design. An optimal set of conditions that maximize lipase production: (2 vvm aeration; 600 rpm agitation after 72 h was obtained. The maximum lipase activity obtained was 240 U/mL. Beside lipase activity, this paper also studies the optimal combination of the controllable factors (aeration; agitation and fermentation time that will maximize the cell dry weight.

  2. Development and optimization of novel controlled-release pioglitazone provesicular powders using 3² factorial design.

    Science.gov (United States)

    Shukr, Marwa H; Eltablawy, Nadia A

    2015-02-01

    This work aimed at studying a novel controlled drug delivery proniosomal formulation of pioglitazone for treatment of diabetes type-2. The effects of independent variables like type of surfactant and ratio of surfactants/cholesterol were studied using 3(2) factorial design. The provesicular powders were characterized regarding their encapsulation efficiency, vesicle size, morphology, and in vitro drug release. The revealed optimal provesicular powder was exposed to stability testing and in vivo performance evaluation. Results showed that F6 was selected as the optimal formulation, and its in vivo hypoglycemic effect on normal healthy and STZ-induced diabetic albino rats was investigated. F6 proniosomal formulation exhibited a significantly higher % decrease (56.18 % for STZ-induced diabetic albino rats) of blood glucose level (BGL) than Actos® (32. % for STZ-induced diabetic albino rats). Higher % decrease of BGL with longer t max and lower AUC0-24 confirms the development of a successful proniosomal pioglitazone formulation.

  3. Optimizing the lanthanum adsorption process onto chemically modified biomaterials using factorial and response surface design.

    Science.gov (United States)

    Gabor, Andreea; Davidescu, Corneliu Mircea; Negrea, Adina; Ciopec, Mihaela; Grozav, Ion; Negrea, Petru; Duteanu, Narcis

    2017-01-29

    The rare metals' potential to pollute air, water, soil, and especially groundwater has received lot of attention recently. One of the most common rare earth group elements, lanthanum, is used in many industrial branches, and due to its toxicity, it needs to be eliminated from all residual aqueous solutions. The goal of this study was to evaluate the control of the adsorption process for lanthanum removal from aqueous solutions, using cellulose, a known biomaterial with high adsorbent properties, cheap, and environment friendly. The cellulose was chemically modified by functionalization with sodium β-glycerophosphate. The experimental results obtained after factorial design indicate optimum adsorption parameters as pH 6, contact time 60 min, and temperature 298 K, when the equilibrium concentration of lanthanum was 250 mg L(-1), and the experimental adsorption capacity obtained was 31.58 mg g(-1). Further refinement of the optimization of the adsorption process by response surface design indicates that at pH 6 and the initial concentration of 256 mg L(-1), the adsorption capacity has maximum values between 30.87 and 36.73 mg g(-1).

  4. Full factorial design optimization of anti-inflammatory drug release by PCL–PEG–PCL microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Azouz, L' Hachemi, E-mail: azouz.chimie@gmail.com [Laboratoire des Matériaux Organiques (LMO), Faculté des Sciences Exactes, Département de Chimie, Université de Bejaia, 06000 Bejaia Algérie (Algeria); Dahmoune, Farid, E-mail: farid.dahmoune@yahoo.fr [Laboratoire de Biomathématiques, Biophysique, Biochimie et Scientométrie (L3BS-Bejaia), Faculté des Sciences de la Nature et de la Vie et des Sciences de la Terre, Université de Bouira 10000 Bouira (Algeria); Rezgui, Farouk, E-mail: rezgui-farouk@netcourrier.com [Laboratoire des Matériaux Organiques (LMO), Faculté de Technologie, Département de Génie des Procédés, Université de Bejaia, 06000 Bejaia (Algeria); G' Sell, Christian, E-mail: gsell.christian@univ-lorraine.fr [Université de Lorraine, Pôle scientifique M4, Institut Jean Lamour - UMR CNRS-UL 7198, Département SI2M, 54000 Nancy (France)

    2016-01-01

    A biodegradable triblock poly(ε-caprolactone)–poly(ethylene glycol)–poly(ε-caprolactone) copolymer was successfully synthesized by ring-opening polymerization of ε-caprolactone, and was characterized by intrinsic viscosimetry, {sup 1}H nuclear magnetic resonance, infrared spectroscopy and X-ray diffraction. Copolymer microparticles loaded with ibuprofen were prepared by an oil-in-water (o/w) emulsion solvent evaporation process. They were carefully weighted and characterized through their zeta potential. In this work, 4 selected process parameters (shaking speed X{sub 1}, time of contact X{sub 2}, poly(vinyl alcohol) concentration X{sub 3}, and ibuprofen concentration X{sub 4}) were adjusted at 2 different values. For each of the 16 experimental conditions, repeated twice, the drug encapsulation efficiency of the microspheres was determined, according to the following definition: EE (X{sub 1}, X{sub 2}, X{sub 3}, X{sub 4}) = mass of encapsulated ibuprofen / total weight of ibuprofen. A “full factorial design method” was applied to analyze the results statistically according to a polynomial fit and to determine the optimal conditions for the microencapsulation of the ibuprofen through an accurate statistical protocol. The microparticles obtained exhibit a spherical shape as shown by electron microscopy. - Highlights: • PCEC copolymer was synthesized by ring-opening polymerization of ε-caprolactone. • 2{sup 4} experimental design was used to optimize the IBF encapsulation efficiency (EE). • 88.86% of ibuprofen (IBF) was encapsulated in PCEC microspheres. • EE significantly decreases with increasing shaking speed (antagonist effect). • EE significantly increases with increasing IBF concentration (synergetic effect).

  5. Statistical optimization of dithranol-loaded solid lipid nanoparticles using factorial design

    Directory of Open Access Journals (Sweden)

    Makarand Suresh Gambhire

    2011-09-01

    Full Text Available This study describes a 3² full factorial experimental design to optimize the formulation of dithranol (DTH loaded solid lipid nanoparticles (SLN by the pre-emulsion ultrasonication method. The variables drug: lipid ratio and sonication time were studied at three levels and arranged in a 3² factorial design to study the influence on the response variables particle size and % entrapment efficiency (%EE. From the statistical analysis of data polynomial equations were generated. The particle size and %EE for the 9 batches (R1 to R9 showed a wide variation of 219-348 nm and 51.33- 71.80 %, respectively. The physical characteristics of DTH-loaded SLN were evaluated using a particle size analyzer, differential scanning calorimetry and X-ray diffraction. The results of the optimized formulation showed an average particle size of 219 nm and entrapment efficiency of 69.88 %. Ex-vivo drug penetration using rat skin showed about a 2-fold increase in localization of DTH in skin as compared to the marketed preparation of DTH.Este estudo descreve o planejamento factorial 3² para otimizar a formulação de nanopartículas lipídicas sólidas (SLN carregadas com ditranol (DTH pelo método da ultrassonificação pré-emulsão. As variáveis como proporção de fármaco:lipídio e o tempo de sonicação foram estudados em três níveis e arranjados em planejamento fatorial 3² para estudar a influência nas variáveis de resposta tamanho de partícula e eficiência percentual de retenção do fármaco (%EE. Pela análise estatística, geraram-se equações polinomiais. O tamanho da partícula e a %EE para os 9 lotes (R1 a R9 mostraram ampla variação, respectivamente, 219-348 nm e 51,33-71,80%. As características físicas das SLN carregadas com DTN foram avaliadas utilizando-se analisador de tamanho de partícula, calorimetria de varredura diferencial e difração de raios X. Os resultados da formulação otimizada mostraram tamanho médio de partícula de

  6. Degradation characteristics of metoprolol during UV/chlorination reaction and a factorial design optimization.

    Science.gov (United States)

    Nam, Seung-Woo; Yoon, Yeomin; Choi, Dae-Jin; Zoh, Kyung-Duk

    2015-03-21

    Metoprolol (MTP), a hypertension depressor, has been increasingly detected even after conventional water treatment processes. In this study, the removal of MTP was compared using chlorination (Cl2), UV-C photolysis, and UV/chlorination (Cl2/UV) reactions. The results showed that the UV/chlorination reaction was most effective for MTP removal. MTP removal during UV/chlorination reaction was optimized under various conditions of UV intensity (1.1-4.4 mW/cm(2)), chlorine dose (1-5 mg/L as Cl2), pH (2-9), and dissolved organic matter (DOM, 1-4 mgC/L) using a two-level factorial design with 16 experimental combinations of the four factors. Among the factors examined, DOM scavenging by OH radicals was the most dominant in terms of MTP removal during UV/chlorination reaction. The established model fit well with the experimental results using to various water samples including surface waters, filtered and tap water samples. The optimized conditions (UV intensity=4.4 mW/cm(2), [Cl2]=5 mg/L, pH 7, and [DOM]=0.8-1.1 mgC/L) of the model removed more than 78.9% of MTP for filtered water samples during UV/chlorination reaction. Using LC-MS/MS, five byproducts of MTP (molecular weight: 171, 211, 309, 313, and 341, respectively) were identified during UV/chlorination reaction. Based on this information, the MTP transformation mechanism during UV/chlorination was suggested. Our results imply that applying UV/chlorination process after filtration stage in the water treatment plant (WTP) would be the most appropriate for effective removal of MTP.

  7. Formulation Optimization of Rosuvastatin Calcium-Loaded Solid Lipid Nanoparticles by 32 Full-Factorial Design

    Directory of Open Access Journals (Sweden)

    Kruti A. Dhoranwala

    2015-12-01

    Full Text Available The present investigation was aimed at developing Rosuvastatin Calcium loaded solid lipid nanoparticles (SLNs. The SLNs were prepared using high pressure homogenization technique. Glyceryl monostearate (GMS and Poloxamer 188 were employed as lipid carrier and surfactant respectively. A two factor, three level (32 full factorial design was applied to study the effect of independent variables i.e. amount of GMS (X1 and amount of Poloxamer 188 (X2 on dependent variables i.e. Particle size (Y1 and % entrapment efficiency (Y2. Particles size, % entrapment efficiency (%EE, zeta potential, drug content, in vitro drug release and particles morphology were evaluated for SLNs. Contour plots and response surface plots showed visual representation of relationship between the experimental responses (dependent variables and the set of input (independent variables. The adequacy of the regression model was verified by a check point analysis. The optimized batch (B10 contained 2.2 gm of GMS and 1% of Poloxamer 188. Batch B 10 exhibited mean particle size of 529.6 nm ± 6.36 nm; polydispersity index (PDI of 0.306 ± 0.042; zeta potential of -31.88 mV ± (-2.50 mV and %EE of 48.90% ± 1.72%. The drug release experiments exhibited an initial rapid release followed by sustained release extended upto 36 h. Differential scanning calorimetry (DSC studies showed that there was no chemical interaction between drug (Rosuvastatin Calcium and lipid (GMS whereas scanning electron microscopy (SEM studies indicated that Rosuvastatin Calcium loaded SLNs are spherical, discrete and homogenous. Accelerated stability studies showed that there was no significant change occurring in the responses after storage for a total period of 3 months.

  8. Application of 2k Full Factorial Design in Optimization of Solvent-Free Microwave Extraction of Ginger Essential Oil

    OpenAIRE

    Mumtaj Shah; S K Garg

    2014-01-01

    The solvent-free microwave extraction of essential oil from ginger was optimized using a 23 full factorial design in terms of oil yield to determine the optimum extraction conditions. Sixteen experiments were carried out with three varying parameters, extraction time, microwave power, and type of sample for two levels of each. A first order regression equation best fits the experimental data. The predicted values calculated by the regression model were in good agreement with the experimental ...

  9. Design and optimization of mucoadhesive nasal in situ gel containing sodium cromoglycate using factorial design

    Directory of Open Access Journals (Sweden)

    Riten A Shah

    2011-01-01

    Full Text Available Nasal in situ gel of sodium cromoglycate was prepared for sustained release and improvement of drug bioavailability. Carbopol 940 was used as a key ingredient which gives pH-induced sol to gel conversion of the formulations. Different formulations were prepared by varying the concentrations of carbopol 940 and different grades of Hydroxyl Propyl Methyl Cellulose (HPMC K100, HPMC K4M and HPMC K15M. These formulations were evaluated for parameters like pH, drug content, viscosity, gel strength, in vitro drug release and drug excipient compatibility. In this study, the release profile depends on the concentration of carbopol 940 and grade HPMC. A 3 2 factorial was applied to check the effect of varying the concentration of carbopol 940 (X 1 and different grades of HPMC (X 2 on the dependent variable i.e. viscosity, mucoadhesive strength, cumulative percentage drug released in 1 h (Q 1 , 4 h (Q 4 and 8 h (Q 8 as dependent variables . In vitro release data was fitted to various models to ascertain the kinetic of drug release. Regression analysis and analysis of variance were performed for dependent variables. The results of the F-statistics were used to select the most appropriate model. Formulation F6 was considered optimum which contained carbopol 940 (0.75% and HPMC K4M (0.50% and was more similar to the theoretical predicted dissolution profile (f2 =70.99. The studies indicate that the formulation was effective in providing in vitro release, in vitro permeation of drug and the mucoadhesion which increases the residence time of drug.

  10. Factorial design based preparation, optimization, characterization and in vitro drug release studies of olanzapine loaded PLGA nanoparticles

    Science.gov (United States)

    Bohrey, Sarvesh; Chourasiya, Vibha; Pandey, Archna

    2016-12-01

    The objective of the present work was to develop and optimize olanzapine loaded polymeric nanoparticles using a factorial design. The presented work developed and optimized olanzapine loaded polymeric nanoparticles by using a 33 factorial design. The 33 factorial design was used for studying the effect of the main preparation variables on particle size and percent drug entrapment efficiency of the nanoparticles. A modified nanoprecipitation method was used to prepare nanoparticles successfully by using the biodegradable polymer poly(lactic-co-glycolic)acid (PLGA), and they were characterized for various parameters such as particle size, shape, zeta potential, percent drug entrapment efficiency, percent process yield and in vitro drug release behavior. Examination of the interaction between the excipients used as well as investigation of the nature of the drug, the formulation and the nature of the drug in the formulations was carried out by FTIR studies. Different kinetic models were used to analyze the in vitro drug release data. The preferred formulation showed a particle size of 127.6 ± 1.9 nm, PDI of 0.239 ± 0.013, zeta potential of -29.2 mV, entrapment efficiency of 72.46 ± 3.8% and process yield of 89.65 ± 1.3%. TEM results showed that these nanoparticles were spherical in shape and follow the Korsmeyer-Peppas model with different release exponent values.

  11. Statistical optimization of the growth factors for Chaetoceros neogracile using fractional factorial design and central composite design.

    Science.gov (United States)

    Jeong, Sung-Eun; Park, Jae-Kweon; Kim, Jeong-Dong; Chang, In-Jeong; Hong, Seong-Joo; Kang, Sung-Ho; Lee, Choul-Gyun

    2008-12-01

    Statistical experimental designs; involving (i) a fractional factorial design (FFD) and (ii) a central composite design (CCD) were applied to optimize the culture medium constituents for production of a unique antifreeze protein by the Antartic microalgae Chaetoceros neogracile. The results of the FFD suggested that NaCl, KCl, MgCl2, and Na2SiO3 were significant variables that highly influenced the growth rate and biomass production. The optimum culture medium for the production of an antifreeze protein from C. neogracile was found to be Kalleampersandrsquor;s artificial seawater, pH of 7.0ampersandplusmn;0.5, consisting of 28.566 g/l of NaCl, 3.887 g/l of MgCl2, 1.787 g/l of MgSO4, 1.308 g/l of CaSO4, 0.832 g/l of K2SO4, 0.124 g/l of CaCO3, 0.103 g/l of KBr, 0.0288 g/l of SrSO4, and 0.0282 g/l of H3BO3. The antifreeze activity significantly increased after cells were treated with cold shock (at -5oC) for 14 h. To the best of our knowledge, this is the first report demonstrating an antifreeze-like protein of C. neogracile.

  12. Application of multi-factorial design of experiments to successfully optimize immunoassays for robust measurements of therapeutic proteins.

    Science.gov (United States)

    Ray, Chad A; Patel, Vimal; Shih, Judy; Macaraeg, Chris; Wu, Yuling; Thway, Theingi; Ma, Mark; Lee, Jean W; Desilva, Binodh

    2009-02-20

    Developing a process that generates robust immunoassays that can be used to support studies with tight timelines is a common challenge for bioanalytical laboratories. Design of experiments (DOEs) is a tool that has been used by many industries for the purpose of optimizing processes. The approach is capable of identifying critical factors and their interactions with a minimal number of experiments. The challenge for implementing this tool in the bioanalytical laboratory is to develop a user-friendly approach that scientists can understand and apply. We have successfully addressed these challenges by eliminating the screening design, introducing automation, and applying a simple mathematical approach for the output parameter. A modified central composite design (CCD) was applied to three ligand binding assays. The intra-plate factors selected were coating, detection antibody concentration, and streptavidin-HRP concentrations. The inter-plate factors included incubation times for each step. The objective was to maximize the logS/B (S/B) of the low standard to the blank. The maximum desirable conditions were determined using JMP 7.0. To verify the validity of the predictions, the logS/B prediction was compared against the observed logS/B during pre-study validation experiments. The three assays were optimized using the multi-factorial DOE. The total error for all three methods was less than 20% which indicated method robustness. DOE identified interactions in one of the methods. The model predictions for logS/B were within 25% of the observed pre-study validation values for all methods tested. The comparison between the CCD and hybrid screening design yielded comparable parameter estimates. The user-friendly design enables effective application of multi-factorial DOE to optimize ligand binding assays for therapeutic proteins. The approach allows for identification of interactions between factors, consistency in optimal parameter determination, and reduced method

  13. Optimization of thiamethoxam adsorption parameters using multi-walled carbon nanotubes by means of fractional factorial design.

    Science.gov (United States)

    Panić, Sanja; Rakić, Dušan; Guzsvány, Valéria; Kiss, Erne; Boskovic, Goran; Kónya, Zoltán; Kukovecz, Ákos

    2015-12-01

    The aim of this work was to evaluate significant factors affecting the thiamethoxam adsorption efficiency using oxidized multi-walled carbon nanotubes (MWCNTs) as adsorbents. Five factors (initial solution concentration of thiamethoxam in water, temperature, solution pH, MWCNTs weight and contact time) were investigated using 2V(5-1) fractional factorial design. The obtained linear model was statistically tested using analysis of variance (ANOVA) and the analysis of residuals was used to investigate the model validity. It was observed that the factors and their second-order interactions affecting the thiamethoxam removal can be divided into three groups: very important, moderately important and insignificant ones. The initial solution concentration was found to be the most influencing parameter on thiamethoxam adsorption from water. Optimization of the factors levels was carried out by minimizing those parameters which are usually critical in real life: the temperature (energy), contact time (money) and weight of MWCNTs (potential health hazard), in order to maximize the adsorbed amount of the pollutant. The results of maximal adsorbed thiamethoxam amount in both real and optimized experiments indicate that among minimized parameters the adsorption time is one that makes the largest difference. The results of this study indicate that fractional factorial design is very useful tool for screening the higher number of parameters and reducing the number of adsorption experiments.

  14. Biosorption of Ni(II) by Fig Male: Optimization and Modeling Using a Full Factorial Design.

    Science.gov (United States)

    Madjene, F; Chergui, A; Trari, M

    2016-06-01

    The fig male (FM) is successfully used as biosorbent for Ni(2+) removal. The maximum removal efficiency (96.6%) is obtained at pH ~ 5 for a concentration of 1.70 mmol L(-1) and catalyst dose of 5 g L(-1) in less than 10 minutes. The Ni(2+) uptake follows a pseudo-second-order kinetic, the rate constants increase with increasing temperature, and an activation energy of 55.48 kJ mol(-1) is found. The thermodynamic parameters indicate a spontaneous endothermic bisorption. The isotherm data are fitted by the Langmuir and Dubinin-Radushkevich models. The former indicates a maximum Ni(2+) uptake of 0.459 mmol g(-1), which is higher than that of most biosorbents investigated to date. The FTIR spectra reveal the biosorption mechanism between Ni(2+) and FM functional groups. An empirical modeling is performed by using a 2(3) full factorial design, and a regression equation for Ni(2+) biosorption is determined. The biosorbent mass and pH are the most significant parameters affecting the Ni(2+) biosorption.

  15. Optimization of Cu(II) biosorption onto Ascophyllum nodosum by factorial design methodology.

    Science.gov (United States)

    Freitas, Olga; Delerue-Matos, Cristina; Boaventura, Rui

    2009-08-15

    A Box-Behnken factorial design coupled with surface response methodology was used to evaluate the effects of temperature, pH and initial concentration in the Cu(II) sorption process onto the marine macro-algae Ascophyllum nodosum. The effect of the operating variables on metal uptake capacity was studied in a batch system and a mathematical model showing the influence of each variable and their interactions was obtained. Study ranges were 10-40 degrees C for temperature, 3.0-5.0 for pH and 50-150 mg L(-1) for initial Cu(II) concentration. Within these ranges, the biosorption capacity is slightly dependent on temperature but markedly increases with pH and initial concentration of Cu(II). The uptake capacities predicted by the model are in good agreement with the experimental values. Maximum biosorption capacity of Cu(II) by A. nodosum is 70 mg g(-1) and corresponds to the following values of those variables: temperature=40 degrees C, pH=5.0 and initial Cu(II) concentration=150 mg L(-1).

  16. Optimizing flurbiprofen-loaded NLC by central composite factorial design for ocular delivery

    Science.gov (United States)

    Gonzalez-Mira, E.; Egea, M. A.; Souto, E. B.; Calpena, A. C.; García, M. L.

    2011-01-01

    The purpose of this study was to design and optimize a new topical delivery system for ocular administration of flurbiprofen (FB), based on lipid nanoparticles. These particles, called nanostructured lipid carriers (NLC), were composed of a fatty acid (stearic acid (SA)) as the solid lipid and a mixture of Miglyol® 812 and castor oil (CO) as the liquid lipids, prepared by the hot high pressure homogenization method. After selecting the critical variables influencing the physicochemical characteristics of the NLC (the liquid lipid (i.e. oil) concentration with respect to the total lipid (cOil/L (wt%)), the surfactant and the flurbiprofen concentration, on particle size, polydispersity index and encapsulation efficiency), a three-factor five-level central rotatable composite design was employed to plan and perform the experiments. Morphological examination, crystallinity and stability studies were also performed to accomplish the optimization study. The results showed that increasing cOil/L (wt%) was followed by an enhanced tendency to produce smaller particles, but the liquid to solid lipid proportion should not exceed 30 wt% due to destabilization problems. Therefore, a 70:30 ratio of SA to oil (miglyol + CO) was selected to develop an optimal NLC formulation. The smaller particles obtained when increasing surfactant concentration led to the selection of 3.2 wt% of Tween® 80 (non-ionic surfactant). The positive effect of the increase in FB concentration on the encapsulation efficiency (EE) and its total solubilization in the lipid matrix led to the selection of 0.25 wt% of FB in the formulation. The optimal NLC showed an appropriate average size for ophthalmic administration (228.3 nm) with a narrow size distribution (0.156), negatively charged surface (-33.3 mV) and high EE (~90%). The in vitro experiments proved that sustained release FB was achieved using NLC as drug carriers. Optimal NLC formulation did not show toxicity on ocular tissues.

  17. Optimizing flurbiprofen-loaded NLC by central composite factorial design for ocular delivery

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Mira, E; Egea, M A; Garcia, M L [Department of Physical Chemistry, Faculty of Pharmacy, Institute of Nanoscience and Nanotechnology, University of Barcelona, Avenida Joan XXIII s/n, E-08028 Barcelona (Spain); Souto, E B [Faculty of Health Sciences, Fernando Pessoa University, Rua Carlos da Maia, Nr. 296, Office S.1, P-4200-150 Porto (Portugal); Calpena, A C, E-mail: eligonzalezmi@ub.edu [Department of Biopharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Barcelona, Avenida Joan XXIII s/n, E-08028 Barcelona (Spain)

    2011-01-28

    The purpose of this study was to design and optimize a new topical delivery system for ocular administration of flurbiprofen (FB), based on lipid nanoparticles. These particles, called nanostructured lipid carriers (NLC), were composed of a fatty acid (stearic acid (SA)) as the solid lipid and a mixture of Miglyol 812 and castor oil (CO) as the liquid lipids, prepared by the hot high pressure homogenization method. After selecting the critical variables influencing the physicochemical characteristics of the NLC (the liquid lipid (i.e. oil) concentration with respect to the total lipid (cOil/L (wt%)), the surfactant and the flurbiprofen concentration, on particle size, polydispersity index and encapsulation efficiency), a three-factor five-level central rotatable composite design was employed to plan and perform the experiments. Morphological examination, crystallinity and stability studies were also performed to accomplish the optimization study. The results showed that increasing cOil/L (wt%) was followed by an enhanced tendency to produce smaller particles, but the liquid to solid lipid proportion should not exceed 30 wt% due to destabilization problems. Therefore, a 70:30 ratio of SA to oil (miglyol + CO) was selected to develop an optimal NLC formulation. The smaller particles obtained when increasing surfactant concentration led to the selection of 3.2 wt% of Tween 80 (non-ionic surfactant). The positive effect of the increase in FB concentration on the encapsulation efficiency (EE) and its total solubilization in the lipid matrix led to the selection of 0.25 wt% of FB in the formulation. The optimal NLC showed an appropriate average size for ophthalmic administration (228.3 nm) with a narrow size distribution (0.156), negatively charged surface (-33.3 mV) and high EE ({approx}90%). The in vitro experiments proved that sustained release FB was achieved using NLC as drug carriers. Optimal NLC formulation did not show toxicity on ocular tissues.

  18. The Optimization of the Oiling Bath Cosmetic Composition Containing Rapeseed Phospholipids and Grapeseed Oil by the Full Factorial Design

    Directory of Open Access Journals (Sweden)

    Michał Górecki

    2015-04-01

    Full Text Available The proper condition of hydrolipid mantle and the stratum corneum intercellular matrix determines effective protection against transepidermal water loss (TEWL. Some chemicals, improper use of cosmetics, poor hygiene, old age and some diseases causes disorder in the mentioned structures and leads to TEWL increase. The aim of this study was to obtain the optimal formulation composition of an oiling bath cosmetic based on rapeseed phospholipids and vegetable oil with high content of polyunsaturated fatty acids. In this work, the composition of oiling bath form was calculated and the degree of oil dispersion after mixing the bath preparation with water was selected as the objective function in the optimizing procedure. The full factorial design 23 in the study was used. The concentrations of rapeseed lecithin ethanol soluble fraction (LESF, alcohol (E and non-ionic emulsifier (P were optimized. Based on the calculations from our results, the optimal composition of oiling bath cosmetic was: L (LESF 5.0 g, E (anhydrous ethanol 20.0 g and P (Polysorbate 85 1.5 g. The optimization procedure used in the study allowed to obtain the oiling bath cosmetic which gives above 60% higher emulsion dispersion degree 5.001 × 10−5 cm−1 compared to the initial formulation composition with the 3.096 × 10−5 cm−1.

  19. Recirculating linacs for a neutrino factory--Arc optics design and optimization

    CERN Document Server

    Bogacz, S A

    2001-01-01

    A conceptual lattice design for a muon accelerator based on recirculating linacs (Nucl. Instr. and Meth. A 472 (2001) 499, these proceedings) is presented here. The challenge of accelerating and transporting a large phase space of short-lived muons is answered here by presenting a proof-of-principle lattice design for a recirculating linac accelerator. It is the centerpiece of a chain of accelerators consisting of a 3 GeV linac and two consecutive recirculating linear accelerators, which facilitates acceleration starting after ionization cooling at 190 MeV/c and proceeding to 50 GeV. Beam transport issues for large-momentum-spread beams are accommodated by appropriate lattice design choices. The resulting arc optics is further optimized with a sextupole correction to suppress chromatic effects contributing to the emittance dilution. The presented proof-of-principle design of the arc optics with horizontal separation of multi-pass beams can be extended to all passes in both recirculating linacs.

  20. Application of 2k Full Factorial Design in Optimization of Solvent-Free Microwave Extraction of Ginger Essential Oil

    Directory of Open Access Journals (Sweden)

    Mumtaj Shah

    2014-01-01

    Full Text Available The solvent-free microwave extraction of essential oil from ginger was optimized using a 23 full factorial design in terms of oil yield to determine the optimum extraction conditions. Sixteen experiments were carried out with three varying parameters, extraction time, microwave power, and type of sample for two levels of each. A first order regression equation best fits the experimental data. The predicted values calculated by the regression model were in good agreement with the experimental values. The results showed that the extraction time is the most prominent factor followed by microwave power level and sample type for extraction process. An average of 0.25% of ginger oil can be extracted using current setup. The optimum conditions for the ginger oil extraction using SFME were the extraction time 30 minutes, microwave power level 640 watts, and sample type, crushed sample. Solvent-free microwave extraction proves a green and promising technique for essential oil extraction.

  1. Optimization of primary culture condition for mesenchymal stem cells derived from umbilical cord blood with factorial design.

    Science.gov (United States)

    Fan, Xiubo; Liu, Tianqing; Liu, Yang; Ma, Xuehu; Cui, Zhanfeng

    2009-01-01

    Mesenchymal stem cells (MSCs) can not only support the expansion of hematopoietic stem cells in vitro, but also alleviate complications and accelerate recovery of hematopoiesis during hematopoietic stem cell transplantation. However, it proved challenging to culture MSCs from umbilical cord blood (UCB) with a success rate of 20-30%. Many cell culture parameters contribute to this outcome and hence optimization of culture conditions is critical to increase the probability of success. In this work, fractional factorial design was applied to study the effect of cell inoculated density, combination and dose of cytokines, and presence of serum and stromal cells. The cultured UCB-MSC-like cells were characterized by flow cytometry and their multilineage differentiation potentials were tested. The optimal protocol was identified achieving above 90% successful outcome: 2 x 10(6) cells/mL mononuclear cells inoculated in Iscove's modified Dulbecco's medium supplied with 10% FBS, 15 ng/mL IL-3, and 5 ng/mL Granulocyte-macrophage colony-stimulating factor (GM-CSF). Moreover, the UCB-MSC-like cells expressed MSC surface markers of CD13, CD29, CD105, CD166, and CD44 positively, and CD34, CD45, and human leukocyte antigens-DR (HLA-DR) negatively. Meanwhile, these cells could differentiate into osteoblasts, chondrocytes, and adipocytes similarly to MSCs derived from bone marrow. In conclusion, we have developed an efficient protocol for the primary culture of UCB-MSCs by adding suitable cytokines into the culture system.

  2. Multiple Segment Factorial Vignette Designs

    Science.gov (United States)

    Ganong, Lawrence H.; Coleman, Marilyn

    2006-01-01

    The multiple segment factorial vignette design (MSFV) combines elements of experimental designs and probability sampling with the inductive, exploratory approach of qualitative research. MSFVs allow researchers to investigate topics that may be hard to study because of ethical or logistical concerns. Participants are presented with short stories…

  3. Multiple Segment Factorial Vignette Designs

    Science.gov (United States)

    Ganong, Lawrence H.; Coleman, Marilyn

    2006-01-01

    The multiple segment factorial vignette design (MSFV) combines elements of experimental designs and probability sampling with the inductive, exploratory approach of qualitative research. MSFVs allow researchers to investigate topics that may be hard to study because of ethical or logistical concerns. Participants are presented with short stories…

  4. Factorial experimental design for the optimization of catalytic degradation of malachite green dye in aqueous solution by Fenton process

    Directory of Open Access Journals (Sweden)

    A. Elhalil

    2016-09-01

    Full Text Available This work focuses on the optimization of the catalytic degradation of malachite green dye (MG by Fenton process “Fe2+/H2O2”. A 24 full factorial experimental design was used to evaluate the effects of four factors considered in the optimization of the oxidative process: concentration of MG (X1, concentration of Fe2+ (X2, concentration of H2O2 (X3 and temperature (X4. Individual and interaction effects of the factors that influenced the percentage of dye degradation were tested. The effect of interactions between the four parameters shows that there is a dependency between concentration of MG and concentration of Fe2+; concentration of Fe2+ and concentration of H2O2, expressed by the great values of the coefficient of interaction. The analysis of variance proved that, the concentration of MG, the concentration of Fe2+ and the concentration of H2O2 have an influence on the catalytic degradation while it is not the case for the temperature. In the optimization, the great dependence between observed and predicted degradation efficiency, the correlation coefficient for the model (R2=0.986 and the important value of F-ratio proved the validity of the model. The optimum degradation efficiency of malachite green was 93.83%, when the operational parameters were malachite green concentration of 10 mg/L, Fe2+ concentration of 10 mM, H2O2 concentration of 25.6 mM and temperature of 40 °C.

  5. Amidated pectin/sodium carboxymethylcellulose microspheres as a new carrier for colonic drug targeting: Development and optimization by factorial design.

    Science.gov (United States)

    Gadalla, Hytham H; El-Gibaly, Ibrahim; Soliman, Ghareb M; Mohamed, Fergany A; El-Sayed, Ahmed M

    2016-11-20

    The colon is a promising site for drug targeting owing to its long transit time and mild proteolytic activity. The aim of this study was to prepare new low methoxy amidated pectin/NaCMC microspheres cross-linked by a mixture of Zn(2+) and Al(3+) ions and test their potential for colonic targeting of progesterone. A 2(4) factorial design was carried out to optimize the preparation conditions. High drug entrapment efficiency (82-99%) was obtained and it increased with increasing drug concentration but decreased with increasing polymer concentration. Drug release rate was directly proportional to the microsphere drug content and inversely related to Al(3+) ion concentration. Drug release was minimal during the first 3h but was significantly improved in the presence of 1% rat caecal contents, confirming the microsphere potential for colonic delivery. The microspheres achieved >2.3-fold enhancement of colonic progesterone permeability. These results confirm the viability of the produced microspheres as colon-targeted drug delivery vehicle.

  6. Nanoemulsions containing a synthetic chalcone as an alternative for treating cutaneous leshmaniasis: optimization using a full factorial design

    Directory of Open Access Journals (Sweden)

    Mattos CB

    2015-09-01

    Full Text Available Cristiane Bastos de Mattos,1 Débora Fretes Argenta,1 Gabriela de Lima Melchiades,1 Marlon Norberto Sechini Cordeiro,2 Maiko Luis Tonini,3 Milene Hoehr Moraes,3 Tanara Beatriz Weber,4 Silvane Souza Roman,4 Ricardo José Nunes,2 Helder Ferreira Teixeira,1 Mário Steindel,3 Letícia Scherer Koester1 1Faculdade de Farmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; 2Departamento de Química, 3Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil; 4Departamento de Ciências Biológicas, Universidade Regional Integrada do Alto Uruguai e das Missões, Erechim, Rio Grande do Sul, Brazil Abstract: Nanoemulsions are drug delivery systems that may increase the penetration of lipophilic compounds through the skin, enhancing their topical effect. Chalcones are compounds of low water solubility that have been described as promising molecules for the treatment of cutaneous leishmaniasis (CL. In this context, the aim of this work was to optimize the development of a nanoemulsion containing a synthetic chalcone for CL treatment using a 22 full factorial design. The formulations were prepared by spontaneous emulsification and the experimental design studied the influence of two independent variables (type of surfactant – soybean lecithin or sorbitan monooleate and type of co-surfactants – polysorbate 20 or polysorbate 80 on the physicochemical characteristics of the nanoemulsions, as well as on the skin permeation/retention of the synthetic chalcone in porcine skin. In order to evaluate the stability of the systems, the antileishmanial assay was performed against Leishmania amazonensis 24 hours and 60 days after the preparation of the nanoemulsions. The formulation composed of soybean lecithin and polysorbate 20 presented suitable physicochemical characteristics (droplet size

  7. Nanoemulsions containing a synthetic chalcone as an alternative for treating cutaneous leshmaniasis: optimization using a full factorial design.

    Science.gov (United States)

    de Mattos, Cristiane Bastos; Argenta, Débora Fretes; Melchiades, Gabriela de Lima; Cordeiro, Marlon Norberto Sechini; Tonini, Maiko Luis; Moraes, Milene Hoehr; Weber, Tanara Beatriz; Roman, Silvane Souza; Nunes, Ricardo José; Teixeira, Helder Ferreira; Steindel, Mário; Koester, Letícia Scherer

    2015-01-01

    Nanoemulsions are drug delivery systems that may increase the penetration of lipophilic compounds through the skin, enhancing their topical effect. Chalcones are compounds of low water solubility that have been described as promising molecules for the treatment of cutaneous leishmaniasis (CL). In this context, the aim of this work was to optimize the development of a nanoemulsion containing a synthetic chalcone for CL treatment using a 2(2) full factorial design. The formulations were prepared by spontaneous emulsification and the experimental design studied the influence of two independent variables (type of surfactant - soybean lecithin or sorbitan monooleate and type of co-surfactants - polysorbate 20 or polysorbate 80) on the physicochemical characteristics of the nanoemulsions, as well as on the skin permeation/retention of the synthetic chalcone in porcine skin. In order to evaluate the stability of the systems, the antileishmanial assay was performed against Leishmania amazonensis 24 hours and 60 days after the preparation of the nanoemulsions. The formulation composed of soybean lecithin and polysorbate 20 presented suitable physicochemical characteristics (droplet size 171.9 nm; polydispersity index 0.14; zeta potential -39.43 mV; pH 5.16; and viscosity 2.00 cP), drug content (91.09%) and the highest retention in dermis (3.03 µg·g(-1)) - the main response of interest - confirmed by confocal microscopy. This formulation also presented better stability of leishmanicidal activity in vitro against L. amazonensis amastigote forms (half maximal inhibitory concentration value 0.32±0.05 µM), which confirmed the potential of the nanoemulsion soybean lecithin and polysorbate 20 for CL treatment.

  8. Handbook factory planning and design

    CERN Document Server

    Wiendahl, Hans-Peter; Nyhuis, Peter

    2015-01-01

    This handbook introduces a methodical approach and pragmatic concept for the planning and design of changeable factories that act in strategic alliances to supply the ever-changing needs of the global market. In the first part, the change drivers of manufacturing enterprises and the resulting new challenges are considered in detail with focus on an appropriate change potential. The second part concerns the design of the production facilities and systems on the factory levels work place, section, building and site under functional, organisational, architectural and strategic aspects keeping in mind the environmental, health and safety aspects including corporate social responsibility. The third part is dedicated to the planning and design method that is based on a synergetic interaction of process and space. The accompanying project management of the planning and construction phase and the facility management for the effective utilization of the built premises close the book. -        Concise overview o...

  9. An approach to optimize sample preparation for MALDI imaging MS of FFPE sections using fractional factorial design of experiments.

    Science.gov (United States)

    Oetjen, Janina; Lachmund, Delf; Palmer, Andrew; Alexandrov, Theodore; Becker, Michael; Boskamp, Tobias; Maass, Peter

    2016-09-01

    A standardized workflow for matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI imaging MS) is a prerequisite for the routine use of this promising technology in clinical applications. We present an approach to develop standard operating procedures for MALDI imaging MS sample preparation of formalin-fixed and paraffin-embedded (FFPE) tissue sections based on a novel quantitative measure of dataset quality. To cover many parts of the complex workflow and simultaneously test several parameters, experiments were planned according to a fractional factorial design of experiments (DoE). The effect of ten different experiment parameters was investigated in two distinct DoE sets, each consisting of eight experiments. FFPE rat brain sections were used as standard material because of low biological variance. The mean peak intensity and a recently proposed spatial complexity measure were calculated for a list of 26 predefined peptides obtained by in silico digestion of five different proteins and served as quality criteria. A five-way analysis of variance (ANOVA) was applied on the final scores to retrieve a ranking of experiment parameters with increasing impact on data variance. Graphical abstract MALDI imaging experiments were planned according to fractional factorial design of experiments for the parameters under study. Selected peptide images were evaluated by the chosen quality metric (structure and intensity for a given peak list), and the calculated values were used as an input for the ANOVA. The parameters with the highest impact on the quality were deduced and SOPs recommended.

  10. Modeling and process optimization for microbial desulfurization of coal by using a two-level full factorial design

    Institute of Scientific and Technical Information of China (English)

    Golshani T.; Jorjani E.; Chelgani S.Chehreh; Shafaei S.Z.; Nafechi Y.Heidari

    2013-01-01

    The microbial sulfur removal was investigated on high sulfur content (1.9%) coal concentrate from Tabas coal preparation plant.A mixed culture of ferrooxidans microorganisms was isolated from the tailing dam of the plant.Full factorial method was used to design laboratory test and to evaluate the effects of pH,particle size,iron sulfate concentration,pulp density,and bioleaching time on sulfur reduction.Statistical analyses of experimental data were considered and showed increases of pH and particle size had negative effects on sulfur reduction,whereas increases of pulp density and bioleaching time raised microbial desulfurization rate.According to results of designing,and regarding statistical factors,the optimum values for maximum sulfur reduction were obtained; pH (1.5),particle size (-180μm),iron sulfate concentration (2.7 mmol/L),pulp density (10%) and bioleaching time (14d),which leaded to 51.5% reduction from the total sulfur of sample.

  11. Optimization of a furniture factory layout

    Directory of Open Access Journals (Sweden)

    Tadej Kanduč

    2015-03-01

    Full Text Available This paper deals with the problem of optimizing a factory floor layout in a Slovenian furniture factory. First, the current state of the manufacturing system is analyzed by constructing a discrete event simulation (DES model that reflects the manufacturing processes. The company produces over 10,000 different products, and their manufacturing processes include approximately 30,000 subprocesses. Therefore, manually constructing a model to include every subprocess is not feasible. To overcome this problem, a method for automated model construction was developed to construct a DES model based on a selection of manufacturing orders and relevant subprocesses. The obtained simulation model provided insight into the manufacturing processes and enable easy modification of model parameters for optimizing the manufacturing processes. Finally, the optimization problem was solved: the total distance the products had to traverse between machines was minimized by devising an optimal machine layout. With the introduction of certain simplifications, the problem was best described as a quadratic assignment problem. A novel heuristic method based on force-directed graph drawing algorithms was developed. Optimizing the floor layout resulted in a significant reduction of total travel distance for the products.

  12. Optimization of parameters for the quantitative surface-enhanced Raman scattering detection of mephedrone using a fractional factorial design and a portable Raman spectrometer.

    Science.gov (United States)

    Mabbott, Samuel; Correa, Elon; Cowcher, David P; Allwood, J William; Goodacre, Royston

    2013-01-15

    A new optimization strategy for the SERS detection of mephedrone using a portable Raman system has been developed. A fractional factorial design was employed, and the number of statistically significant experiments (288) was greatly reduced from the actual total number of experiments (1722), which minimized the workload while maintaining the statistical integrity of the results. A number of conditions were explored in relation to mephedrone SERS signal optimization including the type of nanoparticle, pH, and aggregating agents (salts). Through exercising this design, it was possible to derive the significance of each of the individual variables, and we discovered four optimized SERS protocols for which the reproducibility of the SERS signal and the limit of detection (LOD) of mephedrone were established. Using traditional nanoparticles with a combination of salts and pHs, it was shown that the relative standard deviations of mephedrone-specific Raman peaks were as low as 0.51%, and the LOD was estimated to be around 1.6 μg/mL (9.06 × 10(-6) M), a detection limit well beyond the scope of conventional Raman and extremely low for an analytical method optimized for quick and uncomplicated in-field use.

  13. Targeting population heterogeneity for optimal cell factories

    DEFF Research Database (Denmark)

    Heins, Anna-Lena; Carlqvist, Magnus; Helmark, S.

    , substrates, and pH are typically observed in many industrial scale fermentation processes. Consequently, the microbial cells experience rapid changes in environmental conditions as they circulate throughout the reactor, which might pose stress on the cells and affect their metabolism and consequently affect...... analysis, and thereby created the possibility to map population heterogeneity. A factorial design with pH, glucose concentration and oxygen level was performed in batch cultivations using the growth reporter strains to evaluate the effect of those environmental factors on heterogeneity level and amount...

  14. Novel non-ionic surfactant proniosomes for transdermal delivery of lacidipine: optimization using 2(3) factorial design and in vivo evaluation in rabbits.

    Science.gov (United States)

    Soliman, Sara M; Abdelmalak, Nevine S; El-Gazayerly, Omaima N; Abdelaziz, Nabaweya

    2016-06-01

    Proniosomes offer a versatile vesicle drug delivery concept with potential for delivery of drugs via transdermal route. To develop proniosomal gel using cremophor RH 40 as non-ionic surfactant containing the antihypertensive drug lacidipine for transdermal delivery so as to avoid its extensive first pass metabolism and to improve its permeation through the skin. Proniosomes containing 1% lacidipine were prepared by the coacervation phase separation method, characterized, and optimized using a 2(3) full factorial design to define the optimum conditions to produce proniosomes with high entrapment efficiency, minimal vesicle size, and high-percentage release efficiency. The amount of cholesterol (X1), the amount of soya lecithin (X2), and the amount of cremophor RH 40 (X3) were selected as three independent variables. The system F4 was found to fulfill the maximum requisite of an optimum system because it had minimum vesicle size, maximum EE, maximum release efficiency, and maximum desirability. The optimized system (F4) was then converted to proniosomal gel using carbopol 940 (1% w/w). In vitro permeation through excised rabbit skin study revealed higher flux (6.48 ± 0.45) for lacidipine from the optimized proniosomal gel when compared with the corresponding emulgel (3.04 ± 0.13) mg/cm(2)/h. The optimized formulation was evaluated for its bioavailability compared with commercial product. Statistical analysis revealed significant increase in AUC (0 - α) 464.17 ± 113.15 ng h/ml compared with 209.02 ± 47.35 ng h/ml for commercial tablet. Skin irritancy and histopathological investigation of rat skin revealed its safety. Cremophor RH 40 proniosomal gel could be considered as very promising nanocarriers for transdermal delivery of lacidipine.

  15. Low-energy neutrino factory design

    Directory of Open Access Journals (Sweden)

    C. Ankenbrandt

    2009-07-01

    Full Text Available The design of a low-energy (4 GeV neutrino factory (NF is described, along with its expected performance. The neutrino factory uses a high-energy proton beam to produce charged pions. The π^{±} decay to produce muons (μ^{±}, which are collected, accelerated, and stored in a ring with long straight sections. Muons decaying in the straight sections produce neutrino beams. The scheme is based on previous designs for higher energy neutrino factories, but has an improved bunching and phase rotation system, and new acceleration, storage ring, and detector schemes tailored to the needs of the lower energy facility. Our simulations suggest that the NF scheme we describe can produce neutrino beams generated by ∼1.4×10^{21} μ^{+} per year decaying in a long straight section of the storage ring, and a similar number of μ^{-} decays.

  16. A conceptual design of circular Higgs factory

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yunhai

    2016-11-30

    Similar to a super B-factory, a circular Higgs factory (CHF) will require strong focusing systems near the interaction points and a low-emittance lattice in the arcs to achieve a factory luminosity. At electron beam energy of 125 GeV, beamstrahlung effects during the collision pose an additional challenge to the collider design. In particular, a large momentum acceptance at the 2% level is necessary to retain an adequate beam lifetime. This turns out to be the most challenging aspect in the design of a CHF. In this paper, an example will be provided to illustrate the beam dynamics in a CHF, emphasizing the chromatic optics. Basic optical modules and advanced analysis will be presented. Most importantly, we will show that 2% momentum aperture is achievable.

  17. Optimization of mechanical properties of non-woven short sisal fibre-reinforced vinyl ester composite using factorial design and GA method

    Indian Academy of Sciences (India)

    S Velumani; P Navaneethakrishnan; S Jayabal; D S Robinson Smart

    2013-08-01

    This work presents a systematic approach to evaluate and study the effect of process parameters on tensile, flexural and impact strength of untreated short sisal fibre-reinforced vinyl ester polymer-based composites and predicts the optimum properties of random natural fibre-reinforced composites. The natural fibre of sisal at lengths of 10, 30 and 50 mm and vinyl ester resin at loadings of 15, 30 and 45 (wt%) were prepared. The composite panel was then fabricated using hand lay method in cold process of size 180 × 160 mm2. Samples were then cut from the panel and subjected to mechanical properties testing such as tensile, flexural and impact strengths. The average tensile strength ranges between 27.1 and 43.9 MPa. The flexural strength ranged between 26.9 and 49.5 MPa and the impact strength ranged between 16 and 93 J/m. The strength values were optimized using factorial design and genetic algorithm (GA) method. The predicted optimum process parameter values are in good agreement with the experimental results.

  18. Optimization of hydrothermal synthesis of H-ZSM-5 zeolite for dehydration of methanol to dimethyl ether using full factorial design

    Institute of Scientific and Technical Information of China (English)

    Samaneh Hosseini; Majid Taghizadeh; Ali Eliassi

    2012-01-01

    H-ZSM-5 zeolite was synthesized by hydrothermal method.The effects of different synthesis parameters,such as hydrothermal crystallization temperature (170-190 ℃) and Si/Al molar ratio (100-150),on the catalytic performance of the dehydration of methanol to dimethyl ether (DME) over the synthesized H-ZSM-5 zeolite were studied.The catalysts were characterized by N2 adsorption-desorption,XRD,NH3-TPD,TGA/DTA,and SEM techniques.The full factorial design of experiments was applied to the synthesis of H-ZSM-5 zeolite and the effects of synthesis conditions and their interaction on the yield of DME as the response variable were determined.Analysis of variance showed that two variables and their interaction significantly affected the response.According to the experimental results,the optimized catalyst prepared at 170 ℃ with the Si/Al molar ratio of 100 showed the best catalytic performance among the tested H-ZSM-5 zeolite.

  19. Optimization of headspace solid-phase microextraction for the analysis of specific flavors in enzyme modified and natural Cheddar cheese using factorial design and response surface methodology.

    Science.gov (United States)

    Januszkiewicz, Julien; Sabik, Hassan; Azarnia, Sorayya; Lee, Byong

    2008-06-27

    A headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC/MS) method was developed using experimental designs to quantify the flavor of commercial Cheddar cheese and enzyme-modified Cheddar cheese (EMCC). Seven target compounds (dimethyl disulfide, hexanal, hexanol, 2-heptanone, ethyl hexanoate, heptanoic acid, delta-decalactone) representative of different chemical families frequently present in Cheddar cheese were selected for this study. Three types of SPME fibres were tested: Carboxen/polydimethylsiloxane (CAR/PDMS), polyacrylate (PA) and Carbowax/divinylbenzene (CW/DVB). NaCl concentration and temperature, as well as extraction time were tested for their effect on the HS-SPME process. Two series of two-level full factorial designs were carried out for each fibre to determine the factors which best support the extraction of target flavors. Therefore, central composite designs (CCDs) were performed and response surface models were derived. Optimal extraction conditions for all selected compounds, including internal standards, were: 50 min at 55 degrees C in 3M NaCl for CAR/PDMS, 64 min at 62 degrees C in 6M NaCl for PA, and 37 min at 67 degrees C in 6M NaCl for CW/DVB. Given its superior sensitivity, CAR/PDMS fibre was selected to evaluate the target analytes in commercial Cheddar cheese and EMCC. With this fibre, calibration curves were linear for all targeted compounds (from 0.5 to 6 microg g(-1)), except for heptanoic acid which only showed a linear response with PA fibres. Detection limits ranged from 0.3 to 1.6 microg g(-1) and quantification limits from 0.8 to 3.6 microg g(-1). The mean repeatability value for all flavor compounds was 8.8%. The method accuracy is satisfactory with recoveries ranging from 97 to 109%. Six of the targeted flavors were detected in commercial Cheddar cheese and EMCC.

  20. Bayesian analysis of factorial designs.

    Science.gov (United States)

    Rouder, Jeffrey N; Morey, Richard D; Verhagen, Josine; Swagman, April R; Wagenmakers, Eric-Jan

    2017-06-01

    This article provides a Bayes factor approach to multiway analysis of variance (ANOVA) that allows researchers to state graded evidence for effects or invariances as determined by the data. ANOVA is conceptualized as a hierarchical model where levels are clustered within factors. The development is comprehensive in that it includes Bayes factors for fixed and random effects and for within-subjects, between-subjects, and mixed designs. Different model construction and comparison strategies are discussed, and an example is provided. We show how Bayes factors may be computed with BayesFactor package in R and with the JASP statistical package. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  1. Silanization of glass chips—A factorial approach for optimization

    Science.gov (United States)

    Vistas, Cláudia R.; Águas, Ana C. P.; Ferreira, Guilherme N. M.

    2013-12-01

    Silanization of glass chips with 3-mercaptopropyltrimethoxysilane (MPTS) was investigated and optimized to generate a high-quality layer with well-oriented thiol groups. A full factorial design was used to evaluate the influence of silane concentration and reaction time. The stabilization of the silane monolayer by thermal curing was also investigated, and a disulfide reduction step was included to fully regenerate the thiol-modified surface function. Fluorescence analysis and water contact angle measurements were used to quantitatively assess the chemical modifications, wettability and quality of modified chip surfaces throughout the silanization, curing and reduction steps. The factorial design enables a systematic approach for the optimization of glass chips silanization process. The optimal conditions for the silanization were incubation of the chips in a 2.5% MPTS solution for 2 h, followed by a curing process at 110 °C for 2 h and a reduction step with 10 mM dithiothreitol for 30 min at 37 °C. For these conditions the surface density of functional thiol groups was 4.9 × 1013 molecules/cm2, which is similar to the expected maximum coverage obtained from the theoretical estimations based on projected molecular area (∼5 × 1013 molecules/cm2).

  2. Development of a biodegradable nanoparticle platform for sildenafil: formulation optimization by factorial design analysis combined with application of charge-modified branched polyesters.

    Science.gov (United States)

    Beck-Broichsitter, Moritz; Schmehl, Thomas; Gessler, Tobias; Seeger, Werner; Kissel, Thomas

    2012-02-10

    Biodegradable nanoparticles have gained tremendous attraction as carriers for controlled drug delivery to the lung. Despite numerous advances in the field, e.g. development of suitable methods for pulmonary administration of polymeric nanoparticles, a sufficient association of the therapeutic agent with the carrier system as well as drug release in a controlled fashion remain considerable challenges. Hence, this study examines the optimization of biodegradable sildenafil-loaded nanoparticle formulations intended for aerosol treatment of pulmonary hypertension. A factorial design analysis was employed to identify the important experimental factors involved in the preparation of nanoparticles by the solvent evaporation technique. The effect of tailored charge-modified branched polyesters on drug loading and in vitro drug release from nanoparticles was also evaluated. Moreover, colloidal stability of obtained nanoparticles was assessed, and stabilization of nanoparticles by lyophilization was accomplished without additional excipients. Essential experimental factors were identified and optimized to allow the preparation of nanoparticles composed of linear polyesters with a sildenafil content of ~5 wt.%. The in vitro drug release profile from these nanoparticles demonstrated a sustained release of sildenafil over ~90 min. Application of charge-modified branched polyesters enhanced the drug content in nanoparticles and drug release profile, according to the charge-density present in the employed polymer. Accordingly an increase in drug loading by a factor of ~1.4, a prolonged drug release profile from nanoparticles over ~240 min was achieved. Sildenafil release from nanoparticles made of linear and charge-modified branched polyesters was governed by a diffusion process. The obtained drug diffusion coefficients were decreased as the charge-density present in the applied polymer was increased, which promotes the strategy to improve drug loading and release rates by

  3. High-gravity brewing utilizing factorial design

    OpenAIRE

    Almeida,R. B.; J. B. Almeida e Silva; Lima,U. A.; Assis,A. N.

    2000-01-01

    A number of factors can influence the behavior of yeast during fermentation. Some of these factors (initial wort concentration, initial pH and percentage of corn syrup in the composition of the wort) were studied in order to determine their influence on the productivity of fermentation. Fermentations were carried out at 25ºC utilizing a 2³ factorial design of these factors. The results showed that the percentage of corn syrup had no influence on process productivity, whereas initial pH and es...

  4. Flow-based approach for holistic factory engineering and design

    OpenAIRE

    Constantinescu, C.; Westkämper, E.

    2010-01-01

    The engineering of future factories requires digital tools along life cycle phases from investment planning to ramp-up. Manufacturers need scientific-based integrated highly dynamic data management systems for the participative and integrated factory planning. The paper presents a new approach for the continuously integrated product design, factory and process planning, through a service-oriented architecture for the implementation of digital factory tools. A first prototype of the digital fa...

  5. Multivariate optimization of process parameters in the synthesis of calcined Ca‒Al (NO3) LDH for defluoridation using 3(3) factorial, central composite and Box-Behnken design.

    Science.gov (United States)

    Ghosal, Partha S; Gupta, Ashok K; Sulaiman, Ayoob

    2016-01-01

    Response surface methodology was applied for the first time in the optimization of the preparation of layered double hydroxide (LDH) for defluoridation. The influence of three vital process parameters (viz. pH, molar ratio and calcination temperature) in the synthesis of the adsorbent 'Calcined Ca‒Al (NO3) LDH' was thoroughly examined to maximize its fluoride scavenging potential. The process parameters were optimized using the 3(3) factorial, face centered central composite and Box-Behnken designs and a comparative assessment of the methods was conducted. The maximum fluoride removal efficiency was achieved at a calcination temperature of approximately 500ºC; however, the efficiency decreased with increasing pH and molar ratio. The outcome of the comparative assessment clearly delineates the case specific nature of the models. A better predictability over the entire experimental domain was obtained with the 3(3) factorial method, whereas the Box-Behnken design was found to be the most efficient model with lesser number of experimental runs. The desirability function technique was performed for optimizing the response, wherein face centered central composite design exhibited a maximum desirability. The calcined Ca‒Al (NO3) LDH, synthesized under the optimum conditions, demonstrated the removal efficiencies of 95% and 99% for the doses of 3 g L(-1) and 5 g L(-1), respectively.

  6. High-gravity brewing utilizing factorial design

    Directory of Open Access Journals (Sweden)

    R. B. Almeida

    2000-06-01

    Full Text Available A number of factors can influence the behavior of yeast during fermentation. Some of these factors (initial wort concentration, initial pH and percentage of corn syrup in the composition of the wort were studied in order to determine their influence on the productivity of fermentation. Fermentations were carried out at 25ºC utilizing a 2³ factorial design of these factors. The results showed that the percentage of corn syrup had no influence on process productivity, whereas initial pH and especially initial wort concentration did. It can be concluded that using pH and initial wort concentration values higher than those utilized in this work (5.5 and 20ºP, respectively will result in a higher productivity.

  7. New and Efficient Neutrino Factory Front-End Design

    CERN Document Server

    Gallardo, Juan C; Kirk, Harold G; Neuffer, David V; Palmer, Robert; Paul, Kevin; Scott Berg, J

    2005-01-01

    As part of the APS Joint Study on the Future of Neutrino Physics* we have carried out detailed studies of the Neutrino Factory front-end. A major goal of the new study was to achieve equal performance to our earlier feasibility studies** at reduced cost. The optimal channel design is described in this paper. New innovations included an adiabatic buncher for phase rotation and a simplified cooling channel with LiH absorbers. The linear channel is 295 m long and produces 0.17 muons per proton on target into the assumed accelerator transverse acceptance of 30 mm and longitudinal acceptance of 150 mm.

  8. Lettuce growth and quality optimization in a plant factory

    NARCIS (Netherlands)

    Nicole, C.C.S.; Charalambous, F.; Martinakos, S.; De Voort, Van S.; Li, Z.; Verhoog, M.; Krijn, M.

    2016-01-01

    Since the early 2000s, plant factory (or vertical farm) technology has been introduced for growing vegetables and soft fruits. With a well-controlled environment, new health benefits, food safety, optimized nutrients and increased shelf-life can be offered to consumers. With the progress of light

  9. Novel lectin-modified poly(ethylene-co-vinyl acetate) mucoadhesive nanoparticles of carvedilol: preparation and in vitro optimization using a two-level factorial design.

    Science.gov (United States)

    Varshosaz, Jaleh; Moazen, Ellaheh

    2014-08-01

    Carvedilol used in cardiovascular diseases has systemic bioavailability of 25-35%. The objective of this study was production of lectin-modified poly(ethylene-co-vinyl acetate) (PEVA) as mucoadhesive nanoparticles to enhance low oral bioavailability of carvedilol. Nanoparticles were prepared by the emulsification-solvent evaporation method using a two-level factorial design. The studied variables included the vinyl acetate content of the polymer, drug and polymer content. Surface modification of PEVA nanoparticles with lectin was carried out by the adsorption method and coupling efficiency was determined using the Bradford assay. Mucoadhesion of nanoparticles was studied on mucin. The particle size, polydispersity index, zeta potential, drug loading and drug release from nanoparticles were studied. The morphology of nanoparticles and crystalline status of the entrapped drug were studied by SEM, DSC and XRD tests, respectively. Results showed the most effective factor on particle size and zeta potential was the interaction of polymer and drug content while, drug loading efficiency and mucoadhesion were more affected by the interaction of polymer type and drug content. Drug concentration was the most effective variable on the drug release rate. The drug was in amorphous state in nanoparticles. The optimum nanoparticles obtained by 45 mg of copolymer contained 12% vinyl acetate/4.3 ml of organic phase and drug concentration of 37.5 wt% of polymer.

  10. Gellan gum-based mucoadhesive microspheres of almotriptan for nasal administration: Formulation optimization using factorial design, characterization, and in vitro evaluation

    Directory of Open Access Journals (Sweden)

    Zaheer Abbas

    2014-01-01

    Full Text Available Background: Almotriptan malate (ALM, indicated for the treatment of migraine in adults is not a drug candidate feasible to be administered through the oral route during the attack due to its associated symptoms such as nausea and vomiting. This obviates an alternative dosage form and nasal drug delivery is a good substitute to oral and parenteral administration. Materials and Methods: Gellan gum (GG microspheres of ALM, for intranasal administration were prepared by water-in-oil emulsification cross-linking technique employing a 2 3 factorial design. Drug to polymer ratio, calcium chloride concentration and cross-linking time were selected as independent variables, while particle size and in vitro mucoadhesion of the microspheres were investigated as dependent variables. Regression analysis was performed to identify the best formulation conditions. The microspheres were evaluated for characteristics such as practical percentage yield, particle size, percentage incorporation efficiency, swellability, zeta potential, in vitro mucoadhesion, thermal analysis, X-ray diffraction study, and in vitro drug diffusion studies. Results: The shape and surface characteristics of the microspheres were determined by scanning electron microscopy, which revealed spherical nature and nearly smooth surface with drug incorporation efficiency in the range of 71.65 ± 1.09% - 91.65 ± 1.13%. In vitro mucoadhesion was observed the range of 79.45 ± 1.69% - 95.48 ± 1.27%. Differential scanning calorimetry and X-ray diffraction results indicated a molecular level dispersion of drug in the microspheres. In vitro drug diffusion was Higuchi matrix controlled and the release mechanism was found to be non-Fickian. Stability studies indicated that there were no significant deviations in the drug content, in vitro mucoadhesion and in vitro drug diffusion characteristics. Conclusion: The investigation revealed promising potential of GG microspheres for delivering ALM

  11. CONFOUNDING STRUCTURE OF TWO-LEVEL NONREGULAR FACTORIAL DESIGNS

    Institute of Scientific and Technical Information of China (English)

    Ren Junbai

    2012-01-01

    In design theory,the alias structure of regular fractional factorial designs is elegantly described with group theory.However,this approach cannot be applied to nonregular designs directly. For an arbitrary nonregular design,a natural question is how to describe the confounding relations between its effects,is there any inner structure similar to regular designs? The aim of this article is to answer this basic question.Using coefficients of indicator function,confounding structure of nonregular fractional factorial designs is obtained as linear constrains on the values of effects.A method to estimate the sparse significant effects in an arbitrary nonregular design is given through an example.

  12. Application of fractional factorial design and Doehlert matrix in the optimization of experimental variables associated with the ultrasonic-assisted acid digestion of chocolate samples for aluminum determination by atomic absorption spectrometry.

    Science.gov (United States)

    Jalbani, Nusrat; Kazi, Tasneem Gul; Jamali, Muhammad Khan; Arain, Muhammad Balal; Afridi, Hassan Imran; Sheerazi, Syed T; Ansari, Rehana

    2007-01-01

    A simple and rapid method based on ultrasound energy is described for the determination of aluminum (AI) in complex matrixes of chocolate and candy samples by electrothermal atomic absorption spectrometry. The optimization strategy was carried out using multivariate methodologies. Five variables (temperature of the ultrasonic bath; exposure time to ultrasound energy; volumes of 2 acid mixtures, HNO3-H2SO4-H2O2 (1 + 1 + 1) and HNO3-H2O2 (1 + 1); and sample mass) were considered as factors in the optimization process. Interactions between analytical factors and their optimal levels were investigated using fractional factorial and Doehlert matrix designs. Validation of the ultrasonic-assisted acid digestion procedure was performed against standard reference materials, milk powder (SRM 8435) and wheat flour (SRM 1567a). The proposed procedure allowed Al determination with a detection limit of 2.3 microg/L (signal-to-noise = 3) and a precision, calculated as relative standard deviation, of 2.2% for a set of 10 measurements of certified samples. The recovery of Al by the proposed procedure was close to 100%, and no significant difference at the 95% confidence level was found between determined and certified values of Al. The proposed procedure was applied to the determination of Al in chocolate and candy samples. The results indicated that cocoa-based chocolates have higher contents of Al than milk- and sugar-based chocolates and candies.

  13. Status of the Neutrino Factory accelerator design studies

    CERN Document Server

    Prior, Gersende

    2013-01-01

    This document is a review of the present status of the Neutrino Factory design study, after the publication of the Interim Design Report and before the publication of the Reference Design Report. The different components of the accelerator as well as their current design stage and future tasks are described here.

  14. A cost-Effective Design for a Neutrino Factory

    Energy Technology Data Exchange (ETDEWEB)

    Berg, J.S.; Bogacz, S.A.; Caspi, S.; Cobb, J.; Fernow, R.C.; Gallardo, J.C.; Kahn, S.; Kirk, H.; Neuffer, D.; Palmer, R.; Paul, K.; Witte, H.; Zisman, M.

    2006-06-01

    There have been active efforts in the U.S., Europe, and Japan on the design of a Neutrino Factory. This type of facility produces intense beams of neutrinos from the decay of muons in a high energy storage ring. In the U.S., a second detailed Feasibility Study (FS2) for a Neutrino Factory was completed in 2001. Since that report was published, new ideas in bunching, cooling and acceleration of muon beams have been developed. We have incorporated these ideas into a new facility design, which we designate as Study 2B (ST2B), that should lead to significant cost savings over the FS2 design.

  15. Cost-effective design for a neutrino factory

    Energy Technology Data Exchange (ETDEWEB)

    Alex Bogacz

    2006-01-01

    There have been active efforts in the U.S., Europe, and Japan on the design of a neutrino factory. This type of facility produces intense beams of neutrinos from the decay of muons in a high-energy storage ring. In the U.S., a second detailed feasibility study (FS2) for a neutrino factory was completed in 2001. Since that report was published, new ideas in bunching, cooling, and acceleration of muon beams have been developed. We have incorporated these ideas into a new facility design, which we designate as study 2B (ST2B), that should lead to significant cost savings over the FS2 design.

  16. Designing fractional factorial split-plot experiments using integer programming

    DEFF Research Database (Denmark)

    Capehart, Shay R.; Keha, Ahmet; Kulahci, Murat

    2011-01-01

    factorial (FF) design, with the restricted randomisation structure to account for the whole plots and subplots. We discuss the formulation of FFSP designs using integer programming (IP) to achieve various design criteria. We specifically look at the maximum number of clear two-factor interactions...

  17. Designing fractional factorial split-plot experiments using integer programming

    DEFF Research Database (Denmark)

    Capehart, Shay R.; Keha, Ahmet; Kulahci, Murat

    2011-01-01

    factorial (FF) design, with the restricted randomisation structure to account for the whole plots and subplots. We discuss the formulation of FFSP designs using integer programming (IP) to achieve various design criteria. We specifically look at the maximum number of clear two-factor interactions...

  18. Effect of extraction solvents on the biomolecules and antioxidant properties of Scorzonera undulata (Asteraceae: Application of factorial design optimization phenolic extraction

    Directory of Open Access Journals (Sweden)

    Khaled Athmouni

    2015-12-01

    Full Text Available Background. Phenolic compounds were extracted and isolated from S. undulata roots. Methods. Sample of roots from E. hirta was tested for phenolic compounds, and in vitro antioxidant activity by diphenyl-1-picrylhydrazyl (DPPH assay, ABTS, FRAP and reducing power was measured using cyano- ferrate method. Results. The methanolic fraction exhibited the highest total phenol content (6.12 ±0.11 mg AGE/g DW. On the other hand, the highest flavonoids concentration was observed in ethyl acetate fraction (2.90 ±0.05 mg CE/g DW in addition to anthocyanins (28.56 ±3.96 mg/l. Besides, the highest level of tannins content was measured in the polar aprotic solvent ethyl acetate extract (3.25 ±0.06 mg CE/g DW. The different extracts of S. undulata were evaluated for their radical scavenging activities by means of the DPPH assay. The strongest scavenging activity was observed in methanolic fraction scavenged radicals effectively with IC   values of 0.14 ±0.02 mg/ml. Similarly, the potassium ferricyanide reduction (FRAP and ABTS•+ of methanol extract. On the other hand, the total reducing power of ethyl acetate extract was found higher than of other extracts. This paper presents the application of the design-of experiment method for optimizing the extraction of phe- nolic content using methanol solvent. The resulting regression model has shown that the effect of temperature is not statistically significant (with >95% certainty, while that of agitation speed is. The two main effects are contributed by the solvent concentration and the maceration period. Conclusion. Our results clearly showed that the extraction of phenolic compounds and their antioxidant ca- pacity is significantly affected by solvent combinations. S. undulata presented the highest total phenolic con- tent, total flavonoids content and antioxidant capacity values. The resulting regression model has shown that the effect of temperature is not statistically significant (with >95

  19. Colorimetric determination of alpha and beta-cyclodextrins and studies on optimization of CGTase production from B. firmus using factorial designs

    Directory of Open Access Journals (Sweden)

    Ilma Hiroko Higuti

    2004-11-01

    Full Text Available Cyclodextrin glycosyltransferase (EC 2.4.1.19, CGTase production from B. firmus, isolated from soil of Curitiba, PR, was optimized in shake flask using an experimental design approach. The CGTase was produced when the carbon source was starch and beta-CD, but when simple sugars such as glucose, galactose, lactose, sucrose, and maltose were used, there was no enzyme production. CGTase production was the same with either organic nitrogen or inorganic nitrogen source. CGTase activity decreased 2-fold when incubation temperature was increased from 28 to 37 ° C, and decreased 2.1- fold when the initial pH was lowered from 10.3 to 7.4. The colorimetric determinations of alpha - and beta -CD were analyzed as a non-linear relationship and the equilibrium constant for alpha -CD/methyl orange and beta -CD/phenolphthalein complexes were 7.69 x 10³ L / mol and 2.33 x 10³ L/ mol, respectively.A produção de ciclodextrina glicosiltransferase (EC2.4.1.19, CGTase de B. firmus isolada de solo de Curitiba, PR, foi otimizada com o uso de modelo estatístico fatorial. Foi estudado o efeito de componentes no meio básico bem como pH inicial e temperatura na produção da enzima. O modelo de fatorial 2k-1 foi usado. A atividade da CGTase foi monitorada pelo método colorimétrico com alaranjado de metila. Houve produção da CGTase quando a fonte de carbono era amido e beta-CD, mas quando galactose, lactose, sacarose e maltose foram usadas, nγo houve nenhuma produηγo de enzima. A produηão de CGTase foi a mesma com a fonte de nitrogênio orgânico ou inorgânico. A atividade da CGTase diminuiu 2 vezes quando a temperatura de incubação foi aumentada de 28 a 37 ° C, e diminuiu 2,1 vezes quando o pH inicial foi abaixado de 10,3 a 7,4. As determinações colorimetricas de alfa e beta - CD foram analisadas como regressão não linear e a constante de equilíbrio para os complexos alfa -CD/alaranjado de metila e beta -CD/fenolftaleina foram 7,69 x 10³ L/mol e 2

  20. PEP-II: An asymmetric B factory. Conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    In this report, the authors have described an updated conceptual design for the high-luminosity Asymmetric B Factory (PEP-II) to be built in the PEP tunnel culmination of more than four years of effort aimed at the design and construction of an asymmetric e{sub +}e{sub {minus}} collider capable of achieving a luminosity of L = 3 {times} 10{sup 33} cm{sup {minus}2} s{sup {minus}1}. All aspects of the conceptual design were scrutinized in March 1991 by a DOE technical review committee chaired by Dr. L. Edward Temple. The design was deemed feasible and capable of achieving its physics goals. Furthermore, the cost estimate, schedule, and management plan for the project were fully endorsed by the committee. This updated conceptual design report captures the technical progress since the March 1991 review and reflects the lower cost estimate corresponding to the improved design. Although the PEP-II design has continued to evolve, no technical scope changes have been made that invalidate the conclusion of the DOE review. The configuration adopted utilizes two storage rings, an electron ring operating at 9 GeV and a positron ring at 3.1 GeV, each with a circumference of 2200 m. The high-energy ring is an upgrade of the PEP storage ring at SLAC; all PEP magnets and most power supplies will be reused. The upgrade consists primarily of replacing the PEP vacuum chamber and RF system with newly designed versions optimized for the high-current environment of PEP-II. The low-energy ring will be newly constructed and will be situated atop the high-energy ring in the PEP tunnel. Utilities already installed in the PEP tunnel are largely sufficient to operate the two PEP-II storage rings.

  1. Constructing General Orthogonal Fractional Factorial Split-Plot Designs

    NARCIS (Netherlands)

    Sartono, B.; Goos, P.; Schoen, E.

    2015-01-01

    While the orthogonal design of split-plot fractional factorial experiments has received much attention already, there are still major voids in the literature. First, designs with one or more factors acting at more than two levels have not yet been considered. Second, published work on nonregular fra

  2. L-Asparaginase from Streptomyces griseus NIOT-VKMA29: optimization of process variables using factorial designs and molecular characterization of L-asparaginase gene

    Science.gov (United States)

    Meena, Balakrishnan; Anburajan, Lawrance; Sathish, Thadikamala; Vijaya Raghavan, Rangamaran; Dharani, Gopal; Valsalan Vinithkumar, Nambali; Kirubagaran, Ramalingam

    2015-07-01

    Marine actinobacteria are known to be a rich source for novel metabolites with diverse biological activities. In this study, a potential extracellular L-asparaginase was characterised from the Streptomyces griseus NIOT-VKMA29. Box-Behnken based optimization was used to determine the culture medium components to enhance the L-asparaginase production. pH, starch, yeast extract and L-asparagine has a direct correlation for enzyme production with a maximum yield of 56.78 IU mL-1. A verification experiment was performed to validate the experiment and more than 99% validity was established. L-Asparaginase biosynthesis gene (ansA) from Streptomyces griseus NIOT-VKMA29 was heterologously expressed in Escherichia coli M15 and the enzyme production was increased threefold (123 IU mL-1) over the native strain. The ansA gene sequences reported in this study encloses several base substitutions with that of reported sequences in GenBank, resulting in altered amino acid sequences of the translated protein.

  3. Bioretention Systems: Partial Factorial Designs for Nitrate Removal

    Science.gov (United States)

    Changes in nutrient loadings are monitored by introducing captured stormwater runoff into eight outdoor rain gardens at EPA’s Urban Water Research Facility in Edison, New Jersey scaled for residential and urban landscapes. The partial factorial design includes non-vegetated meso...

  4. Factorial study of rain garden design for nitrogen removal

    Science.gov (United States)

    Abstract Nitrate (〖NO〗_3^--N ) removal studies in bioretention systems showed great variability in removal rates and in some cases 〖NO〗_3^--N was exported. A 3-way factorial design (2 x 2 x 4) was devised for eight outdoor un-vegetated rain gardens to evaluate the effects of ...

  5. Using Propensity Score Methods to Approximate Factorial Experimental Designs

    Science.gov (United States)

    Dong, Nianbo

    2011-01-01

    The purpose of this study is through Monte Carlo simulation to compare several propensity score methods in approximating factorial experimental design and identify best approaches in reducing bias and mean square error of parameter estimates of the main and interaction effects of two factors. Previous studies focused more on unbiased estimates of…

  6. Two Ways Factorial Design for round robin test of anemometers

    Energy Technology Data Exchange (ETDEWEB)

    Cuerva, A.

    1998-07-01

    This work presents a way to carry out an inter-comparison between different cup anemometers that are tested in different wind tunnels. The method applied is known as Factorial design and allows determining the influence in the test of different factors in this case the anemometer itself and the wind tunnel where it is tested. (Author) 4 refs.

  7. KEKB B-factory design report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    KEKB is an asymmetric electron-positron collider at 8 x 3.5 GeV which aims at providing electron-positron collision at the center of mass energy of 10.58 GeV. Its mission is to support high energy physics research programs on CP violation and other topics in B-meson decay. Its luminosity goal is 10{sup 34}/cm{sup 2}s. As the construction of the KEKB was approved as a five-year project by the Japanese government, it was begun formally in April, 1994. The low energy ring LER for positrons at 3.5 GeV and the high energy ring HER for electrons at 8 GeV will be built side by side in the existing TRISTAN tunnel with 3 km circumference, and the maximum use of the infrastructure of TRISTAN will be made. The KEKB has only one interaction point in the Tsukuba experimental hall, and the BELLE detector will be installed in this interaction region. The layout of the two rings is explained. In this report, the basic design, hardware systems, the construction schedule, physics requirement, machine parameters, beam-beam interaction, RF parameters, impedance and collective effects, lattice design, interaction region, RF system, magnet system, vacuum system, beam instrumentation, injection and accelerator control system are described. (K.I.).

  8. Cost-effective design for a neutrino factory

    Directory of Open Access Journals (Sweden)

    J. S. Berg

    2006-01-01

    Full Text Available There have been active efforts in the U.S., Europe, and Japan on the design of a neutrino factory. This type of facility produces intense beams of neutrinos from the decay of muons in a high-energy storage ring. In the U.S., a second detailed feasibility study (FS2 for a neutrino factory was completed in 2001. Since that report was published, new ideas in bunching, cooling, and acceleration of muon beams have been developed. We have incorporated these ideas into a new facility design, which we designate as study 2B (ST2B, that should lead to significant cost savings over the FS2 design.

  9. ULTRA HIGH SPEED FACTORIAL DESIGN IN SUB-NANOMETER TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Arindam Banerjee

    2013-02-01

    Full Text Available This work proposes a high speed and low power factorial design in 22nm technology and also it counts the effect of sub nano-meter constraints on this circuit. A comparative study for this design has been done for 90nm, 45nm and 22nm technology. The rise in circuit complexity and speed is accompanied by the scaling of MOSFET’s. The transistor saturation current Idsat is an important parameter because the transistor current determines the time needed to charge and discharge the capacitive loads on chip, and thus impacts the product speed more than any other transistor parameter. The efficient implementation of a factorial number is carried out by using a decremented and multipliers which has been lucidly discussed in this paper. Normally in a factorial module a number is calculated as the iterative multiplication of the given number to the decremented value of the given number. A Parallel adder based decremented has been proposed for calculating the factorial of any number that also includes 0 and 1. The performances are calculated by using the existing 90-nm CMOS technology and scaling down the existing technology to 45-nm and 22-nm.

  10. Statistical analysis of efficient unbalanced factorial designs for two-color microarray experiments.

    Science.gov (United States)

    Tempelman, Robert J

    2008-01-01

    Experimental designs that efficiently embed a fixed effects treatment structure within a random effects design structure typically require a mixed-model approach to data analyses. Although mixed model software tailored for the analysis of two-color microarray data is increasingly available, much of this software is generally not capable of correctly analyzing the elaborate incomplete block designs that are being increasingly proposed and used for factorial treatment structures. That is, optimized designs are generally unbalanced as it pertains to various treatment comparisons, with different specifications of experimental variability often required for different treatment factors. This paper uses a publicly available microarray dataset, as based upon an efficient experimental design, to demonstrate a proper mixed model analysis of a typical unbalanced factorial design characterized by incomplete blocks and hierarchical levels of variability.

  11. Minimum secondary aberration fractional factorial split-plot designs in terms of consulting designs

    Institute of Scientific and Technical Information of China (English)

    Al; Mingyao; ZHANG; Runchu

    2006-01-01

    It is very powerful for constructing nearly saturated factorial designs to characterize fractional factorial (FF) designs through their consulting designs when the consulting designs are small. Mukerjee and Fang employed the projective geometry theory to find the secondary wordlength pattern of a regular symmetrical fractional factorial split-plot (FFSP) design in terms of its complementary subset, but not in a unified form. In this paper, based on the connection between factorial design theory and coding theory, we obtain some general and unified combinatorial identities that relate the secondary wordlength pattern of a regular symmetrical or mixed-level FFSP design to that of its consulting design. According to these identities, we further establish some general and unified rules for identifying minimum secondary aberration, symmetrical or mixed-level, FFSP designs through their consulting designs.

  12. Systems analysis and futuristic designs of advanced biofuel factory concepts.

    Energy Technology Data Exchange (ETDEWEB)

    Chianelli, Russ; Leathers, James; Thoma, Steven George; Celina, Mathias C.; Gupta, Vipin P.

    2007-10-01

    The U.S. is addicted to petroleum--a dependency that periodically shocks the economy, compromises national security, and adversely affects the environment. If liquid fuels remain the main energy source for U.S. transportation for the foreseeable future, the system solution is the production of new liquid fuels that can directly displace diesel and gasoline. This study focuses on advanced concepts for biofuel factory production, describing three design concepts: biopetroleum, biodiesel, and higher alcohols. A general schematic is illustrated for each concept with technical description and analysis for each factory design. Looking beyond current biofuel pursuits by industry, this study explores unconventional feedstocks (e.g., extremophiles), out-of-favor reaction processes (e.g., radiation-induced catalytic cracking), and production of new fuel sources traditionally deemed undesirable (e.g., fusel oils). These concepts lay the foundation and path for future basic science and applied engineering to displace petroleum as a transportation energy source for good.

  13. Evolutionary algorithm for the neutrino factory front end design

    Energy Technology Data Exchange (ETDEWEB)

    Poklonskiy, Alexey A.; /Michigan State U.; Neuffer, David; /Fermilab

    2009-01-01

    The Neutrino Factory is an important tool in the long-term neutrino physics program. Substantial effort is put internationally into designing this facility in order to achieve desired performance within the allotted budget. This accelerator is a secondary beam machine: neutrinos are produced by means of the decay of muons. Muons, in turn, are produced by the decay of pions, produced by hitting the target by a beam of accelerated protons suitable for acceleration. Due to the physics of this process, extra conditioning of the pion beam coming from the target is needed in order to effectively perform subsequent acceleration. The subsystem of the Neutrino Factory that performs this conditioning is called Front End, its main performance characteristic is the number of the produced muons.

  14. Fractional factorial plans

    CERN Document Server

    Dey, Aloke

    2009-01-01

    A one-stop reference to fractional factorials and related orthogonal arrays.Presenting one of the most dynamic areas of statistical research, this book offers a systematic, rigorous, and up-to-date treatment of fractional factorial designs and related combinatorial mathematics. Leading statisticians Aloke Dey and Rahul Mukerjee consolidate vast amounts of material from the professional literature--expertly weaving fractional replication, orthogonal arrays, and optimality aspects. They develop the basic theory of fractional factorials using the calculus of factorial arrangements, thereby providing a unified approach to the study of fractional factorial plans. An indispensable guide for statisticians in research and industry as well as for graduate students, Fractional Factorial Plans features: * Construction procedures of symmetric and asymmetric orthogonal arrays. * Many up-to-date research results on nonexistence. * A chapter on optimal fractional factorials not based on orthogonal arrays. * Trend-free plans...

  15. Optimization and beam control in large-emittance accelerators: Neutrino factories;

    Energy Technology Data Exchange (ETDEWEB)

    Carol Johnstone

    2004-08-23

    Schemes for intense sources of high-energy muons require collection, rf capture, and transport of particle beams with unprecedented emittances, both longitudinally and transversely. These large emittances must be reduced or ''cooled'' both in size and in energy spread before the muons can be efficiently accelerated. Therefore, formation of muon beams sufficiently intense to drive a Neutrino Factory or Muon Collider requires multi-stage preparation. Further, because of the large beam phase space which must be successfully controlled, accelerated, and transported, the major stages that comprise such a facility: proton driver, production, capture, phase rotation, cooling, acceleration, and storage are complex and strongly interlinked. Each of the stages must be consecutively matched and simultaneously optimized with upstream and downstream systems, meeting challenges not only technically in the optics and component design, but also in the modeling of both new and extended components. One design for transverse cooling, for example, employs meter-diameter solenoids to maintain strong focusing--300-500 mr beam divergences--across ultra-large momentum ranges, {ge} {+-}20% {delta}p/p, defying conventional approximations to the dynamics and field representation. To now, the interplay of the different systems and staging strategies has not been formally addressed. This work discusses two basic, but different approaches to a Neutrino Factory and how the staging strategy depends on beam parameters and method of acceleration.

  16. Interim Design Report for the International Design Study for a Neutrino Factory

    Energy Technology Data Exchange (ETDEWEB)

    Choubey, S.; Gandhi, R.; Goswami, S.; /Harish-Chandra Res. Inst.; Berg, J.S.; Fernow, R.; Gallardo, J.C.; Gupta, R.; Kirk, H.; Simos, N.; Souchlas, N.; /Brookhaven; Ellis, M.; /Brunel U. /CERN /Durham U., IPPP /Fermilab /Geneva U. /Glasgow U. /Heidelberg, Max Planck Inst. /Imperial Coll., London /Jefferson Lab /Saha Inst.

    2011-10-01

    The starting point for the International Design Study for the Neutrino Factory (the IDS-NF) was the output of the earlier International Scoping Study for a future Neutrino Factory and super-beam facility (the ISS). The accelerator facility described in section 2 incorporates the improvements that have been derived from the substantial amount of work carried out within the Accelerator Working Group. Highlights of these improvements include: (1) Initial concepts for the implementation of the proton driver at each of the three example sites, CERN, FNAL, and RAL; (2) Detailed studies of the energy deposition in the target area; (3) A reduction in the length of the muon beam phase-rotation and bunching systems; (4) Detailed analyses of the impact of the risk that stray magnetic field in the accelerating cavities in the ionization cooling channel will reduce the maximum operating gradient. Several alternative ionization-cooling lattices have been developed as fallback options to mitigate this technical risk; (5) Studies of particle loss in the muon front-end and the development of strategies to mitigate the deleterious effects of such losses; (6) The development of more complete designs for the muon linac and re-circulating linacs; (7) The development of a design for the muon FFAG that incorporates insertions for injection and extraction; and (8) Detailed studies of diagnostics in the decay ring. Other sub-systems have undergone a more 'incremental' evolution; an indication that the design of the Neutrino Factory has achieved a degree of maturity. The design of the neutrino detectors described in section 3 has been optimized and the Detector Working Group has made substantial improvements to the simulation and analysis of the Magnetized Iron Neutrino Detector (MIND) resulting in an improvement in the overall neutrino-detection efficiency and a reduction in the neutrino-energy threshold. In addition, initial consideration of the engineering of the MIND has

  17. An intelligent factory-wide optimal operation system for continuous production process

    Science.gov (United States)

    Ding, Jinliang; Chai, Tianyou; Wang, Hongfeng; Wang, Junwei; Zheng, Xiuping

    2016-03-01

    In this study, a novel intelligent factory-wide operation system for a continuous production process is designed to optimise the entire production process, which consists of multiple units; furthermore, this system is developed using process operational data to avoid the complexity of mathematical modelling of the continuous production process. The data-driven approach aims to specify the structure of the optimal operation system; in particular, the operational data of the process are used to formulate each part of the system. In this context, the domain knowledge of process engineers is utilised, and a closed-loop dynamic optimisation strategy, which combines feedback, performance prediction, feed-forward, and dynamic tuning schemes into a framework, is employed. The effectiveness of the proposed system has been verified using industrial experimental results.

  18. MULTIDISCIPLINARY ROBUST OPTIMIZATION DESIGN

    Institute of Scientific and Technical Information of China (English)

    Chen Jianjiang; Xiao Renbin; Zhong Yifang; Dou Gang

    2005-01-01

    Because uncertainty factors inevitably exist under multidisciplinary design environment, a hierarchical multidisciplinary robust optimization design based on response surface is proposed. The method constructs optimization model of subsystem level and system level to coordinate the coupling among subsystems, and also the response surface based on the artificial neural network is introduced to provide information for system level optimization tool to maintain the independence of subsystems,i.e. to realize multidisciplinary parallel design. The application case of electrical packaging demonstrates that reasonable robust optimum solution can be yielded and it is a potential and efficient multidisciplinary robust optimization approach.

  19. Designing High Performance Factory Automation Applications on Top of DDS

    Directory of Open Access Journals (Sweden)

    Isidro Calvo

    2013-04-01

    Full Text Available DDS is a recent specification aimed at providing high‐performance publisher/subscriber middleware solutions. Despite being a very powerful flexible technology, it may prove complex to use, especially for the inexperienced. This work provides some guidelines for connecting software components that represent a new generation of automation devices (such as PLCs, IPCs and robots using Data Distribution Service (DDS as a virtual software bus. More specifically, it presents the design of a DDS‐based component, the so‐called Automation Component, and discusses how to map different traffic patterns using DDS entities exploiting the wealth of QoS management mechanisms provided by the DDS specification. A case study demonstrates the creation of factory automation applications out of software components that encapsulate independent stations.

  20. Designing High Performance Factory Automation Applications on Top of DDS

    Directory of Open Access Journals (Sweden)

    Isidro Calvo

    2013-04-01

    Full Text Available DDS is a recent specification aimed at providing high-performance publisher/subscriber middleware solutions. Despite being a very powerful flexible technology, it may prove complex to use, especially for the inexperienced. This work provides some guidelines for connecting software components that represent a new generation of automation devices (such as PLCs, IPCs and robots using Data Distribution Service (DDS as a virtual software bus. More specifically, it presents the design of a DDS-based component, the so-called Automation Component, and discusses how to map different traffic patterns using DDS entities exploiting the wealth of QoS management mechanisms provided by the DDS specification. A case study demonstrates the creation of factory automation applications out of software components that encapsulate independent stations.

  1. In Silico Constraint-Based Strain Optimization Methods: the Quest for Optimal Cell Factories.

    Science.gov (United States)

    Maia, Paulo; Rocha, Miguel; Rocha, Isabel

    2016-03-01

    Shifting from chemical to biotechnological processes is one of the cornerstones of 21st century industry. The production of a great range of chemicals via biotechnological means is a key challenge on the way toward a bio-based economy. However, this shift is occurring at a pace slower than initially expected. The development of efficient cell factories that allow for competitive production yields is of paramount importance for this leap to happen. Constraint-based models of metabolism, together with in silico strain design algorithms, promise to reveal insights into the best genetic design strategies, a step further toward achieving that goal. In this work, a thorough analysis of the main in silico constraint-based strain design strategies and algorithms is presented, their application in real-world case studies is analyzed, and a path for the future is discussed.

  2. The Skateboard Factory: Curriculum by Design--Oasis Skateboard Factory Q&A with Craig Morrison

    Science.gov (United States)

    Pearson, George

    2012-01-01

    Since its opening three years ago, Oasis Skateboard Factory (OSF), founded by teacher Craig Morrison, has attracted considerable media exposure and received a Ken Spencer Award from the CEA for its innovative program. OSF is one of three programs offered by Oasis Alternative Secondary School, one of 22 alternative secondary schools of the Toronto…

  3. The Skateboard Factory: Curriculum by Design--Oasis Skateboard Factory Q&A with Craig Morrison

    Science.gov (United States)

    Pearson, George

    2012-01-01

    Since its opening three years ago, Oasis Skateboard Factory (OSF), founded by teacher Craig Morrison, has attracted considerable media exposure and received a Ken Spencer Award from the CEA for its innovative program. OSF is one of three programs offered by Oasis Alternative Secondary School, one of 22 alternative secondary schools of the Toronto…

  4. DESIGN AND LAYOUT CONCEPTS FOR COMPACT, FACTORY-PRODUCED, TRANSPORTABLE, GENERATION IV REACTOR SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Mynatt Fred R.; Townsend, L.W.; Williamson, Martin; Williams, Wesley; Miller, Laurence W.; Khan, M. Khurram; McConn, Joe; Kadak, Andrew C.; Berte, Marc V.; Sawhney, Rapinder; Fife, Jacob; Sedler, Todd L.; Conway, Larry E.; Felde, Dave K.

    2003-11-12

    The purpose of this research project is to develop compact (100 to 400 MWe) Generation IV nuclear power plant design and layout concepts that maximize the benefits of factory-based fabrication and optimal packaging, transportation and siting. The reactor concepts selected were compact designs under development in the 2000 to 2001 period. This interdisciplinary project was comprised of three university-led nuclear engineering teams identified by reactor coolant type (water, gas, and liquid metal) and a fourth Industrial Engineering team. The reactors included a Modular Pebble Bed helium-cooled concept being developed at MIT, the IRIS water-cooled concept being developed by a team led by Westinghouse Electric Company, and a Lead-Bismuth-cooled concept developed by UT. In addition to the design and layout concepts this report includes a section on heat exchanger manufacturing simulations and a section on construction and cost impacts of proposed modular designs.

  5. Factorial Design and Development of Solid Lipid Nanoparticles (SLN) for Gene Delivery.

    Science.gov (United States)

    Radaic, Allan; de Paula, Eneida; de Jesus, Marcelo Bispo

    2015-02-01

    Several scientific hurdles still have to be overcome before gene therapy becomes a reality. One of them is the development of safe and efficient gene delivery system. Here, we have employed factorial design to optimize the production of solid lipid nanoparticles (SLN) for gene delivery. A 2 x 3 full-factorial experimental design was used for the optimization of SLNs formulations. The variables were defined by the components of the formulation: concentration of stearic acid, DOTAP, and Pluronic F68 at two levels (-1, 1) and 3 central points (0). Different SNL formulations were prepared by varying the amount of components and several properties were tested, including their capacity to accommodate DNA and protection against DNase degradation, colloidal stability, in vitro cytotoxicity, and transfection efficiency in prostate cancer cells. Finally, response Surface Methodology was used to select the most effective formulation for gene delivery to prostate cancer cells in vitro. In conclusion, this study revealed that stearic acid and Pluronic F68 were determinant to SLN size and stability, respectively, while small amounts of DOTAP are essential for a successful transfection.

  6. Factorial design of a solar photocatalytic process to treatment of wastewater effluent

    Energy Technology Data Exchange (ETDEWEB)

    Francisco, Adriana Ribeiro; Paterniani, Jose Euclides Stipp [Universidade Estadual de Campinas (FEAGRI/UNICAMP), SP (Brazil). Fac. de Engenharia Agricola], E-mail: adriana.francisco@agr.unicamp.br; Kuwakino, Adriana Yuri [Universidade Estadual de Campinas (CESET/UNICAMP), Limeira, SP (Brazil). Centro Superior de Educacao Tecnologica

    2008-07-01

    Advanced treatments are attributed to improving the quality of various types of waste such as the sanitary wastewater. The heterogeneous photocatalysis is an alternative that allows to improve the effluents conditions. This is possible because many chemical compounds of environmental concern can be degraded using UV radiation on a semiconductor. However, to enable the efficiency of the process photocatalytic is necessary to conduct a study of optimization to establish favorable conditions between selected variables. The aim of this work was a reactor solar photocatalytic optimization using factorial design 2{sup k}, depending on variables: mass (TiO{sub 2}), time (min) and flow of air (L min{sup -1}), using as analytical response the removal of color. The experiment was conducted at the Faculty of Agricultural Engineering (FEAGRI) and it was used the sanitary wastewater of there. The results indicated that there were significant efficiency using combinations mass = 1000 mg L{sup -1}, time = 360 min and flow of air = 5 L min{sup -1}. In the calculations of factorial design, the time showed a marked positive effect of 7.76, while the flow of air, when in excess, had an inhibitor behavior, even getting positive effect. (author)

  7. Evaluation of effervescent floating matrix tablet formulations of salbutamol sulfate using full factorial design

    Directory of Open Access Journals (Sweden)

    Rao Monica

    2009-01-01

    Full Text Available The purpose of this research was to formulate and optimize an effervescent floating tablet formulation of salbutamol sulfate using full factorial design. Salbutamol sulfate has an absorption window in the stomach and in the upper part of the small intestine. A 3 2 full factorial design (eight runs was utilized to optimize the formulation wherein the content of hydroxylpropyl methyl cellulose (HPMC (X 1 and sodium bicarbonate (X 2 were taken as independent variables and % drug release after 6 h (Y 1 , t 50% (Y 2 , and buoyancy lag time (BLT (Y 3 were taken as the dependent variables. Salbutamol sufate, HPMC K4M and HPMC K100M CR, stearic acid, talc, dicalcium phosphate, polyvinyl pyrrolidone, and magnesium stearate were used for the current research work. Two viscosity grades of HPMC as matrix materials were used for formulating the tablets, which were prepared by wet granulation. The release data were evaluated by the model-dependent (curve fitting method using the PCP Disso v2.08 software. Optimization studies were carried out using the Design Expert Software (Version 7.0.3. The in vitro drug release mechanism showed anomalous transport. An increase in the concentration and viscosity grade of the polymer resulted in a decrease in the release rate, but it was found that at a higher concentration of HPMC, the viscosity grade did not significantly affect the drug release. Concentration of both HPMC and sodium bicarbonate had a significant effect on the BLT. Optimized effervescent floating tablets of salbutamol sulfate were successfully prepared and a good correlation was observed between predicted and actual values of the dependent variables chosen for the study. Viscosity grade of HPMC did not significantly impact the floatability of the dosage form. Thus, we can conclude that a combination of HPMC, stearic acid, and sodium bicarbonate can be used to increase the gastric residence time of the dosage form up to 12 h.

  8. Redirector: designing cell factories by reconstructing the metabolic objective.

    Directory of Open Access Journals (Sweden)

    Graham Rockwell

    Full Text Available Advances in computational metabolic optimization are required to realize the full potential of new in vivo metabolic engineering technologies by bridging the gap between computational design and strain development. We present Redirector, a new Flux Balance Analysis-based framework for identifying engineering targets to optimize metabolite production in complex pathways. Previous optimization frameworks have modeled metabolic alterations as directly controlling fluxes by setting particular flux bounds. Redirector develops a more biologically relevant approach, modeling metabolic alterations as changes in the balance of metabolic objectives in the system. This framework iteratively selects enzyme targets, adds the associated reaction fluxes to the metabolic objective, thereby incentivizing flux towards the production of a metabolite of interest. These adjustments to the objective act in competition with cellular growth and represent up-regulation and down-regulation of enzyme mediated reactions. Using the iAF1260 E. coli metabolic network model for optimization of fatty acid production as a test case, Redirector generates designs with as many as 39 simultaneous and 111 unique engineering targets. These designs discover proven in vivo targets, novel supporting pathways and relevant interdependencies, many of which cannot be predicted by other methods. Redirector is available as open and free software, scalable to computational resources, and powerful enough to find all known enzyme targets for fatty acid production.

  9. ATHENA optimized coating design

    DEFF Research Database (Denmark)

    Ferreira, Desiree Della Monica; Christensen, Finn Erland; Jakobsen, Anders Clemen

    2012-01-01

    The optimization of coating design for the ATHENA mission si described and the possibility of increasing the telescope effective area in the range between 0.1 and 10 keV is investigated. An independent computation of the on-axis effective area based on the mirror design of ATHENA is performed in ...

  10. Industry 4.0 learning factory didactic design parameters for industrial engineering education in South Africa

    Directory of Open Access Journals (Sweden)

    Sackey, S. M.

    2017-05-01

    Full Text Available To manage the impact of Industry 4.0 on industrial engineering (IE education curriculum requirements, realistic teaching and learning infrastructure such as a learning factory are required. This paper scans the literature to determine Industry 4.0’s principles and interactions with IE and a learning factory, surveys relevant universities by questionnaire to determine its current status and practices, and formulates didactic design parameters for an Industry 4.0 learning factory to support IE education in South Africa, making use of existing models of cyber-physical systems and learning factory morphology. In other results, the technical universities are discovered to be more positively disposed, in general terms, to developing an Industry 4.0 learning factory than are the traditional programmes which, with one exception, prefer computational facilities. Of ten universities that offer IE, only one — a traditional programme — has made significant progress towards creating an Industry 4.0 learning factory.

  11. Wind farm design optimization

    Energy Technology Data Exchange (ETDEWEB)

    Carreau, Michel; Morgenroth, Michael; Belashov, Oleg; Mdimagh, Asma; Hertz, Alain; Marcotte, Odile

    2010-09-15

    Innovative numerical computer tools have been developed to streamline the estimation, the design process and to optimize the Wind Farm Design with respect to the overall return on investment. The optimization engine can find the collector system layout automatically which provide a powerful tool to quickly study various alternative taking into account more precisely various constraints or factors that previously would have been too costly to analyze in details with precision. Our Wind Farm Tools have evolved through numerous projects and created value for our clients yielding Wind Farm projects with projected higher returns.

  12. Batch phenol biodegradation study and application of factorial experimental design

    Directory of Open Access Journals (Sweden)

    A. Hellal

    2010-01-01

    Full Text Available A bacterium, Pseudomonas aeruginosa (ATTC27853, was investigated for its ability to grow and to degrade phenol as solecarbon source, in aerobic batch culture. The parameters which affect the substrate biodegradation such as the adaptation ofbacteria to phenol, the temperature, and the nature of the bacteria were investigated. The results show that for a range oftemperature of 30 to 40°C, the best degradation of phenol for a concentration of 100mg/l was observed at 30°C. The regenerationof the bacterium which allows the reactivation of its enzymatic activity, shows that the degradation of 100 mg/ l ofsubstrate at 30° C required approximately 50 hours with revivified bacteria, while it only starts after 72 hours for those norevivified. Adapted to increasing concentrations, allows the bacteria to degrade a substrate concentration of about 400mg/l in less than 350 hours.A second part was consisted in the determination of a substrate degradation model using the factorial experiment design,as a function of temperature (30-40°C and of the size of the inoculums (260.88 - 521.76mg/ l. The results were analyzedstatistically using the Student’s t-test, analysis of variance, and F-test. The value of R2 (0.99872 and adjusted R2 (0.9962close to 1.0, verifies the good correlation between the observed and the predicted values, and provides the excellent relationshipbetween the independent variables (factors and the response (the time of the phenol degradation. F-value found above200, indicates that the considered model is statistically significant.

  13. Factorial design studies of antiretroviral drug-loaded stealth liposomal injectable: PEGylation, lyophilization and pharmacokinetic studies

    Science.gov (United States)

    Sudhakar, Beeravelli; Krishna, Mylangam Chaitanya; Murthy, Kolapalli Venkata Ramana

    2016-01-01

    The aim of the present study was to formulate and evaluate the ritonavir-loaded stealth liposomes by using 32 factorial design and intended to delivered by parenteral delivery. Liposomes were prepared by ethanol injection method using 32 factorial designs and characterized for various physicochemical parameters such as drug content, size, zeta potential, entrapment efficiency and in vitro drug release. The optimization process was carried out using desirability and overlay plots. The selected formulation was subjected to PEGylation using 10 % PEG-10000 solution. Stealth liposomes were characterized for the above-mentioned parameters along with surface morphology, Fourier transform infrared spectrophotometer, differential scanning calorimeter, stability and in vivo pharmacokinetic studies in rats. Stealth liposomes showed better result compared to conventional liposomes due to effect of PEG-10000. The in vivo studies revealed that stealth liposomes showed better residence time compared to conventional liposomes and pure drug solution. The conventional liposomes and pure drug showed dose-dependent pharmacokinetics, whereas stealth liposomes showed long circulation half-life compared to conventional liposomes and pure ritonavir solution. The results of statistical analysis showed significance difference as the p value is (<0.05) by one-way ANOVA. The result of the present study revealed that stealth liposomes are promising tool in antiretroviral therapy.

  14. Analyze of Impedance for Water Management in Proton Exchange Membrane Fuel Cells Using Factorial Design of (DoE) Methodology

    OpenAIRE

    Khaled Mammar; Abdelkader Chaker

    2014-01-01

    Electrochemical impedance spectroscopy (EIS) is a very powerful tool for exploitation as a rich source of Proton Exchange Membrane Fuel Cell (PEMFC) diagnostic information. A primary goal of this work is to develop a suitable PEMFC impedance model, which can be used to analyze flooding and drying of the fuel cell. For this one a novel optimization method based on Factorial Design methodology is used. It was applied to parametric analysis of electrochemical impedance Thus it is pos...

  15. JackEx: The new digital manufacturing resource for optimization of Exoskeleton-based factory environments

    OpenAIRE

    Constantinescu, Carmen; Mureșan, Paul Cristian; Simon, Gabriel-Marian

    2016-01-01

    The employment of Exoskeletons for manual handling work in manufacturing industries aims at increased employment, productivity, safety and security at workplace. This paper highlights several challenges, current results and future steps of our work in optimization of Exoskeleton based factory environments. “JackEx” is the enhancement of the standard digital humanoid “Jack” with concepts and elements of passive Exoskeletons. For the development of JackEx, a new digital manufacturing resource, ...

  16. Status of the Super-B factory Design

    Energy Technology Data Exchange (ETDEWEB)

    Wittmer, W.; /Michigan State U.; Bertsche, K.; Chao, A.; Novokhatski, A.; Nosochkov, Y.; Seeman, J.; Sullivan, M.K.; Wienands, U.; Weathersby, S.; /SLAC; Bogomyagkov, A.V.; Levichev, E.; Nikitin, S.; Piminov, P.; Shatilov, D.; Sinyatkin, S.; Vobly, P.; Okunev, I.N.; /Novosibirsk, IYF; Bolzon, B.; Brunetti, L.; Jeremie, A.; /Annecy, LAPP; Biagini, M.E.; /Frascati /INFN, Pisa /Pisa U. /INFN, Genoa /Genoa U. /CERN /Orsay, LAL /LPSC, Grenoble /Saclay

    2012-05-18

    The SuperB international team continues to optimize the design of an electron-positron collider, which will allow the enhanced study of the origins of flavor physics. The project combines the best features of a linear collider (high single-collision luminosity) and a storage-ring collider (high repetition rate), bringing together all accelerator physics aspects to make a very high luminosity of 10{sup 36} cm{sup -2} sec{sup -1}. This asymmetric-energy collider with a polarized electron beam will produce hundreds of millions of B-mesons at the Y(4S) resonance. The present design is based on extremely low emittance beams colliding at a large Piwinski angle to allow very low {beta}{sub y} without the need for ultra short bunches. Use of crab-waist sextupoles will enhance the luminosity, suppressing dangerous resonances and allowing for a higher beam-beam parameter. The project has flexible beam parameters, improved dynamic aperture, and spin-rotators in the Low Energy Ring for longitudinal polarization of the electron beam at the Interaction Point. Optimized for best colliding-beam performance, the facility may also provide high-brightness photon beams for synchrotron radiation applications.

  17. Factorial and time course designs for cDNA microarray experiments.

    Science.gov (United States)

    Glonek, G F V; Solomon, P J

    2004-01-01

    Microarrays are powerful tools for surveying the expression levels of many thousands of genes simultaneously. They belong to the new genomics technologies which have important applications in the biological, agricultural and pharmaceutical sciences. There are myriad sources of uncertainty in microarray experiments, and rigorous experimental design is essential for fully realizing the potential of these valuable resources. Two questions frequently asked by biologists on the brink of conducting cDNA or two-colour, spotted microarray experiments are 'Which mRNA samples should be competitively hybridized together on the same slide?' and 'How many times should each slide be replicated?' Early experience has shown that whilst the field of classical experimental design has much to offer this emerging multi-disciplinary area, new approaches which accommodate features specific to the microarray context are needed. In this paper, we propose optimal designs for factorial and time course experiments, which are special designs arising quite frequently in microarray experimentation. Our criterion for optimality is statistical efficiency based on a new notion of admissible designs; our approach enables efficient designs to be selected subject to the information available on the effects of most interest to biologists, the number of arrays available for the experiment, and other resource or practical constraints, including limitations on the amount of mRNA probe. We show that our designs are superior to both the popular reference designs, which are highly inefficient, and to designs incorporating all possible direct pairwise comparisons. Moreover, our proposed designs represent a substantial practical improvement over classical experimental designs which work in terms of standard interactions and main effects. The latter do not provide a basis for meaningful inference on the effects of most interest to biologists, nor make the most efficient use of valuable and limited resources.

  18. Use of Experimental Design for Peuhl Cheese Process Optimization ...

    African Journals Online (AJOL)

    Devika

    added (7 mL), heating temperature (84.12°C) and heating time (15 min). When these optimal ... conditions constitute one of the major obstacles for ... a two levels factorial design;. • a design of ... balance (Sartorius Gmbh, Göttingen, Germany),.

  19. Mechanical Design Optimization Using Advanced Optimization Techniques

    CERN Document Server

    Rao, R Venkata

    2012-01-01

    Mechanical design includes an optimization process in which designers always consider objectives such as strength, deflection, weight, wear, corrosion, etc. depending on the requirements. However, design optimization for a complete mechanical assembly leads to a complicated objective function with a large number of design variables. It is a good practice to apply optimization techniques for individual components or intermediate assemblies than a complete assembly. Analytical or numerical methods for calculating the extreme values of a function may perform well in many practical cases, but may fail in more complex design situations. In real design problems, the number of design parameters can be very large and their influence on the value to be optimized (the goal function) can be very complicated, having nonlinear character. In these complex cases, advanced optimization algorithms offer solutions to the problems, because they find a solution near to the global optimum within reasonable time and computational ...

  20. ATHENA optimized coating design

    DEFF Research Database (Denmark)

    Ferreira, Desiree Della Monica; Christensen, Finn Erland; Jakobsen, Anders Clemen

    2012-01-01

    baseline including on- and off-axis effective area curves are presented. We find that the use of linear graded multilayers can increas by 37% the integraed effective area of ATHENA in the energy range between 0.1 keV and 15keV.© (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE......The optimization of coating design for the ATHENA mission si described and the possibility of increasing the telescope effective area in the range between 0.1 and 10 keV is investigated. An independent computation of the on-axis effective area based on the mirror design of ATHENA is performed...

  1. Green Project System Design of Machine Process Factory

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    As the specialty of the product and the dim conscio us ness of environmental protection, the status of dirty, chaos and difference is l ong-term existed in the machine process factory. It seriously affects workers' work and living environment, and restricts the total level of the environment p rotection in our country. The project is the fatal scientific research task of H enan province in 2001. As the members' endeavor of task group, we have finished the total plan of green project system and some other ...

  2. Study of Electrochemical Degradation of Bromophenol Blue at Boron-doped Diamond Electrode by Using Factorial Design Analysis

    Directory of Open Access Journals (Sweden)

    Rong Fei

    2015-01-01

    Full Text Available As an ideal anode material, Boron-doped diamond (BDD has been widely applied in electro-chemical oxidation of various organic pollutants, for its unique physical and chemical properties. In this paper, the authors studied the degradation of bromophenol blue through the electrochemical anodic oxidation by using the boron-doped BDD as the anode. The effect of statistically important operating parameters on treatment per-formance, such as treatment time, flow rate, applied current and concentration of supporting electrolyte, was evaluated by employing a factorial design analysis in terms of color removal and COD removal amount. As a result, the BDD technology was approved to be highly effective in treating bromophenol blue. Moreover, the results revealed the applicability and potential of factorial design analysis in operating parameters optimization and practical engineering application of BDD technology.

  3. CrossRef Neutrino factory proton driver and target design

    CERN Document Server

    Garoby, Roland; Thomason, John; Davenne, Tristan; Caretta, Ottone; Back, John J

    2016-01-01

    Neutrinos are very elusive particles belonging to the lepton family. They exist in different types corresponding to the different charged leptons, namely electrons, muons and taus. Contrary to electrons, neutrinos hardly interact with matter which makes them very difficult to detect and study. To the best of today’s knowledge, neutrinos have hardly any mass and they can change from one type to another (so-called “neutrino oscillation”). Most physicists think that this oscillation occurs because neutrinos have mass. A Neutrino Factory [1] is a special facility producing a large amount of neutrinos every year (typically 10$^{21}$ neutrinos/year). Its main purpose is to study the change of type of neutrinos between the place where they are generated and a remote location. In a Neutrino Factory, neutrinos result from the decay of muons, unstable particles with a mean lifetime of 2.2 $\\mu$s in their rest frame. Sharp beams of high energy neutrinos are obtained at the end of the long straight sections of a mu...

  4. OPTIMAL NETWORK TOPOLOGY DESIGN

    Science.gov (United States)

    Yuen, J. H.

    1994-01-01

    This program was developed as part of a research study on the topology design and performance analysis for the Space Station Information System (SSIS) network. It uses an efficient algorithm to generate candidate network designs (consisting of subsets of the set of all network components) in increasing order of their total costs, and checks each design to see if it forms an acceptable network. This technique gives the true cost-optimal network, and is particularly useful when the network has many constraints and not too many components. It is intended that this new design technique consider all important performance measures explicitly and take into account the constraints due to various technical feasibilities. In the current program, technical constraints are taken care of by the user properly forming the starting set of candidate components (e.g. nonfeasible links are not included). As subsets are generated, they are tested to see if they form an acceptable network by checking that all requirements are satisfied. Thus the first acceptable subset encountered gives the cost-optimal topology satisfying all given constraints. The user must sort the set of "feasible" link elements in increasing order of their costs. The program prompts the user for the following information for each link: 1) cost, 2) connectivity (number of stations connected by the link), and 3) the stations connected by that link. Unless instructed to stop, the program generates all possible acceptable networks in increasing order of their total costs. The program is written only to generate topologies that are simply connected. Tests on reliability, delay, and other performance measures are discussed in the documentation, but have not been incorporated into the program. This program is written in PASCAL for interactive execution and has been implemented on an IBM PC series computer operating under PC DOS. The disk contains source code only. This program was developed in 1985.

  5. Optimization of Formulation and Preparation Technology of Paclitaxel PLGA Nanoparticles by Factorial Design/Response Surface Methodology%因子设计-效应面法优化紫杉醇聚乳酸-羟基乙酸纳米粒处方和制备工艺

    Institute of Scientific and Technical Information of China (English)

    胡振夏; 邓艾平; 符旭东; 李德忠

    2012-01-01

    Objective: To optimize the formulation and preparation technology of paclitaxel PLGA nanoparticles. Method: The pa-clitaxel PLGA nanoparticles were prepared by solvent diffusion technique. A 32 full factorial design was used to investigate the effect of the PLGA concentration in the organic phase and the theoretical drug loading on the size, drug loading and encapsulation efficiency of the nanoparticles. The linear equation and 2nd order polynomial fit were used to analyze the experimental data. The response surface was delineated according to the best-fit mathematic models and the optimal formulation was selected. Result: The quantitative relationships between the two factors and the three evaluation indices were obtained. The optimum formulation was as follows: the theoretical drug loading was 9. 09% , the concentration of PLGA in the organic phase was 2% ,the size of the nanoparticles was 281nm, the practical drug loading was 7.73% and the entrapment efficiency was 57.43%. Conclusion: The multi-objective simultaneous optimization of the paclitaxel PLGA nanoparticles is accomplished by the factorial design and response surface methodology.%目的:优化紫杉醇聚乳酸-羟基乙酸(PLGA)纳米粒处方和制备工艺.方法:以PLGA为载体,采用溶剂扩散法制备紫杉醇PLGA纳米粒,用32满因子设计实验,考察因素PLGA在有机相中的浓度和理论载药量对纳米粒的粒径、载药量和包封率的影响,实验数据分别采用线性方程和二次多项式拟合,根据最佳数学模型绘制效应面并选出最优处方.结果:2个影响因素和3个评价指标之间存在定量关系,最优处方为:紫杉醇的理论载药量为9.09%、有机相中PLGA浓度为2%,制备得到的纳米粒粒径为281 nm,实际载药量为7.73%,包封率为57.43%.结论:采用因子设计-效应面法完成了紫杉醇纳米给药系统的多目标同步优化.

  6. Optimal Site Characterization and Selection Criteria for Oyster Restoration using Multicolinear Factorial Water Quality Approach

    Science.gov (United States)

    Yoon, J.

    2015-12-01

    Elevated levels of nutrient loadings have enriched the Chesapeake Bay estuaries and coastal waters via point and nonpoint sources and the atmosphere. Restoring oyster beds is considered a Best Management Practice (BMP) to improve the water quality as well as provide physical aquatic habitat and a healthier estuarine system. Efforts include declaring sanctuaries for brood-stocks, supplementing hard substrate on the bottom and aiding natural populations with the addition of hatchery-reared and disease-resistant stocks. An economic assessment suggests that restoring the ecological functions will improve water quality, stabilize shorelines, and establish a habitat for breeding grounds that outweighs the value of harvestable oyster production. Parametric factorial models were developed to investigate multicolinearities among in situ water quality and oyster restoration activities to evaluate posterior success rates upon multiple substrates, and physical, chemical, hydrological and biological site characteristics to systematically identify significant factors. Findings were then further utilized to identify the optimal sites for successful oyster restoration augmentable with Total Maximum Daily Loads (TMDLs) and BMPs. Factorial models evaluate the relationship among the dependent variable, oyster biomass, and treatments of temperature, salinity, total suspended solids, E. coli/Enterococci counts, depth, dissolved oxygen, chlorophyll a, nitrogen and phosphorus, and blocks consist of alternative substrates (oyster shells versus riprap, granite, cement, cinder blocks, limestone marl or combinations). Factorial model results were then compared to identify which combination of variables produces the highest posterior biomass of oysters. Developed Factorial model can facilitate maximizing the likelihood of successful oyster reef restoration in an effort to establish a healthier ecosystem and to improve overall estuarine water quality in the Chesapeake Bay estuaries.

  7. An all-at-once factorial method to optimize dip-pen deposition of liquid protein inks

    Science.gov (United States)

    Henning, A. K.; Rozhok, S.; Fragala, J.; Shile, R.; Ouyang, K.

    2013-03-01

    An all-at-once factorial method is presented, which optimizes protein ink deposition using microfabricated pens by identifying the pen design which writes the greatest number of uniform-size spots or droplets without re-inking. Pen features associated with capillary ink transport are varied according to statistical design-of-experiment (SDOE) principles, and evaluated using a special 1D pen array of twelve pens. Variable parameter pens are bracketed by control pens. Each pen array element embodies one component of the SDOE matrix. All parameters are evaluated simultaneously with a single droplet writing pass. Results can also be evaluated simultaneously, leading to rapid choice of those pen parameters which deliver the greatest number of printed features having the smallest coefficient of variation.

  8. Pediatric diabetic ketoacidosis, fluid therapy, and cerebral injury: the design of a factorial randomized controlled trial.

    Science.gov (United States)

    Glaser, Nicole S; Ghetti, Simona; Casper, T Charles; Dean, J Michael; Kuppermann, Nathan

    2013-09-01

    Treatment protocols for pediatric diabetic ketoacidosis (DKA) vary considerably among centers in the USA and worldwide. The optimal protocol for intravenous (IV) fluid administration is an area of particular controversy, mainly in regard to possible associations between rates of IV fluid infusion and the development of cerebral edema (CE), the most common and the most feared complication of DKA in children. Theoretical concerns about associations between osmotic fluid shifts and CE have prompted recommendations for conservative fluid infusion during DKA. However, recent data suggest that cerebral hypoperfusion may play a role in cerebral injury associated with DKA. Currently, there are no existing data from prospective clinical trials to determine the optimal fluid treatment protocol for pediatric DKA. The Pediatric Emergency Care Applied Research Network FLUID (FLuid therapies Under Investigation in DKA) study is the first prospective randomized trial to evaluate fluid regimens for pediatric DKA. This 13-center nationwide factorial design study will evaluate the effects of rehydration rate and fluid sodium content on neurological status during DKA treatment, the frequency of clinically overt CE and long-term neurocognitive outcomes following DKA.

  9. Improvement of biomass production and glucoamylase activity by Candida famata using factorial design.

    Science.gov (United States)

    Mosbah, Habib; Aissa, Imen; Hassad, Nahla; Farh, Dhaker; Bakhrouf, Amina; Achour, Sami

    2016-07-01

    To improve biomass production and glucoamylase activity (GA) by Candida famata, culture conditions were optimized. A 2(3) full factorial design (FFD) with a response surface model was used to evaluate the effects and interactions of pH (X1 ), time of cultivation (X2 ), and starch concentration (X3 ) on the biomass production and enzyme activity. A total of 16 experiments were conducted toward the construction of an empiric model and a first-order equation. It was found that all factors (X1 , X2 , and X3 ) and their interactions were significant at a certain confidence level (P biomass production and GA of C. famata. Under this optimized medium, the experimental biomass production and GA obtained were 1.8 ± 0.54 g/L and 0.078 ± 0.012 µmol/L/Min, about 1.5- and 1.8-fold, respectively, higher than those in basal medium. The (R(2) ) coefficients obtained were 0.997 and 0.990, indicating an adequate degree of reliability in the model. Approximately 99% of validity of the predicted value was achieved.

  10. A Sino-Finnish Initiative for Experimental Teaching Practices Using the Design Factory Pedagogical Platform

    Science.gov (United States)

    Björklund, Tua A.; Nordström, Katrina M.; Clavert, Maria

    2013-01-01

    The paper presents a Sino-Finnish teaching initiative, including the design and experiences of a series of pedagogical workshops implemented at the Aalto-Tongji Design Factory (DF), Shanghai, China, and the experimentation plans collected from the 54 attending professors and teachers. The workshops aimed to encourage trying out interdisciplinary…

  11. A Sino-Finnish Initiative for Experimental Teaching Practices Using the Design Factory Pedagogical Platform

    Science.gov (United States)

    Björklund, Tua A.; Nordström, Katrina M.; Clavert, Maria

    2013-01-01

    The paper presents a Sino-Finnish teaching initiative, including the design and experiences of a series of pedagogical workshops implemented at the Aalto-Tongji Design Factory (DF), Shanghai, China, and the experimentation plans collected from the 54 attending professors and teachers. The workshops aimed to encourage trying out interdisciplinary…

  12. Formulation development and evaluation of zolmitriptan oral soluble films using 22 factorial designs

    Science.gov (United States)

    Koteswari, Poluri; Sravanthi, G. Puja; Mounika, M.; Mohammed Rafi, S. K.; Nirosha, K.

    2016-01-01

    Objective: The present investigation involves the development of zolmitriptan oral soluble film (OSF) formulations and optimization with quality by design (QBD) using natural polymers and evaluation. Materials and Methods: Initially, various natural polymers such as sodium alginate, pectin, and gelatin were screened by casting films using solvent casting technique and the prepared films were evaluated. Based on the physical and mechanical properties, sodium alginate was selected as best film former and zolmitriptan-loaded films were casted. The formulation was optimized with the help of 22 factorial experimental designs (QBD) in which sodium alginate concentration and plasticizer concentrations were used as factors and at two levels. The drug-loaded films were evaluated for various mechanical, physicochemical properties, and in vitro drug release properties. Factor effects were interpreted by calculating the main factor effects and by plotting the interaction plots. Results: Thickness of the films, disintegration time, and percent drug loading efficiency were in the range of 0.698 ± 0.13–1.318 ± 0.22 mm, 175 ± 3.1–280 ± 1.7 s, and 68.34 ± 0.5–94.70 ± 0.7% w/v, respectively. Cumulative percent drug released was 61.8 ± 2.6–94.7 ± 4.1% after 30 min. Polymer concentration at two levels of plasticizer had statistically significant effect on drug loading efficiency and in vitro drug release rate. X2 formulation was found to be excellent in drug loading efficiency and in vitro drug release profiles; hence, drug excipient compatibility studies using Fourier transform infrared spectroscopy and stability studies for 60 days were carried out for X2 formulation and found to be stable. Conclusion: Sodium alginate OSFs containing zolmitriptan was successfully prepared, optimized, and evaluated. PMID:28123989

  13. Determinação simultânea de As, Cd e Pb em amostras de água purificada para hemodiálise por espectrometria de absorção atômica com forno de grafite, após otimização multivariada baseada no uso de planejamento experimental Simultaneous determination of arsenic, cadmium and lead by GF AAS in purified water samples for hemodialysis after multivariate optimization based on factorial design

    Directory of Open Access Journals (Sweden)

    Lisia Maria G. dos Santos

    2008-01-01

    Full Text Available This paper reports the development of a methodology for simultaneously determining As, Cd and Pb, employing GF AAS with polarized Zeeman-effect background correction. In order to make the procedure applicable, the influence of pyrolysis and atomization temperatures and the amount of chemical modifiers were studied. Factorial and central composite designs were used to optimize these variables. Precision and accuracy of the method were investigated using Natural Water Reference material, Nist SRM 1640. Results are in agreement with certified values at the 95% confidence limit when the Student t-test is used. This methodology was used for quality control of purified water for hemodialysis.

  14. Integrated controls design optimization

    Science.gov (United States)

    Lou, Xinsheng; Neuschaefer, Carl H.

    2015-09-01

    A control system (207) for optimizing a chemical looping process of a power plant includes an optimizer (420), an income algorithm (230) and a cost algorithm (225) and a chemical looping process models. The process models are used to predict the process outputs from process input variables. Some of the process in puts and output variables are related to the income of the plant; and some others are related to the cost of the plant operations. The income algorithm (230) provides an income input to the optimizer (420) based on a plurality of input parameters (215) of the power plant. The cost algorithm (225) provides a cost input to the optimizer (420) based on a plurality of output parameters (220) of the power plant. The optimizer (420) determines an optimized operating parameter solution based on at least one of the income input and the cost input, and supplies the optimized operating parameter solution to the power plant.

  15. Optimized design for PIGMI

    Energy Technology Data Exchange (ETDEWEB)

    Hansborough, L.; Hamm, R.; Stovall, J.; Swenson, D.

    1980-01-01

    PIGMI (Pion Generator for Medical Irradiations) is a compact linear proton accelerator design, optimized for pion production and cancer treatment use in a hospital environment. Technology developed during a four-year PIGMI Prototype experimental program allows the design of smaller, less expensive, and more reliable proton linacs. A new type of low-energy accelerating structure, the radio-frequency quadrupole (RFQ) has been tested; it produces an exceptionally good-quality beam and allows the use of a simple 30-kV injector. Average axial electric-field gradients of over 9 MV/m have been demonstrated in a drift-tube linac (DTL) structure. Experimental work is underway to test the disk-and-washer (DAW) structure, another new type of accelerating structure for use in the high-energy coupled-cavity linac (CCL). Sufficient experimental and developmental progress has been made to closely define an actual PIGMI. It will consist of a 30-kV injector, and RFQ linac to a proton energy of 2.5 MeV, a DTL linac to 125 MeV, and a CCL linac to the final energy of 650 MeV. The total length of the accelerator is 133 meters. The RFQ and DTL will be driven by a single 440-MHz klystron; the CCL will be driven by six 1320-MHz klystrons. The peak beam current is 28 mA. The beam pulse length is 60 ..mu..s at a 60-Hz repetition rate, resulting in a 100-..mu..A average beam current. The total cost of the accelerator is estimated to be approx. $10 million.

  16. Analyze of Impedance for Water Management in Proton Exchange Membrane Fuel Cells Using Factorial Design of (DoE Methodology

    Directory of Open Access Journals (Sweden)

    Khaled Mammar

    2014-12-01

    Full Text Available Electrochemical impedance spectroscopy (EIS is a very powerful tool for exploitation as a rich source of Proton Exchange Membrane Fuel Cell (PEMFC diagnostic information. A primary goal of this work is to develop a suitable PEMFC impedance model, which can be used to analyze flooding and drying of the fuel cell. For this one a novel optimization method based on Factorial Design methodology is used. It was applied to parametric analysis of electrochemical impedance Thus it is possible to evaluate the relative importance of each parameter to the simulation accuracy. Furthermore this work presents an analysis of the PEMFC impedance behavior in the case of flooding and drying.

  17. Optimization Design for Digital Binoculars

    Institute of Scientific and Technical Information of China (English)

    CEN Jun-bo; CHEN Wei-min; LI Hui; HUANG Shang-lian

    2005-01-01

    In order to develop competitive and high performance/cost ratio of digital binoculars, design scheme should be optimized in term of technical capacity, economic benefit, product performance, risk management, etc. The common optimization method is limited in qualitative analysis, and the parameter optimization method is limited in obtaining optimal parameter only from technical side. Each method has its limitation. Based on the analysis of digital binoculars parameters, optional design schemes are laid down.Analytic hierarchy process combined the qualitative analysis with the quantitative analysis together. The design schemes are optimized, and result is worked out.

  18. The future of tau physics and tau-charm detector and factory design

    Energy Technology Data Exchange (ETDEWEB)

    Perl, M.L.

    1991-02-01

    Future research on the tau lepton requires large statistics, thorough investigation of systematic errors, and direct experimental knowledge of backgrounds. Only a tau-charm factory with a specially designed detector can provide all the experimental conditions to meet these requirements. This paper is a summary of three lectures delivered at the 1991 Lake Louise Winter Institute.

  19. Clustering Words to Match Conditions: An Algorithm for Stimuli Selection in Factorial Designs

    Science.gov (United States)

    Guasch, Marc; Haro, Juan; Boada, Roger

    2017-01-01

    With the increasing refinement of language processing models and the new discoveries about which variables can modulate these processes, stimuli selection for experiments with a factorial design is becoming a tough task. Selecting sets of words that differ in one variable, while matching these same words into dozens of other confounding variables…

  20. More Powerful Tests of Simple Interaction Contrasts in the Two-Way Factorial Design

    Science.gov (United States)

    Hancock, Gregory R.; McNeish, Daniel M.

    2017-01-01

    For the two-way factorial design in analysis of variance, the current article explicates and compares three methods for controlling the Type I error rate for all possible simple interaction contrasts following a statistically significant interaction, including a proposed modification to the Bonferroni procedure that increases the power of…

  1. Design and analysis of a cogeneration plant using heat recovery of a cement factory

    OpenAIRE

    2015-01-01

    There is a more potential in a cement factory for electric power generation using waste heat recovery compared to the other industries. A case study has been done at a cement factory having two units, 1600 TPD and 5500 TPD, identified three waste heat rejections at 176 °C, 330 °C and 420 °C and designed a suitable power plant configuration. In this work, an attempt has been made to quantify the power generation capacity with plant analysis. It has been resulted that 12.5 MW of power can be pr...

  2. Enhancing biodegradation of wastewater by microbial consortia with fractional factorial design

    Energy Technology Data Exchange (ETDEWEB)

    Chen Yuancai [State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, Guangdong (China); Lin Chejen, E-mail: Jerry.Lin@lamar.edu [Department of Civil Engineering, Lamar University, Beaumont, TX 77710-0024 (United States); School of Environmental Science and Engineering, South China University of Technology, Guangzhou, 510006, Guangdong (China); Jones, Gavin [Texas Research Institute for Environmental Studies, Sam Houston State University, Huntsville, TX 77341-2506 (United States); Fu Shiyu; Zhan Huaiyu [State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, Guangdong (China)

    2009-11-15

    Batch experiments were conducted on the degradation of synthetic and municipal wastewater by six different strains, i.e., Agrobacterium sp., Bacillus sp., Enterobacter cloacae, Gordonia, Pseudomonas stutzeri, Pseudomonas putida. By applying a fractional factorial design (FFD) of experiments, the influence of each strain and their interactions were quantified. An empirical model predicting the treatment efficiency was built based on the results of the FFD experiments with an R{sup 2} value of 99.39%. For single strain, Enterobacter cloacae, Gordonia and P. putida (p = 0.008, 0.009 and 0.023, respectively) showed significant enhancement on organic removal in the synthetic wastewater. Positive interaction from Enterobacter cloacae, Gordonia (p = 0.046) was found, indicating that syntrophic interaction existed, and their coexistence can improve total organic carbon (TOC) degradation. Verification experiments were performed to evaluate the effect of bioaugmentation by introducing three selected strains into an activated sludge reactor for treating municipal wastewater. The removal efficiency of TOC with the bioaugmentation was increased from 67-72% to 80-84% at an influent TOC concentration of 200 mg/L. The results derived from this study indicate that the FFD is a useful screening tool for optimizing the microbial community to enhance treatment efficiency.

  3. Dynamic maceration of Copaifera langsdorffii leaves: a technological study using fractional factorial design

    Directory of Open Access Journals (Sweden)

    Ana R. M. Costa-Machado

    2012-01-01

    Full Text Available The Copaifera langsdorffii Desf., Fabaceae, is a Brazilian native tree, known as copaiba, which oil is commonly used in folk medicine as muscle relaxant, wound healing, antiseptic and anti-inflammatory to respiratory and urinary tracts. Despite of the wide use of the oil of Copaifera species, scientific works related to the study of its leaves are rarely found. In fact, processes for flavonoid extraction from C. langsdorffii leaves have not been studied yet leaving a wide field to be investigated. In this work, the 2(5-2 fractional factorial design was selected in order to study how the factors of a dynamic maceration process influence the responses of total flavonoids, total phenols, quercetrin and afzelin contents, and antioxidant activity in extracts from C. langsdorffii leaves. The results demonstrated that the significant factors studied were the drug load in extractor, the ethanol/water ratio and the stirring speed whereas the temperature and the extraction time were not significant. In conclusion, this study allowed visualizing which factors were considered the most important in copaiba leaves dynamic maceration and their effect in extract antioxidant activity. Furthermore, this technological study gives directions to optimize future extraction experiments from C. langsdorffii.

  4. Study on bio-ethanol production from oil palm (Elaies Guineensis) trunks sap using factorial design

    Energy Technology Data Exchange (ETDEWEB)

    Norhazimah, A. H.; Che Ku, M. Faizala [Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang (Malaysia)], email: amfaizal@ump.edu.my

    2011-07-01

    Oil palm (Elaies Guineensis) trunks (OPT), a waste generated from the re-plantation of oil palm trees for palm oil production, contain useful fermentable sugar for bio-ethanol production, and are a very important biomass material for future energy production. The fermentation usually can be affected along several parameters: temperature, pH, agitation rate, percentage inoculums, time of incubation, nitrogen sources, age of the inoculums and other chemical and physical factors. Since identifying all the effects of a particular factor on the fermentation process is impractical for reasons of time and cost, the approach of this study was based on a two-level five-factor (25) full factorial design (FFD) in order to identify the independent parameters for screening experiment purposes and determine the range of levels of the factor as well as the regions for optimization. The results from this study showed that the most influential principal factors affecting ethanol concentration and productivity were temperature, followed by initial pH and agitation rate.

  5. Dynamic maceration of Copaifera langsdorffii leaves: a technological study using fractional factorial design

    Directory of Open Access Journals (Sweden)

    Ana R. M. Costa-Machado

    2013-02-01

    Full Text Available The Copaifera langsdorffii Desf., Fabaceae, is a Brazilian native tree, known as copaiba, which oil is commonly used in folk medicine as muscle relaxant, wound healing, antiseptic and anti-inflammatory to respiratory and urinary tracts. Despite of the wide use of the oil of Copaifera species, scientific works related to the study of its leaves are rarely found. In fact, processes for flavonoid extraction from C. langsdorffii leaves have not been studied yet leaving a wide field to be investigated. In this work, the 2(5-2 fractional factorial design was selected in order to study how the factors of a dynamic maceration process influence the responses of total flavonoids, total phenols, quercetrin and afzelin contents, and antioxidant activity in extracts from C. langsdorffii leaves. The results demonstrated that the significant factors studied were the drug load in extractor, the ethanol/water ratio and the stirring speed whereas the temperature and the extraction time were not significant. In conclusion, this study allowed visualizing which factors were considered the most important in copaiba leaves dynamic maceration and their effect in extract antioxidant activity. Furthermore, this technological study gives directions to optimize future extraction experiments from C. langsdorffii.

  6. Benzocaine loaded biodegradable poly-(D,L-lactide-co-glycolide) nanocapsules: factorial design and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Morales Moraes, Carolina; Prado de Matos, Angelica; Paula, Eneida de [Department of Biochemistry, Institute of Biology, State University of Campinas, Campinas, SP (Brazil); Rosa, Andre Henrique [Department of Environmental Engineering, State University of Sao Paulo, Sorocaba, Sao Paulo (Brazil); Fernandes Fraceto, Leonardo, E-mail: leonardo@sorocaba.unesp.b [Department of Biochemistry, Institute of Biology, State University of Campinas, Campinas, SP (Brazil); Department of Environmental Engineering, State University of Sao Paulo, Sorocaba, Sao Paulo (Brazil)

    2009-12-15

    Local anesthetics are able to induce pain relief since they bind to the sodium channel of excitable membranes, blocking the influx of sodium ions and the propagation of the nervous impulse. Benzocaine (BZC) is a local anesthetic that presents limited application in topical formulations due to its low water-solubility. This study aimed to develop polymeric nanocapsules as a drug delivery system for the local anesthetic benzocaine (BZC). To do so, BZC loaded poly(D,L-lactide-co-glycolide) (PLGA) nanocapsules were prepared using the nanoprecipitation method and were characterized. The factorial experimental design was used to study the influence of four different independent variables on response to nanocapsules drug loading. The physical characteristics of PLGA nanocapsules were evaluated by analyzing the particle size, the polydispersion index and the zeta potential, using a particle size analyzer. The results of the optimized formulation showed a size distribution with a polydispersity index of 0.12, an average diameter of 123 nm, zeta potential of -33.6 mV and a drug loading of more than 69%. The release profiles showed a significant difference in the release behavior for the pure drug in solution when compared with that containing benzocaine loaded PLGA nanocapsules. Thus, the prepared nanocapsules described here may be of clinical importance in both the processes of stabilization and delivery of benzocaine for pain treatment.

  7. FORMULATION AND EVALUATION OF TIZANIDINE HYDROCHLORIDE MICROSPHERES BY USING 32 FULL FACTORIAL DESIGNS

    Directory of Open Access Journals (Sweden)

    Adimoolam Senthil

    2011-09-01

    Full Text Available Tizanidine hydrochloride is a centrally acting α-2 adrenergic agonist muscle relaxant. In the present study an attempt has been made to formulate and evaluate tizanidine hydrochloride microspheres by using hydroxypropylmethylcellulose K4M and carboxymethyl cellulose as polymers. Tizanidine hydrochloride microspheres were prepared by simple emulsification phase separation technique using glutaraldehyde as a cross-linking agent. Twenty preliminary trial batches, B1-B20 batches of microspheres were prepared by using different volume (2 to 10 ml of glutaraldehyde as cross-linking agent, cross-linking time 1 to 4 hours and 3:1 ratio of polymer-to-drug with two different polymers. From these twenty batches of each polymer, the optimized formulation is selected based on the percentage of mucoadhesion, drug entrapment efficiency and sphericity of microspheres. A 32 full factorial design was employed to study the effect of independent variables, polymer-to-drug ratio (X1, and stirring speed (X2 on dependent variables percentage of mucoadhesion, drug entrapment efficiency, swelling index and in-vitro drug release study. The drug polymer compatibility studies were carried out using FTIR. Among the two polymers hydroxypropylmethyl cellulose K4M exhibited a high drug entrapment efficiency of 79% and a swelling index 1.260, percentage of mucoadhesive after 1hour was 80% and the drug release was also sustained for more than 10 hours.

  8. Full Factorial Experimental Design Analysis of Reactive Dye Removal by Carbon Adsorption

    Directory of Open Access Journals (Sweden)

    N. Özbay

    2013-01-01

    Full Text Available The objective of this study was to investigate the removal of Remazol Yellow dye from aqueous solutions by adsorption on activated carbon prepared by chemical activation of sunflower seed cake. It was found that the carbon content of biomass increases up to 65.12% after activation and carbonization processes. The maximum percentage dye removal was obtained as 82.12% with 0.4 g/50 mL adsorbent dosage at 313 K. The Langmuir model showed the best fit with equilibrium isotherm data. The interactions were evaluated with respect to both pseudo-first-order and pseudo-second-order reaction kinetics. The adsorption process was found to follow the pseudo-second-order model. To optimize the operating conditions, the effects of pH, adsorbent dosage, and initial dye concentration were investigated by full factorial experimental design method; adsorbent dosage was found as the most significant factor with lower than 95% confidence level. The obtained results are very promising since (i the utilization of sunflower seed cake activated carbon (SSCAC played a critical role in the adsorption of dye; (ii sunflower seed cake was an intriguing, low-cost, and easily available material. It can be an alternative adsorbent precursor for more expensive adsorbents used for Remazol Yellow (RY removal.

  9. Full factorial design, physicochemical characterization of phenylephrine HCl loaded oral thin film

    Directory of Open Access Journals (Sweden)

    Minal Bonde

    2015-01-01

    Full Text Available Oral dissolving drug delivery system offers a solution for those patients having difficulty in swallowing tablets/capsules. The primary objective of the present research work was to optimize oral thin film (OTF formulation of phenylephrine HCl, a water soluble drug with three loading concentrations: High, medium and low and also to evaluate their effect on the final product attributes. The OTF was prepared by solvent casting method. All the formulations were evaluated for film forming properties, appearance, thickness, folding endurance, tensile strength, percent moisture absorption, surface morphology, in vitro and in vivo disintegration. Formulations containing low and medium loading concentration gave acceptable results while formulation with higher loading concentration resulting poor film forming properties. Hence, another objective of the present study was to investigate the effect of anti-tacking agent namely magnesium aluminum silicate (MAS, microcrystalline cellulose and colloidal silicon dioxide (CSD by applying 2 3 full factorial design on improving the film properties of high concentration phenylephrine HCl. Formulation containing microcystalline cellulose and CSD at low level and MAS at high level was found to be suitable for film formation with desirable physicochemical properties, faster disintegration and optimum in vitro release.

  10. Compatible validated spectrofluorimetric and spectrophotometric methods for determination of vildagliptin and saxagliptin by factorial design experiments

    Science.gov (United States)

    Abdel-Aziz, Omar; Ayad, Miriam F.; Tadros, Mariam M.

    2015-04-01

    Simple, selective and reproducible spectrofluorimetric and spectrophotometric methods have been developed for the determination of vildagliptin and saxagliptin in bulk and their pharmaceutical dosage forms. The first proposed spectrofluorimetric method is based on the dansylation reaction of the amino group of vildagliptin with dansyl chloride to form a highly fluorescent product. The formed product was measured spectrofluorimetrically at 455 nm after excitation at 345 nm. Beer's law was obeyed in a concentration range of 100-600 μg ml-1. The second proposed spectrophotometric method is based on the charge transfer complex of saxagliptin with tetrachloro-1,4-benzoquinone (p-chloranil). The formed charge transfer complex was measured spectrophotometrically at 530 nm. Beer's law was obeyed in a concentration range of 100-850 μg ml-1. The third proposed spectrophotometric method is based on the condensation reaction of the primary amino group of saxagliptin with formaldehyde and acetyl acetone to form a yellow colored product known as Hantzsch reaction, measured at 342.5 nm. Beer's law was obeyed in a concentration range of 50-300 μg ml-1. All the variables were studied to optimize the reactions' conditions using factorial design. The developed methods were validated and proved to be specific and accurate for quality control of vildagliptin and saxagliptin in their pharmaceutical dosage forms.

  11. Multidisciplinary design using collaborative optimization

    Science.gov (United States)

    Sobieski, Ian Patrick

    Management of the modern aircraft design process is a substantial challenge. Formal iterative optimization is commonly used with disciplinary design tools to aid designers in the definition of optimal subsystems. However, the expense in executing high fidelity analysis, the decomposition of the design expertise into disciplines, and the size of the design space, often precludes the use of direct optimization in the overall design process. Collaborative optimization is a recently developed methodology that shows promise in enabling formal optimization of the overall design. The architecture preserves disciplinary design autonomy while providing a coordinating mechanism that leads to interdisciplinary agreement and improved designs. The basic formulation has been applied to a variety of sample design problems which demonstrate that the method successfully discovers correct optimal solutions. This work places collaborative optimization in the context of other multidisciplinary design optimization methods and characterizes problems for which the basic formulation is applicable. Artifacts of the problem formulation are discussed and methods for handling high bandwidth coupling, such as that found in aeroelasticity, are presented. The use of response surfaces for representing expensive analyses has become increasingly popular in design optimization. Response surfaces are smooth analytic functions that are inexpensive to evaluate and may be generated from data points obtained from the parallel execution of analyses. These properties motivate the introduction of response surfaces into collaborative optimization. Response surfaces have been previously used to model subproblem analyses and were generated just once. Here, approximate models are used to represent the subproblem optimization results, not the analysis, and are regenerated as the design is modified. The use of response surfaces in collaborative optimization requires an inexpensive method for generating the

  12. Optimization of Kicker Pulse Bump by Using a SR Monitor at the Photon Factory

    CERN Document Server

    Mitsuhashi, Toshiyuki

    2005-01-01

    We plan to operate the Photon Factory storage ring by top-up injection mode from 2006. To realize this operation mode, remaining coherent oscillation of the stored beam due to error in the injection pulse bump is one of most serious problem. To reducing the error in the injection pulse bump, we calibrated kicking angles of the injection kicker magnets by means of the term by term instantaneous observation of beam profile. We have a SR monitor inside of injection pulse bump. By measureing the tern by tern beam position after the excitation of kicker magnet, we can calibrate the kick angle of the kicker magnet. By using this calibration, we optimized injection pulse bump. As a result, we reduced amplitude of remaining coherent oscillation less than 1/4 of the 1??of the beam size.

  13. Industry Standards for Technological Design and Construction Drawing Design of Rubber Factories Carried Out on August 1

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    On May 18, Ministry of Industry and Information Technology approved 2 industry standards of Rules of Technological Design Technology of Rubber Factories(HG/T 21558-2011) and Rules of Rubber Factories Construction Drawing Design Document Content and Depth (HG/T 21511-2011), which are to be carried out on August 1.

  14. Multicopter Design Optimization and Validation

    Directory of Open Access Journals (Sweden)

    Øyvind Magnussen

    2015-04-01

    Full Text Available This paper presents a method for optimizing the design of a multicopter unmanned aerial vehicle (UAV, also called multirotor or drone. In practice a set of datasheets is available to the designer for the various components such as battery pack, motor and propellers. The designer can not normally design the parameters of the actuator system freely, but is constrained to pick components based on available datasheets. The mixed-integer programming approach is well suited to design optimization in such cases when only a discrete set of components is available. The paper also includes an experimental section where the simulated dynamic responses of optimized designs are compared against the experimental results. The paper demonstrates that mixed-integer programming is well suited to design optimization of multicopter UAVs and that the modeling assumptions match well with the experimental validation.

  15. Optimal Hospital Layout Design

    DEFF Research Database (Denmark)

    Holst, Malene Kirstine

    This PhD project presents a design model that generates and evaluates hospital designs with respect to long-term performances and functionalities. By visualizing and quantifying costs and performances in the early design phases, it is possible to make design choices based on a qualified, profound...... foundation. The basis of the present study lies in solving the architectural design problem in order to respond to functionalities and performances. The emphasis is the practical applicability for architects, engineers and hospital planners for assuring usability and a holistic approach of functionalities...... and performances. By formal descriptions, a design model can weigh and compare the impact of different perspectives and, even in the early design phase, it can visualize and quantify consequences for design choices. By qualitative study of hospital design and hospital functionality, formal descriptions develop...

  16. Parametric Optimization of Hospital Design

    DEFF Research Database (Denmark)

    Holst, Malene Kirstine; Kirkegaard, Poul Henning; Christoffersen, L.D.

    2013-01-01

    Present paper presents a parametric performancebased design model for optimizing hospital design. The design model operates with geometric input parameters defining the functional requirements of the hospital and input parameters in terms of performance objectives defining the design requirements...... and preferences of the hospital with respect to performances. The design model takes point of departure in the hospital functionalities as a set of defined parameters and rules describing the design requirements and preferences....

  17. Parametric Optimization of Hospital Design

    DEFF Research Database (Denmark)

    Holst, Malene Kirstine; Kirkegaard, Poul Henning; Christoffersen, L.D.

    2013-01-01

    Present paper presents a parametric performancebased design model for optimizing hospital design. The design model operates with geometric input parameters defining the functional requirements of the hospital and input parameters in terms of performance objectives defining the design requirements...... and preferences of the hospital with respect to performances. The design model takes point of departure in the hospital functionalities as a set of defined parameters and rules describing the design requirements and preferences....

  18. SuperB A High-Luminosity Asymmetric $e^+ e^-$ Super Flavour Factory : Conceptual Design Report

    CERN Document Server

    Bona, M.; Grauges Pous, E.; Colangelo, P.; De Fazio, F.; Palano, A.; Manghisoni, M.; Re, V.; Traversi, G.; Eigen, G.; Venturini, M.; Soni, N.; Bruschi, M.; De Castro, S.; Faccioli, P.; Gabrieli, A.; Giacobbe, B.; Semprini Cesare, N.; Spighi, R.; Villa, M.; Zoccoli, A.; Hearty, C.; McKenna, J.; Soni, A.; Khan, A.; Barniakov, A.Y.; Barniakov, M.Y.; Blinov, V.E.; Druzhinin, V.P.; Golubev, V.B.; Kononov, S.A.; Koop, I.A.; Kravchenko, E.A.; Levichev, E.B.; Nikitin, S.A.; Onuchin, A.P.; Piminov, P.A.; Serednyakov, S.I.; Shatilov, D.N.; Skovpen, Y.I.; Solodov, E.A.; Cheng, C.H.; Echenard, B.; Fang, F.; Hitlin, D.J.; Porter, F.C.; Asner, D.M.; Pham, T.N.; Fleischer, R.; Giudice, G.F.; Hurth, T.; Mangano, M.; Mancinelli, G.; Meadows, B.T.; Schwartz, A.J.; Sokoloff, M.D.; Soffer, A.; Beard, C.D.; Haas, T.; Mankel, R.; Hiller, G.; Ball, P.; Pappagallo, M.; Pennington, M.R.; Gradl, W.; Playfer, S.; Abada, A.; Becirevic, D.; Descotes-Genon, S.; Pene, O.; Andreotti, D.; Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabresi, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Prencipe, E.; Santoro, V.; Stancari, G.; Anulli, F.; Baldini-Ferroli, R.; Biagini, M.E.; Boscolo, M.; Calcaterra, A.; Drago, A.; Finocchiaro, G.; Guiducci, S.; Isidori, G.; Pacetti, S.; Patteri, P.; Peruzzi, I.M.; Piccolo, M.; Preger, M.A.; Raimondi, P.; Rama, M.; Vaccarezza, C.; Zallo, A.; Zobov, M.; De Sangro, R.; Buzzo, A.; Lo Vetere, M.; Macri, M.; Monge, M.R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Tosi, S.; Matias, J.; Panduro Vazquez, W.; Borzumati, F.; Eyges, V.; Prell, S.A.; Pedlar, T.K.; Korpar, S.; Pestonik, R.; Staric, M.; Neubert, M.; Denig, A.G.; Nierste, U.; Agoh, T.; Ohmi, K.; Ohnishi, Y.; Fry, J.R.; Touramanis, C.; Wolski, A.; Golob, B.; Krizan, P.; Flaecher, H.; Bevan, A.J.; Di Lodovico, F.; George, K.A.; Barlow, R.; Lafferty, G.; Jawahery, A.; Roberts, D.A.; Simi, G.; Patel, P.M.; Robertson, S.H.; Lazzaro, A.; Palombo, F.; Kaidalov, A.; Buras, A.J.; Tarantino, C.; Buchalla, G.; Sanda, A.I.; D'Ambrosio, G.; Ricciardi, G.; Bigi, I.; Jessop, C.P.; Losecco, J.M.; Honscheid, K.; Arnaud, N.; Chehab, R.; Fedala, Y.; Polci, F.; Roudeau, P.; Sordini, V.; Soskov, V.; Stocchi, A.; Variola, A.; Vivoli, A.; Wormser, G.; Zomer, F.; Bertolin, A.; Brugnera, R.; Gagliardi, N.; Gaz, A.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Bonneaud, G.R.; Lombardo, V.; Calderini, G.; Ratti, L.; Speziali, V.; Biasini, M.; Covarelli, R.; Manoni, E.; Servoli, L.; Angelini, C.; Batignani, G.; Bettarini, S.; Bosi, F.; Carpinelli, M.; Cenci, R.; Cervelli, A.; Dell'Orso, M.; Forti, F.; Giannetti, P.; Giorgi, M.; Lusiani, A.; Marchiori, G.; Massa, M.; Mazur, M.A.; Morsani, F.; Neri, N.; Paoloni, E.; Raffaelli, F.; Rizzo, G.; Walsh, J.; Braun, V.; Lenz, A.; Adams, G.S.; Danko, I.Z.; Baracchini, E.; Bellini, F.; Cavoto, G.; D'Orazio, A.; Del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Gaspero, Mario; Jackson, P.; Martinelli, G.; Mazzoni, M.A.; Morganti, Silvio; Piredda, G.; Renga, F.; Silvestrini, L.; Voena, C.; Catani, L.; Di Ciaccio, A.; Messi, R.; Santovetti, E.; Satta, A.; Ciuchini, M.; Lubicz, V.; Wilson, F.F.; Godang, R.; Chen, X.; Liu, H.; Park, W.; Purohit, M.; Trivedi, A.; White, R.M.; Wilson, J.R.; Allen, M.T.; Aston, D.; Bartoldus, R.; Brodsky, S.J.; Cai, Y.; Coleman, J.; Convery, M.R.; DeBarger, S.; Dingfelder, J.C.; Dubois-Felsmann, G.P.; Ecklund, S.; Fisher, A.S.; Haller, G.; Heifets, S.A.; Kaminski, J.; Kelsey, M.H.; Kocian, M.L.; Leith, D.W.G.S.; Li, N.; Luitz, S.; Luth, V.; MacFarlane, D.; Messner, R.; Muller, D.R.; Nosochkov, Y.; Novokhatski, A.; Pivi, M.; Ratcliff, B.N.; Roodman, A.; Schwiening, J.; Seeman, J.; Snyder, A.; Sullivan, M.; Va'Vra, J.; Wienands, U.; Wisniewski, W.; Stoeck, H.; Cheng, H.Y.; Li, H.N.; Keum, Y.Y.; Gronau, M.; Grossman, Y.; Bianchi, F.; Gamba, D.; Gambino, P.; Marchetto, F.; Menichetti, Ezio A.; Mussa, R.; Pelliccioni, M.; Dalla Betta, G.F.; Bomben, M.; Bosisio, L.; Cartaro, C.; Lanceri, L.; Vitale, L.; Azzolini, V.; Bernabeu, J.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D.A.; Oyanguren, A.; Paradisi, P.; Pich, A.; Sanchis-Lozano, M.A.; Kowalewski, Robert V.; Roney, J.M.; Back, J.J.; Gershon, T.J.; Harrison, P.F.; Latham, T.E.; Mohanty, G.B.; Petrov, A.A.; Pierini, M.; INFN

    2007-01-01

    The physics objectives of SuperB, an asymmetric electron-positron collider with a luminosity above 10^36/cm^2/s are described, together with the conceptual design of a novel low emittance design that achieves this performance with wallplug power comparable to that of the current B Factories, and an upgraded detector capable of doing the physics in the SuperB environment.

  19. Custom fractional factorial designs to develop atorvastatin self-nanoemulsifying and nanosuspension delivery systems – enhancement of oral bioavailability

    Directory of Open Access Journals (Sweden)

    Hashem FM

    2015-06-01

    Full Text Available Fahima M Hashem,1 Majid M Al-Sawahli,2 Mohamed Nasr,1 Osama AA Ahmed3,4 1Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo, Egypt; 2Holding Company for Biological Products and Vaccines (VACSERA, Giza, Egypt; 3Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia; 4Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minia, Egypt Abstract: Poor water solubility of a drug is a major challenge in drug delivery research and a main cause for limited bioavailability and pharmacokinetic parameters. This work aims to utilize custom fractional factorial design to assess the development of self-nanoemulsifying drug delivery systems (SNEDDS and solid nanosuspensions (NS in order to enhance the oral delivery of atorvastatin (ATR. According to the design, 14 experimental runs of ATR SNEDDS were formulated utilizing the highly ATR solubilizing SNEDDS components: oleic acid, Tween 80, and propylene glycol. In addition, 12 runs of NS were formulated by the antisolvent precipitation–ultrasonication method. Optimized formulations of SNEDDS and solid NS, deduced from the design, were characterized. Optimized SNEDDS formula exhibited mean globule size of 73.5 nm, zeta potential magnitude of -24.1 mV, and 13.5 µs/cm of electrical conductivity. Optimized solid NS formula exhibited mean particle size of 260.3 nm, 7.4 mV of zeta potential, and 93.2% of yield percentage. Transmission electron microscopy showed SNEDDS droplets formula as discrete spheres. The solid NS morphology showed flaky nanoparticles with irregular shapes using scanning electron microscopy. The release behavior of the optimized SNEDDS formula showed 56.78% of cumulative ATR release after 10 minutes. Solid NS formula showed lower rate of release in the first 30 minutes. Bioavailability estimation in Wistar albino rats revealed an augmentation

  20. Analyzing the shape parameter effects on the performance of the mixed-flow fan using CFD and Factorial design

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Uk Hee; Kim, Joon Hyung; Kim, Sung; Kim, Jin Hyuk; Choi, Young Seok [Korea Institute of Industrial Technology, Cheonan (Korea, Republic of)

    2016-03-15

    Fans are representative turbo-machinery widely used for ventilation throughout the industrial world. Recently, as the importance of energy saving has been magnified with the fans, the demand for the fans with high efficiency and performance has been increasing. The representative method for enhancing the performance includes design optimization; in practice, fan performance can be improved by changing the shape parameters such as those of meridional plane, impeller, and diffuser. Before optimizing the efficient design, a process of screening to select important design parameters is essential. The present study aimed to analyze the effects of mixed-flow fans' shape parameters on fan performance (static pressure and fan static efficiency) and derive optimum models based on the results. In this study, the shape parameters considered in the impeller domain are as follows: tip clearance, number of blades, beta angle of Leading edge (LE) in the blade, and beta angle of Trailing edge (TE) in the blade. The shape parameters considered in the diffuser domain are as follows: meridional length of the Guide vane (GV), number of GV, beta angle of LE in the GV and beta angle of TE in the GV. The effects of individual shape parameters were analyzed using the CFD (Computational fluid dynamic) and DOE (Design of experiments) methods. The reliability of CFD was verified through the comparison between preliminary fan model's experiment results and CFD results, and screening processes were implemented through 24-1 fractional factorial design. From the analysis of DOE results, it could be seen that the tip clearance and the number of blades in the impeller domain greatly affected the fan performance, and the beta angle of TE at the GV in the diffuser domain greatly affected the fan performance. Finally, the optimum models with improved fan performance were created using linear regression equations derived from 24-1 fractional factorial design.

  1. Molecular Breeding to Create Optimized Crops: From Genetic Manipulation to Potential Applications in Plant Factories.

    Science.gov (United States)

    Hiwasa-Tanase, Kyoko; Ezura, Hiroshi

    2016-01-01

    Crop cultivation in controlled environment plant factories offers great potential to stabilize the yield and quality of agricultural products. However, many crops are currently unsuited to these environments, particularly closed cultivation systems, due to space limitations, low light intensity, high implementation costs, and high energy requirements. A major barrier to closed system cultivation is the high running cost, which necessitates the use of high-margin crops for economic viability. High-value crops include those with enhanced nutritional value or containing additional functional components for pharmaceutical production or with the aim of providing health benefits. In addition, it is important to develop cultivars equipped with growth parameters that are suitable for closed cultivation. Small plant size is of particular importance due to the limited cultivation space. Other advantageous traits are short production cycle, the ability to grow under low light, and high nutriculture availability. Cost-effectiveness is improved from the use of cultivars that are specifically optimized for closed system cultivation. This review describes the features of closed cultivation systems and the potential application of molecular breeding to create crops that are optimized for cost-effectiveness and productivity in closed cultivation systems.

  2. Molecular breeding to create optimized crops: from genetic manipulation to potential applications in plant factories

    Directory of Open Access Journals (Sweden)

    Kyoko eHiwasa-Tanase

    2016-04-01

    Full Text Available Crop cultivation in controlled environment plant factories offers great potential to stabilize the yield and quality of agricultural products. However, many crops are currently unsuited to these environments, particularly closed cultivation systems, due to space limitations, low light intensity, high implementation costs, and high energy requirements. A major barrier to closed system cultivation is the high running cost, which necessitates the use of high-margin crops for economic viability. High-value crops include those with enhanced nutritional value or containing additional functional components for pharmaceutical production or with the aim of providing health benefits. In addition, it is important to develop cultivars equipped with growth parameters that are suitable for closed cultivation. Small plant size is of particular importance due to the limited cultivation space. Other advantageous traits are short production cycle, the ability to grow under low light, and high nutriculture availability. Cost-effectiveness is improved from the use of cultivars that are specifically optimized for closed system cultivation. This review describes the features of closed cultivation systems and the potential application of molecular breeding to create crops that are optimized for cost-effectiveness and productivity in closed cultivation systems.

  3. Design of Experiments with Multiple Independent Variables: A Resource Management Perspective on Complete and Reduced Factorial Designs

    Science.gov (United States)

    Collins, Linda M.; Dziak, John J.; Li, Runze

    2009-01-01

    An investigator who plans to conduct an experiment with multiple independent variables must decide whether to use a complete or reduced factorial design. This article advocates a resource management perspective on making this decision, in which the investigator seeks a strategic balance between service to scientific objectives and economy.…

  4. On Adaptive Optimal Input Design

    NARCIS (Netherlands)

    Stigter, J.D.; Vries, D.; Keesman, K.J.

    2003-01-01

    The problem of optimal input design (OID) for a fed-batch bioreactor case study is solved recursively. Here an adaptive receding horizon optimal control problem, involving the so-called E-criterion, is solved on-line, using the current estimate of the parameter vector at each sample instant {tk, k =

  5. Optimal Design of Porous Materials

    DEFF Research Database (Denmark)

    Andreassen, Erik

    The focus of this thesis is topology optimization of material microstructures. That is, creating new materials, with attractive properties, by combining classic materials in periodic patterns. First, large-scale topology optimization is used to design complicated three-dimensional materials with ...

  6. Full factorial design analysis of carbon nanotube polymer-cement composites

    Directory of Open Access Journals (Sweden)

    Fábio de Paiva Cota

    2012-08-01

    Full Text Available The work described in this paper is related to the effect of adding carbon nanotubes (CNT on the mechanical properties of polymer-cement composites. A full factorial design has been performed on 160 samples to identify the contribution provided by the following factors: polymeric phase addition, CNT weight addition and water/cement ratio. The response parameters of the full factorial design were the bulk density, apparent porosity, compressive strength and elastic modulus of the polymer-cement-based nanocomposites. All the factors considered in this analysis affected significantly the bulk density and apparent porosity of the composites. The compressive strength and elastic modulus were affected primarily by the cross-interactions between polymeric phase and CNT additions, and the water/cement ratio with polymeric phase factors.

  7. Hydrodynamic Design Optimization Tool

    Science.gov (United States)

    2011-08-01

    techniques (Yang et al., 2008; Kim et al. 2010): (i) A modified NURBS technique is combined with a parametric global hull modification technique by...varying the sectional area curve with a shifting method, in which the design variables in the NURBS technique can be reduced via a grouping method after

  8. Study of formulation variables on properties of glipizide mucoadhesive microspheres by factorial design

    OpenAIRE

    Hosmani A.H; Kasture, P. V.; ID Gonjari; A.B. Karmarkar

    2009-01-01

    "nBackground and the Purpose of the study:The purpose of the study was formulate and systemsystematic evaluation in-vitro and in-vivo behaviour of Glipizide mucoadhesive microspheres using 32 full factorial design. "nMethods:Concentration of Polycarbophil and Sodium Alginate were selected as independent variables and the effects were checked on dependent variables like swelling index, mucoadhesion, drug entrapment efficiency and T75. In vivo studies were also performed to determine ...

  9. Embedded Systems Design: Optimization Challenges

    DEFF Research Database (Denmark)

    Pop, Paul

    2005-01-01

    of designing such systems is becoming increasingly important and difficult at the same time. New automated design optimization techniques are needed, which are able to: successfully manage the complexity of embedded systems, meet the constraints imposed by the application domain, shorten the time...... in use has become larger than the number of humans on the planet. The complexity of embedded systems is growing at a very high pace and the constraints in terms of functionality, performance, low energy consumption, reliability, cost and time-to-market are getting tighter. Therefore, the task......-to-market, and reduce development and manufacturing costs. In this paper, the author introduces several embedded systems design problems, and shows how they can be formulated as optimization problems. Solving such challenging design optimization problems are the key to the success of the embedded systems design...

  10. Development of standardized extractive solution from Lippia sidoides by factorial design and their redox active profile

    Directory of Open Access Journals (Sweden)

    Bruno S. Lima

    2015-06-01

    Full Text Available AbstractThe aim of this study was to evaluate the influences of variables of preparation on total flavonoids content from extractive solution of Lippia sidoides Cham., Verbenaceae. Thus a 23 factorial design was used to study the importance of plant proportion, the extraction method and solvent on the extraction of flavonoid. The methodology of determination of chemicals in factorial design was validated according to the parameters required by Brazilian Health Agency. The extraction solution was selected through a full factorial design where the best conditions to achieve the highest content of flavonoids were: 7.5% (w/v of plant with ethanol 50% (v/v as solvent. The polyphenols content was determined by LC method and its relationship with the antioxidant and free radical scavenging activities was evaluated. The free radical scavenging activities and antioxidant potentials were determined for different concentrations using various in vitro models. Our results indicate that extracts exhibited a significant dose-dependent antioxidant effect as evaluated by TRAP/TAR assays. Besides, we observed an antioxidant activity against hydroxyl radicals and nitric oxide, and protection against lipid peroxidation in vitro. Our results suggest that the extract presents significant in vitro antioxidant potential indicating promising perspectives for its use as pharmaceutical/or food additive.

  11. A fractional-factorial probabilistic-possibilistic optimization framework for planning water resources management systems with multi-level parametric interactions.

    Science.gov (United States)

    Wang, S; Huang, G H; Zhou, Y

    2016-05-01

    In this study, a multi-level factorial-vertex fuzzy-stochastic programming (MFFP) approach is developed for optimization of water resources systems under probabilistic and possibilistic uncertainties. MFFP is capable of tackling fuzzy parameters at various combinations of α-cut levels, reflecting distinct attitudes of decision makers towards fuzzy parameters in the fuzzy discretization process based on the α-cut concept. The potential interactions among fuzzy parameters can be explored through a multi-level factorial analysis. A water resources management problem with fuzzy and random features is used to demonstrate the applicability of the proposed methodology. The results indicate that useful solutions can be obtained for the optimal allocation of water resources under fuzziness and randomness. They can help decision makers to identify desired water allocation schemes with maximized total net benefits. A variety of decision alternatives can also be generated under different scenarios of water management policies. The findings from the factorial experiment reveal the interactions among design factors (fuzzy parameters) and their curvature effects on the total net benefit, which are helpful in uncovering the valuable information hidden beneath the parameter interactions affecting system performance. A comparison between MFFP and the vertex method is also conducted to demonstrate the merits of the proposed methodology.

  12. Optimizing the adiabatic buncher and phase-energy rotator for neutrino factories

    Science.gov (United States)

    Poklonskiy, Alexey A.; Neuffer, David; Johnstone, Carol J.; Berz, Martin; Makino, Kyoko; Ovsyannikov, Dmitriy A.; Ovsyannikov, Alexandre D.

    2006-03-01

    In the US scenario for a Neutrino Factory presented in "A feasibility study of a neutrino source based on a muon storage ring", N. Holtkamp (Ed.), D. Finley (Ed.), Fermilab, April 15th, 2000), a large percentage of the cost is related to an induction linac for phase-energy rotation and bunching of the muon beam collected after the production target and decay channel. A more cost-effective adiabatic buncher and phase-energy rotator has been proposed to replace the induction linac system (D. Neuffer, A. Van Ginneken, High-frequency bunching and (φ-δE) rotation for a muon source, Proceedings of the 2001 Particle Accelerators Conference, Chicago, 2001, p. 2029). The new method uses consecutive RF cavities with differing frequencies. The frequencies are changed to enable bunching and phase-energy rotation. In this paper, the theoretical concept is developed and demonstrated with simulation results obtained with the map code COSY Infinity ( http://cosy.pa.msu.edu). An optimization strategy is also explored.

  13. Optimization-Based Layout Design

    Directory of Open Access Journals (Sweden)

    K. Abdel-Malek

    2005-01-01

    Full Text Available The layout problem is of importance to ergonomists, vehicle/cockpit packaging engineers, designers of manufacturing assembly lines, designers concerned with the placement of levers, knobs, controls, etc. in the reachable workspace of a human, and also to users of digital human modeling code, where digital prototyping has become a valuable tool. This paper proposes a hybrid optimization method (gradient-based optimization and simulated annealing to obtain the layout design. We implemented the proposed algorithm for a project at Oral-B Laboratories, where a manufacturing cell involves an operator who handles three objects, some with the left hand, others with the right hand.

  14. A Preliminary Interaction Region Design for a Super B-Factory

    CERN Document Server

    Sullivan, Michael K; Donald, Martin; Ecklund, Stanley; Novokhatski, Alexander; Seeman, John; Wienands, Ulrich

    2005-01-01

    The success of the two B-Factories (PEP-II and KEKB) has encouraged us to look at design parameters for a B-Factory with a 30-50 times increase in the luminosity of the present machines (L~1e36). In order to achieve this high luminosity, the beta y* values are reduced to 3-2 mm, the bunch spacing is minimized (0.6-0.3 m) and the bunch currents are increased. Total beam currents range from 5-25 A. The interaction region (IR) of these "SuperB" designs presents special challenges. Synchrotron radiation fans from local bending in shared magnets and from upstream sources pose difficulties due to the high power levels in these fans. High-order-mode(HOM)heating, effects that have been seen in the present B-factories, will become much more pronounced with the very short bunches and high beam currents. Masking the detector beam pipe from synchrotron radiation must take into account effects of HOM power generation. Backgrounds that are a function of the luminosity will become very important. We presen...

  15. Fractional Factorial Design for Parameter Sweep Experiments Using Nimrod/E

    Directory of Open Access Journals (Sweden)

    T.C. Peachey

    2008-01-01

    Full Text Available The techniques of formal experimental design and analysis are powerful tools for scientists and engineers. However, these techniques are currently underused for experiments conducted with computer models. This has motivated the incorporation of experimental design functionality into the Nimrod tool chain. Nimrod has been extensively used for exploration of the response of models to their input parameters; the addition of experimental design tools will combine the efficiency of carefully designed experiments with the power of distributed execution. This paper describes the incorporation of one type of design, the fractional factorial design, and associated analysis tools, into the Nimrod framework. The result provides a convenient environment that automates the design of an experiment, the execution of the jobs on a computational grid and the return of results, and which assists in the interpretation of those results. Several case studies are included which demonstrate various aspects of this approach.

  16. A COMPARISON BETWEEN CLASSICAL AND ROBUST METHOD IN A FACTORIAL DESIGN IN THE PRESENCE OF OUTLIER

    Directory of Open Access Journals (Sweden)

    Anwar Fitrianto

    2013-01-01

    Full Text Available Analysis of Variance (ANOVA techniques which is based on classical Least Squares (LS method requires several assumptions, such as normality, constant variances and independency. Those assumptions can be violated due to several causes, such as the presence of an outlying observation. There are many evident in literatures that the LS estimate is easily affected by outliers. To remedy this problem, a robust procedure that provides estimation, inference and testing that are not influenced by outlying observations is put forward. A well-known approach to handle dataset with outliers is the M-estimation. In this study, both classical and robust procedures are employed to data of a factorial experiment. The results signify that the classical method of least squares estimates instead of robust methods lead to misleading conclusion of the analysis in factorial designs.

  17. Construction of optimal supersaturated designs by the packing method

    Institute of Scientific and Technical Information of China (English)

    FANG; Kaitai; GE; Gennian; LIU; Minqian

    2004-01-01

    A supersaturated design is essentially a factorial design with the equal occurrence of levels property and no fully aliased factors in which the number of main efits potential in factor screening experiments. A packing design is an important object in combinatorial design theory. In this paper, a strong link between the two apparently unrelated kinds of designs is shown. Several criteria for comparing supersaturated designs are proposed, their properties and connections with other existing criteria are discussed.A combinatorial approach, called the packing method, for constructing optimal supersaturated designs is presented, and properties of the resulting designs are also investigated.Comparisons between the new designs and other existing designs are given, which show that our construction method and the newly constructed designs have good properties.

  18. DCEO Biotechnology: Tools To Design, Construct, Evaluate, and Optimize the Metabolic Pathway for Biosynthesis of Chemicals

    DEFF Research Database (Denmark)

    Chen, Xiulai; Gao, Cong; Guo, Liang

    2017-01-01

    , and pathway optimization at the systems level, offers a conceptual and technological framework to exploit potential pathways, modify existing pathways and create new pathways for the optimal production of desired chemicals. Here, we summarize recent progress of DCEO biotechnology and examples of its......, but how to make cells into efficient factories is challenging. As a key enabling technology to develop efficient cell factories, design-construction-evaluation-optimization (DCEO) biotechnology, which incorporates the concepts and techniques of pathway design, pathway construction, pathway evaluation...... application, and provide insights as to when, what and how different strategies should be taken. In addition, we highlight future perspectives of DCEO biotechnology for the successful establishment of biorefineries....

  19. Nanostructured lipid carriers as a potential vehicle for Carvedilol delivery: Application of factorial design approach.

    Science.gov (United States)

    Patil, Ganesh B; Patil, Nandkishor D; Deshmukh, Prashant K; Patil, Pravin O; Bari, Sanjay B

    2016-01-01

    Present invention relates to design of nanostructured lipid carriers (NLC) to augment oral bioavailability of Carvedilol (CAR). In this attempt, formulations of CAR-NLCs were prepared with glyceryl-monostearate (GMS) as a lipid, poloxamer 188 as a surfactant and tween 80 as a co-surfactant using high pressure homogenizer by 2(3) factorial design approach. Formed CAR-NLCs were assessed for various performance parameters. Accelerated stability studies demonstrated negligible change in particle size and entrapment efficiency, after storage at specified time up to 3 months. The promising findings in this investigation suggest the practicability of these systems for enhancement of bioavailability of drugs like CAR.

  20. Design and analysis of a cogeneration plant using heat recovery of a cement factory

    Directory of Open Access Journals (Sweden)

    G.V. Pradeep Varma

    2015-03-01

    Full Text Available There is a more potential in a cement factory for electric power generation using waste heat recovery compared to the other industries. A case study has been done at a cement factory having two units, 1600 TPD and 5500 TPD, identified three waste heat rejections at 176 °C, 330 °C and 420 °C and designed a suitable power plant configuration. In this work, an attempt has been made to quantify the power generation capacity with plant analysis. It has been resulted that 12.5 MW of power can be produced with the available heat recovery against a cement factory demand of 15 MW. The available process heat for cement production and power generation has been estimated at a capacity range from 5000 to 9000 TPD. The analysis recommended a low steam pressure for power generation at above said heat recovery gas temperature.

  1. Newly designed double surface bimorph mirror for BL-15A of the photon factory

    Energy Technology Data Exchange (ETDEWEB)

    Igarashi, Noriyuki, E-mail: noriyuki.igarashi@kek.jp; Nitani, Hiroaki; Takeichi, Yasuo; Niwa, Yasuhiro; Abe, Hitoshi; Kimura, Masao; Mori, Takeharu; Nagatani, Yasuko; Kosuge, Takashi; Kamijo, Ai; Koyama, Atsushi; Shimizu, Nobutaka [Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Ohta, Hiromasa [Mitsubishi Electric System & Service Co., Ltd. 20F Carrot Tower 4-1-1 Taishido, Setagaya-ku, Tokyo 154-8520 (Japan)

    2016-07-27

    BL-15A is a new x-ray undulator beamline at the Photon Factory. It will be dedicated to two independent research activities, simultaneous XAFS/XRF/XRD experiments, and SAXS/WAXS/GI-SAXS studies. In order to supply a choice of micro-focus, low-divergence and collimated beams, a double surface bimorph mirror was recently developed. To achieve further mirror surface optimization, the pencil beam scanning method was applied for “in-situ” beam inspection and the Inverse Matrix method was used for determination of optimal voltages on the piezoelectric actuators. The corrected beam profiles at every focal spot gave good agreement with the theoretical values and the resultant beam performance is promising for both techniques. Quick and stable switching between highly focused and intense collimated beams was established using this new mirror with the simple motorized stages.

  2. Nanosizing of a poorly soluble drug: technique optimization, factorial analysis, and pharmacokinetic study in healthy human volunteers

    Directory of Open Access Journals (Sweden)

    Elsayed I

    2014-06-01

    Full Text Available Ibrahim Elsayed,1 Aly Ahmed Abdelbary,1 Ahmed Hassen Elshafeey1,21Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt; 2Department of Pharmaceutical Sciences, School of Pharmacy, University of Waterloo, ON, CanadaContext: Diacerein (DCN has low aqueous solubility (3.197 mg/L and, consequently, low oral bioavailability (35%–56%. To increase both the solubility and dissolution rate of DCN while maintaining its crystalline nature, high pressure homogenization was used but with only a few homogenization cycles preceded by a simple bottom-up technique.Methods: The nanosuspensions of DCN were prepared using a combined bottom-up/top-down technique. Different surfactants – polyvinyl alcohol, sodium deoxycholate, and sodium dodecyl sulfate – with different concentrations were used for the stabilization of the nanosuspensions. Full factorial experimental design was employed to investigate the influence of formulation variables on nanosuspension characteristics using Design-Expert® Software. Particle size (PS, zeta potential, saturation solubility, in vitro dissolution, and drug crystallinity were studied. Moreover, the in vivo performance of the optimized formula was assessed by bioavailability determination in healthy human volunteers.Results: The concentration of surfactant had a significant effect on both the PS and polydispersity index values. The 1% surfactant concentration showed the lowest PS and polydispersity index values compared with other concentrations. Both type and concentration of surfactant had significant effects on the zeta potential. Formula F8 (containing 1% sodium deoxycholate and Formula F12 (containing 1% sodium dodecyl sulfate had the highest desirability values (0.952 and 0.927, respectively. Hence, they were selected for further characterization. The saturated solubility and mean dissolution time, in the case of F8 and F12, were significantly higher than the coarse drug

  3. Automated array assembly. Quarterly report No. 5. [Cost analysis and factory design

    Energy Technology Data Exchange (ETDEWEB)

    D' Aiello, R.V.

    1977-10-01

    During this quarter, an interim 1982 factory was designed for the large-scale production of silicon solar cell array modules. The boundary conditions for this design are the use of Czochralski silicon crystals and $25/kg polycrystalline silicon. The objective is a large-scale production facility to meet an intermediate ERDA cost goal of $2.00/W in 1982. The approach was to first consider a panel design which could be expected to have a 20-year life and would also meet the JPL specification on mechanical, electrical, and environmental stability. Attention was then directed to a cost analysis of the production of the elements comprising this panel. Since it was expected that wafer production would comprise a major fraction of the cost, several cost reduction schemes were considered for the Czochralski pulling and sawing of the wafers. A solar-cell processing sequence was selected on the basis of our previous cost studies and the projected availability of production equipment by 1982. These criteria resulted in the selection of POCl/sub 3/ gaseous diffusion for junction formation, thick-film Ag screen-printed metallization, spray-on antireflection (AR) coating, and solder reflow interconnect technology. The economic study was made by computer analysis of the cost elements of these process sequences at production levels ranging from 3 to 100 MW/yr. With the results of this study, a 30-MW/yr factory was designed, and a preliminary floor plan layout is given. A manufacturing cost of $2.01/W is projected and, including factory overhead and profit, a selling price of $2.27/W is projected.

  4. Optimization methods in structural design

    CERN Document Server

    Rothwell, Alan

    2017-01-01

    This book offers an introduction to numerical optimization methods in structural design. Employing a readily accessible and compact format, the book presents an overview of optimization methods, and equips readers to properly set up optimization problems and interpret the results. A ‘how-to-do-it’ approach is followed throughout, with less emphasis at this stage on mathematical derivations. The book features spreadsheet programs provided in Microsoft Excel, which allow readers to experience optimization ‘hands-on.’ Examples covered include truss structures, columns, beams, reinforced shell structures, stiffened panels and composite laminates. For the last three, a review of relevant analysis methods is included. Exercises, with solutions where appropriate, are also included with each chapter. The book offers a valuable resource for engineering students at the upper undergraduate and postgraduate level, as well as others in the industry and elsewhere who are new to these highly practical techniques.Whi...

  5. Telemanipulator design and optimization software

    Science.gov (United States)

    Cote, Jean; Pelletier, Michel

    1995-12-01

    For many years, industrial robots have been used to execute specific repetitive tasks. In those cases, the optimal configuration and location of the manipulator only has to be found once. The optimal configuration or position where often found empirically according to the tasks to be performed. In telemanipulation, the nature of the tasks to be executed is much wider and can be very demanding in terms of dexterity and workspace. The position/orientation of the robot's base could be required to move during the execution of a task. At present, the choice of the initial position of the teleoperator is usually found empirically which can be sufficient in the case of an easy or repetitive task. In the converse situation, the amount of time wasted to move the teleoperator support platform has to be taken into account during the execution of the task. Automatic optimization of the position/orientation of the platform or a better designed robot configuration could minimize these movements and save time. This paper will present two algorithms. The first algorithm is used to optimize the position and orientation of a given manipulator (or manipulators) with respect to the environment on which a task has to be executed. The second algorithm is used to optimize the position or the kinematic configuration of a robot. For this purpose, the tasks to be executed are digitized using a position/orientation measurement system and a compact representation based on special octrees. Given a digitized task, the optimal position or Denavit-Hartenberg configuration of the manipulator can be obtained numerically. Constraints on the robot design can also be taken into account. A graphical interface has been designed to facilitate the use of the two optimization algorithms.

  6. Heat Sink Design and Optimization

    Science.gov (United States)

    2015-12-01

    Natural convection Radiation Design Modeling Optimization 16. SECURITY CLASSIFICATION OF: 17...Hs = 3.94 in.  Width Ws = 5.42 in.  Fins  Height Hf = 0.98 in.  Length...different fin thicknesses (tf) The next parameter considered was fin height, Hf . Smaller height has a negative influence on overall heat sink

  7. Application of Full Factorial Experimental Design and Response Surface Methodology for Chromite Beneficiation by Knelson Concentrator

    Directory of Open Access Journals (Sweden)

    Gul Akar Sen

    2016-01-01

    Full Text Available The present work is undertaken to determine the effect of operational variables, namely: feed rate, centrifugal force and fluidization water flow rate on the efficiency of Knelson concentrator for chromite ore beneficiation. A full factorial design with three factors at three levels and response surface methodology (RSM were applied for this purpose. The quadratic models were developed to predict the concentrate Cr2O3 grade and recovery as the process responses. The results suggest that all the variables affect the grade and recovery of the Cr2O3 concentrate to some degree. However, the fluidization water rate was found as the most effective parameter.

  8. Factorial design analysis for COD removal from landfill leachate by photoassisted Fered-Fenton process.

    Science.gov (United States)

    Wu, Xiaogang; Zhang, Hui; Li, Yanli; Zhang, Daobin; Li, Xianwang

    2014-01-01

    The Fered-Fenton process has been shown to be an effective method for leachate treatment, but it still faces problems of inadequate regeneration of ferrous ion. However, the use of the photoassisted Fered-Fenton process could overcome this difficulty and improve the efficiency of chemical oxygen demand (COD) removal since photoassisted Fered-Fenton process induces the production of hydroxyl radicals from the regeneration of ferrous ions and the reaction of hydrogen peroxide with UV light. As there are so many operating parameters in photoassisted Fered-Fenton process, it is necessary to develop a mathematical model in order to produce the most economical process. In the present study, a factorial design was carried out to evaluate leachate treatment by photoassisted Fered-Fenton process. The influence of the following variables: H₂O₂ concentration, Fe(2+) concentration, current density, and initial pH in the photoassisted Fered-Fenton process was investigated by measuring COD removal efficiencies after 60-min reaction. The relationship between COD removal and the most significant independent variables was established by means of an experimental design. The H₂O₂ concentration, Fe(2+) concentration, initial pH, and the interaction effect between current density and initial pH were all significant factors. The factorial design models were derived based on the COD removal efficiency results and the models fit the data well.

  9. Application of factorial design to accelerate identification of CHO growth factor requirements.

    Science.gov (United States)

    Chun, Chung; Heineken, Katy; Szeto, Dongmei; Ryll, Thomas; Chamow, Steve; Chung, John D

    2003-01-01

    To accelerate recombinant CHO media and process development, we describe a simple approach to integrating multiple tasks associated with these processes including initial media design, serum-free adaptation, stability analysis and first generation scale-up. Factorial design techniques and normal probability chart representation of the results were first applied to identify potent parental CHO cell growth factors in a lean basal medium. These results were then applied to identify a suitable manufacturing medium from a panel of commercial and proprietary media formulations. When this approach was applied to recombinant CHO cell line, rapid adaptation of the cell line to an appropriate production medium occurred during culture expansion in the presence of the identified growth factor(s). This approach allows media component screening to be naturally integrated into the adaptation and scale-up processes since components that have little or no relative effect on cell proliferation are selected against as the "best" cultures are moved forward. The rapidity of the adaptation process allowed cell line stability studies to be initiated relatively early in the development process, thus providing preliminary stability information by the time the "outgrowing" culture could be scaled to 100-L reactors some 30 days after adaptation commenced. The application of full factorial design techniques allowed us to calculate the maximum number of interaction effects, the interpretation of which we believe can provide insights into growth factor biology.

  10. MOBILITY OF MERCURY OF THE DENTAL AMALGAM IN REDUCTION PROCESS IN THE SEDIMENTS: FACTORIAL DESIGN ANALISYS

    Directory of Open Access Journals (Sweden)

    Raquel Dalla Costa

    2008-12-01

    Full Text Available The dental wastewater can contribute to the total daily mercury load on environment. Factorial design of experiments is useful toanalysis of factors that influence in this mobility. The aim of the present study was to design experiments to examine the effects ofoperational variables – temperature, pH and contact time - which may affect the mobility of mercury in form of dental amalgamresidue in reduction process in the sediments of the Pirapó River. Based on the factorial design of experiments and the analysis ofvariance, the temperature was the most significant factor in this process, followed by the pH and contact time. The parametersaffecting the mobility of total mercury showed that when the temperature and contact time increases and pH decreases there is animportant increase of mercury concentration in process. For the tested conditions, the high total mercury concentration was obtainedusing the temperature = 35oC, pH = 4.0 and contact time = 10 days.

  11. Removing lead from metallic mixture of waste printed circuit boards by vacuum distillation: factorial design and removal mechanism.

    Science.gov (United States)

    Li, Xingang; Gao, Yujie; Ding, Hui

    2013-10-01

    The lead removal from the metallic mixture of waste printed circuit boards by vacuum distillation was optimized using experimental design, and a mathematical model was established to elucidate the removal mechanism. The variables studied in lead evaporation consisted of the chamber pressure, heating temperature, heating time, particle size and initial mass. The low-level chamber pressure was fixed at 0.1 Pa as the operation pressure. The application of two-level factorial design generated a first-order polynomial that agreed well with the data for evaporation efficiency of lead. The heating temperature and heating time exhibited significant effects on the efficiency, which was validated by means of the copper-lead mixture experiments. The optimized operating conditions within the region studied were the chamber pressure of 0.1 Pa, heating temperature of 1023 K and heating time of 120 min. After the conditions were employed to remove lead from the metallic mixture of waste printed circuit boards, the efficiency was 99.97%. The mechanism of the effects was elucidated by mathematical modeling that deals with evaporation, mass transfer and condensation, and can be applied to a wider range of metal removal by vacuum distillation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Enhancement of Solubility of Lamotrigine by Solid Dispersion and Development of Orally Disintegrating Tablets Using 32 Full Factorial Design

    Directory of Open Access Journals (Sweden)

    Jatinderpal Singh

    2015-01-01

    Full Text Available Present investigation deals with the preparation and evaluation of orally disintegrating tablets (ODTs of lamotrigine using β-cyclodextrin and PVP-K30 as polymers for the preparation of solid dispersion which help in enhancement of aqueous solubility of this BCS CLASS-II drug and sodium starch glycolate (SSG and crospovidone as a superdisintegrating agent, to reduce disintegration time. The ODTs were prepared by direct compression method. Nine formulations were developed with different ratios of superdisintegrating agents. All the formulations were evaluated for disintegration time, weight variation, hardness, friability, drug content uniformity, wetting time, and in vitro drug release study. In vitro drug release study was performed using United States Pharmacopoeia (USP type 2 dissolution test apparatus employing paddle stirrer at 50 rpm using 900 mL of 0.1 N HCl maintained at 37°C ± 0.5°C as the dissolution medium. On the basis of evaluation parameters formulations were prepared using β-CD 1 : 1 solid dispersion. Then 32 full factorial design was applied using SSG and crospovidone in different ratios suggested by using design expert 8.0.7.1 and optimized formulation was prepared using amount of SSG and crospovidone as suggested by the software. The optimized formulation prepared had disintegrating time of 15 s, wetting time of 24 s, and % friability of 0.55.

  13. SCREENING OF MEDIUM COMPOUNDS USING A TWO-LEVEL FACTORIAL DESIGN FOR SACCHAROMYCES BOULARDII

    Directory of Open Access Journals (Sweden)

    GUOWEI SHU

    2016-04-01

    Full Text Available Even if the probiotic effect of Saccharomyces boulardii is has been reported, this yeast is rarely used in medium composition. Based on single factor experiment, two-level factorial design was employed to evaluate the effect of carbon sources (sucrose, glucose, nitrogen sources (soy peptone, beef extract, yeast extract, calf serum, malt extract and salts (K2HPO4, KH2PO4, MgSO4, Na2HPO4, NaH2PO4, CaCl2, sodium citrate, sodium glutamate on the growth of S. boulardii. At the same time, the optical density (OD in the medium was measured at 560 nm after 36 h of incubation. The result of two-level factorial design experiment showed that calf serum (p = 0.0214 and sodium citrate (p = 0.0045 are the significant growth factors of S. boulardii, sucrose (p = 0.0861 and malt extract (p = 0.0763 are important factors. In addition, sucrose and sodium citrate showed positive effect on the growth of S. boulardii. However, calf serum and malt extract showed negative effect on the growth. And we determined that the optimum medium composition for S. boulardii was as follow: 37.5 g·L-1 sucrose, 6 g·L-1 calf serum, 6 g·L-1 malt extract, 5 g·L-1 sodium citrate.

  14. Neutrino Factory

    CERN Document Server

    Bogomilov, M; Tsenov, R; Dracos, M; Bonesini, M; Palladino, V; Tortora, L; Mori, Y; Planche, T; Lagrange, J  B; Kuno, Y; Benedetto, E; Efthymiopoulos, I; Garoby, R; Gilardoini, S; Martini, M; Wildner, E; Prior, G; Blondel, A; Karadzhow, Y; Ellis, M; Kyberd, P; Bayes, R; Laing, A; Soler, F  J  P; Alekou, A; Apollonio, M; Aslaninejad, M; Bontoiu, C; Jenner, L  J; Kurup, A; Long, K; Pasternak, J; Zarrebini, A; Poslimski, J; Blackmore, V; Cobb, J; Tunnell, C; Andreopoulos, C; Bennett, J  R  J; Brooks, S; Caretta, O; Davenne, T; Densham, C; Edgecock, T  R; Fitton, M; Kelliher, D; Loveridge, P; McFarland, A; Machida, S; Prior, C; Rees, G; Rogers, C; Rooney, M; Thomason, J; Wilcox, D; Booth, C; Skoro, G; Back, J  J; Harrison, P; Berg, J  S; Fernow, R; Gallardo, J  C; Gupta, R; Kirk, H; Simos, N; Stratakis, D; Souchlas, N; Witte, H; Bross, A; Geer, S; Johnstone, C; Mokhov, N; Neuffer, D; Popovic, M; Strait, J; Striganov, S; Morfín, J  G; Wands, R; Snopok, P; Bogacz, S  A; Morozov, V; Roblin, Y; Cline, D; Ding, X; Bromberg, C; Hart, T; Abrams, R  J; Ankenbrandt, C  M; Beard, K  B; Cummings, M  A  C; Flanagan, G; Johnson, R  P; Roberts, T  J; Yoshikawa, C  Y; Graves, V  B; McDonald, K  T; Coney, L; Hanson, G

    2014-01-01

    The properties of the neutrino provide a unique window on physics beyond that described by the standard model. The study of subleading effects in neutrino oscillations, and the race to discover CP-invariance violation in the lepton sector, has begun with the recent discovery that $\\theta_{13} > 0$. The measured value of $\\theta_{13}$ is large, emphasizing the need for a facility at which the systematic uncertainties can be reduced to the percent level. The neutrino factory, in which intense neutrino beams are produced from the decay of muons, has been shown to outperform all realistic alternatives and to be capable of making measurements of the requisite precision. Its unique discovery potential arises from the fact that only at the neutrino factory is it practical to produce high-energy electron (anti)neutrino beams of the required intensity. This paper presents the conceptual design of the neutrino factory accelerator facility developed by the European Commission Framework Programme 7 EURO$\

  15. Design optimization of deployable wings

    Science.gov (United States)

    Gaddam, Pradeep

    Morphing technology is an important aspect of UAV design, particularly in regards to deployable systems. The design of such system has an important impact on the vehicle's performance. The primary focus of the present research work was to determine the most optimum deployable wing design from 3 competing designs and develop one of the deployable wing designs to test in the research facility. A Matlab code was developed to optimize 3 deployable wing concepts inflatable, inflatable telescopic and rigid-folding wings based on a sequential optimization strategy. The constraints that were part of the code include the packaging constraints during its stowed state, fixed length of the deployed section and the minimum L/D constraint. This code resulted in determining the optimum weight of all the 3 designs, the most optimum weight design is the inflatable wing design. This is a result of the flexible skin material and also due to no rigid parts in the deployed wing section. Another goal of the research involved developing an inflatable telescopic wing. The prototype was tested in a wind tunnel, while the actual wing was tested in the altitude chamber to determine the deployment speed, input pressure, analyze and predict the deployment sequence and behavior of the wing at such high wind speeds and altitudes ranging from 60,000 ft to 90,000 ft. Results from these tests allowed us to conclude the deployment sequence of the telescopic wing followed from the root to the tip section. The results were used to analyze the deployment time of the wing. As expected the deployment time decreased with an increase in input pressure. The results also show us that as the altitude increases, the deployment speed of the wing also increased. This was demonstrated when the wing was tested at a maximum altitude pressure of 90,000ft, well above the design altitude of 60,000ft.

  16. Optimal Design of Stiffeners for Bucket Foundations

    OpenAIRE

    Courtney, William Tucker; Stolpe, Mathias; Buhl, Thomas; Bitsche, Robert; Hallum, Nicolai; Nielsen, Søren A.

    2015-01-01

    The potential for structural optimization of the bucket foundation’s outer stiffeners is investigated using commercial optimization software. In order to obtain the optimal design both shape and topology optimization problems are formulated and solved using the structural optimization software Tosca Structure coupled with the finite element software Abaqus. The solutions to these optimization problems are then manually interpreted as a new design concept. Results show that shape optimization ...

  17. On the Use of Metabolic Control Analysis in the Optimization of Cyanobacterial Biosolar Cell Factories.

    NARCIS (Netherlands)

    Angermayr, S.; Hellingwerf, K.J.

    2013-01-01

    Oxygenic photosynthesis will have a key role in a sustainable future. It is therefore significant that this process can be engineered in organisms such as cyanobacteria to construct cell factories that catalyze the (sun)light-driven conversion of CO2 and water into products like ethanol, butanol, or

  18. Neutrino factory

    Directory of Open Access Journals (Sweden)

    M. Bogomilov

    2014-12-01

    Full Text Available The properties of the neutrino provide a unique window on physics beyond that described by the standard model. The study of subleading effects in neutrino oscillations, and the race to discover CP-invariance violation in the lepton sector, has begun with the recent discovery that θ_{13}>0. The measured value of θ_{13} is large, emphasizing the need for a facility at which the systematic uncertainties can be reduced to the percent level. The neutrino factory, in which intense neutrino beams are produced from the decay of muons, has been shown to outperform all realistic alternatives and to be capable of making measurements of the requisite precision. Its unique discovery potential arises from the fact that only at the neutrino factory is it practical to produce high-energy electron (antineutrino beams of the required intensity. This paper presents the conceptual design of the neutrino factory accelerator facility developed by the European Commission Framework Programme 7 EUROν Design Study consortium. EUROν coordinated the European contributions to the International Design Study for the Neutrino Factory (the IDS-NF collaboration. The EUROν baseline accelerator facility will provide 10^{21} muon decays per year from 12.6 GeV stored muon beams serving a single neutrino detector situated at a source-detector distance of between 1 500 km and 2 500 km. A suite of near detectors will allow definitive neutrino-scattering experiments to be performed.

  19. Formulation and evaluation of self-emulsifying orlistat tablet to enhance drug release and in vivo performance: factorial design approach.

    Science.gov (United States)

    Gade, Mukund Maruti; Hurkadale, Pramod Jayadevappa

    2016-06-01

    The purpose of the present research work was to formulate, evaluate, and optimize self-emulsifying orlistat tablet to enhance drug release followed by in vivo antiobesity activity in Wistar rats. Initially, the solubility of orlistat was determined in different natural oils, surfactant, and co-surfactants. Self-emulsifying drug delivery system (SEDDS) was prepared by using castor oil, Tween 80, and Capryol PGMC as components. Liquid SEDDS evaluated for globule size and emulsification time. A 3(2) full factorial design was utilized for the optimization purpose. Formulation variables such as quantity of oil (X1) and ratio of surfactant to co-surfactant (X2) were investigated for their effect on globule size and emulsification time. Optimized formulation with minimum globule size was freeze-dried which further compressed into the tablet. Finally, optimized formulation evaluated for the in vitro drug release study followed by weight losing potential in Wistar rats. Globule size and emulsification time for the optimized formulation were found to be 96.4 ± 8.5 nm and 26 ± 4 s, respectively. Fourier transform infra red spectroscopy (FTIR) studies indicated that there was no interaction between drug and excipients. Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) study revealed that there was the conversion of crystalline orlistat to the amorphous form. Orlistat release from the self-emulsifying tablet formulation was faster with higher weight reduction potential in Wistar rats than the marketed formulation. Increased in vitro drug release with considerable in vivo weight loss by self-emulsifying tablet suggests that the SEDDS could serve as potential formulation strategy for orlistat.

  20. Design and Factory Test of the E /E- Frascati Linear Accelerator for DAFNE

    Energy Technology Data Exchange (ETDEWEB)

    Anamkath, H.; Lyons, S.; Nett, D.; Treas, P.; Whitham, K.; Zante, T.; /Titan Beta, Dublin; Miller, R.; /Titan Beta, Dublin /SLAC; Boni, R.; Hsieh, H.; Sannibale, F.; Vescovi, M.; Vignola, G.; /Frascati

    2011-11-28

    The electron-positron accelerator for the DAFNE project has been built and is in test at Titan Beta in Dublin, CA. This S-Band RF linac system utilizes four 45 MW sledded klystrons and 16-3 m accelerating structures to achieve the required performance. It delivers a 4 ampere electron beam to the positron converter and accelerates the resulting positrons to 550 MeV. The converter design uses a 4.3T pulsed tapered flux compressor along with a pseudo-adiabatic tapered field to a 5 KG solenoid over the first two positron accelerating sections. Quadrupole focusing is used after 100 MeV. The system performance is given in Table 1. This paper briefly describes the design and development of the various subassemblies in this system and gives the initial factory test data.

  1. Design optimization of solar cooker

    Energy Technology Data Exchange (ETDEWEB)

    Mirdha, U.S.; Dhariwal, S.R. [Department of Physics, Jai Narain Vyas University, Jodhpur 342 005 (India)

    2008-03-15

    Various designs of solar cookers have been theoretically investigated with a view to optimize their performance. Starting from a conventional box type cooker, various combinations of booster mirrors have been studied to arrive at a final design, aimed at providing a cooker, which can be fixed on a south facing window (for countries of northern hemisphere, mainly situated near the tropic of Cancer). This cooker, with a rear window opening, may provide higher cooking temperature for a fairly large duration of the day. Two or three changes in positions of the side booster mirrors, without moving the cooker as a whole has been proposed. The new design has been experimentally implemented and compared with a conventional box type solar cooker. Besides the convenience of a rear window opening, the cooker provides temperatures sufficiently high to enable cooking two meals a day. (author)

  2. A Randomized Longitudinal Factorial Design to Assess Malaria Vector Control and Disease Management Interventions in Rural Tanzania

    Directory of Open Access Journals (Sweden)

    Randall A. Kramer

    2014-05-01

    Full Text Available The optimization of malaria control strategies is complicated by constraints posed by local health systems, infrastructure, limited resources, and the complex interactions between infection, disease, and treatment. The purpose of this paper is to describe the protocol of a randomized factorial study designed to address this research gap. This project will evaluate two malaria control interventions in Mvomero District, Tanzania: (1 a disease management strategy involving early detection and treatment by community health workers using rapid diagnostic technology; and (2 vector control through community-supported larviciding. Six study villages were assigned to each of four groups (control, early detection and treatment, larviciding, and early detection and treatment plus larviciding. The primary endpoint of interest was change in malaria infection prevalence across the intervention groups measured during annual longitudinal cross-sectional surveys. Recurring entomological surveying, household surveying, and focus group discussions will provide additional valuable insights. At baseline, 962 households across all 24 villages participated in a household survey; 2,884 members from 720 of these households participated in subsequent malariometric surveying. The study design will allow us to estimate the effect sizes of different intervention mixtures. Careful documentation of our study protocol may also serve other researchers designing field-based intervention trials.

  3. A randomized longitudinal factorial design to assess malaria vector control and disease management interventions in rural Tanzania.

    Science.gov (United States)

    Kramer, Randall A; Mboera, Leonard E G; Senkoro, Kesheni; Lesser, Adriane; Shayo, Elizabeth H; Paul, Christopher J; Miranda, Marie Lynn

    2014-05-16

    The optimization of malaria control strategies is complicated by constraints posed by local health systems, infrastructure, limited resources, and the complex interactions between infection, disease, and treatment. The purpose of this paper is to describe the protocol of a randomized factorial study designed to address this research gap. This project will evaluate two malaria control interventions in Mvomero District, Tanzania: (1) a disease management strategy involving early detection and treatment by community health workers using rapid diagnostic technology; and (2) vector control through community-supported larviciding. Six study villages were assigned to each of four groups (control, early detection and treatment, larviciding, and early detection and treatment plus larviciding). The primary endpoint of interest was change in malaria infection prevalence across the intervention groups measured during annual longitudinal cross-sectional surveys. Recurring entomological surveying, household surveying, and focus group discussions will provide additional valuable insights. At baseline, 962 households across all 24 villages participated in a household survey; 2,884 members from 720 of these households participated in subsequent malariometric surveying. The study design will allow us to estimate the effect sizes of different intervention mixtures. Careful documentation of our study protocol may also serve other researchers designing field-based intervention trials.

  4. A comprehensive factorial design study of variables affecting protein extraction from formalin-fixed kidney tissue samples.

    Science.gov (United States)

    Araújo, J E; Oliveira, E; Otero-Glez, A; Santos Nores, J; Igrejas, G; Lodeiro, C; Capelo, J L; Santos, H M

    2014-02-01

    Formalin-fixed tissues are an important source of biological samples for biomedical research. However, proteomics analysis of formalin-fixed tissues has been set aside by formalin-induced protein modifications, which reduce protein extraction efficiency. In this study, a two level full factorial experimental design (2(4)) was used to determine the effects of the extracting conditions in the efficiency of protein recovery from formalin-fixed kidney samples. The following variables were assessed: temperature of extraction, pH of extraction, composition of the extracting buffer and the use ultrasonic energy applied with probe. It is clearly demonstrated that when hating and ultrasonic energy are used in conjunction, a 7-fold increase (p protein extraction is obtained if compared to extracting conditions for which neither heating nor ultrasonic energy are used. The optimization study was done following the amount of protein extracted by UV (Nanodrop(®) technology, protein ABS at 280 nm) and by 1D SDS-PAGE. Extracts obtained with the optimized conditions were subjected to LC-MALDI MS/MS. A total of 112 proteins were identified.

  5. Enhanced diesel fuel fraction from waste high-density polyethylene and heavy gas oil pyrolysis using factorial design methodology.

    Science.gov (United States)

    Joppert, Ney; da Silva, Alexsandro Araujo; da Costa Marques, Mônica Regina

    2015-02-01

    Factorial Design Methodology (FDM) was developed to enhance diesel fuel fraction (C9-C23) from waste high-density polyethylene (HDPE) and Heavy Gas Oil (HGO) through co-pyrolysis. FDM was used for optimization of the following reaction parameters: temperature, catalyst and HDPE amounts. The HGO amount was constant (2.00 g) in all experiments. The model optimum conditions were determined to be temperature of 550 °C, HDPE = 0.20 g and no FCC catalyst. Under such conditions, 94% of pyrolytic oil was recovered, of which diesel fuel fraction was 93% (87% diesel fuel fraction yield), no residue was produced and 6% of noncondensable gaseous/volatile fraction was obtained. Seeking to reduce the cost due to high process temperatures, the impact of using higher catalyst content (25%) with a lower temperature (500 °C) was investigated. Under these conditions, 88% of pyrolytic oil was recovered (diesel fuel fraction yield was also 87%) as well as 12% of the noncondensable gaseous/volatile fraction. No waste was produced in these conditions, being an environmentally friendly approach for recycling the waste plastic. This paper demonstrated the usefulness of using FDM to predict and to optimize diesel fuel fraction yield with a great reduction in the number of experiments.

  6. Development of hydroethanolic extract of Ipomoea pes-caprae using factorial design followed by antinociceptive and anti-inflammatory evaluation

    Directory of Open Access Journals (Sweden)

    Daniela Vieira

    2012-01-01

    Full Text Available Ipomoea pes-caprae (L. R. Br., Convolvulaceae, is a medicinal plant that grows abundantly as a pan-tropical stand plant. The 3² (two factors and three levels factorial design, was applied to determine the best time and drug/solvent proportion to maximize the flavonoid content in the hydroethanolic extract by maceration process. The antinociceptive and anti-inflammatory effects were studied at 5-20 mg/kg, i.p., using the writhing test and carrageenan-induced pleurisy models in mice. The optimized extract was able to inhibit more than 50% of abdominal writhing at 20 mg/kg, with 55.88%±2.4 of maximum inhibition. Indomethacin, used as positive control, inhibited 64.86% at 10 mg/kg. In the pleurisy model, the extract produced dose-dependent inhibition of the first phase of inflammation (4 h in the pleural cavity induced by injection of carrageenan (1% in mice. It inhibited 50%±0.82 (p<0.01 of exudation induced by carrageenan, and 60.88%±0.14 (p<0.01 of leukocyte migration to the pleural cavity. In conclusion, the results validate the technological conditions of the maceration process to produce an optimized bioactive herb extract for the development of analgesic and anti-inflammatory phytopharmaceuticals using 70 ºGL ethanol, a plant to solvent ratio of 12.5% (w/v, and ten days of maceration.

  7. Optimal Design of Stiffeners for Bucket Foundations

    DEFF Research Database (Denmark)

    Courtney, William Tucker; Stolpe, Mathias; Buhl, Thomas;

    2015-01-01

    The potential for structural optimization of the bucket foundation’s outer stiffeners is investigated using commercial optimization software. In order to obtain the optimal design both shape and topology optimization problems are formulated and solved using the structural optimization software...... Tosca Structure coupled with the finite element software Abaqus. The solutions to these optimization problems are then manually interpreted as a new design concept. Results show that shape optimization of the initial design can reduce stress concentrations by 38%. Additionally, topology optimization has...

  8. Effect of polymers on crystallo-co-agglomeration of ibuprofen-paracetamol: Factorial design

    Directory of Open Access Journals (Sweden)

    Pawar A

    2007-01-01

    Full Text Available The purpose of this research was to study the effect of concentration of polyethylene glycol and ethyl cellulose on the properties of agglomerates of ibuprofen-paracetamol obtained by crystallo-co-agglomeration technique. The process of crystallo-co-agglomeration involved recrystallization of ibuprofen and its simultaneous agglomeration with paracetamol in presence polymers. The effect of combination of polyethylene glycol and ethylcellulose was studied by 2 2 factorial design. Ibuprofen content of the agglomerate increased with increase in ethyl cellulose while paracetamol content was decreased with increase in polyethylene glycol. Differential scanning calorimetry thermograms of agglomerates showed the unchanged endotherm for ibuprofen melting, whereas paracetamol endotherm was diffused with low enthalpy. The agglomerates were spherical but increase in polyethylene glycol caused its deformation. Agglomerates containing ethylcellulose with polyethylene glycol have higher resistance for fragmentation, modulus of elasticity but impart high tensile strength.

  9. Study of formulation variables on properties of glipizide mucoadhesive microspheres by factorial design

    Directory of Open Access Journals (Sweden)

    Hosmani A.H

    2009-12-01

    Full Text Available "nBackground and the Purpose of the study:The purpose of the study was formulate and systemsystematic evaluation in-vitro and in-vivo behaviour of Glipizide mucoadhesive microspheres using 32 full factorial design. "nMethods:Concentration of Polycarbophil and Sodium Alginate were selected as independent variables and the effects were checked on dependent variables like swelling index, mucoadhesion, drug entrapment efficiency and T75. In vivo studies were also performed to determine hypoglycemic activity of the mucoadhesive microspheres. "nResults:The best batch exhibited drug entrapment efficiency of 75%, swelling index of 1.8 and mucoadhesion was 100%. The drug release from the microspheres was also sustained for more than 9 hrs. Conclusion:The concentration of polycarbophil and sodium alginate had highly significant effects on dependent variables. In-vivo testing demonstrated a significant hypoglycemic effect of glipizide.

  10. The Role of Synthetic Biology in the Design of Microbial Cell Factories for Biofuel Production

    Science.gov (United States)

    Colin, Verónica Leticia; Rodríguez, Analía; Cristóbal, Héctor Antonio

    2011-01-01

    Insecurity in the supply of fossil fuels, volatile fuel prices, and major concerns regarding climate change have sparked renewed interest in the production of fuels from renewable resources. Because of this, the use of biodiesel has grown dramatically during the last few years and is expected to increase even further in the future. Biodiesel production through the use of microbial systems has marked a turning point in the field of biofuels since it is emerging as an attractive alternative to conventional technology. Recent progress in synthetic biology has accelerated the ability to analyze, construct, and/or redesign microbial metabolic pathways with unprecedented precision, in order to permit biofuel production that is amenable to industrial applications. The review presented here focuses specifically on the role of synthetic biology in the design of microbial cell factories for efficient production of biodiesel. PMID:22028591

  11. Problem statement for optimal design of steel structures

    Directory of Open Access Journals (Sweden)

    Ginzburg Aleksandr Vital'evich

    2014-07-01

    Full Text Available The presented article considers the following complex of tasks. The main stages of the life cycle of a building construction with the indication of process entrance and process exit are described. Requirements imposed on steel constructions are considered. The optimum range of application for steel designs is specified, as well as merits and demerits of a design material. The nomenclature of metal designs is listed - the block diagram is constructed. Possible optimality criteria of steel designs, offered by various authors for various types of constructions are considered. It is established that most often the criterion of a minimum of design mass is accepted as criterion of optimality; more rarely - a minimum of the given expenses, a minimum of a design cost in business. In the present article special attention is paid to a type of objective function of optimization problem. It is also established that depending on the accepted optimality criterion, the use of different types of functions is possible. This complexity of objective function depends on completeness of optimality criterion application. In the work the authors consider the following objective functions: the mass of the main element of a design; objective function by criterion of factory cost; objective function by criterion of cost in business. According to these examples it can be seen that objective functions by the criteria of labor expenses for production of designs are generally non-linear, which complicates solving the optimization problem. Another important factor influencing the problem of optimal design solution for steel designs, which is analyzed, is account for operating restrictions. In the article 8 groups of restrictions are analyzed. Attempts to completely account for the parameters of objective function optimized by particular optimality criteria, taking into account all the operating restrictions, considerably complicates the problem of designing. For solving this

  12. Design of microfluidic bioreactors using topology optimization

    DEFF Research Database (Denmark)

    Okkels, Fridolin; Bruus, Henrik

    2007-01-01

    We address the design of optimal reactors for supporting biological cultures using the method of topology optimization. For some years this method have been used to design various optimal microfluidic devices.1-4 We apply this method to distribute optimally biologic cultures within a flow of nutr...

  13. Advanced Envelope Research for Factory Built Housing, Phase 3. Design Development and Prototyping

    Energy Technology Data Exchange (ETDEWEB)

    Levy, E. [ARIES Collaborative, New York, NY (United States); Kessler, B. [ARIES Collaborative, New York, NY (United States); Mullens, M. [ARIES Collaborative, New York, NY (United States); Rath, P. [ARIES Collaborative, New York, NY (United States)

    2014-01-01

    The Advanced Envelope Research effort will provide factory homebuilders with high performance, cost-effective alternative envelope designs. In the near term, these technologies will play a central role in meeting stringent energy code requirements. For manufactured homes, the thermal requirements, last updated by statute in 1994, will move up to the more rigorous IECC 2012 levels in 2013, the requirements of which are consistent with site built and modular housing. This places added urgency on identifying envelope technologies that the industry can implement in the short timeframe. The primary goal of this research is to develop wall designs that meet the thermal requirements based on 2012 IECC standards. Given the affordable nature of manufactured homes, impact on first cost is a major consideration in developing the new envelope technologies. This work is part of a four-phase, multi-year effort. Phase 1 identified seven envelope technologies and provided a preliminary assessment of three selected methods for building high performance wall systems. Phase 2 focused on the development of viable product designs, manufacturing strategies, addressing code and structural issues, and cost analysis of the three selected options. An industry advisory committee helped critique and select the most viable solution to move further in the research -- stud walls with continuous exterior insulation. Phase 3, the subject of the current report, focused on the design development of the selected wall concept and explored variations on the use of exterior foam insulation. The scope also included material selection, manufacturing and cost analysis, and prototyping and testing.

  14. Advanced Envelope Research for Factory Built Housing, Phase 3 -- Design Development and Prototyping

    Energy Technology Data Exchange (ETDEWEB)

    Levy, E.; Kessler, B.; Mullens, M.; Rath, P.

    2014-01-01

    The Advanced Envelope Research effort will provide factory homebuilders with high performance, cost-effective alternative envelope designs. In the near term, these technologies will play a central role in meeting stringent energy code requirements. For manufactured homes, the thermal requirements, last updated by statute in 1994, will move up to the more rigorous IECC 2012 levels in 2013, the requirements of which are consistent with site built and modular housing. This places added urgency on identifying envelope technologies that the industry can implement in the short timeframe. The primary goal of this research is to develop wall designs that meet the thermal requirements based on 2012 IECC standards. Given the affordable nature of manufactured homes, impact on first cost is a major consideration in developing the new envelope technologies. This work is part of a four-phase, multi-year effort. Phase 1 identified seven envelope technologies and provided a preliminary assessment of three selected methods for building high performance wall systems. Phase 2 focused on the development of viable product designs, manufacturing strategies, addressing code and structural issues, and cost analysis of the three selected options. An industry advisory committee helped critique and select the most viable solution to move further in the research -- stud walls with continuous exterior insulation. Phase 3, the subject of the current report, focused on the design development of the selected wall concept and explored variations on the use of exterior foam insulation. The scope also included material selection, manufacturing and cost analysis, and prototyping and testing.

  15. Two strikes crystallization optimization at the ``ERIDIANA BEGHIN-SAY`` sugar factory in ``Abbeville``

    Energy Technology Data Exchange (ETDEWEB)

    Baudot, M.; Cegel, L.; Hochart, J.M.

    1996-07-01

    In 1996 `ERIDANIA BEGHIN-SAY` realized a new crystallization workshop at the Sugar Factory in `ABBEVILLE`, permitting to reach by only two stages a production of 1200 T per day of white sugar with quality E C n.2 or n.1 with molasses of nearly 60 purity. This success has been obtained thanks to the `BEGHIN SAY` patented process of Continuous Vacuum Crystallizers in second and last strike. This flow sheet of crystallization at low temperature and at low residence time has generated significant profits in the mount of investments, in energy needs as a reduction of loss of saccharose. (author). 5 figs., 1 tab.

  16. Factorial design application in photocatalytic wastewater degradation from TNT industry-red water.

    Science.gov (United States)

    Guz, Ricardo; de Moura, Cristiane; da Cunha, Mário Antônio Alves; Rodrigues, Marcio Barreto

    2017-03-01

    In trinitrotoluene (TNT) purification process, realized in industries, there are two washes carried out at the end of the procedure. The first is performed with vaporized water, from which the first effluent, called yellow water, is originated. Then, a second wash is performed using sodium sulfite, generating the red water effluent. The objective of this work was to get the best conditions for photocatalytic degradation of the second effluent, red water, in order to reduce toxicity and adjust legal parameters according to regulatory agencies for dumping these effluents into waterways. It has used a statistical evaluation for factor interaction (pH, concentration) that affects heterogeneous photocatalysis with titanium dioxide (TiO2). Thus, the treatment applied in the factorial experimental design consisted of using a volume equal to 500 mL of the effluent to 0.1 % by batch treatment, which has changed TiO2 pH and concentration, according to the design, with 20 min time for evaluation, where it was used as response to the reduction of UV-Vis absorption. According to the design responses, it has obtained optimum values for the parameters evaluated: pH = 6.5 and concentration of 100 mg/L of TiO2 were shown to be efficient when applied to red water effluent, obtaining approximately 91 % of discoloration.

  17. Surrogate Assisted Design Optimization of an Air Turbine

    Directory of Open Access Journals (Sweden)

    Rameez Badhurshah

    2014-01-01

    Full Text Available Surrogates are cheaper to evaluate and assist in designing systems with lesser time. On the other hand, the surrogates are problem dependent and they need evaluation for each problem to find a suitable surrogate. The Kriging variants such as ordinary, universal, and blind along with commonly used response surface approximation (RSA model were used in the present problem, to optimize the performance of an air impulse turbine used for ocean wave energy harvesting by CFD analysis. A three-level full factorial design was employed to find sample points in the design space for two design variables. A Reynolds-averaged Navier Stokes solver was used to evaluate the objective function responses, and these responses along with the design variables were used to construct the Kriging variants and RSA functions. A hybrid genetic algorithm was used to find the optimal point in the design space. It was found that the best optimal design was produced by the universal Kriging while the blind Kriging produced the worst. The present approach is suggested for renewable energy application.

  18. Optimizing Partner Notification Programs for Men Who Have Sex with Men: Factorial Survey Results from South China.

    Directory of Open Access Journals (Sweden)

    Alberta L Wang

    Full Text Available Syphilis is prevalent among men who have sex with men (MSM in China. Syphilis partner notification (PN programs targeting MSM has been considered as one of effective strategies to prevention and control of the infection in the population. We examined willingness and preferences for PN among MSM to measure feasibility and optimize uptake.Participation in a syphilis PN program was measured using a factorial survey from both the perspective of the index patient and the partner. Respondents were recruited from April-July 2011 using convenience sampling at two sites-a MSM sexually transmitted disease (STD clinic and a MSM community based organization (CBO. Respondents first evaluated three factorial survey vignettes to measure probability of participation and then an anonymous sociodemographic questionnaire. A two-level mixed linear model was fitted for the factorial survey analysis.In 372 respondents with mean age (± SD 28.5 (± 6.0 years, most were single (82.0% and closeted gays (66.7%. The Internet was the most frequent place to search for sex. Few (31.2% had legal names for casual partners, but most had instant messenger (86.5% and mobile phone numbers (77.7%. The mean probability of participation in a syphilis PN program was 64.5% (± 32.4% for index patients and 63.7% (± 32.6% for partners. Referral of the partner to a private clinic or MSM CBO for follow-up decreased participation compared to the local Center for Disease Control and Prevention (CDC or public STD clinic.Enhanced PN services may be feasible among MSM in South China. Internet and mobile phone PN may contact partners untraceable by traditional PN. Referral of partners to the local CDC or public STD clinic may maximize PN participation.

  19. Optimizing ELISAs for precision and robustness using laboratory automation and statistical design of experiments.

    Science.gov (United States)

    Joelsson, Daniel; Moravec, Phil; Troutman, Matthew; Pigeon, Joseph; DePhillips, Pete

    2008-08-20

    Transferring manual ELISAs to automated platforms requires optimizing the assays for each particular robotic platform. These optimization experiments are often time consuming and difficult to perform using a traditional one-factor-at-a-time strategy. In this manuscript we describe the development of an automated process using statistical design of experiments (DOE) to quickly optimize immunoassays for precision and robustness on the Tecan EVO liquid handler. By using fractional factorials and a split-plot design, five incubation time variables and four reagent concentration variables can be optimized in a short period of time.

  20. Full factorial experimental design analysis of Rhodamine B removal from water using organozeolite from coal bottom ash

    Directory of Open Access Journals (Sweden)

    Raquel R. Alcântara, Rafael O. R. Muniz, Denise A. Fungaro

    2016-01-01

    Full Text Available Zeolitic material synthesized using coal bottom ash asraw materialwas modified by cationic surfactant. Raw bottom ash and zeolitic materials were characterized using various techniques to obtain its physical and chemical properties. Surfactant modified zeolite (SMZBA was used as alternative low-cost adsorbent for removal of Rhodamine B (RB dye from aqueous solution. Dye adsorption equilibrium was attained after 40 min of the contact time and adsorption kinetics were described by the pseudo second order kinetic model. Equilibrium adsorption data were adjusted using non-linear equations of the Langmuir, Freundlich, Temkin and Dubinin-Radushkevich (D-R models. Error analysis showed that D-R was the most appropriate for fitting the experimental data.The reuse of the remaining solution generated from the synthesis of zeolite was effective. To optimize the operating conditions, the temperature, pH, adsorbent dosage and initial concentration of the dye were investigated by full factorial experimental design method; adsorbent dosage, initial concentration and interaction of the two were found as the most significant factors with P = 0.02 lower than 95% confidence level. The results showed that SMZBA is a good adsorbent for the removal of RB from aqueous effluent.

  1. Fractional Factorial Design Study on the Performance of GAC-Enhanced Electrocoagulation Process Involved in Color Removal from Dye Solutions

    Directory of Open Access Journals (Sweden)

    Iuliana Gabriela Breaban

    2013-07-01

    Full Text Available The aim of this study was to determine the effects of main factors and interactions on the color removal performance from dye solutions using the electrocoagulation process enhanced by adsorption on Granular Activated Carbon (GAC. In this study, a mathematical approach was conducted using a two-level fractional factorial design (FFD for a given dye solution. Three textile dyes: Acid Blue 74, Basic Red 1, and Reactive Black 5 were used. Experimental factors used and their respective levels were: current density (2.73 or 27.32 A/m2, initial pH of aqueous dye solution (3 or 9, electrocoagulation time (20 or 180 min, GAC dose (0.1 or 0.5 g/L, support electrolyte (2 or 50 mM, initial dye concentration (0.05 or 0.25 g/L and current type (Direct Current—DC or Alternative Pulsed Current—APC. GAC-enhanced electrocoagulation performance was analyzed statistically in terms of removal efficiency, electrical energy, and electrode material consumptions, using modeling polynomial equations. The statistical significance of GAC dose level on the performance of GAC enhanced electrocoagulation and the experimental conditions that favor the process operation of electrocoagulation in APC regime were determined. The local optimal experimental conditions were established using a multi-objective desirability function method.

  2. Development and physical evaluation of Maytenus ilicifolia effervescent granules using factorial design

    Directory of Open Access Journals (Sweden)

    Marcilio Sérgio Soares da Cunha-Filho

    2014-04-01

    Full Text Available The medicinal plant Maytenus ilicifolia is a commonly used phytomedicine for the treatment of gastritis. The high dose required and low density of these extracts make necessary a daily intake of several capsules, hindering adherence to the medication. The purpose of this work was to develop a suitable dosage form for the administration of Maytenus ilicifolia using effervescent granules. A 23 factorial design was used to study the physical characteristics of the granules (particle size distribution, repose angle, Carr index, scanning electron microscopy and disintegration time. Moisture stability was also determined. According to the experimental design, granule size is the most important factor in determining the flow characteristics of effervescent granules. In turn, the disintegration time is controlled by the content of sodium bicarbonate present in the effervescent mixture as well as the granule size. The stability of formulations when exposed to moisture is strongly influenced by the percentage of effervescent mixture present in the vegetal granules. Precautions in handling and storage should be taken to ensure the stability of these preparations. The effervescent granules produced from Maytenus ilicifolia met the pharmacopoeial quality parameters, with appropriate mechanical and physical characteristics and proved to be a promising vehicle for plant extracts.

  3. Design, Engineering, and Construction of Photosynthetic Microbial Cell Factories for Renewable Solar Fuel Production

    Energy Technology Data Exchange (ETDEWEB)

    Lindblad, Peter; Lindberg, Pia; Stensjoe, Karin (Photochemistry and Molecular Science, Dept. of Chemistry-Aangstroem Laboratory, Uppsala Univ., Uppsala (Sweden)), E-mail: Peter.Lindblad@kemi.uu.se; Oliveira, Paulo (Instituto de Biologia Molecular e Celular, Porto (Portugal)); Heidorn, Thorsten (Bioforsk-Norwegian Inst. for Agricultural and Environmental Research, Aas Oslo, (Norway))

    2012-03-15

    There is an urgent need to develop sustainable solutions to convert solar energy into energy carriers used in the society. In addition to solar cells generating electricity, there are several options to generate solar fuels. This paper outlines and discusses the design and engineering of photosynthetic microbial systems for the generation of renewable solar fuels, with a focus on cyanobacteria. Cyanobacteria are prokaryotic microorganisms with the same type of photosynthesis as higher plants. Native and engineered cyanobacteria have been used by us and others as model systems to examine, demonstrate, and develop photobiological H{sub 2} production. More recently, the production of carbon-containing solar fuels like ethanol, butanol, and isoprene have been demonstrated. We are using a synthetic biology approach to develop efficient photosynthetic microbial cell factories for direct generation of biofuels from solar energy. Present progress and advances in the design, engineering, and construction of such cyanobacterial cells for the generation of a portfolio of solar fuels, e.g., hydrogen, alcohols, and isoprene, are presented and discussed. Possibilities and challenges when introducing and using synthetic biology are highlighted

  4. Assessment of the recycling potential of fresh concrete waste using a factorial design of experiments.

    Science.gov (United States)

    Correia, S L; Souza, F L; Dienstmann, G; Segadães, A M

    2009-11-01

    Recycling of industrial wastes and by-products can help reduce the cost of waste treatment prior to disposal and eventually preserve natural resources and energy. To assess the recycling potential of a given waste, it is important to select a tool capable of giving clear indications either way, with the least time and work consumption, as is the case of modelling the system properties using the results obtained from statistical design of experiments. In this work, the aggregate reclaimed from the mud that results from washout and cleaning operations of fresh concrete mixer trucks (fresh concrete waste, FCW) was recycled into new concrete with various water/cement ratios, as replacement of natural fine aggregates. A 3(2) factorial design of experiments was used to model fresh concrete consistency index and hardened concrete water absorption and 7- and 28-day compressive strength, as functions of FCW content and water/cement ratio, and the resulting regression equations and contour plots were validated with confirmation experiments. The results showed that the fresh concrete workability worsened with the increase in FCW content but the water absorption (5-10 wt.%), 7-day compressive strength (26-36 MPa) and 28-day compressive strength (32-44 MPa) remained within the specified ranges, thus demonstrating that the aggregate reclaimed from FCW can be recycled into new concrete mixtures with lower natural aggregate content.

  5. Design, engineering, and construction of photosynthetic microbial cell factories for renewable solar fuel production.

    Science.gov (United States)

    Lindblad, Peter; Lindberg, Pia; Oliveira, Paulo; Stensjö, Karin; Heidorn, Thorsten

    2012-01-01

    There is an urgent need to develop sustainable solutions to convert solar energy into energy carriers used in the society. In addition to solar cells generating electricity, there are several options to generate solar fuels. This paper outlines and discusses the design and engineering of photosynthetic microbial systems for the generation of renewable solar fuels, with a focus on cyanobacteria. Cyanobacteria are prokaryotic microorganisms with the same type of photosynthesis as higher plants. Native and engineered cyanobacteria have been used by us and others as model systems to examine, demonstrate, and develop photobiological H(2) production. More recently, the production of carbon-containing solar fuels like ethanol, butanol, and isoprene have been demonstrated. We are using a synthetic biology approach to develop efficient photosynthetic microbial cell factories for direct generation of biofuels from solar energy. Present progress and advances in the design, engineering, and construction of such cyanobacterial cells for the generation of a portfolio of solar fuels, e.g., hydrogen, alcohols, and isoprene, are presented and discussed. Possibilities and challenges when introducing and using synthetic biology are highlighted.

  6. Fluoride removal from diluted solutions by Donnan dialysis using full factorial design

    Energy Technology Data Exchange (ETDEWEB)

    Boubakri, Ali; Helali, Nawel; Tlili, Mohamed; Amor, Mohamed Ben [Center of Researches and Water Technologies, Soliman (Turkey)

    2014-03-15

    Excessive fluoride concentration in potable water can lead to fluorosis of teeth and bones. In the present study, Donnan dialysis (DD) is applied for the removal of fluoride ions from diluted sodium fluoride solutions. A four factor two level (2{sup 4}) full factorial design was used to investigate the influence of different physico-chemical parameters on fluoride removal efficiency (Y{sub F}) and fluoride flux (J{sub F}) through anion exchange membrane. The statistical design determines factors which have the important effects on Donnan dialysis performance and studies all interactions among the considered parameters. The four significant factors were initial fluoride concentration, feed flow rate, temperature and agitation speed. The experimental results and statistical analysis show that the temperature and agitation speed have positive effects on fluoride removal efficiency and the initial fluoride concentration has a negative effect. In the case of fluoride flux, feed flow rate and initial concentration are the main effect and all factors have a positive effect. The interaction between studied parameters was not negligible on two responses. A maximum fluoride removal of 75.52% was obtained under optimum conditions and the highest value of fluoride flux obtained was 2.4 mg/cm{sup 2}·h. Empirical regression models were also obtained and used to predict the flux and the fluoride removal profiles with satisfactory results.

  7. Design optimization method for Francis turbine

    Science.gov (United States)

    Kawajiri, H.; Enomoto, Y.; Kurosawa, S.

    2014-03-01

    This paper presents a design optimization system coupled CFD. Optimization algorithm of the system employs particle swarm optimization (PSO). Blade shape design is carried out in one kind of NURBS curve defined by a series of control points. The system was applied for designing the stationary vanes and the runner of higher specific speed francis turbine. As the first step, single objective optimization was performed on stay vane profile, and second step was multi-objective optimization for runner in wide operating range. As a result, it was confirmed that the design system is useful for developing of hydro turbine.

  8. Design Optimization of Internal Flow Devices

    DEFF Research Database (Denmark)

    Madsen, Jens Ingemann

    The power of computational fluid dynamics is boosted through the use of automated design optimization methodologies. The thesis considers both derivative-based search optimization and the use of response surface methodologies.......The power of computational fluid dynamics is boosted through the use of automated design optimization methodologies. The thesis considers both derivative-based search optimization and the use of response surface methodologies....

  9. 新的设计模式——数组工厂和数组原型模式%New design patterns: array factory and array prototype

    Institute of Scientific and Technical Information of China (English)

    彭世康; 周逢权

    2012-01-01

    为了去除程序中的简单开关分支结构,提出了一种新的重构方法——“以数组取代类型码”重构手法.将这种新的重构方法用于重构简单工厂模式,就得到了一种新的软件设计模式——“数组工厂”模式.数组工厂模式适用于实例化某个具体类在软件执行流程的任意时刻只存在一个实体的对象;对于软件执行流程中可以同时存在多个实体的具体类对象的实例化工作,通过改造数组工厂模式,提出了“数组原型”模式.数组工厂和数组原型模式是两种结构优良的创建型设计模式,它们免除了简单工厂方法中的开关分支语句,具有优化代码结构、提高程序执行性能等优点,并且完全符合开放—封闭原则.%A new design pattern named "array factory" was produced when the switch statements in simple factory method were refactored by "replace type code with array". Array factory pattern was applied to instantiate the object that has only one entity in software. Array prototype pattern was proposed for instantiating multiple objects of one class by improving array factory pattern. As two excellent creation patterns, array factory and array prototype patterns not only have almost all the benefits of simple factory pattern, but also eliminate the switch statements, optimize the structure of the program and improve the processing performance of the software, and they meet the open-closed principle.

  10. Reliability based design optimization: Formulations and methodologies

    Science.gov (United States)

    Agarwal, Harish

    Modern products ranging from simple components to complex systems should be designed to be optimal and reliable. The challenge of modern engineering is to ensure that manufacturing costs are reduced and design cycle times are minimized while achieving requirements for performance and reliability. If the market for the product is competitive, improved quality and reliability can generate very strong competitive advantages. Simulation based design plays an important role in designing almost any kind of automotive, aerospace, and consumer products under these competitive conditions. Single discipline simulations used for analysis are being coupled together to create complex coupled simulation tools. This investigation focuses on the development of efficient and robust methodologies for reliability based design optimization in a simulation based design environment. Original contributions of this research are the development of a novel efficient and robust unilevel methodology for reliability based design optimization, the development of an innovative decoupled reliability based design optimization methodology, the application of homotopy techniques in unilevel reliability based design optimization methodology, and the development of a new framework for reliability based design optimization under epistemic uncertainty. The unilevel methodology for reliability based design optimization is shown to be mathematically equivalent to the traditional nested formulation. Numerical test problems show that the unilevel methodology can reduce computational cost by at least 50% as compared to the nested approach. The decoupled reliability based design optimization methodology is an approximate technique to obtain consistent reliable designs at lesser computational expense. Test problems show that the methodology is computationally efficient compared to the nested approach. A framework for performing reliability based design optimization under epistemic uncertainty is also developed

  11. HPLC analysis of oxindole alkaloids in Uncaria tomentosa: sample preparation and analysis optimisation by factorial design.

    Science.gov (United States)

    Bertol, Gustavo; Franco, Luzia; Oliveira, Brás Heleno de

    2012-01-01

    Uncaria tomentosa ("cat's claw") is widely used for the treatment of some infectious and inflammatory diseases. Oxindole alkaloids are regarded as the most important components responsible for the biological activities attributed to the plant. Their analysis require efficient sample preparation and suitable reference standards but few are commercially available. To develop and validate a HPLC analytical method for oxindole alkaloids in Uncaria tomentosa with emphasis on sample preparation. Factorial experimental designs were used for the optimisation of both sample preparation and chromatographic separation. The optimised sample preparation involved extraction with aqueous ethanol, and the granulometry of the powdered plant material significantly influenced extraction yields. Mitraphylline was used as a calibration reference for the determination of total alkaloids. The method was fully validated and showed good selectivity, linearity (r²  ≥ 0.9996), accuracy (≥ 96%) and precision (RSD < 2.4%). Detection and quantification limits for mitraphylline were 0.8 and 2.4 ppm, respectively. The optimised chromatographic method, using organic buffer in the mobile phase, provided baseline separation of tetracyclic and pentacyclic alkaloids in the samples. Calibration using mitraphylline provided more accurate estimates of total alkaloid content when compared to other available reference alkaloids. Copyright © 2011 John Wiley & Sons, Ltd.

  12. Full factorial design, physicochemical characterisation and biological assessment of cyclosporine A loaded cationic nanoparticles.

    Science.gov (United States)

    Hermans, Kris; Van den Plas, Dave; Everaert, Arnout; Weyenberg, Wim; Ludwig, Annick

    2012-09-01

    Cyclosporine A loaded poly(lactide-co-glycolide) nanoparticles coated with chitosan were prepared using the o/w emulsification solvent evaporation method. A 2(3) full factorial design was used to investigate the effect of 3 preparation parameters on the particle size, polydispersity index, zeta potential and drug release. In vitro experiments were performed in order to evaluate the cytotoxicity and anti-inflammatory activity of the developed nanoparticles. Particle sizes varied from 156 nm to 314 nm, and polydispersity index values of 0.07-0.56 were obtained depending on the different preparation parameters. All nanoparticles showed positive zeta potential values. Nanoparticles prepared with the highest concentration chitosan retained a positive zeta potential after dispersion in simulated lachrymal fluid, which supports the possibility of an electrostatic interaction between these particles and the negatively charged mucus layer at the eye. The in vitro release profile of cyclosporine A from the chitosan-coated nanoparticles was strongly dependent on the release medium used. None of the cationic nanoparticle formulations showed significant cytotoxicity compared to the negative control using human epithelial cells (HaCaT). Cyclosporine A encapsulated in the various nanoparticle formulations remained anti-inflammatory active as significant suppression of interleukine-2 secretion in concanavalin A stimulated Jurkat T cells was observed.

  13. Factorial experimental design for recovering heavy metals from sludge with ion-exchange resin.

    Science.gov (United States)

    Lee, I Hsien; Kuan, Yu-Chung; Chern, Jia-Ming

    2006-12-01

    Wastewaters containing heavy metals are usually treated by chemical precipitation method in Taiwan. This method can remove heavy metals form wastewaters efficiently, but the resultant heavy metal sludge is classified as hazardous solid waste and becomes another environmental problem. If we can remove heavy metals from sludge, it becomes non-hazardous waste and the treatment cost can be greatly reduced. This study aims at using ion-exchange resin to remove heavy metals such as copper, zinc, cadmium, and chromium from sludge generated by a PCB manufacturing plant. Factorial experimental design methodology was used to study the heavy metal removal efficiency. The total metal concentrations in the sludge, resin, and solution phases were measured respectively after 30 min reaction with varying leaching agents (citric acid and nitric acid); ion-exchange resins (Amberlite IRC-718 and IR-120), and temperatures (50 and 70 degrees C). The experimental results and statistical analysis show that a stronger leaching acid and a higher temperature both favor lower heavy metal residues in the sludge. Two-factors and even three-factor interaction effects on the heavy metal sorption in the resin phase are not negligible. The ion-exchange resin plays an important role in the sludge extraction or metal recovery. Empirical regression models were also obtained and used to predict the heavy metal profiles with satisfactory results.

  14. Design of a Low Cost Smart Dryer Temperature Measurement System for Tea Factories

    Directory of Open Access Journals (Sweden)

    Utpal SARMA

    2009-09-01

    Full Text Available This paper presents the design of a low cost smart dryer temperature measurement system for Tea Factories using K-type Thermocouple implementing linearization polynomial. The thermo emf is amplified by an instrumentation amplifier having high CMRR (106 dB and high input impedance (1012 Ohm. The analog signal is converted to digital form with the help of an SPI compatible 12-bit ADC. Data acquisition and transmission is done with an 8- bit microcontroller. As the dependence of thermo emf on temperature is not linear hence it is fitted with a polynomial. NIST data for K-type TC is taken as a standard for this fitting. The error with linear fit and polynomial fit is also presented. The digital data is corrected according to the polynomial and sent to a PC located at a remote control room for monitoring and data logging via RS232C communication. The performance of the entire system is discussed in the paper.

  15. Factorial design in the spheronization of ibuprofen microparticulates using the rotor disk fluid-bed technology.

    Science.gov (United States)

    Chukwumezie, Beatrice Nkem; Wojcik, Mark; Malak, Paul; Damico, Frank; Adeyeye, Moji Christianah

    2004-01-01

    The aim of this study was to statistically evaluate the effects of some formulation and process variables in the spheronization of microparticulates of ibuprofen using the rotor disk fluid-bed technology and water as binder. Preliminary studies revealed that presence of surfactant, plate material type, and nature and content of binder influenced the process and quality of the spheronized material. A 2 x 2 x 3 full factorial randomized experiment was designed, demonstrating the influence of these factors on properties such as percent yield, particle size distribution, densities, ibuprofen release, moisture content, etc., as well as their interactions in the experimental response. A response known as the usable fraction was created representing microparticulates of 250 to 850 microm sizes (mesh size 20-60). The reproducibility of the spheronization process was assessed by blocking the experiments with the experiments within the blocks randomly replicated. The main effects included two binder levels (X1), two surfactant levels (X2), and a three-level plate type (X3) in which 2 two-level factors were collapsed into a single three-level factor. The results from the statistical analysis (general linear model, JMP 4) showed that the variables studied had a significant influence on most of the response variables evaluated (p experiments had no significant effect on the process and product characteristics analyzed, indicating the reproducibility of the process.

  16. Evaluating treatment of obstructive sleep apnea comorbid with insomnia disorder using an incomplete factorial design

    Science.gov (United States)

    Crawford, Megan R.; Turner, Arlener D.; Wyatt, James K.; Fogg, Louis F.; Ong, Jason C.

    2016-01-01

    Chronic insomnia disorder is a prevalent condition and a significant proportion of these individuals also have obstructive sleep apnea (OSA). These two sleep disorders have distinct pathophysiology and are managed with different treatment approaches. High comorbidity rates have been a catalyst for emerging studies examining multidisciplinary treatment for OSA comorbid with insomnia disorder. In this article, we describe a randomized clinical trial of Cognitive Behavioral Treatment for insomnia (CBT-I) and Positive Airway Pressure (PAP) for OSA. Participants are randomized to receive one of three treatment combinations. Individuals randomized to treatment Arm A receive sequential treatment beginning with CBT-I followed by PAP, in treatment Arm B CBT-I and PAP are administered concurrently. These treatment arms are compared to a control condition, treatment Arm C, where individuals receive PAP alone. Adopting an incomplete factorial study design will allow us to evaluate the efficacy of multidisciplinary treatment (Arms A & B) versus standard treatment alone (Arm C). In addition, the random allocation of individuals to the two different combined treatment sequences (Arm A and Arm B) will allow us to understand the benefits of the sequential administration of CBT-I and PAP relative to concurrent treatment of PAP and CBT-I. These findings will provide evidence of the clinical benefits of treating insomnia disorder in the context of OSA. PMID:26733360

  17. Evaluating the treatment of obstructive sleep apnea comorbid with insomnia disorder using an incomplete factorial design.

    Science.gov (United States)

    Crawford, Megan R; Turner, Arlener D; Wyatt, James K; Fogg, Louis F; Ong, Jason C

    2016-03-01

    Chronic insomnia disorder is a prevalent condition and a significant proportion of these individuals also have obstructive sleep apnea (OSA). These two sleep disorders have distinct pathophysiology and are managed with different treatment approaches. High comorbidity rates have been a catalyst for emerging studies examining multidisciplinary treatment for OSA comorbid with insomnia disorder. In this article, we describe a randomized clinical trial of cognitive behavioral treatment for insomnia (CBT-I) and positive airway pressure (PAP) for OSA. Participants are randomized to receive one of three treatment combinations. Individuals randomized to treatment Arm A receive sequential treatment beginning with CBT-I followed by PAP, in treatment Arm B CBT-I and PAP are administered concurrently. These treatment arms are compared to a control condition, treatment Arm C, where individuals receive PAP alone. Adopting an incomplete factorial study design will allow us to evaluate the efficacy of multidisciplinary treatment (Arms A & B) versus standard treatment alone (Arm C). In addition, the random allocation of individuals to the two different combined treatment sequences (Arm A and Arm B) will allow us to understand the benefits of the sequential administration of CBT-I and PAP relative to concurrent treatment of PAP and CBT-I. These findings will provide evidence of the clinical benefits of treating insomnia disorder in the context of OSA. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Design of a 10**36 CM-2 S-1 Super-B Factory

    Energy Technology Data Exchange (ETDEWEB)

    Biagini, M.E.; Boni, R.; Boscolo, M.; Demma, T.; Drago, A.; Guiducci, S.; Raimondi, P.; Tomassini, S.; Zobov, M.; /Frascati; Bertsche, Kirk J.; Novokhatski, A.; Seeman, J.; Sullivan, M.; Wienands, U.; Wittmer, W.; /SLAC; Bettoni, S.; /CERN; Paoloni, E.; Marchiori, G.; /Pisa U.; Bogomyagkov, A.; Koop, I.; Levichev, E.; /Novosibirsk, IYF

    2011-10-24

    Parameters have been studied for a high luminosity e{sup +}e{sup -} collider operating at the Upsilon 4S that would deliver a luminosity of 1 to 4 x 10{sup 36}/cm{sup 2}/s. This collider, called a Super-B Factory, would use a combination of linear collider and storage ring techniques. In this scheme an electron beam and a positron beam are stored in low-emittance damping rings similar to those designed for a Linear Collider (LC) or the next generation light source. A LC style interaction region is included in the ring to produce sub-millimeter vertical beta functions at the collision point. A large crossing angle (+/- 24 mrad) is used at the collision point to allow beam separation. A crab-waist scheme is used to reduce the hourglass effect and restore peak luminosity. Beam currents of 1.8 A at 4 x 7 GeV in 1251 bunches can produce a luminosity of 10{sup 36}/cm{sup 2}/s with upgrade possibilities. Such a collider would produce an integrated luminosity of about 10,000 fb{sup -1} (10 ab{sup -1}) in a running year (10{sup 7} sec) at the {gamma}(4S) resonance. Further possibilities include having longitudinally polarized e- at the IR and operating at the J/Psi and Psi beam energies.

  19. Integrated multidisciplinary design optimization of rotorcraft

    Science.gov (United States)

    Adelman, Howard M.; Mantay, Wayne R.

    1989-01-01

    The NASA/Army research plan for developing the logic elements for helicopter rotor design optimization by integrating appropriate disciplines and accounting for important interactions among the disciplines is discussed. The paper describes the optimization formulation in terms of the objective function, design variables, and constraints. The analysis aspects are discussed, and an initial effort at defining the interdisciplinary coupling is summarized. Results are presented on the achievements made in the rotor aerodynamic performance optimization for minimum hover horsepower, rotor dynamic optimization for vibration reduction, rotor structural optimization for minimum weight, and integrated aerodynamic load/dynamics optimization for minimum vibration and weight.

  20. Design Optimization Toolkit: Users' Manual

    Energy Technology Data Exchange (ETDEWEB)

    Aguilo Valentin, Miguel Alejandro [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Computational Solid Mechanics and Structural Dynamics

    2014-07-01

    The Design Optimization Toolkit (DOTk) is a stand-alone C++ software package intended to solve complex design optimization problems. DOTk software package provides a range of solution methods that are suited for gradient/nongradient-based optimization, large scale constrained optimization, and topology optimization. DOTk was design to have a flexible user interface to allow easy access to DOTk solution methods from external engineering software packages. This inherent flexibility makes DOTk barely intrusive to other engineering software packages. As part of this inherent flexibility, DOTk software package provides an easy-to-use MATLAB interface that enables users to call DOTk solution methods directly from the MATLAB command window.

  1. Optimal crossover designs for the proportional model

    OpenAIRE

    Zheng, Wei

    2013-01-01

    In crossover design experiments, the proportional model, where the carryover effects are proportional to their direct treatment effects, has draw attentions in recent years. We discover that the universally optimal design under the traditional model is E-optimal design under the proportional model. Moreover, we establish equivalence theorems of Kiefer-Wolfowitz's type for four popular optimality criteria, namely A, D, E and T (trace).

  2. CO2 mitigation by carbon nanotube formation during dry reforming of methane analyzed by factorial design combined with response surface methodology

    Institute of Scientific and Technical Information of China (English)

    Tiago P. Braga; Regina C. R. Santos; Barbara M. C. Sales; Bruno R. da Silva; Antônio N. Pinheiro; Edson R. Leite; Antoninho Valentini

    2014-01-01

    A factorial experimental design was combined with response surface methodology (RSM) to opti-mize the catalyzed CO2 consumption by coke deposition and syngas production during the dry re-forming of CH4. The CH4/CO2 feed ratio and the reaction temperature were chosen as the variables, and the selected responses were CH4 and CO2 conversion, the H2/CO ratio, and coke deposition. The optimal reaction conditions were found to be a CH4/CO2 feed ratio of approximately 3 at 700 °C, producing a large quantity of coke and realizing high CO2 conversion. Furthermore, Raman results showed that the CH4/CO2 ratio and reaction temperature affect the system’s response, particularly the characteristics of the coke produced, which indicates the formation of carbon nanotubes and amorphous carbon.

  3. Modeling and optimization of a multi-product biosynthesis factory for multiple objectives.

    Science.gov (United States)

    Lee, Fook Choon; Pandu Rangaiah, Gade; Lee, Dong-Yup

    2010-05-01

    Genetic algorithms and optimization in general, enable us to probe deeper into the metabolic pathway recipe for multi-product biosynthesis. An augmented model for optimizing serine and tryptophan flux ratios simultaneously in Escherichia coli, was developed by linking the dynamic tryptophan operon model and aromatic amino acid-tryptophan biosynthesis pathways to the central carbon metabolism model. Six new kinetic parameters of the augmented model were estimated with considerations of available experimental data and other published works. Major differences between calculated and reference concentrations and fluxes were explained. Sensitivities and underlying competition among fluxes for carbon sources were consistent with intuitive expectations based on metabolic network and previous results. Biosynthesis rates of serine and tryptophan were simultaneously maximized using the augmented model via concurrent gene knockout and manipulation. The optimization results were obtained using the elitist non-dominant sorting genetic algorithm (NSGA-II) supported by pattern recognition heuristics. A range of Pareto-optimal enzyme activities regulating the amino acids biosynthesis was successfully obtained and elucidated wherever possible vis-à-vis fermentation work based on recombinant DNA technology. The predicted potential improvements in various metabolic pathway recipes using the multi-objective optimization strategy were highlighted and discussed in detail.

  4. fullfact: an R package for the analysis of genetic and maternal variance components from full factorial mating designs.

    Science.gov (United States)

    Houde, Aimee Lee S; Pitcher, Trevor E

    2016-03-01

    Full factorial breeding designs are useful for quantifying the amount of additive genetic, nonadditive genetic, and maternal variance that explain phenotypic traits. Such variance estimates are important for examining evolutionary potential. Traditionally, full factorial mating designs have been analyzed using a two-way analysis of variance, which may produce negative variance values and is not suited for unbalanced designs. Mixed-effects models do not produce negative variance values and are suited for unbalanced designs. However, extracting the variance components, calculating significance values, and estimating confidence intervals and/or power values for the components are not straightforward using traditional analytic methods. We introduce fullfact - an R package that addresses these issues and facilitates the analysis of full factorial mating designs with mixed-effects models. Here, we summarize the functions of the fullfact package. The observed data functions extract the variance explained by random and fixed effects and provide their significance. We then calculate the additive genetic, nonadditive genetic, and maternal variance components explaining the phenotype. In particular, we integrate nonnormal error structures for estimating these components for nonnormal data types. The resampled data functions are used to produce bootstrap-t confidence intervals, which can then be plotted using a simple function. We explore the fullfact package through a worked example. This package will facilitate the analyses of full factorial mating designs in R, especially for the analysis of binary, proportion, and/or count data types and for the ability to incorporate additional random and fixed effects and power analyses.

  5. Design and optimization of floating drug delivery system of acyclovir

    Directory of Open Access Journals (Sweden)

    Kharia A

    2010-01-01

    Full Text Available The purpose of the present work was to design and optimize floating drug delivery systems of acyclovir using psyllium husk and hydroxypropylmethylcellulose K4M as the polymers and sodium bicarbonate as a gas generating agent. The tablets were prepared by wet granulation method. A 32 full factorial design was used for optimization of drug release profile. The amount of psyllium husk (X1 and hydroxypropylmethylcellulose K4M (X2 were selected as independent variables. The times required for 50% (t 50% and 70% (t 70% drug dissolution were selected as dependent variables. All the designed nine batches of formulations were evaluated for hardness, friability, weight variation, drug content uniformity, swelling index, in vitro buoyancy, and in vitro drug release profile. All formulations had floating lag time below 3 min and constantly floated on dissolution medium for more than 24 h. Validity of the developed polynomial equation was verified by designing two check point formulations (C1 and C2. The closeness of predicted and observed values for t 50% and t 70% indicates validity of derived equations for the dependent variables. These studies indicated that the proper balance between psyllium husk and hydroxypropylmethylcellulose K4M can produce a drug dissolution profile similar to the predicted dissolution profile. The optimized formulations followed Higuchi′s kinetics while the drug release mechanism was found to be anomalous type, controlled by diffusion through the swollen matrix.

  6. Topology Optimization for Architected Materials Design

    Science.gov (United States)

    Osanov, Mikhail; Guest, James K.

    2016-07-01

    Advanced manufacturing processes provide a tremendous opportunity to fabricate materials with precisely defined architectures. To fully leverage these capabilities, however, materials architectures must be optimally designed according to the target application, base material used, and specifics of the fabrication process. Computational topology optimization offers a systematic, mathematically driven framework for navigating this new design challenge. The design problem is posed and solved formally as an optimization problem with unit cell and upscaling mechanics embedded within this formulation. This article briefly reviews the key requirements to apply topology optimization to materials architecture design and discusses several fundamental findings related to optimization of elastic, thermal, and fluidic properties in periodic materials. Emerging areas related to topology optimization for manufacturability and manufacturing variations, nonlinear mechanics, and multiscale design are also discussed.

  7. Design of an Optimal Biorefinery

    DEFF Research Database (Denmark)

    Nawaz, Muhammad; Zondervan, Edwin; Woodley, John

    2011-01-01

    In this paper we propose a biorefinery optimization model that can be used to find the optimal processing route for the production of ethanol, butanol, succinic acid and blends of these chemicals with fossil fuel based gasoline. The approach unites transshipment models with a superstructure...

  8. Design of an Optimal Biorefinery

    DEFF Research Database (Denmark)

    Nawaz, Muhammad; Zondervan, Edwin; Woodley, John

    In this paper we propose a biorefinery optimization model that can be used to find the optimal processing route for the production of ethanol, butanol, succinic acid and blends of these chemicals with fossil fuel based gasoline. The approach unites transshipment models with a superstructure...

  9. Acoustic design by topology optimization

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard; Jensen, Jakob Søndergaard; Sigmund, Ole

    2008-01-01

    To bring down noise levels in human surroundings is an important issue and a method to reduce noise by means of topology optimization is presented here. The acoustic field is modeled by Helmholtz equation and the topology optimization method is based on continuous material interpolation functions...

  10. THE STUDY FOR SUBSTANTIATE OPTIMAL LOCATION FOR A PROCESSING RAPESEED FACTORY IN CALARASI COUNTY

    Directory of Open Access Journals (Sweden)

    Ioana NICULAE

    2014-04-01

    Full Text Available To ensure a high economic efficiency of productive work is necessary to determine the optimal location of the objective investment. Optimal location creates a prerequisite for approaching the maximum level of investment efficiency both in the national economy and the economic agent. The problem of optimal location of the investment objective must be addressed in a broad vision to solve it using: economic criteria, functional criteria - technological, social, plus natural factors. From the research it was found that the future investment objective on the processing rapeseed in bio fuel and edible oil in Calarasi County is conveniently located in the city being Lehliu Station due to the fact that it has the coordinates close to those resulting from the calculation.

  11. Design optimization of a torpedo shell structure

    Institute of Scientific and Technical Information of China (English)

    YU De-hai; SONG Bao-wei; LI Jia-wang; YANG Shi-xing

    2008-01-01

    An optimized methodology to design a more robust torpedo shell is proposed. The method has taken into account reliability requirements and controllable and uncontrollable factors such as geometry, load, material properties, manufacturing processes, installation, etc. as well as human and environmental factors. The result is a more realistic shell design. Our reliability optimization design model was developed based on sensitivity analysis. Details of the design model are given in this paper. An example of a torpedo shell design based on this model is given and demonstrates that the method produces designs that are more effective and reliable than traditional torpedo shell designs. This method can be used for other torpedo system designs.

  12. Factorial experimental design for the culture of human embryonic stem cells as aggregates in stirred suspension bioreactors reveals the potential for interaction effects between bioprocess parameters.

    Science.gov (United States)

    Hunt, Megan M; Meng, Guoliang; Rancourt, Derrick E; Gates, Ian D; Kallos, Michael S

    2014-01-01

    Traditional optimization of culture parameters for the large-scale culture of human embryonic stem cells (ESCs) as aggregates is carried out in a stepwise manner whereby the effect of varying each culture parameter is investigated individually. However, as evidenced by the wide range of published protocols and culture performance indicators (growth rates, pluripotency marker expression, etc.), there is a lack of systematic investigation into the true effect of varying culture parameters especially with respect to potential interactions between culture variables. Here we describe the design and execution of a two-parameter, three-level (3(2)) factorial experiment resulting in nine conditions that were run in duplicate 125-mL stirred suspension bioreactors. The two parameters investigated here were inoculation density and agitation rate, which are easily controlled, but currently, poorly characterized. Cell readouts analyzed included fold expansion, maximum density, and exponential growth rate. Our results reveal that the choice of best case culture parameters was dependent on which cell property was chosen as the primary output variable. Subsequent statistical analyses via two-way analysis of variance indicated significant interaction effects between inoculation density and agitation rate specifically in the case of exponential growth rates. Results indicate that stepwise optimization has the potential to miss out on the true optimal case. In addition, choosing an optimum condition for a culture output of interest from the factorial design yielded similar results when repeated with the same cell line indicating reproducibility. We finally validated that human ESCs remain pluripotent in suspension culture as aggregates under our optimal conditions and maintain their differentiation capabilities as well as a stable karyotype and strong expression levels of specific human ESC markers over several passages in suspension bioreactors.

  13. Optimal design criteria - prediction vs. parameter estimation

    Science.gov (United States)

    Waldl, Helmut

    2014-05-01

    G-optimality is a popular design criterion for optimal prediction, it tries to minimize the kriging variance over the whole design region. A G-optimal design minimizes the maximum variance of all predicted values. If we use kriging methods for prediction it is self-evident to use the kriging variance as a measure of uncertainty for the estimates. Though the computation of the kriging variance and even more the computation of the empirical kriging variance is computationally very costly and finding the maximum kriging variance in high-dimensional regions can be time demanding such that we cannot really find the G-optimal design with nowadays available computer equipment in practice. We cannot always avoid this problem by using space-filling designs because small designs that minimize the empirical kriging variance are often non-space-filling. D-optimality is the design criterion related to parameter estimation. A D-optimal design maximizes the determinant of the information matrix of the estimates. D-optimality in terms of trend parameter estimation and D-optimality in terms of covariance parameter estimation yield basically different designs. The Pareto frontier of these two competing determinant criteria corresponds with designs that perform well under both criteria. Under certain conditions searching the G-optimal design on the above Pareto frontier yields almost as good results as searching the G-optimal design in the whole design region. In doing so the maximum of the empirical kriging variance has to be computed only a few times though. The method is demonstrated by means of a computer simulation experiment based on data provided by the Belgian institute Management Unit of the North Sea Mathematical Models (MUMM) that describe the evolution of inorganic and organic carbon and nutrients, phytoplankton, bacteria and zooplankton in the Southern Bight of the North Sea.

  14. Engineering microbial cell factories for the production of plant natural products: from design principles to industrial-scale production.

    Science.gov (United States)

    Liu, Xiaonan; Ding, Wentao; Jiang, Huifeng

    2017-07-19

    Plant natural products (PNPs) are widely used as pharmaceuticals, nutraceuticals, seasonings, pigments, etc., with a huge commercial value on the global market. However, most of these PNPs are still being extracted from plants. A resource-conserving and environment-friendly synthesis route for PNPs that utilizes microbial cell factories has attracted increasing attention since the 1940s. However, at the present only a handful of PNPs are being produced by microbial cell factories at an industrial scale, and there are still many challenges in their large-scale application. One of the challenges is that most biosynthetic pathways of PNPs are still unknown, which largely limits the number of candidate PNPs for heterologous microbial production. Another challenge is that the metabolic fluxes toward the target products in microbial hosts are often hindered by poor precursor supply, low catalytic activity of enzymes and obstructed product transport. Consequently, despite intensive studies on the metabolic engineering of microbial hosts, the fermentation costs of most heterologously produced PNPs are still too high for industrial-scale production. In this paper, we review several aspects of PNP production in microbial cell factories, including important design principles and recent progress in pathway mining and metabolic engineering. In addition, implemented cases of industrial-scale production of PNPs in microbial cell factories are also highlighted.

  15. Interactive Reliability-Based Optimal Design

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Thoft-Christensen, Palle; Siemaszko, A.

    1994-01-01

    Interactive design/optimization of large, complex structural systems is considered. The objective function is assumed to model the expected costs. The constraints are reliability-based and/or related to deterministic code requirements. Solution of this optimization problem is divided in four main...... be used in interactive optimization....

  16. Optimal design of funded pension schemes

    NARCIS (Netherlands)

    Bovenberg, A.L.; Mehlkopf, R.J.

    2014-01-01

    This article reviews the literature on the optimal design and regulation of funded pension schemes. We first characterize optimal saving and investment over an individual’s life cycle. Within a stylized modeling framework, we explore optimal individual saving and investing behavior. Subsequently, va

  17. Optimal experimental design strategies for detecting hormesis.

    Science.gov (United States)

    Dette, Holger; Pepelyshev, Andrey; Wong, Weng Kee

    2011-12-01

    Hormesis is a widely observed phenomenon in many branches of life sciences, ranging from toxicology studies to agronomy, with obvious public health and risk assessment implications. We address optimal experimental design strategies for determining the presence of hormesis in a controlled environment using the recently proposed Hunt-Bowman model. We propose alternative models that have an implicit hormetic threshold, discuss their advantages over current models, and construct and study properties of optimal designs for (i) estimating model parameters, (ii) estimating the threshold dose, and (iii) testing for the presence of hormesis. We also determine maximin optimal designs that maximize the minimum of the design efficiencies when we have multiple design criteria or there is model uncertainty where we have a few plausible models of interest. We apply these optimal design strategies to a teratology study and show that the proposed designs outperform the implemented design by a wide margin for many situations.

  18. Optimal design of isotope labeling experiments.

    Science.gov (United States)

    Yang, Hong; Mandy, Dominic E; Libourel, Igor G L

    2014-01-01

    Stable isotope labeling experiments (ILE) constitute a powerful methodology for estimating metabolic fluxes. An optimal label design for such an experiment is necessary to maximize the precision with which fluxes can be determined. But often, precision gained in the determination of one flux comes at the expense of the precision of other fluxes, and an appropriate label design therefore foremost depends on the question the investigator wants to address. One could liken ILE to shadows that metabolism casts on products. Optimal label design is the placement of the lamp; creating clear shadows for some parts of metabolism and obscuring others.An optimal isotope label design is influenced by: (1) the network structure; (2) the true flux values; (3) the available label measurements; and, (4) commercially available substrates. The first two aspects are dictated by nature and constrain any optimal design. The second two aspects are suitable design parameters. To create an optimal label design, an explicit optimization criterion needs to be formulated. This usually is a property of the flux covariance matrix, which can be augmented by weighting label substrate cost. An optimal design is found by using such a criterion as an objective function for an optimizer. This chapter uses a simple elementary metabolite units (EMU) representation of the TCA cycle to illustrate the process of experimental design of isotope labeled substrates.

  19. Gradient vs. approximation design optimization techniques in low-dimensional convex problems

    Science.gov (United States)

    Fedorik, Filip

    2013-10-01

    Design Optimization methods' application in structural designing represents a suitable manner for efficient designs of practical problems. The optimization techniques' implementation into multi-physical softwares permits designers to utilize them in a wide range of engineering problems. These methods are usually based on modified mathematical programming techniques and/or their combinations to improve universality and robustness for various human and technical problems. The presented paper deals with the analysis of optimization methods and tools within the frame of one to three-dimensional strictly convex optimization problems, which represent a component of the Design Optimization module in the Ansys program. The First Order method, based on combination of steepest descent and conjugate gradient method, and Supbproblem Approximation method, which uses approximation of dependent variables' functions, accompanying with facilitation of Random, Sweep, Factorial and Gradient Tools, are analyzed, where in different characteristics of the methods are observed.

  20. Integrated multidisciplinary design optimization of rotorcraft

    Science.gov (United States)

    Adelman, Howard M.; Mantay, Wayne R.

    1989-01-01

    The NASA/Army research plan for developing the logic elements for helicopter rotor design optimization by integrating appropriate disciplines and accounting for important interactions among the disciplines is discussed. The optimization formulation is described in terms of the objective function, design variables, and constraints. The analysis aspects are discussed, and an initial effort at defining the interdisciplinary coupling is summarized. Results are presented on the achievements made in the rotor dynamic optimization for vibration reduction, rotor structural optimization for minimum weight, and integrated aerodynamic load/dynamics optimization for minimum vibration and weight.

  1. Universally optimal crossover designs under subject dropout

    OpenAIRE

    Zheng, Wei

    2013-01-01

    Subject dropout is very common in practical applications of crossover designs. However, there is very limited design literature taking this into account. Optimality results have not yet been well established due to the complexity of the problem. This paper establishes feasible, as well as necessary and sufficient conditions for a crossover design to be universally optimal in approximate design theory in the presence of subject dropout. These conditions are essentially linear equations with re...

  2. Optimality of a Fully Stressed Design

    Science.gov (United States)

    Patnaik, Surya N.; Hopkins, Dale A.

    1998-01-01

    For a truss a fully stressed state is reached and when all its members are utilized to their full strength capacity. Historically, engineers considered such a design optimum. But recently this optimality has been questioned, especially since the weight of the structure is not explicitly used in fully stressed design calculations. This paper examines optimality of the full stressed design (FSD) with analytical and graphical illustrations. Solutions for a set of examples obtained by using the FSD method and optimization methods numerically confirm the optimality of the FSD. The FSD, which can be obtained with a small amount of calculation, can be extended to displacement constraints and to nontruss-type structures.

  3. A Fractional Factorial Design to Study the Effect of Process Variables on the Preparation of Hyaluronidase Loaded PLGA Nanoparticles

    Directory of Open Access Journals (Sweden)

    K. Narayanan

    2014-01-01

    Full Text Available The present study was initiated to understand the effect of PLGA concentration, PVA concentration, internal-external phase ratio, homogenization speed, and homogenization time on mean particle size, zeta potential, and percentage drug encapsulation using fractional factorial design. Using PLGA (50-50 as the carrier, hyaluronidase loaded PLGA nanoparticles were prepared using double emulsion solvent evaporation technique. The particle size was analyzed by dynamic light scattering technique and protein content by Lowry method. The study showed that homogenization speed as an independent variable had maximum effect on particle size and zeta potential. Internal-external phase volume ratio had maximum effect on drug encapsulation. Mean particle size also had high dependency on the combined effect of PVA concentration and phase volume ratio. Using fractional factorial design particle size of <400 nm, zeta potential of <−30 mV, and percentage encapsulation of 15–18% were achieved.

  4. An improved group search optimizer for mechanical design optimization problems

    Institute of Scientific and Technical Information of China (English)

    Hai Shen; Yunlong Zhu; Ben Niu; Q.H. Wu

    2009-01-01

    This paper presents an improved group search optimizer (iGSO) for solving mechanical design optimization problems.In the pro-posed algorithm,subpopulations and a co-operation evolutionary strategy were adopted to improve the global search capability and convergence performance.The iGSO is evaluated on two optimization problems of classical mechanical design:spring and pressure vessel.The experimental results are analyzed in comparison with those reported in the literatures.The results show that iGSO has much better convergence performance and is easier to implement in comparison with other existing evolutionary algorithms.

  5. Optimal Multiobjective Design of Digital Filters Using Taguchi Optimization Technique

    Science.gov (United States)

    Ouadi, Abderrahmane; Bentarzi, Hamid; Recioui, Abdelmadjid

    2014-01-01

    The multiobjective design of digital filters using the powerful Taguchi optimization technique is considered in this paper. This relatively new optimization tool has been recently introduced to the field of engineering and is based on orthogonal arrays. It is characterized by its robustness, immunity to local optima trapping, relative fast convergence and ease of implementation. The objectives of filter design include matching some desired frequency response while having minimum linear phase; hence, reducing the time response. The results demonstrate that the proposed problem solving approach blended with the use of the Taguchi optimization technique produced filters that fulfill the desired characteristics and are of practical use.

  6. Optimization, an Important Stage of Engineering Design

    Science.gov (United States)

    Kelley, Todd R.

    2010-01-01

    A number of leaders in technology education have indicated that a major difference between the technological design process and the engineering design process is analysis and optimization. The analysis stage of the engineering design process is when mathematical models and scientific principles are employed to help the designer predict design…

  7. Optimal design for nonlinear response models

    CERN Document Server

    Fedorov, Valerii V

    2013-01-01

    Optimal Design for Nonlinear Response Models discusses the theory and applications of model-based experimental design with a strong emphasis on biopharmaceutical studies. The book draws on the authors' many years of experience in academia and the pharmaceutical industry. While the focus is on nonlinear models, the book begins with an explanation of the key ideas, using linear models as examples. Applying the linearization in the parameter space, it then covers nonlinear models and locally optimal designs as well as minimax, optimal on average, and Bayesian designs. The authors also discuss ada

  8. Satisfactory Optimization Design of IIR Digital Filters

    Institute of Scientific and Technical Information of China (English)

    Jin Weidong; Zhang Gexiang; Zhao Duo

    2005-01-01

    A new method called satisfactory optimization method is proposed to design IIR (Infinite Impulse Response) digital filters, and the satisfactory optimization model is presented. The detailed algorithm of designing IIR digital filters using satisfactory optimization method is described. By using quantum genetic algorithm characterized by rapid convergence and good global search capability, the satisfying solutions are achieved in the experiment of designing lowpass and bandpass IIR digital filters. Experimental results show that the performances of IIR filters designed by the introduced method are better than those by traditional methods.

  9. Design and fabrication of topologically optimized structures;

    DEFF Research Database (Denmark)

    Feringa, Jelle; Søndergaard, Asbjørn

    2012-01-01

    Integral structural optimization and fabrication seeks the synthesis of two original approaches; that of topological optimization (TO) and robotic hotwire cutting (HWC) (Mcgee 2011). TO allows for the reduction of up to 70% of the volume of concrete to support a given structure (Sondergaard...... & Dombernowsky 2011). A strength of the method is that it allows to come up with structural designs that lie beyond the grasp of traditional means of design. A design space is a discretized volume, delimiting where the optimization will take place. The number of cells used to discretize the design space thus...

  10. Understanding the Seed-Mediated Growth of Gold Nanorods through a Fractional Factorial Design of Experiments.

    Science.gov (United States)

    Burrows, Nathan D; Harvey, Samantha; Idesis, Fred A; Murphy, Catherine J

    2017-02-28

    Since the development of simple, aqueous protocols for the synthesis of anisotropic metal nanoparticles, research into many promising, valuable applications of gold nanorods has grown considerably, but a number of challenges remain, including gold-particle yield, robustness to minor impurities, and precise control of gold nanorod surface chemistry. Herein we present the results of a composite fractional factorial series of experiments designed to screen seven additional potential avenues of control and to understand the seed-mediated silver-assisted synthesis of gold nanorods. These synthesis variables are the amount of sodium borohydride used and the rate of stirring when producing seed nanoparticles, the age of and the amount of seeds added, the reaction temperature, the amounts of silver nitrate and ascorbic acid added, and the age of the reduced growth solution before seed nanoparticles are added to initiate rod formation. This statistical experimental design and analysis method, besides determining which experimental variables are important and which are not when synthesizing gold nanorods (and quantifying their effects), gives further insight into the mechanism of growth by measuring the degree to which variables interact with each other by mapping out their mechanistic connections. This work demonstrates that when forming gold nanorods by the reduction of auric ions by ascorbic acid onto seed nanoparticles, ascorbic acid determines how much gold is reduced, and the amount of seeds determine how it is divided, yet both influence the intrinsic growth rates, in both width and length, of the forming nanorods. Furthermore, this work shows that the reduction of gold proceeds via direct reduction on the surface of seeds and not through a disproportionation reaction. Further control over the length of gold nanorods can be achieved by tuning the amount of silver nitrate or the reaction temperature. This work shows that silver does not directly influence rod length or

  11. Influence of the Formulation Parameters on the Particle Size and Encapsulation Efficiency of Resveratrol in PLA and PLA-PEG Blend Nanoparticles: A Factorial Design.

    Science.gov (United States)

    Lindner, Gabriela da Rocha; Dalmolin, Luciana Facco; Khalil, Najeh Maissar; Mainardes, Rubiana Mara

    2015-12-01

    Polymeric nanoparticles are colloidal systems that promote protection and modification of physicochemical characteristics of a drug and that also ensure controlled and extended drug release. This paper reports a 2(3) factorial design study to optimize poly(lactide) (PLA) and poly(lactide)-polyethylene glycol (PLA-PEG) blend nanoparticles containing resveratrol (RVT) for prolonged release. The independent variables analyzed were solvent composition, surfactant concentration and ratio of aqueous to organic phase (two levels each factor). Mean particle size and RVT encapsulation efficiency were set as the dependent variables. The selected optimized parameters were set as organic phase comprised of a mixture of dichloromethane and ethyl acetate, 1% of surfactant polyvinyl alcohol and a 3:1 ratio of aqueous to organic phase, for both PLA and PLA-PEG blend nanoparticles. This formulation originated nanoparticles with size of 228 ± 10 nm and 185 ± 70 nm and RVT encapsulation efficiency of 82 ± 10% and 76 ± 7% for PLA and PLA-PEG blend nanoparticles, respectively. The in vitro release study showed a biphasic pattern with prolonged RVT release and PEG did not influence the RVT release. The in vitro release data were in favor of Higuchi-diffusion kinetics for both nanoformulations and the Kossmeyer-Peppas coefficient indicated that anomalous transport was the main release mechanism of RVT. PLA and PLA-PEG blend nanoparticles produced with single emulsion-solvent evaporation technology were found to be a promising approach for the incorporation of RVT and promoted its controlled release. The factorial design is a tool of great value in choosing formulations with optimized parameters.

  12. Factorial Design: Binocular and Monocular Depth Perception in Vertical and Horizontal Stimuli.

    Science.gov (United States)

    Zerbolio, Dominic J., Jr.; Walker, James T.

    1989-01-01

    Describes a factorial experiment that is used as a laboratory exercise in a research methods course. Uses a Howard-Dolman depth perception apparatus, combining the factors of viewing condition and rod orientation to illustrate the nature of an interaction and the necessity of an additional analysis of simple main effects. (Author/LS)

  13. Multidisciplinary Optimization Methods for Aircraft Preliminary Design

    Science.gov (United States)

    Kroo, Ilan; Altus, Steve; Braun, Robert; Gage, Peter; Sobieski, Ian

    1994-01-01

    This paper describes a research program aimed at improved methods for multidisciplinary design and optimization of large-scale aeronautical systems. The research involves new approaches to system decomposition, interdisciplinary communication, and methods of exploiting coarse-grained parallelism for analysis and optimization. A new architecture, that involves a tight coupling between optimization and analysis, is intended to improve efficiency while simplifying the structure of multidisciplinary, computation-intensive design problems involving many analysis disciplines and perhaps hundreds of design variables. Work in two areas is described here: system decomposition using compatibility constraints to simplify the analysis structure and take advantage of coarse-grained parallelism; and collaborative optimization, a decomposition of the optimization process to permit parallel design and to simplify interdisciplinary communication requirements.

  14. Polymeric nanoparticles loaded with the 3,5,3´-triiodothyroacetic acid (Triac, a thyroid hormone: factorial design, characterization, and release kinetics

    Directory of Open Access Journals (Sweden)

    dos Santos KC

    2012-07-01

    Full Text Available Karen C dos Santos,1 Maria Fatima GF da Silva,1 Edenir R Pereira-Filho,1 Joao B Fernandes,1 Igor Polikarpov,2 Moacir R Forim11Department of Chemistry, Federal University of Sao Carlos, Sao Carlos, 2Physics Institute of Sao Carlos, University of Sao Paulo, Sao Carlos, Sao Paulo, BrazilAbstract: This present investigation deals with the development and optimization of polymeric nanoparticle systems loaded with 3,5,3´-triiodothyroacetic acid (Triac. A 211–6 fractional factorial design and another 22 factorial design were used to study the contrasts on particle size distribution, morphology, surface charge, drug content, entrapment efficiency, and in vitro drug release profiles. The independent variables were the concentration of Triac, type and quantity of both polymer and oil, quantity of Span™ 60 and Tween® 80, volume of solvent and water, and velocity of both magnetic stirring and the transfer of the organic phase into the aqueous solution. The results of optimized formulations showed a narrow size distribution with a polydispersity index lower than 0.200. The particle sizes were on average 159.6 nm and 285.6 nm for nanospheres and nanocapsules, respectively. The zeta potential was higher than 20 mV (in module and the entrapment efficiency was nearly 100%. A high-performance liquid chromatography method was developed, validated, and efficiently applied to Triac quantification in colloidal suspension. The main independent variables were the type and quantity of the polymer and oil. In vitro drug release profile depicted several features to sustain Triac release. Different formulations showed various release rates indicating an interaction between Triac and other formulation compounds such as polymer and/or oil quantity. Two different models were identified (biexponential and monoexponential that allowed the control of both the release rate and Triac concentration. Thus, the prepared nanoparticles described here may be of clinical importance

  15. A Multidisciplinary Design Optimization Model for AUV Synthetic Conceptual Design

    Institute of Scientific and Technical Information of China (English)

    BU Guang-zhi; ZHANG Yu-wen

    2006-01-01

    Autonomous undersea vehicle (AUV) is a typical complex engineering system. This paper studies the disciplines and coupled variables in AUV design with multidisciplinary design optimization (M DO) methods. The framework of AUV synthetic conceptual design is described first, and then a model with collaborative optimization is studied. At last,an example is given to verify the validity and efficiency of MDO in AUV synthetic conceptual design.

  16. Digital Design of Virtual Prototype based on Multidisciplinary Design Optimization

    Institute of Scientific and Technical Information of China (English)

    WU Baogui; HUANG Hongzhong; TAO Ye

    2006-01-01

    In order to obtain digital design of complex mechanical product as optimal as possible in an efficient way, multidiscipline integrated design method is proposed, which integrates multidisciplinary design optimization (MDO) into digital design process to design virtual prototype (VP) efficiently. Through combining MDO and multi-body system dynamics, MDO integration platform, which takes VP as the core, is constructed. Then automated MDO design of VP is realized and changes of mechanical design project can be expressed intuitively during MDO design process. The proposed approach is also demonstrated by using integrated analyzing flow of vehicle engineering design. The result shows that the method not only can feasibly realize the MDO of VP, but also can solve the optimization problem of vehicle multi-body system dynamic performance. It can be adopted to the digital design of other complex system.

  17. Circadian clocks are designed optimally

    CERN Document Server

    Hasegawa, Yoshihiko

    2014-01-01

    Circadian rhythms are acquired through evolution to increase the chances for survival by synchronizing to the daylight cycle. Reliable synchronization is realized through two trade-off properties: regularity to keep time precisely, and entrainability to synchronize the internal time with daylight. Since both properties have been tuned through natural selection, their adaptation can be formalized in the framework of mathematical optimization. By using a succinct model, we found that simultaneous optimization of regularity and entrainability entails inherent features of the circadian mechanism irrespective of model details. At the behavioral level we discovered the existence of a dead zone, a time during which light pulses neither advance nor delay the clock. At the molecular level we demonstrate the role-sharing of two light inputs, phase advance and delay, as is well observed in mammals. We also reproduce the results of phase-controlling experiments and predict molecular elements responsible for the clockwork...

  18. Used frying oil biodiesel production: experimental factorial design and multivariate analysis

    Directory of Open Access Journals (Sweden)

    Rosana de Cassia de Souza Schneider

    2009-01-01

    Full Text Available Biodiesel é derivado de fontes renováveis ereduz significativamente as emissões atmosféricas. Pode serobtido de diversos processos, como a alcoolise. Nestetrabalho, o biodiesel foi produzido através da alcoolise doóleo de fritura usado de indústrias de alimentação. Umplanejamento experimental foi utilizado e os produtos dereação foram analisados por cromatografia gasosa (CGespectroscopia na região do infravermelho com acessório dereflexão total atenuada horizontal (IV-HATR e análiseexploratória por análise de componentes principais (PCA eanálise hierárquica de grupos (HCA. De acordo com ascondições analisadas obteve-se alta conversão em ésteresmetílicos. Por IV-HATR, a conversão máxima foi observadaem condições experimentais de temperatura ( 50 e 60°C,concentração de catalisador (0,6 e 1,2% e a 1:8 de relaçãomolar entre óleo e metanol. Também foi possíveldiscriminar por análise quimiométrica, 4 grupos noplanejamento experimental e determinar as melhorescondições para a produção de biodiesel de óleo de friturausado.Abstract Biodiesel is derived from renewable sources and it significantly reduces atmospheric emissions. It can be obtained byseveral processes, such as alcoholysis. In this work, biodiesel was produced through alcoholysis of used frying oil from a cateringbusiness. An experimental factorial design was used and the reaction products were analyzed through gas chromatography (GC,horizontal attenuated total reflection Fourier transform infrared (HATR/FT-IR spectroscopy and exploratory analysis withprincipal component analysis (PCA and hierarchical cluster analysis (HCA. Under the conditions analyzed, a high degree ofconversion to methyl ester was found. As shown by HATR/FT-IR, the maximum conversion was obtained when the experimentalconditions had the temperature ( 50 e 60°C, largest catalyst concentration (0,6 e 1,2% and a 1:8 molar proportion of oil tomethanol. It was possible to discriminate

  19. Optimization design of electromagnetic shielding composites

    Science.gov (United States)

    Qu, Zhaoming; Wang, Qingguo; Qin, Siliang; Hu, Xiaofeng

    2013-03-01

    The effective electromagnetic parameters physical model of composites and prediction formulas of composites' shielding effectiveness and reflectivity were derived based on micromechanics, variational principle and electromagnetic wave transmission theory. The multi-objective optimization design of multilayer composites was carried out using genetic algorithm. The optimized results indicate that material parameter proportioning of biggest absorption ability can be acquired under the condition of the minimum shielding effectiveness can be satisfied in certain frequency band. The validity of optimization design model was verified and the scheme has certain theoretical value and directive significance to the design of high efficiency shielding composites.

  20. Topology optimization design of space rectangular mirror

    Science.gov (United States)

    Qu, Yanjun; Wang, Wei; Liu, Bei; Li, Xupeng

    2016-10-01

    A conceptual lightweight rectangular mirror is designed based on the theory of topology optimization and the specific structure size is determined through sensitivity analysis and size optimization in this paper. Under the load condition of gravity along the optical axis, compared with the mirrors designed by traditional method using finite element analysis method, the performance of the topology optimization reflectors supported by peripheral six points are superior in lightweight ratio, structure stiffness and the reflective surface accuracy. This suggests that the lightweight method in this paper is effective and has potential value for the design of rectangular reflector.

  1. Optimized design of low energy buildings

    DEFF Research Database (Denmark)

    Rudbeck, Claus Christian; Esbensen, Peter Kjær; Svendsen, Sv Aa Højgaard

    1999-01-01

    concern which can be seen during the construction of new buildings. People want energy-friendly solutions, but they should be economical optimized. An exonomical optimized building design with respect to energy consumption is the design with the lowest total cost (investment plus operational cost over its...... to evaluate different separate solutions when they interact in the building.When trying to optimize several parameters there is a need for a method, which will show the correct price-performance of each part of a building under design. The problem with not having such a method will first be showed...

  2. Recent SuperB Design Choices Improve Next-Generation e e___ B-Factory Collider

    Energy Technology Data Exchange (ETDEWEB)

    Wittmer, W.; Bertsche, K.; Chao, A.; Novokhatski, A.; Nosochkov, Y.; Seeman, J.; Sullivan, M.K.; Wienands, U.; /SLAC; Bogomyagkov, A.V.; Levichev, E.; Nikitin, S.; Piminov, P.; Shatilov, D.; Sinyatkin, S.; Vobly, P.; Okunev, I.N.; /Novosibirsk, IYF; Bolzon, B.; Brunetti, L.; Jeremie, A.; /Annecy, LAPP; Biagini, M.E.; Boni, R.; /Frascati /INFN, Pisa /Pisa U. /INFN, Genoa /Genoa U. /CERN /Orsay, LAL /Saclay

    2011-08-19

    The SuperB international team continues to optimize the design of an electron-positron collider, which will allow the enhanced study of the origins of flavor physics. The project combines the best features of a linear collider (high single-collision luminosity) and a storage-ring collider (high repetition rate), bringing together all accelerator physics aspects to make a very high luminosity of 10{sup 36} cm{sup -2} sec{sup -1}. This asymmetric-energy collider with a polarized electron beam will produce hundreds of millions of B-mesons at the {Upsilon}(4S) resonance. The present design is based on extremely low emittance beams colliding at a large Piwinski angle to allow very low {beta}*{sub y} without the need for ultra short bunches. Use of crab-waist sextupoles will enhance the luminosity, suppressing dangerous resonances and allowing for a higher beam-beam parameter. The project has flexible beam parameters, improved dynamic aperture, and spin-rotators in the Low Energy Ring for longitudinal polarization of the electron beam at the Interaction Point. Optimized for best colliding-beam performance, the facility may also provide high-brightness photon beams for synchrotron radiation applications.

  3. Optimization methods applied to hybrid vehicle design

    Science.gov (United States)

    Donoghue, J. F.; Burghart, J. H.

    1983-01-01

    The use of optimization methods as an effective design tool in the design of hybrid vehicle propulsion systems is demonstrated. Optimization techniques were used to select values for three design parameters (battery weight, heat engine power rating and power split between the two on-board energy sources) such that various measures of vehicle performance (acquisition cost, life cycle cost and petroleum consumption) were optimized. The apporach produced designs which were often significant improvements over hybrid designs already reported on in the literature. The principal conclusions are as follows. First, it was found that the strategy used to split the required power between the two on-board energy sources can have a significant effect on life cycle cost and petroleum consumption. Second, the optimization program should be constructed so that performance measures and design variables can be easily changed. Third, the vehicle simulation program has a significant effect on the computer run time of the overall optimization program; run time can be significantly reduced by proper design of the types of trips the vehicle takes in a one year period. Fourth, care must be taken in designing the cost and constraint expressions which are used in the optimization so that they are relatively smooth functions of the design variables. Fifth, proper handling of constraints on battery weight and heat engine rating, variables which must be large enough to meet power demands, is particularly important for the success of an optimization study. Finally, the principal conclusion is that optimization methods provide a practical tool for carrying out the design of a hybrid vehicle propulsion system.

  4. Optimal covariate designs theory and applications

    CERN Document Server

    Das, Premadhis; Mandal, Nripes Kumar; Sinha, Bikas Kumar

    2015-01-01

    This book primarily addresses the optimality aspects of covariate designs. A covariate model is a combination of ANOVA and regression models. Optimal estimation of the parameters of the model using a suitable choice of designs is of great importance; as such choices allow experimenters to extract maximum information for the unknown model parameters. The main emphasis of this monograph is to start with an assumed covariate model in combination with some standard ANOVA set-ups such as CRD, RBD, BIBD, GDD, BTIBD, BPEBD, cross-over, multi-factor, split-plot and strip-plot designs, treatment control designs, etc. and discuss the nature and availability of optimal covariate designs. In some situations, optimal estimations of both ANOVA and the regression parameters are provided. Global optimality and D-optimality criteria are mainly used in selecting the design. The standard optimality results of both discrete and continuous set-ups have been adapted, and several novel combinatorial techniques have been applied for...

  5. Optimal Design of Tidal Power Generator Using Stochastic Optimization Techniques

    OpenAIRE

    2014-01-01

    Particle Swarm Optimization (PSO) and Genetic Algorithms (GA) are usedto reduce the cost of a permanent magnet synchronous generator with concentratedwindings for tidal power applications. Reducing the cost of the electricalmachine is one way of making tidal energy more competitive compared to traditionalsources of electricity.Hybrid optimization combining PSO or GA with gradient based algorithmsseems to be suited for design of electrical machines. Results from optimizationwith Matlab indicat...

  6. PARAMETRIC OPTIMIZATION AND STRUCTURAL DESIGN OF NLS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A physical and mathematical model is developed for describing nitrogen launching system (NLS)based on the dynamics of pneumatics and mechanisms. The multi-objective optimization function for the pitching angle and velocity of a missile was proposed for the first time. Singularity detection of wavelet analysis was conducted to find the optimum iteration points in a new direct algorithm of nonlinear programming. Comparison between wavelet optimization and complex method show that the former is better for optimization design.``

  7. Optimality criteria solution strategies in multiple constraint design optimization

    Science.gov (United States)

    Levy, R.; Parzynski, W.

    1981-01-01

    Procedures and solution strategies are described to solve the conventional structural optimization problem using the Lagrange multiplier technique. The multipliers, obtained through solution of an auxiliary nonlinear optimization problem, lead to optimality criteria to determine the design variables. It is shown that this procedure is essentially equivalent to an alternative formulation using a dual method Lagrangian function objective. Although mathematical formulations are straight-forward, successful applications and computational efficiency depend upon execution procedure strategies. Strategies examined, with application examples, include selection of active constraints, move limits, line search procedures, and side constraint boundaries.

  8. Interaction Prediction Optimization in Multidisciplinary Design Optimization Problems

    Directory of Open Access Journals (Sweden)

    Debiao Meng

    2014-01-01

    Full Text Available The distributed strategy of Collaborative Optimization (CO is suitable for large-scale engineering systems. However, it is hard for CO to converge when there is a high level coupled dimension. Furthermore, the discipline objectives cannot be considered in each discipline optimization problem. In this paper, one large-scale systems control strategy, the interaction prediction method (IPM, is introduced to enhance CO. IPM is utilized for controlling subsystems and coordinating the produce process in large-scale systems originally. We combine the strategy of IPM with CO and propose the Interaction Prediction Optimization (IPO method to solve MDO problems. As a hierarchical strategy, there are a system level and a subsystem level in IPO. The interaction design variables (including shared design variables and linking design variables are operated at the system level and assigned to the subsystem level as design parameters. Each discipline objective is considered and optimized at the subsystem level simultaneously. The values of design variables are transported between system level and subsystem level. The compatibility constraints are replaced with the enhanced compatibility constraints to reduce the dimension of design variables in compatibility constraints. Two examples are presented to show the potential application of IPO for MDO.

  9. Switched reluctance motor optimal geometry design

    Directory of Open Access Journals (Sweden)

    Liviu Neamt

    2010-12-01

    Full Text Available This paper deals with the Switched Reluctance Motor (SRM analysis using Finite Element Method (FEM for geometrical optimization in terms of volume ratio of torque on the rotor, the so-called specific torque. The optimization parameter is the pair: stator and rotor pole angles, which forms a crucial part of the design process.

  10. Optimal Design of Laminated Composite Beams

    DEFF Research Database (Denmark)

    Blasques, José Pedro Albergaria Amaral

    . Furthermore, the devised beam model is able account for the different levels of anisotropic elastic couplings which depend on the laminate lay-up. An optimization model based on multi-material topology optimization techniques is described. The design variables represent the volume fractions of the different...

  11. Discrete design optimization accounting for practical constraints

    NARCIS (Netherlands)

    Schevenels, M.; McGinn, S.; Rolvink, A.; Coenders, J.L.

    2013-01-01

    This paper presents a heuristic algorithm for discrete design optimization, based on the optimality criteria method. Practical applicability is the first concern; special attention is therefore paid to the implementation of technological constraints. The method is generally applicable, but in order

  12. Strategies for Optimal Design of Structural Systems

    DEFF Research Database (Denmark)

    Enevoldsen, I.; Sørensen, John Dalsgaard

    1992-01-01

    Reliability-based design of structural systems is considered. Especially systems where the reliability model is a series system of parallel systems are analysed. A sensitivity analysis for this class of problems is presented. Direct and sequential optimization procedures to solve the optimization...... problems are described. Numerical tests indicate that a sequential technique called the bounds iteration method (BIM) is particularly fast and stable....

  13. A semi-custom design methodology for design performance optimization

    Institute of Scientific and Technical Information of China (English)

    Dong-ming LV; Pei-yong ZHANG; Dan-dan ZHENG; Xiao-lang YAN; Bo ZHANG; Li QUAN

    2008-01-01

    We present a semi-custom design methodology based on transistor tuning to optimize the design performance.Compared with other transistor tuning approaches, our tuning process takes the cross-talk effect into account and prominently reduces the complexity for circuit simulation and analysis by decomposing the circuit network utilizing graph theory. Furthermore,the incremental placement and routing for the corresponding transistor tuning in conventional approaches is not required in our methodology, which might induce timing graph variation and additional iterations for design convergence. This methodology combines the flexible automated circuit tuning and physical design tools to provide more opportunities for design optimization throughout the design cycle.

  14. The effect of heterogeneous variance on efficiency and power of cluster randomized trials with a balanced 2 × 2 factorial design.

    Science.gov (United States)

    Lemme, Francesca; van Breukelen, Gerard J P; Candel, Math J J M; Berger, Martijn P F

    2015-10-01

    Sample size calculation for cluster randomized trials (CRTs) with a [Formula: see text] factorial design is complicated due to the combination of nesting (of individuals within clusters) with crossing (of two treatments). Typically, clusters and individuals are allocated across treatment conditions in a balanced fashion, which is optimal under homogeneity of variance. However, the variance is likely to be heterogeneous if there is a treatment effect. An unbalanced allocation is then more efficient, but impractical because the optimal allocation depends on the unknown variances. Focusing on CRTs with a [Formula: see text] design, this paper addresses two questions: How much efficiency is lost by having a balanced design when the outcome variance is heterogeneous? How large must the sample size be for a balanced allocation to have sufficient power under heterogeneity of variance? We consider different scenarios of heterogeneous variance. Within each scenario, we determine the relative efficiency of a balanced design, as a function of the level (cluster, individual, both) and amount of heterogeneity of the variance. We then provide a simple correction of the sample size for the loss of power due to heterogeneity of variance when a balanced allocation is used. The theory is illustrated with an example of a published 2 x2 CRT.

  15. Turbomachinery Airfoil Design Optimization Using Differential Evolution

    Science.gov (United States)

    Madavan, Nateri K.; Biegel, Bryan (Technical Monitor)

    2002-01-01

    An aerodynamic design optimization procedure that is based on a evolutionary algorithm known at Differential Evolution is described. Differential Evolution is a simple, fast, and robust evolutionary strategy that has been proven effective in determining the global optimum for several difficult optimization problems, including highly nonlinear systems with discontinuities and multiple local optima. The method is combined with a Navier-Stokes solver that evaluates the various intermediate designs and provides inputs to the optimization procedure. An efficient constraint handling mechanism is also incorporated. Results are presented for the inverse design of a turbine airfoil from a modern jet engine and compared to earlier methods. The capability of the method to search large design spaces and obtain the optimal airfoils in an automatic fashion is demonstrated. Substantial reductions in the overall computing time requirements are achieved by using the algorithm in conjunction with neural networks.

  16. OPTIMAL DESIGN OF SMART ANTENNA ARRAY

    Institute of Scientific and Technical Information of China (English)

    Gao Feng; Liu Qizhong; Shan Runhong; Zhang Hou

    2004-01-01

    This letter investigates an efficient design procedure integrating the Genetic Algorithm (GA) with the Finite Difference Time Domain (FDTD) for the fast optimal design of Smart Antenna Arrays (SAA). The FDTD is used to analyze SAA with mutual coupling. Then,on the basis of the Maximal Signal to Noise Ratio (MSNR) criteria, the GA is applied to the optimization of weighting elements and structure of SAA. Finally, the effectiveness of the analysis is evaluated by experimental antenna arrays.

  17. Optimization of Automotive Suspension System by Design of Experiments: A Nonderivative Method

    Directory of Open Access Journals (Sweden)

    Anirban C. Mitra

    2016-01-01

    Full Text Available A lot of health issues like low back pain, digestive disorders, and musculoskeletal disorders are caused as a result of the whole body vibrations induced by automobiles. This paper is concerned with the enhancement and optimization of suspension performance by using factorial methods of Design of Experiments, a nonderivative method. It focuses on the optimization of ride comfort and determining the parameters which affect the suspension behavior significantly as per the guidelines stated in ISO 2631-1:1997 standards. A quarter car test rig integrated with a LabVIEW based data acquisition system was developed to understand the real time behavior of a vehicle. In the pilot experiment, only three primary suspension parameters, that is, spring-stiffness, damping, and sprung mass, were considered and the full factorial method was implemented for the purpose of optimization. But the regression analysis of the data obtained rendered a very low goodness of fit which indicated that other parameters are likely to influence the response. Subsequently, steering geometry angles, camber and toe and tire pressure, were included in the design. Fractional factorial method with six factors was implemented to optimize ride comfort. The resultant optimum combination was then verified on the test rig with high correlation.

  18. Optimizing Design of UHVDC Converter Stations

    Institute of Scientific and Technical Information of China (English)

    MA Weimin; NIE Dingzhen; CAO Yanming

    2012-01-01

    Based on the consultation and study for Xiangjiaba-Shanghai ±800 kV UHVDC(ultra high voltage direct current) project, this paper presents an optimal design for key technique solutions. In this paper, the DC system electrical scheme design, the DC filter design, the DC harmonic component suppression, the over voltage and insulation coordination, the requirements for converter station equipment, the main equipment technical parameters of equipment (including thyristor valve, converter transformer, smoothing reactor, DC breaker), the configuration of measuring device and DC control protection system, and the de-icing operation design are investigated. According to the UHVDC technology researched conclusions and the development of the project construction, the UHVDC system design for converter stations becomes an optimal combination. The optimized design solves numbers of technical problems of the world's first UHVDC project, and it is applied to the project's construction. Under the actual operating condition, the optimized design is proved to be correct and superior. These optimal design conclusions are impartment for developing UHVDC technique and equipment, and provide reference for future UHVDC projects.

  19. Systematic design of microstructures by topology optimization

    DEFF Research Database (Denmark)

    Sigmund, Ole

    2003-01-01

    The topology optimization method can be used to determine the material distribution in a design domain such that an objective function is maximized and constraints are fulfilled. The method which is based on Finite Element Analysis may be applied to all kinds of material distribution problems like...... extremal material design, sensor and actuator design and MEMS synthesis. The state-of-the-art in topology optimization will be reviewed and older as well as new applications in phononic and photonic crystals design will be presented....

  20. EXISTENCE OF OPTIMAL STRONG PARTIALLY BALANCED DESIGNS

    Institute of Scientific and Technical Information of China (English)

    Du Beiliang

    2007-01-01

    A strong partially balanced design SPBD(v, b, k; λ,0) whose b is the maximum number of blocks in all SPBD(v, b, k; λ, 0), as an optimal strong partially balanced design, briefly OSPBD(v, k, λ) is studied. In investigation of authentication codes it has been found that the strong partially balanced design can be used to construct authentication codes. This note investigates the existence of optimal strong partially balanced design OSPBD(v, k, 1) for k = 3and 4, and shows that there exists an OSPBD(v, k, 1) for any v ≥ k.

  1. Performative Computation-aided Design Optimization

    Directory of Open Access Journals (Sweden)

    Ming Tang

    2012-12-01

    Full Text Available This article discusses a collaborative research and teaching project between the University of Cincinnati, Perkins+Will’s Tech Lab, and the University of North Carolina Greensboro. The primary investigation focuses on the simulation, optimization, and generation of architectural designs using performance-based computational design approaches. The projects examine various design methods, including relationships between building form, performance and the use of proprietary software tools for parametric design.

  2. Systematic Analysis of Carbon Dioxide Activation of Waste Tire by Factorial Design

    Institute of Scientific and Technical Information of China (English)

    P.P.M. Fung; W.H-Cheung; G. McKay

    2012-01-01

    In this study, waste tire was used as raw material for the production of activated carbons through pyrolysis. 'Fire char was first produced by carbomzation at 550℃ under nitrogen. A two tactortal design was used to optimize the production of activated carbon from tire char. The effects of several factors controlling the activation process, such as temperature (.830-930℃), time (2-6h) and percentage ot carbon dioxide (70%-100%) were investigated. The production was described mathematically as a function of these three factors. First order modeling equations were developed for surface area, yield and mesopore volume. It was concluded that the yield, BET surface area and mesopore volume of activated carbon were most sensitive to activation temperature and time while percentage of carbon dioxide in the activation gas was a less significant factor.

  3. Product model structure for generalized optimal design

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The framework of the generalized optimization product model with the core of network- and tree-hierarchical structure is advanced to improve the characteristics of the generalized optimal design. Based on the proposed node-repetition technique, a network-hierarchical structure is united with the tree-hierarchical structure to facilitate the modeling of serialization and combination products. The criteria for product decomposition are investigated. Seven tree nodes are defined for the construction of a general product model, and their modeling properties are studied in detail. The developed product modeling system is applied and examined successfully in the modeling practice of the generalized optimal design for a hydraulic excavator.

  4. Optimized design of low energy buildings

    DEFF Research Database (Denmark)

    Rudbeck, Claus Christian; Esbensen, Peter Kjær; Svendsen, Sv Aa Højgaard

    1999-01-01

    by 33% compared to current level and that the CO2 emission should be halved. This calls for sustainable development in the building sector, but at the same time, it has to be economically efficient. People are conscious about savings in energy, but consideration to economic aspects are their primary...... concern which can be seen during the construction of new buildings. People want energy-friendly solutions, but they should be economical optimized. An exonomical optimized building design with respect to energy consumption is the design with the lowest total cost (investment plus operational cost over its...... life time). The design and construction of buildings should take into account both energy, environment and economical aspects. The design of a building is very complex and the work on optimizing the design raises several questions. Which criteria are the decisive when choosing a solution? How...

  5. Design optimization for active twist rotor blades

    Science.gov (United States)

    Mok, Ji Won

    This dissertation introduces the process of optimizing active twist rotor blades in the presence of embedded anisotropic piezo-composite actuators. Optimum design of active twist blades is a complex task, since it involves a rich design space with tightly coupled design variables. The study presents the development of an optimization framework for active helicopter rotor blade cross-sectional design. This optimization framework allows for exploring a rich and highly nonlinear design space in order to optimize the active twist rotor blades. Different analytical components are combined in the framework: cross-sectional analysis (UM/VABS), an automated mesh generator, a beam solver (DYMORE), a three-dimensional local strain recovery module, and a gradient based optimizer within MATLAB. Through the mathematical optimization problem, the static twist actuation performance of a blade is maximized while satisfying a series of blade constraints. These constraints are associated with locations of the center of gravity and elastic axis, blade mass per unit span, fundamental rotating blade frequencies, and the blade strength based on local three-dimensional strain fields under worst loading conditions. Through pre-processing, limitations of the proposed process have been studied. When limitations were detected, resolution strategies were proposed. These include mesh overlapping, element distortion, trailing edge tab modeling, electrode modeling and foam implementation of the mesh generator, and the initial point sensibility of the current optimization scheme. Examples demonstrate the effectiveness of this process. Optimization studies were performed on the NASA/Army/MIT ATR blade case. Even though that design was built and shown significant impact in vibration reduction, the proposed optimization process showed that the design could be improved significantly. The second example, based on a model scale of the AH-64D Apache blade, emphasized the capability of this framework to

  6. DESIGN OPTIMIZATION METHOD USED IN MECHANICAL ENGINEERING

    Directory of Open Access Journals (Sweden)

    SCURTU Iacob Liviu

    2016-11-01

    Full Text Available This paper presents an optimization study in mechanical engineering. First part of the research describe the structural optimization method used, followed by the presentation of several optimization studies conducted in recent years. The second part of the paper presents the CAD modelling of an agricultural plough component. The beam of the plough is analysed using finite element method. The plough component is meshed in solid elements, and the load case which mimics the working conditions of agricultural equipment of this are created. The model is prepared to find the optimal structural design, after the FEA study of the model is done. The mass reduction of part is the criterion applied for this optimization study. The end of this research presents the final results and the model optimized shape.

  7. Design, manufacture and factory testing of the Ion Source and Extraction Power Supplies for the SPIDER experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bigi, Marco, E-mail: marco.bigi@igi.cnr.it [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127 Padova (Italy); Rinaldi, Luigi [OCEM Energy Technology, Via della Solidarietà 2/1, 40056 Valsamoggia (località Crespellano), Bologna (Italy); Simon, Muriel [Fusion for Energy, Josep Pla 2, 08019 Barcelona (Spain); Sita, Luca; Taddia, Giuseppe; Carrozza, Saverino [OCEM Energy Technology, Via della Solidarietà 2/1, 40056 Valsamoggia (località Crespellano), Bologna (Italy); Decamps, Hans [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul lez Durance (France); Luchetta, Adriano [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127 Padova (Italy); Meddour, Abdelraouf [HIMMELWERK Hoch- und Mittelfrequenzanlagen GmbH, Jopestr. 10, 72072 Tübingen (Germany); Moressa, Modesto [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127 Padova (Italy); Morri, Cristiano; Musile Tanzi, Antonio [OCEM Energy Technology, Via della Solidarietà 2/1, 40056 Valsamoggia (località Crespellano), Bologna (Italy); Recchia, Mauro [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127 Padova (Italy); Wagner, Uwe [HIMMELWERK Hoch- und Mittelfrequenzanlagen GmbH, Jopestr. 10, 72072 Tübingen (Germany); Zamengo, Andrea; Toigo, Vanni [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127 Padova (Italy)

    2015-10-15

    Highlights: • 5 MVA ion source power supplies effectively integrated in 150 m{sup 2} Faraday cage. • Load protection and performance requirements met of custom design high voltage power supplies. • 200 kW tetrode oscillator with 200 kHz frequency range successfully tested. - Abstract: The SPIDER experiment, currently under construction at the Neutral Beam Test Facility in Padua, Italy, is a full-size prototype of the ion source for the ITER Neutral Beam Injectors. The Ion Source and Extraction Power Supplies (ISEPS) for SPIDER are supplied by OCEM Energy Technology s.r.l. (OCEM) under a procurement contract with Fusion for Energy (F4E) covering also the units required for MITICA and ITER injectors. The detailed design of SPIDER ISEPS was finalized in 2011 and manufacture of most components completed by end 2013. The Factory Acceptance Tests took place early 2014. ISEPS, with an overall power rating of 5 MVA, form a heterogeneous set of items including solid state power converters and 1 MHz radiofrequency generators of 200 kW output power. The paper presents the main features of the detailed design developed by OCEM, focusing in particular on the high output voltage pulse step modulators, the high output current resonant converters, the radiofrequency generators by HIMMELWERK GmbH and the architecture and implementation of the complex control system. Details are given on non-standard factory tests verifying the insulation requirements specific to this application. Performance of ISEPS during the factory acceptance tests is described, with emphasis on demonstration of the load protection requirements, a crucial point for all neutral beam power supplies. Finally, key dates of SPIDER ISEPS installation and site testing schedule are provided.

  8. Controller Design Automation for Aeroservoelastic Design Optimization of Wind Turbines

    NARCIS (Netherlands)

    Ashuri, T.; Van Bussel, G.J.W.; Zaayer, M.B.; Van Kuik, G.A.M.

    2010-01-01

    The purpose of this paper is to integrate the controller design of wind turbines with structure and aerodynamic analysis and use the final product in the design optimization process (DOP) of wind turbines. To do that, the controller design is automated and integrated with an aeroelastic simulation

  9. Design Buildings Optimally: A Lifecycle Assessment Approach

    KAUST Repository

    Hosny, Ossama

    2013-01-01

    This paper structures a generic framework to support optimum design for multi-buildings in desert environment. The framework is targeting an environmental friendly design with minimum lifecycle cost, using Genetic Algorithms (Gas). GAs function through a set of success measures which evaluates the design, formulates a proper objective, and reflects possible tangible/intangible constraints. The framework optimizes the design and categorizes it under a certain environmental category at minimum Life Cycle Cost (LCC). It consists of three main modules: (1) a custom Building InformationModel (BIM) for desert buildings with a compatibility checker as a central interactive database; (2) a system evaluator module to evaluate the proposed success measures for the design; and (3) a GAs optimization module to ensure optimum design. The framework functions through three levels: the building components, integrated building, and multi-building levels. At the component level the design team should be able to select components in a designed sequence to ensure compatibility among various components, while at the building level; the team can relatively locate and orient each individual building. Finally, at the multi-building (compound) level the whole design can be evaluated using success measures of natural light, site capacity, shading impact on natural lighting, thermal change, visual access and energy saving. The framework through genetic algorithms optimizes the design by determining proper types of building components and relative buildings locations and orientations which ensure categorizing the design under a specific category or meet certain preferences at minimum lifecycle cost.

  10. Do Factory Managers Know What Workers Want? Manager-Worker Information Asymmetries and Pareto Optimal Human Resource Management Policies

    National Research Council Canada - National Science Library

    Paris Adler; Drusilla Brown; Rajeev Dehejia; George Domat; Raymond Robertson

    2017-01-01

      This paper evaluates the conjecture that factory managers may not be offering a cost-minimizing configuratio of compensation and workplace amenities by using manager and worker survey data from Better Work Vietnam...

  11. Co-simulation with DIgSILENT PowerFactory and Matlab: Optimal integration of plug-in electric vehicles in distribution networks

    DEFF Research Database (Denmark)

    García-Villalobos, J.; Zamora, I.; Marinelli, Mattia

    2017-01-01

    Smart grid concept is gaining more and more importance in electric power systems. In near term, electric grids will be more intelligent, interconnected and decentralised. Dealing with a significant number of distributed resources in a smart way, frequently requires the use of optimal control tech...... mean square (RMS) simulations on DIgSILENT PowerFactory. As an example, the implementation of a smart charging control for plug-in electric vehicles in electric distribution networks is explained....

  12. Design optimization of shape memory alloy structures

    NARCIS (Netherlands)

    Langelaar, M.

    2006-01-01

    This thesis explores the possibilities of design optimization techniques for designing shape memory alloy structures. Shape memory alloys are materials which, after deformation, can recover their initial shape when heated. This effect can be used for actuation. Emerging applications for shape memory

  13. Design optimization of shape memory alloy structures

    NARCIS (Netherlands)

    Langelaar, M.

    2006-01-01

    This thesis explores the possibilities of design optimization techniques for designing shape memory alloy structures. Shape memory alloys are materials which, after deformation, can recover their initial shape when heated. This effect can be used for actuation. Emerging applications for shape memory

  14. Improvement of the lactic acid fermentation of capers through an experimental factorial design (Capparis spinosa L

    Directory of Open Access Journals (Sweden)

    Errachidi, F.

    2010-12-01

    Full Text Available The study of the caper fermentation process through an experiment factorial plan allows us to determine a function ƒ such that (Y= ƒ(X1, X2, …, Xn existing between magnitude Y which is the decrease of pH (called response, and variables Xi , which are brine, lactic acid, citric acid and lactic ferment (called factors. A complete factorial plan 24 was made in order to determine the factors and the interactions among the factors which have a statistically significant influence on the studied response. Brine, lactic acid and citric acid have a significant effect on the fall of pH; by contrast, lactic ferment does not have a significant effect. On the other hand, the interactions between brine and lactic acid, between brine and lactic ferment , between lactic acid with citric acid and between lactic acid with lactic ferment have significant effects on the fall of pH (p El estudio del proceso de fermentación mediante un diseño factorial nos permitió determinar una función ƒ (Y= ƒ(X1, X2, …, Xn que existe entre la magnitud Y que es la disminución del pH (llamada respuesta, y las variables X, que son la salmuera, ácido láctico, ácido cítrico y los fermentos lácticos (llamados factores. Un completo plan factorial 24 fue hecho con objeto de determinar los factores y las interacciones entre los factores que tienen una influencia estadísticamente significativa en la respuesta estudiada. La salmuera, ácido láctico y ácido cítrico tienen un efecto significativo en la caída del pH; por el contrario, los fermentos lácticos no tienen efecto significativo. Por otra parte, las interacciones entre salmuera y ácido láctico, salmuera y fermentos lácticos, ácido láctico y ácido cítrico, y ácido láctico y fermentos lácticos tuvieron un efecto significativo en la caída del pH (p < 0.0001. La fermentación fue hecha en el laboratorio de investigación de la Sociedad Marocapres-Fez líder Internacional en la transformación de

  15. A design optimization methodology for Li+ batteries

    Science.gov (United States)

    Golmon, Stephanie; Maute, Kurt; Dunn, Martin L.

    2014-05-01

    Design optimization for functionally graded battery electrodes is shown to improve the usable energy capacity of Li batteries predicted by computational simulations and numerically optimizing the electrode porosities and particle radii. A multi-scale battery model which accounts for nonlinear transient transport processes, electrochemical reactions, and mechanical deformations is used to predict the usable energy storage capacity of the battery over a range of discharge rates. A multi-objective formulation of the design problem is introduced to maximize the usable capacity over a range of discharge rates while limiting the mechanical stresses. The optimization problem is solved via a gradient based optimization. A LiMn2O4 cathode is simulated with a PEO-LiCF3SO3 electrolyte and both a Li Foil (half cell) and LiC6 anode. Studies were performed on both half and full cell configurations resulting in distinctly different optimal electrode designs. The numerical results show that the highest rate discharge drives the simulations and the optimal designs are dominated by Li+ transport rates. The results also suggest that spatially varying electrode porosities and active particle sizes provides an efficient approach to improve the power-to-energy density of Li+ batteries. For the half cell configuration, the optimal design improves the discharge capacity by 29% while for the full cell the discharge capacity was improved 61% relative to an initial design with a uniform electrode structure. Most of the improvement in capacity was due to the spatially varying porosity, with up to 5% of the gains attributed to the particle radii design variables.

  16. Design Process Optimization Based on Design Process Gene Mapping

    Institute of Scientific and Technical Information of China (English)

    LI Bo; TONG Shu-rong

    2011-01-01

    The idea of genetic engineering is introduced into the area of product design to improve the design efficiency. A method towards design process optimization based on the design process gene is proposed through analyzing the correlation between the design process gene and characteristics of the design process. The concept of the design process gene is analyzed and categorized into five categories that are the task specification gene, the concept design gene, the overall design gene, the detailed design gene and the processing design gene in the light of five design phases. The elements and their interactions involved in each kind of design process gene signprocess gene mapping is drawn with its structure disclosed based on its function that process gene.

  17. Standardization of biosurfactant enrichment process by factorial design and elucidating its physico-chemical and structural characteristics

    Directory of Open Access Journals (Sweden)

    Karadi RV

    2012-08-01

    Full Text Available Biosurfactant recovery by Flavobacterium sp. was standardized by factorial design 3(k-p. The extraction of biosurfactant was carried out by organic solvent extraction, ammonium sulphate precipitation and acid precipitation. The organic solvent extraction was performed with varied proportion (3 levels of chloroform and methanol i.e. (X*:1 designated as F1 (varied proportion of chloroform and (1: X** referred as F2 (varied proportion of methanol respectively, similarly ammonium sulphate (F3 and acid precipitation (F4 was performed with 3 varying experimental level. The statistical data interpretation viz ANOVA, Pareto chart of standardized effect, Half normal probability plot inferred  organic solvent extraction as a efficient method for recovery of biosurfactant, than other counter parts of extraction .The surface plot between significant factors, given the standardized proportion of organic solvents for extraction of biosurfactant, which was found to be 1:1. Surface tension and CMC value of recovery biosurfactant was found to be 33 mN/m and its CMC was 400- 500mg respectively, it has shown maximum emulsification index of 94% for soyabean oil. The presence of glycolipid moiety in the recovery biosurfactant was elucidated by IR and NMR spectroscopic studies.   Keywords: Factorial design, organic solvent, CMC, Emulsification index

  18. Optimal Design of a Subsonic Submerged Inlet

    Science.gov (United States)

    Taskinoglu, Ezgi; Jovanovic, Vasilije; Elliott, Gregory; Knight, Doyle

    2003-11-01

    A multi-objective optimization study based on an epsilon-constraint method is conducted for the design optimization of a subsonic submerged air vehicle inlet. The multi-objective optimization problem is reformulated by minimizing one of the objectives and restricting the other objectives within user specified values. The figures of merits are the engine-face distortion and swirl that determines the inlet/engine compatibility. The distortion index is minimized while the feasible design space is determined by the swirl index. The design variables are the geometrical parameters defining the surface alteration. The design algorithm is driven by a gradient-based optimizer, and is constructed by integrating the optimizer with a solid modeller (Pro/Engineer), a mesh generator (Grid/Pro) and a flow solver (GASPex). The optimizer is CFSQP (C code for Feasible Sequential Quadratic Programming). Integration of the software packages is achieved by a Perl script. In order to verify the numerical results, an experimental setup for the same inlet geometry is prepared to run at the same flow conditions. The presentation will describe the numerical approach and summarize the results.

  19. Information optimal compressive sensing: static measurement design.

    Science.gov (United States)

    Ashok, Amit; Huang, Liang-Chih; Neifeld, Mark A

    2013-05-01

    The compressive sensing paradigm exploits the inherent sparsity/compressibility of signals to reduce the number of measurements required for reliable reconstruction/recovery. In many applications additional prior information beyond signal sparsity, such as structure in sparsity, is available, and current efforts are mainly limited to exploiting that information exclusively in the signal reconstruction problem. In this work, we describe an information-theoretic framework that incorporates the additional prior information as well as appropriate measurement constraints in the design of compressive measurements. Using a Gaussian binomial mixture prior we design and analyze the performance of optimized projections relative to random projections under two specific design constraints and different operating measurement signal-to-noise ratio (SNR) regimes. We find that the information-optimized designs yield significant, in some cases nearly an order of magnitude, improvements in the reconstruction performance with respect to the random projections. These improvements are especially notable in the low measurement SNR regime where the energy-efficient design of optimized projections is most advantageous. In such cases, the optimized projection design departs significantly from random projections in terms of their incoherence with the representation basis. In fact, we find that the maximizing incoherence of projections with the representation basis is not necessarily optimal in the presence of additional prior information and finite measurement noise/error. We also apply the information-optimized projections to the compressive image formation problem for natural scenes, and the improved visual quality of reconstructed images with respect to random projections and other compressive measurement design affirms the overall effectiveness of the information-theoretic design framework.

  20. Heat exchanger design based on economic optimization

    Energy Technology Data Exchange (ETDEWEB)

    Caputo, Antonio C.; Pelagagge, Marcello P.; Salini, Paolo [University of l' Aquila (Italy). Faculty of Engineering], e-mail: caputo@ing.inivaq.it, e-mail: pelmar@ing.inivaq.it, e-mail: salini@ing.inivaq.it

    2006-07-01

    Owing to the wide utilization of heat exchangers in industrial processes their cost minimization is an important target for both designers and users. Traditional design approaches are based on iterative procedures which assume a configuration and gradually change design parameters until a satisfying solution is reached which meets the design specifications. However, such methods, besides being time consuming, do not guarantee the reach of an optimal solution. In this paper a procedure for optimal design for shell and tube heat exchangers is proposed which utilizes a genetic algorithm to minimize the total discounted cost of the equipment including the capital investment and pumping related annual energy expenditures. In order to verify the performances of the proposed method four case studies are also presented showing that total cost reductions greater than 15% are feasible respect traditionally designed exchangers. (author)

  1. Optimization-based controller design for rotorcraft

    Science.gov (United States)

    Tsing, N.-K.; Fan, M. K. H.; Barlow, J.; Tits, A. L.; Tischler, M. B.

    1993-01-01

    An optimization-based methodology for linear control system design is outlined by considering the design of a controller for a UH-60 rotorcraft in hover. A wide range of design specifications is taken into account: internal stability, decoupling between longitudinal and lateral motions, handling qualities, and rejection of windgusts. These specifications are investigated while taking into account physical limitations in the swashplate displacements and rates of displacement. The methodology crucially relies on user-machine interaction for tradeoff exploration.

  2. Super Factories

    Indian Academy of Sciences (India)

    D G Hitlin

    2006-11-01

    Heavy-flavor physics, in particular and physics results from the factories, currently provides strong constraints on models of physics beyond the Standard Model. A new generation of colliders, Super Factories, with 50 to 100 times the luminosity of existing colliders, can, in a dialog with LHC and ILC, provide unique clarification of new physics phenomena seen at those machines.

  3. Transcription factories

    Science.gov (United States)

    Rieder, Dietmar; Trajanoski, Zlatko; McNally, James G.

    2012-01-01

    There is considerable evidence that transcription does not occur homogeneously or diffusely throughout the nucleus, but rather at a number of specialized, discrete sites termed transcription factories. The factories are composed of ~4–30 RNA polymerase molecules, and are associated with many other molecules involved in transcriptional activation and mRNA processing. Some data suggest that the polymerase molecules within a factory remain stationary relative to the transcribed DNA, which is thought to be reeled through the factory site. There is also some evidence that transcription factories could help organize chromatin and nuclear structure, contributing to both the formation of chromatin loops and the clustering of active and co-regulated genes. PMID:23109938

  4. Computational Methods for Design, Control and Optimization

    Science.gov (United States)

    2007-10-01

    34scenario" that applies to channel flows ( Poiseuille flows , Couette flow ) and pipe flows . Over the past 75 years many complex "transition theories" have...other areas of flow control, optimization and aerodynamic design. approximate sensitivity calculations and optimization codes. The effort was built on a...for fluid flow problems. The improved robustness and computational efficiency of this approach makes it practical for a wide class of problems. The

  5. Advanced Aerostructural Optimization Techniques for Aircraft Design

    OpenAIRE

    Yingtao Zuo; Pingjian Chen; Lin Fu; Zhenghong Gao; Gang Chen

    2015-01-01

    Traditional coupled aerostructural design optimization (ASDO) of aircraft based on high-fidelity models is computationally expensive and inefficient. To improve the efficiency, the key is to predict aerostructural performance of the aircraft efficiently. The cruise shape of the aircraft is parameterized and optimized in this paper, and a methodology named reverse iteration of structural model (RISM) is adopted to get the aerostructural performance of cruise shape efficiently. A new mathematic...

  6. Approach to improve the productivity of bioactive compounds of the cyanobacterium Anabaena oryzae using factorial design

    Directory of Open Access Journals (Sweden)

    Ragaa A. Hamouda

    2017-09-01

    Full Text Available Cyanobacteria are one of the richest sources of biomedical relevant compounds with extensive therapeutic pharmaceutical applications and are also known as producer of intracellular and extracellular metabolites with diverse biological activities. The genus Anabaena sp. is known to produce antimicrobial compounds, like phycocyanin and others. The goal of this study was to optimize the production of these bioactive compounds. The Plackett–Burman experimental design was used to screen and evaluate the important medium components that influence the production of bioactive compounds. In this present study, eight independent factors including NaNO3, K2HPO4, MgSO4·7H2O, CaCl2, citric acid, ammonium ferric citrate, ethylene diamine tetraacetic acid disodium magnesium salt (EDTA-Na2Mg and Na2CO3 were surveyed and the effective variables for algal components production of Anabaena oryzae were determined using two-levels Plackett–Burman design. Results analysis showed that the best medium components were NaNO3 (2.25 g l−1; K2HPO4 (0.02 g l−1; MgSO4 (0.0375 g l−1; CaCl2 (0.018 g l−1; citric acid (0.009 g l−1; ammonium ferric citrate (0.009 g l−1 and EDTA-Na2 (0.0015 g l−1 respectively. The total chlorophyll-a, carotenoids, phenol, tannic acid and flavonoid contents in crude extract of Anabaena oryzae were determined. They were 47.7, 4.11, 0.256, 1.046 and 1.83 μg/ml, respectively. The antioxidant capacity was 62.81%.

  7. An optimal design problem in wave propagation

    DEFF Research Database (Denmark)

    Bellido, J.C.; Donoso, Alberto

    2007-01-01

    We consider an optimal design problem in wave propagation proposed in Sigmund and Jensen (Roy. Soc. Lond. Philos. Trans. Ser. A 361:1001-1019, 2003) in the one-dimensional situation: Given two materials at our disposal with different elastic Young modulus and different density, the problem consists...... of finding the best distributions of the two initial materials in a rod in order to minimize the vibration energy in the structure under periodic loading of driving frequency Omega. We comment on relaxation and optimality conditions, and perform numerical simulations of the optimal configurations. We prove...

  8. Evaluation of biomass production, carotenoid level and antioxidant capacity produced by Thermus filiformis Using fractional factorial design

    Science.gov (United States)

    Mandelli, Fernanda; Yamashita, Fábio; Pereira, José L.; Mercadante, Adriana Z.

    2012-01-01

    A fractional factorial design 25–1 was used to evaluate the effect of temperature, pH, and concentrations of yeast extract, tryptone and Nitsch’s trace elements on the biomass, total carotenoids and protection against singlet oxygen by carotenoid extracts of the bacterium Thermus filiformis. In addition, the carotenoid composition was determined by high-performance liquid chromatography connected to a diode array and mass spectrometer detectors (HPLC-DAD-MS/MS). The production of biomass ranged from 0.113 to 0.658 g/L, the total carotenoid from 137.6 to 1,517.4 µg/g and the protection against singlet oxygen from 4.3 to 85.1 %. Results of the fractional factorial design showed that temperature had a negative effect on biomass production and a positive effect on carotenoid content and protection against singlet oxygen, besides, high levels of pH value, concentrations of yeast extract and tryptone had a positive effect on biomass production only at lower temperatures. The main carotenoids of T. filiformis were thermozeaxanthins. In the tested conditions, changes in the levels of the variables influenced the biomass, carotenoid production, and protection against singlet oxygen, although they did not influence the carotenoid profile. The results of this study provide a better understanding on the interactions among certain nutritional and cultivation conditions of a thermophile bacterium, Thermus filiformis, on biomass and carotenoid amounts, as well as on the antioxidant capacity. PMID:24031811

  9. Evaluation of biomass production, carotenoid level and antioxidant capacity produced by Thermus filiformis using fractional factorial design

    Directory of Open Access Journals (Sweden)

    Fernanda Mandelli

    2012-03-01

    Full Text Available A fractional factorial design 2(5-1 was used to evaluate the effect of temperature, pH, and concentrations of yeast extract, tryptone and Nitsch's trace elements on the biomass, total carotenoids and protection against singlet oxygen by carotenoid extracts of the bacterium Thermus filiformis. In addition, the carotenoid composition was determined by high-performance liquid chromatography connected to a diode array and mass spectrometer detectors (HPLC-DAD-MS/MS. The production of biomass ranged from 0.113 to 0.658 g/L, the total carotenoid from 137.6 to 1,517.4 mg/g and the protection against singlet oxygen from 4.3 to 85.1 %. Results of the fractional factorial design showed that temperature had a negative effect on biomass production and a positive effect on carotenoid content and protection against singlet oxygen, besides, high levels of pH value, concentrations of yeast extract and tryptone had a positive effect on biomass production only at lower temperatures. The main carotenoids of T. filiformis were thermozeaxanthins. In the tested conditions, changes in the levels of the variables influenced the biomass, carotenoid production, and protection against singlet oxygen, although they did not influence the carotenoid profile. The results of this study provide a better understanding on the interactions among certain nutritional and cultivation conditions of a thermophile bacterium, Thermus filiformis, on biomass and carotenoid amounts, as well as on the antioxidant capacity.

  10. Application of full 42 Factorial Design for the Development and Characterization of Insecticidal Soap from Neem Oil

    Directory of Open Access Journals (Sweden)

    A. S. KOVO

    2006-01-01

    Full Text Available The aim of this paper was to investigate the extraction, characterization and production of insecticidal soap from Neem oil using full 42 factorial design. Soxhlet extractor was used for the extraction purpose and two solvent was chosen to determine which is better. N-hexane gives a Neem oil yield of 45.43% while ethanol gives a yield of 46.38%, confirming the earlier literature result giving ethanol as better solvent for Neem oil extraction. The basic properties of the oil were determined as follows, saponification value 215.95ml/g, acid value 1.122g/mol, unsaponifiable matter 19.66 etc. The Neem oil was found to have a colour of golden yellow due to the presence of Nimbidin.Full 42 factorial design and mathematical model was applied to the extraction process and a first order regression equation of the form:Y = 9.548 + 0.144X1 + 0.1931X2 + 0.1892 X12was obtained growing the individual effect of time and solvent type as parameter and their interaction in the entire extraction process the Neem insecticidal soap was found to be effective in insect and pest control.

  11. Dynamic optimization and adaptive controller design

    Science.gov (United States)

    Inamdar, S. R.

    2010-10-01

    In this work I present a new type of controller which is an adaptive tracking controller which employs dynamic optimization for optimizing current value of controller action for the temperature control of nonisothermal continuously stirred tank reactor (CSTR). We begin with a two-state model of nonisothermal CSTR which are mass and heat balance equations and then add cooling system dynamics to eliminate input multiplicity. The initial design value is obtained using local stability of steady states where approach temperature for cooling action is specified as a steady state and a design specification. Later we make a correction in the dynamics where material balance is manipulated to use feed concentration as a system parameter as an adaptive control measure in order to avoid actuator saturation for the main control loop. The analysis leading to design of dynamic optimization based parameter adaptive controller is presented. The important component of this mathematical framework is reference trajectory generation to form an adaptive control measure.

  12. Optimal Design of Noisy Transmultiplexer Systems

    Directory of Open Access Journals (Sweden)

    Xie Lihua

    2006-01-01

    Full Text Available An optimal design method for noisy transmultiplexer systems is presented. For a transmultiplexer system with given transmitters and desired crosstalk attenuation, we address the problem of minimizing the reconstruction error while ensuring that the crosstalk of each band is below a prescribed level. By employing the mixed optimization, we will ensure that the system with suboptimal reconstruction error is more robust and less sensitive to the changes of input signals and channel noises. Due to the overlapping of adjacent subchannels, crosstalk between adjacent channels is expected. And the problem of crosstalk attenuation is formulated as an optimization problem, solved in terms of linear matrix inequalities (LMIs. The simulation examples demonstrate that the proposed design performs better than existing design methods.

  13. Abstract Factory Design Pattern in the Application of MIS%抽象工厂设计模式在MIS中的应用

    Institute of Scientific and Technical Information of China (English)

    贾延明; 张永涛

    2011-01-01

    This article from the design pattern, analyzed the abstract factory pattern (Abstract Factory Pattern), the abstract factory design pattern in a hierarchy application of distributed systems, and abstract factory design pattern to management information system (MIS). Abstract factory pattern for the system architecture provides a very flexible and powerful dynamic extension mechanism, to reduce the coupling between modules, better implementation of software reuse.%本文从设计模式出发,分析了抽象工厂模式(Abstract Factory Pattern)的优缺点,研究了抽象工厂设计模式在分层分布式系统中的应用,并将抽象工厂设计模式应用于管理信息系统(MIS)中.抽象工厂模式为系统结构提供了非常灵活强大的动态扩展机制,能够降低模块间的耦合性,更好的实现软件复用.

  14. Novel Optimized Designs for QCA Serial Adders

    Directory of Open Access Journals (Sweden)

    A. Mostafaee

    2017-02-01

    Full Text Available Quantum-dot Cellular Automata (QCA is a new and efficient technology to implement logic Gates and digital circuits at the nanoscale range. In comparison with the conventional CMOS technology, QCA has many attractive features such as: low-power, extremely dense and high speed structures. Adders are the most important part of an arithmetic logic unit (ALU. In this paper, four optimized designs of QCA serial adders are presented. One of the proposed designs is optimized in terms of the number of cells, area and delay without any wire crossing methods. Also, two new designs of QCA serial adders and a QCA layout equivalent to the internal circuit of TM4006 IC are presented. QCADesigner software is used to simulate the proposed designs. Finally, the proposed QCA designs are compared with the previous QCA, CNTFET-based and CMOS technologies.

  15. Design optimization for cost and quality: The robust design approach

    Science.gov (United States)

    Unal, Resit

    1990-01-01

    Designing reliable, low cost, and operable space systems has become the key to future space operations. Designing high quality space systems at low cost is an economic and technological challenge to the designer. A systematic and efficient way to meet this challenge is a new method of design optimization for performance, quality, and cost, called Robust Design. Robust Design is an approach for design optimization. It consists of: making system performance insensitive to material and subsystem variation, thus allowing the use of less costly materials and components; making designs less sensitive to the variations in the operating environment, thus improving reliability and reducing operating costs; and using a new structured development process so that engineering time is used most productively. The objective in Robust Design is to select the best combination of controllable design parameters so that the system is most robust to uncontrollable noise factors. The robust design methodology uses a mathematical tool called an orthogonal array, from design of experiments theory, to study a large number of decision variables with a significantly small number of experiments. Robust design also uses a statistical measure of performance, called a signal-to-noise ratio, from electrical control theory, to evaluate the level of performance and the effect of noise factors. The purpose is to investigate the Robust Design methodology for improving quality and cost, demonstrate its application by the use of an example, and suggest its use as an integral part of space system design process.

  16. Factorial PD-Clustering

    CERN Document Server

    Tortora, Cristina; Summa, Mireille Gettler

    2011-01-01

    Factorial clustering methods have been developed in recent years thanks to the improving of computational power. These methods perform a linear transformation of data and a clustering on transformed data optimizing a common criterion. Factorial PD-clustering is based on Probabilistic Distance clustering (PD-clustering). PD-clustering is an iterative, distribution free, probabilistic, clustering method. Factorial PD-clustering make a linear transformation of original variables into a reduced number of orthogonal ones using a common criterion with PD-Clustering. It is demonstrated that Tucker 3 decomposition allows to obtain this transformation. Factorial PD-clustering makes alternatively a Tucker 3 decomposition and a PD-clustering on transformed data until convergence. This method could significantly improve the algorithm performance and allows to work with large dataset, to improve the stability and the robustness of the method.

  17. The optimal design of standard gearsets

    Science.gov (United States)

    Savage, M.; Coy, J. J.; Townsend, D. P.

    1983-01-01

    A design procedure for sizing standard involute spur gearsets is presented. The procedure is applied to find the optimal design for two examples - an external gear mesh with a ratio of 5:1 and an internal gear mesh with a ratio of 5:1. In the procedure, the gear mesh is designed to minimize the center distance for a given gear ratio, pressure angle, pinion torque, and allowable tooth strengths. From the methodology presented, a design space may be formulated for either external gear contact or for internal contact. The design space includes kinematics considerations of involute interference, tip fouling, and contact ratio. Also included are design constraints based on bending fatigue in the pinion fillet and Hertzian contact pressure in the full load region and at the gear tip where scoring is possible. This design space is two dimensional, giving the gear mesh center distance as a function of diametral pitch and the number of pinion teeth. The constraint equations were identified for kinematic interference, fillet bending fatigue, pitting fatigue, and scoring pressure, which define the optimal design space for a given gear design. The locus of equal size optimum designs was identified as the straight line through the origin which has the least slope in the design region.

  18. Solid Rocket Motor Design Using Hybrid Optimization

    Directory of Open Access Journals (Sweden)

    Kevin Albarado

    2012-01-01

    Full Text Available A particle swarm/pattern search hybrid optimizer was used to drive a solid rocket motor modeling code to an optimal solution. The solid motor code models tapered motor geometries using analytical burn back methods by slicing the grain into thin sections along the axial direction. Grains with circular perforated stars, wagon wheels, and dog bones can be considered and multiple tapered sections can be constructed. The hybrid approach to optimization is capable of exploring large areas of the solution space through particle swarming, but is also able to climb “hills” of optimality through gradient based pattern searching. A preliminary method for designing tapered internal geometry as well as tapered outer mold-line geometry is presented. A total of four optimization cases were performed. The first two case studies examines designing motors to match a given regressive-progressive-regressive burn profile. The third case study studies designing a neutrally burning right circular perforated grain (utilizing inner and external geometry tapering. The final case study studies designing a linearly regressive burning profile for right circular perforated (tapered grains.

  19. Optimal Design of Round Bottomed Triangle Channels

    Directory of Open Access Journals (Sweden)

    Ayman T. Hameed

    2013-05-01

    Full Text Available     In optimal design concept, the geometric dimensions of a channel cross-section are determined in a manner to minimize the total construction costs. The Direct search optimization method by using MATALAB is used to solve the resulting channel optimization models for a specified flow rate, roughness coefficient and longitudinal slope. The developed optimization models are applied to design the round bottomed triangle channel and trapezoidal channels to convey a given design flow considering various design scenarios However, it also can be extended to other shapes of channels. This method optimizes the total construction cost by minimizing the cross-sectional area and wetted perimeter per unit length of the channel. In the present study, it is shown that for all values of side slope, the total construction cost in the round bottomed triangle cross-section are less than those of trapezoidal cross-section for the same values of discharge. This indicates that less excavation and a lining are involved and therefore implies that the round bottomed triangle cross-section is more economical than trapezoidal cross-section.

  20. Application of statistical design for the optimization of amino acid separation by reverse-phase HPLC.

    Science.gov (United States)

    Gheshlaghi, R; Scharer, J M; Moo-Young, M; Douglas, P L

    2008-12-01

    Modified resolution and overall separation factors used to quantify the separation of complex chromatography systems are described. These factors were proven to be applicable to the optimization of amino acid resolution in reverse-phase (RP) HPLC chromatograms. To optimize precolumn derivatization with phenylisothiocyanate, a 2(5-1) fractional factorial design in triplicate was employed. The five independent variables for optimizing the overall separation factor were triethylamine content of the aqueous buffer, pH of the aqueous buffer, separation temperature, methanol/acetonitrile concentration ratio in the organic eluant, and mobile phase flow rate. Of these, triethylamine concentration and methanol/acetonitrile concentration ratio were the most important. The methodology captured the interaction between variables. Temperature appeared in the interaction terms; consequently, it was included in the hierarchic model. The preliminary model based on the factorial experiments was not able to explain the response curvature in the design space; therefore, a central composite design was used to provide a quadratic model. Constrained nonlinear programming was used for optimization purposes. The quadratic model predicted the optimal levels of the variables. In this study, the best levels of the five independent variables that provide the maximum modified resolution for each pair of consecutive amino acids appearing in the chromatograph were determined. These results are of utmost importance for accurate analysis of a subset of amino acids.

  1. Thermodynamics-based design of microbial cell factories for anaerobic product formation.

    Science.gov (United States)

    Cueto-Rojas, Hugo F; van Maris, A J A; Wahl, S Aljoscha; Heijnen, J J

    2015-09-01

    The field of metabolic engineering has delivered new microbial cell factories and processes for the production of different compounds including biofuels, (di)carboxylic acids, alcohols, and amino acids. Most of these processes are aerobic, with few exceptions (e.g., alcoholic fermentation), and attention is focused on assembling a high-flux product pathway with a production limit usually set by the oxygen transfer rate. By contrast, anaerobic product synthesis offers significant benefits compared to aerobic systems: higher yields, less heat generation, reduced biomass production, and lower mechanical energy input, which can significantly reduce production costs. Using simple thermodynamic calculations, we demonstrate that many products can theoretically be produced under anaerobic conditions using several conventional and non-conventional substrates.

  2. System deployment optimization in architecture design

    Institute of Scientific and Technical Information of China (English)

    Xiaoxue Zhang; Shu Tang; Aimin Luo; Xueshan Luo

    2014-01-01

    Optimization of architecture design has recently drawn research interest. System deployment optimization (SDO) refers to the process of optimizing systems that are being deployed to activi-ties. This paper first formulates a mathematical model to theorize and operationalize the SDO problem and then identifies optimal so-lutions to solve the SDO problem. In the solutions, the success rate of the combat task is maximized, whereas the execution time of the task and the cost of changes in the system structure are mini-mized. The presented optimized algorithm generates an optimal solution without the need to check the entire search space. A novel method is final y proposed based on the combination of heuristic method and genetic algorithm (HGA), as wel as the combination of heuristic method and particle swarm optimization (HPSO). Experi-ment results show that the HPSO method generates solutions faster than particle swarm optimization (PSO) and genetic algo-rithm (GA) in terms of execution time and performs more efficiently than the heuristic method in terms of determining the best solution.

  3. OPTIMAL DESIGN OF QUADRATIC SANDWICH PLATE

    Directory of Open Access Journals (Sweden)

    TIMAR Dr. Imre

    2016-05-01

    Full Text Available In this paper, we show the optimal design of the three-layered sandwich plates. The objective function contains the material and fabrication costs. The design constraints are the maximal stresses, the deflection of plates and damping of vibrations. The unknown is the thickness of the filling foam. By the mathematical method, we define the minima of the cost function and the optimal thickness of the filling layer of foam. The active constraint is the deflection, so we calculate of the costs of the sandwich plate with the homogeneous plate.

  4. Shape optimization techniques for musical instrument design

    Science.gov (United States)

    Henrique, Luis; Antunes, Jose; Carvalho, Joao S.

    2002-11-01

    The design of musical instruments is still mostly based on empirical knowledge and costly experimentation. One interesting improvement is the shape optimization of resonating components, given a number of constraints (allowed parameter ranges, shape smoothness, etc.), so that vibrations occur at specified modal frequencies. Each admissible geometrical configuration generates an error between computed eigenfrequencies and the target set. Typically, error surfaces present many local minima, corresponding to suboptimal designs. This difficulty can be overcome using global optimization techniques, such as simulated annealing. However these methods are greedy, concerning the number of function evaluations required. Thus, the computational effort can be unacceptable if complex problems, such as bell optimization, are tackled. Those issues are addressed in this paper, and a method for improving optimization procedures is proposed. Instead of using the local geometric parameters as searched variables, the system geometry is modeled in terms of truncated series of orthogonal space-funcitons, and optimization is performed on their amplitude coefficients. Fourier series and orthogonal polynomials are typical such functions. This technique reduces considerably the number of searched variables, and has a potential for significant computational savings in complex problems. It is illustrated by optimizing the shapes of both current and uncommon marimba bars.

  5. Integrated structural-aerodynamic design optimization

    Science.gov (United States)

    Haftka, R. T.; Kao, P. J.; Grossman, B.; Polen, D.; Sobieszczanski-Sobieski, J.

    1988-01-01

    This paper focuses on the processes of simultaneous aerodynamic and structural wing design as a prototype for design integration, with emphasis on the major difficulty associated with multidisciplinary design optimization processes, their enormous computational costs. Methods are presented for reducing this computational burden through the development of efficient methods for cross-sensitivity calculations and the implementation of approximate optimization procedures. Utilizing a modular sensitivity analysis approach, it is shown that the sensitivities can be computed without the expensive calculation of the derivatives of the aerodynamic influence coefficient matrix, and the derivatives of the structural flexibility matrix. The same process is used to efficiently evaluate the sensitivities of the wing divergence constraint, which should be particularly useful, not only in problems of complete integrated aircraft design, but also in aeroelastic tailoring applications.

  6. Heuristic Algorithm in Optimal Discrete Structural Designs

    Directory of Open Access Journals (Sweden)

    Alongkorn Lamom

    2008-01-01

    Full Text Available This study proposes a Heuristic Algorithm for Material Size Selection (HAMSS. It is developed to handle discrete structural optimization problems. The proposed algorithm (HAMSS, Simulated Annealing Algorithm (SA and the conventional design algorithm obtained from a structural steel design software are studied with three selected examples. The HAMSS, in fact, is the adaptation from the traditional SA. Although the SA is one of the easiest optimization algorithms available, a huge number of function evaluations deter its use in structural optimizations. To obtain the optimum answers by the SA, possible answers are first generated randomly. Many of these possible answers are rejected because they do not pass the constraints. To effectively handle this problem, the behavior of optimal structural design problems is incorporated into the algorithm. The new proposed algorithm is called the HAMSS. The efficiency comparison between the SA and the HAMSS is illustrated in term of number of finite element analysis cycles. Results from the study show that HAMSS can significantly reduce the number of structural analysis cycles while the optimized efficiency is not different.

  7. Stented artery biomechanics and device design optimization.

    Science.gov (United States)

    Timmins, Lucas H; Moreno, Michael R; Meyer, Clark A; Criscione, John C; Rachev, Alexander; Moore, James E

    2007-05-01

    The deployment of a vascular stent aims to increase lumen diameter for the restoration of blood flow, but the accompanied alterations in the mechanical environment possibly affect the long-term patency of these devices. The primary aim of this investigation was to develop an algorithm to optimize stent design, allowing for consideration of competing solid mechanical concerns (wall stress, lumen gain, and cyclic deflection). Finite element modeling (FEM) was used to estimate artery wall stress and systolic/diastolic geometries, from which single parameter outputs were derived expressing stress, lumen gain, and cyclic artery wall deflection. An optimization scheme was developed using Lagrangian interpolation elements that sought to minimize the sum of these outputs, with weighting coefficients. Varying the weighting coefficients results in stent designs that prioritize one output over another. The accuracy of the algorithm was confirmed by evaluating the resulting outputs of the optimized geometries using FEM. The capacity of the optimization algorithm to identify optimal geometries and their resulting mechanical measures was retained over a wide range of weighting coefficients. The variety of stent designs identified provides general guidelines that have potential clinical use (i.e., lesion-specific stenting).

  8. Optimal design of stiffened composite underwater hulls

    OpenAIRE

    Messager, Tanguy; Chauchot, Pierre; Bigourdan, Benoit

    2006-01-01

    This numerical study deals with the stiffened composite underwater vessel design. The structures under investigation are laminated cylinders with rigid end-closures and inter-nal circumferential and longitudinal unidirectional composite stiffeners. Structural buckling induced by the high external hydrostatic pressure is considered as the major failure risk. An optimization design tool has been developed to obtain the reinforcement definition which maximizes the limit of stability: an analytic...

  9. An Optimization Framework for Product Design

    OpenAIRE

    Leyuan Shi; Sigurdur Ólafsson; Qun Chen

    2001-01-01

    An important problem in the product design and development process is to use the part-worths preferences of potential customers to design a new product such that market share is maximized. The authors present a new optimization framework for this problem, the nested partitions (NP) method. This method is globally convergent and may utilize existing heuristic methods to speed its convergence. We incorporate several known heuristics into this framework and demonstrate through numerical experime...

  10. Experimental design and multicriteria decision making methods for the optimization of ice cream composition

    Directory of Open Access Journals (Sweden)

    Cristian Rojas

    2012-03-01

    Full Text Available The aim of the present work was to optimize the sensorial and technological features of ice cream. The experimental work was performed in two stages: 1 optimization of lactose enzymatic hydrolysis, and 2 optimization of the process and product. For the first stage a complete factorial design was developed, optimized using both response surface and the steepest ascent method. In the second stage a mixture design was performed, combining the process variables. The product with the best sensorial acceptance, high yield and low cost was selected. The acceptance of the product was developed by an untrained taster’s panel. As a main result the sensorial and technological features of the final product were improved, establishing the optimum parameters for its elaboration.

  11. On Optimal Designs of Some Censoring Schemes

    Directory of Open Access Journals (Sweden)

    Dr. Adnan Mohammad Awad

    2016-03-01

    Full Text Available The main objective of this paper  is to explore suitability of some entropy-information measures for introducing a new optimality censoring criterion and to apply it to some censoring schemes from some underlying life-time models.  In addition, the  paper investigates four related issues namely; the  effect of the parameter of parent distribution on optimal scheme, equivalence of schemes based on Shannon and Awad sup-entropy measures, the conjecture that the optimal scheme is one stage scheme, and  a conjecture by Cramer and Bagh (2011 about Shannon minimum and maximum schemes when parent distribution is reflected power. Guidelines for designing an optimal censoring plane are reported together with theoretical and numerical results and illustrations.

  12. Synthesis and design of optimal biorefinery

    DEFF Research Database (Denmark)

    Cheali, Peam

    of a large numberof alternatives at their optimality. The result is the identification of the optimal rawmaterial, the product (single vs multi) portfolio and the corresponding process technology selection for a given market scenario. The economic risk of investment due to market uncertainties is further...... products from bio-based feedstock. Since there are several bio-basedfeedstock sources, this has motivated development of different conversion concepts producing various desired products. This results in a number of challenges for the synthesis and design of the optimal biorefinery concept at the early...... process feasibility analysis is of a multidisciplinary nature, often limited and uncertain; (iii) Complexity challenge: this problem is complex requiring multi-criteria evaluation (technical, economic,sustainability). This PhD project aims to develop a decision support tool for identifying optimal...

  13. Advanced Aerostructural Optimization Techniques for Aircraft Design

    Directory of Open Access Journals (Sweden)

    Yingtao Zuo

    2015-01-01

    Full Text Available Traditional coupled aerostructural design optimization (ASDO of aircraft based on high-fidelity models is computationally expensive and inefficient. To improve the efficiency, the key is to predict aerostructural performance of the aircraft efficiently. The cruise shape of the aircraft is parameterized and optimized in this paper, and a methodology named reverse iteration of structural model (RISM is adopted to get the aerostructural performance of cruise shape efficiently. A new mathematical explanation of RISM is presented in this paper. The efficiency of RISM can be improved by four times compared with traditional static aeroelastic analysis. General purpose computing on graphical processing units (GPGPU is adopted to accelerate the RISM further, and GPU-accelerated RISM is constructed. The efficiency of GPU-accelerated RISM can be raised by about 239 times compared with that of the loosely coupled aeroelastic analysis. Test shows that the fidelity of GPU-accelerated RISM is high enough for optimization. Optimization framework based on Kriging model is constructed. The efficiency of the proposed optimization system can be improved greatly with the aid of GPU-accelerated RISM. An unmanned aerial vehicle (UAV is optimized using this framework and the range is improved by 4.67% after optimization, which shows effectiveness and efficiency of this framework.

  14. Particle Swarm Optimization for Outdoor Lighting Design

    Directory of Open Access Journals (Sweden)

    Ana Castillo-Martinez

    2017-01-01

    Full Text Available Outdoor lighting is an essential service for modern life. However, the high influence of this type of facility on energy consumption makes it necessary to take extra care in the design phase. Therefore, this manuscript describes an algorithm to help light designers to get, in an easy way, the best configuration parameters and to improve energy efficiency, while ensuring a minimum level of overall uniformity. To make this possible, we used a particle swarm optimization (PSO algorithm. These algorithms are well established, and are simple and effective to solve optimization problems. To take into account the most influential parameters on lighting and energy efficiency, 500 simulations were performed using DIALux software (4.10.0.2, DIAL, Ludenscheid, Germany. Next, the relation between these parameters was studied using to data mining software. Subsequently, we conducted two experiments for setting parameters that enabled the best configuration algorithm in order to improve efficiency in the proposed process optimization.

  15. Optimizing the integrated design of boilers - simulation

    DEFF Research Database (Denmark)

    Sørensen, Kim; Karstensen, Claus M. S.; Condra, Thomas Joseph

    2004-01-01

    .) it is important to see the 3 components as an integrated unit and optimize these as such. This means that the burner must be designed and optimized exactly to the pressure part where it is utilized, the control system must have a conguration optimal for the pressure part and burner where it is utilized etc....... Traditionally boiler control systems have been designed in a rather simple manner consisting of a feed water controller and a pressure controller; two controllers which, in principle, operated without any interaction - for more details on boiler control see [4]. During the last year Aalborg Industries A/S has...... that are difcult to estimate/calculate have (on the basis of the tests) been determined by means of a least-square data tting, the minimums have been found by means of a Gauss-Newton algorithm and physically veried afterwards. The dynamic boiler model will be applied for developing controllers and adapting...

  16. Design and volume optimization of space structures

    KAUST Repository

    Jiang, Caigui

    2017-07-21

    We study the design and optimization of statically sound and materially efficient space structures constructed by connected beams. We propose a systematic computational framework for the design of space structures that incorporates static soundness, approximation of reference surfaces, boundary alignment, and geometric regularity. To tackle this challenging problem, we first jointly optimize node positions and connectivity through a nonlinear continuous optimization algorithm. Next, with fixed nodes and connectivity, we formulate the assignment of beam cross sections as a mixed-integer programming problem with a bilinear objective function and quadratic constraints. We solve this problem with a novel and practical alternating direction method based on linear programming relaxation. The capability and efficiency of the algorithms and the computational framework are validated by a variety of examples and comparisons.

  17. Optimization of confocal scanning laser ophthalmoscope design.

    Science.gov (United States)

    LaRocca, Francesco; Dhalla, Al-Hafeez; Kelly, Michael P; Farsiu, Sina; Izatt, Joseph A

    2013-07-01

    Confocal scanning laser ophthalmoscopy (cSLO) enables high-resolution and high-contrast imaging of the retina by employing spatial filtering for scattered light rejection. However, to obtain optimized image quality, one must design the cSLO around scanner technology limitations and minimize the effects of ocular aberrations and imaging artifacts. We describe a cSLO design methodology resulting in a simple, relatively inexpensive, and compact lens-based cSLO design optimized to balance resolution and throughput for a 20-deg field of view (FOV) with minimal imaging artifacts. We tested the imaging capabilities of our cSLO design with an experimental setup from which we obtained fast and high signal-to-noise ratio (SNR) retinal images. At lower FOVs, we were able to visualize parafoveal cone photoreceptors and nerve fiber bundles even without the use of adaptive optics. Through an experiment comparing our optimized cSLO design to a commercial cSLO system, we show that our design demonstrates a significant improvement in both image quality and resolution.

  18. MDO can help resolve the designer's dilemma. [multidisciplinary design optimization

    Science.gov (United States)

    Sobieszczanski-Sobieski, Jaroslaw; Tulinius, Jan R.

    1991-01-01

    Multidisciplinary design optimization (MDO) is presented as a rapidly growing body of methods, algorithms, and techniques that will provide a quantum jump in the effectiveness and efficiency of the quantitative side of design, and will turn that side into an environment in which the qualitative side can thrive. MDO borrows from CAD/CAM for graphic visualization of geometrical and numerical data, data base technology, and in computer software and hardware. Expected benefits from this methodology are a rational, mathematically consistent approach to hypersonic aircraft designs, designs pushed closer to the optimum, and a design process either shortened or leaving time available for different concepts to be explored.

  19. FPGA adders: performance evaluation and optimal design

    OpenAIRE

    Xing, S.; Yu, WWH

    1998-01-01

    Delay models and cost analyses developed for ASIC technology are not useful in designing and implementing FPGA devices. The authors discuss costs and operational delays of fixed-point adders on Xilinx 4000 series devices and propose timing models and optimization schemes for carry-skip and carry-select adders.

  20. Design Optimization of Structural Health Monitoring Systems

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, Eric B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-03-06

    Sensor networks drive decisions. Approach: Design networks to minimize the expected total cost (in a statistical sense, i.e. Bayes Risk) associated with making wrong decisions and with installing maintaining and running the sensor network itself. Search for optimal solutions using Monte-Carlo-Sampling-Adapted Genetic Algorithm. Applications include structural health monitoring and surveillance.

  1. Non-probabilistic Robust Optimal Design Method

    Institute of Scientific and Technical Information of China (English)

    SUN Wei; XU Huanwei; ZHANG Xu

    2009-01-01

    For the purpose of dealing with uncertainty factors in engineering optimization problems, this paper presents a new non-probabilistic robust optimal design method based on maximum variation estimation. The method analyzes the effect of uncertain factors to objective and constraints functions, and then the maximal variations to a solution are calculated. In order to guarantee robust feasibility the maximal variations of constraints are added to original constraints as penalty term; the maximal variation of objective function is taken as a robust index to a solution; linear physical programming is used to adjust the values of quality characteristic and quality variation, and then a bi-level mathematical robust optimal model is coustructed. The method does not require presumed probability distribution of uncertain factors or continuous and differentiable of objective and constraints functions. To demonstrate the proposed method, the design of the two-bar structure acted by concentrated load is presented. In the example the robustness of the normal stress, feasibility of the total volume and the buckling stress are studied. The robust optimal design results show that in the condition of maintaining feasibility robustness, the proposed approach can obtain a robust solution which the designer is satisfied with the value of objective function and its variation.

  2. Design Oriented Structural Modeling for Airplane Conceptual Design Optimization

    Science.gov (United States)

    Livne, Eli

    1999-01-01

    The main goal for research conducted with the support of this grant was to develop design oriented structural optimization methods for the conceptual design of airplanes. Traditionally in conceptual design airframe weight is estimated based on statistical equations developed over years of fitting airplane weight data in data bases of similar existing air- planes. Utilization of such regression equations for the design of new airplanes can be justified only if the new air-planes use structural technology similar to the technology on the airplanes in those weight data bases. If any new structural technology is to be pursued or any new unconventional configurations designed the statistical weight equations cannot be used. In such cases any structural weight estimation must be based on rigorous "physics based" structural analysis and optimization of the airframes under consideration. Work under this grant progressed to explore airframe design-oriented structural optimization techniques along two lines of research: methods based on "fast" design oriented finite element technology and methods based on equivalent plate / equivalent shell models of airframes, in which the vehicle is modelled as an assembly of plate and shell components, each simulating a lifting surface or nacelle / fuselage pieces. Since response to changes in geometry are essential in conceptual design of airplanes, as well as the capability to optimize the shape itself, research supported by this grant sought to develop efficient techniques for parametrization of airplane shape and sensitivity analysis with respect to shape design variables. Towards the end of the grant period a prototype automated structural analysis code designed to work with the NASA Aircraft Synthesis conceptual design code ACS= was delivered to NASA Ames.

  3. Internet factories

    NARCIS (Netherlands)

    Strijkers, R.J.

    2014-01-01

    This thesis contributes a novel concept for introducing new network technologies in network infrastructures. The concept, called Internet factories, describes the methodical process to create and manage application-specific networks from application programs, referred to as Netapps. An Internet

  4. Internet Factories

    NARCIS (Netherlands)

    Strijkers, R.J.

    2014-01-01

    This thesis contributes a novel concept for introducing new network technologies in network infrastructures. The concept, called Internet factories, describes the methodical process to create and manage application-specific networks from application programs, referred to as Netapps. An Internet

  5. The preparation and evaluation of sustained release suppositories containing ketoprofen and Eudragit RL 100 by using factorial design.

    Science.gov (United States)

    Ozgüney, I; Ozcan, I; Ertan, G; Güneri, T

    2007-01-01

    The preparation of ketoprofen (KP) sustained release (SR) suppositories was designed according to the 3(2) x 2(1) factorial design as three different KP:Eudragit RL 100 ratios (1:0.5, 1:1, 1:2), three particle sizes of prepared granules (250-500, 500-710, and 710-1000 microm) and two different PEG 400:PEG 6000 ratios (40:60, 50:50). The conventional KP suppositories were also prepared by using Witepsol H 15, Massa Estarinum B, Cremao and the mixture of PEG 400:PEG 6000. The dissolution studies of suppositories prepared were carried out according to the USP XXIII basket method in the phosphate buffer (pH = 7.2) at 50 rpm, and it was shown that the dissolution time was sustained up to 8 hours. According to the results of the factorial design, the most important independent variable on t50 and t80 was drug:polymer ratios. The log of partition coefficient of KP was determined as 1.46, showing the high affinity to the oily phase. n exponent and kinetic studies were conducted to explain diffusion mechanism, and it is understood that if the inert KP:Eudragit RL 100 ratio is increased in the particles, the Fickian difusion dominates and the best kinetic turns to Higuchi from the Hixson-Crowell. There is neither crystalline form of KP nor degradation product in the suppositories detected with the differential scanning calorimetry (DSC) studies. In addition to these studies, antiinflammatory activity of SR suppositories also determined that it was significantly extended according to the conventional suppositories.

  6. Integrated design by optimization of electrical energy systems

    CERN Document Server

    Roboam, Xavier

    2013-01-01

    This book proposes systemic design methodologies applied to electrical energy systems, in particular integrated optimal design with modeling and optimization methods and tools. It is made up of six chapters dedicated to integrated optimal design. First, the signal processing of mission profiles and system environment variables are discussed. Then, optimization-oriented analytical models, methods and tools (design frameworks) are proposed. A "multi-level optimization" smartly coupling several optimization processes is the subject of one chapter. Finally, a technico-economic optimizatio

  7. Multidisciplinary Design Optimization on Conceptual Design of Aero-engine

    Science.gov (United States)

    Zhang, Xiao-bo; Wang, Zhan-xue; Zhou, Li; Liu, Zeng-wen

    2016-06-01

    In order to obtain better integrated performance of aero-engine during the conceptual design stage, multiple disciplines such as aerodynamics, structure, weight, and aircraft mission are required. Unfortunately, the couplings between these disciplines make it difficult to model or solve by conventional method. MDO (Multidisciplinary Design Optimization) methodology which can well deal with couplings of disciplines is considered to solve this coupled problem. Approximation method, optimization method, coordination method, and modeling method for MDO framework are deeply analyzed. For obtaining the more efficient MDO framework, an improved CSSO (Concurrent Subspace Optimization) strategy which is based on DOE (Design Of Experiment) and RSM (Response Surface Model) methods is proposed in this paper; and an improved DE (Differential Evolution) algorithm is recommended to solve the system-level and discipline-level optimization problems in MDO framework. The improved CSSO strategy and DE algorithm are evaluated by utilizing the numerical test problem. The result shows that the efficiency of improved methods proposed by this paper is significantly increased. The coupled problem of VCE (Variable Cycle Engine) conceptual design is solved by utilizing improved CSSO strategy, and the design parameter given by improved CSSO strategy is better than the original one. The integrated performance of VCE is significantly improved.

  8. Aircraft family design using enhanced collaborative optimization

    Science.gov (United States)

    Roth, Brian Douglas

    Significant progress has been made toward the development of multidisciplinary design optimization (MDO) methods that are well-suited to practical large-scale design problems. However, opportunities exist for further progress. This thesis describes the development of enhanced collaborative optimization (ECO), a new decomposition-based MDO method. To support the development effort, the thesis offers a detailed comparison of two existing MDO methods: collaborative optimization (CO) and analytical target cascading (ATC). This aids in clarifying their function and capabilities, and it provides inspiration for the development of ECO. The ECO method offers several significant contributions. First, it enhances communication between disciplinary design teams while retaining the low-order coupling between them. Second, it provides disciplinary design teams with more authority over the design process. Third, it resolves several troubling computational inefficiencies that are associated with CO. As a result, ECO provides significant computational savings (relative to CO) for the test cases and practical design problems described in this thesis. New aircraft development projects seldom focus on a single set of mission requirements. Rather, a family of aircraft is designed, with each family member tailored to a different set of requirements. This thesis illustrates the application of decomposition-based MDO methods to aircraft family design. This represents a new application area, since MDO methods have traditionally been applied to multidisciplinary problems. ECO offers aircraft family design the same benefits that it affords to multidisciplinary design problems. Namely, it simplifies analysis integration, it provides a means to manage problem complexity, and it enables concurrent design of all family members. In support of aircraft family design, this thesis introduces a new wing structural model with sufficient fidelity to capture the tradeoffs associated with component

  9. The Walking Interventions Through Texting (WalkIT) Trial: Rationale, Design, and Protocol for a Factorial Randomized Controlled Trial of Adaptive Interventions for Overweight and Obese, Inactive Adults.

    Science.gov (United States)

    Hurley, Jane C; Hollingshead, Kevin E; Todd, Michael; Jarrett, Catherine L; Tucker, Wesley J; Angadi, Siddhartha S; Adams, Marc A

    2015-09-11

    Walking is a widely accepted and frequently targeted health promotion approach to increase physical activity (PA). Interventions to increase PA have produced only small improvements. Stronger and more potent behavioral intervention components are needed to increase time spent in PA, improve cardiometabolic risk markers, and optimize health. Our aim is to present the rationale and methods from the WalkIT Trial, a 4-month factorial randomized controlled trial (RCT) in inactive, overweight/obese adults. The main purpose of the study was to evaluate whether intensive adaptive components result in greater improvements to adults' PA compared to the static intervention components. Participants enrolled in a 2x2 factorial RCT and were assigned to one of four semi-automated, text message-based walking interventions. Experimental components included adaptive versus static steps/day goals, and immediate versus delayed reinforcement. Principles of percentile shaping and behavioral economics were used to operationalize experimental components. A Fitbit Zip measured the main outcome: participants' daily physical activity (steps and cadence) over the 4-month duration of the study. Secondary outcomes included self-reported PA, psychosocial outcomes, aerobic fitness, and cardiorespiratory risk factors assessed pre/post in a laboratory setting. Participants were recruited through email listservs and websites affiliated with the university campus, community businesses and local government, social groups, and social media advertising. This study has completed data collection as of December 2014, but data cleaning and preliminary analyses are still in progress. We expect to complete analysis of the main outcomes in late 2015 to early 2016. The Walking Interventions through Texting (WalkIT) Trial will further the understanding of theory-based intervention components to increase the PA of men and women who are healthy, insufficiently active and are overweight or obese. WalkIT is one of

  10. Use of fractional factorial design for selection of nutrients for culturing Paecilomyces variotii in eucalyptus hemicellulosic hydrolysate

    Directory of Open Access Journals (Sweden)

    J.B. Almeida e Silva

    1998-09-01

    Full Text Available A eucalyptus hemicellulose fraction was hydrolysed by treating eucalyptus wood chips with sulfuric acid. The hydrolysate was used as the substrate to grow Paecilomyces variotii IOC-3764 cultured for 72 or 96 hours. The influence of the inhibitors, nutrients and fermentation time was verified by a 28-4 and, subsequently, a 25-1 fractional factorial design. The effects of the inhibitors (acetic acid and furfural, nutrients (rice bran, urea, potassium nitrate, ammonium sulfate, magnesium sulfate and sodium phosphate and fermentation time were investigated. The highest yield (10.59 g/L of biomass was obtained when the microorganisms were cultivated for 72 hours in a medium composed of 30 g/L rice bran, 9.4 g/L ammonium sulfate (2 g/L nitrogen and 2 g/L sodium phosphate.

  11. Optimization of straight-sided spline design

    DEFF Research Database (Denmark)

    Pedersen, Niels Leergaard

    2011-01-01

    and the subject of improving the design. The present paper concentrates on the optimization of splines and the predictions of stress concentrations, which are determined by finite element analysis (FEA). Using different design modifications, that do not change the spline load carrying capacity, it is shown......Spline connection of shaft and hub is commonly applied when large torque capacity is needed together with the possibility of disassembly. The designs of these splines are generally controlled by different standards. In view of the common use of splines, it seems that few papers deal with splines...... that large reductions in the maximum stress are possible. Fatigue life of a spline can be greatly improved with up to a 25% reduction in the maximum stress level. Design modifications are given as simple analytical functions (modified super elliptical shape) with only two active design parameters...

  12. Optimal Control Design with Limited Model Information

    CERN Document Server

    Farokhi, F; Johansson, K H

    2011-01-01

    We introduce the family of limited model information control design methods, which construct controllers by accessing the plant's model in a constrained way, according to a given design graph. We investigate the achievable closed-loop performance of discrete-time linear time-invariant plants under a separable quadratic cost performance measure with structured static state-feedback controllers. We find the optimal control design strategy (in terms of the competitive ratio and domination metrics) when the control designer has access to the local model information and the global interconnection structure of the plant-to-be-controlled. At last, we study the trade-off between the amount of model information exploited by a control design method and the best closed-loop performance (in terms of the competitive ratio) of controllers it can produce.

  13. LOCATORS OPTIMIZATION FOR MEASURING FIXTURE DESIGN

    Institute of Scientific and Technical Information of China (English)

    Wang Jian; Zhou Jiangqi; Lin Zhongqin

    2004-01-01

    "N-2-1" principle is widely recognized in the fixture design for deformable sheet metal workpieces, where N, the locators on primary datum, is the key to sheet metal fixture design. However, little research is done on how to determine the positions and the number of N locators. In practice, the N locators are frequently designed from experience, which is often unsatisfactory for achieving the precision requirement in fixture design. A new method to lay out the N locators for measuring fixture of deformable sheet metal workpiece is presented, given the fixed number of N. Finite-element method is used to model and analysis the deformation of different locator layouts. A knowledge based genetic algorithm (KBGA) is applied to identify the optimum locator layout for measuring fixture design. An example of a door outer is used to verify the optimization approach.

  14. Optimal design of capacitor-driven coilgun

    Science.gov (United States)

    Kim, Seog-Whan; Jung, Hyun-Kyo; Hahn, Song-Yop

    1994-03-01

    This paper presents an analysis and optimal design of a capacitor-driven inductive coilgun. An equivalent circuit is used for a launch simulation of the coilgun. The circuit equations are solved together with the equation of motion of the projectile by using the Runge-Kutta method. The numerical results are compared with the experimental values to verify the usefulness of the developed simulation program. It is shown that the numerical and the experimental results are in a good agreement. In the design of the system the optimization is achieved by employing the genetic algorithm. The resultant specifications of the coilgun optimally designed by the proposed algorithm are tested by experiment. Finally the obtained results are compared with those designed by approximate equations and by linear search methods as well. It is found that the proposed algorithm gives a better result in the energy efficiency of the system, namely it enables one to obtain a higher muzzle velocity of the projectile with the same amount of energy.

  15. Automation enhancements in multidisciplinary design optimization

    Science.gov (United States)

    Wujek, Brett Alan

    The process of designing complex systems has necessarily evolved into one which includes the contributions and interactions of multiple disciplines. To date, the Multidisciplinary Design Optimization (MDO) process has been addressed mainly from the standpoint of algorithm development, with the primary concerns being effective and efficient coordination of disciplinary activities, modification of conventional optimization methods, and the utility of approximation techniques toward this goal. The focus of this dissertation is on improving the efficiency of MDO algorithms through the automation of common procedures and the development of improved methods to carry out these procedures. In this research, automation enhancements are made to the MDO process in three different areas: execution, sensitivity analysis and utility, and design variable move-limit management. A framework is developed along with a graphical user interface called NDOPT to automate the setup and execution of MDO algorithms in a research environment. The technology of automatic differentiation (AD) is utilized within various modules of MDO algorithms for fast and accurate sensitivity calculation, allowing for the frequent use of updated sensitivity information. With the use of AD, efficiency improvements are observed in the convergence of system analyses and in certain optimization procedures since gradient-based methods, traditionally considered cost-prohibitive, can be employed at a more reasonable expense. Finally, a method is developed to automatically monitor and adjust design variable move-limits for the approximate optimization process commonly used in MDO algorithms. With its basis in the well established and probably convergent trust region approach, the Trust region Ratio Approximation method (TRAM) developed in this research accounts for approximation accuracy and the sensitivity of the model error to the design space in providing a flexible move-limit adjustment factor. Favorable results

  16. Design Methods and Optimization for Morphing Aircraft

    Science.gov (United States)

    Crossley, William A.

    2005-01-01

    This report provides a summary of accomplishments made during this research effort. The major accomplishments are in three areas. The first is the use of a multiobjective optimization strategy to help identify potential morphing features that uses an existing aircraft sizing code to predict the weight, size and performance of several fixed-geometry aircraft that are Pareto-optimal based upon on two competing aircraft performance objectives. The second area has been titled morphing as an independent variable and formulates the sizing of a morphing aircraft as an optimization problem in which the amount of geometric morphing for various aircraft parameters are included as design variables. This second effort consumed most of the overall effort on the project. The third area involved a more detailed sizing study of a commercial transport aircraft that would incorporate a morphing wing to possibly enable transatlantic point-to-point passenger service.

  17. Speed Optimization in Liner Shipping Network Design

    DEFF Research Database (Denmark)

    Brouer, Berit Dangaard; Karsten, Christian Vad; Pisinger, David

    In the Liner Shipping Network Design Problem (LSNDP) services sail at a given speed throughout a round trip. In reality most services operate with a speed differentiated head- and back-haul, or even individual speeds on every sailing between two ports. The speed of a service is decisive...... for the bunker consumption in the network as well as the transit time of cargo. Speed optimization has been considered for tramp shipping showing significant reductions in fuel consumption. However, variable speeds has not been considered for post optimization of the LSNDP, where speed optimization could result...... in changes to the cargo flow due to transit time restrictions as well as significant savings in fuel consumption and required vessel deployment due to a weekly frequency requirement. We present a heuristic method to calculate variable speed on a service and present computational results for improving...

  18. Optimizing the integrated design of boilers - simulation

    DEFF Research Database (Denmark)

    Sørensen, Kim; Karstensen, Claus M. S.; Condra, Thomas Joseph

    2004-01-01

    .) it is important to see the 3 components as an integrated unit and optimize these as such. This means that the burner must be designed and optimized exactly to the pressure part where it is utilized, the control system must have a conguration optimal for the pressure part and burner where it is utilized etc...... together with Aalborg University and The Technical University of Denmark carried out a project to develop the Model based Multivariable Control System . This is foreseen to be a control system utilizing the continuously increasing computational possibilities to take all the important operation parameters...... formulated as Differential-Algebraic-Equation (DAE) systems. For integration in SIMULINK the models have been index-reduced to Ordinary- Differential-Equation (ODE) systems. The simulations have been carried out by means of the MATLAB/SIMULINK integration routines. For verifying the models developed...

  19. Sequential ensemble-based optimal design for parameter estimation: SEQUENTIAL ENSEMBLE-BASED OPTIMAL DESIGN

    Energy Technology Data Exchange (ETDEWEB)

    Man, Jun [Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou China; Zhang, Jiangjiang [Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou China; Li, Weixuan [Pacific Northwest National Laboratory, Richland Washington USA; Zeng, Lingzao [Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou China; Wu, Laosheng [Department of Environmental Sciences, University of California, Riverside California USA

    2016-10-01

    The ensemble Kalman filter (EnKF) has been widely used in parameter estimation for hydrological models. The focus of most previous studies was to develop more efficient analysis (estimation) algorithms. On the other hand, it is intuitively understandable that a well-designed sampling (data-collection) strategy should provide more informative measurements and subsequently improve the parameter estimation. In this work, a Sequential Ensemble-based Optimal Design (SEOD) method, coupled with EnKF, information theory and sequential optimal design, is proposed to improve the performance of parameter estimation. Based on the first-order and second-order statistics, different information metrics including the Shannon entropy difference (SD), degrees of freedom for signal (DFS) and relative entropy (RE) are used to design the optimal sampling strategy, respectively. The effectiveness of the proposed method is illustrated by synthetic one-dimensional and two-dimensional unsaturated flow case studies. It is shown that the designed sampling strategies can provide more accurate parameter estimation and state prediction compared with conventional sampling strategies. Optimal sampling designs based on various information metrics perform similarly in our cases. The effect of ensemble size on the optimal design is also investigated. Overall, larger ensemble size improves the parameter estimation and convergence of optimal sampling strategy. Although the proposed method is applied to unsaturated flow problems in this study, it can be equally applied in any other hydrological problems.

  20. Parallel kinematics type, kinematics, and optimal design

    CERN Document Server

    Liu, Xin-Jun

    2014-01-01

    Parallel Kinematics- Type, Kinematics, and Optimal Design presents the results of 15 year's research on parallel mechanisms and parallel kinematics machines. This book covers the systematic classification of parallel mechanisms (PMs) as well as providing a large number of mechanical architectures of PMs available for use in practical applications. It focuses on the kinematic design of parallel robots. One successful application of parallel mechanisms in the field of machine tools, which is also called parallel kinematics machines, has been the emerging trend in advanced machine tools. The book describes not only the main aspects and important topics in parallel kinematics, but also references novel concepts and approaches, i.e. type synthesis based on evolution, performance evaluation and optimization based on screw theory, singularity model taking into account motion and force transmissibility, and others.   This book is intended for researchers, scientists, engineers and postgraduates or above with interes...

  1. Optimized design for an electrothermal microactuator

    Science.gov (United States)

    Cǎlimǎnescu, Ioan; Stan, Liviu-Constantin; Popa, Viorica

    2015-02-01

    In micromechanical structures, electrothermal actuators are known to be capable of providing larger force and reasonable tip deflection compared to electrostatic ones. Many studies have been devoted to the analysis of the flexure actuators. One of the most popular electrothermal actuators is called `U-shaped' actuator. The device is composed of two suspended beams with variable cross sections joined at the free end, which constrains the tip to move in an arcing motion while current is passed through the actuator. The goal of this research is to determine via FEA the best fitted geometry of the microactuator (optimization input parameters) in order to render some of the of the output parameters such as thermal strain or total deformations to their maximum values. The software to generate the CAD geometry was SolidWorks 2010 and all the FEA analysis was conducted with Ansys 13 TM. The optimized model has smaller geometric values of the input parameters that is a more compact geometry; The maximum temperature reached a smaller value for the optimized model; The calculated heat flux is with 13% bigger for the optimized model; the same for Joule Heat (26%), Total deformation (1.2%) and Thermal Strain (8%). By simple optimizing the design the dimensions and the performance of the micro actuator resulted more compact and more efficient.

  2. Characterization of a Solid Oxide Fuel Cell Gas Turbine Hybrid System Based on a Factorial Design of Experiments Using Hardware Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Restrepo, Bernardo; Banta, Larry E; Tucker, David

    2012-10-01

    A full factorial experimental design and a replicated fractional factorial design were carried out using the Hybrid Performance (HyPer) project facility installed at the National Energy Technology Laboratory (NETL), U.S. Department of Energy to simulate gasifer/fuel cell/turbine hybrid power systems. The HyPer facility uses hardware in the loop (HIL) technology that couples a modified recuperated gas turbine cycle with hardware driven by a solid oxide fuel cell model. A 34 full factorial design (FFD) was selected to study the effects of four factors: cold-air, hot-air, bleed-air bypass valves, and the electric load on different parameters such as cathode and turbine inlet temperatures, pressure and mass flow. The results obtained, compared with former results where the experiments were made using one-factor-at-a-time (OFAT), show that no strong interactions between the factors are present in the different parameters of the system. This work also presents a fractional factorial design (ffd) 34-2 in order to analyze replication of the experiments. In addition, a new envelope is described based on the results of the design of experiments (DoE), compared with OFAT experiments, and analyzed in an off-design integrated fuel cell/gas turbine framework. This paper describes the methodology, strategy, and results of these experiments that bring new knowledge concerning the operating state space for this kind of power generation system.

  3. Design of optimal cyclers using solar sails

    OpenAIRE

    2002-01-01

    Approved for public release; distribution in unlimited. Ongoing interest in establishing a base on Mars has spurred a need for regular and repeated visits to the red planet using a cycling shuttle to transport supplies, equipment and to retrieve surface samples. This thesis presents an approach to designing an optimal heliocentric cycling orbit, or cycler, using solar sa ils. Results show that solar sails can be used to significantly reduce s VÃ at Mars and Earth. For example, using a rea...

  4. Database Design and Management in Engineering Optimization.

    Science.gov (United States)

    1988-02-01

    for 4 Steekanta Murthy, T., Shyy, Y.-K. and Arora, J. S. MIDAS: educational and research purposes. It has considerably Management of Information for...an education in the particular field of ,-". expertise. ..-. *, The types of information to be retained and presented depend on the user of the system...191 . ,. 110 Though the design of MIDAS is directly influenced by Obl- SPOC qUery-bioek the current structural optimization applications, it possesses

  5. Design Optimization of Marine Reduction Gears.

    Science.gov (United States)

    1983-09-01

    Approved by: A t/ 6 𔃼 -A-,i Thesis Advisor Second Reader Chairman,De rtment or Mecanica Engineering I De&n of Science and Engineering 3...unconstrained problems. 1. Direct Methods Direct methods are popular constrained optimization algorithms. One well known direct method is the method of...various popular tooth forms and Appendix A contains a descriptive figure of gear tooth design variables. However, the following equations are a good

  6. Application of Optimal Sinter Burden Design

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The application of the optimal sinter burden design in the sinter shop of No.1 Iron-making Plant in Tangshan Iron & Steel Corp was reported. By using burden calculation and simulating production under different situations, it is demonstrated that the technology can provide the relevant information in product quality and cost etc. for decision-makers. The technology has been used to guide production of the Sinter Shop since 2000, and a remarkable achievement has been obtained.

  7. Optimal experimental design strategies for detecting hormesis

    OpenAIRE

    2010-01-01

    Hormesis is a widely observed phenomenon in many branches of life sciences ranging from toxicology studies to agronomy with obvious public health and risk assessment implications. We address optimal experimental design strategies for determining the presence of hormesis in a controlled environment using the recently proposed Hunt-Bowman model. We propose alternative models that have an implicit hormetic threshold, discuss their advantages over current models, construct and study properties of...

  8. Robust Structured Control Design via LMI Optimization

    DEFF Research Database (Denmark)

    Adegas, Fabiano Daher; Stoustrup, Jakob

    2011-01-01

    This paper presents a new procedure for discrete-time robust structured control design. Parameter-dependent nonconvex conditions for stabilizable and induced L2-norm performance controllers are solved by an iterative linear matrix inequalities (LMI) optimization. A wide class of controller...... structures including decentralized of any order, fixed-order dynamic output feedback, static output feedback can be designed robust to polytopic uncertainties. Stability is proven by a parameter-dependent Lyapunov function. Numerical examples on robust stability margins shows that the proposed procedure can...

  9. General purpose optimization software for engineering design

    Science.gov (United States)

    Vanderplaats, G. N.

    1990-01-01

    The author has developed several general purpose optimization programs over the past twenty years. The earlier programs were developed as research codes and served that purpose reasonably well. However, in taking the formal step from research to industrial application programs, several important lessons have been learned. Among these are the importance of clear documentation, immediate user support, and consistent maintenance. Most important has been the issue of providing software that gives a good, or at least acceptable, design at minimum computational cost. Here, the basic issues developing optimization software for industrial applications are outlined and issues of convergence rate, reliability, and relative minima are discussed. Considerable feedback has been received from users, and new software is being developed to respond to identified needs. The basic capabilities of this software are outlined. A major motivation for the development of commercial grade software is ease of use and flexibility, and these issues are discussed with reference to general multidisciplinary applications. It is concluded that design productivity can be significantly enhanced by the more widespread use of optimization as an everyday design tool.

  10. Smart Factory

    DEFF Research Database (Denmark)

    Bilberg, Arne; Radziwon, Agnieszka; Grube Hansen, David

    2017-01-01

    , and to target their challenges and ensure sustainable growth and business in these enterprises. Therefore the focus of the Smart Factory project was to support the growth and sustainable development of the small and medium sized manufacturing industry in Denmark. The project focused on SMEs and how to improve...... their innovation and competitive advantage by focusing at their competences, strengths and opportunities. The project suggests innovative solutions and business models through collaboration and use of new technologies. In the Smart Factory, SMEs should be able to collaborate on new products, markets and production...... or supply chains in a creative organization. The Smart factory is supposed to be organic, meaning it is able to reconfigure and adjust to new projects and customers and has to be seen and taken as a model for inspiration to manufacturing businesses in general. The project takes into consideration Danish...

  11. Design of a tomato packing system by image processing and optimization processing

    Science.gov (United States)

    Li, K.; Kumazaki, T.; Saigusa, M.

    2016-02-01

    In recent years, with the development of environmental control systems in plant factories, tomato production has rapidly increased in Japan. However, with the decline in the availability of agricultural labor, there is a need to automate grading, sorting and packing operations. In this research, we designed an automatic packing program with which tomato weight could be estimated by image processing and that they were able to be packed in an optimized configuration. The weight was estimated by using the pixel area properties after an L*a*b* color model conversion, noise rejection, filling holes and boundary preprocessing. The packing optimization program was designed by a 0-1 knapsack algorithm for dynamic combinatorial optimization.

  12. Pediatric Diabetic Ketoacidosis, Fluid Therapy and Cerebral Injury: The Design of a Factorial Randomized Controlled Trial

    OpenAIRE

    Glaser, Nicole S.; Ghetti, Simona; Casper, T. Charles; Dean, J. Michael; Kuppermann, Nathan

    2013-01-01

    Treatment protocols for pediatric diabetic ketoacidosis (DKA) vary considerably among centers in the United States and worldwide. The optimal protocol for intravenous fluid administration is an area of particular controversy, mainly in regard to possible associations between rates of intravenous fluid infusion and the development of cerebral edema, the most common and most feared complication of DKA in children. Theoretical concerns about associations between osmotic fluid shifts and cerebral...

  13. Higgs Factory Concepts

    CERN Document Server

    Zimmermann, Frank

    2016-01-01

    Designs for future high-energy circular electron-positron colliders are based on both established and novel concepts. An appropriate design will enable these facilities to serve not only as “Higgs factories”, but also as Z, W and top factories, and, in addition, to become a possible first step to a higher-energy hadron collider.

  14. Pareto Optimal Design for Synthetic Biology.

    Science.gov (United States)

    Patanè, Andrea; Santoro, Andrea; Costanza, Jole; Carapezza, Giovanni; Nicosia, Giuseppe

    2015-08-01

    Recent advances in synthetic biology call for robust, flexible and efficient in silico optimization methodologies. We present a Pareto design approach for the bi-level optimization problem associated to the overproduction of specific metabolites in Escherichia coli. Our method efficiently explores the high dimensional genetic manipulation space, finding a number of trade-offs between synthetic and biological objectives, hence furnishing a deeper biological insight to the addressed problem and important results for industrial purposes. We demonstrate the computational capabilities of our Pareto-oriented approach comparing it with state-of-the-art heuristics in the overproduction problems of i) 1,4-butanediol, ii) myristoyl-CoA, i ii) malonyl-CoA , iv) acetate and v) succinate. We show that our algorithms are able to gracefully adapt and scale to more complex models and more biologically-relevant simulations of the genetic manipulations allowed. The Results obtained for 1,4-butanediol overproduction significantly outperform results previously obtained, in terms of 1,4-butanediol to biomass formation ratio and knock-out costs. In particular overproduction percentage is of +662.7%, from 1.425 mmolh⁻¹gDW⁻¹ (wild type) to 10.869 mmolh⁻¹gDW⁻¹, with a knockout cost of 6. Whereas, Pareto-optimal designs we have found in fatty acid optimizations strictly dominate the ones obtained by the other methodologies, e.g., biomass and myristoyl-CoA exportation improvement of +21.43% (0.17 h⁻¹) and +5.19% (1.62 mmolh⁻¹gDW⁻¹), respectively. Furthermore CPU time required by our heuristic approach is more than halved. Finally we implement pathway oriented sensitivity analysis, epsilon-dominance analysis and robustness analysis to enhance our biological understanding of the problem and to improve the optimization algorithm capabilities.

  15. The PEP-II Asymmetric B Factory: Design details and R&D results

    Energy Technology Data Exchange (ETDEWEB)

    Bloom, E.; DeStaebler, H.; Dorfan, J. [Stanford Linear Accelerator Center, Menlo Park, CA (United States)] [and others

    1994-06-01

    PEP-II, a 9 GeV {times} 3.1 GeV electron-positron collider with a design luminosity of 3 {times} 10{sup 33} cm{sup {minus}2}s{sup {minus}1} has now been approved for construction by SLAC, LBL and LLNL for the purpose of studying CP violation in the B{bar B} system. This upgrade project involves replacing the vacuum and RF systeum of PEP, which will serve as the high-energy ring (HER), along with the addition of a new low-energy ring (LER) mounted atop the HER. Designs for both rings are described, and the anticipated project construction schedule is indicated. Collider operation will begin at the end of 1998. An aggressive R&D program has been carried out to validate our design choices; key results in the areas of lattice design, vacuum, RF, and multibunch feedback are summarized.

  16. Colorful Microbial Cell Factories

    DEFF Research Database (Denmark)

    Petersen, Pia Damm

    Yeast cell factories are powerful tools used for the production of high-value natural compounds otherwise not easily available. Many bioactive and industrially important plant secondary metabolites can be produced in yeast by engineering their biosynthetic pathways into yeast cells, as these both...... anthocyanins. Yeast cell factories present a platform to circumvent the problem of low yields of interesting molecular structures in plant tissues, as hand-picking of desired enzyme activities allows for specific biosynthesis of the precise pigment of interest, as well as choosing more stable structures...... for heterologous biosynthesis is possible. In cell factories, great improvements in yields can be achieved through molecular engineering of flux from endogenous yeast precursors, e.g. by elimination of by-product formation, and by genetic optimization of pathway components, such as fine-tuning of expression levels...

  17. Machine Learning Techniques in Optimal Design

    Science.gov (United States)

    Cerbone, Giuseppe

    1992-01-01

    Many important applications can be formalized as constrained optimization tasks. For example, we are studying the engineering domain of two-dimensional (2-D) structural design. In this task, the goal is to design a structure of minimum weight that bears a set of loads. A solution to a design problem in which there is a single load (L) and two stationary support points (S1 and S2) consists of four members, E1, E2, E3, and E4 that connect the load to the support points is discussed. In principle, optimal solutions to problems of this kind can be found by numerical optimization techniques. However, in practice [Vanderplaats, 1984] these methods are slow and they can produce different local solutions whose quality (ratio to the global optimum) varies with the choice of starting points. Hence, their applicability to real-world problems is severely restricted. To overcome these limitations, we propose to augment numerical optimization by first performing a symbolic compilation stage to produce: (a) objective functions that are faster to evaluate and that depend less on the choice of the starting point and (b) selection rules that associate problem instances to a set of recommended solutions. These goals are accomplished by successive specializations of the problem class and of the associated objective functions. In the end, this process reduces the problem to a collection of independent functions that are fast to evaluate, that can be differentiated symbolically, and that represent smaller regions of the overall search space. However, the specialization process can produce a large number of sub-problems. This is overcome by deriving inductively selection rules which associate problems to small sets of specialized independent sub-problems. Each set of candidate solutions is chosen to minimize a cost function which expresses the tradeoff between the quality of the solution that can be obtained from the sub-problem and the time it takes to produce it. The overall solution

  18. Virtual patients design and its effect on clinical reasoning and student experience: a protocol for a randomised factorial multi-centre study

    Directory of Open Access Journals (Sweden)

    Bateman James

    2012-08-01

    Full Text Available Abstract Background Virtual Patients (VPs are web-based representations of realistic clinical cases. They are proposed as being an optimal method for teaching clinical reasoning skills. International standards exist which define precisely what constitutes a VP. There are multiple design possibilities for VPs, however there is little formal evidence to support individual design features. The purpose of this trial is to explore the effect of two different potentially important design features on clinical reasoning skills and the student experience. These are the branching case pathways (present or absent and structured clinical reasoning feedback (present or absent. Methods/Design This is a multi-centre randomised 2x2 factorial design study evaluating two independent variables of VP design, branching (present or absent, and structured clinical reasoning feedback (present or absent.The study will be carried out in medical student volunteers in one year group from three university medical schools in the United Kingdom, Warwick, Keele and Birmingham. There are four core musculoskeletal topics. Each case can be designed in four different ways, equating to 16 VPs required for the research. Students will be randomised to four groups, completing the four VP topics in the same order, but with each group exposed to a different VP design sequentially. All students will be exposed to the four designs. Primary outcomes are performance for each case design in a standardized fifteen item clinical reasoning assessment, integrated into each VP, which is identical for each topic. Additionally a 15-item self-reported evaluation is completed for each VP, based on a widely used EViP tool. Student patterns of use of the VPs will be recorded. In one centre, formative clinical and examination performance will be recorded, along with a self reported pre and post-intervention reasoning score, the DTI. Our power calculations indicate a sample size of 112 is required for

  19. Design and optimization of tidal turbine airfoil

    Energy Technology Data Exchange (ETDEWEB)

    Grasso, F. [ECN Wind Energy, Petten (Netherlands)

    2012-03-15

    To increase the ratio of energy capture to the loading and, thereby, to reduce cost of energy, the use of specially tailored airfoils is needed. This work is focused on the design of an airfoil for marine application. Firstly, the requirements for this class of airfoils are illustrated and discussed with reference to the requirements for wind turbine airfoils. Then, the design approach is presented. This is a numerical optimization scheme in which a gradient-based algorithm is used, coupled with the RFOIL solver and a composite Bezier geometrical parameterization. A particularly sensitive point is the choice and implementation of constraints .A section of the present work is dedicated to address this point; particular importance is given to the cavitation phenomenon. Finally, a numerical example regarding the design of a high-efficiency hydrofoil is illustrated, and the results are compared with existing turbine airfoils, considering also the effect on turbine performance due to different airfoils.

  20. Strength optimized designs of thermoelastic structures

    DEFF Research Database (Denmark)

    Pedersen, Pauli; Pedersen, Niels Leergaard

    2010-01-01

    For thermoelastic structures the same optimal design does not simultaneously lead to minimum compliance and maximum strength. Compliance may be a questionable objective and focus for the present paper is on the important aspect of strength, quantified as minimization of the maximum von Mises stress...... to mathematical programming, which with a large number of both design variables and strength constraints, is found non-practical, we choose simple recursive iterations to obtain uniform energy density and find by examples that the obtained designs are close to fulfilling also strength maximization. In compliance...... minimization it may be advantageous to decrease the total volume, but for strength maximization it is argued that it is advantageous to keep the total permissible volume. With the thermoelastic analysis presented directly in a finite element formulation, simple explicit formulas for equivalent thermoelastic...

  1. Optimally designing games for behavioural research.

    Science.gov (United States)

    Rafferty, Anna N; Zaharia, Matei; Griffiths, Thomas L

    2014-07-08

    Computer games can be motivating and engaging experiences that facilitate learning, leading to their increasing use in education and behavioural experiments. For these applications, it is often important to make inferences about the knowledge and cognitive processes of players based on their behaviour. However, designing games that provide useful behavioural data are a difficult task that typically requires significant trial and error. We address this issue by creating a new formal framework that extends optimal experiment design, used in statistics, to apply to game design. In this framework, we use Markov decision processes to model players' actions within a game, and then make inferences about the parameters of a cognitive model from these actions. Using a variety of concept learning games, we show that in practice, this method can predict which games will result in better estimates of the parameters of interest. The best games require only half as many players to attain the same level of precision.

  2. A New Interaction Region Design for the Super-B Factory

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Michael; /SLAC; Bertsche, Kirk; /SLAC; Bettoni, Simona; /CERN; Paoloni, Eugenio; /INFN, Pisa; Raimondi, Pantaleo; /INFN, Rome; Vobly, Pavel; /Novosibirsk, IYF

    2012-07-06

    A final focus magnet design that uses super-ferric magnets is introduced for the SuperB interaction region. The baseline design has air-core super-conducting quadrupoles. This idea instead uses super-conducting wire in an iron yoke. The iron is in the shape of a Panofsky quadrupole and this allows two quadrupoles to be side-by-side with no intervening iron as long as the gradients of the two quads are equal. This feature allows us to move in as close as possible to the collision point and minimize the beta functions in the interaction region. The superferric design has advantages as well as drawbacks and we will discuss these in the paper.

  3. A New Interaction Region Design for the Super-B Factory

    CERN Document Server

    Sullivan, Michael; Bettoni, Simona; Paoloni, Eugenio; Raimondi, Pantaleo; Vobly, Pavel

    2010-01-01

    A final focus magnet design that uses super-ferric magnets is introduced for the SuperB interaction region. The baseline design has air-core super-conducting quadrupoles. This idea instead uses super-conducting wire in an iron yoke. The iron is in the shape of a Panofsky quadrupole and this allows two quadrupoles to be sideby- side with no intervening iron as long as the gradients of the two quads are equal. This feature allows us to move in as close as possible to the collision point and minimize the beta functions in the interaction region. The superferric design has advantages as well as drawbacks and we will discuss these in the pape

  4. Parametric Study and Design Optimization of Centrifugal Pump Impeller-A Review

    Directory of Open Access Journals (Sweden)

    Vijaypratap R Singh ,

    2014-01-01

    Full Text Available Centrifugal pumps are widely used for irrigation, water supply plants, steam power plants, sewage, oil refineries, chemical plants, hydraulic power service, food processing factories and mines, because of their suitability in practically any service. Therefore it is necessary to find out the design parameters and working conditions that yield optimal output and maximum efficiency with lowest power consumption. Study indicates that Computational fluid dynamics (CFD analysis is being increasingly applied in the design of centrifugal pumps. With the aid of the CFD approach, the complex internal flows in water pump impellers, can be well predicted, to speed up the pump design procedure. This paper exposes the various research work carried out in this direction especially in the content of parametric study and optimization of centrifugal pump impeller using CFD tool and DoE technique. Literature surveys indicate that very restricted work has been done in this area.

  5. 高速胎加工厂布局及优化%The layout designa nd optimization of tire manufacturing factory

    Institute of Scientific and Technical Information of China (English)

    陆云; 王立新

    2015-01-01

    在产品工艺流程分析的基础上,绘制产品工艺过程表、物流强度分析图、作业单位相关图,优化完成高速胎加工车间生产流程,对工厂布局进行设计,实现了高速胎工厂优化布置。%Based on product process analysis, it describes the product -process diagram, shows the logistic strength analysis diagram and work unit correlated chart, realizes the production process optimization of tire job-shop, obtains the optimal layout from analysis of layout of factory.

  6. Improved Hyperspectral Image Testing Using Synthetic Imagery and Factorial Designed Experiments

    Science.gov (United States)

    2007-03-01

    Mendenhall, and Scheaffer , fully detail the designing of experiments in their respective texts. For purposes of this thesis, a simplified explanation of...Air Force Institute of Technology (AU), Wright-Patterson AFB OH, March 2007. Wackerly, Dennis D., William Mendenhall, and Richard L. Scheaffer

  7. Multidisciplinary design optimization for sonic boom mitigation

    Science.gov (United States)

    Ozcer, Isik A.

    product design. The simulation tools are used to optimize three geometries for sonic boom mitigation. The first is a simple axisymmetric shape to be used as a generic nose component, the second is a delta wing with lift, and the third is a real aircraft with nose and wing optimization. The objectives are to minimize the pressure impulse or the peak pressure in the sonic boom signal, while keeping the drag penalty under feasible limits. The design parameters for the meridian profile of the nose shape are the lengths and the half-cone angles of the linear segments that make up the profile. The design parameters for the lifting wing are the dihedral angle, angle of attack, non-linear span-wise twist and camber distribution. The test-bed aircraft is the modified F-5E aircraft built by Northrop Grumman, designated the Shaped Sonic Boom Demonstrator. This aircraft is fitted with an optimized axisymmetric nose, and the wings are optimized to demonstrate optimization for sonic boom mitigation for a real aircraft. The final results predict 42% reduction in bow shock strength, 17% reduction in peak Deltap, 22% reduction in pressure impulse, 10% reduction in foot print size, 24% reduction in inviscid drag, and no loss in lift for the optimized aircraft. Optimization is carried out using response surface methodology, and the design matrices are determined using standard DoE techniques for quadratic response modeling.

  8. Application of full-factorial design in the synthesis of polypropylene-g-poly(glycidyl methacrylate) functional material for metal ion adsorption

    Science.gov (United States)

    Madrid, Jordan F.; Lopez, Girlie Eunice P.; Abad, Lucille V.

    2017-07-01

    The graft polymerization of glycidyl methacrylate onto electron beam pre-irradiated polypropylene (PP) nonwoven fabric was optimized using a 43 full factorial design analysis. The analysis yielded a polynomial equation that relates the linear, quadratic and interaction effects of the independent parameters to degree of grafting (Dg). The linear terms (i.e. absorbed dose, reaction time and monomer concentration), quadratic terms of time and concentration, and interaction term between absorbed dose and time were determined as significant independent parameters based from analysis of variance (ANOVA). The optimum grafting time and absorbed dose to achieve 150% Dg at 5% monomer concentration were 3.5 h and 39.8 kGy, respectively. The pristine PP, polypropylene-g-poly(glycidyl methacrylate) (PP-g-PGMA) and functionalized grafted materials were characterized using ATR-FTIR spectroscopy, thermogravimetric analysis and scanning electron microscopy. The affinities of the synthesized adsorbents towards the target metal ions at pH 4 were established to be in the following order: Cr(VI) >> Pb(II) Cd(II) for the amine functionalized PP-g-PGMA; and Pb(II) > Cd(II) > Cr(VI) for the carboxylic acid functionalized PP-g-PGMA.

  9. Advanced Topology Optimization Methods for Conceptual Architectural Design

    DEFF Research Database (Denmark)

    Aage, Niels; Amir, Oded; Clausen, Anders

    2015-01-01

    in topological optimization: Interactive control and continuous visualization; embedding flexible voids within the design space; consideration of distinct tension / compression properties; and optimization of dual material systems. In extension, optimization procedures for skeletal structures such as trusses...

  10. Scattering correction algorithm in the PET sinogram using the factorial design of experimental method: A phantom study.

    Science.gov (United States)

    Chen, Huei-Yung; Lu, Nan-Han; Huang, Yung-Hui; Chen, Tai-Been

    2015-01-01

    Positron emission tomography (PET) had been utilized to image gene therapy, estimate tumor growth, detect neural function of the brain, and diagnose disease. However, sinogram noise always results inaccurate PET images. The factorial design of experiment (DOE), a statistical method, was applied to investigate, correct and estimate the fraction of scattering of 2D sinogram in PET. The DOE was included as factors of angle views and scatter media with two levels designed. The PET sinogram after scattering correction was then reconstructed by filtered back projection (FBP). Both Ge-68 uniform phantom and Jaszczak anthropomorphic torso phantom were applied to exam the performance of presented scattering correction algorithm. The signal-to-noise ratio (SNR), standard deviation (STD) of background, and full width at half maximum (FWHM), and uniformity test were applied to validate the performance of presented method. The proposed method provides a narrower FWHM, smaller STD of the background, higher SNR and better uniformity than those of original protocols. This method should be tested for accuracy and feasibility with three-dimensional phantoms or real animal studies and consideration effects of cross-talk between slices in future work.

  11. Design Concept of a Gamma-gamma Higgs Factory Driven by Thin Laser Targets and Energy Recovery Linacs

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuhong [JLAB

    2013-06-01

    A gamma-gamma collider has long been considered an option for a Higgs Factory. Such photon colliders usually rely on Compton back-scattering for generating high energy gamma photons and further Higgs bosons through gamma-gamma collisions. The presently existing proposals or design concepts all have chosen a very thick laser target (i.e., high laser photon intensity) for Compton scatterings. In this paper, we present a new design concept of a gamma-gamma collider utilizing a thin laser target (i.e., relatively low photon density), thus leading to a low electron to gamma photon conversion rate. This new concept eliminates most useless and harmful low energy soft gamma photons from multiple Compton scattering so the detector background is improved. It also greatly relaxes the requirement of the high peak power of the laser, a significant technical challenge. A high luminosity for such a gamma-gamma collider can be achieved through an increase of the bunch repetition rate and current of the driven electron beam. Further, multi-pass recirculating linac could greatly reduce the linac cost and energy recovery is required to reduce the needed RF power.

  12. A study of physicochemical and biopharmaceutical properties of amoxicillin tablets using full factorial design and PCA biplot.

    Science.gov (United States)

    Pasqualoto, Kerly F M; Teófilo, Reinaldo F; Guterres, Marcos; Pereira, Flávia S; Ferreira, Márcia M C

    2007-07-09

    The variables that influence the tablets obtained by direct compression method deserve to be studied to minimize formulations costs and to improve the physicochemical and biopharmaceutical properties of the compacts. Here, we explore the adjuvants effects on amoxicillin tablet formulations considering multiple responses, and indicate the most suitable formulation composition. A 2(3) full factorial design was built to different amoxicillin formulations, each one containing three replicate batches, and eight responses (physicochemical and biopharmaceutical parameters) were obtained. The microcrystalline cellulose (MCC) type Avicel PH-102 (low) or PH-200 (high), the absence (low) or presence (high) of spray-dried lactose (LAC), and the absence (low) or presence (high) of disintegrant (DIS) were the levels investigated. The more relevant responses to the distinct formulations from the experimental design were hardness, friability, and the amount of amoxicillin dissolved during the first hour. PCA biplot indicated high values of amount of drug dissolved in 60 min as advantageous responses for the investigated amoxicillin tablet formulations and high values of friability as not desirable. Considering the individual response evaluation, the most suitable amoxicillin tablet formulation should present in its composition the MCC type Avicel PH-102 (low level) and the superdisintegrant agent (DIS high level), croscarmellose sodium, but no LAC (low level).

  13. Numerical design optimization of compressor blade based on ADOP

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    An aerodynamic design optimization platform (ADOP) has been developed. The numerical optimization method is based on genetic algorithm (GA), Pareto ranking and fitness sharing technique. The platform was used for design optimization of the stator of an advanced transonic stage to seek high adiabatic efficiency. The compressor stage efficiency is increased by 0.502% at optimal point and the stall margin is enlarged by nearly 1.0% at design rotating speed. The flow fields of the transonic stage were simulated with FINE/Turbo software package. The optimization result indicates that the optimization platform is effective in 3D numerical design optimization problems.

  14. Network inference via adaptive optimal design

    Directory of Open Access Journals (Sweden)

    Stigter Johannes D

    2012-09-01

    Full Text Available Abstract Background Current research in network reverse engineering for genetic or metabolic networks very often does not include a proper experimental and/or input design. In this paper we address this issue in more detail and suggest a method that includes an iterative design of experiments based, on the most recent data that become available. The presented approach allows a reliable reconstruction of the network and addresses an important issue, i.e., the analysis and the propagation of uncertainties as they exist in both the data and in our own knowledge. These two types of uncertainties have their immediate ramifications for the uncertainties in the parameter estimates and, hence, are taken into account from the very beginning of our experimental design. Findings The method is demonstrated for two small networks that include a genetic network for mRNA synthesis and degradation and an oscillatory network describing a molecular network underlying adenosine 3’-5’ cyclic monophosphate (cAMP as observed in populations of Dyctyostelium cells. In both cases a substantial reduction in parameter uncertainty was observed. Extension to larger scale networks is possible but needs a more rigorous parameter estimation algorithm that includes sparsity as a constraint in the optimization procedure. Conclusion We conclude that a careful experiment design very often (but not always pays off in terms of reliability in the inferred network topology. For large scale networks a better parameter estimation algorithm is required that includes sparsity as an additional constraint. These algorithms are available in the literature and can also be used in an adaptive optimal design setting as demonstrated in this paper.

  15. Design optimization of a linear actuator

    DEFF Research Database (Denmark)

    Rechenbach, B.; Willatzen, Morten; Preisler, K. Lorenzen

    2013-01-01

    The mechanical contacting of a dielectric elastomer actuator is investigated. The actuator is constructed by coiling the dielectric elastomer around two parallel metal rods, similar to a rubber band stretched by two index fingers. The goal of this paper is to design the geometry and the mechanical...... properties of a polymeric interlayer between the elastomer and the rods, gluing all materials together, so as to optimize the mechanical durability of the system. Finite element analysis is employed for the theoretical study which is linked up to experimental results performed by Danfoss PolyPower A/S....

  16. Multidisciplinary design optimization in computational mechanics

    CERN Document Server

    Breitkopf, Piotr

    2013-01-01

    This book provides a comprehensive introduction to the mathematical and algorithmic methods for the Multidisciplinary Design Optimization (MDO) of complex mechanical systems such as aircraft or car engines. We have focused on the presentation of strategies efficiently and economically managing the different levels of complexity in coupled disciplines (e.g. structure, fluid, thermal, acoustics, etc.), ranging from Reduced Order Models (ROM) to full-scale Finite Element (FE) or Finite Volume (FV) simulations. Particular focus is given to the uncertainty quantification and its impact on the robus

  17. Probabilistic Finite Element Analysis & Design Optimization for Structural Designs

    Science.gov (United States)

    Deivanayagam, Arumugam

    This study focuses on implementing probabilistic nature of material properties (Kevlar® 49) to the existing deterministic finite element analysis (FEA) of fabric based engine containment system through Monte Carlo simulations (MCS) and implementation of probabilistic analysis in engineering designs through Reliability Based Design Optimization (RBDO). First, the emphasis is on experimental data analysis focusing on probabilistic distribution models which characterize the randomness associated with the experimental data. The material properties of Kevlar® 49 are modeled using experimental data analysis and implemented along with an existing spiral modeling scheme (SMS) and user defined constitutive model (UMAT) for fabric based engine containment simulations in LS-DYNA. MCS of the model are performed to observe the failure pattern and exit velocities of the models. Then the solutions are compared with NASA experimental tests and deterministic results. MCS with probabilistic material data give a good prospective on results rather than a single deterministic simulation results. The next part of research is to implement the probabilistic material properties in engineering designs. The main aim of structural design is to obtain optimal solutions. In any case, in a deterministic optimization problem even though the structures are cost effective, it becomes highly unreliable if the uncertainty that may be associated with the system (material properties, loading etc.) is not represented or considered in the solution process. Reliable and optimal solution can be obtained by performing reliability optimization along with the deterministic optimization, which is RBDO. In RBDO problem formulation, in addition to structural performance constraints, reliability constraints are also considered. This part of research starts with introduction to reliability analysis such as first order reliability analysis, second order reliability analysis followed by simulation technique that

  18. Handling Qualities Optimization for Rotorcraft Conceptual Design

    Science.gov (United States)

    Lawrence, Ben; Theodore, Colin R.; Berger, Tom

    2016-01-01

    Over the past decade, NASA, under a succession of rotary-wing programs has been moving towards coupling multiple discipline analyses in a rigorous consistent manner to evaluate rotorcraft conceptual designs. Handling qualities is one of the component analyses to be included in a future NASA Multidisciplinary Analysis and Optimization framework for conceptual design of VTOL aircraft. Similarly, the future vision for the capability of the Concept Design and Assessment Technology Area (CD&A-TA) of the U.S Army Aviation Development Directorate also includes a handling qualities component. SIMPLI-FLYD is a tool jointly developed by NASA and the U.S. Army to perform modeling and analysis for the assessment of flight dynamics and control aspects of the handling qualities of rotorcraft conceptual designs. An exploration of handling qualities analysis has been carried out using SIMPLI-FLYD in illustrative scenarios of a tiltrotor in forward flight and single-main rotor helicopter at hover. Using SIMPLI-FLYD and the conceptual design tool NDARC integrated into a single process, the effects of variations of design parameters such as tail or rotor size were evaluated in the form of margins to fixed- and rotary-wing handling qualities metrics as well as the vehicle empty weight. The handling qualities design margins are shown to vary across the flight envelope due to both changing flight dynamic and control characteristics and changing handling qualities specification requirements. The current SIMPLI-FLYD capability and future developments are discussed in the context of an overall rotorcraft conceptual design process.

  19. Investigation of formulation variables affecting the properties of lamotrigine nanosuspension using fractional factorial design

    Directory of Open Access Journals (Sweden)

    B Mishra

    2010-03-01

    Full Text Available "n  "n   Background and the purpose of the study: Lamotrigine (LMG undergoes extensive hepatic metabolism upon oral administration and its absorption is affected in the presence of food. This study was aimed to develop nanosuspension of LMG and investigate its formulation characteristics using L9 orthogonal array. Methods: Nanosuspension was prepared using emulsification-solvent diffusion method. All the formulations were subjected to in-vitro evaluation and the statistically optimized one was used for stability, scanning electron microscopic and differential scanning calorimetric studies. Results: Nanoparticles were spherical with little surface adsorbed drug. Formulation characteristics in terms of size, zeta potential, polydispersity index (PDI, entrapment efficiency (EE, drug content and in vitro drug release were consistent and within their acceptable range. All the batches provided a burst release profile during first 1 hr, followed by a controlled release extending up to 24 hrs. The values of n in Peppas model ranged between 0.2-0.4 for all the formulations indicative of Fickian release mechanism. The formulation remained reasonably stable up to 3 months. No interaction was observed among the drug and polymers.  Major conclusion: Results of in vitro drug release studies suggested that nanosuspension might be used as a sustained delivery vehicle for LMG. Statistical analysis revealed that size of the nanoparticles was most strongly affected by stabilizer type while EE was influenced by the drug-to-polymer ratio.  

  20. Application of factorial design to the study of xylitol production from corncob hemicellulose hydrolysate by Candida guilliermondii

    Directory of Open Access Journals (Sweden)

    Ramesh S*

    2012-08-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 Optimization of the culture medium and process variables for xylitol production from corncob hemicelluloses hydrolysate was carried out using Candida guillermondii (NCIM 3124. The optimization was performed with statistical methodology based on experimental designs. The screening of nine nutrients for their influence on xylitol production was achieved using a Plackett-Burman design. The four selected components were optimized with Box-Behnken design using response surface methodology (RSM. The optimum level (g/l is: MgSO4.7H2O- 1.34, yeast extract- 4.34, KH2PO4- 2.94 and xylose- 9.49 and influence of various process variables on the xylitol production was evaluated. The optimal levels were quantified by the central composite design using RSM. The optimum level of process variables are: temperature (29.88 oC, substrate concentration (3.26 g/l, pH (7.25, agitation speed (170.42 rpm, inoculum size (3.41 ml. These conditions were validated experimentally which revealed an enhanced xylitol yield of 0.73 g/g.

  1. Optimal patch code design via device characterization

    Science.gov (United States)

    Wu, Wencheng; Dalal, Edul N.

    2012-01-01

    In many color measurement applications, such as those for color calibration and profiling, "patch code" has been used successfully for job identification and automation to reduce operator errors. A patch code is similar to a barcode, but is intended primarily for use in measurement devices that cannot read barcodes due to limited spatial resolution, such as spectrophotometers. There is an inherent tradeoff between decoding robustness and the number of code levels available for encoding. Previous methods have attempted to address this tradeoff, but those solutions have been sub-optimal. In this paper, we propose a method to design optimal patch codes via device characterization. The tradeoff between decoding robustness and the number of available code levels is optimized in terms of printing and measurement efforts, and decoding robustness against noises from the printing and measurement devices. Effort is drastically reduced relative to previous methods because print-and-measure is minimized through modeling and the use of existing printer profiles. Decoding robustness is improved by distributing the code levels in CIE Lab space rather than in CMYK space.

  2. Global optimization framework for solar building design

    Science.gov (United States)

    Silva, N.; Alves, N.; Pascoal-Faria, P.

    2017-07-01

    The generative modeling paradigm is a shift from static models to flexible models. It describes a modeling process using functions, methods and operators. The result is an algorithmic description of the construction process. Each evaluation of such an algorithm creates a model instance, which depends on its input parameters (width, height, volume, roof angle, orientation, location). These values are normally chosen according to aesthetic aspects and style. In this study, the model's parameters are automatically generated according to an objective function. A generative model can be optimized according to its parameters, in this way, the best solution for a constrained problem is determined. Besides the establishment of an overall framework design, this work consists on the identification of different building shapes and their main parameters, the creation of an algorithmic description for these main shapes and the formulation of the objective function, respecting a building's energy consumption (solar energy, heating and insulation). Additionally, the conception of an optimization pipeline, combining an energy calculation tool with a geometric scripting engine is presented. The methods developed leads to an automated and optimized 3D shape generation for the projected building (based on the desired conditions and according to specific constrains). The approach proposed will help in the construction of real buildings that account for less energy consumption and for a more sustainable world.

  3. Application of statistical design for the optimization of microbial community of synthetic domestic wastewater.

    Science.gov (United States)

    Chen, Yuancai; Lin, Che-Jen; Jones, Gavin; Fu, Shiyu; Zhan, Huaiyu

    2011-02-01

    A fractional factorial design (FFD) and a response surface methodology (RSM) were used to optimize the inoculum composition of six strains for treatment of synthetic domestic wastewater. The model predicted the highest overall specific substrate utilization rate (q) of 6.88 g TOC/(d-gVSS). The value is in accordance with the actual maximum q, and is 1.5 and 1.97 times greater than those without optimization for 4 and 6 strains respectively. Additionally, the shortest time to reach stationary phase (3.5 h) and highest maximum total organic carbon (TOC) removal efficiency (92%) were also achieved under the optimum condition. The results indicated that the FFD and RSM are powerful screening and optimizing tools for the microbial community. The experimental approaches enhance the overall specific rate of substrate utilization as well as other biodegradation parameters.

  4. A surrogate based multistage-multilevel optimization procedure for multidisciplinary design optimization

    NARCIS (Netherlands)

    Yao, W.; Chen, X.; Ouyang, Q.; Van Tooren, M.

    2011-01-01

    Optimization procedure is one of the key techniques to address the computational and organizational complexities of multidisciplinary design optimization (MDO). Motivated by the idea of synthetically exploiting the advantage of multiple existing optimization procedures and meanwhile complying with

  5. A stepwise optimal design of water network☆

    Institute of Scientific and Technical Information of China (English)

    Ying Li⁎; Jintao Guan

    2016-01-01

    In order to take full advantage of regeneration process to reduce fresh water consumption and avoid the accumu-lation of trace contaminants, regeneration reuse and regeneration recycle should be distinctive. A stepwise opti-mal design for water network is developed to simplify solution procedures for the formulated MINLP problem. In this paper, a feasible water reuse network framework is generated. Some heuristic rules from water reuse net-work are used to guide the placement of regeneration process. Then the outlet stream of regeneration process is considered as new water source. Regeneration reuse network structure is obtained through an iterative optimal procedure by taking the insights from reuse water network structure. Furthermore, regeneration recycle is only utilized to eliminate fresh water usage for processes in which regeneration reuse is impossible. Compared with the results obtained by relevant researches for the same example, the present method not only provides an appro-priate regeneration reuse water network with minimum fresh water and regenerated water flow rate but also sug-gests a water network involving regeneration recycle with minimum recycle water flow rate. The design can utilize reuse, regeneration reuse and regeneration recycle step by step with minor water network structure change to achieve better flexibility. It can satisfy different demands for new plants and modernization of existing plants. © 2016 The Chemical Industry and Engineering Society of China, and Chemical Industry Press. Al rights reserved.

  6. Design optimization of functionally graded dental implant.

    Science.gov (United States)

    Hedia, H S; Mahmoud, Nemat-Alla

    2004-01-01

    The continuous increase of man's life span, and the growing confidence in using artificial materials inside the human body necessities introducing more effective prosthesis and implant materials. However, no artificial implant has biomechanical properties equivalent to the original tissue. Recently, titanium and bioceramic materials, such as hydroxyapatite are extensively used as fabrication materials for dental implant due to their high compatibility with hard tissue and living bone. Titanium has reasonable stiffness and strength while hydroxyapatite has low stiffness, low strength and high ability to reach full integration with living bone. In order to obtain good dental implantation of the biomaterial; full integration of the implant with living bone should be satisfied. Minimum stresses in the implant and the bone must be achieved to increase the life of the implant and prevent bone resorption. Therefore, the aim of the current investigation is to design an implant made from functionally graded material (FGM) to achieve the above advantages. The finite element method and optimization technique are used to reach the required implant design. The optimal materials of the FGM dental implant are found to be hydroxyapatite/titanium. The investigations have shown that the maximum stress in the bone for the hydroxyapatite/titanium FGM implant has been reduced by about 22% and 28% compared to currently used titanium and stainless steel dental implants, respectively.

  7. Design and performance of a compact scanning transmission X-ray microscope at the Photon Factory

    Energy Technology Data Exchange (ETDEWEB)

    Takeichi, Y., E-mail: yasuo.takeichi@kek.jp; Mase, K.; Ono, K. [Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba 305-0801 (Japan); Department of Materials Structure Science, SOKENDAI (The Graduate University for Advanced Studies), 1-1 Oho, Tsukuba 305-0801 (Japan); Inami, N. [Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba 305-0801 (Japan); Suga, H. [Department of Earth and Planetary Systems Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526 (Japan); Miyamoto, C. [Department of Earth and Planetary Systems Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku 113-0033 (Japan); Ueno, T. [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Takahashi, Y. [Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba 305-0801 (Japan); Department of Earth and Planetary Systems Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526 (Japan); Department of Earth and Planetary Systems Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku 113-0033 (Japan)

    2016-01-15

    We present a new compact instrument designed for scanning transmission X-ray microscopy. It has piezo-driven linear stages, making it small and light. Optical components from the virtual source point to the detector are located on a single optical table, resulting in a portable instrument that can be operated at a general-purpose spectroscopy beamline without requiring any major reconstruction. Careful consideration has been given to solving the vibration problem common to high-resolution microscopy, so as not to affect the spatial resolution determined by the Fresnel zone plate. Results on bacteriogenic iron oxides, single particle aerosols, and rare-earth permanent magnets are presented as examples of its performance under diverse applications.

  8. Virtual Factory as a Method of Foundry Design and Production Management

    Directory of Open Access Journals (Sweden)

    A. Stawowy

    2013-01-01

    Full Text Available The paper outlines the methodology of virtual design of a foundry plant as a system. The most important stage in the procedure involvesthe development of a model defined as a set of data about the system. Model development involves two stages: defining the model’sarchitecture and specifying the model data in the form of parameters and input-output relationships. The structure is understood asconfiguration of machines and transport units, representing the sub-systems and system components. As the main purpose of thesimulation procedure is to find the characteristics of the system’s behaviour, the merits of the iterative method involving analysis,synthesis and evaluation of results are fully explored.

  9. Factorial experimental design of winery wastewaters treatment by heterogeneous photo-Fenton process.

    Science.gov (United States)

    Mosteo, Rosa; Ormad, Peña; Mozas, Engracia; Sarasa, Judith; Ovelleiro, José Luis

    2006-05-01

    Winery wastewaters are difficult to treat by conventional biological processes because they are seasonal and experience a substantial flow variations. Photocatalytic advanced oxidation is a promising technology for wastewaters containing high amounts of organic matter. In this work, the photo-Fenton process in heterogeneous phase is presented as an alternative methodology for the treatment of winery wastewaters. As a consequence of the great number of existing variables, an experimental design methodology has been used in order to study the influence and interaction of various variables and to obtain a reduced empirical model which describes the organic matter degradation process. Applying photo-Fenton treatment in heterogeneous phase under energetic conditions for synthetic samples simulating winery wastewaters results in purification levels of up to 50% (measured as total organic carbon). Different reduced models are obtained and their utilization depends mainly on the degree of degradation of organic matter required.

  10. B-factory detectors

    CERN Document Server

    Marlow, D R

    2002-01-01

    The designs of the recently commissioned BaBar and Belle B-Factory detectors are described. The discussion is organized around the methods and instruments used to detect the so-called gold-plated-mode B sup 0->J/PSI K sub S decays and related modes.

  11. A Factorial Design to Numerically Study the Effects of Brake Pad Properties on Friction and Wear Emissions

    Directory of Open Access Journals (Sweden)

    Jens Wahlström

    2016-01-01

    Full Text Available Airborne particulate emissions originating from the wear of pads and rotors of disc brakes contribute up to 50% of the total road emissions in Europe. The wear process that takes place on a mesoscopic length scale in the contact interfaces between the pads and rotors can be explained by the creation and destruction of contact plateaus. Due to this complex contact situation, it is hard to predict how changes in the wear and material parameters of the pad friction material will affect the friction and wear emissions. This paper reports on an investigation of the effect of different parameters of the pad friction material on the coefficient of friction and wear emissions. A full factorial design is developed using a simplified version of a previously developed cellular automaton approach to investigate the effect of four factors on the coefficient of friction and wear emission. The simulated result indicates that a stable third body, a high specific wear, and a relatively high amount of metal fibres yield a high and stable mean coefficient of friction, while a stable third body, a low specific wear, a stable resin, and a relatively high amount of metal fibres give low wear emissions.

  12. A pilot human pharmacokinetic study and influence of formulation factors on orodispersible tablet incorporating meloxicam solid dispersion using factorial design.

    Science.gov (United States)

    Aboelwafa, Ahmed A; Fahmy, Rania H

    2012-01-01

    Meloxicam (MLX) suffers from poor aqueous solubility leading to slow absorption following oral administration; hence, immediate release MLX tablet is unsuitable in the treatment of acute pain. This study aims to overcome such a drawback by increasing MLX solubility and dissolution using PEG solid dispersion (SD), then, to investigate the feasibility of incorporating the SD into orodispersible tablets (ODTs). A 2(3) full factorial design was employed to investigate the influence of three formulation variables on MLX ODTs. The selected factors: camphor (X(1)) as pore-forming material, and croscarmellose sodium (X(2)) as superdisintegrant, showed significant positive influence, while PEG content (X(3)) was proved to negatively affect both disintegration and wetting times. In addition, isomalt increased disintegration and wetting times when compared to mannitol as diluents. The pharmacokinetic assessment of the optimum ODT formulation in healthy human subjects proved that the faster MLX dissolution by using PEG solid dispersion at pH 6.8 resulted in more rapid absorption of MLX. The rate of absorption of MLX from ODT was significantly faster (p = 0.030) with a significantly higher peak plasma concentration (P = 0.037) when compared to the marketed immediate release MLX tablet with a mean oral disintegration time of 17 ± 3 s.

  13. Multivariate factorial analysis to design a robust batch leaching test to assess the volcanic ash geochemical hazard.

    Science.gov (United States)

    Ruggieri, Flavia; Gil, Raúl A; Fernandez-Turiel, Jose-Luis; Saavedra, Julio; Gimeno, Domingo; Lobo, Agustin; Martinez, Luis D; Rodriguez-Gonzalez, Alejandro

    2012-04-30

    A method to obtain robust information on short term leaching behaviour of volcanic ashes has been developed independently on the sample age. A mixed factorial design (MFD) was employed as a multivariate strategy for the evaluation of the effects of selected control factors and their interactions (amount of sample (A), contact time (B), and liquid to solid ratio or L/S (C)) on the leaching process of selected metals (Na, K, Mg, Ca, Si, Al, V, Mn, Fe, and Co) and anions (Cl(-) and SO(4)(2-)). Box plots of the data acquired were used to evaluate the reproducibility achieved at different experimental conditions. Both the amount of sample (A) and leaching time (B) had a significant effect on the element stripping whereas the L/S ratio influenced only few elements. The lowest dispersion values have been observed when 1.0 g was leached with an L/S ratio equal to 10, shaking during 4 h. The entire method is completed within few hours, and it is simple, feasible and reliable in laboratory conditions. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. The increase of surface area of a Brazilian palygorskite clay activated with sulfuric acid solutions using a factorial design

    Directory of Open Access Journals (Sweden)

    R. N. Oliveira

    2013-01-01

    Full Text Available Palygorskite is fibrous clay in which the structural tetrahedral and octahedral layers are organized in a way that structural channels are formed, leading to high surface area. However, impurities inside the channels and aggregated ones considerably reduce the available area. In order to increase the surface area, an activation treatment can be considered useful. The goal of this work is the activation of palygorskite from Guadalupe, Piauí, via sulfuric acid treatment using a two-level factorial design. The influence of three parameters (solution molarity, temperature and time on BET surface area was determined. Moreover, samples were characterized via X-ray diffraction (XRD and fluorescence (XRF, Fourier-transform infrared spectroscopy (FTIR and transmission electron microscopy (TEM. The largest surface area (282 m²/g without considerable changes in clay structure and morphology was found in a sample treated with 5M H2SO4 at 70°C for 1h. The main parameters that favored the improvement of the surface area were the solution's molarity, temperature and their interaction.

  15. Methodology of factorial design deriving guidelines for simulation of growth curve and production of sugars by Spirulina (Arthrospira) maxima

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    It is practical, economic and sometimes essential to derive rules or conclusions by performing lesser runs of experiments. In this part, a methodology based on 2f factorial design was brought up to derive guidelines to simulate growth curve and production of sugars by Spirulina (Arthrospira) maxima. The growth curve or accumulation process of sugars was idealized by sets of straight lines limited by phase transfers of growth or accumulation of sugars. Normal analyses of the critical values of the transfers were used to derive their linear relationships with the initial conditions of the experimental factors. These linear functions were called guidelines and were used to simulate the growth curve or accumulation of sugars. Generalization of the guideline technique was determined by the kinetic limitation of nutrient nitrogen or sulfur that was dependent upon their stoichiometric deficiency directly derived from their initial values in the medium. This method uses the initial conditions of culture and does not need measurements of concentrations of nitrate, sulfate and pigments during cultivation. It is a practical and useful alternative way to trace and predict approximately the growth curve and production of sugars by S. maxima.

  16. Influence of urea, isopropanol, and propylene glycol on rutin in vitro release from cosmetic semisolid systems estimated by factorial design.

    Science.gov (United States)

    Baby, Andre Rolim; Haroutiounian-Filho, Carlos Alberto; Sarruf, Fernanda Daud; Pinto, Claudineia Aparecida Sales de Oliveira; Kaneko, Telma Mary; Velasco, Maria Valeria Robles

    2009-03-01

    Rutin, one of the major flavonoids found in an assortment of plants, was reported to act as a sun protection factor booster with high anti-UVA defense, antioxidant, antiaging, and anticellulite, by improvement of the cutaneous microcirculation. This research work aimed at evaluating the rutin in vitro release from semisolid systems, in vertical diffusion cells, containing urea, isopropanol and propylene glycol, associated or not, according to the factorial design with two levels with center point. Urea (alone and in association with isopropanol and propylene glycol) and isopropanol (alone and in association with propylene glycol) influenced significant and negatively rutin liberation in diverse parameters: flux (microg/cm(2).h); apparent permeability coefficient (cm/h); rutin amount released (microg/cm(2)); and liberation enhancement factor. In accordance with the results, the presence of propylene glycol 5.0% (wt/wt) presented statistically favorable to promote rutin release from this semisolid system with flux = 105.12 +/- 8.59 microg/cm(2).h; apparent permeability coefficient = 7.01 +/- 0.572 cm/h; rutin amount released = 648.80 +/- 53.01 microg/cm(2); and liberation enhancement factor = 1.21 +/- 0.07.

  17. Modelling aluminium leaching into food from different foodware materials with multi-level factorial design of experiments.

    Science.gov (United States)

    Fekete, Veronika; Deconinck, Eric; Bolle, Fabien; Van Loco, Joris

    2012-08-01

    To estimate the contribution of aluminium (Al) leaching from different materials used for food preparation and serving to the dietary Al intake, Al release from foodware typically used in everyday life was investigated using multilevel factorial design (MFD) of experiments. For Al characterisation, sample preparation and an analytical method using inductively coupled plasma atomic emission spectroscopy was developed and validated. Parameter influence (temperature: x₁, contact time: x₂, pH: x₃, salt concentration: x₄, viscosity: x₅), was evaluated with analysis of variance suggesting that the influence of viscosity is not significant compared to the other four studied parameters. Therefore, predictive, exponential quadratic regression models were established with x₁-x₄. Cross-validation and a set of independent experiments in real food products were used to test the prediction force of the different models. They both suggest that the quality of the models established for Al foil, Al plate and ceramic ware is satisfactory, but less good for glassware and stainless steel. Indeed, in the studied conditions, leaching from these latter food wares was often close to or even below the limit of quantification suggesting that the principal sources of Al intake from food contact materials during food processing are utensils made of Al and ceramic ware.

  18. Biosurfactant production by Pseudomonas aeruginosa MSIC02 in cashew apple juice using a 24 full factorial experimental design

    Directory of Open Access Journals (Sweden)

    Rocha Maria Valderez Ponte

    2014-01-01

    Full Text Available In this work, the production of biosurfactants from cashew apple juice by P. aeruginosa MSIC02 was investigate by carrying out a 24 full factorial experimental design, using temperature, glucose concentration from cashew apple juice, phosphorous concentration and cultivation time as variables. The response variable was the percentage of reduction in surface tension in the cell-free culture medium, since it indicates the surface-active agent production. Maximum biosurfactant production, equivalent to a 58% reduction in surface tension, was obtained at 37°C, with glucose concentration of 5.0 g/L and no phosphorous supplementation. Surface tension reduction was significant, since low values were observed in the cell-free medium (27.50 dyne/cm, indicating that biosurfactant was produced. The biosurfactant emulsified different hydrophobic sources and showed stability in the face of salinity, exposure to high temperatures and extreme pH conditions. These physiochemical properties demonstrate the potential for using biosurfactants produced by P. aeruginosa MSIC02 in various applications.

  19. Full factorial experimental design applied to oxalic acid photocatalytic degradation in TiO2 aqueous suspension

    Directory of Open Access Journals (Sweden)

    N. Barka

    2014-11-01

    Full Text Available Full factorial experimental design technique was used to study the main effects and the interaction effects between operational parameters in the photocatalytic degradation of oxalic acid in a batch photo-reactor using TiO2 aqueous suspension. The important parameters which affect the removal efficiency of oxalic acid such as agitation, initial concentration, volume of the solution and TiO2 dosage were investigated. The parameters were coded as X1, X2, X3 and X4, consecutively, and were investigated at two levels (−1 and +1. The effects of individual variables and their interaction effects for dependent variables, namely, photocatalytic degradation efficiency (% were determined. From the statistical analysis, the most effective parameters in the photocatalytic degradation efficiency were initial concentration and volume of solution. The interaction between initial concentration, volume of solution and TiO2 dosage was the most influencing interaction. However, the interaction between agitation, initial concentration and volume of solution was the least influencing parameter.

  20. Optimality criteria: A basis for multidisciplinary design optimization

    Science.gov (United States)

    Venkayya, V. B.

    1989-01-01

    This paper presents a generalization of what is frequently referred to in the literature as the optimality criteria approach in structural optimization. This generalization includes a unified presentation of the optimality conditions, the Lagrangian multipliers, and the resizing and scaling algorithms in terms of the sensitivity derivatives of the constraint and objective functions. The by-product of this generalization is the derivation of a set of simple nondimensional parameters which provides significant insight into the behavior of the structure as well as the optimization algorithm. A number of important issues, such as, active and passive variables, constraints and three types of linking are discussed in the context of the present derivation of the optimality criteria approach. The formulation as presented in this paper brings multidisciplinary optimization within the purview of this extremely efficient optimality criteria approach.

  1. Design and Initial Commissioning of Beam Diagnostics for the PEP-II B Factory.

    Science.gov (United States)

    Fisher, A. S.; Alzofon, D.; Arnett, D.; Bong, E. L.; Brugnoletti, B.; Collins, B.; Daly, E.; Gioumousis, A.; Johnson, R.; Kulikov, A.; Kurita, N.; Langton, J.; McCormick, D.; Noriega, R.; Smith, S.; Smith, V.; Stege, R.; Bjork, M.; Chin, M.; Hinkson, J.; McGill, R.; Suwada, T.

    1997-05-01

    PEP-II is a 2.2-km-circumference collider with a 2.1-A, 3.1-GeV positron ring (the Low-Energy Ring) 1 m above a 1-A, 9-GeV electron ring (the High-Energy Ring); both are designed for 3 A maximum. We will describe the beam diagnostics and present initial measurements from HER commissioning, expected to start in March 1997. LER commissioning will follow in 1998. The beam size and pulse duration are measured using near-UV synchrotron light extracted by grazing-incidence mirrors that must withstand up to 200 W/cm. To measure the charge in every bucket at 60 Hz with an accuracy of ≈0.5%, the sum signal from a set of 4 pickup buttons is digitized and averaged over 256 samples per bucket. The sum is normalized to the ring current, measured by a DC current transformer. The 300 beam-position monitors per ring are multiplexed to share 171 processor modules, which use DSPs for recording positions over 1024 turns and for calibration. For diagnostics and machine protection, 100 photomultiplier-based Cherenkov detectors measure beam losses and abort the beam in case of high loss.

  2. Research on Design Optimization Strategy in Virtual Product Development

    Institute of Scientific and Technical Information of China (English)

    潘军; 韩帮军; 范秀敏; 马登哲

    2004-01-01

    Simulation and optimization are the key points of virtual product development (VPD). Traditional engineering simulation software and optimization methods are inadequate to analyze the optimization problems because of its computational inefficiency. A systematic design optimization strategy by using statistical methods and mathematical optimization technologies is proposed. This method extends the design of experiments (DOE) and the simulation metamodel technologies. Metamodels are built to in place of detailed simulation codes based on effectively DOE, and then be linked to optimization routines for fast analysis, or serve as a bridge for integrating simulation software across different domains. A design optimization of composite material structure is used to demonstrate the newly introduced methodology.

  3. Design of Factory Information Monitoring System Via Cloud Computing%基于云计算的工厂信息监测系统设计

    Institute of Scientific and Technical Information of China (English)

    许知博; 刘钊

    2012-01-01

    Factories in manufacturing require efficient monitoring to ensure product quality and production safety,but the traditional distributed model can not manage efficiently and meet the growing production demands.In view of this situation,this paper introduces the cloud computing technology into the factory information monitoring,and proposes a factory information monitoring system design via cloud computing.The design takes full advantages of cloud computing in management and services,improves the management of the factory efficiency,and lowers its operating cost.%制造业中工厂需要高效的监测手段来保证产品质量和生产安全,而传统的分散式模式无法进行高效的管理,不能满足日益增长的生产需求。针对这一状况,文中将云计算技术应用于工厂信息监测中,提出了一种基于云计算的现代化工厂信息监测系统设计。该设计充分利用云计算在管理、服务等方面的优点,提高了工厂的管理效率,节省了工厂的运营成本。

  4. Optimization in Data Cube System Design

    Institute of Scientific and Technical Information of China (English)

    YilongLiang; ShaoweiXia

    2004-01-01

    The design of an OLAP system for supporting real-time queries is one of the major research issues.One approach is to use data cubes,which are pre-computed multidimensional views of data in the data warehouse.An initial set of data cubes can be derived.from which the answer to each frequently asked query can be retrieved directly.However,there are two practical problems concerning the design of a cube based system:1)the maintenance cost of the data cubes,and 2)the query cost to answer a selected set of frequently asked queries.Maintaining a data cube requires disk storage and CPU computation,So the maintenance cost is related to the total size of the data cubes materialized,and thus keeping all data cubes is impractical.The total size of cubes may be reduced by merging some cubes.However,the resulting larger cubes will increase the query cost of answering some queries.If the bounds on maintenance cost and query cost are strict.some of the queries need to be sacrificed.An optimization problem in data cube system design has been defined.With a maintenance-cost bound and a query-cost bound given by the user,it is necessary to opti-mize the initial set of data cubes such that the system can answer a maximum number of queries and satisfy the bounds.This is an NP-complete problem.Approximate algorithms Greedy Removing(GR)and 2-Greedy Merging with Multiple paths(2GGM)are proposed.Experiments have been done on a census database and the results show that our approach in both effbctive and efficient.

  5. Optimal Design of Automotive Thermoelectric Air Conditioner (TEAC)

    Science.gov (United States)

    Attar, Alaa; Lee, HoSung; Weera, Sean

    2014-06-01

    The present work is an analytical study of the optimal design of an automotive thermoelectric air conditioner (TEAC) using a new optimal design method with dimensional analysis that has been recently developed by our research group. The optimal design gives not only the optimal current but also the optimal geometry (i.e., the number of thermocouples, the geometric factor, or the hot fluid parameters). The optimal design for the TEAC is carried out with two configurations: air-to-liquid and air-to-air heat exchangers.

  6. Maximum Entropy/Optimal Projection (MEOP) control design synthesis: Optimal quantification of the major design tradeoffs

    Science.gov (United States)

    Hyland, D. C.; Bernstein, D. S.

    1987-01-01

    The underlying philosophy and motivation of the optimal projection/maximum entropy (OP/ME) stochastic modeling and reduced control design methodology for high order systems with parameter uncertainties are discussed. The OP/ME design equations for reduced-order dynamic compensation including the effect of parameter uncertainties are reviewed. The application of the methodology to several Large Space Structures (LSS) problems of representative complexity is illustrated.

  7. Fractional factorial design for optimization of the SELDI protocol for human adipose tissue culture media

    NARCIS (Netherlands)

    Szalowska, Ewa; van Hijum, Sacha A. F. T.; Roelofsen, Han; Hoek, Annemiek; Vonk, Roel J.; Meerman, Gerard J. te

    2007-01-01

    The early factors inducing insulin resistance are not known. Therefore, we are interested in studying the secretome of the human visceral adipose tissue as a potential source of unknown peptides and proteins inducing insulin resistance. Surface-enhanced laser desorption/ionization time-of-flight (SE

  8. Optimality criteria for the design of 2-color microarray studies.

    Science.gov (United States)

    Kerr, Kathleen F

    2012-01-13

    We discuss the definition and application of design criteria for evaluating the efficiency of 2-color microarray designs. First, we point out that design optimality criteria are defined differently for the regression and block design settings. This has caused some confusion in the literature and warrants clarification. Linear models for microarray data analysis have equivalent formulations as ANOVA or regression models. However, this equivalence does not extend to design criteria. We discuss optimality criterion, and argue against applying regression-style D-optimality to the microarray design problem. We further disfavor E- and D-optimality (as defined in block design) because they are not attuned to scientific questions of interest.

  9. Optimal Bayesian Experimental Design for Combustion Kinetics

    KAUST Repository

    Huan, Xun

    2011-01-04

    Experimental diagnostics play an essential role in the development and refinement of chemical kinetic models, whether for the combustion of common complex hydrocarbons or of emerging alternative fuels. Questions of experimental design—e.g., which variables or species to interrogate, at what resolution and under what conditions—are extremely important in this context, particularly when experimental resources are limited. This paper attempts to answer such questions in a rigorous and systematic way. We propose a Bayesian framework for optimal experimental design with nonlinear simulation-based models. While the framework is broadly applicable, we use it to infer rate parameters in a combustion system with detailed kinetics. The framework introduces a utility function that reflects the expected information gain from a particular experiment. Straightforward evaluation (and maximization) of this utility function requires Monte Carlo sampling, which is infeasible with computationally intensive models. Instead, we construct a polynomial surrogate for the dependence of experimental observables on model parameters and design conditions, with the help of dimension-adaptive sparse quadrature. Results demonstrate the efficiency and accuracy of the surrogate, as well as the considerable effectiveness of the experimental design framework in choosing informative experimental conditions.

  10. Optimal Ground Source Heat Pump System Design

    Energy Technology Data Exchange (ETDEWEB)

    Ozbek, Metin [ENVIRON; Yavuzturk, Cy [University of Hartford; Pinder, George [University of Vermont

    2015-04-15

    Despite the facts that GSHPs first gained popularity as early as the 1940’s and they can achieve 30 to 60 percent in energy savings and carbon emission reductions relative to conventional HVAC systems, the use of geothermal energy in the U.S. has been less than 1 percent of the total energy consumption. The key barriers preventing this technically-mature technology from reaching its full commercial potential have been its high installation cost and limited consumer knowledge and trust in GSHP systems to deliver the technology in a cost-effective manner in the market place. Led by ENVIRON, with support from University Hartford and University of Vermont, the team developed and tested a software-based a decision making tool (‘OptGSHP’) for the least-cost design of ground-source heat pump (‘GSHP’) systems. OptGSHP combines state of the art optimization algorithms with GSHP-specific HVAC and groundwater flow and heat transport simulation. The particular strength of OptGSHP is in integrating heat transport due to groundwater flow into the design, which most of the GSHP designs do not get credit for and therefore are overdesigned.

  11. Optimal Ground Source Heat Pump System Design

    Energy Technology Data Exchange (ETDEWEB)

    Ozbek, Metin [Environ Holdings Inc., Princeton, NJ (United States); Yavuzturk, Cy [Univ. of Hartford, West Hartford, CT (United States); Pinder, George [Univ. of Vermont, Burlington, VT (United States)

    2015-04-01

    Despite the facts that GSHPs first gained popularity as early as the 1940’s and they can achieve 30 to 60 percent in energy savings and carbon emission reductions relative to conventional HVAC systems, the use of geothermal energy in the U.S. has been less than 1 percent of the total energy consumption. The key barriers preventing this technically-mature technology from reaching its full commercial potential have been its high installation cost and limited consumer knowledge and trust in GSHP systems to deliver the technology in a cost-effective manner in the market place. Led by ENVIRON, with support from University Hartford and University of Vermont, the team developed and tested a software-based a decision making tool (‘OptGSHP’) for the least-cost design of ground-source heat pump (‘GSHP’) systems. OptGSHP combines state of the art optimization algorithms with GSHP-specific HVAC and groundwater flow and heat transport simulation. The particular strength of OptGSHP is in integrating heat transport due to groundwater flow into the design, which most of the GSHP designs do not get credit for and therefore are overdesigned.

  12. Analytical Enantio-Separation of Linagliptin in Linagliptin and Metformin HCl Dosage Forms by Applying Two-Level Factorial Design

    Directory of Open Access Journals (Sweden)

    Sushant B. Jadhav

    2016-10-01

    Full Text Available A novel, stability indicating, reverse phase high-performance liquid chromatography (RP-HPLC method was developed to determine the S-isomer of linagliptin (LGP in linagliptin and metformin hydrochloride (MET HCl tablets (LGP–MET HCl by implementing design of experiment (DoE, i.e., two-level, full factorial design (23 + 3 centre points = 11 experiments to understand the critical method parameters (CMP and its relation with the critical method attribute (CMA, and to ensure robustness of the method. The separation of the S-isomer, LGP and MET HCl in the presence of their impurities was achieved on Chiralpak® IA-3 (Amylose tris (3, 5-dimethylphenylcarbamate, immobilized on 3 µm silica gel stationary phase (250 × 4.6 mm, 3 µm using isocratic elution and detector wavelength at 225 nm with a flow rate of 0.5 mL·min−1, an injection volume of 10 µL with a sample cooler (5 °C and column oven temperature of 25 °C. Ethanol:Methanol:Monoethanolamine (EtOH:MeOH:MEA in the ratio of 60:40:0.2 v/v/v was used as a mobile phase. The developed method was validated in accordance with international council for harmonisation (ICH guidelines and was applied for the estimation of the S-isomer of LGP in LGP–MET HCl tablets. The same method also can be extended for the estimation of the S-isomer in LGP dosage forms.

  13. Sequential and simultaneous statistical optimization by dynamic design of experiment for peptide overexpression in recombinant Escherichia coli.

    Science.gov (United States)

    Lee, Kwang-Min; Rhee, Chang-Hoon; Kang, Choong-Kyung; Kim, Jung-Hoe

    2006-10-01

    The production of recombinant anti-HIV peptide, T-20, in Escherichia coli was optimized by statistical experimental designs (successive designs with multifactors) such as 2(4-1) fractional factorial, 2(3) full factorial, and 2(2) rotational central composite design in order. The effects of media compositions (glucose, NPK sources, MgSO4, and trace elements), induction level, induction timing (optical density at induction process), and induction duration (culture time after induction) on T-20 production were studied by using a statistical response surface method. A series of iterative experimental designs was employed to determine optimal fermentation conditions (media and process factors). Optimal ranges characterized by %T-20 (proportion of peptide to the total cell protein) were observed, narrowed down, and further investigated to determine the optimal combination of culture conditions, which was as follows: 9, 6, 10, and 1 mL of glucose, NPK sources, MgSO4, and trace elements, respectively, in a total of 100 mL of medium inducted at an OD of 0.55-0.75 with 0.7 mM isopropyl-beta-D-thiogalactopyranoside in an induction duration of 4 h. Under these conditions, up to 14% of T-20 was obtained. This statistical optimization allowed the production of T-20 to be increased more than twofold (from 6 to 14%) within a shorter induction duration (from 6 to 4 h) at the shake-flask scale.

  14. REGIONAL EXPRESSION IN DESIGN OF INDUSTRIAL FACTORY BUILDINGS: THE PLANNING AND MONOMER DESIGN OF FACTORY AREA FOR HUATAI GROUP%工业厂区建筑设计中的地域性表达——华泰集团安恰厂区规划及单体设计

    Institute of Scientific and Technical Information of China (English)

    王益

    2012-01-01

    工业厂区建筑设计缺乏地域特色会造成视觉的千遍一律。以华泰集团安恰厂区规划及单体设计为例,从总体布局、设计手法与要素和设计中的企业文化表达三个方面,分析如何在工业厂区建筑设计中表达地域性,为设计师设计工业厂区建筑提供一些参考和借鉴。%There are always about the similar and monotonic visions in the design of industrial factory buildings due to lack of regional characteristics. By means of taking the planning and monomer design of factory area for Huatai Group, for example, from the general layout, design skills and element, the enterprise culture expression in design, it was analyzed how to express the regional characteristics in the design of industrial factory buildings, which could provide experience for designers to design industriai factory buildings.

  15. Research on Multidisciplinary Optimization Design of Bridge Crane

    Directory of Open Access Journals (Sweden)

    Tong Yifei

    2013-01-01

    Full Text Available Bridge crane is one of the most widely used cranes in our country, which is indispensable equipment for material conveying in the modern production. In this paper, the framework of multidisciplinary optimization for bridge crane is proposed. The presented research on crane multidisciplinary design technology for energy saving includes three levels, respectively: metal structures level, transmission design level, and electrical system design level. The shape optimal mathematical model of the crane is established for shape optimization design of metal structure level as well as size optimal mathematical model and topology optimal mathematical model of crane for topology optimization design of metal structure level is established. Finally, system-level multidisciplinary energy-saving optimization design of bridge crane is further carried out with energy-saving transmission design results feedback to energy-saving optimization design of metal structure. The optimization results show that structural optimization design can reduce total mass of crane greatly by using the finite element analysis and multidisciplinary optimization technology premised on the design requirements of cranes such as stiffness and strength; thus, energy-saving design can be achieved.

  16. Earth Observing Satellite Orbit Design Via Particle Swarm Optimization

    Science.gov (United States)

    2014-08-01

    Earth Observing Satellite Orbit Design Via Particle Swarm Optimization Sharon Vtipil ∗ and John G. Warner ∗ US Naval Research Laboratory, Washington...number of passes per day given a satellite’s orbital altitude and inclination. These are used along with particle swarm optimization to determine optimal...well suited to use within a meta-heuristic optimization method such as the Particle Swarm Optimizer (PSO). This method seeks to find the optimal set

  17. Optimal screening designs for biomedical technology

    Energy Technology Data Exchange (ETDEWEB)

    Torney, D.C.; Bruno, W.J.; Knill, E. [and others

    1997-10-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). Screening a large number of different types of molecules to isolate a few with desirable properties is essential in biomedical technology. For example, trying to find a particular gene in the Human genome could be akin to looking for a needle in a haystack. Fortunately, testing of mixtures, or pools, of molecules allows the desirable ones to be identified, using a number of experiments proportional only to the logarithm of the total number of experiments proportional only to the logarithm of the total number of types of molecules. We show how to capitalize upon this potential by using optimize pooling schemes, or designs. We propose efficient non-adaptive pooling designs, such as {open_quotes}random sets{close_quotes} designs and modified {open_quotes}row and column{close_quotes} designs. Our results have been applied in the pooling and unique-sequence screening of clone libraries used in the Human Genome Project and in the mapping of Human chromosome 16. This required the use of liquid-transferring robots and manifolds--for the largest clone libraries. Finally, we developed an efficient technique for finding the posterior probability each molecule has the desirable property, given the pool assay results. This technique works well, in practice, even if there are substantial rates of errors in the pool assay data. Both our methods and our results are relevant to a broad spectrum of research in modern biology.

  18. Factorial Based Response Surface Modeling with Confidence Intervals for Optimizing Thermal Optical Transmission Analysis of Atmospheric Black Carbon

    Science.gov (United States)

    We demonstrate how thermal-optical transmission analysis (TOT) for refractory light-absorbing carbon in atmospheric particulate matter was optimized with empirical response surface modeling. TOT employs pyrolysis to distinguish the mass of black carbon (BC) from organic carbon (...

  19. Phi factory detector requirements

    Energy Technology Data Exchange (ETDEWEB)

    Arisaka, K.; Atac, M.; Berg, R.; Buchanan, C.; Calvette, M.; Khazin, B.; Kinoshita, K.; Muller, T.; Ohshima, T.; Olsen, S.; Park, J.; Santoni, C.; Shirai, J.; Solodov, E.; Thompson, J.; Triggiani, G.; Ueno, K.; Yamamoto, H.; Detector and Simulation Working Group

    1991-08-01

    We identify the experimental problems and the conditions required for successful phi-factory operation, and show the range of detector parameters which, in conjunction with different machine designs, may meet these conditions. We started by considering, comparing and criticizing the Italian and Novosibirsk designs. With this discussion as a background, we defined the apparent experimental problems and detector constraints. In this article we summarize our understanding. (orig./HSI).

  20. Chip Design Process Optimization Based on Design Quality Assessment

    Science.gov (United States)

    Häusler, Stefan; Blaschke, Jana; Sebeke, Christian; Rosenstiel, Wolfgang; Hahn, Axel

    2010-06-01

    Nowadays, the managing of product development projects is increasingly challenging. Especially the IC design of ASICs with both analog and digital components (mixed-signal design) is becoming more and more complex, while the time-to-market window narrows at the same time. Still, high quality standards must be fulfilled. Projects and their status are becoming less transparent due to this complexity. This makes the planning and execution of projects rather difficult. Therefore, there is a need for efficient project control. A main challenge is the objective evaluation of the current development status. Are all requirements successfully verified? Are all intermediate goals achieved? Companies often develop special solutions that are not reusable in other projects. This makes the quality measurement process itself less efficient and produces too much overhead. The method proposed in this paper is a contribution to solve these issues. It is applied at a German design house for analog mixed-signal IC design. This paper presents the results of a case study and introduces an optimized project scheduling on the basis of quality assessment results.

  1. Repair Optimal Erasure Codes through Hadamard Designs

    CERN Document Server

    Papailiopoulos, Dimitris S; Cadambe, Viveck R

    2011-01-01

    In distributed storage systems that employ erasure coding, the issue of minimizing the total {\\it communication} required to exactly rebuild a storage node after a failure arises. This repair bandwidth depends on the structure of the storage code and the repair strategies used to restore the lost data. Designing high-rate maximum-distance separable (MDS) codes that achieve the optimum repair communication has been a well-known open problem. In this work, we use Hadamard matrices to construct the first explicit 2-parity MDS storage code with optimal repair properties for all single node failures, including the parities. Our construction relies on a novel method of achieving perfect interference alignment over finite fields with a finite file size, or number of extensions. We generalize this construction to design $m$-parity MDS codes that achieve the optimum repair communication for single systematic node failures and show that there is an interesting connection between our $m$-parity codes and the systematic-...

  2. Particle Swarm Optimization for Structural Design Problems

    Directory of Open Access Journals (Sweden)

    Hamit SARUHAN

    2010-02-01

    Full Text Available The aim of this paper is to employ the Particle Swarm Optimization (PSO technique to a mechanical engineering design problem which is minimizing the volume of a cantilevered beam subject to bending strength constraints. Mechanical engineering design problems are complex activities which are computing capability are more and more required. The most of these problems are solved by conventional mathematical programming techniques that require gradient information. These techniques have several drawbacks from which the main one is becoming trapped in local optima. As an alternative to gradient-based techniques, the PSO does not require the evaluation of gradients of the objective function. The PSO algorithm employs the generation of guided random positions when they search for the global optimum point. The PSO which is a nature inspired heuristics search technique imitates the social behavior of bird flocking. The results obtained by the PSO are compared with Mathematical Programming (MP. It is demonstrated that the PSO performed and obtained better convergence reliability on the global optimum point than the MP. Using the MP, the volume of 2961000 mm3 was obtained while the beam volume of 2945345 mm3 was obtained by the PSO.

  3. Design, Characterization, and Optimization of Controlled Drug Delivery System Containing Antibiotic Drug/s

    Science.gov (United States)

    Shelate, Pragna; Dave, Divyang

    2016-01-01

    The objective of this work was design, characterization, and optimization of controlled drug delivery system containing antibiotic drug/s. Osmotic drug delivery system was chosen as controlled drug delivery system. The porous osmotic pump tablets were designed using Plackett-Burman and Box-Behnken factorial design to find out the best formulation. For screening of three categories of polymers, six independent variables were chosen for Plackett-Burman design. Osmotic agent sodium chloride and microcrystalline cellulose, pore forming agent sodium lauryl sulphate and sucrose, and coating agent ethyl cellulose and cellulose acetate were chosen as independent variables. Optimization of osmotic tablets was done by Box-Behnken design by selecting three independent variables. Osmotic agent sodium chloride, pore forming agent sodium lauryl sulphate, and coating agent cellulose acetate were chosen as independent variables. The result of Plackett-Burman and Box-Behnken design and ANOVA studies revealed that osmotic agent and pore former had significant effect on the drug release up to 12 hr. The observed independent variables were found to be very close to predicted values of most satisfactory formulation which demonstrates the feasibility of the optimization procedure in successful development of porous osmotic pump tablets containing antibiotic drug/s by using sodium chloride, sodium lauryl sulphate, and cellulose acetate as key excipients. PMID:27610247

  4. 最小低阶混杂混合水平(2γ)2n因子设计的一些结果%Some Results on Minimum Aberration Mixed-level (2γ)2n Factorial Designs

    Institute of Scientific and Technical Information of China (English)

    史成堂; 张丹; 陈宝亭; 李玉凯

    2007-01-01

    Mukerjee and Wu(2001) employed projective geometry theory to find the wordlength pattern of a regular mixed factorial design in terms of its complementary set,but only for the numbers of words of length 3 or 4. In this paper, by introducing a concept of consulting design and based on the connection between factorial design theory and coding theory, we obtain some combinatorial identities that relate the wordlength pattern of a regular mixed-level (2γ)2n factorial design to that of its consulting design. Consequently, a general rule for identifying minimum aberration (2γ)2n factorial designs through their consulting designs is established. It is an improvement and generalization of the related result in Mukerjee and Wu(2001).

  5. A Fractional Factorial Design Study of Reciprocating Wear Behavior of Al-Si-SiCp Composites at Lubricated Contacts

    Science.gov (United States)

    Rajeev, V. R.; Dwivedi, D. K.; Jain, S. C.

    2011-04-01

    The lubricated reciprocating wear behavior of two composites A319/15%SiCp and A390/15%SiCp produced by the liquid metallurgy route was investigated by means of an indigenously developed reciprocating friction wear test rig using a fractional factorial-design approach. The main purpose was to study the influence of wear and friction test parameters such as applied load, sliding distance, reciprocating velocity, counter surface temperature and silicon content in composites, as well as their interactions on the wear and friction characteristics of these composites. Two output responses (wear loss and coefficient of friction) were measured. The input parameter levels were fixed through pilot experiment conducted in the newly developed reciprocating friction and wear test rig. The counter surface material used for the wear study was cast iron having Vickers hardness of 244 HVN. It had been demonstrated through established equations that A390/15%SiCp composite is subjected to low wear compared to the A319/15%SiCp composite. The experimental results indicate that the proposed mathematical models suggested could adequately describe the performance indicators within the limits of the factors that are being investigated. The applied load, sliding distance, reciprocating velocity, counter surface temperature, and silicon content in composite are the five important factors controlling the friction and wear characteristics of the composite in lubricated condition. Moreover, the two factor interactions have a strong effect on the wear of composites. The results give a comprehensive insight into the wear of the composites.

  6. Treatment of municipal landfill leachate by catalytic wet air oxidation: Assessment of the role of operating parameters by factorial design.

    Science.gov (United States)

    Anglada, Angela; Urtiaga, Ane; Ortiz, Inmaculada; Mantzavinos, Dionissios; Diamadopoulos, Evan

    2011-08-01

    The wet air oxidation (WAO) of municipal landfill leachate catalyzed by cupric ions and promoted by hydrogen peroxide was investigated. The effect of operating conditions such as WAO treatment time (15-30min), temperature (160-200°C), Cu(2+) concentration (250-750mgL(-1)) and H(2)O(2) concentration (0-1500mgL(-1)) on chemical oxygen demand (COD) removal was investigated by factorial design considering a two-stage, sequential process comprising the heating-up of the reactor and the actual WAO. The leachate, at an initial COD of 4920mgL(-1), was acidified to pH 3 leading to 31% COD decrease presumably due to the coagulation/precipitation of colloidal and other organic matter. During the 45min long heating-up period of the WAO reactor under an inert atmosphere, COD removal values up to 35% (based on the initial COD value) were recorded as a result of the catalytic decomposition of H(2)O(2) to reactive hydroxyl radicals. WAO at 2.5MPa oxygen partial pressure advanced treatment further; for example, 22min of oxidation at 200°C, 250mgL(-1) Cu(2+) and 0-1500mgL(-1) H(2)O(2) resulted in an overall (i.e. including acidification and heating-up) COD reduction of 78%. Amongst the operating variables in question, temperature had the strongest influence on both the heating-up and WAO stages, while H(2)O(2) concentration strongly affected the former and reaction time the latter. Nonetheless, the effects of temperature and H(2)O(2) concentration were found to depend on the concentration levels of catalyst as suggested by the significance of their 3rd order interaction term.

  7. Testing Nelder-Mead based repulsion algorithms for multiple roots of nonlinear systems via a two-level factorial design of experiments.

    Directory of Open Access Journals (Sweden)

    Gisela C V Ramadas

    Full Text Available This paper addresses the challenging task of computing multiple roots of a system of nonlinear equations. A repulsion algorithm that invokes the Nelder-Mead (N-M local search method and uses a penalty-type merit function based on the error function, known as 'erf', is presented. In the N-M algorithm context, different strategies are proposed to enhance the quality of the solutions and improve the overall efficiency. The main goal of this paper is to use a two-level factorial design of experiments to analyze the statistical significance of the observed differences in selected performance criteria produced when testing different strategies in the N-M based repulsion algorithm. The main goal of this paper is to use a two-level factorial design of experiments to analyze the statistical significance of the observed differences in selected performance criteria produced when testing different strategies in the N-M based repulsion algorithm.

  8. Testing Nelder-Mead based repulsion algorithms for multiple roots of nonlinear systems via a two-level factorial design of experiments.

    Science.gov (United States)

    Ramadas, Gisela C V; Rocha, Ana Maria A C; Fernandes, Edite M G P

    2015-01-01

    This paper addresses the challenging task of computing multiple roots of a system of nonlinear equations. A repulsion algorithm that invokes the Nelder-Mead (N-M) local search method and uses a penalty-type merit function based on the error function, known as 'erf', is presented. In the N-M algorithm context, different strategies are proposed to enhance the quality of the solutions and improve the overall efficiency. The main goal of this paper is to use a two-level factorial design of experiments to analyze the statistical significance of the observed differences in selected performance criteria produced when testing different strategies in the N-M based repulsion algorithm. The main goal of this paper is to use a two-level factorial design of experiments to analyze the statistical significance of the observed differences in selected performance criteria produced when testing different strategies in the N-M based repulsion algorithm.

  9. The Study of Tactical Missile's Airframe Digital Optimization Design

    Institute of Scientific and Technical Information of China (English)

    LUO Zhiqing; QIAN Airong; LI Xuefeng; GAO Lin; LEI Jian

    2006-01-01

    Digital design and optimal are very important in modern design. The traditional design methods and procedure are not fit for the modern missile weapons research and development. Digital design methods and optimal ideas were employed to deal with this problem. The disadvantages of the traditional missile's airframe design procedure and the advantages of the digital design methods were discussed. A new concept of design process reengineering (DPR) was put forward. An integrated missile airframe digital design platform and the digital design procedure, which integrated the optimization ideas and methods, were developed. Case study showed that the design platform and the design procedure could improve the efficiency and quality of missile's airframe design, and get the more reasonable and optimal results.

  10. Design and optimization of a brachytherapy robot

    Science.gov (United States)

    Meltsner, Michael A.

    Trans-rectal ultrasound guided (TRUS) low dose rate (LDR) interstitial brachytherapy has become a popular procedure for the treatment of prostate cancer, the most common type of non-skin cancer among men. The current TRUS technique of LDR implantation may result in less than ideal coverage of the tumor with increased risk of negative response such as rectal toxicity and urinary retention. This technique is limited by the skill of the physician performing the implant, the accuracy of needle localization, and the inherent weaknesses of the procedure itself. The treatment may require 100 or more sources and 25 needles, compounding the inaccuracy of the needle localization procedure. A robot designed for prostate brachytherapy may increase the accuracy of needle placement while minimizing the effect of physician technique in the TRUS procedure. Furthermore, a robot may improve associated toxicities by utilizing angled insertions and freeing implantations from constraints applied by the 0.5 cm-spaced template used in the TRUS method. Within our group, Lin et al. have designed a new type of LDR source. The "directional" source is a seed designed to be partially shielded. Thus, a directional, or anisotropic, source does not emit radiation in all directions. The source can be oriented to irradiate cancerous tissues while sparing normal ones. This type of source necessitates a new, highly accurate method for localization in 6 degrees of freedom. A robot is the best way to accomplish this task accurately. The following presentation of work describes the invention and optimization of a new prostate brachytherapy robot that fulfills these goals. Furthermore, some research has been dedicated to the use of the robot to perform needle insertion tasks (brachytherapy, biopsy, RF ablation, etc.) in nearly any other soft tissue in the body. This can be accomplished with the robot combined with automatic, magnetic tracking.

  11. A Framework for Designing Optimal Spacecraft Formations

    Science.gov (United States)

    2002-09-01

    3 1. Reference Frame ..................................................................................6 B. SOLVING OPTIMAL CONTROL PROBLEMS ........................................7...spacecraft state. Depending on the model, there may be additional variables in the state, but there will be a minimum of these six. B. SOLVING OPTIMAL CONTROL PROBLEMS Until

  12. Automated Design Framework for Synthetic Biology Exploiting Pareto Optimality.

    Science.gov (United States)

    Otero-Muras, Irene; Banga, Julio R

    2017-07-21

    In this work we consider Pareto optimality for automated design in synthetic biology. We present a generalized framework based on a mixed-integer dynamic optimization formulation that, given design specifications, allows the computation of Pareto optimal sets of designs, that is, the set of best trade-offs for the metrics of interest. We show how this framework can be used for (i) forward design, that is, finding the Pareto optimal set of synthetic designs for implementation, and (ii) reverse design, that is, analyzing and inferring motifs and/or design principles of gene regulatory networks from the Pareto set of optimal circuits. Finally, we illustrate the capabilities and performance of this framework considering four case studies. In the first problem we consider the forward design of an oscillator. In the remaining problems, we illustrate how to apply the reverse design approach to find motifs for stripe formation, rapid adaption, and fold-change detection, respectively.

  13. Application of surrogate-based global optimization to aerodynamic design

    CERN Document Server

    Pérez, Esther

    2016-01-01

    Aerodynamic design, like many other engineering applications, is increasingly relying on computational power. The growing need for multi-disciplinarity and high fidelity in design optimization for industrial applications requires a huge number of repeated simulations in order to find an optimal design candidate. The main drawback is that each simulation can be computationally expensive – this becomes an even bigger issue when used within parametric studies, automated search or optimization loops, which typically may require thousands of analysis evaluations. The core issue of a design-optimization problem is the search process involved. However, when facing complex problems, the high-dimensionality of the design space and the high-multi-modality of the target functions cannot be tackled with standard techniques. In recent years, global optimization using meta-models has been widely applied to design exploration in order to rapidly investigate the design space and find sub-optimal solutions. Indeed, surrogat...

  14. The effect of stimulation therapy and donepezil on cognitive function in Alzheimer’s disease. A community based RCT with a two-by-two factorial design

    Directory of Open Access Journals (Sweden)

    Andersen Fred

    2012-07-01

    Full Text Available Abstract Background Progressive neurodegeneration in Alzheimer’s disease (AD induces cognitive deterioration, and there is controversy regarding the optimal treatment strategy in early AD. Stimulation therapy, including physical exercise and cholinesterase inhibitors are both reported to postpone cognitive deterioration in separate studies. We aimed to study the effect of stimulation therapy and the additional effect of donepezil on cognitive function in early AD. Method Design: A two-by-two factorial trial comprising stimulation therapy for one year compared to standard care to which a randomized double-blinded placebo controlled trial with donepezil was added. Setting: Nine rural municipalities in Northern Norway. Participants: 187 participants 65 years and older with a recent diagnosis of mild or moderate AD were included in the study of which 146 completed a one-year follow-up. INTERVENTIONS: In five municipalities the participants received stimulation therapy whereas participants in four received standard care. All participants were randomised double-blindly to donepezil or placebo and tested with three different cognitive tests four times during the one-year study period. Main outcome: Changes in MMSE sum score. Secondary outcome: Changes in ADAS-Cog and Clock Drawing Test. Results MMSE scores remained unchanged amongst AD participants receiving stimulation therapy and those receiving standard care. The results were consistent for ADAS-Cog and Clock Drawing Test. No time trend differences were found during one-year follow-up between groups receiving stimulation therapy versus standard care or between donepezil versus placebo. Conclusion In rural AD patients non-pharmacological and pharmacological therapy did not improve outcome compared with standard care but all groups retained cognitive function during one year follow-up. Other studies are needed to confirm these results. Trial registration ClinicalTrials.gov (Identifier: NCT00443014

  15. Validated high-performance thin-layer chromatographic (HPTLC method for simultaneous determination of nadifloxacin, mometasone furoate, and miconazole nitrate cream using fractional factorial design

    Directory of Open Access Journals (Sweden)

    Kalpana G. Patel

    2016-07-01

    Full Text Available A high-performance thin-layer chromatographic method for simultaneous determination of nadifloxacin, mometasone furoate, and miconazole nitrate was developed and validated as per International Conference on Harmonization guidelines. High-performance thin-layer chromatographic separation was performed on aluminum plates precoated with silica gel 60F254 and methanol:ethyl acetate:toluene: acetonitrile:3M ammonium formate in water (1:2.5:6.0:0.3:0.2, % v/v as optimized mobile phase at detection wavelength of 224 nm. The retardation factor (Rf values for nadifloxacin, mometasone furoate, and miconazole nitrate were 0.23, 0.70, and 0.59, respectively. Percent recoveries in terms of accuracy for the marketed formulation were found to be 98.35–99.76%, 99.36–99.65%, and 99.16–100.25% for nadifloxacin, mometasone furoate, and miconazole nitrate, respectively. The pooled percent relative standard deviation for repeatability and intermediate precision studies was found to be < 2% for three target analytes. The effect of four independent variables, methanol content in total mobile phase, wavelength, chamber saturation time, and solvent front, was evaluated by fractional factorial design for robustness testing. Amongst all four factors, volume of methanol in mobile phase appeared to have a possibly significant effect on retention factor of miconazole nitrate compared with the other two drugs nadifloxacin and mometasone furoate, and therefore it was important to be carefully controlled. In summary, a novel, simple, accurate, reproducible, and robust high-performance thin-layer chromatographic method was developed, which would be of use in quality control of these cream formulations.

  16. Design Time Optimization for Hardware Watermarking Protection of HDL Designs

    Directory of Open Access Journals (Sweden)

    E. Castillo

    2015-01-01

    Full Text Available HDL-level design offers important advantages for the application of watermarking to IP cores, but its complexity also requires tools automating these watermarking algorithms. A new tool for signature distribution through combinational logic is proposed in this work. IPP@HDL, a previously proposed high-level watermarking technique, has been employed for evaluating the tool. IPP@HDL relies on spreading the bits of a digital signature at the HDL design level using combinational logic included within the original system. The development of this new tool for the signature distribution has not only extended and eased the applicability of this IPP technique, but it has also improved the signature hosting process itself. Three algorithms were studied in order to develop this automated tool. The selection of a cost function determines the best hosting solutions in terms of area and performance penalties on the IP core to protect. An 1D-DWT core and MD5 and SHA1 digital signatures were used in order to illustrate the benefits of the new tool and its optimization related to the extraction logic resources. Among the proposed algorithms, the alternative based on simulated annealing reduces the additional resources while maintaining an acceptable computation time and also saving designer effort and time.

  17. Design time optimization for hardware watermarking protection of HDL designs.

    Science.gov (United States)

    Castillo, E; Morales, D P; García, A; Parrilla, L; Todorovich, E; Meyer-Baese, U

    2015-01-01

    HDL-level design offers important advantages for the application of watermarking to IP cores, but its complexity also requires tools automating these watermarking algorithms. A new tool for signature distribution through combinational logic is proposed in this work. IPP@HDL, a previously proposed high-level watermarking technique, has been employed for evaluating the tool. IPP@HDL relies on spreading the bits of a digital signature at the HDL design level using combinational logic included within the original system. The development of this new tool for the signature distribution has not only extended and eased the applicability of this IPP technique, but it has also improved the signature hosting process itself. Three algorithms were studied in order to develop this automated tool. The selection of a cost function determines the best hosting solutions in terms of area and performance penalties on the IP core to protect. An 1D-DWT core and MD5 and SHA1 digital signatures were used in order to illustrate the benefits of the new tool and its optimization related to the extraction logic resources. Among the proposed algorithms, the alternative based on simulated annealing reduces the additional resources while maintaining an acceptable computation time and also saving designer effort and time.

  18. Optimization and Technological Development Strategies of an Antimicrobial Extract from Achyrocline alata Assisted by Statistical Design

    Science.gov (United States)

    Demarque, Daniel P.; Fitts, Sonia Maria F.; Boaretto, Amanda G.; da Silva, Júlio César Leite; Vieira, Maria C.; Franco, Vanessa N. P.; Teixeira, Caroline B.; Toffoli-Kadri, Mônica C.; Carollo, Carlos A.

    2015-01-01

    Achyrocline alata, known as Jateí-ka-há, is traditionally used to treat several health problems, including inflammations and infections. This study aimed to optimize an active extract against Streptococcus mutans, the main bacteria that causes caries. The extract was developed using an accelerated solvent extraction and chemometric calculations. Factorial design and response surface methodologies were used to determine the most important variables, such as active compound selectivity. The standardized extraction recovered 99% of the four main compounds, gnaphaliin, helipyrone, obtusifolin and lepidissipyrone, which represent 44% of the extract. The optimized extract of A. alata has a MIC of 62.5 μg/mL against S. mutans and could be used in mouth care products. PMID:25710523

  19. Optimization and technological development strategies of an antimicrobial extract from Achyrocline alata assisted by statistical design.

    Science.gov (United States)

    Demarque, Daniel P; Fitts, Sonia Maria F; Boaretto, Amanda G; da Silva, Júlio César Leite; Vieira, Maria C; Franco, Vanessa N P; Teixeira, Caroline B; Toffoli-Kadri, Mônica C; Carollo, Carlos A

    2015-01-01

    Achyrocline alata, known as Jateí-ka-há, is traditionally used to treat several health problems, including inflammations and infections. This study aimed to optimize an active extract against Streptococcus mutans, the main bacteria that causes caries. The extract was developed using an accelerated solvent extraction and chemometric calculations. Factorial design and response surface methodologies were used to determine the most important variables, such as active compound selectivity. The standardized extraction recovered 99% of the four main compounds, gnaphaliin, helipyrone, obtusifolin and lepidissipyrone, which represent 44% of the extract. The optimized extract of A. alata has a MIC of 62.5 μg/mL against S. mutans and could be used in mouth care products.

  20. Optimization and technological development strategies of an antimicrobial extract from Achyrocline alata assisted by statistical design.

    Directory of Open Access Journals (Sweden)

    Daniel P Demarque

    Full Text Available Achyrocline alata, known as Jateí-ka-há, is traditionally used to treat several health problems, including inflammations and infections. This study aimed to optimize an active extract against Streptococcus mutans, the main bacteria that causes caries. The extract was developed using an accelerated solvent extraction and chemometric calculations. Factorial design and response surface methodologies were used to determine the most important variables, such as active compound selectivity. The standardized extraction recovered 99% of the four main compounds, gnaphaliin, helipyrone, obtusifolin and lepidissipyrone, which represent 44% of the extract. The optimized extract of A. alata has a MIC of 62.5 μg/mL against S. mutans and could be used in mouth care products.

  1. A Powerful Optimization Tool for Analog Integrated Circuits Design

    Directory of Open Access Journals (Sweden)

    M. Kubar

    2013-09-01

    Full Text Available This paper presents a new optimization tool for analog circuit design. Proposed tool is based on the robust version of the differential evolution optimization method. Corners of technology, temperature, voltage and current supplies are taken into account during the optimization. That ensures robust resulting circuits. Those circuits usually do not need any schematic change and are ready for the layout.. The newly developed tool is implemented directly to the Cadence design environment to achieve very short setup time of the optimization task. The design automation procedure was enhanced by optimization watchdog feature. It was created to control optimization progress and moreover to reduce the search space to produce better design in shorter time. The optimization algorithm presented in this paper was successfully tested on several design examples.

  2. Assay optimization: a statistical design of experiments approach.

    Science.gov (United States)

    Altekar, Maneesha; Homon, Carol A; Kashem, Mohammed A; Mason, Steven W; Nelson, Richard M; Patnaude, Lori A; Yingling, Jeffrey; Taylor, Paul B

    2007-03-01

    With the transition from manual to robotic HTS in the last several years, assay optimization has become a significant bottleneck. Recent advances in robotic liquid handling have made it feasible to reduce assay optimization timelines with the application of statistically designed experiments. When implemented, they can efficiently optimize assays by rapidly identifying significant factors, complex interactions, and nonlinear responses. This article focuses on the use of statistically designed experiments in assay optimization.

  3. DS-OPTIMAL DESIGNS FOR STUDYING COMBINATIONS OF CHEMICALS USING MULTIPLE FIXED-RATIO RAY EXPERIMENTS

    Science.gov (United States)

    ABSTRACT Detecting and characterizing interactions among chemicals is an important environmental issue. Traditional factorial designs become infeasible as the number of compounds under study increases. Ray designs, which reduce the amount of experimental effort, can be...

  4. Global Optimization Problems in Optimal Design of Experiments in Regression Models

    NARCIS (Netherlands)

    Boer, E.P.J.; Hendrix, E.M.T.

    2000-01-01

    In this paper we show that optimal design of experiments, a specific topic in statistics, constitutes a challenging application field for global optimization. This paper shows how various structures in optimal design of experiments problems determine the structure of corresponding challenging global

  5. Configurable intelligent optimization algorithm design and practice in manufacturing

    CERN Document Server

    Tao, Fei; Laili, Yuanjun

    2014-01-01

    Presenting the concept and design and implementation of configurable intelligent optimization algorithms in manufacturing systems, this book provides a new configuration method to optimize manufacturing processes. It provides a comprehensive elaboration of basic intelligent optimization algorithms, and demonstrates how their improvement, hybridization and parallelization can be applied to manufacturing. Furthermore, various applications of these intelligent optimization algorithms are exemplified in detail, chapter by chapter. The intelligent optimization algorithm is not just a single algorit

  6. Optimizing Adhesive Design by Understanding Compliance.

    Science.gov (United States)

    King, Daniel R; Crosby, Alfred J

    2015-12-23

    Adhesives have long been designed around a trade-off between adhesive strength and releasability. Geckos are of interest because they are the largest organisms which are able to climb utilizing adhesive toepads, yet can controllably release from surfaces and perform this action over and over again. Attempting to replicate the hierarchical, nanoscopic features which cover their toepads has been the primary focus of the adhesives field until recently. A new approach based on a scaling relation which states that reversible adhesive force capacity scales with (A/C)(1/2), where A is the area of contact and C is the compliance of the adhesive, has enabled the creation of high strength, reversible adhesives without requiring high aspect ratio, fibrillar features. Here we introduce an equation to calculate the compliance of adhesives, and utilize this equation to predict the shear adhesive force capacity of the adhesive based on the material components and geometric properties. Using this equation, we have investigated important geometric parameters which control force capacity and have shown that by controlling adhesive shape, adhesive force capacity can be increased by over 50% without varying pad size. Furthermore, we have demonstrated that compliance of the adhesive far from the interface still influences shear adhesive force capacity. Utilizing this equation will allow for the production of adhesives which are optimized for specific applications in commercial and industrial settings.

  7. Optimization Design and Application of Underground Reinforced Concrete Bifurcation Pipe

    Directory of Open Access Journals (Sweden)

    Chao Su

    2015-01-01

    Full Text Available Underground reinforced concrete bifurcation pipe is an important part of conveyance structure. During construction, the workload of excavation and concrete pouring can be significantly decreased according to optimized pipe structure, and the engineering quality can be improved. This paper presents an optimization mathematical model of underground reinforced concrete bifurcation pipe structure according to real working status of several common pipe structures from real cases. Then, an optimization design system was developed based on Particle Swarm Optimization algorithm. Furthermore, take the bifurcation pipe of one hydropower station as an example: optimization analysis was conducted, and accuracy and stability of the optimization design system were verified successfully.

  8. Advanced Topology Optimization Methods for Conceptual Architectural Design

    DEFF Research Database (Denmark)

    Aage, Niels; Amir, Oded; Clausen, Anders

    2014-01-01

    This paper presents a series of new, advanced topology optimization methods, developed specifically for conceptual architectural design of structures. The proposed computational procedures are implemented as components in the framework of a Grasshopper plugin, providing novel capacities...... in topological optimization: Interactive control and continuous visualization; embedding flexible voids within the design space; consideration of distinct tension / compression properties; and optimization of dual material systems. In extension, optimization procedures for skeletal structures such as trusses...... and frames are implemented. The developed procedures allow for the exploration of new territories in optimization of architectural structures, and offer new methodological strategies for bridging conceptual gaps between optimization and architectural practice....

  9. Design of a Communication Scheme in a Modern Factory in Accordance with the Standard of Industry 4.0

    Science.gov (United States)

    Halenár, Igor; Juhásová, Bohuslava; Juhás, Martin

    2016-12-01

    This article first describes the current state of the problem in the area of communication in modern factories. Next in the article is given a summary of the requirements that must be implemented for the possibility of establishing a compatible and safe communication system. In the final part of the article is given a proposal of communication model suitable for the implementation.

  10. An Efficient Method for Reliability-based Multidisciplinary Design Optimization

    Institute of Scientific and Technical Information of China (English)

    Fan Hui; Li Weiji

    2008-01-01

    Design for modem engineering system is becoming multidisciplinary and incorporates practical uncertainties; therefore, it is necessary to synthesize reliability analysis and the multidiscipLinary design optimization (MDO) techniques for the design of complex engineering system. An advanced first order second moment method-based concurrent subspace optimization approach is proposed based on the comparison and analysis of the existing multidisciplinary optimization techniques and the reliability analysis methods. It is seen through a canard configuration optimization for a three-surface transport that the proposed method is computationally efficient and practical with the least modification to the current deterministic optimization process.

  11. Simultaneous optimal experimental design for in vitro binding parameter estimation.

    Science.gov (United States)

    Ernest, C Steven; Karlsson, Mats O; Hooker, Andrew C

    2013-10-01

    Simultaneous optimization of in vitro ligand binding studies using an optimal design software package that can incorporate multiple design variables through non-linear mixed effect models and provide a general optimized design regardless of the binding site capacity and relative binding rates for a two binding system. Experimental design optimization was employed with D- and ED-optimality using PopED 2.8 including commonly encountered factors during experimentation (residual error, between experiment variability and non-specific binding) for in vitro ligand binding experiments: association, dissociation, equilibrium and non-specific binding experiments. Moreover, a method for optimizing several design parameters (ligand concentrations, measurement times and total number of samples) was examined. With changes in relative binding site density and relative binding rates, different measurement times and ligand concentrations were needed to provide precise estimation of binding parameters. However, using optimized design variables, significant reductions in number of samples provided as good or better precision of the parameter estimates compared to the original extensive sampling design. Employing ED-optimality led to a general experimental design regardless of the relative binding site density and relative binding rates. Precision of the parameter estimates were as good as the extensive sampling design for most parameters and better for the poorly estimated parameters. Optimized designs for in vitro ligand binding studies provided robust parameter estimation while allowing more efficient and cost effective experimentation by reducing the measurement times and separate ligand concentrations required and in some cases, the total number of samples.

  12. Topology optimization problems with design-dependent sets of constraints

    DEFF Research Database (Denmark)

    Schou, Marie-Louise Højlund

    Topology optimization is a design tool which is used in numerous fields. It can be used whenever the design is driven by weight and strength considerations. The basic concept of topology optimization is the interpretation of partial differential equation coefficients as effective material...... structural topology optimization problems. For such problems a stress constraint for an element should only be present in the optimization problem when the structural design variable corresponding to this element has a value greater than zero. We model the stress constrained topology optimization problem...... using both discrete and continuous design variables. Using discrete design variables is the natural modeling frame. However, we cannot solve real-size problems with the technological limits of today. Using continuous design variables makes it possible to also study topology optimization problems...

  13. Optimization design of blade shapes for wind turbines

    DEFF Research Database (Denmark)

    Chen, Jin; Wang, Xudong; Shen, Wen Zhong

    2010-01-01

    For the optimization design of wind turbines, the new normal and tangential induced factors of wind turbines are given considering the tip loss of the normal and tangential forces based on the blade element momentum theory and traditional aerodynamic model. The cost model of the wind turbines...... and the optimization design model are developed. In the optimization model, the objective is the minimum cost of energy and the design variables are the chord length, twist angle and the relative thickness. Finally, the optimization is carried out for a 2 MW blade by using this optimization design model....... The performance of blades is validated through the comparison and analysis of the results. The reduced cost shows that the optimization model is good enough for the design of wind turbines. The results give a proof for the design and research on the blades of large scale wind turbines and also establish...

  14. Advances in metaheuristic algorithms for optimal design of structures

    CERN Document Server

    Kaveh, A

    2014-01-01

    This book presents efficient metaheuristic algorithms for optimal design of structures. Many of these algorithms are developed by the author and his colleagues, consisting of Democratic Particle Swarm Optimization, Charged System Search, Magnetic Charged System Search, Field of Forces Optimization, Dolphin Echolocation Optimization, Colliding Bodies Optimization, Ray Optimization. These are presented together with algorithms which were developed by other authors and have been successfully applied to various optimization problems. These consist of Particle Swarm Optimization, Big Bang-Big Crunch Algorithm, Cuckoo Search Optimization, Imperialist Competitive Algorithm, and Chaos Embedded Metaheuristic Algorithms. Finally a multi-objective optimization method is presented to solve large-scale structural problems based on the Charged System Search algorithm. The concepts and algorithms presented in this book are not only applicable to optimization of skeletal structures and finite element models, but can equally ...

  15. Advances in metaheuristic algorithms for optimal design of structures

    CERN Document Server

    Kaveh, A

    2017-01-01

    This book presents efficient metaheuristic algorithms for optimal design of structures. Many of these algorithms are developed by the author and his colleagues, consisting of Democratic Particle Swarm Optimization, Charged System Search, Magnetic Charged System Search, Field of Forces Optimization, Dolphin Echolocation Optimization, Colliding Bodies Optimization, Ray Optimization. These are presented together with algorithms which were developed by other authors and have been successfully applied to various optimization problems. These consist of Particle Swarm Optimization, Big Bang-Big Crunch Algorithm, Cuckoo Search Optimization, Imperialist Competitive Algorithm, and Chaos Embedded Metaheuristic Algorithms. Finally a multi-objective optimization method is presented to solve large-scale structural problems based on the Charged System Search algorithm. The concepts and algorithms presented in this book are not only applicable to optimization of skeletal structures and finite element models, but can equally ...

  16. Optimal designs for the Michaelis Menten model with correlated observations

    OpenAIRE

    Dette, Holger; Kunert, Joachim

    2012-01-01

    In this paper we investigate the problem of designing experiments for weighted least squares analysis in the Michaelis Menten model. We study the structure of exact D-optimal designs in a model with an autoregressive error structure. Explicit results for locally D-optimal are derived for the case where 2 observations can be taken per subject. Additionally standardized maximin D-optimal designs are obtained in this case. The results illustrate the enormous difficulties to find e...

  17. An optimization method for metamorphic mechanisms based on multidisciplinary design optimization

    Directory of Open Access Journals (Sweden)

    Zhang Wuxiang

    2014-12-01

    Full Text Available The optimization of metamorphic mechanisms is different from that of the conventional mechanisms for its characteristics of multi-configuration. There exist complex coupled design variables and constraints in its multiple different configuration optimization models. To achieve the compatible optimized results of these coupled design variables, an optimization method for metamorphic mechanisms is developed in the paper based on the principle of multidisciplinary design optimization (MDO. Firstly, the optimization characteristics of the metamorphic mechanism are summarized distinctly by proposing the classification of design variables and constraints as well as coupling interactions among its different configuration optimization models. Further, collaborative optimization technique which is used in MDO is adopted for achieving the overall optimization performance. The whole optimization process is then proposed by constructing a two-level hierarchical scheme with global optimizer and configuration optimizer loops. The method is demonstrated by optimizing a planar five-bar metamorphic mechanism which has two configurations, and results show that it can achieve coordinated optimization results for the same parameters in different configuration optimization models.

  18. An optimization method for metamorphic mechanisms based on multidisciplinary design optimization

    Institute of Scientific and Technical Information of China (English)

    Zhang Wuxiang; Wu Teng; Ding Xilun

    2014-01-01

    The optimization of metamorphic mechanisms is different from that of the conventional mechanisms for its characteristics of multi-configuration. There exist complex coupled design vari-ables and constraints in its multiple different configuration optimization models. To achieve the compatible optimized results of these coupled design variables, an optimization method for meta-morphic mechanisms is developed in the paper based on the principle of multidisciplinary design optimization (MDO). Firstly, the optimization characteristics of the metamorphic mechanism are summarized distinctly by proposing the classification of design variables and constraints as well as coupling interactions among its different configuration optimization models. Further, collabora-tive optimization technique which is used in MDO is adopted for achieving the overall optimization performance. The whole optimization process is then proposed by constructing a two-level hierar-chical scheme with global optimizer and configuration optimizer loops. The method is demon-strated by optimizing a planar five-bar metamorphic mechanism which has two configurations, and results show that it can achieve coordinated optimization results for the same parameters in different configuration optimization models.

  19. Chemical optimization algorithm for fuzzy controller design

    CERN Document Server

    Astudillo, Leslie; Castillo, Oscar

    2014-01-01

    In this book, a novel optimization method inspired by a paradigm from nature is introduced. The chemical reactions are used as a paradigm to propose an optimization method that simulates these natural processes. The proposed algorithm is described in detail and then a set of typical complex benchmark functions is used to evaluate the performance of the algorithm. Simulation results show that the proposed optimization algorithm can outperform other methods in a set of benchmark functions. This chemical reaction optimization paradigm is also applied to solve the tracking problem for the dynamic model of a unicycle mobile robot by integrating a kinematic and a torque controller based on fuzzy logic theory. Computer simulations are presented confirming that this optimization paradigm is able to outperform other optimization techniques applied to this particular robot application

  20. An asymmetric B factory based on PEP

    Energy Technology Data Exchange (ETDEWEB)

    1991-02-01

    In this report we describe a design for a high-luminosity Asymmetric B Factory to be built in the PEP tunnel on the SLAC site. This proposal, a collaborative effort SLAC, LBL, and LLNL, is the culmination of more than two years of effort aimed at the design and construction of an asymmetric e{sup +}e{sup {minus}} collider capable of achieving a luminosity of L = 3 {times} 10{sup 33} cm{sup {minus}2} s{sup {minus}1}. The configuration adopted utilizes two storage rings, and electron ring operating at 9 GeV and a positron ring at 3.1 GeV, each with a circumference of 2200 m. The high-energy ring is an upgrade of the PEP storage ring at SLAC; all PEP magnets and most power supplies will be reused. The upgrade consists primarily of replacing the PEP vacuum chamber and RF system with newly designed versions optimized for the high-current environment of the B Factory. The low-energy ring will be newly constructed and will be situated atop the high-energy ring in the PEP tunnel. Utilities already installed in the PEP tunnel are largely sufficient to operate the two B Factory storage rings.